
Durham E-Theses

An application of an ethernet based protocol for

communication and control in automated manufacturing

Bertolissi, Edy

How to cite:

Bertolissi, Edy (1997) An application of an ethernet based protocol for communication and control in

automated manufacturing, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4806/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4806/
 http://etheses.dur.ac.uk/4806/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

University of Durham

A n Application of an Ethernet based Protocol for Communication and

Control in Automated Manufacturing

Edy Bertolissi

Robotics Research Group,

School of Engineering.

Submitted for the degree of

Doctor of Philosophy

©1997, Edy Bertolissi

The copyright of this thesis rests
with the author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

This thesis is dedicated to my family who have given me so much love

and support throughout my life

Questa tesi e dedicata alia mia famiglia che mi ha incessantemente

amato e seguito durante la mia vita

Abstract

The exchange of information in the industrial environment is essential in order to

achieve complete integration and control of manufacturing processes. At present

the majority of devices present in the shop floor environment are still used as stand

alone machines. They do not take advantage of the possibilities offered by a com

munication link to improve the manufacturing process. The subject of this research

has been centered on the development of a simple, flexible and inexpensive support

system for communication and control of manufacturing processes. As a result,

a system with these features has been proposed and implemented on a simulated

workcell. The area footwear manufacturing was chosen for modelling the workcell.

The components of the manufacturing support system were developed using

an object oriented approach which allowed modularity and software reuse. In or

der to achieve communication between the components, a communication protocol

was developed following the process defined in the rapid protocol implementation

framework. Ethernet was selected for implementing the lower levels of the protocol.

Java, a new object oriented programming language used for the implementation

of the system, showed that it could became a promising language for the imple

mentation of manufacturing applications. In particular the platform independence

feature of the language allows the immediate porting of applications to systems

with different features. The manufacturing cell simulation had shown that the

times associated with the manufacturing support system operations are compat

ible for its use in applications where the response times are in the order of one

second.

Acknowledgments

I would like to thank my supervisor, Dr. Clive Preece, for his advice and sup

port throughout the three years over which this research has been conducted. I

would also like to thank Mr. David Reedman for his invaluable advice on the

manufacturing aspects of the project.

I am also grateful for all past and present members of the School of Engineering

who have helped provide such a pleasant research and social environment, and

especially Mr. Trevor Nancarrow for his assistance with the computing equipment.

I would like to thank very much my family for their parental support during

my time at the University.

I would also like to thank all my friends who supported me during the these three

years and, particularly, Marco, Nobuko, Carlo, Max, and all the other wonderful

people of Graduate Society.

This research project was funded jointly by the EPSRC (Engineering and Phys

ical Sciences Research Council) and BU Ltd. (formerly the British United Shoe

Machinery Co.).

Declaration

The material contained within this thesis has not previously been submitted for a

degree at the University of Durham or any other university. The research reported

within this thesis has been conducted by the author unless indicated otherwise.

The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should

be acknowledged.

Contents

1 A n Introduction to Manufacturing Communications 1

1.1 Introduction 1

1.2 Research Objectives 2

1.3 Thesis structure 4

2 Communication Networks 6

2.1 Introduction 6

2.2 The ISO/OSl model 7

2.3 Alternative network architectures 10

2.4 Local area networks 12

2.4.1 Network topology 12

2.4.2 Transmission media 14

2.4.3 Medium access methods 16

2.5 Conclusions 17

3 Ethernet and Fieldbusses 19

3.1 Introduction 19

3.2 Fieldbusses and Sensor-Nets 20

3.2.1 P-Net 22

3.2.2 ASl 24

3.2.3 Interbus-S 24

3.2.4 CAN, SDS, DeviceNet 25

3.2.5 Hart 25

3.2.6 LonWorks 26

CONTENTS vi

3.2.7 FIP 27

3.2.8 Profibus 29

3.2.9 lEC/ISA SP50 31

3.2.10 Fieldbus Foundation 32

3.3 Ethernet and Internet protocols 33

3.3.1 TCP/IP suite 34

3.3.2 Ethernet in industrial applications 36

3.4 Results of timing experiments 38

3.4.1 Discussion of the results 40

3.5 Conclusion 50

4 Automation in the footwear industry 53

4.1 Introduction 53

4.2 Shoemaking processes 54

4.2.1 Product development 54

4.2.2 Cutting 55

4.2.3 Closing 57

4.2.4 Finishing 65

4.3 Present situation 65

4.3.1 Other applications 69

4.4 Future directions 71

4.5 Manufacturing cells in the footwear industry 72

4.6 Two examples of networked workcells for the footwear industry . . . 75

4.7 Conclusions 77

5 Electrostatic glue application for footware applications 79

5.1 Introduction 79

5.2 Small-area markers 80

5.3 Full-width marking 83

5.3.1 Electrographic print mechanisms 85

5.3.2 lonography print technology 88

5.4 Experimental work 90

CONTENTS vii

5.5 Conclusions 93

6 Computer Based Support System 95

6.1 Introduction 95

6.2 Manufacturing Databases 96

6.3 Production Activity Control 98

6.3.1 The Scheduler 99

6.3.2 The Dispatcher 100

6.3.3 The Monitor 100

6.4 Scheduling Techniques 101

6.4.1 The proposed algorithm 103

6.4.2 Scheduling example 106

6.4.3 Computational experience 108

6.5 Conclusion 112

7 System Design 114

7.1 Introduction 114

7.2 Object ModeUng Technique 116

7.3 System Analysis 121

7.3.1 Object Model 121

7.3.2 Dynamic Model 130

7.3.3 Functional Model 134

7.4 Conclusion 135

8 Communication Protocol Design 137

8.1 Introduction 137

8.2 RPD structure 138

8.3 Protocol development 140

8.4 RPD development guidelines 142

8.5 Communication protocol design 144

8.6 Conclusion 155

9 Implementation 157

CONTENTS yiii

9.1 Introduction 157

9.2 The Database 157

9.3 The programming environment 161

9.3.1 Java for the real world 164

9.3.2 Real-time features 166

9.3.3 The reasons for using Java in industrial automation 175

9.4 The Device: Java implementation 179

9.5 The Interface: Java implementation 185

9.6 The production control system: Java implementation 186

9.7 Java in distributed manufacturing systems 190

9.8 Conclusion 193

10 System Analysis 195

10.1 Introduction 195

10.2 System configuration 196

10.3 Java network performance 197

10.4 Database performance 199

10.5 Message timings 202

10.6 Simulation tests 207

10.7 Manufacturing simulation 211

10.8 Conclusions 215

11 Conclusions 217

11.1 Introduction 217

11.2 An integrated control system for automated manufacturing 218

11.3 Future work . 221

A Performance Measurements 223

A . l Introduction 223

A.2 Results 225

B Mathematical details of the scheduling algorithm 238

CONTENTS ix

C Messages defined in M M S , Profibus and the proposed communi

cation protocol 243

D Java performance 248

D . l Introduction 248

D.2 Comparison of Java, C, C++ program performances 250

D.2.1 Plum tests 250

D.2.2 Byte magazine tests 252

D.3 Memory allocation 254

D.4 Input/Output 254

D.5 CPU 255

D.6 Analysis 258

E Glossary 260

List of Figures

2.1 The seven-layer OSI reference model 8

2.2 Data flow through the OSI layers. Protocol control information is
added or removed at each stage while the message traverses the stack
of transmission layers 10

2.3 TCP/IP layers compared with OSI layers. (AP = application pro
cess, NASP = network service access point, IP = internet protocol,
TASP = transport service access point) 13

2.4 Ethernet operating principle 14

2.5 Token bus operating principle. The stations A-F circulate the token
and can communicate when they hold it 15

2.6 Token ring operating principle. The token is circulated among the
stations. A station can send messages only when it holds the token.
The stations connected identify and collect the messages directed to
them and forward the others 15

3.1 In this example three nodes try to transmit at the same time on the
bus. A l l the nodes start to transmit their identifier which is used for
the nondestructive bitwise arbitration. As when a node transmits a 0
on the bus the signal level is set to low, any other nodes attempting
to set the line to high will notice the failure of their attempt of
setting the level of the bus, and stop transmitting and start to listen
to the bus. In this way the message is not corrupted if more than
one station tries to transmit 26

3.2 The atomic communication interval in FIP is called the Communi
cation Window and it is divided into 4 section for servicing different
types of services 27

3.3 The FIP messaging principle. The bus arbitrator sends an identifier
and the addressed unit (producer) replies with the actual data which
is received by all the consumers (C) 29

3.4 The Profibus operating principle. Master stations circulate the to
ken, and when they hold it they can communicate with slave stations. 31

LIST OF FIGURES xi

3.5 Representation of the VFD used in Profibus to offer a standard in
terface for all the devices connected to the bus 32

3.6 UDP transmission protocol performance on four different UNIX im
plementations 45

3.7 TCP transmission protocol performance on four different UNIX im
plementations 46

3.8 Throughput of the Solaris operating system as a function of the
message size on a Sparc Ultra 47

4.1 Different types of skiving operating on a leather component 58

4.2 Folding operation 60

4.3 Sections of shoes produced using different methods of construction. 61

4.4 Direction of the forces applied to the leather on the last during the
lasting operation 62

4.5 Injection moulding of polyurethane or PVC to create the sole of the
shoe 63

4.6 Graphical representation of the five InterCIM protocols presented
by SATRA 66

4.7 The BU "Rink System" cell layout for the the lasting and bottom
ing of the shoes. 1: backpart moulding, 2: insole attach 3: upper
conditioning, 4: forepart lasting, 5: seat and side lasting 6: dust
extraction 7: heat setting, 8: auto roughing, 9: auto cementing, 10:
cement drying, 11: sole attaching, 12: shoe cooling, 13: last slipping,
14: heel attaching 73

4.8 Schema of the production line for the assembly of the uppers of shoes 74

5.1 Inkjet printing fires droplets of ink which are inductively charged
and then deflected with an electric field 81

5.2 Schematic cross section of a electrographic printing engine 84

5.3 In the Canon monocomponent development system the magnets are
stationary and the toner, containing magnetically soft material, is
carried by the roller past a magnetic doctor blade into the develop
ment zone 88

5.4 Schematic cross section of the Delphax lonographic print engine . . 89

6.1 Production activity control modules and their interaction with the
database and system 98

6.2 Gantt charts for the two machine problem in the blocking flowshop
case 105

LIST OF FIGURES xii

6.3 Gantt charts for the two machine problem in the no-wait flowshop
case 105

7.1 OMT models 117

7.2 Schematic diagram of an interconnected manufacturing system for

the footwear industry 121

7.3 Top level Object Model for the manufacturing cell 123

7.4 Device Data module expanded into its components 125

7.5 Component Data module expanded into its components 126
7.6 Example of expansion of the Component Features abstract class tak

ing into consideration several types of recognition system 126

7.7 Device module expanded into its components 127

7.8 Interface module expanded into its components 129

7.9 Production Control module expanded into its components 130

7.10 Dynamic model of the Interface Chent 131

7.11 Dynamic model of the Interface Server 132

7.12 Dynamic model of the VMD Server 133

7.13 Dynamic model of the Poller 134

7.14 Dynamic model of the Dispatcher 135

8.1 Example of exchange of message for performing the uploading of a
file from the server to the client stations 149

10.1 Performance of the same application for measuring TCP round trip
transmission times written in Java and C on an Intel 486 platform
running Linux 2.0.29 197

10.2 Message passing between the different layers implemented in the
manufacturing communication system 203

10.3 Time required for uploading a data file in relation with its length . 204

10.4 Processing times associated with the simulated manufacturing cell. . 211

A . l UDP transmission protocol performance on three different platforms
running Linux 1.2.13 228

A.2 TCP transmission protocol performance on three different platforms
running Linux 1.2.13 229

LIST OF FIGURES xiii

A.3 TCP transmission protocol performance of Linux 1.2.13 and 2.0.29
on Intel 80486 230

A.4 Throughput of the Linux operating system as a function of the mes
sage size 230

A.5 UDP transmission protocol performance of BSD/OS 2.0 and 2.1 on
Intel 80486 231

A.6 TCP transmission protocol performance of BSD/OS 2.0 and 2.1 on
Intel 80486 231

A.7 UDP transmission protocol performance of SunOS and Solaris on
different platforms 232

A.8 TCP transmission protocol performance of SunOS and Solaris on
different platforms 233

A.9 Client; setup: 24, send: 3, rec: 66 r_trip: 69 - Server; setup: 4, rec:
28, send: 3 234

A.10 Client; setup: 23, send: 3, rec: 206 r_trip: 209 - Server; setup: 4,
rec: 153, send: 3 234

A. 11 Client; setup: 23, send: 3, rec: 121 r.trip: 124 - Server; setup: 4,
rec: 59, send: 3 235

A. 12 Client; setup: 24, send: 3, rec: 298 r.trip: 301 - Server; setup: 4,
rec: 190, send: 4 235

A. 13 Client; setup: 24, send: 3, rec: 166 r_trip: 169 - Server; setup: 4,
rec: 27, send: 3 236

A. 14 Client; setup: 24, send: 3, rec: 199 r.trip: 202 - Server; setup: 4,
rec: 99, send: 3 236

A. 15 Client; setup: 24, send: 3, rec: 243 r_trip: 247 - Server; setup: 4,
rec: 113, send: 3 237

B. l Gantt charts for the two machine problem 239

B.2 Gantt charts for the three machine problem 240

Chapter 1

An Introduction to

Manufacturing Communications

1.1 Introduction

Recent times have seen the dissemination of information technology outside the

office environment. Computers have been introduced in the area of manufacturing

planning and management, and more recently in the domain of factory control. A

rapidly changing market which requires prompt development and commercializa

tion of new products forces companies to rationalize all their operational sequences.

The ultimate goal is to achieve a complete integration and control of manufacturing

processes, material inventory, sales and purchases, administration, and engineering

design. The use of a computer communication network over which the information

necessary for process interaction and coordination may flow is the key factor for

obtaining high degree of flexibility and productivity in a companj'.

The needs of sharing information are particularly important in the case where

production of small batches is required. In this case the system has to be able to

quickly adapt in order to fulfi l l the new production needs. In this environment

a communication link would be ideal in order to coordinate the activities of the

manufacturing devices and provide them with the information required to be able

to promptly adapt to the rapidly changing production needs. A communication

Chapter 1: A n Introduction to Manufacturing Communications 2

link could be beneficial even in the areas where the employed manufacturing de

vices consist essentially of stand-alone machines, which do not need of any type

of interconnection. Greater flexibility, more accurate monitoring of the operations

involved in the production area, increase in the automation of the process, and re

duced idle times are some of the possible advantages. Recently the development of

the Internet opens to devices which embed communication capabilities a complete

new range of possibilities such as remote diagnosis or software updates.

Many of the advantages of the use of communication among devices do not lie

in direct cost reduction of the plant, but in areas such, improved quality, faster

delivery and improved information flow.

Although the technology of computer networking is mature, its specific appli

cation in manufacturing environments has failed to gain wide acceptance. A large

body of research exists in the general area of network control and communica

tions, addressing the problems of modeling and performance evaluations as well

as designing flexible system for accommodating future growth. However one of

the major obstacles to system integration is the incompability between equipment

produced by different vendors. In the past the attempt for defining a standard for

manufacturing communications led to the development of MAP [Gen87]. However

this complex protocol failed to become an accepted standard leaving the incompat

ibility problem unsolved. One of the main reasons of its failure can be located in

the cost factor which made its implementation uneconomical for small applications.

1.2 Research Objectives

In recent years due to the reduction in cost of electronic devices and microproces

sors a larger number of electronic systems have been integrated inside industrial

machines with a consequent increase in their level of intelligence. Lately, embedded

PCs, computers specifically designed to be used in manufacturing environments,

are becoming common inside manufacturing devices, allowing greater flexibility

and increasing the potential of the systems.

Chapter 1: A n Introduction to Manufacturing Communications 3

Small companies which use a limited number of manufacturing devices would
benefit from the introduction of systems for the control and monitoring of manu
facturing processes, but they require simple and cheap solutions in order to justify
the installation of such systems in their plants.

In order to expand the beneficial influence of interconnected production systems

the objective of designing and developing a integrated communication system for

the next generation of industrial devices was defined. The task of implementing

a manufacturing control system to allow an effective control of the manufacturing

environment was also set as a target of the research.

The project aimed to learn from the lesson of MAP which showed that a stan

dard cannot be built artificially, but has to rely heavily on well known, cheap,

proven technologies in order to have a chance of becoming accepted. Moreover in

tegrated manufacturing support systems have to be simple to understand and use,

and they have to provide flexibility in order to be adaptable to the different needs

of the single production plants. Therefore the development of a simple, cheap and

flexible system was placed as the underlying theme behind the development of this

research project.

In particular footwear production was chosen as an area where such a system

could show its advantages. In this type of industry, until not long ago, all the in

dustrial machines were stand alone devices which required a considerable amount

of human intervention in order to carry out their tasks. However this is changing

and at present there are several examples of devices which can carry out operations

automatically with limited human intervention. The possibility of connecting them

using a communication system would offer them the advantages outlined above.

This research project is targeted at the design of a novel approach for the de

velopment of an integrated communication and control system for manufacturing

applications. I t combines together in a new way a broad range of disciplines and

state of the art technologies in order to achieve coordination and communication at

the shop floor level. In particular the overall project provides a original framework

which could be easily adapted to a wide range of industrial contexts.

The structure of the thesis can be considered as a logical division of the work

Chapter 1: A n Introduction to Manufacturing Communications 4

into several modules which are representative of the work carried out for the design
and implementation of an integrated manufacturing control system.

1.3 Thesis structure

The rest of the thesis is organized in ten chapters. In chapter 2 the most impor

tant features which qualify communication protocols and local area networks are

described. The ISO/OSI communication model is presented and it is compared

with other alternative protocol approaches. In chapter 3 the problem of local area

networks for industrial automation is addressed. An overview of the currently avail

able standards is presented. The advantages of using Ethernet, a network usually

used for office communication, in industrial environments are highlighted, and a

study of its performance is presented. Then in chapter 4 the specific problem of au

tomation in the area of footwear industry is reported. The traditional production

process is described, and a description of the new trends in the area follows. In par

ticular two manufacturing cells which can benefit from a communication system are

described. A preliminary study for the implementation of a novel industrial pro

cess for electrostatical glue deposition on shoe components is presented in chapter

5. This device is of fundamental importance for the implementation of one of the

two manufacturing workcells described in the previous chapter. Chapter 6 presents

a description of the computer support system necessary for the proper operation

of a manufacturing cell. The functions of the database system, the monitor, the

scheduler and the dispatcher are highlighted. In particular a novel heuristic for

the solution of the scheduling problem in a non blocking shopfloor system is pre

sented. Chapter 7 gives a ful l description of the design of the control system for

the manufacturing workcell. Chapter 8 describes a novel approach for the design

and the implementation of communication protocols. This framework is applied

to the specific problem of implementing a communication protocol for connecting

manufacturing cells in the footwear environment. The description of the implemen

tation of the system according to the design presented in the previous two chapters

is reported in chapter 9. Java, a promising new object oriented language which

Chapter 1: A n Introduction to Manufacturing Communications 5

has the important feature of being platform independent, has been selected as the
implementation language. A description of its advantages and limitations in the
area of manufacturing applications is reported. Then the implemented system, and
in particular the performance of Java, is assessed in chapter 10. Finally in the last
chapter the advantages and disadvantages of the implemented ideas are discussed
and suggestions for future work are given.

In addition to the main body of the thesis there are four further appendices

which provide information on some aspects of the research carried out.

Chapter 2

Communication Networks

2.1 Introduction

A network architecture and its set of rules govern the connection and the interac

tion of the network components: they include physical structure, data format, and

protocols and logical structures for the functions which provide effective commu

nication between data processing systems connected to the network [Fre88 .

The existing communication systems can be classified into two architectures

Ben93]:

• Closed System Interconnections (CSI);

• Open System Interconnections (OSI);

The CSI architectures are local networks in which all the components come from

and are designed by the same vendor. The user is therefore forced to buy complete

solutions and future extensions from one vendor. I f devices of different vendors

have to be connected, special solutions, usually expensive and complicated, have

to be customized.

The OSI architectures try to develop vendor independent architectures, allowing

communication between application systems which are usually not compatible with

one another. This requires extensive standardization work which concerns the

Chapter 2: Communication Networks

communication interface and the way in which the messages are exchanged.

In section 2.2 an overview of the ISO/OSI communication model is presented.

In section 2.3 other non ISO/OSI communication standard are presented. Finally

section 2.4 will give an overview on the main qualifying features of local area

networks.

2.2 The ISO/OSI model

In 1983 the International Organization for standards defined its Open System In

terconnection (ISO)/OSI reference model (ISO 7498) [Int84]. OSI itself is not a

standard but off'ers a framework to identify and separate the difi'erent conceptual

parts of the communication process. I t introduces a conceptual model for com

munication which is similar to the different levels of operating systems, where the

operations have different abstractions, ranging from machine code and assembler

programming to high level languages and applications. The multilayered structure

of an operating system is essential for providing services, while hiding the imple

mentation details from the higher layers.

Seven functional layers are defined in OSI (see fig. 2.1). They are traversed

one by one by the message either top down or vice versa during the communication.

Every layer provides services to the next higher layer and uses services of the next

lower layer to execute its task. Therefore each layer exchanges information only

with the adjacent ones [Tan88]. OSI service calls are similar to operating system

calls: the requesting layer passes data and parameters to the layer below and it

waits for an answer ignoring the details of how the request is carried out [OP92 .

The layered approach ensures modularity and the facility for networking soft

ware to be upgraded without affecting the other layers of the communication sys

tem. The modularity, as already mentioned, makes it possible to use multivendor

hardware and software in the same system.

Modules located at the same layer but in different positions in the network are

called peers; they communicate via protocols that define conventions for exchanging

information between two users of the same information [RD89]. The services are

Chapter 2: Communication Networks

Layer

7 Application (^ m

V J

Application ^ m

V J

Presentation

^ m

V J

Presentation

^ m

V J

Session

^ m

V J

Session

^ m

V J

Transport

^ m

V J

Transport

^ m

V J

Network

^ m

V J

Network

^ m

V J
Data link

^ m

V J
Data link

^ m

V J
Physical Physical Physical Physical

Figure 2.1: The seven-layer OSI reference model.

strictly separated from the protocols (the actual implementation).

The layers defined in OSI are the following [BDBL91] [Har85] [Tan81]:

• physical link layer: this layer is the lowest layer of the model and is concerned

with all aspects of the physical interconnection of the interface to the cable.

For example the standards will define the mechanical aspects such as the type

of connector to be used, the electrical signals levels used for transmission and

reception via the cable, and functional and procedural aspects such as the

type of handshaking to be used. The reference model does not extend down

to the physical medium itself so does not include a specification of the type

of cable to be used. The physical layer is the only real connection between

two communicating nodes;

• data link layer: this layer provides the functional and procedural means to

establish, maintain and interrupt a data link over the network. I t defines the

way the serial data is organized and the detection and possibly correction of

errors occurring during the packet transmission;

Chapter 2: Communication Networks

• network layer, this layer has the task to do the routing, the selection of a

path through a network node, on which data transfer takes place. As the

paths should be never overloaded the most efficient path must be found;

• transport layer: this layer provides an end-to-end communication control and

it is the interface between the application software that requests data commu

nication, and the external network. It has the responsibility of verifying that

the data from one machine to another is transmitted and received correctly;

• session layer: this layer is involved with establishing the interactions between

two users applications on different systems connected to each other by the

network;

• presentation layer: the main function of this layer is to provide an inde

pendence to the user application from differences in the presentation of data.

Thus differences in the way that computers talk to one another and the actual

data can be resolved;

• application layer: this layer provides application specific protocols. It pro

vides a set of services which can be directly called by application programs.

Protocols from layer one to four are called network oriented protocols whereas from

layer five to seven are called application oriented protocols.

As data moves downwards to the physical layer two major things happen to

it . Additional protocol-related information is appended to the original message

(see fig. 2.2) which at the same time can be segmented into smaller pieces. This

added information is specific for each layer and it is intended for the peer layer

;MCC88, OP92].

However OSI model is not exempt from criticism. Efficient implementation has

not been explicitly addressed at all. Moreover some aspects of the implementation

may require to use excessive resources of the system, and may produce perfor

mance degradation. Several times it has been pointed out that the division of the

layers 4-7 is somehow academic. Even if there is the implicit requirement that

all layers should be involved in each application process activity, OSI is usually

Chapter 2: Communication Networks 10

Message

A Message Application

P A Message Presentation

S p A Message Session

T S p A Message Transport

N T s p A Message Network

D N T s p A Message Data Link

Protocol control information

Physical medium

Figure 2.2: Data fiow through the OSI layers. Protocol control information is added
or removed at each stage while the message traverses the stack of transmission
layers.

not implemented in its entirety, but computer manufacturers implement only the

necessary layers avoiding all the features that are not necessary for the specific ap

plication. The most important faults in the OSI system is that it does not include

important functions such as network management and security (data encryption):

these omissions may cause the development of incompatible standards in future

McC88, OP92;.

2.3 Alternative network architectures

While several manufacturers of computer communications systems and equipment

vendors are evolving products following the directives provided by the ISO/OSI

model, there is a variety of alternative network architectures and protocol layers

Chapter 2: Communication Networks 11

currently in use which do not conform to the model. I t is unlikely that in the near
future all of them will be abandoned, and in many cases it will be necessary to
provide gateways between systems which comply with the ISO standards and the
other ones. Alternative network architectures include:

• IBM, SNA;

• DEC, DNA;

• DARPA, TCP/IP;

• Xerox, XNS.

Among these, the most important one is TCP/IP developed in the early '70s by

the US Department of Defense Advanced Research Projects Agency (DARPA), and

included in the Berkeley Unix version 4.2 operating system. The Unix-TCP/IP has

become the most wide-spread system used in local area networks for interconnect

ing computers. With the impressive development of the Internet it has become the

de facto standard used for transmitting data at planetary level. The main advan

tage of this suite of protocols is that they are non-proprietary, and due to their

popularity there is abundance of software written that relies on them. For these

reasons it is unlikely that in future they will be replaced by other OSI conformant

transmission protocols with similar features.

In fig. 2.3 [Hal92] it is possible to see a comparison between the TCP/IP lay

ers and the OSI ones. The network layer is called the Internet protocol (IP); this

datagram protocol addresses messages and routes them across the network and ex

changes data between systems independent of the network topology and the media

used. An additional Internet control message protocol (ICMP) provides network

layer management and control functions. At the transport layer level it is possible

to choose two different transmission protocols, the TCP protocol (Transmission

Control Protocol) [Pos81], which implements a connection oriented service, and

UDP (User Datagram Protocol) [Pos80], which provide a connectionless service.

On top of this all the application specific protocols are developed, such as the mail

Chapter 2: Communication Networks 12

protocol [POS82] for sending mail messages across the network, file transfer proto
col [PR85] for file transmission, and the telnet protocol [PR83] for remote terminal
connections. Al l application programs have the problem of establishing a common
network representation. Unfortunately, not all computers agree on how data is rep
resented. There are differences in character codes (ASCII vs. EBCDIC), in end of
line conventions (carriage return, line feed, or a representation using counts), and
in whether terminals expect characters to be sent individually or a line at a time.
In order to allow computers of different kinds to communicate, each applications
protocol has to define a standard representation. TCP and IP do not care about
the representation. TCP simply sends octets. However the programs at both ends
have to agree on how the octets are to be interpreted. A more complete description
of the TCP/IP suite of protocols will be given in section 3.3.

2.4 Local area networks

Local area networks (LAN) allow the a group of independent computers spread over

a local geographic area to share information and resources via an interconnection

which permits high transmission and low error rate [Did89]. The elements which

qualify a local area network are:

• network topology

• transmission media

• medium access methods

2.4.1 Network topology

The topology of the network refers to the way in which the computer and devices

are connected to the physical cable. Today three forms of topology are used for

communication networks [BDBL91, Fre88, Did89]. Star networks require that each

system is interconnected with a central station or hub which controls the flow of

Chapter 2: Communication Networks 13

Port address-

C A T)

Application
protocol

Transport layer

IP

Network-oriented
layers

Application
protocol

Transport layer

IP

Network-oriented
layers

Communication network

TSAP address,
selector

NASP address-

Application layer

Presentation Layer

Session layer

Transport layer

Network-oriented
layers

Application layer

Presentation Layer

Session layer

Transport layer

Network-oriented
layers

Communication network

Figure 2.3: TCP/IP layers compared with OSI layers. (AP = application process,
NASP = network service access point, IP = internet protocol, TASP = transport
service access point)

information between the elements of the network. Bus networks employ a single

cable to interconnect all systems. The communication between two systems can be

established without involving a central controlling station. The total throughput

capability generally decreases as the number of stations increases. Ring networks

establish a loop by connecting each system or device to its neighbour.

Chapter 2: Communication Networks 14

B

B

[>
B

B

Figure 2.4: Ethernet operating principle.

2.4.2 Transmission media

LAN systems are serial bus systems, therefore the lines used to connect the nodes of

the network are usually realized using one or two wires. The following transmission

media are used [PreSS, Did89, Ben93]:

• twisted pair;

• coaxial cable;

• optical fibers.

Twisted pair cables consist of two insulated conductors which are twisted together.

They are the least expensive solution, as they are cheap and easy to install, but they

have a limited transmission rate and are susceptible to interferences. Coaxial cables

surround the inner conductor with a dielectric such as polyethylene, and a coaxial

tube of solid or braided metal surrounds the dielectric. Electrical interference is

extremely low if the outer shield does not have gaps. Small coaxial cables are

Chapter 2: Communication Networks 15

A B A B

token

physical medium

D

Figure 2.5: Token bus operating principle. The stations A-F circulate the token
and can communicate when they hold it .

inexpensive, but low-loss ones are much more expensive, larger and less flexible.

Fiber optic cable cores are made of glass or plastic. They have the high transmission

speed and capacity. There are no problems with electromagnetic interference and

they have very low error rates. They are generally smaller and more flexible than

electrical cables. The costs associated with medium distance and long distance

fiber optic-links are less than those for electrical cables.

token

Figure 2.6: Token ring operating principle. The token is circulated among the
stations. A station can send messages only when it holds the token. The sta
tions connected identify and collect the messages directed to them and forward the
others.

Chapter 2: Communication Networks 16

2.4.3 Medium access methods

Medium access is controlled according to rules which every station on the bus should

observe for transmitting and receiving messages [Ben93]. The access methods which

are usually employed in LANs are [Did89]:

• polling;

• random access;

• token passing.

If the polling technique is used, a master station interrogates sequentially the nodes

connected to the network giving the access right to the transmitting media to the

stations which need to transmit. The weak point of this architecture is the polling

station: if it breaks down all the system fails.

In the random access technique there is no master station, and the access of

the medium is determined by chance. Ethernet (IEEE 802.3) is the best known

example of application of this method. When a station wants to transmit a mes

sage it waits until when the transmitting medium is free from traffic and it sends

its message. I f another station starts the transmission at the same time a collision

is generated and the conflict is resolved by different algorithms (see figure 2.4). In

the case of Ethernet after every collision each of the stations involved in the event

use a exponential backoff^ algorithm which randomly decides when each system can

try to use the bus again to complete its activity. If, on the new attempt of gaining

control of the bus, another collision is detected the waiting time is doubled. If a

station is not able to gain access to the bus after a certain number of attempts it

assumes that the problem has a different nature and reports the situation to the

higher layer [McC88;.

No master station exists when a token passing technique is used. Token ring

(IEEE 802.4) and token bus (IEEE 802.5) are two examples of token passing net

works (see figure 2.5 and 2.6). Only one unit at the time can use the network for

transmitting messages. A node is entitled to forward data over the medium only if

it retains the token, which allows the holder to transmit up to a specified amount

Chapter 2: Communication Networks 17

of time.

Random access methods have a very good performance in lightly loaded, ran

dom, bursty environments. As there is no medium access control, the implementa

tion of the system is simplified, and there is no need for monitor or token require

ment functions. Stations can be easily added or deleted by simply activating or

deactivating them. A station throughput depends only on the activity of the other

stations when i t attempts to transmit, while the number of the connected stations

is not important. When the load increases, a delay in completing the operation

appears due to the greater number of collisions on the bus. As the behaviour is not

predictable on a small time scale, it is not possible to guarantee a particular level of

performance. A fault at one of the stations does not compromise the functionality

of the network. Only the bus itself is a weak point of the system, and if that is

interrupted, all the system fails.

Token passing protocols require transmission capacity and time delays for pro

tocol related information exchange. They are more expensive than the Random

access solutions as they have to generate and process medium access control proto

col data units. Token passing requires particular procedures for adding and deleting

nodes. I t is possible to predict the response time, and the token holding time can

be adjusted to tune the performance. Token passing performance is a function of

the number of active participants. Increasing the number of stations involved in

the passing of the token increases the the delay and reduces the throughput. As the

loading of the network increases the performance remains stable. In these systems

if there is a fault in a single node, all the systems fails.

2.5 Conclusions

This chapter has provided an overview of the general features which character

ize layered communication protocols. The seven layer approach defined by the

ISO/OSI model was described and the functionalities of each layer highlighted.

However not all the existing communication protocols follow the the ISO/OSI lay-

Chapter 2: Communication Networks 18

ered approach, and TCP/IP was described as the most important example which
is not ISO/OSI conformant. The description of the qualifying features of local
area networks were reviewed. A description of the possible network topologies,
transmission media and medium access methods was proposed, underlying the ad
vantages and limitations of the different solutions. Particular attention was given
to the features, like ease of reconfiguration and robustness, which are most likely
to be important in manufacturing applications.

The main aim of this information is to provide the background knowledge which

is essential to understand the discussion on the different industrial local area net

works which will be presented in the next chapter.

Chapter 3

Ethernet and Fieldbusses

3.1 Introduction

Methods for implementing control of processes and instrumentation have greatly

changed through the years. Devices have been incorporated into processes which

have made them more sophisticated. First the addition of simple electronic com

ponents, such as diodes or relays, made them perform higher level functions, and

then w i t h the introduction of micro-electronics, more and more sophisticated tasks

have become possible. The introduction of microprocessors gave a certain level of

intelligence to the devices which were able not only to perform their applications,

but also to have the capability of giving at the same time other information on the

performed tasks and their status.

The possibility of gaining f u l l advantage of the characteristics of those intelli

gent devices forced the researchers to look at ways of interconnecting stand alone

devices and replacing analog connections used to link low level devices, such as sen

sors and actuators, to a central unit . The idea of a digital communication link able

to interconnect the devices wi th the control room, thus making plants more flexible,

responsive and accountable made several companies propose proprietary systems

for interconnecting their own equipment. In this way plants could be controlled in

the most profitable way following the changing needs of the market. However this

d id not allow communication between devices f rom different manufacturers. This

Chapter 3: Ethernet and Fieldbusses 20

problem lead to the the idea of creating a standard for l inking equipment f rom
different vendors in a transparent way, thus developing communications standards
for industrial applications.

In section 3.2 an overview of the industrial communications systems currently

available on the market is given. Section 3.3 gives an account on the advantages

and disadvantages of Ethernet in industrial applications in comparison wi th the

other communication systems. Section 3.4 reports the results of a series of tests

for assessing the performance of Ethernet. Finally some conclusions are drawn in

the last section of the chapter.

3.2 Fieldbusses and Sensor-Nets

The hierarchical approach of a communication system for manufacturing applica

tions makes clear that different requirement profiles are needed at the different

levels of the system in order to achieve the desired performance of the system.

A t the bot tom level of the manufacturing environment, and especially in pro

cess plants, networking begins wi th the so called sensor-nets, the multi-drop digital

replacements of low level networks such as the 4-20 m A current loop. Digi tal smart

chips are cheap enough to be added at a reasonable cost to simple sensors (e.g.,

photoeyes, proximity sensors, etc.), actuators (e.g., motor starters), and other com

ponents of an automation system that have traditionally been 'dumb'. The basic

idea behind sensor nets is usually to have a bus (or t runk line) wi th power and

two communication lines, and to connect not-so-dumb components to i t (much like

computers connect to an Ethernet).

These types of networks are designed to carry few bits of information and to

perform at the best when they have to transmit short messages.

The advantages of using sensor nets in production plant can be summarized as

follows:

• The wir ing of an automation system wi th a sensor net is vastly simplified since

there are single signal and power lines running around the system instead of

Chapter 3: Ethernet and Fieldbusses 21

a large bundle of wires;

• Since the sensors and actuators have some processing power in them, they

can listen to the signal line to determine when they are being queried, can

construct response messages, and can handle the occasional conflict when

2 or more entities on the bus transmit simultaneously, etc. In addition to

the communication features, these components could be programmed to an

nounce other events such as a photoeye that senses that the light f rom its

reflector is too low and thus may be out of alignment, a mechanical switch

that keeps track of the number of times i t is actuated and sends a request to

be replaced when the number reaches some l imi t , and so on.

Hart , LonWorks, P-Net, Interbus-S and ASI belong to this category of networks.

I t is possible to identify a separate set of sensor nets which are designed pri

mari ly to interconnect large numbers of digital sensors and PLCs, transmitting few

bytes of information at very high speed, wi th features which make them suitable

for hard real t ime applications. Examples of such networks are C A N , DeviceNet

and SDS.

A t the higher level there are fieldbusses, which are conceptually similar to sen

sor nets. Whereas sensor nets are meant for hooking up relatively simple devices

such as sensors to controllers such as PLCs, fieldbusses are meant to allow com

plex subsystems to talk to each other as well. This means that fieldbusses can be

used as sensor nets as well as more complex communication nets such as Ethernet.

The amount of information which can be transmitted is greater then in the case

of the sensors-nets and the number of services which can be performed is greater.

Belonging to this category are fieldbusses such as PIP, Profibus, l E C / I S A SP50,

and the one proposed by the Fieldbus Foundation.

Moving up through the hierarchy layers at the cell and process management

level at present no standards are defined and networking usually relies on propri

etary solutions. I n 1980 General Motors created a task force in order to create a

standard communication system able to link together all the computer controlled

devices used in an industrial plant: this protocol was called Manufacturing Au-

Chapter 3: Ethernet and Fieldbusses 22

tomation Protocol (M A P) . Several versions of the protocol were released. However
this ambitious project did not have the success that was expected. Incompatibility
problems between different releases of the specification, extremely complex docu
mentation, and high installation costs made the system less attractive and only
few industrial applications had been developed. A t the present the protocol seems
to have been largely abandoned.

Above all there is the planning level which is only seldom interconnected wi th

the layers below. A t this level large packets and almost no real-time requirements

prevail.

In the following section an overview on the most important sensor-nets and

fieldbusses available on the market is given. In table 3.1 a summary of the main

features of these networks is presented.

3.2.1 P-Net

Even though P-Net was awarded of the status of national standard in 1989 not

many people knew of the existence of this protocol unt i l short time ago. The ma

jo r i t y of P-Net applications are found in the process industry environment, but

there are some applications in discrete manufacturing plants. P-Net is a mul t i -

master multi-net standard where the master sends a request and the slave returns

a response. The multi-master access to the Physical Layer is performed using a

v i r tua l token passing principle between masters. A network can have up to 125

devices per bus and up to 32 masters connected per segment. The bit rate of the

bus is 78 K B i t / s which allows up to nearly 300 confirmed services per second. The

maximum data length in one transmission is l imited to 56 data bytes in order to

avoid the overloading of the network produced by one node. P-Net implements

layers 1,2,3,4 and 7 of the OSI stack and uses objects to define the I / O interfaces

in the different nodes. These objects define real-time data as well as predefined

funct ion switches, diagnostic, maintenance data and error messages, The Physi

cal layer is based on the RS-485 standard which allows segments up to 1200 m

Chapter 3: Ethernet and Fieldbusses 23

Name Medium Access
method

Max nodes Data
rates
(bit/s)

Max
length
(m)

P-net twisted
pair

MS-T 125 (per seg) 76.8K 1200

ASI twisted
pair

MS 31 n.a. 100

Interbus-S twisted
pair, fiber

MS-T 64 n.a. 400

CAN twisted
pair, fiber

CSMA/CR 2̂ 1 I M 500

SDS twisted
pair

CSMA/CR 128 I M 500

DeviceNet twisted
pair

CSMA/CR 64 125K-
500K

500

Hart twisted
pair

DM 15 1200 1500

Lon Works twisted
pair, RF,
coax,
fiber,
power line

CSMA/CA 248 38K-1.5M 1200

FIP twisted
pair

MS 256 31.25K-
2.5M

1900

Profibus FMS twisted
pair

MS-T 127 9.6K-1.5M 1200

lEC/ISA SP50 twisted
pair

several 256 31.5K-
2.5M

1900

FF twisted
pair

MS-T 256 31.5K-
2.5M

1900

Table 3.1: Physical characteristics of the leading fieldbus options available on the
market. The details of the system tend to change quite rapidly as new features
are added in order to make the product more attractive for the customers. The
details about the meaning of the abbreviations used in the access method column
are explained in the text.

Chapter 3: Ethernet and Fieldbusses 24

long. There is no need of a specific chip as P-Net nodes can be implemented using
standard single chip processors such as Intel 8051 or Motorola 6805 wi th standard
driver software. This reduces the development costs of the nodes.

3.2.2 ASI

This protocol has been designed primarily for monitoring and controlling of two

state devices at the bot tom end of the automation hierarchy. I t operates according

to master/slave principle; only one master controlling up to 31 slaves is allowed

on the bus which can be up to 100 m long. The master interrogates cyclically

the slaves which can transmit or receive up to 4 bits of data, the maximum delay

between two interrogations is 5 ms. As i t uses 4 bits to transfer information i t is

not suitable to transfer analog values. The main advantages are the simplicity of

wir ing and the ease of installation.

