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Abstract 

We investigate nonpertiirbative effects due to instantons in = 2 supersymmetric 
SU{N) Yang-Mills models, with the aim of testing the exact results predicted for these 
models. In two separate semiclassical calculations we obtain the one-instanton contribution 
to the Higgs condensate = (TrA^) and to the prepotential T. Comparing our results 
with the exact predictions, we find complete agreement except when the number of flavours 
of fundamental matter hypermultiplets, Nj, takes certain values. The source of the 
discrepancy is an ambiguity in the parameterization of the hyperelliptic curves from which 
the exact predictions are derived when Nf > N. This ambiguity can easily be fixed using 
the results of instanton calculations. The discrepancy associated with JF appears in the 
finite Nj = 2N models. For these models we are unable to modify the curves to agree with 
the instanton calculations when > 3. 

Our one-instanton calculation of the prepotential is facilitated by a multi-instanton cal­
culus which we construct, starting from the general solution of Atiyah, Drinfeld, Hitchin 
and Manin. Our calculus comprises: (i) the super-multi-instanton background, (ii) the su­
persymmetric multi-instanton action and (ill) the supersymmetric semiclassical collective 
coordinate measure. Our calculus has application to supersymmetric Yang-Mills theory 
with gauge group U{N) or SU{N). 

We employ our instanton calculus to derive results at arbitrary A;-instanton levels. In 
J\f = 2 supersymmetric SU(N) Yang-Mills theory, we derive a closed form expression for the 
/c-instanton contribution to the prepotential. This amounts to a solution, in quadratures, 
of the low-energy physics of the theory, obtained from first principles. In supersymmetric 
SU(2) Yang-Mills theory, we use our calculus to investigate multi-instanton contributions 
to higher-derivative terms in the Wilsonian effective action. Using a scaling argument, 
based on general properties of the SU{2) /c-instanton action and measure, we show that in 
the finite, massless U = 2 and N = A models, all A;-instanton contributions to the next-to-
leading higher-derivative terms vanish. This confirms a nonperturbative nonrenormalization 
theorem due to Dine and Seiberg. 
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Chapter 1 

Introduction 

In quantum field theory, instantons are important as configurations that dominate the path 

integral. They give rise to nonperturbative effects which can in principle be calculated 

by performing a semiclassical expansion of the path integral. Unfortunately, in a generic 

gauge theory, technical difficulties have restricted semiclassical calculations to the level of 

the simplest (topological charge unity) instanton configuration. Moreover, in a classically 

scale-invariant Yang-Mills model such as quantum chromodynamics (QCD), instanton cal­

culations suffer from an infra-red problem; the contribution of large instanton configurations 

to the path integral is divergent. This problem cannot be resolved without knowledge of the 

theory in the strong-coupling regime. As a result of these difficulties, until recently there 

had been few direct quantitative predictions of instanton effects in Yang-Mills theory. 

In 1994, spectacular advances in the study of quantum field theory were made by Seiberg 

and Witten. The focus of the Seiberg-Witten analysis was a particular class of SU{2) 

Yang-Mills models blessed with the property of A/" = 2 supersymmetry. These models are 

characterized by the presence of an adjoint Higgs field which can break the SU{2) gauge 

symmetry to a U{1) symmetry. Seiberg and Witten discovered that the low-energy physics 

of the models admits more than one effective field theoretic description. At weak-coupling 

the low-energy physics is naturally described in terms of 'electric' degrees of freedom, corre­

sponding to the light U{1) components of the microscopic fields. At strong-couphng one can 

transform these 'electric' degrees of freedom into a weakly-coupled set of 'magnetic' degrees 
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of freedom that provide an equivalent, but more convenient, description of the low-energy 
physics. This phenomenon is known as duality. Using arguments based on the presence of 
duality, together with supersymmetry, Seiberg and Witten were able to predict exact results 
for the models, valid at both strong and weak values of the coupling. 

The work of Seiberg and Witten has motivated new investigations of instanton effects 

in quantum field theory. Seiberg and Witten predicted a solution for a holomorphic func­

tion known as the prepotential, which describes the dynamics of particle interactions at 

low-energy. At weak-coupling, the prepotential has an expansion consisting of a one-loop 

perturbative contribution plus an infinite series of nonperturbative terms. The nonpertur-

bative terms are directly associated with instanton effects. They should precisely match the 

results of semiclassical instanton calculations. Such calculations therefore provide a non-

trivial test of the Seiberg-Witten analysis and, in particular, of the physical duality-based 

arguments that were used. 

A number of instanton calculations in the J\f = 2 supersymmetric SU{2) models in­

vestigated by Seiberg and Witten have indeed been successfully performed. In most cases, 

the results of these calculations are in complete agreement with the predictions of Seiberg 

and Witten. However, in the models with A /̂ = 3 and Nf = 4. flavours of fundamental 

matter hypermultiplets, interesting discrepancies have been observed. The Seiberg-Witten 

exact results are expressed in terms of an elliptic curve construction which involves various 

parameters of the physical theory. It has been found that the source of the discrepancies 

in the Nf = 3 and Nf = 4 models can be attributed to an ambiguity in the original phys­

ical interpretation of the parameters in the corresponding curves. By reinterpreting the 

parameters, in accordance with the instanton results, the discrepancies can be resolved. 

In addition to providing these important insights into Seiberg-Witten theory, the pro­

gramme of instanton tests mAf — 2 supersymmetric SU{2) Yang-Mills theory has stimulated 

dramatic progress in the development of the semiclassical instanton method itselL Employ­

ing the multi-instanton construction of Atiyah, Drinfeld, Hitchin and Manin (ADHM) and 

with the aid of supersymmetry, Dorey, Khoze and Mattis were able to perform the first 

complete semiclassical calculation in the background of a two-instanton configuration. In 
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subsequent work, Dorey, Khoze and Mattis have elegantly combined the ADHM construction 
with supersymmetry to formulate a complete multi-instanton calculus for supersymmetric 
SU(2) Yang-Mills theory. 

Investigations of instanton efl5"ects in supersymmetric Yang-Mills theory have not been 

confined to models with gauge group SU{2). The exact results of Seiberg and Witten 

have been generalized to M = 2 supersymmetric Yang-Mills models with arbitrary classical 

simple and product gauge groups. It is desirable to perform instanton tests of the exact 

predictions in these models just as for the SU{2) models. 

Thesis Outline 

In this thesis we investigate instanton effects in supersymmetric Yang-Mills theory with 

general gauge group SU(N). We perform explicit one-instanton calculations that provide 

tests of the exact results in J\f = 2 supersymmetric SU{N) QCD. We also construct a 

multi-instanton calculus for J\f = 1 and A/" = 2 supersymmetric Yang-Mills theory with 

gauge group U{N) or SU{N). This represents a generalization of the SU{2) work of Dorey, 

Khoze and Mattis. Using our calculus we derive a closed form expression for the A;-instanton 

contribution to the prepotential in A^ = 2 supersymmetric SU(N) QCD. We also employ the 

calculus to verify a nonperturbative nonrenormalization theorem in finite supersymmetric 

SU{2) Yang-Mills models. 

The thesis is organized as follows. In Chapter 2, we review instantons in Yang-Mills 

theory. The chapter is divided into two parts. In the first part, we describe classical 

properties of instantons in pure Yang-Mills theory. We motivate the assignment of an 

integer index, the topological charge, to instanton solutions and we show that a defining 

feature of instantons is that they imply a self-dual field strength. We also present the 

explicit SU{2) one-instanton solution obtained by Belavin, Polyakov, Schwartz and Tyupkin 

and use it to construct the general SU{N) one-instanton solution. In the second part of 

the chapter, we discuss instantons in the context of quantum field theory. We outline 

the semiclassical procedure for calculating nonperturbative effects due to instantons. To 

illustrate the procedure, we describe the calculation of the one-instanton contribution to the 
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vacuum-to-vacuum amplitude in pure SU{N) gauge theory, drawing on the seminal work of 
't Hooft. We then discuss the eflFect of fermion fields on an instanton calculation. Finally, 
we consider the case of a Yang-Mills model that includes a Higgs field. We show that when 
the Higgs acquires a symmetry-breaking vacuum expectation value, instanton solutions do 
not formally exist, but that instanton calculations can nonetheless be performed using the 
'constrained instanton' approach of Affleck. 

In Chapter 3, we review aspects of supersynimetric Yang-Mills theory. This chapter has 

two parts. In the first part, we present the supersymmetric models that are the subject 

of our instanton investigations. An elegant construction of these models is provided by 

the Af = 1 superfield formalism. In the second part of the chapter, to set the scene for 

our instanton investigations, we review the exact predictions in AT = 2 supersymmetric 

SU{N) Yang-Mills models. The low-energy (Coulomb branch) pltysics of these models is 

determined by a single holomorphic function, known as the prepotential. We describe the 

Seiberg-Witten arguments that predict an exact solution for this function in terms of an 

elliptic curve construction. We also discuss the generalization of the Seiberg-Witten exact 

results to J\f = 2 supersymmetric SU{N) QCD and, in particular, the hyperelliptic curves 

that were proposed for this purpose. 

In Chapter 4, we describe instanton tests of the exact solutions inj\f = 2 supersymmetric 

SU{N) Yang-Mills theory. We first review the calculations performed in the SU{2) models. 

We describe, in some detail, the one-instanton calculation of Finnel and Pouliot, which 

provided the first instanton test of the exact results. We also summarize the SU{2) two-

instanton calculations and discuss the resolution of the discrepancies revealed by these 

calculations. After reviewing the SU(2) results, we present a one-instanton calculation in 

the SU{N) models with N > 2. For the SU{3) models with Nf <6 hypermultiplet flavours 

we obtain a complete result. We find that the proposed hyperelliptic curves do not correctly 

predict this result. We show explicitly how the discrepancies can be resolved. 

In Chapter 5, we present a multi-instanton calculus for A'' = 1 and N — 2 supersym­

metric Yang-Mills theory with gauge group U{N) or SU{N), extending the SU{2) work 

of Dorey, Khoze and Mattis. Using the multi-instanton construction of Atiyah, Drin-
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feld, Hitchin, and Manin we obtain the set of solutions comprising the supersymmetric 
A;-instanton background. We show how the supersymmetry algebra can be realized directly 
on the overcomplete set of collective coordinates appearing in these solutions. We then con­
struct the /o'-instanton action and collective coordinate measure. Supersymmetry plays an 
important role; since they are supersymmetry invariant quantities, the instanton action and 
measure must be constructed from supersymmetry invariant combinations of the collective 
coordinates. 

In Chapter 6, we apply the multi-instanton calculus to further investigate instanton ef­

fects in supersymmetric SU{N) Yang-Mills theory. For the A/" = 2 supersymmetric models, 

we derive a closed form expression for the contribution of an arbitrary /c-instanton con­

figuration to the prepotential, as a finite-dimensional integral over bosonic and fermionic 

collective coordinates. Using our expression, we proceed to completely evaluate the one-

instanton contribution to the prepotential, for arbitrary A'' and Nj. We discuss how our 

result compares with the predictions of the curves. In the finite Nj — 2N models, we 

find a discrepancy which we do not know how to interpret. As a separate application of 

the multi-instanton calculus, we also investigate higher-derivative terms in the low-energy 

Wilsonian effective action of A^ = 2 supersymmetric SU(2) Yang-Mills theory. We are able 

to derive a closed form expression for the contribution of an arbitrary A;-instanton configu­

ration to the single real function that determines the next-to-leading terms in the gradient 

expansion of the Wilsonian effective action. Using a simple scaling argument we show that, 

in the finite SU{2) model with four flavours, all A;-instanton contributions to the next-to-

leading terms vanish. This verifies a nonperturbative nonrenormalization theorem of Dine 

and Seiberg. Using a slightly modified scaling argument we also confirm the Dine-Seiberg 

nonrenormalization theorem for the A" = 4 supersymmetric SU{2) model. 

Finally, in Chapter 7, we present a summary of our results and our conclusions. 



Chapter 2 

Instantons in Yang-Mills Theory 

2.1 Introduction 

In four-dimensional Yang-Mills field theory, there exist certain nontrivial solutions to the 

Euler-Lagrange equations which locally minimize the (Euclidean space) action. These so­

lutions have the property of being localized in the (imaginary) time dimension as well as 

in spatial dimensions. For this reason they have come to be known as 'instantons'. The 

first instanton solution was discovered in 1975 by Belavin, Polyakov, Schwartz and Tyupkin 

(BPST) [1]. A few years later Atiyah, Drinfeld, Hitchin and Manin (ADHM) showed how to 

construct the most general instanton solution [2] — the well-known ADHM multi-instanton. 

In quantum field theory, instantons are important as configurations that dominate the 

path integral. They give rise to nonperturbative effects, which can in principle be calculated 

by performing a semiclassical expansion of the path integral. In his famous 1976 paper, 

't Hooft succeeded in performing such a calculation in SU{2) gauge theory with the BPST 

instanton as background [3]. Due to various technical diflficulties, subsequent calculations 

of instanton effects in Yang-Mills theory have mostly been restricted to the one-instanton 

level. 

In this chapter, we present a review of instantons in Yang-Mills theory. This review is 

divided into two parts. In Section 2.2 we discuss classical properties of instanton solutions 

in pure Yang-Mills theory. We show that, as a consequence of the nontrivial topology of 
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the gauge group, the space of finite action field configurations can be naturally divided into 

sectors labelled by a single integer index k. A distinct instanton solution is associated with 

each of these sectors. In Subsection 2.2.2, we proceed to derive the self-dual Yang-Mills 

equation, which serves as the defining equation for instantons in pure Yang-Mills theory. 

Finally, in Subsection 2.2.3, we present the explicit one-instanton solution in pure SU{2) 

Yang-Mills theory derived by Belavin, Polyakov, Schwartz and Tyupkin. We discuss the 

main features of this solution and describe its SU{N) generahzation. 

In Sections 2.3 and 2.4, we consider the calculation of nonperturbative eflFects in gauge 

theory due to instantons. In the first of these sections we describe the basic approach. Es­

sentially, this consists of performing a semiclassical expansion of the path integral about the 

instanton solution, which represents a saddle-point in configuration space. We shall see that 

an important subtlety arises in connection with the 'zero-modes' associated with a generic 

instanton solution. (These can be understood as directions in configuration space in which 

the action is invariant.) The subsequent section is designed to illustrate the semiclassical 

instanton method in the specific context of Yang-Mills theorj'. Our aim is to prime the 

reader for the instanton calculations performed in Chapters 4 and 6. We first outline the 

one-instanton calculation of the vacuum-to-vacuum amplitude in pure SU{N) Yang-Mills 

theory. For this purpose we draw extensively on the seminal results obtained by 't Hooft 

3] and generalized by Bernard [4]. We then discuss the effect of fermions on the instanton 

calculation. Finally, we consider applying the instanton method to a Yang-Mills model with 

a Higgs sector. We show that the presence of a nonzero Higgs expectation value spoils 

the instanton solutions but that instanton effects can nonetheless be calculated using an 

approach formalized by Affleck [5 . 

Throughout this chapter we work in Euclidean space, using the conventions given in 

Appendix A. 
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2.2 Classical Properties 

In this section, we examine classical properties of instanton solutions in pure Yang-Mills 

theory. We first show that, as finite action configurations, instanton solutions are labelled 

by a single integer k. We present the simple formula for calculating this integer, which is 

proved in Appendix B. Using the requirement that instantons locally minimize the action, 

we then derive a first-order differential equation satisfied by instanton solutions. This is the 

self-dual Yang-Mills equation. Finally, in Subsection 2.2.3, we present the BPST instanton 

solution. We discuss its salient features and show how it can be used to construct the general 

one-instanton solution in pure SU(N) Yang-Mills theory. 

Throughout this section we make use of the reviews [6, 7 . 

2.2.1 The Topological Charge 

The Euclidean action of pure Yang-Adills theory is given by 

S=IJ d'xTv{F,,F,,). (2.1) 

A necessary condition for this action to be finite is 

lim F^, = 0. (2.2) 
\x\^oo 

A necessary and sufficient condition for the field strength to vanish at large distances is 

lim .4^ = -Ud^U-\, (2.3) 
kl->oo g 

where U{x) is an element of the gauge group, G. At first glance i t appears that, for the 

action to be finite, the gauge field must approach pure gauge (a gauge transformation 

of the Afj_ = 0 vacuum) at large distances. However, this is not generally true because the 

matrix U{x) cannot necessarily be identified with a standard gauge transformation matrix. 

We now elaborate on this crucial point. 

A standard gauge transformation is described by a group matrix, say V{x), which rep­

resents a continuous mapping from Euclidean space, to the gauge group G. Such a 
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mapping is in fact continuously deformable to the trivial mapping, from to a single ele­
ment in G. To see this, let us select a point in space, XQ, at which V has the value VQ. We can 
consider a nested series of hyperspheres, centred at XQ, with infinitesimally increasing radii. 
Given V as & function of the angles (^i , <?!»2; ^ 3 ) on any of these hyperspheres, we can con­
tinuously deform V on the neighbouring hyperspheres into exactly the same (/12, ^ 3 ) . 
Hence, starting with the infinitesimal hypersphere at the point XQ, one can continuously 
deform V{x) into the single element Vo throughout 

In contrast, the matrix U represents a continuous mapping from the 3-sphere at infinity. 

S^, to the gauge group G, and generally can not be continuously deformed to the trivial 

mapping. The situation is more subtle, and it is convenient to first consider the specific 

case of gauge group SU{2). 

It is well-known that the group SU(2) is topologically equivalent to a 3-sphere. So for this 

gauge group, the matrix U in Eq. (2.3) gives a mapping from one 3-sphere to another. This 

kind of mapping is like the continuous mapping from the circle 5̂  to itself. In that situation 

it easy to see that the set of all continuous mappings can be divided into equivalence classes, 

such that: 

• the elements of each class can be continuously deformed into each other, and 

• each class can be labelled by an integer index, which gives the number of times that 

the circle is 'wound' onto itself. 

More formally, these equivalence classes form a homotopy group, Hi(5^) = Z. 

The set of contirmous mappings of to itself can be divided into eciuivalence classes in 

just the same way. The integer index associated with each equivalence class now represents 

the number of times the 3-sphere is 'wrapped' onto itself. We call this index the 'Pontryagin 

index' or the 'topological charge'. Only when the topological charge associated with U{x) 
is zero can it be continuously deformed into the trivial mapping. So only in this case can 

we identify the finite action gauge configuration in Eq. (2.3) as pure gauge. When the 

topological charge is nonzero, it distinguishes different sectors in the space of finite action 



CHAPTER 2. INSTANTONS IN YANG-MILLS THEORY 10 

configurations. Instanton solutions are configurations that minimize the action in each of 
these sectors. 

To complete the discussion, we must now consider the situation for a general gauge 
group G. The generalization is straightforward, thanks to a theorem due to Bott [8]. Bott's 
theorem states that if G is an arbitrary simple Lie group then any continuous mapping of 5^ 
into G can be continuously deformed into a mapping into an SU(2) subgroup of G. So we can 
always divide the space of finite action configurations into sectors, according to the number of 
times U{x) wraps the 3-sphere at infinity onto such an SU{2) subgroup. Instanton solutions 
are then configurations that minimize the action in each of these topological sectors. 

To round ofî  this subsection, we present the formula which gives the topological charge, 

/c e Z, of a finite action field configuration. This will be used in the derivation of the 

self-dual Yang-Mills equation presented in the next subsection. The formula reads 

2 /* 
k = - ^ I d'xTvlF^J,,] , (2.4) 

where the dual field strength is defined by 

F^u = ^ef^^pxFpx. (2-5) 

For the proof, we refer the reader to Appendix B. 

2.2.2 Self-Duality 

In this subsection we show that the field strength associated with instantons is self-dual. 
This property follows directly from the requirement that instantons locally minimize the 
action. The self-duality condition is a non-linear first-order diflferential equation. It can be 
taken as the defining equation for instantons in pure Yang-Mills theory. 

Let us first consider field configurations with positive definite topological charge k. The 

trick is to write the action (2.1) as follows: 

S = ^ f d'^xTv { f , . - F,J) ' ] + \ J d'x Tr (F, ,F , , ) . (2.6) 
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Using the expression for the topological charge (2.4), we can easily evaluate the second 
integral: 

d'xTv(F,jJ=^k. (2.7) STT 

2 J " V^'^'^-'^V ~g 
Since the first integral cannot be less than zero, this gives a lower bound on the action, 

5 > ^ k . (2.8) 
9 

The lower bound is attained, and the action is locally minimized, when 

F,. = F,^. (2.9) 

This is the self-duality condition, also known as the self-dual Yang-Mills equation, satisfied 

by /c-instantons of positive topological charge. 

If we consider configurations with negative k. and again write the action in the form (2.6), 
then we arrive at a negative lower bound on the action. This bound cannot be attained be­
cause the Euclidean Yang-Mills action cannot be less than zero. We conclude that there are 
no instantons of negative topological charge that satisfy the self-dual Yang-Mills equation. 
It is more useful, in the case of negative k configurations, to write the action as 

5 = i y d'xTv ( F ^ , + F^,y -^J d^xTv ( F ^ , F ^ , ) . (2.10) 

This gives a positive lower bound on the action, 

S>^-^i-k), (2.11) 
r 

which is attained when 
F,. = -F,,. (2.12) 

This is the anti-self-duality condition that defines instanton solutions in pure Yang-Mills 
theory with negative topological charge. Such solutions will be referred to as anti-instantons 
whenever we wish to distinguish them from instantons of positive topological charge. 

Note that solutions to Eqs. (2.9) and (2.12) automatically satisfy the Euler-Lagrange 

equation 
D,F^, = 0, (2.13) 



CHAPTER 2. INSTANTONS IN YANG-MILLS THEORY 12 

by virtue of the Bianchi identity 
D^F^, = 0. (2.14) 

However, the converse is not true, i.e. solutions to the Euler-Lagrange equation are not 
necessarily solutions to (2.9) or (2.12). Whereas the Euler-Lagrange equation is a second 
order differential equation, the self-dual Yang-Mills equation is a first order equation. 

In the next subsection we consider the simplest nontrivial solution to the self-dual Yang-

Mills equation. 

2.2.3 The One-Instanton Solution 

In 1975, Belavin, Polyakov, Schwartz and Tyupkin derived an explicit instanton solution of 
topological charge unity for the case of gauge group SU{2) [1]. Their solution (henceforth 
referred to as the BPST instanton) takes the form 

g [x - Xo) + 2 

where u G SU{2) and the tensor r]'^^^ is defined in Appendix A. We list below the main 

features of the BPST instanton solution: 

1. The solution contains a total of eight free parameters: four space-time coordinates 
XQ, representing the centre of the instanton, one dilatation parameter p, representing 
the size of the instanton, and three parameters implicit in the matrix u, representing 
the SU{2) iso-orientation of the instanton. These parameters are known as 'collec­
tive coordinates'. They are associated with the classical global symmetries of pure 
SU{2) Yang-Mills theory that are broken by the instanton solution. Specifically, these 
symmetries comprise space-time translations, scale transformations and global gauge 
transformations. 

2. The self-dual Yang-Mills equation is clearly invariant under local gauge transforma­
tions. The expression (2.15) therefore represents the BPST instanton in a specific local 
gauge. It is conventional to call this 'regular gauge'. We discuss below an alternative 
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gauge for the BPST instanton, which proves to be more convenient for semiclassical 
calculations. 

3. The field strength of the BPST instanton reads 

F,. = ^ ^ - ^ ^ ^ y « - (2-.16) 
9 ((x - xo) '+ p2) 2 

This is manifestly self-dual, by virtue of the self-duality property of the tensor 77^^ (see 

Appendix A). 

4. At large distances, the BPST instanton has the asymptotic form (2.3), with 

[ / ( x ) = « t ^ . (2.17) 
x 

This matrix gives a one-to-one mapping from the 3-sphere at infinity to the gauge 

group SU{2). So the topological charge of the BPST instanton is manifestly equal to 

unity. 

5. The BPST instanton is the most general SU{2) one-instanton solution. It was shown 
in [9] that the most general /c-instanton solution in pure SU{2) Yang-Mills theory 
contains 8k free parameters. This is intuitive, since one expects that within the k-
instanton moduli space there is a region corresponding to k well-separated BPST 
instantons, each containing eight free parameters. 

6. An anti-instanton solution, with topological charge - 1 , is easily obtained from the 

BPST instanton by replacing •q'^^ with the anti-self-dual tensor 77^ ,̂. 

7. The BPST solution takes the form of a 'lump' localized in time as well as space. It is 
this fact that originally inspired't Hooft to invent the term 'instanton'.^ 

The BPST instanton can be used to construct the general one-instanton solution in pure 

SU{N) Yang-Mills theory. The first step is to write 

A - ( ^^'^'^ ' ] (2.18) 

Hn this thesis we shall use the term more generically, to refer to any set of classical configurations that 
locally minimizes the Euclidean action and provides a suitable background for semiclassical calculations. 
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where .4^^^^ is the BPST instanton (2.15). This is clearly a solution to the SU{N) self-dual 
Yang-Mills equation, of topological charge unity, but it is not the most general solution. In 
pure SU(N) Yang-Mills theory the general A;-instanton solution contains 4A'"A; free param­
eters [10].̂  What we are missing is the set of collective coordinates associated with global 
gauge transformations that rotate the embedded BPST instanton into SU{N) group space. 
An arbitrary global gauge transformation acts on the solution (2.18) as follows: 

/ A BPST n \ / A BPST (-1 \ 

( "O o ) - * " ' ( "O o ) " - a^SU(N). (2.19) 

It can be seen that there are two independent subgroups of SU{N) that do not effect 

rotations of the embedded BPST instanton: 

1. A f / ( l ) subgroup. 

Q = diag (e^^ e'', e'̂ ^ /̂̂ -̂̂ )̂  ^-2re/(N-2)^ ^ ^-2^o/(N-2)^^ 0<e<27^. (2.20) 

2. An SU{N - 2) subgroup. 

0 = ^ 2 x 2 0 \ n'eSU{N-2). (2.21) 

We conclude that the embedded BPST instanton is properly rotated into group space by 

elements of the coset SU{N)/TN, where 

Tj^ = SU{N - 2) X U{1) (2.22) 

is the 'stability group' of the instanton. Since this coset is (2A^ - 5)-dimensional and the 
embedded BPST instanton contains 5 free parameters (ignoring the SU{2) iso-orientation 
matrix which is absorbed into the SU{N)/TM orientation matrix) it follows that 

^ r ' ^ 0 \ ^ ^ ^ SU{N) 

is the most general SU{N) one-instanton configuration. 

2ln [10], the number of collective coordinates of the fc-instanton is quoted as ANk -N- + \ for k > N/2 
and 4k'^ + 1 for fc < N/2. However, these formulae exclude the collective coordinates associated with global 
gauge rotations of the fc-instanton configuration. Our counting includes these collective coordinates. 
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In our discussion of the BPST instanton, it was pointed out that the solution (2.15) is 
unique only up to local gauge transformations. In semiclassical calculations of instanton con­
tributions to gauge invariant physical quantities, the choice of local gauge for the background 
instanton configuration does not matter; the final answer must clearly be independent of 
this choice. However, as we shall see in Section 2.4, in practice it is convenient to work 
with a specific instanton gauge known as 'singular gauge'. To obtain the BPST instanton 
in singular gauge, we perform a gauge transformation of the regular gauge solution (2.15), 

Ap^VA.V^ + -Vd,V\ (2.24) 

using the singular transformation matrix 

V U) = u^^^^-^^u. (2.25) 
\X — XQ 

The result is 

g {X-XQ) {X~XQ) + 2 

Note that the gauge transformation (2.25) is strictly only valid if we exclude the point 
x = XQ from E'^. The topological charge of the singular gauge instanton is concentrated on 
the infinitesimal 3-sphere surrounding this point, rather than on the 3-sphere at infinity. 

2.3 The Semiclassical Instanton Method 

In this section we outline the procedure for calculating nonperturbative effects in quantum 
field theory due to instantons. The method basically consists of semiclassically expanding 
the path integral about the classical instanton configuration, which represents a saddle-
point of the action in configuration space. In the one-loop approximation, to which we 
restrict ourselves throughout this thesis, we only retain terms in the Taylor expanded action 
that are quadratic in the field fluctuations. The integration over the field fluctuations 
is therefore Gaussian, and easily accomplished. However, we shall see that in a generic 
instanton background, this integration (naively) leads to an ill-defined answer, due to the 
presence of so-called 'zero-modes'. We shall see how this difficulty is resolved by making 
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a change of integration variables, from the parameters associated with field fluctuations in 
the direction of the zero-modes to the collective coordinates in the instanton solution. 

We shall illustrate the semiclassical instanton method in the context of a general field 
theoretic model which involves a single real scalar field (f). We shall derive a general expres­
sion for an instanton contribution to the partition function Z, which is given by 

Z = N y"[#]e-^[*] (2.27) 

in the path integral formalism. Here S[(p] is the Euclidean action of the model and Â  is an 
infinite normalization factor. An instanton solution cf)^^ is a classical field configuration that 
locally minimizes the action. Hence it must satisfy the Euler-Lagrange equation 

i =0 . (2.28) 

To perform a semiclassical expansion of the path integral (2.27), we write 

0 = ^'=i-f<^q", (2.29) 

and Taylor expand the action about the instanton background: 

S[cj)] = S [cf)''] + d''xcl)'^"{x)M{x)r"ix) + 0((</>< "̂)'), (2.30) 

where 
(2.31) M = —-

Note that there is no term linear in the quantum field fluctuation (/)̂ " because 4>'^^ satisfies 
the Euler-Lagrange equation (2.28). In what follows, we neglect the C9(((/)̂ ")̂ ) terms in 
the expanded action (2.30). This represents a one-loop approximation. As stated above, 
throughout this thesis we restrict ourselves to one-loop semiclassical instanton calculations. 

The operator M generally possesses a complete, orthogonal set of orthogonal eigenfunc-

tions {(/){}, with corresponding eigenvalues {cj}. It is convenient to adopt the as a basis 

for the quantum field fluctuations, 

<̂<i" = 5]c,</),. (2.32) 
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The quadratic term in the expanded action (2.30) then becomes 

i I d'xcf>^^ix)M{x)cP^^{x) = ^5]c2||</.,||2£,. (2.33) 

In the semiclassical approach, we can define the functional integral measure to be 

[# ] = r r M l (2.34) 
v27r 

where 
11̂  l|2 = I d'xUx)-Ux). (2.35) 

After substituting Eqs. (2.30), (2.33) and (2.34) into the path integral (2.27), and per­
forming the Gaussian integrations over the Q , we obtain the following simple expression for 
the instanton contribution to the partition function: 

^(1) ^ iVe-^[^"](detM)'^, (2.36) 

where 
detM = JJq . (2.37) 

i 

Unfortunately, this expression is too simple; we have not considered the possibility that 
some of the e, are vanishing. If this is the case then Eq. (2.36) is formally ill-defined. 

In a generic instanton background, the small-fluctuations operator M does indeed pos­
sess zero-eigenvalues. These are directly related to the classical symmetries broken by the 
instanton solution. Let us suppose that the instanton solution breaks m classical sym­
metry generators and thus is parameterized by m collective coordinates, i = I,... .m. 
Then it represents a family of classical field configurations which map out an m-dimensional 
region of configuration space throughout which the action is constant. In this region there 
are necessarily m independent directions in which the action is invariant. These directions 
are precisely the zero-eigenfunctions or 'zero-modes' of the operator M? 

There is a standard procedure for dealing with zero-modes, known as the collective 

coordinate method [11]. Let us identify the zero-modes of the operator M with the first 

^Typically, the zero-modes are just given by the m tangent vectors dcff^jd-yi. However, this is not the 
case in a gauge theory, because the zero-modes are constrained by a gauge-fixing condition. 
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m eigenfunctions (pi, i = 1,... ,m. It is clear that the quadratic term in the action (2.33) 
has no dependence on the corresponding parameters Ci, i = l , . . . , m . Consequently, the 
integration over these parameters is divergent. The collective coordinate method consists of 
changing the integration variables from the m parameters Ci to the m collective coordinates 
of the instanton solution, 7,;. In this way one avoids a divergent integration. 

An efficient way to make the change of variables from the Cj to the collective coordinates 

is to insert the following factor of unity into the path integral: 

1 = / d^id^2 •••d^m (det A) \{ 5[[^ - </.,)], (2.38) 

where 

/\,,= {^^.,<P^+0{^-<j>^'). (2.39) 

We have used the following definition of the inner product of two functions: 

{f,g) = I d'xf{x)-g{x). (2.40) 

In the one-loop approximation, the 0{(t)-(t)"^) terms in Eq. (2.39) can be neglected. We now 
obtain, after expanding as per Eq. (2.32) and integrating out the parameters Cj, i > m, 
associated with the nonzero modes, the following expression for the instanton contribution 
to the partition function: 

17̂ 7̂  n^c, (detA) TTilM5(c,||</>,||2) (det'M)-^e-^[^^'), (2.41) 
\ t i J \ t i J \^=l v^2^ / 

where 
det'M = Yl (2.42) 

i>m 
(The prime on the determinant indicates that the zero eigenvalues are excluded.) The 6-

functions in Eq. (2.41) saturate the integrations over the Q , z = 1, . . . ,m. After integrating 

out these parameters we obtain 

= / d7id72 •••djm (det A) f n 4 = - ^ ) (det'M)-^e-^l^^'l. (2.43) 
J \t=i V 27r (Pi J 
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This is our desired general expression for the instanton contribution to the partition func­
tion (2.27). To normalize the contribution, we should divide by the one-loop perturbative 
expression for the partition function. This amounts to setting 

N(det'M)-^ ^ ( ( 2 . 4 4 ) 
ydetMO J 

in Eq. (2.43), where M° is the operator M evaluated in the background = 0. 

In the above analysis, we have taken the field ^ to be a real scalar. However, it is 
easy to see how the final expression is modified for other kinds of fields. For instance, 
if (/) were a complex scalar then the determinant factor in appearing in Eq, (2.43) would 
become (det 'M) '^ On the other hand, if we were dealing with a fermion field then we 
would get a factor (det'M)"*"^. In the case of fermion zero-modes, the collective coordinates 
are Grassmann parameters. We discuss the effects of fermion zero-modes on semiclassical 
computations in Yang-Mills theory in Section 2.4.2. 

Our analysis has also focussed on a specific field theoretic object, namely the partition 
function. For a generic Green's function, the (one-loop) semiclassical instanton method 
yields a formula similar to (2.43), with the field insertions in the path integral saturated by 
the classical instanton background. 

Finally, we note that in a generic renormalizable quantum field theory there will be 
one-loop ultra-violet divergences associated with the determinant factor in Eq. (2.43); the 
operator M has infinitely many large eigenvalues. The renormalization procedure must be 
applied to the instanton calculation just as it is applied in perturbation theory. In the 
following section, we shall use the example of a one-instanton calculation in pure SU{N) 
Yang-Mills theory to demonstrate how the renormalization procedure can be implemented 
in an instanton calculation. 

2.4 One-instanton Effects in Yang-Mills Theory 

The purpose of this section is to illustrate the main features of the semiclassical instanton 
method as applied to Yang-Mills theory. To this end, we shall consider the calculation of 
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one-instanton effects in particular SU(N) Yang-Mills models. 

To begin with, in Subsection 2.4.1, we focus on pure SU{N) Yang-Mills theory. Following 
't Hooft [3] and Bernard [4], we describe, in some detail, the derivation of the one-instanton 
contribution to the vacuum-to-vacuum amplitude in this theory. This will serve to illustrate 
a number of general features of instanton calculations in gauge theory. We shall see that 
there is a natural and convenient gauge for the quantum field fiuctuations, which leads to a 
considerable simplification in the calculation of the small-fluctuations determinants [3]. We 
shall also see that the ultra-violet divergence of these determinants can be regularized using 
the Pauli-Villars method, and that, in the final answer, the regularization mass appears with 
exactly the right power to renormalize the instanton factor exp{~8'iT^/g^), in accordance with 
the one-loop perturbative /?-function [3 . 

In Subsection 2.4.2, we discuss the effect of fermion fields on the semiclassical analysis. 
We consider an SU(2) gauge theory that includes a single Dirac fermion. We see that, in 
the background of the BPST instanton, the Dirac operator possesses zero-modes. In the 
massless theory, these fermion zero-modes imply a vanishing result unless the path inte­
gral contains field insertions that saturate the integrations over the associated Grassmann 
collective coordinates. 

Finally, in Subsection 2.4.3, we consider an SU{2) Yang-Mills model that includes a 
Higgs field. We show that the presence of a non-vanishing Higgs expectation value spoils 
the classical scale invariance of the theory. Consequently, instanton solutions do not formally 
exist. One can nonetheless perform an instanton calculation, using a 'constrained' instanton 
background [5]. In this model, the integration over the instanton size is cut off by the 
(inverse) Higgs expectation value, so that the infra-red problem is avoided. 

