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Abstract

The thesis covers the following topics:

Assuming a partonic structure of the Pomeron we give predictions for diffractive heavy
flavour production at the TEVATRON and the LHC and diffractive Higgs production at the
LHC in leading-order approximation. For the latter the dominant background processes
are also considered. We obtain results on single as well as double diffractive cross sections
assuming a Donnachie-Landshoff-type Pomeron flux factor.

Measurements of the single inclusive jet cross section at the TEVATRON by the CDF
Collaboration maybe suggest a modified picture of QCD in the large Er range. A param-
eter fit of a neutral heavy vector boson Z’ to the CDF data, in leading order perturbation
theory, is performed, and the question of how the corresponding single inclusive jet cross
sections and the dijet angular distributions at the LHC are affected by this additional
Z' is discussed.

We test a model, motivated by the former R, and R, “crisis”, which contains extra
vector fermions. We suggest an alternative indirect test of the possible existence of new
heavy quark flavours at the LEP2 collider, which turns out to give the clearest signal.
We calculate gq cross sections within this framework, including one loop corrections.

Hadronic antenna patterns can provide a valuable diagnostic tool for probing the
origin of the reported excess of high z, Q? events at HERA. We present quantitative pre-
dictions for the distributions of soft particles and jets in standard deep inelastic scattering
eq — eq events and in events corresponding to the production of a narrow colour-triplet
scalar resonance.

We also study the patterns corresponding to Higgs production and decay in high-
energy hadron-hadron collisions. In particular, the signal gg — H — bb and background
gg — bb processes are shown to have very different radiation patterns, and this may
provide a useful additional method for distinguishing Higgs signal events from the QCD
background.

The process eq — eq + v exhibits radiation zeros, i.e. configurations of the final-state
particles for which the scattering amplitude vanishes. We study these zeros for both et
and e*d scattering. The latter exhibits a new type of zero which to our knowledge has
not previously been identified. The observability of radiation zeros at HERA is discussed.
In the framework of this new type of zero we also study the process ete™ — qgy. We
calculate the positions of these zeros for u—quark and d-quark production and assess the
feasibility of identifying the zeros in experiments at high energies. The radiation zeros
are shown to occur also for massive quarks, and we discuss how the bby final state may
offer a particularly clean environment in which to observe them.
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Preface

“God grant that no one else has done
The work I want to do,

Then give me the wit to write it up
In decent English, too.”

The Standard Model (SM) of the elementary particles and their interactions can be
regarded as well understood and well tested. However, many interesting issues need
further investigations. These are essential

e to address open questions within the SM,
e to search for new physics beyond the SM.

In this thesis we present a phenomenological study of many subjects directly related to
the SM (or going beyond the SM) which includes both points addressed above.

Chapter 1:

The first chapter studies one of the cornerstones of the SM, the strong interaction
Quantum Chromodynamics (QCD), or more specifically: non—perturbative QCD in the
framework of Regge theory. Regge theory is not yet understood at a ‘first principles’ level.
With the introduction of the Pomeron, a special kind of Reggeon, in order to explain
rapidity gaps in high—energy collisions, many new open questions arose. The interplay of
soft and hard interactions is certainly the most striking feature that the Pomeron has to
deal with. We shall test the soft Pomeron at high—energy scales and discuss diffractive
heavy flavour and Higgs production at present and future hadron-hadron colliders in this
framework. These studies are essential to learn more about the ‘nature’ of the Pomeron.

Chapter 2:

In this chapter we address topics that lead beyond the SM. Motivated by measured
experimental anomalies from the TEVATRON and LEP colliders, we discuss the impact
of a heavy equivalent to the SM Z boson at present and future hadron-hadron colliders.
We introduce a new heavy vector quark triplet and test its impact at LEP1 and LEP2.




Chapter 3:

An important diagnostic tool for probing the SM and especially searching for new
physics beyond the SM are soft photon and gluon antenna patterns, i.e. emission of
additional gluons (photons) in high-energy processes. After some basic definitions and
derivations we show how these antenna patterns can be used to help identify the Higgs
boson at the future LHC proton-proton collider. Another topic of this chapter will be
a study of the reported high-Q? events from HERA. Again, using antenna patterns, we
try to gain further insight into the underlying mechanism of this (possible) anomaly.

Chapter 4: .

Finally, we discuss radiation zeros in processes emitting additional photons at the
tree—level. These zeros are a consequence of complete destructive interference between
initial- and final-state radiation and are a feature of any field theory. Thus radiation
zeros are in principle present in any processes involving the emission of photons, gluons
or other massless vector bosons. Very often, however, there are no physical solutions
to be found. We study a new type of radiation zero, not discussed in the literature
before. As these zeros are features of the SM, it is important to give predictions for
their observability in high-energy processes. The appearance of radiation zeros is also
very sensitive to gauge couplings and thus provides an excellent test of the SM and new

physics beyond.

A very brief summary at the end highlights the most important results obtained

during these studies.




Chapter 1

Diffraction and the Pomeron

“By trying to find a meaning
to everything, you appear ex-

cesswely suspicious.”
(Laotse)

In this chapter we study the influence of the Pomeron in high-energy physics. Since
the study of diffractive events at modern high~energy colliders (discussion in Section 1.1),
the Pomeron gained a renewed interest to explain the observed rapidity gaps. The ac-
cepted explanation is the exchange of a colourless object, carrying the quantum numbers
of the vacuum. In the following we shall give a brief introduction into the experimental
situation as well as describe a model we adopted for our studies, the soft-Pomeron model
by Donnachie and Landshoff in Section 1.2. To do this we shall also discuss the pinnacles
of high-energy scattering that immensely contribute to our understanding of diffraction

e the optical theorem,
e the Froissart—Martin bound,
e the Pomeranchuk theorem.

This will be the scope of Section 1.2. Introducing parton distribution functions for the
Pomeron in Section 1.3, we give predictions for diffractive Higgs (Section 1.4) and heavy
flavour production (Section 1.5) at the TEVATRON and/or the LHC. A critical discussion
of our results finishes this chapter, basically dealing with the breaking of factorisation
in diffractive events and the possible problems with the Donnachie-Landshoff model in
Section 1.7. Recent results on diffraction as measured at HERA and the TEVATRON are
presented in Section 1.6. Throughout this study we shall present the results in chrono-
logical order, as they were published. This should clarify our approach to diffraction.

A short summary of the present status of the Pomeron and a presentation of a few

alternative models conclude this chapter.




[Chapter 1: Diffraction and the Pomerorﬂ
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Figure 1.1: A typical rapidity gap event as seen by ZEUS in 1993. The picture sketches a
schematic view of the ZEUS calorimeter and the central tracking unit. The directions of
the incoming protons E, = 820 GeV and electrons E, = 27 GeV are indicated as well as
some values of the pseudorapidity 7 = —Intan(6/2). The scattering angle 6 is defined with
respect to the incoming proton. The picture is taken from [ZEUS93].

1.1 Diffractive events seen at HERA

We shall briefly discuss the reason for a renewed interest in a concept that has already
existed for more than 30 years, the Pomeron. In 1993 both the H1 [H1.94] and the
ZEUS collaborations [ZEUS93, ZEUS94] at HERA reported a new class of events seen
for the first time at the HERA ep collider. The characteristic feature of these events
was large rapidity gaps in the forward direction of the incoming proton. An example is
shown in Fig. 1.1. Standard deep inelastic scattering (DIS) events basically show energy
deposition in the forward direction of the incoming proton, due to fragmentation of the
latter, forming high-energy jets.

Introducing the pseudorapidity n = — Intan(6/2), where 8 defines the scattering angle
of a produced jet relative to the forward direction of the incoming proton one observes
the following in a certain class of events: if one defines the quantity nmax as the most
forward jet that can be observed, then some events show 7, < 1 — 2 which means that
there is no energy deposition in the forward direction. Even events with nmax < —2 have
been observed.

A second observation was the mass spectra distribution in the process ep — eX. Large
rapidity gaps have preferentially small Mx values (~ 10 GeV). The M% distribution falls
off more rapidly, dN/dM?% o« Mx" with n = 2 — 4. The diffractive events thus change
the typical M /\72 behaviour in the small My region.

One observes that approximately 10% of all events are diffractive and this ratio stays
quite constant over the achievable Q range. The first study of the 1993 data collected
by ZEUS [ZEUS93, ZEUS94] and H1 [H1.94] yielded
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e ZEUS (1993):
integrated luminosity [ d¢ £(t) = 24.7 nb~!, 5.4% diffractive events (Mmax < 1.5), no
Q? dependence found [ZEUS93]; additional factor 20 in statistics, 7.5% diffractive
events (7max < 1.5), no Q? dependence found [ZEUS94];

o H1 (1993):
integrated luminosity [dtL£(t) = 27.3 nb™!, 5% diffractive events (fmax < 1.8),
no Q)% dependence found, evidence that 10% of these diffractive events are due to
exclusive vector meson electroproduction [H1.94] with a scale dependence.

The observation of events with large rapidity gaps at high-energy colliders has some
history. They were already observed at the SppS collider at CERN by the UA4 collab-
oration in 1984 [UA4.84] and later by the UAS8 collaboration [UA8.88, UA8.92]. The
observation by UA4 lead Ingelman and Schlein to an interesting model which we shall
discuss in Section 1.2.

"The explanation of these observed events has its roots in Regge theory and the intro-
duction of the Pomeron. These will be the main topics in Section 1.2. The main idea
is that the incoming proton ‘emits’ an object that carries the quantum numbers of the
vacuum (i.e. the Pomeron) while the proton remains intact (no fragmentation and thus
no energy deposit in the forward direction) and travels down the beam line, while the
Pomeron interacts with the virtual photon.

The experimental status of results on diffraction from HERA and the TEVATRON

will be presented in Section 1.6.

1.2 Regge theory and the Pomeron

We shall start our theoretical investigations by deriving useful formulae for the under-
standing of the Donnachie-Landshoff model (DLM). Especially unitarity and the optical
theorem play a pivotal role in this framework. We shall also briefly discuss Reggeons
before introducing the DLM. An excellent introduction to this subject can be found in
[ELOP66, Col77]. A collection of the most important papers on Regge theory has been
published in [Can89].

1.2.1 Unitarity

An important feature of any scattering process is unitarity. We shall derive the unitarity
condition for inelastic scattering and show how the DLM fits into this framework. For
further discussion on the breaking of factorisation we refer to Section 1.7. To start with
let us first study the unitarity condition for elastic scattering.

A scattering process is described by an overlap of two states of a system: the in-state
|#) before interaction and the out-state |f) after interaction. For ¢ — Zoo both states
consist of free particles. The amplitude for finding the system in state |f) is given by the
Lorentz invariant S matrix element

Siy = (fISlé) . (1.1)

The fundamental postulate concerning the S matrix is unitarity, i.e. the probability for
an |i) state to end up in a particular |f) state, summed over all possible |f) states, must
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be unity

d_ (7181 > _(iST1)(f1S)
f f

= (i|STSl)=1. (1.2)

The scattering amplitude Agp(s,t) for scattering of an in—state la) to an out-state |b) is
related to the S matrix via

Sab = (bSla) = 6o + i(2m)*8* (Z,’Da - ZPb) Agp - (1.3)
a b

Very often one introduces the T matrix

Tap = (2m)*6* (Z;Da - ZPb) Aab s (1.4)
a b

such that
Sab = ab +17Tap - (1.5)
From the unitarity constraint (1.2) we obtain
(T = Tat) = (TT )y = Y TacToi (L6)
4
and thus
29m Au(s, 1) = (2m)*" (Zpa - Zpb> Y Auels ) AG(s,). (L)
a b c

1.2.2 The optical theorem

The Cutkosky rule (1.7) [Cut60] provides a very interesting relation between the forward
amplitude of an elastic process a(p;) + b(p2) — a(ps) + b(p4) and the total cross section.
Forward scattering, ¢t = (p1 — p3)? = (po — p4)? = 0, means p; = p3 and py = py. Thus

28m Aga(s,t =0) = 2%m (p1po] Alp1ps)
= (27T)4 254 (Pn — (p1 +p2)) IA(sat)a—ml? = Foypa - (1.8)

Here, p, indicates the total momenta of the final state and n indicates all possible final
states. F' stands for the flux factor F = 4\/(;01 -p2)? —m3m3. In the c.m.s. frame and

negligible masses we find F' ~ 2s and thus

a \ a
1 X 1 '
Ototal = 2_ Z = —-8m “
S x . §
b b b !' b
1
Ototal = g Sm A(S,t = O) . (1.9)




LChapter 1: Diffraction and the Pomerorﬂ

1.2.3 The impact parameter space

The standard partial wave expansion for the scattering amplitude in the c.m.s. frame is

given by (cf. Ref. [BC85])

A(s,t) = 167 i(% + 1) Py(cos B)ae(k), (1.10)
=0

with the Zth partial amplitude of momentum &
— 1 2ix¢
ar(k) = - (e - 1) , (1.11)
and the £th Legendre polynomial Py(cos6). The scattering angle is denoted by 6. If the
scattering is purely elastic then Sm x, = 0, if there is inelasticity then Sm y, > 0. In the

c.m.s. frame (massless particles) we find cos§ = 1 + 2t/s and s = 4k2.
Using the properties of Legendre polynomials one can show that the ¢th cross section

(corresponding to the ¢th partial wave) is bound by
16
op < —2(20+1). (1.12)
3

Since the bound decreases with energy, an increasing number of partial waves must
contribute in the high-energy limit. Thus an integral representation for the scattering
amplitude should be preferred. Introducing the impact parameter b which measures the
spatial separation of an incoming wave from the target (bk = ¢+ 3 [BC85]) we convert

Eq. (1.10) into an integral via

d¢ = [ kdb,
s fao
ag(k) — af(s,b),
Py(cosB) —  Jo((2¢ + 1)sin(8/2)) = Jo(gb),

with g2 = —t = 4k? sin? g and the Bessel function Jy. The last substitution is only true

for large £.
We may readily write down the integral representation for our scattering amplitude

in impact—parameter space

) o
A(s,) = 8rs / bdb Jo(gb)a(s, b) , (1.13)
0
or with
1 2
Jo(z) = ——/d¢ei“°s¢, (1.14)
27 /

we finally arrive at

A(s,t) = 4s/d2beia'5a(s,b), (1.15)
0
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—

with |b| = b, |§] = ¢, §-b = gbcos¢ and d%p = bdbd¢. The Fourier transform of
Eq. (1.15) gives

[o0]
1 1 o
a(s,b) = — - / d%q e~ A(s, ). (1.16)
0

From the optical theorem (1.9) and (1.15) we derive

o0
Sm Ag (s, ¢ = 0) = 4s/d2b Sm agi(5:5) = 5010001, (1.17)
0
and thus
oG
Trotal = 4/d2b Im ae (s, b) . (1.18)
0

The elastic cross section reads
1 1 o o0
Oel = 16—7T$—2 /dt ,"4131(5:75)'2 = 4/d2b,ael(3:b),2' (1'19)
0 0

We may finally write down our master equation for the scattering amplitude in impact—
parameter space. From oyt = 0¢ + 0jn, where o;, denotes the inelastic cross section:

Smaa (s, b) = |au(s, b)|* + Giu(s, b)|. (1.20)

Gin represents all inelastic channels. It is straightforward to see that the general solutions
of (1.20) can be written as

Gin(s,b) = {1 - e‘Q(s’b)} , (1.21)

1
4
1 s ~
ag(s,b) = % {e_ At 2in(s0) _ 1} , (1.22)

where x(s, b) is a phase (elastic processes) and (s, b) is the so-called opacity and e~s:)
is the probability to have no inelastic interaction with the target (2(s,b) = 0 for pure
elastic scattering). For high-energy scattering we find the real part of the amplitude
Re ael(s,b) = e U /25in(2x(s,b)) very small and thus we might set x(s,b) = 0.
Eq. (1.20) plays an important role in high-energy physics. Not only does it define uni-
tarity in scattering processes, but it can also be used to derive important theorems. We

shall briefly discuss two of them.

1.2.4 The Froissart—Martin bound

Froissart [Fro61] and Martin [Mar63, Mar66] showed that for the sake of unitarity (1.20)
the total cross section oyoa1 can not rise indefinitely with the centre-of-mass energy s but
should rather be bound. The asymptotic behaviour was shown to follow a In? s behaviour
and the cross section is restricted by an upper bound

Tiotal < Crym In’s. (1.23)
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To prove this theorem we consider the elastic process a(1) + b(2) — a(3) + b(4) with

= (p1 +p2)? = (p3 + p4)?. In general Cpy ox 1/(kmi“)2. where kTi“ is the minimal
transve1se momentum of the given process. We introduce a cut—off in b parameter space
b for which we postulate that the opacity €(s,b) < 1 (elastic scattering) for b > b. From
the optical theorem (1.9) we obtain

1
Ototal = ;%m A(S, t: 0) 1 15)

4/d bSm [aei(s, b)eT?]

o0
(122) 2/d2b {1 —e_Q(g,b)} —_ 47T/dbb{]. — e_gﬁ‘;’ﬂ} . (124)
0 0

We set the phase x(s,b) = 0 in Eq. (1.22) and used the fact that [d%b = [dbdgb =

27 [dbb.
The assumption we put into our proof is that at large values of b the elastic amplitude

is bound by some power of s

s\ N
Smag(s,b) < <s_> e b, (1.25)
0

Onre can introduce and interpret

s\ N
P(s,b) = Po (—) e b
. S0
as the interaction probability with the target. This interpretation goes back to Feynman.
The bigger b, the lower is the probability of inelastic scattering and thus at some b we
find P(s, b) < Py, which yields as an estimate for b

N i -~
P(s,b) =Py (i) <Py, = b< El (i> ) (1.26)
S0 K S0

Thus we may divide the integral in Eq. (1.24) into two parts

; _Q(s,b) 7 _Q(s,b)
Ototal = 47r/dbb{1—e 2 }+47r/dbb{1—e 2 }
O o~

b
N y
~-

~0 as QK1 for b>b

< 47r/dbb = 2T N2y <i> ~ 30mb N? In? (i) . (1.27)
So S0

The minimum mass in the hadron spectrum is the mass of the pions and thus we find
for pion—nucleon scattering x = 2m,. The power N can be calculated and one finds
CrMm ~ 60 mb. At the TEVATRON, e.g., we have a centre-of-mass energy of 1800 GeV
and thus the Froissart—-Martin bound tells us that the total cross section for pp should be
bound via oea1(pp) < O(10° mb) at an energy scale of /so = 100 GeV. A comparison
with Fig. 1.2 immediately shows that the data are far below the Froissart-Martin bound.



Chapter 1: Diffraction and the Pomeroﬂ

1.2.5 The Pomeranchuk theorem

Another prediction of the optical theorem on the basis of analytic properties is the
asymptotic equality of particle and antiparticle cross sections from a given target. This
theoretical observation is originally due to Pomeranchuk [Pom58].

The formulation of the theorem is as follows

The ratios of the cross sections of any particle and its an-
tiparticle approach unity at high energies (S. Weinberg,
[Wei61]).

OR

The total cross sections of two crossed processes should
be equal to each other at high energies if the real part
of the amplitude is smaller than the imaginary part
(E.M. Levin, [Lev97]).

This is a manifestation of crossing symmetry (s + u channel) in the high—energy
limit. To prove this theorem we compare the real part and the imaginary part of the
amplitudes of the two elastic processes

a(1) +56(2) = a(3)+b(d), (1.28)
a(l) +5(2) = a(3)+b4), (1.29)

with @ and a being particle and antiparticle. We address the dispersion relation for the
elastic amplitude at ¢t = 0

Re A(s, ¢ = /ds\smAst:O /d~\ymAuf—0) (1.30)

S$— S U—1u

In practice a subtraction is necessary to make the integrals converge. Originally a dis-
persion relation was a formula giving the real part of the index of refraction in terms of
an integral over its imaginary part. The modern approach to dispersion relations began
with the work of Gell-Mann, Goldberger and Thirring [GGT54] deriving the analyticity
of the scattering amplitude from microscopic causality. Goldberger very soon thereafter
derived a very useful dispersion relation for the forward pion—nucleon scattering ampli-
tude [Gol55].
From the optical theorem (1.9) we have

SmAG,t=0) = 50%,, (1.31)
SmA(T,t=0) = @od,, (1.32)

where 0%, | denotes the total cross section for process (1.28) and o, for process (1.29).
Furthermore we have 4 — —3 for §> 1. Hence,

1 o0 Uab Uab
Re A(s,t =0) = —/d§§{ total | m‘} . (1.33)

s$— 38 S+s
0

5




Ehapter 1: Diffraction and the Pomeron—l

As we have seen in the case of the Froissart—Martin bound, the assumption that the
cross section follows a In” s behaviour is justified. We therefore assume

o — C® " <i> and ¢%_ — C*® Y <i> , (1.34)
S0 S0
for 5> 1 GeV? = g,,.
Substituting (1.34) into Eq. (1.33) we finally arrive at
I+t (_)
Re A(s,t = 0) = (C* = C¥)———2L > Sm A(s,t = 0), (1.35)

N +1

for s > 1 GeV? = sq.

This is in contradiction with the unitarity constraint (1.20) which has no solution if
fe A(s,t = 0) increases with energy and is bigger than Sm A(s,t = 0). The only way
out of this contradiction is to postulate

aﬁftal = of(ftal as s/sp — o0o. (1.36)

This is a generalisation of the theorem due to Pomeranchuk, who only considered the
case N = 0 [Pom58], while the observed behaviour of cross sections suggest that N = 2
is more likely. For a generalisation of Pomeranchuk’s theorem see Ref. [Wei61].

In Fig. 1.2 we show some total cross sections as measured in high-energy experiments
as a function of pj,,. Note the verification of Pomeranchuk’s theorem at high energies.

1.2.6 Regge poles and the DLM

Today high-energy behaviour is usually inferred from Regge pole theory [Col77, Regh9,
Reg60]. Experimentally one observes resonances in the —channel with spin 3 > 1. This
leads to scattering amplitudes following a s? behaviour. This would mean a fundamental
violation of the Froissart-Martin bound (1.23) at high energies. A solution to this puzzle
was the introduction of Reggeons formulated by Regge [Reg59, Reg60].

Let us consider a particle exchanged in the ¢—channel of the process a(1) + b(2) —
¢(3) + d(4) as shown in Fig. 1.3.

The Regge pole R couples with strength g;;(¢) to the particles of the process. If one
studies the scattering amplitude of the process in Fig. 1.3 using the angular momentum
representation [Reg59, Reg60] one arrives at the following expression (see also [ELOPG6,
Col77]) for the scattering amplitude (s > [t|)

B e~tmar(t) 4 Sr 1 s ar(t)
AR(‘Sﬂt) - gaC(t)gbd(t) s1n(7ra73(t)) F(aR(t)) <$0> N (137)

The Regge poles are the family of resonances that lie on a trajectory ar(t). If one plots
the experimental results, i.e. the spin j of a given resonance versus its mass m% = {,
than these resonances group along a straight line

ar(t) = ar(0) + ot (1.38)

according to their quantum numbers they can exchange in a given process, which is
called a Regge trajectory. The different Regge trajectories with their values ax(0) (the
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Figure 1.2: The cross sections for pp and pp as a function of the laboratory beam momentum
Plab = ‘/75\/%’2@. Data for pion—nucleon and kaon-nucleon as well as yp scattering are
also shown. Note the high—energy behaviour showing the crossing symmetry according to
Pomeranchuk’s theorem. The plots are taken from [PDG96].

intercept) and ofp (the slope) can be found, e.g., in [Col77]. Typically one finds for
the leading meson trajectories an intercept ar(0) ~ 0.5 and the slope of the trajectory
oy =~ 1 GeV~2. The studies of Regge [Regb9, Reg60] showed that in the asymptotic
limit (large s and fixed t) the elastic cross sections for two-body processes should behave

like
4 o ) () 1.39
GoacFO (=) (1.39)
with sp again being the hadron mass scale sg ~ 1 GeV2. Substituting (1.38) into (1.39)
yields
d 2ar (0)-2 20" inf =
4 & F(1) (i) 2oin(5)e (1.40)
dt S0

We observe two features for large s in Regge theory: first, the forward peak (diffraction
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b(2) Gnelt) > d(4)

C

Figure 1.3: A Regge pole R is exchanged in the t~channel of the process ab — cd. The vertex
couplings of the Regge pole to the particles are denoted by gu.(t) and gpq(t), respectively.

peak) shrinks (becomes sharper) as In s increases, and, second, with ar (0) ~ 0.5 (as seen
experimentally) there is no violation of the Froissart—Martin bound if the exchange of
Regge poles is the underlying mechanism at high energies. The cross section (for Regge
pole exchange with the given intercept) is even decreasing at higher energies.

Now we have discussed the function ag (t) in Eq. (1.37) and showed how the total cross
section oyota) depends on this trajectory (or its intercept). The function 1/sin(rar(t))
defines the Regge propagator and produces the required resonance poles in ¢ whenever
ar(t) passes through an integer (i.e. the spin of the resonance). Because of s < u
crossing symmetry one has to introduce a signature Si for each Regge trajectory. This
is easy to understand as the t—channel Reggeon is the sum of two terms [ELOP66, Col77],
an s—channel and a ‘crossed’ u—channel contribution. Depending whether the exchanged
Reggeon has even (0,2/4,---) or odd (1,3,5,- - -) spin, the s— and u— channel contributions
either sum or subtract. We may write the total contribution (positive t) as

(—S)aR(t)—f—SR(—u)llR(t) s2%0 (—s)aR(t)+SR sor(t)
= s femmen 4 Sp ) (1.41)

The Regge trajectories have signature Sg = %1 according to the C—parity of the exchange.

There has to be taken care of the unphysical spin values, the nonsense poles as Collins
called them [Col77], that appear for ag(t) = 0,—1,—2,... To cancel these poles and to
achieve that Ax(s,t) = 0 at these values one introduces the I' function in (1.37). As

I'(z) sin{wz) = 7/T(1 — x) we see from (1.37) that
Ar(s,t) o {e—imﬂﬂ + SR} (1 — ag(t)). (1.42)

For example, the p meson has spin 1 and thus Sg = —1. So, if a,(t) — 0, then
A,(s,t) = 0 according to Eq. (1.42).
Employing the optical theorem one can show that the total cross section shows the

behaviour
Tyotal o s*ROL (1.43)

compared to the elastic cross section of Eq. (1.39).
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We summarise the expressions for the total, the differential single diffractive and the
double differential cross section using our notation we introduced so far. The graphical
representation of the cross sections and their analytic form read

Ototal =
dog _
==
d%
dtdMy
SQR(O)_I
Tigal = Zgna ) gr(0) m; (1.44)
d e TRa(t)9%s(t) [ (cos(mar(t)) + Sr)? sar(t)-2
— = 1 14
dt e Z 167 sin?(man (1)) * 2 (ag(t)’ (1.45)
d do® Zglpaw gho(t)gprr ((cos(mar(t) +Sx) , |
dt dM?% PR 167s sin?(rax (t))
1 s 20 (t)
M3 )xr® 1.4
" (or®) (M?-) (M (1-46)

where we introduce the triple Pomeron-Reggeon coupling gprr. Note that these formu-
lae are valid in the so-called Regge regime, i.e., t small and s/M% — oco. For small [t|

one therefore finds

2
%ael o~ %e*bltl, (1.47)
with a sharp diffraction peak.

A look at the experimental data (¢f. Fig. 1.2), however, shows that at high energies
the cross sections are not decreasing with energy, neither are they strictly constant, but
slowly increase. Taking Eq. (1.43) into account, and holding strongly to Regge theory,
then there should be a kind of trajectory with intercept ar > 1. But as this postulate
means a violation of the Froissart—Martin bound and unitarity, care has to be taken, even
though the wviolation zone is far beyond today’s collider energies. With the introduction
of the Pomeron, with an intercept only an ¢ amount above unity, the increasing cross
sections, that have been measured experimentally, could be explained. The Pomeron was
introduced by V.N. Gribov into Regge theory and named after I.Ya. Pomeranchuk who

contributed much to the understanding of the Pomeron.




Chapter 1: Diffraction and the Pomeron]

The Pomeron trajectory (according to Eq. (1.38)) can be cast in the following form
ap(t) = ap(0) + apt =1+e+a't. (1.48)

The slope parameter ¢ can be deduced from measurements of the differential cross
sections at high energies, i.e., the domain where the Pomeron exchange dominates. It is
found to be o/ = 0.25 GeV~2. With this value most models and measurements agree.

More subtle is the intercept e: depending on its value one defines a soft Pomeron
(€ ~ 0.08) or a hard Pomeron (e ~ 0.2 — 0.5). In our calculations we shall adopt the
model of the soft Pomeron fitted to experimental data by Donnachie and Landshoff
[DL83, DL84, DL86]. They gave an elegant description of almost all existing experimental
data in terms of an universal parametrisation for the total cross sections. They showed
that any total cross section can be parametrised as’

s\ s\¢
Totalah) = Xus (=) "+ Y (2] (1.49)

S0 0

with ap(0) = 1 + € being the Pomeron intercept (¢ > 0) and ar(0) = 1 — 7 being the
intercept from leading-meson Regge trajectories p,w, f, ... with n ~ 0.5. Donnachie and
Landshoff presented an update of their results in 1992 [DL92] and found

o = 0.25 GeV72,
e = 0.0808, (1.50)
n = 04525,

They extended the picture to virtual photons (v*,@? < 10 GeV?), to see what is the
expected contribution of the non-perturbative mechanism to higher @2 [DL84, DL94).

0.65

0.1 — -
} £ =0.0790+ 0.0011 o6l M 1 =04678+0.0059 ]

A loss L Correlationn and e = -56% .
1

0.08 |- . Jost + ' -

007 L % Jo4s -~ 1 ¢ @ % .
04| . s - L
0.06 - pp pd n'p wd K'p K'd Toss L {Jp ;_>d " p o d K§p _d ]
pp pd np K*'n Kd /P L pp pd a p K_nK d ]

0.05 on K_p - 03 pn K p
K™ n lo2st- pn K™n T

o0e b_PO 4

Figure 1.4: A fit of the parameters ¢ and 7 employing formula (1.49) [DL92] to different cross
sections. This figure is taken from the Particle Data Group [PDG96] and shows an update of
the data previously obtained by Donnachie and Landshoff (1.50) in [DL92].

The results of these fits are shown as solid lines in Fig. 1.2. An experimental update
from different measurements on total cross sections is shown in Fig. 1.4. We note that the
WA91 collaboration reported a measurement of a resonance at ~ 1.9 GeV which could
be interpreted as a JF¢ = 2+7 state glueball candidate [WA91.94]. The striking feature

INote that Y,; = Y according to Pomeranchuk’s theorem for large s.
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of this glueball is that it would be located on a Regge trajectory defined by above (1.50)

parameters.
The Pomeron intercept has been recently measured at HERA by the H1 [H1.97a)

and the ZEUS [ZEUS97] collaborations using data from diffractive photoproduction. In
this case a quasi-real photon interacts with a Pomeron emitted by the incoming proton
and forms a system of mass Mx, so

Py’
"= Xy (1.51)

The double differential cross section of this process can be written as [Mul70, FF74]
d’o

1 op(0) o
W(’YP - Xp') = ( ) (54p) 2P (072 oIt (1.52)

M2

with /5., being the c.m.s. frame energy of the quasi-real photon and the incoming pro-
ton and b = by + 2ap In(s,/M%) (cf. Eq. (1.40)). Thus measuring the M2 dependence
of the differential cross section in (1.52) yields a value for the Pomeron intercept ap(0).
The reported values for /5., ~ 200 GeV were (Q? = 0)

ZEUS: oap(0) = 1.1240.04%%2 £0.08%5 for 8 < My < 24 GeV,
H1l: ap(0) = 1.06840.016%" +0.022%" for 2 < My < 44 GeV.

So both measurements seem to support the model of the soft Pomeron. However, care
has to be taken, as will be discussed in Section 1.7 where we discuss data for higher
energies.

The Pomeron intercept shows an energy dependence. This was shown by, e.g., the
CDF collaboration [CDF94]. They studied events with single Pomeron exchange (single
diffractive events) p+ p — p+ X and obtained from a data fit:

ap(0) =1+4¢e=1121£0.011 at /s=>546 GeV,
ap(0) =1+¢e=1.103+0.017 at /s =1800 GeV,

for a fixed slope parameter o = 0.25 GeV~2. They conclude that large screening effects
have to be introduced to save the traditional Pomeron model. Also deduced experimen-
tally by CDF was the sensitivity to @’. A change in o/ by éa’ = £0.1 GeV~2 results in
a change in the single diffractive cross section ogp of only £0.1% and € changes at the
same time by de = +0.011.

1.2.7 A partonic Pomeron

The Pomeron has been postulated to describe hard diffractive collider phenomenology.
In the framework of Regge theory a colourless object, carrying the quantum numbers of
the vacuum, is able to explain the new observations. A pure gluonic composite seemed
to be the simplest explanation on the basis of partonic contents and proposed features
[Low75, Nus75, Nus76]. The Pomeron was therefore assumed to behave essentially as a
hadron and Ingelman and Schlein introduced the concept of a Pomeron structure function
[IS85] motivated by data from the UA4 collaboration [UA4.84] measuring the diffractive
component in the mass distribution d?s/dt/dMy in the reaction pp — Xp at the CERN

SppS collider.
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Further collider experiments, by for example the UA8 collaboration at CERN [UAS.88,
UA8.92], gave evidence for a hard parton distribution inside the Pomeron but still could
not distinguish between a gluon or quark dominated Pomeron. But they found that the
partonic contents should be hard, i.e., their momentum distribution should be peaked
at high Bjorken z and 57% of all events showed a oc 6z(1 — ) distribution. Only 13%
were found to be soft, i.e., o< 6(1 — z)°. The remaining 30% even showed a superhard
~ §(1 — z) contribution.

Exactly as one measures the structure function F5 of the proton at HERA in DIS
and is able to extract the parton distributions inside the proton, it is possible to measure
the diffractive structure function FP, i.e. the structure function of the Pomeron. The
corresponding handbag diagrams are shown in Fig. 1.5.

’Y‘ (a) 'Y*
‘1% k+q
k F2

Figure 1.5: A sketch of the handbag diagrams used to measure the proton structure function
F, (a) and the diffractive structure function F’ (b) at HERA.

The total deep inelastic structure function Fy(z, @?), measured in the process y*p —
X in Fig. 1.5(a), can be written as a sum over parton distributions times a short distance

part

=3 [ do! fypplas®) x BY(5,Q%0%), (1.53)
q .

with ﬁg(m/m’,Q2,p2) = 635(1 — z/z') + O(as). Now one can hypothesize that the

diffractive structure function FQD @ (zip,t,z,Q?), measured in the process v*'p — p'X
in Fig. 1.5(b), can be written in terms of diffractive structure functions

D(4) d? zp, b,z
d*Fy " (zp, t, 2, Q) /d , Sl gplaes b2’ %) Fg 2%, (1.54)
dzpdt dxpdt

In the following we shall make three fundamental assumptions:

1.) the Pomeron has a partonic structure,

2.) this partonic structure is universal, i.e., its determination at an ep collider should also
hold at a pp collider, etc.

3.) factorisation of the diffractive structure function is valid.
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It will turn out that the controversial assumption is the factorisation hypothesis 3.).
With factorisation we mean gap- or Regge—factorisation,? i.e. the diffractive structure
function can be written as a product of the structure function of the Pomeron FY and
a fluz factor fp, i.e. a measure of the probabilty that a Pomeron is being emitted from
a hadron. If zjp is the fraction of the proton momentum that is carried by the Pomeron,
then we can write (assuming gap-factorisation)

d2

dzp thQD(4)(wIPata§7 Q%) = fe(zp,t) x FFY(£,Q%), (1.55)

with ¢ = z/zp (z is the standard DIS scaling variable) and Q? ~ M%£/(1 — €). Note
that the flux factor in Eq. (1.55) only depends on zp and . Any z dependence would
certainly destroy factorisation. The crucial experimental observations are that FQD ™ s a
leading twist structure function, indicating deep inelastic scattering off point-like objects
[ZEUS93, ZEUS94, H1.94].

The diffractive structure function can be determined in DIS by measuring the differ-

ential diffractive cross section oP in the reaction ep = ep' X [H1.95, ZEUS95a]

d4O'D 27ra2 D(4 D(4
= 1+ (1-9?) KW —2FPD 1+ Aa)(1 + A2), (1.
with 4y = Q?/(zs) and the corrections Araq for the radiation and Ay for the Z boson
exchange which both can be neglected in the kinematic range of these measurements.

Note that ) ) ) )
Ml\—+Q —t N MX-!-Q -

spp+ Q2 —m2 Q2

with /5., being the centre-of-mass energy in the v*p frame and m,; being the proton
mass. The outgoing proton p’ just travels along the beam line and remains undetected,
thus one integrates over ¢ and finds

TP =

E‘%FQD@)(‘/L‘IP’f;QQ) = /thQI)(4)(ﬂ?[p,t,€,Q2)
o (zp) 2P EP(£,Q%) = (zp) T (£,Q%), (1.57)

using the Donnachie-Landshoff intercept (1.50). The experimental results from ZEUS
[ZEUS95a] and H1 [H1.95] are

Hl: n=2wp(0)—1 = 1.19+0.065 +0.07%" (1.58)
ZEUS: n=2ap(0)—1 = 1.30£0.08% £J08wst- (1.59)

Thus ZEUS obtains a somewhat steeper zjp dependence. These values are still valid even
though new fits from both collaborations have been undertaken. Note that the Pomeron
intercept has been probed at high-Q? values. The range was 8.5 < Q? < 50 GeV? for H1
and 10 < Q% < 63 GeV? for ZEUS. We shall discuss the high Q? results in Section 1.7.
We only refer to the chronological appearance of experimental data here, as these data
until 1995 were the motivation for our studies on diffraction. The experimental situation
after 1995 will be summarised at the end of the chapter.

2A possible violation of gap—factorisation will be the topic of Section 1.7.
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Assuming a pure Pomeron interchange, we can adopt the flux factor modelled by fit-
ting this picture to data on total cross sections as was done by Donnachie and Landshoff.
The flux factor then reads® [DL84, DL86] (see also Eq. (1.37))

2
fe(zp,t) = %(Qt)(fvlp)]_m"’(t) , (1.60)

where the normalisation 1 /47r2 comes if one pretends that the Pomeron behaves kine-
matically like a photon. Of course the flux factor is a matter of convention and there
is no compelling reason for any particular convention. Donnachie and Landshoff derived
an expression for the Pomeron—quark coupling

gpe(t) = 3BF(t). (1.61)

Thus the Pomeron couples to each valence quark with the same strength 8 = 1.8 GeV ™2
(fitted value). The function Fi(t) is the electric form factor experimentally determined

in eN scattering :
4m?2 — 2.8t t =2
Fi(t) = —2 1-— . :
1(t) 4m2 —t ( 0.7 GeV2> (1.62)

The magnetic form factor is small in the isoscalar channel.
We have collected now all bits and pieces to start calculations on single and double
Pomeron exchange in the DLM. The missing piece in the mosaic is the structure function

of the Pomeron.

1.3 Introducing parton distributions for the Pomeron

In the following we shall use a fit from HER A data to model partonic distributions for the
Pomeron as performed by Kunszt and Stirling in [KS96]. As discussed in Ref. [KS96}, the
diffractive parton distributions are to be considered as referring to partons in an effective
colour-neutral target which is presumably a sum over several Regge trajectories. We
shall assume Pomeron exchange only.

Since the scattering evidently takes place off point-like objects, one may write the
Pomeron structure function FQ'P as a sum over quark—parton distributions?

FPE,Q0) =¢ > eifrml(6,Q%). (1.63)
f=a.49
In this way we introduce diffractive parton distribution functions via (¢f. Eq. (1.55))
d*fD (zp,t,&, Q?) fiym(€,Q%)
X ="

/P = fir(zp,t)

dzp dt op (zp) 2P x fimp(6,Q%),  (1.64)

where fp(zp,t) denotes the overall flux factor (1.60) and zp < 1 and [f| < Q?. The zp
dependence of the diffractive structure function predicted by this type of soft Pomeron

3Note that we made an approximation in Eq. (1.57) by including the Pomeron intercept ap(0) rather
than the full trajectory integrated over t: fdtap(t). In formula (1.60) we include the full Pomeron

trajectory as we shall later perform the integration over ¢ implicitly.
‘Note that at HERA only the quark content can be measured (gluons do not couple directly to DIS).

Gluons enter indirectly into the formalism via ¢g pairs.
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Model | ¢ fy/p(Q3,€) & Foyp(Q2,€) N
1 ]0.314¢35(1 - &)s 0 1.62

2 0.2¢(1 - §) 48¢(1—-¢) | 2.85

o[

3 0.081&£(1 — ) 9.66£8(1 — ¢)%2 | 1.57

Table 1.1: The parton distributions for quarks fq/,p(Qg,f) and gluons fg/,p(Q%,§) inside
the Pomeron at the starting scale Q% = 2 GeV? taken from Ref. [KS96] with the different
normalisation factors N. The parton distributions are fitted to the HERA measurements
[H1.95, ZEUS95a] of the diffractive structure function F2D(3)(x|p, Q2% &) with € = z/zp.

model is roughly consistent within errors with the H1 [H1.95] and ZEUS [ZEUS95a] data,
although there is some indication from the latter that a somewhat steeper zp dependence
is preferred (¢f. (1.59)).

