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Abstract 

The pa r t i t i on functions of the affine Pasquier models on the cylinder are calculated in the 

cont inuum l i m i t . The par t i t ion functions of the models based upon the An cycle graphs 

are first found f r o m the appropriate Coulomb-gas equivalence. Their relationship w i t h 

the Dn and -©6,7,8 niodels is established by constructing an afiine analogue to the classical 

intertwiners using a Temperley-Lieb algebraic equivalence. From this relationship, each of 

the pa r t i t i on functions is constructed. We wri te our results i n terms of 'generating poly­

nomials ' establishing explici t ly the precise operator content of the conformally invariant 

cont inuum field theories. 

A numerical study is undertaken to establish the val idi ty of the par t i t ion functions as 

calculated. We conclude that the par t i t ion functions calculated are correct. 

The pa r t i t i on functions are fur ther studied and the connection w i t h the McKay cor­

respondence established. We establish a simple f o r m for the par t i t ion functions in terms 

of degenerate c = 1 Virasoro characters and Chebychev polynomials of the second kind. 

From this, we estabhsh the role w i t h i n the par t i t ion functions played by the affine Coxeter 

element, a part icular member of the Weyl group associated w i t h the defining graph of the 

model. Some of the resulting consequences of this role are explored. 
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B u t some there are who deem themselves most free 
When they w i t h i n this gross and visible sphere 
Chain down the winged thought, scoffing ascent. 
Proud in their meanness: and themselves they cheat 
W i t h noisy emptiness of learned phrase. 
Thei r subtle fiuids, impacts, essences. 
Self-working tools, uncaused effects, and al l 
Those b l ind Omniscients, those Almigh ty Slaves, 
Untenanting creation of its God. 

— Samuel Taylor Coleridge. 

"The Destiny of Nations". 

The core of nature is i n the heart of Man . 

— Friedrich Wilhelm Nietzsche. 
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Chapter 1 

Lattice Models and Conformal Field 
Theory 

I n this chapter we establish the theoretical framework behind the first part of the study 

which is conducted i n chapters 2 and 3. The material of this chapter follows a variety of 

sources and, except for the second half of section 1.2.7 (the calculation of equation (1.152)), 

no claim of or iginal i ty is made. Further background material is given as chapter 4. 

1.1 Pasquier Lattice Models 

I n this section, we introduce the idea of a graph lattice model. We present the concept 

of integrabil i ty and apply i t to introduce the integrable lattice models of Pasquier [43]. 

These models may be thought of generahsations of the famil iar Q-state Potts model and 

of the integrable lattice models of Andrews et al. [1]. Using the Q-state Potts model as 

a guide, the Temperley-Lieb algebra is introduced. This is a sufiicient condition for the 

integrabil i ty of a latt ice model. Representations of this algebra and hence integrable lattice 

models are constructed by restricting the degrees of freedom of the model to a graph. 

A l though the models were first constructed in the f o r m discussed below by Pasquier [43], 

this review also makes use of the articles [25], [31] and [57]. 
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1.1.1 Statistical Mechanics 

Statistical mechanics is the science concerned w i t h describing systems w i t h large numbers 

of degrees of freedom. Such systems abound in nature: the air we breathe, the water we 

d r ink and the matter of which we ourselves are made being famil iar examples. Each is 

composed of huge numbers of particles, each w i t h its own posit ion and momentum. One 

cannot hope to describe the behaviour of each and every single particle. Statistical me­

chanics takes its name by concentrating on the bulk statistical properties of these systems, 

deriving such f r o m the typical ly short range interactions of the indiv idual subsystems. I t 

faces two ma jo r problems: Of ten the underlying interactions are unknown. We are forced 

to guess and approximate quite complex interactions. The second problem is that of math­

ematical t ractabi l i ty . The underlying interactions often do not afford an easy derivation of 

the bulk properties. So we are forced to approximate yet fur ther . One such approximation 

is to restrict to the examination of 2-dimensional systems, s impl i fy ing the physics. The 

degrees of freedom may be simplif ied too, perhaps jus t considering one physical parameter 

and modell ing the complex interactions solely upon this. B o t h strategies are employed in 

the systems discussed i n this section. 

We shall also assume that the systems in which we are interested are in equilibrium. 

Tha t is, the bulk physical properties of interest to us do not change over some given 

timescale. For such a system at temperature T , at any given t ime the relative probability 

or Boltzmann weight that the system is i n the configuration labelled by c is 

W(c) = e x p { - £ ; ( c ) / f c B T } ; (1.1) 

where E{c) is the energy of the configuration c and A;B the Boltzmann constant. Thus at 

low temperature, a configuration of higher overall energy is less likely to occur than a less 

energetic configuration. As the temperature is raised, highly energetic configurations are 

eventually permit ted . The probabili ty, therefore, of the specific configuration c is 

P(c) = ^ exp{-£ ; (c ) /A;B T } ; (1.2) 
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where 

^ = ; ^ e x p { - £ ; ( c ' ) A B T } , (1.3) 
dec 

the sum of a l l the weights over al l the possible configurations C, is the partition function. 

I t normalises the Bol tzmann weights and may be thought of as a generating funct ion for 

the statistical properties of the system. 

1.1.2 The Q-State Potts Model 

The Q-state Potts model is defined [4] for Q € Z " * " by associating to each site a on a 

rectangular lattice A a height CTQ which may take any of Q distinct values. (We adopt 

the nota t ion whereby the non-negative integers are denoted by Z + = { 0 , 1 , 2 , . . . } and the 

non-positive integers by Z ~ = — Z " * " = {0 , — 1 , — 2 , . . . } . ) Two adjacent heights or spins at 

sites a and b interact w i t h energy —J^a^a^- We w i l l assume that J is positive so that we 

consider the ferromagnetic case where at low temperature, adjacent heights tend to align. 

The pa r t i t i on func t ion is therefore 

ZQ= e x p i i ^ ^ ^ , ^ , , I ; (1.4) 
AH I (a,6) I 

configurations 

where K = J/k^ T and (,) denotes nearest neighbour pairs. The choice Q = 2 defines the 

Is ing model. 

The pa r t i t i on func t ion (1.4) defines a system of spins i n thermal equihbrium. The expected 

value for the spin at site a is simply the thermal average over a timescale equivalent to 

that defining the not ion of equi l ibr ium, i.e. 

K ) = Yl '^anw}) (1-5) 
All 

configurations 

) • (1-6) 
All [ {a,6> 

configurations 
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O f part icular interest is the 2-point correlation defined by 

( a , a 6 ) = J2 '^aCTbnia}). (1.7) 
All 

configurations 
W] 

This can be used to examine the distance, the correlation length ( , over which the spins 

exert a significant infiuence on each other. A spin Ua w i l l influence and w i l l be influenced 

by those other spins w i t h i n a distance ( . When ( is finite, i t is related to the 2-point 

correlation, where the distance r between the sites a and 6 is large, by 

{aacr,)^ — . (1.8) 

The exponent r is an example of a critical exponent. 

The model (1.4) is generalised to Q G K by analytic continuation, making use of the high-

temperature expansion: Each neighbouring and alike pair of spins contributes a factor 

while each unlike pair contributes a factor of 1. Thus, equation (1.4) can be rewrit ten as 

2Q = 
All (a,b) 

configurations 

Each te rm i n the product is represented graphically i n terms of bonds on the lattice. A 

bond is present i f the (e^ — l ) te rm is present i n the expansion of the product (1.9). These 

bonds f o r m clusters of constant height (refer to figure 1.1). Performing the summation 

over the configurations {a} yields a factor of Q for each independent cluster. Thus 

ZQ= { e ^ - l f ^ Q ^ c . ^ (1.10) 

Graphs 

where A^B and A^c are the numbers of bonds and clusters respectively. The expres­

sion (1.10) is clearly analytic i n Q. So the def ini t ion (1.9) of the Potts model can be 

extended to general values of Q € K by using this new expression (1.10). I f to each bond-

graph is associated the set of closed loops (polygons) around the clusters, as demonstrated 

i n figure 1.1, then the number of closed loops, A ' L in a given graph i n (1.10) is given by 
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Figure 1.1: The Q-state Potts model with free boundary conditions on the rectangular lattice 
(dashed lines), here shown in a finite cylindrical geometry The lattice is periodic in the 
'horizontal' direction. Each configuration may be represented by a graph of bonds (thick lines) 
denoting clusters of like heights. Equivalently, each configuration may be represented by the 
set of closed loops or polygons (thin lines) about the clusters 

Euler's relation 

(1.11) 

w i t h A ŝ the to ta l number of sites i n the lattice. For planar or cyhndrical geometries, the 

number of polygons is 

Np = Ni, + Nc . (1.12) 

Hence (1.10) can be rewri t ten as 

ZQ^Q^^f' Y { ( e ^ - l ) Q - ^ / ' } ' Q ^ ^ / ' 
Graphs 

(1.13) 

The cr i t ica l point of the model defined by (1.10), the point where the correlation length ( 

becomes inf in i te , is known f r o m duahty arguments (see [46] and [33]) to be at the point 
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M - 1 M 

Figure 1.2: A standard regular rectangular M x L lattice A. 

where 

( e^ - 1) = 1 . (1.14) 

Furthermore, the t ransi t ion is second order for Q G [0,4] and first order outside this 

interval. Dua l i ty arguments relate the free energy of a system to that of an equivalent 

system constructed on the dual lattice (the lattice constructed by bui lding a lattice w i t h 

sites centred on the faces of the original) but at a different temperature [56]. Such a duality 

argument is presented i n section 1.1.5. 

1.1.3 General Graph Lattice Models 

Consider a standard rectangular lattice A as i n figure 1.2. To each point a of A is assigned a 

value of a spin or height func t ion Ua which is allowed to be one of a discrete set of values G-

The generalisations of the Potts models are found by restricting the configurations of the 

model so that neighbouring heights on the lattice should be close to each other; i.e. that no 

strongly fluctuating configuration should be allowed. This contrasts w i t h the Potts models 

themselves, where there are no restrictions on the heights associated to two adjacent lattice 

sites. Hence the set Q is extended to be a directed graph: the height variable a takes values 

which are the nodes of the graph Q. The bonds of the rectangular lattice are chosen to 

be oriented (downwards as i n figure 1.3 for example) and the fol lowing "Q-restriction 
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L A T T I C E M O D E L S A N D C O N F O R M A L F I E L D T H E O R Y 

Figure 1.3: The ^-restriction condition: two sites a and b with an arrow pointing from a to 6 
have heights aa and Ub such that an arrow points from Ua to crj, on the graph G; i e. if one 
follows an arbitrary path on the lattice in the direction of the arrows only, then the heights 
must also follow a path which obeys the arrows on the graph Q. The nodes or elements of Q 
are here denoted by circles and the links between the nodes are denoted by a directed-line 
drawn between a and 6 if a connects to b. Two-way links are represented by undirected lines. 

condition" is imposed on a: 

I f one follows an arbitrary path on the lattice in the direction 

of the arrows only, then the heights a must also follow a path (1-15) 

which obeys the arrows on the graph Q; 

(see again figure 1.3). In other words, to each path on the lattice, there is a corresponding 

path of heights on the graph Q. 

One sees that with this restriction, the configuration spaces of the Ising, 3-state Potts and 

4-state Potts models are recovered by 

and X respectively. 

In each case half of the lattice points take the height-value of the central node of the 

graph; the remaining lattice points take heights corresponding to the 'leg' nodes. Hence 

the original lattice factorises into two interpenetrating lattices: one trivial lattice with 

fixed configuration and one with the configuration space of the Ising/Potts model (see 
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Figure 1.4: When the graph Q is Z2-colourable, the lattice A factorises into two interpenetrating 
lattices, respectively denoted by dashed-lines with light sites and thick lines with dark sites. In 
the case of the graph Qq ( left), the height function a has the fixed value of the central node 
on one set of sites (the dark coloured sites for example) and on the other lattice sites there is 
a lattice model with degrees of freedom corresponding to the Q-state Potts model. 

figure 1.4). Indeed this wil l always be the case if the graph G is Z2-colourable; i.e. if there 

exists a map between the nodes of the graph G and the set Z2 which is non-constant as 

one traverses the links of the graph. Similarly the configuration space of the Q-state Potts 

model with Q G Z"*" is recovered by considering the graph Qq consisting of one central 

node with Q 'legs' attached (see figure 1.4). 

At the local level, one considers a single square, plaquette or face of the lattice. The 

statistics of the model are governed by local Boltzmann weights, 

w{aa,ab,(7c,(Jd) = aa (1.16) 

which depend solely upon the values of the height variable around the face (a, 6, c, d) of A. 

Such a model is termed an interaction round a face or IRF-model. The partition function 
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of the model wi th given boundary conditions on the height function a is 

{-^l All 
Subject to , faces 
boundary 
conditions 

I f juxtaposition of the weights (1.16) is considered as multiplication and all vertices are 

summed over subject to the restriction (1.15), then the partition function (1.17) is repre­

sented graphically by the lattice of 1.2. We shall see the Boltzmann weights for the Potts 

models in section 1.1.5. 

To further analyse these models, it is useful to label the horizontal and vertical directions 

'time' and 'space' respectively. One considers a vertical "zigzag" of sites to be a fixed-time 

slice; i.e. the configuration space of the heights on a zigzag is taken to be the basis of a 

Hilbert space (see figure 1.6). This procedure allows the transfer matrix to be expressed as 

a trace as we shall see. We now examine the operators which propagate between zigzags, 

these provide the 'time'-evolution of the model: 

Define [4] the face-transfer matrices as 

X L = / \ a' I I S,.^ . (1.18) 

These act between two neighbouring rows of L lattice sites, with height configurations a = 

(c7i,... JUL) and a' = {a[,... ,a'^) (see figure 1.5). We may now write "zigzag-to-zigzag 

transfer matrices" as: 

L/2 

(1.19) 
L/2 ^ ' 

I t is clear that we have two types of zigzag (figure 1.6) depending on whether the first node 

is in the right or the left position. V propagates from 'even' to 'odd' zigzags, W from odd 
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Figure 1.5: The face transfer matrix X * ; i.e. the evolution of a zigzag: cTj i -> a[. 

Even Odd 

V W 

Figure 1.6: The two types of zigzags. V propagates from even to odd zigzags, W from odd 
to even. The configuration space on each zigzag provides the basis of a Hilbert space. 
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{G;a,b) 

Figure 1.7: The cylindrical lattice F of circumference M and length L. On the cylinder 
boundaries, the spin function a takes the values a and b on the 'top' and 'bottom' respectively. 
We denote by {G;a,b) the cylindrical Pasquier model whose configuration space is specified 
by the graph Q with boundary conditions a and b on either end of the cylindrical lattice. The 
order of the specification a, b is irrelevant due to symmetry. 

to even. Together they describe the time-evolution of the system with the transfer matrix 

T = VW (1.20) 

describing the propagation from even to even zigzags. Simarily T = WV describes the 

propagation between odd zigzags. As T (or T) acts as a time propagator, we see that it is 

related to the Hamiltonian H hy T = exp{—y/2dH) with d the interlattice spacing (i.e. 

the distance between neighbouring sites of the lattice). 

I f we impose periodic boundary conditions in the temporal direction (i.e. CTM+I = c i ) , the 

lattice becomes geometrically a cylinder of circumference M and length L (figure 1.7). We 

denote a lattice in this geometry by F. The partition function (1.17) on the lattice is 

Tr = Tr 
Subject to Subject to 
boundary boundary 
conditions conditions 

{{VW) M (1.21) 

which is a simple trace of the transfer matrix raised to some power. Up to this point we 

have not mentioned the boundary conditions which might be imposed on the ends of the 

model. However, we point out that the trace above must take these into account. 
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1.1.4 Integrability 

A necessary and sufficient condition for a given model to be exactly-solvable or integrahle 

is often taken to be the existence of an infinite number of independent mutually commuting 

conserved charges. At least in principle, one may reformulate the equations of motion in 

terms of these charges, so the time evolution of the system is simplified. 

Such charges may be constructed by introducing a family of Boltzmann weights [4], 

(1.22) 

where ^ is a continuous parameter in some interval J . 

I t is convenient, temporarily, to rotate the temporal and spatial directions by | , assume 

a periodicity of L in the (new) 'spatial' direction and define the row-to-row transfer ma­

trix R{^) [4], propagating from row to row, by 

( J l (72 

a\ a 2 a 

f 5 

0"i 

(1.23) 

I f it can be estabhshed that the resulting family, { i?(^) | ^ € J" }, of row-to-row transfer 

matrices is a mutually commuting and infinite set, then one may at least in principle 

proceed via the Bethe ansatz [4] to find the highest eigenvalue f ( ^ ) of R{^) and therefore 

the thermodynamic free energy per site of the model. 

^]-lnZ = - lim jln?{() . (1.24) 

The ability to find this free energy is generally what is meant by terming the model inte-

grable or solvable. The parameter ( in equation (1.22) is called the spectral- or anisotropy-

parameter as i t may be thought of as modulating the strengths of the different interactions 

around a face. 
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Now, consider the conditions sufficient for 

(1.25) 

First, write the product R{0 R{^') as 

L 

{RiORi^)^,, = E n " ^ ( ^ - ' ^ ^ + i ' ^ m > ^ r i e ) ^ ( ^ " , ^ f + i , ^ U i . ^ : i e ' ) 

r 

4 

(71 <T2 0-L 

= T V j ] l ? ( a „ a : ; a i + i , a ^ + i l e , e ' ) ; 
1=1 

where 

(1.26) 

A sufficient condition for (1.25) to hold is the existence of a matrix S{a,a') such that 

Difi, i^, i/'le, a - Si^,, M') i5(A^, M'; ^, ^'le', e) ^ - ' ( i ^ , ly') , (1.28) 

or 

5z?(e,e') = ^ ( ^ ' , 0 ' 5 (1.29) 

for any permissable configuration (w.r.t. G)- As an ansatz for S{fj,,fi'), take it to be itself 

a Boltzmann weight with spectral parameter i.e. 

5'(M,M')P,9 = w{p,ii,q,n'\^") . (1.30) 
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Substituting into (1.29), this ansatz will be consistent provided 

J2^{p,f,,q,f,'\e)w{fi,u,r,q\av^{q,r,i^',M . (1.31) 
Q 

Which, perhaps more clearly, in the notation of (1.22) is 

(1.32) 

Baxter [4] has shown that in most cases it is possible to choose the parametrisation of the 

weights so that 

(1.33) 

This is indeed the case for the models of interest to us later. 

Returning to the "diagonal lattice" picture of the last section (i.e. without the j rotation), 

the integrability condition takes the form 

X\i)X'+^{0X\C)=X'^^{OX'{i')X'^^{Ci (1.34) 

in terms of the face transfer matrices. 

Equations (1.31), (1.32) and (1.34) are equivalent and known as the Yang-Baxter equation. 

One of the most important problems in the theory of integrable lattice models is to find 

its solutions. 
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1.1.5 The Algebraic Content of the Potts Model 

Reconsider the Q-state Potts model with partition function 

/ \ 

z= E ^'^'^-^-^ + E 5 (1-3^) 
All V ( i j \ <'J>. / configurations \ " v i 
{-} 

where {)h,v indicate nearest neighbour sites in the horizontal and vertical directions, 

and and denote the temperature dependent couplings in the vertical and hori­

zontal directions respectively. 

The model is reformulated in the language of the preceding sections as follows: 

Note that as mentioned earlier, the configuration space of the Q-state Potts model is given 

by the Qg graph. Degrees of freedom exist only at every second lattice site; every other 

site has a height fixed to take the value of the centre node of the Qg graph (refer again 

to figure 1.4). This means that the face-transfer matrices may be written as 

^ S ' = exp (J!:„^a2,-i(72,+i) ^a.ii<,\. n ' 

^ (1-36) 

x ? / ^ = exp(x,5.,^.^,. ,^.^J n 

which are manifestly of the form (1.18). The {X"^^^ serve to build up the contributions to 

the partition function coming from alike vertical neighbours on the Potts sublattice and 

the {Z^''"'"^} serve to build up the contributions from alike horizontal neighbours. Defining 

the zigzag-to-zigzag operators U, V and T as before (equation (1.19)), it is easily seen that 

the partition function (1.35) is recovered from equation (1.21). Define operators {cj} by 

e2j = S<j^._^a2j+iYl^aia'i , 
i=0 

L (1.37) 

i=0 
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I t is easy to see that [4] the {e^} satisfy the relations: 

6i Ci±i Ci — ei , 

eiCj = SjCi for \i - j\>2 

(1.38) 

with P = Q2. Using these properties, the Jones trace property 

Tr{e^,ei, ••• eij = p-^ Trl iov h < 12 < • • • < in , (1.39) 

may be shown by induction. These relations define the algebra generated by the {ej} , 

namely a Temperley-Lieb algebra of parameter /? [54]. The face-transfer matrices in terms 

of these operators are 

X^^=l + ^,e^^, ^ ^ 
(1.40) 

with ^y^h = {exp{K.^^h) - !}• 

We now find the critical temperature Tc at which the thermodynamic free energy per 

site (1.24) is singular in T. For a large lattice, the transformation -> e'"*"̂  will produce 

only boundary effects and therefore does not affect the volume dependence of the partition 

function in the infinite limit (L, M ^ 0 0 ) such as we might consider in the thermodynamic-

or continuum-limits. Note that the shift e* -> e'"*"̂  is entirely analogous to moving onto the 

dual lattice in the Potts case. The interpenetrating lattices of figure 1.4 are dual to each 

other. Inspecting equations (1.19), (1.21), (1.24) and (1.40) and using the cyclic property 

of the trace, we see that F satisfies the relation 

i^(e . ,a) = F{^^\^-') - HUh). (1-41) 

This is a duality relation: it relates a high-temperature Potts model to a low-temperature 

Potts model. 

Assume that Ky and Kh are both positive so that the Potts system describes a ferromag-
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net: heights which are nearest-neighbours either vertically or horizontally 'prefer' to align. 

On physical grounds, the ferromagnetic Potts model is expected to possess a disordered 

high-temperature phase {Ky^h and ^y^h small) in which all Q height values are equiprob-

able, separated by a transition from an ordered low-temperature phase (i^u,/i and ^y^h. 

large) in which each site of the lattice assumes the same height value. Therefore, in the 

two-dimensional coupling space {Cv,h), one expects a curve separating the ordered and 

disordered regions. I f F is non-analytic at the point {^y,(,h), then by (1.41) it must also 

be non-analytic at the point {^^^y^y^)- The simplest possibihty is that it is non-analytic 

only on the self-dual curve (y^h — ̂  where the phase transition must therefore occur. This 

is indeed the case [33]. 

On this self-dual and critical curve, the parameter ^ = ^„ = (f^^ describes the verti­

cal/horizontal anisotropy; it is the anisotropy- or spectral-parameter introduced in equa­

tion (1.22). Setting = 1 results in an isotropic Potts model. Rescaling by an irrelevant 

overall factor, the partition function at criticality may be written as equation (1.21) with 

zigzag-to-zigzag transfer matrices (1.19) built from the face transfer matrices 

X ^ ( 0 = 11 + ^6; , 0 < i < L . (1.42) 

1 
(Ignoring the factor in the face transfer matrix X^-'"'"^ corresponds to scaling the 

partition function which in turn corresponds to a constant shift in the free energy density 

and this may be ignored.) 

Thus, the model is self-dual i f and only if the face transfer matrices X'^^^^ and X^^ are 

'proportional'. This in turn is the condition that we.can apply the Yang-Baxter discussion 

of the last section (after a rotation of the lattice by j ) . 

Note that we are not constrained use the representation (1.37) of the Temperley-Lieb 

algebra, the partition function is ultimately defined solely in terms of the operators 

{ I 1 < j < L } which are in turn defined completely by properties (1.38) for the speci­

fied value of /3. Thus we are free to choose any convenient representation with the same 

value P = [54]. Moreover, as is easily seen by checking, the conditions (1.38) for any 

value of/? are in fact sufficient for (1.42) to satisfy the Yang-Baxter equation ((1.31), (1.32) 
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or (1.34)). Indeed, the expression (1.42) provides a solution to (1-34) provided 

Thus has a solution in terms of ^' and /3. The parameter may be reparametrised so 

that (1.33) is satisfied. For P <2, P = 2 and /? > 2, this leads respectively to trigonometric, 

rational and hyperbohc parametrisations (see [25] for example). Hence we see that the 

Q-state Potts model is integrable everywhere on the critical and self-dual curve ^v^h — ^-

We remark that the requirements for integrability might still in principle be met using 

face transfer matrices of the form (1.40); we may yet be able to construct an infinite set 

of commuting transfer matrices. However, with both parameters ^ ^ . / i independent, the 

integrability requirements are more involved than in the discussion of the last section. We 

are interested only in the critical case given by ^ / i = 1, as for Q € [0,4] this leads to a 

conformally invariant field theory in the continuum limit. This critical case, as we have 

just seen, is indeed integrable. 

We remark also that, the single parameter ^ of (1.42) which describes the anisotropy in the 

interactions in the vertical and horizontal directions, becomes irrelevant in the continuum 

limit. This is because the way in which the limit is taken can be used to bring the value 

of ^ to whatever we wish, just by taking the hmit in different ways in the vertical and 

horizontal directions. Thus, once this limit is taken (see later), the parameter ^ will no 

longer play an explicit role. 
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1.1.6 The Lattice Models of Pasquier 

Define for each graph G an associated incidence- or adjacency-matrix, also denoted G, by 

Qab = { 
1 ; i f node a is connected to node b. 

0 ; otherwise. 
(1.44) 

where a,b £ G (i.e. a and b are nodes of the graph G)- For example, the graph 

0 — 0 - 0 3 
1 2 v_y 

has adjacency matrix 

fo 1 o^ 

1 0 1 

yO 0 V 

(1.45) 

We may in fact allow entries greater than 1 in the matrix G- This corresponds to having 

more than one link between two nodes. We do not consider such cases here. Graphs 

with the property that there is no more than one link between any two nodes are termed 

simpJj-Jaced. 

The adjacency matrix associated with any graph G is symmetric iff the graph G is undi­

rected. An adjacency matrix decomposes into block-diagonal form iff its graph can be 

separated into two or more disconnected subgraphs. I f ip is an eigenvector of G with 

eigenvalue (3, then 

beg 

b:a 
(1.46) 

where the notation "6:a" indicates that the summation is over all nodes b adjacent to (i.e. 

connected to by) a w.r.t. the graph G-
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Consider for simplicity only undirected and simply-laced graphs G and consider represen­

tations of the Temperley-Lieb algebra (1.38) of the form (ansatz) 

where cr, a' are two permissable adjacent configurations w.r.t. the graph Q and the vector i/) 

is yet to be determined. The last two of the relations (1.38) are satisfied by this form. 

The first relation is also satisfied provided V' is an eigenvector of Q with eigenvalue /3. In 

particular, close examination of the Boltzmann weight generated by (1.47) indicates that 

the path 

O j - \ Gj — ) • ( T j + i a'j a j - i (1-48) 

and hence the entire lattice, satisfies the ^-restriction condition (1.15). 