2.4.1 Pure SU{N) Yang-Mills Theory 

In this subsection we outline the derivation of the one-instanton contribution to the vacuum-
to-vacuum amplitude'' in pure SU{N) Yang-Mills theory, following the analysis of ' t Hooft [3 

' ' In physical terms, instanton contributions to the vacuum-to-vacuum ampHtude represent tunnelling 
effects between topologically nontrivial vacua of the theory [12] (see also [13]). This was the original 
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and Bernard [4 . 

In the path integral formalism, the vacuum-to-vacuum amplitude in pure SU{N) gauge 

theory has the following form: 

W = N J [dAf,] [dfi] [dr]] e-̂ f̂ -̂*''''! (2.45) 

where 

S[A„n,v} = I d'x |^Tr(F,,.F^.) + ^C(A, )2 + £gh(^,?/)}. (2-46) 

The terms C{Ap,) and Cghiv^v) the usual terms associated with the Faddeev-Popov 

gauge-fixing procedure; C(A,,) is the gauge-fixing term and Cgh{fi,r]) is the corresponding 

ghost term [ f j and r] are the ghost fields). 

To perform a semiclassical expansion of the path integral, we write 

A,^A^ + A^, (2.47) 

where A^' is the SU{N) one-instanton configuration given by Eq. (2.23). Ultimately, it does 

not matter whether we take the embedded BPST instanton to be in regular gauge (2.15) 

or in singular gauge (2.26); as stated earlier this choice cannot affect the final, gauge-

invariant result. However, as we see below, in singular gauge the instanton zero-modes die 

off sufficiently fast at large distances to make the calculation of the collective coordinate 

measure much easier [4]. Substituting (2.47) into the pure Yang-Mills action (2.1), one 

obtains 

11 d^x Tr { F M = f + l j d ' - Tr (2 ( D ^ A ^ ) ^ - 2 (D^^4-)^ 

-iigF^l [Al\, A^] + O ( (A^") ' ) ) , (2.48) 

where is the covariant derivative evaluated in the one-instanton background. 

It was found by 't Hooft that the problem of evaluating the small-fluctuations deter­

minants in the instanton background was simplified in the particular gauge (for the field 

fluctuations) deflned by 
D':!AT = 0. (2.49) 

motivatation for the introduction of the well-known 6'-term to the Lagrangian of Yang-Mills theory; the 
61-parameter labels the infinite set of vacua induced by instanton tunneling effects [12]. 
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This gauge is known as (covariant) background gauge. The effect of background gauge 
is to restrict the quantum fluctuations A^ to directions in configuration space that are 
orthogonal to the directions associated with infinitesimal gauge transformations of .4 '̂. To 
see this, first observe that an infinitesimal gauge transformation of A^^ is given by 

A '̂ ^ + D'^^A. (2.50) 

The orthogonality property is then 

j d'xTi{A'i;'D''^A)=Q. (2.51) 

By integrating by parts, and using the fact that A is arbitrary, it is easy to see that the 

covariant background gauge condition (2.49), is equivalent to this orthogonality condition. 

To implement the background gauge condition (2.49), the gauge-fixing and ghost terms 

in the action (2.46) take the following form: 

j d \ \ c { A , f = j d'xTx[{DtAff), (2.52) 

j d'xC,^{%,il) = -2 j d'xTx(r){D'^')\). (2.53) 

Note that the gauge-fixing term (2.52) cancels one of the terms in the expansion (2.48). To 

quadratic order in A^, the expanded action now takes the form 

5[A„77,r7] = ^ + ^ |dSA^"<^(A^4)^\4^"^ + j d ' x f j ' ' { M , , y \ ' , (2.54) 

where 

M^A^"" = -(D=')'A^"'^-2pA6cF;|. ' 'Ar^ (2.55) 

M,^t = - { D ^ f t - (2.56) 

The operator M a possesses a total of 4 ^ zero-modes A|t*\ i = 1 , . . . , 4N, corresponding 

to the collective coordinates of the SU{N) one-instanton solution (2.23). (In contrast, the 

operator Mgh does not possess any zero-modes.) To deal with these zero-modes, one applies 

the collective coordinate method, as outlined in the previous section. This gives the following 

expression for the collective coordinate measure: 
4N 

/ < ' " T ( d e t A ) n p L ^ - I = , (2.57) 
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where 

= E f ^ ' I = E (4 '̂4 '̂̂ • (2-58) 

Here we have designated the collective coordinates XQ, p and those implicit in Q, by the set 
{ji}- Now in background gauge, the zero-modes of A^l^ take the following form: 

A« = - i ^ + D^'A«. (2.59) 

Here Â *̂  is an infinitesimal generator of a gauge transformation, determined by the back­

ground gauge requirement 

;̂x4̂  = 0. (2.60) 

It was shown by Bernard that the calculation of the Jacobian factors in (2.57) is simplified 

if one works with the singular gauge instanton background. In this case, direct calculation 

shows that, at large distances, 

A« ^4|f) ̂  <0 ^ , (2.61) 
V|a;| / 

for all the zero-modes [4]. (Only the five zero-modes associated with translations and scale 

transformations have this long-distance behaviour in regular gauge.) It follows that, upon 

integrating by parts, we have 

A« ^ Aj/'^") = - E ( ^ ^ ' ^ • ^2.62) 

The right-hand side of this equation vanishes by virtue of the background gauge condi­

tion Eq. (2.60). Hence Aij — 6ij A '̂̂  and the expression for the collective coordinate 

measure (2.57) simplifies to 

.=1 ^2vr 
With some straightforward algebra, and a somewhat careful treatment of the integration 

over group space collective coordinates, one now obtains the following final expression for 

the (bosonic) one-instanton measure in SU{N) Yang-Mills theory [3, 4]: 

{N-l)l{N-2y. 
[dn fd^x^dpU'-^) . (2.64) 

J J \ 9 J 
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Here the integration over the group space orientation of the instanton is normalized so that 

dn = 1. (2.65) 

The 't Hooft-Bernard collective coordinate measiu'e (2.64) (and its supersymmetric multi-

instanton generalization) is an essential requirement for the instanton calculations performed 

in Chapters 4 and 6. 

Let us now consider the determinant factors obtained by integrating out the quantum 

field fluctuations A^" and ?/. When combined with the prefactor A'' that normalizes the path 

integral, the net result is a factor 

det' MA \ ' det Mgh 
det MO ) det M°h 

(2.66) 

Formally, this expression is ill-defined because the determinants contain one-loop diver­
gences. These divergences must be controlled by regularizing the theory in some way. 
Dimensional regularization is not applicable because the instanton calculation is explic­
itly performed in four dimensions. Instead, one can introduce Pauli-Villars fields into 
the Lagrangian, whose large mass, / i , acts as a regularization parameter. To subtract 
the ultra-violet divergences, the Pauli-Villars fields have opposite statistics to the physi­
cal fields. Their effect is to divide each determinant in (2.66) by a regulator determinant. 
det(M -I- p?) [3]. In particular, the primed determinant det'M4 becomes 

det 'M. ^ _ J ^ t ^ = s . ^ i ^ ^ ^ M ^ (2.67) 
det{MA + p^) det'(MA + p^) 

We have extracted the 4N lowest eigenvalues from the regulator determinant, to leave a 

dimensionless ratio of (primed) determinants. 

In his investigation of a generic SU{2) Yang-Mills model, 't Hooft discovered that, in the 

covariant background gauge, all of the normalized, regulated (and where necessary, primed) 

small-fluctuations determinants are essentially given by a single formula. For the case of a 

massless scalar field of isospin-t, the formula reads [3 

T T T T ' = exp : ~jr^ \nipp) + a t 2.68 
det(M + ^ 2 det MO V 6 / 
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(The functions C{t) and a{t) are given in Appendix A). The SU{2) gauge boson has 
isospin-1 and four Lorentz components. As a consequence, its small-fluctuations determinant 
is given by the right-hand side of Eq. (2.68), with t = 1, taken to the power four. The 
operator associated with the Faddeev-Popov ghosts is identical to the operator associated 
with the massless scalars, namely (D"^^)^, so its determinant is given exactly by the right-
hand side of Eq. (2.68), with t = 1. As for fermion fields, it turns out that the determinant 
associated with a massless two-component Weyl fermion is also given by precisely the right-
hand side of Eq. (2.68). Dirac fermions are comprised of two Weyl fermions, so the associated 
determinant is just the square of this. 

Because of the way the SU(N) one-instanton solution is constructed by a simple embed­

ding of the BPST instanton, it is straightforward to apply't Hooft's SU{2) results to the 

model at hand. The determinants of the operators MA and Mgh are invariant under global 

gauge rotations of the embedded BPST instanton, effected by the matrix Q in Eq. (2.2.3). 

So without losing anything, we can take Af^ in the definitions of M4 and Mgj, to be the 

unrotated upper-left embedded BPST instanton (2.18). We now have to consider how the 

A^̂  - 1 colour components of the fields A'^" and r/ transform under the action of the SU(2) 

embedding subgroup. The (N - 2)^ colour components associated with the generators of 

the instanton stability group evidently transform as isospin singlets. The three components 

associated with the generators of the SU{2) subgroup itself form an isospin triplet, and the 

remaining 4(A'̂  - 2) components form isospin doublets. Using this information, together 

with 't Hooft's determinant formula (2.68), we deduce that the determinant factors (2.66) 

yield 
N \ 

_ in(^p) - a{l) - 2{N - 2)a(i) . (2.69) 

From the expression for the collective coordinate measure (2.64) and from the above 

expression for the regularized, normalized small-fluctuations determinant factors, we ob­

tain the following expression for the one-instanton contribution to the vacuum-to-vacuum 

amplitude: 

(We have performed the trivial integration over group space.) With regard to this final 
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expression we make two important comments: 

1. The Pauli-Villars regulator mass fx appears with exactly the right power to renormal-

ize the bare coupling in the instanton factor exp(—87r^/(/^). This follows from the 

perturbative relation 

- ^ = - 7 - ^ l n ( M ) = (2.71) 

obtained by integrating the one-loop perturbative /^-function. (Here g and gpv are the 

bare coupling and the Pauli-Villars renormalized coupling, respectively.) The factor 

of g'"^^ appearing in (2.70) is expected to be renormalized by higher loop effects. 

2. The integration over the instanton size p is divergent. This is the well-known infra­

red problem associated with instanton effects in classically scale invariant Yang-Mills 

models. Strong-coupling effects presumably serve to cut off the integration over p at 

the characteristic length scale of the theory, A~^, but this cannot be seen directly in 

the semiclassical approach. In Subsection 2.4.3, we shall see that in a theory with a 

symmetry-breaking Higgs sector, the scale provided by the Higgs expectation value 

serves to cut off the p integration, so that the infra-red problem is avoided. 

2.4.2 Inclusion of Fermions 

In this subsection, we examine the effect of fermion fields on instanton calculations in Yang-

Mills theory. As a specific example, we consider the model whose (Euclideanized) action 

is 

5 = ^ y (i^xTr(F^,F^,) + j d'x m,D,<^ + m^^). (2.72) 

Here \ I ' is a Dirac spinor of mass m and the 7-matrices are defined in Appendix A. We take 

the gauge group to be SU{2) and to transform in the fundamental representation. 

According to the approach o f ' t Hooft, the one-instanton background consists of the 

BPST instanton and the trivial fermion field configuration * = ^ = 0. The operator 

associated with fermion field fluctuations is then given by 

M^ = %Dl! + m. (2.73) 
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We first consider the situation for massless fermions. (The mass will later be introduced as 
a small perturbation.) 

When m — 0, the operator (2.73) possesses zero-modes. In fact, in the background of 

the BPST instanton there are precisely two zero-modes, one for each Weyl component of 

the Dirac spinor. Let us write 

* = f ^ Y ' l ' = ( ^ A ) . (2.74) 

In terms of the Weyl components, the zero-modes are the solutions to 

e.DfX = 0, (2.75) 

e.DfX = 0, (2.76) 

and similarly for ip and ip. It is important to note that Eqs. (2.75) and (2.76) are not 

simply Hermitian conjugates of each other. (This refiects the fact that in Euclidean space, 

a spinor and its conjugate are treated as independent field variables.) The Atiyah-Singer 

index theorem predicts that in a Ai-instanton background, the number of solutions to (2.75) 

minus the number of solutions to (2.76) equals k [14]. Moreover, it is not difficult to show 

that in a self-dual background there are no solutions to the equation for A . The trick is to 

act on Eq. (2.76) with the operator e^Dl\ Using Eq. (A.28) and the property fj^^F^iu = 0 

for a self-dual field strength, we obtain 

( D ' ^ ' ) ' A = 0. (2.77) 

The operator (Z)* '̂)̂  is positive definite and therefore cannot have a zero eigenvalue. 

In the background of a singular gauge BPST instanton, the unique solution to Eq. (2.75) 

is [3] 

where = {X — XQ)^ and i is the isospin index. The parameter ^ is the Grassmann collective 

coordinate associated with the fermion zero-mode. We shall use the symbol C to represent 

the collective coordinate associated with the same zero-mode solution for the other Weyl 

spinor, ip. 
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In a semiclassical instanton calculation, the fermionic zero-modes can be dealt with 
using the collective coordinate method, just as for bosonic zero-modes. Note that the 
solution (2.78) satisfies (after stripping away ^) 

E / d ' x K % = ^^ (2.79) 
a,i 

Hence it is normalized, so that the collective coordinate measure associated with the fermion 

zero-modes is simply f d^dQ. 

For the one-instanton contribution to a generic Green's function in the massless theory 

to be non-vanishing, the path integral must contain field insertions that saturate the integra­

tion over ^ and C- The instanton calculations of Chapters 4 and 6 will explicitly demonstrate 

this principle. Since the functional integral expression for the vacuum-to-vacuum amplitude 

contains no field insertions, the one-instanton contribution to this amplitude vanishes. More 

generally, one can argue that all topologically nontrivial instanton sectors give vanishing con­

tributions to the vacuum-to-vacuum amplitude. Physically, the effect of massless fermions 

is to suppress the vacuum tunnelling associated with instantons. 

Along with the collective coordinate measure associated with the zero-modes comes 

the t ' Hooft determinant factor associated with the nonzero modes. From the master for­

mula (2.68) we deduce that this determinant factor is 

de t 'M^ det(MS + M) i ^ , , x ^ / „„x 
, \ ,!>o = exp ( I In(Mp) + 2« ( i ) ) . (2.80 

det(Mvi> + ij) det Af ° 

The factors of the Pauli-Villars mass / i appearing here combine with the factors arising from 

the bosonic't Hooft determinants (see Eq. (2.69)) in exactly the right way to renormalize 

the instanton factor exp(—STT^/^-^). 

Let us now consider the eflFect of turning on the fermion mass m. When the mass is 

small compared to the inverse size of the instanton^, m <C , it is small compared to the 

nonzero eigenvalues of the massless operator Mi^i. If we regard the mass term as perturbing 

^Since p is an integration variable, we can really only take the mass to be small up to some critical 
(inverse) value of this parameter. In the next subsection we discuss a scenario in which the /^-integration 
has a manifest cut-off. In this situation the mass is amenable to a perturbative treatment throughout the 
whole integration over p. 
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the eigenvalues of the massless operator then, in the lowest order approximation, only the 
zero-modes are affected. Their perturbed eigenvalue takes the value m. To account for this 
perturbation, we may write 

m ( d^x^^ ^miC (2.81) 

in the action (2.72), and continue to use the collective coordinate prescripton. In the 

calculation of the vacuum-to-vacuum amplitude, the mass term (2.81) then saturates the 

integration over the Grassmann collective coordinates ^ and C-

The replacement (2.81) is more obvious if we adopt the viewpoint that the zero-modes 

constitute part of the instanton background, rather than the trivial configuration ^' = = 0. 

The term m^C^ is then just part of the instanton action, obtained by evaluating the mass term 

at the zero-modes. This interpretation of the zero-modes is very natural in supersymmetric 

models, where the various fields comprising an instanton background form supersymmetry 

multiplets [15]. In the supersymmetric instanton calculus developed in Chapter 5 it is 

essential to regard fermion zero-modes in this way. 

2.4.3 Inclusion of a Higgs Field and the Constrained Instanton 

We now discuss the application of the semiclassical instanton method to models that possess 

a symmetry-breaking Higgs sector. For illustrative purposes we shall focus on one fairly 

simple example, which consists of pure SU{2) Yang-Mills theory coupled to a complex 

Higgs doublet. It has the Euclidean action 

S=^-j d'xTi {F,,F,,) + I d'x {p,^^D,ct> -t- A (|<^|' - I ((/.) . (2.82) 

The associated Euler-Lagrange equations are: 

D,F;, = ig<P^T^D,^ + c.c. (2.83) 

D^<P = 2m\'-\m')^ (2.84) 

If the Higgs vacuum expectation value (VEV), ((/>), is zero, then a suitable background 

for a semiclassical calculation is given by the BPST instanton solution and = 0. But 

when (0)^ > 0, there are no non-singular configurations that minimize the action. The 
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underlying reason is that the Higgs potential breaks the classical scale invariance of the 
pure Yang-Mills theory. This can be seen using Derrick's theorem [16]. We perform the 
following scale transformation of the fields: 

A , { X ) - ^ - A J ^ ) . , ^ ( X - ) ^ 0 ( - ) . (2.85) 

The effect on the action is 

S ^ \ j d'x Tr (F^.F^.) + j d'x (a" D ,,cj)^ D ̂ (^ + a'X (|<^|' - | (<?i) p)') . (2.86) 

If we choose a < 1, which amounts to shrinking the configurations, then the action is made 

smaller. Only in the singular limit, a —> 0, does the action reach a minimum. 

How then, can there be any hope of performing instanton calculations in theories such 

as these? An answer to this question was first intuited b y ' t Hooft [3] and later refined by 

Affleck [5]. According t o ' t Hooft, one should be able to work with approximate instanton 

configurations that do not strictly minimize the action, provided that they dominate the path 

integral; since the action decreases with configuration size, the appropriate configurations 

are small. More precisely, a suitable instanton background is provided by solutions to the 

Euler-Lagrange equations in the region of configuration space where the scale parameter p 

satisfies 
(2-87) 

where M is the mass scale set by the Higgs. 

In the model at hand, the Higgs mass is M = V\{4)). In the small-p region of configu­

ration space, the Euler-Lagrange equations (2.83) and (2.84) approximate to: 

D^F^, = 0, (2.88) 

D^(f) = 0; lim = ((/)). (2.89) 
\x\—^oo 

Solutions to these equations are provided by the BPST instanton on the one hand and 

(0) (2.90) 
a;2 

-I- p 

on the other [3 . 
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Let us now consider calculating the contribution of this approximate one-instanton so­
lution to some Green's function. Evaluating the action (2.82) in the instanton background, 
we find 

S = ~ + 27r'p'\{ct>)nO{Xp'\{ct>)\'). (2.91) 

The second term in this instanton action dominates the collective coordinate integration 

over the scale p. In effect, this term cuts off the p-integration, at 

Note that, since the semiclassical instanton analysis assumes g and A to be small parameters, 

this cut-off belongs to the small-p region specified by (2.87), so that the p-integration can 

safely be performed. The essential point is that, in contrast to the pure Yang-A'Iills case 

discussed in Subsection 2.4.1, the p-integration in this model is convergent, and the infra-red 

problem is avoided. 

In [5], it was shown that the approximate instanton background of 't Hooft can be 

motivated using a more rigorous approach. The idea is to impose a constraint on the Euler-

Lagrange equations so that they do permit exact solutions. (Formally, the constraint can be 

introduced into the path integral using a (5-functional insertion.) The resulting 'constrained 

instanton' configurations can be solved for perturbatively at both long and short distances. 

At leading order, the short-distance constrained instanton is identical t o ' t Hooft's approxi­

mate instanton configuration. The long-distance expansion is also constraint-independent at 

leading order and is important in the calculation of low-energy Green's functions; it provides 

the appropriate field insertions. We now examine this constrained instanton formalism. 

The Constrained Instanton Formalism 

According to Derrick's theorem, the reason that the action (2.82) cannot be minimized is 

that it always decreases with the scale parameter p. However, in each region of configuration 

space corresponding to a fixed value of p, the action may, and generally will, have a minimum. 

The basic idea of the constrained instanton approach of Affleck is that if the path integral 

is broken up into an infinity of sectors, labelled by p, then in each sector one can perform a 
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semiclassical expansion about a truly minimized action. The integration over p at the end 
of the calculation amounts to a summation of the contributions from all the sectors. 

To implement this idea formally, Affleck proposed that the configuration size should be 

fixed by a constraint of the form [5]: 

j d^xO = cp'-'^, (2.93) 

where O is some o?-dimensional local operator of the fields. The constant c can be chosen 

to take any convenient value. To impose the constaint in the path integral, one can insert 

a factor of unity, written as 

F= / d^xO-cp'-". (2.94) 

In the presence of the constraint (2.93), Affleck analysed the Euler-Lagrange equa­

tions (2.83) and (2.84) at long and short distances. Let us first consider the long-distance 

regime, defined by \x\ > p. Provided the operator O is chosen to vanish quickly enough, 

the long-distance constrained instanton satisfies the following, linearized Euler-Lagrange 

equations [5]: 

'-dH,, + d,A + ]:9^ {(t>)?5,}iA, = 0, (2.95) 

{-d^ + A\\{4>)f) 64> = 0. (2.96) 

These equations reflect the Higgs mechanism, which gives a mass to the gauge bosons and 

to the Higgs field fluctuations, (50 = ^ - ((/>). The solutions to (2.95) and (2.96) can be 

obtained perturbatively [5]: 

4>{x) = ( 0 ) + C , f - ^ - ^ - A | ( ( ^ ) p l n - A M ^ + . . . ) ( 0 ) . (2.98) 
V 2 a,- ̂  s/\\{(f))\ J 

Here CA, C*̂  and k are constants which are determined using a 'patching' condition described 

below. 
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In the short-distance regime, given by <C 1 / M , the constrained instanton configu­
rations are obtained by perturbing the Euler-Lagrange equations, (2.83) and (2.84) in the 
small parameter pM. One obtains the perturbative expansions [5 

A,{x) = A^;H^) + 4HX)X\{CI>)\'P' + ... (2.99) 

(Pix) = (l)^°^{x) + (t>^'^x)X\{(f>)\'p'ln(^y/X{(t>)\p^+... (2.100) 

As one would hope, A^^\x) and (p'^^^x) can be identified with the approximate instanton 

configurations o f ' t Hooft, given by the BPST instanton, Eq. (2.26), and the configura­

tion (2.90). The higher order terms depend on the choice of the operator O in the constraint 

equation (2.94). 

The analysis of the constrained instanton solution is not yet complete. One must deter­

mine the constants in the long-distance expansions (2.97) and (2.98) and one must also sup­

ply boundary conditions for the higher order terms in the short-distance expansions (2.99) 

and (2.100). The way that both these requirements are met is through a 'patching' con­

dition [5], which equates both expansions in the intermediate regime p < < 1/M. In 

particular, by comparing the leading order short-distance terms Af^{x) and (f)^°\x) with 

the leading order long-distance terms we find that = 2p^ and C^ = p^, independently of 

the specific choice of constraint. 

Let us now consider semiclassical calculations in the background of the constrained in­

stanton detailed above. In evaluating the instanton action, one finds that the short-distance 

'core' of the instanton dominates, and the result is just 't Hooft's expression (2.91). An 

important point is that, due to the cut-off (2.92), the O [Xp^ {(p^) terms in the instanton 

action (2.91) are effectively 0{X). In the one-loop approximation it is therefore legitimate 

to discard these terms. We can also discard 0{pM) corrections to small-fluctuations de­

terminants. This means we can directly apply the formula (2.68) derived b y ' t Hooft. We 

can also apply the ' t Hooft-Bernard collective coordinate measure (2.64), because at leading 

order in pM (or equivalently, in the coupling), the effect of the insertion (2.94), is just to 

introduce p as a collective coordinate in the standard way. 

I t may be that we wish to evaluate a low-energy Green's function of the theory. In 

this case, the right expressions to use as field insertions in the semiclassical instanton cal-
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culation are provided by the leading order long-distance 'tail ' of the constrained instanton 
configurations [5]. 

The above conclusions are of general validity. We apply the constrained instanton formal­

ism to perform instanton calculations in supersymmetric Yang-Mills theory in Chapters 4 

and 6. 



Chapter 3 

Supersymmetric Yang-Mills Theory 

3.1 Introduction 

In this chapter we review the supersymmetric Yang-Mills models that are the subject of 

our semiclassical instanton investigations. An elegant way to build supersymmetric models 

is provided by the superfield formalism. In Section 3.2 we present the M = 1 superfield 

formalism and use it to construct the Lagrangians of the Yang-Mills models of interest. The 

main focus of our investigations is the Af = 2 class of models for which exact results have 

been predicted. To set the scene for our instanton calculations, we review, in Section 3.3, the 

Seiberg-Witten analysis in Af = 2 supersymmetric pure SU{2) Yang-Mills theory [17, 18 . 

We also discuss the generalization of the Seiberg-Witten exact solutions to other M = 2 

supersymmetric SU{N) models [19, 20, 21, 22 . 

3.2 Supersymmetry 

In what follows we present the formalism used to describe supersymmetric Yang-Mills theory. 

To a large extent we follow the approach of Wess and Bagger [25]. (Our conventions are 

summarized in Appendix A.) For more details, we refer the reader to this and the other 

standard text [26 . 

To set up a supersymmetry algebra, one first defines the N supersymmetry generators 

35 
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QA a, A = 1,2,... ,J\f. The index a indicates that under the action of the Lorentz group, 
these generators transform like left-handed Weyl spinors (see Appendix A). One also defines 
J\f conjugate generators, QAK, ^ = 1,2, . . . ,A^ , that transform like right-handed Weyl 
spinors. Taking these generators together with the generator of space-time translations, 
Pm, one now defines the following Z2 graded algebra: 

{QAQ,QB p} = 2cr^Pm(^/lB; 

{QAO^QB 0} = 2\/2ea^Z4B, 

{QAa..QB0} = 2x/2e,^Z*3, 

Pm; QA a. = 0, 

'Pm,QAa] = 0, 

[Pn,Pn] = 0, (3.1) 

where ZAB and Z^B are antisymmetric in A and B; they are the central charge matrices of 

the algebra.^ 

To construct a supersymmetric field theory, one must find multiplets of fields that form 

representations of the above supersymmetry algebra. An elegant way to do this is provided 

by the superfield formalism. We restrict our attention to the J\f = 1 formalism. 

3.2.1 = 1 Superspace and Superfields 

Each point injV=l superspace is labelled by eight coordinates. Four of these are the usual 

Minkowski space coordinates, Xm- The other four are given by Grassmann parameters, 9a 

and their conjugates, Oa- These objects transform like Weyl spinors, as their index structure 

suggests. In superspace, the generators of the supersymmetry algebra can be represented 

as linear differential operators, 

P,n = idm, (3.2) 

= ^ - ^ J ' d ^ n , (3.3) 

^ The supersymmetric models with which we are concerned realize the non-centrally extended supersym­
metry algebra, so we set Z = Z* = 0 henceforth. 
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0 . = (3.4) 

I t is useful to define 

Da = ^ + ̂ <J''dn,, (3.5) 

Da = - ^ - - ^ ' ^ X d ^ m . (3.6) 

The D operators satisfy the supersymmetry algebra (3.1), but with the sign of reversed. 

They anticommute with the Q's: 

{Da, Qp} = {Da, Qf,} = {Da, Qp} = {Da, = 0. (3.7) 

The next step is to generalize the notion of a field in space-time to superspace. We define 

a superfield F to be a function of the superspace coordinates, with the Taylor expansion 

F(x,e,9) = f{x) + e(t>{x) + 9x{x)+e^m{x)-^9^n{x) 

+ea'^9v^ {x) + 9W\ {x) + 9^9IIJ ( X ) + 9^9^d {x). (3.8) 

(Higher order terms in 9 and 9 must vanish due to the anticommuting property of these 

parameters.) In the language of quantum field theory, the component fields of this expan­

sion comprise Weyl spinors, scalar bosons and a vector boson Vm- Together they form a 

representation of the supersymmetry algebra. We can derive their transformation laws by 

acting on F(x, 6, 9) with the infinitesimal supersymmetry generator 

h = ^Q + ̂ Q^ (3.9) 

where ^Q, and ^a are arbitrary Grassmann parameters and Qa and Qa are the differential 

operators (3.3) and (3.4). The action of 5j on F{x, 9,9) is to generate a new superfield with 

transformed components S^f{x), S^4>{x), etc. 

The representation provided by the component fields of F{x, 9. 9) is too general for the 

purpose of constructing supersymmetric models. One can reduce the representation by 

imposing a supersymmetry covariant algebraic constraint on the superfield F. In what 

follows we shall specify the two constraints that define chiral and vector superfields. With 

these two superfields we shall be able to construct the supersymmetric Yang-Mills models 

of interest. 
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Chiral Superfields 

A chiral (or scalar) superfield $ satisfies the condition 

= 0. (3.10) 

The covariance of this constraint under supersymmetry transformations follows from the 

anticommutation property (3.7). It is easy to solve the constraint (3.10) for the component 

fields of $. Let us define shifted Minkowski space coordinates, 

y"" ^x"" + i9a'^9. (3.11) 

In terms of the superspace coordinates {y, 9, 9) we can write 

Hence the general solution to (3.10) is 

<!>{y,9,9) = A{y) + V29^{y)+e'F{y) 

= A [x] y/29^ (x) + 9^F (x) + i9a'^9dmA (x) 

+^9Ha^dmi^ (x) + UWdrr^d'^A {x). (3.14) 
\/2 4 

The Hermitian conjugate of $ satisfies 

^ 0. (3.15) 

Its component field expansion is given by conjugating each term in the above expansion 

of $. 

Vector Superfields 

A vector superfield V satisfies the constraint 

V = Vl (3.16) 
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In terms of component fields, the most general solution to this constraint is 

V {x, 6,9) = f (x) + 9(f) (x) + 94> (x) + 9^n (x) - f 9^m^ (x) 

+9a'^9v^ (x) + 9WX (x) + 9^9\ (x) + 9^^D (x) , (3.17) 

where / ( x ) , v„i(x), and D{x) are Hermitian fields. 

In the J\f = 1 superfield construction of supersymmetric Yang-Mills theory, the vector 

superfield may be regarded as the supersymmetric generalization of the vector potential. It 

transforms in the adjoint representation of the gauge group, so we write 

V = VT". (3.18) 

Supersymmetric Yang-Mills theory is invariant under a generalized gauge transformation, 

which acts on the vector superfield as follows. 

e 
- 2 9 V _^ g2z5Atg-2g\/g-2i9A (3 ^9) 

The parameter g is the gauge coupling and yV = A"T" is an adjoint chiral superfield. This 

generalized gauge transformation incorporates the usual gauge transformation of the vector 

potential, 
Vm UVmU^ + -UdmU\ (3.20) 

9 
where U{x) is an element of the gauge group. 

In supersymmetric Yang-Mills theory, we can use the generalized gauge transforma­

tion (3.19) to eUminate the field components / ( x ) , (f){x), and m(x) from V. This procedure 

fixes the theory to what is known as Wess-Zumino gauge. In this supersymmetric gauge, all 

that remains of the generalized gauge symmetry is the actual gauge symmetrj'. Through­

out this thesis, our analysis of supersymmetric Yang-Mills theory will use the Wess-Zumino 

gauge description. 

The supersymmetric generalization of the field strength tensor is defined as 

Wa = ^D'e'^^'Dae-'^"'. (3.21) 
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This is a chiral superfield. In terms of the superspace coordinates (y, 9,9) it has the expan­
sion 

D{y)€-l^Uy) ( ^ ' " ^ " ) f 9p+[(j'^DmKy)\j'.. (3.22) Wa = -tXa (y) + 

where Vmn is the usual field strength tensor and 

I)mA° = 9 ™ A " - z 5 K , A " ] . (3.23) 

(This indicates the form of the covariant derivative when acting on fields in the adjoint 

representation.) Under the transformation (3.19), the supersymmetric field strength and its 

conjugate obey 
T'̂ ^ ^ e'̂ ^^T'F^e-'*^ ,̂ FF̂  ^ ê ^̂ '̂ 'PF ê"'̂ ^̂ *. (3.24) 

The superfields V and Wa and chiral superfields in various representations of the gauge 

group are all that we require to construct the Lagrangians of renormalizable supersymmetric 

Yang-Mills theory. 

3.2.2 Supersymmetric Yang-lMills Theory 

In this subsection, we use the Af = 1 superfield formalism to construct the supersymmetric 

Yang-Mills models that are of interest in this work. We first consider the J\f = 1 super-

symmetric models and then proceed to the models with M = 2 and M = 4 extended 

supersymmetry. The J\f = 2 models are of primary concern in this thesis, since it is for 

these models that exact solutions have been predicted [17, 18, 19, 20, 21, 22]. (We review 

the exact results in the next section.) 

The models we describe contain chiral superfields that transform in the adjoint, funda­

mental and conjugate-fundamental representations of the gauge group. An adjoint chiral 

superfield is a matrix, 
$ = $"T". (3.25) 

We shall use the symbol Q to denote a chiral superfield in the fundamental representation. 

We shall denote its component fields (g,X,G) to distinguish them from the components 
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{A,ip,F) of the adjoint superfield $. We write Q for a chiral superfield in the conjugate 
representation and {q, x, G) for its components. If the fundamental representation is iV-
dimensional then Q is understood to be an A^-dimensional column vector. Likewise Q is 
understood to be an iV-dimensional row vector. With this in mind, we can suppress colour 
indices. 

= 1 Supersymmetric Pure Yang-Mills Theory 

The pure M = I supersymmetric Yang-Mills theory is given by the Lagrangian^ 

svM dHTx {W^W^) + c.c. (3.26) 

Both supersymmetry invariance and gauge invariance of this model are manifest in the 

J\f = I superfield formalism. Gauge invariance is a consequence of invariance of the La-

grangian under the generalized gauge transformation, which acts on according to (3.24). 

To see supersymmetry invariance, we note two things. First, any product of chiral super-

fields is a chiral superfield. Second, the component of a chiral superfield transforms into 

a total derivative under a supersymmetry transformation. Since the integral in (3.26) picks 

out just such a component, it follows that the Lagrangian transforms into a total derivative 

under a supersymmetry transformation and hence the action is invariant. 

In component fields, the action of this model reads 

SM=. sr. = I J d'xTv i-v^nv""^ - ^I'XfX + 2D^). (3.27) 

I t is clear that the field D plays no dynamical role in the model; it can immediately be 

integrated out of the action. As the other models we construct will demonstrate, this is a 

generic property of the field D. For this reason it is referred to as an 'auxiliary' field. 

Without spoiling supersymmetry, we can make the action (3.27) slightly more general, 

by including a ^-term, 

^ jd'xTr{~v,nnvn- (3.28) 
^For integration over the Grassmann parameters 6 and 6 we use the conventions / cPdff- = 1 and 

Jd'0P = 1. 
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A l l of the supersymmetric Yang-Mills models considered in this thesis will be implicitl}' 
assumed to include this term. 

Af = 1 Supersymmetric Q C D 

This theory is obtained by coupling the vector multiplet to chiral multiplets in a gauge 

invariant way. We write 

Av=l SQCD — Av=l SYM + ^matter; (3.29) 

where £v=i SYM is given by Eq. (3.26) and, in the simplest case, 

C^.u.r = I cPedHQ^-^^^'Q. (3.30) 

The chiral superfield Q is in the fundamental representation of the gauge group. It obeys 

the generalized gauge transformation law 

so that, from (3.19), it is clear that C^^tter is gauge invariant. Supersymmetry invariance fol­

lows because we are picking out the O'^O'^ component of a vector superfield, which transforms 

to a total derivative. 

In terms of the component fields, we have 

S^.u.r = j d'x [-Dmq^D^q - i x f x ' r G^G - ^ig (gUx - xAg) - gq^D^ . (3.32) 

We observe that the field G exhibits the same property as the vector superfield component 

D, i.e. i t is not dynamical and can be immediately integrated out of the theory. The field 

G (also G and F) is therefore also regarded as an auxiliary field. 