Various models for the parton distributions f;/p (¢, @Q?) have been proposed, ranging
from the two extremes of mainly gluons to mainly quarks. Recent studies in the frame-
work of QCD DGLAP evolution can be found in [Cap95, Cap96, GBK95, GBP96, GS96,
Phi95]. A more theoretical motivated picture for the Pomeron parton structure function
is given in Ref. [BS96].

A key issue concerns the existence of a momentum sum rule for the Pomeron. There
is no theoretical proof for the existence of such a sum rule, but as the product of f;p
and fip appears in the expression for the structure function, one can simply impose a
momentum sum rule in the parton distributions and absorb an overall normalisation N,
unchanged by Q? evolution, into fip. Assuming a light—quark distribution (¢ = u,d,s +
antiquarks) with SU(3) flavour symmetry, the momentum sum rule constraint at some

starting scale 3 may be written as

1 .
[ dee (61w Q)+ fuwl€. QD) = 1. (1.65)
0

Table 1.1 summarises the ¢ dependence of the three models of Ref. [KS96] at fixed starting
scale Q% = 2 GeV?.

Charm quarks are generated by massless DGLAP evolution (g — ¢c) at higher scales
(2. Since in each case the quark content is constrained by structure function data, and
since we choose to impose a momentum sum rule (1.65), the overall normalisation factors
N are different in the three models and are specific for the Donnachie-Landshoff flux
factor [DL84, DL86]. In each case the starting distributions of Table 1.1 give satisfactory
agreement with the H1 [H1.95] and ZEUS [ZEUS95a] data. The main characteristics of

all three models are:

e all three models are qualitatively very different concerning the partonic contents at
the starting scale Q2 = 2 GeV?,

e all three models give satisfactory agreement with the H1 and ZEUS data,
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e all models undergo leading-order DGLAP evolution as for the usual parton distri-
butions.

In qualitative terms, the three models can be characterised as:

Model 1: At Qg the Pomeron is entirely composed of quarks. Gluons are dynamically
generated via DGLAP evolution;

Model 2: A well balanced mix of quarks and gluons at starting scale Qq, the ¢ distri-
bution in both cases is peaked at £ = 0.5;

Model 3: A predominantly hard gluonic content at starting scale, the gluons inside the
Pomeron carry large fractional momenta (£ ~ 1).

The DGLAP evolution for the gluon parton distributions for all three models is shown
in Fig. 1.6. Note the qualitative differences in each model.

1.4 Diffractive Higgs production at the LHC

In the following we shall present numerical results for single diffractive® Higgs production
at the future CERN LHC collider (/s = 14 TeV) with the underlying parton distribu-
tions of the Pomeron as presented in the previous section.

The process is depicted in Fig. 1.7. This model of diffractive Higgs production was
first studied in Ref. [NSS90] (double diffractive inclusive process). Recently, it has been
suggested [GV96] that triggering on single or double diffractive events may provide a
cleaner environment for discovering Higgs bosons produced via gg — H. The argument
is that gluons should be more copious in the Pomeron, thus enhancing the Higgs signal
relative to the background. However when assessing the usefulness of the single diffrac-
tive cross section in enhancing the Higgs signal, it is equally important to consider the
corresponding single diffractive background processes. Naively, one might argue that since
the important backgrounds originate in quark—-antiquark annihilation (¢g¢ = vy, ZZ) the
gluon—rich Pomeron may indeed enhance the signal to background ratio. However, care
is needed with this argument. Higgs production probes parton distributions at a scale
Q? ~ M%, much larger than the typical Q? scales of diffractive deep inelastic scatter-
ing at HERA. Perturbative DGLAP evolution of the diffractive parton distributions to
these high scales gives rise to a mixing of the quark and gluon distributions such that, for
example, a large gluon/quark ratio at small scales is washed out at higher scales. It is a
priori not clear, therefore, that the signal to background ratio is enhanced in diffractive
events. It is precisely this question that we wish to study here.

The dominant mechanism for Higgs production at the LHC is gluon-gluon fusion
via a top quark loop, see for example Ref. [KMS97].5 The leading—order cross section is

given by [GeoT78]

do G (@) My m] 2 2
dyn (pﬂ)g—)HX) = 32\/57_( s z M[?{ fg/p(wlyQ )fg/p($2:Q )a (166)

5The cross sections for double diffractive production, with two rapidity gaps, are readily estimated in
this approach by combining two sets of diffractive parton distributions. Numerically, these are found to
be much smaller (approximately 10% of the single diffractive cross sections).

5In our calculations we also include the direct ¢q7 = H (¢ = u,d, ¢, s,b) quark—-fusion processes, but

these are numerically much less important.
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Figure 1.6: The @Q? evolution of the gluon distributions §fg/,p(§,Q2) in the three different
Pomeron structure models of Ref. [KS96].

for a Higgs boson of mass My and rapidity yy. The function Z(z) in (1.66) can be
approximated by

I(a:)zl—i—é—ll;, forz > 1. (1.67) -

The longitudinal momentum fractions of the gluons inside the colliding protons are 1,2 =
(My/\/s)et¥#. The single diffractive Higgs cross section is obtained from (1.66) by
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P1

> fip,(x1,0%)

foip,(%p,Q%)

R
>

P2 ,
t=(p3-p2)

Figure 1.7: Kinematics of single diffractive Higgs production at the LHC via pyps — p’HX
and the subprocess ps — phIP with underlying gg fusion. All quantities of this figure are
discussed and defined in the text.

replacing one of the f,/,(z, @?) by the corresponding diffractive parton distribution, i.e.

dosp ) _ Grad(Q%) M} m;
dun (pop'HX) = =280 == I<M?1>
X [fgl)/p(xlaQQ)fg/p(‘/BQ’Q?) +fg/p(wlaQ2)f;:}p($2:Q2)] s (168)
where ' i
12y @) = [dt [ 2 fo(we,t) x fyple.Q%), (1.69)

(c¢f. Eq. (1.64)). In the calculations which follow, the integration ranges are taken to be
z<zp <01, 0< -t <o00. (170)

For the parton distributions fi/p(x,Qz) in the proton we use the MRS(A’) set of
partons [MRS95], with QCD scale parameter AK]\/I‘—S: 4 =231 MeV, which corresponds to
aS(M%) = 0.113. At the level of accuracy to which we are working, all modern parton
distribution sets give essentially the same results. The renormalisation/factorisation
scale is chosen to be @? = M%. We use leading-order expressions for the signal and
background cross sections, since our primary interest is in the ratio of diffractive to total
cross sections, which should not be significantly affected by higher-order corrections to
the basic subprocesses. In any case, the diffractive parton distribution fits to the deep
inelastic data do not yet require NLO corrections.
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Figure 1.8: Feynman graphs for the production of Higgs bosons at the LHC via (a) gg fusion
and (b) ¢ annihilation as well as the background contributions (c)—(e): yy and ZZ.

The cleanest decay channel for searching for the intermediate mass Higgs boson at the
LHC is H — 7, with Br(H — vy) ~ 3 x 1074 - 3 x 1073 for 50 GeV< My < 150 GeV
[KMS97]. The irreducible background comes from the O(a?) g — yy [BBK71] and the
O(a?a?) g9 — vy [Com80] subprocesses. Note that these provide lower bounds to the
background cross sections, since reducible backgrounds from e.g. gg = vg(g = 7, 70,..)
can also be important in practice, see for example Ref. [KS89]. In what follows we will
ignore these additional contributions, assuming that they can be suppressed by photon
isolation cuts. For larger Higgs masses, i.e. for My > 2Mz, the important decay channel
is H— ZZ — 4¢*, with Br(H — ZZ) =~ 0.3 [KMS97). In this range, the dominant
irreducible background is from q¢g — ZZ [BM79]. We show the branching ratios of the
Higgs in Fig. 1.9.

The Feynman graphs of signal and background processes are shown in Fig. 1.8.

In Fig. 1.10(a) we show the total (1.66) and single diffractive (1.68) Higgs cross
sections, the latter calculated using the three sets of Pomeron parton distributions in-
troduced above. As expected, Model 3 with the hard gluon gives the largest diffractive
cross section. Model 1 has no gluons at all at the starting scale Qo = 2 GeV; gluons are
dynamically created via DGLAP evolution at higher values of (). However, the gluon
distribution remains quite small compared to Models 2 and 3. Taking the models to-
gether, we see that between approximately 2% and 15% of Higgs events are expected to
be singly diffractive.” Our results for the single diffractive and total Higgs cross sections

"Recall that we impose a cut zp < 0.1 when calculating the diffractive cross sections.
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Figure 1.9: The branching ratios of the Higgs boson as a function of the Higgs mass. The
cC rate depends sensitively on the poorly determined charm mass. The figure is taken from

[PDGY6).

are consistent with those obtained in Ref. [GV96] using similar models.

Fig. 1.10(b) shows the vy background for the lower part of the mass range, with My
now replaced by the vy invariant mass M.,,. Note that in both Figs. 1.10(a) and 1.10(b)
we impose a cut of |y,| < 2 to approximately account for the experimental acceptance. As
the inset in Fig. 1.10(b) shows, the gluon-gluon fusion process dominates for very small
M.,, where small parton momentum fractions are probed. The gg subprocess dominates
at large M,,. The corresponding single diffractive cross sections are again largest for
the gluon—richer Pomeron models, in particular Model 3. However, even the gluon-poor
Model 1 becomes comparable to Model 2 due to the increasing ¢g contribution to the
cross section at large M., .

The ZZ backgrounds, relevant for higher Higgs masses, are shown in Fig. 1.11(b).
We see that in contrast to the vy backgrounds of Fig. 1.10(b), all three Pomeron models
give comparable diffractive cross sections over the entire Mzz range. This is because the
diffractive quark distributions are constrained to be the same by the HERA FQD data.

Before discussing the single diffractive ratios of the signal and background processes,
it is interesting to study in more detail the kinematics of diffractive Higgs production,
in particular the typical values of the various momentum fractions in the calculation.
Thus in Fig. 1.12 we show the average gluon momentum fraction (z) inside the Pomeron,
the momentum fraction zp of the Pomeron and the average value of the variable ¢ with
(€) = (z/zp), as a function of My. The calculation of these quantities allows the Higgs
cross sections in the different models to be related to the parton distributions of Fig. 1.6.

The gluon momentum fraction shows the typical (z) « Mpg/\/s behaviour which
follows from the input z; 2 = (Mp//3)e*¥# for the momentum fractions of the gluons
in gg — H, Eq. (1.66). The fractional Pomeron momentum is of course constrained to
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Figure 1.10: The total and the single diffractive cross sections for (a) Higgs production as a
function of the Higgs mass My and (b) -y7y production as a function of the invariant photon-
photon mass M., for the three different Pomeron models of Ref. [KS96]. For both signal
(assuming the decay H — <) and background the photons are restricted to the central
region by a cut in rapidity |y,| < 2. The inset in (b) shows the leading order cross section
and the relative contributions from gluon—gluon fusion and quark—antiquark annihilation.

be zp < 0.1 and it stays very close to this upper limit throughout the complete range of
My . It exhibits an almost linear but very weak My dependence for Mgy > 100 GeV. The
relevant variable for comparison with the parton distributions in Fig. 1.6 is £ = z/zp.
For light Higgs masses the values for (£) are small, ({(¢) < 0.1 for My < 100 GeV). In
this region of @ = My Models 2 and 3 (¢f. Figs. 1.6(b) and 1.6(c)) have approximately
the same gluon content, which explains the similarity of the corresponding diffractive
cross sections in Fig. 1.10(a). For higher values of My, the difference between Model 2
and Model 3 becomes more apparent: the gluon distribution in Model 3 remains roughly
constant, while that of Model 2 decreases for higher values of My and €. This explains
the differences between Models 2 and 3 in Figs. 1.10(a) and 1.10(b). We assume that the
kinematics illustrated in Fig. 1.12 for the Higgs cross sections are also valid for the vy
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Figure 1.11: The total and the single diffractive cross sections for (a) Higgs production as a
function of the Higgs mass My and (b) ZZ production as a function of the invariant ZZ
mass M7z for the three different Pomeron models. The Higgs and the ZZ pair are restricted

to the central region by cuts |yzz|, lyr| < 2.

and ZZ backgrounds at the equivalent invariant mass.

Finally we present the single diffractive ratios Rgp = osp/o for the signal (pp —
H + X) and background contributions (pp — vy + X, pp = ZZ + X)) to see whether the
signal to background ratio is indeed enhanced by the gluon-rich Pomeron. Fig. 1.13(a)
shows the ratios for the Higgs mass range My < 200 GeV. For the gluon-rich Models 2
or 3, there is indeed a slight enhancement of Rgp for the signal compared to the back-
ground, for example in Model 3 for a Higgs mass of My = 100 GeV we find RS ~ 14%
compared to Ry} ~ 11%. The enhancement persists over the whole Higgs mass range.
For the gluon—poor Model 1, where the gluons are dynamically produced by DGLAP
evolution, the background ratio is larger than the signal ratio for My > 70 GeV. This
small enhancement has to be contrasted with the (at least) factor of 5 loss in the overall
production rate.

The situation becomes even more dramatic if we go to higher Higgs masses (200 GeV<
My < 1000 GeV) as shown in Fig. 1.13(b). In this case the important background
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Figure 1.12: The average gluon fractional momentum (z), the average longitudinal momen-
tum fraction of the Pomeron (zjp) and the average value of the variable for the Pomeron
parton distributions () = (xz/zp) for different values of My in the process pp — H + X.

to Higgs production is direct ZZ pair production via quark-antiquark annihilation, as
discussed above. As expected, in Model 1 the background ratio exceeds the signal ratio by
a large factor (= 6 for My = 200 GeV). Even the gluon—richer Model 2 yields a higher
background contribution for My < 350 GeV. Ounly at higher masses (i.e. evolution
scales) are enough additional gluons produced to enhance the signal. Only the very
gluon-rich Model 3, with enough gluons even at low scales, allows for a dominant signal
ratio throughout the entire mass range.

In conclusion, we have calculated single diffractive Higgs cross sections for the LHC
using diffractive parton distributions based on quark and gluon constituents of the
Pomeron, fitted to HERA FP data. In particular, we have considered three models
which differ in the relative amounts of quarks and especially gluons. If the Pomeron is
gluon-rich, then between 5% and 15% (depending on the Higgs mass) of Higgs events
should have a single diffractive structure. Assuming the overall validity of this ‘universal
Pomeron structure’ model, more precise measurements of FP at HERA will allow more
accurate predictions. However we have also shown that there is no significant enhance-
ment of the signal to background ratio in such diffractive events. DGLAP evolution to
high scales @ ~ My automatically generates a mixture of diffractive quark and gluon
distributions, and so the background processes qG,g9 — vy and q§ — ZZ also have a
large diffractive component. It is not clear, therefore, that there is any advantage in
searching for Higgs bosons at the LHC in events with rapidity gaps.

More on diffractive Higgs production

Nachtmann, Schifer, Schopf [NSS90]

The authors gave predictions for double diffractive inclusive Higgs production at
future pp colliders using a partonic Pomeron picture as proposed by Ingelman and Schlein
[[S85] with a soft-gluon distribution { f /p(§) = 6(1-¢ )°. This gluon distribution showed
no evolution in Q2. They conclude that approximately 1% of all events should be double
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Figure 1.13: The single diffractive ratios Rsp = osp/o for pp — H + X (thick lines) and
the background contributions (a) pp — vy + X (thin lines) and (b) pp — ZZ + X (thin
lines) for the three different Pomeron models. The absolute values of the cross sections o
and ogp are presented in Figs. 1.10 and 1.11.

diffractive.

Bialas, Landshoff [BL91]
The authors worked with a pair of non—perturbative gluons exchanged between two

quarks, addressing Regge theory. With the formulation of non—perturbative gluon prop-
agators they also achieve a double diffractive ratio for inclusive Higgs production of

RDD ~ 1%.

Bjorken [Bjo93]

Bjorken studied for the first time the survival probability of a rapidity gap in double
diffractive dissociation. Assuming quark—quark scattering, he calculates (estimates) the
ratio of the double diffractive total two—jet cross section in the process pp — pp + jet| +
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Jety, 1.e. rapidity gaps between the two jets. His estimate yields

gap )
T 1 [ 4 J 9
with (|S[?) =~ 5% being the survival probability of a rapidity gap. Gotsman et al. [GLM93]
calculated the quantity (|S|?) to be approximately 30%.

Lu, Milana [LM95]

The authors study double diffractive ezclusive Higgs production using a picture of
hard diffraction which was supported by evidence from the UAS8 collaboration [UA8.92]
at CERN’s SppS collider. They assume two—gluon exchange including triangle, box and
pentagon top quark loops. They use as input a gluon distribution function of the type
2 fosp(2, Q% = M%) = 09273 (1 — z)°.

Cudell, Hernandez [CH96]

The authors study single and double diffractive Higgs production at pp colliders as-
suming two—gluon exchange with the gluon form factor fitted to TEVATRON data. The
double diffractive cross sections exceed the predictions by Bialas and Landshoff by ap-
proximately 20%. Some values on Rgp are shown in Table 1.2.

Graudenz, Veneziano [GV96]

This work was the motivation for our studies. The authors studied single and double
diffractive Higgs production at the LHC using different sets of parton distributions fitted
by various groups to existing HERA data. A comparison of their results with our results
is given in Table 1.2. Basically the only difference to our calculation are slightly different
parton distributions for the Pomeron.

Khoze, Martin, Ryskin [KMR97]

The authors study exclusive and inclusive double diffractive Higgs production at LHC
collider energies. The restriction on rapidity gap events is considered by the authors due
to QCD radiative events: soft particles that may fill in the gaps. The inclusive cross
sections are by an order of magnitude of four larger than the exclusive ones. They obtain,
e.g., for a Higgs mass of My = 100 GeV an exclusive double diffractive cross section of
oS! = 18 x 1075 pb and an inclusive double diffractive cross section of ¢ifg = 0.3 pb

which gives Rpp = 2%.

1.5 Diffractive heavy flavour production at the TEVATRON
and the LHC

In this section we give predictions for single and double diffractive heavy flavour pro-
duction at the TEVATRON pp collider (/s = 1.8 TeV) and the LHC pp collider, with a
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My [CH96] | [GV96] | our results

100 GeV | 4.4% | 2% - | 2.5%¢ -
27.5%° | 15.2%¢

500 GeV | 11.2% | 0.6%* - | 0.9%¢ -
13.3%° | 7.1%“

Table 1.2: Ratios Rgp for single diffractive Higgs production at the LHC (/s = 14 TeV)
for two different Higgs masses My. We compare our results to results obtained by Cudell
and Hernandez [CH96] and Graudenz and Veneziano [GV96].

“: H1 fit of the Pomeron partonic content with no gluons at starting scale and soft quark
distribution;

b. H1 fit of the Pomeron partonic content with hard gluons at starting scale and soft quark
distribution;

¢: Model 1; ¢: Model 3.

centre-of-mass energy /s = 10 — 14 TeV. By heavy flavour we mean QQ production
with massive () = c,b or t quarks. In contrast to the diffractive Higgs production that
we discussed in the previous section, we expect the cross sections of QQ states to be typ-
ically larger and this makes their observation, especially in the diffractive context, easier
in principle. Again we shall address the DLM presented in Section 1.2 and the three
models of partonic structure functions for the Pomeron by Kunszt and Stirling [KS96],
discussed in Section 1.3. For further studies on diffractive heavy flavour production using
a two-gluon model, we refer to [BS92, Sze93].

We shall also consider double diffractive events. The procedure is analogous to the
single diffractive scenario. Now both hadrons undergo Pomeron emission and therefore all
hadronic parton distributions are replaced by the parton distributions of the Pomeron.
However, the basic formulation of diffractive scattering was intended for reactions where
one hadron scatters diffractively and one hadron is highly excited. In the double diffrac-
tive case now both colliding hadrons can in principle be detected in the final state. A
typical reaction at the LHC would look like: pp — pp + @Q + X. Double diffractive
events thus are characterised by two quasi-elastic protons with rapidity gaps between
them and the central heavy flavour products.

The subprocesses leading to heavy quark pairs are ¢¢ annihilation and gg fusion, the
latter being the main mechanisin at the LHC where antiquarks only show up as sea
quarks in the colliding protons. The subprocesses are sketched in Fig. 1.14. The total
cross section can be written as

o(pipr = QQX) = Z/dﬂvl /dIEQ Firor (@1, Q%) Fipy (w2, Q%)535(3,m%, Q) ,  (1.72)
]

with 7,7 = g,q,¢g. We only cite the expressions for the leading order subprocess cross
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Figure 1.14: _The leading—order Feynman diagrams for the subprocesses (a) ¢7 — Q@ and
(b) 99 = QQ.

sections [Com79, GOR78]

. g yp

Gog(3,my, Q%) = mQ 57 2+0), (1.73)

- g 1 +

54g(3,m%, Q%) = am”17gp2{ (p +16p+16>1u(1_;>—28 31p} (1.74)
Q

ayq(§’ mQQan) = 0, (175)

with § = z1129s8, p = 4m2Q/§ and v = /1 — p. Note that all o;; vanish at high energies
(p — 0) and at threshold (v — 0). Again we concentrate on studies at leading order as
we are interested in single Rgp and double diffractive Rpp ratios and expect higher—twist

corrections to cancel.
For the single diffractive cross section we proceed as we did in Section 1.4, replacing

parton distribution functions by diffractive ones. In extension to Eq. (1.72) we write
osp(pip2 = P'RAX) = ) / dz /d$2 {fip (@1, Q%) Fi/p,y (w2, Q%)
2%
+ fi/Pl (mla QQ)f]!?pz (m?t Qz)}gzj(ga mQQa QQ) p (177)
and for the double diffractive cross section

v > F0QX) = X [dn [ dnaff (21,07)

J/po($2 Q%) 5:5(5,md, Q°). (1.78)

X

In analogy to Eq. (1.69) we substitute the diffractive parton distributions via

fopp(e, Q%) /dt/M—P fe(zp,t) X foyp(€, Q%) (1.79)

using again the Donnachie-Landshoff flux factor fp(zp,t) defined in Eq. (1.60) with the
kinematical constraint (1.70).
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The renormalisation scale is taken to be the subprocess collision energy, Q? = 3. One
might however argue that for the gg — QQ subprocess the # and ii-channel contributions
should dominate [GORT78], in which case a choice of Q% = % ((m% — 1)+ (m2Q - ﬁ)) =
%§ might be more reasonable. In fact the parton distributions are affected by the choice
of @? in the framework of DGLAP evolution. But as in [Com79] we could not find a
significant sensitivity of our results to this choice compared to a general Q? = 5 for both
subprocesses.

1.5.1 Diffraction at the TEVATRON

We calculate numerically the total inclusive, the single diffractive and the double diffrac-
tive cross sections for heavy flavour pair-production using the MRS(A’) [MRS95] set
of partons and the three Pomeron models introduced in [KS96] and discussed in Sec-
tion 1.3. Our results are shown in Fig. 1.15. In addition we show the pure gluon fusion
contribution as dashed lines.

For the TEVATRON collider the g¢ process becomes dominant for mg > 50 GeV.
This ¢g¢ dominance is obviously visible in the total cross section but becomes even more
striking for the single diffractive one. Due to this process, the single diffractive ratio Rgp
defined as Rsp = osp/o even increases for mg > 70 GeV before this process runs out
of centre-of-mass energy due to the cut-off in the Pomeron spectrum (zp < 0.1) and
steeply falls to zero. Note that this restriction on v/3 unfortunately takes place before
the top quark production domain is reached. The single diffractive ratio Rgp for all three
Pomeron models reaches its local maximum at slightly lower masses than the top quark
mass. This gives little hope to observe diffractive top quark events at the TEVATRON but
is promising for the LHC.

At TEVATRON energy the threshold for single diffractive events is reached when mg =
270 GeV. But single diffractive events might be observed only up to mg ~ 150 GeV with

Model 3: o0§5* = 1.05 pb~4.05% of o,
Model 1: o' = 0.22 pb~0.86% of o,

for mg = 150 GeV. This is qualitatively what we expect. Model 3 with the hard gluon
content gains more and more ¢q pairs via DGLAP evolution which dominantly contribute
to the single diffractive cross section for higher masses. Model 2 with the quark-gluon
mixture dominates for small masses, but at mg ~ 10 GeV Model 3 takes over. The
production rate of the important g¢ pairs for higher masses increases more rapidly in
Model 3. Model 1, however, without any gluons at the initial (Jy scale, marks the
lower limit for single and double diffractive scattering over the whole mass range. The
numerical values for the single and double diffractive production of charm, bottom and
top are given in Table 1.3.

Let us now focus on Models 2 and 3: the ratios for single diffractive scattering range
between ~ 22% for charm and ~ 15% for bottom quark production and reach their
locally lowest values of ~ 2% for mg = 70 GeV, before the ratio even increases due to
the gq contribution in the mass region 70 GeV < mg < 150 GeV locally peaking at
mg = 150 GeV with ratio Rgp = 5.5%(4.2%) for Model 3 (2). Qualitatively Model 1
shows the same behaviour. But with only quarks in the starting distribution, the creation
of gluons and qq pairs via DGLAP evolution proceeds only slowly. This can be seen in
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Figure 1.15: The numerical results of the total, single and double diffractive cross sections for
the three Pomeron models are shown. The solid lines indicate the subprocess gg + ¢ — QQ,
the dashed lines show solely the contribution from gluon fusion (g9 — QQ): (a) gives the
absolute numbers for the cross sections (in pb), and (b) gives the ratios (Rsp = osp/o and
Rpp = opp/o). The mass regions of the charm (c), bottom (b) and top (t) quarks are
indicated. The fixed centre~of-mass energy is 1.8 TeV.

Fig. 1.6. The difference is expressed in the large gap between Model 1 on the one hand
and Models 2 and 3 on the other hand. So the conclusion is that at least for single
diffraction a gluon rich Pomeron as input should be more easily detected. Model 1 and
Model 3 for example differ by about one order of magnitude. This turns out to be a
crucial difference with such absolutely small diffractive cross sections.

Double diffractive scattering seems to favour a balanced mixture of quarks and gluons
in the starting distribution and during DGLAP evolution, as provided in Model 2. This
can again be observed in Fig. 1.15.

Notice that the former dominant hard gluon Model 3 quantitatively shows about the
same behaviour as Model 1. Why the behaviour of Model 3 in double diffraction is
different from that in single diffraction can be understood by a further analysis of the
kinematics among the partons inside the Pomeron and their distributions at different
mass scales. Models 2 and 3 show a crossing in the case of single diffractive scattering
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TEVATRON (y/s = 1.8 TeV) LHC (/s = 10.0 TeV)
(me) (me)
model 1 2 3 1 2 3

osp[pb] 7.81-10° 29.82-10% | 24.32-10% | 2.07-10° 3.59-10% | 3.78-10°

Rsp[%] 6.83 26.15 21.27 21.43 37.21 39.21

app [pb] 45.32 208.12 60.68 4.05 - 10* 6.56 - 104 4.44 - 107

Rpp[%] || 3.96-1072 | 18.21-1072 | 5.31-1072 0.42 0.68 0.46
(mp) (my)

model 1 2 3 1 2 3

osp[pb] 3.07-103 11.59-10% | 10.68-10° || 4.50-10° 1.01-10° 1.11-108

Rsp[%] 3.31 12.49 11.51 15.50 34.53 38.27
opp[pb] 17.82 78.85 25.26 5.81-10° | 1.51-10* | 7.55-103
Rpp[%] || 1.92-1072 | 8.49-1072 | 2.72-1072 0.20 0.52 0.26
(me) (me)

model 1 2 3 1 2 3
osplpb] || 1.86-1072 | 6.06-1072 | 8.72-1072 1.13 4.10 5.45
Rsp (%] 0.31 1.01 1.45 0.34 1.25 1.66
opp[pb] O O O 1.04-107* |} 1.86-1072 | 3.71-1073
Rpp (%] O O O 3.17-107* | 5.68-1073 | 1.13- 1073

Table 1.3: The values for single and double diffractive cross sections, as well as their ratios
to the total cross sections, are shown for average quark masses (m;) = 1.3 GeV, (my) =
4.3 GeV and (m;) = 176 GeV. We obtain numerical data for both the TEVATRON and the
LHC. A (O indicates that the threshold for this process was exceeded.

as can be observed in Fig. 1.15. Its existence can be immediately explained in terms of
the gluon distributions which are shown in Fig. 1.6. As we have already pointed out,
the gluon distributions govern the behaviour of the cross sections at the TEVATRON,
especially for small quark masses. For small £ and @, the gluon distribution of Model 2
is slightly bigger than that of Model 3. For higher ¢ and/or @ the situation is reversed.

In the case of double diffraction, an analysis of the average fractional gluon momentum
inside the Pomeron (§) = (z/zp) yields (£) ~ 0.11 for mg = 2 GeV and (¢) ~ 0.24 for
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mg = 50 GeV for all three models. In this regime the gluon distribution of Model 2
again exceeds that of Model 3. So, no crossing can be observed and Model 2 dominates
throughout. In fact the crossing would take place at mg ~ 80 GeV, shortly before the
threshold for double diffraction with mg ~ 90 GeV is reached.

The relatively broad gap between Model 2 and Model 3 appearing in Fig. 1.15 can
again be explained by the same straightforward analysis of the average gluon momentum.
Again a comparison with the corresponding gluon distributions of Model 2 and Model 3 in
Fig. 1.6 shows the absolute difference of these distributions in the regime 0.1 < (£) < 0.2.

While diffractive charm and bottom quark production might be observable at the
TEVATRON, there is no hope for diffractive ¢f pair production being visible at a total
centre-of-mass energy of /s = 1.8 TeV. Either the top mass exceeds the kinematic
threshold (double diffraction) or the effect of the threshold is already strongly influencing
the process by a steep decrease in the diffractive cross section (single diffraction near top
mass). However at the LHC such heavy flavour threshold suppression is less severe, as
we shall see now.

1.5.2 Diffraction at the LHC

The LHC will provide a rich field of study for diffractive events, even in the top mass
regime. With a centre-of-mass energy of at least \/s = 10 TeV the double diffractive
threshold is reached for mg = 500 GeV and the single diffractive one lies at mg =
1500 GeV. This upper bound is very promising in particular for diffractive top quark
production at the LHC.

At a proton—proton collider, the dominant process for QQ production is of course
gluon—gluon fusion since antiquarks only appear as sea quarks inside the proton. For a
top mass of 176 GeV the pure gg contribution is about 91% of the total cross section in
our calculation. This also holds for the single and double diffractive case.

The numerical results are shown in Fig. 1.16 and the numerical values are again listed
in Table 1.3. The single diffractive ratios Rgp for the three Pomeron models are between
20 — 40% for charm and 10 — 40% for bottom quarks. The maximal and minimal single

diffractive top quark rates are
Model 3: ogy* = 5.45 pb~ 1.66% of o,
Model1: o' = 1.13 pb~0.34% of o,

with m; = 176 GeV. Even though the single diffractive ratios for top production are
comparable to the TEVATRON rates, the absolute single diffractive cross sections are
crucially enhanced. We find an enhancement of about a factor 100 at the LHC. For
example Model 2 and Model 3 provide a single diffractive cross section of approximately
5 pb. This is about the total cross section for top production at the TEVATRON. So,
single diffractive top quark events should be readily detected at the LHC.

The predictions for double diffractive scattering, however, are still not very promising.
The maximal double diffractive cross section (for Model 2) is 1.86-10~2 pb for top quarks.
The qualitative behaviour of the three different Pomeron models is the same. Because
the centre-of-mass energy at the LHC is larger by a factor of six, one can conclude
from the qualitatively similiar behaviour of all three models at the LHC that the gluon
distributions in all three models do indeed become similiar at higher @, as already seen

in Fig. 1.6.
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Figure 1.16: Same as Fig. 1.15 but now for a centre—of-mass energy of 10 TeV. The solid
lines indicate the subprocess gg + g7 — QQ, the dashed lines show solely the contribution
from gluon fusion (gg — QQ): (a) gives the absolute numbers for the cross sections (in pb),
and (b) gives the ratios (Rsp = osp/o and Rpp = opp/o).

All conclusions that were drawn for the TEVATRON still hold for the LHC, except
that because of the higher centre-of-mass energy there are no kinematical artifacts in the
considered flavour mass regime. Even for the top quark mass, the single as well as the
double diffractive cross section behave rather smoothly. The influence of the threshold
does not seriously affect the cross sections in this case.

Considering the ratios for single and double diffractive events in Fig. 1.16 again shows
a qualitatively comparable picture to the TEVATRON. Again an analysis of the average
fractional gluon momentum (¢) will explain the differences in Rgp and Rpp. For Rgp,
Models 2 and 3 are quantitatively equivalent, especially for the charm and bottom quarks.
For a bottom quark mass of m;, = 4.5 GeV, we obtain as average fractional gluon mo-
mentum (§) = 0.42 for @ ~ 2mp = 9 GeV in the single diffractive case. A comparison
with the gluon distributions in Fig. 1.6 shows that they are roughly equal for Model 2

and Model 3 in this region of &.
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For the case of double diffraction the same analysis yields a lower average fractional
momentum for the gluons, due to the energy—cut among both Pomeron emitting hadrons.
Again for my = 4.5 GeV we obtain (¢) = 0.22. But in this region of ¢, the gluon
distribution of Model 3 shows a local minimum, the hard gluons in this model give a
rise of £ fy/p (&, Q?) only for £ > 0.5 in the low-Q regime. The gluon distributions inside
Model 2 also show a local minimum around ¢ ~ 0.2, but its absolute value is higher than
that for Model 3 in this region. This fact is responsible for the gap between Model 2
and Model 3 as observed for Rpp in Fig. 1.16. For higher quark masses (higher values of
@?) all three models become comparable concerning the gluon distributions, as already
discussed.

Model 2 and Model 3 as descriptions of the parton distributions of the Pomeron yield
very promising single diffractive ratios, at least for charm and bottom quarks. Model 3
predicts a single diffractive ratio of ~ 40% for ¢¢ and bb production. This is quantitatively
comparable to the predictions of Model 2 as can be observed in Fig. 1.16 and numerically
verified in Table 1.3. Thus about one third of the production of heavy flavours at the
LHC including charm and bottom quarks should be single diffractive. But even Model 1,
purely quark-like at starting scale Q3 = 2 GeV?, gives a single diffractive contribution
of approximately 20% in this mass regime.

1.6 Results on diffraction from the TEVATRON and HERA

We shall briefly summarise the status of experimental results on diffraction obtained at
the TEVATRON and HERA. We do not claim that this list is complete.

(a) single diffraction  (b) double diffractive (c) double Pomeron
dissociation exchange

Figure 1.17: Schematic view of single and double diffractive events at hadron—hadron colliders.
The energy deposition is indicated and so are the rapidity gaps A and B.

1.6.1 'TEVATRON

We already reported on measurements of single diffractive cross sections (¢f. Fig. 1.17(a))
at the TEVATRON [CDF94] in Section 1.2. The conclusion of this study was that the
Pomeron intercept shows an energy dependence and shadowing corrections have to be
introduced to save the traditional Pomeron picture.

The next investigation was the observation of rapidity gaps between two produced
jets at the TEVATRON by the CDF [CDF95] and the D@ [D@.94] collaboration. The



Chapter 1: Diffraction and the Pomeron

observation is due to double diffractive dissociation (¢f. Fig. 1.17(b)), mediated by, e.g.
a colour-neutral two hard gluon exchange and no soft particles filling in the gap.

P—> 3 jet
)
S aé gap
I,

_ 9

P—>- > jet

We discussed the estimate of such a model in terms of rapidity gap survival probability
[Bjo93] in Section 1.4. At /s = 1.8 TeV the D collaboration measured rapidity gaps in
two—jet events. The constraint was no energy deposition in the rapidity interval between
the two jets An;;. For Anj;; > 3 the integrated luminosity of all events fulfilling this
constraint was [dt £(t) = 5.4 pb~!. They observed a ratio of events with rapidity gap
(jet-gap—jet events) of

REP(Ang; > 3) = 0.53% + 0.07%°" + 0.06%*" , (1.80)

and thus could estimate the rapidity gap survival probability to be (|S|?) ~ 0.1 in accor-
dance with [Bjo93].
The CDF collaboration obtained a slightly higher ratio

RE®(Ang; > 0.8) = 0.85% + 0.12%" +§75 %", (1.81)

with a lower separation in rapidity between the two jets allowed. Thus both results seem

to be consistent with each other.

There are also data on single diffractive jet production available from CDF [CDF97a]
and DY [D.96]. Both collaborations search for single diffractive events including a jet by
looking at the measured multiplicity distributions. CDF looks, in the region opposite the
dijet system, for correlations between the multiplicity measured in the forward part of the
calorimeter (2.4 < |n| < 4.2) and the number of hits measured in a scintillator counter
close to the beampipe (diffractively scattered proton). The ratio of single diffractive
events to standard dijet events RSEY (pp — p'X) is measured and reported to be

REEY (pp — p'X) = 0.75% £ 0.05%°" £ 0.09%". (1.82)

D0 looked for single diffractive events in the dijet sample (Eg;ft > 12 GeV,|njet| > 1.6)
using a similar method to CDF. Their reported value is

RE8(pp — p'X) = 0.67% + 0.05%5t2t-Fsvst- 1.83
S

We see that our results (taking single and double diffractive events together) for heavy
quark production remarkably exceed the TEVATRON measurements. CDF conclude that
the gluon fraction inside the Pomeron should be 0.7 £ 0.2 and thus yielding a gluon

dominated Pomeron.
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Also from CDF [CDF97b] there are data on diffractive W+jet production available
RSDY (pp — pPW X) = 1.15% + 0.55% . (1.84)
The standard flux prediction for a three flavour hard-quark Pomeron structure is
RES(pp — p'WX) = 16%
and for a full hard-gluon structure
Rlslla)rdg(pp - WX)=11%.

The measured ratio thus favours a purely gluonic Pomeron.

Kunszt and Stirling used their three Pomeron Models to give theoretical predictions
for the above ratio, proceeding in complete analogy to the diffractive Higgs and heavy
flavour production discussed above. Their predictions for the three Pomeron models are
[KS96]

5.3% : Model 1,
R, ={ 6.5% : Model 2, (1.85)
74% : Model 3.

Again, the theoretical predictions yield higher ratios than the experimental data. One
can argue that the measurement of diffractive processes has not yet achieved the accuracy
that is needed. Or the theoretical concept of the Pomeron model presented throughout
this work needs some more thoughts. We shall discuss this question in Section 1.7.

1.6.2 HERA

We have already presented most of the results on diffraction obtained by the two HERA
experiments H1 and ZEUS. From the first observation of rapidity gaps [H1.94, ZEUS93,
ZEUS94] and the measurements of the Pomeron intercept [H1.97a, ZEUS97] up to the
measurement of the diffractive structure function FQD (4)(£E[p, t,&,Q?) [H1.95, ZEUS95a].

The H1 collaboration studied the transverse energy flow Er in the final state of ep
processes, both for diffractive and non—diffractive events [H1.96]. Using the Monte Carlo
RAPGAP they show that the measured energy distribution can be reproduced, assuming
the exchange of a colourless object (i.e. Pomeron) with partonic structure.

The same observation has been made by the ZEUS collaboration [ZEUS95b] studying
hard scattering in photoproduction events with large rapidity gaps. Again the comparison
with Monte Carlo programmes having implemented the scattering of a quasi-real photon
off a colourless object explains the data.

Another important feature is measuring the parton content of the Pomeron. As
discussed above, measurements from UA8 and CDF at hadron-hadron colliders indicate
a dominant gluon content of the Pomeron. There is, however, no direct method of
measuring the gluon contents at HERA. Therefore any upper and lower limits on the
gluon distribution have to be regarded with at least minor doubts. Mesurements of
inclusive jet production as they were done by the ZEUS collaboration [ZEUS95¢] indicate
that between 30% and 80% of the momentum of the Pomeron carried by partons are due
to hard gluons. This parton content was probed at a scale (E}")?, with B > 8 GeV. At
least the upper limit does not exclude the CDF or UAS8 data and hence gives evidence
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for an universal Pomeron structure. Note that the measured range for the hard gluon
content in the Pomeron has been included in the Pomeron models we used throughout
our studies. Model 1 yields approximately 10% hard gluons at the scale 100 GeV? and
Model 3 yields 80% at the same scale.

H1 derived the gluon content from the Q? dependence of the diffractive structure
function FZD ®), By interpreting this dependence as arising from scaling violations, and
fitting the data using DGLAP evolution, a QCD analysis led to the conclusion that gluons
carry about 80% of the Pomeron momentum at scale Q% = 2.5 GeV2. As Q2 increases,
H1 showed that the gluon content decreases while the quark content slightly increases.
However, these variations are very slow and tuning Q? from 25 GeV? to 1000 GeV? the
gluon fractions decrease to ~70% while the quark fraction increases to ~30%, with both
distributions remaining fairly hard.

The ZEUS collaboration reports an update on the measurement of the zp depen-
dence of the diffractive structure function [ZEUS98]. The results of fitting the diffractive
structure function to the form F2D(3)(:1:|p,§, Q%) « (zp)~" (¢f. Eq. (1.57)) yielded

n = 1.01 £ 0.105% 4035 " (1.86)

which should be compared to the 1995 value given in (1.59) of n = 1.30 [ZEUS97]. The
kinematical range of the latter corresponds to 0.1 < ¢ < 0.8 and 6.3 x 1074 < zp < 1072
for 8 < Q% < 100 GeV?, and is compatible with a single xjp dependence in all £ bins. The
above analysis covers a different kinematic range, extending to lower £ and higher zp
at (Q?) = 8 GeV2. This lower value of n may be ascribed to the presence of additional
subleading trajectories contributing in the zp range covered by this analysis [ZEUS98].