In the thermodynamic limit, any model defined by the relations (1.38) has the same 

partition function up to boundary effects as the Q-state Potts model with = (3. Such a 

model, therefore, exhibits a second-order phase transition and hence conformal symmetry 

along the self-dual line, only for Q E [0,4], i.e. f3 e [0,2]. Furthermore, the Boltzmann 

weights defined by (1.47) ought to be strictly positive so that the conformal theory at 

criticality in the thermodynamic and continuum hmits is unitary. Also, the graphs under 

consideration satisfy the conditions of the Perron-Frobenius theorem which states: 

Theorem 1.1 (Perron-Frobenius) A finite real matrix with strictly non-negative entries 

has maximal eigenvalue strictly greater than zero, the corresponding eigenvector to which 

is the unique eigenvector with strictly positive components. • 

Hence the two conditions identify ip as the maximal Perron-Frobenius eigenvector of those 

undirected, simply-laced graphs with maximal eigenvalue /? £ [0, 2]. 

The classification of all such graphs arises elsewhere, e.g. in the problem of classifying the 

simply-laced Lie algebras. Those graphs with (3 = 2 are, with some additions, the Coxeter-

Dynkin diagrams of the affine Lie algebras; see table 1.1. Excepting the graphs A2n-i/'^2 
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and b2n-i/1.2, we wil l refer to these diagrams as the affine and/or ADE graphs. To find 

those graphs with /3 G (0,2), use is made of the Kronecker lemma: 

Lemma 1.2 (Kronecker) The maximal eigenvalue of the adjacency graph ^ is a strictly 

increasing function of its matrix elements. Thus adding (removing) an oriented link to 

(from) G wi l l increase (decrease) the highest eigenvalue. Therefore a graph always has a 

strictly higher largest eigenvalue than any of its proper subgraphs. • 

This lemma implies that these graphs have: 

(1) No internal loop, or otherwise An would be a subgraph; 

(2) Any node has at most three legs, otherwise 1?4 would be a subgraph; 

(3) There is at most one three-legged node, or else Dn would be a subgraph; 

(4) No graph with a fork may also have a node linked to itself, or D2n-i/Z2 would 

be a subgraph; and 

(5) No graph may have more than one node linked to itself, or ^ 2 7 1 - 1 / ^ 2 would be a 

subgraph. 

Exploring all possible subgraphs, only those of table 1.2 satisfy these conditions. With the 

exception of the graph A2n/'Z2, these graphs are the graphs of the simply-laced simple Lie 

algebras. We wil l refer to all but the graph A2n/'Z2 as the classical and/or ADE graphs. 

We exclude from consideration the models based upon the graphs A2n/'Z2, A2n-i/'Z2 

and D2n-i/'Z2. These models possess nodes linked to themselves. Such graphs are not 

Z2-colourable so that the factorisation of the lattices depicted in figure 1.4 does not occur. 

The Ising, 3-state Potts and 4-state Potts models are recovered as the models labelled 

by ^ 3 , 1)4 and respectively. The models labelled An in table 1.2 are identified as the 

restricted solid-on-solid (RSOS) models found earlier by Andrews et al. [1]. These models 

were shown to be part of the greater classification of tables 1.1 and 1.2 by Pasquier [43]. 

The graphs of tables 1.1 and 1.2 (excluding those graphs with self-finked nodes) all possess 

the useful property that their eigenvalues may be written in the form /Ĵ '̂ ) = 2cos'^; 

where the {n} = v*{G), called the exponents, are positive integers and h, also an integer, 
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An 

Dn 

EF, 

El 0 

^ 8 

I2n-1 /Z2 

2 n - l ^\p—o—o-. 

Table 1.1: The graphs having highest eigenvalue /3 = 2. Excepting^ the last two, these are 
recognised as the simply-laced affine Coxeter-Dynkin diagrams A, D and E. The so-caNed 
'affine node' of each such diagram is labelled 0. Removal of this node from the diagram " X „ " 
results in the corresponding classical Coxeter-Dynkin diagram appearing in table 1.2. 
The diagrams A 2 „ _ i / Z 2 and D2n-il'^2 are not Z2-colourable. 
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Dn •-o—o 

Er 

Eg 

Table 1.2: The graphs with eigenvalue (3 < 2. Note that, excluding the final set of 
graphs A2n/'^2, these are the (non-affine) classical simply-laced Coxeter-Dynkin ADE dia­
grams. 
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is the Coxeter number of the graph. We introduce the notation, whereby a general graph 

and/or its associated Lie algebra is denoted by Q. The eigenvectors and eigenvalues of 

such a graph are labelled by the exponents of the graph and denoted by ip^^^ and ^^''^ 

respectively. W h e n referring specifically to the eigenvectors of an A„ or An model we w i l l 

o f ten use the symbol (f)^'^^ instead. I n al l cases, we denote by ip (or (p) and P, i.e. without 

superscripts, the Perron-Frobenius eigenvector and eigenvalue of a model. For the classical 

models, V = V'̂ ^^ and /3 = /J^^); and for the afiine models, V = '0^°^ and /? = (3^°l Often i t is 

useful to label a graph by its Coxeter number h (or affine Coxeter number i f appropriate) 

rather than by the usual index n . I n this case, we subscript the Coxeter number in 

square-parentheses on the graph, e.g. "G[h]" or "D[6] = D^'. The notat ion we adopt for 

labell ing the nodes, the exponents for each of the affine models and the components of the 

corresponding eigenvectors i n the An and Dn cases are given in appendix A . 

Each of the graphs An, Dn, Eej,8, An, -D„ and ^6,7,3 defines a representation of the 

Temperley-Lieb algebra through equation (1.47) and therefore, at least for ^y^ti = 1, an 

integrable lattice model. We denote by {Q\a,b) the integrable lattice model of figure 1.7, 

defined on the cyl indrical lattice V (periodic in the t ime direction), based on the graph Q 

w i t h boundary conditions a and b on either end of the cylinder. We denote by Z^''^'^^ the 

pa r t i t i on func t ion of such a model. The face transfer matrices are defined [44] as i n (1.42). 

Since the models undergo a second-order phase transi t ion at the self-dual point ivih = '^, 

their cont inuum l imi ts are conformally invariant [15]. As the Boltzmann weights of the 

latt ice models are required to be real and positive, the corresponding conformal theories 

are unitary. I n the case of the classical graphs An, Dn and £^6,7,8) the conformal theo­

ries obtained i n the thermodynamic Umit provide representatives of the unitary minimal 

series [45] (and see [26]) w i t h central charge 

where h is the Coxeter number of the appropriate graph. Indeed the complete classification 

of two-dimensional conformal field theories, the ADE-dassification, has been found by 

Cappel l i et al. [9]. The complete set of min ima l modular invariant par t i t ion functions on 

the torus f a l l into two series: one labelled by iA[fi],G[h']) and the other by {Q[h],A^fi'])'> 

where ^ is a classical ADE graph, h and h' are the Coxeter numbers labelling the graphs 
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and h' > h. Un i t a ry models correspond to the requirement h' = h + 1. The modular 
invariant pa r t i t i on functions defined by (1.47) precisely realise the ( ^ [ / i - i ] , ^[/i]) series [45]. 

The afhne graphs An, and £^6,7,8 provide uni tary c = 1 models (see references [45] 

and [29]. This w i l l also be demonstrated expUcitly i n the fol lowing chapter). 

1.1.7 Intertwiners 

The pa r t i t i on func t ion of the model {Q; a, b) may be wr i t t en as 

M L 

^ p , 6 ) ^ ^ E 5n. . . . . . ( /?) .1V ( e , , . . . e . J . (1.50) 
fc=0 i i , . . . ,H=l ^ 

h<-<ik 

This expression is obtained by w r i t i n g Zp '̂"'*"^ as a trace over the face transfer matrices 

which i n t u r n may be expressed i n a representation- and graph-independent fashion as sums 

over the ident i ty H and Temperley-Lieb operators { j 1 < j < M } . The properties (1.38) 

together w i t h the cyclicity of the trace allow the par t i t ion func t ion to be reduced to 

this f o r m [51]. Moreover, the numbers { ^ i i , . . . a r e functions only of the parameter (3 

appearing i n (1.38); i n particular, these numbers are positive and depend upon the graph 

defining the model only through the Perron-Probenius eigenvalue (3. Thus to calculate 

the pa r t i t i on func t ion Z^'"''^^ i t w i l l be necessary to calculate the trace over products of 

Temperley-Lieb operators { e ^ } . 

Denote by T^{a,b) the trace subject to the boundary conditions (a, 6). I t is useful to 

introduce the M a r i o v trace defined for any operator Y on the Hi lber t space of a model 

based on the graph Q by 

= - ( ^ ( c ^ i , - - - Y | c 7 i , . . . ,(7^) ; 
(T2,...,0-L W l 

where the | ^p^'^^ | A* S v * ( ^ ) | are the eigenvectors of the graph Q labelled by the exponents 
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of G- The modified partition function is defined [51] i n terms of this trace by 

•g^M rp^(f) rpM 

beg V-a 

(1.52) 

We remark that this pa r t i t ion func t ion is independent of a as w i l l be seen in lemma 1.3. 

Wr i t e 

<7j-l 

(1.53) 

then i t follows f r o m (1.47) that 

deg 
a = (1.54) 

and 

E 
c,deg b 

(L55) 

The eigenvector property of V'^^^ yields 

E . 
dee 

(1.56) 

as the summation, due to the ^-restr ict ion condition, is over al l d adjacent to a. 

The fol lowing is a result of Sochen [51], slightly adapted for our purposes later on: 

ROBERT P. T. TALBOT — PH.D. THESIS 1998 



LATTICE MODELS AND CONFORMAL FIELD THEORY 27 

Lemma 1.3 (Sochen [51]) The modified par t i t ion func t ion defined by (1.52) is graph 

independent i n that 

2 f ' ' ^ = /(A/3^'^^); (1.57) 

i.e. the modif ied trace depends on the graph Q only through the eigenvalues /3 and 

I n part icular , the func t ion / is completely independent of the chosen representation of the 

Temperley-Lieb algebra. I t depends only upon the details of the lattice A. Thus, for two 

graphs sharing the exponent t/ and having the same Perron-Frobenius eigenvalue the 

modif ied pa r t i t i on functions {Z^''^^}g w i l l be identical. • 

Proof Combining (1.50) and (1.52), 

M L 

#''' = E E 5n,.....(/3)1vM(e,,...e.J . (1.58) 
k=0 iu...,ik^l 

n<--<ifc 

Therefore examining the traces on the RHS (i t is useful to bear i n mind the notation 

of (1.53) i n the calculations that fol low): For k = 6, 

'IV^'')(1) = . (1.59) 

This is obtained by repeated apphcation of (1.56). The RHS is a func t ion of ;5 and /3(^) only 

and has the same funct ional f o r m for al l Q. I t is independent of the boundary condition a. 

For k = l, using (1.54) and (1.56), 

T r M ( e , J = / 3 ( ^ M ) " ^ - ' . (1.60) 

The proof proceeds by induct ion on the number of operators i n the trace. We use the sym­

bol / to denote some unknown/general representation-independent and graph-independent 

func t ion (not necessarily the same each t ime the symbol is used however). Suppose 

Tri^Hen•••e^,) = f{P,(3^''^), (1.61) 
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then for 73 > 1, 

^ r ^ ( e n - - - e . , e . , + , ) = ^ T V H ( e , . . . e , J ^^^^^ 

= /(/3,/3( '^)); 

and for p = 1, 

T V H ( e , , . • • e,, e,,+p) = / 3 H T V ^ (e,, • • • J 

= /(/3,/3^' '^), 
(1.63) 

using (1.55) and (1.56). 

The conjecture (1.57) follows by induct ion. 

A n immediate consequence of lemma 1.3 is that for any classical ADE graph Q^^ w i t h the 

same Coxeter number h as the graph A j / j j , that 

Thus, provided the | ip^^^ | M ^ v * ( ^ ) | are chosen to be orthonormal, 

where a may be chosen arb i t ra r i ly on the graph A[f^y The object relating the two par t i t ion 

functions is known as an intertwiner; i.e. 

-T 

w i t h the intertwiner, 

Ai6v*(e)' 

Intertwiners provide mappings between the Hi lber t spaces of different models. I n par-
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t icular , fixing a and a i n (1.67), they provide the rectangular (i.e. non-square) matri­

ces {V)l = {V(^a)a)l that relate the adjacency matrices, 

A[^V = Vg[^. (1.68) 

1.1.8 Further Graph Lattice Models 

The set of models of tables 1.1 and 1.2 is obtained by restricting the set of graphs considered 

to be simply-laced and undirected. Also, subst i tut ing the f o r m (1.42) into the Yang-Baxter 

equation (1.34) results i n the conditions: 

ef =Pei, 

e, e i+i - e, = e^+i e, e^+i - Ci+i , (1-69) 

ei Cj = Cj ei for \i — j\>2 , 

as the sufficient conditions for integrability. (The trace property (1.39) is also satisfied.) 

The algebra of the {e^} is therefore more generally a Hecke algebra of which the Temperley-

Lieb algebras f o r m a subclass. Furthermore, the f o r m (1.47) is nothing more than an ansatz 

for providing a representation of the Temperley-Lieb algebra. Thus we might expect to 

find more integrable models once these restrictions have been hf ted. 

D i Francesco and Zuber [23] have defined a series of representations of subalgebras of 

the Hecke algebra. They define a SU(A'^)-yertex modei as one whose transfer matr ix 

commutes w i t h the quantum group S\}{N)q for some q. This quantum group restriction of 

the transfer ma t r i x requires that the Bol tzmann weights are to be found in the commutant 

of the quantum group S\}{N)q. This commutant is a quotient of the Hecke algebra. I n 

this classification, the models of Pasquier are synonymous w i t h "SU(2)-height models". 

The quotient of the Hecke algebra f r o m which their Bol tzmann weights are bui l t is none 

other than the Temperley-Lieb algebra (1.38). 

Roche [47] and independently also Warnaar et al. [55] construct integrable lattice models 

based on an alternative f o r m to (1.47) for the Bol tzmann weights, also based upon the 

Perron-Frobenius eigenvector, i /^ , of ADE graphs. These di lute ADE-lattice models can 
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be shown [8] to provide realisations of bo th the ( A [ / j _ i ] , ^[ / i j ) and {Q[h-i],-^[11]) series of 

un i ta ry m i n i m a l models. 
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1.2 Conformal Field Theory 

Conformal ly invariant quantum field theories describe the cri t ical behaviour of systems at 

second order phase transitions [5], [15]. I n this section we review the 2-dimensional theory, 

par t icular ly its appHcation to the case when the central charge c = 1 and the geometry of 

the system under consideration is cylindrical . This review follows [5], [7], [10], [11], [13], 

and [16] and also uses some elements of the review article [30]. 

1.2.1 The Conformal Group 

Consider the space w i t h flat metric g^j, = 77^^ of signature (^i, q) and fine element ds^ = 

g'^^ dx^ dx'^. Under the general change of coordinates x ^ x': 

dx" dx^ 
9i.M ^ g'^^ix') = 0 ^ 0 ^ 9ai5{x) . (1.70) 

The conformal group is the subgroup of coordinate transformations that leaves the metric 

invariant up to a local scale change. 

9nA^) ^ g'nAx') = Hx) gfj,u{x) . (1.71) 

The inf ini tes imal generators of the conformal group are determined by considering the 

inf ini tes imal coordinate transformations of the f o r m x^ -> x'^ = x^^ + so that 

ds^ ^ ds2 + {d^e^ + 5^£^) dx^" dx" . (1.72) 

For (1.71) to be satisfied, d^e^ -f- dySfj, must be proport ional to -q^u- Tracing bo th sides of 

this propor t ional i ty relation yields the conformal Killing equation: 

2 

d^Su + duS^ = - (a • e) r?^^ . (1.73) 

For d > 2 the general solution is 

£^ = 4- + a;̂  + (A'^ x^\ • x) ; (1.74) 
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the parts on the RHS corresponding i n t u r n to translations, rotations, dilatations and the 

so-called special conformal transformations. The conformal group for d > 2 therefore is 

finite dimensional. 

I n contrast, for d = 2 and g^^ = 6^^, (1.73) reduces to the Cauchy-Riemann equations: 

diei = 8262 , die2 = -8281 . (1.75) 

I t is now natura l to wri te £{z) = e^+ie^ and e{z) = £i—ie^ i n the complex coordinates z = 

+ ix^ and 'z = — ix"^; w i t h x ^ , x ' ^ G C. 2; and z are taken to be independent 

quantities (not complex conjugates) i n calculations, w i t h the reality condition z = z* 

imposed afterwards. (We adopt the notat ion z* to denote the complex conjugate oiz.) The 

group of conformal transformations i n d = 2 is thus isomorphic to the infinite-dimensional 

group of a rb i t ra ry analytic coordinate transformations: 

z - ^ f { z ) , z ^ J i z ) . (1.76) 

We w i l l use the convention whereby functions of the coordinate z (i.e. purely holomorphic 

functions) are denoted by unbarred quantities and functions of z (i.e. antiholomorphic 

functions) by barred quantities and also wri te d = = and d = dz = •§=• 

Inf ini tesimally, the transformations (1.76) &xe z ^ z + e{z) and z ^ z + £{z). Wr i t t en as 

Laurent series, these become: 

00 

s{z) = - ^ e „ ^ " + i , e{z) = - ^ £ „ z " + i . (1.77) 
n=—00 ri=—00 

So that the Lie algebra of the conformal group is generated by: 

Z„ = -z"+^a, /„ = -J"+^a; n e Z . (1.78) 
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These are the generators of the Witt algebra. This loop algebra has commutation relations: 

[In , Im] = (n - m) Im+n , 

[In , Im] = (n - m) Im+n , (1-79) 

[In , l m ] = 0 . 

This is the ioca] conformal algebra. The last of these commutators indicates that this 

algebra is the direct sum of two subalgebras, one generated by the {In} and the other by 

the {/„}. Indeed, i t is clear f r o m (1.76), that the conformal group in d = 2 is the direct 

product of two identical subgroups. The separate algebras (groups) are referred to as the 

holomorphic and antiholomorphic algebras (groups) respectively. As they are isomorphic, 

we w i l l generally choose to neglect to mention the antiholomorphic algebra (group); similar 

results for the holomorphic algebra (group) apply equally to the antiholomorphic case. 

Clearly is regular at ^ = 0 for al l n > — 1 and is singular for n < —2. Performing the 

coordinate t ransformation z = l/w one finds /„ i->- —w~'^'^^dw which is regular at ui = 0 

(i.e. z = oo) for n < 1 and singular for n > 2. Therefore only the subalgebra of transfor­

mations generated by { / _ i , / o , / i } U { L i , I o , / i } is well defined everywhere on the Riemann 

sphere (C°° = C U { o o } ) . The finite f o r m of these transformations are maps C°° ->• C°° 

which are analytic everywhere and possess global inverses. They are called the global-

01 projective-conformal transformations and are isomorphic to the group SL(2,C)/Z2 of 

Mobius transformations on the Riemann sphere. I n general the Jocai conformal trans­

formations generated by the entire local algebra (i.e. the conformal group) are typically 

meromorphic and do not possess global inverses. 

The generators i _ i and I _ i may be identified as the generators of translations, IQ + Jo 

the generator of dilatations, i(/o — lo) as the generator of rotations, and l\ and l\ as the 

generators of the special conformal transformations. The Cartan subalgebra is generated 

by {loJo}- The physical operators, or fields, w i l l be eigenstates of these operators w i t h 

eigenvalues h and h respectively, called the conformal weights. As to + Iq and i{lo - IQ) 

generate dilatations and rotations respectively, the scaling dimension x and spin s of an 
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operator are given by: 

x = h + h, s = h - h . (1.80) 

The t ransformat ion of the line element under the conformal group i n complex coordinates 

is 

ds'^ = dzdz^dfdf dzdz = 8/8/(13^ . (1.81) 

This t ransformat ion may be generalised to 

^z,z) ^ { 8 f f ( d f f H f { ^ ) J i - ^ ) ) ; (1-82) 

where h and h are the conformal weights of the operator ^{z,z). I f an operator ^{z,z) 

transforms i n this way under the entire conformal group then $ is said to be a primary op­

erator. I f i t behaves i n this fashion only under the global group, then i t is a quasiprimary 

operator. A conformal field theory typical ly consists of an inf ini te set of local operators 

{(j){z,z)}, which includes the identi ty operator, w i t h the property that i f a field is one such 

operator then so w i l l be al l its derivatives. The sets of pr imary and quasiprimary opera­

tors are special subsets of these operators; the remaining operators, known as secondary 

operators, being linear combinations of the quasiprimary operators and their derivatives. 

I n general, the conformal group of transformations can alter the geometry of the system 

and may therefore change the physical ground state of the theory. However global trans­

formations do not change the geometry so that the vacuum is invariant under the global 

group. 

From (1.82), under the local (global) t ransformation z -> z + e{z), z z + e{z), a primary 

(quasiprimary) operator ^{z,z) w i l l t ransform as 

5e,eHz, z) = {{h8e + £8) + (hde + ed)) $ ( z , z) . (1.83) 

This places severe constraints on the 2- and 3-point correlation functions of any such 

operators. 
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1.2.2 Quantisation 

Consider flat Euclidean space w i t h space and t ime coordinates and together w i t h 

the complex coordinates C = 2/° + and ( = y° - iy^. To ehminate possible infrared 

divergences, the spatial coordinate is compactified so that y^ = y^ + 2n. This defines 

an in f in i te cyhnder i n the y*',y^-coordinates. Now consider the conformal map ( ->• z = 

expC = exp(y° - I - iy^) that maps the cylinder to the complex plane coordinatised by z. 

In f in i t e past and fu tu re on the cylinder, y^ = ^ c o , are mapped to the points z = 0, oo on 

the plane. Equal-t ime surfaces, y" = constant, become circles of constant radius on the z-

plane and time-reversal corresponds to z 1/z*. Dilatat ions in the z-plane, 2 -> e"z, 

are the time-translations y*̂  -> y*̂  -h o on the cylinder. So the di la ta t ion generator on the 

conformal plane may be regarded as the Hamil tonian of the system and the Hilber t space 

is bu i l t up on surfaces of constant radius. This procedure for defining a quantum theory 

on the plane is known as radial quantisation. 

Under the general coordinate transformation xf^ x'^ + £^{x) the Hamil tonian of a theory 

w i l l t ransform as 

6,H = -^J d^xd>'£''e,.; (1.84) 

which defines the energy-momentum or stress-energy tensor Q^^. For a conformally in­

variant theory, invariance under inf ini tesimal rotations {£^ = Uu x'^) implies that 6^^ is 

symmetric and global scale invariance (e'̂  = Xx^) implies T r 9 = 0. 

I n terms of correlation functions, (1.84) is equivalent to [5]: 

f ^ ( $ l ( x i ) • . . S,^,{xk) • • • ^ n { X n ) ) = / d'^^'^ • • • ^n{Xn)) • 

(1.85) 
fc=l 

Suppose the variat ion £'^(3;) is conformal w i t h i n some domain D containing the points 

x i , . . . ,Xn and non-conformal but difl^erentiable on the complement D', the boundary 

between these domains being the contour C. Assume also that £^^(3;) vanishes as 2;" - > 00 . 
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Then integrat ing by parts the RHS of (1.85) yields 

^ f d^a; E'{X) {d^^Q.^ix) $ i . . . $ „ ) - J - / d 5 e'{x) (Q^^ix) $ i • • • $ „ ) ; (1.86) 
2n J 2n Jc 

where is or thonormal to the contour C. The arbitrariness of £^ in D' implies that the 

first t e rm must vanish for any e*^. This yields the conservation law 

5^6^^ = 0 . (1.87) 

As 0 is traceless and satisfies (1.87), there are only two non-vanishing components which 

may be w r i t t e n as: 

e = e{z) = e,, = eoo - en + 22 6 0 1 , 
_ _ (1.88) 

e = e{z) = e-, = Goo - en - 2 2 6 0 1 ; 

i.e. w i t h solely holomorphic and antiholomorphic dependence respectively, and which sat­

isfy 9 0 = 5 6 = 0. Also f r o m (1.86), we may wri te the generator of the variations in (1.85) 

as 

_ (1.89) 
= — j>^{dzeiz)e{z) ~dze{z)e{z)) . 

Thus the variat ion of any field ^{w, w) is given by the equal-time commutator 

5,,eHw,w) = ^ - j > ( [ d 2 : 6 ( z ) £ ( z ) , < ^ ( t ^ , ^ ) ] - [ d z 6 ( J ) £ ( z ) , <^(t/;,^iJ)]) . (1.90) 

Products of operators A{z) B{w) i n Euclidean space radial quantisation are only defined 

for |2r| > \w\\ so the radial ordering operation R is defined as 

R{A{z)B{w)) = { 
A{z)B{w) ; i f > 

B{w)A{z) \\i\z\<\w\. 

(1.91) 
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The holomorphic part of (1.90) may therefore be wr i t t en 

6,4>{w) = ^ i l - i \dz£{z)R{©{z)cj>{w)) 
27̂ ^ \J\z\>\w\ J\z\<\m\) 

= ^<f dz£{z)R{e{z)(f>{w)) ; 

w i t h a similar result ( w i t h a minus sign f r o m (1.89)) for the antiholomorphic variation £{z). 

Cyj here, denotes an inf ini tesimal contour about the point w. Comparison w i t h (1.83) for 

a p r imary (or quasiprimary) field ^{w, w) implies that 

R(Q(z)^(w,w)) = (-—^^—^ -\- — ^ ( w , w ) -1-analytic terms , (1.93) 
\{z-wy z-w ) 

This is another way of stating that ^{w,'w) is a conformal field w i t h conformal weight h. 

We shall adopt the convention whereby the radial-ordering operator is dropped and all 

operator-products are understood to be radially-ordered. 

1.2.3 The Virasoro Algebra 

The generators of the (quantised) algebra of conformal transformations may be found by 

considering the generator of a variat ion £ 3 ( 2 ) defined by 

Qe^ = [Qe3 , QeJ • (1-94) 

Prom (1.89), this becomes 

'Sea = T T T ^ j / £2(22) 6(^2) / dz i £i(2rx) Q{z{) 

- idZi£i{zi)e{z,) (fdz2£2{z2)@{z2)] • (1-95) 
JCl JC2 J 

Note tha t the operator products above are radially-ordered so that i n the first term on 

the RHS, C2 encloses C i and i n the second Ci encloses C2. F ix ing zi and deforming the 
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c, 

Figure 1.8: Contour choices in the evaluation of the contour integrals of equation (1.95) 

inner and outer contours as i n figure 1.8, Q^s becomes 

<3̂ 3 = 7 A 2 / d- î ^i(^i) / £2(^2) 0(^2); (1-96) 

where Cz^ is an inf ini tes imal contour enclosing z\. From (1.83) and (1.90) 

(1.97) 

so that 

£ 3 = £1 5£2 - £2 de\ • (1.98) 

Thus 

Qes = ^ d^i £ 3 ( 2 1 ) 0 (^1) 

" 2 ^ / { ^ 1 ( ^ 1 ) ^ £ 2 ( ^ 1 ) - £2(2^1) 9 £ 2 ( 2 1 ) } 0 ( 2 : 1 ) . 