More generally, we can couple the vector multiplet to flavours of fundamental chiral 

multiplets Qf and Nf flavours of conjugate representation chiral multiplets Q/, which in 

turn can be coupled via a mass term. In this case 

C^.a.r = / dHd'e [Qy^^'^Qf + Q/e'^^'Q}) + { d'e^^ mjQjQj + c.c. \ . (3.33) 
J f=i [-^ /= i J 
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Gauge invariance of these couplings is easily verified using (3.19) and (3.31) as well as the 
transformation law for a conjugate chiral superfield Q, 

Q Qe-^'^'^, ^ e '̂S'̂ 'Qt. (3.34) 

In terms of component fields, the mass term in Eq. (3.33) has the expansion 

/ d^e rufQfQf + c.c. = Ymf (qfGf + G/^/ - X / X f ) + c.c. (3.35) 
/ = i / = i 

Af = 2 Supersymmetric Pure Yang-Mills Theory 

In the J\f = 1 superfield formalism, the Lagrangian of this theory is 

£^=2 SYM = S^~Jd^9Tr (WWa) + c.c. j + 2 J d^Od^OTv {^^e-^'^"'^e^''') , (3.36) 

where $ is in the adjoint representation. From the transformation law 

it is clear that the theory is gauge invariant. In component fields, we may write the action 

of the theory as 

5^=, SYM = d'xTr (^-^vrr^nv'^'' -i~XfX+ ~ D^^A^D^A -ii>ftp + F^F 

-\-V2ig {[A\x/j]X + X [A, i^]) - gD [A, A^]) (3.38) 

This model will come under close scrutiny in the next section, where we review the 

analysis of Seiberg and Witten. 

JV = 2 Supersymmetric Q C D 

This theory is obtained by coupling the A/" = 2 vector multiplet {V. $) to Nj flavours 

of matter hypermultiplets, (Qf.Q^j) and (Q^Q/)) transforming in the fundamental and 

conjugate representation respectively. The Lagrangian is 

/:^=2 sQco = C^=2 SYM + C„,.uer + < V2ig j d H Q J + C.C. | (3.39) 
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where Cj^^2 SYM and L^^^^er are given by Eqs. (3.36) and (3.33) respectivelj'. The term in 
brackets may be regarded as the supersymmetric generalization of a Yukawa coupling. I t 
has the component field expansion 

V2ig I ( f e J2Qf^Qf + c.c. = V2ig {Qf^Gf + GjAqf + qjFqf 
J / = i / = i 

-qji^Xf - Xf^qj - x / ^ x / j + c-c. (3.40) 

We shall discuss the exact results that have been predicted for this theory in the next 

section. 

jV = 4 Supersymmetric Yang-Mills theory 

This theory is obtained by coupling J\f = 2 supersymmetric pure Yang-Mills theory to an 

J\f = 2 hyperrnultiplet {Q, Q) transforming in the adjoint representation. The coupling of 

V to Q and Q is accomplished in the usual gauge invariant way (see Eq. (3.36)) whilst $ 

couples to these fields via the term 

4V2ig J d^e Tr (^Q^Q^ + c.c. (3.41) 

The J\f = 4 model comes to our attention in Chapter 6, where we use instantons to verify 

a nonperturbative nonrenormalization theorem due to Dine and Seiberg [27 . 

3.3 Exact Results 

In 1994, Seiberg and Witten analysed the low-energy physics of j V = 2 supersymmetric 

Yang-Mills models with gauge group SU(2) and were able to obtain exact results for this 

theory, valid at both weak and strong values of the coupling [17, 18]. Their work has been 

generalized to Af = 2 theories with larger classical simple and product gauge groups and 

a variety of matter representations [19, 20, 23, 21, 22, 24]. In this section we review the 

exact results that have been predicted fov J\f = 2 supersymmetric SU{N) gauge theories. 

These results are the primary motivation for the instanton calculations performed in the 
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chapters that follow. In Subsection 3.3.1, we describe the Seiberg-Witten analysis oiJ\f = 2 
supersymmetric pure SU{2) Yang-Mihs theory [17]. In particular, we show how Seiberg and 
Witten employed physical arguments based on a low-energy duality property of the theory 
to predict exact results for this model. In Subsection 3.3.2, we discuss the generalization of 
these exact results toM = 2 supersymmetric SU{N) QCD [18, 19, 20, 21, 22]. 

3.3.1 Seiberg-Witten Theory 

In what follows we make use of the several excellent reviews [28]. The Lagrangian of the 

SU{2) model investigated in [17] is given, in A/" = 1 superfield notation, by Eq. (3.36). It 

is convenient to rescale all the fields by a factor of 5, so that the only dependence on the 

coupling is through an overall g'"^ prefactor. 

Symmetry Breaking 

Let us begin by examining the component field expansion of the action, given (prior to field 

rescalings) by Eq. (3.38). In the functional integral, we can immediately integrate out the 

auxiliary fields F and D since the action is quadratic in these fields. The F^F term is 

thereby eliminated and the two D dependent terms are replaced with 

V = g-^Tv([A\AYy (3.42) 

This term acts as a symmetry-breaking Higgs potential for the scalar field .4. I t is minimized 

when A takes the form of a diagonal matrix. (This is the most general solution up to gauge 

transformations.) Thus we have 
{A) = (3.43) 

where the vacuum expectation value (VEV) v is an arbitrary complex parameter. 

The arbitrariness of v has an important consequence. It leads to the concept of a moduli 

space of vacua. Each point on this space corresponds to a physically distinct vacuum, 

associated with a particular value of v. Actually, we should identify vacua given by ±v 

because the Weyl transformation v —> - v does not affect the physics. Hence the classical 
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moduli space of vacua is C/Z2. In the analysis of Seiberg and Witten a central concern is 
how this picture is modified by quantum effects. 

To see how the VEV breaks the SU{2) gauge symmetr}-, we write 

A = {A) + 5A, (3.44) 

and expand the action about (A). From the Higgs kinetic term, we obtain a mass term for 

the gauge bosons: 

2g-'Tv{[{A)\v,^][v"',{A)]). (3.45) 

Through this term the first and second isospin components of Vm acquire a mass 

M = V2\v\. (3.46) 

However, the third component of commutes with (A) and therefore remains massless. 

Examining the other terms in the action, one finds the same mass M generated for the first 

and second isospin components of all the fields in the jV = 2 vector multiplet. The third 

component of every field remains light. We deduce that for a generic nonzero v, the SU{2) 

gauge symmetry is broken to a U{1) symmetry of these fight fields. 

Wilsonian Effective Action 

We shall be interested in the quantum physics of the model at low energies, where the gauge 

symmetry breaking is manifest. A convenient way to describe the low-energy particle dy­

namics is to use an effective action. Specifically, Seiberg and Witten considered a Wilsonian 

efl!"ective action. This effective action is discussed in detail in [29]. In principle, it is obtained 

by integrating out of the functional integral all the massive fields as well as all light field 

fluctuations whose energy is greater than some infra-red cut-off jj, M. To leading order 

in a derivatives expansion^, the Wilsonian eff'ective action is strongly constrained by = 2 

•'̂ The Wilsonian effective action is expected to contain an infinite number of terms involving any number 
of field derivatives. However, the contribution of an n-derivatives term to a physical process that is char­
acterized by the momentum p <§: M is suppressed by a factor p " / M " . The leading order approximation 
considered here consists of discarding all terms with n > 2. In Chapter 6 we shall investigate corrections-
due to terms with up to four derivatives. 
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supersymmetry. It must take the form [30, 31 

S,ff = ^ I m f d^x (/$ 2 ./ d$2 
(3.47) 

where 
$ = (v -F 5.4) + . . . and = -^A„ . . . (3.48) 

represent the light f / ( l ) multiplets. The essential point is that S^jj is determined by a 

single holomorphic function T, known as the prepotential [30, 31]. The discovery of the 

exact solution for this function is the remarkable acheivement of Seiberg and Witten. 

The effective action (3.47) naturally induces a low-energy effective coupling. Expanding 

S^ff in terms of component fields, we pick out 

- ^ I m ^ ^ l ^ / d'x {--VmnV"^^ - UvmnV^A . (3.49) 

All d^v J \ 4 4 J 

It is convenient to define a complexified coupling that combines the usual ^-parameter with 

the gauge coupling, 
r = — -F — . 3.D0 

We may now identify the low-energy effective complexified coupling as 

d''T{v) 
dH 

(3.51) 

so that the terms (3.49) take the more famihar form 

d'x ( - - i - ^ m n ^ ™ - : ^ ^ m n ^ " ^ " ) • (3.52) 

Weak-coupling Expansion 

In the region of quantum moduli space corresponding to large values of the VEV, the theory 

is weakly coupled. This is a consequence of asymptotic freedom. The one-loop /5-function 

of the theory is given by 

Pig) = = - j ^ y , (3.53) 

d l n ^ (47r)2 

where bo = 4. (More generally, this coefficient is bo = 2N - Nf for Af = 2 supersymmetric 

SU{N) QCD with Nf fundamental matter hypermultiplets.) A remarkable fact is that, 
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due to Af — 2 supersymmetry, there are no higher-loop corrections to this formula [32 . 
Integrating the /3-function gives the running of the coupling, 

Here A is the dynamically generated scale. It is clear from Eq. (3.54) that at scales 

/̂ t ~ M >> A the typical coupling is small. 

In the weak-coupHng regime, the prepotential has the expansion 

^ ^ O V ^ V2 ? / A X " " ' , , 
J^v = const. + ^ I n — - - v ^ y j - ^ - . 3.55 87r A^ TF V V / 

fc=i ^ ^ 

This result was obtained by Seiberg [31] using the anomalous U{l)]i symmetry of the theorj'. 

The numerical coefficients are a priori unknown. The value of the constant term is 

unimportant since only derivatives of the prepotential appear in the Wilsonian effective 

action. The logarithmic term is the one-loop exact perturbative contribution. It may be 

derived simply by evaluating the running coupling (3.54) at the scale fj. — M and equating 

this to the eff'ective coupling g^ff. The remaining terms correspond to A;-instanton effects. 

From Eq. (3.54) we see that the characteristic A;-instanton factor exp(-87r^A;/^^) indeed 

gives a contribution proportional to A^"''. Note that there cannot be any powers of g 

multiplying the characteristic A;-instanton factor because these would appear as powers of 

In A multiplying the A''°^ in Eq. (3.55). (This amounts to a prediction that the semiclassical 

calculus in a A;-instanton background is exact at one-loop.) 

Duality Transformation 

We expect the semiclassical expansion (3.55) to break down when the VEV approaches the 

strong-coupling scale A. How then, can we get a handle on the physics in the strongly cou­

pled region of moduli space? Seiberg and Witten found that duality provides the key. The 

duality phenomenon was flrst investigated by Dirac [33], in the context of electromagnetic 

theory. Dirac observed that (in the presence of magnetic monopoles) Maxwell's equations 

are invariant under exchange of electric and magnetic variables. Moreover, to get a consis­

tent quantum mechanics, the electric charge q and the magnetic charge g must satisfy the 

quantization condition gq — 27rn, where n G Z. Hence the duality transformation inverts the 
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coupling, q g = 2-Kn/q. The low-energy duality found by Seiberg and Witten represents 
a version of Olive-Montonen duality [34], believed to be present m Af = 4 supersymmetric 
Yang-Mills theory. We shall see that it incorporates analogues of the features observed 
by Dirac. The property of strong-weak coupling exchange is crucial for an analysis of the 
strong-coupling region of moduli space. 

In order to demonstrate the duality property of the low-energy physics, we consider the 

partition function 

Z = J [ d ^ ] [ d V ] exp{iS,fj). (3.56) 

We shall describe a duality transformation that maps the 'electric' degrees of freedom, 

represented by $ and V, into dual 'magnetic' degrees of freedom, $£) and VD, whilst leaving 

the partition function invariant. To begin with, following Seiberg and Witten, we write 

= -^'($), (3.57) 

where the prime just indicates differentiation of T with respect to $. We can change 

integration variable from $ to $£> in Eq. (3.56) and the associated Jacobian factor is in fact 

unity. If we define a dual prepotential J^D such that 

$ = - ^ ; , ( $ o ) , (3.58) 

then the first term in the Wilsonian effective action (3.47) can be written 

— I m f d'xd^ed'eri^)^^ =^lm [ d'xd'ed'eT'j,{^D)<^^D- (3-59) 
4Tr J 4TX J 

In contrast to the vector superfield V maps into its dual in a non-local manner. We 

introduce as a Lagrange multiplier which implements the constraint 

ImiDcW^) = 0 (3.60) 

in the functional integral. This constraint is the supersymmetric generalization of the 

Bianchi identity, Eq. (2.14). If Wa is assumed to be an arbitrary chiral superfield then 

this condition is sufficient to fix Wa to be a supersymmetric field strength. So the func­

tional integration over the vector superfield V is equivalent to an integration over a general 
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chiral superfield Wa in the presence of the constraint (3.60). We can therefore write 

f [dV] exp ( — I m / d.^xd^eT"{<^)W''W^] ^ 

d'xd^ej^"{<^)W''Wa + J d^xdHd^VnD^W 

We can rewrite the Lagrange multiplier term as follows: 

d'^xd'^ed'^eVoDaW = - I d'^xd'^9d^d{DaVD)W" 

[dW^][dVD] exp ( — Im (3.61) 

d''xd^9D^{DJ^D)W'' 

-2 J d'xd'9{WD)aW". (3.62) 

In the second line we have made use of the form of Da given in Eq. (3.12) and in the final 

line we have used the Abelian version of Eq. (3.21) to define the dual supersymmetric field 

strength. 
{WD)a = -^D'D^Vo. 

We can now perform the Wa integration in Eq. (3.61) to obtain 

IdVn] exp ( - ^ I m / d^xd^9 

We can eliminate J^"{^) using the relation 

J ^ " ( $ ) 

(3.63) 

(3.64) 

(3.65) 

which follows from Eqs. (3.57) and (3.58). 

The partition function can now be expressed as 

Z = j[d<pD][dVD] exp{iSD.ff), (3.66) 

where the dual low-energy effective action Soe/j has the form of S ^ f f , given in Eq. (3.47), 

with all quantities replaced by their duals. In analogy with Eq. (3.51), the complexified 

coupling associated with the dual effective action is 

rDeJf = ^Diyo); (3.67) 
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where, from Eq. (3.57), the dual VEV is given by 

VD = ^ ' ( v ) . (3.68) 

It follows from Eq. (3.65) that 

TD = --., (3.69) 
T 

which is the property of weak-strong coupling exchange. In what follows we show how 

Seiberg and Witten deduced useful information about the low-energy physics in the strong-

coupling region of moduli space using the weakly-coupled dual description provided by 

S o e f f -

Quantum Moduli Space 

A crucial step in the Seiberg-Witten analysis is the introduction of an object that serves 

as a convenient coordinate on quantum moduli space. This object is the gauge invariant 

condensate 
u={Tv{A^)). (3.70) 

The key to the solution of the theory is to regard v and YD as functions of u and to study 

their behaviour on moduli space. 

Let us begin by considering the behaviour of v and v^ in the weak-coupling regime. In 

the weak-coupling limit, we expect 
V ^ ^/2^. (3.71) 

Hence V ( M ) possesses a branch point singularity at u = oo. We can obtain an expression 

for V £ ) = ^ ' ( v ) using the semiclassical expansion of the prepotential given by Eq. (3.55). In 

the weak-coupHng hmit, we find 

i\/2u, 2u 4i\/2u 
YD In — + — — . (3.72) 

where we have used Eq. (3.71) to eliminate v in favour of i i . Hence V£)(M) also has a branch 

point singularity at the point M = oo. 

Let us now consider a closed contour in the compactified complex plane of u that encloses 

the point at infinity. As we perform a rotation around this contour, u ê '̂ û, the VEV 



CHAPTER 3. SUPERSYMMETRIC YANG-MILLS THEORY 52 

and its dual map into linear combinations of themselves. Specifically, from the asymptotic 
behaviours (3.71) and (3.72), we find 

M J ' ^ . , (3.73) 

where the monodromy matrix M^o is given by 

/ - 1 2 \ 

= ( 0 - 1 j • 

This matrix encodes information about the weak-coupling singularity that will later be used 

to solve for v{u) and voiu). 

What other singularities are present on moduli space? There must be at least one more 

singularity because the branch cut extending from '« = oo has to end somewhere. Since 

there is only one weak-coupling singularity we must look to the strong-coupling region of 

moduli space. Let us first suppose there is precisely one singularity in this region. Now 

it can be shown that, due to the anomalous U{1)R symmetry of the theory, there is a 

symmetry on moduli space under the change of sign u —>• —u. So if there is one strong-

coupling singularity then it must be at the point u = 0. In this case it is straightforward 

to analytically continue the weak-coupling expansion (3.55) into the full moduli space. We 

find 
• 2 2 

.F(v) = const. + ^ In ̂  + f{v'), (3.75) 

where / (v^) is an entire function. However, a solution of this form is inconsistent with the 

positivity requirement 

4 - > 0- (3-76) 
9eff 

So there cannot be just one strong-coupling singularity. 

Seiberg and Witten argued that there are precisely two strong-coupling singularities. 

One way to justify this is to consider the effect of adding to the original Lagrangian a mass 

term for This gives &n Af = 1 theory whose vacua correspond to the strong-coupling 

singularities on the f f = 2 moduli space. An independent calculation of Witten's index for 

the Af = 1 theory predicts that there are indeed two vacua. Let us suppose that one of the 

strong-coupling singularities is located at the point u = UQ. By the symmetry the other 
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singularity must be located at u = —Uo- The question we now ask is: what is the physical 
cause of these singularities? 

The proposal of Seiberg and Witten was that the strong-coupling singularities correspond 

to points on quantum moduli space where certain particle states of the theory become mass-

less. At such points the (dual) Wilsonian effective action description of the physics should 

break down because i t does not account for the new light degrees of freedom. The particular 

states that are responsible derive from the classical, solitonic solutions that generically ap­

pear in theories whose gauge symmetry is broken to an Abelian subgroup. These solutions 

may carry magnetic charge (monopoles) or both magnetic and electric charge (d.yons), and 

form 'short' multiplets of A/" = 2 supersymmetry. After quantization, the corresponding set 

of physical states are also expected to form short multiplets. Consequently, they saturate 

a Bogomolnyi-Prasad-Sommerfield (BPS) lower bound on their mass [35]. The BPS mass 

formula reads 

MBPS = \/2 |nmV£i + nev|, (3.77) 

where Ue and are the electric and magnetic quantum numbers of the BPS state. 

Let us suppose the massless BPS state associated with the singularity at u = «o is a 

magnetic monopole (this will be verified later). We can use this information to work out the 

behaviour of v and v^i close to the singularity. We employ the dual effective action So eff 

which describes the physics in terms of weakly-coupled magnetic degrees of freedom. To 

account for the effect of the monopole on the low-energy physics in the vicinity of u = Uo we 

should supplement SD eff with terms that describe the coupling of the light dual magnetic 

fields to the monopole. These terms are uniquely determined hy Af = 2 supersymmetry. 

One obtains an effective supersymmetric QED-like theory whose one-loop ^^-function reads 

Pi9n) = j ~ , g l (3.78) 

After integrating this equation and setting the characteristic mass scale equal to vp, one 

obtains 

r o e f f ^ - ^ l n " ^ . (3.79) 

Since v = -T'j^ivo), we can integrate with respect to VQ to get 
V ?s const. -I- - v o In (3.80) 

71 A 
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Now since vo provides a good local coordinate on moduli space, and vanishes at u = UQ. we 
expect that close to the singularity, 

v^co{u-Uo), ( 3 . 8 1 ) 

where CQ is a constant. Using Eqs. ( 3 . 8 0 ) and ( 3 . 8 1 ) we can determine the behaviour of 

V and V £ ) as we move on a closed contour around the point u — UQ. We find that in one 

complete rotation, {u - UQ) e^'''(u - U Q ) , there is a monodromy: 

V / \ V / \ —Z L J 

A more general analysis shows that if one assumes a dyon of charge (n^,ne) to be 

responsible for the strong-coupling singularity then the associated monodromy matrix is 

Note that {n^^rim) is a left eigenvector of the monodromy matrix M(„,,̂ ^„ )̂. Consequently, 

the BPS mass formula for the dyon is invariant as one encircles the singularity, as we should 

expect. 

In order to find out precisely which BPS states are responsible for the strong-coupling 

singularities, one can make use of a consistency requirement that follows from standard 

complex analysis. Let us consider a contour in the complex plane of u that encloses both 

the strong coupling singularities. The monodromy behaviour of v and V £ , around this 

contour is clearly the product of the monodromy matrices at w = ILQ and u = —UQ. But the 

contour can also be viewed as enclosing the point at infinity. Hence the monodromy matrix 

at infinity must equal the product of the two strong-coupling monodromy matrices, 

M„oM_„„ = Moo. ( 3 . 8 4 ) 

Knowing MQO, one can solve for MUQ and M_„g using the general form ( 3 . 8 3 ) . In this way 

one finds that the singularity at n = can indeed be attributed to a massless monopole, 

with the corresponding monodromy matrix ( 3 . 8 2 ) . The singularity at the point u = —UQ is 

caused by a massless dyon of charge {nm,ne) = ( 1 , — 1 ) . The associated monodromy matrix 

is 
/ - 1 2 \ 

M-uo - ( _ 2 3 ) • ( 3 - ^ 5 ) 
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Solution for the Prepotential 

The mathematical data represented by the monodromy matrices M±„Q and MQO together 

with the positivity constraint (3.76) is sufficient to uniquely determine the functions VD{U) 

and v{u). I t is possible to construct a second order linear differential equation whose two 

independent solutions are v{u) and vo(ti). However, we shall follow the original approach of 

Seiberg and Witten which uses an auxiliary elliptic curve to construct the solutions. (As we 

see in Section 3.3.2, in Af = 2 supersymmetric SU{N) QCD with iV > 2, the generalization 

of the elliptic curve is a genus A'̂  — 1 hyperelliptic curve.) 

Seiberg and Witten observed that any two of the monodromy matrices generate a par­

ticular subgroup r(2) of the duality group SL{2,Z). This subgroup is defined as 

r(2) = I ^ ^ ) e SL{2, Z), 6 = 0 mod 2 | . (3.86) 

The quantum moduli space is therefore given by H/T{2), where H is the upper half complex 

plane (we have 'modded out' the Z2 symmetry u —)• —u). This is exactly the same as the 

moduli space of the elliptic curve defined by 

if = {x-uo){x + uo){x-u). (3.87) 

At a generic value of u, this equation defines a two-dimensional surface that is topologically 

equivalent to the torus. However, at the three points u = ±uo,oo, this torus collapses 

to a two-sphere. Thus the singularities of the curve on its moduli space correspond (by 

construction) to those of our physical theory on quantum moduli space. 

The connection between the elliptic curve and the low-energy physics is realized more 

concretely through the period 'matrix' of the curve. This object is given by 

r{u) = (3.88) 

where a and ^ form a canonical basis of one-cycles on the torus and 

dx 
U[U) = — r 

y{x;u) 
(3.89) 
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is the unique holomorphic one-form. The monodromy behaviour of r derives purely from the 
behaviour of the one-cycles a and /5 around the moduli space singularities. We can specify a 
and f3 so that r has exactly the same monodromy behaviour as r^ff (as derived from that of 
V and V D ) . Furthermore, it can be shown that r satisfies the positivity condition, Imr > 0. 
We therefore identify T{U) as the exact solution for the effective coupling r ^ f f . 

Using the relation 

we infer that 

..„ = 5^(^)\ (3.90) 
du \du 

dv 
du 
dv 
— = c 

uj{u), (3.91) 

* (3.92) 

The constant prefactor c can be found using the boundary condition imposed by the semi-

classical limit. Upon integrating with respect to u. one finds 

v^(«) = N/27r r d x ^ ^ ^ ^ = l{u-l)F{i,i,2:^)., (3.93) 

v(u) = ^/27r / " d x ^ ^ = V ' 2 ( ^ F ( - i , i , l : ^ ) , (3.94) 

where the hypergeometric function F{a,P,-f;z) is given by 
Pf R \ r ( 7 ) ^ V{a + n)r(/3 + n) 

One can invert Eq. (3.94) to get u in terms of v and substitute w(v) into Eq. (3.93). By 

integrating \D{U) — with respect to v, one then obtains the promised exact solution 

for the prepotential. 

As a final comment, we note that MQ must be proportional to the strong-coupling scale 

of the theory, A^. By choosing the proportionality factor to be one, we specify an implicit 

renormalization scheme; the Seiberg-Witten scheme. To compare first-principles instanton 

calculations with the Seiberg-Witten exact predictions one has to relate the scale defined 

in the (Pauli-Villars) scheme used for the instanton calculation to the Seiberg-Witten scale, 

defined by UQ = A^. This relation can be completely determined at one-loop in perturbation 

theory. We come back to this point in the next chapter. 
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3.3.2 Generalization of the Exact Results 

In what follows we outline the generalization of the results described above to Af = 2 

supersymmetric SU{N) gauge theories wi th matter. We begin wi th the supersymmetric 

SU{2) Q C D theory which was investigated by Seiberg and VVitten in their second paper 

18 • 

Af = 2 S U S Y SU{2) Q C D 

In [18], Seiberg and Wi t t en applied their analysis to J\f = 2 supersj^metric SU{2) QCD 

w i t h Nf = 1,2,3,4 flavours of matter hypermultiplets. For Nf < 3 the first coefficient of 

the /3-function is negative and the theory is asymptotically free. The Nj = 4 theory is finite 

because its /3-function vanishes. I t is treated as a special case. 

We shall not give details here, but the basic line of reasoning is just as for the pure 

Yang-Mills theory. Through the potential term (3.42) the field A may acquire a nonzero 

expectation value'^ v and the theory is then broken to its Coulomb branch. The isospin 

components of the matter hypermultiplets correspondingly acquire a mass jmy ± i\'/\/2\. 

We deduce that in the weak-coupling region of moduli space, there are singularities at 

V = ±\/2imf as well as at v = oo. Except at these points, one can integrate out the matter 

hypermultiplets along wi th the massive components of the Af = 2 vector multiplet to get a 

Wilsonian effective action and prepotential, just as for the pure Yang-Mills theory. 

For each value of N j , Seiberg and Wi t t en located the singularities on moduli space, 

identified the associated BPS states, and computed the monodromy matrices. This data 

was used to construct auxiliary elliptic curves, f rom which the solution for the prepotential 

could be obtained following the recipe outlined in the previous subsection. To specify the 

curves, Seiberg and Wi t t en also made use of the fact that odd-instanton contributions vanish 

when any hypermultiplet bare mass nif is set to zero. This is due to a Z2 parity symmetry 

''Some of the conventions used in the second Seiberg-Witten paper [18] differ from those used in the 
first [17]. In particular, both the vacuum expectation value and the complexified coupling are rescaled b j ' a 
factor of two. Throughout this work, we maintain the conventions of [17], so that v is defined bj ' Eq. (3.43) 
and r has the form (3.50). 
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that arises because the fundamental representation of SU{2) is pseudoreal. 

A n important consistency check on the Seiberg-Witten curves is provided bj^ sending 

one of the Nf bare masses, say mi^r^, to infinity. Then the associated matter liypermultiplet 

decouples and theory is effectively supersymmetric QCD wi th Nf — 1 hypermultiplets. So 

in the large myv^ l imi t the curve describing Nf hypermultiplets should exactly reproduce 

the Nf — 1 curve, provided the dynamically generated scales Ayv̂  and A j v ^ . i are properly 

matched according to the renormalization group. In the implici t renormalization scheme of 

Seiberg and Wi t t en , the matching condition is^ 

A t the beginning of the next chapter, we discuss how the predictions of the Seiberg-

W i t t e n curves compare wi th first-principles instanton calculations. We shall see that both 

the Nf = 3 and the Nf = 4 curve do not completely agree wi th the instanton calculus, but 

that the discrepancies can be cured by reinterpreting the parameters in the curves [36, 37 . 

= 2 Supersymmetr i c P u r e SU(N) Yang-Mi l l s 

Before turning to the exact solutions in this theory, we consider the SU(N) generalization 

of the basic formalism. On the Coulomb branch, the field A acquires the following matrix 

of expectation values 

(A) = d i a g ( V i , V 2 , . . . , V A r ) . (3.97) 

This diagonal fo rm ensures that (A) and (A^) commute, so that the potential (3.42) is 

minimized. The VEV' s v„ are arbitrary complex numbers constrained by 

N 

^ v „ = 0, (3.98) 

u=l 

which ensures that (.4) belongs to the SU(N) Lie algebra. 

^When Nf = 4, the instanton factor q = e"-̂ """ takes the place of A**", where r is the complexified coupling 
of the microscopic theory. Seiberg and Witten found that their Nf = 4 curve reproduced the A^/ = 3 curve 
provided the matching relation (3.96) was modified to 64mq A3 [18]. The appearance of a factor of 
64 seems quite mysterious. In the next chapter we show that it is naturally explained if the parameter r 
appearing in the Nf = 4 curve is reinterpreted as a low-energy effective couphng [36]. 
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There is a residual gauge symmetry which leaves the physics invariant but acts nontriv-
ially on the matr ix (,4). This is the group of Weyl transformations, ^ ( i V ) , which permutes 
the VEV's . Hence the classical moduli space is given by C'^ /S(N). As Weyl invariant 
coordinates on this space we can use 

u. = (Tr (A") ) . (3.99) 

These condensates also provide convenient coordinates on the fu l l quantum moduli space of 

the SU{N) theory. 

Examining the microscopic action, one finds that the light components of the Af = 2 

vector mult iplet are those components which commute wi th (A). They therefore correspond 

to the diagonal generators that comprise the SU(N) Cartan subalgebra. So there are A'̂  — 1 

light field components, this being the rank of the group SU{N). The remaining A'^(A'' — 1) 

field components acquire masses M„j, = \/2\vu — Vy \ for all v. Since the gauge group is 

broken to a direct product of A'̂  — 1 Abelian f / ( l ) subgroups, the Wilsonian effective action 

must take the fo rm 

" ATT J [J d^' 2 J d<^'d<^^ ° J ^ ^ 

The indices i and j label the light components of the Af = I superfields and therefore run 

f rom 1 to A' — 1. The prepotential is a holomorphic function of all the light components $ \ 

A n exact solution for T was predicted independently in [19] and [20]. Both sets of 

authors began by assuming that the Seiberg-Witten elliptic curve generalizes to a genus 

A^ — 1 hyperelliptic curve. Such a curve has an associated (A' — 1) x (A' — 1) period matrix 

which transforms under the group Sp{2{N — 1 ) ,Z) . This coincides wi th the duality group 

of the low-energy theory. Moreover, the period matr ix is guaranteed to have an imaginary 

part greater than zero. I t is therefore natural to identify i t wi th the matrix of effective 

couplings of the low-energy SU{N) theory, {Teff)ij = didjT{v). 

After assuming this correspondence, the problem is to determine the precise parameter­

ization of the SU{N) hyperelliptic curve. This was achieved in [19, 20] using the physical 

constraints imposed by: (i) a I^^N remnant of the anomalous U{1)R, symmetry, (ii) the A**"*̂  

fo rm of fc-instanton effects, and (ii i) the semiclassical l imi t A 0. 
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Af = 2 Supersymmetr i c SU{N) Q C D 

The generalization of the hyperelliptic curve associated wi th supersymmetric pure SU(N) 

Yang-Mills theory to Af = 2 supersymrnetric SU{N) QCD wi th Nf < 2N flavours of matter 

hypermultiplets was first investigated in [21] and [22].^ The first coefficient of the /3-function 

in A/" = 2 supersymmetric SU{N) QCD is given by -bo = Nf - 2N (see Eq. (3.53)). Hence 

the models considered are asymptotically free, except for the Nf = 2N theory, which is 

finite. 

To find the right parameterization of the curves, the authors of both [21] and [22] utilized 

the general constraints imposed by R-symmetry, instanton effects and the semiclassical 

l i m i t . A n additional constraint was provided by the meromorphic one-form A that gives 

the solutions VDU and v„ (see Eqs. (4.91)-(4.97) of the following chapter). Its residues are 

restricted to have a particular dependence on the bare masses m / . Apart f rom this general 

input , the approaches of [21] and [22] are somewhat different and the proposed curves are not 

the same for all N f . In [21], a distinction is made between the cases Nf < N and A^; > A''. 

For Nf < N the curve was found to be uniquely specified using the general constraints listed 

above. For Nf > N, these constraints proved insufficient to completely fix the curves and a 

certain amount of conjecture was required to get a definite parameterization. 

In [22], the authors first considered an SU{2N) theory wi th 2A^ flavours. When yV of the 

VEV' s are taken to infinity, and the bare masses m / are tuned so that the hypermultiplets do 

not decouple, this theory flows into an SU{N) theory wi th 2N flavours. I t was argued that 

this leads to constraints on the form of the hyperelliptic curve for the finite Nf = 2N model. 

Next, by sending a single V E V to infinity, and by tuning the bare masses in a different way, 

the SU{N) theory wi th 2A" flavours was made to flow into an SU{N — 1) theory wi th 

Nf = 2(N — 1) flavours. The argument then proceeded inductively, wi th the Nf = 2A'̂  

curve ul t imately being determined by matching to the Nf = 4 elliptic curve of Seiberg and 

Wi t t en . From the Nf = 2N curve, all the Nf < 2N curves are determined by decoupling 

^ These models were later investigated in [38], [39] and [40]. In [38] only the case N = 3 was considered 
and the analysis focussed on the finite Nf - 6 model. In [39], a very different approach was used, based on 
the connection between M = 2 supersymmetric Yang-Mills and integrable systems. In [40], the hyperelhptic 
curves were derived using M-theory, but an explicit parameterization was not specified. 
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matter hypermultiplets and using the renormalization group matching condition (3.96). 

I t turns out that the parameterization of the curves proposed in [21] and [22] differs 

precisely when Nf > N. In the next chapter we shall perform a semiclassical instanton 

calculation to investigate these discrepancies for the case of gauge group SU{3). 



Chapter 4 

Instanton Tests of the Exact Results 

4.1 Introduction 

The prepotential that describes the low-energy physics of A/" = 2 supersymmetric Yang-

Mil l s theory has a weak-coupling expansion which takes a very particular form [31]. I t 

consists of a one-loop perturbative term plus an infinite series of nonperturbative terms. 

The nonperturbative terms are associated wi th one-loop /c-instanton effects. In principle, 

they can be derived f rom first principles using the semiclassical instanton method. 

Following the prediction of Seiberg and Wi t ten for the exact prepotential, Finnel and 

Pouliot performed a one-instanton calculation in in Af — 2 supersymmetric pure SU{2) 

Yang-Mills theory [41]. From first principles they evaluated the leading nonperturbative 

term in the weak-coupling expansion of the prepotential. In a subsequent investigation 

of the same model, Dorey, Khoze and Mattis employed the multi-instanton construction 

of At iyah , Drinfeld, Hitchin and Manin to evaluate the two-instanton contribution to the 

prepotential [42]. Their analysis was later extended to the Af = 2 supersymmetric SU{2) 

Yang-Mills models w i th fundamental matter hypermultiplets [43, 44, 45, 37] (also to the 

model w i t h one massive flavour in the adjoint representation [46]). 

I n Section 4.2, we review these SU{2) instanton calculations and their comparison wi th 

the exact solutions. We present the one-instanton calculation of Finnel and Pouliot and 

summarize the results of the two-instanton calculations. In most cases, the instanton calcu-

62 
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lations completely agree w i t h the predictions of the Seiberg-Witten curves. However, in the 
models w i t h Nf = 3 and Nf = A flavours of matter hypermultiplets certain discrepancies 
have been found. We explain the origin of these discrepancies and indicate how they can be 
cured by reinterpreting the parameters of the curves [36 . 

However, our main concern is wi th instanton effects in Af = 2 supersymmetric SU(N) 

Yang-Mills theory wi th N > 2. In Section 4.3, we present an explicit one-instanton calcu­

lation that provides a direct test of the SU{N) hyperelliptic curves [47]. Our approach is 

similar to that of I to and Sasakura, who performed the first one-instanton calculations in 

the SU{N) models w i th N > 2 [57, 58]. For gauge group SU{3) we are able to perform a 

complete calculation and we find certain discrepancies in the models wi th Nf > 3 flavours. 

These discrepancies are similar in nature to the discrepancy found in the SU(2) model wi th 

Nf = 3 flavours and we show that they can be resolved in the same way. 

4.2 SU{2) Instanton Tests 

In this section we describe the instanton calculations that have been performed in A/" = 2 

supersymmetric SU{2) QCD. For Nf < 3 flavours of matter hypermultiplets, the instanton 

calculations are in complete agreement wi th the exact solutions. For Nf = 3 flavours of 

matter hypermultiplets, the Seiberg-Witten curve does not give the correct two-instanton 

contribution to the condensate u = (Tr4^) . (Seiberg-Witten theory predicts an exact 

solution for this object as well as for the prepotential.) The source of the discrepancy can 

be traced to an ambiguity in the definition of the parameter appearing in the Nf = 3 curve. 