1.7 Breaking of gap-factorisation and the status of the
Pomeron

One tendency during the HERA analysis became clear: at higher values of Q? there
seems to be an increase in the value of the Pomeron intercept ap(0) as was presented
above (especially from the ZEUS collaboration). With more statistics available and
covering a higher Q2 range (4.5 < Q% < 75 GeV?), the H1 collaboration presented an
update of their measurements on FQD ®) (zp, &, Q?), analysing the 1994 data obtained in
diffractive DIS [H1.97b]. Measuring a forward rapidity gap in the process ep — eXY
in—between the final state products X and Y, where Y corresponds to the observed
fragmentation product closest to the beam line, they obtained values for the differential
cross section of Eq. (1.56) (integrated over the mass My of system Y') and thus on FQD @),
Earlier indications showed that a purely Pomeron exchange in Regge parametrisation as
in (1.55) cannot describe the data obtained sufficiently accurately, motivating the H1
collaboration to allow for additional Regge pole exchange, namely p,w,a and f meson
exchange.

They performed fits with and without subleading meson trajectories. These fits can

be summarised as follows:
A: assuming Pomeron exchange only and factorisation (1.55);

B: additional exchange of mesons (p,w,a and f), no interference between Pomeron

and mesons;
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Model C|p CR CI X2/ndf

A 1 00 1.53

B 1 110 1.00

C 1 1 1 0.99

Table 1.4: Parameters and x? values for the H1 1994 FQD(3) fits.

C: additional exchange of mesons (p,w, a and f), mazimal interference between Pomeron
and mesons.

In this framework the diffractive structure function was defined in the following way

FPO(zp,¢,Q?) = /dt{CIPfIP(-'L'IP:t) x Fy (£,Q%
+ Crfr(ze,t) x FI(¢,Q7)

+ 20zfr(zp,t \/F (&, Q) FF(¢, QQ)} (1.87)

The last term defines the interference between Pomeron and the additional Regge poles
and the coherence parameter Cz can be tuned between no interference (Cz = 0) and
maximal interference (Cz = 1). Table 1.4 summarises the parameters of (1.87) for the
three different fits.

The fluxes were of Regge type and parametrised as

eB|pL
fe(zp,t) = (zp) 2w (01 (1.88)
eBRt
fr(zp,t) = (ap)2an @1’ (1.89)
BE+BEt
T e 2
fr(zp,t) = cos |5 (ap(t) - ar(t)) (g or (Far (=T (1.90)
The Regge trajectories were assumed linear of the form
ap(t) = ap(0)+0.26 GeV~2%t, (1.91)
ar(t) = agr(0)+0.90 GeV ™2, (1.92)

with the slopes being extracted from former measurements or results from hadron-hadron
colliders. Both intercepts were kept unconstrained as fit-parameter throughout. The
values Bp and By were taken from available data, like Bp = 4.6 GeV~2 (from former H1
data) and Bg = 2.0 GeV~2 (from hadron-hadron colliders). The structure function Fj
was taken from the Gliick, Reya, Vogt pion parametrisation [GRV92] and the Pomeron
structure function FY was kept as a free fit parameter as well.
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Figure 1.18: H1 data (dots) and fit of .’E[pFQD(S)(IIJ|p,§,Q2) as a function of zp with fixed
Q? = 20 GeV? and two values of &. The upper solid line corresponds to fit C described in the
text. Taking these fit parameters then the lower line shows the Pomeron contribution only.
The middle line shows the Pomeron contribution plus interference with other Reggeons.

In Fig. 1.18 we show the H1 data for w|pF2D(3)(.7:[p,§, Q?) for fixed & and Q? as a
function of zjp and their fit C.

Comparing the x? values (over the number of degrees of freedom) in Table 1.4 shows
that a pure Pomeron exchange (fit A) is unable to explain the data simultaneously for
low and large values of zp, whereas the presence of additional Reggeons (fits B and C)
describe the data very well. The results of fit C for the Pomeron and Reggeon intercept

are

ap(0) = 1.206 4 0.0225"2% +0.013%5 (1.93)
ar(0) = 0.44 £0.08%%2% £ 0.075" (1.94)

plus small additional corrections depending on the errors for the experimental values
of Bp and By. The Pomeron intercept does not change significantly if the interfer-
ence between Pomeron and Reggeons is switched off (fit B). This higher value for the
Pomeron intercept at larger Q2 values is consistent with measurements from the ZEUS
collaboration. In Fig. 1.19 we show the reported intercepts from both the H1 and ZEUS
collaborations as a function of Q2.

Furthermore the H1 collaboration reported no evidence for a change of aup(0) in the
range 4.5 < Q% < 75 GeV? and 0.04 < £ < 0.9.

The H1 collaboration also studied the Q? dependence of F2D ®) (zp, &, Q%) for fixed
£. The behaviour of the diffractive structure function is very similar to the, e.g., proton
structure function, i.e. nearly scale independence and a typical In Q? rise for small values
of £. This indicates scattering off point-like particles and thus underlines the assumption
of a partonic content inside the Pomeron. Typically one observes

8F2D(3) (mlpa €7 QQ)
0ln Q?

>0, for small £,
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Figure 1.19: Experimental results on aqp(0) from H1 and ZEUS as a function of Q2. The
dots are the ZEUS data, the dashed lines represents upper and lower bounds from H1. The
shaded band represents the domain of the soft Pomeron.

3F2D(3) (zp, €, Q%)

91002 <0, for large ¢ .

Thus H1 fitted the structure function of the Pomeron FY¥ (¢, Q?) with different parton
contents at a given starting scale Q3 undergoing DGLAP evolution. They conclude that
at Q% = 4.5 GeV? about 90% of the Pomeron’s momentum should be carried by gluons.
This fraction decreases very slowly and at Q? = 75 GeV? still 80% of the Pomeron’s
momentum must be due to gluons. A parametrisation with quarks only at the starting
scale can be excluded according to the H1 studies. Thus the dominant mechanism
of diffractive scattering at HERA seems boson-gluon fusion with the incoming gluons
carrying a large fraction of the Pomeron’s momentum.

Also the factorisation hypothesis seems to be shattered, as the zp dependence of
FQD @ Varies with ¢ and thus a single Pomeron flux fpp independent of £ does not seem
plausible anymore. However, the inclusion of additional subleading Reggeon trajectories
with (or without) interference with the Pomeron, seems to explain the data, but then the
price one has to pay is the higher Pomeron intercept, obviously in disagreement with the
soft Pomeron picture at high-energies. At low enough values of zp (zp < 10_3) there is
no need for additional subleading Reggeons (c¢f. Fig. 1.18).

1.8 Summary
The experimental facts so far on diffraction may be summarised as follows

e the observation of rapidity gaps over a full energy range in ep and hadron-hadron
scattering; i.e. they are present in the transition from soft to hard physics;

e the observation of an intact hadron remnant in the final state;
e interaction probes parton contents of a colour—neutral object.

Here we discussed the soft—-Pomeron model in the Donnachie-Landshoff framework.
It seems that this model is not applicable if probed at higher energies.
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If one strongly holds on to the Pomeron as being the exchanged object in diffractive
processes then the H1 data show that one has to introduce subleading meson trajectories
and pay the price of a higher Pomeron intercept ap(0) ~ 1.2. The same observation
(harder Pomeron at higher energies) has been made by the ZEUS collaboration. There
is a strong indication of factorisation breaking. Here we mean the ‘gap factorisation’
introduced in Eqs. (1.55,1.64). For a discussion of possible factorisation breaking in
QCD see Ref. [NZ92]. Our fits with the soft intercept then naturally overestimate the
diffractive cross sections for diffractive Higgs and heavy quarks.

An indication is the discussed experimental value on single diffractive W production
from the CDF collaboration, even though extracting data on diffractive processes is
highly non—trivial.

Keeping the idea of a soft Pomeron alive, Goulianos argued [Gou95] that the flux
factor should rather be normalised, i.e. allow for one Pomeron emitted per reaction.
Even though this may give a better fit to the experimental data it still does not account
for the observed breaking of factorisation.

A higher Pomeron intercept is, however, provided by the perturbative Pomeron or
the Balitski, Fadin, Kuraev, Lipatov (BFKL) Pomeron [BL78, FKL76, FKL77]. The

trajectory has the form

12In2

oKl =1 4 as(scale?) . (1.95)

The definition of hard Pomeron is quite vague. First, the value of the intercept which
is usually taken as 1.5 is a very rough estimate using the expression of the expected
power of the reggeised gluon. Using a leading order calculation in In1/z, the momentum
distribution of the gluon is expected to have the form zg(z,@?) ~ z=*, where A =
@s/0.378. As BFKL values are expected to be valid for moderate values of Q2 the data
require A = 0.5 and thus as(Q?) = 0.18 which obviously can only be achieved at large
values of Q2. The underlying scale for s is less than clear. It is basically not the scale
of the hard interaction, but the infrared momentum squared down the ladder evolution.
Another fact is that the slope of the BFKL Pomeron in (1.95) is taken to be zero. As
we have seen in our former discussions, the slope of the Pomeron trajectory is proportional
to 1/(p.)? the average momentum squared of the hadrons. In hard interactions one
naturally expects (p, ) being much larger than in soft interactions. However the transition
from soft to hard physics or non—perturbative to perturbative physics is very unclear.
In the following we shall briefly discuss alternative models to describe diffractive
processes. Many of these studies have their roots in the gluon model of Low [Low75] and

Nussinov [Nus75, Nus76].

Nikolaev, Zakharov [NZ94]

Introducing light—cone variables for the photon virtuality ¢+ = ¢g % g3, one can see
that the light—cone energy of the virtual photon is of order |q-| ~ @Q?/(zm,) in the
proton rest frame with m,, being the proton mass. The light-cone momentum is then (as
q? = —Q? in every frame) g4 ~ zm,. From the point of view of the proton the diffractive
process seems to be very soft, although it is probed by a very hard virtual boson. With
g— pointing in the negative direction and being very large one can think of the vector
boson as a system of quarks and gluons moving in the negative direction with very high
momentum. In the easiest form, this system of quarks and gluons interacts with the

proton by exchanging two soft gluons.
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W. Buchmiiller, A. Hebecker, M.F. McDermott [BHM97]

In this model the proton is chosen to be at rest. Partons in the virtual boson wave
function pass through the soft colour field of the proton and undergo a colour rotation.
If they emerge in an overall colour-singlet state, then the proton has a chance to stay
intact. The difference to the Nikolaev—Zakharov picture sketched above is the fact that
more than just two soft gluons can be exchanged. The model is sketched below, the big
‘blob’ indicates the soft colour field of the proton.

This model looks explicitly at leading twist contributions. In this case only aligned
Jet type configurations contribute. A similar approach can be found in Ref. [Wus97] by
Wiisthoft.

A. Berera, D.E. Soper [BS96]

A travelling proton is hit by a virtual photon, knocking out one of its partons carrying
the momentum fraction & of the proton. There is then a certain probability that the
proton will reform from the debris. This probability is given by the diffractive parton
distributions in (1.64) again assuming diffractive factorisation. This picture does not

make use of Regge theory.

So far we have presented two different pictures of diffractive deep inelastic scattering,
which physically have to be the same. Basically a Lorentz transformation from a model
in which the proton is at rest (¢f. Nikolaev et al., Buchmiiller et al. and Wiisthoff) to a
frame where the proton has a large momentum (Berera et al.) which is also the picture
we adopted throughout. These two different pictures are mediated by Lorentz invariance
and are sketched below.

Y
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In the left picture the quark with momentum k travels forward in time from the boson
vertex to the interaction with a gluon from the proton, thus the quark appears to be a
constituent of the vector boson.

The right picture emerges from the left picture by applying a Lorentz transformation:
now the antiquark travels forward in time from the interaction with the gluon to the boson
vertex and thus the antiparticle appears to be a constituent of the proton.

Soft or hard?

The main task of adopting the soft—Pomeron model in processes with a hard scale is the
question: Up to which scale is the non—perturbative Pomeron picture valid
and when enters perturbative QCD? The most common explanation (J. Bartels
at the Heidelberg conference 1997 on soft and hard interactions) is that the Pomeron is
a non—trivial object consisting of a soft and a hard component. The important part
is the understanding how the couplings of the soft and the hard part depend on the
underlying scale, i.e. in which energy regime dominates the soft Pomeron, in which the
hard Pomeron. So far, no concrete conclusions can be drawn.

The study of diffractive vector meson production is an ideal playground for this study,
as, depending on the mass of the produced vector meson, one achieves a nearly complete
scan over the Q% spectrum from soft to hard to judge the quality of a soft-Pomeron
picture as a function of the scale.

There are many data available on diffractive vector meson production y+p — p' +V
with ¥V = p,w and J/¥. The production of light vector mesons as measured by HERA
can be well described by soft Pomeron exchange in conjunction with the vector dominance
model (VDM) [Sak60, Yen75], i.e. the photon first fluctuates into a virtual vector meson,
which then scatters elastically from the target proton.

Following our former discussion, we have some expectations for the behaviour of the
total v*p cross section a;’;t’;l and the elastic one, which is in the HERA case o(y*p — Vp').

observable W dependence | soft Pomeron | hard Pomeron

Utjo*tz;l (Wz)a,p(o)—l (W2)0.08 (W2)05

slope b ~ by + 20, InW? | shrinkage no shrinkage
* 2

otyp—Vp) || (oha) /6 | (WA (W2)!

Figure 1.20 shows the measurements of the total and ‘elastic’ vector meson photopro-
duction cross sections as a function of the v*p c.m.s. frame energy W. The light vector
mesons are in excellent agreement with the Donnachie-Landshoff soft—-Pomeron model.
However, the cross section for J/¢ production rises much faster than the expected soft
W022 hehaviour (shrinkage of the b slope included). This cross section is in quite well
accordance with a W?38 rise, a harder Pomeron component. This can be understood if
one considers the scale which is involved in the interaction. The energy scale is set by
the mass of the vector meson and by the transverse momentum involved in the reaction.
Thus, for lighter mesons, the scale is still low enough to follow a soft behaviour. The
J/, however, already seems to set a scale (charm quarks) that is beyond the soft region.
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Figure 1.20: The total and ‘elastic’ vector meson photoproduction measurements as function
of the v*p c.m.s. frame energy W for the vector mesons p,w, ¢ and J/¢. The curve to
the total photoproduction cross section is the Donnachie-Landshoff parametrisation (W ?16).
The other lines are curves of the form W0%22 and W08, Picture taken from [New97].

On the other side, the shrinkage of the forward elastic peak in p meson production,
e.g., could be verified experimentally, which is a typical feature of the soft Pomeron. In
elastic J/1 production seems to be evidence of no shrinkage as was reported in [Levy97].
For a summary of recent results including references for the data of Fig. 1.20 see [New97].

These studies are essential for our understanding of what is still ‘soft’ and what is
already ‘hard’. It is essential to define a scale (experimentally) beyond which the soft-
Pomeron picture is not sufficient anymore. From the theoretical point of view, it is
necessary to explain the observed behaviour of cross sections in terms of couplings of the
soft and the hard Pomeron. Our studies of diffractive Higgs and heavy flavour productions
are certainly located inside the hard energy regime. But from our soft-Pomeron studies
and future experiments it seems possible to gain more information, e.g. by how much a
purely non—perturbative soft Pomeron overestimates the measured rates and how much
‘perturbative QCD’ gains influence at higher energy scales.
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Chapter 2

Extensions to the Standard Model

“It’s a jolly good rule to mis-
trust experimental results un-
til they can be verified by the-
ory.”

(A. Eddington)

In this chapter we discuss two possible extensions to the Standard Model (SM), both
motivated by experiments in 1994 and 1995.

In Section 2.1 we introduce a new heavy vector quark triplet mixing with the SM
quarks. This study was motivated by reported anomalies on the Rp, R, measurements
from LEP. Even though after the publication of our work the former anomaly disap-
peared, i.e. these measurements are now in perfect agreement with the SM, we still want
to present this model here, as it is both instructive and elegant.

In Section 2.2 we discuss the additional neutral vector boson Z’, the heavy equivalent
to the SM Z boson. Even though the Z’ has been the topic of high-energy physics
throughout the years, we use the Z’ to explain the measured jet-excess rate, reported
from the CDF collaboration. These high jet rates at large transverse energy Er are still
an unsolved topic and we give a possible explanation in the framework of Z’ physics.

2.1 Additional heavy vector quark triplet at LEP

The motivation for introducing an additional vector quark triplet arose out of two
important circumstances. First, there was a report in 1995 from the LEP working
groups ALEPH, DELPHI, L3 and OPAL [LEP95] on deviations measured in the ratios
Ry. =T(Z — bb,cc)/T(Z — hadrons) (cf. Table 2.1). Compared to the predictions of
the SM they found a too large value for R}, at about the 3.50 level and a too small value
for R, at about the 2.50 level. As R, and R, are correlated one might, e.g., arbitrarily
set R, to the LEP1 experimental value, but the excess of By, now on a 3o level, remains.
Discussions continued on how to understand the LEP1/SLC data from a phenomenologi-
cal point of view if the disagreement with the SM prediction was taken literally. To solve
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the Ry . “crisis” several extensions to the SM emerged which we shall not cite here as,
even though they were sometimes very subtle and innovative, they finally proved to be
not necessary, as the Ry crisis is no longer existent.

Two works, however, will be the focus of Section 2.2. By introducing a heavy analogue
to the SM Z boson, the so—called Z’ with mass of approximately M, = 1 TeV, Altarelli
et al. [Alt96] and Chiappetta et al.  [Chi96] tried to simultaneously explain the Ry,
anomalies and the measured jet excess rate. We shall discuss the latter in Section 2.2.

LEP1 (1995) [LEP95] | LEP1 (1996) [Blo96] || Standard Model

Ry 0.2219 £ 0.0017 0.2178 £ 0.0011 0.2158 £ 0.0003

R, 0.1543 £+ 0.0074 0.1715 £ 0.0056 0.1723 £+ 0.0002

Table 2.1: Experimental values of R, and R, from LEP1 as presented in 1995 [LEP95] and
1996 [Blo96] compared to the SM predictions.

Some studies considered extensions to the fermionic sector of the SM, by introducing
new vector fermions, mixing with the SM fermions to enhance T'(Z — bb) and thus Ry
and simultaneously reduce I'(Z — c¢). One example is Ma [Ma96] who used a vectorial
pair of singlet and a vectorial pair of triplet that mix with the quarks of the SM to solve
simultaneously for R, and R, at tree level. The problem emerging is a reduction of the
total hadronic width ['hq and thus for the SM leptonic branching ratio Ry = I'naq/Iy
which, however, undoubtly is in accordance with the data.

In another paper [BBH96, Yos96] the authors introduced a vectorial pair of singlet
and hereby only accommodate for R,, not solving the R, deviation.

In this work we shall introduce a vectorial triplet and show how this might deal with
a possible Ry and R, anomaly and keep F%“dand thus T4 nearly unchanged, at least

within the error bars of the experimental value.
One might, however, ask, where such an additional vector triplet might originate

from. In GUT it can be found as (3,1,15) of SU(2); ® SU(2)g ® SU(4) which in turn is

imbedded in SO(10).
Possible tests of our model might be

(a) the calculation of, e.g., heavy flavour production, analogue to the Z' at hadron
colliders, to judge whether a significant change in the cross section can be observed,

(b) the study of flavour-changing neutral current (FCNC) effects in, e.g., decay modes
of some mesons like K¢ or BY,

(c) low energy physics experiments, e.g., vV scattering,

(d) quark—antiquark production at e*e™ colliders, especially at the CERN LEP2 col-
lider.

An analogous treatment to the Z' model like in (a), however, is not possible because
the new vector and axial-vector couplings induced by the mixing with the new vector
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fermions are still of order o, instead of order s, as they are for the Z' coupling. The in-
troduction of new vector fermions produces new small FCNC effects (b) at the tree-level,
which are, however, not in disagreement with the relevant experiments [LS93]. The lim-
its, imposed by FCNC experiments, exclude the possibility of low energy measurements
(c), like vN neutral current scattering, as discussed, e.g., in [McF96] for the case of the
Z'. The test (d) thus looks most promising.

We employ the effect of the mixing between the new quark vector triplet and the
SM quark flavours ¢ on the production of g pairs at the LEP2 collider. We do not
claim that our gg studies are the unique testing ground: other studies could find a better
stgnal/background ratio for this new vector fermions model.

2.1.1 The model

We introduce the following vector quark triplet

ERD)
1
13 2
Xg,g}?, ) = wg3’0) ; (2.1)
(__1‘:_1)
z3 ° LR

with mass My and the stated quantum numbers for charge (@) and third component
of weak isospin (7?), we allow a mixing of (z3); with the d-type quarks (d, s,b); and
(z2)r with the u-type quarks (u,c,t);. Note that we allow for isospin violating effects.
In the context of this model it is expected that My is much bigger than the top quark
mass. However, we are exclusively interested in the mixing effects this new quark triplet
shows with the quark flavours of the SM. The mixing of the left-handed components are
proportional to 1/My, while for the right—-handed couplings a 1 /]Mi» dependence can be
found, assuming a large My approximation, and therefore the latter can be neglected
(cf. Ref. [BL86]). The neutral-current Lagrangian, including v and Z exchange, reads

G 1/2 o
Lnc = ed"AF + V2 <\—/—;> My Z Uy, (vg — agys) Ve Z*, (2.2)
q

where the ¥, are meant to be gauge-eigenstates. One can immediately see that tak-
ing into account the unitary transformation matrix that shuffles mass— into gauge-
cigenstates, WEI'E — Uy pU72%, modifies the isospin matrices TR - Uy, RT&%:RU L.R-
As a result, we finally conclude that the vector and axial-vector couplings defined by

vy = gk+ gl =T 4 TR —2Q,sin? O, (2.3)
o = g7 g9 =TF - T,%, (2.4)

are directly influenced by the presence of this new vector triplet. Consider, e.g., the new
mass matrix Mp for d-type quarks!

mg 0 0 JP N
0 my 0 JP Mp JP
_ _ . 2.5
Mp 0 0 m TP 0 My | (2.5)
0 0 0 My

'This matrix is diagonalised via a biunitary transformation.
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where the matrix elements J;” measure the relative strength of the mixing between (z3)y,
and the corresponding d-type quarks. U}P diagonalises the matrix product MDMfD.
Assuming the most general form

U UL Uh UL,
D D vt uybk y? |[ypb
D K R sd 58 sb ST3
up = ( sb b > - D D D D (2.6)
L U Ups Uy Ub:l)3
U U B[R] ).
we find in the large My approximation [BL86]
1 1
RP = — 7P, e p—— e € P .
7 7Pl 27

with KP = 15,5 which diagonalises MDML.
In complete analogy we can study the u-type quark mixing mediated by the matrix

Up Ui Ui |Uis,
u KU RU vy uvY Uy |UY,
Vi={gv qu ) = U u U | U ' (2:8)
L U Ui Up |Us,
UmUzu Uzqzc ngt Utgzzz L
The mass matrix for u~type quarks consequently reads
' My JY
My = . 2.9
U ( 0 My ) (2.9)

However, MUMID is not diagonal anymore but is diagonalised by Vokm, the Cabibbo—

Kobayashi-Maskawa matrix. In the large My approximation we find K Ux VCEKM and
1

My

P4

SU = —— gVl (2.10)

Consequently we derive for the new vector and axial-vector couplings in the case of
the u— and d-type quarks
Bu = v+ (T -TIULG, = an (T -TOULE,  (211)
B = va+ (TE-TIULG, do=aa+ (T -TIULLE.  (212)
This explains the former special choice for the isospin components of the vector triplet. As
T(ete™ — q) o (73 + 63), T3L = 0 will reduce the hadronic width of the u-type quarks,
whereas T;’SL = —1 enhances the hadronic width of the d-type quarks and therefore lower
the SM value of R, and simultaneously raise Ry. In terms of the above formalism, the
modified couplings of, e.g., the b and ¢ quarks read now

- 1 - 1
Ve = VUe— EngFa Qe = Q¢ — §|5§J|2, (2'13)

~ 1 - 1
U = Ub_'élSSDP: ab:a’b_ils?;DIQ: (2.14)
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where SP and SU are to be identified with the matrix elements used in the definition
of UP (2.6) and U (2.8). Thus the model depends on 6 parameters (5193 5123)
But because of the relation SV = §P VCKM it is sufficient to constrain 3 parameters in
order to calculate the full set. The input to constrain SY and SP will be R, and Ry,
respectively. After determining all modified vector and axial-vector couplings vg and ag,
we proceed to answer the question of how the total g7 cross section at LEP2 is affected
by the presence of the additional vector fermions.

2.1.2 Modified ete™ — g7 at LEP2

. Zy
The total cross section for the subprocess ete™ =3 qq, where g stands for one quark
flavour, via Z and <y exchange, reads in the finite—quark-mass Born approximation

oleTe” 2y qq) = 5(3 —BHoy + BPoa, (2.15)
_z dma? a . MZ(s— M2
UV(€+€ = qq) = QQQq + ﬁGFQquvevq (s — ]\Zl(%)fz +]\?%F%
G% ~2¢ 2 2 sMy
, 2.16
+ 2qu(ae+ve)(3—Mg)2+M§F2Z' (2.16)
_ Z, ~ G 5M4

with the quark velocity 8 =/1 — 4 and the electron couplings v, = —1/2 + 2sin Oy
and a. = —1/2. For further detalls we refer to, e.g., [JLZ81, JLZ82, CGN82). We
implemented in our calculations the following corrections:

e QCD O(as) corrections due to real and virtual gluon emission [JLZ81],
e universal QED O(a) corrections 30Q3/(47),
e initial state radiation up to O(a?) in QED and soft photon exponentiation [BBN8S],

e universal electroweak corrections due to ¢t and tb loop corrections to the Z propaga-
tor and y—Z mixing as well as vertex corrections for b quarks due to virtual ¢ quark
exchanges [ABR88, BH88, DKZ90]. We checked that the box-graph contributions
turn out to be unimportant for our purposes.
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vertex corrections

For our numerical analysis we used the on-shell scheme addressing the following
electroweak data: o(My) = 1/128.8, Mz = 91.188 GeV, My = 80.33 GeV with the
strong coupling constant as(Mz) = 0.123. Furthermore we fixed the top quark mass to
be my = 175 GeV. For the CKM-matrix elements we used the averaged values given in
Ref. [PDGY6].

We perform a three variable fit to the values of R, and R, as they were presented at
the ICHEP conference in Warsaw in 1996 [Blo96]. At this time the average values of the
four LEP collaborations were (see also Table 2.1)

Ry(Warsaw’96) = 0.2178 £0.0011, (2.18)
R.(Warsaw’'96) = 0.1715 4+ 0.0056. (2.19)

Thus the R, value was within the SM predictions and the reported R, value was in
excess by 1.90 of the SM and expected to come further down. Qur model, however, cures
any deviations AR, 4 from the SM and a general fit is always possible. With only a
small excess in R}, we nevertheless want to show whether in the framework of our model
measurable effects in ete™ — ¢g might or might not show up.

We first performed a general fit of the parameter space, including |SY|? and |SP|?,
as they directly govern the values for I';z and T'y;. Furthermore we set |SP)? ~ 0.
This is invoked by taking into account the flavour—changing neutral current (FCNC) of
the process K — p*u~, which does not support any sizeable d-s quark mixing. The
missing values |SY|?, |SY|? and |SP|? are then calculated, according to the relation SY =
sb VgKM. Although we found a weak dependence of the various widths (I'z,I'5*d) on the
input parameters, the cross sections remain quite insensitive to the widths compared to
the modified coupling-dependence, as can easily be deduced from the formal expression
of the total cross section in Eqs. (2.15)-(2.17).

Fig. 2.1 shows our fitted values for |SY|? and |SP|?, in particular the edges of the
1o (68.3% confidence level of the normal distribution) and the 20 (95.4% c.l.) regions
of Ry and R,. We find [SY|? = 0.01245 and |SY|?> = 0.00922 for 1o (corresponding to
Ry = 0.2189 and R, = 0.1659) and |SY|? = 0.02528 and |S{|? = 0.01284 for the 20 case
(Rp = 0.2200 and R, = 0.1603).
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Figure 2.1: We show the allowed regions in the [SY|?,|SP[? plane (as discussed in the text)
obtained by fitting the experimental Ry, R, values [Blo96] given in (2.18,2.19). We present
the 1o (68.3% c.l.) and 20 (95.4% c.l.) regions, from which we read off our input parameters
|S5'|? and |SP[2.

With these two sets of parameters deduced from Ry and R, we first give predictions
for the subprocess cross sections o(ete™ — s3,cc,bb), as they turn out to give the
most significant signal. Specifically, Fig. 2.2(a) shows the ¢ production cross section
as a function of the centre-of-mass energy. The contribution of the additional vector
fermions to this cross section is negative, as it is for all u~type quarks, which can easily
be checked from the structure of the new vector 7, and axial-vector @, couplings for
u—type quarks, as the former motivation is to decrease the SM value of R,. The result is
very sensitive to the values of Ry, and R, as, e.g., the 1o input and the 2¢ input differ
by a factor of roughly two. Moreover it can be observed that in the energy region of the
LEP?2 collider (160-190 GeV), the contribution is nearly insensitive to \/s. The observed
gaps in all figures which appear around the Z mass M, = 91.188 GeV, are due to the
resonant behaviour of the total cross section.

All the argumentation drawn from Fig. 2.2(a) also holds for the discussion of the s5
and bb cross sections, presented in Figs. 2.2(b,c). The main difference is that the total
contribution of the additional vector fermions is positive for d-type quarks. Even though
the absolute value of the s3 contribution is comparable to Fig. 2.2(a), there is no hope to
isolate this cross section in a LEP2 measurement. The bb cross section, however, will be
measurable and according to Ref. [LR97] the experimental uncertainty in o,j is reported
to be 2.5% for /s = 190 GeV and an assumed luminosity of 500 pb~!, which allows for
a clear signal. Although former studies at the LEP2 showed a general lower accuracy for
the tagging of cC events, it still might be suflicient to detect our calculated 5% effect in
0cz as shown in Fig. 2.2(a). All numerical results are summarised in Table 2.2 for two
fixed LEP2 centre—of-mass energies of /s = 175 GeV and 190 GeV.

Finally we present in Fig. 2.3 the total cross sections for d— and u—type quarks. Again,
we can see the overall tendency that the SM cross section is being lowered under the
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Figure 2.2: We present the relative differences between the predictions of the vector fermion
(VF) model and the SM (80,/0, := (037 — a%vl)/a%vl) in per cent as a function of /s, for
three different flavours.

presence of the vector fermions for u—type quarks, whereas we find a proper enhancement,
for d-type quarks, which is the characteristic feature of this model. We can not expect a
tagging of these individual cross sections at this level of accuracy at LEP2, but for reasons
of completeness we want to mention it at this stage, especially to demonstrate that
there will be no signal to be expected in the total cross section, as individual subprocess
contributions will cancel each other to an almost zero level.

We studied the impact of a model with additional vector fermions at the LEP2 col-
lider. We made predictions for various quark production cross sections and discussed their
possible detectability based on a recent phenomenological analysis given in Ref. [LR97].
However, there is probably no evidence for new physics at this stage, especially after the
experimental values of Ry and R, are in agreement with the SM predictions, although,
one can argue that exploiting the idea of additional vector fermions at energies beyond
the Z pole is of considerable interest. A remarkable feature of the model we were dealing
with throughout our studies is that it is anomaly free, in contrast to alternative ideas
emerging from the reported “Ry, R, crisis”, and therefore seems to be more physically

sound.
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lo (68.3% c.l.) 20 (95.4% c.l.)
qq [Pb ] | d04/0q (%] || 04z [Pb] | d04/0q [% ]
Vs= cE| 36.69 -5.31 34.71 —-10.44
175 GeV bbb | 12.75 +3.83 12.93 +5.31
V= ct| 29.75 —5.26 28.15 ~10.35
190 GeV  bb | 10.16 +3.82 10.31 +5.30

Table 2.2: The numerical values for o5 = o(eTe™ — ¢g) and do,/0, in the vector fermion
model, for ¢ being either a ¢ or a b quark. The calculations were performed for two typical
values of /s at LEP2, and for the two confidence levels as discussed in the text.

We also checked a possible influence on the forward-backward asymmetries Alg. At
LEP1 energies the modified asymmetries are within the experimental errors. The accu-
racy at LEP2 for the corresponding measurements is expected to be even lower, such that
it is difficult to draw any conclusions from forward-backward asymmetry measurements.

2.1.3 The situation in 1998

The LEP working group published their latest results on experimental SM data, including
updated values for R, and R.. They report [LEP97]

Ry(1997) = 0.2170 £ 0.0009,  R.(1997) = 0.1734 £ 0.0048. (2.20)

The ratio Ry is only 1.30 above the predictions of the SM (see Table 2.1) compared to
the former 3.7¢ in 1995.

The evolution in the experimental measurement of R, and R, from 1995 until 1997
is shown below. The dashed band indicates the predictions from the SM assuming
as(Mz) = 0.123 £ 0.004 and Mz = 91.1884 + 0.0022 GeV.

0.225 018
0224 | ' 3
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0222 [ 017 - T 1
E r
o221 | oes
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0219 | 0.16 -
0.218 [ 0155 [
0.217 |- l r
E | 015 |
0216 [ e me e E
0.215 1 ! { 0145 T L t
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We surely may conclude that the Ry, R, anomaly finally vanished and left a trail of
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Figure 2.3: The total cross section for u— (a) and d-type (c) quarks in the SM calculation
and the two vector fermion fits as discussed in the text, including the relative changes (b)

and (d) as already shown in Fig. 2.2.

approximately 25 papers dealing with an explanation of this effect. We presented one of
them.

2.2 Additional neutral vector boson 7' at the TEVATRON
and the LHC

The analysis of the 1993 data from the CDF collaboration in 1996 on the single inclusive
jet cross section at the TEVATRON indicated a possible disagreement with QCD at high
transverse jet energies. The reported excess rate exceeds next—-to-leading order (NLO)
QCD calculations by 10-50% for 200 < Er < 400 GeV [CDF96a]. One has to be cautious
in drawing rash conclusions for the evidence of new physics, as the D@ collaboration has
reported agreement with QCD in the same measured jet energy range [Bla96]. Still the
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systematic errors in both experiments are too large to enable definite conclusions to be
drawn.

Discussions continue on how to understand the CDF data from a phenomenological
point of view if the reported anomaly (i.e. deviation from the SM) is taken literally.
There are efforts to explain the observed jet—excess rate in terms of modified parton
distributions, as it was suggested by Glover et al. [G1096] and the CTEQ collaboration
[CTEQY6]. The discussion about quark substructures was supported quite emphatically
(¢f. [AT97] and references therein). Other discussions included quark resonances inside
the hadron (cf. [Ban96]) or new strong interactions (cf. [CCS96]).

Some authors believed that the simultaneous occurence of the R, R, anomalies (as
discussed in Section 2.1) and the CDF jet—excess rates are not only correlated in time,
but also physics wise. As we already discussed in Section 2.1, Altarelli et al. [A1£96]
and Chiappetta et al. [Chi96] re-invoked the concept of the Z’ and tried to solve both
anomalies in this framework. And quite successfully: both groups were able to find a set
of vector and axial-vector couplings for the Z’ to please both, the LEP and the CDF
data. This Z' couples very strongly to u~ and d-type quarks and contributes to the
standard boson Z decay via a weak Z'-Z mixing angle §. We shall exploit this idea and
undertake a global analysis of the Z’' model in the context of the CDF data only, to show
the differences with the results of Refs. [Alt96, Chi96] if one only takes the CDF data
into account. But the main intention of this study is to present predictions of the Z’
model for further measurements at the TEVATRON, like dijet angular distributions, and
of course at the LHC. As the Z' model seems a quantitatively plausible description of
the observed deviations so far, it is important to give predictions for future experiments
to either support or discard this explanation.

2.2.1 The 7' model

The Z' model introduced by Altarelli et al. in Ref. [Alt96] and independently by Chi-
appetta et al. in Ref. [Chi96], to explain recent experimental deviations from the SM,
has the remarkable feature (as the experimental data demand) that the axial and vector
couplings of the Z', especially to u—type quarks, are quite large. It will turn out that
the effective Z'u@ coupling is of the order of the strong (QCD) coupling constant as.
Especially for large energies (transverse jet energies Er) the contributions due to the
additional Z" are becoming dominant and for a fitted set of coupling parameters will, for
example, cure the measured jet excess. We shall be very cursory in the presentation of
the Z' model as it is treated in almost complete analogy to the Z boson of the Standard
Model. The Z' has been discussed in the literature before 1996. A few of the many
references are [JS89, BR90].

To introduce the Z’, the neutral sector of the Standard Model with the underlying
SU(3)c ®SU(2)r ® U(1)y gauge group is extended by an additional term in the neutral-
current Lagrangian (cf. (2.2))

/
NC —

g 10 11
J, 4
cos O #

g i ! 1.5 1
Fo0s Oy 2 1/ (v +ar®) 0,2 (2.21)

The neutral current J,’LO includes the axial a’f and vector v} coupling strengths of the
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Z'. In the Standard Model there are three free coupling parameters for the Z boson:
the left-handed coupling to the (u,d);, doublets and the two right-handed couplings ug
and dgr. To preserve these degrees of freedom, we follow the quark family—independent
parametrisation for u— and d-type quarks in [A1t96] for ay and v}

!/ _ !
Uy = 77+yu1 au—“$+yu>

Vg = T+Ys, ay=-—3+y, (2.22)

All couplings to leptons are set to zero (leptophobic Z'): v} = v, = 0 and a] = a!, = 0.
In [Alt96] this constraint was due to the fact that only deviations from R, and R, have
been reported by the LEP1/SLC measurements. Apart from z,, and y4 there are two
more parameters included in the Z’ model: the mixing angle § between Z and Z' as well
as the mass My of the Z’'. With these parameters we can also fully determine the total
decay width of the Z'

GeM% 2 2 GeM2

I N , / / _ Jrz , 2 2 2

o Mz (”f Tag ) on N My (2$ Ty, + yd) ; (2.23)
where V¢ is the number of quark colours. From fitting various electroweak observables to
the LEP1/SLC data and taking the CDF results into account, the authors of Ref. [A1t96]

find as a best set of parameters:

t=-10, y,=22, wyz=00 46=238-1073, (2.24)

Ty =

with the Z’' mass fixed in this analysis to be Mz = 1 TeV. This parameter space gives
the best numerical compromise to simultaneously obtain acceptable coincidence with
the values for R, .? and the measured CDF jet rate. Such a heavy vector boson is in
accordance with the lower mass limit of 412 GeV (at a 95% confidence level) reported
from pp collider experiments in a search for a new neutral vector boson (with standard
couplings) [PDGY6]. The dependence on the y; parameter was found to be weak, such
that the somewhat arbitrarily choice of y; = 0.0 was used as an input. We shall exploit
these results and concentrate on finding the best set of parameters for z and y,, describing
the CDF data within the Z' model, with 8, yq and My fixed to the values given in (2.24)3.

2.2.2 Fit to the CDF single inclusive jet data

We shall perform a global x? fit of the Z’' model parameters z and vy, discussed in
Section 2.2.1 to the 1992-93 measurements of the single inclusive jet cross section by the

CDF Collaboration [CDF96a].
In leading order (LO) QCD the process AB — jet+ X can be parametrised by [Ste95]

d?o . Er
dETdU(AB - jet + X) =4m§(Q?)—32— (2.25)
1
dzo  foya(Te, Q%) fo/8(zh, Q) —
X Z / ) —a 7 a/A\ "0 / |MlLb—)Cd|27
abcdzmin xa xTe {Ea xb

2The 1995 LEP data on R, and R. as shown in Table 2.1.

3 As we restrict ourselves to fitting the CDF data only, the mixing angle § does not appear as a free
parameter. However, because we later want to calculate Ry . for the sake of comparison with the Standard
Model predictions and the LEP1 data, we shall fix § to the value given by Altarelli et al. [Al£96] as cited

in (2.24).
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in terms of the transverse energy Er of the observed jet and the directly measured
pseudorapidity n. The expressions for the squared and averaged matrix elements of the
subprocesses contributing to [Mgp—cq/? in LO due to the partons a,b,c and d being
quarks, antiquarks or gluons, can be found in, e.g., [CKR77] or any standard QCD
textbook. We integrate over the kinematical variable z, only, with 7, = T,zpe™/(2z, —
zre’) and g™0 = gpe/(2 — zre~"). The variable zp is the scaled counterpart of Ep
being z7 = 2E7/\/s. Eq. (2.25) fully describes the single inclusive jet cross section. For
the parton distributions fi, 5)/(4,8)(%(a), @?) we use again the MRS(A’) set of partons
as we did in the previous chapter to calculate diffractive processes.