(1.99) 

Integrat ing by parts and applying Cauchy's theorem. 

(1.100) 
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Choosing C3 = C i , the product Q{z2) ©(^i) is determined by comparison with (1.96). By 

dimensional analysis, the most general form this product could have is 

e{z,) e ( . 0 = + + + ^ + analytic terms . (1.101) 

A must be constant, as from (1.93), 6 has dimension —2 (in powers of length units). 

Choose this constant to be c/2. For B to appear, i t must have dimension —1, so that 

B{zi) ~ {zi + A;)~^ which may be absorbed into the A-tevm. Therefore: ^ ( ^ i ) = c/2, 

B{zi) = 0, Cizi) = 2 e ( z i ) and D{zi) = dz,e{zi), so that 

e{z) eiw) = + 7 ^ ^ ^ ^ + + analytic terms . (1.102) 
[z-w)^ ( z - u ; ) ^ z-w 

The parameter c is known as the central charge; it describes a set of particular realisations 

of conformal symmetry. A similar expression to (1.102) holds for the antiholomorphic 

terms, defining the analogous parameter c. Similarly also, Q{z) Q{w) = 0. 

In terms of Laurent series: 

00 

e{z)= ^ L „ ^ - " - ^ eiz) = - ^ (1.103) 

n=—00 n=—00 

with the modes {Ln} and {Ln} satisfying: 

Ln ^ ~ £dz z^+'Q{z) , Ln = -^^£dzz''+'Q{z) . (1.104) 

In each case, the contour C encloses the argument of the field upon which the modes act. 

The algebra of the modes is the direct sum of two Virasoro algebras: 

[Lm , Ln] = {m-n) Lm+n + ^2 ~ ^'"+"'0 ' 

[Lm , Ln] = (m - n) Lm+n + ] ^ ("^^ ~ W n , 0 , (1.105) 

[Lm ,Ln]=0. 

This is clearly the central extension of the loop algebra (1.79). 

Comparing (1.102) with (1.93), and noting that 6 must be invariant under a global confor-
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mal transformation, it is clear that 6 is a quasiprimary field; i.e. it may transform under 

the action of a general conformal transformation. From (1.102) the variation in 6 is 

6ee{z) = €{z) d&{z) + 2 de{z) e{z) + — dh{z) . (1.106) 

For the finite transformation z ^ f{z), this may be integrated to give 

e { z ) ^ { d f ) ' Q { f { z ) ) + - { f , z } ; (1.107) 

where the Schwartzian derivative { / , z} is 

1.2.4 Representations of the Virasoro Algebra 

A highest weight, or primary, state \h,h) is defined by the action of a primary field on 

the vacuum: 

\h,h)'^ ^,j^{0)\0) ^ \nn^^,-,{z,z)\0) ; (1.109) 

where the subscripts on the operator ^ denote its conformal weights. The regularity 

of 6(2;) |0) at 2r = 0 and z = oo leads to the annihilation formulae: 

L„ |0) = 0 f o r n > - 1 , 

(0| Ln = 0 f o r n < 1 . 
(1.110) 

Choosing e{z) = 2"+^ in (1.90) yields 

[Ln , ^,,Ti{z,z)] = {h{n + l)z^ + z^+'d) ^,^Ti{z,z) ; (1.111) 

which implies that the state \h,h) satisfies the highest weight conditions: 

LQ h,K^ = h h, / i ) , 

Ln\h,h)=0 f o r a l l n > 0 ; 
(1.112) 

ROBERT P. T. TALBOT — PH.D. THESIS 1998 



LATTICE MODELS AND CONFORMAL FIELD THEORY 41 

and similarly for the action of the {!/„}. 

The central extension term, proportional to the central charge c, in (1.105) vanishes for the 

commutators of LQ and Li. Therefore these generators, which generate a subalgebra, 

have the same interpretation as the global conformal generators IQ and k. Note 

that |0) is annihilated by LQ and L i so that the vacuum is conformally invariant. 

Each primary field together with its descendants 

{ ^['lJ-''--~'^'-''-\z,z) = L _ , , • •. L_k^L_-,^ • • • L_-,^^,-,{z,z) I all k,,kj G Z+ } , 

(1.113) 

form the conformal family j^] of operators. States of the form 

^{ku...,km-M,-,kn)^Q^ |0) with all ki>0 (1.114) 

are descendant states. The weights (shifted by h) k and k of this state are termed the 

Jeveis of the state. The level k is given by 

^^^(A:^,...,/c^;fci,...,fcn)(Q)|Q^ = (A; + /i)$[*^i' -''='"''=^' -''=")(0)|0) , (1.115) 

m 
with k = "^^ki. A similar equation holds for k. The state h,h) together with its de-

1=1 

scendants under the action of the holomorphic (antiholomorphic) algebra forms the Verma 

module Vh {Vj[)- Vk and Vj^ carry representations of the holomorphic and antiholomorphic 

Virasoro algebras (defined in (1.105)) respectively. As is clear by the definition (1.113), in 

a given representation Vh, the levels of the states are integers. 

The representation V/̂  of the Virasoro algebra is irreducible except for particular, special, 

values of h [37]. For these values, the vector space Vh contains a nuii state (or nu]J vector) 

\x) G Vh which satisfies the highest weight conditions (1.112); i.e. 

Lo\x) = {h + k)\x) , ^ ^ 
(1.116) 

Ln\x) = 0 f o r n > 0 ; 
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where k is the level of |x)- In general, the state |x) can be considered to be a primary 

state of its own Verma module Vh+k- Thus, the representation V/j is reducible. This 

representation may be consistently made irreducible by setting the null vector \x) = 0. No 

contradictions arise as |x) has the property of being orthogonal to every other state in V/i 

and, in particular, has zero norm; i.e. 

( ^ | X ) = 0 for all IV-) e F/, , 
(1.117) 

(xlx) = o. 

In terms of fields, the conformal family [$/x(2)] wil l contain a special secondary field, 

X/i_|_fc(2;), which possesses the property (1.83) and consequently all the other properties of 

a primary field. This field corresponds to the null state \x) and is called a null £eld. I t 

originates from the conformal family [Xfi^k{z)] embedded within [$/i(2;)]. Its correlation 

functions with other (non-null) fields within [$/i(2:)] are zero, so the null field Xh+ki^) 

may be consistently regarded as the zero field. Doing this, [Xfi+k{z)] = {0}, and the true 

irreducible conformal family [$/i(-2)] of the field ^hi^) is obtained. In such a Ccise, the 

conformal family [^^(-j)] contains 'less' fields than expected and it is termed a degenerate 

conformal family. The primary field ^h{z) is termed a degenerate primary field. 

The special values of h at which the representations Vh are reducible (for a given central 

charge c) are found by computing the matrix of inner products of states at a given level 

within the Verma module. This "Xac-determinant" is (see [37] and [5]) 

detMm{c,h)= H (/i - / i p , , ( c ) ) ^ ( ™ - P ' ) ; (1.118) 

pq<m 

where P(n) is the number of (integer) partitions of the integer n, and 

_ {a+p + a-q)^ 
hp^q — ho-i , 

ho = , (1.119) 

a ± = 
^24 

A zero value of the determinant (1.118) indicates the existence of a null state at level m. 
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As the generator LQ provides the Hamiltonian for a conformal theory, i t will be useful to 

count the number of Lo-eigenstates with a given eigenvalue (i.e. weight or level) in a given 

representation, Vh, of the theory. This is simply the dimension of the level-/c Lo-eigenspace 

of the Verma module Vh-

In the case of a non-degenerate representation Vh, the dimension of this level-A; eigenspace 

is easily determined. Prom (1.113) and (1.115), any state at level k is of the form 

L_k,L_k, ••• L^km\h) ; (1.120) 

with Y^^=i = k. Therefore there are P{k) basis vectors at any level, where P{k) denotes 

the number of integer partitions of the integer n. 

For a degenerate representation, the dimension of the level-fc subspace will be Q{k) 

with Q{k) < P{k) for any given level k. This information is collected into a generating 

function as follows: Consider the trace over the representation Vh of the operator q^°\ i.e. 

= Y , I") 
level \a)eVh (1-121) 

Lo\a)={h+k)\a) 

k 

This last is, up to the factor q'^, the generating function for Q{k). The Virasoro charac­

ter, Xhig), of the representation labelled by {c,h), is canonically defined in terms of this 

generating function as 

Xh{q)=q-'^^'Trq'"' . (1-122) 
h 

The Dedekind eta function, r){q), is defined by 

oo 00 ^ 

fc=0 k=l 
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so that for non-degenerate, 

Xh{q)=V-'{q)q''- (1-124) 

As a demonstration of the degenerate case, consider the example of c = 1, which will prove 

useful later on. The Kac determinant (1.118) for c = 1 may be written as 

d e t M ^ ( l , M n ih-liq-p)'?'^^""''^ • (1-125) 
P,Q 

pq<m 
P<Q 

I t is clear from this expression that the determinant has a zero iff / i = ^•n? with n 6 Z"*". 

For other values of h therefore, the character is given by (1.124). Considering specifically 

the degenerate cases and writing h = ^n?, the determinant is 

d e t M ^ ( l , i n 2 ) o c J] (n^ - (g - p)^)^^^'"-^') . (1.126) 
P,9 

pq<Tn 
P<Q 

Thus the lowest level m at which a null vector occurs in the representation V^i is given 

hy q = p + n, SO that m = n + 1. Wi th n = 1 the first null vector occurs at level 2, 

with n = 2 the null vector first occurs at level 3, etc. The weight of the degenerate 

vector is ^ + n + 1 = i l i t ^ L , Thus the representation V(^n+2)^ is contained within the 

representation . Further degenerate levels within occur for m = p{n+p) with p G 

Z+. These correspond to the subrepresentations | F(„+2p)2 P G Z"'",p — 1 | -

To build the appropriate Virasoro character, we begin with 'ri~^{q) q^^l'^ which would count 

the states correctly were i t not for the presence of the degenerate subrepresentations. To 

account for these, the null states of each F(„+2p)2 must be subtracted at each level of . 

Therefore, we subtract Yl^=i'n~^{q) q^^^'^^'^ However, each of these representations is 

itself degenerate and the subtraction therefore eliminates from the count more states than 

is necessary. To counteract this, we look to the first [p = 1) degenerate subrepresenta-

tion V(n+2)2 • I t contains all the degenerate subrepresentations F(„+2p)2 for P > 2. Adding, 

therefore, Z ) ^ 2 ^~^(9) 9 "̂̂ ^^^ cancels out all the overcounting up to (and including) 

weight (""̂ ^̂  . The overcounting at the higher weights still needs to be addressed; how-
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ever, at this stage in the summation, there are equally balanced positive and negative 

terms at the higher weights. As they all require the same correction due to overcounting, 

these corrections are also opposite in sign and so they cancel. The degenerate character, 

is therefore, x'^r^^iq) = V'^iq) {q^^^"^ - g^""'"^)^/''^ Thus the Virasoro characters at c = 1 

may be summarised as 

r / - i ( 9 ) g " ' / ' ; f o r n 0 Z + . 
X't{q) = \ ; (1-127) 

' [ r ? - i ( g ) Q " ' / M l - 9 " ^ ^ ) ; f o r n 6 Z + . 

in agreement with Kac [37] and reference [22]. 

1.2.5 Conformal Field Theory on the Cylinder 

In a semi-infinite or finite system, such as a Pasquier model on a (finite) cylinder, the 

presence of the boundary modifies the algebra (1.105). Consider the prototype geometry 

of a semi-infinite half-plane defined by I m ^ > 0 with a boundary condition, denoted (a), 

on the real axis. The operators {0(^;, J)} of the theory are defined only within the upper 

half-plane Im^; > 0. The action of the conformal field theory is locally invariant under 

infinitesimal conformal transformations e{z), e{z). In order to preserve the geometry it is 
oo 

necessary that E{Z) is restricted to be real when E K. I f e(z) = — ^ ^n^^^^i tben 
n=—oo 

the parameters {£„} must be real. 

The definition of Q{z) may be extended into the lower half-plane [10] by setting 

Q{z) = Q{z) f o r l m 2 < 0 . (1.128) 

In other words, ©(z) is regarded as the analytic continuation of 6(2) into Imz < 0. One 

also chooses 9 = 0 on the real axis; this corresponds in Cartesian coordinates to the 

physical condition 0oi = 0, i.e. there is no energy-momentum flux across the boundary. 

The generator (1.89) of conformal variations is written as 

Q = - L / (dz £(^) 6 ( 2 ) - d z £(1)6(1)) ; (1.129) 
2m Jc+ 
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Figure 1.9: The contours and C ^ C+ U 

where the contour, written C"*", is taken to lie wholly within the Imz > 0 half-plane. I t 

is convenient to choose (which must enclose the points z\,... ,Zn of the arguments 

of the fields upon which Q acts) to be a large semicircle together with a portion of the 

real axis. Choose the contour C~ to be the image of C+ under reflection in the real 

axis (see figure 1.9). Then the restrictions on £{z), £{z), Q{z) and Q{z) imply that the 

generator (1.129) may be written as 

(1.130) 

where the contour C is the 'net contour' (7+ U C~. So that the presence of the boundary 

has 'eliminated' one of the Virasoro algebras. The generators of the remaining algebra are 

the {Ln}, with 

(1.131) 

the contour C again extends into the lower half-plane and encloses the points 

Zi, 2̂ 1, . . • , 2̂ 71, Zn 

of the operators upon which L„ acts. The { i ^ n } ) of course, satisfy 

[Lm , Ln] = (m - n) Lm+n + ("^^ ~ ^rn+n,0 - (1.132) 
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The geometry of the half-plane is brought to that of the infinitely long strip of width L 

by the conformal transformation 

w=-\nz. (1.133) 

Writing w = a'^ + ia^, the generator of a'^-translations or Hamiltonian, is given in terms 

of the generator of dilatations in the upper-half plane, LQ , by 

/ f = ^ ' d a - e . „ 4 { L . - ^ | . (U34) 

The term — is introduced as a result of the Schwartzian derivative (1.108). 

This strip wi l l have the same boundary condition (a) on either side. However, the exis­

tence of a Virasoro algebra is dependent only upon the fact that the boundary conditions 

are conformally invariant; i.e. 6oi = 0 on = 0, L, so that the more general case when 

the boundary conditions are not identical on either side may also be considered. De­

note this new boundary condition (a,/?), and by H^""'^^ the corresponding Hamiltonian. 

The eigenstates of Jf^""^) wil l fall into irreducible representations of the Virasoro algebra. 

Denote by A^^ the multiplicity with which the irreducible representation with highest 

weight h occurs in the spectrum of H^°''^\ Transforming the strip with this new boundary 

condition (a, (3) back into the upper half-plane, there is a discontinuity in the boundary 

condition at 2; = 0. In radial quantisation, this corresponds to a "vacuum" state which 

is no longer annihilated by L _ i [16]. The vacuum is no longer translationally invariant. 

Such a state may be considered equivalent to the action of a boundary operator $("'^)(0) 

acting upon the true vacuum |0). I t is a highest weight state with weight /i(a,/3) equal to 

the lowest value of h for which A^^ ^ 0. Note that A^„ — 1. 

To arrive at the situation reminiscent of the cylindrical Pasquier models of section 1.1, 

the strip with boundary condition (a, /?) is made periodic in the a'^-direction (time) with 

period M by identifying a'' = a° + M. Topologically, this manifold is an annulus. The 
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modular parameter is q = exp{—MTT/L} and the partition function 

= T V e x p | - — ( L o - - j | (1^35) 

= Y.^^c.pXk{q) ; 
k 

where Xkiq) is the Virasoro character of the (Virasoro-) representation k as defined in 

equation (1.122). 

Equation (1.134) also illustrates the 1-1 correspondence between the eigenstates of the 

Hamiltonian and the scaling operators of the theory. As there is only one Virasoro 

algebra arising in the theory, the scaling operators are eigenvectors of LQ- Hence the 

scaling dimensions are given by the eigenvalues of LQ (compare with equation (1.80)). 

Denote by a state of scaling dimension Xn and by the degeneracy of the n'*' 

energy level (i.e. \xn)); then (1.135) may also be written 

Z ( - ^ ) ( , ) =Y:Nn {Xn\exp { - ^ {LO - ^ ) I \Xn) 
^ ^ (1.136) 

n 

Thus, the partition function of a cyhndrical model may be written as a series in q with 

strictly non-negative integer coefficients. Furthermore, the scaling dimensions may be read 

off from the exponents of q once the modification by —c/24 has been made. The conformal 

invariance of the vacuum implies 2:0 = 0. However this "true vacuum" only appears in the 

theory provided A°^ > 1. In general, the ground state of the theory will be associated 

with the boundary operator $("^'(z, J) of highest weight, or scaling dimension, hf^aP)-

LabelHng by EQ the energy of this ground state, and by Ax„ the difference in scaling 

dimensions Xn - then from (1.134), this difference of scahng dimensions corresponds 

to the energy gaps, 

AEn = En-Eo = ~Axn. (1.137) 

Note that although (1.127) indicates that a model in which only one irreducible Virasoro 
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representation appears wil l have the {xn} all integers, this is not a priori necessarily the 

case for a general model as more than one representation wil l be present. Now, of course, 

(1.136) may be written 

2 ( « . / 5 ) ( 5 ) = g 7 / 2 4 ^ ^ ^ g A x „ . (1138) 

n 

with 7 = 24:h(^a,/3) ~ c-

For a model based on a given graph, {Q; a, h) say, the height operator of the theory takes 

on the specified node-values a and h on either end of the cylinder. Hence we denote the 

boundary conditions when specifically referring to such a model by (a,6), with a,bEQ. 

1.2.6 Finite-Size Scaling 

We briefly mention now, the theory of finite size scahng. This review is adapted for our 

purposes from Barber [3]. 

Phase transitions in statistical mechanical systems arise only in the thermodynamic limit, 

in which the volume V (i.e. the area when d = 2) oi the system and the number of parti­

cles A'' (i.e. the statistical degrees of freedom) are both taken to be infinite with fixed finite 

density p = V/N. Only in this limit is the free energy or any other thermodynamic quan­

ti ty a singular function of the temperature or of external fields. However, experimental 

systems, such as those available within the laboratory or provided by numerical simula­

tions have both finite volume and a finite number of degrees of freedom. Nonetheless, 

'approximate singularities' may still be observed in such systems; and these often agree 

with the singularities predicted for the system in the thermodynamic limit. The question 

to be answered is to what degree can the finite system provide information concerning the 

infinite system of the thermodynamic limit? 

Consider a 2-dimensional system infinite in extent in one dimension and finite, with 

width L, in the other. The example we choose of such is the infinite strip of width L. 

This, as mentioned before, is related to the cylindrical geometry of the Pasquier models. 

Let F{T, L, N) be the free energy per unit length (in the infinite direction) of a lattice 

approximation to such a system with width L, number of particles per unit length iV, at 
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temperature T. 

We first remark that the partition function for a length M of the strip may be written as 

2 ( " ' ^ ) ( T , L , M , A r ) = e - ^ ^ ( ^ ' ^ ' ^ ) 

^r^^-MH{T,L,N) 
(1.139) 

En 

As M —>• oo, the partition function on the strip is dominated by the ground state. Thus 

the free energy per unit length of the infinite strip is given by F{T, L, N) = Eo{T, L, N); 

i.e. the ground state energy and free energy per unit length are synonymous. 

In the thermodynamic hmit, with the density p = N/L and temperature T both held 

fixed, i t is expected that the (bulk) free energy density 

/ o o ( T , p ) = l im (1.140) 
p fixed 

exists and is independent of the geometry of the system and of the boundary conditions (a) 

and (/?) imposed on either side of the 'strip'. Thus 

F{T,L,N)=LU{T,p) + 0{l) (1.141) 

as the system approaches the thermodynamic hmit. Thermodynamics also suggests the 

existence of a boundary or surface free energy density / (" '^)(T, p), so 

F{T,L,N) = Lf^{T,p) + f^^'l'HT,p) + 0{L-') , (1.142) 

again, as the thermodynamic limit is approached. The density /("'^^(T, p) will of course 

depend upon the boundary conditions {a,P). 

At T = Tc, the system is described by a conformal field theory. The lattice strip may 

be mapped back into the semi-infinite half-plane by inverting the map (1.133). However, 

the canonical normalisation of Q{z) is so that {Q{z)) = 0 on the half-plane. Such an 

assumption means that the bulk and surface contributions in (1.142) have been subtracted. 
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Including the terms (1.142) therefore, comparison with equation (1.135) yields the expected 

ground state energy for a lattice-strip of width (i.e. number of sites) L: 

Eo(L) = /ooL + /(" '^) + ^ { / i ( , ; 3 ) - ^ } . (1.143) 

This is in agreement with the result of [7], once the action of the boundary operator 

$("./5)(0) on the true vacuum is taken into account in that result. Equation (1.143) may 

be written as 

Eo(L) = /ooL + /(" '^) + ^ ^ ; (1.144) 

with 7 = ^{Q; a, pi) — 24h(^a,i3) " 'prefactor exponent' appearing in equation (1.138). 

Note that the result (1.143) does not take into account corrections due to the departure 

of the Hamiltonian from the renormahsation group fixed-point Hamiltonian at the crit­

ical point. For finite values of L, the critical-point Hamiltonian is modified by terms 

involving 'irrelevant operators'. We ignore such corrections here. The reader is referred to 

references [3], [12] and [14] for further details. 

1.2.7 The Model (A2h- i ;a ,6) 

The height function, Uj, of the model {Aoa;a,b) defined in section 1.1.6 is the discrete 

version of a continuous free field variable ip G R. Up to rescaling of tp, this theory has 

partition function 

= j D(p e x p | - ^ y " d 2 a | V ( ^ ( a ° , a i ) | ^ | , (1.145) 

¥>{aO,0)=a 
>p{a°,L)=b 

tp{a°+M,a^)=ip(a°y) 

where g = 1 [49]. This model is well known in the literature to provide a c = 1 conformal 

field theory (see [30] for example). The equivalence, 

l im ^^•^^•'̂ •''̂  = 2 ( ^ - ' " ' * ) ( M , L ) , (1.146) - T 

M,L-^oo 
M / L fixed 
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of the lattice model in the continuum limit to the Gaussian or Coulomb-gas model (1.145) 
is established by examining the renormalisation-group flows of the so-called (unrestricted) 
solid-on-solid model mapped onto the ^oo model via a set of transformations [42]. 

The partition function (1.145) is calculated by splitting ip{a°,a^) = <^(a°,a^) + ip^^{a^). 

The field V ĵ(<^ )̂ is the classical solution to the equations of motion. The field is periodic 

in the time direction and satisfies the boundary conditions (/g(a°,0) — <p^{a°,L) = 0. By 

zeta-regularisation [48], 

J Dvg exp J d'a |V<pj '} = v'^iq) , (1-147) 

(^(aO,0)=^.{aO,L)=0 

<f^{a°+My)=<p^{a°,ai) 

with q ' exp ( — M T T / L ) , the modular parameter. 

The classical field (p (a^) = (b - a) a^/L [49], so (1.145) is 
CI 

Z(^-;".' ')(g) = ^ - i ( g ) e x p j - ^ (̂ ^y M l | = r ? - i (9) 9̂  . (1.148) 

The model is (manifestly) invariant under shifts in the boundary conditions [a.b) -> 

(a -I- c, 6 -I- c), so we set £ = 6 - a; thus, setting also g = 1, 

(1.149) 

By graph-symmetry, the partition function of the model {A2h-i',o„b) is also invariant 

under 'translation' of the boundary conditions. We again rewrite the boundary condition 

as e = 6 - a. The continuum limit of the partition function is found by noting that the 

height function aj is here the discrete version of the continuous field <p e R/2hZ; i.e. the 

field cp of (1.145) is now compactified on a circle of circumference 2h [25]. With a suitable 

rescaling of the field (/?, the continuum partition function wil l be given by (1.145), again 

with g = I. The partition function (1.145) is evaluated by again splitting (p{a°,a^) = 
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ip^{aP,a}) + <^j(a^)- The field (/g(a°,a^) is as before and provides the contribution (1.147). 

The classical field V^^"-^) is modified to identify the boundary condition e with £ -I- 2nh 

f o r n e Z. Thus 

(1.150) 

where ip^^\a}) is the classical field in the n'^ instanton sector and is 
ci ^ ' 

V^{a') = {e + 2nh)^- (1.151) 

Thus the continuum partition function of the model (v42/i_i; 0,£) is given by the re­

sult (1.149) with the identification e = e + 2h, i.e. 

2^^''-'''''Hq)=V~\q)Yl 
neZ 

(e+2nhy 
4 (1.152) 

We continue this discussion of the partition functions in section 2.3. 

We now have in place all the tools required to construct the continuum partition functions 

of the affine Pasquier models on the cyhnder. We do this in the next chapter. 
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Chapter 2 

Partition Functions of the Affine 
Models 

In this chapter we discuss the calculation of the partition functions of the affine ADE 

models on the cylinder with fixed, specified boundary conditions. This has been done for 

the classical ADE cases by Saleur and Bauer [50], also for fixed boundary conditions on 

the cylinder. Our motivation is to extend their results to the affine AfDE cases. 

We proceed initially by analogy to Pasquier's calculation [45] of the partition functions of 

both classical ADE and affine ADE models on the torus. 

2.1 A Model Decomposition 

The method we set out here is to use a Temperley-Lieb equivalence to re-express the 

partition function Z^'""'^^ of a given model, based on a graph G with specified boundary 

conditions a and b on either end of the cylinder F, in terms of the partition functions 

of the {A2h-i;0,e) models of section 1.2.7. We then use the result (1.152) to deduce the 

partition function in the continuum Hmit, i.e. the corresponding conformally invariant field 

theory. 