3.2.3 Interbus-S

This is a deterministic protocol which has been developed in order to operate in

almost real-time environment in accordance wi th the master-slave principle. I t is

suitable for communication among devices which need to transmit only few bytes of

information. A l l the data f rom sensors and actuators in a network is summarized in

one message which is sent simultaneously to all the connected devices. Interbus-S

operates in a ring topology using the RS-485 specification for connecting up to 64

devices on the network. However the ring topology implies that i f a station fails,

the whole network goes down.

Chapter 3: Ethernet and Fieldbusses 25

3.2.4 C A N , SDS, DeviceNet

SDS and DeviceNet are both similar but incompatible attempts f rom different

groups to define the upper layers of the C A N protocol which in its original ver

sion defines only Layers 1 and 2. C A N is a true distributed system where a node

broadcasts its data to all the other stations. The medium access algorithm on the

bus is based on C S M A / C R (Carrier Sense Mult iple Access/Collision Resolution).

I n the case of a free bus all the nodes which need to transmit start transmitt ing

their collision resolution pattern (assigned at installation time and which reflects

the importance of the node) which revokes the access to the bus to the low priori ty

nodes (see fig. 3.1). The danger of this system is that some nodes may be locked

out in the presence of persistent high priori ty node activity. As C A N had been

developed for the automotive industry i t has been designed to be used in difficult

environments. Due to its origins i t is not optimized for industrial applications; the

length of the messages is l imited (8 bytes). However i t is provided wi th exten

sive error detection mechanisms. The bus supports speeds up to 1 M B i t / s which

makes i t suitable for real time applications. SDS and DeviceNet are not intended

to be alternatives to a complete fieldbus system, but are developed wi th the idea of

providing digi tal communication between devices such as sensors, switches, drivers

and programmable controllers.

3.2.5 Hart

H A R T is a well established low level fieldbus especially suited in process installa

tions w i t h a combination of analog and digital equipment. This protocol is able

to carry a conventional 4-20 mA analog signal wi th digital data on a twisted pair

wi thout interference. However the transmission rate is low as i t is possible to have

up to 3 transactions/second when the two types of signals coexist and to 15 when

the devices are used in digital only arrangements. For this reason i t is suitable only

for applications which require less than 10 messages/second (like the process indus

t ry where pressure, temperature and flow measures change slowly). The segments

Chapter 3: Ethernet and Fieldbusses 26

Bus

node 1

node 2

node 3

Recessive

Dominant

node 1 node 3
loss of access loss of access

Figure 3.1: In this example three nodes t ry to transmit at the same time on the bus.
A l l the nodes start to transmit their identifier which is used for the nondestructive
bitwise arbitrat ion. As when a node transmits a 0 on the bus the signal level is set
to low, any other nodes attempting to set the line to high w i l l notice the failure
of their attempt of setting the level of the bus, and stop transmitt ing and start to
listen to the bus. In this way the message is not corrupted i f more than one station
tries to transmit.

can be long up to 1500 m and the Data Link Layer uses a centralized dual master

access system. The main advantage of H A R T is that i t can be used in combination

w i t h old existing equipment which uses the 4-20 mA loop protocol.

3.2.6 Lon Works

LonWorks is a well accepted low level fieldbus based on a distributed architecture.

Its main features include a wide range of supported transmission media (twisted

pair, RS-485, fiber, power line and wireless), its low cost and the small chip size.

The transmission rate depends on the medium and the transceiver design and varies

f r o m 5 K B i t / s to 1.25 M B i t / s . The protocol supports networks wi th segments

using differing media. A l l the seven OSI layers have been implemented. The access

Chapter 3: Ethernet and Fieldbusses 27

Window for

Cyclic Queries

Window for

Nonperiodic Requests

Window for

Nonperiodic Messages

Synchronisation Window

Communication
Window

Figure 3.2: The atomic communication interval in FIP is called the Communication
Window and i t is divided into 4 section for servicing different types of services.

medium algorithm is based on an improved version of the C S M A / C A (Carrier Sense

Mul t ip le Access/Collision Avoidance) and claims affirm that i t is efficient even to

heavy networks loads. Due to the access medium algorithm i t is not deterministic,

and i t is not suited for demanding real-time applications.

3.2.7 F I P

FIP is a French proposal for a fieldbus standard based on a shared bus topology

which has several international supporters. The system had been designed following

a Producer-Distributor-Consumer model which is based on a broadcast mechanism

without physical addressing. A single station, called bus arbiter, administrates the

shared transmission medium for every producer. Variables are the central commu

nication objects, representing the locations of memory containing a measurement

value as well as list of identifiers which request stations through the bus arbitrator

or a request for a data transfer. For every variable there can be any number of

consumers, but only one producer; therefore they are used instead of the physical

address in all the communication transactions. The system, in order to be able

to allow real-time applications and deterministic responses, organizes all the com-

Chapter 3: Ethernet and Fieldbusses 28

munication transactions in communication windows, also called elementary cycles.
Each window is divided into four segments each of them devoted to processing a
special class of services, namely cyclic and acyclic variables, nonperiodic messages
and synchronizing the connected stations (see fig 3.2), under the control of the bus
arbitrator. The sequence of of elementary cycles, called macrocycles, which defines
the sequence of periodic inquires that the bus arbiter has to send on the network,
is determined off-line and cannot be changed at run-time. During a macrocycle a
variable can be queried multiple times, giving that variable higher priority. The
traffic related w i t h the queries of the variables, associated wi th the window for
cyclic queries, constitutes the larger amount of data traveling on the network. FIP
do not allow individual medium access to the interconnected stations, but all the
communication are regulated by the bus arbiter. This station broadcasts variable
requests, which can be an identifier f rom the query table or an identifier for a non-
periodic service request, to all the connected devices. The node interested in the
query (the producer) replies to the bus arbiter by put t ing the current value of the
variable on the bus, while at the same time all the interested nodes (the consumers)
read that value f rom the medium. Finally the bus arbitrator regains control over
the medium and can produce the next variable request (see fig. 3.3).

F IP can be implemented on either twisted pair or fiber optics wi th transmission

speeds of 31.25 K B i t / s (wi th cables up to 1500 m), 1 M B i t / s and 2.5 M B i t / s (with

cables up to 500 m) . The maximum number of connected stations is 256.

Simulations of the FIP protocol [EK93] demonstrated that the performance is inf iu-

enced by the number of non-periodic requests and especially f rom the configuration

of the internal resources of the bus arbitrator. In order to get the best results i t

is necessary to configure for the special requirements both the windows for non-

periodic messages and the internal buffers, tasks which request some configuration

efforts. However the response times of the periodic traffic are always deterministic

and independent f rom the f rom the dynamical traffic arrival. I t was found that the

system is unsuitable for real-time responses wi th in a certain range of requirement

profiles.

Chapter 3: Ethernet and Fieldbusses 29

Arbitrator

Arbitrator

Figure 3.3: The FIP messaging principle. The bus arbitrator sends an identifier
and the addressed unit (producer) replies with the actual data which is received
by all the consumers (C).

3.2.8 Profibus

Profibus is a high level German fieldbus standard which is suitable for intercon

necting both low cost devices, such as sensors and actuators, and more powerful

machines such as PLCs and NCs. Its design resembles the model used for the design

of miniMAP (a reduced version of the MAP protocol). The network topology is

based on the token bus principle (see fig 3.4). Two types of stations are connected

along the bus; masters and slaves. When a master receives the token it compares

the target rotation time with the actual one and if the second time is inferior it

is allowed to retain the token for a certain time and perform its communications

activities over the network. Messages are divided into three classes; high priority

ones, polling ones (the ones used to interrogate the slaves) and low priority ones.

A master holding the token first will transmit the high priority messages followed

by the polling ones and then if there is some time left the low priority ones are

forwarded to the network. Even if the target rotation time is smaller than the

Chapter 3: Ethernet and Fieldbusses 30

actual rotat ion one a master is allowed to send one high priori ty message. Slaves
can access the medium only when they are explicitly commanded by a master.

A t the application layer every device is seen as a Vi r tua l Field Device (VFD)

which is an interface that gives access to all the objects of a real device that can

be communicated wi th . They are treated as entries in the Object Dictionary, a

list which describes all their attributes (see fig 3.5). A revised subset of the Manu

facturing Message Specification (MMS), which was designed to be the application

layer of M A P , is used to define all the possible services which can be obtained f rom

the network by the interconnected devices.

The maximum, number of devices which can be interconnected is 127. The trans

mission speed is f rom 9.6 K B i t / s to 500 K B i t / s in selectable steps, while the max

imum bus length varies 200 m to 1500 m depending on the transmission speed.

In addition to the Profibus FMS, described above, which is suitable for upper

level communications, other two variations of the standard have been proposed:

Profibus DP for time critical applications wi th speed up to 12 M B i t / s , and Profibus

PA for intrinsically safe installations.

Some tests have been performed on the FMS version of Profibus by [EK93 .

Simulation results showed that real-time capabilities are guaranteed by selecting

the proper selection of the target rotation time. The number of master stations

is the crit ical parameter since too many masters in the logical r ing results in poor

service when real-time response is required. I t has been noted that once a cer

ta in amount of high priori ty messages is exceeded the other types of messages do

not have t ime to be sent along the network (this fact could be critical for slaves

that have to send alarms through the network). Lower data rates for Profibus are

suitable for automation processes wi th few transactions and very relaxed real-time

requirements. Similarly to FIP, the use of Profibus for real-time communications

is not always possible, but i t depends on the exact requirement profiles.

However the Profibus organization become aware of the impossibility of using

Profibus in all the environments and therefore has proposed other two versions

which are suited for more demanding requirements profiles and i t is t rying to pro

pose Profibus as the de facto worldwide fieldbus standard.

Chapter 3: Ethernet and Fieldbusses 31

Logical Token-Ring

Master 1
I J — — J ^

—a Master 2
• • , ^ i

Master 3 Master 1
I J — — J ^

—' Master 2
• • , ^ i

^ Master 3

M y ' M

S4 S5

Physical networking with Profibus

* Logical networking

Figure 3.4: The Profibus operating principle. Master stations circulate the token,
and when they hold it they can communicate with slave stations.

3.2.9 l E C / I S A SP50

This protocol is currently developed at international level and it is supposed to be

come the official fieldbus worldwide standard. It has taken advantage of multiple

contributions from many other fieldbusses. So far only one part of the protocol,

namely the Physical Layer, have been finalized and the other parts are still in the

form of drafts. Currently the only medium option is twisted pair, but fiber optic

and radio are expected. The bus speed is between 31.25 KBit/s and 2.5 KBit/s

(but 10 KBit/s is likely to be introduced). A draft of the Data Link Layer is still

under international analysis and it includes several different types of fieldbus access

methods, including bus arbitration, central mastership, free and delegated token

circulation. The maximum length of the packets is planned to 256 bytes and the

maximum number of addressable nodes is supposed to be 256. At the Application

Layer level two different system which allow the user to communicate with the

system have been proposed, a Device Description Language (DDL) and Functional

Blocks. In addition to the seven OSI layer an additional layer called User Layer,

Chapter 3: Ethernet and Fieldbusses 32

Real Field Device

Limit

Prescription

Set Point

Virtual Field Device (VFD)

pressure temperature

limit

Object Dictionary (OD)

Data Type Dictionary

Static Object Dictionary

pressure
temperature
limit

Bus

Connection

Figure 3.5: Representation of the V F D used in Profibus to offer a standard interface
for all the devices connected to the bus.

is under development and i t w i l l include all the facilities for high level dialogue

between the user and the devices in order to facilitate the system interoperability

and integration, and reducing the installation times. The work on the SP50 field-

bus is s t i l l far f rom being completed and i t wi l l take time before i t wi l l be possible

to have products implementing this technology on the market.

3.2.10 Fieldbus Foundation

The Fieldbus Foundation has proposed an international level fieldbus protocol com

patible w i t h the l E C / I S A SP50 fieldbus. I t has adopted the Physical Layer protocol

defined by the l E C / I S A group. A major debate was caused on the definition of

the Data Link layer; eventually i t was decided to use a combination of a central-

Chapter 3: Ethernet and Fieldbusses 33

ized master (called active scheduler) and token passing. This solution wi l l allow
predictable cyclic updates and cope wi th asynchronous traffic. The discussion on
the upper layers is s t i l l open but an approach very similar to the one prospected
by the l E C / I S A committee is likely to emerge.

3.3 Ethernet and Internet protocols

The advantages which can be gained f rom the use of a standard fieldbus system

in production or process plants are clear. Reduction in the cost of the required

wir ing, possibility of remotely reconfiguring a node, and interoperability, which

allows the user to choose the device which best suits his application. Operational

benefits include higher accuracy, better and safer control, and more information.

The introduction of low-cost computing power in each field device wi l l allow the

replacement of centralized control systems wi th distributed control networks im

proving performance and reducing the problems related wi th system. In addition

maintenance w i l l benefit f rom increased reliability, more diagnostics and possibility

of using devices produced by different suppliers [Wat94 .

However there are several problems related to the actual state of the fieldbus

technology which may explain why the users may not want to adopt any of the

proposed solutions. First of all there are too many solutions proposed and i t is

likely that some of them w i l l be abandoned or wi l l suffer of obsolescence in the

near future. Other more important issues are raised by D. Roeder [Roe95] who

points out that even i f the difference in price between normal and smart equipment

is eroding, i t is essential for the designers to have simple rules for network design

and a suitable user interface; installation and commissioning must take advantage

of the simple and proven technology already available. A t the present there is not

enough knowledge about which are the best options for fieldbus optimum control,

safety, reliability, operability, and damage l imitat ion. Only tests on pilot plants wi l l

be able to give an answer to these questions. Taking into account all these issues i t

is easy to see why several companies do not want to risk f u l l scale implementations

which may involve large cost and losses for them.

Chapter 3: Ethernet and Fieldbusses 34

A t the present due to the number of different network solutions available i t
looks as i f the major activity w i l l be in the implementation of gateways between
proprietary products and open architectures, since i t is much easier to make a
whole set of devices work wi th any bus through a gateway than to convert the
entire product line to operate wi th a different bus, even i f this means a decrease
in the performance of the system whenever a communication through a gateway is
needed [Pin95 .

Fieldbus protocols have many common features, and yet are generally incom

patible w i t h each other. In addition they are subject to a rapid evolution due to

the changes of the requests of the market. These facts have led to a reconsidera

t ion of the use of Ethernet and the Internet Protocols for implementing industrial

communications protocols. Ethernet is a well established technology developed in

the '70s, used for connecting computers together in local area networks. Ethernet

networks are now commonly used as the basis for data communication networks

in industry. Many custom applications have been developed for industrial environ

ments. I n addition Internet Protocols are the standard way of communication of

all the computers connected to the Internet. These protocols are easy to use, are

fu l l y defined and represent an accepted world-wide data communication protocol.

3.3.1 T C P / I P suite

In any overall digi tal transmission protocol, the definition of the protocol stack is

crucial in enabling successful transmission to be achieved. The Ethernet layer forms

the lowest element of the protocol stack and i t is concerned wi th the transmission

of units of data (called frames) between machines on the same physical network.

I t defines the details of the types of cable that can be used, the hardware interface,

the rules for accessing the transmission medium, and the format of the messages.

The part which is involved in processing the incoming messages and sending the

outgoing ones is always implemented in silicon. The chips are manufactured and

sourced by different vendors, and are generally available at low cost. Ethernet

Chapter 3: Ethernet and Fieldbusses 35

is usually used in conjunction with the TCP/IP set of protocols (also known as
Interned protocols). The Internet Protocol (IP) implements the lower layer services
in the TCP/IP stack. I t is implemented directly on top of the Ethernet protocol. It
is concerned with transporting packets of data from one machine to the other, but
i t adds the important capability of facilitating the routing through intermediate
gateway machines, in order to forward messages directed to machines which are not
directly connected on the same physical network. The next layer in the protocol
stack is the transport layer. Climbing up the stack of the TCP/IP suite, there
are two transport protocols. These are the User Datagram Protocol (UDP) and
the Transmission Control Protocol (TCP). They have different features which will
be highlighted in the next subsections. On top of them protocols for carrying out
specific tasks, such as transferring files between computers, sending mail, or finding
out who is logged in on another computer are implemented.

User Datagram Protocol (UDP)

The UDP [Pos80] protocol provides a simple transmission protocol which is able

to distinguish among multiple destinations on a single machine. In addition to the

application data, the UDP protocol tags the message with both a 16-bit destination

port number and a source port number, allowing the UDP software to deliver the

message to the correct recipient, and for the recipient to send a reply. UDP provides

an "unreliable connectionless" message delivery service. This means that i t does

not have any acknowledgment mechanism which assures that messages arrive at

their destination. Moreover, it does not sort the messages if they reach the receiver

out of sequence, and there is no feedback mechanism to control the rate at which the

data flows between the machines. Thus, messages can be lost, duplicated, arrive out

of order or arrive faster than the recipient can process them. However, UDP adds

a 16 bit checksum to the message which allows the receiving UDP layer to check

the validity of the incoming data. UDP does not fragment data, and therefore the

application programs have the responsibility for dividing the message into suitably

sized chunks (generally the maximum length is 64 Kbytes), as well as implementing

their retransmission, reassembly, flow control, and congestion avoidance routines if

Chapter 3: Ethernet and Fieldbusses 36

any are required.

Transmission Control Protocol (TCP)

The TCP protocol [Pos81] is the reliable equivalent of UDP. I t includes a method

for delivering messages to specific recipients within a machine, based on a 16-bit

port number (however the TCP and UDP spaces are separated). TCP is a con

nection oriented protocol, which means that before transmitting, both ends of the

connection must agree that the communication is desired. It provides a corrup

tion free, in-sequence, and reliable delivery service between transport end points,

thanks to built in error checking and retransmission procedures. There is no upper

limit to the dimensions of the messages which can be sent, as TCP automatically

fragments the data into packets of suitable size. Moreover, in order to resolve ef

ficient transmission and flow control, it implements an algorithm, called "sliding

window", which makes i t possible to send multiple packets before an acknowledg

ment arrives. As TCP assumes little about the underlying communication systems,

it can be used with a large variety of delivery systems.

3.3.2 Ethernet in industrial applications

Ethernet is already used for industrial control applications, generally for data

recording and management information tasks. This shows that even if i t has been

designed for interconnecting personal computers in an office environment, it can

be successfully used in more demanding environments.

The fact that Ethernet was the first LAN technology endorsed by many ven

dors is often used for explaining its success on plant floor. This is a very important

point, but the real cause of the success of Ethernet has to be found in its features

and especially in its intrinsic reliability, which is a key factor in all industrial ap

plications.

First of all the nominal transmission speed of Ethernet is 10 Mbit/s, which is

far above the maximum transmission speed of any other fieldbus available at the

present on the market. In addition the standard defines a wide range of transmis-

Chapter 3: Ethernet and Fieldbusses 37

sion media; coaxial cables, baseband and broadband versions (the latter is not usu
ally used due to its cost), twisted-pair, and fiber-optic. In addition several vendors
offer versions of wireless Ethernet using lasers, microwaves, and spread-spectrum
radio transmissions. However, none of the wireless Ethernet are organized by any
standard body, and therefore interconnecting equipment from different manufactur
ers could generate problems. Among the other fieldbusses available on the market
only LonWorks, produced by Echelon, has a larger spectrum of media supported,
while most others tend to employ twisted pair interconnection. The possibility of
corruption of packets travelling on the network due to electromagnetic interference
from industrial machines does not exist since coaxial cables defined in the stan
dard have higher levels of immunity [Ada90], and category 5 UTP (twisted pair)
has been installed in a variety of manufacturing plants without any problem. This
allows the use of Ethernet in plant-floor areas where electromagnetic fields radiate
from production devices. However in order to eliminate completely the problem of
electomagnetic interference, optical-flbre, which is completely immune to electro
magnetic noise, can be employed at an increased cost of cabling. Cables can span
factory-wide distances if appropriate devices are used. The possibility to choose
various types of cabling allows the designer to select the solution which best suits
the plant. Maintenance, modification and expansion of an Ethernet installation
are not problematic since stations are easily added or deleted simply by activating
or deactivating them, without the need of shutting down the system as in token
approaches. The failure of a station does not aff'ect the behaviour of the network.

In proposing Ethernet for time critical control purposes, the major concern is

that as Ethernet is not a deterministic network, the time of transmission cannot

be guaranteed, and its inherent property of collision detection and retry in the

transmission process compromises its real-time capability. It is important to study

the actual times in question and see to what extent the system can be used in

time-critical applications. Results of such a study implemented by the author are

presented below.

Chapter 3: Ethernet and Fieldbusses 38

3.4 Results of timing experiments

The performance of the TCP and UDP protocols of two different UNIX implemen

tations on an Ethernet network was investigated by measuring the time delay as a

function of the message size. The test of the two protocols was performed using two

pairs of identical machines in order to compare the performance of two operating

systems independently from the hardware.

The computers were a pair of Intel 80486 33 MHz with 8 Mbytes of RAM, 1.2

Gbytes IDE HD using WD8003 Ethernet cards. They were interconnected on a 10

MBit/s isolated Ethernet, thus eliminating the possibility of collisions of packets.

Two operating system were installed and tested; BSDI BSD/OS 2.1 and Linux

2.0.29. BSD/OS is a commercial implementation developed by Berkeley Software

Design Inc of the shareware distribution of the BSD UNIX operating system. Linux

is a freely available UNIX version, distributed under the GNU General Public Li

cense, whose development is the result of the effort of hundreds of people around

the world. Both of them can be used on several different platforms including Intel

80386, or greater, and compatible processors.

The test permitted the comparison of the performance of a shareware imple

mentation of UNIX with a semi-commercial one, to assess whether freely available

software can compete in performance and reliability with the commercial products.

For every message length, 100 trials were performed in sets of 50. The results

give an account of how the protocols perform in an ideal scenario when the machines

are connected to an idle network. The objective was to make a fair comparison of

the two UNIX implementations by eliminating the likelihood of degradation of the

transmission times due to packet collisions along the Ethernet. I t was decided to

use the default values associated with the protocols using the default settings of

the installations. By not altering the TCP_NODELAY socket option, which indicates

whether the outgoing data is pushed immediately to the network interface instead

of being buffered and processed in larger quantities, the Nagle tinygram avoidance

algorithm [Nag84] was not set during the experiments. In order to avoid difficulties

of clock synchronization between the different machines used in the experiments.

Chapter 3: Ethernet and Fieldbusses 39

all the measurements were made by taking the "round trip time" (double transit
time) of the data from host A to host B and back again.

The timing procedures for both TCP and UDP protocols are very similar, due

to the intrinsic resemblance of the two protocols. The software used for taking the

measurements consists of two programs; the first one runs on the server machine

and the second one on the client. The software on the server creates a socket and

binds i t to a pre-defined port number and waits. The client software, for each

message sent, creates a socket, and binds it to the same port number of the server.

I t then sends a short message informing the server of the amount of data that it

is going to transmit and waits an acknowledgment; this operation is necessary in

order to allow the server to prepare an incoming buffer of a suitable size. Then the

timer starts, and the client sends the message to the server, which then sends it

back. When the whole message had been received by the client, the timer is halted

and the delay is calculated. Subsequently, the buflfers are freed and the sockets

closed. The cycle repeats itself again for the next transmission.

Similar tests have been carried out on pairs of platform running SunOS 5.5.1

(Sparc Ultra 1/140, 64 Mbytes RAM, 2 Gbytes HD and custom Ethernet card) and

HP.UX A.09.05 (Hewlett Packard Apollo series 700, HP 710, with 16 Mbytes RAM

and custom Ethernet card). SunOS (Solaris) is a UNIX implementation developed

by Sun Microsystems for their own computers. HP-UX has been developed by

Hewlett Packard for its own line of workstations. Unfortunately it was not possible

to perform all the experiments using an isolated network. Therefore in order to

minimize the eff'ect of the local traffic the tests were executed during the night at

times when the overall network usage was very low, on unloaded systems (the only

user's processes active on the platform were the ones involved with the test pro

gram). For every message length, 100 trials were performed in sets of 25 at different

times during the night to reduce the effects of temporary traffic on the network.

The results attempt to give an account of how the protocols can be expected to

perform on an isolated network and therefore can be compared with the other data

gathered from the Intel platforms.

Chapter 3: Ethernet and Fieldbusses 40

3.4.1 Discussion of the results

In figure 3.6, and 3.7, round trip times for the messages varying in size between

100 bytes and 900 Kbytes, using the UDP, and TCP protocols, implemented on

the UNIX systems, are shown on scatter plots.

First of all it is clear that the performance of the transmission protocol is influ

enced by the UNIX implementation used. It can be seen that the time required for

transmitting a packet may not follow a logical pattern, and may also vary signifi

cantly depending of the size of the message. Moreover the behaviour of the system

does not follow a smooth curve and sometimes the time required for a round trip

deviates considerably from the expected value. Direct comparison of the perfor

mance of the operating system is possible only in the case of BSD/OS and Linux,

while the other tests provide other information on the system behaviour since the

platforms and the test conditions are different.

The plots of the round trip times versus the message length show that the dis

tribution of the data is quite often skewed. This has important implications for

the choice of statistical measures which are suitable for characterizing the set. A

common form of representing such information is by the use of the mean of the

data values [BMK88, BBV91, HS89]. For systems which interact with the external

world, not only with real-time activities, but also for example with NFS or WWW

servers, this can give misleading indications of the likely performance. Instead it is

suggested that the median is better guide to the typical performance of the systems,

particularly when the likelihood of collisions on the network is taken into account.

The use of the median tends to eliminate the influence of occasional collisions and

other spurious events recorded during the test measurements.

Other published approaches define the throughput of a system by a single num

ber [Svo90, LB96]. This is misleading, as the throughput of the system is dependent

on the length of the messages sent. This fact is illustrated in the case of the Solaris

operating system in figure 3.8 where the throughput steadily increases up to mes

sages of 2000 bytes, and after that it reaches a plateau. This is due to the buffering

operations which achieve increased efficiency with large messages. Similar graphs

produced for Linux 1.2.13 showed that the throughput increased up to 50 Kbytes

Chapter 3: Ethernet and Fieldbusses 41

before reaching a constant value.

Lastly it is common in the literature reporting these types of measurements to

use the variance, or alternatively the standard deviation, as index of scatter of the

data. This measure is best suited to unimodal symmetric sets, and since the data

in most of the cases has a non-symmetric distributions, percentiles might be more

meaningful.

In figure 3.6 the performance of the UDP protocol on the four pairs of platforms

is shown. The length of the longest message was 9000 bytes due to the limitations

of the buffer used by the sendO function in conjunction with this protocol. It has

been observed that the performance of the protocol shows a smooth and consistent

behaviour with all the UNIX implementations, and only some scattered points are

present. In comparison with the other protocols tested, UDP achieves the shortest

round trips due to its simplicity. The smaller round trip times are associated with

the tests performed on the Sparc Ultra. This result does not surprise since it is

a very powerful platform in comparison with the others. I t is possible to notice

that Linux and BSD/OS have comparable round trip times for smaller packets,

but Linux performs slightly better for larger packets. Experiments performed with

the BSD/OS 2.0 on an Intel 486 66 MHz and SunOS 4.1.3 and SunOS 5.5.1 on a

Sparc 4 showed more scattered points and irregularities (the relevant graphs are

presented in appendix A).

In figure 3.7 the performance of the four implementations of the TCP protocol

are shown. These graphs display irregularities and scatter values. Some of the

scatter present in the bottom graphs might be produced by collisions of packets

on the network, but as the experiments were performed in the middle of the night,

when the traffic was low, it is more likely that it is due to kernel activities. Among

these the most likely to occur are associated with page optimization techniques

which avoid copying complete data pages by mapping the pages from the input

buffer into the kernel. The performance of the memory allocator may also play

an important role since irregularities start to appear after 8000 bytes when the

dimension of the packets exceeded the dimension of the input and output buffers

and new space needs to be allocated in order to accommodate them. In addition

Chapter 3: Ethernet and Fieldbusses 42

the limited Ethernet card buffer size may be the cause of some of the irregularities

present in all the graphs.

In the results for the BSD/OS, it is possible to see that between 3000 bytes and

20 Kbytes the transmission time of the messages is size independent and larger

than expected. For larger messages the behaviour is even more complex as there

are several discrete values which the transfer time can assume independently of the

message size. Several experiments have been carried out in order to try to locate

the source of this phenomenum. I t was recorded on the BSD/OS 2.0 version as well

(see appendix A) . Replacing the WD8003, 8 bits Ethernet cards, with NE2000,

16 bits ones, did not modify the results, showing that the irregularities are not

associated with the Ethernet card adopted. Computers have been swapped, and

replaced, but consistent behaviour has been observed. A second run of tests of the

TCP protocol with the Nagle tinygram avoidance algorithm disabled was carried

out, but the results showed the same pattern of irregularities present in the graph

reported in flgure 3.7. It was discovered that the problem starts to manifest itself

when the dimensions of the packet are 2048, which is likely to indicate that one of

the bufl'ers used by the system for handling TCP messages becomes full and new

space needs to be allocated. Using a digital oscilloscope it was possible to get traces

of the traffic of the Ethernet packets on the network. This, in conjunction with the

data of the timers used to calculate the time required by each operation, makes it

possible to draw some conclusions. Al l further tests were carried out transmitting

packets of 4000 bytes. I t is possible to notice that the sendO function returns

before the packets are physically sent on the network. This means that the TCP

code of BSD/OS just passes the packet to the underlying layer and returns without

waiting for the actual transmission of the packet. The time between the instant

when the sendO returns and the actual transmission of the packet is quite small

(less than 10 milliseconds), but occasionally it may be much longer (more then

100 milliseconds). This applies on both the client and server sides. In some cases

the expected transmission time has been recorded (about 3 cases in 400 transmis

sions), but sometimes (about 10 times in 400 transmissions) the round-trip time

was greater than 0.3 seconds. Due to the complexity of the system it is not possi-

Chapter 3: Ethernet and Fieldbusses 43

ble to identify precisely the cause of the problem. BSD/OS is a complex operating
system made by a large number of modules, whose interactions are sometimes not
deterministic. BSD/OS support has been contacted, but no one has so far been
able to provide an explanation. Some of the traces recorded by the oscilloscope are
reported in appendix A.

The graph associated with the Linux performance shows a consistent behaviour

with the exception of messages whose length is 2000, 7000 and 8000 bytes. When

the test were performed again with the Nagle tinygram avoidance algorithm dis

abled both the irregularities disappeared; a fact which suggests that they are asso

ciated with internal TCP buffers timeouts. This behaviour has not been seen when

Linux 1.2.13 was tested on the same pair of platforms. It is possible to notice that

for small packets the performance of Linux and BSD/OS are comparable, while for

packets larger than 2000 bytes Linux outperforms BSD/OS.

HP-UX shows a performance with some irregularities. Similar irregularities

have been reported in [BBV91], using the XNS protocol, and in [HS89], with OSI

communications protocols, and here the cause was identified as related to fragmen

tation of the messages. It is likely that fragmentation is one of the causes, but it

is suggested that the most important factor is associated with the buffering algo

rithm associated with the output side of the TCP implementation. This suggestion

is supported by results published in [PVRS95] where measurements show that the

"CPU demand per message" for sending a message between two HP700 (HP-UX

A.08.07) using TCP had a large variability which was most noticeable on the sender

side. In addition internal timeouts of the TCP software may play an important role

in explaining some of the irregularities. The irregularity associated with packets

whose length is 9000 bytes disappears when the Nagle tinygram avoidance algo

rithm is disabled, which indicates that the problem is associated with timeouts

when new buffers are created and new data is awaited before sending the message.

Solaris shows a graph which is almost always consistent with very few irregu

larities. This is surprising since similar tests carried with the same OS on a Sparc

4 produced a graph with many scattered values (see appendix A). The scattering

of the values recorded on the Sparc 4 may be associated with kernel activity during

Chapter 3: Ethernet and Fieldbusses 44

transfer operations. Due to the speed of the processor of the Sparc Ultra, the kernel
activity does not interfere with the transmission operations producing a smooth
graph.

Unfortunately, direct comparison of the data presented here with results re

ported in other work elsewhere is not always possible, as the software used to

carry out the tests and the way in which the tests are performed is usually au

thor speciflc. However there are some publications which may be used as a base

for comparison. The results presented in [JP94] indicate that the performance of

a Sun Microsystems IPC workstation running SunOS 4.1.2 is comparable to the

same machine running Solaris reported in our research, and the work reported in

BBV91] shows that the performance of the TCP protocol under MS-DOS (the

processor is not specified) is worse than that presented here, and the maximum

throughput is reached at messages of 3000 bytes.

Before starting to discuss the preceding results and the possibility of using

Ethernet in conjunction with Internet protocols in industrial applications, it is

necessary to point out that real-time applications are divided into hard, where a

missed deadline produces an unrecoverable or mission critical error, and soft, where

missed deadlines cause only a non-critical degradation of the performance. In ad

dition real-time systems have timescales which can vary greatly (from hours to

milliseconds). A table summarizing the requirements of the messages transmitted

in an industrial environment is presented in table 3.2 [Ben93]:

The range of the requirements of real-time systems is so wide that in some cases

the lack of determinism of Ethernet may not be a problem.

Several industrial installation studies [BBV91, BMK88] showed that Ethernet

performs well even on medium load. From these studies it is possible to see that a

load between 10% to 20% ensures a behaviour which is close to the deterministic.

In addition i t has been shown that the peak load of manufacturing sites network

utilization rarely is great than 15% while the load average is usually around 1%

Ada88]. This is especially true in all the environments where messages are rel

atively small and far apart (tens of milliseconds), where the greatest part of the

Chapter 3: Ethernet and Fieldbusses 45

.9- 0.01
•D c
=! o
cc

0.001

0.01

0.001

Linux

100 1000 10000 fOO 1000 10000

g-0.01

HP-UX

0.001

fOO 1000 10000
UDP message length (bytes)

0.01

0.001

e
O 0

e
e

B
0

e

1

Solaris

1
1

s

100 1000 10000
UDP message length (bytes)

Figure 3.6: UDP transmission protocol performance on four different UNIX imple
mentations

indeterminism is due to content switch effects in kernels, delays in application pro

grams, protocol queues and overheads, and hardware slowness. A work from US

national Bureau of Standards reached the conclusion that "Ethernet is a reasonable

access method for time-critical applications on small plant LANs if loads of less

than 40% are anticipated" [WH86]. 20% load on an Ethernet network is larger

than the maximum bandwidth that any other fieldbus can offer on comparable dis

tances. Moreover in recent times industrial devices such PLC are intelligent enough

Chapter 3: Ethernet and Fieldbusses 46

10 j'

0.001

0.1

0.01

0.001

. 1 '

t .1 '

I ' i N i i 1—n

Linux

100 1000 1000010000016+06 100 1000 1000010000016+06

HP-UX

0.001
i - r f i n i | 1 T I I M i i | 1—I [I i i n | 1—i i 11 i i i^^

100 1000 1000010000016+06
TCP message length (bytes)

Solaris 0.01

0.001 is '

100 1000 1000010000016+06
TCP message length (bytes)

Figure 3.7: TCP transmission protocol performance on four different UNIX imple
mentations

to work without having a maximum response time, and therefore some delays may

be acceptable.

From the graphs presented here it is possible to see that the the overhead of

processing a TCP message is a little higher than a UDP packet, but the difference

is not great. The additional cost of maintaining timers and windows sizes of the

TCP protocol are not relevant on fast CPUs. Since the time spent by packets

travelling along the cable can be measured in microseconds, the greatest portion of

the transmission time is spent at both ends of the process, when the packet is sent

Chapter 3: Ethernet and Fieldbusses 47

w
05
CD

^—»

•3 1e+06
Q.
u o

100000

100 1000 10000 100000 1e+06

TCP message length (bytes)

Figure 3.8: Throughput of the Solaris operating system as a function of the message
size on a Sparc Ultra

graphic
files

data files numeric
control
programs

syncr sig
nals

nominal
and ac
tual value
signals

event
messages

allowed de
lay

1-100 s 1-100 s 1-100 s 1-100 ms 20-100 ms 0.1-80 ms

message
length

>10 Kbits 1-10
Kbits

>10 Kbits 8-64 bits < 10 Kbits 8-64 bits

frequency
of ap
pear ence

rarely very
rarely

very
rarely

very
frequently

frequently rarely

classification non time-critical messages time-critical messages

Table 3.2: Type of messages and the related technical data characteristics

and received. The time spent in processing operations depends on the speed of the

CPU, and slower machines require more time to process incoming and outgoing

messages [BP96]. A series of graphs of the test results reporting comparison of

the performance of Linux 1.2.13 on three different pairs of identical platforms is

reported in appendix A.

Chapter 3: Ethernet and Fieldbusses 48

Performance is not the most important issue over the choice of protocol, which
should be determined by the application service. I f the messages travelling along
the network do not need to be acknowledged (for example in data collection appli
cations) and the loss of a packet can be accepted, UDP is the best choice, while
if i t is necessary to implement a system which is connection oriented, where all
the packets need to be acknowledged, TCP is the best choice. The fact that UDP
is defined an insecure protocol does not mean that it is unreliable, since losses of
packets may happen only on long distances between computers hundreds of kilo
meters apart, when a packet has to go through several gateways. It is important
to remember that NFS runs happily using UDP packets in campus-wide LANs.
If losses of packets are reported in a LAN environment this usually means that
there are problems in the cabling of the system or in some of its components. The
main problem with TCP is that i t needs a lot of memory space in comparison
with UDP, and this fact is extremely important in all small embedded application
where extra memory might be an expensive option. A stripped down version of
UDP could need as much as 200 lines of code to be implemented [Alh96]. In addi
tion TCP makes more intensive demands on the system's network buffering since
TCP cannot discard data it has sent until it has been acknowledged by the TCP
at the other end. I t may be also difficult to get real time responses with TCP
if some package loss happens and retransmission is needed, while with UDP it is
always possible to have a more accurate control since no retransmissions are pos
sible. Using UDP it is not possible to know whether the receiving station is alive
or not, since no acknowledge is requested, while TCP attempts the connection for
a time up to 2 minutes before declaring the host unreachable (TCP was designed
for global networks). This inconvenience can be solved if appropriate application
level watchdogs are implemented.

The measurements presented here represent the behaviour of the systems trans

mitting on an idle or lightly loaded network. In a real world situation other factors

further reduce system performance. Scheduling interaction between the processes

which make use of the network and the other tasks running on the same machine

will occur. ARP queries, when made, may be also a time consuming activity. In

Chapter 3: Ethernet and Fieldbusses 49

addition there is the possibility of collision of packets along the network, and if
packets greater then 20 Kbytes are transmitted, the Ethernet capture effect, which
denies access to the network to some stations, may start to affect the performance.
Lastly there are I /O and bus interactions on the card when incoming and outgoing
messages are handled by the system at the same time.

However the measurements presented here show the range of timings and likely

variations for the unloaded network. They are indicative of the round trip times

and as such are of importance in finding system performance for time critical ap

plications.

Costs are a very important factor in the selection of a product. At the present

the main focus of the customers is initial costs, which include the purchasing of

hardware and software, the design, installation and startup. The suppliers do not

stress the fact that the ongoing costs, which include maintaining the hardware

and the software, people to operate the network and expansion and configuration

changes, are, in most of the cases, the most onerous for the installation. An appli

cation using Ethernet and Internet Protocols may have higher initial costs, but in

the long run it is likely to be less expensive. While fieldbusses are new technologies

Ethernet and the Internet protocols are well established products with an immense

amount of development behind them. The know-how is already available and does

not need to be developed from scratch, as in the case of fieldbusses. Ethernet chips

are available to everybody and there is no need to become a member of an associa

tion in order to be able to acquire and sell products using this technology (however

there is a central authority which coordinates the assignment of the Ethernet num

bers). Many complementary protocols have been developed in order to standardize

the approach for solving some of the more common problems. There are several

tools already available and additional protocols have been defined to solve some

of the more common needs. For example it is possible for a diskless station to

boot from the network (see RFC 951 [CG85]) and to dynamically configure a new

host on the network (see RFC 1531 [Dro93]). This second protocol is extremely

important in all the applications where there is a number of nodes to configure as

i t carries out the task automatically.

Chapter 3: Ethernet and Fieldbusses 50

This discussion does not aim to prove that Ethernet is suitable for all types
of applications. A careful analysis of the requirements of the system is necessary
before deciding which is the best solution to apply. I f Ethernet is chosen, particular
attention has to be placed in the selection of the Internet Protocol implementation
since different implementations, and especially the ones designed for embedded
systems, have slightly different characteristics which can make the difference when
used in the field. From the graphs presented here it is possible to see that the
transmission times for packets sizes used in a control environment are always in
the order of milliseconds. A collision may delay a packet by up to 50 ms. Since in
low traffic conditions (load less than 5%) collisions are extremely rare it is safe to
assume that the largest majority of the packets will reach the destination in time
and only few of them will suffer delays greater than 50 ms. Therefore Ethernet
and the Internet protocols can be a valid option in all the applications which can
satisfy these time constraints. For busier networks the limit can be increased to
100 ms.

Ethernet and the Internet Protocols provide only the lower levels of a protocol

stack implementation, but the same is true for CAN, which defined only the first

two layers of the OSI stack, and this protocol has been extensively used in many

hard real-time applications. This simply means that the higher levels of the appli

cation have to be custom developed (this may not be a problem in some industrial

application where the scale-economic factors are not applicable). However there

are already examples of developing standards, such as MITS [For96 .

3.5 Conclusion

In this chapter a review of the recently available fieldbusses has been presented and

their comparison with communication systems based on Ethernet has been given.