The inclusion of the Z’ into the formalism is straightforward. One has to calculate
those matrix elements in which the incoming and outgoing partons are quark and an-
tiquark pairs. The only constraints at the Z’gq vertices are colour—charge and flavour
neutrality. All possible Z' exchanges in the s— and ¢-channels have to be taken into
account. We cite the results for identical and non-identical quark-flavour scattering in
the t—channel (averaged and summed matrix element for the Z’ contribution only)

I =z 22 G 2
1672 (Mool = 9 7 cos? O s
1 1
x Re , + 24 y2
{t [(u— MZ)+iMpTz] " ul(t— M%) +iMzT 7] }(m *Yq)
Ja 20,4 4 1
w
T T6nZcos O {3 @+ ) [(t —MZ)? + MLTZ,
(U—M%,)2+M2,FZZ, 3 (t—M%,)—*—’Z:MZ/le (u—M%,)—’l:MZIFZI
2 2
9520/ u + } } 2.26
T ((t M2+ MLTL,  (u— MZ)E+ MRTZ ) [ (2:26)
_le w2 = 1w
1672 1979 1672 cos? O
1
X {32(:32 + ygygl) + u2(a:2yg + wag,)} . (2.27)

(t - ]\4%/)2 + MQIFQZI

The expressions for the s—channel may be obtained via crossing. Expressions (2.26) and
(2.27) have to be added to the standard QCD matrix elements. In the limit Mz — oo one
obtains an effective four—point interaction (four—quark coupling) of strength oc ¢gqgg2.
Throughout this work we shall restrict ourselves to the LO calculation of the jet cross
sections. For small values of |n| it has been shown by, e.g., S.D. Ellis, Z. Kunszt and
D.E. Soper [EKS90] and W.T. Giele, EEW.N. Glover and D.A. Kosower [GGK93] that
for single inclusive jet production at high transverse energies the next-to-leading order
(NLO) and the LO calculations only differ by a constant factor, independent of Er, if one
chooses p = E7/2 as the underlying renormalisation scale. This renormalisation scale is
imbedded into our calculations in the form of the four-momentum transfer Q? = p? as the
defining scale for the running coupling constant as(@Q?) and the parton distributions. The
difference between LO and NLO is then reported to be less than 10% and independent of
Er for Er >100-200 GeV [EKS90, GGK93]. The lower bound on Er depends on the set
of parton distributions used and the value of Aqcp implemented. For the MRS(A') set the

QCD scale parameter is found to be A%ﬂ) = 231 MeV, which corresponds to as(M %) =
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0.113. The MRS(A’) NLO calculation was shown to be in good agreement [CDF96a] with
the CDF single inclusive jet data up to Ep ~ 200 GeV. We therefore normalise our LO
calculations of the single inclusive jet cross section to the CDF measurements in the
range 150 < Ep < 200 GeV as shown in Fig. 2.4.

2
— 1 =
> O ® F
(4} a 120 | s=3810°
) 8 100 B[ *=10
E 10 F { coF1992.93 2 190 [ y,=2s $=9.07
5 Q go [-1Ye700
= <]
= ' C
2 o1 u 60 - LOQCD+Z
g E S F (normalised)
£ o
=10 ¢ 20, ' I
5 F 0 rew LI R B
= \ 200 250 300 350 400
10 E, [GeV]
2 p=Eg2
af MRS(A’)
0o LO QCD
F — . LOQCD normalised
4
10 ¢
-5f
10 F
qo e e e e e e N
50 100 150 200 250 300 350 400 450 500
E, [GeV]

Figure 2.4: LO calculation of the single inclusive jet cross section (dashed line) and the
normalised LO fit (solid line) to the CDF 1992-93 data [CDF96a] (as discussed in the text).
The small inset shows the difference in per cent between our calculation and the measured
cross sections by the CDF Collaboration. Also shown is our best—fit of the included Z’' model

with the parameters also presented.

The dashed curve represents the LO QCD calculation according to Eq. (2.25), the
solid curve shows the corrected LO calculation normalised to the CDF data which are
also presented. For 130 < Ep < 200 GeV the difference between the central values of
the CDF data and the normalised LO calculation is less than 5%. The normalisation
factor is found to be ' = 0.91 + 0.03 according to the reported statistical errors of the
CDF data. Comparing our results with those presented in [EKS90, GGK93] we conclude
that for Ep > 130 GeV and p = E7/2 our LO calculation is adequate to NLO assuming
the constant factor . For our x? analysis of the CDF data we shall therefore use the
normalised LO calculation presented in Fig. 2.4.

The CDF collaboration reported a significant jet excess for Er > 200 GeV [CDF96a].
In the inset of Fig. 2.4 we present the conspicuous deviations of the CDF data in the
measured energy range to our LO calculation in per cent. The solid line shows the
anticipated best-fit calculation in LO with the Z’ incorporated and the smallest achievable
x? value. Let us therefore now briefly discuss our fit of the Z’ model parameters z and

Y, to the CDF data.
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our Z' fit Altarelli et al. [Alt96] LEP1 (1995)

Ry, 0.2194 0.2203 0.2219 £ 0.0017
R, 0.1642 0.1572 0.1543 £ 0.0074

Table 2.3: Comparison of the values Ry, . from our calculation including the Z' model and the
best—fit parameters of Egs. (2.28) with the LEP1 measurements [LEP95] and the calculations
of Altarelli et al. [Alt96].

2.2.3 x? analysis of the Z' model

The qualitative difference of our Z' model fit to that of Altarelli et al. [Alt96] is that we
only concentrate on the CDF data and disregard the values for the quark ratios R, and
R. measured at the LEP1/SLC colliders for the moment. Furthermore we are using a
different renormalisation scale (u = Ep/2 rather than y = Er) and therefore approach
NLO results in a natural way [EKS90, GGK93). We also perform an implicit integration
over the pseudorapidity 7 in the range 0.1 < |n| < 0.7, more in line with the experimental
cuts used by the CDF collaboration.

Nevertheless we expect our best—fit parameters to be very close to those found in
[Alt96] such that we constrain three of the five parameters in exact analogy to this work,
namely § = 3.8 - 10~® (mixing angle), Mz = 1 TeV (Z’ mass) and y4 = 0.0. We are left
with two parameters z and y, to define the x? distribution of our problem. We show
x%(z,y,) in Fig. 2.5(a). Note that the pure QCD calculation yields x%(0,0) = 45.14.
Fig. 2.5(b) shows the 95.4% confidence ellipse (20 for the normal distribution). The
statistical analysis was performed using the programming package of Ref. [C++]. While
z is bound according to this analysis to a very narrow band, the parameter y, covers a
much broader range. The narrowness of the z range is due to the fact that it influences
both u— and d-type quarks simultaneously, and therefore its variation is much more
constrained.

Finally in Fig. 2.5(c) we present the 68.3% confidence ellipse (1o for the normal
distribution) and deduce the best—fit parameters of our analysis to be

z = =10, wy, =238,
with yg; = 00, Mz =1TeV, £=38 107" (2.28)

Altarelli et al. [Alt96] report a slightly smaller value of y, = 2.2. This is mainly due to
the included R, fit as well as to the differences in the analysis procedure as discussed
above. The improved result for the single inclusive jet cross section, due to incorporated
Z' exchange with the parameters of Egs. (2.28), was already shown in the inset of Fig. 2.4.
Note that with this set of parameters the coincidence with the experimental LEP1 values
of Ry and R, from 1995 [LEP95] is still better than the predictions by the Standard
Model (cf. Table 2.1), as shown in Table 2.3.

With (2.28) and Mz = 91.18 GeV we find a total Z' decay width according to
Eq. (2.23) of I'z: = 644.2 GeV. This should be compared to the value for the standard Z
boson of 'z = 2.493 £ 0.004 GeV [PDGY6]. Our value for Iz exceeds the one assumed
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Figure 2.5: The statistical results of our Z' analysis: (a) the x? distribution as a function
of the two degrees of freedom z and 1, (the fitted parameters), (b) the 95.4% confidence
ellipse and (c) the 68.3% confidence ellipse with the central values z = —1.0 and ¥, = 2.8
being indicated (best-fit values).

by Chiappetta et al. [Chi96] by a factor of three. From Eq. (2.22) we find the vector and
axial couplings of the Z' to u-type quarks being v), = 1.8 and a; = 3.8. These values
should again be compared with the Standard Model predictions [PDG96] of v, = 0.19
and a, = 0.50 for the Z boson. As already mentioned, the effective Z'u@ coupling is of
order (v),” + a’?)auy ~ . So the main contribution of the Z’ follows from its coupling to
u~-type quarks with an absolute strength that is comparable to QCD itself. The effects
of this coupling can be observed in the inset of Fig. 2.4 where for Ex ~ 400 GeV, the Z'
contribution already equals the pure QCD contribution.

Before we shall answer the question of how this Z’ model with the new parameter fit
will affect jet physics at the LHC we shall first discuss the comparison of our results to
the already available and future data of the dijet angular distributions at the TEVATRON.
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2.2.4 Comparison with the measurements of the dijet cross sections at
the TEVATRON

The leading order differential dijet cross section in a hadron—hadron collision can be
expressed in terms of the centre-of-mass scattering angle cos ©* and the invariant mass
of the two jets M;; [Ste95]

d? . 1
© ____(AB = jet; +jety + X) = dma(Q?) (2.29)

d cos(©*)dM;; 8M]2j
1

x Yy / Az fa/a(as Q%) foy 5 (w5, Q°) [ Mapseal”

adem min
a

with z§'" = M2 /s and zp = M}, /x,s. Again a,b,c and d denote the different types of
partons and A and B the scattering hadrons. The cross section is again factorised into
one part that includes the information on the parton densities inside the hadrons and
the averaged matrix element squared part that carries the cos ©* information. So the
jet angular distribution is sensitive to the form of the 2 — 2 matrix elements. For small
angles, the partonic contributions to the total differential cross section show a typical
Rutherford behaviour (~ sin™4(©*/2)). To remove this singularity it is convenient to

plot the angular distribution in terms of another variable y defined as*

1+ |cos ©%]

X=1- |cos ©*] (2:30)

It is clear that x¥ € [1,00]. In the small angle region (x large) one expects therefore
do/dx ~ const. as dx/d cos @* ~ sin™*(©*/2).

The vindication of restricting ourselves to a LO calculation has already been discussed
in the case of the single inclusive jet analysis. We concluded that for Ep > 130 GeV
LO is a very good approximation to NLO (cf. Fig. 2.4) if one chooses 1 = Er/2 as the
underlying renormalisation scale, and takes a normalisation factor A into account. The
dijet mass, however, is connected to the transverse jet energy via the relation

ij = 2ET cosh IT]*I s (2.31)

where we introduce the centre—of-mass pseudorapidity n* = (m — 72)/2 (with 7, and 7o
being the pseudorapidities in the laboratory frame).

With cos ©* = tanhn* and Eq. (2.30) we find that y = €?"’l. Therefore Eq. (2.31)
yields M;; = Ep(y/X +1/y/X). So one could expect that for large M;; (M;; > 260 GeV)
and small values of y our argumentation concerning the validity of the LO approximation
might still hold. However, if there is a large transverse boost fpeost = (71 + 172)/2 to
the dijet system then y can become as large as |7*| = g — Mboost|; but LO can still
be adequate to NLO if |n1] is small. On the other hand, |7be0st| could be small and
|| large: in this case the LO description fails. So one has to be cautious with the
argumentation. However, S.D. Ellis et al. [EKS92] also determined the scale u for which

4To minimise confusion we shall always denote the angular variable by x whereas the statistical variable

is denoted by x°.
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the calculation approximately reproduces the less—scale-dependent NLO result in the
case of dijet production. If we express their result in terms of the variable x, one finds

(2.32)

with k(x) = (x + 1)/(x*® + x%!). For x = 1 we find p = Er/2, the value for the
renormalisation scale we were using throughout. We conclude that also in the case of
dijet production this scale yields a reliable approximation to NLO (at least in the small x
range). For y = 5,10, 20 one finds k() = 1.15,1.29,1.39 such that nearly the complete
range for small values of x is in approximate accordance with NLO for p = Ep/2.
However, to approach the NLO result in a pure LO calculation as good as possible,
we shall use the effective renormalisation scale of Eq. (2.32) for the study of the dijet
angular distributions throughout this section. With this choice of i« we do not have to
worry about the normalisation factor A introduced for the case of the single inclusive
cross section.

We show in Fig. 2.6 our calculations in lowest order QCD as well as in the extended
model (QCD+2’) with the coupled Z’. The Z' model parameters are again fixed to the
values given in Eqgs. (2.28). We compare our results first with the data from the CDF
Collaboration of 1992 [CDF92]. They measured the jet angular distribution with a jet
data sample of 4.2 pb~! in three different dijet mass regions (Figs. 2.6(a,b,c)). Only the
statistical errors are shown. The systematic errors are reported to be 5-10% [CDF92].
The kinematical cut on the centre-of-mass pseudorapidity was chosen to be |n*| < 1.6
for 240 < M;; < 475 GeV and M;; > 550 GeV; and |n*| < 1.5 for 475 < M;; < 550 GeV.
Again with x = e2m| we get upper bounds for x, such as x < 24.5 for 7* < 1.6 and
x < 20.0 for n* < 1.5. All cross sections in Fig. 2.6 are normalised to unity in the
corresponding x intervals, and integrated over the given M;; range. As the cross section
falls very steeply in a given x bin (x 1 /ij) we introduce a cut—off for the dijet mass
in Fig. 2.6(c) of M;; = 700 GeV. An analysis of the cut—off dependence showed that any
higher upper bound on M;; changes the result by less than 2%.

From a first look at Fig. 2.6 we notice that all angular cross sections are rising for
higher values of . This is due to the fact that we incorporated our running coupling
constant a(Q2?) with Q? = k?(x)E%/4. The Q? scale is a function of Mj; and x. This can
be deduced by examining Eq. (2.31). It follows directly that Q* = szjx/4(xo'85 + x0-18)2
with Q% .. = ij /16. For larger values of x the values of Q? are therefore becoming

max
smaller. The partons are probed at lower energies, but the effective coupling as(Q?) is

rising as Q? is shrinking.

A second feature becomes transparent from Fig. 2.6: the influence of the Z' is less
striking for small and moderate dijet masses as shown in Fig. 2.6 but becomes more
important for higher values of M;;. We have to recall that a dijet mass of M;; = 500 GeV
for x = 2.5 corresponds to a transverse jet energy Er = 226 GeV, whereas a dijet mass
of M;; = 1000 GeV corresponds to Ep = 452 GeV for the same value of x. The Z’
model, however, has been constructed in such way that its influence is only felt for Ep >
200 GeV. Therefore only calculations with a relatively high dijet mass at /s = 1.8 TeV
are substantially affected by the Z’ boson. But already for (M;;) = 500 GeV and (M;;) =
600 GeV the presence of the additional Z' becomes transparent (cf. Figs. 2.6(b,c)),
especially for the large-angle-scattering (x small). This is due to the fact that such
a massive vector boson acts like an effective contact interaction [ELP89] between the
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Figure 2.6: The normalised dijet cross sections at O(a?) for pure QCD (solid lines) and the
additionally coupled vector boson Z' (dashed lines) in three different dijet mass bins: (a)
240 < Mj; < 475 GeV, (b) 475 < M;; < 550 GeV and (c) M;; > 550 GeV. The numerical
results are compared to the CDF '92 analysis [CDF92]. The kinematical constraints on 7* and
the normalisation intervals in y are indicated and discussed in the text. All Z' calculations
were performed for the central parameter fit: z = —1.0 and y,, = 2.8. As renormalisation
scale we have chosen p = k(x)Er/2 from Ref. [EKS92].

four quarks at small energy transfers in the s— and ¢{-channels. As, for example, |t| =
ij/(x + 1) we obtain [t| < M2, if x > 1 and O(M]-Qj) ~ O(M2Z,). Because of the
general form of the Z’' matrix elements squared, IMZ,P o 1/ {(t — M%)? + M%.T%}
(¢f. Egs. 2.26,2.27), we find the Z' contribution becoming flat for large x. Therefore the
observed enhancement of the dijet cross sections due to this additional vector boson only
takes place for small values of x.

The comparison with the CDF data should be regarded only as being illustrative, as
for larger values of xy the NLO and LO calculations slightly differ. The main purpose
of Fig. 2.6 is to show the influence of the Z’ on the pure QCD calculations. As we
expected from the a priori construction of the Z', its presence is emphatically felt for
higher dijet masses (like in Fig. 2.6(c)) mainly for large scattering angles where, with
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the choice of p = k(x)Er/2, the authors of Ref. [EKS92] observe that LO and NLO are
quite comparable. This underlines the assumption given by Altarelli et al. [Alt96] that
the ratio Z’/QCD should merely remain unchanged (up to a few percent) in a transition
to NLO.
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Figure 2.7: Same as Fig. 2.6, but now for the two fixed dijet mass bins: (a) Mj; = 900 GeV
and (b) M,; = 1100 GeV. The dijet cross sections are normalised to unity in the interval
1 < x < 24.5. The relative contributions of the Z’ to the LO QCD calculations (Z'/QCD)

are also presented.

To emphasise the influence of the Z' even more, we increased in Fig. 2.7 the dijet
masses up to the region of My itself. For M;; = 1100 GeV (Fig. 2.7(b)) we calculate
for the dijet cross section in LO QCD: dN/(Ndy)|qcp = 0.0363 for x = 1.5 (©* = 78°).
The LO QCD+Z’ calculation, however, yields a value of dN/(Ndx)|qcp+z = 0.0610,
which means an increase by a factor of 1.7 due to Z' exchange.

The ratios Z'/QCD of our calculations are also presented in Fig. 2.7. This gives even
stronger evidence for the fact that for higher dijet masses the Z' contribution especially
governs the larger scattering angles whereas for small angles the ratios behave smoothly.
This can be observed in Fig. 2.7(b) where |Z'/QCD] even shrinks for larger x such
that one might conclude that for high dijet masses but very small scattering angles
the Z' contribution becomes irrelevant. Even though the LO calculations are not quite
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compatible to NLO in the high x range [EKS92], the corrections due to NLO are supposed
to cancel, considering the ratios only, such that this observation should also hold in a
NLO calculation.

We conclude this section with a comparison to recent very precise data from the D@
collaboration [DP96] and a remark on the latest CDF dijet results published in 1996/1997.
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Figure 2.8: The dijet angular distributions in leading order with three different renormalisation
scales including the scale defined in Eq. (2.32) and employed throughout this section. The
cross sections are integrated over M;; in the range 175 < Mj; < 350 GeV. As before we
present the normalised cross sections but now for the LO QCD+Z’ calculation only. The
results are compared to the data taken from the D@ '96 analysis [D(96).

In the measured dijet mass range 175 < M;; < 350 GeV the effect of the Z' is, of
course, negligible as we have learned from the CDF data. However, as this data are the
most precise available from D at this stage, we might test our argumentation about
the reliability of the LO calculations. It has been reported [D(96] that the data are
significantly consistent with NLO QCD calculations. In Fig. 2.8 we present the D0 data
and normalise our cross sections as before in the shown x range. We restrict ourselves
to a presentation of the QCD+Z’ results only, as the differences to pure QCD are not
striking in this mass regime (¢f. Fig. 2.6(a)). The numerical values of the calculation
with o = k(x)Er/2 lie almost within the error bars. Recall that this choice of 1 is in good
agreement with NLO according to [EKS92]. A statistical analysis yields x? = 12.39, and
so the LO calculation satisfactorily describes the experimental data, exactly as has been
claimed throughout this section. A picture of consistency emerges out of the comparison
to the experimental data. The dashed line shows the result for the calculation with
u = Er/2. The similarity in x? is an indicator of how reliably this scale is again working
in approximating NLO results for large scattering angles. For illustrative reasons we also
present the result for a completely different renormalisation scale. This shows that a less
dynamical scale like 4 = Mj; cannot describe the experimental results (the x? value is
also presented). The curve is nearly flat over the whole x range.

The analysis of the data obtained in the same run as the single inclusive jet data led
the CDF collaboration to publications of results on dijet production. [CDF96b]. Within
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the error bars the angular distributions agree with NLO predictions® of QCD in all dijet
invariant mass M;; regions. But again, the highest mass bin with statistical uncertainties
of less than 5% showed a mass of only Mj; ~ 500 GeV. And again, if the Z' is genuine,
then the effect of this vector boson should be within the uncertainty of the error bars
and thus no concluding remarks about whether to discard the Z' model can be made.
We shall remark on this consequence further below after the discussion of the Z' model
at the LHC.

2.2.5 The 7' at the LHC

The question we want to address in this section is how the Z’ will influence the measured
jet cross sections at the LHC. From our previous results we expect the influence to be
generally enhanced due to a higher centre-of-mass energy of \/s = 10-14 TeV. This allows
the observation of higher transverse energies Er and dijet masses M;;. On the other
hand, we expect background contributions like Drell-Yan processes [DY70], production
of mini-jets [MN87, RT96], diffraction, etc. to become larger such that the signal-to—
background ratio for the Z’' will be even more reduced. We constructed the Z' such
that it does not couple to leptons, and Drell-Yan processes via Z' exchange have to be
completely excluded. Another feature somehow obstructs the detectability of the Z' at
the LHC: at a pp collider and high centre-of-mass energies the main contributions to the
two—parton jet events come from subprocesses involving gluons, like gg — g9(qq) and
gq — gq. But the Z’ does not couple to gluons. And as antiquarks only appear as sea
quarks in the proton we expect the main contribution from the Z' at the LHC to come

from the t—channel exchange:

Again we want to perform all calculations in LO QCD. However, the new kinematical
constraints at the LHC have to be taken into account and therefore we first perform a
global NLO analysis of the single inclusive jet cross section to deduce the magnitude of
the NLO corrections. Using the programming package of Ref. [EKS92], we find for a jet
cone size R = \/An? + A¢? = 0.7, where ¢ is the azimuthal angle around the beam, the
normalisation factors A shown in Table 2.4. The NLO corrections are quite comparable
over the range 400 < Er < 4000 GeV for the achievable centre-of-mass energies NG
at the LHC. They differ only on the scale of a few per mille for Er > 2000 GeV. In
the following analysis for the LHC we shall use the global effective LO scale with an
average normalisation factor N = 0.78 and our standard renormalisation scale u = Ep/2
assuming a jet cone size of R = 0.7. This should be compared with the normalisation
factor N = 0.91 we found for the TEVATRON. NLO corrections, even for a small jet cone

5] am indebted to C. Wei from the CDF collaboration for providing me with preliminary results.



l?:hapter 2: Extensions to the Standard Model|

Er [GeV] s=10TeV /s=12TeV /s =14 TeV

400 0.75162 0.75162 0.75162
1200 0.77200 0.77200 0.77200
2000 0.78025 0.78023 0.78023
2400 0.78305 0.78301 0.78300
2800 0.78536 0.78529 0.78527
3200 0.78731 0.78722 0.78718
3600 0.78899 0.78890 0.78884
4000 0.79048 0.79036 0.79027

Table 2.4: The normalisation factor N := [dQU/dETdn]NLo/[dQJ/dETdn]Lo for different
E7 bins and typical LHC centre—of-mass energies. The jet cone size chosen was R = 0.7 for
n = 0 and the underlying renormalisation scale . = Er/2.

size, become more striking at higher centre-of-mass energies. But at least for the ratios
(QCD + 2')/QCD we do not expect evident differences from a pure NLO calculation, as
NLO corrections are expected to cancel.

In Fig. 2.9(a) we present the results for the single inclusive cross section at the LHC
for fixed 7 = 0. The inset shows the ratios Z'/QCD for two different centre-of-mass
energies as a function of Ep. We observe that for B ~ 1000 GeV the contribution from
the Z' matches the QCD one for both curves. The curves are then rising very steeply
but the typical x Ef behaviour we observed in the inset of Fig. 2.4 for the TEVATRON
is suppressed for Er 2 2500 GeV. To understand the underlying mechanism for this
observation we present in Figs. 2.9(b,c) the individual subprocesses ab — cd for the QCD
and the Z' calculation. For higher centre-of mass energies the gluons play the pivotal
role and dominate the matrix elements of Eq. (2.25).

At typical LHC energies the gg — gg contribution dominates with about 40% of all
other subprocess events. For still larger values of /s also the gluon-gluon fusion rate is
linearly growing whereas the number of subprocesses including quarks or antiquarks as
initial partons is diminished as shown in Fig. 2.9(b). We also observe the ratio (qq)/(qg) =
4/9 as predicted by perturbative QCD [BG76] in Fig. 2.9(b).

The Z' does not couple to gluons and therefore the Z' contribution is rising more
slowly for higher centre-of-mass energies as the gluons actually give the dominant con-
tributions. The corresponding subprocesses governing the Z’ contribution are shown in
Fig. 2.9(c). This explains two features observable in Fig. 2.9(a): first, the ratio Z']QCD
is becoming flatter for higher values of /s and second, the main high transverse jet
energy is carried by the gluons. The latter is a well known fact and was theoretically
dealt with in Ref. [Ant86]. The relative contributions of quarks and antiquarks to large
Er processes is small, which yields the observed smoothing in the ratios at larger Er.
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Figure 2.9: LO calculation of the single inclusive jet cross sections at the LHC for the two
centre—of—-mass energies 10 TeV and 14 TeV. The ratios Z'/QCD are shown in the inset of
(a). The contributions of the different subprocesses ab — cd for (b) LO QCD and (c) Z’,
normalised to the full LO QCD calculation, as a function of the centre—of-mass energy are
shown. The transverse jet energy was fixed to be Fr = 1500 GeV.

Note the absolute scales in Fig. 2.9(b,c). For /s = 10 TeV the ZE 40) subprocess exceeds
the corresponding QCD(,,) rate by a factor of five. Fig. 2.9(c) also demonstrates the
predominance of the Z' t—channel exchange compared to the s—channel exchange.

We also give predictions for the dijet angular distributions as we did for the TEVA-
TRON. Fig. 2.10(a) shows the results for a calculation with M;; = 1000 GeV and
M;; = 2000 GeV again for the two different centre-of-mass energies. Unlike the presen-
tations for the TEVATRON we now show the unnormalised distributions for our best—fit
parameters (2.28). Qualitatively we find the same results as for the TEVATRON: the Z'
boson most strongly influences the small y region (again we interpret the Z' acting as
an effective contact interaction [ELP89] in this regime, contracting its propagator to an
effective four—fermion point-like interaction) and this effect is again enhanced for higher
dijet masses. The corresponding ratios shown in Fig. 2.10(b) underline the conclusions
already drawn for the TEVATRON, but now on a much larger scale.
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Figure 2.10: The dijet angular distributions at the LHC for two different invariant dijet
masses. The unnormalised cross sections are shown in (a) for LO QCD and LO QCD+Z". In
(b) we show the corresponding ratios Z'/QCD again for the central fit parameters of the Z'

model.

Because we have so far presented our numerical results for our best-fit values (2.28)
only, we finally want to show the variations of the Z' impact due to upper and lower
bounds in accord with our analysis. If we fix £ = —1.0, as we found the central z value
to be, then we get upper and lower bounds on 1, from our x? analysis if we restrict our
fit-acceptance to the 68.3% confidence ellipse shown in Fig. 2.5(c). For z = —1.0 we read
off y, € [2.4,3.2]. Fig. 2.11(a) shows the single inclusive jet ratios for the three different
values of y, = 2.4,2.8 and 3.2 being the lower bound, central value and upper bound
respectively. The discrepancy between the different choices of y,, becomes very striking
for higher Et values. The total decay width varies from I'z: = 508.0 GeV (yu = 2.4) up to
T, = 801.4 GeV (y, = 3.2), which increases the phase space of the Z' especially at high
transverse energies. So, large Ep measurements at the LHC might be an excellent probe
to more precisely fix the value of y,, as the cross sections are very strongly dependent
on 1, in this energy range and so a clear g, correspondence is achievable. The difference
to the best—fit of Altarelli et al. [Alt96] (y,, = 2.2) is also shown. Note the difference of
only 7% to our lower bound (y, = 2.4) for Ep = 3000 GeV.
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Fig. 2.11(b) finally shows the ratios Z'/QCD for the dijet angular distributions with
the same values for y, as in Fig. 2.11(a). The Z' impact on the small x region is again
significant. The extreme values of v, differ by a factor of roughly two in the complete x
range shown. Again, future measurements of the dijet angular distributions at the LHC
might further determine y, more exactly according to the large dependence of the ratios
to the choice of this coupling parameter.
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Figure 2.11: The ratios Z'/QCD for the (a) single inclusive jet cross sections (1 = 0) and (b)
dijet angular distributions (M;; = 1500 GeV) at the LHC. We keep z,y4,¢ and My fixed
to the values of our best—fit and vary 1, according to the 68.3% confidence ellipse shown in
Fig. 2.5(c). We also present the calculations for the best-fit value y, = 2.2 of Altarelli et

al. [AI£96].

2.2.6 Status of the Z' and conclusions

We gave predictions for the Z' effect on future precision measurements at the LHC. We
showed the corresponding physical parameter ranges for which the influence of the A
is expected to be most striking and besides qualitative considerations we also provided
quantitative predictions for single inclusive jet cross sections and angular dijet distribu-
tions at the LHC. We presented numerical results for different coupling parameters y,
that were allowed on the 68.3% (=10) confidence level from our previous CDF data fit.
This will help to further determine the free parameters of the Z’' model as soon as first
LHC data are available. '

As a final critical remark we want to point out that despite the very precise and
reliable experiments there might still be no compelling reason to look for new physics.
However, future data are necessary, and the LHC will play a pivotal role as a high-energy
laboratory and new theoretical models and predictions, rising from such fundamental
contradictions to the Standard Model, will become important.

We did not try to answer the question of where the Z', if it is indeed genuine, originates
from. For an overview on several motivations for the existence of additional vector bosons
and a list of the most studied models we refer to [HR89]. In addition we should mention
a model for the neutral boson proposed in [FH90, FHR90, FIIR91], where it originates



Chapter 2: Extensions to the Standard Model

from the breaking of an extended colour group, such as SU(4) or SU(5) .. In this model
the vector boson is very strongly coupled to qg pairs and weakly coupled to leptons. As
reported by T.G. Rizzo [Riz93] its mass should be larger than 600 GeV. In view of the
proposed features this model could be a promising Z' candidate.

The fate of the leptophobic 7’

The introduction of a leptophobic Z’ into high-energy physics by [Alt96, Chi96] was
motivated by

(1) a too small experimental value for R, in the LEP (1995) measurement (—2.40 from
the SM),

(2) a too large experimental value for R, in the LEP (1995) measurement (+3.60 from
the SM),

(3) a large discrepancy between the measured and expected high—-FEp jet rate by the
CDF collaboration.

As there was no deviation from the leptonic branching ratio Ry = Thadr/Te reported,®
the assumption that the Z’ has no (or very weak) couplings to the SM leptons was natural.
The 1995 measurement also showed a remarkable numerical coincidence. Taking the two
up—-type quarks u and ¢ and the three down-type quarks d, s and b one finds

26R, + 30R, = —0.0047 £+ 0.0134,

i.e. a number which is zero within the 1o region. Therefore the authors of [Alt96, Chi96]
naturally assumed a family-independent coupling of the Z " to up— and down—type quarks.
Using the 1997 data still yields 20R, + 36 Ry = 0.0047 £ 0.0057 ~ 0 at the 1o level. But
there seems no need to invoke new physics from the LEP measurements, the SM proved
solid.

As this tendency seemed foreseeable when we applied the leptophobic Z' model, we
only concentrated on fitting the CDF jet-excess data. Again a leptophobic Z’ seemed
sufficient concerning the underlying processes at the TEVATRON. The data available on
dijet cross sections from the TEVATRON are in agreement with NLO QCD calculations.
And we showed that a Z’ cannot be outruled in the measured Mj; intervals. Data on
higher dijet masses have to be available to “feel” the presence of the Z' within the still
large statistical errors. We conclude:

The CDF data on high-Er jets are the only possible
physical motivation for a leptophobic Z' at the moment,

even though attempts to reduce the large-Er events by tuning the uncertainty in the

gluon density [Lai97] proved successful.
Besides our studies more predictions for the TEVATRON in the leptophobic Z' frame-

work have been done

6The 1995 LEP data yielded R, = 20.788 + 0.032 [LEP95] and the updated 1997 show R, = 20.775 £
0.027 [LEP97] compared to the SM value.of R, = 20.754 £ 0.020.
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e the enhancement of the ¢ cross section [GS96],
e the associated production of a light Z’ and W, Z, v in bb events [BCLY6],
e the associated production of W and Z with neutral and charged Higgs [GG96],

e the decay of the Z' into exotic fermions Z' — ff’ [Ros96].

The leptophobic Z’ model is not anomaly free, as this would require the full set of
fermions and the inclusion of a Higgs sector to provide anomaly cancellations. But this
need should be fulfilled if there is more experimental evidence for a leptophobic Z'.

[
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Chapter 3

Soft v and gluon emission —
antenna patterns

“Science 1s always doomed:
she never solves a problem
without creating another ten.”

(G.B. Shaw)

In the following chapter we investigate (tree-level) amplitudes with additional soft
photons or soft gluons in the final state. We show that the matrix element with additional
soft radiation can be written as M! « e-J M?, where MO defines the lowest order matrix
element without additional radiation and J denotes the soft current. We thus present
general Feynman rules for soft emission off spin-1 /2 particles. This will be the scope of
Section 3.1.

These studies finally lead to a discussion of colour coherence phenomena in Section 3.2,
which plays a pivotal role for processes with soft gluon radiation. We focus on interjet
coherence and review the well-known “drag” or “string” effect. A presentation of some
experimental results on colour coherence rounds this section up.

In Section 3.3 we use the theoretical framework of the previous sections to present
hadronic radiation patterns for Higgs production at the LHC. We give predictions for
both Higgs signal and QCD processes and discuss how radiation patterns might be useful
to pin down the Higgs in a given process.

Section 3.4 investigates soft photon and gluon radiation at HERA. In this study we
show how further insight can be gained in the reported high-Q? measurements from the
H1 and ZEUS collaboration. We discuss in particular the case of an s—channel resonance
(“leptoquark”) and discuss the difference to standard t—channel v*, Z exchange.

A short summary of our results and colour coherence is provided in Section 3.5.

3.1 Soft photon and gluon amplitudes

In this section we provide the universal formulae we shall use throughout this chapter.
We present general expressions for emission of an additional very—low-energy photon and
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gluon in a process

L,2,...,0 = (+1L14+2,....n)+7,
L2,...,0 - (+L,i+2,....,n)+g.

We allow single photon and gluon emission from all internal and external legs (one photon
or gluon in final state). For soft multi-gluon and multi~photon emission we refer to
Appendix B at the end of this chapter.

By soft we mean that the energy w.,/, and momentum |f£7 /gl of the emitted particles
1s much less than the energies E; characteristic of the processes in question, in particular
we shall call .

K
wg_g 7| B (3.1)
’ mg + [By?

the soft limit. Soft photons (gluons) play a pivotal role in the study of radiative correc-
tions. Often these corrections are so large that they must be summed to all orders in
perturbation theory. But they are so simple that their summation is no hard challenge
for the ambitious theorist and in the end all infrared divergencies will cancel as was first
shown by F. Bloch and A. Nordsieck [BN37] (see also [FSY61] for a Feynman approach).

3.1.1 Soft photons

If we attach the soft photon line with outgoing momentum % and polarisation index g to
an outgoing charged-particle line! p; that leaves some connected Feynman diagram for
the process, then we include besides an additional «y f f—vertex a charged propagator with

four momentum p; + k. For a spinv% fermion we have to add the additional contribution
(M ) (vertex Vi = —ieepy” and propagator 7% in the Feynman—"t Hooft
gauge). The amplitude for single soft-photon emission (M])* = (M],)* x M, then

reads

¢
" pitk Pi
it

. . P E+mMmy .
a(p;) [—ieepy"] [Z(;s——l-;k)i:im?} x M, e eef p—fLE a(p;) x M;, . (3.2)

For the transition to the soft limit we used the facts that

p)Y (i +ma) = 2a(ps)p —@(pi) (b — ma)y*
a(p)(pi—ms) = 0 Dirac equation
and A = 2gHY Vgl

'Here and in the following we shall address spin—% particles only, but what we derive also holds for
emission off spin—1 and higher spin particles.
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The prefactor pf'/(p; - k) is called the eikonal factor. In Appendix A.l we present the
general rules for the emission of an additional soft photon from external and internal legs.
Note that M, denotes the part of the matrix amplitude that has no additional photon
attached to. The matrix element (MZGX)H has to be multiplied with the polarisation
vector €#()\), where i denotes the polarisation index and A defines the helicity. So finally
we can write

n

M =ee; et (A) x MO, (3.3)

1 p ]\, ,LL
for the emission of a soft photon off an external leg of a final state particle. It is easy
to show that there is a relative change in sign for the eikonal factor if the emission takes

place off an incoming leg, and a relative sign for emission off antiparticles.
More subtle are internal legs. Imagine again the soft emission off a fermion as shown

below.2
nl
k
Oraan©
R d'i’ m . 0 - é k'f' m c %
M) = ngim(—weﬂ’ )ng—_—*/\’hn €, (A)
= deef M (g + m)v" (g — § + m)Mi e, (\)D(9)D(g — k)
with 1
= - 34
Dla) q* —m? +ie (34)
In the soft limit this expression reads
M) = ieer M, L Meen () (Dlg — ) - Dla)} (3.5)
where we made use of the fact that
1
D(g)D(g — k) = %k {D(g—k) —D(q)} - (3.6)

In general one can show that the complete matrix element can be written as

MYL,2, s (1,042, m)+7) = S MI+S M)
= q

{Zer]“* }MO (3.7)

Il

where MY denotes the matrix element of the process without additional photon emission.
All extra propagators and eikonal factors are included in the definition of the currents JI.
The coefficients e; denote the couplings of the soft photon to each internal or external
line 4 in units of the elementary charge e.

*Note that only on-shell particles contribute to (enhance) the soft radiation pattern.
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As an example we study the process e™(1)e*(2) — e~ (3)e™ (4) +v(k). As this process
is mediated by an internal v* or Z there is only emission from the external legs. With
the rules given in Appendix A.1 we can immediately write down the weighted current

4 .
Segte Ll P B (3.8)
= ' Dbk pk p3-k psik '

We define the antenna pattern as

FT=— Z eiejJ;LJ;L,j . (39)
i,
The minus sign follows from the fact that for the four-vector product of the photon
polarisation vectors we have €2 = —1. Assuming massless fermions we finally arrive at
1
5f2_6+7 = [12] + [34] + [13] + [24] — [14] — [23], (3.10)
with .
i) = —2L P ‘ (3.11)

(pi - k)(pj - k)
For the production of two massless quarks e™(1)e™(2) — ¢(3)q(4) + (k) we have as
underlying current

4 I H Iz Iz
1 D 12 p3 Py
e; J!' = — +e —e ; 3.12
Z_lel pi-k pok psk py-k’ (3.12)
and thus )
5357(77 = [12] + €2[34] — e, {[13] + [24] — [14] — [23]} . (3.13)

We want to mention another interesting feature concerning the emission of an addi-
tional soft photon. From Eq. (3.7) we see

(M)* o > e JEM° (3.14)
i
and we found that o p
p.
et = nei——, (3.15)
5 o Pk
with n; = —1 for emission from an incoming and n; = +1 for emission off an outgoing

particle and e; being the charge of the ith particle. Care has to be taken for internal
lines as will be explained in Appendix A.1. We shall not discuss emission from internal
lines for the moment. To calculate the amplitude for the emission of a photon of definite
helicity A, we must contract above expression with the corresponding photon polarisation
vector eu(E, +). Under Lorentz transformation Eu(E= +) is transformed into Afe”(k, +)
plus a term proportional to k*. In order for this last term not to spoil Lorentz invariance
of (M7)* it is important that k, (M?)* =0, and thus from Eq. (3.15)

ko (M) = (im%) MO (3.16)

i=1
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follows charge conservation. For massless particles with spin 1 (photons, gluons), Lorentz
invariance requires the conservation of whatever coupling constant like electric charge
governs the interaction of these particles at low energies.

In case there would be the emission of a spin-2 particle, like a graviton, then we deal
with a tensor of rank 2 instead of a simple four vector for the current

. Db; p
D cgrav T" ngz ? p (3.17)
j i=1 Di
and thus "
> migp! =0 (3.18)
=1

with g; being the coupling of the graviton to particle 7. So Z g:p; plays the role of the

“charge” and must be conserved. Only the total foul-momentum can be conserved which
means that all g; have to be the same. These couplings may be identified with /87 Gy,
with Gy being Newton’s gravitation constant. This goes a long way towards showing
that Einstein’s principle of equivalence is a necessary consequence of Lorentz invariance
as applied to massless particles of spin 2.

In the soft photon approximation we may

/—\ parametrise the photon by its energy w,, the
Oy polar angle 6., and the azimuthal angle ¢,. As
>(p/ y wy/E; <« 1 we may simply multiply the phase
S X space wydw,dQz(0,,¢,) to the exact phase

space of the residual contribution (without ad-
ditional photon).

The differential cross section with an additional photon in the final state thus reads
[Dok91, Dok93]

1 d% Qo
= L FY 3.19
ap dw,deﬁ 47r2w7 ’ ( )

with the antenna pattern F7 defined in Eq. (3.9) and normalised to the tree level cross
section op without additional photon.

3.1.2 Soft gluons

Emission of soft gluons off fermions can be formulated in complete analogy to soft—-photon
emission by introducing the strong coupling constant gs and the SU(3) colour matrix 7.
Thus we derive for emission of a gluon off an incoming quark line
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QM,

O

with the gluon vertex V;r = —igs T +*

,: pi— k‘f‘mz
(pi — k)% —

5 | [=igs T2, ulps) x MS, 528 g1 _% u(p;) x MS, . (3.20)

A summary of rules is given in Appendix A.2. In analogy to Eq. (3.7) we find

n
MI(L2,.. 0> I+ L1+2,...,n)+g) =gs > T e (AIMC, (3.21)
i=1
with the current
- 3.22
J = .
(again 7; = —1 for incoming and 7; = +1 for outgoing external lines). The antenna
pattern for emission off external fermions reads
=Y Cii (3.23)
iij
where again we note €2 = —1. The colour factors are denoted by Cij.