Consider the evaluation of the partition function (equation (1.21)) for the model based 

on a (affine) graph Q with boundary conditions a and b. We expand this trace using 

equations (1.19) and (1.42) and represent each term graphically using the notation (1.53): 

In the lattice square in the i^^ row and j ' ^ column (i - j odd) we place a vertical bar if 
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the operator ej is picked up in the i^'^ matrix K or in {V W)'^ = VWVW---VW, 

0-3 

0-5 

(77 

ao = a 

02 

(To = a 

.0-4 

•0% 

<7k 

a8 = b as = b 

Figure 2.1: The operator is represented by a vertical bar between 0-4 and ere; the identity 
operator is represented by a horizontal bar between 0-5 and a'^. 

see figure 2.1, and we put a horizontal bar if the identity is picked up instead. Thus for 

a fixed term in the expansion, in each square of the lattice F there is either a vertical or 

a horizontal bar. We may group the sites of the lattice into clusters, each site of which 

has the same height on ^. We separate clusters by boundaries, ''polygons", drawn on the 

dual lattice; see figure 2.2. We then represent each cluster by a point; points representing 

clusters with a common boundary are joined by a fine which represents the boundary 

polygon. Irreducible clusters, those wrapping around the cylinder, we represent with thick 

points; the others {reducible, i.e. homotopic to a point) with small points. Similarly, we 

represent irreducible boundary polygons with thick lines, reducible polygons with thin 

lines. The cluster graph corresponding to the decomposition of figure 2.2 is shown in 

figure 2.3. The requirement that either a horizontal or vertical bar appears in each lattice 

square, together with the topology of the cyhnder, ensures that no cycles of clusters exist; 

for if we attempt to construct such a cycle, as a simple exercise demonstrates, we are forced 

to identify clusters until the corresponding cluster graph is a tree graph. Each cluster is 

therefore of the form figure 2.4; i.e. a chain, length N {I < N < L), of irreducible clusters 

with the reducible clusters adjoined to it in tree structures. The heights at either end of 

the "•N-chain" are a and b respectively, in accord with the boundary conditions. 

The contribution from each such cluster graph is a sum over all the possible height config-
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Figure 2.2: A cluster decomposition on the cylindrical lattice F. 

Figure 2.3: The cluster graph corresponding to the cluster decomposition of figure 2.2. 

Figure 2.4: A typical cluster graph. The thick points represent irreducible clusters; the thin 
ones, reducible clusters. Links between points represent boundary polygons: thick lines, irre­
ducible polygons; thin lines, reducible polygons. 
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urations on the graph. These inherit the graph restriction condition (1.15). The individual 

contributions are calculated as follows: observe, examining equation (1.47), that the con­

tribution from the operators {ej} that correspond to the polygon segment 

,1/2 
W 

IS ,1/2 ' 

w ĥere ip = ip^^'^ is the Perron-Frobenius eigenvector of ^. We split this contribution further 

so that the polygon corners give individual contributions 

tpl^'^ Inside corner. 

= ipc Outside corner. 

The identity operators (1.53) contribute factors of 1 for the corners 

and 

If we now follow the boundary polygons of a given cluster, we find that boundaries sur­

rounding a cluster of height c contribute xpc- Boundaries surrounded by a cluster contribute 

a factor ip'^. Boundaries that wind about the cylinder contribute a factor 1. Thus the 

contribution from each polygon is 'i/jc^~''~; where 6+ (6_) is the number of boundaries 

surrounding (surrounded by) the cluster (of height c). Thus starting at the outermost 

'branches' of the tree graphs we may 'prune' each branch in turn by summing over all 

admissible heights at the unconnected end of the branch, whilst keeping the heights else­

where on the graph fixed. The contribution obtained by removing each link in this way 

(taking the height of the unsummed end of the branch to be d) is ip'^^ Y^c.d'^c = /S; as 

each such link represents a boundary polygon surrounding exactly one cluster of height c 

(which is being summed over) and is surrounded by exactly one cluster of height d. {P is 

of course, the Perron-Frobenius eigenvalue of the graph Q and is identically equal to 2 

for the affine models considered here.) We prune successively, obtaining factors of P until 

we are left with the bare A''-chain graph consisting purely of the irreducible clusters. The 
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partition function is therefore: 

2f,a,b) ^ J2 (Cluster Graphs),, (2.1) 

/Cluster Graphs consisting^ _ / umster urapns consistmg \ „̂  
~ of an A '̂-chain plus trees / ^ ' 

jV \ / ab 

= J:VN{(3)1 I I V (2.3) 

where we sum over all graphs built around the same A^-chain and collected the factors of /? 

into the polynomial VN{P) (thus the summations in (2.2) and (2.3) are not the same). 

To evaluate the N-chaln we must perform the summation over all configurations on the 

chain consistent with the boundary conditions (i.e. a and 6 are held fixed and cannot be 

summed over). This is no more than the calculation of the number of paths of length iV 

which exist on the graph Q between the nodes a and b. Thus the contribution of a given 

A^-chain is {G^)ab-

= ( 0 ab 
N 

(2.4) 

= E ^ i ^ > t f ' ^ ( 2 c o s ^ 
N 

Thus 

Zf'''^'^ = Y.'^NW) E F^cos^)' ' . (2.5) 

By analogy with Pasquier [45], we now attempt to use (2.5) to rewrite the partition function 

of an arbitrary affine graph model, based on the graph Q, as a finear sum over partition 

functions of (Ap/i'j; 0, A) models with boundary conditions on the cylinder, 

^^''"'^ = E E A ^ o t . ' ^ ^ ' ' ' ' ' ' ' ^ (2.6) 
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If we denote by ^i'j^/';^ the components of the eigenvectors of the graph A^fiiy, then this is 
true iff 

.•N N 
E^-(^) E ^ i ^ > r f ' ^ f 2 c o s f ) = 

as there is a one-to-one correspondence between the cluster decompositions on the cylinder 

for all the graphs, VN{P) = V'j^iP') provided /3 = p'. Of course, = = 2 for all affine 

models so we have, for each N, 

N 

To attempt a solution to this, we must first force the eigenvalues to match on either side 

of equation (2.8). On doing this we note that the power N on both sides of the equation 

corresponds to a path length between two nodes: for it is the length of two iV-chains, one 

with boundary heights a, b on either end and the other with boundary heights 0, A. Thus, 

as the graphs are Z2-colourable, the (Z2-) parity of a, b must equal the parity of N which in 

turn must equal the parity of 0, A. Thus the path parity is preserved in the decomposition 

onto the A models: if the original model has even (odd) boundary conditions (i.e. the path 

length between a and b is even (odd)) then the A models onto which it decomposes will 

also have strictly even (odd) boundary conditions. 

We denote the parity of a, b by P{a, b), in particular 

J , I 0 ; if the path length between a and b is even. 
P{a,b)'^{ . (2.9) 

; if the path length between a and b is odd. 

We remark that for a given exponent of an affine graph may be degenerate, for example 
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the exponent 4 is an exponent of the graph Ee with multipficity 2. To accommodate 

this in our notation we distinguish between two different but equal-valued exponents by a 

subscript; so that ip^^"^' denotes the eigenvector of Q labelled by the i^^ exponent fi. 

Matching the eigenvalues and comparing their coefficients, we find for each j, I < j < h: 

( - i ) W ) ^ ^ . , Y: E ^ i ^ ' ^ " t f ^ ' = 
ied(o) ied(i) 

h' A=0 
such that 
f\j,h'\2h 

where d{j) is an index set labelling the degeneracy of j as an exponent of the graph Q. 

This gives, in general, an underdetermined set of linear equations to solve for the -Â oA / i " 

Because of the large number of unknowns N^^.^,, solving (2.10) in the general case as it 

stands is quite difficult. We attempted a number of ansatze without success. In particular, 

the form (1.67) does not provide a solution. Solutions for a small number of cases were 

found algebraically using a computer. As the unknowns are underdetermined, there re­

mains some freedom in the solutions. As is seen in section 2.3, we are able to use solutions 

to (2.10) to find the partition functions of models based on Q. Once this is done, the 

freedom in the solutions is found to drop out. This is to be expected as the remaining 

freedom should not lead to a physical effect. 

To find a solution for all the ADE models, we might attempt to proceed using lemma 1.3 

as is done for the classical cases. Unfortunately, the discussion which follows lemma 1.3 

does not apply directly to the affine cases. This is due to the fact that the exponent set 

of an affine model A does not necessarily contain the exponent set of the affine graph G 

with the same Coxeter number. For example, D5 has the odd exponent 3 occurring with 

multiplicity 2. However, not only is there no A model with odd exponents, but no exponent 

of any A graph has a multiplicity exceeding 1. 

Fortunately, we may still make use of lemma 1.3, proceeding as follows: 
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Consider the modified partition function (1.52) for an affine graph Q^f^j with affine Coxeter 

number h. In analogy with (2.6), we attempt to rewrite this partition function as a linear 

sum over modified partition functions of A models, 

zlSwM^ ^ Xj^;:, 4^^"^''\ (2.11) 

We allow freedom both in the choice of the A graph (labelled by its Coxeter number h') 

and in the exponent u'. Substituting in the result of lemma 1.3, labelling the eigenvalues 

of a graph with Coxeter number k by P^!^^, we therefore seek a solution for the ^̂ /"̂ z such 

that, 

/ ( ^ / ^ . t f ^ ) = E xj^r^'fiPh'^Pi'^)- (2.12) 

The unknown function / is identical (for a given lattice F) on each side. As we did 

earlier, we must choose the eigenvalues {pj!^^} appropriately on each side of the equation. 

For the reason discussed, unlike the classical ADE cases, this cannot be done simply by 

choosing h' = h and u' = v. Examining ~ 2 cos equality of the eigenvalues may 

be obtained by choosing instead h' = 2h and u' = 2u, i.e. 

Xlir,,=6f6lr . (2.13) 

This provides a solution to (2.11). We observe that in contrast to the toroidal case [45], 

we can construct a solution whereby a model of (affine) Coxeter number h is expressed in 

terms of other models, all of which have the same (affine) Coxeter number, namely 2h. In 

the toroidal case, the extra degree of freedom provided by the summation over h' in (2.6) 

is necessary. Substituting this (2.13) and equation (1.52), equation (2.11) becomes, 

where the {ip^'^^} are eigenvectors of and the {i^^'^^} eigenvectors of A^2h.]- Both a 

and c may be chosen arbitrarily on the respective graphs. Assuming the {V"^^^} have been 
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chosen to be an orthonormal set, this is inverted to yield, 

(2m) 

(2/.) (2.15) 

where c has been set to 0 (the affine node) without loss of generality. This is of the 

form (2.6) with 

(2.16) 

and 

E (2.17) 

Note again that importantly | ip'^^'^ | A* G v*(^) | in (2.17) form an orthonormal eigenbasis 

of G. Equation (2.16), together with equation (2.17), may be readily checked to satisfy 

equations (2.10). They provide a solution but not the most general one. This is of no 

consequence, as the remaining degrees of freedom in (2.10) must drop out once the physical 

partition functions are placed into (2.6). 

We proceed now to examine explicitly the coefiicients (2.17) and postpone comment until 

section 2.6.2. 
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2.2 The Decompositions for the Affine Models 

We now calculate the coefficients (2.17) for the affine D and E cases. The D models form 

an infinite series so we proceed in a general manner for these cases. For the exceptional E 

cases, there are only a finite number (9 -I- 21 -|- 45 75 in fact) of independent models to 

be studied. For these cases we choose to proceed on a case by case basis. 

2.2.1 D[h] Based Models 

We evaluate the coefficients (2.17) for the D based models using the eigenvectors listed 

in tables A . l and A.2 together with the following result: define the modified summation 

by 

E'/(M)^ E /(/^)-^{/(0) + /(M} , (2.18) 

then 

4 fine ana unb 1 v - ^ . / „ 

hl^ ~ ^°^~hr^ 2 ^ ^e+qa+rb,nh • (2-19) 
g,re{±l} 

This is demonstrated by rewriting the cosines in exponential form and evaluating the 

resulting geometric series. The utility of (2.19) may be seen by examining the eigenvectors 

of the ID models given in table A.2. 

Careful use of the identity (2.19) gives the following partition function identities: 

2^̂ 5[h,;a,6) ^ ^JA(2ft];0,|a+6|) ^ ^{^fj^j;0,|a-6|) _̂  

^{Ai2h] fi,h-\a+b\) _^ ^{Ai2hyfi,h-\a-b\) _^ 

^{A[2fe];0,/i+|a+6|) _^ ^{A^2k];0,h+\a-b\) _^ 

{Ai2K];0,2h-\a+b\) (A^2hr,0,2h~\a-b\) 

(2.20) 

where both a and b are on the chain- or 74„-like part of the D graph. Also, 

2 ^{D[^;X,a) ^ ^(A[2A];0,a) ^ ^{A[2ft];0,/j+a) _^ ^{A[2hr,0,h-o.) _^ ^(A(2h];0,2/i-a) 21) 

ROBERT P. T. TALBOT — PH.D. THESIS 1998 



PARTITION FUNCTIONS OF THE AFFINE MODELS 64 

with a on the chain. The results when the boundary conditions both lie on the forks of 
the D graph are: 

^ 2/1-2 
2 ^P[2.i;^, X ) ^ ^(A[,„;0,o) ^ ^{A^,,r,o,h) ^ ^ ^_^^,/2 ^CA[2.,;0,.) ^ 2̂ 22) 

£ = 0 

where the positive sign is taken in the case X and the negative sign in the case X. We 

also have 

2 ^ V , ; ^ . n ^ ^(^V,;o,t) ^^(AV,;o,f) 2̂.23) 

for boundary conditions on opposite ends of the I ) graph. 

These decompositions (2.20-2.23) will of course continue to hold in the continuum limit 

^^g;a,b) ^ Z(S''^''Hq) 
•T 

Z/,M->oo 
M/L constant 

d^o _ (2.24) 

2.2.2 E6,7,8 Based Models 

The A model decompositions for the affine exceptional cases Eq, Ej and Eg may of course 

be calculated from (2.17). This is tedious and is best carried out by computer as there is 

only a finite number of cases to be examined. Matiiematica^'^ was used for this purpose. 

Once the adjacency matrix for the appropriate model has been given, the Mathematica 

script evaluates an orthonormal eigenbasis for the graph. From this, the coefficients (2.17) 

are evaluated for each of the possible boundary conditions. For the cases E^ and Ej, the 

calculations are precise as Mathematica is capable of carrying out calculations symboli­

cally provided they are not too complex. The Eg case was calculated numerically: the 

numerical errors induced being extremely small with deviations from integer or half-integer 

quantities, as appropriate, being of the order of 10~ .̂ These errors where then rounded 

away. The results of the calculation were verified to show that the symmetries of the 

graphs are refiected in the partition functions as expected. 
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As our ultimate aim is to find the partition functions, the results for these decompositions 

do not appear here. However, evaluating the coefiicients (2.17) by computer does not 

present any particular difficulty. 

2.2.3 A[h] Based Models 

In principle, we may calculate the decomposition coeSicients relating the model {A^h.y,a, b) 

to models based on the graph A[2h]- Our interest however, is in finding partition func­

tions and we already have these for both sets of models. Such coefiicients are still useful 

though as a consistency check at this stage: the partition function (1.152) of (A(/i];a, 6) 

may be identified with a sum of partition functions corresponding to A[2h] models. The 

eigenvectors of appendix A . l are not an orthonormal set so this was verified for a number 

of individual cases using an extension of the same Mathematica script as used in the last 

section. 
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2.3 The Partition Functions 

Having established the relationship between the A, D and E based models, we wish to 

write the partition functions of these c = 1 models in the form (from (1.135)) 

2 ( e ; a , 6 ) ( ^ ) ^ ^ ^ { e ; a , 6 ) ^ ^ ( ^ ) . (2.25) 
' 4 

where the Xn2_{<i) are c = 1 Virasoro characters; and J is some index set. In fact, it turns 
4 

out that in all cases of interest J = Z"*". 

2.3.1 Aoo Based Models 

We begin with the classical model ^oo as it provides a useful tool in the subsequent 

analysis. This model also provides a c = 1 conformal field theory in the continuum limit. 

Its partition function is given by (1.149). The degenerate c = 1 characters are of the form 

(see equation (1.127)) 

_ 1 , . r nl (!i±2l! 
Xr^{q) = v - \ q ) [ Q ^ - q ^ j ; (2.26) 

for n e Z"*". We invert this expression to find 

2 °° 

y-'iq) q"^ = y . X f n + 2 „ , 2 jq) (2.27) 

for n a positive integer. Thus 

oo 

2(^-^°'^)(g) = E^k±Mi(9)- (2-28) 

If we define the generalised semi-infinite Kronecker comb as 
00 

^(au...,a,)^ J2 6n,e+im,a,, (2.29) 
mi,...,mfc=0 

where 6 is the usual Kronecker-^; then (2.28) is of the form (2.25) with 

^(Aoc;0,e) ^ j^(2) _ (2.30) 
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2.3.2 A[2h] Based Models 

The partition function of the A^2h] based models are given by equation (1.152). Hence 

2 ( ^ V , ; 0 . ) ( , ) ^ , - i ( , ) ^ , ^ (2.31) 

1 , OO o 

oo . 
= . . 3 3 , 

oo OO ̂  
= E E I A : ( ^ ± 2 , , ^ t 2 ^ (g) + ^ ^ , ^ ^ 3 ^ (^) 

4 m=0 p=0 
(2.34) 

Thus 

A^'- '^ ' ' -^ ' = fiSl (2.35) 

Note that as e has been identified with { e -I - 2nh | n e Z }, we have chosen e above to be 

defined to take values 0 < e <2h — l only. Outside this range it is necessary to substitute 

the value e (mod 2h) for e. Thus the {Ai'^'^''''°'^^} are considered to be periodic in e with 

period 2h. 

2.3.3 D[h] Based Models 

Using the decompositions of section 2.2.1 and the result (2.35), we evaluate the partition 

functions of the D^^ based models in the continuum Hmit. The method is to use the 

decomposition equations of section 2.2.1 together with the properties 

nky"'-^ - ^^ta-^ = ^7-^ (2.36) 

and + niyl:-^ = (2.37) 

to add the coefficients A^i"^'^''''"'''^ to form the A^^''''''^'''^ It can also be shown that 
2/1-2 

E (-1)^/^ aI'^''"''-' - ^ ' : f + < f - 2 n ^ : f = - < ^ • (2-38) 
e=0 
2\e 
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This allows us to evaluate the partition functions corresponding to (Z?[/i]; X, *x'). (The 

properties of the Kronecker comb are summarised in appendix B.) The results are as 

follows: 

- "n, |a-6 | + "n, / i - |a -6 | + "n,|a-^6| + ^^n,h-\a+b\ > 

- "n,a + " n , / i - a ' 

^iD,,r,X,X) ^ ^(2, . ) ^ ^(4) (2.39) 

A^'^'^"'^^ = f ^ ^ ' f + 

The results (2.30), (2.35) together with the (Z)[/i];a,6) results (2.39), are summarised 

graphically in table 2.2 (page 76). 

2.3.4 ^6,7,8 Based Models 

Similarly, we find the partition functions for the EQ, and Eg models from (2.35) and 

the decompositions discussed in section 2.2.2. We leave a statement of the results until 

after section 2.5. 
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2.4 Correspondence with Other Results 

There appears to be very little in the literature concerning the partition functions of the 

models we have examined. We know of two results, that of Baake et al. [2] and that of 

Saleur and Bauer [50], both for the 4-state Potts model with free boundary conditions on 

the cylinder. Unfortunately, we found the former reference quite cryptic and an admittedly 

nai've reading of this paper suggests that the two results do not agree. 

The 4-state Potts model with free boundary conditions on the cylinder may be represented 

graphically, in the notation of table 2.2, as 

Looking at figure 1.4, the dark lattice sites (say) assume the value of the centre (dark 

coloured) node while the light lattice sites assume values of the leg-nodes (light coloured). 

Thus ignoring the 'dark lattice' upon which the configuration is constrained to be fixed, 

the remaining 'fight lattice' provides a 4-state Potts model with free boundary conditions. 

Result (2.39) or table 2.2 therefore gives in this case 

oo 

^(i5.;M)(,) = J2 K.'' + + + ^ 2 ^ X^ (^ ) 
n=0 * 
oo 

= E(2n + l)X(H^(g) (2.40) 
n=0 " 

This is in precise agreement with the result found by Saleur and Bauer [50]. Their result is 

found as a limiting case of a Bethe ansatz analysis based on mapping the general Q-state 

Potts model (1.13) with Q <4 onto the XXZ spin chain. 
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On the other hand, our interpretation of Baake et al. [2], yields the partition function 

4a:kt''^(9)=E(3"+l)X(-£(^) et al. „^0 4 

= ^-H^)(E^'^ + E^' 
oo 

, 52 

(2.41) 

5=1 ) 

This result was found partially through a numerical study. 

As expHcit g-series, the results are 

2(54;l , l ) (^) ^ ^-1/24(1 + 3g + 4^2 7^3 ^ ^3^4 ^ (p(^5)) (2 43) 

and 2t^i:'\q) = q-'^''{l + 4q + + 9 q'+ 17 q'+ 0{q')) (2.43) 
et al. 

respectively. Hence a numerical investigation of the degeneracies wih distinguish be­

tween these two alternatives very quickly. We find degeneracies in excellent agreement 

with (2.42), verifying both our theoretical result and that of Saleur and Bauer. We also 

find agreement with our theoretical predictions for a number of other models. The inves­

tigation is discussed in chapter 3. 
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2.5 Generating Functions 

To fur ther analyse the results for the par t i t ion functions i t w i l l be useful to rewrite 

the O^'^j'" '"'"^ i n terms of their generating functions: 

ai,... .OmJ „n 
e 

n=0 
m ^ (2.44) 

So that i n part icular , 

"•^ n ! drc" 

_ 1 d " 

n! da;" 

1=0 (2.45) 

=0 ( 1 - ^ ' ' ) 

and 

1 i l 
n! d x " 

1 
n! drc" 

1=0 (2.46) 

.=0 { l - x ^ i l - x ^ ) • 

Using the latter together w i t h result (2.35), the par t i t ion func t ion of the A^2h] models may 

be w r i t t e n as 

n=0 

1 
n! da;" 

+ a; 2/l-£ 

x=o ( l - : i : 2 ) ( l - : ^ ; 2 / . ) 
(2.47) 

Hence, using the fact demonstrated that any affine pa r t i t ion func t ion may be expressed 

as a sum of A pa r t i t i on functions (2.15), we see that for any af&ne model 

n=0 

p(%);a,6)(^') 

,0 ( l - a ; 2 ) ( l - x 2 ' ^ ) 
(2.48) 

w i t h p(%li"''')(a;) a 2/i-reciprocal polynomial i n x (i.e. a;̂ '* P(a;-^) = P(a;)). The polyno­

mials P(a;) may be deduced by examining directly the Q —> A decompositions (2.15). 

However, i n general, the coefficients of this polynomial w i l l not be positive (see equa­

t ion (2.22) as an example). Just as we are able to wri te P(a;) for the model (A; a, 6) as a 
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polynomia l w i t h positive coefScients, i t would be preferable to be able to do the same for 

the D and E models. I f we can do this while only modi fy ing the powers in the denomi­

nators then we w i l l again see that the coefficients of the Xv^ifl) -̂re positive integers. I n 
4 

other words, we wish to wri te 

„ - ¥ " ' n ! ix'' 1=0 (1 - a;'-) { l - x ' ) ' 

w i t h Q ( x ) , the "generating poiynomia i" , a polynomial w i t h positive integer coefficients, 

r , s and supdegQ(x) a l l constant for a given model. Furthermore, the fo rm (2.49) to­

gether w i t h the reciprocity properties of Q(x) which the A models already satisfy (as 

demonstrated by (2.47)), are suggestive of a possible relationship w i t h the McKay corre­

spondence [41] which w i l l be explored later i n this thesis (chapter 5). 

For the D models, i t is easiest to compute Q(a;) f r o m (2.39), (2.45) and (2.46) rather 

than direct ly f r o m P(a;). The results for the fork nodes of (2.39) suggest that one of 

the numbers r or s is 4. This is indeed the case as a simple calculation shows that the 

D models may be placed i n the f o r m (2.49) w i t h r = 4 and s = h. I n each case, the 

polynomial Q{x) is of degree less than or equal to h + 2 and is {h + 2)-reciprocaI. The 

polynomials Q^^W'"''''\x) are listed as part of table 2.2 (page 76). 

For the exceptional, cases, we calculate P(a;) f r o m the par t i t ion funct ion. From this, 

we check for each ind iv idua l boundary condit ion that we may rewrite the par t i t ion funct ion 

i n the f o r m of (2.49) w i t h appropriate integers r and s. For each model, suitable integers 

were found. Furthermore, the polynomials were again al l found to be positive-integer 

valued and were q-reciprocal for some integer q, w i t h q also the maximal degree of the 

polynomials. The values of r , s and q being dependent upon the choice of model alone. 

The results for r , s and q for al l (Zg-colourable) models are given in table 2.1 (page 75); 

and the results for the polynomials Q{x) for the Ee, Ej and Eg models appear as tables 

2.3, 2.4 and 2.5 respectively (page 77 onwards). 
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2.6 Comments 

2.6.1 Boundary Condition Parity 

We remark on the importance of the par i ty of the boundary conditions (a, b). As observed 

i n section 2.1, a model w i t h an even (odd) boundary condit ion may expressed in terms of A 

models w i t h s t r ic t ly even (odd) boundary conditions. The fact that the Coxeter number h 

is always even for the models considered and the result (2.30) for the model ensures 

that this property is reflected i n the pa r t i t ion functions expressed as Virasoro characters. 

A model w i t h even (odd) boundary conditions has therefore an expansion (2.25) in terms 
2 

of Virasoro characters of highest weights \ , w i t h n even (odd). 

2.6.2 The General Decomposition Coefficients 

The coefficients (2.17) are the analogues of the classical intertwiners (1.67). They possess a 

similar algebraic f o r m and play a similar role. They differ immediately chiefly i n that they 

relate a model w i t h affine Coxeter number / i to a model w i t h affine Coxeter number 2h 

and even interrelate An models. I n contrast, intertwiners interrelate classical models w i t h 

the Coxeter number preserved i n the relation. 

I t is certainly tempt ing, given the f o r m A . l for the eigenvectors (j)^^^ of the A[2h] graphj to 

ident i fy the coefficients (2.17) w i t h the classical intertwiners. Denote by square-parentheses 

the Coxeter number of the graph to which a vector refers. Then, naively 

,(2,.) - ,(M) • 
^[2h]0 %]0 

(2.50) 

However the terms on the r ight-hand side of this equality are not defined unless fj, is even 

(i.e. an exponent of the A graph); the more general summation over the f u l l exponent set 

of the graph Q ensures that this is not always the case. 

The results of section 2.2.1 manifest most clearly the difference between the classical in­

tertwiners and the new "affine intertwiners" (2.17). The classical intertwiners take strictly 

non-negative integer values; but equations (2.20-2.23) lead us to conjecture that the affine 

intertwiners (2.17) are half-integers and may have either positive or negative sign. Note 

that , as seen, this does not contradict the appearance of positive integer multiplicities 
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i n (2.25). 

2.6.3 The Partition Functions, Paths and Graph Topology 

We note that the results for the A^o and A models permit the fol lowing interpretation: the 

(2) 

quant i ty Qn/s may be interpreted as the number of topologically distinct paths between 

the nodes 0 and e on the graph ^oo; i-e. 1 or 0 depending on the pari ty of the path 

between the two nodes. The result fln,'e'^'^ + ^n2h-£ graph A^2h] ^Iso has this 

interpretat ion. Indeed, the cychcity 2h of the graph introduces two sets of topologically 

dist inct paths between any two nodes: we may travel between the two nodes 0 and e 

either the "long" (negative) or the "short" (positive) way and we may also loop around 

the graph an a rb i t ra ry number of times inducing a winding number (and thereby producing 

topologically dist inct paths). The two parts of the A result thus correspond to the positive 

and negative windings about the A graph. 