Fieldbusses can provide several advantages when used in production or process

plants. However their number suggests that some of them will be abandoned in

future, and in particular at present there is not much knowledge in the field. These

facts are slowing down their adoption in manufacturing plants. Since embedding

Chapter 3: Ethernet and Fieldbusses 51

PCs inside manufacturing devices is becoming more common, this suggests that
Ethernet, a well proved, inexpensive, standard technology, can become a valuable
alternative to the various fieldbusses for providing a communication means for in
dustrial machinery.

The results of the performance of Ethernet used in conjunction with several pop

ular network transmission protocols on different UNIX implementation has been

reported. From these tests it can be seen that the time required to transmit a

packet varies significantly depending on the size of the message, and the relation

ship is not a simple function, but it is heavily dependent on the implementation.

The use of pairs of identical platforms enabled the comparison of the operating

system to be made in the same condition, and the tests on the other platforms

provided data which allows evaluation of the importance of the computer archi

tecture on the performance. In addition the platforms used are amongst most

popular among the UNIX users and provide interesting results for a large commu

nity of users. The study has revealed that one of the operating systems has major

problems related with the implementation of the networking software. The UDP

protocol is the one which presents the lowest round trip times, and gives more con

sistent results with only minor scattering problems. TCP may reveal inconsistent

results as soon as the length of the messages is greater than the dimension of the

input and output buffers. Therefore an application program using these protocols

should use messages which are located in an area where a predictable behaviour is

observed. In the case of the Linux and Solaris operating systems, in contrast, the

best approach would consist in sending longer messages, balancing the improve

ment in speed offered by the greater throughput against the possible disadvantage

of the initiation of the Ethernet capture effect. If especially high performance is

needed, such as in hard real-time systems, setting the TCP_NODELAY option on the

sockets, in order to disable the Nagle algorithm and allow the fast delivery of small

packets (with an increase in the traffic along the network) and the use of very high

performance cards which implement capture effect avoidance (e.g. the AMD PC-

Net/ISA PCNet/VLB PCNet/PCI or the SMC Etherpower and other Tulip based

boards) may be good solutions.

Chapter 3: Ethernet and Fieldbusses 52

The network implementation of Linux, which is a public domain operating sys
tem, shows a consistent and logical behaviour. This implies that shareware software
can compete in quality and performance with commercial products, and this makes
it a candidate operating system for implementing high performance distributed ap
plications.

High speed modern computer platforms provide transmission times using Eth

ernet and Internet protocols which can be successfully employed in what have

traditionally been considered real-time applications. The robustness of the trans

mission media, and the wide availability of hardware and software for UNIX type

implementations, offer a well documented and tested solution to the implementa

tion of industrial networks for applications of real-time control.

Chapter 4

Automation in the footwear

industry

4.1 Introduction

The footwear industry offers examples of manufacturing processes which require

the production of small batches of shoe components which must be made with

precision and in short times. Until recently most of the production processes were

manual, or involved machines used as stand-alone devices requiring human oper

ators. However the introduction of automation is changing the industry and at

present there are examples of industrial machines which can carry out certain pro

cessing and assembly operations in a completely automatic fashion. The goal of

designing an automatic system for the complete assembly of a shoe is still remote,

but at present it is possible to identify some cell groupings where linked automation

is feasible.

Shoemaking is a process comprising several operations which transform the raw

materials in the finished product. The operations involved in the assembly of the

shoe can be grouped in the following sections:

• product development

• cutting;

Chapter 4: Automation in the footwear industry 54

• closing;

• making;

• finishing.

During the time spent at the BU in Leicester, and thanks to several visits to shoe

factories, i t has been possible to analyze all the processes involved in shoemaking,

and isolate the areas where a communication link among several machines would

be useful in order to improve the production flow.

In the section 4.2 an overview of the operations performed in the different pro

duction areas is given. A full description of the operations involved in shoemaking

and other activities relevant for the footwear industry is given in [Mil78]. The

use of communication protocols at present in the footwear industry is presented in

section 4.3, while section 4.4 presents an overview on the future developments in

the area. Section 4.5 gives an overview on the devices which could be included in a

manufacturing cells for the footwear industry. Finally two examples of networked

workcells are presented in section 4.6.

4.2 Shoemaking processes

4.2.1 Product development

Product development is the process of designing new styles or adapting existing

ones and then specifying the materials and the components. The designer traces

the shoe using drawing tables or in more advanced industries with the help of CAD

systems specially designed for shoe-designing. The project defines the materials,

the components and their shapes. The data about the shape of the upper compo

nents of the shoe is essential to produce knives (called press knives) used to cut the

pieces of the upper part of the shoe. Once they are ready the industrial production

of a style of shoe can start.

Chapter 4: Automation in the footwear industry 55

4.2.2 Cutting

In the cutting section the different parts for the upper of the boot or shoe are cut

from leather or other materials. The work performed in the clicking room (the

name given to area of the factory where the cutting operation is performed) is very

important because of the need for accuracy in cutting the shoe's components, and

reducing the waste material. Poor cutting can affect a great number of subsequent

operations and the profitability of the company.

The materials used for the production of the shoe uppers can be divided into

leather and synthetic materials.

The reasons why leather is considered a suitable material for shoe uppers are

various. I t is an elastic material able to recover its original shape without damage

(for example when a shoe is flexed during the walking activity). It is also a plastic

material which allows the shoemakers to mould the shoe into its required shape

initially. Thus the plasticity gives the shoe its shape and the elasticity ensures

that it keeps that shape during its life. I t has good tensile strength and stretch

properties before i t breaks. It allows water vapour to permeate to the atmosphere,

but i t is resistant to the passage of liquid. The surface can be made into any color

required. I t is a material easy to work (it can be cut, split, or stitched). Different

types of leather can be used in the footwear industry, such as calf, cow, goat, and

even snake or crocodile.

The two main types of artificial leather used at present in shoemaking are

coated fabrics and synthetic poromerics. The first type of material consists of a

thermoplastic coating, such as PVC, or a curable coating, such as polyurethane,

over woven, knitted or non-woven fabrics. The second set of material consists of

a surface of polyurethane film with either a microporous or micro-cellular layer

beneath. These materials have absorption and permeability properties similar to

leather. As there is a very wide range of artificial leather materials it is difficult

to summarize their general advantages and disadvantages. Several of them lack of

some of the more important properties of leather, but some have more abrasion re

sistance, and the ability to retain better shape. Moreover they are usually cheaper

than leather.

Chapter 4: Automation in the footwear industry 56

The main difference between the leather and its artificial substitutes is that the
first one is a natural material, so it is not uniform and its properties vary form
one point to the other, while synthetic materials are consistent with defined prop
erties. The thickness and quality of the different parts of skin are determined by
the anatomy of the animal. The type of beast skin, the age of the animal, the type
of tannage, and the kind of finishing applied to the surface of the skin affects the
degree of stretch within the skin. Texture is dictated by the tightness of the fibre
structure of a particular skin. The colour of the skin is not uniform, but there
are variations of shade. Defects due to natural, mechanical or disease disfiguration
which occurred during the animal's life can be present within the skin. Therefore
the quality of the skin can vary a lot from point to point.

The action of cutting is usually done by machine using press knives. Two types

of presses are usually used; swing beam cutting presses and twin cylinder ones. In

the first type of machines the operator places the knife on the material and swings

the beam over i t and trips the cutting stroke; then the component just cut can be

collected and the knife repositioned. In the second type of press the material is fed

automatically and a moving cutting head, which holds the cutting knife, cuts the

components according to a stated sequence which minimizes the waste of material.

While the first type of machine can be used with any type of material, the second

one is suitable only for synthetic materials which are uniform and adapted for this

type of "blind" cutting.

Therefore people trained to perform the cutting of the leather must be skilled:

they need good reasoning ability, as no two skins have blemishes in exactly the same

place, spatial perception , as they need to interlock different shapes to achieve the

maximum number of cut components from a skin, color realization, as due to the

variation of color shades within skins i t is necessary to match many cut compo

nents, and decision making, as they need to make quick and accurate decisions.

Chapter 4: Automation in the footwear industry 57

4.2.3 Closing

Closing is the title given to the preparation, fitting, and finishing off the cut com

ponents to produce an upper ready for lasting.

The actual set of operations depends of the particular type of shoe produced

and varies from shoe manufacturer to shoe manufacturer. What follows is a listing

of the most common operations performed on the components of the shoe.

The preparation consists in a series of operations which prepare the upper com

ponents for stitching.

Stitchmarks are marked on the upper components to enable the operators to po

sition the sections accurately when stitching. The operation is usually performed

by fixing the piece in a j ig and imprinting the required marks with a swinging

marker board.

Sometimes embossing, which is an ornamental treatment whereby designs are

printed into, or raised up on, material by the use of heat and pressure, is performed.

If needed, components are split to a uniform thickness using a band knife split

ting machine.

The skiving operation reduces the thickness of certain edges of upper compo

nents to:

• improve the appearance of the finished upper;

• to avoid discomfort in wear,

• reduce bulkiness;

• to aid construction.

The reduction of the substance is usually made on the fiesh side of the material

leaving the grain side complete (sometime this one is skived as well to allow an

adhesive to penetrate where two parts are to be stuck). Thinning the flesh side of

the component does not reduce its durability or weaken its strength, as the plane

of main strength of the leather component is located at 0.1 to 0.3 mm below its

upper surface [Wil26]. The three most important types of skiving are (see fig 4.1):

Chapter 4: Automation in the footwear industry 58

Folding edge

Lasting edge Lap skive

Figure 4.1: Different types of skiving operating on a leather component.

• lapped skive, which is used on the component to be lapped underneath emd

reduces the bulk which lies against the foot;

• folded skive, where the edge of the material to be folded is skived to twice

the width of the required fold so that it lies fiat when folded over;

• lasting skive, where the lasting allowance may be skived to reduce bulk be

neath the insole.

There are two techniques used to perform the skiving of a component: in the first

one the operator manipulates the component by hand through a guide and a sharp

Chapter 4: Automation in the footwear industry 59

disk knife, so i t is skived where intended; it is possible to adjust how deep the
skiving should be, how wide, and sometimes the particular skive profile produced.
The second technique is called matrix skiving: here the component to be skived is
fitted to a rubber matrix which is pre-shaped to conform to the desired end result.
The component and the matrix are passed through a splitting machine, which
removes substance from the reverse side of the material where the thicker parts
of the matrix have applied pressure. This technique is more time consuming in
comparison with the previous one, and it is used only when it is necessary to skive
small components or complex patterns, where the previous method is unsuitable.

Toplines and edges may be treated in various ways to improve their appearance

depending on the style and the price of the shoe. The edge may be left raw as cut

or inked to match the color of the surface of the material, or it may be rounded oflp

(burnishing). A binding of leather, fabric, plastic or elastic may be stitched on to

an edge. However edge folding is the most common edge treatment for several of

the shoe components (see fig 4.2). Once the edge has been skived, i t is folded over

and cemented down by a manually operated machine, which is similar to a stitching

machine; a reinforcing tape may be incorporated to prevent stretching. A more

accurate operation can be be performed with a die folder where the component is

fitted with a j ig, which determines the width of the fold.

The fitting operations mainly involve stitching of one sort or another, and

these are performed using several types of different stitching machines each of

them developed to perform a particular task.

First, decorative stitching on the leather components is performed to produce

nice effects while the components are still flat. Then the backseam is closed (the

two pieces of leather which comprise the back of the shoe are joined together)

and some backseam tape is added on the stitched area in order to reinforce the

back and produce the appropriate shape (sometimes this operation is performed

before folding). Subsequently the linens and the other components of the shoe are

stitched together in the appropriate order. Finally the shoe is closed and its gains

a three-dimensional shape.

During the fitting operations certain parts of an upper may be reinforced to

Chapter 4: Automation in the footwear industry 60

Figure 4.2: Folding operation.

give strength, prevent distortion by stretching, give the material substance and aid

waterproofing. It is normal, for example, to use tapes along seams, and puffs to

reinforce the toe areas.

The operations involved in the finishing off section vary a lot. Eyelets, for

example, are inserted at this point.

Making

Making is the name given to the department in which all the component parts of

the upper and bottom are brought together to construct the shoe.

The first operation consists in placing the upper on a last, in order to give shoe

the required shape, and inserting the insole.

Then the operation performed varies as there are a number of ways in which the

footwear can be made. Each particular method is known as a "method of construc

tion" and in each case it consists of a particular sequence of operations allied to a

specific method of sole attachment. A list of the most commonly used ones follows:

Chapter 4: Automation in the footwear industry 61

• direct stuck construction;

• moulded;

• veldtschoen construction;

• machine welted construction;

• California slip-lasted construction;

In the following sections an overview of these method of construction is given,

with a special attention for the first two as they are the most important for large

industrial production.

direct stuck construction moulded construction veldtschoen construction

machine welted construction California sliHasted construction

Figure 4.3: Sections of shoes produced using different methods of construction.

Direct Stuck Construction

This method consist of tack-lasting the upper under the insole (with help of some

adhesive), and attaching the sole with glue to the bottom of the shoe, and in recent

times it has largely replaced the older machine sewn construction.

First a process of back moulding is performed and the upper is pre-heated to

soften the thermoplastic coating of the stiffener and the quarters are moulded to

Chapter 4: Automation in the footwear industry 62

shape. Then after conditioning the foreparts of the last with hot steam, the up
per is stretched over the last and secured to the bottom either with tacks or with
adhesive. This operation is usually performed by two machines: the first one does
the lasting of the forepart(see fig. 4.4), while the second cements the seat and the
side of the last. Next the shoes are conditioned again using humidity and high
velocity air to eliminate all the stresses and strains, caused by lasting, from upper
materials.

Afterward the bottom of the shoe is roughed, an operation that involves the re-

Figure 4.4: Direction of the forces applied to the leather on the last during the
lasting operation.

moval of the grain from the complete area of lasting allowance by means of a wire

brush or abrasive. Subsequently the adhesive is applied to the prepared area by

hand brush, a pressure extrusion, or by a roller type machine. The last is placed in

a cement drying and activating unit in order to eliminate all the solvent from the

adhesive which reaches the ful l bond strength intended during this operation. The

shoe is then positioned in a sole attaching machine, clamped into position and held

under pressure for a pre-set time dwell and pressure. The shoe is cooled, naturally

or placing i t in refrigerating machines, and the last is slipped either manually or

by machine. Finally, the heel is attached using an appropriate machine.

This type of construction is now widely used in footwear industry. Its advan

tages are:

Chapter 4: Automation in the footwear industry 63

• economy due to the elimination of skilled operations and the machinery in

volved with the sewn construction.

• the reduction of operations speeds up the work flow and makes more econom

ical use of the last plant.

Moulded Construction

7 ^

This construction technique is similar to the previous one, and all the operations up

to the roughing of the last are identical. Then the sole of the shoe is produced with

an injection moulding of polyurethane or PVC (see fig 4.5). When the moulding

process is complete the shoe is removed from the last mould and any flash is

trimmed off.

Figure 4.5: Injection moulding of polyurethane or PVC to create the sole of the
shoe.

Chapter 4: Automation in the footwear industry 64

Veldtschoen Construction

The Veldtschoen method is the only one where the upper material is flanged out

wards during the lasting process and attached by adhesive and stitching to a layer

of material known as the runner or middle. The runner replaces the insole used in

other methods. The sole is attached by adhesion. It is strongly recommended for

shoes which are to be guaranteed waterproof.

Machine Welted Construction

The welted process was the traditional method of shoemaking: it has lost some of

its popularity in recent years, but it is still used for the manufacture of high quality

costly footwear. I t is expensive because of the high labour content in producing

footwear using this method. Further the use of all leather uppers, soles and heels

adds to the total cost.

A special insole having a rib or wall is used. The upper is in-lasted to this rib

by means of wires and staples or adhesion. A strip of leather, the welt, is sewn to

the upper and rib. The welt, having been beaten flat, then has the sole attached

to it by adhesion and stitching.

California Slip-lasted Construction

The essential factor to be noted about slip-lasted work is the way in which the

upper is constructed in the closing room. This is done in the following manner. A

sock, a strip of material (the platform cover) and the upper are stitched together

around the feather edge (platform stitching). Then the last is "slipped" into the

upper. A coat of rubber solution is applied to the bottom of the sock, and the

platform covers are pulled up. Afterwards the operations that follow are identical

to the ones used with the direct stuck construction.

Chapter 4: Automation in the footwear industry 65

4.2.4 Finishing

The finishing operations involve all those activities whose purpose is to give to the

shoe a better aspect, such as heel scouring and smoothing, inking of the edges, and

cleaning of the uppers. These operations are done mainly manually, with the help

of very simple machines.

4.3 Present situation

From the previous description it is possible to understand the reason why the op

erations involved in the assembly of a shoe are labour intensive and in many cases

depend from the skills of the human operator. Some devices which automatically

carry out some operations exist, but in a large number of footwear industries a

large part of the work is still done manually, and no sophisticated machines are

present. However several of the newer machines for the footwear industry are con

trolled by a computer system which activates and controls all the functions of the

device, and they are equipped with a limited number of simple sensors. Only two

machines (one produced by BU and the other by ORISOL) use a vision system

for operating. These machines are designed to be "stand alone" and they do not

require any communication link in order to operate.

Nevertheless some attempts for providing transmission capabilities for improv

ing the performance of some particular machines have been made. The most im

portant effort in this direction has been done by SATRA. This organization in

collaboration with all the major shoe machinery suppliers, CAD suppliers, and

shoemakers, developed during a period of 5 years, starting form the mid '80s, a

set of five different protocols, called InterCIM, especially developed for the require

ments of the shoe industry [Pri91 .

Although several different standards for vehicle and aerospace industry had

been developed and they were easily available and well documented, none of them

could be used for shoemaking as they there not well defined or specified for applica-

Chapter 4: Automation in the footwear industry 66

CAD

system

InterCIM 1.0 Autostitcher
data

InterCIM 2.0 NC machine
transmission details

InterCIM 3.0 Simple cutter
data

InterCIM 4.0 Complex cutter
data

InterCIM 5.0 CAD system
data

Figure 4.6: Graphical representation of the five InterCIM protocols presented by
SATRA

tion in this type of industry. The InterCIM initiative recognized that the available

protocols were not suitable for this specific application and decided to adapt the

most appropriate of the existing international standards in similar areas, such as

RS 274 and ICES, to the specific requirements of the shoe industry. The result has

been a series of 5 different protocols which are designed to interface CAD systems,

where shoes are designed, with devices (see fig. 4.6).

Their list follows:

• InterCIM 1.0: autostitchers data;

• InterCIM 2.0: NC machines transmission details;

• InterCIM 3.0: simple cutters (plotter-based) data;

InterCIM 4.0: complex cutters data;

• InterCIM 5.0: CAD systems data.

Details of the five standards are given below.

Chapter 4: Automation in the footwear industry 67

InterCIM 1.0: "Data format for the transfer of data between CAD
systems and numerically controlled stitching machines"

This protocol is used to link CAD systems with autostitchers and it is based on RS

274, a widely used and supported standard employed internationally for driving

machine tools in engineering applications. I t deals with the form of the data being

transferred (what is transferred not how it is transmitted). RS 274 uses a series

of standard codes to trigger appropriate machine functions. I t has been modified

defining some of the spare codes by specify some typical sewing features such as

"cut thread" and "back tack". CAD systems should be able to generate the data

in the standard form, and the autostitchers capable of interpreting it in the correct

way.

In addition, in 1991, an extension of the standard, intended for use with stitchers

which use adaptive feedback controls, was developed. Such machines, for example,

may sense the edges of the material being sewn, compare the information with that

given by the CAD system. They use this feedback to modify the stitch path so

that the sewing is accurately aligned with the edges, thus avoiding the need for

precise location of the material in pallets.

InterCIM 2.0: "Transmission standard for the exchange of data be

tween C A D systems and numerically controlled machines used in the

footwear industry"

This protocol defines how the information between the CAD system and the numer

ically controlled shoemaking machines is to be transferred. It is based on the RS

232, an international transmission standard, and defines interface connector type

(25 pin plug), pin assignment, functional descriptions of electrical signals, word

length, transmission speed, and data flow control. The last three items are not in

cluded in RS 232 and are added in this standard to further standardize transmission

features in footwear industry applications.

Chapter 4: Automation in the footwear industry 68

InterCIM 3.0: "Guidelines and specification for the use of HPGL
plotter control language for driving numerically controlled cutting ma
chines in footwear industry applications"

This standard is appropriate to plotter-based cutters (the ones where basically the

plotter pen is replaced by a cutting tool). It is based on HPGL (Hewlett Packard

Graphics Language) which was originally developed by Hewlett Packard for their

own range of plotters, but it is now used by other manufacturers as well, for both

plotters and cutters. Some manufacturers use their own versions specially modi

fied to suit their machines, adding new codes to deal with functions not covered by

standard HPGL. The committee found that such extensions were not necessary for

simple plotter-based cutters, and a sub-set of the HPGL commands were adequate.

InterCIM 4.0: "Guidelines and specifications for the use of RS 274

data format standard (and its derivative ISO 6983) for driving numeri

cally controlled cutting machines in footwear industry applications"

This standard covers the form of data to drive cutters and, and is recommended

by SATRA for any NC cutter machine application other than simple plotter based

system (the InterCIM 3.0 is more appropriate for this simple type of machines).

Similarly to the standard for the autostitchers it is based on the use of the RS 274

codes to control the machines.

InterCIM 5.0: "IGES sub-set for exchange of data between CAD

systems in footwear industry applications"

This standard had been developed for permitting the exchange of data between

dissimilar CAD systems. The aim of this system is to provide the possibility for the

shoemakers to transmit, for example, 3D data to a sole mould maker, or 2D data of

pattern shape to a tooling supplier, even if they have different CAD systems. The

protocol had been designed for transferring of geometric data but contains provision

for text too. I t is based on IGES (Initial Graphics Exchange Specification), a

standard used internationally in the vehicle and aerospace industries. A sub-set

Chapter 4: Automation in the footwear industry 69

approach was chosen and based on that developed for the German car industry, the
one that had been judged the most capable of adaptation to the needs of footwear
industry. For this particular application the ICES entities have been selected to
keep the sub-set as small and straightforward as possible, but a future increase of
the codes could be possible.

Although SATRA put a great effort in order to make these protocols accepted

by all the manufacturers, several companies still do not implement them in their

devices and they have opted for custom solutions.

4.3.1 Other applications

The InterCIM specifications are an important attempt in the direction of intro

ducing communication systems in the shoe manufacturing environment, but they

are not the only examples of communication systems specifically developed for this

type of industry.

A successful application has been reported in the area of autostitchers [Cla90 .

These machines are a class of workcells which bear a strong resemblance to nu

merically controlled (NC) machines tools. NC machines are usually provided with

facilities which allow them to download program files from a host computer. Like

NC, machines autostitchers can receive programs via a serial interface, store them

in the memory and execute them an indefinite number of times. The advantages

of using such a communication system are relevant. Rather than storing programs

on EPROM modules or discs, as it is usually done, all the information can be re

tained in the hard-disc of the host computer and any of the machines connected

on the network can access the program files without extensive copying of EPROMs

being necessary. The programs can be stored in the memory of the host computer

as files written using the InterCIM 1.0 standard language, or a series of binary

files which the controller board of the autostitcher can immediately execute. This

simple implementation of a transmission system has proved successful when tested.

Another application of communication among machines is developed by ORISOL

for one of their leading systems. In this case the CAD data can be downloaded to

Chapter 4: Automation in the footwear industry 70

stitching machines and gluing machines using a RS 232 link and a proprietary pro
tocol called ORINET. A pilot application have been set up at a Timberland plant
in the United States. Similarly Torielli has introduced the possibility of connect
ing their autostitchers with their CAD system using a RS 232 link and InterCIM
protocols. A switch is used to route the connection from one machine to another.
In addition the possibility of using modem connection for remote diagnosis is an
option on some of the more advanced models.

An example of communication in a different area of shoe making has been de

veloped at BU, where a toe laster had been connected to a seat and side laster. As

only one person is necessary to operate these two machines, which perform con

secutive operations on the last of the shoe, and which needed repeated commands

that had to be typed in, a communication system was established between the

two machines so the operator has to enter the information only once. In the first

experimental version of the system only information regarding which foot has to

be processed and the name of the style of shoe handled is passed, but the proto

col of transmission has been designed to be extremely flexible, and therefore other

extensions are possible.

An interesting example of an island of automation has been proposed by AC-

TIS, which has developed a production system for the automation of the first steps

of the "making" process. The workcell consists of a set of robots, conveyor belts

and storage systems. Al l the operations are controlled locally and the information

for coordinating the activity of all the plant is carried by the supports which hold

the lasts of the shoes. They incorporate a small chip which allows the system to

identify the component and determine which operations have to be performed on

the last.

There are only a limited number of companies which produce devices for the

footwear industry which make use of communication facilities. The main reason

for this is due to the fact that the devices used on the shop floor are technologically

simple. Another reason is that many of the companies offer only a limited num

ber of products in a specific area of shoe production. Therefore they do not have

an interest in providing communication capabilities which could be used, amongst

Chapter 4: Automation in the footwear industry 71

other things, for general monitoring of the whole plant.

4.4 Future directions

The previous section presented an overview of some attempts to introduce com

munication capabilities among machines used in the footwear industry. I t is likely

future more and more examples of communicating workcells will find a place on

the footwear shopfioor.

At present the majority of shoe industries are not ready for the introduction of

a communication system which could link several machines as there are not many

machines that could take an advantage from such facility. However information

gathered from BU enables an assessment to be made of the capabilities of the most

advanced machines produced for the shoe industry and of some devices which will

be developed in future. They are controlled by microprocessors, and sensors are

used to allow them to perform their activities, which are defined by appropriate

programs and therefore can be changed as needed. Such intelligent devices would

certainly benefit from a network connection. As designing shoes using CAD sys

tems is getting more and more popular, the CAD data could easily be used to

prepare the information necessary to produce the programs needed to control the

different machines. A network system would allow the transfer of the information

straight from the CAD system to the specific machine without copying the data

on a physical device such as a disk or an EPROM.

Prototypes of machines which can perform automatically the stitchmarking

Tou89] and the skiving [Top93] of the components have been built at Durham

University. A machine which will be able to produce the cutting knives using

CAD data is under study at BU. Al l these application depend extensively on CAD

data in order to perform correctly their tasks in order to avoid, or at least con

siderably reduce, the "teach" sessions. These are sessions where the machines are

programmed to perform a specific set of operations. To obtain an easy and fast

way for the transmission of the necessary information a network system would be

extremely desirable.

Chapter 4: Automation in the footwear industry 72

From the previous discussion it is clear that the type of information transferred
is mainly related to CAD data which is used to produce the control programs for
the different machines. However other types of data can be transferred: for example
remote controlling and supervision of the plant would be possible. The machines
could send each other information relevant for performing their tasks, such as the
style of shoes currently in production, so they can set them up properly without
the help of a human operator. Data from sensors which cannot be processed locally
could be sent to other stations, or this data could be sent to other machines for
which i t could be useful. Messages for indicating an abnormal operation and the
instructions for recovering from it could be issued to the interested devices. Moni
toring of the resource use and device utilization is another opportunity offered by
a networking system. Finally a communication system could satisfy the growing
interest for tools which enable remote diagnosis of industrial machines.

The communication system in this type of application is not a strict real-time

one as the information transferred in usually not immediately necessary to the ma

chine in order to perform the task, and it is possible to think that small delays are

acceptable. This particular feature allows the design of a simpler system which do

not have to cope with the problems of the communication systems used in strict

real-time applications where delays could be not acceptable.

4.5 Manufacturing cells in the footwear industry

The aim of a communication system in a manufacturing environment is to provide

communication means between all the connected components. The complexity

of the system may vary, but in complex applications it is possible to identify al

ways three main building components. The first is the database which consists of

program files encoding the operations that the machines have to perform on the

processed items. The second is the production management system which super

vises the whole production, keeping track of the components in production and

controlling the contents and the activity of all the devices and in some cases de

ciding the production schedule. The third include the devices which represent all

Chapter 4: Automation in the footwear industry 73

Figure 4.7: The BU "Rink System" cell layout for the the lasting and bottoming
of the shoes. 1: backpart moulding, 2: insole attach 3: upper conditioning, 4:
forepart lasting, 5: seat and side lasting 6: dust extraction 7: heat setting, 8:
auto roughing, 9: auto cementing, 10: cement drying, 11: sole attaching, 12: shoe
cooling, 13: last slipping, 14: heel attaching

the other units connected to the communication system.

In the specific case of the the footwear industry a list of possible devices which

could find place on the plant floor follows:

• computerized numerical controlled machines: they represent majority of the

machines used in the production line (autostitchers);

Chapter 4: Automation in the footwear industry 74

tray

loading

robot

>

skiving —- gluing skiving gluing

-

robot tray

Stitching CD Stitching CD Stitching Stitching downloading

robot

Figure 4.8: Schema of the production line for the assembly of the uppers of shoes

• dedicated devices; they include broadly all the set of devices which have

been developed essentially for the footwear industry. The cited skiving and

stitching machine are examples of such devices, but many other ones are

present in other areas of the shoe assembly;

• industrial robots: there are only a few example of usage of robots in this area,

but they will be useful for performing some operations in the last part of the

assembly of the shoe, and in the handling of the materials;

• material transport systems; conveyors belts are actively used for the transport

of the material along the production line; an eventual use of AGV should be

considered;

• automated storage systems: they will be essential for the automation of the

production plant as it is likely that the components of the shoes will be

processed not in logical order but in sets of similar pieces (semi-random);

• programmable logic controllers: as they are in general use as control mecha

nisms they will be useful in several applications for controlling other simple

devices;

Chapter 4: Automation in the footwear industry 75

• bar code readers: they are used mainly for identification purposes;

• vision systems: used for the identification of the pieces and for the inspection

of the correct assembly of the components;

• sensors: used for the identification and inspection all along the production

line;

An integrated system must be able to supervise and control workcells which can

be composed of any of the cited devices.

4.6 Two examples of networked workcells for the

footwear industry

An existing example of devices, which can be set up as a workcell, and which could

take advantage from the introduction of a communication system are the ones in the

BU "Rink System". The devices in this system perform the operations involved in

the lasting and bottoming of the shoes. They can be used as stand alone machines,

but they can be placed in a configuration which allows a continuous production flow.

Such a disposition is presented flgure 4.7. In this configuration information on the

style of shoes processed could flow from one end to the other of the rink reducing set

up time. The two machines which have been experimentally connected together,

as previously described, are part of this system, and the advantages provided by

this link could be easily shared by other machines as well.

Another area where there is the potential for creating an island of automation

in the production process can be located in the first stages of the assembly of

the shoe. Several dedicated devices have already been developed, and during this

research it has been possible to design a support infrastructure which allows them

to become integrated in a manufacturing cell. The layout of the proposed workcell

is presented in figure 4.8. The aim of the system is to automate the first stages

of the assembly of a shoe by taking as input a cut shoe component and prodiicing

Chapter 4: Automation in the footwear industry 76

as output embroided and/or joined components. A brief description of the devices
follows:

• skiving machine: it operates using the principles of the skiving machines

developed in the past at Durham University;

• gluing machine: it is basically a NC machine (autoscan type) which has a glue

dispenser instead of a needle. A preliminary study for the implementation of

a gluing system using electrostatic glue deposition is presented in chapter 5;

• stitching machine: an appropriate version of the Autoscan developed by BU;

• placing robot: for placing together components which need to be stitched

together;

• robots: they are necessary to carry out the loading and the unloading of the

components which have to be processed.

The components to be processed are placed in batches in an input tray. Research

done at Durham University on devices for the footwear industry started from the

assumption that the components to be processed by the machines were to be pro

cessed in random order. However from visits in shoe factories it has been observed

that this is not exactly the case since the component are usually batched in sets

of twelve. Therefore it is possible to assume that some sort of batching is present

at the level of the input storage system. The production system, starting from its

knowledge of the type and the number of components present in the input tray,

decides the production schedule. The loading robot places the single component on

the conveyer belt. Then the skiving of the component is performed. Then if it is

necessary to stitch together two (or more) components, glue is applied to the lower

ones and they are placed one on top of the other by a placing robot. This operation

is performed in order to avoid relative movement of the components. Components

which do not require the joining operation skip the previous operation when pass

ing through the system. Finally the stitching operation is performed before the

component is downloaded to the output bay.

Chapter 4: Automation in the footwear industry 77

From the figure it is possible to see that several of the systems use vision sj'S-
tems. The Autoscan stitcher produced by BU actively uses the vision system in
order to identify the components. A communication link is able to inform the de
vices which component to expect next, but the need for a vision system remains
since i t is necessary to determine the exact position and orientation of the com
ponents. At the present unfortunately there is no available data of the drifting
of shoe components on conveyor belts, and it is possible to assume that if their
movement is negligible some of the vision system could be eliminated, or simpler
ones implemented.

These two examples of feasible workcells allow us to define the transmission

needs in the footwear industry and show the possibility of creating islands of au

tomation in the shoe production process. A complete integrated communication

and control system able to support these workcells will be developed in the next

chapters.

4.7 Conclusions

Despite a lot of work related with computer networks, the area of industrial com

munications has not been yet fully developed. In particular in shoe manufacturing

almost no implementation of communication systems exist, despite the obvious ad

vantages that such infrastructures would have in the manufacturing environment.

The existing communication protocols which have been specifically developed

for the needs of the footwear industry have been described. However they mainly

establish a format for data representation for the computer controlled devices used

in this manufacturing area, and they have not achieved a wide acceptance.

The current directions in which the footwear industry is moving have been re

viewed in the chapter. I t has been possible to see that the level of complexity

and intelligence of the devices is gradually increasing and sophisticated features

are being included in the latest models. In this environment where elaborate de

vices are starting to appear, the benefits of a communication link are evident.

Data transfer from CAD systems to the devices, coordination among machines.

Chapter 4: Automation in the footwear industry 78

better understanding of the production flow and powerful tools as remote diagno
sis and software updates could become possible. The last section of the chapter
has described two examples of manufacturing cells which could take advantage of
a communication facility. The first example consisted of an existing cell used in
the area of the lasting and the bottoming of the shoes. An experimental limited
communication link had already been tested between two of the devices included
in the cell, and this experiment highlighted the type of advantages that the intro
duction of communication facilities could offer to the whole system. The second
cell is based on the integration of the devices which have been developed in the
recent past at Durham University, Hull University and by BU, and represents an
example where communication facilities are desirable in order to implement effi
ciently the automation of an assembly process. In particular a preliminary study
for the implementation of a gluing system, the key element for allowing the joining
of components in the proposed cell and the only one device in the cell which has
not yet been developed will be presented in chapter 5.

I t is possible to conclude that it is likely that future computer controlled ma

chines will depend on the use of a communication system linking them together.

Even if the idea of creating a completely automatic shoe plant is not realistic, the

use of the communication links will produce benefits on all the production opera

tions, even where the human skills are necessary, and will permit better supervision

and control on the plant.

Chapter 5

Electrostatic glue application for

footware applications

5.1 Introduction

In the shoe making process it is required that flat pieces of leather are attached to

gether, in a specific orientation with respect to each other, before they are stitched

in an automated sewing machine. This process is currently done automatically

using a template board and punched holes in the leather components. The first

component to be glued is placed onto the template board aligning the pins through

the "guidance holes" which are pre-punched into the leather. The second compo

nent is carefully "dabbed" onto a tape dispensing glue, which deposits a "tacky"

blob onto the surface of the leather. This component is then aligned onto the first

one, using other aligning pins and guidance holes, on the template board. Then

the two components are pressed together to ensure a bond. A separate template

board is required for each design of shoe, and also for various sizes. The manual

process is very time consuming and an automated method would be ideal since it

would allow the automatic assembly of a consistent part of the shoe uppers without

the use of manual labour.

This chapter examines the various possible methods of depositing glue onto the

surface of leather prior to stitching, with the idea of incorporating the most effec-

Chapter 5: Electrostatic glue application for footware applications 80

tive method into a fully automated process. This should ensure the deposition of
a sufficient amount of glue on the overlapping areas to ensure the bond, and the
position of glue should not interfere with the stitching path in order to avoid prob
lems with the sewing needle. Since the system will be included in an automated
process the system must be able to cope with components randomly ordered and
with any orientation and position.

Due to the large number of possible designs and sizes of the shoe components a

computer controlled mechanism for the deposition of the glue is required. Research

on a related problem has been carried out by Nigel Tout [Tou89] when he inves

tigated the possibility of automating the stitchmarking operation. This consists

in marking the upper components of the shoes with a pencil, or another marking

device, in order to allow the correct positioning of the components before manually

stitching. In our case there is the additional constraint represented by the glue

involved in the process.

The most direct approach in order to achieve the deposition of the glue on the

leather components is to carry on an analysis on the currently available systems

for printing on paper and to analyze the possibility of modifying them in order

to make them capable of transferring glue onto leather. The computer controlled

printing mechanisms can be grouped into two sets; small-area markers and full-

width markers. The first set includes all the systems which can apply only a single

point at any time, thus lines are drawn by sequentially moving the writing head

across the paper. The second set includes all the devices which can print more

points simultaneously and the printing action is achieved using the relative motion

between the paper and the printing line in one movement.

Both groups of printing mechanisms are analyzed in the following sections and

the possibility of adapting them to the automatic deposition of glue is discussed.

5.2 Small-area markers

Small-area markers use a device which can generally mark only one point at time.

Thus, in order to draw lines, the printing device has to be scanned raster fashion

Chapter 5: Electrostatic glue application for footware applications 81

Drop generator
Charge electrode

Nozzle

Charging
control Pump

Charging
control

Deflection plates Deflected
drops

• • •

Unused ink for
recycling

Reservoir

Printing
surface

Filter screen

Ink supply

Figure 5.1: Inkjet printing fires droplets of ink which are inductively charged and
then deflected with an electric field.

over the component and activated when it is over a spot which has to be marked,

or it has to be used as a X-Y plotter and trace along the desired patterns. In both

cases the motion can be achieved moving the printing device or the paper being

marked. The devices grouped in this category include pens, dot matrix impact

print heads and ink jet devices.

It is possible to analyze the possibility of adapting these printing techniques for

the deposition of glue on leather surfaces.

The easiest approach is to adapt the pen printing technology used in X-Y plot

ters. It is possible to think of designing a device similar to a pen which applies

glue in the appropriate positions. The use of liquid glue or hot melt glue would be

possible with suitable devices. The advantage of this approach is that it is quite

cheap, and it uses a simple control mechanism. On the other hand these modified

pens pick up dirt which increase the accumulation of glue near the nozzle which

may eventually obstruct the glue source. If the glue is too liquid it may drop on an

undesired position. The major disadvantages are that since they work by contact,

a method must be used in order to hold the component in place while the device

Chapter 5: Electrostatic glue application for footware applications 82

applies the glue over the leather.

The deposition of glue using its intrinsic electrostatic properties after having

placed upon the leather an electrostatic charge has been proposed in an undergrad

uate project at Sheffield University [Cul96]. The system would resemble an X-Y

plotter where the pen has been replaced by a electrostatic charging device. After

the application of the charge on the leather, the powdered glue would be deposited

and attracted to the exact position of the charge. The proposed system has the

advantage that it eliminates the problems related with the obstruction of the glue

source. I t is not possible to estimate the speed of the system without further in

vestigation, but i t is likely to be quite slow. Special safety precautions are required

due to the high voltages needed to allow the deposition of the charge on the leather.

Lastly the glue will stay in place as long as the charge on the leather remains and

there are chances of contaminating unwanted areas of the leather with uncharged

glue.

Dot matrix prints heads consist of linear arrays of 7 to 30 fine wires which can

be individually controlled and fire upon request against an inked ribbon suspended

close to the surface to be printed. It would be easy to adapt the process to the

deposition of glue if the inked ribbon were replaced by tacky tape (produced by

3M). The advantages of the system is that it would be cheap to implement, easy

to use, it would require no heating system and it has already been proven that it

works since it is used in the manual process. The disadvantages include the lack of

accuracy in comparison with liquid or powder technologies, the gluing head could

be only used in a raster pattern over the component which would have to be held

firmly during the printing operation.

Inkjet represents a non-contact printing technology where a small nozzle is

sues a stream of ink droplets which is directed against the surface to be printed.

The position of impact of the droplets is usually controlled by electrostatic fields

which deflect the ink stream. These are usually continuously cycling devices, where

droplets are produced continuously, and the ones which are not needed are collected

for recycling before reaching the surface (see figure 5.1). The problems related with

this technology are that glue tends to block nozzles and that it is completely un-

C h a p t e r 5: E lec tros tat ic glue application for footware applications 83

suitable for recycling since i f i t solidifies i t would block all the ducts. In addition
there is the problem related wi th the contamination of the nozzle wi th the dir t and
the debris of the leather. This technology cannot be used in situations where the
device is subject to accelerations, so i t must be kept stationary while the surface
which is printed moves perpendicularly to the direction of the deflection. However
some devices exist, which produce ink droplets only when required (called "drop on
demand") and are usually based on non-deflection mechanisms. The ink stream is
modulated by electrodes and must use relative motion to produce printed images.
However i f glue is used, the interruption of the flow may cause the blocking of the
nozzle, making the system unusable. Several of the problems of the use of Inkjet
technology for the deposition of glue could be solved i f a l iquid glue which is not
sticky before activation could be employed.

The possibility of adapting small-area markers technology for the deposition of

glue offers different approaches which could lead to a successful implementation;

however, in all the cases the main problem is related to the fact that either the

pr int ing device or the shoe components or both have to be physically moved around.

This implies poor processing times whenever a raster or X - Y plott ing technology

is used, and loss of precision due to the movement of the component while the glue

is applied.

5.3 Full-width marking

The main advantage of the fu l l -wid th markers in comparison wi th the small-area

markers consists in the fact that since the former can mark simultaneously in

many places along a line, the component can be printed in one pass i f i t is moved

perpendicularly to the print ing line. This results in an reduction of the processing

t ime and in an increase of precision during the operation.