As an example we calculate the gluon antenna pattern for the production of mas-
sive quarks e"et — QQ + g(k). It is straightforward to write down the current (cf.

Appendix A.2)
Q_. (3.24)

and thus

2(QQ)]. (3.25)

CQQ = Za:TlgllTltllcg = CF5k1k2
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and thus
fé@ = CF{Q[QQ] —mg < ! 5 + ! 5] ¢ (3.26)
_ (pq-k)? * (pg k)
The differential cross section for above process reads [Jik91, KOS92)
1 d20 Qs _ m2 1 1
— = —w, 20 -9
o0 dwgdQy  4r2? “F {[QQ] 2 \ o w2 + o 77 [ (3.27)

Important are now also soft-gluon emissions off gluons. We show an explicit example
below, soft-gluon radiation off an incoming boson line.

& o:p

Mmc e,

With the directions for the momenta as indicated above, we may readily write down
the triple gluon vertex for this graph

Vagg = Zlgssfabc{(k — 29:)P gay + (pi — 2k)%gpy + (k +pz‘)7gaﬁ} ; (3.28)
which reads in the soft limit
Voso' = 19sf “bc{zﬂgaﬁ + pPggy — 29! .(]a'y} : (3.29)
Additionally we introduce a propagator for gluon ¢ in the Feynman—"t Hooft gauge
I, = iﬁ Ly zgw—%lz—k. (3.30)
Collecting all results for additional emission of a soft gluon yields
*ﬂvgs;;tnsoft _ _gsfabc{piteae*a plelet — 2plﬁ€*ﬁ€u} _2; -

Two comments on above equation:
e we note that pfe® = 0 as p§ is the four momentum of the incoming gluon,

e the term including p!’ vanishes as well if contracted with the vertex of the process.

Therefore we find in complete analogy to Eq. (3.3)

M;] _ gsfabc _Z_)ZBLk E*ﬂ(/\l)éﬂ(/\g) % (M?)u , (3.31)

for above soft—gluon correction, i.e. we find the same eikonal factor by studying soft-
gluon emission off bosons as we found for emission off quark lines. The antenna pattern,
however, obtains a different colour factor of type
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b

a4 az bZ falbcfag'bc = chg;
.C

Again we refer to Appendix (A.2) for a summary of the rules for soft-gluon emission
off gluon lines. Now we are in the position to write down the antenna pattern for the
important Higgs signal process at the LHC with additional soft gluons in the final state,
assuming massless particles.

@
P
(7))
L

9(1)g(2) = H = q(3)q(4) + g(k) -

There is only colour flow in-between the incoming particles (gg antenna) and in-between
the outgoing particles (¢¢ antenna). The colour neutral Higgs boson in the s—channel
of above process obstructs colour flow between initial and final state. Thus the only
contributing antennae are [gg] = [12] and [¢gq] = [34]. With the appropriate colour
factors we readily obtain for massless quarks

) ,
§f9(gg — H — qd + g) = N.[12] + Cg[34]. (3.32)

We shall study this process in detail in Section 3.3.
Again we can show that the formalism also holds for soft—gluon emission off internal

lines, with an appropriate redefinition of the colour—charged currents.

3.2 Colour coherence and partonometry

During recent years many discussions have been provoked by the theoretical prediction
of coherent colour emission and its exerimental study. Coherence effects are basic to any
gauge theory. Two types of coherence phenomena occur in QCD jet dynamics

. Iintrajet coherencel ,

° ﬁnterjet coherence’ .

For a recent review of these topics see Ref. [KO97].



Chapter 3: Soft v and gluon emission — antenna patternsl

3.2.1 Intrajet coherence

This effect describes the character of a jet (hardness, opening angle) and finally closes the
gap between the parton level interaction and the observed hadrons. Monte Carlo methods
basically include intrajet coherence in an appropriate jet algorithm. A manifestation of
intrajet phenomena is the angular ordering, i.e. the shrinkage of the emission angle in a
parton cascade. Marchesini and Webber were the first to include this fact into a Monte
Carlo program [MW84, Web84].

A simple example [Dok91] shall clarify the phenomenon. Imagine a relativistic ete™
pair produced in some reaction and the emission of an additional photon off either et or

[

From the uncertainty relation we can estimate the “lifetime” of the e™ until it radiates
off the photon

L B 1 .

Atemission = ~ ~ . 3.33
FSSION T (pe + k)2 T 2B,wy 1 — cos O,y w02, (3.33)

During this time interval the ete™ system gained a transverse separation of

- 333 1 6
pPL ¢ = OeeAtemission — <L (3.34)
wylley Oey
But there is also an interpretation for w,f.,. As

w’yee'y = lklee’y = |kJ_| > (335)

we may define |k | = (X])~! as the inverse of the transversal wavelength of the emitted
photon. If the separation p‘fe_ of the two emitters is smaller than A7, then the photon
is unable to resolve both emitters individually and thus probes the total electric charge of
the eTe™ system, which is zero. Thus for p@fe_ < )\1 there is a suppression of additional
photon emission. This effect was first studied by A.E. Chudakov [Chu55]. Thus in order
to have additional photon emission one needs

P s g S, (3.36)

This simple exercise should give a basic idea how to prove angular ordering from first

principles. For a further discussion of intrajet phenomena we refer to [Dok91]. A re-
cent theoretical study of angular ordering in multiple hadroproduction can be found in

[KKT96].
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3.2.2 Interjet coherence

Throughout this thesis, however, we shall focus on interjet coherence, i.e. colour coher-
ence between particle jets. We developed the theoretical framework using the technique
of Feynman diagrams in the soft photon (gluon) approximation in Section 3.1. Here
we shall discuss the physical interpretation and background. To follow the classical line
[Azi85b] we shall study the processes

(a) ete™ — gy
(b) ete™ — qqg

with additional soft gluon radiation.
In the Feynman-'t Hooft gauge, we used throughout, the gluon propagator reads

dyy
k% + i€’
Z en(N)es(A) = =g - (3.38)
A

(3.37)

Hg = Z6ab

According to Eqs. (3.11,3.22,3.23) we can write the antenna pattern for additional soft
gluon emission as

p’{
FI = ZCUW?J €y ]k

= _Zcz]"?m] pz_ p]A Zczj"?m][z]] (3.39)
k) (p pj - k) i

where C;; denote the colour factors.
As next step we want to discuss rules for the construction of the antenna pattern F9

in order to gain further insight into the whole mechanism of soft gluon emission. If the
soft gluon connects two harder partons ¢ and j then we might define an interference term

9 _ o Pi'Pi 3.40
T = = G k) oy B (340

SI=18 = " (3.41)

We note that 7712 = 1. Thus we may write the antenna pattern as

FI=3 CiIfi+ ) CiSY, (3.42)

a sum of interference and self-energy terms.
Schematically the antenna pattern for the process ete™ — QQ + g(k) where Q rep-
resents massive quarks can be written as the sum of the four contributions
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Q Q
g

Q Q

Q Q
g g

Q Q

To calculate the colour factors we used the relation
rert = L gy 4 Ly e 3f T° (3.43)
2 Nc 2 abc 9 abc . .

Collecting our results immediately yields the result

. 1 1
Foo = CF{z[QQ] — mg, <(pQ e o k_)2> } (3.44)

we derived before (c¢f. (3.26)). For our process (a) it is straightforward to write down
the corresponding antenna pattern. The additional «y in the final state does not influence
the colour flow and thus we obtain for massless quarks

Fary = 2CF[qq] . (3.45)
In the Feynman—"t Hooft gauge the self-energy term becomes §9 = 0 for massless
quarks according to Eq. (3.41). The formalism for soft gluons should be gauge inde-

pendent. To see this we shall formulate our antenna pattern in the most general planar
gauge, i.e.
~ k}#Cy + cﬂ«k"

Qs = =g + 2L (3.46)

with an arbitrary gauge vector ¢*. In the planar gauge the interference term now reads

79 — g, PRI Ps kb P (3.47)

9 79 = S (3.48)

Thus in the planar gauge the self-energy term receives a non-vanishing contribution even
for massless particles. One can easily show that we obtain for the antenna pattern in the

planar gauge B

Faay = CF {gg + 87+ 1 +fgq} = Fagr» (3.49)

l.e. exactly the same result as before due to cancellation of gauge dependent terms.



Chapter 3: Soft v and gluon emission — antenna patternsl

We shall now present the antenna pattern for process (b), i.e. e*e™ — ¢gG +g with ¢
being soft and G' denoting a hard final state gluon. For the sake of simplicity we consider
massless partons only. In this case we immediately see from Eq. (3.41) that

8§ =580 =8%=0

in the Feynman-'t Hooft gauge. Therefore the antenna pattern for above process reduces
to
9 _
Foe= . CyIf. (3.50)
4,7€{9.9,G}
We can schematically present the topological different graphs contributing to Tgq. Igg
and Z,q.

q g
000000000000
g
q
q
% g
é, IG'ECA

The colour factors indicate the soft gluon contribution only. Every graph has to be
multiplied with Cf to obtain the full colour factors for both gluons. These are of course
not all graphs that contribute, but they are the (colour) topological different ones. Using
symmetry relations like Ifj = I;’i and noting that Ca = N we finally arrive at

P = NelGa)+ NGal +2 (Ce— ) laa
~ . {(Gd+(6a) - yzlaal | (3.51)

Again we used the definition of If’j as given in Eq. (3.40). Let us now study the difference
of the two antenna patterns fgqc (3.51) and Fj, (3.45), i.e. where the hard gluon G is
replaced by a hard .

To do so, let us assume a completely symmetric configuration for the hard particles

such that
b4 = Ogi = Og. = 120°, (3.52)
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with k = G,vy. This “Mercedes” type configuration [Dok91] is sketched below.

Assuming equal energies for all three
hard particles, i.e. Eg = E; = E, =
—‘é—g, all antenna patterns of Egs. (3.45,
3.51) can be written as

i 1 — cos b;;
wz (1 = cos ;) (1 — cos b4)

(B)
_1_ 1 — cos 0;5
wg (1 - Zi)(l — zj) ’

(3.53)

with the angles as indicated in the fi-
gure and z; = cosf;,. Thus the two

antenna patterns can be written as

1
woFam = 3Ck (1—2)(1 - 2)’ 59
e _ 3 ! 1
o7 qac 2N°{ (1—2g)(1 = z) " (1=2z¢)(1 - 2zg)
1 } (3.55)
N2 = 2)(I—29) ] |

The additional factor 3/2 results from assumption (3.52) and 1 — cos ( %ﬂ') =3/2.
In Fig. 3.1 we show the flow (antenna) pattern of the soft gluon ¢ inside the plane of

our symmetric configuration.
It is straightforward to present analytic values for the dimensionless ratio

g_ (9 )
G J gqG\"9
R7 (99) = —f,?m(%) (3.56)

inside the scattering plane. We shall focus on the three directions of the soft gluon
indicated as (A), (B) and (C), i.e. centered between the outgoing particle directions

(A): centre of [G¢] antenna, 6, = 60°,
(B): centre of [qq] antenna, 6, = 180°,
(C): centre of [Gq] antenna, 6, = 300°.

After some algebra one finds

o 5N2 —1
(A) : RS (6, = 60°) Ng_ T =55, (3.57)
NZ -2
B) : ¢, = 180° — "~ _~0. .
(B) RS (6, = 180°) SN2~ 1) 0.44, (3.58)
o 5N2 -1
(C): RSB, = 300°) N;_l =55. (3.59)

C
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Figure 3.1: Polar plot of the flow patterns F7, (3.45) (dash-dotted line) and F7. (3.51)
(dotted line) inside the scattering plane for a soft gluon energy of wy = 5 GeV.

It is easy to understand that the flow patterns of the soft gluon are symmetric to the
axis defined by the hard G,y in this symmetric configuration. The ¢ + ¢ symmetry is
due to the ‘blindness’ of the soft gluon to discern between quark and antiquark.

We observe that replacing v by a hard gluon G changes the flow pattern of the soft
gluon quite essentially because the antenna element G’ now participates in the emission as
well. However, contrary to naive intuition, this change does not only lead to the appear-
ance of an additional particle flow in the G direction (due to the collinear singularity)
but also changes the flow pattern opposite to the G direction, i.e. region (B). Fig. 3.1
illustrates that the particle flow in this direction appears to be considerably lower than
in the photon case. The additional G reduces the flow to about 44% of the ggy flow in
this direction (3.58).

We note that Eqs. (3.45, 3.51) provide not only the planar picture, but the global
three-dimensional pattern of particle flows. It is worth noting that the destructive inter-
ference proves to be strong enough to dump the particle flow in the direction opposite
to G to even smaller values than that in the most kinematically unfavourable direction,
which is transverse to the event plane (¢, = 90°). In the transverse direction we find

Fiol@g=90°) N +20k

Fric(0y = 180°, ¢ = 0°) — 2(4CF — Nc)

This is an impressive example of ‘particle drag’ [Azi85a, Azi85b| by the hard gluon jet G
in the ¢g sector inside the scattering plane. For the photon case one finds

FI =90° 1

el ) =, (3.61)

Fazy(6g = 180°, ¢y = 0°) 4

~1.2. (3.60)
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How to interpret the drag effect?

In the structure of }“5(70 of Eq. (3.51) we see that the [¢q] antenna is strongly colour
suppressed (factor 1/NZ2) and contributes with a relative minus sign. The remaining two
antennae [¢G] and [§G] are independent and can be interpreted as boosted from their
respective rest frames into the overall ¢gG c.m.s. frame [Azi85a, Azi85b]. The hard gluon
can thus be treated as a quark-antiquark pair in the large-N,. approximation.

q q
Ne—o0
——— e
q
., Y660066600™
G q
q q

In this approximation each external quark line is uniquely connected to an antiquark
line of the same colour, forming what is called a colourless [¢g] antenna. In the general
case, when calculating the resulting soft radiation pattern, one can only deal with a set
of such colour-connected g pairs because the interference between gluons emitted from
non-colour—connected lines proves to by suppressed by powers of 1/N2 [Dok91].

The depletion of radiation in the ggq sector due to the hard gluon G in the oppo-
site direction is a direct consequence of Lorentz boosts. This explanation was originally
employed to explain the Lund string model [AGS80, AGIS83], formulated by B. An-
derson, G. Gustafson and T. Sjostrand. In the string model particles are created from
the breakup of a colour flux—tube, stretching from the quark to the gluon and from the
gluon to the antiquark. There is no string piece spanned directly between the quark and
antiquark. Therefore no particles are produced between ¢ and g, except by some minor
'leakage’ from the ¢G and ¢gG sectors.

Therefore:

The depletion is due to the colour-suppressed [¢G] antenna in Eq. (3.51) as was pointed
out by Yu.L. Dokshitzer, V.A. Khoze and S.I. Troyan . And this interpretation bases on a
Lorentz boosted hard gluon which behaves like a ¢¢ pair in the large-N. approximation.
So, ¢ and ¢ are no longer colour connected, thus soft gluon emission is suppressed in
this sector. The hard gluon ‘drags’ the colour flow out of the g¢ valley. This drag effect
explains the Lund string.

or in other words: the Lund string scenario reproduces QCD particle flows in the
large—N, limit.

The string effect is a non—-perturbative, the drag effect (interjet coherence) a purely
perturbative phenomenon, but both models respect the right colour flow topology.

Local Parton Hadron Duality (LPHD)

Describing the colour flow correctly in a given process directly leads to the description
of hadronisation. Important is the link between the angular distribution of the produced
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hadrons with respect to the angular distribution of the (soft) partonic flow pattern. The
Lund string has been, e.g., implemented into the Monte Carlo programs JETSET, PYTHIA
and LEPTO.

The LPHD [Azi85a] states that the angular distribution of soft gluon radiation equals
the angular distribution of soft hadrons.

Experimental test of colour coherence

The first experimental studies of the interjet colour coherence in three jet events were
successfully performed about ten years ago at PEP/PETRA energies [TPC86, JADESS].
More recently colour coherence has been successfully studied at LEP1 [DEL96, L3.95,
OPAL95]. They compared the colour flow in the ¢¢ valley in three jet events ¢gy and
qqG which we studied as an ideal test case.
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Figure 3.2: Distribution of the normalised energy flow (a) and particle flow (b) in the labo-
ratory frame. (c) and (d) are the corresponding distributions in the ¢g c.m.s. frame, after
the photon has been removed. The arrows show the angular region of the gg valley where
Eq. (3.58) can be verified. Taken from Ref. (3.5).

In Fig 3.2 we present the results of one of the studies [L.3.95]. The quark is located
at angle 0° in this figure, the antiquark at ~ 170°. From Figs. 3.2(a,b) the depletion of
radiation in the ¢ sector, i.e. 0°-170° is quite obvious. All LEP collaborations verify
an approximate 40% depletion of radiation in ¢gG events compared to g¢vy events in this
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region. :
Same results are reported from the DELPHI [DEL96] and OPAL [OPAL95] collab-
orations.

But also at hadron-hadron colliders colour coherence has been studied in high-p,
processes. First results from the CDF [CDF94] and the D@ collaboration [D@.95] look
rather promising. The studies in the pp — 3jet + X events of the spatial correlations
between soft and leading jets in multi—jet events have clearly demonstrated the presence
of initial-to-final state interference effects in pp interactions. The D@ data indicate
[D0.95], that the observed coherence phenomena are in agreement with the tree-level
parton level calculations adopted throughout this chapter.

Recently the first data on W+jet production from D@ have been presented [D.97].
The hadronic antenna patterns for this process are entirely analogous to that in ete™ —
qdG. The colour coherence effects are clearly seen in this process. Theoretical calculations
were performed in Refs. [KS97b, APS98| using the formalism of this chapter.

At HERA a comparative study of jet properties produced in different reactions could
be a powerful proof for colour coherence. At the time when this thesis was written, there
was no such direct search for colour coherence from HERA available.

3.3 Hadronic radiation patterns for Higgs production at
hadron colliders

As we discussed in Section 3.2 the distribution of soft hadrons or jets accompanying ener-
getic final-state particles in hard scattering processes is governed by the underlying colour
dynamics at short distances. The soft hadrons paint the colour portrait of these dynam-
ics, and can therefore act as a ‘partonometer’ (c¢f. [DKT87, Dok91, DKS92, MW90]).
Since signal and background processes at hadron colliders can have very different colour
structures (compare for example the s—channel colour singlet process ¢ — Z' = ¢'q'
with the colour octet process ¢§ — ¢* — ¢'7’), the distribution of accompanying soft
hadronic radiation in the events can provide a useful additional diagnostic tool for iden-
tifying new physics processes. As we discussed in Section 3.2 because of the property of
Local Parton Hadron Duality the distribution of soft hadrons can be well described by
the amplitudes for producing a single additional soft gluon. These take the form of a
soft antenna pattern distribution multiplying the leading-order hard scattering matrix
element.

One of the most important physics goals of the CERN LHC pp collider is the discovery
of the Higgs boson [LHCY0]. Many scenarios, corresponding to different production and
decay channels, have been investigated, see for example the studies reported by the
ATLAS [ATLAS94] and CMS [CMS94] groups. While final states containing leptons and
photons are relatively background free, they generally have very small branching ratios.
In contrast, the more probable decay channels involving (heavy) quarks have large QCD
backgrounds. The question naturally arises whether hadronic radiation patterns could
help distinguish such signals from backgrounds. We have in mind the following type
of scenario. Suppose an invariant mass peak is observed in a sample of (tagged) bb
events. If these correspond to Higgs production, then the distribution of accompanying
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soft radiation in the event® will look very different from that expected in background
QCD production of bb pairs. One could imagine, for example, comparing the radiation
patterns ‘on and off resonance’.

In this study we will consider the hadronic radiation patterns for two of the standard
Higgs processes at LHC: direct production gg — H — bb and associated production
q7 — WH — fusbb. Although the non-zero b-quark mass is largely irrelevant when
computing the radiation patterns, we will also consider the case when the final-state
quark mass is large, so that our analysis can also be applied for example to H — t¢. This
Higgs analysis is a natural extension of the theoretical studies of Ref. [EKS97], where the
radiation patterns for Z’ in pp collisions were calculated and shown to be different from
those of the QCD backgrounds.

The analysis presented here should be regarded as a ‘first look’ at the possibilities
offered by hadronic radiation patterns in searching for the Higgs. Of course ultimately
there is no substitute for a detailed Monte Carlo study including detector effects. However
the results presented here indicate that the effects can be potentially large, and therefore
that more detailed studies are definitely worthwhile.

The study is organised as follows. In the following section we consider direct pro-
duction and ¢ decay of the Higgs boson, first for massless and then for massive quarks.
Then we extend the analysis to associated production and finally present our conclusions.

3.3.1 Hadronic radiation patterns for signal and background processes

We begin by considering the hadronic radiation patterns for the signal g(1)g(2) = H —
q(3)3(4) + g(k) and background ¢(1)g(2) — ¢(3)G(4) + g(k) production of a massless
gq pair. The impact of non-zero quark masses will be considered later. The radiation
pattern is defined as the ratio of the 2 — 3 and 2 — 2 matrix elements using the soft-
gluon approximation for the former. The dependence on the soft gluon momentum &
then enters via the eikonal factors (‘antennae’) defined in Eq. (3.11).

For the QCD background process we have

élﬂgl%gy —qi+g)= %(tQ + ) [(1 B ]T%) t%l - 225] {]—c\%[lzl * [34]}

=l [(1-2) & - 2] {Bepoion)

3
4 %(# —u?) [% - ;2-] {g—;([m] 23] - [13] - [24])} , (3.62)

with
[i7; k1] = 2[ig] + 2[kl] — [ik] — []] — k] — [51]. (3.63)

This is to be normalised by the matrix element for the leading—order scattering process

99 — 4q:

1 — _ 1 11 1 2
q—4|le2(gg = 47) = 5(1* +v*) [-1\75 - 5;3—2] : (3.64)
Js . C
The antenna pattern is then
— B
Foop = g5 [Ms[*(99 — 93 +9) (365)

|M2|?(99 — qd)

3We take this to mean the angular distribution of hadrons or ‘minijets’ with energies of at most a few
GeV, well separated from the beam and final-state energetic jet directions.
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Note that because of the non-trivial colour structure of the leading—order Feynman dia-
grams, see Figs. 3.3(a,b), there is no simple factorisation of the eikonal factors. This is
in contrast to the signal (Higgs) process, for which

- 12,  H _
Fo = g2 Msl'(99 = 4 +9)
s VR H _
[M2[*(99 = ¢d)
the result we already derived in Eq. (3.32).

= 2N [12] + 2Ck[34] (3.66)

H

g q g9\ s q
g q g >/ AN
(a) (b)

g q

P
9 q
(c)

Figure 3.3: The colour flow diagrams for the processes gg — qG+g and g9 =+ H — q3 + g.

The two terms correspond to gluon radiation off the initial state gluons (colour factor
N¢) and the final-state quarks (colour factor Cr). With colour-singlet exchange in the s—
channel (Fig. 3.3(c)), there is no interference between the initial- and final-state emission,
in contrast to the QCD background antenna pattern (cf. Section 3.1.2). It is this feature
which will give rise to significant quantitative differences between the radiation patterns.

The next step is to define the kinematics. The four momenta are labelled by

g(p1) + g9(p2) — q(p3) +G(pa) + g(k) , (3.67)

where the gluon is assumed soft relative to the two large-Er partons g and ¢, i.e. kr <
Er. Ignoring the gluon momentum in the energy—momentum constraints, working in the
subprocess centre-of-mass frame, and using the notation p* = (E,p;, Py, Pz), we have

py = (Brcoshn,0,0,Ercoshn),

py = (Ercoshn,0,0,—Ercoshn),

py = (Ercoshn,0,Er, Ersinhy),

py = (Ercoshn,0,—Er,—Ersinhn),

k* = (krcosh(n+ An), krsin A¢, kr cos A, kr sinh(n + An)) . (3.68)

This is the appropriate form for studying the angular distribution of the soft gluon jet
relative to the large-Er jet 3, the separation between these being parametrised by An
and A¢. In terms of these variables, the soft gluon phase space is

1 &Pk 1
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We will be particularly interested in the shape of the radiation pattern as a function of
the variables An and A¢. Note that the direction of the soft gluon is measured with
respect to the p3 jet. Thus for massless 2 — 2 scattering, collinear singularities are

located at An =0, Ap =0 and An = —-2n, A¢d = 7.

gg — qq+g ag - H - qq+g

| ! ll'lﬂ‘

o\

IM -

'o'o‘o"t‘
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.
\\\
&M&N

o‘o'.‘\‘\\
) «nﬁ\'\'\\\\\\‘\\\\\\\
W \“\\““\“%\L‘\{"\\%‘ga‘“

3 “: \“\“\“
\‘ il
U &
K

mﬂ,w
“\\\\N‘“
TR

Figure 3.4: The antenna patterns Fjcp of Eq. (3.65) and Fl = 2N12] + 2C¢[34] of
Eq. (3.66) for the processes gg — qG+g and gg = H — qg+g, withn =0 and kr = 10 GeV.

We first study the QCD and Higgs radiation patterns for central ¢g jets, i.e. n = 0.
Using the kinematics of Eq. (3.68) with n = 0, Eq. (3.66) gives

4 Nc (coshQ(An) cosQ(Ang)) + CF

Firln=o = K2 cosh?(An) — cos?(Ag) .
and
Fephmo = N2 (2cosh?(A7) = cos?(Ag) — 1)
QCDIn=0 k2 N, {(4CF —N,) (coshQ(An) - COS?(A@)}
4 2N, (1 ~ coshQ(Aﬂ)) +Cr (N -2) (3.71)

Kb Ne {(4Ck — Ne) (cosh?(An) — cos®(Ag)) }

Note that the radiation patterns are independent of E7. Fig. 3.4 shows the dependence
F{ and f&CD on An and A¢. It is straightforward to show that the patterns are identical

close to the beam direction,

. 4 -

independent of A¢, and close to the directions of the final state quarks,

. 4Ck 1
An,lArE—»O H,QCD k2 cosh?(An) — cos?(Ad) (3.73)
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The main difference arises from the amount of radiation between the final-state quark
jets (c¢f. Section 3.2).

5 To study this further we consider the distribu-
N ] .

X! /| tions at the symmetric point P, located at (An =
/ AN [ 99) ! . ¢

RVEIRN! 999 /| 0,A¢ = n/2). This corresponds to soft gluon ra-
' | diation perpendicular to the plane of the gg — ¢q
§ scattering and in the transverse direction, see figure
/ J on the left hand side.

Again using the kinematics of Eq. (3.68), we find for the QCD background process

2 2C¢(N2—2) + N}

g - ~
Foepln=0(Pe) = NG — N 0.1304, (3.74)

where the numerical value corresponds to Nc = 3 and kpr = 10 GeV.

In contrast, for the Higgs signal process we find

ki? (Ce + N.) ~0.1733. (3.75)

T
There is therefore approximately 4/3 more radiation between the jets for the Higgs pro-
duction process. This is due to the absence of a colour string connecting the final state
quarks in the QCD background process, see Fig. 3.3 and Section 3.2.

The QCD background process does, however, have colour strings connecting the
initial- and final-state quarks, and this leads to an enhancement of soft radiation between
the jets in the plane of the scattering. We can illustrate this by considering the radiation
patterns around the direction of the final state quark. In particular we introduce (as in

[EKS97]) the variables (AR, 3), where
An=ARcosf8, A¢=ARsing. (3.76)

For fixed AR > 0, varying 3 between 0 and 27 describes a circle in the (An, A¢) plane
around the quark direction. In addition, if we fix AR = m/2 then the symmetric point
P, corresponds to § = 7/2 (or equivalently 37/2), and the soft gluon is in the 2 — 2
scattering plane for 8 = 0,n. Figure 3.5 shows the dependence of the radiation patterns
]—'gI’QCD on (3 for AR = /2, as before for n = 0 final-state quarks. At § = /2 we
have F§ > Féop, as discussed above, whereas at § = 0,7 we have Fdcp = F3.* The
shape of the 3 distribution therefore provides a powerful discriminator between signal

_7-‘19{|n:0(73c) =

and background.
How does the inter—jet radiation enhancement depend on the jet rapidity n? Again

we consider the symmetric point located at P, = (A = —n,A¢ = 7/2). At this point
F}, is completely independent of 7,
F(P) = o
T
which follows immediately from Eq. (3.66) since [12] = [34] = 2/k% at P.. The result is
slightly more complicated for ]-'(%CD. Here we find

. 2 1 4Cfcosh?(n) (N2 — 1) + N2 (N — 2CF)
fQCD(Pc) = 12N 2
k% N. 4Cf cosh”(n) — N¢

(Ne + Ce). (3.77)

: (3.78)

4In fact, the equality of the distributions at 8 = 0,7 is true for all AR.
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Figure 3.5: The dependence of the radiation patterns F}, and ]—"(%CD on the angular variable
B defined in Eq. (3.76).

At Pe, Féop is maximal for 7 = 0 with the value given in Eq. (3.74). As |n| = 0o Ficp
approaches its minimum value,

4

= —CE. 3.79
k§1C7F ( )

].iln f(%CD(,PC)

[n{—o0

Note that in the large-n limit the ratio R = F;/Fp at P is significantly larger than
its value at n = 0O:

= 3NY —7NZ +2

=0, = - ¢ 7% _ 3985,
R{n=0,Pc) oNT T3NE 2~ %0
= 3NZ -1
R(ln| = 00, Pe) = -NQL—T =3.25. (3.80)
C

In other words, the difference in the signal and background radiation patterns at the
symmetric inter—jet point increases with increasing jet rapidities. Note that the large-Nc
limits of the ratios in Eq. (3.80) are simply 3/2 and 3, and also that R(n = 0,P;) = 1
for N. = 2. This is illustrated in Fig. 3.6 which shows the dependence of R evaluated at
Pe on i and Nc.

Massive quarks

So far we have only considered massless quarks. In fact for H — bb, with my < Mgy, this
should be an excellent approximation, since the soft gluon only ‘feels’ the finite b—quark
mass very close to the jet axis, where our analysis does not in any case apply. Far from
the jet direction, and in particular at the symmetric point P, the effect of the non—zero
b mass will be negligible. The situation is however very different for the case of H — t,
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Figure 3.6: The ratio R = Fj;/F{cp as a function of Nc and 7 at the symmetric inter—jet
point An = —n and A¢ = 7/2.

where My 2 2m,;. Now mass effects are important in the radiation pattern, as we shall

demonstrate below.
If we allow a finite mass for the produced quarks then the kinematics have to be

changed accordingly. Thus we replace the kinematics of Eq. (3.68) by

= (Eg,0,0,Eq),

py = (Eg,0,0,-Eq),

Py (Eq,0,pr, Eq tanhn),

py = (Eq,0,—pr,—Eqtanhn),

k# = kp(cosh(n + An),sin A, cos A¢,sinh(n + An)), (3.81)
i.e. we denote the energy of the quark jets by E¢ and their transverse momentum by

Eq = cosh(n)/m% +pi-. (3.82)

We again work in the subprocess centre-of-mass frame. It is convenient to introduce the
dimensionless variable © as the ratio of the final-state quark mass mg to its energy

pr. Thus

0="0. (3.83)

For non-zero mg the antenna patterns receive additional contributions. For example,
the antenna pattern of F}, of Eq. (3.66) becomes

Firo = Fi — Ce[33] - Ce[44], (3.84)
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where the massive equivalents of F Ig{ and féCD are labelled with the suffix ©. One effect
of the additional terms is to cancel the final-state collinear singularities, leading instead
to the well-known dead cone [DKT91] phenomenon. Using the results of Ref. [KOS94],
we obtain a somewhat more complicated expression for the massive equivalent to ]—'(%CD,

Fodepo = (2Ne—2Ce +2Y)[12] + (Cr — X = V) {[13] + [24]}
+ (Cr+ X —Y){[14) + [23]} + 2V[34] — C¢[33] — CE[44],  (3.85)

with
N? 1 1 e 1
X = [(1+2u) <ﬁ - T) o (55— ﬁ> +2(U—T)J
1 N 2 2 .UQ B .
and )
1 1 1 N~
= 2 |l == — = . .
Y 4Ck [NCQUT + } [UT CF} (3.87)
The variables T, U and p are defined as
F - - 2
r=PP b Mo (3.88)
p1-p2 P1-Pp2 p1-P2

It is straightforward to show that the massless results are recovered in the limit mg(0) —
0.

Threshold behaviour (© = 1)

We first study the behaviour of the radiation patterns f(%CD,@ and fff[:@ in the threshold
limit in which mg = Eg = My/2, i.e. © = 1. In fact setting n = 0 we can readily derive
the general expressions for the antennae for any value of ©. Figures 3.7 and 3.8 show
the radiation patterns for various values of ® near and at threshold.

Notice how the strong peaking structure seen in the massless case (Fig. 3.4) disappears
as the threshold is approached. In fact for © = 1, the patterns do not depend on A¢ at
all. This can be seen from the analytic results. First, for © = 1 we have [34] = [33] = [44]

and so, from Eq. (3.66),

4
Firom1 = 2N[12] = E%—Nc, (3.89)

independent of An and A¢, see Fig. 3.8(d).
For f(%CD,@ at threshold, we first note from (3.88) that T =U = pu = % and thus

2+ N?
X1 =0, = < . .
1=0, N INZ(4Cr — N) (3.90)
From Eq. (3.85) we then have

= 2(Nc—-Ce+ 1) [12]
+ (Cg — 1) {[13]) + [24] + [14] + [23]} + 2()1 — CF)[34]

2 - G-
= -5 |2N.— ——— 3.91
k2. ( ‘ coshQ(An)> ’ (3.91)

g
Facn,0=1
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Figure 3.7: The antenna patterns F, of Eq. (3.85) for the process — qg + g with
QCD,®
different values of the mass parameter © of Eq. (3.83).
jets is fixed at n =

The pseudorapidity of both quark
0, and the transverse momentum of the soft gluon is k7 =
(d) we show the threshold result © =1 (Eg = mg)

10 GeV. In
value

which depends on An but not on A¢. For |An| = oo FQCD o= approaches the constant
lim
|An|—o0

Fécp,e=1 = 2N[12] = 2 2 Ne, (3.92)
and becomes equal to Fj; o_;, as in the massless case. We also see from Fig. 3.7(d) that
fQCD o-1 has an absolute minimum at Anp =0

Focp,o=1(An=0) = 2

(2N — Cr + 1) =

N. 3N2 -4
k2
fOI‘ NC = \/§.

; 3.93
N2-2' (3.93)
which is numerically 18% lower than the large A7 value. Note the singularity in Eq. (3.93)

We next consider the patterns for arbitrary 7 and ©. With the exception of [12] all
antennae exhibit an 7 dependence. We are again especially interested in the value of F}; o
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Figure 3.8: The antenna patterns .7:19{’(9 of Eq. (3.85) for the process gg — H(— ¢q) + g
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quark jets is fixed at 7 = 0, and the transverse momentum of the soft gluon is kz = 10 GeV.
In (d) we show the threshold result © =1 (Eg = mg).

and ]:tngD,e at the symmetric point between the two jets at P, = (An = —n, A¢ = 7/2),
as the massless study suggests that at this point the differences between the signal and
background radiation patterns should be maximal. When evaluated at P, only [13], [14],
[23] and [24] have an explicit n dependence (~ tanh(n)), whereas

2

[12] = 2 (3.94)
2 — Q2

[34] = ?;

: 2

33 = 4=z

All antennae that are 1 dependent exhibit an absolute maximum at P; of 2/k% for
n — —oo ([13], [24]) or for n — oo ([14], [23]) and vanish for n — oo accordingly. The
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fact that there is no n dependence at P, for [12], [34], [33] and [44] immediately yields
(see Eq. (3.84))

Fo(Pe) = 1 (Ne+ Ce(1 - 69)) (3.95)

k’2
for all 9, i.e. the radiation between the two jets is completely independent of their
separation in rapidity. This is illustrated in Fig. 3.9(a).

An =-n, Ad = r/2
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Figure 3.9: The radiation patterns for 7} o, Fdcp e and Re at the symmetric inter-jet
point P, for different values of the quark jet rapidity 7 and the mass parameter ©. The soft
gluon transverse momentum is taken to be kr = 10 GeV.

Note that the massless result of Eq. (3.77) is reproduced for © = 0. The corresponding
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expression for féCD’@ s 11 dependent and reads

Fécno(Pe) = : (3.96)
1 {4(1 —©%) + 2N2(N? — 2)(2 — ©?)} cosh?(n) + N2 {2 — ©%(2 — N2)}
k2. N2(4Ck cosh?(n) — N) '

For fixed ©, ]:(%CD,@(Pc) always shows an absolute maximum for 7 = 0 (see Fig. 3.9(b))
with a © dependence which again is maximal for the massless case © = 0, with the
value given in Eq. (3.74). Once again defining the ratio of signal to background radiation
patterns as Rg = F o/ Fdcp,or we see that R has a local maximum at P, the value
of which depends on 7 and 0O, see Fig. 3.9(c). The value at n = 0 is

_ 4‘NCQ(ZIOF - ]Vc)(C’F(@2 B 1) — Nc)

Ro(Pey =0) = (NE+4)(02 —1) +2N2(3 - 02) ' (3:97)

which actually shows a very weak © dependence. It is maximal for massless quarks

(© = 0) with the value (= 1.3285) already given in Eq. (3.80), and is minimal for © =1
with the value

Ro=1(P. —0)—4N3—2—12174 3.98

o=1\/\c, N1 = — 3NC2_4‘— . . ( )

For the massless case, R(P.) increased with increasing jet separation (i.e. increasing

n). This is again true for the massive case, as shown in Fig. 3.9(c). In the limit || = oo

we find

(3.99)

lim Re(Pe,r) = 4 (Nc + Ce(1 — ©2%)) Ne(NZ - 1) ’
00 2(1— 07) + NZ(NZ — 2)(2 - ©?)
which is a monotonically increasing function of ©. The values at © = 0,1 are 3.25,4.57
respectively, for N. = 3.

In summary, the relative difference between the radiation patterns for the Higgs signal
and QCD background processes is maximal at the symmetric inter—jet point. The ratio
(signal/background) of the radiation patterns at this point depends on the rapidity of
the jets and the quark mass. It is smallest (R = 1.33) for massless, central jets, and

largest for massive, large-rapidity jets (R = 4.57).

Radiation inside the ‘dead cone’

A final point concerns the radiation inside the dead cone of the final-state (massive)

quark jets. In this section for simplicity we will only consider centrally produced jets

with 7 = 0 — the generalisation to forward jet production is entirely straightforward.
First we recall the result for the Higgs signal process g¢g - H — ¢g for massless

quarks:

4 Ck
]:g _g=— | N.+ . 3.100
iln=0 k2. ( © " cosh?(An) — cosQ(A¢)) ( )

The second term is singular at the jet centre, An,A¢ — 0, whereas the first term
represents a constant ‘pedestal’ of radiation from emission off the incoming gluons. In the
massive case (© > 0), however, the singularity is removed and in fact the net contribution
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to the radiation pattern from the combination Cr(2[34] — [33] — [44]) vanishes at the jet
centre Pq. = (An = A¢ = 0), hence
F} !
,0(Pac,n=0) = E%‘Nc : (3.101)
The corresponding result for the QCD background radiation pattern inside the dead
cone is straightforward to calculate from the results already presented. We find, again
for n =0,

N 3NZ -4

féCD,@(PdCaU =0) = K2 NZ_9° (3.102)
C

Interestingly, the results (3.101,3.102) are independent of the quark mass, provided of
course that mg > 0. The effect can be seen in Figs. 3.7 and 3.8, where the value of the
radiation patterns at their minima (i.e. inside the dead cones of the quark jets) is the
same for all ©. The signal to background ratio in the dead cone is therefore equal to the
value obtained at threshold and given already in Eq. (3.98).

3.3.2 Associated Higgs production

Higgs production in association with a W boson qf — W* — WH is a potentially
important discovery channel at both the TEVATRON and LHC colliders, especially for
the ‘intermediate mass’ Higgs. The non-hadronic final state WH — fypyy should be
relatively easy to distinguish, but unfortunately has a very small branching ratio, see
for example the recent study in Ref. [KMS97]. This raises the question as to whether a

search in the decay channel
qf — W* — W (= L) H(— bb), (3.103)

might be feasible, especially with flavour tagging of both final-state b quarks [SMW94].
Now there is a potentially large irreducible background from the QCD process

q@ — W (= fvg) + bb, (3.104)

when My ~ My.

The signal and background processes are illustrated in Fig. 3.10.

We wish to study the radiation patterns for the processes (3.103) and (3.104), in
analogy with the gg — (H —)bb study of the previous section. We first notice that the
colour flows are exactly the same as those for the 2 — 2 scattering processes q¢ — H — bb
and ¢§ — g* — bb [KOS94]. We can therefore immediately write down the antenna

patterns of the soft gluon radiation:

FEH = 2Ck {[12] + [34]} — Ce[33] — Cr[44]. (3.105)
FUo = ]%[14; 23] + 2G5 {[13] + [24]} — Cr[33] — Cr[44], (3.106)

with [14; 23] defined in Eq. (3.63). Note that the Higgs pattern is the same as for gg —
H — bb apart from colour factor replacement N, — Cf for the initial-state [12] antenna.