Generalising this interpretat ion to the Z)[/i] cases is comphcated. The cases where the 

boundary conditions do not involve bo th boundary nodes on the same fork of the D graph 

have again this topological interpretat ion once we count a visit to one of the end nodes as 

equivalent to crossing to the other half of a circle. The cases ( D ; X , ' x ' ) do not generalise 

so t r i v i a l l y as i n each case one half of the zeroth winding sector disappears. 

I n particular, i n a l l cases including the exceptional E models, the f irst Virasoro character 

to appear i n the expansion (2.25) is x^^il) where K = Kab is the length of the shortest 
4 

pa th on Q between a and b. Thus, the highest weight of the lowest energy level of any 

given model is /j(a,b) = I f ^ / 4 (recall the discussion of section 1.2.5). 

2.6.4 Model Equivalences 

I n any case i t is interesting to note that the result (2.35) for the model (A(/j];0,e) (i.e. 

w i t h even h substi tuted for 2h) and the result (2.39) for the model {D^i^y,X,e) (i.e. w i t h 

the boundary conditions set up so that the value at one end is a fork node, X , and 

taking e = a) indicate that these two models (on the cylinder) are entirely equivalent, at 

least i n the cont inuum l i m i t . 
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2.6.5 The Models and the Virasoro Algebra 

We note that the Virasoro characters appearing i n equation (2.25) are degenerate c = 1 

characters. A l l the affine AIDE models may now be wr i t t en i n this form, demonstrating 

as promised, that each of these models provides a (typically reducible) representation of 

the c = 1 Virasoro algebra. 

Mode l h h r s q = supdeg Q(a;) 

A2n-1 2n 2n 2 2n 2n 

Dn+2 2n 2n + 2 4 2n 2n + 2 

Ee 6 12 6 8 12 

Ej 12 18 8 12 18 

Es 30 30 12 20 30 

Table 2.1: Results for r and s appear ing in (2.49) and q = supdegQ(a;) for each of the 

aff ine models (except A2n)- W e note in each case t h a t the po lynomia l Q{x) has posit ive 

integer coef f ic ients and is q-reciprocal ( i .e. x' ' Q(a;~^) = Q{x)). The aff ine Coxeter number h 

is also s ta ted for each model X „ together w i t h the Coxeter number h o f the related classical 

algebra X „ . 
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Mode l (C?;a,6) 
Coeff ic ient kf'"'''^ of XMQ) 

4 

Generat ing Polynomia l Q^^'''''''\x) 

0 

h-1 

c>-o—o- -o--
#—o—o-
0 1 2 £ 

1 + 

f.(2,/i) ^(4) 

a;2 -Fx'* 

0 {2,h) 

Xi + X 2 +2 

^(2,/i) ^(2,/i) 

o(2,/i) 4.0(2.'') .ot^.M +0(2.'') 

l |a-6|+^|a-6|+2. , .^|<.+6| .^3. |a+6|+2_^ 

^h-\a-b\_^^h+2-\a-b\^^h-ia+b\_^_^h+2-\a+b\ 

Table 2.2: Coeff ic ients A i^ ' ' * ' *^ in t f ie expansion (2.25) and the generat ing polynomial 

Q(e;a,6)(2,j jp expression (2 .49) , for t l ie par t i t ion func t ions of t f ie Aoo, and D^^^ 

based models. T h e graph Q is indicated graphical ly, the boundary condi t ions a,b are indicated 

by coloured nodes. 
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70 
EQ 

o—o-<>—O—0 
1 2 3 4 5 

(a, 6) 

(1,1) l + a;i2 

(1,2) x + x^ + x'^ + x^^ 

(1,3) x'^ + x'^ + 2x^ + x^ + x^° 

(1,4) a;̂  -1- a;̂  + a;̂  -1- x^ 

(1,5) x'^ + 

(2,2) 1 + + x'^ + 2x^ + x^ + x^'^ + x^^ 

(2,3) X + 2x^ + 3x^ + 3x'' + 2x^ + x^^ 

(2,4) x^ + 2x^ + 2x^ + 2x^ +x^'^ 

(3,3) 1 2 a;2 + 4 a;̂  -f-4 a;̂  4 a;̂  + 2 -h a;i2 

Table 2.3: Generat ing po lynomia l Q^^eia,*)^^.) jp expression (2 .49) for the par t i t ion func­

t ions o f the 9 independent EQ based models. 
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E7 

(a, 6) Q(E7 ;a ,6) (^' ) 

( 1 , 1 ) 

( 1 , 2 ) 

( 1 , 3 ) 

( 1 , 4 ) 

( 1 , 5 ) 

( 1 , 6 ) 

( 1 , 7 ) 

( 2 , 2 ) 

( 2 , 3 ) 

( 2 , 4 ) 

( 2 , 5 ) 

( 2 , 6 ) 

( 3 , 3 ) 

( 3 , 4 ) 

( 3 , 5 ) 

( 4 , 4 ) 

( 1 , 8 ) 

( 2 , 8 ) 

( 3 , 8 ) 

( 4 , 8 ) 

( 8 , 8 ) 

18 1 + x 

x + x'^ + x'^^ +x^'^ 

x'^ + x^ + x^ + x^'^ + x^^ + x^^ 

x^ + x^ + x'^ + 2x^ + x^'^ +x^^ + x 15 

x^ + x^ + x^ + + x'^ + x'^ 

x^ + x'^ + x^^ +x'^^ 

X' + 

1 + x'^ + x^ + x^ + x'^^ + x^^ + - I - x^^ 

X + x^ + x^ + 2x'^ + 2x^ + 2x^^ + x^^ + x^^ + x^'' 

x^ + 2x'^ + 2x^ + 3x^ + Sx^'^ + 2x^^ + 2x^^ + x^^ 

x^ + 2x^ + 2x^ + 2x^ + 2x^^ + 2x^^ + x^^ 

x^ + 2x^ + x^ + x^'^ + 2x^^ + x^^ 

1 + x^ + 2x'^ + 2x^ + 3x^ + 3x^^ + 2x^^ + 2x^^ + x^^ + x^^ 

X + 2x^ + Zx^ + 4x'^ + 4x^ + 4x^^ + 3x^^ + 2x^^ + x^'' 

a;2 + 2x4-I -3x6 + 3x8 + 3x10 + 3x^2 + 2x14 + a;i6 

l - f 2 x 2 - f 3 x 4 + 5 x ^ - ^ 5 x 8 + 5x^0+ 5x^2+ 3 x 1 4 + 2x^6-Fxi8 

x^ + x^ + x io + xi4 

x^ - I - x^ + x^ - I - 2 x^ + - I - x i ^ -t- x i ^ 

x2 + x4 + 2x6 + 2 x 8 - I - 2 x 1 ' ' + 2x12 + :ci4 + a;i6 

x - h x ^ + 2x5 + 3x^ + 2x9 + 3x11 - f 2x13 + x i 5 - F x i 7 

1 + x4 + + x^ + xio + xi2 + a;i4 + r^i^ 

Table 2.4: Generat ing po lynomia l Q ( ^ ' ' ' " ' * ) ( X ) in the expression (2 .49) for the par t i t ion func­
t ions o f the 21 independent E j based models. 
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Chapter 3 

Numerical Verification 

I n this chapter, we discuss the numerical analysis carried out on the results, displayed as 

tables 2.1-2.5, for a subset of these affine models. I t was considered necessary to carry out 

such a study as there is a lack of known results for affine Pasquier models currently existing 

i n the l i terature. As already mentioned in section 2.4, we know of only two results, both 

for the 4-state Potts model w i t h free boundary conditions on either end of the cylinder. 

The first of these results, that of Saleur and Bauer [50] is summarised by equation (2.42); 

and the second, that of Baake et aJ. [2] by (2.43). These results do not agree. The former 

does, however, agree w i t h our own theoretical result as discussed in section 2.4. The 

purpose of the numerical study described here is, therefore, bo th to corroborate generally 

the results found for the models i n chapter 2 and to refute our interpretation of the result 

of [2], i.e. (2.43). 

We make use of the theory of finite-size scaling discussed in section 1.2.6. By examining 

the spectrum of the Hamil tonian or transfer mat r ix for lattice approximations of different 

lengths to a given model, we observe the degeneracies {A^„} of the energy levels, the scaling 

dimensions { x „ } and by examining specifically the ground state, we attempt to infer the 

value of the central charge c. 

I n section 3.1 we discuss the algori thm used to calculate and diagonalise the transfer 

matrices of the models examined. This consists of a review of the algori thm (except for 

the interpretat ion, not i n itself original) , a discussion of modifications to this algorithm 

made by us (original) and notes specific to our implementation. Finally, in section 3.2, we 
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j _ 

A| i [c 

Once N iterations 
have been completed 

-> B 

Figure 3.1: Schemat ic d iagram of the power me thod a lgor i thm. 

state our results and conclusions (original). 

3.1 Algorithm and Implementation 

The eigenvalues of the Hamil tonian for a model based on a cylinder of length L are found 

by f i rs t diagonalising the transfer mat r ix T. As the Hi lber t space of states T-L is typically 

quite large even for small cylinder lengths, i t is impractical to diagonalise T entirely. 

Instead we choose to f i n d only the first few eigenvalues using a power method algorithm 

(see [32]). This a lgor i thm begins w i t h a set of vectors {vi}, the number of which is much 

smaller than the dimension, d i m H , of the Hi lber t space and for a mat r ix w i t h strictly 

positive eigenvalues such as T , i teratively brings them to approximates of the eigenvectors 

w i t h greatest eigenvalues. The procedure is i l lustrated schematically in figure 3.1. The 

ind iv idua l steps | _ l j , A^, S ,̂ [ B , Ĉ  and [E are: 

_ l _ Ini t ial ise a set of (dist inct) vectors | u j 0 < « < n | . 

M u l t i p l y each vector Vi by the transfer mat r ix T ; i.e. Vi^Tvi. 

S_ Th i s step is not present i n the basic a lgor i thm (i.e. i t does nothing). However 

we found i t necessary to introduce some modifications to the algori thm at this 

point . These w i l l be discussed later i n the text. 

BJ Subtract out the overlap that each vector now has w i t h the preceding vectors; 
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I.e. 

^ * ^ rsj 
i<j 

The vector VQ is invariant. 

C] Renormalise the vectors so that each is of uni t length; i.e. 

^ = r~f 

E n d of procedure. We estimate the first n eigenvalues, Xi, 0 < i < n, of the trans­

fer ma t r ix by again mul t i p ly ing each vector Vi by T . The associated eigenvalue 

is given by the length of this new vector; i.e. 

Xi^\Tvi\ for each 0 < i < n . 

The steps i n the main loop: A , ^ , and Ĉ  are carried out i n sequence some number, 

N, times before executing step E^. 

The repeated applicat ion of T and subtraction off of the lower eigenvectors, eventually 

stretches each vector Vi i n the direction of the eigenvector ê . Indeed, consider the vector Vi 

expressed i n terms of the true eigenvectors { e , } , ordered so that the associated eigenvalues 

satisfy Xj > Xi, for a l l j < i; i.e. 

J 

then, upon mul t ip l i ca t ion by T , 

vi'^X.vj. (3.2) 

Repeated mult ipl icat ions increase the power of A, so that Vi becomes dominated by the 

component i n the direction of the eigenvector w i t h the largest eigenvalue, namely CQ. I f 

the components i n the directions of the first i eigenvectors (i.e. the eigenvectors w i t h the 
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highest i eigenvalues) are subtracted out at each step, then Vi w i l l be instead dominated by 
n o 

the component i n the direction of e,. The best estimate of ey at any t ime is Vj, so in step 

B , the {vi} are used to per form this subtraction. Typically, one obtains good estimates of 

the 'highest ly ing ' eigenvectors and their eigenvalues by performing the loop A - S^-B^-C^, 

N ~ 200 times. 

The exact manner of the ini t ia l isat ion, step J_, is not cr i t ical provided the vectors chosen 

have a significant overlap w i t h the eigenvectors they are supposed eventually to approxi­

mate. We chose the first n uni t basis vectors w.r . t . the basis provided for the Hilber t space 

by the paths on G of length L between a and b. Such a choice has the added advantage 

that the vectors are or thonormal f r o m the outset. Any such randomly chosen vectors w i l l , 

more than likely, overlap the 'highest eigenvectors' to some degree. W i t h the exception of 

numerical rounding errors, therefore, we do not expect there to be any problem in finding 

the corresponding eigenvalues w i t h the correct degeneracies. Experiments w i t h alternative 

choices of i n i t i a l vectors demonstrated that the chances of choosing a bad in i t i a l set are 

indeed negligible. 

The a lgor i thm was implemented using the C programming language. Given the adjacency 

ma t r i x Q, Perron-Probenius eigenvector and boundary conditions a and b for a model 

on a cylinder of fixed length L (or equivalently, on an inf ini te strip of w i d t h L); the 

Bol tzmann weights and transfer mat r ix T = T{L) for the model are calculated. A set 

{ I 0 < J < n } of vectors is initialised and the first n eigenvalues are found using the 

a lgor i thm as described. For each model {Q\ a, b) examined, this was repeated for a number 

of cylinder lengths. As L is finite, for given boundary conditions a and 6, the parity of L 

and the par i ty of the paths between a and b must match. Hence L is incremented in jumps 

of 2. 

We performed a number of tests on the program as implemented using models w i t h results 

appearing elsewhere i n the hterature, for example the models of [50] and also the periodic 

(toroidal) versions of the Ising and 3-state Potts models (circumference L). We are able 

to reproduce data i n agreement w i t h theoretical predictions. This serves as a check on the 

correctness of the implementation. 
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I t was discovered in the new afRne cases, that eigenvalues were initially often found with 
incorrect degeneracies. There appeared to be some roughly periodic instability in the con­
vergence towards the correct eigenvalues as examinations of the eigenvalues found after 
successive iterations of the main loop demonstrated (for high N). This was suggestive 
of there being some rotation of the approximate eigenvectors associated with a degen­
erate eigenspace taking place from iteration to iteration. This would interfere with the 
subtraction of step . Empirically, it was discovered that this instability is removed by 
modifying the basic algorithm by estimating the eigenvalues, as in step Ê , and sorting 
the eigenvectors Vi into order so that Aj > Xj whenever i < j. A simple bubble sort is 
used for this and implemented as step (refer to figure 3.1). The reason this is required 
is unclear. I t might be the case that the choice of initial vectors at step _l_ is somehow 
more important than supposed. However, using different initial choices of does not 
improve the results. Also examining when the sort algorithm is invoked it is seen that the 
eigenvectors are still being sorted even when the number of iterations N is large. The fact 
that i t is not necessary to perform the sort in order to verify the results of [50] or of the 
periodic Ising and 3-state Potts models, suggests that the extra symmetries of the afRne 
graphs are perhaps, somehow, the root cause. 
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3.2 Results, Analysis and Conclusions 

We examined the energy levels (i.e. the eigenvalues of the Hamiltonian) produced for the 

models based upon the As, A5, D4 and graphs. These graphs are generally small 

enough so that dimM is in turn small enough at a given cylinder-length L so as to allow 

sufficient data to be gathered for analysis. 

Typically, we examined the behaviour of the first n ~ 30 levels for a range of values 

of L with L ranging from 5 to 14; the upper limit being determined by the dimension 

of the resulting Hilbert space of paths between the cylinder ends and the limitations of 

the computing facilities available. We were able to diagonalise transfer matrices of order 

7000 X 7000 without problem. At each value of L we diagonalised using N ~ 1000 iterations 

of the loop A - S - B - C even though the eigenvalues appeared to converge much faster than 

this. 

3.2.1 Scaling Dimensions and Degeneracies 

The first analysis consists of examining the scaling dimensions and their degeneracies and 

comparing the results with the theoretical predictions read off from the partition functions 

using equation (1.136) or more properly (1.138). The scaling dimensions of the operators 

present in the theory are related to the gaps in the energy levels by equation (1.137). Thus 

Axn • (3.3) 
TT 

So that the general trend of the scaling dimensions as L —>• 00 may be examined by plotting 

a graph of LAEn/ir against l/L. This general trend combined with direct examination 

of the numerical data is used to determine the degeneracies. 

This procedure was carried out for each of the boundary conditions on the models stated 

above. Unfortunately, little information on the scaling dimensions can be inferred from the 

data as the higher energy levels are found to converge slowly as L -> 00. This is a property 

of finite-size scaling alone and not an artifact of the diagonalisation scheme used. However, 

the next-to-ground state of most models is seen to tend to A x i = 1 as expected. A typical 

example is provided by the model {D^;X,X) in figure 3.3. Exceptions are the models 
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{D^; X , X ) , {DQ;X,X) and ( C 5 ; 1,2). In the first two cases, this is entirely reassuring as 
in fact, as can be seen from the list of partition functions in table 3.1, this energy state 
has zero-multiplicity. I t is not possible to tell i f the next state, AE2, converges properly 
to the expected Ax2 = 2, as may be seen in figure 3.6, as the convergence is too slow. In 
the last case, {D^; 1,2), it appears that a numerical artifact has corrupted the scahng data 
(refer to figure 3.5). This wil l also be discussed below in regard to the degeneracies. 

The degeneracies, to the degree to which they are clearly defined in the data, are given in 

table 3.1. The quality of the numerical data is generally quite good in that degeneracies are 

typically well defined for at least the first three levels. The degeneracies are determined: 

first by estimating them by qualitatively examining the general trend of the energy levels 

and the numerical data directly; then the data is re-examined more quantitatively to ensure 

that the degenerate energy levels all lie within a certain percentage of the mean value for 

that level. This percentage is no more than 12% in any case but is typically around 5% 

or less. Where the gap does not exceed 25% of the value of the higher of two supposed 

levels, we assume that the two levels cannot be resolved and we do not state these levels 

here*. 

Generally speaking, the results obtained are quite good with the degeneracies, so far as 

they can be determined, in agreement with the theoretical predictions of the preceding 

chapter. 

An example of a particularly good result is that of the 4-state Potts model with free bound­

ary conditions (i.e. (1)4; 1,1) in the notation of appendix A) . The graph of LAE„/7r 

against 1/L for this model appears as figure 3.2. The fines appear closely bunched to­

gether with well defined degeneracies for the first five levels. The observed degeneracies, 

'1,3,4,6,13,. . . ', compare exceptionally well with the prediction of equation (2.42), i.e. 

' 1 , 3,4, 7,13,.. . '. There is a slight discrepancy in the fourth degeneracy, however this may 

be accounted for by the fact that the Hilbert space at L = 12 is a poor approximation to 

the Hilbert space of the continuum model. Our interpretation (2.43) of the result found 

by Baake et al. [2] is, however, conclusively refuted. We also observe the trend towards 

*We axe grateful to Robert Weston for suggesting this quantitative definition of the degeneracies. 
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Figure 3.2: Scaled energy gap, LAEn/ir, vs. inverse length, l / L , for the 4-state Potts model 
with free boundary conditions. The degeneracies are clearly defined, and for each group of 
lines are: ' 1 , 3,4,6,13,.. . ', in good agreement with the exact degeneracies, '1,3,4, 7,13,... '. 
The next-to-ground state also appears to tend to Axi = 1. Only the first 10 levels are shown 
above. 

the predicted integer scaling dimension Aa^i = 1 as L ^ oo. Other results of this quality 

are found for the models (^3; 0,2) and (^5; 0,3). These models are peculiar in that there 

is a doubhng in the degeneracies (the degeneracies are all divisible by 2) due to the exis­

tence of an energy-preserving involution on the paths between either end of the cylinder 

(a o /t - a) and hence on the configurations of the model. 

Typically we are able to extract clear degeneracies for only the first three levels. Figure 3.3 

shows the graph oiLAEn/n vs. inverse length, l/L, for the model ( D 5 ; X, X). This data is 

typical, with degeneracies and the trend towards the predicted scahng dimension Aa;i = 1 

clearly visible. 

Less well-defined degeneracies are produced for the {As;0,l), (AsjO, 1) and (D^-X,!) 

models. The first couple of degeneracies are correct, however the graph of LAEn/'K vs. 
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1/14 1/12 1/10 1/8 1/6 

Figure 3.3: Scaled energy gap, LAL^n/vr, vs. inverse length, l/L, for the model {D5;X,X). 
The observed degeneracies are: '1 ,1 ,2 , . . . ' . This graph is typical of the results obtained for 
most models. The lines are clearly bunched together giving well-defined degeneracies for the 
first three levels. The trend towards Axi ^ 1 as L —)• oo is clear. 

l/L for (^5; 0,1) (figure 3.4) demonstrates how in these cases the next two degenera­

cies have grouped together; these higher levels have not yet clearly split away from each 

other. We observe degeneracies of '1 ,1 ,5 , . . . ' which look likely to eventually split to 

give '1 ,1,2,3, . . . '. These results are not inconsistent with the theory as the predicted 

degeneracies do look likely to develop as L is increased. 

There were a small number of models for which the data does not at first glance appear 

to be as expected or displays peculiarities. These require comment: 

The data for {D5; 1,2) appears in figure 3.5 and shows how perhaps numerical errors of 

some kind have corrupted the data. The data behaves roughly as expected until the final 

calculation (L = 11) regathers the lines together. This appears to be a numerical artifact 

as we find approximately the degeneracies we are looking for once this final set of data is 
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Figure 3.4: Scaled energy gap, L/S.Enl'K, vs. inverse length, 1/L, for the model (AsjO, 1). 
The lines are bunched together with degeneracies '1 ,1 ,5 , . . . ' ; however it appears that the 
third group may yet split to yield degeneracies '1,1,2,3,. . . '. Furthermore, Ax\ 1 appears 
likely as L —>̂  oo. 

ignored. 

Only the first two degeneracies are clearly defined for the {D^]X,X) and {Da]X,X) 

models. This is explained by the fact that in both cases the (theoretical) partition functions 

behave as 

-1/24 (3.4) 

i.e. the 'second' degeneracy is zero. We are in fact observing degeneracies ' 1 , 0 , 1 , . . . ' . 

Unfortunately as the graph (figure 3.6) for {D^^X^X) shows, the poor convergence of 

the higher energy levels means it is not yet clear that the lowest non-ground state line is 

necessarily tending towards = 2. This is also the case for the model {D5;X,X). 
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(D5;l,2) 

1/11 1/9 

l / L 

1/7 1/5 

Figure 3.5: Scaled energy gap, LAEn/ir, vs. inverse length, l/L, for the model (Z)5;l ,2). 
Once the data for the final value, L = 11, is ignored, we observe the degeneracies '1,1,3,5, . . . ' 
which compares well with the theoretical '1,1,4,5,. . . '. Unfortunately, little can be said of 
the general trend of A x i . 

Finally the degeneracies found for the model (1)5; X , 1) appear to be wholly incorrect. An 

explanation for this is difficult to provide. Examining the graph, figure 3.7, we find that 

the first 2 degeneracies are correct until again there is a regathering at the largest cylinder 

length (L = 13). This looks again to be a numerical artifact. Unfortunately the higher 

degeneracies do not come out as expected even ignoring the final L = 13 data. I t might 

be supposed that there is a missing level caused by a bad choice of initial vectors {vn} 

combined with rounding errors. However, we experimented by choosing alternative initial 

vectors at step _l_ and this did not produce any aflFect. This is the only result found to be 

inconsistent with the theoretical predictions. 
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Figure 3.6: Scaled energy gap, LAEn/n, vs. inverse length, 1/L, for the model {D4]X,X). 
The observed degeneracies are: ' 1 , 1 , . . . ' which agree with the theoretical ' 1 , 0 , 1 , . . . ' (see 
text). The poor convergence (with scaling) of the higher energy levels means that it is unclear 
that the next-to-ground state level is in fact Ax2 = 2. 

3.2.2 The Central Charge 

The second analysis carried out was the examination of the scaling of the ground state 

energy Eo{L) in an attempt to determine the central charge c of the models. A number of 

examinations of the scaling data based on the expression (1.143) (or (1.144)) were tried. 

As mentioned in section 1.2.6, at the critical point the Hamiltonian differs from the renor-

malisation group fixed-point Hamiltonian by terms involving irrelevant operators. Hence 

it is expected (see [3], [12] and [14]) that there are corrections to (1.143). Furthermore, 

for the models we examine, these corrections can be logarithmic in form. For example, it 

is known [14] that for the toroidal geometry, equation (1.143) becomes 

Eo{L) = f ^ L + 
(InL) ' : ) (3.5) 

ROBERT P. T. TALBOT — PH.D. THESIS 1998 



NUMERICAL VERIFICATION 95 
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Figure 3.7: Scaled energy gap, LAEn/n, vs. inverse length, l / L for the model {Da;X,l). 
The observed degeneracies are: '1 ,2 ,6 , . . . ' which compares badly with the expected 
'1,1,2,3,5, . . . '. This is the only result obtained inconsistent with expectations. 

(This is essentially (1.143) with /(" '^) = 0 as there are no surface terms, the factor 1/24 

introduced earlier by the Schwartzian derivative is replaced by a factor 1/6 in the periodic 

case and there are now also additional logarithmic corrections present.) I t is clear, that for 

the cylinder lengths we consider, such logarithmic corrections can be large. Unfortunately, 

for any given cylinder length L, the Hilbert space of a toroidal model can be quite large 

(typically 4 or 5 times that of a similar cyhnder model). Hence, we were unable to generate 

enough useful scaling data for the toroidal versions of the models under examination to 

make any use of (3.5). We remark that such logarithmic corrections are not expected to 

affect the degeneracies of the model in any way. 

For the cylinder cases of interest to us, we considered on empirical grounds and by analogy 
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with (3.5), that 

(3.6) 

This form for the ground state energy is found to fit the data quite well provided Ai is 

not restricted to be zero. In all cases, the bulk energy /QQ is found to be independent of 

the boundary conditions and, in fact, independent of the precise model concerned also. 

For the models where the shortest path length IK between the boundary nodes a and b is 

zero, (3.6) yields a value of c typically around 0-9. However, it must be stressed that for 

the narrow range of cylinder lengths available to us, the main l / ( l n L ) correction is very 

large and in fact dominates the contribution to EQ ( L ) . Because of this and the fact that 

so little data is available, we do not consider such results reliable and therefore do not 

repeat them here. 

3.2.3 Conclusions 

Overall, whilst the results of the numerical analysis are not absolutely conclusive, they are 

strongly suggestive of the vafidity of the partition functions given as tables 2.2-2.5. In most 

cases, the next-to-ground state of the model is observed to have scaling dimension Axi ~ 1 

indicating, at least, that there are no operators of scaUng dimension x with 5) < 

X < /i(a,6) + l i which is a severe constraint on the models. Wi th the exception of the 

model (Z)5;X, 1), the observed degeneracies match our theoretical predictions extremely 

well. In particular, the observed degeneracies of the 4-state Potts model with free boundary 

conditions favour the predictions given by both us and by Saleur and Bauer and not (our 

interpretation of) the prediction of Baake et al. (see also section 2.4). The (D^-jX,!) 

case may be no more than due to the peculiarities of the finite-sized approximation or a 

numerical artifact. 