Devices which are classified as fu l l -wid th markers include Inkjet devices and

thermal printers. The first group uses arrays of Inkjet nozzles which cover a small

part of the whole wid th . The problems of applying this technology for the glue

C h a p t e r 5: E lec tros ta t i c glue application for footware applications 84

Charge corona

Cleaner lamp

Photosensitive drum

Cleaner blade

Fuser

Developer system

Paper path
Transfer corona

Figure 5.2: Schematic cross section of a electrographic printing engine

deposition are the same described in the previous section for the normal inkjet

devices. Thermal print ing is based on a bar of resistance elements in contact wi th

a waxed carrier which touches the surface to the marked. The image is produced

by melt ing dots of wax which are transferred f rom the carrier to the surface being

printed. The main problem in applying this technology to the deposition of glue

is that when the glue is melted i t becomes sticky and therefore the process would

require extra care.

The largest group of devices which are classified as fu l l -wid th markers are based

on the electrographic process which offers several advantages for the deposition of

glue in comparison wi th the techniques described so far. A n overview is presented

in the next section.

C h a p t e r 5: E lec tros ta t i c glue application for footware applications 85

5.3.1 Electrographic print mechanisms

Electrophotography is the technology which is the base of vir tual ly all photocopies

and laser printers. I t is a complex process involving, in most of the cases, six

distinct steps which are shown schematically in figure 5.2 [She92]:

• charge: a corona discharge caused by air breakdown uniformly charges the

surface of the photoreceptor which, in absence of light, is an insulator;

• expose: l ight, refiected f rom the image (in a copier) or produced by a laser

(in a printer) , discharges the normally insulating photoreceptor producing

a latent image which mirrors the information to be transformed into a real

image;

• develop: electrostatically charged and pigmented polymer particles, called

toner (about 10 micrometers in diameter), are brought into the vicinity of

the latent image. Thanks to the electric field created by the charges on the

photoreceptor, the toner adheres to the latent image, producing the real one;

• transfer: the developed toner on the photoreceptor is transferred to paper

by corona charging to the back of the paper;

• fuse: the image is permanently fixed to the paper by melting the toner into

the paper surface;

• clean the photoconductor is discharged and cleaned of any excess toner using

corona lamps, brushes and scraper blades.

Each of the steps can be implemented using different technical solutions and almost

every vendor has developed some proprietary techniques in order to overcome the

problems associated w i t h each of the steps of the process. Several types of pho

toreceptors based on various chemical components w i th different spectral responses

have been introduced in order to increase the life and decrease the cost of the pho

toconductor drum. The corona discharge method is a major source of reliability

problems since i t produces corrosive ions and other reactive components which can

C h a p t e r 5: E lec tros ta t i c glue application for footware applications 86

damage the photoreceptor as well as the corona wire itself. In addition i t is neces
sary to clean i t periodically f rom toner and paper dust without breaking the thin
corona wires. Canon introduced a charge roller [NHAK89] which decreases the
problem of the ozone production, but more work has to be done in order to find
an alternative to the present systems, which w i l l have longer life, charging unifor
mity, and lower cost. The light source for impressing the photosensitive drum is
generally a GaAlAs semiconductor laser, but some printers which use L E D arrays
have been introduced, which allows a better reproduction of the image since no
horizontal scan skew errors are produced. There are three types of development
systems used; two component, monocomponent and liquid. The two component
systems are usually used for high speed machines. The developer mix is composed
by two components, the toner, w i th a diameter of about 10 /xm and the carrier
which is made by particles of about 200 fim. Several variants of two-component
systems are employed in commercial printers. These devices are quite complex,
and only a part of the toner is transferred to the paper. Conceptually simpler
are monocomponent systems where the carrier particles are eliminated. There are
three independent choices to be made in the system:

• the toner could be conducting or insulating;

• the toner could be magnetic or nonmagnetic;

• the toner could contact or jump across the gap to the photoreceptor.

Due to the simplicity of the monocomponent systems, they have fewer parts, smaller

hardware, and lower manufacturing costs in comparison wi th two component ones.

Some of the problems are related wi th monolayer development (hence gray copies)

and humidi ty sensitive transfer. In both systems the toner must be charged so that

the electric field of the latent image can attract i t on the appropriate areas. Ad

ditives called "charge control agents" [Gru87] increasingly are being added to the

toner to control its charge as wrong-sign toner can produce background, uncharged

toner produces dust, and the average charge-to-mass ratio determines character

and solid area optical densities. A surprisingly large variety of charging methods,

C h a p t e r 5: E lec tros ta t i c glue application for footware applications 87

especially for monocomponent systems, have been identified and incorporated into
development systems. Examples are induction charging, contact electrification, or
corona charging (see figure 5.3). The l iquid development process has the advantage
that the hardware necessary is simple since no mechanical transport device is used
and no fusing is needed, however i t has the problem of the retention in the paper
of the solvent which is later released into the environment.

The simplest implementation of electrostatic printing for the deposition of glue

can be seen as a generalization of the system proposed at Sheffield University. I t

consists of an array of charging electrodes very close to the leather surface, w i th a

conducting plane behind. When a potential difference is applied between the elec

trodes and the ground plane an electric charge is deposited on the leather surface.

The latent pattern can be made visible by a developing system where the charged

glue particles are transported into the vicinity of the charged areas to which they

become attracted. The main problem related wi th this application is that the d i

electric medium used to receive the charge f rom the electrodes must have a time

constant sufficiently long so that the charge does not dissipate before the toner is

transferred. Dry leather has semi-discharge time of the order of minutes, but i t

become of the order of few seconds as soon as the humidity level rises above 50%

MMCC95; .

A laser printer could be used to print a computer generated glue pattern i f

powdered glue could be used instead of the toner. In order to make this possible

i t is necessary to use a glue whose particle dimension is comparable wi th the di

mensions of the toner. The glue must be not "sticky" when i t is in its powdered

form, and i t must be possible to activate i t later in the process. The fusing mech

anism of the laser printer needs to be disabled otherwise fusion of the glue wi th

the resulting contamination of the engine of the printer would occur. Since the

glue is naturally a nonmagnetic insulating material, adapting a laser printer which

uses a monocomponent development system wi th toner w i th such characteristics

represents a direct way for achieving glue deposition. The major concern about

using laser printers for glue deposition in a shoe factory environment is the uncer

tainty about the working life of the photoconductive coatings which are generally

C h a p t e r 5: E lec tros ta t i c glue application for footware applications 88

Doctor Blade

Reservoir

Mixing Rod

Drum

Rofler

Figure 5.3: I n the Canon monocomponent development system the magnets are
stationary and the toner, containing magnetically soft material, is carried by the
roller past a magnetic doctor blade into the development zone

based on selenium or organic resins. They are fair ly weak physically, so may wear

quickly when used w i t h shoe materials and could be damaged by staplers or tacks

which might pass through. They are also prone to contamination by compounds

in the shoe components. I n addition i t is necessary to lay down on the component

a suitable layer of glue in order to create an effective bond when the components

are put together.

For glue deposition, electrographic processes have the advantages that they are

very compatible w i t h digital electronic systems, they can print patterns onto sur

faces which are moving past at steady speed, thus making easier to include them

in an automatic assembly system, and they do not have the fine nozzles of Inkjet

printers to become blocked. Therefore they are good candidates for the implemen

ta t ion of an automatic glue deposition system even i f they present some weakness

due to the fragi l i ty of some subsystems.

5.3.2 Tonography print technology

A type of electrographic printer which has the advantage of robustness and high

speed is the ionographic printer, which has been developed by Dennison Manu

facturing Company in conjunction wi th Delphax Systems. This technology, repre-

C h a p t e r 5: E lec tros ta t i c glue application for footware applications 89

ion generator

development unit erase rod

magnetic brush image drum

paper path

pressure roller

cleaning blade

Figure 5.4: Schematic cross section of the Delphax lonographic print engine

sented schematically in figure 5.4, employs an oSset method of electrography using

a a dielectric d rum made by aluminum covered wi th a very hard anodized coating,

about 40 / /m thick [RB86]. The latent electrostatic image is created directly on the

surface of the anodized layer by a closely spaced ion generator which produces jets

of negatively charged ions f rom a series of fine holes along its length, which allows

an accurate generation of the image. The development system uses monocompo

nent conductive magnetic toner. The conductive toner transfer problems wi th high

relative humidi ty have been solved by combining the transfer and fusing steps into

one. A pressure roller underneath the aluminum drum, between which the paper

being printed passes, squeezes the toner powder into the paper fibres, which have

the effect of transferring an fusing the toner simultaneously. The cleaning of the

hard dielectric is easier to implement in comparison wi th a soft photoreceptor. Del

phax machines physically scrape off the remaining toner wi th a steel doctor blade,

and then erase the remaining electrostatic image wi th a corona device.

By eliminating the photoreceptor, and therefore the charging and exposure

steps, and using a different transfer method, this represents a simpler process.

C h a p t e r 5: E lec tros ta t i c glue application for footware applications 90

Furthermore the harder receptor surface leads to improved reliability.

The main problem for adapting the process for the deposition of the glue on the

leather components is related wi th the high pressure transfer technique which may

damage the leather components and would certainly fuse the glue wi th obvious

problems. The only solution would be the removal of the pressure roller and the

introduction of a normal coronatransfer [Sch75] which would allow transfer without

fusion of the glue.

Another relevant problem connected wi th this technology is the fact that Del-

phax, the main producer of this type of printers, has already been contacted in

order to develop their technology for the stitchmarking of the shoe upper described

in Tout's thesis [Tou89], but they did not show great interest in licensing their

technology to BUSM. Therefore i t is likely that this problem w i l l occur again i f a

new proposal of collaboration is proposed. In addition their machines are designed

to work at extremely high speeds (up to hundreds of pages per minute) which are

unnecessary in the proposed application. This in conjunction wi th the necessity

of replacing the pressure roller system, and the possibility of using this technology

for stitchmarking, would make the development of a ionographic system suitable

for these applications a rewarding research area for BUSM.

5.4 Experimental work

From the previous overview i t is possible to observe that fu l l -wid th printers are

mechanically simple and they are able to print continuously wi th the components

travelling at constant speed. These factors give the advantage of reduced mainte

nance, and simpler control in comparison wi th single point or small-area markers.

Therefore they represent good candidates for a re-engineering process.

The analysis of several types of electrographic printers showed that the iono

graphic printers use the simplest and most robust technology. However their engine

needs to be accurately modified in order to be adapted for the deposition of glue

on the shoe components. This in conjunction wi th possible problems related wi th

technology transfer issues f rom the main producer of ionographic printers suggested

C h a p t e r 5: E lec tros ta t i c glue application for footware applications 91

to employ laser printers for building a prototype glue deposition system. A par
ticular attention was placed to printers which use monocomponent development
systems.

The first step for the development of a prototype for glue deposition using a

laser printer consisted in analyzing the feasibility of using a normal laser printer

for pr int ing glue on leather surfaces. The operation of transferring toner to leather

using a normal laser printer has already been proven to be feasible by Tout [Tou89],

even i f leather is thicker than paper. The following step consisted in analyzing the

possibility of using glue instead of toner inside the laser printer. The dimension of

the particles of toner is approximately 10-15 ^ m . Therefore for the experiment i t

was necessary to find a powdered glue wi th particles of comparable diameter, and

which would be not sticky in this state. In addition toner can be magnetic and

non-magnetic. I f the transfer process could be shown to work wi th a laser printer

which used non-magnetic toner i t would have eliminated the problem of adding

iron particle to the powdered glue. Since Bostic and Unex Dakota gave assurances

that i t was possible to obtain glue wi th the specified characteristics by grinding

solid glue down to the desired dimensions, the selection process for a laser printer

using non-magnetic toner could start.

From the literature and queries to the producers i t has been possible to iden

t i f y some companies which had done research on monocomponent insulating non

magnetic toner. The following commercially available printers using this toner have

been identified:

• Ricoh PC Laser 6000;

• I B M Laserprinter 4019;

• O K I 40 O L I .

A f t e r some contacts w i t h suppliers i t was possible to acquire a second hand Ricoh

PC Laser 6000 (the printer is not in production any more). The printer uses a

mixing rod in order to charge the toner triboelectrically. A supply roller made of

foam pushes toner against a roller which then must pass under a spring -loaded

C h a p t e r 5: E lec tros ta t i c glue application for footware applications 92

metering blade before being transferred on the developer drum.

Before in i t ia t ing the tests on the feasibility of the glue transfer i t was necessary

to empty completely the reservoir of the toner contained in i t , and clean all the

internal parts of the printer f rom the accumulated toner. Then the fusing system

was disconnected in order to prevent the melting of the applied glue. This allowed

a test of whether the glue would stay in place once applied.

Suppliers managed to provide two types of glue in powdered form, the Bostic

HMIO produced by Bostic, and the Euremelt 2095 produced by Unex Dakota.

Unfortunately a microscope analysis of these showed that they did not meet the

required particle dimensions. The first one was mainly composed of particles whose

average size was close to 150 yum, while the second one was a mixture of particles

smaller than 200 fim. This posed a problem since the development system is de

signed to work w i t h particles which are one order of magnitude smaller. A first t r ia l

w i t h the Bostic HMIO showed almost no transfer. A second t r ia l wi th Euremelt

2095 offered more promising results. I t was decided to repeat the experiment w i t h

smaller toner particles. The process of separating smaller toner particles f rom the

larger ones was carried out using a set of sieves obtained f rom the geotechnical

engineering laboratory. A small sieve allowed the separation of particles which are

larger than 65 ^ m . A smaller sieve able to filter particles down to 38 //m exists, but

neither geotechnical engineering, nor geology had i t . Eventually enough powdered

glue to fill the cartridge wi th particle size inferior to 65 /Lim was produced.

A l l the experiments were carried out transferring the powdered glue onto paper.

No trials w i th leather have been performed. As already reported. Tout has already

shown the feasibility of transferring toner to leather w i th a laser printer, therefore

proving that the process works on paper would lead to the conclusion that i t is

feasible on leather as well [Tou89]. However the most important reason that no

experiments on leather were carried out is due to the fact that the laser printer em

ployed was not designed to print on paper thicker than 200 //m. Trials w i th thicker

paper had shown that transfer is possible, but i t always jammed the printer at the

level of the fusing roller. Since the leather is quite thick in comparison wi th paper

i t was not possible to insert i t through the laser printer. Topis achieved printing

C h a p t e r 5: E lec tros ta t i c glue application for footware applications 93

on leather by rebuilding part of the printer in order to allow thicker material to be
passed through the rollers.

The results of the experiments show that glue transfer using an electrographic

system is possible, but several problems were noted. First of all the glue is charged

w i t h the opposite sign in comparison to the toner powder, so the images were trans

ferred in negative. This is not a problem for the deposition of the glue pattern,

but interferes wi th the cleaning system of the laser printer which has to eliminate

large quantities of glue f rom the photosensitive drum. I n addition the transfer al

lowed only a th in layer of glue of be transferred, not sufficient for holding together

components. The problem of the creation of toner of opposite sign is one yet to be

addressed.

The results may look poor in comparison wi th the quality of the transfer which

can be achieve w i t h toner. However i t is important to remember that in this case

glue which has been just ground had been placed in the toner reservoir. A new

research programme aimed at the development of a more suitable glue and the

reengineering of the laser printer in order to allow the deposition of larger quanti

ties of glue on the surface of the component w i l l be required in order to implement

a commercially valuable product.

5.5 Conclusions

I n this chapter an example of the problems connected wi th the design of a device

to be inserted in an automated manufacturing cell for the assembly of the upper

of the shoes has been reported. This device is the only one which has not been

developed among the industrial machines composing the second manufacturing cell

presented in section 4.6. A l l the design activity has been based on the necessity of

implementing a system which is capable of accepting components in random order

and orientation, and of performing the appropriate operations on the component

accurately in a short time.

The preliminary results reported here show that the approach of using a laser

printer for transferring patterns of glue on the components is promising, but more

C h a p t e r 5: E lec tros ta t i c glue application for footware applications 94

work needs to be done before a commercially valuable system is produced. In par
ticular the re-engineering of the printer to allow leather to be printed is necessary.
A t the same time the development of a suitable form of powdered glue is essential.
Unfortunately i t has not been possible to assess the the wear of the photoreceptive
drum due to the contact wi th the leather and Topis's research did not report any
information on this subject. I f problems of wear arise, the option of developing a
glue transfer system based on the ionographic principle could perhaps be the best
possible option.

The results obtained f rom the experiments carried on gave sufficient confidence

in the technique to be able to include an automated electrographic gluing station

as one of the manufacturing devices in the second of the workcells proposed in

section 4.6.

Chapter 6

Computer Based Support System

6.1 Introduction

Modern production systems rely on information for every aspect of the produc

t ion activity. Information must be efficiently stored, accessed and interpreted for

production planning, and control as well as for managerial decision making. Com

puter based support systems are used wi th in a production plant for allowing the

organization and processing of data. Database systems store the static informa

t ion which is used by the production planning system in order to organize the

production. The interactions between these components allows the development a

successful production strategy.

I n the following sections an overview of the components of the manufacturing

computer based support system is given. In section 6.2, the main features of manu

facturing databases are presented. Section 6.3 gives an overview of the production

act ivi ty control modules. Section 6.4 reviews some scheduling algorithms used in

production control process and proposes a new heuristic scheduling approach.

C h a p t e r 6: C o m p u t e r Based Support System 96

6.2 Manufacturing Databases

I n the field of distributed manufacturing systems access to a wide range of infor

mation is essential to guarantee correct operation of the plant. I f insufficient data

is available, proper support to the decision making process cannot be performed.

Alternatively, a lot of unorganized data may also produced difficulties in the deci

sion process.

Therefore i t is highly desirable to provide distributed manufacturing systems

w i t h a properly designed information management system. This may be used for

providing services in several of the manufacturing areas, such as: control, tooling,

part programs, scheduling, as well as bills of materials and costing data.

There are two ways of storing the relevant information in a structured way in

side a information management system; i t is possible to use files, or a Data Base

Management System (DBMS). Conventional files do not allow integrated process

ing, so independent programs have to use independent files. The data required by

a program is bound to the application itself and its structure is declared within

the application. This leads to the loss of flexibility and overall reliability of the

system. DBMSs offer several advantages to file storage [Ran83]. DBMS software

provides a representation of data that has logical (new fields can be added) and

physical data independence (application programs are not affected by extensions

to the structure). The same data can be accessed and shared by different applica

tions, which do not need to be aware of the underlying storage structure. I t can

be organized as a collection of stored data for satisfying all the requirements of

the application programs, and therefore no duplication of information is necessary.

A common, controlled approach is used for adding, modifying or retrieving data.

B u i l t - i n security and data integrity functions are often provided by DBMS pack

ages. These advantages are paid for wi th a loss of speed since conventional files

can be optimized for meeting the needs of application programs.

Database Systems are generally based on one of the four data models; hier

archical, network, relational and object oriented. Relational databases [Cod70]

are a mature technology which have gained their popularity in shop floor applica-

C h a p t e r 6: C o m p u t e r Based Support System 97

tions due to their flexibility and relative ease of design and modification of their
data structure. On the other hand the data model for network and hierarchical
databases must be predefined, and i f an application needs a new data structure,
the D B M S must often be redefined and converted. Since the introduction of new
products or processes is quite frequent in industrial automation, flexibility is an
essential feature that a database must provide. Object oriented data bases offer
even more flexibility than relational databases, but they do not yet represent a
mature technology. Thus the relational model is believed to be the most suitable
system for handling the data management aspects of the shop floor [BBB+91].

I t is possible to divide the information wi th in the manufacturing information

system into two parts [KSN88] static information and dynamic information. The

first one refers to the data which is not subject to frequent modifications. Due

to its characteristics this data finds its best place inside a DBMS. On the other

hand dynamic information concerns information which changes as the status of the

production system changes. Since i t is often updated and i t is usually only of in

terest to local modules, i t is usually stored as internal tables inside the application

programs.

Static information included in a typical manufacturing database is concerned

w i t h data such as part design and program, routing, operation sequences, t iming

information, tooling information, and device information. Part design information

contains detailed information on the part, and the programs store the data of the

operations which have to be performed on i t . Routing data defines the route, or

the possible routes, that a part ban take during its processing. This information is

essential for efficient use of the machinery. Operation sequencing is concerned wi th

the actual sequence of operations which a part has to undergo. T iming information

is necessary to provide the system wi th the ability to generate a schedule for max

imizing the use of the machinery present on the shop fioor. Tooling data describes

data on which tools are available, status, life,and overall use. Device information

provides data on the devices present on the shopfloor, features description, manu

facturer, product ivi ty and related t iming information.

C h a p t e r 6: C o m p u t e r Based Support System 98

Schedule guidelines

i
Scheduler

Schedule

Performance Data

Request

Dispatcher

Monitor

Status

Data collection

Instructions

System

DataBase

Figure 6.1: Production activity control modules and their interaction wi th the
database and system

6.3 Production Activity Control

Production planning may be described as the process aimed at organizing material

and component availability and at optimizing the use of the production capacity

in a manufacturing plant [Wea88]. I t is involved wi th all the activities f rom the

acquisition of raw materials to the delivery of the complete products, and deals

w i t h management problems and their solutions. Its main functions are to provide

a control strategy in accordance wi th the requirements stated by the management

and to provide feedback on the status of the manufacturing process [FR88]. A

production planning and control system may be divided into a layered structure.

Each layer deals w i t h a diflferent aspect of the production process. The top layer

is involved w i t h the managerial objectives and reflects the strategy and the tac

tics of the company. Lower layers deal wi th inventory and production times and

quantities. The Production Act iv i ty Control is located at the bottom level of this

hierarchy. I t has the role of an execution system accepting production orders f rom

the higher levels, generating short term plans, and establishing priorities for all

the job orders, so that they can be properly scheduled and manufactured by the

production cells [BHS88]. Production plans received f rom higher levels are trans-

Chapter 6: Computer Based Support System 99

formed into control commands for the production process. At the same time it
controls and evaluates the production activities of the manufacturing organization,
and produces useful feedback information to the higher level planning functions.

The building blocks of the Production Activity Control system and their in

teraction with the system and the database are shown in figure 6.1. They are the

scheduler, dispatcher and the monitor [BBB"^91]. The scheduler develops a pro

duction plan over a specific period of time. The dispatcher uses the schedule for

issuing the appropriate commands to the production system. Since the production

environment is dynamic the monitor holds information related to the current status

of the system which is used by the dispatcher to generate the control commands.

Sometime other two additional modules are included in the Production Activity

Control, the mover and the producer [BBB"^91]. They are under direct supervi

sion of the dispatcher and are usually involved with control at workstation level

and handling of material between workstations. The following sections will give

a more accurate description of the tasks performed by the modules included in a

Production Activity Control system.

6.3.1 The Scheduler

The task of the scheduler consists in accepting the production requirements from

the higher levels of the production system and generating a plan which allows the

manufacturing of the required goods optimizing some of the parameters (e.g. pro

duction time, machine utilization etc.). Scheduling is a complex activity which is

dependent on several factors included the topology of the system, the complexity

of the involved operations, and the predictability of the involved processing times

McM93]. Therefore simple and well designed manufacturing processes are easier

to schedule that complex ones. A brief review of the large number of scheduling

algorithms which have been developed in the past is presented in section 6.4. The

development of the actual production schedule can be based on algorithms or sim

ulation packages or a combination of the two [Car88, BBBB91]. The generation

of the schedule is a process composed of three main activities [BBB+91]. First it

Chapter 6: Computer Based Support System 100

is checked that the production requirements generated by the higher level can be
implemented in a feasible schedule. I f not the appropriate warnings are reported
to the higher levels. Then the actual schedule is generated taking in account of the
constraints of the system and with the target of minimizing or maximizing some
of the parameters. Finally the schedule is passed to the dispatcher. If the produc
tion requirement are incrementally communicated to the scheduler its activity is
described as real-time scheduling since the schedule is updated with the passage of
the time in order to accommodate the new production requirements.

6.3.2 The Dispatcher

The dispatcher can be seen as the real-time scheduler which formulates the final

commands for the production system. It generates the orders on the basis of the

schedule received from the scheduler, from the information related to how the pro

cesses are performed and from the snapshot of the current status of the system

stored in the monitor. The activity of the dispatcher is essential since the man

ufacturing environment is not deterministic, and delays, exceptional or abnormal

situations may arise. Its task is to ensure that the schedule is followed as closely as

possible using different possible algorithms [McM93]. In the case of anomalies in

the production i t has to take the appropriate actions so as to minimize the effects of

the disturbance to the schedule, resequencing jobs and reallocating resources. If the

schedule cannot be achieved, appropriate actions involving a possible rescheduling

from the scheduler should be taken.

6.3.3 The Monitor

The monitor collects information about the activities performed inside the pro

duction cell and makes them available to the scheduler and the dispatcher. For

this reason it can be seen as a translator from data into information [McM93]. I t

captures data on the events which take place on the plant floor, such as process

Chapter 6: Computer Based Support System 101

timings, machine status, material availability, and machine downtimes. Then the
monitor analyzes this data in order to make it available in a proper and meaningful
format to the other components of the production activity control and the higher
levels of the planning hierarchy. Data which may be gathered during these opera
tions includes monitoring of the work in progress and the status of the resources,
consumption rates of materials, and quality related data [BBB+91]. I t offers data
which can be used in the decision support activity by the scheduler and the dis
patcher; this data includes the current status of all the devices, job in progress
related data and material availability. Some of this information may be passed to
the higher levels of the production hierarchy for assessing the productivity of the
cell and monitoring the plant at a higher level.

6.4 Scheduling Techniques

The scheduling problem is involved with setting the timetable for the processing

of jobs on to machines so that a given measure of performance achieves its opti

mal value [McM93]. Many researchers have generated approaches for solving these

problems which have an immediate application in many the fields of manufactur

ing. The large number of works in this area are related with the large number of

variables involved in the process to schedule, the parameters to optimize, and the

internal combinatorial explosiveness of the problem. In [ML93] a comprehensive re

view on optimization and heuristic methods in production scheduling is presented.

Approaches for solving scheduling problems using knowledge-based approaches are

described in [NS91], while [HR91] presents a review of real-time scheduling tech

niques.

Scheduling algorithms are usually designed to solve special problems involving

constraints on jobs and scheduling objectives [ML93]. The flow pattern may be

the same for all the jobs {flow shop), or each job may have its own individual flow

pattern {job shop), or no specified flow pattern may exist {openshop). Parallel or

duplicated machines may be present. Within these environments it is possible to

achieve a schedule which tries to optimize an objective. This may consist in com-

Chapter 6: Computer Based Support System 102

pletion time, flow time, tardiness or waiting time of the jobs.

The workcell proposed in chapter 4 for the assembly of the uppers has the

constraint that all the jobs have to follow the same path, and that once a job is

started it must be processed until completion without any interruption either on

or between machines. A comprehensive review on the state of the art in such an

area of scheduling is presented in [HS96]. Since it is possible that in the future

new machines will be included in the proposed workcell, the problem of finding a

scheduling algorithm for the m machine flowshop was required. In particular the

objective of minimizing the total flow time (Makespan), the sum of all the com

pletion times of the jobs, was addressed. The scheduling problem associated with

the proposed workcell can be defined as Fm\\no — wait\\ J^Cj, where Fm indicates

a fiowshop problem with m devices, and Cj is the completion time of the job j. I t

was decided to minimize the total flow-time since this criteria minimizes the sum

of completion times, and therefore it aims to finish each job as soon as possible.

This is an appropriate criteria in the case of the proposed cell, since minimizing

the average times it takes to complete a job is a sensible target in a situation where

new jobs are constantly added to the job list. There are only a few available algo

rithms which have so far been proposed for solving this problem. Van Deman and

Baker [DB74] proposed a branch and bound approach to find the optimal solution

proposing a set of procedures for generating lower bounds on optimal values. Some

theoretical work on the problem has been developed by Panwalkar and Woollam

PW80] and Adiri and Pohoryles [AP82]. They describe some methods which aim

to find optimal schedules in particular situations. Several heuristic algorithms have

been proposed by Rajendran in collaboration with others [RC90, GR93, Raj94 .

These algorithms when compared with the ones developed by Bonney and Grundy

BG76] and King and Spachis [KS80], produce schedules which are closer to the

optimal ones. However these algorithms are quite complex to implement and they

are mainly based on the evaluation of the partial flow times of the generated partial

schedules.

The research carried out in this area led to the implementation of a new heuristic

approach for the generation of a schedule whose performance is comparable to some

Chapter 6: Computer Based Support System 103

of the algorithms proposed by Rajendran. The main strengths of this approach are
its simplicity, and implementation ease. The foundations of the algorithm are given
in the next section.

6.4.1 The proposed algorithm

I t is possible to observe that several of the algorithms which are used for the com

putation of schedules are based on branch and bound approaches which analyze

partial schedules and usually expand only the one which maximizes (or minimizes)

the desired objective. The hypothesis which is at the base of the heuristic algo

rithm proposed here is related to the fact that is it much simpler to evaluate just

pairs of jobs than scheduling them to evaluate (partial) combinations of all jobs.

The algorithm proposed is based on the work done by Chan and Bedworth

CB90] and it has been adapted for the no-wait flowshop case. The algorithm

has been designed to solve the problem of minimizing the mean flowtime in the

n-job/m-machine case in static and dynamic environments. The extension of the

methodology for the no-wait flowshop environment has proved to be possible main

taining the same approach.

The assumptions made from Chan and Bedworth had to be modified in order

to make the algorithm compatible with the no-blocking case. They are:

1. job operation times are deterministic and known in advance;

2. an operation once started on a machine cannot be interrupted on a machine

before completion (no pre-emption);

3. jobs consist of a strictly ordered sequence of operations;

4. the same job sequence is assumed for the same part family, but machine

skipping is allowed;

5. once a job is started, i t must be processed until completion without any

interruption either on or between machines.

Chapter 6: Computer Based Support System 104

These assumptions are compatible with the processing activity performed by the
proposed workcell.

The following notation has been used:

n number of jobs to be scheduled

m number of machines in the flow shop

tij processing time for the ith. job on the j t h machine

Fm{ij) total flowtime for job i followed by job j on m machines

F^(-^) simplified flowtime for job i followed by job j on m machines

Chan and Bedworth develop the formula which is the base of their heuristic

starting from the fact that in a two-job, two-machine environment where job i

precedes job j, there are two possible flowtime sequences as shown in figure 6.2.

From the part A of the figure, if tji > ti2, it is possible to see that the fiowtime for

job i is equal to {tn + ti2). Similarly the flowtime for job j is {tn + tji + tj2). The

total flowtime is the sun of the two flowtimes:

F2{ij) = 2tii + ti2 + tji + tj2 (6.1)

Instead if tji < ti2, as in the part B of the figure, the total fiowtime is equal to:

i^2fo-) = 2t,i + 2t,2 + tj2 (6.2)

However in the case of a no-wait flowshop case the Gantt diagrams showed in figure

6.2 are modified as in figure 6.3. I t is possible to see that the equations 6.1 and 6.2

are still valid and therefore the approach developed by Chan and Bedworth can

be immediately extended to the no-wait flowshop case. The detailed mathematical

development of the formula which is the base of the proposed scheduling heuristic

is reported in appendix B.

Job sequences can be generated using the following algorithm;

Chapter 6: Computer Based Support System 105

Machine 1

Machine 2

til tjl

ti2

(A) tji >

Machine 1

Machine 2

til

(B) tjl < t..

Figure 6.2: Gantt charts for the two machine problem in the blocking flowshop
case

Machine 1

Machine 2

til

ti2

(A) tjl > t.̂

Machine 1

Machine 2 h2

(B) tjl < tj.

Figure 6.3: Gantt charts for the two machine problem in the no-wait flowshop case

1. Using the processing times compute temporary, simplified flowtimes for each

pair of jobs using equation B.9;

2. compare each time of temporary fiowtimes (e.g. ^̂ {̂p?) ^m{qp)) select

the smallest and mark the starting job of the pair;

3. perform step (2) for all the pairs of flowtimes;

Chapter 6: Computer Based Support System 106

Machines
Job 1 2 3 4

1 15 24 11 18
2 22 5 19 13
3 16 20 7 16
4 12 25 16 17
5 15 15 18 25

Table 6.1: Processing times for a flve jobs four machines problem.

Sequence pair F* values Optimum pair
l-2;2-l 119 118 2*-l
l-3;3-l 118 114 3*-l
l-4;4-l 130 125 4*-l
l-5;5-l 122 121 5*-l
2-3;3-2 111 105 3*-2
2-4;4-2 121 125 2*-4
2-5;5-2 116 121 2*-5
3-4;4-3 120 123 3*-4
3-5;5-3 112 121 3*-5
4-5;5-4 124 121 5*-4

Table 6.2: Pair of sequences, their simplifled flowtimes and optimum pairs

4. When all the pairs have been evaluated count the number of marks by each

job, and sequence them in decreasing number of marks. If more jobs have

equal number of associated marks sequence them in decreasing total process

ing time order.

The decision to schedule jobs in decreasing total processing time order when they

have an equal number of marks derives from the heuristics proposed by Rajendran

Raj94], where he assumes that in order to minimize the makespan the last job

should have a short processing time. This is true for partial sequences as well.

6.4.2 Scheduling example

Consider a five-job four-machine no-wait fiowshop example. The processing

Chapter 6: Computer Based Support System 107

times are reported in table 6.1.

I t is necessary to calculate all the possible combinations of the partial flowtimes:

the results of the 20 simplified fiowtimes are reported in table 6.2. The temporary

flowtimes for the sequences 1-2 and 2-1 will be calculated to exemplify the compu

tational process.

For the sequence 1-2 using B.9;

^5(12) = 2tn + (ti2 + tn) - f i?:(,2) (6.3)

The last term can be calculated as follows:

-^4(12) = rnax{t2z + max{t22 + max{t2i,ti2),ti2 -\- tis), 1̂2 + tl3 -h tu)

= max{19 + max{5 - f max{22, 24), 24 + 11), 24 + 11 + 18)

= maa:(19 - f max{5 + 24, 35), 53)

= maa;(19 35, 53)

= ma2;(54, 53) = 54

and therefore equation 6.3 is equal to:

= 2(15)+ (24+ 11)+ 54 = 119

Similarly for sequence 2-1 we have:

^5(21) = 2̂ 21 + (̂ 22 + t23) + Rl^^l) (6-4)

where the last term is calculated using:

-^4(21) = inax{ti3 + max{ti2 + maa;(tii, ^22), 2̂2 + ^23), 2̂2 + 2̂3 + t24)

= max{ll + max{24 + max(15, 5), 5 + 19), 5 + 19 + 13)

Chapter 6: Computer Based Support System 108

= max{ll + max{24 + 15,14), 37)
= maa;(ll + 39,37) = 50

and therefore equation 6.4 is equal to:

= 2(22) + (5 + 19) + 50 = 118

Since F^(2i) smaller than -F5*(i2) job 2 is marked. The pair evaluation report is

given in the third row of table 6.2. The sum of the marks of the sequence is; job 1=

0, job 2 = 3, job 3 = 4, job 4 = 1, job 5 =2. After ordering the jobs in decreasing

mark order the schedule 3-2-5-4-1 is generated whose flowtime 521 is optimal.

The heuristic approach allowed us to consider only 10 combinations of jobs in

stead of the 120 (5!) required for a complete search of the space of the solutions.

6.4.3 Computational experience

The proposed heuristic algorithm and the best algorithm proposed by Rajendran

RC90] have been implemented in Java [GM95], as it was selected for the develop

ment of the system (the language is described in chapter 9). Over 600 problems,

with number of jobs ranging from 5 to 9, and number of machines ranging from

3 to 25, have been generated and solved by the two implemented algorithms as

well as optimally doing an exhaustive search among all the possible schedules. The

processing time of the jobs were randomly generated from a rectangular distribu

tion ranging from 1 to 99. The two heuristics were evaluated on the basis of the

deviation from the optimal solution, calculated doing an exhaustive search in the

solution space, using the formula:

{flowtimeheur — flowtimeopt) * 100
flowtimeopt

Chapter 6: Computer Based Support System 109

No of
Jobs

No of
Machines

No of
Problem

Proposed Heuristic Rajendran's Heuristic No of
Jobs

No of
Machines

No of
Problem mean stdv mean stdv

5 30 1.8974 2.2508 0.5598 0.9610
10 30 2.5422 3.3237 0.2527 0.7112

5 15 30 2.0531 2.6756 0.3723 0.8758
20 30 1.0671 1.3019 0.1052 0.2941
25 30 1.8812 2.0223 0.2677 0.5881

5 30 3.9568 3.9397 0.8007 1.1791
10 30 2.8787 2.9374 0.2281 0.4342

6 15 30 2.2136 2.4889 0.1586 0.4358
20 30 1.7303 1.8211 0.2791 0.5435
25 30 1.8497 1.9204 0.4766 0.7667

5 30 5.0019 3.7175 1.0133 1.8249
10 30 3.6980 3.0086 0.4387 0.7669

7 15 30 4.3286 2.7606 0.5963 1.2191
20 30 3.8280 2.7875 0.7038 0.9763
25 30 3.1962 2.4739 0.7106 0.8782

3 20 7.5960 4.2466 1.4090 2.2503
6 20 6.6500 4.5565 1.0975 1.6325

8 9 20 6.5085 3.4767 0.7504 0.7366
12 20 5.2020 3.3753 1.2042 1.2862
15 20 3.7619 2.5321 1.1963 1.5525

. 3 20 7.0923 5.3553 1.5945 2.4075
6 20 7.1540 4.4810 1.7364 1.6179

9 9 20 5.4558 4.0878 1.1558 1.1242
12 20 5.4769 2.1512 1.2956 1.0887
15 20 5.3129 3.6578 0.5622 0.6365

Table 6.3: Mean and standard deviation of the heuristic solution against the opti
mal solution in the case of the proposed heuristic and those of Rajendran

The mean of the deviation from the optimal solution and the variance are reported

in table 6.3.

Since the results reported by the heuristic proposed by Rajendran were in ac

cordance with the results reported in his paper it has been possible to compare

the proposed algorithm with other heuristic algorithms implemented by Rajendran

and used in his article for comparison, namely the heuristic proposed by Bonney

and Gundry [BG76] and the one presented by King and Spachis [KS80]. These

Chapter 6: Computer Based Support System 110

No of No of No of Proposed Rajendran's Bonny's King's
Jobs Machines Problem Heuristic Heuristic Heuristic Heuristic

Mean absolute percentage error
5 30 1.8974 0.5598 4.3012 22.2497
10 30 2.5422 0.2527 2.9883 16.4763

5 15 30 2.0531 0.3723 2.0262 12.9883
20 30 1.0671 0.1052 3.0443 14.1733
25 30 1.8812 0.2677 2.3930 11.8693

5 30 3.9568 0.8007 5.8617 24.8628
10 30 2.8787 0.2281 3.5217 18.6120

6 15 30 2.2136 0.1586 2.8151 13.4577
20 30 1.7303 0.2791 2.8823 15.1923
25 30 1.8497 0.4766 2.8857 13.2613

5 30 5.0019 1.0133 7.0663 25.9993
10 30 3.6980 0.4387 3.3460 18.9526

7 15 30 4.3286 0.5963 3.6213 15.8137
20 30 3.8280 0.7038 4.7290 15.9730
25 30 3.1962 0.7106 3.4060 14.0723

3 20 7.5960 1.4090 7.1225 24.8465
6 20 6.6500 1.0975 7.0180 18.8380

8 9 20 6.5085 0.7504 4.7250 19.0430
12 20 5.2020 1.2042 4.0305 13.3915
15 20 3.7619 1.1963 5.4700 13.0835

3 20 7.0923 1.5945 9.9805 30.2420
6 20 7.1540 1.7364 7.6225 23.1771

9 9 20 5.4558 1.1558 5.4215 21.8795
12 20 5.4769 1.2956 5.1475 16.2595
15 20 5.3129 0.5622 6.3795 15.5965

Table 6.4: Mean of the heuristic solutions against the optimal solution of the
proposed, Rajendran's, Bonny and Grundy, and King and Spachis's heuristics.

results are reported in table 6.4.

The proposed heuristic does not perform as well as the best one proposed by

Rajendran, but it usually performs better than the one proposed by Bonney and

Gundry and generates better solutions than the one proposed by King and Spachis.

The reason for the better performance of the heuristic of Rajendran is that it per

forms a selection of which is the best path doing a search on partial job sequences.

The proposed algorithm does not consider partial sequences, but derives the solu-

Chapter 6: Computer Based Support System 111

No of
Jobs

No of
Machines

Proposed Heuristic Rajendran's Heuristic No of
Jobs

No of
Machines mean (ms) " std dev mean (ms) mean (ms) std dev

5 4.233 0:869 6.233 9.966 0.884
10 6.133 0.571 14.466 10.500 0.861

5 15 8.433 0.678 27.200 11.166 0.647
20 11.000 0.789 44.733 11.666 0.884
25 12.966 0.490 64.566 12.400 0.932

5 5.366 0.556 8.366 13.700 0.749
10 8.966 0.718 21.466 14.466 1.008

6 15 12.233 0.430 39.133 14.866 0.507
20 15.900 0.711 64.966 15.666 0.922
25 19.766 0.720 96.266 16.233 0.626

5 7.100 0.305 11.533 18.500 0.937
10 11.966 0.868 29.366 19.466 0.819

7 15 17.266 1.436 56.866 20.133 1.041
20 22.366 1.684 90.100 21.133 1.332
25 27.666 1.625 134.433 21.466 1.507

3 7.333 1.073 10.800 26.000 1.982
6 10.600 0.855 20.366 26.566 1.590

8 9 14.533 0.628 40.966 26.733 0.583
12 18.566 0.935 60.866 29.633 1.637
15 23.966 1.943 86.333 29.133 1.125

3 8.633 0.927 11.233 32.933 1.014
6 13.800 0.961 27.866 33.833 0.949

9 9 18.866 1.074 48.833 36.433 1.863
12 23.833 1.341 77.433 35.600 1.823
15 28.800 1.095 111.866 35.500 1.137

''non-recursive implementation
''recursive implementation

Table 6.5: Evaluation of the heuristic solutions against the CPU time requirement.
The results show mean and standard deviation of the time required over 30 runs.
The timing of the proposed heuristic shows the results related to the non-recursive
and recursive implementation of the algorithm.

tion from comparing pairs of sequences of two jobs.