The instanton result can be used to fix this ambiguity [37, 36]. For the model wi th Nf = 4 

flavours, there is quite substantial disagreement between the semiclassical analysis and the 

exact solutions. We describe the discrepancy and outline its resolution, according to the 

proposal of [36 . 
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4.2.1 One-instanton Test 

I n this subsection we describe the one-instanton calculation in Af = 2 supersymmetric pure 

SU{2) Yang-A/lills theory performed by Finnel and Pouliot [41]. The focus of this calculation 

is the four-fermi correlator 

CX{x,yXix,)^P{x,)i;ix,)), (4.1) 

where the fermions are light U{1) fields of the low-energy effective theorj-. 

Contact is made wi th the exact results via the low-energy Wilsonian effective action. 

Specifically, we extract a prediction for the amplitude (4.1) by expanding Eq. (3.47) in 

terms of component fields. The relevant term in the expanded action is 

1 1 -^""(v) f d''^X{x)Xix)tP{x)i;{x). (4.2) 
2 8m 2! 

A simple tree-level calculation gives 

(X{xr)X{x2)i^{x,)'ff{x,)) = / d'xoS,^{x,.,xo)S''%X2,x,)Spi,{x,.xo)Sf"'{x,,x,), 

(4.3) 

where S^a is the massless fermion propagator, 

Saa{x, Xo) = (4.4) 

Expression (4.3) should be exact in the low-energy l imi t . This is equivalent to the long­

distance l im i t \xi — Xj \ —> oo. 

The weak-coupling expansion of the prepotential in Af = 2 supersymmetric pure SU(2) 

Yang-Mills theory is given by Eq. (3.55). Using this expansion, we extract the following 

prediction for the one-instanton contribution to the four-fermi correlator (4.1): 

1 5 ^ A'' f 
{X{Xi)X{X2)^ixz)^{x4))u = / d^XoSaa{XuXo)S'"'ix2,Xo)Spp{x3,Xo)S'^'^{x4,Xo). 

(4.5) 

From the Seiberg-Witten exact results, Eqs. (3.93) and (3.94), we obtain the prediction 

^ 1 = 1/8. 

Note that the numerical coefficient is renormalization scheme dependent. In order to 

compare the Seiberg-Witten prediction wi th the first-principles result, we have to relate the 
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impl ic i t renormalization scheme defined by the Seiberg-Witten curve with the renormaliza­
t ion scheme used in the instanton calculation, i.e. the Pauli-Villars scheme. Specifically, we 
have to relate the scale A defined in the Seiberg-Witten scheme wi th the scale Apy defined 
in the Pauli-Villars renormalization scheme We show how this is done further on. 

We now consider the instanton calculation. After continuation of the pure Yang-Mills 

action (3.38) to Euclidean space (see Appendix A ) , one obtains the following Euler-Lagrange 

equations, 

D,F^, = -ig{[A,D,A^ + [A\D,A]) 

+ig [Xe„X -\- Xe^X + ipeiy'ip + tpe^ip) , (4.6) 

f x = V2ig[A,i;], (4.7) 

pX = s/2tg[A\ij], (4.8) 

f i j = -V2ig[A,X], (4.9) 

fiP = -V2ig[A^,X], (4.10) 

D^A = V2ig[X,ij]+g^[[A,A^],A], (4.11) 

L)2^ t = ^ig[X,i;]-\-g%A\A],A^]. (4.12) 

(The auxiliary fields D and F have been eliminated in the usual manner.) We are interested 

in the physics on the Coulomb branch of the theory, where the Higgs field A has a nonzero 

expectation value v. In this case. Derrick's theorem predicts that there is no nontrivial 

solution to Eqs. (4.6)-(4.12). To proceed, we apply the constrained instanton formahsm 

(see Section 2.4.3). 

The constrained instanton formalism tells us that to obtain a suitable background con­

figuration we should solve Eqs. (4.6)-(4.12) perturbatively, in the presence of some sup­

plementary constraint. The relevant small parameter is pM, where p represents the size 

of the configuration and M = \/2gv is the W-boson mass.^ A t leading order in pA4, the 

Euler-Lagrange equations reduce to 

D,F,, = 0, (4.13) 

iNote that this differs by a factor of g from the formula (3.46) given in Section 3.3.1. This is because in 
the analysis of Seiberg and Witten all of the fields are rescaled by a factor of g. Here we choose to work 
with the original fields, and account for factors of g in the final comparison with the exact results. 
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f x = 0, f X = 0, (4.14) 

f i j = 0, Ipip = 0, (4.15) 

DKA = V2ig[X,iP], (4.16) 

D^A^ = 0. (4.17) 

I n the approach of Finnel and Pouliot the A'ukawa terms in the action are treated pertur-

batively.^ This means that the source term on the right-hand side of Eq. (4.16) is neglected 

in the first approximation. 

We now present the solutions to Eqs. (4.13)-(4.17) (without the source term) that rep­

resent the leading order short-distance constrained one-instanton background. The appro­

priate solution to Eq. (4.13) is the BPST instanton. I t is convenient to define 

u = u^e^, u = u^ = u^e^. (4.18) 

I f we impose the constraint u^u^ = 1 then the matrix u belongs to the gauge group SU(2). 

The singular gauge BPST instanton can now be writ ten 

where = (x — x^fj^j, and the matrix u effects the iso-rotations. 

I n the background of the BPST instanton, the solutions to Eqs. (4.14)-(4.r7) are well-

known. For the Higgs field we have 

^ = - r ^ l r \ (4.20) 

Clearly this satisfies the boundary condition 

l im A = (.4) = ^ r ^ (4.21) 
x—^oo 2 

^In the models with matter, this approach is inadequate because it fails to generate leading order terms 
in the instanton action that are quadrilinear in fermionic collective coordinates. In the SU(N) semiclassical 
instanton calculation of Section 4.3 we obtain the ful l one-instanton solution to Eq. (4.16), in the presence of 
the Yukawa source, and use it to construct the instanton action. In Chapter 5 the SU{N) ADHM formalism 
is used to construct the ful l A;-instanton solution to Eq. (4.16). 
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As for the fermion fields, the index theorem predicts that there are four solutions of the 
Dirac equations (4.14) and (4.15) for each of A and ip. (The only solutions to the antifermion 
field equations are A = 0 and ip = 0.) Let us define 

y = y^e^, y = y^e^,. (4.22) 

The four zero-mode solutions^ for A can now be writ ten 

_ V2p^yxiT\Lyiss)aT-
TT i/{y^ + p^Y 2 

The zero-mode solutions for if) take an identical form, but we replace the Grassmann col­

lective coordinates ^ss 0 and wi th ^ 5 5 ^ and C,^^. 

In Eqs. (4.23) and (4.24) we have labelled the fermion zero-modes using the subscripts 

'SS' and 'SC which stand for 'supersymmetric' and 'superconformal' respectively [15]. The 

two supersymmetric zero-modes are related to the BEST instanton solution by an Af = 1 

super-symmetry transformation (specifically, this is given by Eq. (C.2)). The superconformal 

zero-modes are associated wi th a superconformal transformation (see e.g. Appendix A of 

42]). 

Using the solutions listed above we can evaluate the leading order one-instanton action. 

We find 

SljLTsYM = 2 J d'xTv(^~F^,F,, + D,A^D^A-V2igA^[ip.,X]^ 

= ^ + 4 . V | v | ^ - ^ ( C s c . , C 5 C 2 ) ^ r 3 n f f ^ ^ ^ ) . (4.25) 
9^ V2 \^sc 2/ 

Note that the instanton action depends on the superconformal collective coordinates but 

not on the supersymmetric collective coordinates. The four supersymmetric zero-modes are 

exact zero-modes whereas the superconformal zero-modes are l i f ted by the Yukawa term in 

the action. 

^As in Section 2.4.2, we refer to solutions of the Dirac equation as zero-modes, although we now regard 
these zero-modes as constituting part of the instanton background. 
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Our next consideration is the collective coordinate integration measure. When N = 2 
the SU{N) measure (2.64), associated wi th the bosonic zero-modes, simplifies to 

210^6 
d'^xodpp\ (4.26) 

We have omit ted the group space integral because the integrand wi l l turn out to have no 

dependence on the group space variables. (This simplifying feature is not present in the 

N > 2 models and the group integration turns out to be highly nontrivial.) Since the zero-

modes (4.23) and (4.24) are already normalized, the measure associated wi th the fermion 

zero-modes is simply 

j d%cd\scd'^ssd'Css- (4.27) 

Now we turn to the small-fluctuations determinants. In supersymmetric theories an 

important simplification of the instanton calculus occurs in connection wi th these determi­

nants. Namely, the factors due to fermionic and bosonic field fluctuations exactly cancel 

each other in the background gauge.^ In the present calculation, we can see the cancel­

lation directly. In Eq. (2.68) we presented the ' t Hooft determinant for a complex scalar 

field of isospin t. Let us refer to this determinant as D j . In Af = 2 supersymmetric pure 

SU(2) Yang-Mills theory, all fields have isospin equal to one. From the discussion following 

Eq. (2.68) we now ascertain that the gauge boson and its ghost contribute a factor the 

two Weyl fermions contribute a factor Dj, and the complex scalar field contributes a factor 

£>f ^ Hence the determinants manifestly cancel. 

I n Section 2.4, we described how the renormalization divergences of t h e ' t Hooft determi­

nants are regulated by powers of the Pauli-Villars mass f,i. The number of powers of that 

appear depends on the number of bosonic and fermionic zero-modes. In the present calcula­

t ion, we have the usual eight bosonic zero-modes associated wi th the BPST instanton as well 

as eight fermionic zero-modes. From the bosonic zero-modes we get a factor and f rom the 

fermionic zero-modes a factor / i " ^ . Together these factors have the right power, 6o = 2^^, 

to combine w i t h the instanton factor exp{-8n'^/g'^) and generate the renormalization group 

^More precisely, this cancellation occurs for any self-dual background configuration in four dimensions 
in the covariant background gauge [48]. 
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invariant scale 

yV^^. = / e - « ' ^ ' / ^ ' . (4.28) 

(The subscript T V indicates that this scale has been defined in the Pauli-Villars renormal­

ization scheme.) 

I t remains for us to consider the antifermion field insertions. Since we are calculating a 

low-energy Green's function, i t is the long-distance ' t a i l ' of the instanton that is relevant. 

By virtue of the patching relation described in Section 2.4.3, the long-distance instanton can 

be obtained f rom a Taylor expansion of the short-distance instanton. We therefore consider 

the next-to-leading order short-distance field equations for A and '0, 

pX = V2ig[A\ V] , Pi^ = ~V2ig[A\ A]. (4.29) 

Since the four antifermion field insertions must saturate the integration over all four super-

symmetric collective coordinates, we substitute A = A55 and ip = ifss hi these equations. 

The corresponding solutions are 

>^ss. = - ^ j / ^ M ' r ' ' n y C s s ) a (4.30) 

and similarly for tpss with (ss ^ ^S5- In the long-distance l imi t , the light low-energy 

fields can simply be equated wi th the th i rd isospin components of the microscopic fields. 

From the first term in a Taylor expansion of A l ^ , we finally obtain the required long-distance 

field insertion, 

X^''{x)=tgvp\(:ssSaa{x,xo) (4.31) 

Importantly, this has the right long-distance behaviour to be associated wi th a massless 

fermion propagator.^ 

We have now considered all of the components of the semiclassical instanton method. 

Pu t t ing these components together we have 

•''If we were to calculate the one-instanton contribution to the Green's function {\(xi)X{x2)ipix3)ip(x4)) 

then the field insertions would be obtained from the supersymmetric zero-modes, A55 and ^ss- But at 
large \x\, the solution (4.23) falls off more rapidly than a fermion propagator and therefore gives vanishing 
contribution after LSZ amputation. To get field insertions with the right long-distance behaviour to be 
associated with this Green's function we must turn to the anii-instanton sector. 
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{X{x,)Xix2mxs)ijix4))u = — ^ J d%cd%c J dp p'exp {-SIZTSYM) 

X I d%sd\ss I d'xoX^''ix,)X'^''{x2)^"'{xs)i^''^{x,) 

^ j d''xoSaa{Xl,Xo)S''''{x2,Xo)Sf,^{x3,Xo)S^^{x,,Xo). 
15 A 

2^2 g2^6 

(4.32) 

Note that all v dependence cancels out after the collective coordinate integrations are per­

formed so that we get the expected holomorphic dependence on v. 

In order to compare the result of this semiclassical calculation wi th the Seiberg-Witten 

prediction we require the relation between Apy and the scale defined implici t ly by the 

Seiberg-Witten analysis. I t is well-known that A's defined in different renormalization 

schemes are related by a factor that is completely determined at one-loop in perturba­

t ion theory. To find this factor, Finnel and Pouliot compared the one-loop expression for 

the effective coupling r^^f = J^"(v) in the Pauli-Villars scheme wi th the one-loop expression 

derived f rom the Seiberg-Witten prepotential. These expressions are the same provided 

A'-o = (4.33) 

where bo = 4. This is the desired matching relation. After accounting for factors of g, the 

expression (4.32) perfectly agrees wi th the prediction (4.5), wi th = 1/8. 

As a final comment, we note that the Wilsonian effective action predicts solutions for 

other low-energy Green's functions, besides the four-fermi correlator (4.1). For instance, we 

can extract a four-fermi coupling of antifermion fields, which gives the low-energy amplitude 

{X{xi)X{x2)i>ix3)ipix4)). The expression for this amplitude is just given by replacing v wi th 

V on the right-hand side of Eq. (4.3). This is reflected in the semiclassical approach, since 

the relevant contributions to {X{xi)X{x2)ip{x3)tl>{x4)) originate in the anti-instanton sector. 

Semiclassical calculations in this sector emulate those performed in the (A; > 0)-instanton 

sector, and give the same results but wi th v and v exchanged. 

Other Green's functions that can be obtained f rom the Wilsonian effective action are 

{vmn{xi)M^2)'4'{xz)) and {vmn{xi)vpg{x2)). In [42] the one-instanton contributions to a 
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general class of correlators including these were calculated. The results were all found to be 
consistent w i th the prediction JT̂  = 1/8. 

4.2.2 Two-Instanton Tests 

The analysis of Finnel and Pouliot was extended to the two-instanton level by Dorey, Khoze 

and Matt is [42]. Their calculation utilized the multi-instanton solution of Atiyah, Drinfeld, 

Hitchin, and Manin [2]. (We describe this solution in Chapter 5.) After completing the 

32-fold integration over collective coordinates, Dorey, Khoze and Mattis determined the 

two-instanton coefficient J^2 in Eq. (3.55) to be 5/256, in complete agreement wi th the 

exact results. 

In subsequent work [43, 45], Dorey, Khoze and Matt is have considered the SU{2) models 

w i t h matter hypermultiplets (see also [44, 37]). As was mentioned in Section 3.3.2, odd-

instanton effects in these models vanish when any hypermultiplet mass is set to zero. For 

nonzero hypermultiplet masses, a renormalization group matching condition ties the one-

instanton contribution to the one-instanton effect in the pure Yang-Mills model. (This 

matching condition was described in Section 3.3.2; see Eq. (3.96) in particular.) Therefore a 

one-instanton calculation does not provide an independent test of the exact results in these 

models. The first tests are necessarily at the two-instanton level. 

For the models w i th Nf < 3 flavours of matter hypermultiplets, the two-instanton calcu­

lations of [43, 44, 45, 37] were in complete agreement wi th the predictions of Seiberg-Witten 

theory. However, for A^/ = 3 matter hypermultiplets the two-instanton contribution to the 

condensate u = (TrA^) was found not to match the prediction of Seiberg and Witten.*' Let 

us denote by u the solution obtained f rom the Nf = 3 Seiberg-Witten curve. Then the 

two-instanton discrepancy reads [37, 36 

u = u - UQA^, (4.-34) 

**The exact solution for u is obtained by inverting the formula for v(u). At weak-coupling it has an 
expansion consisting of a classical term plus an infinite sum of nonperturbative terms. These nonper-
turbative terms have the form of instanton effects and they can be directly compared with the results of 
semiclassical calculations. 
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where uo = -1/2^3^. 

I t was observed in [36] that the Seiberg-Witten analysis is insensitive to a constant shift 

in the curve parameter u. None of the global symmetries or monodromy properties that 

were bui l t into the Nf = 3 curve are affected. Nor is the solution for the prepotential 

altered by a shift in u. The exact prepotential is obtained by inverting the function v ( f i ) 

and substituting into V£i( 'u) = fF'{u). Clearly u acts as a dummy variable in this procedure. 

Therefore the discrepancy can be resolved in a straightforward way, by simply reinterpreting 

the parameter u appearing in the Seiberg-Witten curve as the shifted condensate (4.34). 

Note that a /c-instanton effect in the Nf = 3 model is proportional to A^ since the /?-

funct ion coefficient, bo = 2N — N f , is unity. From dimensional analysis i t follows that a 

constant shift in u can only correspond to a two-instanton effect. Hence the curve should 

be completely fixed by the reparameterization described above, and there is no room for 

fur ther discrepancies at higher order instanton levels. 

For the Nf = 4 model, the disagreement between the instanton calculus and the exact 

results is more serious. Since the /3-function vanishes when Nf = 4, there is no scale A in this 

model. The parameter that takes its place is the instanton factor q = e^^", where r is the 

complexified coupling of the microscopic SU(2) theory. Now when all four hypermultiplet 

masses are zero there are no mass scales present. Seiberg and Wi t ten assumed that in this 

case, the effective low-energy coupling is identical to the microscopic coupling, 

(0) (4.35) 

(The superscript on r^ff is to stress that this is the effective coupling of the massless theory.) 

The semiclassical calculations performed in [45, 36] show that in fact the effective coupling 

has the expansion 
oo 

r S = r + ;^Co + ^ Y : c,q\ (4.36) TT TT 
k=2A,. 

I n the Pauli-Villars scheme,^ a one-loop perturbative calculation gives CQ = 2 In 2 and a 

•̂ As was stressed in [36] i t is important to be explicit about the renormalization scheme, even though 
the theory is finite. This is because the theory still generates divergent Feynman diagrams. I t is only when 
diagrams are summed that the divergences cancel. The renormalization procedure fixes the usual ambiguity 
associated with this cancellation of infinities. 
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two-instanton calculation gives C2 = —7/2^3^. 

To resolve this discrepancy it was proposed in [36] that the curve parameter q should be 

replaced by 

gfS=exp(27^^ri;]). (4.37) 

For four flavours of massless matter hypermultiplets, the modified curve predicts the identity 

T^'j] = T^f] instead of Eq. (4.35). Hence the incorrect prediction (4.35) is avoided (although 

somewhat at the cost of the predictive power of the massless curve). 

In Section 3.3.2, i t was mentioned that the Nf = 3 curve can be obtained from the N/ — i 

curve if one uses a modified version of the renormalization group matching condition (3.96). 

The modified relation involves a factor of 64 that the Seiberg-Witten analysis fails to explain. 

On the other hand, if the curve parameter q is reinterpreted as then the origin of this 

factor can be easily understood [36]. By substituting q = gf°) in the modified version of 

the matching relation (3.96) (see associated footnote), and using the expansion (4.36), we 

obtain 

Am^qpv As- (4.38) 

(We have used the calculated value of CQ in the Pauli-Villars scheme.) In the Nj = 4 model, 

the one-loop relation between scales, Eq. (4.33), becomes qsw = iQpv Substituting this 

into (4.38) gives 

m4qsw A3, (4.39) 

which is the expected relation between parameters defined in the (implicit) Seiberg-Witten 

scheme. This result can be regarded as strong circumstantial evidence that the proposed 

fix of the Nf = 4. curve is correct. More stringent tests of the corrected curve would be 

provided by calculations at the three-instanton level and beyond. 

Mul t i - i n s t an ton Test 

Besides enabling the two-instanton tests summarized above, the SU{2) multi-instanton cal­

culus developed by Dorey, Khoze and Mattis [42, 45, 49] has been applied to verify a certain 

relation between u and to all orders in the instanton expansion [50, 45]. This relation was 
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originally derived by Matone [51] using the Seiberg-Witten curve for the pure 5(7(2) Yang-
Mills model. The Matone relation was shown to hold in SU{2) models with matter in [52 . 
Physically, it can be understood as a Ward identity for superconformal invariance [53]. The 
Matone relation reads 

u. (4.40) 
5 In A 2Tri 

The formula (4.40) was first checked by explicit one-instanton and two-instanton calculations 

in [54], and later shown to be true at all A.--instanton levels in [50, 45 . 

Note that the relation (4.40) does not contradict the statement that in the SU{2) model 

with Nf — 3 flavours there is a discrepancy associated with u but not with T. Although 

the Matone relation does imply that a constant shift in u is tied to a constant shift in T., 

a constant shift in T is not physically observable because only derivatives of T appear in 

the efl'ective action. In contrast, the discrepancy associated with !F in the finite model with 

Nf = A flavours is linked to a discrepancy. The Matone relation for this model implies that 

the classical relation u = v^/2, expected to hold when all four hypermultiplet masses are 

zero [18], suffers the same quantum corrections as the eff'ective coupling rf°] (see Eq. (4.36) 

above). This u discrepancy can be fixed by reinterpreting the parameter u appearing in the 

Nf = 4 Seiberg-Witten curve in accordance with the Matone relation and the identification 

r = rf?] [36]. 

The Matone relation has also been shown to follow from the hyperelliptic curves proposed 

for the J\f = 2 supersymmetric SU(N) models with N > 2 [55]. In Chapter 6, we shall 

confirm that the Matone relation holds in these models using the SU{N) multi-instanton 

calculus constructed in Chapter 5. 

4.3 SU{N) Instanton Tests 

Just as in the SU{2) theory, the exact solutions in Af = 2 supersymmetric SU{N) Yang-

Mills theory with N > 2 can be expanded in the semiclassical regime to give the one-

loop perturbative contribution plus predictions for A;-instanton corrections [31]. The weak-

coupling expansion of the exact prepotential in the SU{N) models has been performed 
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in [56]. The A:-instanton contributions take the form of rational functions of the vacuum 
expectation values v„. 

The first instanton tests of the SU{N) exact results were performed at the one-instanton 

level by Ito and Sasakura in [57, 58]. These authors calculated the singular part^ of the 

one-instanton contribution to the prepotential. When Nf < 2N — 2 or Nf = 2N — 1 there are 

no additional regular terms and the result is in full agreement with all of the hyperelliptic 

curves proposed in [19, 20, 21, 22, 38, 39 . 

In Section 3.3.2 it was mentioned that the the curve parameterizations that were sug­

gested for the SU{N) QCD models in [21] and [22] are not identical when Nf > N. Nor do 

they match either of the parameterizations that were later suggested in [38] and [39]. For 

the the case A'̂  = 3, Ito and Sasakura were able to calculate the regular terms that appear 

when Nf > 4 in the one-instanton contribution to U2 [58]. Their results are in conflict with 

the predictions of all of the proposed curves and imply that none of the parameterizations 

in [21, 22, 38, 39] are correct. 

In this section we perform a separate test of the proposed curves, by evaluating the 

one-instanton contribution to the quantum modulus in M = 2 supersymmetric SU{N) 

QCD with N > 2 and Nf < 2N flavours of matter liypermultiplets [47]. (The curves predict 

exact solutions for all the condensates n„ = (Tr/1"), where n = 2, 3 , . . . , A .̂) Following the 

method of Ito and Sasakura, we determine the most singular part of the answer, which for 

Nf < 2N - 3 or Nf = 2N - 2 is the complete answer and agrees exactly with the prediction 

extracted from the curves. Our analysis also gives the coefl^cients of the regular terms which 

arise in the SU{3) theory when Nf > 3. Here we find further disagreement with all the 

proposed curves. 

To a large extent the semiclassical analysis we now describe parallels that of Section 4.2.1. 

Our first task is to write down the defining equations of the leading order short-distance 

constrained instanton. These are [42, 45, 37]: 

F,. = F,,, (4.41) 

*The one-instanton contribution can be decomposed into a 'regular' term and a 'singular' term, which 
diverges when any two VEV's coincide, corresponding to the restoration of a non-Abelian gauge symmetry. 
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f x = 0, p^ = 0, f x = 0, Px = 0, (4.42) 

^ A = 0, f'ip = 0, 'Px = 0; Pi = 0, (4.43) 

D^A^V2ig[X,ij], D-A^" = ^/2igxT''x•, (4.44) 

D^q = V2igXx, D^Q = -\/^WX\ D^Q^ = y^WX'^, D'^Q^ = '^^9^X• (4-45) 

For notational clarity we have dropped the flavour indices on the squark and quark fields 

q and x- On the Coulomb branch of the theory, the Higgs field A acquires the matrix of 

vacuum expectation values given by Eq. (3.97). This imposes a boundary condition on the 

solution for the Higgs field, since it must approach its matrix of VEV's at large distances. 

The required self-dual solution to Eq. (4.41) of unit topological charge is given by 

the 'minimally embedded' BPST instanton (2.23). This configuration is subject to global 

gauge transformations which rotate it into SU(N) group space. However, for the purposes 

of the instanton calculation we can choose to preserve the upper left embedding of the 

BPST instanton, and perform global gauge transformations of the matrix of VEV's (3.97) 

instead [59]. Therefore, in singular gauge, we have 

-4. = — j f l \ , T \ , (4.46) 

and the boundary condition on the Higgs field becomes 

SU{N) 
lyKoo ^ ' SU{N -2) X U{1) 

A, A2 
As Ai 

(4.47) 

The second equality indicates a convenient partitioning of the rotated VEV matrix; Ai and 

A4 are 2 x 2 and (N — 2) x {N - 2) matrix blocks respectively. 

The leading order instanton action can be simplified by integrating by parts and using 

Eqs. (4.41)-(4.45). We obtain 

So = ^ + j d ' x d, { 2 T r ( ^ t ^ ^ ^ ) + ^D^q^q + {D,q)^q} + V2zm j d'x XX 

+^ig j d'x {xAx + q^Xx + # x ) • (4-48) 
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The \/2 prefactor of the quark mass term allies us with the usual curve convention. 

We now present the remaining singular gauge solutions to the defining equations, which 

we shall use to evaluate the above action. The only solutions to the antifermion field 

equations (4 .43) are trivial. The normalized zero-mode solutions for the gaugino A are 

listed in [59, 60], 

^SCa ^ Ti";—2^2""-' ' (4.49) 
TT ( r + p^r 

^SSa = — f i f + p^r ' ^ ^ 

( A M . ) . . = - 4 - AfT^sn^'^^ {v = 3,4.,...,N), ( 4 . 5 1 ) 

= -W Afli^V.^'- (n = 3 ,4 , . . . , iV) . (4.52) 
V2^ Vy2(?/2 + p2)3/2 

(Here e is the antisymmetric tensor satisfying ê ^ = 1.) In addition to the two superconformal 

and two supersymmetric modes there are an additional 2{N—2) modes which we have chosen 

to partition such that the ' M ' modes five in the upper right and the 'N ' modes live in the 

lower left parts of the matrix representation of the SU{N) Lie algebra. The analogous 

solutions for ip are obtained by switching the Grassmann collective coordinates ^ ^ C-

The normalized solution for a quark flavour is [59, 60 

Xau ^v/^(?/2 + p2)3/2'-

The conjugate quark solution is given by Xau = ^'^'"Xav provided we exchange the collective 

coordinate r] for f j . 

Turning to the scalar fields, we separate the solution for A into a part satisfying the 

homogeneous equation, A^, and a particular solution Ap which arises in the presence of the 

Yukawa source term. The homogeneous solution was found in [57] to be 

( ^ ^ i ( t i ) + |Tr(/lO/2 ^ A , 
(4.54) 

^ A . 

where A^^) = A i - |Tr(Ai) /2 and h is the 2 x 2 identity matrix. This solution manifestly 

satisfies the boundary condition (4.47). 
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Linearity enables Ap to be decomposed further. If we define AA/B as the particular 
solution with fermionic modes A_4 and ipB inserted into the source term, then 

A,B=SC,SS,M,N 

We obtain the following list of independent solutions which enter the right-hand side of this 

equation: 

Ass/ss = ' - ^ /- „ JT-^-— ^ , 4.D8) 

{ASC/M)UV - 8^2 (̂ 2 + p2)3/2^5cCMz;, (4-59) 

(/l5C/iv)K. = ^(^2^p2)3/2CiVu(eeSc)., (4-60) 

(/1M/A')WI; = „ o 7 ^ 9\ i ^ui;'̂ ii,i;<2 CA ÎO^MU; - 2CNU^MVK,V>3 \ , (4 .63) 

A M / M = AN/N = 0. (4.64) 

The solution for AA/B is deduced from the solution for AB/A by changing the sign and 

making the exchange C ̂  C-

The conjugate Higgs also consists of a homogeneous and a particular solution. The 

homogeneous solution is simply the Hermitian conjugate of (4.54) whilst the particular 

solution is 
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Finally, each squark solution is a sum of particular solutions [60], 

Qscu — 

QSSu = 

QNU = 

4 /̂27r2 (y^ + p2)3/2 

igp Vn 
47r2 y ^ ( y 2 + p2)3/2 

ig 1 

CscV, (4.66) 

(4.67) 

4,2(,2 + ,2 )S . . . , (4.68) 

where q^ represents the solution with inserted in the source term. The solutions for q^ 

and the conjugate representation squarks may be obtained by straightforward manipulations 

of these configurations. 

By plugging the above solutions into Eq. (4.48) we are immediately able to evaluate the 

leading order instanton action. Ignoring supersymmetric zero-modes which are not lifted 

and give no contribution, we find 

Sir^p'F + giCsc, CM, CN)M{^SC, ^M, (NY-. (4.69) 2 J d'xd^TviA^D^A) 

d'xd,{{D,q)U) 

d'xd,{{D,qYq) 

\f2im J d'^xxx 

V2ig J d^xxAx 

0, 

—i\/2mf]r], 

- ^ T r ( A i ) w 

(4.70) 

(4.71) 

(4.72) 

9' 
N 

24'K^P' 
^ ( ^ M u C i V u + ^NuCMu)V'n; 
u=3 

N 

/

2 
d'^x {q^Xx +qi^x) = ~ 197r2p2 ^{^MUCNU + ^NUCMU)^ 

3 
In Eq. (4.69), F and M are the same as in [57], namely 

F = Tr(Al(,,)Ai(u) + \{A,A\ + ^ 4 ) ) , 

and 
I V2eA\,,,^ {A\y eA\ 

M = i Al 

V (^4)* -^-^iN-2 + V2{Aly 0 

i/A._2 + V2A\ 

(4.73) 

(4.74) 

(4.75) 

(4.76) 
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where I^-o is the (A^ - 2) x (A'' - 2) identity matrix. 

Our next consideration is the collective coordinate integration measure. The bosonic 

measure is given by (2.64). Since the fermion zero-modes are all normaUzed, the complete 

one-instanton measure reads 
p o47V+2̂ 47V-2 ..^N-Nf r f C f 

Here we have included all factors of the Pauli-Villars regularization mass p, that arise due to 

the bosonic and fermionic zero-modes. We can eliminate in favour of the renormalization 

group invariant scale 

aJ,^-^^ =/.2iv-iV;g-8.V.\ (4.78) 

To compare with the exact results, we need to switch from the Pauli-Villars scale to the 

scale A used in the hyperelliptic curves. In [58] i t was shown using renormalization group 

matching arguments that these scales are related by 

Since there is complete cancellation between the small-fluctuations determinants asso­

ciated with quadratic field fluctuations [48], we can now write down an expression for the 

one-instanton contribution to Un- After assembling the relevant factors and performing the 

integration over the quark zero-modes we have 

\2N-Nf 

<• = - '_J22''-'''*'g'''-' f d i ^ f ceQssd%s f <iSoTr(.4») 
p=0 J J J 

xtp Tv{Ai) - ^ y^i^MuCNu + iNu(,Mu) exp(-5/,), (4.-80) 

where the XQ and SS mode integrations have been separated from dfi, leaving 

SH is just the contribution of the Higgs kinetic term to the action as given by (4.69) and 

the tp are symmetric polynomials in the hypermultiplet masses, 
N; 

tp= ^ m,j?n,2... m-ip. (4.82) 
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In contrast to the low-energy Green's functions considered in Section 4.2.1, the con­
densate Un is calculated using field insertions given by the instanton background at short 
distances. These insertions must saturate the integration over the collective coordinates 
corresponding to the exact supersymmetric zero-modes. It follows that only the part of 
Tr(/1") which contains precisely four SS Grassmann variables can give a nonzero contri­
bution. When n = 2 this is just Tr(74|^^5^) and using Eq. (4.58) we can perform the 
integration of the field operator over XQ and the SS modes, 

jdXssd%s f d'x,Tr{A') = (4.83) 

In [57, 58], the authors considered the integral expression (4.80) when n = 2. Since the 

integration over group space was not generally tractable they studied the particular case of 

two VEV's being infinitesimally close. In this limit they found that the group integration 

linearized and could be carried out. The singularity structure of the answer is associated 

with the infra-red divergence caused by the restoration of a non-Abelian subgroup when 

any two VEV's coincide. Taking this to represent the only instance where the instanton 

integration diverges, and by considerations of dimensional analysis, gauge invariance and 

holomorphy, Ito and Sasakura deduced the full result 

p=0 llvjiuV^y ^u) u = l / 

The analysis fails to determine the constant coefficients of the regular terms, CKAT and P N . 

However, in the specific case of SU{3) Ito and Sasakura were able to directly evaluate the 

integral expression for uY and they found that (0:3,/?3) = (-3/8, -15/64). For a range of 

input values for the VEV's we have numerically verified these results. 

We now employ the explicit solutions for A to evaluate uY along similar lines. For inser­

tion into the integrand, we require the part of Tr{A^) which has the necessary quadrilinear 

dependence on the SS Grassmann variables. This is 

3Tr \ Als/ss Ah+ Yl ^ ^ / ^ I r + 3Tr ^ Ags/ss \ 2^ A^/ss + 2 ^ ASS/B 
,B^SS 

(4.85) 
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Since A'^ggj^g is proportional to the 2x2 identity matrix in the upper left block of the matrix 
representation, the first term reduces to two distinct nonzero components, 

3Tr{Als/ssAk) = ITT{AIS/SS)MAI), (4.86) 

STiiAls/ssi^M/N + A^/M)) = - ^ ^ - ^ ^ f f ^ f ^ i ^ M k C i v k + (,'k(Mk)- (4.87) 

The second term simplifies because Ass/ss is composed of PauU matrices living in the upper 

left corner of the matrix representation. Closer inspection shows that the only contributing 

component is 

3TV{ASS/SS{AM/SSASS/N + ASS/MAN/SS)) = - „ / - „ 5— ^— / ^{^MUCNU + ^NUCMU)-
Sy/zn^ y + P ^ 

(4.88) 

Upon integrating over XQ and the SS modes, we get 

j d%sd%s I d'xoTviA') = ^ U{Ai) - ^ ^ ^ ^ ^Z^^MUCNU + UUCMU). • 

(4.89) 

The first factor in brackets is just the corresponding result (4.83) for the Tr{A'^) insertion 

whilst the second factor precisely matches the part of the instanton action which is pulled 

down by the integration over the quark collective coordinates. 

This is a fortunate result since it allows us to immediately determine uY from knowledge 

of uY- Using Eq. (4.80) and Eq. (4.84) and after accounting for a rescafing of the Higgs 

field, we find that for Nf < 2N, 

(4.90) 

where (ofA^.^/v) = {aN,/^^). 

Let us now make the comparison with the exact results. For Â ^ < 2A'' we can make use 

of the freedom to shift the x-variable to write all of the proposed curves [21, 22, 38, 39] in 

the following form, 

y' = P{xy-Qix), (4.91) 
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where 

Nf N 

Qix) = A ^ ^ - ^ / J2 tpx""^'^ and P(x) = Y l { x - e u ) + A^'''~''^T{x). (4.92) 

The moduli space parameters e„ satisfy ^ ^ ^ ^ e„ = 0 and are related to the moduli of the 

physical theory through 
N 

u=l 

The function T{x) satisfies 

T{x) = '£tpT^''f-P-"'\x)6r,f-p>N., (4.94) 

where the T^^f^'^^^x) are polynomials of degree (Nf—p—N) in x, with possible dependence 

on the dynamical scale and also on the moduli space parameters. The precise form of 

the polynomials T^'^f~'P~'^\x) distinguishes the various curves proposed in [21], [22], [38 

and [39].^ 

The exact solutions are obtained from the curves through the periods 

v „ . = ( « 5 ) 

V. = (4^96) 

where 
x{P' - ^ ) 

A = ^-^dx. (4.97) 
y 

and the Au and B„ are a canonical basis of one-cycles enclosing branch cuts of the curves. 

These integrals can be expanded in powers of A'^^-^f in the weak-coupling regime [56 . 