Currently, duplicate data is being generated using a different technique for diagonalising 

the transfer matrix. I t is hoped that these calculations, being carried out using the com­

puting facilities of the INFN Bologna, Italy 1', wil l permit an examination of the scaling 

at much greater cylinder lengths L > 15. This should allow more detailed degeneracies 

^We are grateful to Gabor Takacs for his assistance in running these calculations on our behalf 
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and scaling dimensions for each of the models to be found. In particular, the anomalous 
case {D^-jX, 1) can now and wil l be re-examined. The additional data should also allow 
a more in-depth study of the logarithmic corrections and a proper determination of the 
value(s) of the central charge c of each of the models. Unfortunately, we do not have any 
reason to suppose that our ansatz (3.6) is indeed the correct way in which the ground 
state scales. A precise understanding of what this is, is an involved problem in its own 
right and beyond the scope of this thesis. 
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Model Theoretical Partition Function Observed 

{G;a,b) Degeneracies 

(^3;0,0) q-m {l+q + 2q^ + 3q^ + 7q^ + 0{q^)) 1,1,2,... 

( ^ 3 ; 0 , l ) ^5/24 {l+q + 3q^+4q^ + 7q'^ + 0{q^) ) 1,1,3 + 4,... 

(^3;0,2) ^23/24 {2 + 2q + 4q'^ + Gq^ + 10q^ + 0{q^)) 2,2 ,4 ,6,10,. . . 

(^5;0,0) g-1/24 {l+q + 2q'^ + 3q^ + 5q'^ + 0{q^)) 1,1,2,... 

( ^ 5 ; 0 , l ) ^5/24 {l+q + 2q^ + 3q^ +5q^ + 0{q^)) 1,1,2-1-3,... 

( ^ ;0 ,2 ) ^23/24 {l+q + 2q'^+4q^ + 6q^ + 0{q^)) 1,1,2,... 

(^5;0,3) ^53/24 (2 + 2 g + 4g2 + 6g3 + 8g4 + 0 ( g 5 ) ) 2,2 ,4 ,6 , . . . 

{Di;X,X) ^-1/24 [l+q"^ + q^ +4q'^ + 0{q^)) 1,1, . . . 

p 4 ; X , l ) ^5/24 [l+q + 3q^ +4q^ + 7q^ + 0{q^)) 1,1,3 + 4,... 

{D,;X,X) g23/24 [l + q + 2q^ + 3q^ + bq^ + 0{q^)) 1,1,2,... 

{Di;l,l) ^-1/24 'l + 3q + 4q'^ + 7q^ + 13q^ + Oiq^)) 1,3,4,6,13,... 

{D5;X,X) g-1/24 ( l+q^+q^ + 3q'^ + 0iq^)) 1,1 , . . . 

{%\X,1) g5/24 , 1 + q + 2q'^ + 3q^ + 5q^ + 0{q^) ) 1,2,6,. . . 

iD5;X,X) g23/24 ( 1 + q + 2q'^ + 2q^ + Aq"^ + 0{q^) ) 1,1,2,... 

iD5;X,Y) ^53/24 ^ 1 + q + 2q'^ + 3q^ + Aq^ + 0{q^)) 1,1,2,... 

iD5;X,2) ^23/24 ( l+q + 2q^ +4:q^ + 6q^ + 0{q^)) 1,1,2,... 

0 5 ; i , 2 ) ^5/24 ( l + q + 4q^ + 5q^ + 9q^ + 0{q^)) 1,1,3,5,... 

(^5;1,1) ^-1/24 ( l + 2q + 3q^ + 5q^ + 9q^ + 0{q^)) 1,2,3,... 

Table 3.1: The theoretical partition functions and the observed degeneracies for a number of 
affine Pasquier models on the cylinder. The degeneracies are stated to the degree to which 
they are clearly visible in the numerical data (see text). The degeneracies stated in the form 
y + z indicate that at this level, the individual degeneracies are not distinguishable but that 
several levels are grouped together. These may yet split further (see text). 
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Chapter 4 

SU(2) , Kac-Moody Algebras and the 
Coxeter Element 

We introduce here the background material for the analysis conducted in Chapter 5. This 

material is not original. 

4.1 Kac-Moody Algebras 

We present a brief review of the untwisted affine Kac-Moody algebras. These may be 

thought of as generalisations of the simple Lie algebras. Many properties are common to 

both. I t wil l be assumed that the reader is already famifiar with the standard formahsm 

of simple Lie algebras and the associated root systems and Weyl groups; reviews of such 

material may be found in [18] and [35] respectively. We choose to denote the scalar product 

of a simple or semisimple Lie algebra g by ( , ) and the associated root systems, weights, 

etc. by barred quantities whenever it is necessary to distinguish these quantities from those 

associated with the more general Kac-Moody algebras. In particular, we will denote by 

" a " ( "p" ) a typical root (weight) o f f and by 6 the highest root o f f . 

Much of this review follows [27], [28] and [38]. 

4.1.1 Classification 

A Kac-Moody algebra is the Lie algebra of smooth mappings from the manifold to 

some finite Lie algebra g, allowing however, for a non-trivial central extension. A finite-
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dimensional simple Lie algebra is completely characterised by the 31 generators 

{E!^,W\i = l,... ,1} • (4.1) 

obeying the Jacobi identity and the Chevalley-Serre relations: 

[H\W] = 0, 

[H\Ei] = ±d'Ei, 

[El, Ei] = , 

(ad£,^)^-C"^i = 0 f o r i ^ j ; 

together with the following requirements on the indecomposable Cartan matrix C: 

C" = 2 , 

< 0 for i ^ j , 
(4.3) 

= 0 iff Ĉ * = 0 , 

E Z • 

and 

det C > 0 . (4.4) 

In particular, rankg = I. The Kac-Moody algebras are obtained by weakening the condi­

tions on the matrix C. The most important subclass, the affine algebras, is obtained by 

replacing (4.4) with 

det C|,| > 0 V i = 0 , . . . , / ; (4.5) 

where det C^-y denote the principal minors of C. As is conventional, we have changed our 

labelling of the Chevalley generators E^., to i = 0,1,... ,1. Wi th this prescription, the 

simple Lie algebras are those algebras with rank C = l + l. The rank of the Cartan matrix 

leading to the affine Kac-Moody algebras is rank C = Z. 

Once the classification of the simple Lie algebras is known, the classification of the Kac-
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Moody algebras proceeds Simarily [27] [38]. We obtain a number (seven) of infinite series 
augmented by a number of exceptional cases. For om purposes, we are interested only 
in the so-called simply-laced untwisted affine algebras: the infinite series An and Dn 
together with the exceptional cases EQ, E-J and E^. Just as the classification of the simple 
Lie algebras (the non-Abelian Lie algebras with no proper ideals) may be formulated by 
means of Coxeter-Dynkin diagrams, so too may the classification of the affine algebras. 
The diagrams of the A, D and E cases are exactly those of table 1.1. 

Inspecting table 1.1, one observes that removing a certain node (indicated by the label "0"), 

known as the affine node, from the Coxeter-Dynkin diagram of the affine Kac-Moody 

algebra, say, one obtains the corresponding diagram of the simple Lie algebra " ^ n " 

of table 1.2. 

4.1.2 Loop Algebras and Central Extensions 

In contrast to simple Lie algebras, the affine Kac-Moody algebras ADE possess a non-

trivial centre. Indeed, i f we denote by c the zero-eigenvector of C normalised so that 

Co = 1 (i.e. the basis vector for the kernel of C); then for any constant c ^ 0, the element 

K = c^c^W (4.6) 
i=0 

is a non-trivial central element of the affine algebra g. K commutes with all the Chevalley 

generators of g: Clearly i t commutes with the H\ That i t commutes with the follows 

from (4.2) and the kernel properties of c. 

I f Q denotes the adjacency matrix of the Coxeter-Dynkin diagram of g then the Cartan 

matrix of g is C = 2 — ^ . Thus c is a scalar multiple of the Perron-Frobenius eigenvector ip 

of Q. The components of the vector c are called the duai Coxeter labels (for the ADE 

cases considered here these are also equivalent to the so-called Coxeter labels). 

K is, up to scalar multiplication, the unique central element; as C has only one zero-

eigenvector. For any given simple Lie algebra g, we may construct an n-dimensional central 

extension. However it may be shown [27] that simple, and more generally semisimple, Lie 
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algebras (direct sums of simple Lie algebras) possess no non-trivial central extensions. 

Thus the possession of a central element distinguishes the non-simple affine algebras firom 

the simple Lie algebras. 

The close connection between the Coxeter-Dynkin diagrams of the affine algebras (ta­

ble 1.1) and the diagrams of the simple Lie algebras (table 1.2) suggests that we may be 

able to obtain the affine Kac-Moody algebra g as some generalisation of some simple Lie 

algebra g which would permit a non-trivial central extension. Indeed, we consider the 

vector space of analytic maps g. Let { T " | a = l , . . . , d } b e a basis of g and let 

be considered as the unit circle in the complex plane C with coordinate z, then a basis of 

such a space is 

{T„" | a = l , . . . ,d;neZ} ; (4.7) 

with 

= 0 ; (4.8) 

where "(8>" is a formal multiplication. This space becomes an infinite-dimensional Lie 

algebra, called the ioop algebra g° over g, under the natural bracket operation 

(4.9) 

I.e. 

K , T^] = fcT'^ ® = f\T^+n ; (4.10) 

where the /"^^ the structure constants of g. 

One may now look for central extensions of this loop algebra. I t turns out [27] that there 

is a unique non-trivial central extension g® of g° characterised by the brackets 

(4.11) 
[K,T::] = Q; 
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where K denotes the new central element (the central extension is 1-dimensional) and K 
is the Killing-form of g. The case where g is a compact real Lie algebra is of most interest 
to us so that we may choose a basis with K " * = —5"'', thus 

[T?n , T^] = T'"T^+n -mdm+n,o K . (4.12) 

The untwisted affine Kac-Moody algebra g is obtained from g® by adding one further 

generator, the so-called derivation D which has Lie brackets 

(4.13) 
[D,K] = 0. 

This is a particular choice amongst several possibilities and corresponds to the so-called 

homogeneous gradation. The centre of g so chosen is 1-dimensional and K here corresponds 

to the K of (4.6) with c = ^(6,6). The above reahsation of the affine Kac-Moody 

algebra indicates that such an algebra is infinite-dimensional. We remark that g above is 

referred to as the horizontal subalgebra of g and it is generated as a subalgebra by the set 

{ TQ 12 = 1 , . . . , / }. This also happens in these cases {ADE) to coincide with the so-called 

zero-mode subalgebra of g. 

4.1.3 The Root System 

The analogue of the Cartan-Weyl basis for the untwisted Kac-Moody algebra g is con­

structed as follows: Clearly the maximal Abehan subalgebra h contains the Cartan sub­

algebra h of g generated hy { HQ \ i = 1,... , I }. It also contains the central generator K. 

As 

[Wo , Hi] = [K, Hi] = [Wo,D] = [K,D] = 0, (4.14) 

it must contain yet one more generator. Choosing D, we see that it is the only one because 

[D,Hi]j^O forn / 0 . (4.15) 
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Thus the Cartan subalgebra h of g is generated by 

{ K , D } U { H I \ J = 1,...,I} . (4.16) 

Or equivalently 

{ L > } u { f f ^ | i = 0 , l , . . . . (4.17) 

The roots w.r.t. h are found from the observation that for any root 5 of g and any n G Z, 

[Hi,E^]^a^El, [K,El]^Q, [D,E^]=nEl, (4.18) 

and 

[Hl,Hi] = Q, [K,Hi] = 0, [D,Hi]=nHi. (4.19) 

So that the roots w.r.t. {H,K,D) are 

{ a = (a , 0, n) I a a root of g, n e Z } U { a = (0 , 0 , n) I n 6 Z \ { 0 } } . (4.20) 

(A) (B) 

The roots of type (A) correspond to the generators { E° } and are non-degenerate. The 

roots of type (B) correspond to the generators { f f ^ | n / 0 }, and are i-fold degenerate as 

they do not depend upon the label j of Hi. 

Denote the roots of g by We identify a subset of $ with the root system $ of g by 

( a , 0 , 0 ) = a. (4.21) 

It is consistent to take the positive roots of g to be 

8+ I a = (a , 0 , n) e 8 I n > 0 o rn = 0, 5 € } , (4.22) 

and the negative roots = $ \ $+. We use the notation a > 0 for positive roots and 

a < 0 for negative roots. 
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Given the choice (4.22), simple roots exist and are 

at = {at , 0 , 0) = ai for « = 1, . . . ,/ ; (4.23) 

where 'n. = {aa\aGQ \ {0} } are the simple roots of together with 

ao = {-e,0,l)=6- (4.24) 

9 is the highest root of g and ^ = (0 , 0 , 1). We shall denote by 11 the set of simple roots 

of The corresponding step operators are given by, 

E\ = E^' f o r i = 1, . . . , / , 

and E\ = Ef . 

We remark upon the important property of the simple roots, that if 

(4.25) 

i=0 

then 

a > 0 <^ tti G Z+ for 2 = 0,... , i , 

a < 0 <^ aj e Z~ for i = 0,... , / ; 

(4.26) 

(4.27) 

i.e. any root a € $ may be expressed as a strictly non-negative or non-positive integer 

sum over the simple roots IT. 

The analogue of the Killing form, as in the simple Lie algebraic case, is characterised by 

the properties of symmetry, bilinearity and associativity. (The property of associativity or 

invariance of the Killing form is that K{[X , y],z) = K{X, [y , z]).) It is found to be (choosing 

a specific normalisation) 

K = 

^m+nfi 0 

0 0 1 

0 1 oy 

(4.28) 
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w.r.t. the generators (T^ , K , D). The restriction of K to the Cartan subalgebra h yields 

a metric (,) for the root space (h*) and its dual, the weight space (h) 

(4.29) 

which is clearly of a Lorentzian nature. A scalar product allows one to identify the root 

space with its dual. Thus if (,) is the scalar product on the root space h* of g then the 

scalar product on h* oi X = [X , k , d) and A ' = ( A ' , A;' , cJ') is 

0 o\ 

0 0 1 

l o 1 0/ 

( A , A ' ) - ( A , A ' ) +kd' + k'd. 

In particular, for roots, 

(a , a') = [a , a') . 

Also, the non-degenerate roots of (4.20) have the property 

(a, a) > 0 for a e $ , 

and are termed the reai roots whilst the degenerate roots have 

(a , a) = 0 for a = n5, n 7̂  0 , 

and are termed lightlike (or imaginary) roots 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

For any real root a, the coroot is defined as 

V def 2 
a = a 

(a, a) 

The (afBne) Cartan matrix is constructed as 

rab „ v\ 

(4.34) 

(4.35) 
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with a,b = 0,1,... ,1. We remark that in the cases of interest to us (the ADE algebras), 
C is symmetric and the roots and coroots may be identified by choosing the normalisation 

aa\^ = {aa,aa) = 2 ya = 0,...,l. (4.36) 

Nonetheless, we will continue to use the concept of coroot in our notation unless we specify 

otherwise. The Cartan matrix C here, is identified with the matrix C of (4.2). We remark 

that just as with the Cartan matrix of a simple Lie algebra, ^ = 2 — C is the adjacency 

matrix of the Coxeter-Dynkin diagram of g. 

The fundamental weights { pa | a = 0 ,1 , . . . ,1} are defined to be dual to the simple coroots 

(i.e. the coroots of the simple roots); i.e. 

{Pa,a'',) = 6ab Va,6 = 0 , l , . . . (4.37) 

and are found, in terms of the weights { | 6 = 1, . . . , /} of the horizontal subalgebra g, 

to be 

Pa=iPa, i ( ^ . ^>Ca ,0 ) ; (4.38) 

where pg is defined as pg = 0. 

We mention as an aside that the Coxeter number of g is 

h ^ ^ C a , (4.39) 

and the highest root 

6= ^aaa. (4.40) 
aee\{o} 
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4.1.4 The Weyl Group 

In analogy to simple Lie algebras, the Weyl reflection w.r.t. the real root a is defined 

by 

A H ^ C J ^ A = A - ( A , a^)a . (4.41) 

The group generated by these reflections is known as the affine WeyJ group W. Now 

( a „ A , a ^ ) = - ( A , a ^ ) , (4.42) 

so that (4.41) defines a reflection through the hyperplane perpendicular to a. From a 

purely Euclidean point of view, we note that this hyperplane for a real root a = (a , 0 , n) 

is given by 

i?(a.o,„) = { A = ( A , A ; , d ) e h * | ( ^ A , a ^ ) = - n } , (4.43) 

so that the hyperplane Ha may be regarded as no longer through the origin but is instead 

(parallel) shifted by — (see also [35]). 

Most properties of the affine Weyl group are the same as those of the ordinary Weyl group 

W associated with g [35]. W is generated by the reflections { aa = CToa | a = 0,1,... , / } 

w.r.t. the simple roots. There are however several new properties arising from the existence 

of the lightlike roots. For example, aa{n6) = n(5, V n S Z x {0}; the lightlike roots are 

pointwise invariant under the action of the affine Weyl group. The most important new 

property is the existence within the Weyl group W of translations. Indeed it is this very 

property which gives the affine Weyl group and affine algebras their name. We define the 

' translation^ 

t'^aoag. (4.44) 

The action of t on any X= [X , k , d) i IS 

/ 9 \ 
t A = X - k t ,k,d-{X,t^)--r=-=-k • (4.45) 
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and in particular, for any root a = (a , 0 , n) , 

t a = ( a , 0, n - (a, ^^)) 
(4.46) 

= a-{a,e^)S; 

i.e. it 'translates' any real root by — (a, 8^) in the lightlike direction. As ao — ta-g we 

may regard W as being generated by the set 

{ t } U { a J a = l , . . . , / } . (4.47) 

W is the smallest group containing both the (classical) Weyl group W oig and the affine 

translation t. 

We remark that the behaviour of the weights under Weyl reflections is given by 

(TaPb = Pb- ^ab Oib • (4-48) 

This useful fact follows directly from the duality (4.37) of the weights and the simple 

coroots. 

Finally, we note the important property of normality of the scalar product ( , ) . Using the 

definition (4.41) of the Weyl reflection, it is an easy exercise to see 

(T^A , r ; A ' ) = ( A , A ' ) VryeW^; A , A ' 6 h * . (4.49) 

This is indeed the case even when 77 = t. 

For further details of Weyl groups, we refer the reader to reference [35]. 
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4.2 The Affine Coxeter Element 

A Coxeter element or Coxeter transformation of a Weyl group, be the group affine or 

not, is defined as any product of (all) the reflections associated to the simple roots. As 

these reflections do not in general commute, any such element u will depend upon both 

the choice of simple roots and the way (i.e. the order) in which one chooses to form the 

product. Thus typically there are a number of distinct Coxeter elements within any given 

Weyl group. 

In spite of this, certain properties are held in common amongst all these elements. The 

Coxeter elements associated to any fixed classical algebra, all have the same order h; indeed 

this is one definition of the Coxeter number h of & given ADE algebra [35]. Simarily, all 

the Coxeter elements belonging to an affine Weyl group have infinite order [6], [17]. (The 

true 'Coxeter number' in these cases is therefore infinite. However, a finite number, the 

afRne Coxeter number h, does play the analogous role to the ordinary Coxeter number 

where it appears in expressions for eigenvectors and eigenvalues.) The Coxeter elements 

associated to a classical algebra are known to be mutually conjugate (within W) and so 

possess identical spectra [35]. Dorey [19], [20] and [21] demonstrated the role such an 

element has within the partition functions of Pasquier models and 5-matrices associated 

with the classical ADE graphs of table 1.2. In particular, he choose a fixed ordering of the 

simple roots, first investigated by Steinberg [52], to define the Coxeter element. It is our 

intention to extend this relationship to include the affine Pasquier models also. Thus we 

are most interested in the natural affine generalisation of this choice of Coxeter element. 

This form in the classical case has been well studied (see for example [39]) and we can 

therefore generalise many useful results easily. 

The question of conjugacy of the affine Coxeter elements was addressed by Berman et 

al. [6] and also by Coleman [17]. In the case of the affine tree graphs, i.e. the D and E 

cases, it can be proved that all Coxeter elements are conjugate (see also [35]). Since 

there is no special choice of Coxeter element, we choose the most convenient example to 

manipulate. However, in the case of the cycles, the A graphs, the Coxeter elements do fall 

into a number of distinct spectral classes. Indeed, the Coxeter elements associated with the 

graph An-i fall into [n/2] spectral classes. In particular they do not belong all to a single 
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conjugacy class. Regardless, we will find the affine generalisation of the Steinberg-ordered 
Coxeter element to be the most useful even in this case. It possesses the property of being 
a representative of the largest spectral class. When n is even, this largest spectral class 
is unique and might be taken to define a natural choice of sorts (in fact, coincidentally, 
we will ignore the odd cycles ^2n), although we do not make use of this property. In 
any case, we remark that any Coxeter element and its inverse, both belong to the same 
spectral class. 

We discuss the Steinberg ordering and the properties of the associated Coxeter element 

now. 

4.2.1 The Steinberg Ordering 

Let P be the set of integers 0,1,... , / and let P be the set with 0 removed. Then it follows 

from the Z2-colourability of the Coxeter-Dynkin diagram ^ of g that we may uniquely 

partition P as a disjoint union P = Pi UP2; so that for j = 1, 2 the set I l j =̂  { ai 1 1 G } 

consists of mutually orthogonal roots. In particular, the afiine node ao is orthogonal to 

all the elements in either Hi or 112. We fix the notation by requiring that ao is orthogonal 

to the roots of 112. Let: 

n 2 ' - ' l T 2 U { a o } , 

ni = n i , 

P2'=^P2U{0} 
(4.50) 

and Pi = P i 

and we note: 

n = Hi u n2 

and n = n iun2 
(4.51) 

the sets of simple roots of $ and $ respectively. Note also that P=Q; i.e. there is a one-to-

one correspondence between the two sets. We will often use these symbols interchangeably. 
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For convenience, we additionally define 

, J 1 ; if a G Pi. 
P(a)^=W . (4.52) 

2 ; i f a G P 2 . 

Define the involutions 

Wl = J l (Ja 

aePi 

and u;2 = JJ aa 
a€P2 

(4.53) 

The "Steinberg-ordered" Coxeter element of the affine Weyl group W is 

01 = ^2^1 . (4.54) 

Note that none of wi, uj2 or u depend upon the exact labelling of the elements within 

the sets Pi or P2 as the corresponding reflections commute. As the choice depends only 

upon the choice of Z2-colouring, the definition of the Steinberg-ordered Coxeter element 

is unique up to inverse. In particular, oj and uj~^ are conjugate within W: 

= ujiu!2 = oj2^ {uJ2 wi) a;2 = ^ a;Ci;2 . (4.55) 

The Steinberg-ordered Coxeter element uj of the classical Weyl group W is defined essen­

tially identically [52]. One notes that 9 is orthogonal to the roots of 112. The operators wi 

and UJ2 are defined by substituting 11̂  for 11̂  {i = 1,2) in (4.53). Finally U = u)2i^i- Note 

that 

uj = aouj. (4.56) 
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4.2.2 The Coxeter Orbits 

Consider the action of u on the set of roots Given any two roots a, P £ ^; define the 

relation ~ by 

ar-. p ujPa = P for some p eZ. (4.57) 

Clearly ~ is an equivalence relation. The equivalence classes of ~ are called the Coxeter 

orbits (w.r.t. u). We denote by (w) the group generated by u and by (w)a the Coxeter 

orbit of the root a. 

In order to study these orbits, one requires a representative from each distinct orbit. Such 

a set of representatives is not generally afforded by the simple roots. One may however 

generalise [36] the orbit representatives of Kostant [39] for the classical Coxeter element 

u. The representatives comprise the set R = { (pa \ a G G } with 

cPa = {l-CO-')Pa, (4.58) 

or equivalently, by (4.48) and (4.54), 

f 
aa ; if a G Pi. (4.59) 
ojiaa ; if a e P2. 

It follows from the Hnear independence [39] of the subset { = | a 6 1,2,... , / } viewed 

as orbit representatives of a classical Coxeter element a; of g that these elements are 

linearly independent. Furthermore, their orbits are distinct; indeed as Dorey's argument 

shows [20], if one supposes that (ph lies in the Coxeter orbit of another: i.e. ui^(j)a — (j>b for 

some values of a, b and p\ then, by (4.58), 

ŵ Pa = Pb • (4.60) 

This cannot be true as all fundamental weights are dominant highest weights and are 

therefore not related to each other by any Weyl element [34]. 

These elements may be uniquely characterised as those positive roots of $ which are 

ROBERT p. T. TALBOT — PH.D. THESIS 1998 



SU(2), KAC-MOODY ALGEBRAS AND THE COXETER ELEMENT 114 

mapped into negative roots under the action of u [35]. It is easily seen that R C 
cjR C $ - and that the length £(a;) of w is / -I- 1 = |R|. 

4.2.3 The Euclidean Coxeter Element 

A useful means of examining the Coxeter element is provided by factoring out the trans­

lation t. Define W2 by the requirement 

(J2 = t W2 = 0)21 \ (4.61) 

so that 

W2 = (Jga^^...a^^ ; (4.62) 

where P2 = {zi,... ,Zk] say. CJ2 is simply W2 with the reflection OQ replaced with a-g. Note 

that a-Q commutes with all the reflections of 112 • Define 

. def U)l = Wl 
(4.63) 

, _ def _ . 
and w = ai2 wi ; 

so that u> = tui. Note in particular that CJ, CJI and 0)2 are all elements of the Weyl group 

W of the horizontal subalgebra g and are therefore constrained to be of finite order. We 

call ui the "Euclidean Coxeter element". 

Let jj denote the "forknode" of Q: for the cases Dn and EQJ^S, this is the unique node with 

3 links once one has excluded links to the affine node 0; in the case ^2^-1 this is chosen to 

be the n"^ node. Denote by 01 = 0^ {[{} the Coxeter-Dynkin diagram of G with the node 

d removed. Let uJ^ denote the Coxeter element associated with (preserving the same 

colours). Then, following Steinberg [53] (see [6] also), one can show that a> is conjugate to 

wji; i.e. 

WD = rjuri^^ ; (4.64) 

where rj £ W, T}9 = —a^. Clearly, aJj has a finite order, as it is the Coxeter element of a 
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collection of disconnected An type graphs. In fact it, and hence LJ, has period h, where h 
is the afBne Coxeter number associated with g. (Note that this number is not in general 
equal to the Coxeter number h of g.) 
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4.3 The Finite Subgroups of S U ( 2 ) 

In this section, we review the McKay correspondence. This important result relates the 

finite subgroups of SU(2) and the affine Kac-Moody algebras discussed in section 4.1. 