In order to illustrate the quantitative differences between these radiation patterns it
is necessary to define appropriate kinematics. Since the leading order processes are now
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Figure 3.10: Feynman graphs for the process ¢7 — W* — W (— fuy)H(— qq) (associated
Higgs production) and the background process q7' — W (— £ip)g* (= qq).

Figure 3.11: The kinematics for back-to—back Higgs(— bb)-W production. The variables
are defined in Eq. (3.107).

effectively three~body final states, it is convenient to make some simplifying assumptions.
Thus we assume that the H and the W are produced with zero rapidity, and that the
b and b quarks have equal energy and have polar and azimuthal angles 9, and o with
respect to the H direction. This configuration is illustrated in Fig. 3.11 and corresponds
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to the four momenta (we only present the massive particles)

py = (Bu,pru,0,0),

Py = (Bw,—pru,0,0),

Py = (Eppycos(¥y), pysin(Wy) sin(a), py sin(dy) cos(ay))

Py = (Bo,prm — pycos(¥y), —py sin(dy) sin(a), —py sin(dy) cos(es)) . (3.107)

Conservation of energy and momentum gives

L FE ML M3 Y
Eg =2E, = BV pra =\ Ey — Mj,

py=\/E} —m?, cos(dp) = % (3.108)

The pseudorapidities and azimuthal angles of the b and b quarks are readily found to be

Din
tan(gy ) = ~ 2 = tan(d, ;) sin(ay;) (3.109)
P.b)z ’ ’
such that oy, 5 = 5 corresponds to ¢, ;5 = 9,5, and
1. (Eb+ D).
M5 = 5 In (-M> . (3.110)
Ey — psi):

The soft gluon momentum is defined relative to the b-quark jet:
k* = kr(cosh(ny + An), cos(¢y + Ad), sin(dy + Ad), sinh(n, + An)) . (3.111)

Note that the opening angle 21, between the two b quarks is a function of the partonic
subprocess energy v/3. The dependence is illustrated in Fig. 3.12. Note that at threshold
(\/?2 My + MH) 24, = 180°.

Let us now study the radiation patterns in more detail. We assume parameter values
of My = 130 GeV, my = 4.3 GeV and My = 80.33 GeV, and we again fix the transverse
momentum of the soft gluon to be kr = 10 GeV. The first thing to note is that for
the symmetric configuration defined above, the radiation pattern for the signal process
is independent of the azimuthal angle . This follows from the absence of antenna
involving both initial- and final-state quarks in (3.105). In contrast, there is no such
symmetry for the background process (3.106).

A more striking difference is seen if we vary v/3. According to Fig. 3.12 the angle
between the final-state quarks decreases with increasing v/3 with the effect that the
two quark jets eventually merge for large centre—of-mass energies. Figs. 3.13 and 3.14
show the signal (3.105) and background (3.106) radiation patterns for the average value
(V/3 = 310 GeV) and for an extreme value (V5 = 14 TeV) respectively.® The azimuthal
angle oy is fixed at 90° in both cases.

For v/ = 310 GeV the opening angle between the b and the b quarks is approximately
100°. As ap = 90° the b — b plane is orthogonal to the q§ — W H scattering plane (see

5Notice that at threshold, V3o = My + My, the b and b are produced back-to~back, and the discussion
is almost identical to the direct production case studied earlier, apart from colour factor differences arising
from having incoming quarks instead of gluons.
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Figure 3.12: The opening angle of the bb quark pair as a function of the partonic subprocess
energy V3.

Fig. 3.11) and thus 7, = 75 = 0. We see immediately that the main feature of our direct
production study described earlier still holds. The most striking difference between the
signal fg/H and the background ]_-g/g is the relative suppression of radiation between
the b—quark jets for the latter. There is a factor of approximately 2 difference between
signal and background radiation in the inter—jet region, in qualitative agreement with
the results obtained for direct Higgs production.

If we now increase the subprocess centre-of-mass energy the two b—quark jets merge,
forming a narrow colour singlet and octet state for the signal and background respectively.
The situation for the extreme case v§ = 14 TeV is shown in Fig. 3.14. Notice that
for the signal process the soft gluon radiation becomes trapped in a very small tube.
Outside the merged jets the radiation pattern completely flattens out. In contrast, for
the background process there is still significant radiation between the initial- and final-
state quark directions. In fact the distribution here is essentially identical to that for
the g — Wg process studied in Ref. [KS97b]. In other words, the radiation pattern
acts as a ‘partonometer’ [EKS97] in measuring the colour charge of the outgoing large

pr partonic system.

3.3.3 Concluding remarks
We studied in this section the Higgs signal at the LHC and the corresponding QCD
background process for

e direct Higgs production gg - H — ¢qg,

e associated Higgs production Q(j’ — WH(— bb)g,

a two (four) particles final state plus additional (soft) gluon. The aim of this study was
to use gluon ‘partonometry’ to obtain a maximal ratio between Higgs signal and QCD
background. Studying the radiation pattern of the soft gluon for both processes (and

both background processes) we conclude
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Figure 3.13: The radiation patterns for the signal F¢'# (Eq. (3.105)) and the background
fg/g (Eq. (3.106)) for associated Higgs production at subprocess centre—of-mass energy
V'3 = 310 GeV. The directions of the incoming quarks ¢ and §' and of the b and b quarks
are indicated.

e for the direct Higgs production the clearest signal can be expected by measuring
hadronisation between the two outgoing quark jets. From the different antenna
patterns (signal and background) a clear depletion of radiation in the interjet region
for the background process should be observable. The signal/background ratio at
this point is dependent on the pseudorapidity (i.e. kinematics) of the outgoing jets.
For back-to-back scattering we found the Higgs signal yielding approximately 30%
more radiation than the QCD background at the inter—jet point. The higher |n|
the higher becomes the signal/background ratio, but it stays always below 4Ck /k?.,
where k7 denotes the transverse momentum of the soft gluon.

e this observation is also qualitatively true for the associated Higgs production but
the signal/background ratio is quantitatively even slightly higher than in direct
Higgs production.

We accept that there is no substitute for a detailed Monte Carlo study, but our work
should be regarded as a guide into this direction. We also studied the phenomenon of the
“dead cone” and included massive quarks. Both phenomena play a minor role at typical

LHC energies.
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Figure 3.14: Same as Fig. 3.13 but now for a subprocess centre—of-mass energy of V3 =
14 TeV.

3.4 HERA s—channel resonances: antenna patterns of “lep-
toquarks”

The observation of an apparent excess of deep inelastic scattering events in positron—
proton collisions at high @2 by both the H1 [H1.97] and ZEUS [ZEUS97] collabora-
tions at HERA has prompted much speculation about possible new physics explana-
tions. Obvious candidates are a new four—fermion contact interaction A~2gegq with A ~
O(1-2 TeV), or the production of a new heavy “leptoquark” resonance etqg — LQ — etg
with Mpq ~ 200 GeV. For a general discussion of*the various new physics possibilities
see for example [A1t97, HR97]. The electric charge of such an object is not yet known,
but if e.q = +2/3, corresponding to e*d — LQ for example, then the new particle could
be a heavy squark in an R-parity violating supersymmetric extension of the Standard
Model. A discussion of R—parity violating squarks is presented in Section 3.4.3.

It is important to investigate all possible ways in which one could distinguish between
a conventional explanation (i.e. a fluctuation of the SM DIS process) and new physics
scenarios. We shall address again the study of the energy flow in the event as diagnostic
tool to search for new physics. The events at high z and Q2 at HERA seem ideally suited
to such a study, being characterised by an energetic, well-separated lepton and jet in the
final state. Furthermore the various candidate underlying eq — eq processes (t—channel
v*, Z exchange, contact interaction, s—channel colour—triplet resonance production, ... )
have distinctive antenna patterns, as we shall see. In practice one could, with sufficiently
high statistics, use an additional soft (gluon) jet as a probe of the antenna pattern.
With fewer events the distribution of soft hadrons can be used instead. Both of these
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quantities are related to the inclusive soft gluon distribution in the next-to-leading order
eq — eqg processes, the former directly and the latter through the hypothesis of Local
Parton Hadron Duality (LPHD) [Azi85a, Azi86a] in which the angular distribution of
soft particles emitted at wide angles to the energetic jets follows that of the underlying
soft partons, with the rate being determined by overall multiplicative energy—-dependent
cascading factors [DKT87, Azi85b, Azi86b].

The idea, then, is to use the angular distributions of soft particles or jets as a probe
of new physics contributions to high-Q? e*q scattering. We imagine a situation where a
larger sample of (presumably SM DIS) events at slightly lower Q? is used as a control, to
check the approximate validity of our quantitative predictions for the antenna pattern.
This can then be compared with the observed antenna pattern for the sample of excess
events. As we shall see, in some cases the ‘signal’ and ‘background’ distributions can
differ by factors of two or more. The variation of the patterns with the DIS variable y
will also be a useful discriminant.

In the following we derive the basic antenna pattern results for standard DIS and
leptoquark production. The case of a new contact interaction is obtained as a limiting

case of the latter.
The distribution of soft radiation is controlled by the basic antenna pattern (cf.

Eq. (3.11))

— —

P Py L= 0 4 (3.112)

pi'kpj-k‘_w?y:g(l—ﬁ-ﬁi) (1—ﬁ~ﬁj)’

(2] =

where the pf = F;(1,8;) are the four-momenta of the energetic quarks and leptons
participating in the hard scattering process, and k* = w, ¢(1,1i) is the four-momentum
of the soft photon (gluon). The radiation patterns presented below correspond to the
(soft) wy/e/E; — 0 limits of the exact eq — eqy (eq — eqg) matrix elements.

3.4.1 Additional soft gluons

We start by considering the Standard Model process e (p1) + q(p2) — e¥(p3) + q(ps)
with an additional soft gluon by t-channel v*, Z exchange. If the invariant mass of the
etq system is M, and if the angle between the incoming and outgoing quarks (in the etq
c.m.s. frame) is Oy, i.e. cos Oy = iy - fiy, then the usual DIS variables are
M? 1
T=—, y=5(1-cosO), Q* =yM? . (3.113)
The scattering process with the various momenta labelled is shown in Fig. 3.15.
Since our aim is to distinguish the patterns for resonance production and the normal
DIS, we consider fixed M and variable O, i.e. variable y. For the Standard Model
process the gluon energy and angular distribution is given by Eq. (3.27) where®

2p - pa 2(1 — cos Og)
= ; 3.114
pe-kps-k  wi(l—cosfy) (1 —cosby) ( )

fng = 2[24] =

where cos§; = ii - i; denotes the angle between the soft gluon and the corresponding
quark. The gluon emission is coherent, and depends on the relative orientation of the

5Note that in the following we shall suppress the universal colour factor Cr in the presentation of F9,
ie. F9 = =3 J!'J,; rather than the definition given in Eq. (3.23).

3%}
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/e+(P3)

Figure 3.15: Parametrisation of the kinematics for e* (p1)q(p2) — e (p3)q(p4) + g(k) scat-
tering in the e™q c.m.s. frame. The orientation of the soft gluon relative to the scattering
plane is denoted by 0, and ¢, or, alternatively, by the angles with respect to the directions
of the participating quarks: 64 and 6y = 6,.

incoming and outgoing quark directions. Eq. (3.114) can be interpreted as a colour string
connecting the incoming and outgoing quarks [AGS80, Azi85b, Azi86b], and is closely
related to the familiar result 79 = 2[qq] for the crossed process ete™ — ¢ (cf. Eq. (3.26)
and [Dok91]).

We now turn to the radiation pattern corresponding to the production of an unstable
colour-triplet, s—channel scalar resonance LQ of mass M and decay width I''q, i.e.
etqg - LQ — etq+ g. We first note that the emission of a soft gluon off an on-shell
colour-triplet scalar boson is described by the same factor as emission off a colour-triplet

fermion, i.e. (¢f. Eq. (3.21))

PH . o (k)
~ 22
M? = Ti9—p5

where T is a SU(3) colour matrix, P is the momentum of the emitting particle, and

€, is the gluon polarisation vector. We can therefore use results already obtained for
heavy quark production and decay to write down the result for leptoquark production

MO, (3.115)

and decay:”
Fiq =2([2P] + [4P) — [PP]) + 2x1q ([PP] + [24] - [2P] - [4P]) (3.116)
where P = p; + po is the leptoquark momentum. Eq. (3.116) is derived in Appendix A.2.
The factor xrq in (3.116) is given by
M?Ti, I

2
- = 3.117
XLQ T (P k) + M2,  w?+ll, (8.117)

where the second expression corresponds to the LQ c.m.s. frame. Egs. (3.116,3.117)
are derived in Appendix A.2. As discussed at length in Ref. [KOS92], the radiation

In fact the soft gluon distribution for eg — LQ — eq is identical to that for Wb — ¢t — Wb with
my = Mg = M, Ty = T'Lq and my = 0 [Dok93].
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pattern depends, through the factor x1q, on the relative size of the gluon energy and
the leptoquark decay width. In this respect it is instructive to consider the two (formal)
limits I'Lq — 00 (xLq — 1) and T'Lq = 0 (x1.q — 0), for fixed w,. In the former, the
leptoquark decays immediately after it is produced and has no time to radiate gluons of
wavelength ~ 1/w,. In this limit

FLq—

Flo 457 2004], (3.118)

which is identical to the standard DIS pattern (3.114) corresponding to coherent emission.

In contrast, for I'nqg/w, — 0 the emission takes place on two very different timescales,
corresponding to the production stage and the decay stage [KOS92]:

Fio 5 212P] — [PP]} + {214P] - [PP]} . (3.119)

At threshold, where there is essentially no radiation from the heavy leptoquark, the two
terms in {} correspond to independent radiation off the initial and final state (massless)
quarks, see (3.121) below. Note that it is straightforward to verify that the first term on
the right-hand side of (3.119) does indeed correspond to the k* — 0 limit of the real gluon
emission matrix element squared for e + ¢ — LQ + g calculated in Refs. [KS97a, PSZ97].

With no a priori knowledge of the decay width of the new heavy particle, the an-
tenna pattern (3.116) could in principle be used to obtain a measurement. This was
the approach advocated in Ref. [KOS92] for the top quark. As we shall see in the fol-
lowing section, in certain regions of phase space the antenna pattern is very sensitive to
x1.Q, and therefore to I'Lq. In practice, it seems that for the class of leptoquark models
proposed [Alt97, HR97] to explain the excess of high-Q? events at HERA, the decay
width is rather small. In particular, a scalar leptoquark coupling with strength A to eg
has a corresponding decay width [pq = MA2/(16m). For ‘first generation’ leptoquarks
values of A2 < O(107?) are allowed by low—energy data (see for example Ref. [KS97a]
and references therein). This implies that such resonances should be very narrow, i.e.
I'Lg < O(40 MeV) for M ~ 200 GeV. If we are interested in the distributions of soft
hadrons or jets with energies of order a few GeV, then x1q < 1 and (3.119) is the
appropriate distribution for the leptoquark signal.

Finally, we note that the antenna pattern for a éegg contact interaction corresponds
to the limit xpq — 1, and is therefore identical to the standard DIS result, Eq. (3.114).

In the following we present numerical results for the SM DIS and leptoquark soft
gluon distributions. We work in the eq c.m.s. frame with angles defined as in Fig. 3.15,
and focus on the dependence of the dimensionless quantity N = wg]:g , where Fg,; and
]:EQ are defined in (3.114) and (3.119) respectively, on the gluon direction fi. Simple

algebra gives

2(1 — cos ©y)

= 3.120

Nsu (1 — cosf)(1 —cosfy)’ ( )
1+cosly 1+ cosb,

= , 121
NLQ 1—cosfly 1—cosly’ (3 )
Nug 1 —cosbycosby (3.122)
Nsm l1-cos®; '

The patterns and their ratio are displayed in Figs. 3.16 and 3.17, as functions of
6, and ¢y, the polar and azimuthal gluon angles with respect to the incoming quark
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Figure 3.16: The dimensionless antenna patterns Nsu = wjFgy [(a).(c).(e)] and Miq =
wS}"EQ [(b).(d),(f)] of Egs. (3.120,3.121) for different c.m.s. scattering angles ©4 (cf.
Fig. 3.15). Note the cut of 10° imposed around the incoming and outgoing quark direc-
tions.

direction,® and for fixed values of ©, = 45°,90°,135°, i.e. y = 0.146,0.5,0.854. To avoid
the collinear—singular regions of phase space, cuts f,8; > 10° are imposed.®
We note the following points:

(i) For the SM distribution, there is a significant enhancement of radiation in the
region between the quark directions (i.e. ¢, ~ 0°, 0° S 6, S Oy), as expected.
This enhancement is largely absent in the LQ case, where the radiation pattern
is simply a superposition of independent radiation off the initial and final state

8i.e. B = 0,, cosfs = cos ¢, sin by sin Oy + cos b, cos O.
9The cuts on 82,64 are omitted in Fig. 3.17, since the ratios are finite (= 1) in the two collinear limits.
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Figure 3.17: The ratios Ny,g/Nsm of the distributions in Fig. 3.16 for the three different
c.m.s. scattering angles. In this case no angular cuts have been imposed.

quarks.

(i1) In the limit ©, — 0°, Ny vanishes everywhere since the final state comoving colour
triplet and antitriplet behave as a colour singlet, whereas N is simply twice the
radiation off a single quark. In Ref. [Dok93], similar effects where discussed for
ete” — tt — WW ~bb production at threshold.

(iii) For ©4 = 90° scattering, the ratio of the SM and LQ distributions achieves its
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minimum and maximum values in the plane of the scattering, thus Nig = %—NSM
for (¢g,8,) = (0°,45°) and (180°,135°) and Mg = —%NSM for (¢y,60,) = (0°,135°)
and (180°,45°). The distributions are the same for gluon directions in the planes
perpendicular to iy and fiy, i.e. 69,04 = 90°.

Finally, from the above discussion we would expect that the azimuthal distribution
of soft gluons (hadrons) around the final state quark (jet) direction would be more uni-
form for quarks from leptoquark decay than from standard DIS. To see this, we show
in Fig. 3.18 the azimuthal $g distribution of the gluon around the final state quark di-
rection ny, for ©, = 90° and various fixed 64. A significant azimuthal asymmetry for
Nsu s ob~served with a maximum in the plane of the scattering between the quark di-
rections (¢, = 0°), as expected. In contrast, the dependence of M, on ng is very weak,

particularly for small 6,.

e el

T 0, =30°

Nopr» NLQ

Figure 3.18: The dependence of the antenna patterns Nsm and Niq on the azimuthal angle

<;~59 of the soft gluon around the outgoing quark g(ps). The gluon direction describes a cone
around the quark of half-angle §;. The direction of the incoming quark g(p2) is defined by

d)g = 0°, and the incoming positron et (p;) is at ¢g = £180°. The overall c.m.s. scattering

angle is fixed at ©, = 90°.

3.4.2 Additional soft photons

As discussed in the introduction, it would be of considerable interest in distinguishing
new physics models of the HERA high-Q? events to know the electric charge of the
quarks in the eq — eq process. In principle, this information is contained in the distri-
bution of soft photon radiation, which can be obtained in an analogous way to the soft
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gluon distributions. The main difference is the presence of additional contributions from
emission off the incoming and outgoing positrons.’® The result for the antenna patterns
is

1 2 7

5‘7:SM = ey[24] — eg{[12] + [34] — [14] — [23]} + [13], (3.123)

Sl = eall+ e 2P+ [P} + (1 + e {(1P] + 3P}

—e{[12] + [34]} — (1 + &,)*[PP]

+x0q((1+ eq)*[PP] = eg(1 + eq){[2P] + [4P]}

~(1+ e {[1P] + [3P]} + €f[24] + e, {[14] + (23]} +[13]) . (3.124)
and, as before, FJ,, = }?Q for x.g = 1. As argued in the previous section, it is

the xLq — 0 limit of ]—'ﬂQ which is relevant in practice, i.e. for photons with energy
wy > I'iq. In this limit we have

SFly = coll+e{2P)+ [4P]) + (14 e){[1P] + 3P)
ea[12] + 341} — (1 + e, 2[PP)

= H(cosby) + H(cosby) (3.125)
where
H(z) = C i —1(1+e)2 (3.126)
T 14z 1—-2z 2 ”v '

An interesting feature of the above distributions is the presence of radiation zeros,
i.e. directions of the photon three—momentum i for which the cross section vanishes. A
detailed study of radiation zeros is presented in Chapter 4. To see this for the distribution

(3.125) we note that
1—e

. 12
1+eg (3.127)

H=0 for z=2) =

For the two cases of interest e, = %, —% for which zy = %,2. Therefore only for e*u
scattering is the radiation zero in the physical region.!! For the full distribution (3.125)

to vanish we obviously require
cosBy = cosby = zp . (3.128)

Thus for etu scattering the radiation zero is in the direction given by the intersection of
the two cones of half-angle 6y = arccos(1/5) = 78.46° centred on the quark directions iy
and fig. Three cases can be distinguished:

(i) For 0° < ©4 < 20y there are two solutions, corresponding to

_ _ t&ll(@q/2)>
0,=600, ¢y = tarccos ( tan 0y . (3.129)

10The results in this section are for e¥q — eTq scattering. Those for e"q — e~ ¢ can be obtained by

an appropriate change of sign.
'We shall, however, discover a special kind of radiation zeros for e™d + v processes in Chapter 4.
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Figure 3.19: The pattern of soft -y radiation according to Eqs. (3.123,3.125) with NSA’MgLQ =
wiFdrq for etd scattering [(a).(c)] and eu scattering [(b),(d)]. The overall c.m.s.
scattering angle is fixed at ©, = 90°.

(ii) For ©4 = 26, there is one solution,
6, =0, ¢y =0°, (3.130)
corresponding to the bisector of the quark directions in the scattering plane.

(iii) For ©, = 0° there is a cone of solutions corresponding to 6, = 6q.

Although the above results on the location of the radiation zeros have been derived for
the leptoquark radiation pattern, they apply equally well for the SM distribution (3.123),
or indeed for the generic distribution (3.124) for arbitrary xrq. This follows from the
fact that the zeros are the result of completely destructive interference between the
classical electric fields associated with the different charged particles. They depend only
on the relative orientation of the various particles, irrespective of whether intermediate
resonances are formed.

As a numerical illustration of these results, we show in Fig. 3.19 the antenna patterns
Naws Mgleq = 2/3) and 1qleg = —1/3), with ©4 = 90°. To exhibit the radiation zeros
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Figure 3.20: The soft photon antenna pattern NI:’Q for ©, = 90° at the critical angle
6y = Oy ~ 78.46° for eTu (solid line) and e™d (dashed line) scattering. Note the radiation
zeros at ¢, = 78.22° (cf. Eq. (3.129)). The positions of the et and ¢ jets are indicated.
Note also that NV}, shows quantitatively the same behaviour for this choice of 6.,.

more clearly, Fig. 3.20 shows the ¢, dependence of the leptoquark e, = 2/3,—-1/3 dis-
tributions at the critical polar angle 6., = 6y, i.e. the slices through the two-dimensional
distributions of Fig. 3.19 at this value of 6. The two zeros of the e*u distribution at the
¢, angles given by Eq. (3.129) are clearly visible. Note also that the behaviour of the
distributions near the positron and the quark jet directions simply reflects the magnitude
of the charge of the corresponding particles.

If the observation of an excess of high-Q? events at HERA persists (see discussion
below), it will be important to devise new analysis techniques for identifying the ori-
gin of the excess. We have shown that the angular distribution of the accompanying
hadronic radiation — the antenna pattern — is a potentially powerful tool for discriminat-
ing standard DIS events from those arising from the production of a long-lived coloured
scalar ‘leptoquark’ resonance. The main qualitative difference is the absence for the lat-
ter of an enhancement of hadronic radiation between the incoming and outgoing quark
jet directions (string effect), as shown in Fig. 3.16. It follows that soft hadrons are dis-
tributed more uniformly in azimuth around the final state quark jet direction in events
where a leptoquark is produced, see Fig. 3.17. Our quantitative predictions are based on
the phenomenologically successful principle of Local Parton Hadron Duality, and should
therefore be a good guide to the behaviour of the distributions of soft hadrons and jets in
the detectors. Ultimately, however, there will be no substitute for detailed Monte Carlo
studies based on parton-shower/ hadronisation models, provided that these include the
correct underlying colour structure.

Finally we have extended our results to include soft photon radiation. Here the
distributions have an additional sensitivity to the electric charge of the leptoquark, which
is a crucial parameter in distinguishing models. For the case of charge 5/3 leptoquarks,
produced for example in e*u collisions, we discussed radiation zeros as a powerful tool
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to pin down the leptoquark charge. We shall discuss these classical radiation zeros in the
following chapter and focus on a new type of radiation zeros introduced into high-energy
phenomenology recently by W.J. Stirling and the author of this thesis.

3.4.3 The status of high-Q? events at HERA

The two HERA experiments ZEUS [ZEUS97] and H1 [H1.97] reported an excess of
events at very high values of momentum transfer Q? in etq scattering. The excess rates
are shown in Table 3.1. There was a lot of speculation going on, what might trigger such

Experiment events observed | events expected
H1 Q? > 15000 GeV? 12 4.71 £ 0.76
ZEUS Q? > 35000 GeV? 2 0.145 4+ 0.013

Table 3.1: Analysis of the 1994-1996 data of high-Q? events from H1 and ZEUS. The
number of events as they were observed are compared to the numbers of events expected
from SM calculations.

an observation.

e contact interaction: (¢f. [BW97]) This corresponds to the exchange of a very
massive particle between the positron and quark, e.g. a heavy gauge boson Z' as
we discussed in Chapter 2. This is called contact interaction, since the exchange
of a heavy particle with mass My is restricted to a tiny range i/(Mxc) via the
uncertainty principle. However both LEP and TEVATRON rule out the effect caused
by contact interaction as it might have been observed in these experiments. For
example a Z' of mass Mz =1 TeV as we discussed earlier to explain the jet—excess
data from the TEVATRON cannot simultaneously explain the HERA excess in Q2.

e compositeness: The proliferation of quarks and leptons has inspired the specu-
lation that they are composite structures, bound states of more fundamental con-
stituents, often called preons. The basic assumption that underlines almost all
composite model building is that the constituent preons interact by means of a new
strong gauge interaction, sometimes called metacolour [EHLQ84]. Below a certain
energy scale, the metacolour interaction becomes strong and binds the preons into
metacolour—singlet states including the observed quarks and leptons.

Compositeness of partons in terms of the HERA high-Q? events was first discussed
by Adler [Ad197]. In his SU(4) model for preons, the positron interacts with a gluon
and makes a transition to a £ state, a kind of leptogluon, which decays into et
and a jet.

e R—parity violating squark: the kinematic distribution of the anomalous HERA
events clearly favours the formation and the decay of a bound state in the etq
system — i.e. a generic leptoquark (cf. [BRWS87]). Leptons and quarks are unified
in grand unified theories (GUT), which naturally predict leptoquark states. The
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exchange of leptoquarks generally leads to violation of lepton and baryon number,
and in particular to proton decay. Therefore the mass of the leptoquarks is assumed
to be very heavy. From proton decay one has as lower limit Mg > 10%° GeV.

A more plausible scenario for such generic leptoquarks is the scalar superpartner
of the quark (the squark) in the R-parity violating SUSY model [Alt97, DM97]. R-
parity!? is assumed to be preserved in the minimal supersymmetric SM. This implies
that SUSY particles can only be produced in pairs and the lightest SUSY particle, the
blessed neutralino, is stable and weakly interacting. R-parity violating squarks posess
a Yukawa coupling X' to lepton-quark pairs and can be singly produced as s—channel
resonances. Using positron beams at HERA and neglecting interactions with sea quarks
inside the proton, possible R—parity violating squarks are @y, ¢z, or ¢, via e*d collison
and thus electric charge +§.

+ +

e

Limits on the Yukawa couplings can be found experimentally. For a recent review on
the quest for (R—parity violating) squarks at HERA and limits on couplings and masses
we refer to [Noy97].

These particles appear in a mass range of a few hundred GeV. And this fact favours
the HERA data. Both collaborations observed the high-Q? events concentrated along a
constant z value. And as 2 = M?/s at a constant value of M, M can be interpreted as
the mass of the resonance produced in e*q scattering. In Fig. 3.21 we show the result of
the 1994-1996 analysis of the neutral current data by H1.

The figure shows selected neutral current DIS events in the M — y plane. As the et
was tagged, all quantities are expressed in terms of the e* tagging method, i.e.

Q@ o Phe
Me=sme= o5 Q=1

Note the clustering of the high-Q? events at M, ~ 200 GeV. It is therefore natural to
explain the anomalies in terms of an s—channel resonance, coupling and decaying into e*q.
This model was the focus in our studies of (hadronic) antenna patterns in Section 3.4.
As we discussed earlier these leptoquarks can have both lepton and baryon number
violating Yukawa couplings and mediate proton decay. Usually these couplings are set to

PR = (-1)*P+E+2S with
B : baryon number,
L : lepton number,

S : spin.
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Figure 3.21: Selected neutral current DIS candidate events in the M, — y. plane; three
contours of fixed Q? are shown.

be zero by assuming R-parity conservation. These Yukawa couplings are not connected
to any symmetry considerations and therefore one can assume a finite value for the
lepton number violating coupling, which ensures squark coupling to the e*g channel,
while setting the baryon number violating coupling to zero, which prevents proton decay,
thus

HERA “leptoquark”: R—parity violating squark ?

A scalar leptoquark is more likely than a vector one, as a vector leptoquark has a
coupling QSLG“”@ to gluons and would be produced by ¢g — g — $'¢ at the TEVATRON.
But there was no such event observed within the postulated leptoquark mass range of
about 200 GeV [CDF97]. The CDF collaboration reports a lower limit for the leptoquark
mass of 300 GeV at a 95% confidence level.

latest results from HERA (1998)

Since the publications of the analysis of the 1994-1996 data, both HERA collaborations
published results including 1997 data [Str97]. In the mass range 187.5 < M < 212.5 GeV
and y > 0.4 the ZEUS collaboration observes 3 events and expects from Monte Carlo
studies 2.92 + 0.24 events and is therefore in agreement with the SM in this mass range.
The H1 collaboration observes in the same mass range 8 events and expects 1.53 &+ 0.29
events, thus concludes that there is an apparent excess in this mass range.

In a higher mass bin (M > 225 GeV and y > 0.25) suddenly ZEUS observes 5 events
compared to an expected 1.51 £ 0.13 events and verifies an excess rate. H1, however, is
in perfect agreement with the SM in this mass bin. They observe 1 event and expect
0.752 % 0.305 events. Thus both experiments seem to exclude each other concerning the
mass bins of the observed excess rates.

In 1998 the e~¢q data will be available [Els97] and in 2000 a luminosity upgrade is
expected. One has to see, whether this high-Q? excess rates are physically genuine or
whether everything is due to statistical fluctuations.
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3.5 The main results revised

In this chapter we studied the emission of soft photons and gluons in high-energy pro-
cesses. We realised that soft photon radiation is an ideal tool to probe colour and electric
charges in a given process. We used photon antenna patterns to study the charge and
radiation pattern of an s—channel resonance at HERA to gain further insight into the
reported high-Q? events, assuming the formation of a “squark” or “leptoquark” as inter-
mediate state. The study of photon radiation will also be the focus of Chapter 4, where
we introduce radiation zeros as a probe of the SM in high—energy collider phenomenology.
This discussion is directly based on the results we obtained so far.

To understand the dynamics of soft gluon radiation from a physical point of view
we discussed colour coherence and the connected “drag” or “string” effect. This formed
the basis of the important study of Higgs production at the LHC with additional gluon
radiation. We showed how this additional gluon acts like a partonometer for the signal
and QCD background processes and finally is a wonderful discriminator between the
two processes. According to the different colour flows it was possible to locate a well-
defined region in the gluon phase space where the signal/background ratio is maximal.
We discussed also massive quarks and the phenomenon of the “dead cone”.

Colour coherence gained evidence by recent measurements at the TEVATRON and
LEP1, as we discussed above. The verification of colour coherence allows further studies
of the kind that were presented in this chapter. Of course, higher order corrections play
an important role, especially the NLO and NNLO corrections for Higgs production at
the LHC are quite large. As long as the emitted gluon is soft, then it was shown [Dok91]
that a factorisation in a hard and soft part is in principle always possible. We say in
principle because sometimes the colour structure is too complicated and factorisation is
strictly only possible graph-by—graph.

Understanding the soft gluon radiation pattern and assuming the Local Parton Hadron
Duality to be valid allows for predicting the angular distribution of soft hadrons produced
by the soft gluon jets. This is an interjet phenomena. Jet geometry like opening angle,
‘hardness’, etc. are topics of intrajet phenomena. We presented angular ordering as a
typical intrajet feature in this work.



Appendix A

(General formulation of soft
radiation

A.1 Soft photon emission

We present the Feynman rules for the emission of a soft photon off external and internal
charged spin—% particles. The formalism can easily be extended to an arbitrarily charged
particle of any spin. For our studies fermions with spin % play the pivotal role. The rules
for emission of external legs (particles and antiparticles) can be summarised as follows.
We introduced the notation in Section 3.1.

k,u ,L [ ol }

M) = eei |———| u(pi)

u<pi)——'=dg () =755 ]
-

ng M, ”Ze‘fi[ bl o)
v(p) (M) pi- k]

s“ B
— (MZex> =€ b A a(p;)
u(p:) [P R
k,p [ e
(Mzex>“ =ee; | — pz k} v(p;)
v(pi) L Pi

We define the fermion propagator for a massive particle of four-momentum ¢* as

g+m
Iy =i———— Al
7 Zq2 ~m? +1€e’ (A-1)
and for the.corresponding antifermion (¢* — —¢*)

—f+m (A.2)

y=4t—-—-—.
f Zq2—m2+ie
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If there is additional emission from an internal line, the formalism becomes slightly more
difficult. As an example we show a process with 2 incoming particles (charged) and n — 2
outgoing particles (charged). Imagine there is an s—channel on—shell internal particle and

er +ex #0.
1 ' k i) 3
\ 4
n

2

With the results of Section 3.1 we may write for the charge-weighted current of above
process

n+1 I N
Y4 P2
) e J! = < —e —e D(qg—k
7=1 " { 1p1'k 2p2'k} (q )

u 7 i
p3 p4 Dy
D
+ {63p3.k+e4p4.k+ +e”pn-k'} (q)
q*
+ (e1+e)=——{D(g—k)—Dl(g)}, (A.3)

q-k

with D(q) = [¢°> — m? +ie]™! (¢f Eq. (3.6)). It is straightforward to extend above
formula to [ incoming charged particles or more than one internal line. As long as there
is radiation off internal lines, it proved convenient to absorb the propagator functions
D(q) into the definition of the currents J!".

In order to calculate cross sections and thus the antenna pattern of a process with
photon emission off internal lines, one has to calculate the product J,J* according to
the definition of the antenna pattern in Eq. (3.9). This means solve integrals over the
virtuality ¢ of the internal particles. It is straightforward to show that!

v = [ G = (A4)

/dq2 D(g—k)D*(q—k) = /dq2 T ;2)2 s = ELTLF’ (A.5)

1 1
2D(q)D*(q—k) = /d2 .
[ da* D@D* (4~ k) L e P g S

. v
N = et (A.6)

where we introduced the decay width T of the internal particle of mass m, i.e. € =mlI".

1Use

dz 1 T
CRIEPY) = —arctan (—) .
z°+a a a
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A.2 Soft gluon emission

As before for soft photons we present the general rules for emission of soft gluons off

external quark and antiquark legs.

[ o
MV = P :
u(p) —_ - ( z,m) 9sdmn X & u(p;)
k,a,é16666€ y ]
9. = i o(p.:
V(pi) P n (Mz,ln> Isdmn Lk U(pl)

(Mzex> = Gs

mn | > g u(p;)

(M}g’ex) = gs

mn

Additionally we have emission off external gluons

a Cc

b8 6§
) kaOSGG

)M = gsfabc ["

B
15—/?} 6*ﬂ(/\l)fu()ﬁ)

)” :gsfabc piﬂ
p

i

] P (A1) (Ng)

We want to study gluon emission off internal legs by addressing the example of Sec-
tion 3.4, the production of a R-parity violating squark in the s—channel of e*q collisions.
The process eTq — ¢ — eTq + g is sketched below

e et e e' e e
. S
()
£ Pk P Pk P S
q T q q q q q

Adopting the notation from Appendix A.1 we may write for the colour charge current

3
b o= gk +JE+
1=1
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vk P
- _pq: ZD(P — k) + P.k{D(P—k)—D(P)}

pQOut :
+ —teut_p(p)
pQOut : k ( )

P# is the four momentum of the squark ¢. With the right colour factor the antenna
pattern reads

[4q] — [QOutq~] - [Qing] + [Qin%ut]:' } - (A.7)

1 N - e
5,7—'(? = CF{[qinq] + [qoutd] — [44) + x4

Again we absorb the propagators into the definition of the colour charge currents and
define for radiation off internal lines a somewhat modified antenna pattern [Dok93, Jik91,

K0S92]
FI ( ) ZC”/dqquzJ" 1) 7} i (q5) (A.8)

i.e. the antenna pattern of Eq. (3.23) normalised to the leading order contributions given
in Egs. (A.4,A.5). The integration variables ¢; and g3 define again the four momentum
of the internal particle which the radiation takes off from. From Egs. (A.4,A.5,A.6) we
immediately see that

M; 2F2

2 _ A9
Xs = (PR + MET? (A.9)

for our example of s—channel squark production at HERA in Eq. (A.7) (¢f. Eq. (3.117)).
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Multi—photon (multi—gluon)
amplitudes

We want to study the emission of more than one soft photon off a typical tree graph
process. We start by investigating two—photon emission and shall expand this formalism
to N photons in the aftermath. A typical process for the emission of two soft photons
off an external leg is shown below.

p+ki+k2  p+ki

The matrix element in this case is the sum of the two matrix elements shown above.
On the left-hand side we show the case that photon 2 is emitted prior to photon 1 and

the matrix element of this topology reads

May = € {em T8 €4, (M) X en i €y (A2)} M, (B.1)
Wlth (231 éLTL1 H2 p#iz (B 2)
T = R T .
21 DPm - k1 21 Dm (kl + k?)

The currents for emission of photon 1 prior to photon 2 as shown on the right-hand side

of above picture read

1 y254
J =7 J =7 B.3
12 D - (kl + kQ) 12 D - kQ ( )

So the total matrix element for the emission of two soft photons k; and ks off the external

leg m reads
M2 = 626%{%‘1‘ T+ I3 It }u (M)ep, (A2) M. (B-4)
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It is easy to show that

L1 gy 42 1 gy fL2
Comage ety | = oy it

pm'klpm'(k1+k2) pm'k2pm'(k’1+k2)

= Pmpm ! + !
m
(pm 'I‘:l)2 + Pm 'klpm'kQ (pm 'k2)2 + Pm - k1 pm - ko
1 2
m Py
Dm - kl Pm - k'?

More generally, in emitting an arbitrary number N of soft photons from an external line
m we can proceed via mathematical induction. We showed for two photons that

1 1 1 1

Pm - k1 pm - (k'l + k?) Pm - k2 Pm (kl —+ k?) Pm - k1 Pm - k2 ( )
Imagine we proved for N — 1 photons that
N-1 1 N-1
H ———— + permutations = H e (B.6)
=1 D - Z k] i=1 Pm - K
J=1
then we can write for N photons
N . 1 N1
H —————— + permutations = + permutations
W N bk
=pm - ) kj pm- 2k T
7=1 71=1

j=1
N . N N
1 1 1
- Y by T = 1
=1 pm . Zl k] _]_1 pm '] ]:1 pm 7
1=

Thus in extension to Egs. (3.7,3.15) we may write for the emission of N photons from
one external leg m (incoming or outgoing)

N i
H1p2...jpN N pﬂl B7
g = (o) [P (B.7)
with 7, = —1 for an incoming and 7,, = +1 for an outgoing external leg. The matrix

element of this process thus reads
MY = (ee, )N JHap2-sy €y (M1)€, (A2) - €, (AN) X MO, (B.8)

What we derived so far also holds for the emission of an arbitrary number of soft photons
from internal lines. But again care has to be taken and formula (B.7) cannot be applied
straightforwardly. In principle a decomposition of the propagators D(q) in extension to
(3.6) is possible, however the redefinition of the current is non-trivial.



Appendix B: Multi-photon (multi-gluon) amplitudes,

As far as emission off external legs are concerned, the reader should be able to write
down the antenna pattern for emission off an arbitrary number of photons off an arbitrary
number of external legs of an arbitrary process. The extension to emission off boson lines
should be regarded as an “exercise” and will not be presented here.

The same argumentation holds for multi gluon emission and will not be presented
here in length. The main differences are additional colour factors as they were discussed
in Section 3.1.2 and the self-coupling of the gluons, i.e. the gluon triple vertex Vgg,.
As we showed in Section 3.1.2, the basic structure of the additional factors for emission
off quarks or gluons are identical (modulo colour factors). The results are summarised
in Appendix A.2. We also discussed gluon emission off internal legs, carrying a colour
charge. With the formalism developed for multiphoton emission, the reader should be
able to formulate soft multi gluon emission.
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Chapter 4

Radiation zeros — more about
nothing |

“It 18 so much easier to do
a measurement than knowing
what one is really measuring.”