Finally an evaluation of the CPU time requirements of the proposed algorithm

and that of Rajendran has been carried out. These tests were performed on a Pen

tium 75 MHz running Linux 2.0.0 and the mean time and standard deviation for

runs of 30 problems are shown in table 6.5. It is possible to notice that the process

ing time of the heuristic proposed by Rajendran is independent of the number of

Chapter 6: Computer Based Support System 112

machines. This is not true for the proposed algorithm where the computational re
quirements increase with the number of machines. During the tests the importance
of the actual implementation of the algorithm was noted. At first the function for
calculating the Rm{ij) '^^^ implemented in a recursive way. This generated a poor
performance since the nesting of calls to the method increased with the number of
machines. When the same method was rewritten using a non-recursive approach
better results were achieved. The proposed algorithm performs better than that of
Rajendran for a small number of machines, but its performance decreases as the
number increases.

Summarizing, the proposed algorithm produces results comparable with those

proposed by other researchers. I t is simple to use, simple to understand, and gener

ates consistent meaningful schedules which identify it as a good heuristic algorithm

according to the criteria stated by Melnyk and Carter [MC87 .

6.5 Conclusion

The control of the production activity is an important and complex task in mod

ern manufacturing plants. A brief overview of the components involved has been

presented in this chapter. The role of the database system in providing vital in

formation to the whole production system has been emphasized. Components and

device features are stored as entries in the tables of the database. This information

is essential to the Production Activity Control system whose task is to elaborate

the correct actions to optimize the production capacity of the controlled cell. It

is constituted by three interacting modules, the monitor, the scheduler and the

dispatcher. The information held in the database, in conjunction with that related

to the actual status of the plant, is elaborated by the Production Activity control

system in order to generate and execute a production schedule in accordance with

the guidelines given by the higher levels of the production hierarchy.

Since the second of the manufacturing cells proposed in section 4.6 has the

feature that once a job is started it must be processed until completion without

any interruption either on or between machine, a suitable scheduling algorithm

Chapter 6: Computer Based Support System 113

had to be used. The search of the appropriate scheduling heuristic has lead to
the development of a new scheduling approach based on an algorithm developed
to resolve a similar problem. The algorithm has the advantage that it is simple to
understand and to implement, and its performance has proved to be comparable
with more complex algorithms. In addition the criteria used by the scheduling
algorithm of minimizing the makespan, and therefore aiming to finish each job as
soon as possible, is believed to be appropriate for the manufacturing problem.

Chapter 7

System Design

7.1 Introduction

The design stage of an application covers all those activities from the identification

of the requirements of the system to its implementation. For this reason the design

stage represents the bridge which connects the specification phase to the develop

ment stage.

The design stage is concerned with the definition of the modalities which allow

the passage from "what" has to be implemented to "how" it has to be implemented.

The necessity for a system design process comes from the fact that many sys

tems are inherently complex. The first aim of any design technique is to overcome

such complexity: in order to reduce any system to a tractable one, it is necessary

to divide it into subsystems. In this way it is possible to decompose a large system

into a set of smaller and simpler ones.

The aim of this exercise is to obtain two fundamental results:

• the "sum" of the complexity of the single parts must be lower than the total

complexity of the original system;

• the subsystems can be developed and implemented independently by different

people who can work on them at the same time thus reducing the overall

production time.

C h a p t e r 7: Sys t em Design 115

The design stage is critical since at this point all the key decisions for the develop
ment of the system are taken, and these decisions often generate constraints which
may be binding during the activities of system development.

I n the specific area of manufacturing applications the design stage has to pro

duce a system which is kept as simple as possible. Dividing the system into subsys

tems, identifying every input and output, and determining the appropriate controls,

are necessary steps for a successful implementation. In addition the development

approach must produce a system which could be able to cope wi th future modifi

cations, since new products may require the partial restructuring of the plant. In

addit ion i t must be able accurately to model the system in order to identify all the

requirements, since the modification of computer systems once installed is usually

an extremely expensive task [MM88].

Several books focused on design of manufacturing systems, such as [McM93

and [Ran83], tend to provide a general overview on the components which are

present in an industrial environment without proposing a proper design methodol

ogy. However some design techniques especially addressed to the development of

manufacturing system exists: G R A I [DVDR87], and the design methodology pro

posed by W u [Wu92] are two examples. Unfortunately G R A I is specially addressed

to the design of the managerial system of a manufacturing plant, and therefore i t

is not suitable for the development of a communication and control system. The

design methodology proposed by Wu tries to embrace all the aspects of the devel

opment of of a manufacturing system and therefore i t appears to be too complex

for the design of the proposed plant support system.

Due to the fact that i t has not been possible to identify a design approach

targeted to the development of manufacturing system which could be used for

modelling a communication and control system for the footwear industry, a more

general methodology had to be selected. However the lack of a targeted design

methodology did not constitute a problem, since the scope of the project consisted

in the implementation of a software support system. Therefore normal approaches

used for software development could have served the scope. Two well accepted

methodologies SSADM [Ash88], and SADT [MM88] have been analyzed in turn,

C h a p t e r 7: Sys t em Design 116

but they have both been rejected as unsuitable. SSADM provides a very good
support for the definition of the requirement of the system and its specification,
but i t does not give clear guidance on how to move f rom the design to the actual
code. S A D T does not provide a good support for understanding t iming relations
among the components of the system, essential feature in a communication system.

A n approach which allowed the analysis of the different features of the system

as well as providing examples of how to move f rom the design stage to the coding

was found in the Object Modeling Technique, OMT [RBP+91 .

This chapter provides an overview of the design stages which preceded the im

plementation of the shop floor system. In section 7.2 a description of the design

methodology selected is given. Then in section 7.3 O M T is applied for defining the

proposed manufacturing support system.

7.2 Object Modeling Technique

The selection of the most appropriate technique to be used for the design of the

manufacturing cell has been mainly conditioned by the complexity of the system.

A n integrated support system for controlling footwear workcells presents particular

features and complex functions which are related wi th the exchange of messages and

the coordination and interaction of the single components of the system. In addition

the search for a suitable technique for the design of the system was conditioned

by the fact that the model would have to capture the "dynamic" aspect of the

system as well as the "static" one. On the other hand the implementation of

the software without a proper design stage would have undermined the quality of

the final product. A l l these elements have suggested O M T , as the most suitable

method to be employed during the design stage. This technique proposes a general

framework which can be applied to any area where system design is required. The

selection of O M T is due to the fact that i t allows the design of an application

in all its details, moving in steps f rom a high level of abstraction towards less

abstraction and leading to the f u l l description of all the most important aspects

of system. Moreover the O M T technique uses an object oriented approach which

C h a p t e r 7: Sys t em Design 117

Dynamic Model
Behaviour

Functional Model
Algorithms

Object Model

Static

Figure 7.1: O M T models

means that the system, the manufacturing communication and control system in

our case, is seen as a set of objects (the devices, the database, the control system)

w i t h their own attributes, properties and behaviours. The events used in the

O M T technique are easily mapped into the manufacturing cell; for example the

introduction of new components to be processed, or the exchange of messages can

be represented as events. Finally the O M T technique allows the implementation

of complex algorithms, such as the ones resident in the control system, covering all

the aspects of the design of an application.

Object oriented modelling can be interpreted as a way for abstracting a problem

using elements coming f rom the "real world" instead of concepts coming from the

"computer world" . The term object oriented means, prima face, that the software

C h a p t e r 7: Sys t em Design 118

is organized as a collection of objects which embody both the data structures and
their behaviour. This is in contrast wi th conventional programming where data
structures and functions are only partially connected. A n object oriented approach
presents some peculiar characteristics which can be summarized in:

• identity;

• classification;

• polymorphism;

• inheritance.

Identity represents the fact that data is represented using discrete, distinguishable

entities called objects. Examples of objects are the paragraph of a document, a

piece in the game of the chess, a computer in a network. The object may have a

physical structure or be only conceptual. The identity is expressed due to the fact

that different objects, even i f represented using the same attributes, such as name

and dimensions, have their own inherent identity.

Classification means that objects that have the same data structure (attributes)

and behaviour (operations) are grouped in a single class. Paragraphs, chess pieces,

computers are examples of classes. Which classes are relevant and how they are

structured depends on the application, since a class is designed to describe only

properties which are relevant for the application ignoring all the rest. A class spec

ifies a possibly infini te set of objects. A single object is said to be an instance of

its class.

Polymorphism represents the fact that the same operation may behave in a

different way i f applied on different classes. For example the moving operation wi l l

produce a different outcome i f applied to a paragraph in a document and to a piece

in the game of chess. A n operation is an action or a transformation that an object

performs or is subject to. A specific implementation of an operation by a certain

class is called a method.

Inheritance represents the possibility that classes have to share attributes and

operations based on a hierarchical relationship. A class can be defined in a broad

C h a p t e r 7; Sys t em Design 119

way and then refined into subclasses. Each subclass inherits, and therefore incor
porates, all the properties defined in its superclass and adds its specific properties.
The possibility of grouping together classes in a hierarchical fashion can reduce
repetition in data structures and programs.

I n addition object oriented technology provides the possibility of data abstrac

tion and encapsulation. The first one allows the developer to focus on inherent

aspects of an entity and therefore on what the object is and does, before deciding

how to implement i t . The second, called sometimes information hiding allows us to

separate the external properties of an object, which are accessible by other objects,

f r o m the internal implementation characteristics, which are hidden to the external

world.

The development of an application using a object oriented technique may be

considered as a conceptual process independent f rom the programming language

employed. Object oriented design is therefore a conceptual framework and not

a programming technique. One of the great benefits of using an object oriented

technique for the design of a system consists in the possibility which is granted

to developers, programmers and users to express in a clear and simple way ab

stract concepts, and communicate them to each other. I t is important to point out

that the introduction of this methodology usually does not reduce the design time

i f compared w i t h other design techniques. However its intrinsic clear and simple

structure shows its advantages when i t is necessary to perform revisions or modifi

cation of the system. Finally i t allows the development of more robust applications,

reducing the possibility of unexpected behaviour, since the design approach is ex

tremely structured.

The O M T design approach permits the definition of the system starting f rom a

high level of abstraction through a series of steps which specify elements connected

w i t h the implementation of the application.

The O M T methodology uses three models of typology for the complete design

of a system or application: the object model, the dynamic model, and the functional

model (see figure 7.1).

The object model describes the static structure of the objects in a system and

C h a p t e r 7: Sys t em Design 120

their relationships wi th in the system. I t is represented through an object diagram
which is a graph where the nodes represent the object classes and the arcs represent
the relationships among classes. In the case of the design of the manufacturing cell,
the objects identified by the object model at the top level can be identified wi th
the different elements present in the system, such as the devices and the database.

The dynamic model describes the aspects of the system which are subject to

modification during the execution of the application. I t allows us to specify and

implement the control aspects of the system or the implementation. The dynamic

model is composed of state diagrams which are graphs where the nodes represent

states of the system and the arcs are the transitions between states which are fired

by specific events. In the design of the manufacturing cell different sources of events

can be identified, and several of them are related wi th message exchange between

devices.

The functional model describes the transformation of the data inside the appli

cation. I t is based on data fiow diagrams which represent the computations which

are carried out by the application.They are graphs whose nodes represent processes

and the arcs represent the fiux of the data flow. The functional model is used for

the design of complex algorithms and i t in this project i t is particularly suited for

the development of the scheduling algorithm.

The three models described in the O M T technique are orthogonal in the com

plete description of an application and they are t ightly connected to each other.

However the fundamental one is the Object model, since first i t is necessary to

describe what is subject to transformation (the object) before describing when or

how i t changes.

One of the main strengths of the approach is the fact that a discussion of the

specific details for implementing a system using object-oriented languages, non-

object oriented languages, and databases management systems, starting f rom the

design is carried on. This methodology is extremely valuable since i t proposes a

framework for translating the models created during the design stage into a working

application.

C h a p t e r 7: Sys t e m Design 121

P

Device

Device

Device

Device

Monitoring and
Production Control

Module

DataBase

CAD

Figure 7.2: Schematic diagram of an interconnected manufacturing system for the
footwear industry

7.3 System Analysis

The aim of the design stage is to provide the structure for a general production

support system for a networked manufacturing cell which could be used to automate

any stage of the production chain. The particular manufacturing cells described in

chapter 4 w i l l be used as a special case to validate the design. A schematic diagram

of an interconnected manufacturing system for the footwear industry is shown in

figure 7.2. I n the following subsections the Object, Dynamic and Functional Models

of a manufacturing cell based on the one shown in figure wi l l be developed.

7.3.1 Object Model

During the design of the system, due to the large number of object classes present

in the object model, i t was necessary to group them in modules. A module is a

C h a p t e r 7: Sys t em Design 122

logical construct for grouping classes, associations and generalizations. The con
vention of indicating a module wi th a small triangle placed in the top right corner
of the box has been used in all the object diagrams. Modules are then expanded
during the design stages. A t this stage of the project only the main attributes
associated to the objects w i l l be discussed.

I t is possible to extract the relevant objects f rom the requirements and f rom

the knowledge of manufacturing and networking issues. Since, as mentioned, the

number of object classes necessary to give a f u l l description of the system is large,

at the top level several correlated classes were collapsed into modules. From the

analysis i t is possible to identify the following object classes and modules (in bold

font) necessary to describe the system:

Device Interface Product ion Contro l

C A D D a t a B a s e Component

Device D a t a Component D a t a Processing Time

D B M S

The Devices represent all the manufacturing devices which need to commu

nicate w i t h the external world. The Devices communicate wi th the Production

Control and the DataBase through the Interface. The object class Device is a

module. Every networked entity present in the system has an Interface which

encodes outgoing messages and decodes incoming ones setting the rules for inter-

device communication. The Production Control represents the set of systems which

coordinate the activity of the production cell. In order to achieve its task i t needs

to know the Components which have to be processed by the system. The Pro

duction Control communicates w i th the Devices and the DataBase through the

Interface. The CAD is the source of the data used by the industrial devices for

processing the components. I t accesses the DataBase for loading and downloading

information related to the components. The DataBase is the repository of all the

information about the devices present in the cell and the components manufac

tured. I t is managed by the DBMS. I t communicates wi th the Production Control

and the Devices through the Interface. The Device Data is stored in the database

and holds information relevant to the devices. Each Device has associated a Device

C h a p t e r 7: Sys t em Design 123

CAD
interacts with

communicates
using

queries

DataBase

access
DBMS

Production Control

access

* Device Data

access

Component Data

communicates
using

Interface

knows
about

has

J Component

communicates
using

Device
processes

Processing Time

has

Figure 7.3: Top level Object Model for the manufacturing cell

Data object in the DataBase. The Component Data and the Processing Time are

stored in the DataBase as well and hold information relevant to the components

processed by the system.

The top level Object model of the manufacturing cell is displayed in figure

7.3. I t is possible to identify the interconnections among the object classes present

in the system. The dotted line which groups some of the components defines the

boundary of the DataBase module. Since i t has several associations wi th the other

elements represented in the system, i t has been expanded at top level for the sake

of clarity. I t is seen that all the components of the system need to use the Interface

module for communicating. The reason of implementing this module for allowing

exchange of information is based on the layered communication approach which

has been described in chapter 2. Thus the Interface acts as a filter between the

external world and the local environment (the Device). However the Production

Control module relies heavily on the Database for gathering the information nec

essary for performing its actions. I t was decided to have the two systems running

C h a p t e r 7: Sys t em Design 124

on the same computer, as communication between the two modules through the
Interface would have be inefficient, and therefore a direct connection seemed a more
sensible choice. For this reason a direct l ink between them has been introduced in
the Object Model diagram.

Once the top level of the Object Model has been defined i t is possible to describe

in more detail the different components and the main attributes which characterize

them.

The C A D system represents the source of the data which is stored in the

database system. The assumption is that i f such a system is provided then the

appropriate procedures for the transfer of the data f rom the C A D to the Database

and vice-versa is taken. Since the presence of such a module is not relevant for this

project i t is not developed any further.

The Component class stores the information relevant to components, such as

najne, q u a n t i t y , l o c a t i o n . This is dynamic information which is necessary to the

Production Control Model in order to generate the schedule and coordinate the

industrial process.

The DataBase system represented through the DataBase module is the repos

i tory of the data which is necessary for the cell to perform its actions. The infor

mation about the devices and the components is located here. The object model

representing the DataBase determines the way in which the information w i l l be

stored in the database internal tables. Since the desire is to develop a framework

for a manufacturing system for the footwear industry which ideally could be used

for automating any group of operations, the DataBase object model must be gen

eral enough to cover all the possible processes. In order to achieve this i t had been

necessary to understand the manufacturing processes involved and isolate their es

sential features.

First of all the DBMS class can be expanded into the communication sub

system, which permits the network activities, and in the Database Management

System. The communication subsystem is identical to the one used for the De

vice module and i t w i l l be analyzed later. The Database Management System is

external to our discussion since i t represents the database software selected for

C h a p t e r 7: Sys t em Design 125

DBMS

holds

Device Features ^
belongs to

has

Device

Device Type

Device Data

Figure 7.4: Device Data module expanded into its components

the application, and i t cannot be further modeled. The Device Data module can

be expanded into two components as shown in figure 7.4; the Device Features

and the Device Type classes. Each device in the cell has an entry in this class

where all the relevant information is stored. Example of attributes of this class

are device_name, software.version, and last_revision. The Device Type class

identifies the attributes which are common to a set of devices which perform the

same task. The Process Time class holds information about the processing times of

each component. This information is essential for the generation of the production

schedule. The Component Data module groups all the classes which store infor

mation about the components processed by the cell. I t can be expanded into three

elements as shown in figure 7.5: Component Feature, Program Data, and Position.

Component Feature and Program Data are abstract classes. The subclasses of

Component Feature store the data which is necessary to the device for identifying

an incoming component. So far component identification in the footwear industry

has been performed using a vision system which uses a moments based approach

to differentiate shapes. Using this technique every component belongs to the class

of bad or good shape according to its features. This is likely to change in the fu

ture and therefore i t is necessary to provide the database wi th a structure that

allows the introduction of new classes which wi l l hold the information necessary

C h a p t e r 7: Sys t em Design 126

DBMS Component

holds has Component Data

^ has
Component Feature I •

71

Program Data

is part of

Position

Figure 7.5: Component Data module expanded into its components

Component Feature

Vision Chip Barcode

Bad Shape Good Shape Fourier Moments

Figure 7.6: Example of expansion of the Component Features abstract class taking
into consideration several types of recognition system

for new identification systems. Using an object oriented approach i t is possible to

define new classes under Component Feature, thus generating a structure which

allows the introduction of data structures for other recognition systems. In figure

7.6 a tree structure developed starting f rom the Component Feature abstract class

is displayed. I t is possible to see how the database can allow the introduction of

the data relevant for devices which use several vision approaches for identifying

the components as well as barcodes and chip recognition. Using this approach i t

is easy is to add to the existing structure new classes for providing the necessary

information for recognition systems. A component may have multiple entries un

der the Component Feature class since the same component may be processed by

C h a p t e r 7: Sys tem Design 127

Device

Poller

interacts

sends

Interface

communicate using

VMD Message

sends

VMD I q"̂ "̂ ^ VMD Server

maps

Real Device

Figure 7.7: Device module expanded into its components

more then one machine which uses different identification techniques. When a de

vice needs to retrieve information related to a component using its name as key, i t

needs a way to retrieve f rom the database only the relevant piece of information

and to ignore the rest. The method attribute which is defined in the Device Type

class has been introduced for solving this problem. When a query is done the name

of the device identifies to which class i t belongs and allows the DataBase to use

the associated method at tr ibute to restrict the query only to the relevant branches

of the Component Feature tree structure. The Program Data abstract class has

subclasses which store the program data. For each type of Device Type instance

there is a corresponding Program Data subclass which stores the data necessary

for the industrial device to perform the appropriate operations on the component.

Final ly the Position class captures the relationships among components and allows

them to be scheduled in the proper order i f they need to be joined together during

the processing operations.

The Device module represent the devices used in the manufacturing cell. Since

the features of the industrial machines employed may be quite different, i t is nec

essary to abstract the common features. This activity is particularly important

since i t allows the identification of segments of software which wi l l be common to

all the devices, thus reducing the amount machine dependent code. The Device

C h a p t e r 7: Sys tem Design 128

module can broken down as shown in figure 7.7: the V M D (Vir tual Manufacturing
Device), the Real Device, the V M D Server, the V M D Message and the Poller. The
V M D , the V i r t ua l Manufacturing Device, is the most important component of the
Device module since i t is the one which exchange instructions wi th the the Real
Device and holds its v i r tual mapping which can be seen by the external world.
A l l the values and status variables which characterize a device are represented as
attributes of the V M S class. The class manages all the activities which are neces
sary for the correct operation of the device in the interconnected environment. I t
interacts w i t h the external world using messages, which are encoded as instances
of the V M D Message class. They are sent to the Interface which forwards them
along the network. The incoming messages are received by the V M D Server class
which decomposes them in a format which can be processed inside the V M D . The
division between the V M D and the V M D Server is useful since the second element
is common to all the devices, and therefore can be developed in order to be used by
any device as a common piece of software. The V M D on the other hand must be
specifically tailored to the device and software reuse is usually not possible. The
Poller class performs periodical network activities such as querying remote devices
or reporting internal information. Its activities depend greatly on the single device
requirements.

The Interface represents a module common to every entity which allows them

to exchange information and data. I t sets the communication rules which must be

followed by every device in order to achieve a successful exchange of messages. The

Interface module is expanded in its parts in figure 7.8: the Interface Client, the

Interface Server, and Message. The Interface Client processes the V M D Messages

f r o m the Device and sends them encoded as instances of the Message class along

the network. On the other side the Interface Server receives them and transforms

them in V M D Messages which are forwarded to the Device.

The Production Control module groups all the set of systems which coordinate

the production activity of workcell (see fig 7.9). I t can be subdivided into two main

submodules; the one which hosts the control procedures and the communication

one. This subdivision allows the system to be modeled using the same approach

C h a p t e r 7: Sys t em Design 129

Device

Interface

communicates using

VMD Message

listens for

Interface Client

sends
Message

forwards

Inteface Server

listens for

Figure 7.8: Interface module expanded into its components

as used for the Device module. Therefore the communication modules developed

for the Device module can be used inside the Production Control one as well. This

l imi ts the complexity of the system since i t reduces the number of modules which

have to be developed and allows software reuse. The workcell control activity is

divided into three modules; the Monitor, the Scheduler and the Dispatcher. The

Moni tor stores an internal representation of the manufacturing workcell. I t works

in close connection w i t h the Poller which provides periodical updates. The internal

structure of this object depends on the controlled system. The Monitor has knowl

edge of the Component class which stores information about components, number

and location. The Scheduler organizes the instance of the Component class in jobs,

checks the dependences, and their number, retrieves the t iming information f rom

the database and finally generates the schedule. The Dispatcher organized the real

t ime scheduling activities of the workcell. I t invokes the Scheduler when the order

to manufacture new components is introduced, and sends the jobs in production

relaying on the information about the status of the system held in the Monitor.

C h a p t e r 7: Sys t em Design 130

Interface

Production Control

sends

Poller
sends

sends

updates

communicate using

VMD Message

Monitor Monitor

reads

Dispatcher

query

queries

reads

VMD Server

Icnows about

updates
Scheduler

query

DataBase

query

Component

Figure 7.9: Production Control module expanded into its components

7.3.2 Dynamic Model

Once that the Object Model has been defined i t is possible to develop the Dy

namic Model. As already mentioned i t captures the aspects of the system which

are subject to modification during the execution of the application. Therefore the

Interface, the Device and the Production Control System each have associated one

of these diagrams. The model is insignificant for a purely static data repository,

and in this case the Database does not have any Dynamic Model (with the excep

t ion of the subsystem which handles external queries).

The development of the Dynamic model starts wi th the identification of the

events, externally visible st imuli and responses, which characterize the application.

I n the case of the Interface the events which characterize the application are the

messages. They, in the form of V M D Messages, are sent by the Device and received

by the Interface Client which transforms them into Messages and send them along

the network. On the other side the Interface Server receives them and transforms

them into V M D Messages before forwarding them to the Device. I t is therefore

Chapter 7: System Design 131

Wait for
message from

VMD

send message [noacknowledge]

message [good]

contmue message [bad]

send message to VMD

Encode

message

send message
[acknowledge]

Wait for reply
message

reply message

Decode
message

Figure 7.10: Dynamic model of the Interface Client

possible to identify two dynamic entities at the level of the Interface, the Interface

Client and the Interface Server. The dynamic model of the first is represented in

figure 7.10. After the initialization procedures the Interface Client sits idle waiting

for a VMD Message from the Device. When a new message arrives its format is

checked. In the case of a bad message, it is discarded, the system is reset, and the

Interface Client waits for another message. I f the message is recognized as a valid

one it is encoded in the proper format before being sent along the network. If the

message does not require a reply message or an acknowledge the Interface Client

returns to its initial state after sending it . However if a reply message is required

it sends a message and waits for the reply. When the reply message arrives it is

decoded into VMD format and forwarded to the Device. Then the Interface Client

is ready to accept another incoming message from the Device. The behaviour of the

Interface Server is similar to the one of the Interface Client and it is represented in

figure 7.11. The Server side waits from messages from the Network, decodes them

in V M D format and, if valid, forwards them to the Device. If a reply is needed it

waits for the VMD Message and, after encoding it , sends it back along the network.

Chapter 7: System Design 132

Wait for
message from

network

send message to VMD [noacknowledge]

message [good]

contmue

Reset system

message [bad]

send message to network

send message
to VMD
[acknowledge]

Decode

message

Wait for reply
message

Encode
message

reply message

Figure 7.11: Dynamic model of the Interface Server

The development of the dynamic model for the Device is similar to the one of the

Interface since the events can be identified as messages. The dynamic model of the

VMD Server is very similar to the one for the Interface Server and it is illustrated

in figure 7.12. The only noticeable difference is that once that a message has been

received and decomposed into its parts it is passed to a function. This interprets it

and performs the appropriate set of operations on the object VMD and eventually

produces the required answer message. I t is not possible to develop the complete

dynamic model for the VMD since it depends on the specific application and must

be tailored in order to meet the device requirements. However it is possible to

model the part of the VMD which is used for sending the VMD messages to the

Interface. Its diagram is shown in figure 7.12 and its behaviour is similar to the one

for the Interface Client. The events which characterize the Poller are the periodical

expiring of the timers which indicate that an action has to be taken and a message

sent (see figure 7.13). First the Poller is initialized by reading information on which

action has to be performed and at which intervals, and inserts them in a priority

queue. Then i t enters a loop where the first element of the queue is retrieved. This

Chapter 7: System Design 133

reply message [no]

Wait for
message from

Inteface

Decode

message

message [good]

message [bad] contmue

Reset system
Process
message

reply message
[yes]

send message to Inteface Encode
message

Figure 7.12: Dynamic model of the VMD Server

indicates when the service must be performed and places the Poller in a wait state

for the required amount of time. Once this time expires the appropriate action is

performed and the queue is updated. Then the cycle starts again.

The Production Control system shares several entities with the Device module

and therefore they present an identical dynamic behaviour. Since the Monitor class

is a data repository similar to a database for storing dynamically changing data,

i t does not have a meaningful Dynamical Model. The Scheduler class performs

only a transformation on data and it is not affected by external events while it

generates the schedule. Therefore Dynamical Model representation does not pro

vide useful information. Only the Dispatcher has a meaningful Dynamical Model

representation which is shown in figure 7.14. When it starts, it starts the scheduler

and synchronizes with it waiting for the schedule to be ready. Then the first job

present in the schedule list is retrieved and the activity of the Dispatcher begins.

The starting production times of each component part of the job is calculated. It

waits until the first component is due to go into production and wakes up reading

the state variables of the system. If all the devices are ready, it informs all the

involved devices that a new component is due to arrive and be processed. Then it

Chapter 7: System Design 134

file [no_empty] Inizialize
queue polling file

file [empty] queue ready

Get first element

Update
queue

Execute
action timer

expires

continue

Figure 7.13: Dynamic model of the Poller

performs the same actions for all the components part of the job. Then when a job

has been completed it checks if new components to be processed have been added

and if so the scheduler is called, otherwise a new job is retrieved from the schedule

until exhaustion of the scheduled jobs.

7.3.3 Functional Model

The last stage of the Analysis stage in OMT consists in the definition of the Func

tional Model. Its aim is to show how values are computed, without taking into

account sequencing, decisions, or object structures. In the proposed system it is

clear that this model does not have a relevant importance, since it is event driven

and no relevant computation is performed. The only exception can be found in

the production control system where the algorithm which generates the schedule is

performed. The formulation of the scheduling algorithm has already been given in

section 6.4. The actions performed by the algorithm are quite simple. The names

of the input components are read. Then a query to the database is made in order

to find the component relationships and a job for each component to be produced

Chapter 7: System Design 135

continue

start

schedule [empty]

schedule Iready] Wa t for Get first
job schedule

schedule [not empty]

Calculate start schedule [not ready] new jobino]
times

new jobs
[yes]

components
to go [=0]

Check input Process job Start scheduler

components to go [> 0

system [ready]
timer \
expires

continue Recover

system
Check system

system
[not ready]

status

Send messages system [ready

Figure 7.14: Dynamic model of the Dispatcher

is created. Finally the list of all the jobs is sent to the scheduling algorithm which

orders them in the appropriate way.

7.4 Conclusion

The design of the system using OMT enables a modular approach to be applied

to the problem which greatly simplifies the task. The approach has been shown

to be extremely powerful and able to encompass the most important aspects of

the system. However it lacks some important support features which are essential

during the project design. One of the key aspect in the design approach consists

in dividing the system into tractable subsystems. This approach is stressed in the

OMT manual, and explicit notations and examples of this are given for the Dy-

Chapter 7: System Design 136

namic Model and the Functional Model. However when the Object Model level is
formalized, it is stated that it is possible to divide the system into modules, but
no notation or practical examples of how to achieve this are provided.

The level of abstraction provided by the Object Level provided the extraction

of features common to several components of the system. This is important since

it permits the identification of segments of code which can be shared by more than

one component, reducing the overall amount of code. The event driven representa

tions which characterize the Dynamic model are particularly useful in the definition

of the dynamic relationship among the components.

During the development of the system the use of OMT for the definition of

the communication protocol presented difficulties due to the generality of OMT's

approach. Since it was not possible to identify any existing methodology for pro

tocol implementation, a framework for their development has been created and is

presented and applied in the next chapter.

Chapter 8

Communication Protocol Design

8.1 Introduction

Recent technological developments in digital communications have increased the

diversity of the techniques by which communication can be performed. These ad

vances have been matched by the proliferation of communication protocols. There

are national and international organizations all over the world whose primary task

is to provide sets of standards with which equipment must comply in order to be

able to communicate with another device. ISO at international level, IEEE and

ANSI in the United States, CENELEC in Europe, DIN in Germany and BSI in

England are some of the well known organizations involved in this standardization

effort.

Although there is a large amount of scientific and technical literature related to

transmission protocols, industrial specifications and performance evaluation, there

is little directed at the theoretical or practical means of creating "first drafts" or

initial specifications for protocol design. Much of the published literature covers

protocol verification (e.g [Peh90],[SSM90], [Gou93]) and automatic implementation

by means of a specialized language or development tool (e.g. [ABM87], [PS91],

BWWH88], [IIK+91], [CLV93]). These methods start from a specification of the

protocol needed. Tutorials on protocol specification, such as [Liu89] or [Boc90],

address only briefly the issue of how the protocol definition is derived from a con-

Chapter 8: Communication Protocol Design 138

sideration of the system requirements.

During the course of the research the problem became evident and it appeared

that general design methodologies used to develop software application, such OMT,

provide only general support. In order to create a methodology targeted to protocol

design and thus covering this gap, a framework, called Rapid Protocol Develop-

ment(RPD), was developed. Its main aim is to provide guidance in the process of

developing new protocols.

The principal reason that a design methodology is needed is due to the fact

that in certain industrial applications it may not be possible or convenient to use

a standard transmission protocol to implement a communication link between de

vices. No suitable protocol may exist, or the existing ones may be too complex or

inefficient for the application. The purpose of RPD is to provide a framework for

assessing the particular requirements of a specific application, and to lead to the

generation of fast and efficient protocols for specific connectivity problems. The

protocols generated by this approach are particularly suited to small and medium

scale implementations where a full-scale commercial protocol rnight be considered

too elaborate or expensive. In this way, structured communication protocols can

be implemented even in small systems with low-memory and low-CPU power ma

chines, allowing for economy and simplicity of operation.

8.2 R P D structure

In a typical production environment, machine tools and their controlling equipment

will have a limited spectrum of communication requirements, and there may be

particular constraints on the capabilities of the equipment available, e.g. limited

memory (constraints due to the microcontroller capabilities) or limited bandwidth

(noisy lines or very low speed connections). In certain applications, microcontrollers

may be used both for the machine control and for communication handling. This

could possibly restrict the CPU time available for servicing the network and would

demand a simple protocol implementation. One of the reasons that general purpose

Chapter 8: Communication Protocol Design 139

object oriented protocols such as MAP [Gen87] have not found wide acceptance
in industry is that their level of complexity is not usually necessary in small and
medium size industrial plants. The RPD technique seeks to provide guidance in
the task of identifying the features needed in an industrial communications system
for a specific application. It is suggested that there are three criteria that meet the
fundamental needs of good industrial protocols:

• The method should identify the features needed in the protocol

• I t should guarantee that there is full expandability

• I t should incorporate a recursive approach to problem solving

The technique draws on the scheme put forward by Pimentel [Pim90] by dividing

the design process into separated steps:

1. Identify the communication problem as fully as possible: This step is used to

focus on the problem and to identify the communication requirements of the

production plant;

2. Evaluate the minimal requirements: This step is introduced to define the

minimal needs for the communication network and the possible extensions,

evaluated with a minimum cost approach;

3. Decide the type of the network starting from an analysis of the plant topology:

This step is used to survey existing hardware and software options, and to

identify which parts of the protocol have to be implemented;

4. Identification of command clusters: This step is used to identify within a

functional unit the groups of commands needed to implement the functions

required, and to identify common groups of commands between units.

5. Generate several sets of commands (command categories): This step is used

to identify the command categories later used to generate the body of the

protocol draft;

Chapter 8: Communication Protocol Design 140

6. Decide data fields and assign a code space: This step defines the data fields
which are to be implemented and their format, and uses data from the third
and fifth steps to evaluate the size and the characteristics of the code space;

7. Assign individual codes to messages and functions: This step maps the code

space to the command space in a defined and unambiguous way;

8. Test the proposed solutions: In this step the proposed protocols are tested

against the system requirements with the assistance of analytical models or

software packages;

9. Select the best solution: In this step the protocol which best fulfills the system

specifications is selected.

Initially, several alternative approaches may be generated, and evaluation of these

involves a critical appraisal of the pre-defined criteria. Later, analytical models of

the system can be tested by software simulation.

8.3 Protocol development

Since several well defined protocol standards are available in the marketplace, it is

important to match the facilities these can provide with the needs of the applica

tion. In some cases these protocols may be over-specified, or provide a considerable

amount of redundancy for the specific application. In cases where controllers with

limited computing power and storage are being used, the RPD technique can iden

t i fy the critical features that the protocol should possess. It may be that an existing

hardware based protocol can be integrated with a specially developed software sys

tem. I f this can be done, then the new protocol reduces the development time.

There is an attraction in using existing hardware systems standards for the

lower levels of the protocols within the OSI/ISO protocol stack, and developing

purpose designed application software. This usually requires the adoption of the

two lowest layers of the OSI stack, the physical and link layers.

Sometimes for efficiency reasons in the implementation of industrial protocols

Chapter 8: Communication Protocol Design 141

only the lowest levels on the ISO/OSI stack are preserved, while the functions re
quired for the specific application protocol, usually provided by the upper layers,
are compressed into a new unique link layer or layers.

For example, networks based on a simple RS-232 connection are hardware speci

fied (layer 1), and all additional layers must be developed by the user. If an Ethernet

(IEEE 802.3) [IEE85a] or Token Ring (IEEE 802.5) [IEE85b] system is proposed,

then the lowest two layers are defined and the user has only to develop the upper

part of the protocol.

If we decide to implement a transmission protocol where only the physical layer

is defined, then in addition to the whole of the data area of the packet, the fields

which would normally have been part of the data link protocol (layer 2) must be

defined. A list of the fields commonly found in a communication packet is given

below:

• Synchronization heading, [SYNC];

• Addresses (sender and receiver): this requires an additional stage for the

evaluation of the required address space [ADRS], and address resolution [ADRS];

• Additional information (sequence number and/or time stamping): for log

ging, bug-tracking purposes or statistical analysis, [SEQN];

• Control codes, [CONT];

• Error correction codes, [CRC];

• End of packet codes, [EOP];

These basic fields ensure that successful transmission of data between the sender

and the receiver can be achieved. The number of fields, and their length are appli

cation specific. A packet containing the above mentioned fields may be represented

as:

S Y N C ADRR ADRS S E Q N CONT DATA C R C E O P

Chapter 8: Communication Protocol Design 142

The complexity and sophistication of the packet fields depends to what extent the
hardware levels are present in the final system. If only the lowest physical layer is
used, then for shared bus operation, the software has to provide a Medium Access
Control mechanism (MAC), (otherwise provided in the data link layer). A simple
polling mechanism might be implemented, and several other options are available.

If the two lowest layers of hardware protocol are used, then the software must

implement the content synchronization mechanism, which is necessary for the ex

change of messages which have been fragmented, and for the acknowledgment of

the receipt of packets, and also the dialog synchronization mechanism which is used

to establish the connection between the sender and the receiver. A complete de

scription of the different techniques used for the implementation of these types of

mechanisms is given in [Fre88 .

8.4 R P D development guidelines

A set of rules is proposed which enable the design to be carried out in conformance

with the steps outlined above.

1. Every packet should conform to the following format of the data field:

• Packet Identification: a single or multibyte code for packet content iden

tification (this information may be included in the control codes field if

the whole packet structure is defined);

• Message Priority Code: this information can also be included in the

control codes field;

• Data Structure: a data structure with a format of <datalength> + <data>.

The length of the message which can be sent in one packet depends on

the capacity of input buflfer of the receiving device and is specified by

the <datalength> field. Data extension should be allowed for in order

to transmit messages which cannot fit into one packet. For example, if

Chapter 8: Communication Protocol Design 143

the <datalength> field is represented using 2 bytes then up to 65536

bytes of a data field can be specified. A longer data field would require

a transmission strategy which breaks the original data into smaller sec

tions. The limiting element here may be the size of the input buffer of

the receiver, unless the data acquisition process in the receiving com

puter is faster than the transmission rate.

2. Code Clustering: codes should be assembled into functional clusters, to pro

vide a hierarchical grouping of similar messages and services.

3. Flexible code space: codes should not fill the entire code space to allow for

future enhancements or changes.

4. Packet addressing: multiple addressing should be allowed, for single cast and

multicast packets. An example of multiple addressing system is:

• for 253 nodes: the address is 1 byte plus special codes:

+ other address (in order to have other 253 addresses, etc..)

+ bitfield (32 bytes) for multicast to the first 253 nodes

+ bitfield (32 bytes) for multicast to the other eventual

EE

EE

FD

nodes

for 65500 nodes: the address is 2 bytes plus special codes:

FFFF I - j - other address (in order to have other 65500 addresses.

etc..)

FFFE I + bitfield (8 Kbytes) for multicast to the first 65500 nodes

- list of addresses for multicast to selected nodes FEED

FFFC -t- pointer to an table internal to the machines (for address

ing topological groups of machines)

I t is good procedure not to acknowledge messages which are multicasted in

order not to flood the network with these packets.

Chapter 8: Communication Protocol Design 144

5. Data representation: when devices which use different internal data repre
sentation are present on the same network it is necessary to provide support
for transmitting messages in an uniform way.

6. Efficiency criteria: the aim should be to produce a protocol which favours

small packets, fast response times, and a small number of addresses, while

allowing for future growth and development of the system.

8.5 Communication protocol design

The steps included in the RPD methodology presented in the previous section will

be now used for the design of the transmission protocol of the proposed shop fioor

system.

Step 1

In the first step the communications needs of the system are defined. In this case

the aim of the communication system is to establish a link to permit the effective

exchange of messages among all the entities connected to network. In detail it

is necessary to interconnect a number of industrial machines and robots with a

planning system and a database system. The scope of the planning system is to

coordinate the overall activity of the manufacturing cell, issuing the appropriate

commands when needed. The database has to provide numerical control programs

on demand as well as other necessary information to the correct operation of the

production plant.

Step 2

Then i t is necessary to evaluate the characteristics and the minimal requirements

of the system. From an analysis of the features of the application the following set

of requirements have been identified

• limited number of devices connected to the network (less than 256);

• random infrequent communication for data program downloading from the

database system;

Chapter 8: Communication Protocol Design 145

• the dimension of some of the data programs could be of the order of tens of
Kbytes (for the stitching machines);

• messages sent from the control system are of small dimensions;

• machines periodically report their status to the control system using small

packets;

• no need of semaphores for synchronization;

• alarm messages should be included in the protocol;

• devices on the network may be busy and not able to receive messages;

• prioritizing of the message would be desirable;

• no strict real-time performance required;

• hardware with different architectures may be used.