We also examine the problem of finding how irreducible representations of SU(2), when 

restricted to a finite subgroup of SU(2), decompose over the irreducible representations of 

that subgroup. The analysis follows that of Kostant [40] and [41]. 

4.3.1 The McKay Correspondence 

Let us introduce some notation: Let F be a non-trivial (i.e. | r | > 1) subgroup of SU(2). 

For any such subgroup, denote by F* the unitary dual (i.e. the set of irreducible repre­

sentations) of F and by ja G P* the irreducible representation labelled a. Let 70 denote 

the trivial representation of F and 7 the given 2-dimensional (fundamental) representa­

tion F -> SU(2), i.e. TTilp (which may be reducible). Define the matrix ^(F) by 

l a ® l = J2G{r)ablb. (4.65) 
b 

The coefficients of this matrix are clearly non-negative integers so that Q (F) has a graph 

representation; hence we shall term this matrix the "grapii" of the subgroup P. 

Theorem 4.1 (The McKay Correspondence) Let F be a non-trivial subgroup of SU(2); 

then there exists an affine Kac-Moody algebra g of ADE type of rank I +1 with adjacency 

matrix ^ = 21 — C such that for a suitable ordering of the simple roots n = { a a | a 6 ^ } 

of g there is a bijection 

M : F* ^ n , 

70 !->• ao , (4.66) 

7a "a ; 

with 

^(F) = g • (4.67) 

The bijection n is called tie McKay correspondence. • 
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Proof A classification-free proof of this result may be found in [53]. 

We abuse notation and write by iJ,{T) the affine Kac-Moody algebra g for which (4.67) 

holds. 

We remark that as a consequence of (4.65) and theorem 4.1, the vector dim 7 = {dim7a}a 

of dimensions of the representations •ja, is an eigenvector of Q with eigenvalue 2. Given 

that dim 70 = 1, we identify the vector dim 7 with c defined in section 4.1.2. We also note 

that 7jj = p~^(a|j) is the irreducible representation of F with maximal dimension, uniquely 

so in the cases p(r) = .^6,7,8. 

4.3.2 The Finite Subgroups 

Now to the subgroups of SU(2). Consider first the finite subgroups of 50(3). The following 

is well known: 

Theorem 4.2 Only the following non-trivial finite groups F admit a faithful embedding 

in 50(3): 

Zji The cyclic subgroups of order n, 

D„ The dihedral subgroups of order 2n, 

A4 The alternating group on 4 objects, 

§4 The symmetric group on 4 objects, 

and As The alternating group on 5 objects. 

• 

Let 

A : 5U(2) -> 50(3) (4.68) 
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be the double covering of 50(3). One can use this to find the finite subgroups of 5U(2). If 

P is a finite subgroup of 50(3) then denote by A~^(P) its inverse image under A so that 

jA~'^(P)| = 2|P|. With the exception of one special family, all the subgroups of 5U(2) are 

of the form A'^F) for F C 50(3): 

Proposition 4.3 Let F C SU(2) be a finite subgroup; then F = A~^(P) for some unique 

F C 50(3) iff F is not a cyclic group of odd order. • 

We remark that the graphs of the subgroups { Z2n+i \n eZ~^} are cycles with an odd 

number of nodes and as such the graphs of { /Li(Z2n+i) | n G Z+ } (i.e. the graphs of A2„ 

type) are not Z2-colourable. Hence the only subgroups in which we will be interested, 

together with their images under the McKay correspondence, are as listed in table 4.1. 

A-i(Z„) A - i ( D „ ) A-HM) A-i(S4) A - i 

I 2 n - 1 n+2 Ee Es 

Table 4.1: The subgroups of 5U(2) with Z2-colourable graphs and their images under the 
McKay correspondence / i . 

4.3.3 Tensor Products of SU(2) Representations 

Consider the following problem: Denote by 7r„ the irreducible representation of 5U(2) of 

dimension n+1 and let 5U(2)* = { 7r„ | n G Z+ } be the unitary dual of 5U(2). Let F be 

a non-trivial finite subgroup of SU(2). We wish to find how the restriction of a specific 

representation 7r„|p to the finite subgroup F decomposes as irreducible representations 

of F; i.e. one wishes to determine the integers ma{n), a = 0,1,... ,1, so that 

^"Ir = 0"^«(")'^'* ' with 7a G F* Va . (4.69) 
a=0 
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Kostant [41] deals with this question by considering instead the corresponding vector Vn 

in the root space of g = //(F) defined as 

Wn = X ] " ^ a H a a ; (4-70) 

where ja '-^ oia under the McKay correspondence [x. 

We remark that Q may be regarded as an operator on the root space h* of g. Indeed let 

Q also denote the operator whose matrix is Q w.r.t. the simple roots 11; i.e. 

^ : h* -> h* , 

V - . ^ (4-71) 
a.a^2^ Qab Oib • 

beg 

The Clebsch-Gordon formula for SU(2) is 

7r„ 0 TTi = TTn+i + 7r„_i ; (4.72) 

where 7r_i denotes the zero-representation. Restricting these representations to the finite 

subgroup r and using the McKay correspondence, one sees that 

g Vn = Vn+l + Vn-l . (4.73) 

Using the same Z2-colouring as in section 4.2.1, which is found to be related to whether 

or not 7a may be considered a representation of the SO(3) subgroup F = A{r) [41], it is 

found that 

Proposition 4.4 (Kostant [41]) 

main) = 0 V a 6 P(„ (^od 2))+i • (4-74) 

In other words, a and n must be of the same parity, or else ma{n) = 0 . • 

Another, very useful result which derives from (4.71) is: 

ROBERT p. T. TALBOT — PH.D. THESIS 1998 



SU(2) . KAC-MOODY ALGEBRAS AND THE COXETER ELEMENT 120 

Lemma 4.5 (Kostant [41]) The action of Q regarded as an operator on h* is 

g = LJi+uj2; (4.75) 

where cji and (JJ2 ^re the involutions (4.53). • 

Taking (4.73) as the starting point, together with VQ = OQ (which itself is a consequence of 

Schur's lemma [18]), lemma 4.5 allows one to re-express Vn in terms of the afiine Coxeter 

element and OQ . From a study of the afiine Coxeter element u defined in section 4.2.1 and 

its classical horizontal 'partner' (i.e.. UJ defined by (4.56)), Kostant [41] determined the 

generating function for the vectors { ?;„ | n G Z"*" } to be 

oo 

"=o (4.76) 

with 

h 
z{x) = ^ z , x ' (4.77) 

1=0 

a polynomial in x with coefficients in the root system $ of g. Note that the Coxeter 

element of section 4.2.1 is defined in terms of a Z2-colouring, it is for this reason that we 

have excluded from interest the non-Z2-colourable A2n-series of graphs. The integers r 

and s are subgroup-dependent. They satisfy r + s = h + 2, where h is the Coxeter number 

of the horizontal subalgebra of ̂ (F), and rs = | r | . They are listed in table 4.2. We remark 

that the horizontal subalgebras of the McKay images of all the subgroups with which we 

are concerned all have even Coxeter number h. We define the integer g = h/2. 

Define 

ui ; if n is odd. 
w„ = <( . (4.78) 

UJ2 \ iin is even. 

Let w "̂̂  = . . . wi with w^ '̂ = H and also let = ujg+n^g+n-i • • • '^g+i-
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r M(r) h h r s 

A - ^271-1 2n 2n 2 2n 

A - Dn+2 2n 2n + 2 4 2n 

A - •i(A4) 6 12 6 8 

A - •1(S4) Ej 12 18 8 12 

A - HA5) Es 30 30 12 20 

Table 4.2: The integers r and s for each of the Z2-colourable finite subgroups T of SU(2). The 
affine Coxeter number h of iJ,{T) together with the Coxeter number of its horizontal subalgebra 
are also indicated; in all cases, h and h are even. Note the similarity between this table and 
table 2.1. 

Kostant [41] determined the coefficients 2;, 6 $ to be: 

Zh = zo = ao 

z„ = - a7("-i) j e for 1 < n < / i - 1 

or equivalently, in terms of the forknode of Q: 

(4.79) 

zo = ao , 

Zg = 2a^ , 

Zg-n = zg+n = (wM - (Ut"-i5) af for 1 < n < 5 - 1 . 

(4.80) 

In a basis of the simple roots 11, this last enables a very simple calculation of the Zn-

The Poincare series Pr{x)a for the individual representation ja is obviously obtained by 

considering only the a'^ coefficient of the vectors u„; i.e. 

Pr{x)a = {Pa,Prix)) 

Ka{x) (4.81) 

{I - x'-){l - X') 

with Ka{x) = {pa, z{x)). 
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In particular, from (4.80), 

KQ{X) = 1 + x \ 

r / s - i (4.82) 

n=0 

and the Ka{x) (for all a) are /i-reciprocal polynomials. 
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4.4 The Chebychev Polynomials 

An important tool in the analysis of the next chapter will be the Chebychev polynomials of 

the second kind. The Chebychev polynomial U^"'^ {x) of degree n over the indeterminate x 

is defined by the recursion relation 

(X) = X (X) - (X) ; (4.83) 

together with two 'initial conditions': the values of two subsequent polynomials in the 

series. For our purposes we wil l be concerned only with the series of polynomials generated 

by the initial conditions: 

U^°Hx)^l, U^^\x) = x; (4.84) 

and we note that this implies that U^~^\x) = 0. 

This series, which we shall denote i ^ ^ , is generated by the function 

oo 
e:2(p|a;) = ^ i Y ( - ) ( x ) p -

m=0 (4.85) 
_ 1 

I —px 

I t possesses the important property that each polynomial in the series is a strictly odd 

or strictly even function depending upon the oddness or evenness of its degree; i.e. there 

exists a Z2-colouring: 

T2 : ^ ^2 , 
(4.86) 

U^''\x)^n (mod 2) , 

with 

Z ^ ( " ) ( - X ) = ( - l ) ^ 2 ( Z ^ ( " ) ( x ) ) ^ ( n ) ( ^ ) _ (4 87 ) 

As an example, we note that the intertwiners (1.67) satisfy both (4.83) and (4.84). Choos-
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ing a = 1, equation (1.68) may be rewritten [25] as 

^ A + i ^ g _ ^ A - i for A = 2,3, . . . , n - l . (4.88) 

The initial conditions are given by considering one end of the An graph, and are 

= 1 , = = g . (4.89) 

The definition of may be extended to any A as examination of the An graph im­

plies F " = 1, so defining V " " = 0 for all integers m yields a consistent series of polyno­

mials. Thus, 

Va\^Kit-'HG)- (4.90) 

We note that this last implies that the intertwiners (1.67) are integer valued. 
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Chapter 5 

The Role of the Coxeter Element 

In his paper [21], Dorey demonstrated the role that the classical Coxeter element plays in 

the partition functions, and hence in the physics, of the classical Pasquier models. In this 

chapter we wil l discuss the role that the affine analogue of the Coxeter element (i.e. the 

affine Coxeter element) plays in the partition functions of the affine models. In so doing, 

we wil l also provide an alternative derivation of Dorey's classical result. Before arriving at 

our main geometric result, it proves both useful and interesting in its own right to establish 

a simple closed expression for the partition functions in terms of Chebychev polynomials 

of the second kind. This brings into light the important connection between the affine 

Pasquier models and the representation theory of SU(2) already observed for the classical 

Pasquier models (see [24] and [21]). To do this we first examine the results of chapter 2 

and attempt to make a connection with the work of Kostant discussed in the preceding 

chapter. 

5.1 Preliminary Observations 

As seen in section 2.5, we were able to express the partition function of a given model, 

{Q; a, b), in terms of a reciprocal polynomial, namely the P^^'°''''\x) of equation (2.48). This 

equation (2.48) could in turn be re-expressed in terms of a simpler polynomial Q(^''^''')(a;) 

whose coefficients were positive integers as equation (2.49). Apart from manifesting the 

positivity of the coefficients of the Xn^iQ), the form of the Poincare series appearing 
4 

in (2.49) was chosen because it coincides with the general form (4.81) of the Pr{x)a; where 

the Ka{x) there are q-reciprocal polynomials in the indeterminate x with positive-integer 
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coefficients; and r and s integers with q, r and s the same numbers given for particular 

models in table 2.1. Furthermore, we observe that the polynomials P(^;''>'')(a;), Q(^:"''')(a;) 

and Kn{x) all have well defined parities (this last result comes from proposition 4.4); i.e. 

they are strictly-odd or strictly-even polynomials. This striking similarity in form suggests 

immediately that there is some direct connection between the representation theory of 

SU(2) and the affine partition functions. 

I t is tempting at this point to see i f the polynomials Q^^''"''''^x) permit a decomposition 

onto the set {Ki{x) \ i £ Q }. This was observed on a case-by-case basis using Mathemat-

ica. Indeed not only does it appear that such a decomposition is allowed but that the 

decomposition is positive and integer-valued; i.e. we observe that 

Q^^''''Hx)^Y^R:,Knix); (5.1) 

where i?";, G Z"*". Moreover, we note from the discussions of the preceding chapter, that 

associated to each node a € G there is an irreducible representation 7^ of a fixed sub­

group F = fl~^(Q) c SU(2). To this in turn we may associate the polynomial Ka{x) 

which describes how the entire set of (SU(2)-irreducible but F-reducible) representations 

{ TTilp I i G Z"*" } decomposes onto the representation 7Q (section 4.3.3). Examining, again 

on a case-by-case basis using Mathematica, we observe (empirically) that 

dim 7a dim76 = ^ R^i, d i m 7 „ . (5.2) 
neg 

This observation shadows a Clebsch-Gordon decomposition: the model {Q]a,b) being as­

sociated with the (typically reducible) representation 7a ® 76 of the subgroup F = / I~^(^) . 

We remark also that the partition function Z^^''°''^\q) obeys the graph symmetries w.r.t. 

a and b, in particular it is a symmetric function in a and b as is this tensor product repre­

sentation. In addition it may be observed that the {Knix)} also obey graph symmetries 

so that the connection between the partition function Z(^'°'''^(q) and the tensor product 

7a <S> 76 does indeed appear more than merely plausible. 

I t must be emphasised that all these observations are (so far) purely empirical and were 

observed with the aid of a computer using an appropriate Mathematica script. 
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5.2 SU(2) and the Partition Functions 

We shall for now assume that the partition function Z^^'"''''^ {q) is related to the decompo­

sition of the tensor product ja ® lb in terms of F-irreducibles (F = / i ~ ^ ( ^ ) ) and see what 

such an assumption implies. 

Define the symbols ^ and ^ by 

0 ^ ' ^ F ( c ) ^ 0 F ( a - F 2 c ' ) , (5.3) 
c=a c'=0 

and 

^ ^ ' ^ F ( c ) ^ ^ F ( a + 2c') (5.4) 
c-a c'=0 

i.e. just 'summing in twos'. As a trivial exercise with Young-tableaux shows, the Clebsch-

Gordon decomposition for irreducible representations of SU(2) is 

i.e., 

a + 6 

TTa ® = 0 TTc (5.6) 
c = | a - 6 | 

Restricting these representations to the finite subgroup F C SU(2) we have 

a + 6 

e 
c=\a-b\ 

7I"a|r ® TTftlp = 0 TTclp . (5.7) 

ROBERT P. T. TALBOT — PH.D. THESIS 1998 



THE ROLE OF THE COXETER ELEMENT 128 

Each of the restricted SU(2) representations decomposes into irreducible representations 

of the finite subgroup F according to equation (4.69). Define the matrices | B^j>^. j E 

by the decomposition of the tensor product of two irreducible representations of F as 

7 . ® 7 j = 05o) i7fc; (5.8) 

keg 

then (5.7) yields 

a + 6 

e 
i,j,keg c=\a-b\ keg 

0 m , ( a ) m , ( 6 ) % 7 f c = 0 ^ ' ^ 0 m f e ( c ) 7 ^ . (5.9) 

In analogy with Kostant [41], we replace each irreducible representation 7^ of F with the 

corresponding root in the Kac-Moody algebra g = /i(F) under the McKay correspon­

dence (theorem 4.1). We get 

a + 6 

Y mi{a)mj{b)B!^-^-ak= 'Y ^ 7 7 1 ^ ( 0 ) 0 ; ^ ; (5.10) 
i,j,keg c=\a-b\ keg 

where the matrices | B ^ j ^ - j E are now defined to operate on the vectors k E G • 

Thus we may rewrite this as 

a + 6 

{pk.,mj{b)Bi^j)mi{a)a() ak=Yj rnk{c) ak . (5.11) 
i,j,keg c=\a-b\ 

Writing g^''^ = mj{b) B^j) and using (4.70), this reduces to 

a + 6 

G ^ ' ^ v . = Y^"\c. (5.12) 
c = | a - 6 | 

From this, it follows easily by induction that 

g ^ ^ ^ = U ^ ^ \ G ) \ (5.13) 

where G is the adjacency matrix of g = /i(F) and U^'^\x) is the n''^ Chebychev polynomial 

of the second kind (see section 4.4) with U^^^G) — H and U'^^^G) = G- I t is also consistent 
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to write U^-'^^G) = 0. Equation (5.13) now tells us that 

^ m , ( 6 ) S ( , ) = i / W ( a ) . 
jeG 

Multiply both sides by x'' and sum over 6 G Z+ to get 

Y:B^^^Pr{x),= Y,U(»HG)x''; 
jeg bez+ 

(5.14) 

(5.15) 

where Prix)j was introduced in section 4.3.3. Substituting in expression (4.81) for Pr{x)j, 

we have 

jeg 
(5.16) 

We note that the components of the matrices -B(j) are, by definition, positive integers, 

so that the sum YlijB^j) Kj{x) is a positive integer sum over the "Kostant polynomials" 

Kj{x) of (4.81). As remarked upon in the preceding section, this is exactly the property 

exhibited by the generating polynomial Q(a;) of the affine partition functions introduced in 

section 2.5; indeed we may identify the B{j)^fj appearing here with R?^^^ in equation (5.1). 

Thus we conjecture that 

jeg 

I f we assume that this is true, then equation (2.49) becomes 

(5.17) 

Z^^''^'''\q) = Y,X.Am^:^{G) 
n=0 

(5.18) 

This is a very simple expression and is very easy to compute for a given adjacency matrix 

G- Furthermore, as is shown later, the "Chebychev form" that this expression has will 

allow us to make the connection with the underlying geometry of the affine Weyl group W 

of the algebra g. 

Equation (5.18) is in fact correct; as we demonstrate now. 
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5.3 Proof of the Chebychev Form 

We possess (5.18), a candidate general expression for the partition functions. We construct 

a simple proof. We begin by examining the A cases. 

Lemma 5.1 The coefficient = Aĵ î̂ MiO.̂ ) ^ ^ ^ ^ ^ expansion (2.25) of the 
^ 4 

partition function of the model (vdp/ij; 0, e) is given by 

A ^ = 4 " ) ( l [ 2 / . ] ) - (5.19) 

In other words, it is given by the n'''^-Chebychev polynomial of the second kind satisfying 

Z Y W ( A ) - l a n d i ^ ( i ) ( l ) = A • 

Proof The proof is by induction on the variable n. 

We first establish that the initial conditions (4.84) for the Chebychev recursion relation 

are satisfied. We observe, directly from (2.35), that 

ÂO = ^ O = 4 ° ^ ( V ] ) (5-20) 

and 

Al=5l + 6',,^,=uil\A[2h]) (5.21) 

as required. 

Having estabhshed that the initial conditions are satisfied, we now examine the recursion 

relation (4.83). Assume that 3 G Z+ such that y 2 < n< N that (5.19) holds. Then 

•z^(^-i)(^[2/.]) M ] - U^^'-'HM])],^ = E ^N-i A,, - A%_2 
AeA[2h) (5.22) 

A^^-_\ + A^/_\ - A e 
N~2 

using the induction hypothesis. Note that, as mentioned in section 2.3.2, the A^ have a 

period 2h in the variable e, so that addition and subtraction in this variable (such as in 

(5.22)) are understood to be taken modulo 2h. 
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The righthand side of (5.22) will be equal to the required A ^ iff 

(5.23) 

This equation is identically true V A'' replaced with n > 2 as a detailed analysis of the 

coefficients A^ shows. I f we examine a typical grid of values A^ (given by equation (2.35)), 

as in table 5.1. Fixing arbitrarily, the values of e and n we see that A^ takes the value. 

£ n 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

4 

5 

0 1 2 

1 1 2 

2 3 4 

3 3 4 

4 5 

5 

0 

1 

2 

3 

4 

5 

1 1 1 

1 1 2 

0 1 2 

0 2 2 

0 1 2 

1 1 2 

3 3 3 

3 3 4 

2 3 4 

2 4 4 

2 3 4 

3 3 4 

5 5 

5 

4 5 

4 

4 5 

5 

0 

1 

1 1 1 

1 1 2 

3 3 3 

3 3 4 

5 5 

5 

Table 5.1: The coefficients A„,£ for the model A^. The multiples of n = / i = 6 are highlighted 
in bold. Due to 'parity constraints', every second value is automatically zero and these values 
have been left blank for clarity. The values in the table are 'coloured' alternatively bold and 
normal to emphasise the "embedded-diamond"-like pattern of the numbers. Note that the 
table is periodic in the variable e and that n takes values from 0 to oo. This same basic 
pattern of numbers occurs for each of the Z2-colourable A models. 

m say, with coordinates e and n in the grid, A^_2 takes the values two spaces to the left 

(or 'west') of this value, A^~\ takes the value 'northwest' and A ^ l \ the value 'southwest'. 

Due to the periodicity of the variable e and the "embedded-diamond"-like pattern the 
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numbers A^ follow (for any value of even h) one of the following is always the case: 

A^ = K - 2 - A^ -1 _ A£+l _ ™ . - 1 — •''•n-1 ~" rri' ! (i) 

A^ = K - \ = 
_ \e _ m — 1 ; (ii) 

A^ At-\ = A^_2 = m — 1 ; (iii) 

A^ = A^_2 = m - 2 , Kt-\--= A ^ t \ = m - l ; (iv) 

with m some positive integer and in each such case, the identity (5.23) holds. 

This concludes the proof. 

Thus equation (5.18) is estabhshed for the (Z2-colourable) A models. We may now proceed 

to establish this result also for the other affine models by making use of the intertwining 

relationship (2.15). 

We note the following property of the eigenvalues of the ADE adjacency matrices: I f we 

denote by (3^^^ the eigenvalue with exponent ^ of any model G with Coxeter number h\ 

then 

This is very useful given the form (2.15) interrelating the ADE models and we make use 

of i t in the following theorem (theorem 5.2). 

Note that, as in equation (2.15), we wil l assume from now on that the eigenvectors 

[f^^iiEv*{G)} (5.25) 

provide an orthonormal eigenbasis of G-
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Theorem 5.2 The coefficients of the Virasoro characters in the expansion (2.25) are given 

by the Chebychev polynomials of equation (5.18). In other words 

E ^ î''Ni'̂ A^= î?(^)- (5-26) 

Here U^'^\G) denotes the Chebychev polynomial of the second kind satisfying: U^^\G) = H 

and U^^\G) = G and A ^ again denotes the coefficient A I ^ ' " ' ' ' " ' ' ^ • 

Proof (by induction on n). 

We first establish that the initial conditions (4.84) are satisfied: 

2^ ,{2f,) n ^̂ 0 - (2^) % °n 

= 5, at 

- 77(0) 

and 

,(2/i) ,(2/i) 

Vh] 

= Gab 

as required. 

(5.27) 

(5.28) 

ROBERT P. T. TALBOT — PH.D. THESIS 1998 



THE ROLE OF THE COXETER ELEMENT 134 

I t remains to show that the Chebychev recursion relation (4.83) holds. Assume that 

3 AT e Z+ such that V 2 < n < AT that (5.26) is true. Then 

Y^i'^-'KQ) Qcb - Uir\G) = E E ^'a''* ^N-r Qcb 
c c ^.,e 00 

= E^*'*4'"(/'a'A'„-,-A5,-.) 

,(2 t̂) 

=E | jT#'-*j"(/ 'a 'Av--A'„..) . 

We have used the eigenvector properties of the tp^^"^ and the eigenvalue property P^^h^ — 

P^^. Now we note that for any function F, 

(5.30) 

= (p'^^^l <F{e-l (mod 2h))+F{e + l (mod 2h)) 

Thus, as a direct consequence of lemma 5.1, the calculation (5.29) continues as 

j,(2/i) 

as required. Hence equation (5.26) is valid for all values n E Z^ . 

This concludes the proof. 

ROBERT p. T. TALBOT — PH.D. THESIS 1998 



THE ROLE OF THE COXETER ELEMENT 135 

We remark here that as the relationship (2.15) is vahd also for the odd cycles A2p so that 

the expression (5.18) i n fact applies for al l affine ADE models. 

Impor tan t ly , the f o r m (5.18) easily makes manifest the graph symmetry of the par t i t ion 

functions. A bi ject ion ( € aut Q, 

C-G^G, (5.32) 

is a symmetry of the graph Q i f f 

(<^G) =G^-iia)i-^b) = Gab ya,beG. (5.33) 
\ / ab 

Given such a symmetry ( , i t is easily established that C^^)" = Q" V n E f r o m which the 

result U^"-\''G) = U^'^\G) V n G 2 + follows. Hence the boundary condition dependence 

of the pa r t i t i on func t ion Z^^''°''^\q) is only upon the relative positions of a and b on the 

graph Q. Given the original physical specification of the models, this is entirely as one 

would expect. 
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5.4 The AfFine Coxeter Element 

I n this section we establish the role played by the afRne Coxeter element i n the part i ­

t i o n functions of the affine models. The role played by the classical analogue was first 

investigated by Dorey [21]. 

Before proving the main result, i t w i l l be useful to establish a useful property of the action 

of the ma t r ix operator Q on the set of afRne Coxeter orbi t representatives R. 

Proposition 5.3 The action of the operator Q (see equation (4.71)) on the orbi t represen­

tatives R, is given by 

Y,^cGcb=< ^ • (5.34) 

• 

(5.35) 

Proof We proceed by simple calculation: 

c c 

= (1 -Lj~^) (wi + oj2)pb; 

where we use (4.58) and lemma 4.5. 

I f 6 e -Pi then we may 'p remul t ip ly ' pb by a;2 as U2Pb = pb i n this case (by (4.48)). Thus, 

for 6 6 P i we have, 

Y,(l^cQcb = {l-i^-^){^-^ + l)Pb 
(5.36) 

= {l + u-^)(t>b 

as required. 

ROBERT P. T. TALBOT — PH.D. THESIS 1998 



THE ROLE OF THE COXETER ELEMENT 137 

If b E P2 then we may premul t ip ly pb by oji as now u>i pb = Pb- Thus (5.35) becomes 

Y,<t>cGcb = il-<^'^){l+Oj)Pb 
c 

= (1 + W) (f)b 

as required. 