Here, we require only the expansion of Eq. (4.96), 

( _-i\n( \2N-Nj\m+n a2m+n-l 

m,n>0;m+n^O ^ ' ^There is one requirement that is satisfied by all parameterizations. Namely, in the A/ = 2Â  - 1 curves, 
the x^-^ term in T^^~^'i{;£) has coefficient \ . This ensures that the meromorphic one-form A has no residue 
at infinity when the bare masses are zero. 
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where 

Suie) = ^ r f ^ ' ^ ' l and i4(e) = (4.99) 

At the one-instanton level it is a simple matter to invert this series and use the defining 

expression (4.93) to get the curve prediction for • The answer may be written in the form 

n ( n - l ) A ^ ^ ^ Yu' 1 j N j - p ) \ . . 

4 ^ "-M ^ fv - V )2 p=0 \u=i lLv^^u\^v ^u) 

where ri^^ is a regular function of the VEV's given by 

Z^l n » ^ . ( v « - V^)2 \ ^ (V„ - V,) 

^ 4 , f v r^ r (^ - /^^ -^ ) (v . ) i , . o 
+4()^^_p>Ar2^ — ^ — — — . (4.101) 

The non-singular nature of r\^^'^^ can be verified by expanding it in powers of the separation 

between two VEV's. 

When Nf—p< 2N — n or Nf—p = 2N — n+1, the regular function ri!"^ vanishes and 

the ful l answer is unambiguously given by the singular term in Eq. (4.100). Setting n = 3 

and comparing with Eq. (4.90), we conclude that when Nf < 2N - 3 or A'̂ ; = 2N -2 all of 

the proposed curves predict the correct one-instanton contribution to ^ 3 . By setting n = 2 

and comparing with Eq. (4.84), we confirm the similar observation of Ito and Sasakura [58], 

i.e. the agreement of all the proposed curves with the one-instanton prediction for U2 when 

Nf < 2N - 2 ov Nf = 2N-1. 

When Nf > 2N — 3, the functions r^2^~'^\ rf^"'^'' and r3^^~^^ simplify to give regular 

terms of the expected form. (In fact, this form is fixed by dimensional considerations.) 

However, the associated numerical coefficients critically depend on the function T{x). In 

Table 1 we summarize the curve predictions for the coefficients 013, 0:3 and ^3 pertinent to 

the SU(3) theory with Nf < 6 flavours, according to the various suggestions for T{x) in 

21, 22, 38, 39]. We see that none of the proposed curves give the numbers predicted by the 

instanton calculus. 
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For the SU(3) models, the instanton results can be used in conjunction with Eq. (4.100) 
to fix the parameterization of the curves so that they are free from discrepancies at the one-
instanton level. In Table 1, we give the polynomials T'^^^x), T^'^^x) and T^'^^{x) that lead to 
the right regular term coefficients. Note that in fixing these polynomials we are essentially 
making shifts in the curve parameters e„. Through Eq. (4.93), this equates to shifting the 
implicit curve parameters U2 and u^. So our fix of the SU{3) curves is similar in nature 
to the fix of the Seiberg-Witten curve for the SU(2) model with Nf = 3 flavours [37, 45]. 
Dimensional considerations imply that T(°)(a;) and T''^\x) are uniquely fixed so that in the 
Nf — 3 and Nf = 4 models there can be no discrepancies at higher order instanton levels. 
For the Nf — 5 model there is room for further corrections up to the three-instanton level. 

Source of prediction T ( ° ) ( X ) T^^\X) T^^^X) ( Q ' 3 , Q ; 3 , ^ 3 ) 

Ref. [21] I \x \x' (0,0,-1/4) 
Refs. [38] and [22] 0 0 l^^ + is^ + ^ ' YA^2 (-1,-1/2,-1/3) 
Ref. [39] \ \x |x2 + \u2 (0,0,0) 
Instanton calculus ^ ^x \x'^ + (-3/8,-3/8,-15/64) 

Table 4.1: Predictions for the coefficients of the regular terms appearing in the one-instanton 
contributions to the moduli U2 andu^ inM = 2 supersymmetric SU{d) QCD, according to suggested 
forms for T{x) [defined by the polynomials T^°Hx}, T^^^x) and T'^^^X)). 

In Section 4.2.2, we showed that the proposed fix of the Nf = 3 Seiberg-Witten curve did 

not affect the solution for the prepotential. In a similar way, the prepotential obtained from 

the Nf < 2N hyperelliptic curves is insensitive to the function T{x) [56]. In this respect, all 

of the Nf < 2N curves are equivalent. However, we stress that the form of T{x) critically 

afl!"ects the predictions for the condensates. For the physical correspondence to be complete, 

there must exist a definite form for T{x) which determines the correct Our results show 

that the criteria used in [21, 22, 38, 39] to fix T{x) cannot be valid. I t would be interesting 

if some alternative a priori criterion could be found which is consistent with the instanton 

calculus. 

The instanton calculation of this section has been limited because we were not able 

to perform the highly nontrivial integration over group space collective coordinates. In 

Chapter 6 we shall reformulate the problem using the ADHM instanton calculus developed 
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in Chapter 5. This will enable us to completely evaluate the one-instanton contribution to 
the prepotential in A/" = 2 supersymmetric SU{N) QCD. 

4.4 Summary 

In this chapter we have described instanton tests of the exact results in Af = 2 supersym­

metric SU{N) QCD. The results of these tests can be summarized as follows: 

• There is complete agreement with the Seiberg-Witten SU(2) curves at both the one-

instanton and two-instanton levels when there are Nf = 0,1,2 flavours of matter 

hypermultiplets [41, 42, 43, 44, 45, 37. 

• When there are Nf = 3 flavours, the Seiberg-Witten prediction for the two-instanton 

contribution to the condensate u = {TiA'^) does not match the result obtained from 

first principles [37]. This discrepancy can easily be resolved, by making a shift in the 

parameter u appearing in the Seiberg-Witten curve [36 . 

• In the special case of Nf = 4 flavours, there is significant disagreement between the 

first-principles analysis and the exact predictions. The reason for this disagreement is 

that when all hypermultiplet masses are zero Seiberg and Witten take the low-energy 

effective coupling ri°] to be identical to the coupling of the microscopic theory, r. In 

fact, there are corrections due to both perturbation theory and nonperturbative in­

stanton effects. To resolve the discrepancy, it has been conjectured that the parameter 

r appearing in the Nf = 4 curve should be replaced by the effective coupling rf^] [36 . 

• For the SU{N) models with N > 2, the one-instanton calculations that have been 

performed in [57, 58, 47] agree with the predictions of the proposed hyperelliptic 

curves when regular terms are absent. 

• In the SU(3) theory there are discrepancies at the one-instanton level in the predictions 

for the condensates U2 and when there are Nf = 3,4,5 flavours [58, 47], similar in 

nature to the two-instanton discrepancy associated with the SU(2) model with Â y = 3 

flavours [37]. The discrepancies are linked to an ambiguity in the parameterization of 
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the hyperelliptic curves when Nf > N. The ambiguity can be fixed using the instanton 
results [47 . 

I t is clearly very desirable to extend the analysis to higher order instanton levels. In the 

SU{2) models with Nf = 3 and Nf — 4 flavours, this would provide an important check 

of the modified Seiberg-Witten curves. Much progress has been made along these lines by 

Dorey, Khoze and Mattis. Based on the ADHM formulation of multi-instanton solutions 

they have developed a complete SU{2) supersymmetric multi-instanton calculus [42, 45, 49]. 

In the next chapter, we describe the generalization of this calculus to supersymmetric SU{N) 

Yang-Mills theory. In Chapter 6 we apply the supersymmetric SU{N) instanton calculus 

to dramatically improve upon the one-instanton calculations described in Section 4.3. 



Chapter 5 

Multi-instanton Calculus 

5.1 Introduction 

An investigation of nonperturbative eff'ects due to instantons of topological charge greater 

than one requires the multi-instanton construction of Atiyah, Drinfeld, Hitchin and Manin 

(ADHM) [2]. Unfortunately, there are various technical difficulties which generally prevent 

the use of ADHM multi-instantons in semiclassical calculations. One of the problems is 

that the collective coordinates appearing in the ADHM construction are not independent, 

but must satisfy certain nonlinear constraints. These constraints have only been solved 

explicitly for low values of the topological charge (specifically, for k < 3) [61, 62]. Moreover, 

when A; > 1 the task of calculating the collective coordinate Jacobian factors and the small-

fluctuations determinants proves to be highly nontrivial. In fact, the only success has been 

the calculation of the two-instanton Jacobian factors in SU{2) Yang-Mills theory [63, 42]. 

Notwithstanding these difficulties, there have recently been significant advances in the 

study of ADHM multi-instanton effects, stimulated by the exact results in = 2 supersym­

metric Yang-Mills theory. In the pioneering work of Dorey, Khoze and Mattis [42, 45], the 

ADHM construction was employed not only to perform explicit two-instanton calculations, 

but also to derive results at the arbitrary /c-instanton level. 

Supersymmetry has played a central role in these developments. In particular, the two-

instanton calculations have relied on the cancellation of the small-fluctuations determinants 

88 
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that occurs in supersymmetric Yang-Mills theory[48]. The presence of supersymmetry is 
also reflected in the multi-instanton background configuration [15]. Since the defining ec^ua-
tions of the instanton are manifestly supersymmetric, i t follows that the solutions to these 
equations are transformed into one another by supersymmetry transformations. So the 
solutions comprising the multi-instanton background form a supersymmetry multiplet. 

Dorey, Khoze and Matt is observed that the supersymmetry algebra is realized in a 

very natural way on the overcomplete set of collective coordinates appearing in the A D H M 

construction [45]. Moreover, the A D H M constraints themselves are invariant under super-

symmetry transformations. Since physically relevant quantities in the instanton calculus 

(such as the instanton action and the collective coordinate measure) are supersymmetry 

invariant [15], i t follows that they depend upon combinations of the A D H M collective co­

ordinates that are invariant under supersymmetry transformations. This fact was exploited 

by Dorey, Khoze and Matt is to obtain the leading order constrained A;-instanton action for 

J\f = 2 supersymmetric SU{2) QCD [45 . 

I n subsequent work [49], Dorey, Khoze and Mattis have derived an expression for the 

A;-instanton collective coordinate measure in supersymmetric SU{2) Yang-Mills theory. In­

stead of directly calculating collective coordinate Jacobians, they introduced the measure 

as an ansatz, which takes the form of an integral over the fu l l set of unconstrained A D H M 

collective coordinates, w i th the constraints imposed using (^-functions under the integral 

sign. Using the key requirement of supersymmetry invariance, together wi th other symme­

tries, they proved the uniqueness of this ansatz, up to a numerical prefactor. The prefactor 

was determined f rom the well-known one-instanton measure o f ' t Hooft using an induc­

tive argument based on the property of cluster decomposition. Taken together, the results 

of [42, 45, 49] constitute a complete multi-instanton calculus for supersjanmetric SU{2) 

Yang-Mills theory. 

In this chapter we construct a multi-instanton calculus for A/" = 1 and M = 2 super-

symmetric Yang-Mills theory wi th gauge group U{Ny or SU{N) [64]. This represents a 

iThe A D H M formalism of [2, 61, 62, 63] is slightly more naturally suited to the gauge group U{N) than 
to the gauge group SU{N). We shall indicate what (minor) modifications of the formalism are required for 
the gauge group SU{N) where necessary. 
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generalization of the work of Dorey, Khoze and Mattis [42, 45, 49]. In the next chapter we 
shall employ our calculus to investigate (multi-)instanton effects in supersymmetric SU{.N) 
Yang-Mills theory. 

The chapter is organized as follows. In Section 5.2, we review the A D H M construc­

t ion of the general /c-instanton solution to the self-dual Yang-Mills equation [2, 61, 62, 63 . 

I n particular, we follow the derivation given in [62]. The remaining sections are devoted 

to the development of the supersymmetric instanton calculus based on this construction. 

Throughout these sections we treat the Af = 1 and Af = 2 cases in parallel. In Section 5.3, 

following [42], we construct the supersymmetric multiplets of instanton solutions. The 

adjoint fermion zero-modes were first derived in [62]. For the Af = 2 case we also require 

the solution for the adjoint Higgs bosons. The construction of these solutions in the SU{2) 

theory was one of the key results of [42, 45], and we show how to extend i t to U{N) (or 

SU{N)). In Section 5.4, we explain, following [45], how the Af = 1 and Af = 2 supersymme-

t ry algebras may be realized directly on the space of unconstrained bosonic and fermionic 

A D H M collective coordinates, prior to the imposition of the nonlinear constraints that they 

are required to obey. In Section 5.5, generalizing [42, 45], we obtain the Af = 1 and Af = 2 

multi-instanton actions for U{N) (or SU{N)) gauge theory coupled to Nf flavours of matter 

hypermultiplets. Finally, in Section 5.6, following [49], we derive the Af = 1 and Af = 2 

collective coordinate integration measures. 

Throughout this chapter we work in Minkowski space. This has the advantage of keeping 

supersymmetry manifest. I t is also convenient to set ^ = 1. 

5.2 T h e U{N) A D H M M u l t i - I n s t a n t o n 

In this section we concern ourselves wi th pure U{N) (or SU{N)) Yang-Mills theory, without 

fermions or scalars. We adhere to the A D H M tradition and work wi th an anti-Hermitian 

gauge field. This is arranged by wr i t ing Vm -> ivm and also Vmn -> "i-Vmn- Both Vm and Vmn 

are clearly N x N matrices and in the case of SU{N), they are also traceless. 

For the particular case of = 2, the A D H M formalism reviewed here is slightly different 
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to the SU(2) formalism employed by Dorey, Khoze and Mattis. Their formalism is actually 
the one for the symplectic groups, and exploits the fact that SU{2) ~ Sp{\). A comparison 
of the A D H M construction for the different classical groups is given in [62, 61, 63 . 

5.2.1 Construction of the Solution 

The A D H M multi-instanton is the general solution to the self-duality equation 

where the dual of v^n is given by^ 

2 '^mnpq ̂  

(5.1) 

(5.2) 

The A D H M construction is discussed in [2, 62, 61, 63]. Here we follow, wi th minor modifi­

cations, the U{N) formalism of [62 . 

The basic object in the A D H M construction is an {N + 2k) x 2k complex-valued matrix 

[N+2k]xi2k] which is taken to be linear in the space-time variable 

^[N+2k]x[2k] (X) = A [ , v + 2 A ; ] X ( A ; ] X [ 2 ) {^) = ^ [ i V + a f c ] X [fc)x [2] + ^ y V + 2 f c ] x (fc] X (2) ^I2]x[2] • (5.3) 

Here we have decomposed the column index of f^yN+2k]x[2k] into the direct product of two 

indices, and have used a quaternionic representation of a;^. 

m 
^[2]x[2] — • ^ a a — •^m ^act ' 

= â m 0-:̂  . (5.4) 

The Hermit ian conjugate of A [^ ,+2 / t ]x [2 i - ] is given by 

A [ 2 / t ] x [ A ' + 2 f c ] ( 2 ^ ) ^ A [ 2 ] x [ A : ] x [ / V + 2 f c ] (a;) = a[2]x [*] X [A'+2A:] + S[2]x[2] ^[2] X (fc) X [ N + 2 * : ) , (5.5) 

'^Clearly a Minkowski space self-dual solution Vm is not anti-Hermitian, due to the factor of i in the 
deinition of the Hodge dual (5.2). Throughout this chapter, we employ a conjugation operation in Minkowski 
space which is the continuation of the complex conjugation operation in Euclidean space. In terms of the a-
matrices (defined in Appendix A) , which are central to the A D H M construction, the effect of this conjugation 
is simply a ^ a and a ^ a. We can then regard the ADHM solution for Vm as anti-Hermitian under this 
continued operation of complex conjugation. 

^For clarity we occasionally show matrix sizes explicitly; for example, the gauge field will be de­
noted i'['JJ]x[,vi- To represent matrix multiphcation in this notation we underline contracted indices: 

= .4(„,x[^ 5[bix[c]- Also we adopt the shorthand = X , „ r „ - A'„r ,„. 
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where 

%,xm =X^'' = Xr.d^^'' . (5.6) 

B y counting the number of bosonic and fermionic zero-modes, we shall soon verify that k 

in Eqs. (5.3), (5.5) is indeed the topological charge, while iV is the parameter in the gauge 

group U{N) (or SU{N)). As we discuss in the next subsection, the complex-valued constant 

matrices a and b constitute a (highly overcomplete) set of /i;-instanton collective coordinates. 

For generic x, the nullspace of Ai2k]xiN+2k]{x) is A^-dimensional, as i t has N fewer rows 

than columns. The basis vectors for this nullspace can be assembled into an (A^ -t- 2k) x A'' 

complex-valued matr ix U{x), 

(5.7) 

where U is orthonormalized according to 

UlN]xlN+2k] UlN+2k]XlN] = l [ j V ] x [ A r ] • 

(5.8) 

The classical gauge field Vm, is now constructed f rom U as follows, 

^m [A ' ]X[ iV] — UlN]xlN+2k] dm UlN+2k]XlN]- (^-9) 

Note that for the special case k = 0, the anti-Hermitian gauge configuration defined by 

this equation is pure gauge, and therefore represents the general solution to the self-duality 

equation (5.1) in the t r iv ia l vacuum sector. The A D H M ansatz is that Eq. (5.9) continues to 

give a solution to Eq. (5.1), even for nonzero k. As we shall see, this requires the additional 

condition 
^[2]xlk]xlN+2k] AlN+2k]x[k]xl2] = l [ 2 ] x ( 2 ] /[&/x[fc]; (5.10) 

where / is an arbitrary (x-dependent) k x k Hermitian matrix. 

To check the A D H M ansatz, we substitute Eq. (5.9) into the expression for the field 

strength, 

Vmn = d[niVn] + V [mVn] 

= d^Udn]U) + iUd[mU){Udn]U) 

= d[mU{l-UU)dn]U. (5.11) 
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The last line follows f rom the orthonormahty property (5.8). To proceed, we use Eq. (5.10) 
and the nuUspace condition (5.7) to derive the completeness relation 

A[A'+2fc]x[A]x[2] /[A]X[*] A[2]x[fc]x[iV+2fc] = ^[N+2k]x[N+2k] ~ U[N+2k]xlN\ ^A'] X [iV+2̂ -1 • (5.12) 

Substituting this into Eq. (5.11), we find 

Vmn = d^Jjl\fAdn]U 

= UdimAfdnjAU 

= Uba[man]fbU. (5.13) 

To obtain the second line we differentiated the nullspace condition (5.7). Self-duality of the 

field strength now follows automatically f rom the well-known self-duality property of the 

tensor amn = l ^m^n] - " 

Note that while the classical gauge configuration constructed above is not necessarily 

traceless, i t can be made so by a U{1) gauge transformation. The distinction between U{N) 

and SU{N) gauge groups is only really apparent when matter fields are included. In the 

sections that follow, we work wi th the U{N) formalism, and do not explicitly impose the 

tracelessness condition on adjoint matter fields. 

In the next subsection we count the number of independent degrees of freedom in the 

A D H M configuration and confirm that i t has precisely the right number of collective coor­

dinates needed to describe the most general fc-instanton solution. 

5.2.2 ADHM Constraints and Canonical Form 

We have seen that the U{N) A D H M construction requires the use of matrices of various 

sizes: (A^ + 2k) x N matrices such as U, {N -\- 2k) x 2k matrices such as A , a and b, k x k 

matrices such as / , and 2 x 2 matrices such as CJ™^, a"*"̂ ", Xaa, etc. Accordingly, we use a 

"In Minkowski space the self-dual ( S D ) and anti-self-dual ( A S D ) components of an antisymmetric tensor 
X™„ are projected out using = HvmkVni - VmiVnk + iem.nki)^''^ and A^'^^.f = [X^J*where 
£0123 = -e°^^^ = - 1 - Also, since cr™" = i f f l ^ f f " ) and a'"" = i f f l ^ c r " ! are self-dual and anti-self-dual, 
respectively [25], i t follows that a ' " " / X , „ „ = CT'""/A7„^„ and a™""^X„„ 
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variety of index assignments: 

Topological charge indices [k] : l<i,3,... . < k 

Colour indices [N] : 1 < u,v,.. • < N 

A D H M indices [A^ + 2k] : 1< x,n,.. .<N + 2k 

Quaternionic (Weyl) indices [2] : a. (3, a, (5.. .. = 1,2 

Lorentz indices [4] : m,n,... = 0,1,2,3 

(No extra notation is required for the 2/!;-dimensional index attached to A , a and b since this 

index can always be wri t ten as [2k] = [k] x [2].) W i t h these index conventions, Eqs. (5.3) 

and (5.5) read 

A,,^{x) = a,,^ + b^^xp^ , Af'ix) = a f + x^^bl,, (5.14) 

while the factorization condition (5.10) becomes 

On substi tuting Eqs. (5.14) into Eq. (5.15) we find that the A D H M factorization condi­

t ion amounts to the following constraints on the matrices a and b: 

« f = ilaahS''^ a 6^^ (5.16) 

K ' ^ , = ~€4, (5.17) 

hi^h% = m . ^ S j a 5 / (5.18) 

These three nonlinear constraints are known as the A D H M constraints [62, 61 . 

The elements of the matrices a and b correspond to the collective coordinates of the 

/c-instanton gauge configuration. I t was mentioned in Section 2.2.3 that there should be 

a to ta l of 4Nk collective coordinates associated wi th the most general SU(N) A;-instanton 

solution. But even after accounting for the A D H M constraints (5.16)~(5.18), one finds that 

the number of independent elements in a and b appears to grow as P. I t follows that there 

must be a certain amount of redundancy in the A D H M collective coordinates. 
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The source of this redundancy is a U{N + 2k) x Gl{k,C) symmetry present in the 
A D H M construction. I t is not hard to see that Eqs. (5.7)-(5.10) are invariant under the 
transformations 

A[Ar+2fe]x[A-.]x[2] ~ > ^[N+2k]xlN+2k] A [ £ + 2 f c ] x [fc]x [2] B^^^^,.^ 

U[lv + 2k]xlN] ~^ ^lN+2k]x[N+2k] UlN+2k]x[N] 

flk]x[k] -> -S[i]x[fc] f[k]xlk] B[k]x[k] (5.19) 

where A G U{N + 2k) and B e Gl{k,C). I t is possible to use these transformations to 

eliminate all of the degrees of freedom in the matrix b [62]. In this way, one obtains the 

so-called 'canonical form' : 

0[JV]X[2/C] \ / W[f,,]x[2k]^ 
^ [ A ' + 2 * ; ] x [ 2 t ; J = ) 0-lN+2k]xl2k] = (5.20) 

\ l[2fc]x[2*:] / \ '^(2fc]x[2fc) / 

We shall make the canonical form a l i t t le more explicit using a convenient decomposition 

of the [N + 2k] index. Schematically, we write each (N+2k)-valued A D H M index A aŝ  

X = u + l p , l < u < N , l < l < k , 13 = 1.2. (5.21) 

This means that in Eq. (5.20) the upper, [N] x [2k\ matrix blocks of a and b have rows 

indexed by u, and the lower, [2k\ x [2k\ matr ix blocks have rows indexed by the pair 1(5. We 

now rewrite the canonical form (5.20) as 

= Wma + ( a ^ a ) / , = | | , (5-22) 
( '^ /3d) / i , 

af^ = af = wt + = ( < , (a'^' ') ,) , (5.23) 

b^^ = bf^_,,,), = 5,"S, = , (5.24) 

W ^ h J 

bl = b:r' = ^a'^u-i^^^a'Su) . (5.25) 

^The Weyl index /3 in this decomposition is raised and lowered with the e tensor in the usual manner [25], 
whereas for the [A^] and [k] indices u and I there is no distinction between upper and lower indices. 
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W i t h a and b in the form given above, the th i rd A D H M constraint (5.18) is satisfied 
automatically, while the remaining constraints (5.16), (5.17) boil down to: 

t r , (r'^aa),,- = 0, (5.26) II] 

im a!? = aT . (5.27) 

In Eq. (5.26) we have contracted aa w i th the Pauli matrix (r'^)"^. In Eq. (5.27) the matrix 

a'™ gives the m t h component of the matrix a' in a quaternionic expansion, 

( aU) . , = {a'J,, a - , (a'^^, = i^'J,^ (5-28) 

Although the choice of canonical form eliminates much of the redundancy in a and b. 

there remains a U(k) subgroup of the original U{N -\- 2k) x Gl{k, C) symmetry which leaves 

the canonical fo rm invariant. This residual symmetry acts as follows: 

^ 1[A']X[JV1 Opj,]x[A') ^ 

A.[N+2k]x[2k] ~^ A ( ;V+2*;]x[2fc] '^ [2 fc ]x [2 fc ] j (5.29) 
\ 0 [ , v l x [ 2 f o ] 'f^[2k]x[2k] / 

where TZy2k]x\:2k] = Rij ^ U(k). I n terms of w and a', we have 

< {(^'pah -> 4(4<i) 'p^pr (5-30) 

In principle, we could use this transformation to eliminate some of the elements in the matrix 

a. However, we find i t more convenient to work wi th the canonical form (5.22)-(5.25) and 

to leave the U{k) symmetry manifest. To account for this, let us define M*̂  to be the moduli 

space of all solutions that satisfy the canonical A D H M constraints (5.26) and (5.27). Then 

the physical moduli space, Mpj^yg, of gauge-inequivalent /c-instanton solutions, is given by 

the quotient space 
i , M'= 

We are now in a position to count the number of t ruly independent collective coordinate 

degrees of freedom in the A D H M multi-instanton. The general complex matrix a(A'+2fc)xi2A-] 

has 4k{N -|- 2k) real degrees of freedom. The two A D H M conditions (5.26) and (5.27) 
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respectively impose 3/ĉ  and 4A;̂  real constraints on this matrix, and 'modding out' the 
residual U(k) symmetry removes another A;̂  degrees of freedom. In total we therefore have 

4k{N-^2k) - Zk^ - 4k^ - e = ANk (5.32) 

real degrees of freedom, precisely as required. 

I t is straightforward to extract the four degrees of freedom associated wi th the space-time 

location of the fc-instanton solution. Let us linearly decompose a as 

a\ia = -bxi ixo)aa + •••-, (5.33) 

where {x(j)aa = (^o)m<7^. From Eq. (5.14) we see that a shift in the space-time variables 

x is equivalent to a shift in the parameters XQ. S O these parameters can be identified wi th 

the translational collective coordinates. 

5.2.3 The Singular Gauge Solution 

We now take a closer look at the A D H M solution (5.9). The matrix U can be eliminated in 

favour of the matr ix A using the completeness relation (5.12). I t is first convenient to make 

the decomposition 

/ ^ A ' ] x [ A ' ] \ / 1f^[A']x(2fc] ^ 

U[N+2k]xlN] = ) A [ jY+2fc]x[2A:] = (5.34) 
\ ^ [ 2 A : ] x [ , V ] / V A [2fc]x(2fc] / 

From Eq. (5.12) we now obtain 

yiN]x[N] V[N]x[N] = l l A f l x I N ] ~ W[N]x[k]xl2] / [ f c ] x [ f c j '"^[2]x (fcjx (iV)! (5.35) 

^ [ 2 f c l x [ N ] ^ ' V l x [ A ' ] = ~^[2k]xlk]xli]f[k]^l!ii. ""^mxlfc lx lA ' J . (5.36) 

Given a matr ix V that satisfies Eq. (5.35), we can find another by right-multiplying 

i t by an arbitrary U(N) matrix. This precisely corresponds to performing a U(N) gauge 

transformation of the instanton solution. By choosing a specific V we fix the (local) gauge 

of the instanton. The /t-instanton generalization of singular gauge (see Section 2.2.3) is 

specified by choosing one of the 2^ matrix square roots: 

]/ = { ! - wfwYl\ (5.37) 
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From Eq. (5.36) i t follows that we also have 

U' = -A'fw{l - luftu)-'^^ (5.38) 

in singular gauge. Equations (5.37) and (5.38) determine U in (5.34), and hence the gauge 

field Vm via Eq. (5.9). For later use we list the leading large-ja;] asymptotic behaviour of 

several key A D H M quantities, assuming instanton singular gauge (5.37): 

A bx , (5.39) 

fkt - ^ ^ w , (5.40) 
x\^ 

U' - r ^ X W . (5.41) 
\x ^ 

V l[;v]x(A, . (5.42) 

We can easily verify that the SU{N) singular gauge one-instanton solution (2.23) follows 

f rom this construction. Unfike the SU{2) constraints obtained using the Sp{l) formalism, 

the U{N) constraints (5.26) and (5.27) do not disappear in the one-instanton sector, even 

for iV = 2. Instead, Eq. (5.27) implies that 

a'm = -{xo)m, (5.43) 

where the (a;o)m are the four real degrees of freedom representing translational collective 

coordinates of the instanton (see Eq. (5.33)). The other constraint, Eq. (5.26), reduces to 

where p is an arbitrary parameter. (It w i l l be identified wi th the scale parameter in the 

instanton solution.) The general solution to Eq. (5.44) can be written'^ 

/ 1 
^ [ N ] X [ 2 ] — ^ [ A ' ] X [ A ' ] 

M X [21 \ U(N) 
P, ^ e y , ^ ^ ^ . (5.45) 

\^IN-2]X12] 

^As a quick check, note that Eq. (5.44) imposes three real constraints on w, so the general solution 
should contain 4N - 3 degrees of freedom. In Eq. (5.45), the coset element Q has A^- - (A^ - 2)'̂  = 4Af - 4 
real degrees of freedom, and the scale parameter p has one, so we get the required total. When we add in 
the four translational degrees of freedom XQ and 'mod out' the residual [ / ( I ) A D H M symmetry, we get the 
expected grand total of 4A'̂  independent collective coordinates. 
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I t is convenient to ini t ia l ly set = 1. From the defining equations for A and / , Eqs. (5.3) 
and (5.10), we now obtain 

/ P • l m x ( 2 i \ ^ 

A [Ar+2]x[2] — 0[A,_2]x[2] , / = ^2 _|_ 2̂ ' (5.46) 
\ ?/[2]x[2] / 

where yaa = {x - xo)aQ. Using the singular gauge expressions for V and U', Eqs. (5.37) 

and (5.38), we find 
/ / 2 \ i / 2 

V — „2 i_„2 ] -'•[2]x[2] 0 

^iN]xiN] — \y +p / 
\ 0 l[iV-2)x[iV-2] 

U,.^i^,^„ = f — ( , ") yf2ixr2i , Or2ixfA' -2 i 1 • (5.4'') 2 ] X [ A ' ] - 1̂  - yy2(_y2+p2) j y[2]x[2] , ^[2]x[N~2] 

The gauge field now follows f rom Eq. (5.9), 

Vrr, = - ^ 0 o ; ' (5-^^^ 

where v^^^ is the A-linkowski space version of the singular gauge BEST instanton (2.26), 

w i t h a fixed 'reference' iso-orientation: 

^ T ^ i - ) = Ifj+p^f-^^r^omy (5.49) 

To obtain the more general one-instanton solution, given by Q 7̂  1, let us now send 

w —^ Vlw. From Eqs. (5.37) and (5.38), i t is easy to see that the effect of this transformation 

on the matrices V and U' is 

V ^ VlV^\ 

U' -> U'Ql (5.50) 

From Eq. (5.9), the effect on the gauge field is then 

Vm-^^ Vm (5.51) 

The U{N) A D H M formalism therefore yields the k = 1 solution 
/ B P S T Q \ I J ( ^ ) 

(The extra U(l) factor in the stability group of the coset is due to the residual A D H M 

symmetry (5.30).) Equation (5.52) indeed gives the general U{N) (or equivalently, SU{N)) 

singular gauge one-instanton solution (cf. Eq. (2.23)). 



CHAPTER 5. MULTI-INSTANTON CALCULUS 100 

5.3 C o n s t r u c t i o n o f the S u p e r - M u l t i - I n s t a n t o n 

I n this section we construct the classical configurations that, together wi th the A D H M 

gauge configuration (5.9), constitute the (supersymmetric) multi-instanton background in 

supersymmetric U{N) (or SU{N)) pure Yang-Mills theory. We consider both Af = I and 

Af = 2 supersymmetric models. In Section 5.5, we derive the associated multi-instanton 

actions. There we also consider the effect of including matter multiplets. 

5.3.1 N —I Supersymmetric Yang-Mills Theory 

I n AT = 1 supersymmetric Yang-Mills theory the gauge field Vm is accompanied by its 

fermionic superpartner, the gaugino A. In the background of the /c-instanton gauge config­

uration, the index theorem predicts that there are 2Nk zero-mode solutions to the massless 

Dirac equation pX = 0. As was shown in [15] in the one-instanton context, these zero-modes 

can be viewed as the A/" = 1 superpartners of the gauge instanton. Explicit expressions for 

the adjoint fermion zero-modes in the A D H M /o-instanton background were first obtained 

in [62]. In our notation they read 

{\a)uv = U^Mx^f^,brUp, ~ U%,^ f.^AApp, . (5.53) 

Here A4\i and A^^ are constant {N + 2k) x k and k x {N + 2k) matrices of Grassmann 

collective coordinates. They can be regarded either as two independent real Grassmann 

matrices or as two complex Grassmann matrices which are Hermitian conjugates of one 

another. 

From Eq. (5.53) we calculate 

|^""A« = 2lJb'' f{A^A4 + MA^)fbaU. (5.54) 

Hence the condition for a gaugino zero-mode is the following two sets of linear constraints 

on A4 and M which ensure that the right-hand side of (5.54) vanishes (expanding A{x) as 

a + bx) [62]: 

MUxja = -a^a^xj , (5.55) 

M f b t , = b f M x , . (5.56) 
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I n a formal sense, discussed in Section 5.6 below, these fermionic constraints are the 
'spin-1/2' superpartners of the original 'spin-F A D H M constraints, (5.16) and (5.17). Note 
that Eq. (5.56) is easily solved when b is in the canonical form (5.22)-(5.25). W i t h the 
A D H M index decomposition (5.21), we set 

AAx, = = . M\ = MT'^ = {fl^u , {M%t) . (5.57) 

Equation (5.56) then collapses to 

M"' =A4"' (5.58) 

which allows us to eliminate AA' in favour of A4'. 

Counting the number of degrees of freedom, we find altogether 2A:(A^ -|- 2k) real Grass­

mann parameters in A4 and AA; these are subject to 2fe^ constraints f rom each of Eqs. (5.55) 

and (5.56), for a net of 2A^A; gaugino zero-modes as required. Of these, four zero-modes can 

be distinguished, corresponding to 

Mx^ = ib1^^0 , AAf = 4 6 ^ 3 ( 5 . 5 9 ) 

and 

A4M = taM^t , = - t d f f j a , (5.60) 

where and 77" are arbitrary spinor parameters. These are the generalization of the one-

instanton supersymmetric and superconformal zero-modes (see Section 4.2.1) to sectors of 

arbi trary topological charge. They satisfy the fermionic constraints (5.55) and (5.56) by 

virtue of the A D H M constraints (5.16) and (5.17). 

In the one-instanton sector, i t is straightforward to check that the expression (5.53) 

does indeed yield the SU{N) zero-mode solutions (4.49)-(4.52) listed in Ghapter 4. I t is 

simplest to in i t ia l ly take Q = 1 in the expression for the A D H M matrix w, Eq. (5.45). Using 

Eqs. (5.59) and (5.60) we obtain the supersymmetric and superconformal zero-modes, (4.50) 

and (4.49), respectively. The remaining 2 A ^ - 4 zero-modes, (4.51) and (4.52), are obtained 

by setting A4' = 0 and /ii_2 = /ii,2 = 0, w i th arbitrary choices for (and //„) for 3 < u < A .̂ 

(This prescription can easily be seen to satisfy the constraints (5.55) and (5.56).) Turning 

on the orientation matr ix Q in Eq. (5.45) has the eSect of rotating these choices of iJ,. 
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5.3.2 JV = 2 Supersymmetric Yang-Mills Theory 

Next we tu rn to the Af = 2 case. The particle content of A/" = 2 supersymmetric pure 

Yang-Mills theory comprises, in addition to the gauge field Vm and gaugino AQ considered 

above, a Higgsino ipa and a complex Higgs boson A. A l l these fields transform in the adjoint 

representation of the U{N) (or SU{N)) gauge group. 

A d j o i n t Higgsino Zero-modes 

The zero-mode solutions of the Higgsino ip are constructed in an identical fashion to those 

of the gaugino, Eqs. (5.53)-(5.58): 

{i^a)uv = Uu^^XrhjKjUpv ~ U%,^ h.M^U. (5.61) 

The Grassmann collective coordinate matrices M\i and A/"/ are subject to the same linear 

constraints as M. and M., 

N^a,,^ = - a l N ^ j : (5.62) 

M^bl^ = b f N x , , (5.63) 

and are likewise decomposed as 

A/'A . ^ AA(„+,,). = , ^ Mr'^ = [9,^ , ., (5.64) 

w i t h 

when 6 is in canonical form. 