The existing industrial machines forming the workcell are at the present controlled

by Transputers or DSPs, but the intention of including embedded PC boards for

controlling the devices' control screens has been expressed by the company.

In addition to the requirements stated above the general guideline of using exist

ing technology in order to reduce the development costs should be always applied.

Step 3

Then i t is necessary to decide which type of network to use for implementing the

physical connection among the devices. Since the application is quite complex

the use of simple communication systems based on RS-232 or RS-485 should be

avoided, since the performance would be poor and the development effort excessive.

Therefore a better approach consists in considering one of the existing transmis

sion technologies which have been analyzed in chapter 3. Since no hard real-time

requirement are needed by the system, token ring and token bus implementation

might not be necessary. The survey of the available fleldbusses highlighted their

main features. From this information it is possible to note that several of them

can be classified as sensor nets and therefore not targeted for shop floor communi

cation and not suitable for our application. In the previous step it was identified

Chapter 8: Communication Protocol Design 146

that one of the main activities of the communication system of the proposed work-
cell is program data transfer whose dimension may be of the order of 50 Kbytes.
Unfortunately high bandwidth is not one of the features of the fieldbusses available
on the market at the present. Moreover a more detailed analysis has highlighted
the fact that file transmission is not very well supported in any of the commercial
systems. This factor led to the investigation of the possibility of using Ethernet
for the implementation of the physical medium in the communication system. The
result of this research and of the tests that were carried out have been already
reported in chapter 3. Since from the analysis of the features it became clear that
the association of Ethernet/Internet protocols could meet the requirements of the
proposed workcell, i t was selected for implementing the lower level of the commu
nication system. The decision of BUSM to include embedded PC on their devices
is a very strong point in favour of Ethernet.

The decision to use this technology solved the problem of creating the infras

tructure for addressing the nodes, since Internet protocols require an IP number,

a 32 bit number, to be associated with each device,

In the next steps, only the development of the upper layers of the protocol

wil l be necessary, since all the lower layer functions are already provided. This

approach allows a reduction in the development effort and costs, as off the shelf

hardware and software can be employed.

Step 4

At this point it is necessary to define which messages need to be proposed at the

top of the hierarchy.

The specification of the system gives important information about which are

the possible classes of messages needed for the development of the communication

protocol. However useful insight may be obtained by reviewing the sets of messages

which are defined in other industrial protocols, and adapting them to the needs of

the present system. Two of the most complete and sophisticated protocols for in

dustrial applications are the Manufacturing Message Specification (MMS) [BG91]

and the top layer of Profibus [Ben93]. The first one defines a complex set of mes

sages for performing activities on the shopfloor. The second one is essentially a

C h a p t e r 8: Communica t ion Protocol Design 147

subset of the first which simplifies or eliminates several types of messages. There
fore the work on the definition of the protocol was performed by using these two
protocols as guide to understanding the needs of a shopfloor system, analyzing
the requirements of the proposed system, and keeping in mind the features of the
Ethernet/Internet association.

Three types of messages can be identified at the top of the hierarchy as nec

essary in order to allow basic communication between the devices included in the

network;

• program messages;

• error and event messages;

• general messages.

The first group includes all the messages related to the transmission of data files.

The second embraces every message generated when an abnormal or special situa

t ion is present, and also includes control commands. Finally the last group consists

of all the other messages which do not fa l l into the first two sets.

I n the M M S and Profibus a special set of messages for establishing and releasing

connections between nodes is defined. In this protocol one of the Internet proto

cols, namely T C P / I P already implements such a type of service. This feature leads

to a simplified transmission protocol since connection management issues are auto

matically handled by the underlying layers and do not need to to be implemented

and managed wi th in the communication protocol. This feature of T C P / I P solves

the problem related to the fact that the connected devices are not always ready to

receive an incoming message, since TCP requires that both parts agree that the

connection is established before sending a message.

From the definition of the communication requirements and the analysis of the

other industrial protocols i t is possible to define the command clusters wi th in each

set of message exchange.

Program messages have to be able to carry out all the operations related to the

transfer of data files f rom the databases system to the individual devices. They

C h a p t e r 8: Communica t ion Protocol Design 148

must provide features for loading and downloading programs. Profibus supports a
file transfer protocol which is quite similar to T F T P [Sol92]. After the initialization
procedures the program is segmented into small pieces which are sent one at a time
over the network to the receiver; each piece needs to be acknowledged before the
next one is sent. This is an inefficient way of transferring information, especially i f
the size of the packet is small and the files are big. Using the features offered by
T C P / I P i t is possible to implement a more efficient file transmission protocol. The
ini t ial izat ion procedures are st i l l necessary, but after that at the top level the file
can be passed to the T C P / I P layer which w i l l take care of fragmenting, efficiently
t ransmit t ing and reassembling i t at the other end in a completely transparent way
for the application layer. The messages which belong to the program message set
have been designed considering the fact that T C P / I P is used. They follow:

• INITIATE_UPLOAD_FILE

• UPLOAD_FILE

• INITIATE_DOWNLOAD_FILE

• DOWNLOAD_FILE

The first two commands are related wi th the uploading of a file. The exact dynamic

of the message exchange is presented in figure 8.1. First of all the client sends a

request, INITIATE_UPLOAD_FILE_req, to the server requiring a file. I f the file is

present, and found, its features are returned in the INITIATE_UPLOAD_FILE_cLns

message, in case of errors, e.g. file not found, a INITIATE_UPLOAD_FILE_err mes

sage is sent. Then the message UPLOAD_FILE_req is sent by the client, which indi

cates that i t is ready to receive the file. The file is then sent by the server which

includes i t in an UPLOAD_FILE_cLns. The other two commands are similar to the

first two; in this case the file is downloaded f rom the client to the server machine.

These commands are required when i t is necessary to update the version of the

program stored in the database after performing some on-line teaching.

Error and event messages handle the transmission of information regarding the

C h a p t e r 8: Communica t ion Protoco l Design 149

Client Server

INITIATE_UPLOAD_FILE_req

UPLOAD_FILE_req

INITIATE_UPLOAD_FILE_err

INITIATE.UPLOAD F I L E ans

UPLOAD_FILE_err

UPLOAD_FILE_ans

Figure 8.1: Example of exchange of message for performing the uploading of a file
f r o m the server to the client stations.

special events inside the manufacturing system. This set of messages also includes

messages used to control the execution of the activity of the system. The MMS

system used a wide range of messages for event communication and handling, dis

tinguishing between different types of events. This approach was complex and

dif f icul t to implement. Profibus reduces the number of the types of events to one,

defining only four associated messages. In the present communication protocol

only two messages are are defined:

• EVENT_NOTIFICATION;

• ACKNOWLEDGE_EVENT_NOTIFICATION;

The first message is produced when a special condition arises. Since i t may be neces

sary to broadcast the message, no acknowledge is necessary. On the other hand i f an

explicit acknowledge is required the message ACKNOWLEDGE_EVENT_NOTIFICATION is

produced by the receiving device. A l l the messages related to the the management

of the act ivi ty of a device, such as starting, stopping, and ki l l ing a running activity

are included as error and event messages. These are special messages which are

likely to be used in init ial ization procedures, error instances, when something must

C h a p t e r 8: C o m m u n i c a t i o n Protoco l Design 150

be stopped, or during recovery procedures. They are present in both the MMS and
the Profibus protocols. The messages defined are:

• START

• STOP

• RESUME

• RESET

• K I L L

The names are explanatory of the activity connected wi th each message.

Final ly the general message group includes all the messages which have not been

included in the previous categories. They are mainly connected wi th the activity

of reporting the status of the system and reading and wri t ing operations. The

messages defined in this set are:

• STATUS

• UNSOLICITED_STATUS

• IDENTIFY

• READ

• WRITE

• INFDRMATION_REPDRT

The command STATUS is issued when information regarding the status of a device

is needed. UNSOLICITED.STATUS is issued when a device wants to communicate its

status, often periodically, to another device. IDENTIFY is used to query the identity

of a device. READ and WRITE are connected wi th the reading and wri t ing activi

ties of the system. Finally INFORMATION_REPORT transmits variable information to

other devices. The difference between WRITE and INFORMATION.REPORT is that the

C h a p t e r 8: C o m m u n i c a t i o n Protocol Design 151

latter does not require acknowledgment.

I t w i l l be observed that the number of messages defined in the protocol is

smaller in comparison to the number defined in MMS or Profibus. This is because

the protocol has been structured in a way which is tailored to the requirement

of the system, and all the unnecessary features have been excluded. Semaphores

have been eliminated since there is no express need for them. However i f needed i t

would be possible to implement them wi th in the READ and WRITE operation. More

over the possibility of accessing remote variables using local addresses has not been

allowed for, since i t defeats the principle of information hiding. Finally the possi

b i l i t y of dynamically creating variables has not been included, since modifications

of structures at run t ime wi th in a critical system could raise security issues. A list

of all the message defined in MMS, Profibus and the present system is presented

in appendix C.

One of the requirements of the system was the possibility of priorit izing the

messages. Giving a different priori ty to each message would produce complications

in the transmission protocol. A simpler approach consists in giving different prior

ities to groups of messages. In the present case i t is possible to associate a different

pr ior i ty to each of the top message groups previously defined. Unfortunately i t is

not possible to prioritize messages at the Ethernet or Internet protocol level, since

messages are processed on first come first served basis. However Internet protocol

implements a method for delivering messages to specific recipients wi th in a ma

chine (ports). Therefore i t is possible to send messages wi th different priorities to

different ports avoiding the problem of jamming important messages in the middle

of the incoming queue. The optimal solution in order to achieve this is to imple

menting the receiver as a multithreaded server application. In this way the system

can listen at the same time to more than one port. In addition i t is possible to

prioritize the different threads of execution and give an higher priori ty to the one

which is listening for the most important messages. In this way i f something impor

tant is received the less important threads of execution are temporarily suspended

in order to service the incoming message. Therefore i t is possible to divide mes

sages into three levels of priority. The most important messages are the ones which

C h a p t e r 8: C o m m u n i c a t i o n Protoco l Design 152

belong to the set of error and event messages which have to be serviced as soon as
possible since time critical operations may be involved. Then program messages
have the second higher priori ty since the delay in the transfer of a message could
make the device incapable of processing the incoming component, thus generating
errors. Finally general messages have the lowest priori ty since they are connected
w i t h non-time critical operations.

The proposed shopfioor system is composed of several diff'erent devices and

i t is likely that different architectures might be used wi th in the plant. This, in

conjunction w i t h the fact that diff'erent programming languages may be used for

implementing the receiving and sending interfaces of the devices, raises the prob

lem of differences in data representation. I t is necessary to encode the transmitted

data in a uniform way which is understood by all the interconnected devices. Since

the common format needed could be completely difii'erent f rom the internal formats

of the devices i t is necessary to divide the communication system into two subsys

tems: the Device, directly linked to the hardware, and the Interface, which acts as

filter, as seen in section 7.3. The advantage of such approach is that the internal

and the network data format are separated. The modules included in the Device

use the internal data representation. When interactions wi th the other devices are

necessary the Interface acts as a filter encoding and decoding the messages. The

role of the Interface is to implement the presentation layer whose task is to provide

a barrier to the user application f rom differences in data representation.

Step 5

A t this point i t is necessary to specify further the individual services associated

w i t h the commands identified in the previous step. I t is not necessary to perform

this action for all the messages, since some of them might be already fu l ly specified.

For example in the protocol developed here when a STATUS message is generated a

unique answer is produced in response (the physical and logical status of the device

are returned). However, in other cases i t would be feasible to specify further a set of

the commands under the hierarchy of STATUS which would request specific informa

t ion on the status of the system. However messages like READ and WRITE are likely

to be further specified and submessages added. In this protocol submessages under

C h a p t e r 8: C o m m u n i c a t i o n Protocol Design 153

the WRITE hierarchy have been defined. One of these is used for wri t ing a value into
a variable (VARIABLE_DATA), another for informing a device about the features of
an incoming component to be processed (COMPONENT_DATA), one for informing the
management system of operational times of the device (OPERATING_TIME_DATA) and
one for informing a device that a component has been successfully processed and i t
is approaching (APPROACHING_COMPONENT). Other extensions are possible and the
approach is beneficial since i t allows the specification of special messages wi th in
normal messages reducing the proliferation of special purpose messages at the top
level.

A t this experimental stage of the development of the communication only the

messages which are useful for the modelling of the simulated system have been

defined. I t is possible that other messages w i l l be defined in order to f u l f i l addi

t ional requirements of the system. I t is possible to notice that at this stage of

the development of the protocol i t is necessary to understand exactly what are the

features and the requirements of the underlying system in order to define all the

necessary messages.

Step 6

When all the required messages have been defined i t is necessary to define the

format of the packets and the data fields. Since the transmission protocol is imple

mented on top of Ethernet and the Internet protocols, only some of the fields need

to be specified since the other ones are provided by the underlying layers. Every

packet w i l l include the following fields:

• address receiver;

• address sender;

• message type identifier;

• message reference number;

• data length;

• data;

C h a p t e r 8: C o m m u n i c a t i o n Protoco l Design 154

The first two fields specify the addresses of the sender and the receiver; then the
message type identifier is included in the packet. A reference number is the next
field present; i t can be used for monitoring purposes and for verification of reply
messages. Then the data length field is included. I t specifies the length of the
data field which follows. The fields "address receiver" and "address server" are
composed of 4 bytes and contain the IP number of the two nodes involved in the
transaction. A l l the other fields are identified wi th 32 bit integers which should
give sufficient space and make the extension codes unnecessary.

A n important point is related to the transmission of strings along the network.

Because the receiver does not know the dimension of the packet in advance, i t is

always necessary to transmit the dimensions of the string before sending the string

itself.

The first part of the message , the header, is common to all the messages and

each station knows what to expect when a new message is received. On the other

hand the data area, or body, of the message is highly dependent f rom the type

of message itself. Usually the message type identifier defines what follows, but

fur ther identifiers may be needed to specify what follows i f submessages have been

defined. In this protocol for the case of the submessages defined under the WRITE

message hierarchy, a 4 byte integer is expected as the first element in the body

of the message. Its purpose is to specify which type of WRITE message has been

received allowing the correct information to be retrieved.

Step 7

A t this stage for each message an identification code is associated. The code must

uniquely identify the message. A similar procedure must be performed to define

the codes for the submessages. This action is mainly done at the implementation

stage and does not present particular difficulties.

Step 8

The communication protocol is then tested to verify its capacity to fu l f i l the system

requirements. This operation is carried out at the during the implementation stage

and the testing phase.

Step 9

C h a p t e r 8: C o m m u n i c a t i o n Protocol Design 155

A t the final stage i f more than one alternative has been generated the one which
is more suited the system requirements is selected.

8.6 Conclusion

The proposed approach, the Rapid Protocol Development (RPD) allows the struc

tured development of a communication protocol, analyzing in turn all the steps

f r o m the definition of the problem to the final implementation of the protocol.

The technique is designed primari ly for implementing protocols in manufacturing

industry for custom applications.

The methodology has been applied to the development of a communication

protocol specifically tailored for the shoe manufacturing environment, but other

examples of applications have been produced [BDP95 .

I t appears that for many industrial applications, f u l l compliance wi th ISO/OSI

layered protocols is not required, and many cases much simpler protocols are sat

isfactory and economic for customized systems. However, the method presented

here does allow integration wi th existing protocols i f required, and the extent to

which this is needed can be identified and incorporated into the model.

Novel protocols can be linked wi th existing ones giving opportunities for highly

efficient application dependent features to be incorporated. The RPD method also

provides guidance when an existing system requires upgrading and expansion to

improve functionality.

The approach outlined in this chapter attempts to provide a set of guidelines

which w i l l assist the designer in producing a communications protocol for a cus

tomized application. The immediate application area is in the interconnection

of industrial machine cells and their controlling computer systems. Reduction in

hardware costs are making this sort of interconnection more attractive, but the

software and communication requirements can st i l l appear daunting. The RPD

method gives a structured approach to the needs assessment analysis, and leads to

the specification of a solution customized to the particular application. However a

detailed description of the problems is essential in order to implement a complete

C h a p t e r 8: C o m m u n i c a t i o n Protocol Design 156

protocol able to f u l f i l l the requirements of the system. The proposed framework
allows expansions of the protocol, but as already mentioned, modifications of soft
ware after installation may be an expensive procedure which should be avoided.

Chapter 9

Implementation

9.1 Introduction

Once the design stage of the components of the proposed integrated support system

for manufacturing workcells has been completed then i t is necessary to transfer the

classes and relationships developed during the design stage to the chosen program

ming language and database system. During this process all the decisions related to

the system architecture taken during the definition of the communication protocol

must be taken into account in order to build a system wi th the desired features.

Section 9.2 describes the implementation of the database system. Section 9.3

gives an overview of Java, the selected programming language. Sections 9.4, 9.5,

and 9.6 present the implementation of the subsystems included in the proposed

integrated support system. Then in section 9.7 feedback on the use of Java in

developing manufacturing oriented software is given.

9.2 The Database

The database is one of the main components of a Flexible manufacturing system.

I t stores all the information related to the system and the processed components

for prompt access. During the design stage the analysis of the requirements for a

C h a p t e r 9: Implementat ion 158

database system for controlling a shoe assembly production plant was carried out.
As already stated the main target was to design a system able to meet the require
ments of a shoe production line, but at the same time having a structure capable
of being adapted to other industrial production systems. In addition the database
system required internal fiexibility in order to provide ease of incorporation of new
features into the system.

Since the development of database system for the storage of the data of the

industrial system would have been a time consuming operation, wi th uncertain

results, the decision to use an "off the she l f database and to interface i t wi th the

rest of the system was taken. A t present relational data base management systems

(DBMS) are gaining popularity at the expense of hierarchical and network DBA'IS,

providing greater flexibility and functionality, but w i th a reduced performance.

The relational data model [Cod70], which is buil t on the simple concept of table, is

the base of relational DBMSs. A DBMS is essentially a suite of computer programs

for managing these tables. The relational database has three major parts;

• data that is presented as tables;

• operators for manipulating tables;

• integrity rules on tables.

Unfortunately advanced applications demand a wide range of capabilities, and no

relational DBMS can implement all the features needed to satisfy them. In order

to eliminate this problem recently advanced relational DBMSs (also called Object

Oriented DBMSs), which implement a support system that enables the introduc

t ion of custom features, have been developed. This increase in functionality is

gained at a price of loss in performance and security.

Since in the previous chapter the use of an Object Oriented approach had per

mi t ted the development of a database wi th the required features and flexibility,

the decision of using an Object Oriented DBMS had been taken. After analyzing

some of the available databases which incorporate object oriented features, Post-

gres95 [YC95], a freely available package developed at the University of California

C h a p t e r 9: Implementat ion 159

at Berkeley, has been chosen. I t is the result of project started in 1986 [SR85
whose aim was to add substantial features to the existing databases in order to in
crease their power and flexibility. Now i t includes support for classes, inheritance,
types, arrays and functions. I t is a multiuser database whose query language is
SQL92 [Ame92]. Ports for several operating system exists. A t present i t is actively
developed at the University of Berkeley wi th the support of commercial parties.

Due to the presence of object oriented features in the chosen database, the step

for transforming the data encoded in the Object Model in the database code was

quite straightforward, since i t was possible to preserve the structures identified in

the design stage.

The main activity during the implementation of the database consisted in trans

lat ing the relationships among objects described in the Object Model into SQL code

preserving the structure. During this stage normal forms [Ken83] were applied for

the development of the database. Normal forms are rules developed to avoid logical

inconsistencies derived by table update operations. They prohibit different forms

of redundancy that could produce meaningless results i f one of table is updated

independently f rom other ones. These rules improve database consistency at a cost

of increasing the number of tables and slower query execution. The application of

the normal forms to the design of the database provided feedback for improving

the Object Model.

Dur ing the implementation of the database i t was necessary to define the fields

contained in the tables identified in the object model. Since the exact specifications

of the system are unknown only the obvious fields have been inserted. However

the addition of new fields in any of the database tables is a simple operation. The

identification of the internal and external constraints for each table was necessary

in order to increase the internal consistency of the database. This led to the defini

t ion of primary keys, foreign keys and references to external tables. Unfortunately

Postgres95 does not yet support any type of consistency verification; therefore the

relevant lines have been included in the code, but they have been commented.

A n extract of the database code showing the implementation of the Component

Feature class follows:

C h a p t e r 9: Implementat ion 160

— TABLE component: i t i s the superclass f o r i d e n t i f y i n g components.
— The data necessary to the various recognition system for i d e n t i f y i n g the
— components i s stored i n subclasses of t h i s t a b l e .

CREATE TABLE component(
name t e x t ,

CONSTRAINT component_name_not_null NOT NULL
CONSTRAINT component_name_unique UNIQUE (name)

designer t e x t , — t h e name of the designer
creation_date date, — d a t e of creati o n
tot_components i n t —number of components used

— t o make t h i s component

CONSTRAINT component_pk PRIMARY KEY (name)
) ;

The SQL code defines the class component and specifies four fields. As defined

i n the design stage this is an abstract class, and subclasses are necessary to com

pletely identify the components. Unfortunately i t is not possible to explicitly define

abstract classes in Postgres95. Therefore normal classes had to be used, a fact that

raises security issues since i t would be possible to create entries to the database as

instances of this table. In this case the following subclasses have been defined:

— TABLE v i s i o n : s t o r e s the data about the features used by the v i s i o n
— system of the BUSM f o r i d e n t i f y i n g the component processed. I t
— extends the TABLE 'component'. The shape of the component i s
— c l a s s i f i e d i n 'good_shape' or 'bad_shape' according to i t s features.

CREATE TABLE v i s i o n (

root_area
mom_max
mom_min
g_coeff

)INHERITS (component);

CREATE TABLE good_shape(

r a d i i

—Shape features
i n t , — r o o t area
i n t , —maximum 2nd moment
i n t , —minimum 2nd moment
f l o a t —goodness c o e f f i c i e n t

—Shape features
s m a l l i n t G — s e t of r a d i i

C h a p t e r 9: Implementat ion 161

)INHERITS (v i s i o n) ;

CREATE TABLE bad_shape(

r a d i i

)INHERITS (v i s i o n) ;

—Shape feature
smallint [] [] -set of r a d i i

The table v i s i o n is a subclass of component; i t is an abstract class as well. The

tables good_shape and bad_shape, subclasses of the table v i s i o n , may have entries

in the database. They inherit all the fields defined in their superclasses. The name

of the component must be not null and unique wi th in a table in order to allow

identification by name. The useful feature of Postgres95 which permits storage of

data into arrays has been used for storing physical data about the components.

I n a similar way all the other classes defined during the design stage were

mapped into the database system.

9.3 The programming environment

The main problem related wi th network distributed applications consists of the

fact that the communication protocol used by all the devices connected to the net

work must be the same. The communication interface which encodes the outgoing

messages and decodes the incoming ones must show the same behaviour indepen

dently of the underlying hardware and software. This is a demanding constraint

and for this reason the first step in order to achieve platform independent behaviour

consisted in dividing the communication interface into two layered modules, the

v i r tua l manufacturing device (V M D) which maps the underlying hardware and the

Interface which acts as a filter between the V M D and the external world. However

this leaves the problem that i t is necessary to develop new software for every new

type of device included in the network.

The solution to this problem was achieved by the decision to use a machine inde

pendent language to produce the communication interface and the Vi r tua l Manu-

C h a p t e r 9: Implementat ion 162

facturing Device. Java, a programming language developed by Sun Microsystems,
represents a new candidate for a robust, architecture independent programming
language. Although originally developed for software consumer electronics, i t is
becoming well known as the language for programming applets, small executable
programs which can be embedded into an H T M L page on the World Wide Web.
I t is designed as an interpreted language and this means that the code generated
by the compiler is architecture independent, and can run on any system which
implements the Java Vi r tua l Machine.

Even i f the main use of Java is related to the Internet world, i t s t i l l keeps the

characteristics of a programming language for consumer electronics. The software

for these types of applications must have special features; i t must be able to be

ported on different architectures and processors without changes (as manufacturers

tend to change chips quite often as the market introduces new and cheaper com

ponents) and i t must be extremely reliable since faults may produce failure of the

device w i t h possible hazardous consequences.

In "The Java Language: A White Paper" [GM95] Sun describes Java as follows:

Java: A simple, object oriented, distributed, interpreted, robust, secure,

architecture neutral, portable, high-performance, multithreaded, and

dynamic language

Let's analyze in tu rn all the adjectives which qualify Java [Fla96]:

• simple: the developers of Java wanted to keep Java simple easy to learn and

use programming language. For these reasons they defined only a l imited

number of language constructs which are extremely similar to the ones used

in C or C++ (and therefore i t looks familiar to the major i ty of the program

mers). I t has eliminated several of the features of C and C + + which were

bug-prone and i t has eliminated the use of pointers. In addition Java imple

ments automatic garbage collection releasing the programmer f rom memory

management issues;

Chapter 9: Implementation 163

• object oriented: this means that the programmer is interested in the data
of the application and on the methods for manipulating them, instead of
thinking in terms of procedures. Almost everything in Java is either a class,
a method or an object. Only the most basic primitive operations and data
types (int, char, .. ,for, while, etc.) are at a sub-object level;

• distributed: this means that it is designed to be suitable for use in distributed

applications on networks allowing easy access to remote resources. This fea

ture makes i t extremely attractive as a programming language for Internet

applications;

• interpreted: the Java compiler generates byte-codes instead of executable

code (native machine code) and in order to execute Java i t is necessary to

run an interpreter. Recently however alternatives to interpreted Java have

been developed, and Just in Time (JIT) compilers and Java compilers have

been introduced.

• robust: since i t was designed as a consumer electronic programming language,

it makes it easier to write reliable software. This is possible thanks to the

absence of pointers, due to the fact that Java is a strongly typed language

(elimination of type-mismatch problems), and that it performs several run

time checks such as that array and string access are within the bounds;

• secure: Java code can be executed in an environment that prohibits it from

introducing viruses, deleting or modifying files, or otherwise performing data

destroying and computer crashing operations. No one can guarantee that a

Java program won't include "malicious" code; Java has created an environ

ment which makes it hard to use the historical techniques which have been

used to create dangerous software;

• architecture neutral: due to the fact the Java is an interpreted language it

can be run on any system implementing a Java Virtual Machine;

• portable: Java assures that there are no "implementation dependent" aspects

if the language specification (for example the size of an integer is defined at

Chapter 9: Implementation 164

language level) and only Sun has the right to alter the language. The Java
compiler is written in Java while the interpreter is written in ANSI C;

• high-performance: since it is an interpreted language it is not as fast as

compiled C code, and reports from the newsgroups showed that it is at least

20 times slower than C (some tests on the language performance were carried

out as part of this work and are reported in appendix D). However, in future,

in the cases where performance is critical, it will be possible to use Java

interpreters which perform on-the-fly compilation or even Java compilers;

• multithreaded; Java is inherently a multi-threaded language. A single Java

program can have many different processes executing independently and con

tinuously;

• dynamic: i t means that Java loads classes as they are needed, and it is possible

to link classes dynamically into a running system.

From this description Java has several new and positive features, and it is clear

that it is much more than a language for adding animations to Web pages. The

next sections will give an overview on the main advantages and current limitations

in the use of Java in embedded and real-time systems.

9.3.1 Java for the real world

While in programs like editors and compilers the element of time is not very im

portant, there are large classes of applications which are usually involved with time

and deadlines, requiring to some extent real-time performance. There are two main

distinct classes of applications, the ones which interact just with the computer and

its peripherals, and the ones which need also to interact with the world outside

the computer. Representatives of the the first class of programs can be found in

the increasing expanding market of multimedia system, teleconferencing and video

games. Aircraft control systems, or real-time digital diagnosis systems are exam

ples of applications which interact with the external world. These examples are

Chapter 9: Implementation 165

often implemented as embedded systems on chips which are merely a component
of the whole system.

One of the main advantages of Java consists in the fact that it is a platform in

dependent language. Developers can write an application on one platform and then

run it on any platform which implements a Java Virtual Machine. This eliminates

the problems related with cross-compiler development systems, multiple platform

version maintenance and rewriting and retesting the software every time a port to

a new processor is done [Nil96a]. This fact is extremely attractive since programs

like video games could be developed on one platform and then be ready to be com

mercialized for a whole set of computers. In the fast moving scene of embedded

systems where new and improved chips are introduced at a high rate, applications

which could be simply ported from one chip to another offer immediate advantages

in embedded systems. Old silicon could be quickly replaced without the need to

spend a lot of time adapting the software to the new chip. The platform inde

pendence of Java presents some complications since developers may not be able

to test their applications in each environment where they are expected to run. A

real-time application would have to run within the same constraints on platform

with different features and speed (for example a 33 MHz Intel 40486 and a 300

MHz Digital Alpha) [Nil96a]. Moreover it is possible to run the application as a

process on a time shared operating system where it would compete with the other

tasks for the CPU time.

Expecting to use Java as the solution for implementing real-time programs

which are able to meet the same deadlines on any platform is unreasonable. This

is especially true when hard real-time performances are required. I t is not possible

to expect that a real-time application which just manages to achieve its goals on

a fast machine like a Sun Ultra would be able to provide the same behaviour on

a Intel 486 platform. In many applications the development of a real-time system

must be carried out closely allied to the underlying hardware since performance

must be verified and guaranteed to meet constraints. Having a language that can

run on any platform does not mean that it will be able to produce the same time

behaviour on all the platforms. Testing, and may be modifications, are always a

Chapter 9: Implementation 166

necessary step when a new porting is performed.

Before starting the discussion it is necessary to realise that the term Java com

prises three different entities;

• Java the language;

• Java the Byte code;

• Java the Virtual Machine (JavaVM).

While the first two are strictly defined by Sun Microsystems and any alteration in

them would produce the result of creating a dialect of Java, the JavaVM is not

completely specified, a fact that leaves some freedom in implementation.

9.3.2 Real-time features

The platform independence of Java is a great advantage of the language, but there

are other positive features which are desirable in a language which has to be used

for real-time development.

First Java allows easier code development. It is object oriented, but without

the complexity of C+-I-. The structure of the language eliminates complete classes

of bugs which are common during the development of C and C+-i- programs (no

pointers, no operator overloading or multiple inheritance). In addition its platform

independence permits the initial code testing and debugging on other host plat

forms before starting to work on the target.

Another important advantage consists in memory management, since Java relies

on automatic garbage collection while C and C+-|- generally require the program

mer to free up unneeded memory. Memory leaks (and, worse, freeing an object

which is still being referenced somewhere) are some of the most common program

ming errors.

Java's type safety is another feature which should decrease the number of bugs.

However at the same time it prevents direct access to hardware registers, as is often

Chapter 9: Implementation 167

done in C and C++ via casts. Allowing Java to access the underlying hardware
would produce two types of problems. First of all i t would raise security issues,
secondly, since Java is supposed to be platform independent, it would prejudice
platform independent features. This could be seen as a problem in embedded ap
plications where it is necessary to access the hardware. However Sun Microsystems
has announced the development of a Java version for embedded systems, but full
details have not yet been released. At present the only solution to this problem is
to take advantage of the feature of Java which permits the inclusion of methods
written in native code into Java programs. This means that i t is possible to write
procedures which access the hardware in some local native system language, typi
cally C or C-I-+, and include them in the Java application. These methods cannot
provide the security guarantees typical of a Java program. Moreover native code
cannot guarantee portability and any Java code that relies on native methods must
be ported to each type of platform on which that code is supposed to run.

Other useful Java features include its fixed-size longs, ints, shorts and bytes

which allow the programmer to write more portable code, although the lack of

unsigned types may be a problem in some cases.

At a higher level Java allows the change of the code "on the fly" since Java

classes can be dynamically loaded into the application. This feature is especially

useful for systems which need a lot of flexibility. At present this capability is used

for loading applets across the Internet. This ability to add new applets or update

old ones on the fly is extremely powerful, and can add to the functionality of any

system easily and quickly. Users can get new functionality or new user interfaces

by simply connecting to the local server or the network. This is extremely useful

in applications like multimedia. However using the same facility in safety critical

system could raise security issues. In addition most embedded systems have the

problem that once they are deployed in the field, updates to the software often

don't make sense without concurrent changes to the hardware. Besides, many are

not even connected to any sort of network that could be used as a Java server, but

this situation may change in the future.

Java's built in support for multithreading and multitasking represents an ad-

Chapter 9: Implementation 168

vantage during the development of real-time applications. However the capability
of predicting the behaviour of an application written in Java in a multitasking en
vironment requires support from the run time system. One possibility to achieve
predictable behaviour consists in developing a JavaVM which takes advantage of
the features of a real-time operating system (RTOS). In this context Java with
its V M is more analogous to C or C-l—f running on a RTOS kernel. These other
languages provide support for multitasking but it is not integrated in the way it
is in Java. At present the developers of the RTOS QNX have expressed the in
tention to develop a JavaVM which will run on their operating system. However
commercial RTOS's generally provide a wider range of features for process control
than Java and its class libraries, and therefore some additional code would have to
be written to make Java competitive in this market. Perhaps if web applets were
not the largest part of the Java applications, this is a direction that the language
might have taken. At present the standard POSIX.lb [IEE95b, Gal95] defines a
set of support function for the development of real-time applications in real-time
multitasking environments. If Java is to be used for developing real-time sj'stems
it has to provide a set of functions comparable to the ones defined in the standard.
The files <unistd.h> and < l i m i t s .h> describe the operating system's POSIX sup
port at compile time. Since Java is supposed to be machine independent the local
configuration of the system should not be an issue of the application, but eventu
ally only for the JavaVM. A function for checking the run time environment, like
sysconf defined in POSIX, does not make sense in the Java language for the same
reason. The problem of namespace pollution addressed in POSIX is eliminated in
Java since there are no global variables or functions, and a unique package nam
ing scheme that is based on the domain name of the organization where the the
package has been developed has been proposed [Fla96]. Java allows the creation
of child processes by calling the method Process. exec () . The object returned by
the execO call provides methods to access the input, output and error streams
of the child process. In addition methods for waiting for the process termination,
killing it or retrieving its exit value are provided.

POSIX defines a series of mechanisms which allow the communication and co-

Chapter 9: Implementation 169

ordination of processes; signals, messages, shared memory, and synchronization.
Signals are used for many purposes including exception handling, process notifi
cation of asynchronous event occurrence, process termination in abnormal circum
stances, emulation of multitasking and interprocess communication. Java does not
have any support for signals, but several of the tasks implemented by signals can
be done in other ways in Java, for example by using the Java built in exception
handling mechanism or threads. Signals for interprocess communication cannot be
implemented easily (in any case signals are not an efficient and reliable interprocess
communication system even if POSIX.lb adds to them some useful features). Mes
sages are used to pass information between processes in a more efficient way than
signals. Three different mechanisms for message passing are available; pipes, FIFO
and message queues. Pipes work like streams; one process simply writes data at
one end of the pipe and the other one reads at the other end. A FIFO is simply a
pipe with a name. A message queue is a more sophisticated version of a FIFO since
i t consists of a priority queue of discrete messages. In Java since i t is possible to
access the input and output streams of the child process, the implementation of a
pipe is a simple operation. If it is necessary to prioritize the messages it is possible
to create a thread in the child process which sorts the messages and forwards them
in order to the main application.

The creation of named entities is a more problematic issue. In other situations,

shared memory provides a low level for processes to communicate with each other.

Unfortunately since Java is not able to address memory directly it is not possible

to implement shared memory. A higher level solution for implementing shared

memory would consist in declaring common segments of memory within a process.

However this solution would rely on pipes for communication, and one of the main

features of shared memory is to provide fast access to the data. Since it is impos

sible to implement shared memory in Java at present the problem of synchronizing

multiple processes will not be apparent. If a process needs to read data held in

another process the second one can decide when to provide the information, since

it holds the data required, and the problem of generation of partially updated data

does not exist at process level. POSIX provides a set of functions for setting the

Chapter 9: Implementation 170

scheduling policies of the processes. Since Java the language has no control over
the OS where the application is running, it is not possible to define a similar set of
facilities. A partial solution to this problem could be implemented at the level of
the JavaVM. I t could be written in such a way that it would be possible for it to
define the scheduling policy and the priority of the process which is going to run
when it is started. In this way no alteration of the language would be necessary,
but the solution would not provide all the flexibility that the POSIX approach
allows.

Java has access to the system clock (with millisecond resolution). I t provides

basic timer facilities which could be used inside the Thread class. These are not

as sophisticated as the timers defined in POSIX, but they could provide sufficient

support in many applications. Scheduling and timers are the means for making ap

plications perform operations on time. However the OS may create some obstacles

to letting this happen. The first problem is related to the performance of the OS.

If the OS is too slow the only solution to this problem is to use a faster OS and/or

platform. The second problem consists in the fact that many modern operating

systems make extensive use of virtual memory. If not enough physical memory is

present the system performs automatic paging moving parts of physical memory

onto hard disk making new space available. In addition swapping may occur which

involves dumping the entire process out to disk and reusing its physical memory.

The operating system decides what and when paging or swapping occurs. The

problem is that the time of accessing data which has been transferred to hard disk

takes an order of magnitude greater in comparison with that when data is present

in the physical memory, and therefore the expected response time cannot be guar

anteed. The solution is to lock down data or the entire processes in memory. At

the language level Java does not allow this. However again the solution for locking

entire processes down in memory could be found at the level of the JavaVM which

could give the OS the instruction to avoid the swapping out of memory of executed

process. Data locking could be achieved by extending the meaning of the v o l a t i l e

keyword. At present a variable is defined as v o l a t i l e if i t changes asynchronously

and therefore the compiler must read the variable's value from memory every time

Chapter 9: Implementation 171

and not attempt to save its value in a register. The JavaVM could extend this
definition by locking down in memory data which is defined as v o l a t i l e .

POSIX defines support for synchronized I /O. When I /O operations are syn

chronized with the underlying device it means that they return only when the

device is appropriately updated. This is not always the case since several systems

for efficiency reasons use a buffer cache to hold I /O for later flushing on disk. This

provides an increase in performance. These functions are not present in Java, but

could be implemented at the level of the JavaVM. Unfortunately in this case all

the I /O operations (or classes of them) would be treated as synchronized with as

sociated performance problems. Since I /O synchronized methods are necessary to

access devices, the inclusion of a method written in native code using the POSIX

features would be a better solution. Finally POSIX provides support of asyn

chronous I /O, which means that I /O operations are executed in parallel with the

application. Java allows this to be achieved using threads.

At the present Java lacks of some of the features required by the POSIX stan

dard, but some of the problems could be solved modifying the JavaVA4. However

Ken Arnold and James Gosling, the creators of Java, write [AG96]:

Each implementation of Java must provide one or more appropriate

extended classes of Process that are able to interact with processes on

the underlying system. Such classes might have extended functional

ity that would be useful for programming on the underlying system.

The local documentation should contain information on this extended

functionality.

Therefore it is possible to expect some developments in the future in this part of

the language, which may however undermine its platform independence.

There are other problems connected with Java which are shared by any type of

application designed to achieve real-time goals. Overall performance is an impor

tant issue. Real-time is not concerned with execution speed of programs as such,

but faster execution allows deadlines to be met more easily. The interpretation of

the Java Bytecode makes sense on Internet applications which must run on any

Chapter 9: Implementation 172

platform, but it is generally undesirable in other cases. However Java need not
necessarily to be an interpreted language, even if at present implementations are
based on interpreters. There are other two possible alternatives which increase per
formance. The first option involves the precompilation of Java to native machine
code. After a product has been developed, the Java code can be compiled directly
to native machine code prior to shipping. At present there is only one example of
Java compiler, Toba [PGTNW97], developed at the University of Arizona, but it is
likely that their number will increase soon. The second option consists in applying
Just In Time (JIT) compilation. This type of compilation, known also as "on the
fly" compilation, works in the following way. Once a Bytecode has been loaded
into a particular virtual machine environment it can be translated at run time (by
the virtual machine environment) into the host machine's target instruction set
just before the code is actually executed. An example of such type of JavaVM has
been developed with the Kaffe V M [Pro97]. The use of a JavaVM is problematic
for embedded applications since they are often implemented on small cheap and
power frugal chips. Memory on these systems is usually an expensive option which
is always kept to the minimum. Since the code of the JavaVM can be measured in
hundreds of kilobytes its use is not a feasible option in small applications. The size
of the JavaVM itself is of the order of 64 Kbytes, but standard class libraries occupy
a large amount of memory. I t is possible to think of implementing a JavaVM for
embedded use which does not include the libraries since they are not part of the
language, thus reducing the size of the interpreter. The implementation of a JIT
compiler is a feasible approach, but only for larger systems since it requires more
memory to allocate the Bytecode, the JIT compiler and the translated native code,
in comparison with an interpreter or the native code approach. For applications
targeted to be executed on small dedicated systems it is possible to say that the
best solution would consist of compiling native code since the JavaVM does not
provide additional useful features. On the other hand for applications which run
on more powerful machines the use of JIT compiler could be the best option since
it does not require the developers to compile the code individually for the specific
platforms. At the time Java was launched, Sun Microsystems announced the in-

Chapter 9: Implementation 173

troduction of a series of Java chips, microprocessors with different features, which
could run Java Bytecode without the need of a JavaVM. Unfortunately Sun has not
released the ful l details on these chips and therefore their assessment is difficult.
However the idea did not flnd enthusiasts in the area of embedded system since it is
not clear how it would be possible to develop device drivers (which need to address
the hardware) using the current version of Java. Moreover at the high end chip
market it is difficult to see the advantages of a Java chip since Java applications
could be happily running using a JIT or recompiler. Even if Java chips provide
a good performance, they will still have to compete with the economies of scale
of the general-purpose microprocessor industry and in the past similar approaches
have proved not to be successful (e.g. the SOAR chips).