(5.37) 

I n analogy w i t h [21], we introduce the func t ion 

0 ; i f a e P 2 . 
v a = \ ^ ; (5.38) 

[ 1 ; i f a 6 P i . 

and define Vgh = Vg. — Vb-

We now demonstrate the connection between the Chebychev polynomials and the affine 

Coxeter element. Dorey [21] demonstrated using explicit forms for the eigenvectors in the 

intertwiners (1.67) that the pa r t i t ion functions of the classical Pasquier models could be 

expressed as 

Zis;a,b)^q)^ J2 x'i,2p-,i+.jQ) {Pa,^-'^b) • (5-39) 

The quantities p^, w and ^5 refer to the root system and Weyl group of a classical Lie 

algebra g w i t h adjacency mat r ix G; the scalar product ( , ) is the usual Euclidean bihnear 

f o r m and the Virasoro characters xl b i^) ^^^^^ representations of the conformal alge­

bra w i t h central charge c — 1 - -r -^ < 1. As demonstrated earlier (equation (4.90)), 

(classical) intertwiners and the Chebychev polynomials are related. Thus we are led to 

conjecture a similar f o r m for the afiine par t i t ion functions by equating the natural affine 

generalisation of the inner product appearing i n (5.39) to the Chebychev polynomials of 

the affine adjacency matrices. 
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Theorem 5.4 Let Vab be defined as above. I f Q is the Coxeter-Dynkin diagram of the 

Kac-Moody algebra g and ( , ) the affine bilinear f o r m (scalar product) on the mciximal 

Car tan subalgebra h of g; then 

u^^^^+^'^''Hg) = { p a , u - ^ r b ) ; (5-40) 

LO denotes the (Steinberg-ordered afHne) Coxeter element defined in equation (4.54). • 

Proof The proof is by induct ion on the variable A'' i n U^^\Q). We first check that the 

f o r m (pa, uj~P(j)^) reproduces the correct in i t i a l conditions (4.83), i.e. U^^\Q) = I and 

U^^HO) = G- We check each of the four possibihties for assigning a and b to the sets 

P2 and Pi separately. We make use of the properties of normali ty of the affine scalar 

product , the dual i ty between the roots and the weights, the properties particular to the 

affine Coxeter element defined i n section 4.2.1 and of its orbi t representatives. 

a,b € P2: Va = Vb = 0 ^ Vab = 0; so: 

{pa, 4'b) = ( p a , Wlttfc) 

= {>^lPa , Ofc > 

= { p a , " 6 ) 
(5.41) 

= Sab 

Where the t h i r d line is obtained f r o m the second using the normal property (4.49) of the 

scalar product . 

a,b e Pi: Va = Vb = I ^ WQ6 = 0. 

{pa, ( f t ) = { p a , Oib) 

= Sab 
(5.42) 

= wlf'+-'(5). 
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a e Pi, be P2: Va = I, Vb = 0 =^ Vab = 1-

{pa , (pb) = {pa , Wlttft ) 

= {(^IPa , " 6 ) 

= {aapa, Olb) 

= { { p a - a a ) , OCb) 

= { p a , a X ) - { a a , a X ) (5.43) 

- 0 - C„6 

= Gab 

We obtain the adjacency ma t r ix f r o m the Cartan mat r ix C, by noting that ^ = 2 — C so 

that when a^b: Qab = -^ab-

a e P2, b G Pi'. Va = 0 and = 1 so that Vab = — 1 - Now: 

{pa , w ' V t ) = (pa , UJiUJ2a^) 

= {uJ2UJiPa, a^) 

= {uJ2pa, 0(b) 

= {cTaPa , Olb) 

= {{pa - Oia) , Q!̂ > 

= ( p a , " i ) - ( " a , tth) 

= 0 - Ca6 

= Gab 

= U T - ' \ G ) 

Thus we see that U^^\g) = I and U^^\G) = Q. 

Assume that 3 iV G Z"*" w i t h 2p + Vab = N where a and b denote, as before, the boundary 
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conditions; such that V n < N that equation (5.40) holds. We wish to show that (5.40) 

holds for N also and hence is valid V n € Z + by induction. The proof again splits into 

the four possible arrangements of a and b amongst the sets Pi and P2. I n the first two 

cases, the number A'' is even, i n the last two, N is odd. Our method makes repeated use 

of proposi t ion 5.3. 

a,b E P2: As b € P2, the non-zero components of Gcb may occur only for c G P i . Thus 

•"at = 0 - 0 = 0 and Vac = 0 - 1 = - 1 . Hence 

i^t-'HG) Qcb - u f r ' \ Q ) = u^r''-\Q) Qcb - wi? -̂̂ )+"-)(̂ ) 

= {pa,{^-'Gcb-^-^'"'^Sa)cl^'t) 

= ( p , , ( a ; - f ( l - f ^ ) - a ; - ( P - i ) ) 0 j f ) 

= { p a , u - P ^ t ) 

(5.45) 

as required. 

a,b E Pi: Now 6 € P i , so that the non-zero components of Gcb occur when c G P j - Thus 

we see that Vab = I — ̂  = 0 and WQC = 1 — 0 = 1. Now: 

uil'-'HG)Gcb-uif-'\g)=u(i^^-'^^^-HQ)G 

= {pa,{^-^'-'^Gcb-'^-^'-'^Scb)cl>t) 

= ( p , , ( a ; - M ( l + O - a ; - ( ^ - i ) ) 0 j f ) 

^{pa,uj-''4>t) 

= U^r^''\G) 

-U^^\G) 

as required. 

(5.46) 
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g G P i , 6 G P2: b € P2 SO that the non-zero components of Gcb are when c G Pi - Thus 
Vab = 1 — 0 = 1 and = 1 — 1 = 0. Again: 

l^i?\G)Gcb-l^il'-'\G)=U^l'+^-\G)Gcb-U^^^^^^^ 

= {pa, ico-''Gcb-co-^'-'^Scb)<l>''c) 

= ( p , , ( a ; - f ( l + a ; ) - ^ - ( ^ ' - i ) ) , / > , ^ ) 

= {pa,u;-^''b) 

= U^r'''\G) 

=u^r\G) 

as required. 

g G P2, 6 G P i : Finally, i n this case, 6 G P i so that the non-zero components of Gcb are 

when c G P2. Thus u^i = 0 - 1 = - 1 and = 0 - 0 = 0. So: 

U^^^\G) Gcb - u f r ' \ G ) - W i r ^ - ) ( a ) Gcb - U^^-'''^'\G) 

= {Pa , i^-'Gcb - ^-"Scb) <t>c) 

= {pa,{<^-'{^+<^-')-^-n^b) ^ ^ 

Pa,a;-(^+^)^v 

= u i r ' \ G ) 

as required. 

This completes the proof. Equation (5.40) follows by induction. 
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Thus we rewrite equation (5.18) as 

p=p' 

(5.49) 

w i t h : 

P = 
0 ; i f = 0 or 1. 

1 ; i f = - 1 . 
(5.50) 

This expresses the affine par t i t ion functions i n terms of the affine Coxeter element. Note 

tha t the summation automatically excludes those terms which are zero due to the require­

ment tha t \a — b\ and n (now replaced by 2p + Vab) be bo th even or both odd. 

We remark tha t [21] demonstrated the f o r m (5.39) for the classical models by an entirely 

different method. We dupHcate his result using the method just described by recalling 

that the intertwiner V^f^ relating the G = D,E models to an A model is equivalent to a 

Chebychev polynomial by equation (4.90). Theorem 5.4 holds i n the classical case also 

once one replaces the affine scalar product ( , ) w i t h the usual one ( , ) and the affine Coxeter 

t ransformation, weights and orbi t representatives w i t h their classical analogues. Thus we 

may equate the intertwiner w i t h a geometric expression. The result (5.39) follows directly 

f r o m [50] 

h-i 

Z^S-''^'''Hq) = Y^xlxiQ)V^b- (5.51) 
A=l 
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5.5 Geometrical Consequences 

I n analogy w i t h [21], we may at tempt to construct invariant subspaces under the action 

of uj as follows: 

Define 

^ ( M ) d e f ^ ^ M ^ ^ f o r i = 1,2. (5.52) 

aePi 

These vectors would appear to possess the properties: 

(5.53) 

So tha t = s p a n { a S ^ \ 4 ^ ^ } is closed. 

Unfortunately, for some values of p and i, such vectors (5.52) may be identically zero; 

this can be verified by explicit calculation. However, for / j = 0 i t is easy to see that the 

properties of the Perron-Frobenius eigenvector ensure that a^°^ and a^^ are bo th non-zero, 

dist inct and linearly independent. Hence the ^ = 0 invariant subspace exists. Choose the 

Perron-Probenius eigenvector to have al l coefficients positive. We change notation and 

wr i te 

aePi 

So that 

, —Q;^-'^ ; i f i = j . 

Wia(^) = <j . (5.55) 

c^0) + 2 a W ; i f « V j -

We also define the weights 

P « = E V'i^Va . (5.56) 

aePi 
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Thei r action upon the IS 

( p « , a ( ^ > ) = i 5 ^ ^ (5.57) 

and upon roots i n general, their action is to project onto the spaces span{a(^^} and 

spanja^^)} respectively. Equation (5.57) indicates that 2p(*) is the dual of a^*); there­

fore the project ion operator J onto the space V = span{a(^ \ a^^^} is given by 

J \ = 2 ( p ( i ) , A^ ) a( i ) + 2 (p(2), A^> . (5.58) 

where A = ( A , 0 , n ) is any root. I n particular j'^ = J . We let a = a^^^ â ^̂  = 

and p = p^^^ + p(^) so that (p , a) = 1. 

We remark that p as defined, is a positive integer sum over the weights { Po | a G ^ } . Thus 

recalling the property (4.27) that any root may be wr i t t en as a positive or negative integer 

sum of the simple roots; we see that , by analogy w i t h [21], 

A is a positive root 

^ ( p a , A ^ ) > 0 for any a (5.59) 

^ ( p , A ^ > > 0 . 

Thus we have: 

Lemma 5.5 A n y root of $ is a positive root, i f f the scalar product of its coroot w i t h p is 

positive; i.e. 

A = ( A , 0 , n ) G 8 + i f f ( p , A ' ' ) > 0 . (5.60) 

• 

The fol lowing result is perhaps obvious; however we state i t for clarity: 
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Proposition 5.6 The project ion J commutes w i t h the Weyl group operators IJJ\ and u)2\ 
and hence w i t h the Coxeter element. Tha t is 

[ J , W i ] = 0 , for ^ = 1,2 (5.61) 
$ 

insofar as they act upon the roots • 

Proof The simple roots 11 provide a basis for Therefore one need only examine to see 

i f Ju>iaa = UiJaa for each a and i. This follows easily using the properties (5.55) and 

the def in i t ion (5.58). • 

For convenience, for any operator Y, let: 

, J e ; i f 6 G P i . 
l Y l = . (5.62) 

Y ; i f 6 G P 2 . 
i. 

Theorem 5.7 For a l l a, b e G and p G Z + : 

( p a , a ; - f 0 , ^ ) > O . (5.63) 

• 

Proof B y lemma 5.5, we need only establish that {p, uj~P(j)b) > 0. 

B y proposi t ion 5.6: 

Ju-Pcf>b=cv-''lcoilJab 

= 2 ( p ( i ) , a^b) P i \ o.^'^ + 2 ( p ( ' ) , a n o;-^ (5.64) 

= 2 ( p ( ^ W ) , a V ) ^ - . | ^ j ^ „ ( P ( a ) ) . 

where we make use of the fact that (p^'^, a^) = 0 unless b € Pi. Thus we need only 

examine the Coxeter orbits of Q;^^) and ui â ^̂  = 2a^^^ + a^'^K 
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We see f r o m (5.55) that the application of a;"-̂  to (n) â ^̂  -f- (n — 1) â ^̂  yields ( n - f 2) a^^) + 
(n - I - 1) a^^); i.e. n is replaced by n - I - 2. The roots of bo th orbits follow this form. Hence, 
as J projects onto the invariant space F , 

{p,u^-^X)-{p,J^-''<fb) 

2 ( p ( i ) , aX) (2;? + 1) ; when 6 G P i . (5-65) 

2 ( p ( 2 ) , aV^(2p + 3) ;when6GP2. 

This may be rewri t ten as 

( p , a ; - > , ^ > = 2 ( p , a , ^ ) ( 2 p - f 1 + 252 ,P(6)) • (5.66) 

The scalar product appearing on the RHS clearly exceeds zero as ab is a simple root and 

hence a positive root. The remaining factor is positive for al l j> > 0. 

This completes the proof. • 

We already knew f r o m generating polynomial arguments (section 2.5), that the coefficients 

of the Virasoro characters appearing i n (5.49) were non-negative integers (which physically 

by (1.136) they have to be). We have now demonstrated this independently, and more 

important ly , geometrically. Tha t they are integers follows t r iv i a l ly f r o m the duality of the 

weights and coroots (4.37) together w i t h the fact that the set $ is closed under the action 

ofW. 

We mention as an aside that i t might be interesting to investigate the relationship, i f any, 

between the project ion J and the defect map investigated by Herman et al. [6]. 

As is evident, much of the structure of an affine algebra g is related to the underlying 

structure of the horizontal subalgebra g. We may use the Euclidean Coxeter element of 

section 4.2.3 to examine separately the action of w on the horizontal and lightlike parts of 
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the orb i t representatives. Consider 

= w"-^ (^(pb , 0 , Sob + {(pb ; ^ 
(5.67) 

I tera t ing, so that for p > 0, 

/ _ B-l 

p'=0 

As w has per iod h (section 4.2.3), we may wri te 

u <'>^+^)<i>b = (u-^ct>b, 0 , (̂ 06 + E {^'"'^b .o')+q E {^~^'4>b (5.69) 
r'=0 7-'=0 

where p = qh + r and r < / i by the usual division algori thm. Thus to calculate the 

coefficient {pa , uj~'P(f)b) we need only examine the behaviour of the "Euclidean projection" 

of the Coxeter orbits onto the root system o f f . I n particular, due to the periodicity of 

w, we find that one can calculate any coefficient f r o m the knowledge of the h{r +1) vectors 

I Lb-% r E Z , 0 < r < h - l ; b e G } , (5.70) 

together w i t h their inner products w i t h the (dual of the) highest root 5̂ ; i n particular, 

the sums 

I E ( ' ^ " ' " ' ^ 6 ' ^ " ^ j ^ e 2 , 0 < r < / i - 1 I . (5.71) 

Note that i t is the orbits (w)</'6 of the Euclidean Coxeter element which appear in these 

quantities and not the orbits of the Coxeter element w of the algebra g. However i t is 

interesting to see that the entire structure of the affine Coxeter orbits can be determined by 

examining the orbits of u alone. These being of finite cardinality, allow one to determine 

the entire pa r t i t i on func t ion (5.49) f r o m a finite number of calculations. Indeed this 
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method of calculation was checked using Mathematica. The correct par t i t ion functions 
are obtained. 
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Chapter 6 

Concluding Remarks 

I n this chapter, we summarise the main results of this thesis and attempt to place them 

w i t h i n the context of current research. 

We use the defining axioms of the affine Pasquier models on the cylinder to calculate their 

pa r t i t i on functions. This is motivated by a desire to extend the results of Saleur and 

Bauer [50] to the affine models. I t is carried out by directly extending the result (1.149) 

of Saleur for the model ^oo to the An models (1.152) and using the derived intertwiner 

result (2.15) to relate the par t i t ion functions of the models based upon the graphs £>„ and 

-£•6,7 ,8 to these pa r t i t i on functions. 

The intertwiners relat ing the A^^], -^[/i] and £^[6 ,12 ,30] models to the A^2h] models are found 

to be of a peculiar fo rm: 

(2.17) 

This should be compared w i t h the classical intertwiners (1.67). Unhke the classical inter­

twiners, typical ly these coefficients are of either sign and are integer or half-integer valued 

(see for example the results (2.20-2.23)). They also relate a model w i t h affine Coxeter 

number / i to a model w i t h affine Coxeter number 2h. I n fact they even relate An models 

w i t h other An models. However, as w i t h classical intertwiners, the affine intertwiners (2.17) 

respect the par i ty of the boundary conditions, i n that a model w i t h even (odd) boundary 
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conditions is related to a An models also w i t h even (odd) boundary conditions. 

The in te r twin ing relationship is solved explici t ly i n al l cases so that the par t i t ion func­

tions can be expressly wr i t t en as a positive integer sum over degenerate Virasoro char­

acters (2.25). Generating functions for the coefficients are calculated (section 2.5) and 

phrased in terms of generating polynomials; the polynomials stated as tables 2.2-2.5, to­

gether w i t h the parameters listed i n table 2.1. These polynomial generators also manifest 

the positive integrali ty of the series derived and are observed on a case by case basis to 

respect the graph symmetries of the defining graph G-

I t is also observed (again indiv idual ly for each model), that the Virasoro representation 

(i.e. character) of lowest weight appearing i n the par t i t ion functions of the models is, i n 

each case, of weight h(^a,b) = K? /4 ; where K is the length of the shortest path between 

the two nodes a and b on the defining diagram G- This weight, h(^a,b)> is the weight of the 

'ground state' field of each theory. 

The result derived for the 4-state Potts model w i t h free boundary conditions is found to be 

i n precise agreement w i t h that found by Saleur and Bauer [50] (section 2.4). I n chapter 3, 

a numerical investigation of the pa r t i t ion functions is carried out. W i t h i n the l imits of the 

analysis, the numerical calculations are found to be in agreement w i t h the derived forms 

for a number of affine models. I n addit ion, this numerical analysis allowed us to refute 

an alternative result, that of Baake et al. [2], for the 4-state Potts model. These checks 

combined, serve as a verification of the results found up to this point . 

A n analysis of the polynomial generators and the resulting Poincare series, finds them 

to be related to the decomposition of tensor products of irreducible representations of 

the finite subgroup of SU(2) associated to the graph G under the McKay correspondence. 

Specifically, the generating polynomial Q(^'"''')(a;) is the sum of the polynomials {Kj{x)} 

associated w i t h the representations { 7 ^ } appearing in the tensor product decomposition of 

the representations associated w i t h the nodes a and b (refer to equations (5.8) and (5.17)). 

I n summary therefore, we demonstrate two general forms for the affine par t i t ion functions, 
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namely 

71=0 

(5.18) 

the "Ciebycljev form", and 

(5.49) 

with 

P = 
0 ; ifvab = 0 or 1. 

1 ; if = - 1 . 

the "geometric form", which relates the partition function of the affine model to the 

(Steinberg-ordered) Coxeter element of the associated affine Kac-Moody algebra. 

Each form has its advantages: (5.18) manifests most clearly the graph symmetry of the 

partition functions. As is expected on purely physical grounds, Z^^'°''^\q) ought only to 

depend upon a and h insofar as their relative positions on the graph Q are concerned. 

This is indeed the case (section 5.3). Equation (5.18) also manifests the connection these 

models have with the tensor decompositions of irreducible representations of SU(2). 

The form (5.49) demonstrates that the affine extension of the Steinberg-ordered Coxeter 

element plays a role in the physics of the afiine models. Mathematically, by theorem 5.7, 

it allows one to observe that the coefficients of the Virasoro characters in the expansion 

of the partition functions are positive integers. The expression also provides one with an 

exceptionally quick method of evaluating the partition function of any afiine model. What 

initially appears to be an infinite sequence, may in fact be reduced to a finite number of 

evaluations by equation (5.69). It is possible that this can be used as a mechanism to 

collect the degenerate c = 1 Virasoro characters in the partition functions in such a way 

as to observe the action of higher symmetries, such as supersymmetry or those associated 
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with W-algebras, in the physics of these models. 

Most importantly, this geometric result (5.49) and its consequences lends support to the 

idea that geometric structures have more general roles within conformal field theories. 

Another step in this direction has recently been made by Zuber [58], who has examined 

the possibility of constructing the "SU(3) analogue" (in the nomenclature of Di Francesco 

and Zuber [23]) of the Steinberg-ordered Coxeter element. Such an element and its gen­

eralisations may play a role in the more general SU(A'') models of [23]. Indeed, we have 

demonstrated in this thesis, the relationship between the Chebychev polynomials and the 

Coxeter element for the SU(2) case. Could it be that a generalisation of this connection* 

to the SU(3) case, and beyond, can provide a useful tool in establishing the role of such a 

generalised Coxeter element? 

'As an aside, we have constructed an "SU(3) analogue" of the Chebychev polynomials. This discussion 
is presented in appendix C. 
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Appendix A 

Affine Eigenvectors 

^2 / 1 -1 = Ai2h] 

2h-2 

E = / l + l E = 2 / i - l 

= 2cos^ 

Normalisation: 

[2h] 

2h ; i f / i = 0,2/i. 
h ; if A* 7̂  0,2h. 

Table A . l : Labelling conventions for the nodes (e = • • • ) and exponents /j. (the numbers 
above the nodes on the first graph) for the graph ^ 2 / 1 - 1 - The components (t)i'^^ of the eigen­
vectors ^(^^ together with the corresponding eigenvalue p'^^^ are given on the second graph. 
Note that the above choice is not an orthogonal set. The affine Coxeter number h = n + 1 
for the graph An-
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a=X 

Dn = -D[2(n_2)] 

a=X 

- o -

n - 2 
a=Y 

2 ( 7 1 - 2 

( ) 
n - 2 

li=n-2 

( - 1 ) ^ / 2 

1 « ( n - 2 ) ^ 0 

1 /3(n-2)=0 

Normalisation: 

= < 

f 2(n - 2) 
4(n - 2) 
4 

f o r ^ ^ O , n - 2 ' , / i = 2 (n-2) . 
if / i = 0, / i . 
if / i = n — 2 . 

Table A.2: Labelling conventions for the nodes (a = • • • ) and exponents fi (numbers above the 
nodes on the first graph) for the graph JD„. The components ij^'a^ of the orthogonalised eigen­
vectors together with the corresponding eigenvalue /?(^^ appear on subsequent graphs. 
The affine Coxeter number h = 2(n - 2) for the graph Dn-
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a = l a=2 a=3 a=4 a=5 

Exponents n: 0,2,2,3,4,4,6. 

a=\ a=2 a=Z a=4 a=5 a=6 a=7 

Exponents fj.: 0,3,4,6,6,8,9,12. 

£̂ 8 

a = l a=2 a=3 a=4 0=5 a=6 a=7 a=g 

Exponents /j.: 0, 6,10,12,15,18,20,24, 30. 

Table A.3: Labelling conventions for the nodes (a = •••) and exponents fi for the exceptional 
affine graphs E^j^. The affine Coxeter numbers for the models are 6, 12 and 30 respectively. 
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Appendix B 

The Kronecker Comb 

We define the generalised semi-infinite Xronecicer comb as 

^(ay..,a,)^ J 2 (B.l) 

mi,...,mk=0 ' ^ 

where 6 is the canonical Kronecker-(5. From this definition, it is easy to estabhsh the 

following useful results: 

n i f = Sr^,,, (B.2) 

oo 

fc-l 

k'=0 

Note that identity (B.3) is a special case of property (B.5) with = oo as 

nt''^'-^ = ( i k r ^ . (B.7) 
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The sequence Q!;^^"'"'"'^ is encoded by the generating function 

I 
m 

TT — ^ 

n=0 
m (B.8) 

= X 

m'=0 

So that 

1 j n 
Q{ai,...,am) _ J_ ^ 

' n! da;" e 
x=0 

Q{au-Am)^^^ _ (B.9) 

Properties (B.2-B.6) follow for this generating function. 

The function Q^"''-''"'""^\x) may also be interpreted as the generating function for the 

number of partitions of the integer n — e into sets of integers comprised only from the 

(possibly degenerate) set { a i , . . . ,am}', this may be seen both from the result (B.8) and 

directly from the definition of the Kronecker comb (B.l). 
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Appendix C 

SU(3) and Chebychev-like 
Polynomials 

We begin by noting that there is an isomorphism Q2 between the Chebychev polynomials 

(of the second kind) under multiplication and addition and the representations of SU(2) 

under the tensor product and direct sum (see also [23]): 

02 : (SU(2)* ,®,e) -^( i3 ' , - ,+) , 

TTo 1 , 
(C.l) 

7r„ t^Z^(")(a;) V n 6 Z+ . 

In fact the recursion relation (4.83) is given by the Clebsch-Gordon decomposition of the 

tensor product of the representation iXn and the fundamental representation TTI: 

® D = [~~i T I I I ® i n 
-> 1 n + l *- -< n - 1 2̂  

U^^'Xx) • X =ZY("+i)(a;) + U^''-^\x) . 

We recall that this recursion relation may be thought of as originating in the classical 

intertwiner relation (1.68) (see section 4.4). 
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Similarly we may establish an isomorphism: 

03 : (SU(3)^o ,e )^ ( i^^• ,+ ) 

71-0,0 ^ 1 , 

TTifi !-)• X , 

TTo.i ^ y, 

7rm,n^Z^^"^'"^(^,y) V m , n G Z + ; 

where is a set of polynomials. 

We find the defining recursion relations of 9)^ via the Clebsch-Gordon decompositions 

— I ® n = — 

m K I 1 

(C.3) 

• m + l 1 

• n+1-

Z^(" '̂")(rE,y) • X =ZY("'+i'")(:r,y)+W('"-^'"+^)(a;,y) 

+ ZY("^'"-i)(x,y) 

(C.4) 

and 

n + l -

• m + l -

(C.5) 

iY("^'"'(^,y) • y =Z^('"'"+')(x,y)-fZ^('"+i'"-i^(:c,y) 

As in the case of we require boundary conditions. Examining the Chebychev case, we 
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observe that = 0. Analogously, we choose 

U^-^''\x,y)=U^-'''\x,y)=U^''-'\x,y) 

= U^-''-'\x,y)=U^-'--'Hx,y)=U^''-'Hx,y) (C.6) 

= U^-''-'Hx,y)=U^'''-'Hx,y)=^0, 

together with 

U('''Hx,y) = l , (C.7) 

for the trivial representation. In particular, this yields 

ZY(i'°)(x,y)-a; and U^°'^Hx,y)=y (C.8) 

for the fundamental representations T T I ^ Q and T T Q , ! respectively. 

With this choice of initial conditions, it is not difficult to calculate the generating function 

for the family of polynomials Sj^. It is 

m,n=oo 

Cz{p,q\x,y)^ J2 U^'^'-\x,y)p^q^ 
m,n^O (C.9) 

_ 1 

[ l - x p + yp^-p^){l-yq + xq^ -q^) ' 

which is similar in form to (4.85). 

Just as the algebraic properties Chebychev polynomials 9)^ contain the tensor product de­

compositions of irreducible representations of 5 U (2), the properties of io^ contain the tensor 

product decompositions of SU(3). Once a McKay-like correspondence relating the genera­

tors of a reflection group and the irreducible representations of the subgroups of SU(3) can 

be established, then hopefully, the link between S^^ and a generalised Coxeter element will 

follow. We remark that polynomials similar to the family f)^ are discussed by Di Francesco 

and Zuber [23], where they arise in connection with operators intertwining various SU(3) 

models. 
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