T h e Adjo int Higgs Solution 

Af"" = A A ' " (5.65) 

The (leading order) Euler-Lagrange equation for the complex scalar field A reads'' 

D^A = \ / 2 i [ A , V ] (5.66) 

^Following [42, 45], we take the only anti-Hermitian field to be the gauge field Vm] all other component 
fields are Hermitian. 
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where D"^ is the covariant Klein-Gordon operator in the background of the A D H M gauge 
configuration (5.9), and A and tp are given by (5.53) and (5.61), respectivelj'. On the 
Coulomb branch of the theory, the solution must satisfy the boundary condition 

l im A{x) = d i a g ( v i , . . . , v^,) , (5.67) 
| x | —> o o 

where the Vy are the complex VEV's . Note that the U{N) theory does not require the sum 

of the VEV' s to equal zero, in contrast to the SU{N) theory. 

The construction of the solution to (5.66) is analogous to the '•SU{2) as 5 p ( l ) ' construc­

t ion detailed in Sections 7.2-7.3 of [42], and goes as follows. The solution has the additive 

fo rm 

IA = - ^ U { A f f M - M f M ) U + UAU . (5.68) 
2 v 2 

Here ^ is a block-diagonal constant (A^ + 2k) x {N -\- 2k) matrix, 

/ {A).v 0 \ 
A ' ' ^ A 7 i f = ' (5-69) 

V 0 ( A o t ) / m ( 5 / / 

where the N x N matr ix (A) is just i times the V E V matrix, 

(A) = I d i ag (v i , . . . , v^ , ) . (5.70) 

The kxk anti-Hermitian^ matr ix A o t is defined as the solution to the following inhoraoge-

neous linear algebraic equation 

L • A o t = A + A ; , (5.71) 

where A and A / are the k x k anti-Hermitian matrices 

A j j = < „ {A)uv Wvjc. , (5.72) 

^In the remainder of the chapter we distinguish between two different kinds of Hermitian conjugation. 
The first type, denoted by a dagger, does not turn fields into anti-fields, nor does it complex conjugate 
the VEV's. Thus: (A)]^^ = - i d i a g ( v i , . . . , v^,). The second (standard) tj'pe of Hermitian conjugation, 
denoted by an overbar, does interchange fields and anti-fields and also complex conjugates the VEV's. 
Thus: = —idiag(v i , . . . ,VN). For the remainder of this section, Hermitian conjugation is always of 
the first type. 
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and 

( A ; ) , , = ~ ^ { M A f ~ A f M ) , ^ . (5.73) 

The linear operator L maps the space of A; x A; scalar-valued anti-Hermitian matrices onto 

itself. I f is such a matrix, then L acts as 

L - f i = l{n,W} - ^tr^{{d',fl]a'-a'[a',fi]), (5.74) 

where W is the Hermitian k x k matrix 

^ ' i i = Wuja • (5.75) 

From Eqs. (5.71)-(5.75) we see that A o t transforms in the adjoint representation of the 

residual Uik) A D H M symmetry (5.29) (i.e. like a', A4' and Af'). 

Defined in this way, the configuration (5.68) correctly satisfies the Euler-Lagrange equa­

t ion (5.66). One can regard the four sets of constraints (5.16)-(5.17), (5.55)-(5.56), (5.62)-

(5.63), and (5.71) as the 'spin-1', 'spin-1/2', 'spin-1/2', and 'spin-0' components of an Af = 2 

supermultiplet of constraints [45]. We shall exploit this observation in Section 5.6, when we 

construct the collective coordinate integration measure. 

5.4 Rea l i za t ion o f the Supe r symmet ry A l g e b r a 

Here we consider the supersymmetry transformation properties of the collective coordinates 

appearing in the multi-instanton configurations described above. The philosophy is as fol­

lows [15]. As the relevant component field configurations obey equations of motion which 

are manifestly supersymmetric, any non-vanishing action of the supersymmetry generators 

on a particular classical solution necessarily yields another solution. I t follows that the 

'active' supersymmetry transformations of the fields must be equivalent (up to a gauge 

transformation) to certain 'passive' transformations of the bosonic and fermionic collective 

coordinates that parameterize the superinstanton. As originally noted in [15] in the one-

instanton context, physically relevant quantities such as the the superinstanton action must 

be constructed out of supersymmetry invariant combinations of the collective coordinates. 



CHAPTERS. MULTI-INSTANTON CALCULUS 105 

5.4.1 A/" = 1 Supersymmetric Yang-Mills Theory 

The supersymmetry transformations that act on the component fields in supersymmetric 

Yang-Mills theory are hsted in Appendix C. Here we require the M = 1 transformation 

laws for the gauge field and the gaugino A; these are given by Eqs. (C . l ) and (C.2) 

respectively. As was demonstrated in [45], the supersymmetry algebra can be naturally 

realized in terms of passive transformations of the collective coordinate matrices a and M 

before implementing the respective algebraic constraints (5.16)-(5.18) and (5.55)-(5.56). 

For the A D H M gauge configuration (5.9), the passive supersymmetry transformation of a 

that implements (up to an infinitesimal gauge transformation) the active supersymmetry 

transformation (C . l ) is^ 

5aa = iiaM , (^a" = - i M ^ . (5.76) 

To generate the supersymmetry transformation of the gaugino, (C.2), we require, in addition 

to the transformation of a given above, the following transformation of the gaugino collective 

coordinates: 

(5M = -46"ea , = - 4 e " 5 „ . (5.77) 

These results were derived using exactly the same algebraic manipulations employed in 

the 'SU{2) as 5 p ( l ) ' analysis of [45]. The reader interested in the calculational details is 

referred to Section 2 of that work. 

5.4.2 M — 2 Supersymmetric Yang-Mills Theory 

As in the A/" = 1 case, the J\f = 2 supersymmetry algebra may be realized directly on the 

unconstrained multi-instanton collective coordinates. The supersymmetry transformations 

of the component fields of the Af = 2 superinstanton are given in Appendix C. They are 

generated by the following set of transformations of the collective coordinates: 

<5ad = t^iaM + ^^2a^f , = - i M ^ t - ^ ^ ^ l ; (5-78) 

^Here and in the = 2 case to follow, we find it convenient to redefine the infinitesimal supersymmetry 
parameters according to ^ -> —i^, ̂  -> i^. Note also that we are dealing with an anti-Hermitian gauge field, 
which requires us to set v,n —> ivm and Vmn —^ ivmn in the formulae of Appendix C. 
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5M = - 4 6 % „ - z 2 ^ C ^ e ^ , SM = - 4 ^ i X + ^2^/26dC^'^, (5.79) 
SAf= -Ab''^2a + t2V2C^^t , 8M = - 4 ^ 2 % - ^2\/2eldC^". (5.80) 

Here is the (A'" + 2k) x /c spinor-valued matr ix 

Cx la = C(^u+I0)ia = ; (5.81) 
V [ A o t , o!pa]li / 

= ( A o t t i ) " - ^ t ; " ( A , [ A o t , a ' ° ] ) . (5.82) 

Direct calculation (following Appendix A of [45]) shows that ^tot, as defined by Eq. (5.71) 

above, is a supersymmetry invariant: 

M t o t = 0 . (5.83) 

5.5 Construction of the Multi-Instanton Action 

5.5.1 M = I Supersymmetric Yang-Mills Theory 

In the absence of matter multiplets, the fc-instanton action of A/̂  = 1 supersymmetric SU{N) 

pure Yang-Mills theory is simply Sn'^k/g'^. A n interesting result can only be obtained in the 

presence of a Higgs boson whose V E V breaks the classical scale invariance of the theory. VVe 

shall in i t ia l ly consider the simplest such theory, in which the gauge multiplet is minimally 

coupled to a single fundamental chiral multiplet Qu = {QU, XU), where the index u labels the 

A^-dimensional fundamental representation. This model was constructed in Section 3.2; see 

Eqs. (3.29), (3.30) and (3.32). We refer to QU as the Higgs field, and to Xu as the Higgsino. 

The fundamental fermion zero-modes were originally constructed in [62]. In our lan­

guage, they read 

x: = tJ^xbx^h.lC, (5.84) 

where a is a Weyl spinor index, and Kj is a Grassmann number (as opposed to a Grassmann 

spinor). I t is easily verified that the above expression satisfies the covariant Dirac equation 

in the A D H M background, 

f x = ^- (5.85) 
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The fundamental Higgs field satisfies an inhomogeneous Euler-Lagrange equation, 

D^q = -iV2Xx, (5.86) 

together w i t h the V E V boundary condition 

l i m qu = {q)u, (5.87) 

where {q)y, denotes the fundamental V E V . The right-hand side of Eq. (5.86) is the product of 

the classical configurations (5.53) and (5.84). A straightforward exercise in A D H M algebra 

yields the general solution to Eqs. (5.86)-(5.87). I t reads 

qu = Kv{q)v + ^ U u x M ^ f r j I C j , (5.88) 

generalizing the SU{2) result given by Eq. (5.10) of [45]. Here V, defined by Eq. (5.34) 

above, is the upper N x N part of the A D H M matrix U. 

We can now construct the (leading order) superinstanton action. The Maxwell term 

in the action yields Sn'^k/g'^ as always. Following the method of [42, 45], we integrate by 

parts and use the Euler-Lagrange equation for the Higgs scalar, Eq. (5.86), to combine the 

remaining terms in the action into a single surface term: 

J d^x [-D^q^D^q - V ^ z ^ U ^ ) = - J l^^^l- (5-89) 

Here is the three-sphere at inf ini ty and the normal covariant derivative is given by 

{x"^/y/\x\^) Dm- The contribution of the surface term to the action is now extracted f rom 

the l/\x\^ fall-off' of D^q. W i t h the help of the asymptotic formulae (5.39)^(5.42), one 

calculates 
|a;|->00 i f - n I \ ^ 1^ \ I - f̂ /̂ \ 

> 7, ? WamW^^{q)^ - -^Hml<^i , (t>-90) 
2 X ^ \ V2 / 

and hence 

SulTsQCD = — + iQ)u {Q)V W^,, < - {q)u llur /C, . (5.91) 

9 \ V 2 / 

This generalizes the SU{2) expressions obtained in Appendix C of [45] and also in [65 .. 

The /c-instanton formula (5.91), although writ ten in ADHA/I collective coordinates, is 

nonetheless easily compared wi th the one-instanton expression for the action found in [15]: 
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the first term in parentheses is equivalent to \q\^ p f , summed over the k diff'erent instan-

tons, where q is the fundamental V E V and pi is the scale parameter of the i t h instanton. 

Also, the second term in parentheses is the fermion bilinear necessary to promote this p'f 

to (/9pnv)i where p^v is the supersymmetric invariant scale size constructed in [15]. Indepen­

dently of one's choice of collective coordinates, the presence of the VEV's in the action (5.91) 

gives a natural cut-off to the integrations over instanton scale parameters, providing an 

infra-red safe application of the instanton calculus. 

We can immediately generalize the expressions obtained above to phenomenologically 

more interesting models w i th Nf fundamental flavours of Dirac fermions. In this case case 

the gauge mult iplet is minimally coupled to 2Nf chiral superfields Qf and Q f , I < f < N j , 

where Qf transforms in the fundamental and Qf in the conjugate-fundamental representa­

t ion of the gauge group (see Section 3.2 and in particular Eqs. (3.29) and (3.33)). When the 

bare masses of hypermultiplets vanish, the fundamental Higgs scalars qf and qf can develop 

vacuum expectation values which spontaneously break the gauge group. (This is usually 

referred to as the Higgs branch of the theory.) The global symmetries of the theory can be 

used to put the V E V matrices {q)uf and (q) fu in the following form [66, 67]: 

0 . . 0 . . . 0 \ 

{Q)uf = 
0 . 0 . . . 0 

{Q)uf = 

U 0 . .'. 0 / 

/ V : 0 . . • ° ^ 
0 V2 • • . 0 

0 0 . . • VAT 

0 . . . o j 

(5.92) 

The V E V matrices in (5.92) correspond to the case Nf > N. The case iV; < N is similar 

except that the V E V matrices have extra rows of zeroes rather than columns. The VEV's 

are not all independent; the D-flatness condition requires that for each value of IL, 

2 , N f > N 

KP = \yu\\ N f < N 

where is an arbitrary constant, independent of the colour index u. 

For the more general model, Eqs. (5.84) and (5.88) become 

(5.93) 

(5.94) 

Xuf = Uuxbx^'^fijlCjf , Xfau = ^ / i / z j ^ a j A ^ ^ , (5.95) 
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and 

Quf = Vuv{q)vf + ^ UuxMxifijICjf , 

q/u = {q)fvVyu ~ ^ K,f^fi,MjxUxu : (5.96) 

respectively, while the action generalizes to: 

SA'=I%CD = + T^'^{{q)uf{q)fvWaviWtu (q)fu f^ui l^if 
9 ^ V2 

— • % ~ ~ \ 

+ {q)uf{q)fvWavi + ^ ( 9 ) " / ^fil^iu)- (5-97) 

As mentioned in Section 5.4, on general principle this action must be a supersymmetry 

invariant [15, 45]. The M = 1 supersymmetry transformation properties of the collective 

coordinate matrices a and M (including the submatrices w and / i ) were given above, in 

Eqs. (5.76) and (5.77). To check the invariance of the expression (5.97), we must also derive 

transformation properties for the Grassmann collective coordinates IC and IC associated with 

the fundamental fermions. Using straightforward algebraic manipulations we find that the 

Af = 1 supersymmetry transformations of x and x are generated by 

SIC,f = -2V2 < {q)uf , S)Cf, = - 2 x / 2 {q)fu w^^r C • (5-98) 

I t is now easily checked that the action (5.97) is invariant under the supersynimetry trans­

formations (5.76), (5.77) and (5.98). 

I n the next subsection, we turn our attention to the multi-instanton action on the 

Coulomb branch o^ M = 2 supersymmetric SU{N) QCD. We w i l l see that the A/" = 1 

action (5.97) possesses two simplifying properties that the J\f = 2 action does not. First, 

Eq. (5.97) has the fo rm of a disconnected sum of k single instantons: wi th our choice of 

A D H M coordinates there is no interaction between them. Second, the only gaugino zero-

modes that are l i f ted (i.e. that appear in the action) are those associated wi th the top 

elements f j , and p, of the collective coordinate matrices M and M. This leaves 0{k) un-

l i f ted gaugino modes after one implements the fermionic constraints (5.55) and (5.56). This 

counting contrasts sharply wi th the A/" = 2 theories in which the number of unlifted modes 

is independent of the topological charge k. Saturating each of these unlifted modes with an 
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anti-gaugino field insertion (as per Affleck, Dine and Seiberg [68]) one sees that, unlike the 
Af = 2 theory, here the sectors of different topological charge cannot interfere wi th one an­
other, since the non-vanishing Green's functions are distinguished by different anti-fermion 
content. 

5.5.2 M = 2 Supersymmetric Yang-Mills Theory 

Now we derive the multi-instanton action in A/" = 2 supersymmetric SU{N) QCD. We 

in i t ia l ly set Nf = 0 and consider the pure Yang-Mills theory. As for the M — I models, the 

leading order supersymmetric multi-instanton action for this theory can be expressed as a 

surface term [42]: 

SMTSYM = j rf'xTr(iw'"" - 2D^A^D"'A + 2\/2z [.4^, V'] A ) 

= ^ - 2 I d'STr{A^D^A). (5.99) 

To obtain the second line we integrated by parts and used the Euler-Lagrange equation 

for the Higgs field (5.66). Evaluating the asymptotic value of A^Dj_A wi th the help of 

Eqs. (5.39)-(5.42), we obtain the following expression for the /c-instanton action:^° 

^ ^ i f s v - M = ^ + STT^ wi{A)uu{^)uuWu^a " A , , ( A o t ) , i 

+ 2^27^^ if^^u{A)^^l^u^ ' ^^u(^)„J^u^) (5.100) 

This is the SU{N) generalization of the SU{2) action presented in Eq. (7.32) of [42 . 

Next we incorporate Nf flavours of fundamental matter hypermultiplets. We restrict 

our attention to the Coulomb branch of the theory, where the hypermultiplet squarks <// do 

not acquire VEV's . Instead, the integrations over instanton scale parameters are regulated 

by the VEV' s of the adjoint complex scalar A. The solutions for the quark and squark 

background fields x / , X f , Qf and qf are just given by Eqs. (5.95)-(5.96), except that on the 

Coulomb branch, the first term on the right-hand side of Eqs. (5.96) is zero. The essential 

^°Note that (A) and TV are Hermitian conjugations of the second type defined in Footnote 8, with complex 
conjugated VEV's. They are not to be confused with {A^ and defined in Section 5.3. 
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new feature in A/" = 2 supersymmetric QCD wi th iVy > 0 is that the conjugate adjoint Higgs 
A^ acquires a fermion bilinear component due the inhomogeneous term in its Euler-Lagrange 
equation: 

{ V A X , = 7 ^ E • (5.101) 
/=1 

(The Euler-Lagrange equation for A, Eq. (5.66), is unchanged.) 

The solution to Eq. (5.101) is similar to, but simpler than, the solution to Eq. (5.66). At 

the purely bosonic level, w i th all Grassmann parameters turned off, the solutions for A and 

A^ must coincide, except for v„ ^ v^. In contrast, the fermion bilinear contributions to each 

of A and A'^ are independent. The fermion bilinear contribution to A^ is straightforwardly 

obtained f rom (5.101) (the analysis parallels Section 5 of [45]). I t takes the form 

..IJJ^lc' . f^n. 0 V f y - ^ ^ , ^ ^ ^ ^ , , (5.102) 
\ O {•^hyp)lm"a / 

where the kx k anti-Hermitian matr ix ^hyp is defined as the solution to the inhomogeneous 

linear algebraic equation 

L - A y p = Ahyp- (5.103) 

Here the k x k anti-Hermitian matr ix Ahyp is given by (cf. Eq. (5.8) of [45]): 

(Ahyp)., = ^ E ' ^ ^ f ^ f r (5-104) 

Note that Ahyp and .Ahyp are in fact anti-Hermitian matrices (in terms of the dagger operation 

described in Footnote 8) when i t is understood that /C^ = IC. 

The derivation of the superinstanton action in M = 2 supersymmetric SU{N) QCD 

follows the derivation of the SU{2) action described in Section 5 of [45]; one finds 

NF 

5 ^ i f s g c . = - 87r^(Ahyp).,(Aot),. + 7r'J2^flCf,IC,f (5.105) 

As w i t h the J\f - 1 action (5.97), one can check that this expression is a supersym­

metry invariant. On the Coulomb branch, the transformation laws for the quark collective 

coordinates (5.98) reduce to 

0 =5IC = Sic. (5.106) 
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This implies that Ahyp is a supersymmetry invariant quantity: 

<5Ahyp= 0. (5.107) 

Verifying the supersymmetry invariance of the action (5.105) is now a straightforward ex­

ercise involving the various transformation laws, (5.78)-(5.80), (5.83), (5.106) and (5.107). 

I t is possible to make the supersymmetry invariance of S'^-!!!2%QCD niore manifest, by assem­

bling the bosonic and fermionic collective coordinates into a space-time-constant J\f = 2 

'superfield' and reexpressing the action as an A/" = 2 'F- term' constructed f rom this su-

perfield. The reader is referred to [45] for the details of this construction in the ''SU{2) as 

S'p(l) ' case. 

5.6 The Collective Coordinate Integration Measure 

5.6.1 Overall Strategy 

In Sections 5.2-5.5 above, we constructed the /c-instanton background configurations and 

the associated /c-instanton actions for = 1 and = 2 supersymmetric SU{N) Yang-Mills 

theory. As the small-ffuctuations determinants in a self-dual background cancel between the 

bosonic and fermionic sectors in a supersymmetric theory [48], the remaining component 

of our instanton calculus is the collective coordinate integration measure. In principle, 

this measure could be obtained by evaluating the normalization matrices of the bosonic 

and fermionic zero-modes. In practice, this requires the solutions to the nonlinear A D H M 

constraints (5.26), and these have only been obtained for A; < 3 [61, 62 . 

Following [49], we use an alternative approach to determine the measure. We write an 

ansatz for the measure in terms of the original overcomplete, unconstrained matrices of 

collective coordinates and introduce the requisite constraints, by hand, as 5-functions in 

the integrand. (An analogy would be the measure dxdy5{x'^ + y"^ ~ I ) rather than d9 for 

integration on a circle.) The reason this construction can work is that the various bosonic 

and fermionic constraints together form a supermultiplet of constraints, as mentioned in 

Section 5.3. The requirement of supersymmetry invariance, together w i th other symmetries, 

is sufficient to prove that our ansatz is unique. 
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The first step in the construction of the measure is to formally undo the U(k) quotient 
described in Eq. (5.31) and define an unidentified measure, dfj,^'^\, for integration over the 
larger modul i space M*^: 

The correctly normalized volumes for the U(k) groups, 

Vomk)) = 2 2 ' = - ^ 7 r ^ r i F r X T T (5.109) 

follow f rom 
U{k) 

U{k - 1) X U{1) 

together w i t h the in i t ia l condition 

= 52(̂ -̂1) (5.110) 

Vol(C/(l)) = 2TX . (5.111) 

Here S'̂ ^ "̂̂ ) is the 2{k - l)-sphere and 

, 1 
27r'=-2 

I n addition to being a supersymmetry invariant, the measure must transform as a singlet 

under this residual U{k). 

We now present explicit expressions for djjS'^^ in both the A/" = 1 and N = 2 cases. (A 

similar construction works for the A/" = 4 case as well, while for the non-supersymmetric case 

complications arise due to the re-emergence of the small-fluctuations determinants [49].) 

5.6.2 = 1 Supersymmetric Yang-Mills Theory 

Following the strategy outlined above, we present the following ansatz for the /c-instanton 

collective coordinate integration measure in A/" = 1 supersymmetric SU(N) pure Yang-Mills 

theory: 
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"A'phys Vol{U{k)) 

Vol(?7(A;)) 
^2Nk- ^2Nk^^ ^Nk- ^Nk^ ^Ak^^> ^2k^^> 

'j5^'''\tv,{lT'da)) 
c=l 

6^^'''\Ma + dM) (5.113) 

The differentials in Eq. (5.113) have the following explicit meanings: 

/1"'^' = j n 
•' m=0 

d^'^'w d^'^'^W = 

da 
.1=1 
N k 

J d R e ( a - ) d M a - ) 
.l<i<j<k 

.inn ^'^i^ 

/ d - ' M ' = / n 
a=l,2u=l 1=1 

k 

a=l,2 

N k 
. i=l 

J d Re(A/('„,.) d I m ( M V . ) 
.l<i<j<k 

dp,iu dp.. 

(5.114) 

(5.115) 

(5.116) 

(5.117) 

U=l 1 = 1 

Notice that these expressions presuppose the canonical form (5.22)-(5.25) for 6, so that the 

collective coordinate matrices a' and M' are assumed f rom the outset to satisfy Eqs. (5.27) 

and (5.58), respectively. The remaining constraints, namely (5.26) and (5.55), are imple­

mented in Eq. (5.113) via the 5-functions. These have the explicit meanings: 

I I 5^''\tT,ilT'da)) = I 
c=l c=l 1=1 

(5.118) 

(5(tr2Re(|T '=aa)ij) 5 ( t r2 Im( | r ' ' a a )y ) 
ll<i<j<k 

k 

6=1,2 

Y[5{Maa + ac,M)^ 
1=1 

(5.119) 

.l<i<j<k 

We now argue in support of the the proposed measure as follows: 
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1. In the one-instanton sector, Eq. (5.113) reduces to 

I di,%, = '^'''^ ^'""^ '^''^ ^""^ 

3 

^(5(tr2 (i(7'u)w)) S^ifiiu+ WIJ.). (5.120) 
c=l 

Afte r resolving the ^-function constraints, this reduces to the one-instanton measure 

obtained by direct calculation of the collective coordinate Jacobians [3, 4]. In Sec­

t ion 5.2, upon resolving the one-instanton A D H M constraints (5.16) and (5.17), we 

were able to explicitly identify the collective coordinates corresponding to the posi­

t ion xo, size p, and group orientation of the instanton (see Eqs. (5.43) and (5.45)). 

By comparing the one-instanton adjoint fermion zero-modes obtained f rom the gen­

eral solution (5.53) (see the discussion at the end of Section 5.3.1) wi th the normal­

ized zero-modes (4.49)-(4.52) listed in Section 4.3, we can make the identifications 

^551,2 = y27rA4'i_2> ^sci ,2 = '2'^f-h,2, ^Mu = V27rfj,u and ^NU = \/27ryLi„. In terms of 

the unconstrained collective coordinates, the one-instanton measure (5.120) becomes 

Since the fermion zero-modes (4.49)-(4.52) are normalized this bears immediate com­

parison w i t h the ' t Hooft-Bernard measure (2.64). From this comparison we deduce 

that Ci = 2^+\ 

2. The mass dimension of the A;-instanton measure should be —bok — —3Nk. Since 

a] = - 1 , [ij] — - 1 / 2 and [dfj] = 1/2, the right-hand side of Eq. (5.113) does indeed 

have the right mass dimension. 

3. The anomalous U{l)ii symmetry present in AA = 1 supersymmetric SU(N) pure Yang-

Mills theory requires a net of 2Nk exact fermion zero-modes. Since the multi-instanton 

action in this theory is exactly given by 8-K^k/g'^, i t follows that the J-functions in the 

/c-instanton measure should saturate all but 2A'̂ A; of the Grassmann integrations. I t 

is easy to see that this counting is obeyed by the right-hand side of Eq. (5.113): 2k'^ 

fermionic 5-functions saturate 2k'^ out of the 2/ĉ  - I - 2Nk fermionic integrations over 

M', and / i leaving 2Nk exact fermion zero-modes. 
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4. I t is clear that the measure (5.113) is invariant under the action of the residual U{k) 
A D H M symmetry (5.29). 

5. In the dilute-gas l imi t of large space-time separation between instantons, the mea­

sure (5.113) correctly factors according to the property of cluster decomposition. The 

proof follows that given in [49] and is detailed in Appendix D. 

6. Just as for the multi-instanton action, the ^-instanton measure has to be a supersym­

metry invariant. This important requirement can be checked directly using the su­

persymmetry transformations (5.76) and (5.77). The supers3mimetry generator -i^Q 

leaves the first 5-function in (5.113) t r ivial ly invariant and does not affect the argu­

ment of the second (^-function due to the constraint (5.17). As for the generator i^Q, 

the reasoning is as follows: the argument of the second (5-function in (5.113) is invari­

ant, while that of the first 5-function transforms into itself plus an admixture of the 

second, so that the product of (5-functions is an invariant. 

7. Finally, we construct a uniqueness argument, following [49]. Let us consider including 

an additional function of the collective coordinates, f{a,M), in the integrand of the 

proposed measure, Eq. (5.113). To preserve supersymmetry, we require that / be 

a supersymmetry invariant. I t is a fact that any non-constant function that is a 

supersymmetry invariant must contain fermion bilinear pieces (and possibly higher 

powers of fermions as well). By the rules of Grassmann integration, such bilinears 

would necessarily l i f t some of the adjoint fermion zero-modes contained in M. Since 

Eq. (5.113) contains precisely the right number of unlifted fermion zero-modes, as 

dictated by the U{1)r anomaly, namely 2Nk, this argument rules out the existence 

of a non-constant function / . Moreover, any constant / would be absorbed into the 

overall multiplicative factor, which is fixed inductively using the property of cluster 

decomposition. 

The measure (5.113) is easily augmented to incorporate fundamental matter multiplets. 

Since the Higgsinos satisfy the normalization condition [62 

/ d'xXfauX^r = ^%^l^^f' : (5.1.22) 
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the associated fermionic measure is simply 

/ dl^Z = ^kNj / n ^ ^ 1 / • • • '^^'^f ^ ^ / i • • • • (5-123) 

The total measure in = 1 supersymmetric SU{N) QCD is then simply the product of 

the measures (5.123) and (5.113). 

5.6.3 M = 2 Supersymmetric Yang-Mills Theory 

Our ansatz for the A;-instanton measure in = 2 supersymmetric SU{N) pure Yang-Mills 

theory is an obvious extension of Eq. (5.113). The new features are induced by the second 

adjoint fermion i/), described by the collective coordinate matrix A/", and the adjoint Higgs A. 

whose construction required a 'spin-0' constraint to be imposed on the collective coordinate 

matr ix Atot (5.71). Accordingly, we postulate the measure: 

A(U(k)) J Yo\{U{k)) 

xd'^'a' d'^'M' d'^'W d'U,ot 
3 

X 

c=l 

6^''"\Ma + aM) S^'' \Ma + dN) 

X 5 ( ' = ^ ) ( L . A o t - A - A / ) . (5-124) 

A l l of the arguments of the previous subsection can be applied to jus t i fy this M = 2 

measure, w i t h two obvious modifications. First, there are twice as many adjoint fermionic 

zero-modes dictated by the U{l)fi anomaly. Second, the Af = 2 supersj^mmetry alge­

bra incorporates the extra transformations (5.78)-(5.80) and (5.83). By matching to the 

' t Hooft-Bernard measure (2.64) we deduce that C[ = 47r~^^. 

To obtain the measure for A/" = 2 supersymmetric SU{N) QCD we have only to include 

the factor (5.123) associated wi th the fundamental fermion zero-modes. 
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5.7 Summary 

I n this chapter we have constructed, using the U{N) A D H M formalism [2, 61, 62, 63], a 

multi-instanton calculus for A/" = 1 and M = 2 supersymmetric U{N) or SU{N) Yang-Mills 

theory. This represents a generalization of the SU(2) multi-instanton calculus developed by 

Dorey, Khoze and Matt is in [42, 45, 49] using the Sp{l) A D H M formalism. 

Supersymmetry has played a key role in the construction of the instanton calculus. Since 

the Euler-Lagrange equations are manifestly supersymmetric, the field configurations that 

constitute the multi-instanton background form a supersymmetry multiplet. We have seen 

that the action of the supersymmetry generators on this multiplet can be effected by certain 

'passive' transformations of the overcomplete set of collective coordinates that parameterize 

the superinstanton. These transformations were employed in the derivation of the instanton 

action and collective coordinate integration measure; both quantities are constrained to 

depend on supersymmetry invariant combinations of the collective coordinates [15 . 

In the next chapter, we apply the calculus to investigate various instanton effects in 

supersymmetric SU{N) Yang-Mills theory. In particular, we use the formalism to com­

pletely evaluate the one-instanton contribution to the prepotential in A/" = 2 supersym­

metric SU{N) QCD wi th arbitrary numbers of matter hypermultiplets. This represents a 

significant improvement upon the one-instanton calculations described in Section 4.3 and 

w i l l provide a concrete example of the usefulness of the measure constructed in Section 5.6. 



Chapter 6 

Application of the Multi-instanton 
Calculus 

In the previous chapter we presented a complete multi-instanton calculus for A/" = 1 and 

H — 2 supersymmetric U(N) or SU(N) Yang-Mills theory, based upon the construction of 

multi- instanton solutions originally due to Atiyah, Drinfeld, Hitchin and Manin ( A D H M ) 

2, 61, 62, 63]. A characteristic feature of these solutions is that they are parameterized 

by an overcomplete set of collective coordinates which must satisfy certain nonlinear con­

straints. Our multi-instanton calculus is phrased directly in terms of the overcomplete set 

of collective coordinates, without an explicit resolution of the constraints. In our approach 

the constraints are imposed implicitly, through the ^-functions appearing in the collective 

coordinate measure. In this chapter we apply our calculus in several ways to investigate 

instanton effects in supersymmetric SU{N) Yang-Mills theory, and in doing so, we jus t i fy 

this approach. 

In Section 6.1, we apply the multi-instanton calculus to investigate instanton effects in 

Af = 2 supersymmetric SU{N) QCD, wi th arbitrary A'̂  and N f . Generalizing the SU{2) 

analysis of Dorey, Khoze and Matt is [42, 50, 45, 49], we derive a closed form expression for 

the /c-instanton contribution to the prepotential, as a finite dimensional integral over the 

bosonic and fermionic collective coordinates of the supersymmetric /c-instanton configuration 

64]. We then employ this expression to completely evaluate the one-instanton contribution 

to the prepotential for general A'' and an arbitrary number of fiavours [64]. This represents a 

119 
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significant improvement upon the one-instanton calculations [57, 58, 47], that were described 
in Section 4.3. In particular, we completely determine the 'regular' terms that appear when 
Nf = 2N - 2 ov Nf = 2N, for all A^. (The method of Ito and Sasakura [57, 58] fails 
to determine such terms.) We compare our answer wi th the proposed hyperelliptic curves 
[19, 20, 21, 22, 38, 39] and find that for Nf = 2N - 2 and Nj = 2N, none of the curves 
predict the right regular terms. We end the section wi th a discussion of these discrepancies. 
In particular, we consider the implications for the finite Nj = 2N models [64 . 

Our one-instanton calculation provides a concrete example of the usefulness of the mea­

sure constructed in Section 5.6. The calculation is accomplished by first exponentiating 

the (^-function constraints in the measure, through the introduction of a supermultiplet of 

Lagrange multipliers. The original collective coordinates in the problem can then be com­

pletely integrated out (the exponent is Gaussian in these variables). The final integrations 

over the Lagrange multipliers used to implement the constraints can be carried out by an 

application of Stokes' theorem. In this way, our approach overcomes the problem associated 

w i t h integrating over group space collective coordinates that was encountered in Section 4.3. 

In Section 6.2 we employ the instanton calculus to investigate higher-derivative terms in 

the low-energy Wilsonian effective action oiJ\f =2 supersymmetric SU{2) Yang-Mills theory 

69]. As we pointed out in Section 3.3.1, the prepotential governs the leading terms in the 

eflFective action, which involve up to two derivatives or four fermions. The next-to-leading 

terms, which involve up to four derivatives or eight fermions, are also determined by a single 

funct ion, %, which is constrained to be real rather than holomorphic [70, 71, 72]. We shall 

derive an expression for the A;-instanton contribution to this function, by a straightforward 

extension of the analysis used in Subsection 6.1.1. Using this expression we show, using a 

simple scaling argument, that in the finite model wi th Nf = A massless hypermultiplets, 

all multi-instanton contributions to the next-to-leading higher-derivative terms vanish [69 . 

This verifies a nonperturbative nonrenormalization theorem due to Dine and Seiberg [27].^ 

Using a slightly modified scaling argument we also confirm this theorem in the A/* = 4 

supersymmetric SU(2) model [69 . 

^It is not known (to us) at present if the Dine-Seiberg theorem holds for finite SU{N) models with 
N >2. 
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6.1 Inst ant on Contributions to the Prepotent ial 

6.1.1 Closed Form Expression for the Prepotential 

Up to terms involving two derivatives or four fermions, the Wilsonian effective action of 

J\f = 2 supersymmetric SU{N) QCD is determined by the prepotential, ^ ( -4 ) , as follows: 

1 . r /- . „ dT{A) . I f d^HA) 
>Ceff = — I m 

47r 

The index i labels the A'' — 1 light superfields of the low-energy ?7(1)^~^ effective theory. As 

was pointed out in Section 3.3.2, the light components of the microscopic superfields reside 

in the SU{N) Cartan subalgebra. We choose the following basis of generators: 

= J d i a g ( 0 , . . . , 0 , + 1 , - 1 , 0 , . . . , 0); i = 1,2,... ,N - I (6.2) 

where + 1 is the zth entry on the diagonal. Note that, in this basis, the Higgs expectation 

{A) has the natural expansion 
N-l 

{A) = J2'^rH\ (6.3) 
i=l 

where the Vj form a set of — 1 vacuum expectation values. These parameters are inde­

pendent, in contrast to the parameters v^, defined by Eqs. (3.97) and (3.98). In spite of 

this, we find i t convenient to mostly work wi th the v„ rather than the Vj. In much of our 

semiclassical analysis, i t does not matter i f we take the v„ to be independent (as would be 

the case for a U{N) gauge group); where necessary we can regard the SU{N) tracelessness 

constraint (3.98) as being imposed implicit ly. 

For general and Nf < 2N, the weak-coupling expansion of the prepotential has the 

fo rm [31]: 

oo 

fc=l 

where the J^k are nonperturbative /c-instanton contributions. In what follows, we use the 

SU{N) instanton calculus of Chapter 5 to derive an explicit A;-instanton expression for J^k. 