At present Newmonics Inc. is developing an ambitious project for a clean-room

implementation of Java especially designed for reliable embedded real-time sj'stems

Nil96b]. The proposed JavaVM implementation, called PERC, would allow load

ing and analyzing of the Java code at run time. When a new real time activity is

loaded a configuration manager would assess the requirements of the code (execu

tion time, memory requirements etc.). Then a resource negotiator would analyze

the data from the configuration manager and decide if the new application can be

accommodated. I f this is not possible, other applications would be terminated to

free resources for the new one. I f it is not possible to terminate any of the active

applications the problem would be reported. The activities related to the timing

analysis of the code and its schedulability performed by the PERC are complex

and many people have raised doubts on the feasibility of the project. It seems

that the company aims as a first step to implement a JavaVM for soft real-time

applications and then to develop a hard real-time version. However the majority

of the critics of the project question the decision of the developers to introduce two

new keywords; the atomic statement for providing a new type of synchronization

mechanism and the timed one for defining the upper bound of CPU time allowed

to the code included in this statement. The reasons of their introduction are to

provide greater efficiency in comparison with synchronized statements, to make

the code more readable, and to simplify the development of the Bytecode verifier.

Chapter 9: Implementation 174

I t is believed that these extensions to the language are dangerous since they will
create a non-portable Java dialect. They also seem unnecessary since it would be
possible to develop class libraries with equivalent semantics, which used in conjunc
tion with a run time environment able to interpret their semantics, could provide
the same functionality. The company recognizes this since it plans to develop a
compiler which would translate extended code in plain Java (code or Bytecode),
however i t is not known if it would be possible to achieve the same performance.

Another example of development of Java classes for the support of real-time

applications has been done by James Young at the University of Berkeley. He has

developed support for "real-time tasks", which are directly analogous to threads,

except that they have attached to them some additional timing information related

to worst case execution, expected execution time, and deadlines. It is possible to

specify hard real-time, soft real-time and non real-time tasks. Tasks are coordi

nated by the JavaRealTime executive which chooses to accept new tasks or not.

Unfortunately sometimes browsers and JavaVMs running applications which make

use of JavaRealTime terminate themselves. The package has been proved to be

very reliable on some platforms (such as Pentium 133 with Win95, using Sun JDK

1.0.2), but immediately kills the JavaVM on other platforms (for example DEC

Alpha, using Netscape 2.02). In other cases the behaviour is inconsistent and de

pends on the runs. The author presumes that this may be due to the combination

of bugs in the code of the JavaRealTime and bugs in Java V M implementations on

the vendors' part.

Summarizing, Java offers several interesting features for the development of

real-time applications. At present due to the fact that it is not possible to address

the underlying hardware it is more suitable for applications which do nor require

interaction with external devices (multimedia, games). The language does not have

all the features which are defined in the POSIXl.b standard, but several of them

can be implemented at language level, and other ones at the JavaVM one. The

performance of the interpreted version of Java is currently slow, but it is rapidly

improving with the introduction of native and JIT compilers. There are some ex

amples of projects whose aim is to provide the means to write real-time applications

Chapter 9: Implementation 175

with Java, but they are still at the development stage. In any case the introduction
of new keywords in the language for the support of real-time features should be
done by Sun in order to eliminate the problems of possible Java dialects. Exten
sions and implementation of the JavaVM designed for the real-time time world
would be a more satisfactory alternative in order to allow Java to achieve real time
performances.

9.3.3 The reasons for using Java in industrial automation

Apart the possibility of providing a platform independent language there are other

features which made Java an attractive programming language for the implemen

tation of the proposed support system.

First of all Java is an object oriented programming language and therefore the

OMT design can be immediately mapped into a program written in Java. Its

resemblance with C and C-t-+ with the elimination of several of the error-prone

features of these languages makes it easy to learn and use. For example the goto

statement has been replaced by other constructs, s t ructs and unions have been

removed. Operator overloading and multiple inheritance present in C++ have been

discarded. However the most important simplifications concern the elimination of

pointers and direct memory management (allocation and deallocation of Objects)

which is performed by an automatic garbage collector. These are features which

considerably speed up the debugging of the code, eliminating entire classes of bugs.

Java's built in support for threading and networking was crucial in the selection

of this language for the development of the system. The java.net .package offers

a set of classes for creating and managing network connections, in a simple and

direct way. Full support is given for TCP and UDP sockets as well as for man

aging URL connections. The process for establishing a UDP connection is simple

and relief programmers from socket level details. A simple program which sends a

specified text as a datagram to port 4567 of the specified host written in C follows;

Chapter 9: Implementation 176

#include<netdb.h>
#include<stdio.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<sys/types.h>

#define UDP.PORT 4567

mainCargc, argv)
i n t argc;
char *argv[] ;
{

s t r u c t sockaddr_in c l i e n t , server; /*server address assembled here*/
s t r u c t hostent *host_info;
i n t sock;
char *server_name, *message;

server_name = argv[0] ;
message = a r g v [l] ;

sock = socket(AF_INET, SOCK_DGRAM, 0) ; /• create socket */
i f (sock < 0)
{

perror("opening stream socket"); return 0;
}
c l i e n t . s i n . f a m i l y = AF_INET;
cl i e n t . s i n _ a d d r . s _ a d d r = htonl(INADDR_ANY);
c l i e n t . s i n _ p o r t = 0 ; /* 0 means choose any port*/

i f (bind (sock, feclient, s i z e o f c l i e n t) < 0)
{

f p r i n t f (s t d e r r , " b i n d f a i l e d \ n ") ; e x i t (1) ;
}
h o s t _ i n f o = gethostbyname(server_name);
i f (h o s t _ i n f o == 0)
{

f p r i n t f (s t d e r r , "°/,s : iinknown host\r\n", server_name) ; e x i t (l) ;
}
/ * s e t up the se r v e r ' s socket address, then connect */
s e r v e r . s i n _ f a m i l y = AF_INET;
memcpy((char *)&server.sin_addr, (cahr *) host_info->h_addr,

host_info->length);
s e r v e r . s i n _ p o r t = htons(UDP.PORT);

sendto(sock, message, sizeof(message), 0, feserver, s i z e o f (s e r v e r)) ;

}

Chapter 9: Implementation 177

I t is possible to notice that in order to be able to use a UDP socket in a C
program several (error prone) instructions have to be included in the code. A
program which performs the same operation written in Java follows (from [Fla96]):

import j a v a . i o . * ;
import j ava.net.*;

p u b l i c c l a s s UDPSend

s t a t i c f i n a l i n t port = 4567;

p u b l i c s t a t i c void main(String a r g s D) throws Exception
{

// Get the in t e r n e t address of the s p e c i f i e d host
InetAddress address = InetAddress.getByName(args[0]);

// Convert the message to an array of bytes
i n t msglen = args [1] . lengthO ;
byte [] message = new byte[msglen];
args[1].getBytesCO, msglen, message, 0) ;

// I n i t i a l i z e the packet with data and address
DatagramPacket packet = new DatagramPacket(message, msglen,

address, p o r t) ;

// Create a socket, and send the packet through i t .
DatagramSocket socket = new DatagramSocket();
socket.send(packet);

}
}

From this small example it is possible to appreciate the compact nature of Java

code in comparison with C. I t is also possible to note how Java wrappers increase

program simplicity and readability avoiding programmers having to deal with low

level socket details.

The package j ava. lang. Thread offers a set of functions for supporting multi

ple threads for execution within one program. In this way it is possible to handle

more than one task a time. Since threads have been a design point of the language,

they are an integral part of the language itself and not an external set of libraries

as is true for C or C-I-+. For this reason it is easier to program in a threaded

Chapter 9: Implementation 178

fashion using Java in comparison to other programming languages. On the other
hand Java threads lack of several features and synchronization methods which are
provided by POSIX conformant threads [IEE95a]. This reduces the complexity of
code and makes threads easier to use and manage, but at the same time they may
not provide the level of detail that some applications require. For example in Java
the main synchronization mechanism is based on the concept of monitors [Hoa74],
which serialize and coordinate the thread activities. No support is provided for the
low-level, often more flexible and efficient, set of synchronization primitives such as
mutex, semaphores, variables, reader/writers locks and barriers. However the built
in thread capabilities offer the possibility of creating concurrent and distributed
client/server applications in a simple and concise way.

Another strong point of Java consists in the possibility of accessing several use

ful collections of frequently used structures which are included in the j a v a . u t i l
package. Some of the most interesting ones are Vector, Stack, Hastable and

B i t S e t . The inclusion of this set of generic utilities as a standard part of the de

velopment environment simplifies the programming efforts. These useful functions

do not have to be developed every time from scratch, as often happens in C and

C-|—I- where it is not possible to relay on external libraries, which may be absent

on some platforms. These standard utilities are particularly useful for the reduc

ing the amount of code that applets carry along the web, since all standard Java

components can be pre-configured into browsers [JS97 .

One of the critical issues of the acceptance of Java is the possibility of preserv

ing the vast quantity of software which is not written in this language. In addition

to the situation where all the code of the application cannot be written completely

in Java, a case where another language may be more efficient may arise [AG96 .

In order to cope with these situations Java supports native methods which are

sections of code written in another programming language, typically C or C++.

However, at present Java presents some limitations which became evident dur

ing the assessment of the suitability of the language for the proposed manufactur

ing support system and are worth restating here. I t became evident that the only

support for providing synchronization for threads consists in using monitors. In

Chapter 9: Implementation 179

addition it is not possible to send signals from one thread to another, and there are
no facilities for interrupting threads. Timeouts for sockets are not implemented,
and i t is not possible to send broadcast messages. Some of common constructs
used in C and in particular, templates and enumerated types are absent from the
language. However one of the most serious problems is the lack of the pointers and
the consequent impossibility of addressing the underlying hardware. As already
mentioned the only solution to this problem consists in implementing native meth
ods every time a call to the underlying hardware is necessary. This immediately
causes the loss of machine independence provided by Java. Moreover since the
language is new, there is a lack of support tools for the development of the code
such as debuggers. Finally due to the lack of people experienced in the language,
support from other developers with knowledge in the field was completely absent.

Analyzing the benefit and limitations of Java the decision to use the language

for development of the industrial system was taken. The reason of this decision lies

in realizing that since Java is a new language several of the problems which have

been identified are likely to be resolved in the future releases of the language, and

work is already proceeding in this direction.

9.4 The Device: Java implementation

During the design stage in order to achieve platform independent behaviour it

was necessary to divide the communication interface into two layered modules,

the Device and the Interface. Both of them have been implemented using the

Java programming language, but they have been maintained as separate modules

communicating using sockets. The main reason for this decision relies on the fact

that since Java cannot access the hardware, in a real application the decision to

develop the Device using C or C + + would be an option, and sockets provide the

only interprocess communication which Java implements.

A l l the machine dependent code was confined within the VMD class which

had been implemented in a class called VMD. By declaring all the variables which

characterize the VMD as s t a t i c , any class within the Device can access the VMD

Chapter 9: Implementation 180

referring to them as VMD.variable. Similarly every class can act on the VMD
using methods which have been defined s t a t i c by calling them with the notation
VMD .method() . In this sense VMD acts as a global variable within the Device module.
The structure of the VMD class follows:

public class VMD extends Thread implements Fms_constants, Device_constants,
Message_codes

{
s t a t i c S t r i n g model.name = new String(DEVICE_NAME);
s t a t i c S t r i n g manufacturer_name = new String(MANUFACTURER_NAME);
s t a t i c f l o a t software_version = SOFTWARE.VERSION;
s t a t i c S t r i n g recognition_sys = new String(RECOGNITION.SYSTEM);
s t a t i c InetAddress local_host;
s t a t i c S t r i n g db_hostname;
s t a t i c S t r i n g host_name;
s t a t i c i n t l o g i c a l _ s t a t u s ;
s t a t i c i n t physical_status;
s t a t i c Vector incoming_job_list; / / l i s t of incoming jobs
s t a t i c Vector recent_jobs; //cache with recent jobs
s t a t i c Vector v a r i a b l e _ l i s t ; / / l i s t of variables
s t a t i c Vector e v e n t _ l i s t ; / / l i s t of events

}

The information which specifies the identity of the device and its properties are

stored in this class. The status variables are used to give an account of the status

of the system, p h y s i c a l . s t a t u s reflects the physical status of the system and can

take the values of:

• INITIALIZING;

• IDLE;

• ON_LINE_TEACHING;

• CALIBRATING;

• OPERATING;

• INOPERABLE;

• NEED_COMMISSIONING.

Chapter 9: Implementation 181

According to the value of p h y s i c a l _ s t a t u s the l o g i c a l - S t a t u s may be set

to;

• STATE.CHANGES-ALLOWED;

• NO_STATE_CHANGES_ALLOWED.

which indicates if external hosts can act on the internal variables of the Device.

Four Vectors are used for handling the incoming jobs, the recent job buffer, the list

of variables and events. The structure of the VMD may be suitable for characterizing

a large range of devices, but the last two vectors are specifically device dependent.

The code segment which is used to control the underlying device is included in the

thread called ControlSystem which acts in connection with the VMD class. At start

up time the physical-Status variable is set to the value INITIALIZING and the

l o g i c a l - S t a t u s is set to NO-STATE_CHANGES-ALLOWED. Then the variables related

with the identity of the system are filled. The name of the host where the database

is located is read from a file, thus providing the possibility of changing it without

altering the code. Al l the vectors of the VMD are then initialized. When the device

has finished all this activity p h y s i c a l - s t a t u s is set to IDLE and l o g i c a l - S t a t u s

to STATE-CHANGES-ALLOWED. This indicates that the device is ready to perform its

activities. At this point the ControlSystem thread is started and the normal op

erations of the device can begin. The code of this thread is completely device

dependent.

The whole communication process is based on instances of the class VMD_message
whose instances represent messages at the device level. The structure of this class

follows:

public class VMD_message implements Message_codes, Fms_constants
{

publi c i n t message_type;
publ i c i n t data_length;
public b y t e [] b u f f e r ;
public byte message.group;
publ i c S t r i n g server;

}

Chapter 9: Implementation 182

I t completely defines the messages and it is used both for incoming and outgo
ing messages.

The communication modules allow the Device to be connected with the external

world. They have been written to be completely device independent. While the

transmission of a message is achieved calling the method send_message associated

with the VMDjnessage class, the communication module in charge of receiving mes

sages, the VMD_server, is implemented using a set of threads. The possibility of

running more than one thread with a different priority listening to different ports

allows the system to prioritize messages. During the initial stages of the design of

the system the idea of using UDP/IP for general messages and event messages and

TCP/IP for program messages was proposed. However during the implementation

of the UDP code the impossibility of using this protocol for industrial application

became apparent. While TCP has built in handshaking procedures which guar

anteed that the receiver is ready to accept the incoming message, this is not true

for UDP. This protocol just sends the message, and it does not verify if the re

cipient is willing to receive it . I f the receiver is busy processing a message when

a new message arrives this is lost. It is possible to implement handshaking and

retransmission procedures on top of UDP, but the main risk of this activity is to

"reinvent" the TCP protocol. The implementation of the option of making i t pos

sible to fragment UDP packets would have increased considerably the code of the

system and the possibility of packet losses. In addition the support offered by Java

to the TCP protocol is much better then the support for UDP. For these reasons

the implementation of the full communication system has been based on the TCP

protocol and UDP has been discarded.

When the Device starts up three instances of the VMD_server class are created.

Each of the instances starts a thread which listens to a specific port with a differ

ent priority. They wait until they receive a message from the Interface. When the

request for connection for a new message is detected a new instance of the class

Connection_VMD_TCP is created and a new thread started. This services the in

coming message while the VMD_server instance returns to listen the assigned port.

This means that more than one message can be accepted to be processed at the

Chapter 9: Implementation 183

same time. The Connection-VMD-TCP thread retrieves the incoming message from
the socket storing it in a new instance of the VMD-message class. Then the message is
passed to the VMD calling the static method Device . process-message (VMD-message).
This method is organized as a case statement which lists the possible associated
message codes and the relevant program segment. Different types of messages
require different actions. The reply message, if needed, is returned within the pro
cessed instance of the VMD_message class, and can be forwarded to the Interface.
The operation of sending a message is done by calling the method send_message()
associated to the VMD_message class providing the message type, the host to be
contacted and the body of the message. This method decides which port to send
the message to, connects with the appropriate socket, builds up the message and
sends it to the Interface. Then, if necessary, it waits for the reply message.

The Poller is implemented as a thread, and acts in close connection with the

VMD class. I t performs the task of updating the internal variables within the VMD,
and of providing information related to the VMD to the other devices by means of

periodically generated messages. When the system starts the first activity of the

poller is to read the polling file which contains the list of periodical messages to be

executed. For each entry, the action to be carried out (the message code), the host

to be contacted, the time interval between two consecutive actions, and eventual

additional information, are present. This fact allows the code of the Poller to be

device independent since the operations related to the activity of one node are not

hardcoded inside the program itself. In addition it is possible to rapidly modify

the behaviour of the system, adding, deleting or modifying the entries, without the

need of recompiling the code. Since the Poller is supposed to provide periodical

information only messages which belong to the class of general messages are mean

ingful entries in the polling file. Once read, each entry is inserted in a new instance

of the class Pol l ingl tem which is shown below;

class P o l l i n g l t e m implements Message_codes
{

long p o l l i n g _ t i m e ; / / i n t e r v a l of time between two execution
//of the defined action

S t r i n g host; //host involved i n the operation

Chapter 9: Implementation 184

i n t a ction; //type of action to perform

OutputArrayMessage a c t i o n _ t e x t ;
/ / t e x t of the action t o perform

}

A time tag, indicating when the action has to be performed next time, is then

attached to each instance of Pol l ingl tem which is then inserted in a priority

queue. This data structure allows the entries to be ordered in a such a way that

the one which has the smallest time stamp (the first one which needs to be serviced)

always occupies the first position of list. When the initialization procedures have

been terminated, the Poller enters in an infinite loop. Here the first element of the

priority queue is retrieved, and the difference between the current time and the

service due time is calculated. I f this value is negative the action is immediately

performed and a warning message generated, otherwise the thread is placed to sleep

for the appropriated interval of time before sending the message. Then a new time

stamp for the Pol l ingl tem is calculated before inserting it again in the priority

queue. The Poller follows two different procedures which involve the generation

of the appropriate message for servicing the entries of the priority queue. For

operations which require external information (such as STATUS or READ), first the

appropriate message is generated calling the send_message() method, then the

body of the reply, is forwarded to the VMD for processing. For actions involving

internal data (such as UNSOLICITED.STATUS and WRITE) first it is necessary to

query the VMD. This is done by the Poller issuing a virtual request to the VMD,

processing the answer and then sending it . For example if i t is necessary to send a

UNSOLICITED_STATUS message to another device, first of all the Poller interrogates

the VMD generating a STATUS_req message. The body of the STATUS.ans reply

is then included into a UNSOLICITED_STATUS message which is then sent using the

send_inessage() method. The periodical activities performed by the poller could

be subject to real-time constraints. As Java does not provide support for real-time,

this means that the Poller might suffer the problem of missed deadlines.

Chapter 9: Implementation 185

9.5 The Interface: Java implementation

The interface act as a filter between the Device and the network. It is used to

encode messages from local format to network format and decode them. The use

of Java in this environment is ideal since it provides all the features necessary for

implementing the networking code.

Al l the messages handled by the Interface are stored as instances of the Message
class. The structure of the class follows;

p u b l i c c l a s s Message
•C

byte • add_receiver = new b y t e [4] ;
byteD add_sender = new byte [4] ;

i n t message_type;

p r i v a t e s t a t i c i n t this_ref_nimiber=-l;
i n t ref.number;

i n t data_length;

byteD buffer;

The Interface is composed of two separate entities, the Interface Client which

listens for messages from the Device and the Interface Server which listens for

messages from the external world. The structure of the two modules is similar to

the one for the VMD server since each of them runs three threads with different

priorities which listens for different types of messages. When a new incoming

message is present a new thread for servicing the message is started. Then the

main thread returns to listen to the assigned port. In the Interface Client first

the name of the client is received and the associated Internet address retrieved.

Then the rest of the message is read and included in a instance of Message. A

progressive reference number is associated to every message. The writing operation

performs the encoding of the message from the local representation to the global

Java representation using write methods associated with the DataOutputStream

Chapter 9: Implementation 186

class defined in Java. Once the message is completely copied in the buffered output
stream, the buffer is fiushed, and the message is sent along the network. I f a
reply message is expected the client waits for the reply. At the other end the
Interface Server waits for incoming messages. When a message arrives it creates
a new thread which handles the communication. The header and the body of the
message are retrieved, decoded and stored in an instance of the class Message.
During this operation the local address and the destination address are matched
and the message code verified. Then the message is sent to the VMD Server in
the form of VMD Message. I f a reply is required the Interface Server waits for
i t . When it is produced it reads the incoming VMD Message, processes and sends
it back to the client station. At the other end the message is received, and the
addresses of the stations involved, the message code and the reference number are
checked to verify the consistency of the reply. Then it is decoded and sent back to
the Device.

9.6 The production control system: Java imple

mentation

The production control system supervises the whole production activity of the

plant sending messages to all the connected nodes in order to ensure the correct

behaviour of the system. The system is composed of several interacting modules;

the communication subsystem, the poller, the monitor, the scheduler and the dis

patcher. It extensively makes use of the commujiication system, since it needs to

receive periodic updates of the overall status and send messages to the connected

nodes. Al l the periodic communications are handled by the poller. Since the struc

ture of the communication modules and the one of the Poller are exactly the same

described for the Device, they will not be presented again. As in the case of the

Device all the device dependent code has been limited to a single module.

The monitor is the centre of the production control system. I t stores an im

age of the workcell. Here all the information related to the connected devices, the

Chapter 9: Implementation 187

components and the scheduled jobs is stored. The structure of the monitor resem
bles the VMD. Since the data held here may be accessed by more than one thread
simultaneously synchronization procedures have been necessary. In order to allow
the reuse of the modules which have been designed for the VMD the Java class
which implements the monitor has been called VMD. Since only one instance of the
class monitor is necessary all the variables have been defined as s t a t i c , and no
constructor to the class has been provided. In addition to the variables already en
countered in the VMD class defined in the Device, other variables which are needed
by the monitor to keep a record of the system are present. They deal with the
input and output bays used by the workcell, the list of the machines included in
the workcell, the job list, and the schedule. The code of the class follows:

public class VMD implements Fms_constants, Monitor_constants,
Message_codes, ControlSystem.constaints

{
s t a t i c S t r i n g model_name = new String(DEVICE_NAME);
s t a t i c S t r i n g manufacturer_name = new String(MANUFACTURER.NAME);
s t a t i c f l o a t software_version = SOFTWARE.VERSION;
s t a t i c InetAddress local_host;
s t a t i c S t r i n g host_name;
s t a t i c i n t l o g i c a l _ s t a t u s ;
s t a t i c i n t physical_status;
s t a t i c Vector v a r i a b l e _ l i s t ;
s t a t i c Vector e v e n t _ l i s t ;

//defines the inpout and output trays used by the workcell
public s t a t i c Tray i n _ t r a y = new Tray(IN_TRAY,IN_TRAY_SLOTS);
public s t a t i c Tray out_tray = new Tray(OUT_TRAY, OUT_TRAY_SLOTS);

//defines the l i s t of the machines i n the workcell i t i s made
public s t a t i c Vector work.cell = new Vector(NUMBER_MACHINES);

//defines the job l i s t
p u b l i c s t a t i c Vector j o b . l i s t = new VectorO;
//semaphore on the scheduler
public s t a t i c boolean sched_ready;
//defines the actual schedule
public s t a t i c Vector sched = new VectorO;

Each tray is represented with an instance of the Tray class which defined the

Chapter 9: Implementation 188

tray name, its number of slots and includes an array of instances of the class Slot.
These store the name and the quantity of the component held. At the start up of
the system the status of the input tray is requested. The function f i l l t r a y O is
called and the contents and the amount of each input slot are requested. When
a component is inserted the system immediately makes a query to the database
system to verify the existence of the component name. The list of the machines in
the workcell is stored in a Vector structure. This allows simple modification of the
code is a new device is inserted in the workcell. I t is initialized at start up time.
The Vector contains instances of the class Device_data. The template of the class
is:

public class Device_data implements ControlSystem_constants
{

public S t r i n g name;
public S t r i n g model_type;
public i n t l o g i c a l _ s t a t u s ;
public i n t physical_status;
p u b l i c S t r i n g model_name;
public S t r i n g manufacturer.name;
public f l o a t software_version;
public f l o a t operating_time;

>

Each instance of the Device_data class has to provide the information neces

sary to define the devices present in the workcell and their status. The list of jobs

is stored in a Vector structure since the number of jobs is not known in advance

and offers better flexibility and access function than an array structure. For a sim

ilar reason the schedule itself is organized using a Vector. The Monitor is updated

by calling the VMD.process_message() method, called in this way for compatibil

ity reasons with the software developed for the Device. I t consists of a long case

statement. Depending on the code of the incoming message the appropriate set of

actions are performed.

While the monitor is a kind of data repository where dynamic information is

stored, the scheduler, implemented in the class Scheduler, and the dispatcher, im

plemented in the ControlSystem class, are implemented as threads. The scheduler

Chapter 9: Implementation 189

is dormant for most of the time, and wakes up when new component to be pro
cessed is inserted. At start time when the slots of the input tray are filled it wakes
up and generates the schedule. The class Scheduler works in close conjunction
with the Database system from where it gets all the relevant information about the
component to be processed. I t creates the list of the jobs, analyzing the component
contained in the input tray, then it generates the schedule. The entries of job list
are instances of the Job class. The structure of the class follows:

class Job implements ControlSystem_constants
{

St r i n g comp_name; //the name of the output component
s t a t i c i n t seq_number =0; //job number
i n t o u t p u t _ t r a y _ s l o t ; //output s l o t
i n t q u a n t ity; //pieces produced
i n t to_go; //pieces t o produce
f l o a t • timing= new float[NUMBER.MACHINES];

//timing information
i n t number_jobs; //number of components to process
S l o t [] jobs_order; / / l i s t of components
Vector job_times; //timing information generated by

//the dispatcher
}

As it is possible to see the class is quite complex. The scheduler analyzes in

turn all the entries of the input tray. For each component present it interrogates

the database to see if it is a single component or if it is a part of something more

complex. I f the component is single a new instance of Job is created and, the

processing times retrieved from the database and inserted in the t iming array. If

the component is part of a multiple component, the j o b - l i s t is scanned to see if

the resulting component already has an entry. If so the the component is added in

the relevant position in the jobS-order array. Otherwise a new entry is created,

the timing information retrieved from the database and the component is inserted

in the jobs-order array. When the input tray has been completely scanned the

j o b - l i s t is processed to see if all the components necessary to produce multiple

components are present in the input tray, and their numerical consistency is calcu

lated. The jobs that can be processed are then inserted in the sched vector which

Chapter 9: Implementation 190

is passed to the scheduling algorithm that reorders the list in the appropriate way.
During these operations the boolean value sched_ready has been set to false in
order to stop the dispatcher having access to the elements of the scheduling list.
When the schedule is finally ready sched_ready is set to true, and the change is
notified with a n o t i f y A l l O command. Then the scheduler resumes its dormant
state waiting for new components in the input tray.

The dispatcher, implemented in the ControlSystem class, once the schedule is

ready retrieves its first element of the scheduling list. Then the job_times infor

mation, which determines the precise time when the components have to go in

production, is calculated. Then if all the devices are active a message containing

the data relevant to the next component to be processed is sent to all the devices

connected in the production line using a WRITE command.

9.7 Java in distributed manufacturing systems

During the development of the system it has been possible to assess the key benefits

and limitations of Java for the implementation of a communication and support

system for industrial automation, and more generally on the possibility of using

this language in other industrial applications. Some of the features of the language

have been highlighted in section 9.3, but during the implementation of the system

other advantages of the language have become evident.

The language has proved to be easy to learn starting from a C background. Its

simplicity allowed a rapid development cycle of the system. The absence of pointers

dramatically reduced the number of bugs and errors during the development of the

code. Range checking on array access immediately identified irregular operations

enabling problems to be fixed at the source. Automatic garbage collection elimi

nated the need to deallocate dead objects and eliminated the danger of destroying

the ones in use. The support for threading and networking has provided the means

for implementing complex interacting modules in a simple way. The absence of in

tegrated development tools and debuggers has not been a relevant problem during

the implementation phase.

Chapter 9: Implementation 191

The presence of utilities classes among the standard libraries of Java have been
extremely valuable during the development of the system. It has been possible to
used some data structures directly without the need to develop code for the appli
cation. The class Vector provides the necessary features for implementing different
types of lists required inside the Device and the Control System modules. The class
Hashtable has been used in for storing and retrieving the features associated with
the message codes.

The language offers a good support for the TCP protocol. When a TCP socket

is used i t is possible to retrieve its input and output streams. This permits appli

cations in several types of I /O abstract classes giving a high level of control on the

input and output through the socket. For example in the developed application

every socket output stream is first connected to a buffered output stream and then

wrapped with a DataOutputStream. The relevant code follows:

//creates the b u f f r e d output stream
buffer_forward =

new BufferedOutputStream(this.forward_socket.getOutputStream());
//wraps i t i n another stream
forward.out = new DataOutputStream(this.buffer_forward);

All the methods associated with the DataOutputStream class can be called by

the f orward-out object and the ones associated with the Buf f eredOutputStream

class by the buffer_forward object. The buffered stream prevents the message

being fragmented into small packets as could happen if data is directly written to

the output stream connected to a socket. The DataOutputStream class offers a

ful l range of methods which allow all the basic data types, strings and arrays to be

written in an output stream.

The possibility of reading and writing the basic data types into the TCP sock

ets offered by the methods of the DataOutputStream and the DatalnputStreaim

classes provide Java with the means of transmitting data encoded in a platform

independent way. In the implemented system the main activity of the Interface

is to transform the data from the local format to a standard "Java" format to be

transmitted along the network using these methods. This feature of the language

Chapter 9: Implementation 192

makes unnecessary the definition of encoding rules for simple data types which
have to be transferred along the network.

At the level of the Device, the method used for sending messages requires as

an input the body of the message in the form of a an array of bytes. For this

reason methods for inserting and retrieving basic data types into byte arrays have

been developed at the Device level. The main reason for this decision is the fact

that i t was assumed that the code of the Device could be written in any language,

and therefore it would not be possible to suppose the presence of the Java support

classes for reading and writing basic types into streams. In addition one of the

initial fields of every message reports its length. I f the length of the message is

not known in advance it is not possible to write the data directly into the output

stream.

Java does not allow global constants which are visible to all the classes, and

they have always to belong to a class, therefore the notation for addressing them

must be ClassNarae.CONSTANT. This is sometimes a tedious notation which de

creases the code readability. A solution to this problem is to define the constants

inside an I n t e r f a c e and making the class that needs to use those constants im

plementing the Interface. Then it is possible to use the name directly, assuming

there are no name clashes. Similarly it is possible to define global variables in

side a class and declare them s t a t i c . Such variables must be addressed with the

ClassName.VarName construct. Alternatively it is possible to define the classes

that need access to these variables subclasses of the class defining the variable.

The possibility of defining global constants inside an Interface allows the imple

ment of enumerated types which are not directly defined in Java. The result looks

like this;

public i n t e r f a c e Message_codes
{

//messages f o r the VMD support

public f i n a l s t a t i c i n t STATUS_req = 0x0004
public f i n a l s t a t i c i n t STATUS.ans = 0x0005
public f i n a l s t a t i c i n t STATUS_err = 0x0006

//bin: 0100
//bin: 0101
//bin: 0110

Chapter 9: Implementation 193

>

The result is not as concise as it would be in C and there is the problem that

i t is possible to pass any value with compatible type (in this case any i n t) to

methods which expect as arguments one of the values defined in the body of the

enumeration statement. For this reason it is always necessary to include lines of

code which check the validity of the passed values. In addition enumeral values

can be duplicated accidently. A more sophisticated solution which solves the type

safety problem has been suggested by [JS97] making use of the insteinceOf tj'pe-

safe dynamic cast. However in this case the code is even more complex and may

appear less clear to the reader since one class has to be defined for each enumerated

type.

Java does not define pointers to methods. Their use could have found a useful

application in the communication system. At the receipt of a message its code

would have been examined and the appropriate action defined using a pointer to

the appropriate method. The same result has been achieved with a long case

statement, but the code implemented using pointers to methods would have been

more elegant. A solution to this problem have been proposed by [Lea96], but i t is

of complex implementation.

9.8 Conclusion

The implementation stage permitted the transformation of the classes and rela

tionships developed during the design stage in a working system. Since both the

database and the programming language were object oriented the transfer process

from the design to the implementation was performed without major problems since

the structure defined at the design stage had been promptly and correctly mapped

into the applications. Java has proved to be a valuable programming language for

the development of complex network based applications, and it has shown that is

has some important strengths for use in the development of manufacturing control

Chapter 9: Implementation 194

systems; i t provides major advantages in its portability and machine independence.
However, the current state of the language is such that some important features
such as direct access to the underlying hardware are lacking. From the analysis
carried out it is possible to conclude that Java has potential even in the area of
real-time applications, but it cannot be considered as the language which is going
to resolve all the problems related with real-time programming. In particular it is
important to be able to distinguish Java the language from its other parts, since
there is some confusion among the general public. As a language, Java has great
advantages of C and C++ in terms of safety and simplicity, even if it lacks of some
useful language features, such as enumerations, and pointers to methods. If Java
is to realize its potential in this field, appropriate additions to the language will
need to be made, and further work on language development is required. This
needs to be accomplished without the loss of the portability which is fundamental
to the system. A step is this direction has already been made as Sun Microsys
tems has announced that it is working on the "Java Embedded APIs" : a variation
of Java for embedded devices that are incapable of supporting the full Java Core
API. I t is likely that an addition to the Java Virtual Machine might provide an
ordered and fully defined method of pointer implementation. In the next chapter
the performance of the system and of the Java implementation will be assessed.

Chapter 10

System Analysis

10.1 Introduction

The implementation of the system designed with the OMT model in Java with the

support of the Postgres95 database management system has proved the validity

of the use of the language for the implementation of manufacturing applications.

However another aspect that must be considered is the performance issue.

Performance is important in many application and becomes vital if systems

have to deal with time and deadlines. Java is usually an interpreted language which

means that the so called "compilation" of a Java program (using for example the

j avac command) does not produce an executable file (such as the compilation of a

C program), but it creates Bytecode. A Java Virtual Machine (a program written

in ANSI C) is needed to interpret the Bytecode and execute the application on the

local platform. This produces a loss in performance of Java programs if compared

with equivalent applications written in C. This has been extensively reported and

has been openly admitted by Sun in their Java Whitepaper [GM95]. However this

is rapidly changing and recently Just in Time (JIT) compilers, which perform a

code compilation at run time translating the Java Bytecode in the host machine's

native code, and Java compilers, which produce platform native code, have been

introduced in order to speed up performance of Java applications. Since no data

related to the performance of the Java on Linux was available, a series of tests

Chapter 10; System Analysis 196

were performed. Interpreted Java, just in time compiled Java, compiled Java and
C and C + + were compared. The results obtained are reported in appendix D.
From the data gathered it is possible to see that Java, in any flavour, is always less
efficient then a program written in C or C++ . Only in few cases the performance is
comparable. Allocation of new objects in memory is always a particular expensive
operation in comparison with C and C++. Therefore limiting the creation of new
objects in the code is a way to improve performance of Java applications. However,
since the Byte magazine benchmarks test several features of the language at the
same time, they are the ones which give the best indication of the performance of
Java. From these tests it is possible to see that interpreted Java applications on
Linux run from 20 to 40 times slower than equivalent programs written in C or
C + + . These numbers improve if the applications are compiled just in time (3-15
times slower) or compiled in native code (1.5-7 time slower). Due to the consider
able improvement in performance off'ered by the non-interpreted versions of Java,
i t is possible to foresee their wider acceptance in future.

In section 10.2 the details of the platforms and software versions used during

the tests are given. Section 10.3 presents the results of a set of experiments per

formed to assess the performance of the TCP network implementation of Java. In

section 10.4 the performance of the database is assessed. Section 10.5 presents the

results of the experiments carried out to assess the response times of the system to

selected messages. Section 10.6 presents the results of the performance of the cell

in particular conditions. Finally the results of the simulation of a manufacturing

cell controlled by the implemented support system are reported.

10.2 System configuration

The software developed for the communication and control of the manufacturing

cell has been tested on a series of computers which simulated devices present on the

cell. A Pentium 75 MHz, 16 Mbytes RAM, 2.2 Gbytes HD, running Linux 2.0.25,

hosted the workcell monitoring system and the database system. For simulating

the other devices a series of four Intel 80486 33 MHz platforms, with 8 Mbytes of

Chapter 10: System Analysis 197

10

0) I 0.1
.9-
•o c

^ 0.01

0.001

c /
"t*
i

g
1

° Java code
i 5 8 «>

o<»>

COD

0.01

0.001

Ccode

100 1000 1000010000016+06

TCP message length (bytes)

1 ™ T

100 1000 100001000001e+06

TCP message length (bytes)

Figure 10.1: Performance of the same application for measuring TCP round trip
transmission times written in Java and C on an Intel 486 platform running Linux
2.0.29

RAM, 1.2 Gbytes HD running Linux 2.0.29, were used.

Different series of tests have been performed using the interpreted and just in

time compiled version of the program. Unfortunately it has not been possible to

evaluate the performance of the the compiled version of the program since Toba,

the Java compiler, did not have thread support. However it has been possible to

use compiled code for the test of the performance of the database since this did

not use threads.

The Java interpreter from the JDK 1.0.2 port for Linux, the k a f f e JIT compiler

version 0.84, and the toba Java compiler version 1.0.b6 have been used during the

tests.

10.3 Java network performance

The first activity in order to assess the performance of Java consisted in testing its

network capabilities.

The code which has been used to measure the performance of the TCP protocol,

whose results have been reported in chapter 3, has been translated into Java. The

test has been carried out on the same pair of Intel 486 platforms running Linux

Chapter 10: System Analysis 198

2.0.29 used in one of the tests done with the C code. The programs have been
compiled with the javac compiler and executed using the JavaVM developed for
Linux supporting Java 1.0.2. The results of the test are reported in figure 10.1.
The performance of the C code is reported for comparison. The first impression
obtained from the Java graph is the large number of scattered point in comparison
to the C implementation which presents a more consistent behaviour. Secondly
it is also possible to notice that the round trip time of small packets assume only
discrete values. This is caused by the limitation of the Java timer which cannot
measure time intervals which are smaller than one millisecond. It is possible to
notice that the transmission time is almost constant for packets up to 500 bytes
and then it suddenly drops. I t is suggested that this behaviour is connected with
something similar to the Nagle algorithm, which waits the expiration of a timer
before sending small packets. This is due to the fact that longer packets are more
efficient to transmit. The most astonishing feature of Java consists in the fact that
above 600 bytes, it achieves round trip times which are smaller than those obtained
with the C code. This can be explained by the fact that the test timed the per
formance of the system calls to TCP services which are passed by the application,
through the JavaVM, to the system, so that only a limited amount of Java code
is involved in the operation. In addition it is likely that the JavaVM has been
optimized in order to achieve better performance during TCP transactions. This
would explain the absence of the of irregularities present in the C code which are
associated with the Nagle algorithm. The scattering of the points on the graphs is
likely to be caused by the JavaVM, and in particular they may be associated with
the activity of the garbage collector which becomes active to reclaim memory.

These results allow us to conclude that the Java code has a very good network

performance even if the results are subject to time variations. They are in accor

dance with the tests carried out on the Java I /O system reported in appendix D,

which show that the Java performance is comparable with the one of applications

written in C and C-|—1-.

Chapter 10: System Analysis 199

query m e a n (s) stdev tuples
SELECT * FROM bad-Shape 0.046 0.0046 1
SELECT * FROM stitching.data 0.050 0.0027 2
SELECT * FROM processing_time 0.038 0.0007 3
SELECT * FROM device 0.064 0.0062 4
SELECT device.model FROM device WHERE
device.name = 'gemini'

0.032 0.0046 1

SELECT device.model FROM device WHERE
device.name = 'scorpio'

0.032 0.0057 1

SELECT processing_time .processing_time
FROM processing.time WHERE
processing_time. devicejnodel =
'a u t o s t i t c h e r '

0.034 0.0016 2

SELECT processing_time .processing_time
FROM processing.time WHERE
processing_time.device-model
= ' a u t o s t i t c h e r ' AND
processing_time. component-name =
'compA'

0.040 0.0027 1

SELECT component-position.part_of,
component-position.position
FROM component-position WHERE
component-position.name = 'compB'
AND component-position. j oining-device
= 'placing-Tobot'

0.046 0.0161 1

SELECT component .tot_components FROM
component* WHERE component.name =
'compA'

0.046 0.0114 1

SELECT stitching-data.dataJLenght
FROM st i t c h i n g _ d a t a WHERE
sti t c h i n g - d a t a . comp-name = 'compA'

0.032 0.0021 1

Table 10.1: Database query performance times obtained with the interpreted ver
sion of the test program. The interval between the queries is 1 second.