(J.W.N. Sullivan)

In the previous chapter we discussed antenna patterns for processes with soft gluons
or soft photons in the final state. We discussed that these antenna patterns act as
partonometer for a given process, specific to final-state kinematics, masses, colour and
electric charges. In this chapter we shall study another feature of antenna patterns
(i.e. amplitudes with additional radiation of photons and gluons, not necessarily being
soft): the occurence of radiation zeros in certain processes. Almost all Born (tree-level)
amplitudes for the radiation of photons and gluons and other massless gauge bosons have
such zeros. But it is not always possible to find a real (physical) solution. Basically we
shall see that this is strictly speaking mostly the case for photon radiation. Radiation
zeros can be observed under certain circumstances as will be discussed in Section 4.1
where we shall work out the general features and properties of them which may be shortly
characterised as vanishing of radiation in a certain region of the photon phase-space due
to complete destructive interference between initial and final-state radiation.

The discussion of radiation zeros in the literature goes back to the early 80’s when
general theorems for their existence have been formulated. Very recently, however, we
discovered a new type of radiation zeros with some important different features compared
to the “classical” ones.

We shall then study radiation zeros at HERA in Section 4.2 and at the LEP collider
in Section 4.3 and show some important applications for high-energy phenomenology.

Finally we shall review the main results of this chapter, the main results obtained
elsewhere and give some ideas for further studies of radiation zeros in Section 4.4.
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4.1 Introducing radiation zeros

In certain high-energy scattering processes involving the emission of one or more photons,
the scattering amplitude vanishes for particular configurations of the final-state particles.
Such configurations are known as radiation zeros. They also appear for the emission of
other massless gauge bosons in the physical region, i.e. not yielding complex solutions.
We shall not discuss radiation zeros in gluon radiation, as from the structure of the colour
factors there were no zeros found so far in SU(3). It is, however, shown, that for SU(v/2)
there are radiation zeros in the physical region [Bro97] but this discussion can not be the
focus of this thesis. Therefore, if we talk about radiation zeros, we shall basically only
refer to -y radiation, even though we mean all massless gauge bosons in principle.
Radiation zeros have an interesting history. Although they are in principle present
in QED amplitudes, they first attracted significant attention in processes involving weak
bosons. For example, the pioneering papers of Mikaelian, Sahdev and Samuel [MSS79)
and Brown, Sahdev and Mikaelian [BMS79] considered radiative charged weak boson
production in ¢'¢ and ve collisions. The cross sections for these processes vanish when the
photon is emitted in certain directions. As an example [MSS79, BMS79] one finds for the
W production mechanism at hadron-hadron colliders via d(p1) +@(p2) = W~ (p3) +v(k)
a radiation zero at
cosfy = % , (4.1)

where 6, is the polar angle of the photon in the c.m.s. frame with 6, = 0° in the incoming
d-quark direction. Recently, experimental evidence for zeros of this type has been found
at the Fermilab TEVATRON pp collider [CDF97]. We shall come back to this important

fact in Section 4.4.
In addition to the phenomenological analyses, a deeper theoretical understanding

was developed in the pioneering papers by Brodsky and Brown [BB82] and Brodsky,
Brown and Kowalski [BBK83]. More extensive studies followed by Passarino [Pas83] and
Laursen, Samuel, Sen and Sylvester [LSS83, Lau84, Lau85|.

4.1.1 Classical (type 1) radiation zeros

The vanishing of the (tree-level) scattering amplitude can be understood as arising from
complete destructive interference of the classical radiation patterns of the incoming and
outgoing charged particles. As we discussed in the previous chapter any process of the
form

1,2, 0= ({+11+2,---,n)+7,

where we assume the emission of one soft photon, can be written as (c¢f. Eq. (3.7))
MY ~¢ {Z eiJi’“Le;(/\i)} MO, (4.2)
B
We adopt the definition of the charge current (cf. Eq. (3.15))

n p
d el =) P 4.3
i o 1:1melpz"/€' (43)
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with 7; = —1 for emission from an incoming and n; = +1 for emission off an outgoing
particle and e; being the charge of the ith particle. The classical [BB82, BBK83] radiation
zeros are obtained by noting that the condition

€1 2 _ ... __ % (4.4)

pl'k—pZ'k pn'k’

immediately yields M"Y = 0 (i.e. radiation zeros) if
a) energy and momentum is conserved: 3, n;pf =0,

(a)
(b) charge is conserved: Y, me; =0,

(c) all particles are electrically charged,

(d) all particles have the same sign of electric or colour charge, i.e. e;e; > 0V, .

To understand the same sign rule it is necessary to note that p; - £ > 0 Vi and thus from
Eq. (4.4) follows (d). This condition (4.4) was first formulated by Brodsky and Brown
[BB82] and we shall call the radiation zeros obeying Eq. (4.4) classical radiation zeros
or radiation zeros of type 1. In principle, and we mentioned this study earlier, there are
also radiation zeros with physical solutions in the process e"7, — W™y, i.e. for one
chargeless fermion. This process was studied in [BMS79, MSS79]. Defining the polar
angle of the photon with respect to the direction of the incoming e~ we obtain by solving

Eq. (4.4)
-1 . ep, _
1 —cosb, ~ 1+ cosb, B
We find a solution but the radiation zero of above process lies on the beam line and gets
swamped by the collinear singularity. Thus, even though there is a solution for chargeless
fermions, it is of no phenomenological interest and thus assumption (c) makes a great

0, = cosf,=1. (4.5)

deal of sense.
Let us study the paradigm process that we mentioned above in more detail: W~

production via da fusion plus additional (soft) photon.

W d W
rd ’/
> e
4
_-)-_4LLLL’
y U ¥

o ey Wd__,

u d
~eg/t ~eq/u ~ ey / (s-M3%)

At the tree level there are three diagrams contributing to the matrix element. A
t-channel diagram with an amplitude proportional to ez /t, a u-channel diagram propor-
tional to eq/u and a s—channel diagram proportional to ey /(s — M{,). We further note
that if the polar angle of the photon is again defined with respect of the incoming d quark
direction that t = —%(s — M )(1 +cos8,). With s+t +u = M, and eq +ez = eyy- we
finally can write the amplitude as

€q €
My = {2 - S Foxim), (46)
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where F(0;, A;,p;) denotes a reduced matrix element as a function of the fermion helicity

i, the vector boson polarisation A; and the external momenta p;. Solving Mz‘,_ =0
immediately yields
€y — €4 1
cos ., = == 4.
K ez + €eq 3 ’ ( 7)

which is exactly what one finds by solving Eq. (4.4), i.e.

€q €4 (7] €d (4 8)

= & = .
pa-k  pg-k 14+cosfy 1—cosby
What happens if a massive gaﬁge boson is “radiated”, i.e. how would the process
du — W™ Z look like with focus on radiation zeros? The question was answered by Baur,
Han and Ohnemus [BHO94]. The amplitude can be written as

M, = XFx(0i, Xi,pi) + VFy(0i, X, pi) (4.9)

where X' and Y are combinations of left—-handed gauge couplings

L L 2
s (97 94 I sM3
X == uo_ , = —_— 4.1
2 ( t u ) Y = 9a 2u(s — M%) (4.10)

We see from Eq. (4.9) that the helicity amplitudes would factorise for M; = 0 and we
could locate the radiation zeros by solving gkt — gbu = 0, which would yield exactly the
same solution as for radiation of a massless vy in Eq. (4.7) but now with different gauge
couplings (g rather than e;), if and only if ¥ = 0. As long as the radiated gauge boson
is massive we always have ) # 0. But, and this was the discussion in Ref. [BHO94), in
the high-energy limit s 3> M we achieve Y ~ 0 and thus an approximate solution

L_ L 2
9a — 94 Mz
cosby = F—4+0 . (4.11

gt + 97 < s ) )

One easily sees the coincidence of this solution with Eq. (4.7) in the high-energy limit.
Why do we mention this example? Radiation zeros are dependent on the gauge couplings
(€5, giL, --+). This dependence turns out to be very subtle. Thus, any anomaly from the
gauge coupling quite strongly influences the position of the radiation zeros. One of the
hopes is to use radiation zeros as diagnostic tool to pin down gauge couplings with
extreme accuracy, only limited by the resolution (i.e. detectability of radiation zeros) of
the detector. We shall discuss further details at the end of this chapter in Section 4.4.

This is a typical example of an approzimate radiation zero.

Brodsky and Brown showed [BB82] that condition (4.4) holds for any tree level am-
plitude including contact (seagull) graphs, independent of the spin of the particles and
the photon helicities. Radiation zeros also survive the transition from a soft to a hard
photon. The constraint (4.4) is also valid for massive particles. Imagine as an easy ex-
ample massive incoming charged particles, e.g. two massive quarks, and let their masses
m and energies E be equal. Then we find for the polar angle 57 where radiation zeros

can be observed

es—er l
ert+ep’

€1 €2

PRy (4.12)

= cosfy, =

!From now on we denote the position of the radiation zeros in the photon phase space with @\7 and

b
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where 0, is defined with respect to the incoming particle 1 and p = /1 — (m/E)?. From
this simple example we may already derive some interesting features of radiation zeros:

e For e = ep = () we find for the polar angle 57 = 90°, i.e. the position of the
radiation zero is symmetric with respect to the beam line. Complete destructive
interference only takes place orthogonal to the direction of the equally charged
incoming particles;

e In order to obtain physical solutions, we obviously require

es—epl
€e1+exp

<1

and thus

E |61 -+ BQI '
Not only can one realise the important fact that only the same sign rule yields
physical solutions, i.e. ejes > 0 but also that there is a critical mass ;¢ for which
the radiation zeros move out of the physical phase space for m > mg;. Again for
e1 = ey = () we find as condition for the occurence of radiation zeros m < E. At
threshold m = E the incoming particles are at rest and therefore do not radiate.

m 5 Veies

We may now summarise our results on type 1 radiation zeros

(1) The underlying condition for the vanishing of the matrix element M? is given in
Eq. (4.4). Additionally we need energy-momentum and charge conservation.

(2) This condition holds for emission off scalar as well as vector particles of arbitrary

spin.

(3) From the physical point of view radiation zeros are due to complete destructive
interference of the classical radiation patterns of the incoming and outgoing parti-

cles.

(4) All particles must have the same sign of charge (colour charge, electric charge) and
any chargeless particle in the external legs yields “collinear radiation zeros” (see

discussion above).

(5) Radiation zeros are only observable in tree-amplitudes, including contact inter-
actions. One loop corrections spoil the destructive interference as was shown by
Laursen, Samuel and Sen [LSS83]. Considering the amplitude for the radiative de-
cay of W™ into two scalars, i.e. W™ — ¢1¢27y including one-loop gluon corrections,
the authors showed that triangle (and boz) graphs spoil radiation zeros, whereas
gluon self-energy graphs and contact interactions (seagull graphs) do not.
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RZ 1 ,Ri 1

S
W, 06 W, ‘g"\,\’

P2 P2

This is easy to see, as from the self-energy diagrams additional factors e;/(p; - £)
are picked up yielding internal momenta £ that have to be integrated over. For
emission from a triangle graph (picture on the right) it is impossible to tell what
the underlying factor e;/(p; - £) is which finally should fulfill Eq. (4.4), or let us
argue more physically motivated: if there is gluon emission and reabsorption from
the same leg during a time At, then there will be certainly no emission of a photon
from this leg during A¢. There might be a small probability but the uncertainty
relation governs the limits. This is different for the triangle graph on the right hand
side. Imagine we have gluon emission off leg 1 and absorption from leg 2. During
this time the two legs gained a further transverse separation which in principle gives
leg 2 enough time to radiate off photons, before absorbing the gluon from leg 1.

Brodsky, Brown and Kowalski found same results for radiative decay of W into
fermions [BBK83].

(6) The positions of radiation zeros (57, $7) are dependent on the charge, the kinemat-
ical configuration and the masses of the underlying particles.

(7) Radiation zeros are independent of the helicity of the photon (massless gauge boson,
gluon) and show up for soft and hard radiation. The emitted particle should have
a spin 7 < 1. Passarino showed [Pas84] how gravitons (spin 2 particles) spoil the
radiation symmetry and that no radiation zeros can be found.

Besides the important contributions to the understanding of radiation zeros in relativistic
field theory which we cited above we would like to mention the studies of Grose and
Mikaelian [GM81]. The question which these authors address is how radiation zeros can
be used as diagnostic tool to distinguish purely hadronic decays of the gauge bosons from
radiative decays, i.e. distinguish W — ¢'gg and Z — ¢gg from W — ¢'qy and Z — ¢g7.

A nice phenomenological application was presented by Hagiwara, Halzen and Herzog
[HHHS84]. They studied subprocesses like ¢'¢ — ¢'qy at a pp collider to pin down the
colour charge of the participating quarks by measuring the positions of the radiation
zeros. The main reason for this study was the experimental verification of quarks with
charges —1/3 and +2/3 instead of colour charges 0 or 1 as they were postulated in the
Han-Nambu quark model.

Very recently studies of radiation zeros in multiple photon emission processes like
pp — WEyy — £Fvyy were presented [Bau97]. This process is of some importance for
measuring possible anomalous couplings of the trilinear WW+ vertex and also deals as
discriminator for the W signal at the TEVATRON.
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4.1.2 Classical interpretation of radiation zeros

Radiation zeros are not a special feature of relativistic high—energy processes but have
their origin in non-relativistic dipole scattering (c¢f. [LL75]).

Imagine a system of particles with charges @; and masses m;. Imagine further that
the distances a;; between these charges is small compared to the wavelength A; of the
emitted radiation. All particles must be in accelerated motion in order to radiate but
because of a;; < A; we have

v; L c.

Defining the total dipole moment of a system of n charged particles as

1=1
the electric field is equal to
— ]_ - -
£ = c_2(d x ) X fi,
and for the magnetic field one finds
H= —%&' x 1
c

Note that we defined the time derivative X = %5{’
The observation is now: suppose for all n particles the charge to mass ratios are the

same, i.e.

€ .
EZ:H Vie{1,2,---,n}.
Then
. n n N n
d= Ze[’z = mZmi"l = /ﬁ’RZml
i=1 =1 i=1

where R is the radius vector of the centre of inertia of the system (this definition is
possible due to the fact that v; < ¢). The electric £ and magnetic # fields are propor-

tional to d and thus proportional to R. But as the centre of inertia moves with constant
velocity we find R = 0 and thus no radiation.

Eq. (4.4) as it was derived by Brodsky and Brown [BB82] may be interpreted as
the relativistic continuation of non-relativistic dipole radiation, giving a more general
condition for the occurence of radiation zeros.

In the following we shall present a new type of radiation zeros not fulfilling condition
(4.4). But besides a few other remarkable feature we shall discuss below, everything we
said about type 1 radiation zeros ((1)-(7)) will still be valid.

4.1.3 New (type 2) radiation zeros

There is a new type of radiation zeros that only arises when the scattering is planar, i.e.
the three-momenta of all the particles including the photon lie in the same plane. This
was not the case for the classical type 1 radiation zeros which basically are not restricted
to a certain region of the phase space as the kinematical configuration changes. Type 2
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radiation zeros, however, only exist inside the scattering plane. In this case, if one chooses
one of the photon polarisation vectors €, to be orthogonal to the scattering plane then
€1 -p; =0 for all ¢ gives €, - J = 0 for any orientation of the particles and photon in the

plane.

The requirement that the amplitude M7 vanishes for all helicities and polarisations
means that one must also have ¢ - J = 0, where (the spatial part of) el‘l‘ is inside the
scattering plane and orthogonal to the photon direction. The solution of ¢ - J = 0
then gives the position in photon angular phase of the radiation zero. If we denote the
direction of the three-momentum of particle ¢ by 1i; and the direction of the photon by
fl, then the condition is (for massless particles)

‘nZ

€ - T
Z . ) 4.13
i emzl P 0, ( )

with & - i = 0.

If we define 0.; as the angle between the photon and particle ¢ directions, then we

arrive at
— P s .
6” ‘n; = COs <§ — 971') = Sin 971' s (414)
n- ﬁz = cos (971' 5 (4.15)

and finally condition (4.13) can be cast into the simpler form

Z e;i1i cot(6:/2) = 0. (4.16)
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Note that 6,; must be defined in the same sense (clockwise or anticlockwise from the 7y
direction) for each particle, so that the cot can have either sign. Eq. (4.16) allows us to
derive an existence proof for the zeros.

First we note that cot(6,;/2) — oo as #,; - 0 — these are the usual collinear
singularities for massless gauge boson emission from massless fermions. Second, we note
that not all the e;n; can have the same sign (charge conservation). Therefore there exists
at least one angular sector, between 7 and k say, where the collinear singularity has
the opposite sign (i.e. — o00) on the boundaries of the sector. Since the left—hand
side of (4.16) defines a continuous function of the photon polar angle away from the
collinear singularities, according to the Intermediate Value Theorem the function must
vanish somewhere in the sector between j and k. The exact location of the zero depends
not only on the strength of the collinear singularities at 0., 6.4 = 0 but also on the other
non-singular contributions (7 # 7, k) to the current in that region.

For 2 — 2 scattering the solutions to (4.13) or (4.16) can be found analytically, for
more complicated scattering numerical methods can be used. The existence of zeros re-
quires certain constraints on the charges, masses and scattering kinematics to be satisfied,
as we shall see in the following sections. For example, there are no collinear singularities
for massive fermions, and therefore the existence of a radiation zero in the angular sector
depends on how strongly the distribution is peaked close to the massive particles, which
in turn depends on the exact value of the mass.

Type 2 zeros do not require that all the charges have the same sign. For example, the
process e~d — e~ dry has zeros of both types, whereas e et — dd~ only has type 2 zeros.
Although for simplicity we have used soft-photon matrix elements and kinematics in the
discussion above, radiation zeros of both types are also found when exact kinematics and

matrix elements are used.
Let us summarise the main differences between type 1 and type 2 zeros.

(1) Type 2 zeros can only be found inside the scattering plane.

(2) To locate radiation zeros of type 2 for a given process including massless particles
one has to create a suitable set of polarisation vectors e*(A = £) = {e’i,el’l‘ }
fulfilling the following conditions

ec;-k=0and ¢ k=0,
®c -pi=0.
and solve Eq. (4.16) or in simple cases Eq. (4.13).

(3) As it is obvious from Eq. (4.16) there is no need for a same sign rule as was needed
for type 1 zeros. This means that only with type 2 zeros studies of radiation zeros

at, e.g., LEP become possible.

The point (3) is quite remarkable. Constrained by the same sign rule there were never
predictions for radiation zeros at ete™ colliders. Nearly every process in leading order
contains radiation zeros and it is also easy to see from Eq. (4.16) that not necessarily all
particles need to have electric or colour charge.



Chapter 4: Radiation zeros — more about nothira 154

There is still a lot to be done about type 2 radiation zeros; a huge realm of applications
for high—energy phenomenology opens. Radiation zeros are the fingerprints of a given
process, depending on the underlying particles, kinematics, masses, etc. as will be shown
below. The aim is to distinguish signal and background processes using radiation patterns
as we discussed in Chapter 3 and additionally radiation zeros if they exist for a given
process. In the ideal case one hopes that there will be radiation zeros exclusively in either
the signal or background process. -As we shall discuss in the following there should be
a clear signal in the signal/background ratio where the radiation zero is expected. In
reality the radiation zeros will be “washed out”, i.e. one observes radiation DIPS rather
than exact zeros.

In the following we shall discuss radiation zeros at the HERA ep and the LEP ete”
collider demonstrating in detail what we tried to summarise in this introduction.

4.2 Radiation zeros in eq — eqy scattering

Same—sign charge scattering occurs naturally in high—energy hadron collisions in subpro-
cesses such as ud — Wty. However similar phenomena can be expected in lepton-hadron
collisions, and in particular at HERA in processes such as eq — eq + v for eq = e*u
or ¢~ d. Studies of radiation zeros for these processes at HERA were first performed by
Bilchak [Bil85], Couture [Cou89], Li, Reid, and Samuel [LRS90] and more recently by
Doncheski and Halzen [DH91], in the framework of type 1 zeros.

With the introduction of the new type of radiation zeros in Section 4.1.3 we are no
longer restricted to the same sign rule, but might explore the Standard Model e*q —
etq + v process with no restrictions on q.

From an experimental point of view the detection of photons in the final state is
highly non—trivial. The rates are small (suppressed by O(a) compared to the total cross
section) and the photons must be well-separated from the beam and from the other
final-state particles, and contained within the detector. The basic question is whether
the radiation zeros of the scattering amplitude correspond to ‘detectable’ photons at
HERA. In this study we will present results for typical values of the DIS variables y and
Q2 which correspond to observable quark jets and scattered positrons. For these values
we will investigate the location of the radiation zeros for photons with an energy greater
than 5 GeV.

The strategy is as follows. We first consider soft-photon emission and derive analytic
solutions for the location of the radiation zeros in the eq c.m.s. frame. We then show
how the transition from soft— to hard—photon emission shifts the position of the zeros.
Finally we move to the HERA lab frame to see where the zeros occur in the detector.
We also compare our exact matrix—element results with an approximate calculation in
which photon emission is included in the collinear approximation, which could correspond
for example to a parton—shower implementation of such emission. This model has no
radiation zeros and serves as a benchmark for the amplitude suppression in the exact
result.

In the following we shall study the reactions
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Other scattering combinations (e*@,e u,...) can be obtained from these basic pro-
cesses by readjusting the charge factors. The expression for the matrix element squared
(summed and averaged over spins) may for example be obtained by crossing the expres-
sion for ete™ — p*u~ + given in Ref. [Ber81]. In terms of the four-momenta defined
in Egs. (4.17,4.18) the matrix element for massless quarks and leptons is

(p1-p2)2 + (p3 - pa)® + (p1 - pa)® + (p2 ‘103)2}—7

[Ms2(eTq = etq+ ) = ebe? . (4.19
) K (p1 - p3)(p2 - p4) - (419)
with the antenna pattern (cf. Section 3.1.1)
1
57;1 = e2[24] — e {[12] + [34] — [14] — [23]} + [13]. (4.20)

The eikonal factors [¢7] are defined in Eq. (3.11).

The antenna pattern of Eq. (4.20) contains collinear (k- B, — 0) as well as infrared
(wy = Ephoton — 0) singularities. It is this factor which vanishes for certain configurations
of the momenta. Note that we only take the neutral current y*-exchange into account
as the antenna pattern in Eq. (4.20) is independent of the exchanged particles as long as
they do not themselves emit photons. This approximation will influence the cross section
rate slightly at high @2, but will not affect the position of the radiation zeros.

Type 1 radiation zeros

To see under what conditions Fg vanishes, we first recall the ‘single-photon theorem’
from Section 4.1.1 which states that the amplitude vanishes when the charge-weighted
scalar products Q;/(p; - k) are equal (¢f. (4.4)). If we denote the common value by A,
then

[i7] = (Q:iQ;) ™' A\ p; - p (4.21)
and it is straightforward to show by substitution in Eq. (4.20) that this gives FJ, = 0. In
the present context, the equality of the charge-weighted scalar products corresponds to

L % v & (4.22)

pr-k p2-k p3-k pa-k

We can obtain a simple analytic solution to these equations by taking the soft—photon
limit in which w,/E; — 0. In this limit we have simple two-body kinematics for the
quarks and leptons, p1 +p2 = p3+ps. If we work in the etqc.m.s. frame, and define 6, 04
to be the angle between the photon and the incoming and outgoing quarks respectively,
then the equations (4.22) become

L _ & _ 1 _ A (4.23)
1+ 29 1— 29 1+ 24 1—24,

where z; = cos §;. Equivalently,

1-—
PR " (4.24)

A necessary condition for such a solution to physically exist'is e; > 0 (= |z| < 1), ie.
ety or etd scattering. This reproduces the well-known result for scattering of particles
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with the same sign of electric charge, as discussed in Section 4.1.1. By itself, however,
the condition e, > 0 is not sufficient to guarantee a zero in the scattering amplitude.
The equation 2o = z4 can only be satisfied for certain configurations of the final-state
particles. To see this, we introduce an explicit representation of the c.m.s. four-momenta:

pi = ?(1,0,0,—1) , (4.25)
Pl = ?(1,0,0,1) , (4.26)
Py = \/7? (1,5in 04,0, cos ) , (4.27)
oy = \/7—5 (1, —sin©y,0,— cos Q) , (4.28)
k* = wy(1,sinf, cos $,,sin b, sin ¢, cosb,) . (4.29)

These variables are illustrated in Fig. 4.1.

%ﬂps)

B/q(po

Figure 4.1: Parametrisation of the kinematics for e™(p1)g(p2) = e*(p3)q(ps) + v(k) scat-
tering in the e™q c.m.s. frame. The orientation of the photon relative to the scattering plane

is denoted by 6., and ¢,.

It is straightforward to show that the conditions for FJ, = 0 defined in Eq. (4.24)

correspond to

-~ 1 —eq4
= , 4,
cos 6, TTe,’ (4.30)
and
- 2
¢, = Farccos M . (4.31)
tan 6,

Thus for e, = +2/3 we find radiation zeros at 6, ~ 78.46° and for e = +1/3 at 8, = 60°.
We present the positions of the radiation zeros (57, 57) for process (4.17) (e*u scattering)
in Fig. 4.2(a).

Note that the requirement of a physical solution for <$7 places restrictions on ©,.
There are two radiation zeros in the (¢,,6,) plane for ©, < 257 ~ 156.94°. The cones
around the incoming and outgoing quarks defined by 25,24 = 1/5 have two lines of
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Figure 4.2: The position of the radiation zeros as a function of the quark scattering angle
O, for soft—photon emission in (a) etu — etu + v and (b) e*'d = etd + v in the (¢, 0,)
c.m.s. phase space of the soft photon.

intersection along which there is completely destructive interference of the radiation.
Note also that at ©4 = 257 = @flrit the radiation zeros degenerate to a single line (i.e.
single point in (¢,,6y) spAace) located in the scattering plane ($7 = 0°). There are no
radiation zeros for ©4 > 260, ~ 156.94°. Finally, for O, = 0° there is an infinite number of
Cadz'ation zeros (‘null zone’) located on a cone around the beam line with opening angle

..

Type 2 radiation zeros

The processes (4.17,4.18) exhibit a second class of radiation zeros, which we discussed in
Section 4.1.3, which do not satisfy the ‘single-photon theorem’. These zeros are located
in the scattering plane at gay = 0° and qA57 = 180°. The corresponding 57 values may be
calculated straightforwardly in the soft-photon approximation as a function of the quark
charge e, and the quark scattering angle ©4. The result is

(1- eg) (1+cos©y) + \/m (4.32)

1
2 (1 _‘3q)2 ’

-~

cosfy =

with _
2
A, (eq,c0804) = (eg - 1) (1 +cos @q)]
- 41— eq)2 (63 cos O + 2e4 + cos (9,,) . (4.33)
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The condition A, (e4,co8©,) > 0 constrains the range of e, for which physical zeros
exist. In terms of the polar angle ©, we have

cos Oy +3 —2,/2(1 + cos ©,)
< <1, (4.34)

—00 < eq <
1 —cosO, -
or
< cos O + 3 + 24/2(1 + cos Q)
< ; .
< T —cos®, < eg < +o00, (4.35)

the latter being actually redundant since Standard Model quarks have |e;] < +2/3. From
Eq. (4.34) we obtain constraints on the quark scattering angle ©, for particular flavours
of quark. There are radiation zeros for all e, < 0 and for positively charged quarks in a
limited range of ©,. We summarise the results in Table 4.1.

etu | eg=+2/3 | cos©, < m — arccos (%%) Oy 2 157°
etd | eg=+1/3 | cos Oy < —1 0, > 120°
etd | eg=—1/3 |V cos O, vV O,
et | eg=—2/3 |V cosO, VO,

Table 4.1: Ranges of the quark scattering angle O, for different quark charges, for which
radiation zeros exist. Note that for e; < 0 there are always two radiation zeros in the
scattering plane for ¢, = (0°,180°) with the 6, value given by Eq. (4.32).

Note that et u scattering has both type 1 and 2 zeros. However, the latter are located
very close to the beam direction, making their observation difficult in practice. They also
require very high Q? (back-scattered quarks) and therefore have a small event rate. The
positions of the type 2 zeros for e*d scattering are shown in Fig. 4.2(b) as a function of
©,. Finally, Table 4.2 lists the numerical values of the radiation zero angles (57, 57) for

several values of ©,.

0, etd scattering etu scattering

30° || (0°,76.12°) | (180°,46.12°) | (—86.86°,78.46°) | (86.86°,78.46°)

45° || (0°,84.98°) | (180°,39.98°) || (—83.23°,78.46°) | (83.23°,78.46°)

90° || (0°,114.29°) | (180°,24.29°) || (—78.22°,78.46°) | (78.22°,78.46°)

Table 4.2: Position of the radiation zeros (57,57) for three different quark scattering angles
Oy, in the soft—photon approximation.
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4.2.1 Zeros for arbitrary photon energies

The analytic results obtained above use the soft—photon approximation. However radia-
tion zeros of both types exist for all photon energies and can be located using numerical
techniques.? We continue to work in the etq c.m.s. frame but now use exact 2 — 3
kinematics. Without any essential loss of generality, we can keep the direction (0,) and
the energy (£) of the outgoing quark fixed and vary the direction and energy of the out-
going photon, constructing simultaneously the four-momentum of the outgoing positron
to conserve energy and momentum. The new four—vectors of the outgoing quark, lepton
and photon momenta are then

Py = E,(1,5in0,0,cos 0,) , (4.36)
Py = pi+ph—pf -k, (4.37)
k' = wy(1,sinf, cos ¢,,sin b, sin¢,, cosd.,) . (4.38)

Once again we obtain a vanishing matrix element in Eq. (4.19) if the antenna pattern
Fey of Eq. (4.20) is zero. For type 1 radiation zeros, the single-photon theorem again
leads to the conditions in Eq. (4.22). The equality of p; - k£ and ps - k leads immediately
to Eq. (4.30), i.e. the radiation zeros are at fixed 97 independent of the photon energy.
However the azimuthal angle &7 does vary with w,, since the supplementary condition
29 = z4 only applies in the wy, — 0 limit. For type 2 zeros, it can be shown that the
condition ‘% = 0°,180° again applies for arbitrary w,, i.e. the zeros are always located
in the scattering plane.

In Fig. 4.3 we show the dimensionless quantity N;{I = w?/}"gq for different photon
energies and fixed final-state quark kinematics.

The figures (a) and (b) correspond respectively to slices through the (¢,,6,) plane
according to the positions of the soft—photon type 1 and 2 radiation zeros of the previous
sections. As the photon energy increases, there is a systematic shift in the positions of
the zeros. As radiation zeros are semi—classical effects due to destructive interference,
it is easy to understand that fixing the position of the outgoing quark and simulta-
neously increasing w., shifts the interference regions between the participating charged
particles as the outgoing positron must balance energy and momentum and thus changes
its relative orientation. Thus the asymmetric w, dependence of the two radiation zeros
in Fig. 4.3(a) is due simply to our choice of fixing the final-state quark direction rather
than the direction of the scattered positron. The zero in the quadrant between the (fixed)
incoming positron and outgoing quark directions is relatively insensitive to the changes
in the positron direction induced by varying w,. The other zero follows the direction
of the outgoing positron as w, increases. The same effect also explains the symmetric
dependence of the two radiation zeros for the process ety — etu + . The zeros are
located symmetrically above and below the scattering plane and are influenced equally
by changes in the scattered positron direction.

Figs. 4.4(a,b) show the positions® of the radiation zeros Z; and Z, for the two pro-
cesses as a function of the photon energy at various fixed ©4. Z4(O4,w) is located in
the quadrant between the outgoing positron and the incoming d quark and Z,(0,,w,)

*Note that we use massless quarks and leptons to calculate the matrix elements. However both types

of radiation zero are also present for non-zero masses.
3The exact locations of the zeros are determined by a numerical procedure.
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Figure 4.3: The dimensionless antenna pattern N, = w3F], for (a) etd — etd + v (at
fixed ¢, = 0°) and (b) etu — etu + 7 (at fixed f., ~ 78.46°) for different photon energies
(wy = 10,20, 30,40 GeV). The outgoing quark direction is fixed at ©, = 90° with energy
E;, = 100 GeV. The directions of the incoming and outgoing quarks and leptons are indicated.

is located in the quadrant between the outgoing u quark and the outgoing positron (see
Figs. 4.3(a,b)). The values on the axes at w, = 0 coincide with the analytic results

obtained previously (see Table 4.2).
The dashed lines in Figs. 4.4(a,b) are simple polynomial fits. For e*d scattering we

fit gﬂ, for fixed c% = 180° using a quadratic polynomial,
Z4(0y4, w,yv) = Zg(@d) + diwy + deg , (4.39)

where Zg(@d) corresponds to the soft—photon results listed in Table 4.2. The radiation
zeros for et u scattering (i.e. a fit for ¢, at fixed 6, = 78.46°) can be approximated by a

first-order polynomial
Z4(On,wy) = 22(0,) +wywy . (4.40)

The results of the fit are presented in Table 4.3.
As a final exercise in our c.m.s. studies we calculate the differential cross section for
the two subprocesses. The general form of the differential subprocess cross section in the
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Figure 4.4: The positions of the radiation zeros Z; as a function of the quark scattering
angle ©, and the photon energy w, for (a) etd scattering and (b) e*u scattering. The
analytic results for the soft-photon limit (w, — 0) are summarised in Table 4.2. The dashed
lines are a polynomial fit in the photon energy for given ©,. Note that in (a) we employ a
second—order fit whereas in (b) a first-order fit is sufficient. The fit parameters are listed in
the text.

etq c.m.s. frame may be written as

d%s 2 E%7 )
- = 5 M Seqgtv), (441
W?Yllt
where
E, _ g- 2w7\/§

7 25— 2wy (1 — cosfyy) (4.42)

The integration over w, smears out the radiation zeros to form a sharp dip in the cross

section. Since the cross section decreases rapidly with increasing w,, the dip is close to
the location of the zero corresponding to fixed wy = w,‘";“t

The distributions for the two subprocesses are shown in Figs. 4.5(a,b) for w§" =

5 GeV. Note that we have also imposed an angular cut around the beam line of 5°

in Fig. 4.5(a). The transition from radiation zeros to radiation dips can be seen by
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d—quarks u—quarks

Ol dr |do | x® Jw |

30° || 0.576 | 0.015 | 5.91 || 0.59 | 5.3 x 1072

45° | 0.012 | 0.014 | 0.76 || 0.40 | 3.0 x 10~3

60° || 0.149 | 0.002 | 0.01 || 0.28 | 1.3 x 1074

Table 4.3: Fits for the w, dependence of the two selected radiation zeros shown in
Figs. 4.4(a,b) according to the definitions given in Egs. (4.39, 4.40).

comparing Figs. 4.4 and 4.5. Choosing larger values of wfy“t shifts the radiation dips to
higher values of ¢, and 6, at the same time decreasing the overall value of the subprocess
cross section.

4.2.2 Choosing HERA kinematics

In this section we shall discuss the possible observation of radiation zeros at HERA. To
do this we modify the previous calculation by (a) moving to the HERA lab frame, (b)
including the parton distribution functions, and (c¢) summing over all flavours of quarks
in the initial state.

In neutral current DIS the cleanest way to reconstruct the kinematics of a given
event is by measuring the energy E! and the laboratory angle Olb of the outgoing
positron. In terms of the Bjorken scaling variables z and y we may write (see for example
Refs. [ZEUS95, H1.95])

EI
y = 1- (1—cos®13b) , (4.43)
e
_ 1 Etlz lab
r = §2Ep (l-l-cos@e ), (4.44)
Q° = ays, (4.45)

where E, is the energy of the incoming proton and s = 4E,Ep is the c.m.s. energy of the
et p system. The polar angle of the positron O!3b is defined with respect to the incident
proton beam direction. The precision of the y measurement typically degrades as 1/y,
and thus one naturally assumes y 2 0.05 [H1.95].

Since we are interested in DIS events with an additional hard photon emitted at
different angles in phase space, the natural quantity to consider is the triple-differential
cross section d*c/ (ddeZdQlf‘b). In the HERA lab frame this is given by

_L( Segty+X) = 1
dydQ2dQlab preqTy T 2567ts
w _
X dw v M 2 eq — eq + 7 9 ’ 446
zq: / 7 £(Q%/z —2p - k) M| (eq q+7) fosp(&e @) (4.46)

cut
Wy
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Figure 4.5: The subprocess differential cross section dQ&/dQ,deq of Eq. (4.41) for c.m.s.
et d scattering (solid lines) and e*u scattering (dashed lines). We again choose those slices
through the photon parameter space (¢,,6,) that contain radiation zeros in the soft limit
(i.e. a choice of ¢, = 0° in (a) and cos@, = 1/5 in (b)). Note that we integrate over
the photon energy w, and fix the position of the outgoing quark at ©, = 90° with energy
Ej, =100 GeV. In (a) we impose an additional angular cut of 5° around the beam line.

where 0% - 29 k
&= _——Q2/$ — gp % > T, (4.47)
In the calculations which follow we choose E, = 27.5 GeV, E, = 820 GeV and
neglect all quark and lepton masses. We again take wfy“t =5 GeV for the lower limit of
the photon energy. For the quark distribution functions f,/,(&, Q?) we use the MRS(A')
set of partons introduced in Ref. [MRS95], with QCD scale parameter AI]\V/[_‘S: 4 = 231 MeV
corresponding to as(M%) = 0.113. In order to stay in the valence-quark scattering
region (i.e. large &;), where we expect the radiation zeros to be most visible, we choose
Q? = 10* GeV? and y € [0.1,1.0]. Typical values for z and the positron variables @Lab
and E. are listed in Table 4.4.
As we move from the etq c.m.s. frame to the HERA lab frame, all four-momenta
are boosted along the beam direction. Although this has no effect on the azimuthal
angles, the polar angles and hence the locations of all radiation zeros, in particular 57,
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lab
Y z | O2 E]

0.20 | 0.55 | 52.4° | 112.9 GeV

0.40 | 0.27 | 46.2° | 1074 GeV

0.60 | 0.18 | 38.4° | 101.9 GeV

0.80 | 0.14 | 27.6° | 96.4 GeV

Table 4.4: Typical values of the scattered positron energy and angle for our parameter choice
Q? = 10* GeV? and different values of y.

are changed. The simplest consequence of this is that the e*d radiation scattering zeros
remain located in the scattering plane at qASA, = (° and 180°. To find the locations of the
radiation zeros for process (4.18) we therefore fix (’57 = 0° and numerically determine
their positions in @,.

Radiation zeros for d quark scattering

In Fig. 4.6 we present the cross section of Eq. (4.46) for the process e*p — e* +
jet + v + X via etd — e*d + v scattering (dashed line) as well as via the sum over
all subprocesses e™q — etq + v with ¢ = u,d,s,i,d and 5. We have chosen to focus
on the radiation zero located between the incoming quark and outgoing positron. We
fix Q2 = 10* GeV? and vary y from y = 0.2 in Fig. 4.6(a) to y = 0.8 in Fig. 4.6(d),
which corresponds to z values in the region 0.1 < z < 0.6 (c¢f. Table 4.4). Again we
observe radiation dips instead of radiation zeros due to the integration over the photon
energy. Increasing y pulls the radiation dips closer to the beam line and thus makes their
observation more difficult. Already at y = 0.2 the e™d radiation dip in Fig. 4.6(a) is only
about 14° (cos 57 ~ (.97) from the beam line, and gets even closer with increasing y.
Note that we impose a cut of 5° around the beam line. Increasing y means decreasing the
polar angle of the outgoing positron ©!3b (¢f. Table 4.4). Thus the zone of destructive
interference approaches the beam line as the e* approaches the beam line. The conclusion
is that observation of the radiation dips in the sector between the incoming quark and
outgoing et in high-Q? events is only possible for small values of y.

The second radiation zero we found in our studies was located between the incoming
positron and the outgoing quark. In Fig. 4.7 we display this region again for processes
only involving d quarks (dashed lines) as well as for processes involving all light quark
and antiquark flavours. The obvious singularities in Figs. 4.7(a,b,c,d) are caused by
collinearity of the photon with the outgoing quark. Now the problem is that the zeros
are close (always within 10°) to the outgoing quark jet, even though the radiation dips
here are well separated from the beam line (~ 35° for y = 0.6).

A more serious problem evident'in Figs. 4.6 and 4.7 is the enormous background from
the other quark scattering subprocesses, which completely fills in the radiation dip. We
observe a ratio (away from the singularities) of signal/background = 1/(200—300). The
dominance of the u quark contribution is striking. For the given values of z and thus
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Figure 4.6: The positions of the radiation dips for the process e*d — e*d +y (dashed lines)
for different values of y for 6., € [5°,60°] (hemisphere of outgoing e*). A cut of 5° around
the beam line is imposed. The radiation zeros and thus the radiation dips for this process are
again located within the plane ($7 = 0°). The Q? value is 10* GeV2. The solid lines show
the sum of the contributions from u, d, s quarks and antiquarks. The divergences in the plots
show the positions of the outgoing et at cosf, = cos Olab with the values for ©L2b given in

Table 4.4,

&, (cf. Eq. (4.47)) we find the following ratios for the MRS(A’) parton distributions at
Q% = 10* GeV*:

& =0.1: = u(&g) s d(&q)  d(&g) :u(§y) =~ 100:60:22:15, (4.48)
£ =06: — u(éy) :d(&,) 1 d(&g) 1 u(€g) ~100:17:1: 1. (4.49)

In addition to these parton distribution factors there are the usual quark charge squared
(eg) factors from the leading order eq — eq scattering, which further enhance the u-quark
contribution. Note that the s—quark contribution plays a minor role; it is roughly 70%
of the @ contribution at £ = 0.1 and comparable to the latter at higher values of §,.
Even though d, s and %@ quarks all yield radiation dips in the scattering plane (the d- and
s—quark zeros coincide) none of these are likely to be observable. The only possibility
might be to try to flavour—tag the d or s quark jets, for example by selecting only those
jets with a leading negatively charged track.
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Figure 4.7: The positions of the radiation dips for the process e™d — e¥d + y (dashed lines)
for different values of y for 8, € [5°,60°] (the hemisphere of the outgoing quark). A cut of
5° around the beam line is imposed. Note that ¢, = 180°.