Our analysis closely follows that of Dorey, Khoze and A^Iattis in [42, 50, 45, 49 . 
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Our first task is to expand £efF in terms of component fields and therebj' to extract 
an expression for some low-energy Green's function in terms of the prepotential. In the 
one-instanton SU{2) calculation of Finnel and Pouliot [41] described in Section 4.2.1, the 
analysis focussed on a particular four-antifermion Green's function. Here we shall be more 
general. Following [42] we extract the following three effective vertices from Ces-

^eff ^ E (6-5) 
s=l,2,3 

= - V ) — - — (6.6) 
4 ^ ^-^mn-^jranl Q~^Q~^ 

i,j=l 

^ av,av,c)v,av, 

The superscript so indicates the self-dual part of the gauge field strength Vimn- From these 

vertices we obtain three anii-holomorphic low-energy Green's functions, {0^{xi,... ,Xs+i)), 

s = 1,2, 3, w i t h 

d\x„X2) = vtZixi)v^;^{x2) , (6.9) 

O'{x,,xo_,x3) = ^l^,^{x^)v^Zi^2)\pix,) , (6.10) 

d\xi.,X2,Xs,X4) = i'ia{xi)1pjp(^,)hj{x3)\s(^4) • (6.11) 

We first consider the A;-instanton contribution to the familiar four-antifermion Green's 

funct ion (6.11). In terms of the SU{N) multi-instanton calculus, we have 

{'ip.,a{Xl) 1pjp{X2) Xkjixs)\i{x4))kl = 

/ < h i s C ° ( ^ i ) ^ ; ? ( ^ 2 ) A - ( : C 3 ) A - ( X 4 ) e x p ( - 5 S ° S ) , (6-12) 

where the A;-instanton action 5*5̂ '"̂ * is given by Eq. (5.105) and the measure dn'-^^j^^ by 

Eqs. (5.124) and (5.123). 

I n order to deduce J^k from Eq. (6.12), we need expressions for the field insertions 

and ipi [50, 45]. A t leading order, these field insertions are approximated by the quantities 
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•0̂ °̂ and defined as follows [31, 42, 45]: first, one solves the Euler-Lagrange equations 
for ip and A in the classical background of the A D H M multi-instanton wi th all its fermionic 
zero-modes turned on; next, one projects the resulting 5'J7(A^)-valued configurations onto 
the generators of the SU{N) Cartan subalgebra to get the required light components; and 
finally, one assumes that the insertion points Xg are far away from the instanton position XQ 
and performs a long-distance (LD) expansion. 

Now on the Coulomb branch oiM = 2 supersymmetric SU(N) QCD there are precisely 

four exact fermionic zero-modes in the A;-instanton background. (This is true for all k.) 

These are the supersymmetric zero-modes of A and ^p that were described in Section 5.3. 

Indeed, i t is straightforward to verify, using the definition (5.59), that the four Grassmann 

parameters and associated wi th these modes do not appear in either the instanton 

action (5.105) or in the constraints associated wi th the measure (5.124). As regards the k-

instanton expression (6.12) this leads to a simplification in the first stage of the prescription 

described above for obtaining the field insertions. We only need to solve the antifermion 

field equations in the background of the supersymmetric zero-modes. The resulting partial 

solutions are linear in and and hence completely saturate the collective coordinate 

integration over these parameters. 

The solutions to the antifermion field equations in the background of the supersymmetric 

zero-modes were obtained in [42, 45] (see especially Appendix B of [45]) using the SU{2) 

multi-instanton formalism. These solutions are equally valid in the SU{N) case. They read 

i! = -iV2^i TpA\ \ = i ^ i 2 t A \ (6.13) 

where A^ is the solution to the Euler-Lagrange equation (5.101), given by Eqs. (5.102)-

(5.104). Note that A^ has a part that is bilinear in the fundamental fermion collective 

coordinates /C and K., so there are contributions to A and trilinear in Grassmann param­

eters. 

The result of projecting the antifermion solutions onto the SU{N) Cartan subalgebra 

and performing a long-distance expansion is another straightforward generalization of the 
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SU{2) result of [42, 50, 45]. One finds 

i^l^ix) = tV2^^-S,^{x,xo)-^^ + (6.14) 

Xf^ix) = -tV2e''S^^{x,x,)-^ + (6.15) 

where Saa is the usual Weyl spinor propagator, 

Saa{x,Xo) = a^^dmGQ{x,xo) , Go{x,Xo) = (6.16) 

and the derivatives d/dvi act on S^'^^^^ wi th the understanding that the complex conjugate 

parameters v^ are always to be treated as independent variables. The omitted terms in (6.14) 

and (6.15) represent terms that fal l off faster than {xi - Xo)~^ (as well as terms that are 

independent of or ^2 and hence cannot saturate the integrations over these parameters). 

The next step is to write the instanton measure (5.124) as follows [50]: 

/ d^^Z = I d'x,d%d% I d^Ss- (6-17) 

Here cZ/iphyg is the 'reduced measure', obtained from the physical Af = 2 measure by factoring 

out the integrations over the supersymmetric collective coordinates 1̂1 and and over the 

translational collective coordinates 2:0. I t is quite legitimate to do this because the (5-function 

constraints in (5.124) are independent of XQ, ^1, and ^2- (These collective coordinates can 

be interpreted as the global position of the multi-instanton in A/" = 2 superspace). From 

the defining equations (5.33) and (5.59) we can write XQ, ^i, ^2 as the linear combinations 

obtained by taking the trace of the k x k matrices a', M' and J\f' respectively [42]: 

xo = ^ T r , a ' , ^ = ^ T r , 7 W ' , 6 = ^ T r . A A ' . (6.18) 

Af te r substituting the field insertions Eqs. (6.14) and (6.15) into Eq. (6.12) and perform­

ing the integrals, extracted f rom the physical measure as per Eq. (6.17), we obtain 

I d'xo 5 " , ( a ; i , Xo)S,^ix2, xo)SYx-3, Xo)S^si^4., xo) q~^q~^,q~^q~^ / ^ A ^ s ^ v i S t ^ t ) • 

(6.19) 



CHAPTER 6. APPLICATION OF THE MULTI-INSTANTON CALCULUS 125 

There are two general properties of the multi-instanton calculus that have enabled us to 
pul l the derivatives outside of the integral in this equation. First, the collective coordinate 
measure (5.124) is independent of the VEV's . A t first glance, this might not seem the 
case, because the 'spin-0' constraint (5.71) does involve the VEV's , through the matrix A, 
defined in Eq. (5.72). However, note that we can straightforwardly integrate the collective 
coordinate matr ix ^tot out of the measure; the 5-function constraint is then replaced by a 
factor ( d e t L ) ~ \ which is manifestly VEV-independent. The second point is that S^Q^B is 
linear in the the VEV's , so that differentiating the exponentiated action four times does 
indeed generate the product of four 'dS/dv' factors. 

In (6.19) we recognize the Feynman amplitude corresponding to the effective four-fermion 

vertex (6.8). We deduce that 

^ . ( v ) = ^ ( v ) ^ &m [ df^^^^l eM-S's7c'o)- (6.20) 

k-mst J 

This collective coordinate integral expression for constitutes a closed series solution, in 

quadratures, of the low-energy dynamics of the Coulomb branches of the J\f = 2 supersym­

metric SU{N) models. 

Let us now consider the other two effective vertices, (6.6) and (6.7), that were extracted 

f rom C^fj. In order to find the fc-instanton contribution to these vertices we analyse the 

Green's functions (6.9) and (6.10), respectively. These Green's functions require field inser­

tions associated w i t h the anti-self-dual part of the field strength. Now in the leading order 

constrained instanton background, the field strength is purely self-dual, by definition. How­

ever, the prescription for obtaining long-distance field insertions requires us to first solve 

the next-to-leading Euler-Lagrange equations. In this way we do obtain an anti-self-dual 

contribution to the field strength (see Section 4.4 of [42]). In order to saturate the the 

integration over and .̂ 2j we need the part of this contribution that is bilinear in these 

parameters; this was obtained in [42, 45]. Its long-distance expansion yields [42, 45]: 

= G_ , . , ( . ^ , xo) + • • • (6.21) 

where Gmn,pq is the gauge-invariant propagator of U{1) field strengths: 

Gmn,pq{x,Xo) = iVmpdndq-Vviqdndp-rjnpdmdg-\-naqdmdp)Go{x,Xo) . (6.22) 



CHAPTER 6. APPLICATION OF THE MULTI-INSTANTON CALCULUS 126 

The omit ted terms in (6.21) include terms that fal l off faster than (.x̂  —XQ)"'*. An important 
property of Gmn,pq is that i t only connects wf^„ to and vice versa (just as Saa only 
connects A to A, and ip to tp). This property follows f rom the identity 

2 
a''"'^G^n,p,{x) = (6.23) 

which implies 

0 = ^ T ^ 5 ^ - . P ' ^ ( ' ' ^ ) = <r<pG^n,M . (6.24) 

The Green's functions (6.9) and (6.10) may be calculated, just as before, by substituting 

the long-distance expressions (6.21), (6.14) and (6.15) into the collective coorcUnate integra­

t ion, and performing the integrals explicitly. Thanks to Eq. (6.24) one does indeed recover 

the effective vertices (6.6) and (6.7), and we again deduce that the /c-instanton contribution 

to the prepotential is given by Eq. (6.20). 

We can easily extend the SU(2) analysis of Dorey, Khoze and Mattis [50] to derive the 

SU{N) M'dtone relation, Eq. (4.40). Consider the /c-instanton expression for the condensate 

U2 = (Tr(yl^)) . The relevant field insertions are given by the part of the background Higgs 

configuration (5.68) that is bilinear in and ^2- I t was observed in [54] that this bilinear 

part has the fo rm 

A = V2^2(7"'''^lVmn. (6-25) 

After substituting this into the A;-instanton expression for U2 and integrating over both XQ 

and ^i, one obtains 

= -IQ^'k I djl^Z, e x p ( - 5 S ) . (6.26) 
fc-inst 

Comparing this w i th the expression (6.20) for J^k, we deduce that 

M 2 ( v i , . . . , Viv) = 2ink-J^h{vi,....VN). (6.27) 

k-inst 

Since a /c-instanton effect is proportional to A''°'=, where bo = 2 N - N f , this result is equivalent 

to the Matone relation (4.40). 
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6.1.2 One-Instanton Contribution to the Prepotential 

In Section 4.3, although we were able to derive integral expressions for one-instanton effects 

in J V = 2 supersymmetric SU{N) QCD, we were unable to evaluate these expressions in 

the general case. The source of the difficulty was the integration over group space collec­

tive coordinates. In what follows, we demonstrate that when the problem is reformulated 

using the A D H M instanton calculus, this diff iculty is removed. Consequently, we are able 

to completely evaluate the one-instanton contribution to the prepotential, for general N 

and N f . 

Our starting point is the integral expression (6.20). From the formulae for the A/" = 2 

action and reduced measure given respectively by Eq. (5.105) and by Eqs. (5.124) and (6.17), 

we write down: 

iC'A'°- / " A • ^ ~ 

^ ^ ' J u=l f=l 

x < 5 ( L - A o t - A t o t ) n 
c=l,2,3 

6=1,2 

X exp - 8 7 r ^ | v „ p < u ; „ ^ + 2\/27r^i(/Z„v„/^„ - P„v„//„) 

+ 87r2(A + Ahyp) A o t - TT̂  ̂  m;/C//C; j (6.28) 

In the N j = 2N case, the scale Apy is replaced wi th the instanton factor exp(—87r^/(/^). 

To evaluate this integral, we exponentiate the various (^-functions by means of Lagrange 

multipliers, and then interchange the resulting order of integration. We integrate out the 

A D H M supermultiplet {a,M,J\f,Atot} first of all, followed by the hypermultiplet collec­

tive coordinates /C/ and ICf. Only then do we perform the integration over the Lagrange 

multipliers. 

The spin-1 and spin-1/2 constraints in Eq. (6.28) are exponentiated in a straightforward 
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manner, respectively as: 

n ^C2i^%^t^ua) = ~ I d'v ^ M ^ f { r r f , 4 ^ u a ) : (6-29) 
c=l,2,3 •' 

and 

W 6{fL^Wua + WualJ'u) ^ 2 / c?̂ ^ exp (^''(/2„W„<i + W „ ^ / i „ ) ) , (6.30) 
(i=l,2 •' 

^{VyWuix + Wy^aVy) = 2 d^T] exp {T]''{UuWua + Wud'^u)) • (6.31) 

Here we have introduced a tr iplet of bosonic Lagrange multipliers p'^, as well as two Grass-

mann spinor Lagrange multipUers and 77". The exponentiation of the spin-0 constraint is 

best accomplished in a slightly trickier way involving a term in the action, as follows: 

J dAtot S{L • Atot - Atot) exp (87r2(A + Ahyp) A o t ) 

^ exp (8^2(A + A h y p ) - L ^ ^ • Atot) d e t L 

= 87r y d{Rez)d{lmz) exp { - STT^ZL z - (A + Ay,yp)z ~ zA,ot))- (6.32) 

The second equality follows f rom the general Gaussian identity 

J Yl d{Re z,)d{lm Zi) exp ( - z.KijZj + yiZi + z^y,) = ^^^^^y^^ QWiViKfj^j); (6.33) 

which can be used to exponentiate the spin-0 constraint in an elegant way for arbitrary 

instanton number k. The advantage of the rewrite (6.32) is that L is easier to manipulate 

in the exponent than L " ' ^ (which appears implic i t ly in the definition of A o t ) - In the present 

case, w i t h k = 1, the operator L collapses to a 1 x 1 c-number matrix: 

L = det L = w > „ ^ . (6.34) 

Likewise A and Atot collapse to 
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Now we consider the combined exponent formed f rom Eqs. (6.28)-(6.32). The hnear 
shifts 

l-Lu t^u+ ^ ^_ , l-^u f^u + 
2 ^ / 2 ^ 2 ^ „ ' 2V2n^au 

I',, 
2V27rW 2V2n^a, ^^'^^^ 

eliminate the terms that are linear in these variables. By inspection, the Grassmann inte­

grations over {/Xy, i^u, fiu, ^u} then simply bring down a factor of 

N 

11(2^/2 irHauf (6.37) 

u=l 

In Eqs. (6.36)-(6.37), we have defined and d;„ as the naturally appearing linear combi­

nations 

au = Vu+iz , au = v„ - iz . (6.38) 

Next, the { • « ; „ , / C / , ^ / } integrations are accomphshed, using the identities 

J d^Wud^Wuexp(^-A\utlO,^ + l ^"i^Tp'-t^ua) = (^0)2 + ^ ^ ( ^ c ) 2 ^^'^^^ 

and 

/ J J dief dief exp ( s T r ' A h y p ^ - T r ' ^ m / ^ ^ / Z C / j = TT'^^/ f | ( 2 \ / 2 ^ + m / ) . (6.40) 

I n this way, all the original A D H M variables {a,M,J\f,Atot,IC,IC} are eliminated f rom the 

integral (6.28). One is left w i th an integral over Lagrange multipliers only: 

^ / d^^d''idSd{Rez)d{lmz)B 

/ = i 

where 

and is the fermion bilinear 

K = J T ^ i U r T ^ - V,{rr^ . (6.43) 
4 v 2 7r^a;„ ^ ^ 

• I bo f 
jz^ = '^'^^Pv f d'pd^^d^rid{Rez)d{Imz)Bll{zV2z + m f ) , (6.41) 

27r J f 
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When Nf = 0 the product over flavours in Eq. (6.41) should simply be replaced by unity. 

The r]} Grassmann integrations in Eq. (6.41) must be saturated wi th two insertions 

of E: 

Extract ing these quadratic powers of S f rom B can be done quite elegantly, thanks to the 

algebraic identity 

3 N I Ql 

d'id\B = E E i ^ ; ^ 4 - - - 2 5 ^ ^ ^ 
6.c=l 

1 / A 5 \ 2 

E:=O 

327r4 |p|2 V ^ 5 v „ 
u=l 

Pull ing the V E V derivatives outside the integral, one therefore finds 

zC^Aj?. pv 
27r2 32 

Here 

iV ^/ 

^ ( E ^ ) V ^^^^ ^ ) ^ ^ ^ ^ ^) r n(̂ x/2 z + m / ) . (6.46) 
u=l " /=1 

the second equality following f rom a standard contour integration in the variable |p | , ex­

tended to run f rom —oo to oo. 

In this fashion, the original expression (6.28) has collapsed to a two-dimensional integral 

over the xy plane (wi th x = Rez and y = Imz henceforth). We now observe that the 

dependence on v„ in this integral is entirely through the variables Q;„ = v^ — iz. Therefore, 

i t is tempting—but incorrect—to pull the v„ derivatives back inside the integrand, and to 

make the naive replacement 

E ^ ^ ^ T F ' E ^ ^ - b r • 6.48 ^ 9 v u dz ^ ^ <9v„ / \dzJ 

The error here is due to the fact that the two sides of Eq. (6.48) can differ by (^-function 

contributions which arise at the locations of poles in the z variable. As a simple example. 
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whereas obviously {J2 d/dv) z~^ = 0, one also has, in contrast,^ 

= 7rS(x)6iy), (6.49) 

i ^ y i " ^^Hx)5{y) = '^iS'{x)5iy)+i5{x)S'{y)) . (6.50) 

The lesson is that one can legitimately trade v„ differentiation for z differentiation as per 

Eq. (6.48)—but only i f one explicitly subtracts off the extraneous (^-function pieces that are 

generated at the locations of the poles in z. Accordingly, we can split up Ti into two parts, 

= + Ta, (6.51) 

where Ts is the contribution of these 5-function corrections, while !FQ is a boundary term 

arising f r o m judicious use of Stokes' theorem applied to d'^/dz'^. We now evaluate each of 

these parts, in turn . 

Calculation of Ts 

As stated, to calculate !Fs, one converts {^d/dYuY into —d'^jdz^ as per Eq. (6.48), then 

subtracts off the spurious (5-function contributions that correspond to the poles in z of the 

expression F given in Eq. (6.47). The relevant poles lie at the A^ distinct values 

0 = au =Yu + iz = (Re v„ - t/)-F i ( I m v„-i-a;) . (6.52) 

There also appear to be poles in F when jcv^p = ±|Qf„|^ but these are irrelevant: the poles 

at \ay\'^ — — |a;„p lie away f rom the real domain of integration (x.y) € IR^, whereas the 

poles at |a^p = - f |Q ;„P have residues that cancel pairwise among the terms in Eq. (6.47) 

(these pairs correspond to interchanging the indices u and v). Restricting our attention to 

the singularities (6.52), we therefore find: 

^ 2^2 32^4 J ^ l\dz^ a^J \dz dz \ 
u=l 

,2 , i ! / 

2 - |cv„, _ 

^The normalization factor on the right-hand side of Eq. (6.49) is easily fixed by integrating both sides 
against exp{-\zz). 
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Integrating the first term on the right-hand side (the d- jdz^ term) once by parts cancels 
half the second term, whereupon the identity 

^ X 
— — = -m 5(Im v„ - I - a;)(5(Re v„ - y) (6.54) 
az ay, 

[cf. Eqs. (6.49) and (6.52)] quickly leads to 

•u=l V^U ^ f=l 

Calculation of 

Next we evaluate the boundary term J^g implied by the naive replacement (6.48). I t is useful 

to switch to polar coordinates, (x, y) (r, 6*), in terms of which 

— = - ^ o ^ ^ r + ^9 (6.56) 
dz^ r dr d9 

where 

p . = | e « ( 2 + . | : ) , p , = ^ - j 5 e » ( l + 2 r ^ + , l ) . (6.57) 

Since the integrand in Eq. (6.46) is a single-valued function of 9, the {d/dO) Ve term can be 

neglected. Stoke's theorem then equates the two-dimensional integral (6.46) to the angularly 

integrated action of Vj. evaluated on the circle of infinitely large radius: 

= - ^ ^ - ^ - S ^ ^ l in i | ( 2 + r | - ) 

poo r ^ ^ ^2 ^2 , ^ / 

where a^, — YU + ire^^ and ctu = v^ — ire~'^. The remaining ^ integral is best evaluated 

by changing variables to ^ = e*̂ , and summing the poles in f which sit wi th in the unit 

circle. These lie at the points where {cxyl'^ - ± | Q ; „ | ^ or Q;„ = 0. As before, the poles wi th 

ay\'^ = +|a;„|2 may be omitted as they have pairwise canceling residues between terms wi th 

indices u and v interchanged. The poles wi th ^ — _ Q,^ 2 correspond to 

? = 
- ( |v . |^ + |v. |^ + 2r') + V4( r2 _ Rev .v , )^ + |vg - vg|2 ^ ^ _̂  ^^^-3) 

2^r(v„ + v„) 2r 
(6.59) 
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These contribute 

^ ' E E T ^—V2 TT ^ 7 r f t ( - 4 - ( v . + v . ) + m / ) + 0{r-') 
•u=l VJ^U w^u,v /=1 

(6.60) 

to the 0 integral in Eq. (6.58). Likewise, the poles at = 0, corresponding to = iv„/7\ 

contribute ^ 

- 2 ^ E n Y 7 7 - V i ^ n ( - ^ ^ - + " ^ / ) + ^ ( ^ " ) (6.61) 
«=1 v^u ^ /=! 

to the Q integral. Adding these two contributions gives, finally: 

~~ ON+2 1 /v. _ 1 1 

^2iV-l N 

For Nf < 2N ~ 2 this expression is in fact identically zero. Direct calculation shows that 

the residues of all the simple and double poles cancel amongst the various terms, so that 

the rational funct ion JF^ must be a polynomial in the parameters {v„, m / } . By dimensional 

analysis, this polynomial must have degree Nf — 2N 2. I t follows that must vanish for 

Nf <2N - 2, as stated. 

Final Expression for J^i 

Upon adding together !Fs and J^d we notice that the final term in Eq. (6.62) precisely cancels 

the expression for !Fs, as given by Eq. (6.55). Our final one-instanton expression for the 

prepotential is therefore: 

= :FS + :F3 - ^ 2 Z ^ l ^ ( v , - v„)2 

X 1 i ^ . J T ( _ ^ ( v „ + v , ) 4 - m ; ) . (6.63) 

We reiterate that the product over Nf flavours is to be replaced by unity when Nf — 0; 

similarly the product over w ^ u,v is to be replaced by unity when N = 2. 
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As a simple check on this answer, we observe that when N = 2 and A'̂ ; > 0 and 
all the masses are set to zero, this expression vanishes identically, since vi -|- V2 = 0 by 
the tracelessness condition (3.98). This exactly what we expect since, as mentioned in 
Section 3.3.2, the SU(2) models wi th massless hypermultiplets possess a Z2 symmetry which 
rules out contributions f rom odd-instantons [18, 45 . 

6.1.3 Discussion of the One-Instanton Result 

The above expression for the one-instanton contribution to the prepotential, Eq. (6.63), 

is consistent w i th the one-instanton calculation of I to and Sasakura [58]. As we saw in 

Section 4.3, the method of I to and Sasakura is l imited in two significant ways. First, i t 

assumes that the final answer depends only on the VEV's { V I , - - - , V A ' } and not on the 

complex conjugate parameters { v i , • • •, VAr}. (This is the property of holomorphy.) Second, 

the method only extracts part of the f u l l answer, namely the part that becomes maximally 

singular in the l im i t that two of the VEV's approach one another. 

In the calculation described above, thanks to the collective coordinate measure (5.124), 

we have been able to overcome both these limitations. The reason is the intrinsic simplicity 

of the (super-) A D H M collective coordinate parameterization: the integration variables are 

all Cartesian, endowed wi th a flat measure save for the 5-function insertions. Consequently, 

we have been able to derive, rather than assume, holomorphy. For the special case of SU{2), 

this holomorphy property is buil t into the instanton calculus f rom the outset. I t emerges 

f rom a simple rescaling of the bosonic and fermionic collective coordinates in the /c-instanton 

action [69].^ But for SU{N) w i th A' > 2 no such rescaling removes the v„ f rom the problem, 

and the ult imate emergence of the purely holomorphic answer (6.63) seems miraculous f rom 

the instanton approach. 

For general N, the calculation of [58] fails to determine the 'regular' terms that appear 

in the one-instanton contribution to the prepotential when Nf = 2N - 2 and Nj = 2N. To 

be more precise, the method of I to and Sasakura is insensitive to shifts in the prepotential 

^We see explicitly how this rescaling works in Section 6.2. 
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of the following form: 

A^; = 2A^ - 2 : Ti ^ J^i + C2N-2 A^ , (6.64) 
N 

Nf^2N : j ^ i -> J^i + CsA.e-''^'/^' E (̂ -̂ ^̂  
where C2N-2 and C2N are numerical constants. The form of the regular terms is clear f rom 

dimensional considerations. Our calculation demonstrates that, when Ti has the specified 

fo rm (6.63), C2N~2 = C21V = 0. This is consistent wi th the A^ = 3 computation of I to 

and Sasakura [58 . 

Comparison with the Proposed Curves 

We now compare Eq. (6.63) wi th the predictions of the hj'perelhptic curves [19, 20, 21, 22, 

38, 39]. The curve predictions for the one-instanton contribution to the prepotential were 

derived in [56, 58]. For A^/ < 2A^ - 2 or A^/ = 2A^ - 1, Eq. (6.63) is in perfect accord wi th 

the curves. 

For Nf = 2N — 2, the curves proposed in [21, 22, 38, 39] give values of C2N-2 which 

differ f rom one another, and f rom the value C2N-2 = 0. The addition of a constant to 

the prepotential does not aflfect the low-energy Lagrangian (6.1) which depends only on 

derivatives of !F. But a constant shift does aflFect the quantum modulus U2 whose A;-instanton 

component is proportional to Tk via the Matone relation, Eq. (6.27). We conclude that the 

U2 discrepancy discovered in the SU(3) model w i th Nf = 4 flavours [57] is present in all of the 

SU{N) models w i t h Nf = 2N - 2 flavours. We can make corrections to the SU{N) curves 

w i t h A ' > 3 in the same way that we fixed the SU{3) curves in Section 4.3; essentially, 

one simply has to shift the (implicit) curve parameter U2 by an amount proportional to 

C2iv-2 A^. Only after i t has been shifted in this way can the curve parameter U2 properly 

be identified wi th the physical condensate (Tr.A^). 

From the relation (4.90), discovered in [47], which ties the one-instanton contribution to 

•U3 in a model w i t h Nf hypermultiplet flavours to the one-instanton contribution to U2 in a 

model w i th Nf -\- 1 hypermultiplet flavours, i t is apparent that the M3 discrepancies found 

in the SU(3) models w i th Nf = 3 and Nf = 5 flavours [47] are also generic. Moreover, 
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since the curve parameterizations of [21, 22, 38, 39] are not uniquely fixed when Nf > N, 
we anticipate discrepancies in the predictions for all of the condensates Un for this class of 
models. The discrepancies w i l l always involve the addition of regular terms. This implies 
the following arithmetic. On the one hand, using dimensional analysis, such quantum shifts 
in Un can only be proportional to Um A"^""* where 0 < m < n; for an SU{N) rather than a 
U{N) theory we further require m ^ 1 since Ui = 0. On the other hand, a fc-instanton effect 
is proportional to A^^W-A'/)*; Consequentlj^, equating powers of A , we generically expect a 
/u-instanton additive shift to M„ when k, N and Nf satisfy 

n — m {2N - N f ) k , 0 < m < n , 7n 7̂  1 . (6.66) 

When A^^ = 2A^ the situation is more complicated: all instanton orders k can in principle 

contribute regular term shifts, as we now discuss. 

The models w i th Nf = 2N are finite theories; the /3-function vanishes, and no dynamical 

scale is generated. Instead, the curves are functions of a dimensionless complexified coupling 

r . Thus the dimensional analysis of the previous paragraph no longer applies; in order to 

agree w i t h conventional definitions of condensates u„ and eflfective couplings Teff, parameters 

in the curves can in principle be shifted at all instanton orders, i.e, by a Taylor series in the 

dimensionless one-instanton parameter q = exp{i7rT^^^^^), where Vicro is the renormalized 

coupling of the microscopic SU(N) theory. 

We discussed this feature in the context of the SU{2) model wi th Nf = 4 flavours 

in Section 4.2.2. There we saw that for the exact results to make sense the parameter 

T appearing in the Seiberg-Witten curve [18], should be interpreted as the effective U{1) 

coupling evaluated in the region of moduli space where the four bare hypermultiplet masses 

vanish [36]. This effective coupling was denoted r^^', the superscript reminding us of this 

masslessness condition. The relation between the various complexified couplings reads [36]: 

.(0) ^ 

fc=0,2,4 

- y^Ckq'', q = exp(z7rr„i„J , (6.67) 

where CQ and ci have been calculated (and are nonzero) [45, 36]. A similar relation exists 

between u (the parameter in the Seiberg-Witten curve) and ui = (Tr A^) [36]. Importantly, 
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the series (6.67) in no way contradicts the conformal invariance of the model, since the right-
hand side is a purely numerical, scale-independent renormalization of the effective coupling 
45, 36 . 

Now let us consider the curves for SU(N) gauge theory with N > 2 and Nj = 2N. The 

three curve parameterizations proposed in [21, 22, 38] are ostensibly different.'' For none 

of the three curves can the r parameters be equated with T^I^^.^- This is seen explicitly at 

the one-instanton level: all three curves give values of C2N different from one another, and 

different from the value C2N = 0 [58 . 

What, then, is the physical meaning of the r parameters in these curves? By analog}' 

with the SU{2) case (6.67), it is natural to guess that these r's should be equated to some 

effective coupling, Teff, rather than to T^icm- The trouble with such an identification is that, 

for SU{N) with N > 2, the effective coupling is an (A^ — 1) x (iV — 1) dimensional matrix 

rather than a scalar; furthermore, it is VEV-dependent (equivalently, u„ dependent): 

<^-'" = aim, • t^'^^' 

How then should the results of (multi-)instanton calculations enter into these curve param­

eters? 

A potential answer to this question can be given for the special case of SU(3). Here there 

is a distinguished line in moduli space where the 2x2 matrix Teff is effectively one-dimensional 

74]. This line corresponds to setting the six bare hypermultiplet masses and the modulus 

U2 equal to zero. On the distinguished line, the matrix of effective couplings is proportional 

to the classical form [74]^ 
f 2 - l \ 

Teff a (^_^ 2 j - (^-^^^ 

Semiclassical calculations predict a relation between this Teff and r^icw similar to the re­

lation (6.67) that was observed in the finite SU{2) model. By analogy with the SU{2) 
According to [74, 73], the SU{3) curves in [22] and [38] can be transformed into one another by a 

modular redefinition of their respective r parameters, but no such transformation has yet been found that 
equates these curves, in turn, with that of [21]. 

^In terms of the three constrained VEV's v„, defined by Eqs. (3.97) and (3.98), the (properly normahzed) 
classical prepotential reads = r(v^ -t- V j + v | ) . In terms of the two independent VEV's v^, defined by 
Eq. (6.3), this becomes !F = ^T{vj -I- V j — V 1 V 2 ) . Differentiating with respect to the Vi twice then gives the 
classical form for Tgff shown. 
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case [36], we envisage that this relation determines the meaning of the r parameters in the 
proposed curves. 

In contrast, for A'̂  > 3 with Nf = 2N, it can be proved that there are no points on moduh 

space where Tefj is proportional to the classical form [74, 75]. The authors of [74] argue that 

the corresponding curves are underdetermined (the global symmetry requirements do not 

single out a unique set of modular forms). From the instanton perspective, it is not then 

clear how to reconcile the r parameters in the curves of [21, 22] with the results of multi-

instanton calculations, such as the explicit one-instanton expression (6.63) derived above. 

Without a definite interpretation of the r parameters used in [21, 22] the meaning of the 

r —> — 1/r duality built into these curves is also unclear. 

Nevertheless, we can make the following interesting observation, which might provide a 

clue to the eventual resolution of these issues. Consider the case of S't/(4) with Nj = 8. Let 

us examine the line in moduli space on which all eight hypermultiplet masses vanish and 

U2 = U3 = 0. At the classical level, the matrix Teff is proportional to 

2 - 1 0 \ 
- 1 2 - 1 , (6.70) 
0 - 1 2 / 

by definition. I t was shown in [74], that at the one-loop perturbative level, on the distin­

guished line in moduli space, Tgg is corrected by an amount proportional to the matrix 

(6.71) 

From our first-principles result (6.63) we find that on the distinguished line, the one-

instanton contribution to r^ff is proportional to this one-loop form. I f this coincidence 

persist to arbitrary multi-instanton levels, then an all-instanton-orders renormalization of 

the coupling of the type (6.67) may be possible after all. 
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6.2 Instantons and Higher-Derivative Terms 

In this section we specialize to M - 2 (including J\f = 4) supersymmetric SU(2) Yang-

Mills theory. Although the SU{2) ~ Sp{l) multi-instanton formahsm [42, 45, 49] is better 

adapted to this case, we choose to work with the SU(N) formalism that we have already 

described. The interested reader will find the same results obtained using the SU(2) ~ Sp{l) 

formalism in [69 . 

Following the work of Seiberg and Witten [17, 18], the SU(2) models have been the 

subject of extensive study. In particular, properties of the Wilsonian effective action, which 

describes the low-energy physics on the Coulomb branch of the theory, have been inves­

tigated. This effective action admits a (supersymmetrized) gradient expansion, the form 

of which is constrained both by gauge invariance and hy J\f = 2 supersymmetry [70]. In 

Section 3.3.1, we pointed out that the holomorphic prepotential !F. whose exact solution 

was obtained by Seiberg and Witten, determines the leading terms in this expansion, which 

involve up to two derivatives or four fermions. I t turns out that the next-to-leading terms, 

involving up to four derivatives or eight fermions, are again determined by a single function, 

H, which is real rather than holomorphic [70, 71 . 

In contrast to the prepotential, comparatively little is known in general about the func­

tion H [70, 71, 72, 76, 77]. However, it turns out that for the finite models exact statements 

can be made. In particular. Dine and Seiberg have argued that in such models, H is one-loop 

exact: the one-loop result receives corrections neither from higher orders in perturbation 

theory nor from nonperturbative effects such as instantons [27 . 

Our first task in this section will be to derive a formula for the /c-instanton contribution 

to the function H. We accomplish this in much the same way that we obtained the k-

instanton contribution to the prepotential in Section 6.1.1. We shall illustrate our formula 

by calculating the one-instanton contribution to H in the J\f = 2 pure Yang-Mills model. 

Then we shall use our formula to verify the Dine-Seiberg nonrenormalization theorems for 

M — 2 supersymmetric SU(^) QCD with Nf = 4 matter hypermultiplets and for the 

J\f = 4 theory. Specifically, we show, by means of a simple rescaling argument, that all 
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/c-instanton contributions to the next-to-leading higher-derivative terms identically vanish 
in these models. 

6.2.1 Multi-Instanton Contribution to V. 

In A/" = 2 superspace formalism the function "H contributes to the Wilsonian effective action 

as follows [70, 71]: 

A -der iv = J d'ed'eni^if,^). (6.72) 

Here is an A/" = 2 chiral superfield [78], which contains the familiar M = I multiplets 

V = (A, Vm) and $ = {A. 'ip). A component field expansion of i24-deriv yields the nine effective 

vertices^ 

£ 4 - d e r i v D 4 J2 V^oV^'o7^(v,v). (6.7.3) 

s,.s'=L2,3 

where the V* are the holomorphic vertices (6.6), (6.7) and (6.8) and the V* are their Hermi-

tian conjugates (e.g. = ijja^^'^Xv^^ /dv^ )7 Associated with these vertices are 

the nine antiholomorphic x holomorphic Green's functions 
G'''^'{x,,...,Xs+uyi,---,ys'+i) = {0'{x,,...,x,+,)0''{y,.,....,ys'+,)), (s, s '= 1,2,3), 

(6.74) 

where the are given by Eqs. (6.9), (6.10) and (6.11) and the O^' are their Hermitian 

conjugates. 

We require, in addition to the long-distance expansions of ip, A and v:^° (given by 

Eqs. (6.14), (6.15) and (6.21) respectively), the long-distance expansions of the fields ijj, A 

and v^^. These are easily derived from the fc-instanton solutions for these fields, Eqs. (5.53), 

(5.61) and (5.13). Projecting onto the unbroken U{1) direction (i.e. the direction) and 

utilizing the asymptotic formulae (5.39)-(5.42), we obtain 

•^In terms of the M = 1 superspace formalism these nine vertices are all contained in the last term in 
Eq. (4.7) in [70], which reads \ Jd^ed^eW^W^d'n{^A)/d'^^d'^^. 

Since we are specializing to models with gauge group SU{2), we can clearly omit the (A'' - l)-valued 
index i that labels the low-energy fields. Also, in the SU{2) models we can identify the VEV ' v i ' , defined 
by Eq. (6.3), with the more famifiar 'v ' , defined by Eq. (3.43). 
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V, 
4i 

= 2^2 GrauAV: -̂ o) ^rl.w^^p {o^'f^ + " " " , (6.75) 

X^^iv) = 2z7r2 5«<i (y ,Xo) (<r i^ .^ + / i . „ r i < ) + .-- , (6.76) 

^P:f{y) = 2z7r2 5 , ^ ( ? / , X o ) ( < r i i / , , + z ? , „ r i < ) + --- = (6.77) 

omitting terms with a faster fall-off. The second equality in Eq. (6.75) follows from the 

identity (6.23). 

We can now calculate, for example, the A;-instanton contribution to the effective 8-fermi 

vertex 

Inserting 

(^'i) ^Ti^2) X'^ixs) A-(X4) r j ' i y i ) C ( y 2 ) A!;°(2/3) A r (?/4) (6.79) 

into the collective coordinate integration and performing the integrals leaves 

d'^xo e''^S^a{xi,xo)S^i^{x2, Xo) e^^Spjixs, Xo)S^^{x4,Xo) 

X e'^^SakiVi, xo)Sf^j^{y2, xo) e'^'S^piys, xo)Ssa{y4: xo) 

X ^ / d f i % ^ ( T i , T ? ) ( T , ^ T ^ ) exp(-5 ,^ i - j ) , (6.80) 

where 

= ( < ^ i M . ^ + M ^ « ^ i < ) , (6.81) 

= (wirl,u,^ + i^^ur^,wZ). (6.82) 

(These are just the Grassmann-spinor-valued combinations of collective coordinates that 

appear in the long-distance expressions (6.76) and (6.77).) 

In Eq. (6.80) we recognize the Feynman amplitude associated with the vertex -^^A^-i^^A^, 

with an effective coupling given by the last fine in (6.80). By comparison with (6.78) we 

deduce the following expression for the /c-instanton contribution to Ti, valid to leading order 

in the semiclassical expansion: 

1̂  n{v, v) = 47r« / df^%^ {r,nT2)' e x p ( - 5 S ) , (6.83) 
C V ^ fe-mst J ' 
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This is the analog of Eq. (6.20) for the prepotential. Somewhat different (although neces­
sarily consistent) expressions for d'^'H/dv'^ and d^7i/dv^ can be derived in the same wa}', 
by examining the Green's functions G*̂ '̂  and G*̂ '̂ , respectively. By exchanging v and v in 
Eq. (6.83) we obtain the contributions from anti-instantons of topological charge ~k. There 
may also in general be mixed (A:+)-instanton, (A:_)-anti-instanton contributions to H (holo-
morphy prohibits such contributions to the prepotential), but these lie beyond the scope of 
our analysis. 

As a simple illustration, we now calculate the one-instanton contribution to 71 in the 

case of the Af — 2 supersymmetric pure Yang-Mills theory. The instanton action (5.100) 

reduces to: ^ 

SsvT = ^ + 2Tr'\v\'wtwua + V2T:H{lLy^^u, - i ^ ^ r i ^ , ) , (6.84) 

where |v| = -y/v?- In fact, we can ignore the fermionic terms in this action because the eight 

fermionic field insertions completely saturate the Grassmann integrations associated with 

the four superconformal zero-modes as well as those associated with the four supersymmetric 

zero-modes. jXdoreover, it is not hard to show, after making the identification Wua = pu, 

with u e SU{2) (see Section 5.2.3), and with the aid of the fermionic constraints (5.55) 

and (5.62), that (Ti)^ = ip^flufJ-u and similarly (T2)^ = 4/9^P„i/„. The collective coordinate 

integration is easily performed using the 't Hooft-Bernard measure (2.64) and using the 

fact that the Grassmann parameters Csci,2 = 27r̂ i_2 and C s c l 2 = 27r//î 2 correspond to 

normalized (superconformal) zero-modes. The result is^ 

1 A^ , logv . (6.85) 
l-inst StF^ V^ 

This result agrees with an instanton calculation by Yung [77], which used a very different 

approach. In their early investigations of instanton effects in QCD, Callan, Dash and Gross 

found that it was possible to describe instanton effects by adding an effective vertex to 

the tree level Lagrangian [79]. In the model at hand, Yung emploj^ed the constraints of 

N = 2 supersymmetry to construct a (one-instanton) effective vertex of this type. It was 

then possible to directly extract one-instanton contributions to both leading and higher-

derivative terms in the Wilsonian effective action. 
^In the component field expansion of £4-der iv , only mixed derivatives of Ti with respect to v and v appear. 

As a consequence, the function % can be written in a variety of equivalent ways. 
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Note that for Nf > 0, the first non-vanishing contribution to H is at the two-instanton 
level, due to the same Z2 symmetry that forbids all odd-instanton contributions to the 
prepotential [17, 18, 45 . 

6.2.2 Nonperturbative Nonrenormalization Theorems 

The Finite Af = 2 SU{2) Model 

We now prove that all /c-instanton contributions to ?i vanish in = 2 supersymmetric 

SU{2) QCD with Nf = 4 massless matter hypermultiplets. As was originally observed in 

42, 45], when the hypermultiplets have zero mass, the A;-instanton action associated with 

the SU(2) models has the following property: all dependence on v and v can be eliminated 

by performing the collective coordinate rescaling 

a -> a/|v| , 

/C ^ / C / v ^ , K: -> ^ / x A . (6.86) 

From Eqs. (5.124) and (5.123) we find that the effect of this rescaling on the reduced 

collective coordinate integration measure is: 

From the /c-instanton formulae (6.83) and (6.20) we deduce that 

logv 
^ ( v , ^ ' ^^^^ fc-inst v(4-^/)fc-2 

(6.88) 

Setting Nf = 4, we find that U logv. Consequently, the effective component 

vertices contained in £ 4 - d e r i v (all of which involve differentiating Ti with respect to both v 

and v) automatically vanish. We likewise conclude that anti-instanton contributions have 

no physical effect on H. (Anti-instanton contributions are obtained simply by exchanging v 

and v.) This confirms the nonperturbative nonrenormalization theorem of Dine and Seiberg 

in this model. 
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Note that the scaling argument correctly predicts that in the Nj = 4 model one has 
T Ifc-inst ^ v^. This does not rule out instanton effects and, as we have seen, the prepotential 
does receive contributions from all (even)-instantons. Note further that giving any of the 
hypermultiplets a mass spoils the scaling argument, since mj rescales to nij/v, and this 
rescaled mass can be pulled down from the exponent. 

The = 4 SU{2) Model 

Next we consider the J\f = 4 theory, described in Section 3.2.2. The A;-instanton action and 

measure for this model have been constructed, using the '5f/(2) ~ Sp{iy formaUsm, in 

46, 49]. I t suffices to know only a few general properties of the action and measure, and it 

is straightforward to phrase these properties in terms of the SU{N) formalism of Chapter 5. 

The A/" = 4 model is constructed by coupling J\f = 2 supersymmetric pure Yang-Mills 

theory to a pair of chiral superfields transforming in the adjoint representation (see Sec­

tion 3.2.2). Associated with these superfields are two adjoint Weyl fermions, x and x. 

Accordingly, the the M = 2 superinstanton background (described in Section 5.3) is supple­

mented by 2A''A; -I- 2Nk new fermion zero-modes; these have the same form as the solutions 

for the gaugino and Higgsino zero-modes (5.53) and (5.61), but in place of M and N one 

has new collective coordinate matrices K and IZ. 

After spontaneous symmetry breakdown of the model, the low-energy dynamics involves 

a set of massless fields corresponding to a single M = 4U{\) multiplet. Concomitantl}', the 

instanton action is independent of four additional Grassmann collective coordinates [46]: the 

'trace' components ^j, and ,̂ 4 of the matrices TZ' and , defined as per Eq. (6.18). These 

components correspond to four new supersymmetric zero-modes. 

An appropriate Green's function to consider, whose field insertions saturate all eight 

integrals, is given by 

G^(xi,.. . ,a;8) = (4(a;i)i^^(rz;2) A^(x3)A^(.X4)x«(a'-5)XA(^6)Xp(3;7)^^(a;8)) • (6.89) 

Using the methods described above, we deduce that the associated effective coupling can be 
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written 

J d'xo d'^,d'^2d'^3d'^4 v) , (6.90) 

where is the /c-instanton contribution to what one might call the 'anteprepotential' in 

analogy to Eq. (6.20): 

^ . ( v , v ) = I d[,Zexpi~S'jiT)- (6.91) 

Here djl^^^j^^ is the reduced J\f = 4 integration measure, which excludes the J\f — 4 superspace 

position variables {XQ, ^1,^2,^3, Ci)-

Just as for the massless M = 2 models, we can remove all VEV dependence from the 

SU{2) instanton action by making the rescalings (6.86) and also [46 

n ^ 7^/\^, n ̂  n/V^r. (6.92) 

The effect on the measure is as follows: 

d~^%. ^ \ - r ' \ ^ ' f ' - \ ^ r - ' - d ~ C s = d~^%, . (6.93) 

Hence Bk{v,\) is a constant, independent of v and v. 

The action S'^'^f also possesses the discrete symmetry {M.M.v] O {R.TZ.y] [46 . 

This symmetry, together with the long-distance expressions (6.14) and (6.15) implies that 

f^{x,) = iV2e''S^M^x,)— + ••• (6.94) 

Xf{x,) = -^^/2e''S^M•.^^)Q^ + ••• (6-95) 

Using the long-distance expressions (6.14), (6.15), (6.94) and (6.95) to obtain a /c-instanton 

expression for and comparing with the expression (6.91) for Bk, we deduce that 

Thus all (multi-)instanton contributions to vanish, which confirms the prediction of Dine 

and Seiberg for the A/" = 4 theory. 
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6.3 Summary 

In this chapter we have employed the instanton calculus developed in Chapter 5 in several 

ways to investigate instanton effects in supersymmetric SU(N) A'ang-Mills theory. 

Following the SU{2) analysis of [50], we have derived a closed form expression for the 

/c-instanton contribution to the prepotential in A/" = 2 supersymmetric SU{N) QCD, as 

a definite integral over the bosonic and fermionic collective coordinates of the instanton 

configuration. This is a solution, in quadratures, of the low-energy dynamics of the Coulomb 

branches of the Af = 2 supersymmetric SU{N) models. It was extracted directly from the 

A'-instanton expressions for three specific Green's functions of the low-energy theorj--, using 

the solutions for the long-distance field insertions obtained in [42, 45 . 

We have also seen that the SU(2) multi-instanton proof of the Matone relation [51, 52, 55 

presented in [50] (see also [54]) straightforwardly generalizes to SU{N). 

We have evaluated the one-instanton contribution to the prepotential in Af = 2 su­

persymmetric SU{N) QCD with an arbitrary number of matter hypermultiplets. This 

calculation was accomplished using the collective coordinate measure of Section 5.6. We 

found that, after exponentiating the 5-function constraints in the measure, the collective 

coordinate integrations are Gaussian and can be straightforwardly carried out. The diffi­

culty associated with groups space collective coordinate integration that was encountered 

in Section 5.6 was completely avoided. 

Comparing our complete one-instanton result with the predictions of the proposed hy-

perelliptic curves [21, 22, 38], we have found discrepancies for 7Y/ = 2N - 2 and Nj = 2A^ 

flavours of matter hypermultiplets. For the case of Nf = 2N - 2 flavours, the curve pre­

dictions for the one-instanton contribution to the condensate U2 = (Tr(^^)) differ from our 

result by a constant regular term. So the one-instanton discrepancy discovered by Ito and 

Sasakura [58] in the SU(3) model with Nf — A flavours is generic. More generally, we expect 

that when Nj > N the curve predictions for the instanton contributions to all of the con­

densates Un — (Tr(/1'^)), 77. = 1, 2 , . . . , A'" — 1, are correct only up to regular term shifts; this 

reflects an ambiguity in the curve parameterization for this class of models. For Nj < 2N 
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the curves can be fixed by making shifts in the quantum moduli Un that parameterize the 
curves. 

For the finite A'' > 3 models with Nf = 2N flavours, the disagreement between the curve 

predictions and the instanton calculus is more difficult to interpret. In analogy with the 

SU{2) case, one expects that to resolve the discrepancy, the curve parameter r should be 

identified with the effective coupling of the low-energy theory on a particular complex line in 

moduli space. However, we cannot directly make this identification, since the parameter r 

is a scalar, whereas the effective coupling is an (A^ — 1) x (A^- 1) matrix. For the special case 

A" = 3, it turns out that the effective coupling matrix on the complex line is proportional 

to its classical form [74]. The proportionality factor gives an effective scalar coupling which 

can naturally be identified with the curve parameter. But for N > 3, the effective coupling 

on the conformally invariant line is not proportional to its classical form [74], so we do not 

have a natural interpretation of the parameter r appearing in the curves. 

In the same way that we derived a closed form expression for the /c-instanton contribution 

to the prepotential, we have derived a closed form expression for the A;-instanton contribu­

tion to the real function V., which determines the next-to-leading terms in the Wilsonian 

effective action in J\f = 2 supersymmetric SU{2) Yang-Mills theory. We considered Green's 

functions which required, in addition to the field insertions associated with the long-distance 

antifermion fields and the anti-self-dual field strength, insertions associated with the long­

distance fermion fields and self-dual field strength; these were easily extracted from the 

solutions of Chapter 5. For the M = 2 supersymmetric QCD model with Nf = 4 flavours 

of massless hypermultiplets, we have used a general scaling property of the instanton action 

and measure to show that all multi-instanton contributions to the higher-derivatives terms 

vanish, thus confirming the nonrenormalization theorem of Dine and Seiberg [27]. Using 

the same scaling argument, we have also verified the Dine-Seiberg renormalization theorem 

in the J\f = 4 supersymmetric 5(7(2) model. 



Chapter 7 

Conclusions 

In this thesis we have investigated instanton eflfects in supersymmetric SU(N) Yang-Mills 

theory. In particular, we have studied instanton effects in the Af — 2 supersymmetric models 

with N > 2. We have presented two explicit one-instanton calculations that have provided 

tests of the exact predictions in these models. 

In Chapter 4, we presented a one-instanton calculation of the condensate Uz = (TrA^). 

In this calculation we faced a (4A'̂  - 5)-dimensional integral over group space collective 

coordinates which we were not able to solve in the general case. We were nonetheless able 

to extract a 'maximally singular' part of the complete one-instanton contribution to by 

following the analysis of Ito and Sasakura. For the models with Nj < 27V-2 or A^; = 2N-2> 

flavours of fundamental matter hypermultiplets, dimensional considerations show that there 

are no additional 'regular' terms so that the singular contribution represents the complete 

contribution. In these models, we found that the predictions of the hyperelliptic curves 

completely agreed with the instanton calculation. 

For the particular case of 5f/(3) we were able to fully determine the one-instanton 

contribution to M3, for all Nj < 6. We found that none of the proposed hyperelliptic curves 

predict the correct values for the regular terms which appear when Nj = 3 or Nj = 5. 

These discrepancies are similar in nature to the discrepancy found in the SU(2) model with 

Nf =^ 3 flavours. They reflect an ambiguity in the parameterization of the hyperelliptic 

curves when Nf > N: we expect that the predictions of the Nf > N curves for all the 

148 
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condensates n„ = (Tr(/ l")) , n = 1, 2 , . . . , A^ - 1, are correct only up to regular terms. The 
ambiguity can easily be fixed by reinterpreting the parameters appearing in the curves in 
accordance with the instanton predictions. (Essentially one has to make regular term shifts 
in the moduli m„.) We demonstrated this explicitly in the SU{3) case. 

In Chapter 6 we presented a complete calculation of the one-instanton contribution 

to the prepotential in = 2 supersymmetric SU{N) QCD with an arbitrary number 

of matter hypermultiplets. This calculation was accomplished using the formalism of the 

multi-instanton calculus presented in Chapter 5. In particular, we made use of the the 

collective coordinate measure of Section 5.6. We found that, after exponentiating the S-

function constraints in the measure, the collective coordinate integrations are Gaussian and 

could be straightforwardly carried out. The difficulty associated with group space collective 

coordinate integration that one encounters using the standard 't Hooft-Bernard measure 

was completely avoided. 

Comparing our complete one-instanton result with the predictions of the proposed hy-

perelliptic curves, we observed discrepancies for Nf = 2N — 2 and Nf = 27Y flavours of 

matter hypermultiplets. For the case of Nf = 2A^ — 2 flavours, the curve predictions for 

the one-instanton contribution to the condensate — (Tr(.4^)) differ from our result by a 

constant regular term. This result is not unexpected; it reflects the general parameteriza­

tion ambiguity associated with the moduli u„ when Nf > N. For the finite models with 

Nf = 2A^ flavours, the predictions of the curves for the one-instanton contribution to the 

prepotential differ from our calculated expression by a regular term that is quadratic in the 

VEV's. I t is unclear how to interpret this discrepancy. The similar discrepancy found in 

the SU{2) model with four fundamental fermions was resolved by identifying the parameter 

r appearing in the Seiberg-Witten curve with the effective coupling of the massless low-

energy theory. However, for general N > 2, the effective coupling of the low-energy theory 

is an (A' — 1) x (A^ — 1) matrix, in contrast to the parameter appearing in the hyperelliptic 

curves, which is a scalar. For the special case A" = 3, i t turns out that there is a complex 

line in moduli space on which the low-energy effective coupling matrix is proportional to 

its classical form. Consequently, it is possible to identify the curve parameter r with the 

associated proportionality factor. However, for VV > 3 there is no region of moduli space 
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where the effective coupling is proportional to its classical form, so we do not have a natural 
interpretation of the parameter r . 

In conclusion, our one-instanton calculations have provided important tests of the exact 

solutions predicted for A/" = 2 supersymmetric SU{N) Yang-Mills theory. In most cases, our 

calculations completely agree with the exact results. For Nf > N we have detected minor 

discrepancies associated with the condensates Un.; these can easily be resolved by reinterpret­

ing the corresponding parameters in the hyperelliptic curves. For the finite 7V̂  = 27Y models 

there is a more serious discrepancy associated with the prepotential and in the general case 

it is unclear how this discrepancy can be resolved. 

An important part of this thesis was devoted to the construction of a multi-instanton 

calculus for supersymmetric U(N) or SU(N) Yang-Mills theory. The calculus is based on the 

multi-instanton solution of Atiyah, Drinfeld, Hitchin and Manin and naturally incorporates 

supersymmetry. Following the SU{2) analysis of Dorej', Khoze and Mattis, we obtained 

the solutions comprising the super-multi-instanton background and derived the associated 

action and collective coordinate measure for A/" = 1 and Af = 2 supersymmetric models. 

Our calculus has enabled us not only to perform a complete one-instanton calculation 

m Af = 2 supersymmetric SU{N) Yang-Mills theory, but also to obtain results at arbitrary 

A;-instanton levels. In Chapter 6 we presented a closed form expression for the A;-instanton 

contribution to the prepotential in Af = 2 supersymmetric SU{N) QCD, as a definite 

integral over the bosonic and fermionic collective coordinates of the instanton configuration. 

This expression represents a solution, in quadratures, of the low-energy physics on the 

Coulomb branches of the Af — 2 supersymmetric SU{N) models. We were also able to 

verify the SU{N) version of the Matone relation, at all /c-instanton levels, by a simple 

generalization of the analysis of Dorey, Khoze and Mattis. 

In a separate investigation in Chapter 6, we employed our calculus to investigate higher-

derivative terms in the Wilsonian effective actions of supersymmetric SU{2) models. We 

derived a closed form expression for the A;-instanton contribution to the real function %. 

which determines the next-to-leading terms in the Wilsonian effective action inAf — 2 super-

symmetric SU{2) Yang-Mills theory. Using a scaling property of the SU{2) multi-instanton 
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action and measure we showed that, in the finite 5(7(2) models, all multi-instanton con­
tributions to the higher-derivatives terms vanish. This result confirms the nonperturbative 
nonrenormalization theorem of Dine and Seiberg. 

There is much scope for further research into instanton eflFects in supersymmetric SU(N) 

Yang-Mills theory. I t would desirable to extend the instanton tests of the exact results to 

higher multi-instanton levels. We would particularly like to perform further calculations 

in those models in which discrepancies have been observed. More generall}', we envisage 

employing our multi-instanton calculus, whose development was stimulated by the exact 

results in — 2 supersymmetric SU(N) Yang-Mills theory, to investigate models for which 

exact solutions have not been predicted. 



Appendix A 

Conventions 

Throughout Chapters 3, 5 and 6 we work in Minkowski space and utilize the conventions of 

Wess and Bagger [25]. In particular, this means that the metric is 

77™. = d iag( - l , 1 ,1,1) . (A. l ) 

SU{N) Yang-Mills Theory 

We choose a Hermitian basis of generators T°, that satisfy 

[T^.T'] = tfabcT", (A.2) 

Tr(T'^r' ') = (̂5̂ *̂, (A.3) 

(A.4) 

where a = l , . . . ,A '^^ — 1. For the first three values of a, it is convenient to specify 

/ I t " 0 \ 
'n n (^=1=2,3), (A.5) 

where the are the Pauli matrices. 

The gauge field is denoted by 
Vm = (A.6) 
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In the fundamental representation, the covariant derivative reads 

Dm = d m - igVm- (A.7) 

This entails a field strength 

Vmn = -[Dm, Dn] = dmVn ~ dnVm " ^P^m, ^n]- (A.8) 

9 

Spinor Conventions 

A left-handed Weyl spinor, transforming under the ( i ,0) representation of the Lorentz 

group, is given by ipa- Its conjugate is a right-handed Weyl spinor, transforming under 

the (0, i ) representation. The indices on these objects may be raised or lowered using the 

antisymmetric tensors 

We define the contraction of two Weyl spinors according to the rules [25 

X ^ = X > a , Xi^^^X^r- (A.IO) 

The massless Dirac equations for Weyl spinors are 

= a ^ i ^ ^ ^ = 0, Tpi^ = a'^Dmip = 0, (A. 11) 

where [25 
a-'^" = ( - l , - r O . (A.12) 

The Sigma matrices are related by 

<a = eape^p^-^'. (A.13) 

We can form a Dirac spinor, from two Weyl spinors, ijja and x", by writing 

^ = f V (A.14) 
X 
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The 7-matrices are then represented as 

7 

We refer the reader to Appendix A of [25] for many useful identities involving the spinor 

objects defined above. 

Continuat ion to Euclidean Space 

In Chapters 2 and 4 we work in Euclidean space. Here we present our conventions for the 

continuation from Minkowski space to Euclidean space. Note that to label tensor indices in 

Euclidean space we use the Greek symbols /.i, v, etc., in place of the letters m, n, etc., that 

are used in Minkowski space. The Euclidean space indices run from one to four instead of 

from zero to three. Also, in Euclidean space we denote the gauge potential by the standard 

'A^' , in place of the Minkowski space of Wess and Bagger. 

First, we convert to the Minkowski metric — diag(l, - 1 , - 1 , -1 ) by multiplying each 

tensor object by (-1)^ where p is the number of raised Lorentz indices. Our continuation 

from Minkowski space to Euclidean space now closely follows the procedure given in [7]. We 

rotate the time coordinate and its derivative according to 

x° ^ - i x \ , do td^. (A. 16) 

The space coordinates {i — 1,2,3) are identical in Minkowski and Euclidean space. To 

continue the gauge potential Vm, we write 

vo ^ iA4, Vi-^Ai. (A. 17) 

We continue the covariant derivative and the field strength according to 

Do -> iD^, A -> A , (A.18) 

VQ^^IF^,, V^J->FiJ. (A. 19) 
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This ensures that their usual forms are preserved, 

= d^-igA^., (A.-20) 

F^u = d^A,-d,A^-ig[A^.,A,\. (A.21) 

To continue fermionic terms in the action, we define Euclidean space 7-matrices as 

follows, 

74 = 70, (A.22) 

= ^7 •̂ (A.23) 

The 7^ satisfy a Euclidean space Clifford algebra, 

{ 7 „ 7 . } = 2<5,,. (A.24) 

From the Weyl representation of the the 7-matrices, Eq. (A. 15), we deduce that 

(ymaa 6̂  „a = («^', 1~) , (A.25) 

a r ^ e-f = H r M ) . (A.26) 

Nota t ion o f ' t Hoof t [3 

The matrices and given in Eqs. (A.25) and (A.26) can be used to define 't Hooft's 

77-symbols, 

e^e, = S,, + iv;y, (A.27) 

e,e^ = S,, + i%.r\ (A.28) 

(A.29) 

These objects are respectively self-dual and anti-self-dual, 

V% = - ^ W A ^ M , (A-30) 

where 61234 — 1-
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The one-instanton small-fluctuations determinants derived by 't Hooft contain the fol­

lowing functions of isospin: 

C{t) = lt{t + l){2t + l), (A.31) 

a{t) = C{t)\2R-l\n2-^--l 
l ' ^ ( \ \ \ t{t^\) + - y s{2t^\-s) s - t - - Ins 
2 ^ V J 

(A.32) 

where 

S=l 



Appendix B 

Proof of the Topological Charge 
Formula 

In this appendix we prove the topological charge formula, 

l i ^ y ^ '^Tr . (B.l) 

We take the gauge group to be SU{2), although the formula (B.l) holds in the general case, 

provided the group generators are normalized appropriately. (Throughout this thesis our 

conventions ensure this for the group SU{N).) 

The first step consists of rewriting the integral over space-time as an integral over the 

3-sphere at infinity. We define a current 

= I ^ W A T r (^A^dpAx - ^A,A,Ax^ , (B.2) 

whose divergence identically satisfies 
2 

d,K, = J - ^ T r . (B.3) 

I t follows from Stokes' theorem that 
k = / dS^K,. (B.4) 
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Next we input information about the large-distance behaviour of finite action field con­

figurations. In the large-distance limit, the field strength vanishes (see Eq. (2.2)), so that 

W a ^ p ^ a = ige^^pxApAx. (B.5) 

Consequently, we have 

Km = ^eiiupXTv {A.ApAx). (B.6) 
|a;|->oo 247r 

Using the asymptotic form of the gauge potential, Eq. (2.3), we can now write (B.4) as 

A; = ^ / dS,,€,,pxTr {Ud^U-'UdpU-'UdxU-'). (B.7) 

I t is convenient to deform the integration surface into a large hypercube, with faces at 

Xi = ±oo, so that (B.7) can be expressed in terms of Cartesian coordinates. We obtain 

k = - ^ f dxidx2dx3ei^nTr (UdiU-'Ud^U-'UdnU-') + ...., (B.8) 

where the dots represent similar contributions from the other seven faces of the hypercube. 

Now let us define parameters (Gs^s'^s) which act as coordinates for the matrix U in group 

space. The Cartesian coordinates on the surface of the hypercube implicitly depend on 

these parameters. Upon changing integration variables we get 

k 
k = [ d^,d^,d^zeimnTr (u^U-'U^U-'U^uA . (B.9) 

JSU(2) \ O^n J 247r2 ./5y(2) 

The form of the integral is invariant under the change of variables because the Jacobian 

determinant cancels with the determinant that appears when the Cartesian derivatives di 

are written in terms of the d/d^i. However, there is a significant difference between the 

integrals (B.8) and (B.9). In (B.8), if we integrate over the hypersurface once then the 

SU(2) group space is covered precisely k times. On the other hand, in (B.9), the integration 

variables are in one to one correspondence with the group matrices U. The appearance of 

the factor k in front of the integral (B.9) is precisely what is needed to account for this 

difference when we change from the Xi to the variables. 

The integral over the in Eq. (B.9) is in fact an invariant measure taken over group 

space. I t gives a constant factor representing the volume of the group SU{2). To complete 
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the proof of Eq. (B.l) we need to show that this volume factor is exactly 247r̂ . We shall do 

this indirectly, by evaluating the right hand side of Eq. (B.7) for a specific function U that 

manifestly has topological charge equal to unity. This function is 

(B.IO) 
X 

After substituting into Eq. (B.7) we get, after a little algebra, 

1 

Q.E.D. 



Appendix C 

Supersymmetry Transformations 

In this appendix we list supersymmetry transformation laws for the J\f = 1 vector multiplet 

V = {vm, A, D) and the AT = 1 adjoint chiral multiplet $ = (A, ip, F). 

M =1 Transformation Laws 

We first consider the action of the supersymmetry operator 5i — ̂ iQi+^iQi in Wess-Zumino 

gauge. For the Af = 1 vector multiplet we have 

Siv"^ = zei(j"^A + z^ia^^A, (C.l) 

SiX = -^la^'^Vmn + i^iD, (C.2) 

Sl\ = -e'l-^^^^mn - ^6^, (C.3) 

6,D = - i ^ f X + ^ i f X . (C.4) 

The transformation rules for the A/" = 1 adjoint chiral multiplet (and its Hermitian conju­

gate) are 

5iA = V2iii^, (C.5) 

= ~^f2iirfA + y/2^iF, (C.6) 

8,F = V2t^,fiP-2ig^^[~X,A], (C.7) 

5iA^ = V2^d, (C-8) 
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= -V2i^iTpA^ + V2^IFK, (C .9) 

5^F^ = s/2i(ifi; + 2'Lg^i[Al,X]. (C.IO) 

J\f = 2 Transformation Laws 

Next we consider the action of the supersymmetry operator 62 = ^2^2 + in Wess-

Zumino gauge. Together V = {vm, X, D) and $ = [A, ip, F) form an A/" = 2 vector multiplet 

which transforms as follows, 

S^V"" = l^2(j'^ij + l^20'^lP, ( C . l l 

52X = \/2ie,2fA-\/2^2F, (C.12 

52X = ^^e2?^^^-\/26i^^ (C.13 
52D = -C2p^ + ^2f^; (C.14 

Js/l = - \ / 2 6 A , (C.15 

52̂ ^ = -^2(y"'''Vmn + t^2D, (C.16 

(JgF = -V2i^2fX + 2ig^2[A,ip]., (C.17 

(̂ 2̂ ^ = - V ^ G A , (CIS 

S2i^ = ( C - 1 9 

S^F^ = -V2t^2'P~X + 2tg^2[Al,i^]. (C.20 



Appendix D 

Cluster Decomposition 

In this appendix we demonstrate the clustering property of the SU(N) /c-instanton measures 

constructed in Section 5.6. We proceed along the lines of [49]. The matrix a' is understood 

to he a. k X k matrix with 2 x 2 quaternion-like entries, a'^^ = (a^)^^ cr™. In the limit of large 

separation, the space-time positions of the k individual instantons making up the A;-instanton 

configuration may be identified with the k diagonal elements â^ [61]. In accordance with the 

property of cluster decomposition, when we take a single diagonal element, say a).̂ , to be 

large, the measure should factor into the product of a one-instanton and a (/c — l)-instanton 

measure. 

Where the unidentified /c-instanton measure d/j,^''^ is concerned, it is important to under­

stand cluster decomposition as a t / (k ) invariant eff'ect. We therefore take the a';.̂ .-dependent 

submatrix of a', 

h = flu 

/ 0 \ 
(0 , - - - ,0 , l ) 

0 

and act on it with the residual U{k) ADHM symmetry (5.30) 

(D.l) 

h ^ hg. (D.2) 

There is a U{k - 1) x U{1) subgroup of Uik) that leaves h invariant, so that in fact g is 
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restricted to the coset U{k)/{U{k — 1) x U{1)). Choosing the parameterization 

/ 0 ••• 0 -aifc \ 

5 = exp • • • 
0 ••• 0 ~ak-i,k 

\aik ••• Oik-i,k 0 / 

where the aik are complex numbers, the action of this coset on h is given by 

/ 0 \ (0 , - - - , 0 , l ) 

—> olkkQ^ 

(D.3) 

'•kk 0 
V I / 

''kk 

(0 , - - - ,0 , l ) 

0 •g 

/ 0 0 aik \ 

0 0 CV/a-l.fc 

\0!lk • • • ak-l,k 1 / 

+ Oi\af) (D.4) 

The second line gives the infinitesimal action of the coset U{k)/{U{k - 1) x [ /(I)) on the 

matrix h. 

With the transformation (D.4) in mind, we can now consider the large |a'̂ .̂ | limit of the 

unidentified measure in a meaningful way. The clustering condition should take the form 

(D.5) 

where dS^^''-^^ is just the Haar measure for the coset U{k)/{U{k - 1) x [ / ( I ) ) . We note here 

the result [80] that for infinitesimal aik, 

fc-i 

dS^ik-i) = Y[d'a,k. (D.6) 
i= i 

To proceed, it is first convenient to make the following change of variables: 

a'ik = (^kk(^ik\ l < i < k - l . (D.7) 

I t is also useful to split dik into a scalar (S) part and a non-scalar (NS) part: 

3 

d,k = dl + af;f , dIk = (ao)̂ A; (T^ , = ^{dmh . (D.8) 
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As far as the measure is concerned, the change of variables has the effect 

/n A. = K^r-'' /n • (D.9) 
i=i i=i 

The variables can now be identified with the infinitesimal group transformation param­

eters a. Then, using Eq. (D.6) above, we straightforwardly extract the expected group 

integration factor, dS'^^''~^\ from the measure. 

We now examine the (5-function constraints in the clustering limit. We first examine 

the J\f = 1 measure, given by Eq. (5.113). Ignoring the infinitesimals d^, the ^-function 

constraint on purely bosonic collective coordinates, Eq. (5.118), can be written as 

n ( i t r , r^(da)) 
c=l 

c=i i=i \ \ i = i 

3 
X 

c=l 
n 'k-l 

HS^^^ ( i t r , r ' = ( ( d a ) . , - K , r a - a - ) ) 

.i<j i=l 

x ' j 6 (itv.r'^ ({wwU-\a',,\'^al]d^^^^ . (D.IO) 
c=i V V j = i / / 

Here a, is the matrix left behind when a has its last row and column removed. The ^-functions 

comprising the first line on the right-hand side of this equation saturate the integration over 

the d^^ variables in Eq. (D.9). The eff'ect of this integration is two-fold. First, it introduces 

a factor laj.^l'^^^''"^) into the measure. Second, it requires the replacement of af^ in the 

other (^-functions with an 0(l/|o'^,^P) quantity. Consequently, in the Umit [a'̂ ĵ —> oo. the 

5-functions on the second and third lines become just the constraints that appear in the 

{k — l)-instanton and the one-instanton measure respectively. 

Turning to the second, fermionic, 5-function constraint in the A/" = 1 measure, we see 

that it similarly factorizes into three pieces: 
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5(2^') (Ma + dM) 
fc-i / fc-i 

= n ^^'^ d^'" + + E ^'jk + -̂ ^̂ ^ '"'^'^ ^Tk) - o!kk M'kk + M[k a'k, 
;=i V i = i 

'k-l _ "] Vk-l , 

J]5(') ((7Wa + 5,A^) + . . . ) JĴ '̂̂ M (y^a + ayw) - f . 
. i= l " - . j<i '̂̂  

X 5(2) ( ( ^ ^ + ^ ^ ) ^ ^ + . . . ) . ( D . l l ) 

Here is the matrix left behind when M. has its last row and column removed. The first 

5-function factor above saturates the integration over the Grassmann collective coordinates 

( 2 = 1 , . . . , /c — 1). In performing this integration, a factor d^.^ 4 ( A ; - I ) -g introduced into 

the measure. This exactly cancels the factors that appeared earlier. Further, in the large 

ajj^l l imit, the omitted terms in the arguments of the second and third 5-function factors 

in Eq. ( D . l l ) vanish, and we are left with precisely the fermionic constraints that appear 

in fi?/<^'^~^) and dfi^^"^ respectively. Since the numerical prefactor C\ also factorizes correctly, 

this completes the proof of the clustering property, Eq. (D.5), for the M — \ /c-instanton 

measure (5.113). 

In the case of the A/" = 2 measure, Eq. (5.124), there are two further (5-function con­

straints to consider. The 5-function associated with the Higgsino collective coordinates can 

be factorized in exactly the same way as the gaugino ^-function in Eq. ( D . l l ) . The inte­

gration over the M[k [i = \.... ,k - \) yields a Jacobian factor la'^^l''^''"^^ and leaves, in the 

large \o!f^^\ l imit, the required one-instanton and [k - l)-instanton constraints. As for the 

(5-function associated with the Higgs collective coordinate matrix ^tot; we can write: 

5 ( ' = ^ ) ( L . A o t - A - A / ) = <5(2('=-^»(K,pAot + . . . ) 

x 5 ( ( ^ - i ) ' ) ( L - A o t - A - A ; - f . . . ) 

x5(i)(ti-2 {^^)kk{A,oi)kk - Au- - {Af)kk + •••) (D.12) 

where L , ^tot; ^ and Af are constructed using the truncated collective coordinate matrices 

a, M and Af. The omitted terms are subleading in \a'^f^\. After integrating over {Aiot)ik for 

z = 1 , . . . , A; - 1, we get a Jacobian factor a'kk which cancels the previous factor, and 

the one-instanton and {k — l)-instanton constraints remain. This confirms the clustering 

property (D.5) for the A/" = 2 measure (5.124). 
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