Radiation zeros for u quark scattering

According to the parton distribution hierarchy presented in the previous section we might
expect that the type 1 radiation zeros, which we identified with the traditional radiation
zeros already discussed in the literature, are the most promising for detection. We recall
that in the soft-photon limit and in the c.m.s. frame these zeros are located at fixed
polar angle cos 57 = 1/5 (¢f. Eq. (4.30)). Their position in ¢, may then be directly
computed using Eq. (4.31). We found that they are located well outside the scattering
plane (except for O, = 257 = 2arccos(1/5)) as discussed earlier. Integrating over the
photon energy w, and using exact 2 — 3 kinematics slightly shifts the position of the
corresponding radiation dips. The w, dependence for different kinematical situations was
shown in Fig. 4.4(b).

Moving to the HERA lab frame boosts the polar angles and changes the position
of the radiation dips for etu — etu ++. In Figs. 4.8(a,b,c) we show the differential
cross section of Eq. (4.46) for this process over the full (¢,,6,) space. As before we
fix Q% = 10* GeV? and chose the three y values: 0.2, 0.4 and 0.6. We impose cuts
of 5° around the beam line (by definition located at 6, = 0° and 180°) and cut the
differential cross section at do < 10~* pb/GeV? to avoid the collinear singularities along
the directions of the outgoing e (located at ¢, = 0°) and the outgoing v quark (at
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Figure 4.8: The differential cross section of Eq. (4.46) for the process etu — etu 4y in the
(¢, 0,) phase space of the emitted photon. The corresponding contour plots are shown on
the right-hand side. For fixed Q? = 10* GeV? we vary y (defined in Eq. (4.43)) from y = 0.2
in (a) and y = 0.4 in (b) to y = 0.6 in (c). The kinematic variables z, E, and O2b for each
y value can be read off from Table 4.4. Note that we introduce in the surface plots on the
left-hand side a logarithmic scale in §,. The radiation dips are symmetric in ¢,. Again we
impose a 5° cut around the beam line, and thus 6, € [5°,175°].

¢y = £180°). We see that the positions of the zeros are still symmetric in ¢+, as expected.
Note that since the collinear singularities and the radiation dips tend to concentrate
around small values of 6,, we have introduced a logarithmic scale for 6, in the three-

dimensional plots of Fig. 4.8.
We can numerically locate the positions of the radiation dips in the (¢,,6,) phase

space for our different choices of y:

y=02 - ¢y ~ HIT.2°, 6, ~ 20.6°%
y=04 — b, =~ +100.4°, b, ~ 24.9°
y=06 — ¢y =~ £102.5° b, ~ 25.2° (4.50)

It is straightforward to verify that the radiation dips, if projected onto the scattering
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plane, lie within the quadrants between the incoming (outgoing) e* and the outgoing
(incoming) quark, the zone of destructive interference. As Fig. 4.8 shows, the radiation
dips are clustered quite close to the (beam) direction of the incoming quark (8, = 0°)
which is particularly true for high-Q? events (back-scattered positron). As we have
already pointed out, they are also within 10° (in 6,) of the final-state quark jet. How-
ever, they are well-separated from the outgoing particles when the ¢, angle is taken
into account. It will be very important to perform realistic simulations of these photon
radiation events, including jet fragmentation and detector effects, to see whether the dips
are indeed observable in practice.

-
(=]
YTy

Figure 4.9: The differential cross section of Eq. (4.46) for three different y values at the
position of the radiation dips 57 shown in Fig. 4.8 as a function of the azimuthal angle ¢,.
We show the process etu — eTu + v (dashed lines) as well as the contribution (solid lines)
of all light quark flavours (u, d, s quarks and antiquarks).

Finally, in Fig. 4.9 we show the ¢, dependence for slices through the 57 values given in
Eq. (4.50) which define the numerical location of the radiation dips of Fig. 4.8. We show
the contributions of u quarks only, as well as the contributions from all light flavours (i.e.
u,d and s quarks and antiquarks). At the critical values of 57 (4.50) the obvious dips
for pure u—quark scattering are somewhat filled in by the other ‘background’ (mainly
d—quark) processes — the cross section at the bottom of the dip is increased by about
two orders of magnitude — although they are still significant.
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4.2.3 Radiation zeros and ‘parton shower’ models

To gauge the quantitative significance of the radiation zeros described in the previous
sections, and in particular to factor out the effects of phase space constraints on the
distributions, it is useful to make comparison with an approximate calculation in which
radiation zeros are absent. Parton shower Monte Carlo programs, such as HERWIG
[Mar92] or PYTHIA [Sjo94], are based on the principle of the leading-pole (collinear)
approximation. In particular they do not usually include the interference effects which
are crucial for producing radiation zeros in the scattering amplitudes. We can easily
emulate such models by removing the interference terms from the antenna pattern in
Eq. (4.20) (i.e. the terms linear in eg):

1 2
ifgqappmx = eg[24] + [13], (4.51)
The approximate matrix element thus obtained still contains the correct leading collinear
singularities when the photon is emitted parallel to the incoming and outgoing quarks
and leptons. In Fig. 4.10 we present the ratio

B d30appr0x

T d

where d®g?PProx / dde2dQI$b includes the antenna pattern without interference terms, as
defined in Eq. (4.51). Again we slice through ¢, at the values 57 of Eq. (4.50) where we
numerically located the positions of the radiation dips for each y value. Note that away
from the dips the ratio is O(1), as expected. However Fig. 4.10 also shows that close
to the dips the approximate cross section is up to three orders of magnitude larger than
the exact result, for all 4y values. In these particular regions of phase space, therefore,
such ‘parton-shower’ models would dramatically overestimate the photon emission cross

(etu — etu+7) (4.52)

3

section.

4.2.4 Concluding remarks on radiation zeros in eq — eqy scattering

The scattering amplitude for the process eq — eq + -y vanishes for certain configurations
of the final-state momenta. In this section we have studied these radiation zeros and in
particular their observability at HERA. In addition to the well-known class of (type 1)
same—charge zeros, which have been discussed in the pioneering work of Refs. [Bil85,
Cou89, LRS90, DH91], we have studied a second class of (type 2) zeros located in the eq
scattering plane, which we introduced in Section 4.1.3.

Experimentally, one might hope to be able to measure the four-momenta of the final-
state lepton, quark (jet) and photon sufficiently accurately that the kinematic configu-
rations which lead to zeros could be reconstructed. However a more realistic approach,
which we have adopted here, is to study DIS + photon events for fixed lepton variables y
and Q? and for a range of photon energies above a given threshold. This leads to sharp
radiation dips instead of zeros. We performed such a study using the HERA lab frame.
Although the radiation dips, i.e. the photon directions for which the cross section has
a minimum, of both types are quite well separated from the beam direction and from
the final-state jet, the e'd scattering dips are completely swamped by the contributions
from the other quark scattering processes. The e™u (type 1) dips offer a more promising
hope of detection, since eTu scattering is the dominant subprocess at high z.



Chapter 4: Radiation zeros — more about nothi@

-
o
©w

-
o
N

Y
o

-

-
o
%)

-
o

-

R = d*™Pd% (e'u - e'u +7)
=

— -
(=] o
»N w

-
o

ST PP T ST PR S
150 100 50 0 50 100 150

Y

Figure 4.10: Same as Fig. 4.9, but now for the process e*u — etu + v only. RY is the
ratio of the differential cross sections of Eq. (4.46) without and with interference terms, see

Eq. (4.52).

Finally we address the question of whether the cross section dips can realistically be
observed at HER A. For a given total luminosity, we can calculate the expected number of
events with observable photons together with their distributions in solid angle, dN/ dQljb.
Fig. 4.11 shows the event numbers in bins of the photon angles 6., and |¢,| for the following

cuts:

(c) 0.5 <y <0.7,

with z € [0.1,1], a lower cut on the photon energy of w$" = 5 GeV and an integrated
luminosity [dt£ = 100 pb~!. Additionally we impose a 5° cut to separate the photon
from the beam direction and the final-state positron and quark jet. For these cuts we
find a total of (a) 2615.2, (b) 1723.2 and (c) 1237.4 e™ + jet + v events in the three y
bins respectively.? The two numbers in each bin in Fig. 4.11 correspond to the exact
and approximate (i.e. with no radiation zeros as defined in Eq. (4.51)) matrix elements.

“Note that the total e™ + jet rate for these bins is approximately two orders of magnitude larger.
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Figure 4.11: The event rates dN/dQ'AyaLb for the production of et + jet + v mediated by
the subprocess etq — etq + v (¢ = u(@),d(d), s(5)) in three different y bins. We choose
z € [0.1, 1] and this determines the range of Q% in a given y bin. We integrate the differential
cross section of Eq. (4.46) over y,@? and a given phase-space element d{212® of the photon
and assume an integrated luminosity [dtL = 100 pb™!. The upper line in each bin shows
the result of the exact calculation, and the lower line shows the results in the approximate
calculation (employing the antenna pattern of Eq. (4.51)). Note that we impose a 5° cut
around the beam line and the outgoing positron and quark jet. The lower cut on the photon

energy spectrum is again w" =5 GeV.

Because of the y and z integrations and the finite bin size, the effect of the radiation zeros
is smeared out. Nevertheless one can clearly see the expected suppression of the event
rate in the exact case due to the presence of the type 1 radiation zeros (in particular
for 90° < |¢| < 180°, as anticipated in Fig. 4.10). Furthermore the event rate (for this
luminosity) does appear to be large enough for the effect to be observable.

We conclude, in agreement with Ref. [DH91], that the effect of radiation zeros should

be visible at HERA. I
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4.3 Zeros in high—energy ete™ annihilation into hadrons

In this section we present a detailed theoretical and phenomenological study of (type 2)
radiation zeros in the scattering process e”e™ — ¢y at high energy. We shall show that
zeros exist for both u— and d-type quarks for all helicities and polarisations. The zeros
occur in photon directions which are reasonably well separated from the directions of
the other particles in the scattering. Unfortunately it is very difficult to obtain analytic
expressions for the positions of the zeros with exact matrix elements and phase space.
Results for the general case, obtained numerically, will be presented in Section 4.3.4.
However in the soft—-photon approximation (which in fact is the dominant experimental
configuration) it is possible to obtain reasonably compact expressions. We shall then
use the soft-photon approximation to locate the zeros, first for massless and then for
massive quarks. We include a brief discussion of radiation at the Z pole. In Section 4.3.5
we perform a Monte Carlo study, based on the exact matrix elements and phase space,
to obtain ‘realistic’ distributions of the type which might be accessible experlmentally
Finally, our conclusions are presented in Section 4.3.6.

4.3.1 Massless quarks in the soft limit

We consider the processes
e"(1) et (2) — q(3) q(4) +(k), (4.53)
e"(1) e"(2) — q(3)q(4) +g(k). (4.54)

The gluon emission process (4.54) does not contain radiation zeros, but is useful for
comparison. To begin with we shall consider s—channel v* exchange only, as this fully
determines the positions of the radiation zeros. The exact matrix elements for these
processes are (for massless quarks and leptons, see for example Ref. [Ber81])

—-— 2+ 12 4 u? +u?

IM3|2(6_6+ — QQ‘*‘ 7) = —3e 6 2 55! (’012 + eqU34)2 s (4.55)
Vi 12 4+ ¢ + 02 +u? 9

[Msf*(e™e™ —aq+g) = —delerg; - (v34)” , (4.56)

with the standard definitions for the 2 —+ 3 Mandelstam variables

2
s=(pi+p2)?, t=(p—-p3)?, u=(p—ps)?,

=(p3+pa)?, t' = (2—-ps)?, u =(p2—p3)?, (4.57)
and
1 H
D; D;
vy = P _ . (4.58)
Yopick ik

In the soft limit, i.e. wy q/E; — 0, we may use 2 — 2 kinematics for the e~et — ¢ part
of the process. The four-vectors in the c.m.s. frame can then be written as

i i‘; (1,0,0,-1) (4.59)

I
\3

o= (1 0,0,1) , (4.60)
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s .
Py = gu,—sm@cm,o,—cos@cm), (4.61)
C
i = %(l,smecm,O,cos@cm), (4.62)
k* = w4 (1,806, ,c08¢y 4,500, 48in¢y g, c080,,) . (4.63)

These kinematics are illustrated in Fig. 4.12.

%I(Ps)

W(m)

Figure 4.12: Parametrisation of the kinematics for e~ (p1)e™ (p2) — q(p3)q(pa) + v(k) scat-
tering in the e“e™ c.m.s. frame. The orientation of the photon relative to the scattering

plane is denoted by the angles ., and ¢,. Note that 6, = 65.

Radiation zeros for process (4.53) arise from the vanishing of the (vi2 + eqv34)2 term.
This is the antenna pattern F7 = — 3 e;e;J/J, j of the soft emission process, as we dis-

4
cussed in Section 3.1.1 and defined in Eq. (3.9). A useful parametrisation is to introduce
the variables z; = cos 8; which specify the angular separation of the soft photon or gluon
from particle 4. The eikonal factors which make up the antenna pattern are then

o PP 1 1—cosfy
lig) = (pi-k)(pj - k) w?(l—z)(1—2)’ (4.64)

and the antenna patterns themselves can be readily obtained from Egs. (4.55,4.56)

S = 024 034 — e (13) + 24] - 14 - 23) (4.65)
%fiq = [34. (4.66)

We see immediately that there are no radiation zeros of type 1, as this would require (for
the vanishing of FJ;)
-1 1 e  —e
1+2 11—z l4zg 11—z’ (4.67)
which has no solutions in the physical domain.
We shall study above process for the appearance of type 2 radiation zeros. For a com-
plete set of kinematic variables in the soft-photon limit we may take the gg c.m.s. scat-
tering angle O, and two of the z; variables introduced above: F¥ = FY(Ocm, €q, 22, 24),
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since z; = —29 and 23 = —z4 in the c.m.s. frame. To locate the zeros we solve
FI:(Ocm, €gs 22, 24) = 0 (4.68)
and find
24 = —eq20 & 1/ f(Ocm, €g) , (4.69)
with
f(Ocm,eq) = 1+ €2 + 2e4 08 Ocm - (4.70)

As we expect the (type 2) radiation zeros to be located in the scattering plane,® we
set ¢, = 0° and derive as an additional condition

zg = cosbly = cos(f, — Ocm) = sinf, sin Oy + cos Oy cos Ocry

= /1 —22sin Oy + 22 coS Oy, - (4.71)

The solutions of Eqgs. (4.69) are tangential hyperplanes to Eq. (4.71) in the Ocp, 22
space for given charge e,. Thus we find the positions of the radiation zeros for given e,
and c.m.s. scattering angle by solving

d d
~ _ 2 .
d—Z2—Z4 = I <\/1 — 25 8in Ocm + 22 COS @cm> , (4.72)

which immediately yields

e, = —2—_sin Ocm — €05 Ocn - 4.73
q
1—22
The solutions are . o
%9 = cos 57 =+ %47 C05 Tem ) (4.74)
f(Ocm, eq)

with ‘4" if ¢, = 0° and ‘— if ¢, = 180°. Eq. (4.74) yields physical solutions for both
eq = —1/3 (d-type quarks) and e, = 2/3 (u-type quarks) in the complete range of ©cm.
We mention several other interesting features.

(i) If we substitute the solution for 2, of Eq. (4.74) and 24 of Eq. (4.69) into the antenna
pattern ng we find

[12) = e2[34] = —;—eq([13] + [24] — [14] - [23]), (4.75)

i.e. the interference term exactly cancels the sum of the leading pole terms which
are equal. Therefore solving Fj; = 0 is equivalent to solving [12] = €[34] in the
massless case. We shall test this feature later for massive quarks.

(ii) From Eq. (4.74) we see that the radiation zeros are orthogonal to the beam direction
for cos ©O¢m = —eqy which means Oy, ~ 131.8° for u-type quarks and Q¢ ~ 70.5°
for d-type quarks.

®Note that it is straightforward to show that there are no additional zeros with ¢, # 0°,180°.
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(iii) The radiation zeros are located in different sectors: for u—type quarks they are
located between the directions of the incoming et and outgoing ¢ and between the
incoming e~ and outgoing ¢ directions, respectively. For d-type quarks the radia-
tion zeros can be found between the incoming e~ and outgoing § and between the
incoming e and outgoing ¢ directions, respectively. This makes the discrimination
between different charged quarks straightforward, at least in principle.

(iv) There is one kinematic configuration for which the separation between the radiation
zero direction and the direction of the outgoing quark (antiquark) is maximal. By
solving

eq + €05 Ocm

arccos [ + —Omp =0, (4.76)

dOcm f(@crm eq)

we can show that this is the case if the radiation zeros are located orthogonal to the
beam direction (the corresponding values of O, are given above). The separations
are then

AGY = 41.8° for u—type quarks, (4.77)
AT = 19.5° for d-type quarks. (4.78)

In Figs. 4.13,4.14 we show the antenna patterns F; of Eq. (4.65) for process (4.53)
with three different c.m.s. frame scattering angles O, = 60°,90° and 120°. Additionally
we show a slice through the soft—-photon phase space at g@, = 0° to illustrate the positions
of the radiation zeros. For comparison we also show the antenna patterns for soft—
gluon emission as defined in Eq. (4.66). This has no initial-, final-state interference and
therefore no zeros.® Comparing the production of d—type quarks and u—type quarks, i.e.
Figs. 4.13 and 4.14, shows that the most striking qualitative feature is the appearance of
radiation zeros in different sectors, as discussed above.

In Fig. 4.15 we present the positions of the radiation zeros (¢A57 = 0°,6A?7) given by
Eq. (4.74), as a function of the c.m.s. frame scattering angle, for both d-type and u—type
quarks. Note that radiation zeros exist in both cases for all values of ©¢p, and also that
the radiation zeros for u—type production are more clearly separated from the collinear
singularities. For zero-angle scattering (Qcm = 0°,180°) the zeros become pinched along
the beam direction. Note that the t—channel process etq — e*qy of Section 4.2 shows
a qualitatively different behaviour.in the zero-angle scattering limit: in that case the
radiation zeros were located on a cone with fixed angle around the beam direction.

It should be obvious from the above that in order to locate a radiation zero one
has to be able to distinguish a quark jet from an antiquark jet. Thus if one (3 & 4)
symmetrises the expression in Eq. (4.65) for fgq, the interference term vanishes and
there is no zero. In practice distinguishing between the quark and antiquark jet is likely
to be very difficult, but not impossible. For example, for light—quark jets one could try
to tag on the charge of the fastest hadron in the jet. For heavy (charm, bottom) quark
jets one could in principle use the charge of the lepton from the primary weak decay of
the quark to distinguish the quark from the antiquark. Methods like these are likely to
have poor efficiency, so in practice one would be looking for a slight dip in the photon

5Note that up to charge factors the final-state collinear singularities are the same in both cases

however.
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Figure 4.13: Surface plots of the antenna pattern .7-'(7(7 in the angular phase space of the soft
photon (left—hand side) and slices through the event plane (right-hand side) at (ﬁ, =0°to
illustrate the positions of the radiation zeros. We show the process e~ et — gq4Gqy for three
different c.m.s. frame angles (a) O¢m = 60°, (b) Ocm = 90° and (¢) Ocm = 120°. The
dashed lines are the corresponding distributions for soft gluon emission.

distribution in the vicinity of a zero when a tagged sample is compared with an untagged
sample with the same overall kinematics.

4.3.2 Radiation at the Z° pole

The general discussion on radiation zeros presented in the Introduction assumed that the
hard scattering is characterised by a single (large) energy scale, so that the incoming and
outgoing particles emit photons on the same timescale. This corresponds to coherent
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Figure 4.14: Same as Fig. 4.13, but for the process e"e™ = ¢,Gy7.

emission and allows the interference to be maximal. However, care must be taken when
two timescales are involved, for example when there is an intermediate particle which is
relatively long lived. In this case the emission off the initial- and final-state particles can
occur at very different timescales and the interference between them can be suppressed.
In fact this is exactly what happens for the process ete™ — ff on the Z pole, i.e. when
\/5 =~ Mz.

A formalism has been developed for taking these effects into account (see Refs. [Dok91,
Dok93, Jik91] of Chapter 3 and in particular Ref. [KOS92] of Chapter 3). In simple
terms, the interference between emission during the production and decay stages of a
heavy unstable resonance of width I' is suppressed by a factor x = I'?/(I'? + w?), i.e.
there can be no interference when the timescale for photon emission (~ 1/w) is much
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Figure 4.15: The positions ((Z,,, §7) of the radiation zeros for the processes e“et — g4d4y and
e~ et — qugu7 as a function of the c.m.s. frame scattering angle O, and fixed qA57 =0°. The
dot—dashed line shows the position of the final-state collinear singularity (i.e. the direction
of the outgoing antiquark). Massless quarks are assumed. Note that the distribution for
$7 = 180° shows a m — O, symmetry.

shorter than the lifetime of the resonance (~ 1/T’).
In the present context, the antenna pattern of Eq. (4.65) is only valid far away from

the Z pole, v/s <« Mz or /s > Myz. On the Z pole we have, in contrast,
) .
—2—]-"7 = [12] + €2[34] — xzeq ([13] + [24] — [14] — [23]) , (4.79)

where

Xe= Py k)2 + M2ITS W2 +T%
The second expression in (4.80) corresponds to the c.m.s. frame. For w > I'z there is
no interference (and therefore no radiation zero), and the radiation pattern corresponds
to incoherent emission off the initial- and final-state particles. On the other hand the
radiation zero reappears in the limit w/I'z — 0. It is straightforward to show that in
this limit the minimum value of the distribution is O(w?/T%).

The effect of the finite Z width on the interference between initial- and final-state
radiation was studied in detail in Ref. [JW89]. The DELPHI collaboration [DEL96]
subsequently confirmed the theoretical expectations and used the size of the measured
interference to determine I'.

Since in the present study we are interested in radiation zeros, we must require that
the collision energy (and the photon energy”) are such that the internal Z propagator
is always far off mass—shell. This effectively guarantees that x = 1 and hence that
the radiation pattern is again given by Eq. (4.65). Unfortunately this means that we are

212 2
M3 Iz (4.80)

"For +/3 > Mz we can avoid ‘radiative return’ to the Z pole by placing an upper bound on the photon
energy.
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unable to use the greatly enhanced statistics of LEP1 and SLC in searching for radiation
ZETros.

4.3.3 Massive quarks in the soft photon limit

“The mere neglect

of a mass effect

18 quite suspect

and often not correct.”

In this section we repeat the analysis of Section 4.3.1 but now including a non-zero
mass for the final-state quarks. The eikonal factors for massive particles read

.. 1 1- pPip5 COS gij
1 = — . 4.81
i3l = T2 (T = 230) (481

We continue to use massless initial-state electrons, so that py = po =1 and p3 = py =
p=./1— 4m2Q /s. The antenna pattern of Eq. (4.65) now has additional contributions:

2 2
b = g 4 (e~ 5555~ 35 47)
- €Q ([13]mQ + [24]mQ - {14]mQ - [23]mQ) . (4'82)
We first consider the limits of p € [0,1]
p=0:  F, = 212y = g (4.83)
w3 1 — cos® Oy
p=1: Fi, = F'. (4.84)

The first of these limits is just the well-known result that heavy charged particles at rest
do not radiate, and there are clearly no radiation zeros. As F” does contain radiation
zeros, we might anticipate a non—trivial p dependence of their position as we increase the
mass from zero, with the zeros eventually vanishing for some critical mass.

A numerical study confirms this result. We again find zeros in the scattering plane

(¢4 = 0°). Solving F, , = 0 now gives

Z,JTLQ _ _2_ 2fp(@cm; eQ) (4 85)
2 d :
€Q \/_pr(ecm;eQ)gp(GcmaeQ)
with
fo(Ocm,eQ) = p*+ eQQ + 2eqpcos O¢m , (4.86)
hp(Ocm,eq) = —2egcosOcy (1 + p2) - peé (1 + cos? G)cm) -2p, (4.87)

gp(@cmaeQ) - ph/)(@cm,eQ)
+ p\/hp(@cm,eQ)Q—4fp(@cm,eQ)(ercos@cm+1)2. (4.88)
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It is straightforward to show that in the massless limit (p = 1) Eq. (4.85) reduces to
Eq. (4.74). Note that at the positions of the zeros we have, as in the massless case,

[12ng = € ((34hmg = 5 {1B3ma + g }) (4.89)

with the interference again canceling the sum of these two terms.
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Figure 4.16: The positions of the radiation zeros (&, = O°,§7) for massive quarks p =
/11— 4m2Q/s (beam energy E,- = 100 GeV) and different c.m.s. scattering angles (Oc¢m =
15° — 90°, AOy = 15°). The dashed lines show the values of pyit.

Taken together, the equations (4.85-4.88) only have physical solutions for a certain
range of p € [peit, 1]. In particular, if the ratio mg/E.- (quark mass over beam energy)
becomes too large the radiation zeros disappear. Fig. 4.16 shows the positions 57 of
the radiation zeros inside the event plane (¢A37 = 0°) as a function of p for a fixed beam
energy E,- = 100 GeV, for both d-type and u-type quarks, and for different values of
the c.m.s. scattering angle ©¢y,. The dashed lines indicate the values of pcrit. There is
one kinematic configuration Ocm for which mgit becomes maximal, i.e. an upper limit
on the quark mass for which radiation zeros can still be observed. We find

~ 1 et VSle ~ —e
Pcrit = '2'\/4 - e% <~ mglt = —2—% = c0sOm = —4'\/—%2— . (490)
Q

For the production of d-type quarks we obtain TNI’LZrit = 16.7 GeV at O = 80.3°, and
for u—type quarks we find m&t = 33.3 GeV at Oem = 110.7°. According to Eq. (4.90)
we require a beam energy of at least F,- = 525 GeV to observe radiation zeros in the
process e~ et — tty assuming a top quark mass of my; = 175 GeV and an even higher
energy to achieve a reasonable separation from the outgoing partons (see Fig. 4.17)8

For ©., = 90° we can write the solutions in a very compact form. We find as a
condition for which radiation zeros exist:

2 Vs legl (4.91)

P2 Puit = —r—= < mg< .
2 2 2
Ji+ed Ja+ed

8We do not consider here the contributions to the radiation pattern from photon emission off the
decay products of heavy unstable quarks.
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Figure 4.17: Same as Fig. 4.15 but now for massive quarks. The mass of the quarks is
increased from mg = 0 GeV to mg = 30 GeV in steps of Amg = 5 GeV. The higher the
mass the closer the positions of the zeros move towards the collinear singularity (dash—dotted
line). The beam energy is E,- = /s/2 = 100 GeV. Note that the appearance of radiation
zeros is dependent on the quark mass and the c.m.s. scattering angle O¢p,.

For example, in order to observe radiation zeros in 90° back-to-back sca,tteriﬁg with
E.- = 100 GeV we need mg_gype < 16.4 GeV or my_ype < 31.6 GeV, conditions
satisfied by all five light—quark favours.

In Table 4.5 we present numerical values for pi¢ and for mgi‘, assuming a beam
energy for the latter of E,- = 100 GeV. The values for pej; are illustrated in Fig. 4.16.

An interesting conclusion from Table 4.5 concerns e”et — bb + . Assuming a mass
for the b quark of mp ~ 4.5 GeV, the actual kinematics for the observation of radiation
zeros become critical, especially at small c.m.s. scattering angles. For example, the
outgoing b and b jets should be located at around 90° £ 30° from the beam direction (cf.
Fig. 4.17). Then the radiation zeros not only exist, but are also reasonably well separated
from the collinear singularities (again cf. Fig. 4.17).

4.3.4 Arbitrary photon energies

We have so far identified radiation zeros using analytic techniques in the soft-photon
approximation to the scattering matrix elements and phase space. However, as for the
eq — eqy scattering process studied in Section 4.2, zeros are also found in the ezact cross
section for fixed photon energies up to a critical maximum value.

To quantify this, we study planar e”e™ — ggy events in which (i) the polar angle of
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dAtypfe quarks u—type quarks

Ocm | p2> mg < p > mg <

15° 1 0.9986 | 5.23 GeV | 0.9977 | 6.72 GeV

30° 1 0.9951 | 9.82 GeV | 0.9913 | 13.18 GeV

45° 1 0.9911 | 13.34 GeV | 0.9815 | 19.13 GeV

60° | 0.9878 | 15.60 GeV | 0.9699 | 24.34 GeV

75° 1 0.9861 | 16.59 GeV | 0.9583 | 28.58 GeV

90° | 0.9864 | 16.44 GeV | 0.9487 | 31.62 GeV

Table 4.5: Conditions for the appearance of radiation zeros for different c.m.s. frame scat-
tering angles ©¢,. The numbers in each row are pgjt and mCQ“t, assuming a beam energy of
E,- =100 GeV for the latter. Critical mass values for other beam energies can be obtained
by simple rescaling.

the quark (©.y) is fixed, (ii) the energy of the photon (wy) is fixed, and (iii) the polar
angle of the photon (6,) is varied. Note that the energy of the quark and the four-
momentum of the antiquark are then fixed by energy-momentum conservation. In the
limit wy, — 0 the kinematics of the soft-photon approximation studied in previous sections
are reproduced. We find, as in Section 4.2.1, that the matrix element has radiation zeros
for non-zero w,, and that the position of the zero varies smoothly as w, increases from
zero. Note that we assumed massless quarks.

This is illustrated in Fig. 4.18, which shows the position 57 of the zero as a function
of w,, for d-type and u-type quarks and O¢m = 90°. The values at wy =0 coincide with
those obtained analytically in the soft-photon approximation, see for example Fig. 4.15.
A variation of the position of the zero with the photon energy is to be expected, since
with the above kinematics the direction of the antiquark changes as the photon energy
is varied. '

If the photon is too energetic then the zeros can disappear. This was also a feature of
the eq — egy process studied in Section 4.2.1. For example, for e; = +2/3 and O¢, = 90°
we only have radiation zeros for wy/Epeam < 0.47. However because of the soft—photon
energy spectrum, such upper limits are not particularly relevant in practice. Since the
position of the zero varies with the photon energy, any binning in this quantity (above
say some small threshold value w{,“i“) will remove the zero and replace it with a sharp
minimum located near the corresponding soft—photon approximation position. We will
illustrate this in the following section.

4.3.5 A Monte Carlo study for bby production

Our study so far has been based on the ideal but unrealistic situation of well-defined
four—-momenta for the jets and the photon, fixed at particular directions in phase space.
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Figure 4.18: The positions 57 of the radiation zeros for the processes e”e* — quqgy and
e~ et — ¢uguy as a function of the photon energy w., for E,- = /s/2 = 100 GeV and fixed
c.m.s. frame (quark) scattering angle Oy, = 90°.

In practice, experiments deal with binned quantities and jets of finite mass and width. A
more realistic study should therefore take these into account. Rather than try to model
a particular detector capability, we can define a simple set of cuts which should take
the main effects of smearing and binning into account. The aim is to see whether the
radiation zeros remain visible after a more realistic analysis. We will, however, make the
assumption that in our sample of bby events the b—jet can be distinguished from the b-jet.
This guarantees a radiation zero in the ideal case, as discussed in the previous sections.

We first generate a sample of bby events using a Monte Carlo which includes the exact
phase space and matrix element. We choose a centre-of-mass energy of /s = 200 GeV.
For this energy we can safely use the m;, = 0 massless quark approximation. As a further
simplification we include only s—channel v* exchange.? The following sequence of cuts is

applied:
10 GeV < wy <40 GeV < B < Fy (4.92)

to ensure that the photon is the softest particle in the final state, and that the b-quark
direction coincides with the thrust axis of the event. The photon is also required to be

separated in angle from the beam and jet directions:

ev,beam > 20° ) 9%1)9%5 > 10°. (493)

These cuts serve to define a ‘measurable’ sample of bby events.
To investigate the radiation zero we must introduce a planarity cut on the bby final

state. We do this by requiring that the normals to the two planes defined by (i) the
beam and outgoing b—quark directions and (ii) the b-quark and photon directions are

approximately parallel: .
[Ti1s - Tlag| > cos 20°, (4.94)

9Including also Z exchange only affects the overall normalisation and not the shape of the photon

distributions.
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using the notation for momenta defined in Eq. (4.53). We can then study the polar angle
(6,) distribution of the photon for various values of the polar angle (O.,) of the thrust
axis (b-quark direction) with respect to the beam direction. In practice, we consider a
bin centred on 6, = Oy of width 10°, i.e. we integrate over

@Cm - 50 < eb < ecm + 50 . (4.95)

Note that our cuts are deliberately chosen to mimic the soft—photon kinematics. However
because we integrate over the photon energy and smear the polar angle and planarity
criteria we expect to see DIPS in the photon distribution rather than strict zeros.
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Figure 4.19: The 6, distribution (solid histograms) obtained in the Monte Carlo calculation of
e~et — bby in the planar configuration. The various cuts are defined in the text. The O¢m
angles are (a) 60°, (b) 90° and (c) 120°. The dashed lines are the results of the corresponding
calculation with the interference terms removed.

Fig. 4.19 shows the 6, distribution for three different values of O¢m. Comparing with
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Fig. 4.13, we once again see sharp dips at approximately the same position as in the
‘ideal’ soft-photon case. Note that the collinear singularities evident in Fig. 4.13 are now
removed by the cuts. The suppression of the cross section at the position of the zeros
can further be appreciated by comparing with the results obtained when the interference
term in the matrix element squared is set to zero, corresponding to incoherent photon
emission off the initial and final states. The results of this approximate calculation,
shown as dashed lines in Fig. 4.19, do not exhibit any dip structure in the region of the
zeros and are clearly distinguishable from the exact results.

4.3.6 Concluding remarks

Radiation zeros are an important consequence of the gauge structure of the electromag-
netic interaction. They arise in different types of high-energy scattering processes. In
this study we have investigated a particular type of radiation zero (‘type 2’ or ‘planar’)
which is a feature of the process eTe™ — g¢y. We derived expressions for the locations
of the zeros in the soft—photon limit, and showed that the zeros persist for hard photons
and massive quarks. However the experimental verification of such zeros is not straight-
forward. The zeros disappear on the Z° pole because the interference between initial-
and final-state radiation is suppressed by the finite Z lifetime. The collision energy must
therefore be greater or less than Mz. Unfortunately the number of events beyond the
ZY pole at present colliders is quite low. Apart from the resulting issue of the overall
event rate, it is necessary to be able to distinguish quark from antiquark jets in order to
compare with our predictions. This can perhaps we done with some efficiency for b—quark
jets. We performed a Monte Carlo study which showed that ‘realistic’ distributions do
indeed exhibit sharp dips in particular regions of phase space. Further studies using a
more complete simulation of the final-state hadronisation process would be worthwhile.

4.4 The future of radiation zeros

“..  thus measurements of
radiation zeros are destined
to be contaminated, com-
promised and ultimately cor-

rupted.”
(R.W. Brown [Bro97])

We already mentioned many problems that occur trying to experimentally measure
the positions of radiation zeros, let us summarise the main obstructions

e Radiation zeros are dependent on the gauge couplings like charges, neutral current
couplings gl, etc. If a process is for example convoluted with the parton densities,
then different subprocesses with different gauge couplings contribute to a reaction.
So the radiation zeros are “smeared out” and it depends on the relative size of the
radiation dip whether an identifiction is possible.

e Convolution with parton densities also includes particles with different masses.
Again all these contributions together lead to a radiation dip. In Section 4.1 we
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also mentioned approzimate radiation zeros that occur if a massive gauge boson
(Z) is radiated off.

e The particle jet is an object with finite size. Therefore the kinematics are not well
deﬁned_ and experimental cuts have to be introduced as we saw in the reaction
etebby in Section 4.3.5.

o Additional jets from higher QCD corrections will spoil the subtle gauge cancellation
and thus ‘fill up’ the radiation zero. One has to reject the additional jets to recover
the tree level kinematics. In practice one encounters a misidentification of a photon
from a jet. A good y—jet discrimination factor is needed to successfully identify the
signal.

In this chapter we studied radiation zeros in eqg — eqy in Section 4.2 and ete™ —
qqy in Section 4.3. We examined radiation zeros at a level with realistic experimental
acceptance. Because the contribution of all partons destroys the sharp radiation zero it
would be even worth looking at low-energy data at HERA or the TEVATRON, where
mostly valence quarks contribute, to minimise this effect.

First results on successful measurements of radiation zeros are available. The CDF
collaboration reports on such a measurement in the reactions ud = W+yand di — W~y
at the Fermilab TEVATRON collider [CDF97]. As the nature of radiation zeros is very
sensitive to the gauge couplings of vector bosons and fermions, these studies provide
probes to physics beyond the SM. The CDF collaboration concludes that anomalous
couplings in above process can be ruled out.

As we discussed, radiation zeros are a general feature in gauge theories. There are in
fact many more processes beyond the SM in which radiation zeros occur. Studies for the
classical radiation zeros so far include

e A generalisation of the classical radiation zeros theorem (Eq. (4.4)) to supersym-
metric theories with massless gaugino emission has been provided by Brown and
Kowalski [BK84]. In theoretical studies radiation zeros have been found in the su-
persymmetric limit for processes such as diz — W7, ve — Wi, ... [Rob85, Rob84].
In the supersymmetric limit these zeros are located at the same places as those for

SM partners.
e Radiation zeros were also found in charged Higgs boson production pp — H ty

[HL88]. The small Yukawa couplings of H * to light fermions makes tliis process
nearly unobservable. If kinematically accessible a process like H % 5 tby is more

promising.

And these were studies for type 1 radiation zeros only.

What is left?

At the time of this thesis we still were not able to formulate a general theorem for the
existence of the new type (type 2) (cf. Section 4.1.3) of radiation zeros in terms of gauge
couplings. An existence proof, however, was possible, but more work on type 2 zeros has
to follow. Our studies only marked a start. In principle all studies that have been done

for type 1 zeros can be reconsidered for type 2 zeros. From the phenomenological point
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of view type 2 zeros show the same features as their classical counterparts. But with the
introduction of this new type of zeros many more processes, not obeying the ‘same-sign
rule’ of Section 4.1.1, become accessible. In this framework we showed for the first time
eTe™ phenomenology as an example.

The process amplitudes are, as we have shown, very sensitive near the radiation zeros.
They form a powerful diagnostic tool for gauge couplings and the hope is to find new
physics in the vector boson sector of the SM.

This brings us back to the main focus of this thesis

Probing the Standard Model and beyond at high-energy colliders !
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Epilogue

“The pictures I contemplate
painting would constitute a
holfway state and an attempt
to point out the direction of
the future — without arriving

there completely.”
(J. Pollock)

In this thesis we studied different phenomenological aspects of modern topics in high—
energy physics dealing either with tests of the SM or probes beyond it.

We showed how a non—perturbative soft Pomeron governs diffractive heavy flavour
and Higgs cross sections at high-energy colliders and conclude that these predictions
might be of great value for a further insight into the nature of soft and hard interactions.
We also expect diffractive measurements of Higgs a great challenge for the experimental-
ists. Experimental results on diffractive W+ production indicate that the soft-Pomeron
model is not valid at high—energies. A possible explanation could be that the Pomeron has
a two—component structure (soft and hard) and it is of theoretical interest to determine
the scale dependent couplings of these components.

Beyond the SM we presented the Z' model and an additional heavy-vector quark
triplet. Even though there is no evidence for a Ry crisis anymore, i.e. the SM was
proved once more successful, the jet-excess at the TEVATRON is still an open question.
We performed a detailed analysis of the effects of a leptophobic Z' at the LHC and for
further measurements at the TEVATRON and conclude that (especially at the LHC) the
Z' should be ‘visible’.

Exploiting features of the SM we then discussed antenna patterns of soft photon and
gluon radiation. We showed how these diagnostic tools may be used to search for new
physics, like the Higgs boson at the future LHC. We also discussed colour coherence for
which there is evidence from many high—energy experiments.

Finally we discussed another feature embedded in the SM which has not been detected
before: a new type of radiation zero. Radiation zeros have been studied phenomenolog-
ically for some time and they have been ‘seen’ experimentally at the TEVATRON. We
propose measurements of the new type of radiation zeros at HERA and LEP by intro-
ducing physical cuts. These zeros, after their verification, can then be used to test, e.g.,
gauge couplings, especially the study of possible anomalous couplings.
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Probing the SM sometimes leads to interesting and new physics. Many people are
convinced that the SM is not the end of a long journey. A check of the new preprints
appearing each day shows this quite dramatically. Understandable is the excitement
among many if ‘anomalies’ are reported from various experiments. We can assume that
there is no evidence yet for a failure of the SM. And accepting this, one can concentrate on
the many open problems within the SM. This thesis should be regarded as a contribution
for this task.
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