10.4 Database performance

Since an important part of the system activity involves interaction with the database,

an evaluation of the query times were performed. The Postgres95 version 2.0 was

used. A l l the queries were obtained using a program written in Java using the

Java-Postgres95 0.2 programming interface to query the database. This set of l i

brary routines allows client programs to pass queries to the Postgres95 DBMS and

Chapter 10: System Analysis 200

to receive the results. About 70 entries were stored in the database in the different
tables. Queries of different complexity have been formulated in order to ascertain
whether a relationship between complexity and time was present. They were built
taking as examples possible queries made by the devices to the database. Al l the
queries were loaded into a list, and repeated 20 times cyclically. The time between
queries was one second.

Some of the results gathered during the tests with the interpreted Java are

reported below in table 10.1. These show that the complexity of the statement ap

parently does not influence the time required for performing the query. Similarly

the number of tuples (instances) retrieved does not seem to affect the query time.

The results show that the time required for a query is on average between 0.03

to 0.05 seconds with only one case of a query whose average is 0.06 seconds. The

value of the standard deviation indicates that the results are usually consistent.

The same test program was executed using the Kaffe JIT compiler, and trans

formed in native code using the Toba compiler. The interval between the queries

was set to 0.1 seconds. A selection of the results is presented in table 10.2. As it

is possible to see, the performance of the three versions of the tests produce com

parable results with a slightly better performance for the compiled version. This

indicates that the largest amount of time is spent within the DBMS module and

differences in the speed of the Java application do not influence the results.

Postgres95 users have reported on the Usenet that the query times increase

with the number of entries in the database. However if the tables are stored in

the database using a B-tree structure (by using the appropriate command at the

creation of the table) the query time becomes almost independent of the number

of entries.

During the experiments it has been discovered that the frequency of the queries

influences the performance of the database. A comparison of the execution times

of the same query with different time intervals between queries is reported in table

10.3. I f the query function to the database was placed inside a continuous for loop,

so when a query returned it was immediately followed by another one, the average

query time was from 0.09 to 0.13 seconds. The performance of the database im-

Chapter 10: System Analysis 201

query method mean (s) stdev tuples
SELECT * FROM bad.shape Java 0.044 0.0019 1
SELECT * FROM bad_shape kaffe 0.037 0.0008 1
SELECT * FROM bad_shape toba 0.030 0.0010 1
SELECT device.model FROM device
WHERE device.name = 'gemini'

Java 0.035 0.0127 1

SELECT device.model FROM device
WHERE device.name = 'gemini'

kaffe 0.036 0.0233 1

SELECT device.model FROM device
WHERE device.name = 'gemini'

toba 0.030 0.0074 1

SELECT component. tot-Components
FROM component* WHERE
component.name = 'compA'

Java 0.046 0.0074 1

SELECT component .tot-Components
FROM component* WHERE
component.name = 'compA'

kaffe 0.041 0.0021 1

SELECT component .tot_components
FROM component* WHERE
component.name = 'compA'

toba 0.042 0.0040 1

SELECT stitching_data.data-lenght
FROM s t i t c h i n g _ d a t a WHERE
sti t c h i n g - d a t a . comp_name =
'compA'

Java 0.031 0.0015 1

SELECT stitching-data.dataJLenght
FROM st i t c h i n g - d a t a WHERE
stitching_data.comp_name =
'compA'

kaffe 0.029 0.0044 1

SELECT stitching-data.dataJ-enght
FROM st i t c h i n g - d a t a WHERE
sti t c h i n g - d a t a . compjiame =
'compA'

toba 0.030 0.0077 1

Table 10.2: Database query performance times with a an interpreted (java) JIT
compiled (kaffe) and compiled (toba) version of the test program. The interval
between the queries is 0.1 seconds.

proved if a delay between the queries was set. With delays of 0.1 seconds between

queries the performance was the same as registered for for intervals of 1 second,

but with a higher standard deviation. This behaviour is probably related to the

way in which the DBMS system handles the queries through TCP connections.

Chapter 10: System Analysis 202

query interval (s) mean (s) stdev tuples
SELECT * FROM processing.time none 0.097 0.0129 3
SELECT * FROM processing.time 0.010 0.101 0.0097 3
SELECT * FROM processing_time 0.026 0.081 0.0099 3
SELECT * FROM processing.time 0.104 0.049 0.0113 3
SELECT * FROM processing_time 1.048 0.046 0.0046 3
SELECT device.model FROM device
WHERE device.name = 'gemini'

none 0.111 0.0159 1

SELECT device.model FROM device
WHERE device.name = 'gemini'

0.010 0.096 0.0097 1

SELECT device.model FROM device
WHERE device.name = 'gemini'

0.026 0.045 0.0090 1

SELECT device.model FROM device
WHERE device.name = 'gemini'

0.104 0.035 0.0127 1

SELECT device.model FROM device
WHERE device.name = 'gemini'

1.048 0.032 0.0046 1

SELECT component.tot_coraponents
FROM component* WHERE
component.name = 'compA'

none 0.104 0.0125 1

SELECT component.tot_components
FROM component* WHERE
component.name = 'compA'

0.010 0.104 0.0133 1

SELECT component.tot-Components
FROM component* WHERE
component.name = 'compA'

0.026 0.074 0.0098 1

SELECT component.tot-Components
FROM component* WHERE
component.name = 'compA'

0.104 0.046 0.0074 1

SELECT component .tot.components
FROM component* WHERE
component.name = 'compA'

1.048 0.046 0.084 1

Table 10.3: Database query performance times in relation to the interval between
queries using the interpreted Java test program

10.5 Message timings

The manufacturing control system relies on messages for the exchange of informa

tion between the connected entities. Section 10.3 has highlighted the performance

of the TCP function calls of Java. In this section the performance of complete

communication system is assessed.

Each message sent by the Device must traverse the Interface before being sent

Chapter 10: System Analysis 203

Client

1 1
1 1

1 1

Server
Virtual Client

Network
Server Virtual

Manufacturing Interface
Network

Interface Manufacturing
Device

1]

Device

Figure 10.2: Message passing between the different layers implemented in the man
ufacturing communication system.

along the network. On the server side the message is received by the interface and

forwarded to the VMD Server which acts properly on the Device. If an answer is

needed the VMD generates it and sends it back to the client passing through the

Interfaces. A scheme representing the message passing is shown in figure 10.2.

Each message implemented in the transmission protocol belongs to one of the

three defined categories: general messages, program messages, and event messages.

During the test it was only possible to collect timing data related to messages

which require acknowledgment, due to problems associated with synchronizing the

internal timers of the computers.

The communication time required for sending a message between two 80486

machines, from a 80486 to a Pentium, and the opposite were measured. This was

necessary in order to assess the difference of time required by the transaction. Due

to the similarity of the messages only a sub-set has been tested. The timer starts

when the send_message() method is called and stops then i t returns. Each test

was repeated 20 times in order to have statistical significance. Tests with three

different message types were performed; IDENTIFY and STATUS belonging to the

set of general messages, and STOP belonging to the event messages. The results of

the tests obtained when the interpreted version of the developed application was

run are presented in table 10.4. I t is possible to see that the times are influenced

by the platform used, but all of them are in the order of 0.1 seconds. The number

of operations required to produce the reply message were comparable. However

an increase in the transmission time is to be expected if more complex operations,

such as database accesses, are to be performed on the server platform before the

Chapter 10: System Analysis 204

CD
E
c g

o
Q)
X

0.1
100

0
E
*••-'
c
o
•5 o
CD
X
CD

0.1
100

Interpreted Java

1000 10000

file transfer length (bytes)

JIT compiled Java

+ +
+ ++

+ +

1000 10000

file transfer length (bytes)

100000

100000

Figure 10.3: Time required for uploading a data file in relation with its length

reply message could be sent. The same tests were performed running the system

using ka f f e , so obtaining a JIT compiled version of the application. The results

of these second round of tests are shown in table 10.5. I t is possible to see that

in this case the the response time of the selected messages is halved. This is in

accordance with the results obtained from the benchmarks.

Other tests were carried out to record the response time to the set of messages

associated with the operation of downloading a data program from the database.

Data files from 100 to 90000 bytes were transferred in order to assess the relation-

Chapter 10: System Analysis 205

ship between time and file length. The interval between each download request was
0.1 seconds. 20 repetitions for each data length request were performed. The data
file request procedure consists of two consecutive messages, INITIATE_UPLOAD_FILE
and UPLOAD_FILE. The first one queries if the requested program is present in the
database and its length. The second message triggers the downloading of the pro
gram itself. These operations involve two database queries (one for each message).
The process of retrieving the data was simulated by performing two generic queries.
Figure 10.3 shows the results the experiments in the cases of interpreted and JIT
compiled execution of test. I t is possible to see that in the case of the interpreted
version of the application the transfer times are between 0.3 and 0.4 seconds for
message requests between 100 and 7000 bytes. Then the transmission time in
creases. For messages of 100 bytes the mean transmission time is 0.32 seconds
which is consistent with the time required for the transmission of 2 messages (
0.2 seconds) and the two queries to the database (which had been timed and took
about 0.11 seconds). It is possible to see that the time required for the transmission
of a data file whose length is between 100 and 7000 bytes is almost independent
from the length of the data file. After that there is a discontinuity between 7000
and 8000 which is probably caused by the exhaustion of the allocated TCP buffer
space (8000 bytes). The graph associated with the measurements taken with the
JIT compiled version of the application show a better performance for small file
transmissions. However for data files larger than 10000 bytes the difference be
tween the two is not evident. For small messages the spread of the measurements
is smaller in comparison with the one present in the interpreted version of the test.
I t is possible to see that sometimes the time required for the transmission is much
larger than the average. The discontinuity in performance between 7000 and 8000
bytes is evident in this graph as well.

A further test consisted in measuring the overhead introduced by the the Inter

face during the transmission procedures. The client and server part of the Interface

was analyzed. The following measures were taken:

• on the client side the time interval from when the Device sends the message

to the network to when the Interface performs the same action (the time

Chapter 10: System Analysis 206

between the two b u f f e r . f lushO operations) was recorded;

• on the server side the interval between when the message is accepted by the

Interface and the same action is performed by the Device (the time between

the two accept 0 operations) was measured.

The times required by a reply message to traverse backwards the two Interfaces

were also measured.

• on the server side the time between when the message is sent by the Device

and when it is sent by the Interface (b u f f e r . f l u s h () operations) was taken;

• on the client side the interval between the first read on the Interface and the

first read of the reply message on the VMD was taken.

The transmissions were repeated 20 times and the average calculated. The results

are shown in table 10.6. When the Pentium was used as master and the 80486 as

slave with a IDENTIFY message, it took on average 19 ms to traverse the client side

of the Interface, and 27 ms were spent on the server side before reaching the Device.

The reply part of the message took 12 ms to go through the server side, and 5 ms to

traverse the client side. In a second test the computers were interchanged. In this

new scenario the time required to traverse the client Interface on the 80486 was 45

ms, and only 10 to go through the server side. The reply message spent on average

3 ms on the server side of the Interface and 11 on the client side. These results

show how the performance of Java is influenced by the speed of the platform where

it is executed. Other measure revealed that half of the time spent by a message

on the server side is associated with the Interface procedures of validation, coding

and decoding of the messages.

During the tests it has only been possible to collect timing data related to mes

sages which require acknowledgment. However from the data acquired during the

measurements of the transmission times involved in traversing the Interface it is

possible to see that messages spend a larger amount of time in the Interface in

their outbound trip. From this data it is possible to deduce that the transmission

Chapter 10: System Analysis 207

message type client server mean stdev
IDENTIFY 80486 80486 0.141 0.0107
STATUS 80486 80486 0.145 0.0130
STOP 80486 80486 0.138 0.0136
IDENTIFY 80486 Pentium 0.098 0.0090
STATUS 80486 Pentium 0.101 0.0139
STOP 80486 Pentium 0.097 0.0126
IDENTIFY Pentium 80486 0.099 0.0099
STATUS Pentium 80486 0.102 0.0124
STOP Pentium 80486 0.098 0.0124

Table 10.4: Message execution times with interpreted application using java

message type client server mean (s) stdev
IDENTIFY 80486 80486 0.072 0.0018
STATUS 80486 80486 0.077 0.0050
STOP 80486 80486 0.071 0.0033
IDENTIFY 80486 Pentium 0.052 0.0021
STATUS 80486 Pentium 0.051 0.0010
STOP 80486 Pentium 0.051 0.0024
IDENTIFY Pentium 80486 0.053 0.0044
STATUS Pentium 80486 0.051 0.0015
STOP Pentium 80486 0.049 0.0037

Table 10.5: Message execution times with JIT compiled application using kaffe.

time for a message which does not require acknowledgment is about the 60-70% of

the time required by acknowledged messages to perform a round trip.

10.6 Simulation tests

In the previous set of tests an assessment of the performance of the communication

system was carried out. Only two devices were involved in the transactions. In

order to simulate a realistic scenario which represents the arrangement of a factory

model, the computers were interconnected together in a network. A series of test

Chapter 10: System Analysis 208

message client server Interface client
traverse time

Interface server
traverse time

message client server

mean (s) stdev mean (s) stdev
IDENTIFYjreq Pentium 80486 0.019 0.0025 0.027 0.0023
IDENTIFY_ans Pentium 80486 0.005 0.0008 0.012 0.0016
IDENTIFYjreq 80486 Pentium 0.045 0.0058 0.010 0.0013
IDENTIFY_ans 80486 Pentium 0.011 0.0006 0.003 0.0002

Table 10.6: Overhead introduced by the Interface during the transmission process.

method interval (s) best worse reference
mean (s)

method interval (s)
mean (s) stdev mean (s) stdev

reference
mean (s)

Java 2.00 0.097 0.0116 0.115 0.0121 0.098
Java 1.00 0.103 0.0151 0.110 0.0150 0.098
Java 0.50 0.097 0.0135 0.109 0.0216 0.098
Java 0.10 0.108 0.0167 0.113 0.0295 0.098
Java 0.05 0.109 0.0239 0.135 0.0267 0.098
Java nil 0.134 0.0389 0.150 0.0364 0.098
kaffe 2.00 0.054 0.0136 0.067 0.0390 0.052
kaffe 1.00 0.054 0.0136 0.059 0.0343 0.052
kaffe 0.50 0.061 0.0444 0.074 0.0186 0.052
kaffe 0.01 0.064 0.0162 0.074 0.0220 0.052
kaffe 0.05 0.065 0.0191 0.075 0.0211 0.052
kaffe nil 0.070 0.0160 0.075 0.0198 0.052

Table 10.7: System performance under increasing load (decreasing time between
messages).

aimed to assess the capabilities and monitoring the behaviour of the communica

tion system in special conditions were performed.

A subsystem common to all the devices is the Poller, the module whose task

is to generate periodical queries. These messages enable monitoring the activity of

the system and provide information for the correct operation of the plant. Tests

have shown that the operations associated with the poller for sending a message

do not add a noticeable overhead on the transmission time of messages.

A further experiment consisted in assessing the performance of the system un

der increasing load. This was done by connecting to an isolated network four 80486

Chapter 10: System Analysis 209

method message pri mean (s) stdev reference
mean (s)

java STOP high 0.098 0.0134 0.097
java UPLOAD-FILE normal 0.395 0.0617 0.325
java IDENTIFY low 0.183 0.0608 0.098
kaffe STOP high 0.105 0.0577 0.051
kaffe UPLOAD-FILE normal 0.262 0.0518 0.214
kaffe IDENTIFY low 0.109 0.0590 0.052

Table 10.8: System performance under priority race condition with a file of 100
bytes downloaded from the database

db file
transfer

message pri mean (s) stdev reference
mean (s)

100 STOP high 0.098 0.0134 0.097
100 UPLOAD-FILE normal 0.395 0.0617 0.325
100 IDENTIFY low 0.183 0.0508 0.098
1000 STOP high 0.102 0.0130 0.097
1000 UPLOAD-FILE normal 0.467 0.0541 0.351
1000 IDENTIFY low 0.191 0.0559 0.098
10000 STOP high 0.108 0.0134 0.097
10000 UPLOAD-FILE normal 0.611 0.0702 0.472
10000 IDENTIFY low 0.192 0.0899 0.098
30000 STOP high 0.107 0.0146 0.097
30000 UPLOAD-FILE normal 0.787 0.0958 0.648
30000 IDENTIFY low 0.184 0.0850 0.098
60000 STOP high 0.108 0.0296 0.097
60000 UPLOAD-FILE normal 0.974 0.1086 0.851
60000 IDENTIFY low 0.171 0.0931 0.098
90000 STOP high 0.104 0.0331 0.097
90000 UPLOAD-FILE normal 1.172 0.1354 1.018
90000 IDENTIFY low 0.161 0.1057 0.098

Table 10.9: System performance under priority race condition with a file of different
sizes using interpreted Java

machines acting as clients and requesting a service (IDENTIFY) all at the same time

to the manufacturing monitoring system running on the Pentium. The time in

terval between two consecutive requests was set as a parameter of the experiment.

Each request was repeated 20 times. The results of these tests are shown in table

Chapter 10: System Analysis 210

10.7. The best and the worst performance among the four clients is reported. Ref
erence times measured when only one machine is accessing the server are displayed
for reference. For the interpreted Java version the time between the messages does
not affect the response time up to interval times of 0.5 seconds, and there is a dif
ference of about 10% between the reference time and the recorded time. However
for messages with smaller cycles the standard deviation, and the average, increase.
The results associated with Kaffe show a less defined trend since the mean increases
with the decreasing time interval, but the standard deviation is quite erratic.

Another test consisted in verifying the capacity of the system to deal with mes

sages of different priorities at the same time, assessing their completation times.

This is a typical race condition where tasks with different priorities compete for

the same resources. Three computers acted as clients requesting services from the

server. Messages were continuously generated in order to increase the possibility

of concurrent requests with different priorities within the server. The results of the

test are reported in table 10.8. In the case of interpreted Java it is possible to see

that the race for resources does not affect high priority messages, it slows down file

transfers by about 30 % and doubles the average time needed for a general message

to be executed. The large value of the standard deviation indicates variability of

the transmission times. In the case of the JIT compiled Java high priority messages

take, on average, the same amount of time to return to the low priority ones; and

this time is about double that of the reference one. Since the Bytecode used during

the test is the same it is likely that the problem of this unexpected behaviour is

located inside the Kaffe virtual machine.

In the previous test the data file transmitted was set equal to 100 bytes. In

order to assess how the size of the data transfer affects the response time of the

server, the experiment was repeated with file transfers of different sizes. The test

was performed only with the interpreted Java due to the problems that Kaffe re

vealed in the previous test. The results are shown in table 10.9. It is possible to

notice that the high priority messages do not suffer any appreciable delay related

to the size of the data program transferred. Database transmissions are always

slowed down by concurrent presence of high priority messages. On the other hand

C h a p t e r 10: Sys t em Analys i s 211

Skiving Gluing Placing Stitching

2 s 1.5 s
2.5 s
to
6 s

8 s
to
25 s

2 s
2 s

3 s
1.5 s

2.5 s 2.5 s
to
6 s

4 s
8 s
to
25 s

2 s 1.5 s
2.5 s
to
6 s

8 s
to
25 s

2 s 1.5 s
2.5 s
to
6 s

8 s
to
25 s

Start End

Figure 10.4: Processing times associated wi th the simulated manufacturing cell.

the delay of the low priori ty messages first increases, but then decreases. The rea

son of this phenomenon is likely to be due to the fact that the database transfers

become less frequent and therefore they are less likely to interfere wi th low prior

i ty messages. However i t is possible to see that the standard deviation associated

w i t h the low messages increases. This means that even i f they take on average

less t ime to return, the required time has larger fluctuations, indicating possible

interferences w i t h concurrent database file transfers.

10.7 Manufacturing simulation

The last experiment involved the simulation of a manufacturing environment con

trolled by the designed system. I t was decided to simulate the cell for the assembly

of the first stages of the uppers of the shoes which was described in section 4.6.

However the results can be easily extended to the other cell as well. Each of the

80486 machines connected in the local network simulated a manufacturing device

while the Pentium acted as manufacturing control system. A set of realistic pro

cessing times were used in the simulation (see figure 10.4).

The aim of the simulation was to assess the capability of the system to share

information about the component flow, the capacity of the Production Act iv i ty

Control, of gathering a representation of the status of the cells, and of the possi

b i l i ty of providing remote storage for the data programs.

The simulation starts when the name and the quantity of the components to

be processed are inserted in the Production Control System. The schedule is gen-

C h a p t e r 10: Sys tem Analys i s 212

erated, and then the Dispatcher takes control of sending the scheduled jobs in
production. When i t is t ime for a job to enter in production, the Production Man
agement system sends a WRITE message to all the devices informing them of the
identi ty of the component, its arrival time and processing time. Every device in
serts this information in the list of the incoming Jobs. A t soon as there is an entry
in the incoming job lists each device retrieves i t and reads the related information.
I t waits in the IDLE status unt i l the time of the component's arrival. When this
t ime is reached the device changes its status f rom IDLE to OPERATING and informs
the Moni tor ing system of this fact using a UNSOLICITED_STATUS message. Then
i t sleeps for a t ime equal to the processing time of the component. Afterwards i t
changes its status to IDLE, and informs the Control system of the change of the
status and of the t ime spent on the component using a WRITE message. Then i f
the device is not the last one in the cell i t sends a WRITE message to the follow
ing device informing that the component has been successfully processed and i t is
approaching. Then the next entry of the incoming jobs list is retrieved and the
cycle restarts. When a device receives notification that a new component has been
placed in production i t checks to see i f the program data for its processing is al
ready present in memory. I f this is not the case the database is queried in order
to retrieve this information. During the operations the Polling system included in
the Management System is active, periodically queries the status of the connected
devices.

Dur ing the simulation the times associated wi th the different messages were

recorded. The results were taken running a simulation where 30 pieces belonging

to 7 different components were batched in the input tray of the system. Three

of the components were single,while the other four had to be processed in pairs

to generate the required output. Since no specific program data was incorporated

into the database and for files up to 7000 bytes the processing time is almost in

dependent f rom size of the message, generic queries to the database and data file

transfers of 1000 bytes were performed when a file request was received. I t was

not possible to t ime the INFORMATION_REPORT message since i t does not require

acknowledgment.

C h a p t e r 10: Sys tem Analys i s 213

I t was decided to run the simulation using only the interpreted version of Java

since the tests in the previous section suggested that Kaffe is not able to handle

correctly incoming messages wi th different priorities.

The average t ime needed by each of the stations to send a WRITE (0PERATING_TIME_DA1

to the the Production Management System were monitored. This messages informs

that a piece has successfully completed, together wi th the time spent to process i t .

The results follow in table 10.10.

The values measured are comparable on all the devices. The time required to

message type client server mean (s) stdev reference
mean (s)

WRITE 80486 Pentium 0.145 0.0338 0.106
WRITE 80486 Pentium 0.156 0.0409 0.106
WRITE 80486 Pentium 0.160 0.0432 0.106
WRITE 80486 Pentium 0.147 0.0390 0.106

Table 10.10: Average time to send a WRITE message

perform the operation is about 50% greater than the reference value.

The results of the time required by a device to load a data file are reported

below in table 10.11.

These messages have a higher priori ty in comparison wi th the others used during

message type client server mean (s) stdev reference
mean (s)

UPLOAD 80486 Pentium 0.348 0.0940 0.343
UPLOAD 80486 Pentium 0.332 0.0643 0.343
UPLOAD 80486 Pentium 0.368 0.0880 0.343
UPLOAD 80486 Pentium 0.375 0.0573 0.343

Table 10.11: Average time to perform an upload operation of a data file

the simulation, and their times are similar to those taken during the test of the

performance of the database wi th only one client, the reference mean.

The messages WRITE (APPROACHING_COMPONENT), which are sent f rom one device

to the following one for reporting that a component has been successfully processed

and i t is approaching, showed the performance reported in table 10.12.

C h a p t e r 10: Sys tem Analys i s 214

A n increase in the average time required to execute the service is observed, but

message type client server mean (s) stdev reference
mean (s)

WRITE 80486 80486 0.165 0.0215 0.143
WRITE 80486 80486 0.190 0.0324 0.143
WRITE 80486 80486 0.172 0.0314 0.143

Table 10.12: Average time to send a WRITE message

i t is closer in value to the reference time compared to the other WRITE messages

performed by the devices. This is to be expected because these other devices are

not subject to the same level of load as the Control Management System.

The t ime required by the Production Management System to send a message

to a station to inform i t that a new component has been put in production follows

in table 10.13.

I t is possible to see in the first line that the performance is quite poor in com-

message type client server mean (s) stdev reference
mean (s)

random
generator

WRITE Pentium 80486 0.288 0.0952 0.108 absent
WRITE Pentium 80486 0.193 0.0583 0.108 present

Table 10.13: Average time to send a WRITE message

parison w i t h the reference value. This is because as soon as the system starts

informing the devices that a new component has been placed into production, i f

the device does not have the necessary data program i t immediately requests the

file f rom the database. These database requests may produce delays in the other

tasks. This fact is the cause of the large value of the mean and of the standard

deviation associated w i t h the WRITE instruction. However i f the devices which need

to retrieve a program f rom the database wait for a random interval between 0 and 2

seconds before making the query an improvement in the average time of the service

is reported. The introduction of this random wait t ime improved the performance

of the database response times of about 10%.

Final ly the t ime required by the poller for servicing a STATUS message is shown

C h a p t e r 10: Sys t em Analys i s 215

in table 10.14.

This value is smaller than the one required by the WRITE message since this service

message type client server mean (s) stdev reference
STATUS Pentium 80486 0.147 0.0452 0.105

Table 10.14: Average time to send a STATUS message

is less likely to be executed at the same time as a database request and therefore

delays are less frequent .

10.8 Conclusions

The testing process carried out in this chapter was aimed to provide an incremental

analysis of the performance of the system. First an assessment of the performance

of the basic component of the application (the TCP protocol and the database)

was performed. Then the times associated wi th single messages and groups of

messages were taken. Finally a complete simulation of a workcell was carried out.

This approach allowed a better understanding of the relationships between the

components and provided guide for explaining results on the base of the knowledge

of the previous behaviour in simpler and more controlled conditions.

The results of the workcell simulation reported here show the expected execution

times of the different messages required by the system to perform its activities.

The set of messages used is realistic and match the communication requirements

proposed by B U . In general i t is possible to see that the messages f rom the computer

hosting the Process Control System and the Database suffer f rom a larger delay.

This suggests that these must be implemented on a fast platform, or on two different

platforms. However in the second case all the accesses to the database made by the

control system would need to be performed using query messages (the definition of

a subcode of the WRITE message would serve the scope). Otherwise a distributed

database could be employed. The time associated wi th the messages is in all the

C h a p t e r 10: Sys t em Analys i s 216

cases in the order of one second. This is believed to be compatible wi th the system
time requirements. However in the case of error messages i t has been seen that
they are always promptly executed and therefore a response in the order of 0.1
seconds is to be expected.

In future the use of J IT compilers and Java compilers wi l l contribute to boost

the performance of Java applications. The tests reported in this chapter confirm

the value of using these techniques for improving speed, but they revealed some

problems as well. However i t is important to remember that the present versions

of Kaffe and Toba are st i l l in their beta stage and wi l l be surely improved in future.

The implemented manufacturing support system can be modified to incorporate

a large range of system models and configurations. Thus i t provides a reusable

framework which can be used for the design and implementation of support systems

for a wide range of manufacturing workcells present on the shopfloor, reducing the

development time and costs.

Chapter 11

Conclusions

11.1 Introduction

The rapid flow of information in an industrial environment is essential in order to

achieve complete integration and control of the manufacturing processes. Never

theless at present the major i ty of devices are st i l l used as stand alone machines,

and they do not take advantage of the possibilities offered by a communication

l ink to improve the manufacturing process. The main problem is that the opera

t ional control of an automated manufacturing system is a complex activity which

requires the interaction and coordination of different subsystems. A t present the

largest part of the software for achieving automated manufacturing is rewritten

for each application. This requires the custom specification, design and develop

ment of the overall control support system. This imposes high development costs

which are not matched wi th immediate evident benefits. In addition the develop

ment of custom applications introduces the dependency of the automated system

on a specific organization or vendors. These factors do not facilitate the spread

of integrated control systems in manufacturing environments. This research has

recognized these problems and has analyzed the issues connected wi th the imple

mentation of an integrated control system for manufacturing applications. As a

result a simple, modular, inexpensive and portable system was proposed and im

plemented on a simulated workcell. The area of footwear manufacturing was an

C h a p t e r 11: Conclusions 218

appropriate example to use for the work as recently an increasing number of so
phisticated devices, which could take advantage of a network connection, have been
developed or introduced on the market

11.2 An integrated control system for automated

manufac t ur ing

A integrated control system for manufacturing applications is essentially composed

of four elements. The devices, the control system which monitors and coordinates

the industrial machines, the database which provides the support information to

the whole system, and the communication system which allows the flow of infor

mation among the connected parts.

The research carried on during this project has shown that the activities of

the control system are dependent on the specific process controlled. Similarly the

software needed by a device in order to perform its activities is essentially ma

chine specific. However the analysis of a general manufacturing cell has identified

w i t h i n these components some modules which are application independent. This

means that i t is possible to build modular software which is able to confine the

machine specific segments in specific segments of code. This allowed the definition

of the essential modules required in order to implement a manufacturing support

system, and highlighted their interrelationships. During all these stages only few

impl ic i t assumptions about the final cell and the parts produced were made. The

design stage resulted in the definition of fiexible software which could be adapted

to the particular needs of each connected node. This is useful in the case of cell

reconfiguration. Since some software always needs to be replaced every time a new

machine is introduced i t makes better commercial sense to implement modular sys

tems which allow upgrades wi th the required functionality [Sar93 .

The design of the database system showed that i t is necessary to have clear

specifications of the system for properly defining the structure and the relation

ships among the structures storing the relevant information. However the Object

C h a p t e r 11: Conclusions 219

Oriented design approach showed that i t is possible to define a database system
which allows flexibility and future expansion without the need of major alterations.

Once the devices, the production control system and the database had been suc

cessfully modelled, the communication system required for their interconnection

had to be designed. Analyzing the problem of defining a communication protocol

for industrial environments i t was possible to identify a series of stages and guide

lines necessary for the development of a successful design. This knowledge has been

defined in a framework for rapid protocol development, RPD, which, starting f rom

the definition of the problem, allows the complete development of a communication

protocol in a series of incremental steps. The approach allowed a structured design

of the communication system reducing the time required and improving the result.

A t the early stages of the protocol development, the selection of the communi

cation system had to be taken. The presence of embedded PCs inside the industrial

machines suggested the possibility of using a Ethernet network connection. This

L A N is the almost ubiquitous way used for connecting PCs together. A n extensive

survey highlighting the strengths and limitations of Ethernet in industrial envi

ronments was performed. This was followed by a series of tests which highlighted

the performance of Ethernet used in conjunction wi th the Internet protocols on

a series of different platforms. This suggested Ethernet as a feasible alternative

to fieldbusses. The advantages of this network include speed, reliability, diffusion,

and ease of use. The tests performed suggested that even i f i t is not inherently

deterministic, i t could be used in real-time applications in the case of short, l ightly

loaded networks. The differences in performance of the protocols and their unex

pected behaviour suggest that testing procedures are essential for validating the

proper behaviour of the selected protocols. Ethernet proved to have several advan

tages when compared wi th the other fieldbusses, and i t could provide a valuable

alternative to fieldbusses transmission system in all the cases where complex in

dustrial machines embedding PCs are present.

Af te r the selection of the lower layers of the protocol the upper ones were de

veloped. The proposed framework allowed the definition of a simple, flexible and

expandable communication protocol, where a l imited number of messages, orga-

C h a p t e r 11: Conclusions 220

nized in a hierarchical structure, was defined. The whole process led to the defi
n i t ion of a protocol based on existing technology which could be used to fu l f i l the
requirements of the footwear manufacturing industry. However small alterations
and expansions would make i t suitable in other areas of manufacturing automation
as well.

Starting f rom the definition of the classes and relationships and wi th in the con

straints imposed by the defined transmission protocol, the whole manufacturing

support system was developed. The database development did not present any

problem and showed the potential of Object Oriented databases in organizing the

support information for a manufacturing system. The decision of selecting Java

to implement the other modules of the manufacturing support system proved the

potential of the language in manufacturing applications. A n extended analysis of

Java for the implementation of real world applications highlighted the advantages

and the l imitations of the current version of Java and located areas where future

developments are necessary. The implementation of the system in this language

confirmed the impression that Java could become a promising language for the

implementation of manufacturing applications. In particular the platform inde

pendence feature of the language allows the immediate porting of applications to

systems w i t h diflFerent features. The object oriented features and the modularity

of Java allow the development of flexible programs. In addition since Java appli

cations are made by modules (f i l e . c l a s s files) which are loaded when needed,

i t is possible to modify them without the need of altering the whole application,

reducing the efforts required for updating the software. The research showed that

the main current l imi ta t ion of Java is its inability to directly access the hardware.

However, recently. Sun Microsystems has announced the release of a new version of

Java designed for embedded applications. Although the f u l l specifications are not

yet known, i t is likely to offer features for addressing the hardware and real-time

support.

The test of the system has validated the approach used for the definition of

the manufacturing support system and the transmission protocol. The manufac

tur ing cell simulation has shown that the times associated wi th the manufacturing

C h a p t e r 11: Conclusions 221

support system operation are compatible for its use in real applications where the
response times are not too t ight. When the application was executed using a J IT
Java compiler a considerable improvement of the performance of the system was
found. This suggests a future wider use of alternative approaches to interpreted
Java in order to improve system performance.

The manufacturing support system were tested wi th a particular workcell, but

its flexible structure allows i t to be adapted to control any workcell for the footwear

assembly, and to other types of industrial processes as well.

The use of Ethernet and Internet protocols allowed the definition of a simple,

cheap and flexible transmission protocol, and the decision to use Java for imple

menting the system conferred similar features to the manufacturing control system

as well.

This thesis has shown that i t is possible to implement an efficient, simple,

flexible and inexpensive manufacturing control system based on readily available

equipment, and taking advantage of the features that an innovative programming

language like Java can offer.

This research has developed an original framework for the implementation of

an adaptable communication and control system for manufacturing applications

bringing together a broad range of disciplines and novel technologies in a new

way. Dur ing this process several problems have been encountered and original so

lutions proposed. A novel approach for solving a particular scheduling problem

has been developed. Promising preliminary research which showed the possibility

of transferring glue using electrostatic deposition has been carried out. Finally a

useful technique for the development of transmission protocols, especially suited to

manufacturing applications, has been designed.

11.3 Future work

The current version of the system has been implemented and tested on a set of

networked computers. The natural development of the project would be to transfer

the proposed system to a real manufacturing cell. The "BU Rink" would represent

C h a p t e r 11: Conclusions 222

the ideal target for this test, and real data on the performance of the system could
be gathered. I t is suggested that during this porting activity the new features
offered by the new versions of Java should be included in the software, in order
to increase the robustness of the code. For example i t would be useful to insert
a t imeout to the sockets which are waiting for reply messages in order to allow
recovery procedures in the case of message loss.

The decision to divide the system in two modules, the Device and the Interface

was taken since Java is not yet able to directly address the hardware. However this

is likely to change in future wi th the introduction of the embedded version of Java.

I f the language offers sufficient support for accessing the hardware the integration

of the two modules into a single unit could become feasible, reducing complexity

and improving performance.

Appendix A

Performance Measurements

A . l Introduction

During the research the performance of TCP and UDP implementations of several

operating system have been evaluated. Due to the impossibility of including all the

results in the main body of this thesis some of the more meaningful graphs have

been inserted in this appendix.

The test of the two protocols was performed always using pairs of identical

machines, so as to be able to compare the differences in performance of the trans

mission protocols w i t h different operating systems on platforms wi th different pro

cessors and architecture.

The details of the computers and operating system used follow:

• ESDI BSD/OS 2.0 on Intel 80486DX2 66 MHz wi th 32 Mbytes R A M , 1 Gbyte

SCSI H D , WD8003 Ethernet card;

• ESDI ESD/OS 2.1 on Intel 80486 33 MHz wi th 8 Mbytes of R A M , 1.2 Gbytes

I D E H D , WD8003 Ethernet card;

• H P - U X A.09.05 A9000/710 on a HP Apollo Series 700 (HP 710), w i th 16

Mbytes R A M , custom Ethernet card;

A p p e n d i x A : Performance Measurements 224

• Linux 1.2.13 on Pentium 75 MHz wi th 16 Mbytes of R A M , 1 Gbyte EIDE
H D , SMC Ul t ra Ethernet card;

• Linux 1.2.13 on on Intel 80486 33 MHz wi th 4 Mbytes of R A M , 200 Mbytes

I D E HD, WD8003 Ethernet card;

• Linux 1.2.13 on on Intel 80386 20 MHz wi th 4 Mbytes of R A M , 41 Mbytes

I D E H D , WD8003 Ethernet card;

• Linux 2.0.29 on Intel 80486 33 MHz wi th 8 Mbytes of R A M , 1.2 Gbytes I D E

H D , WD8003 Ethernet card;

• SunOS 4.1.3 on a Sun Microsystems IPC workstation (25 MHz) wi th 24

Mbytes R A M , custom Ethernet card;

• Solaris 2.4 (SunOS 5.5.1) on a Sun Microsystems IPC workstation (25 MHz)

w i t h 24 Mbytes R A M , custom Ethernet card;

• Solaris 2.4 (SunOS 5.5.1) on a Sun Microsystems Sparc Ul t ra 1/140 (140

MHz) , 64 Mbytes R A M , 2 Gbytes HD and custom Ethernet card;

The experiments w i t h the Linux operating system and ESDI BSD/OS 2.1 were

performed on an isolated network. A l l the other test have been executed during

the night at times when the overall network usage was very low, on unloaded sys

tems (the only user's processes active on the platform were the ones involved wi th

the test program) in order to minimize the effect of the local traffic. For every

message length, 100 trials were performed (in sets of 25 at different times during

the night to reduce the effects of temporary traffic for non-isolated networks). I t

was decided to use the default values associated wi th the protocols. In order to

avoid difficulties of clock synchronization between the different machines used in

the experiments, all the measurements were made by taking the "round t r ip time"

(double transit time) of the data f rom host A to host B and back again.

The t iming procedures for both TCP and UDP protocols are very similar, due

to the intrinsic resemblance of the two protocols. The software used for taking the

measurements consists of two programs; the first one runs on the server machine

A p p e n d i x A : Performance Measurements 225

and the second one on the client. The software on the server creates a socket and
binds i t to a pre-defined port number and waits. The client software, for each
message sent, creates a socket, binds i t to the same port number of the server, and
sets up the buffer to accommodate the incoming data. Then the timer starts, and
the client sends the message to the server, which then sends i t back. When the
whole message has been received by the client, the timer is halted and the delay is
calculated. Subsequently, the buffers are freed and the sockets closed. The cycle
repeats itself again for the next transmission.

A. 2 Results

I n figure A . l and A.2 the performance of the UDP and TCP protocol on different

platforms running Linux 1.2.13 is reported. I t is possible to notice that the actual

performance of the protocol is strongly influenced by the speed of the processor.

I n addition i t is possible to notice that the round trips times are almost always

repeatable. A f u l l comment on these graphs is presented in [BP96 .

I n figure A.3 a comparison of the implementation of the TCP protocol of Linux

1.2.13. and 2.0.29 on identical platforms (with the exception of the R A M) is drawn.

I t is possible to notice how the new version of the operating system achieves greater

performance. I t is possible to reach this conclusion observing the round t r ip times

for small packets, where the difference in memory between the two computers is

not important since all the OS can be maintained in R A M and no swapping is

necessary. However i t is possible to locate three irregularities associated wi th the

graph produced by Linux 2.0.29. As already mentioned in section 3.4 the problem is

associated w i t h buffering strategies since as soon as the Nagle algorithm is disabled

the problem disappears. In figure A.4 i t is possible to see how the throughput of

Linux 1.2.13 on the Pentium is dependent on the actual size of the message, since

i t increases steadily unt i l 50 Kbytes.

In figure A.7 and A.8 the performance of the Solaris and SunOS operating sys

tem on different platforms is shown. I t is possible to notice that the UDP graphs on

A p p e n d i x A : Performance Measurements 226

the Sparc IPC workstations are quite scattered, while on the Sparc Ult ra the graph
is consistent. A similar behaviour is visible on the TCP graphs. Solaris on Sparc
IPC performs better than SunOS for small packets, but i t presents a much more
scattered behaviour for large packets. This suggests that some of the problems
related to the scattering are platform dependent due to kernel activity. The Sparc
Ul t r a is a powerful, resource rich platform in comparison wi th the Sparc IPC, and
kernel act ivi ty takes a minor fraction of the whole CPU time.

I n figure A.5 and A.6 the performance of two versions of BSD/OS on compara

ble platforms is reported. I t is possible to notice that while there are an abundance

of scatter points in the UDP graph associated wi th BSD/OS 2.0, this problem is

not evident in BSD/OS 2.1. However the TCP graph of both the versions of the OS

presents the same peculiar behaviour. The irregularity in the BSD/OS 2.0 graph

associated w i t h the packets of 200 bytes has been associated wi th the buffering

strategy of the OS since i t disappears when the Nagle Algor i thm is disabled.

In order to t ry to locate more precisely the source of the problem of the irregu

larities of BSD/OS more than 500 trials wi th packets of 4000 bytes were performed.

Timers inserted in the client and server side of the test program provided the read

ings for assessing the time spent by the system to perform each of the operations.

The set up t ime (which include the time used by the system for creating a new

T C P connection, sending and acknowledging the packet wi th the incoming message

size), the send and receive times and the round t r ip time have been recorded. In

addition the traffic on the (isolated) Ethernet had been monitored wi th the help of

an oscilloscope. The traces of the oscilloscope are presented in figure A.9 to A.15,

which depict the most common patterns encountered during the experiments. First

of all i t is possible to notice the variety of graphs recorded. This fact indicates that

the process of sending packets is not deterministic and several effects may be in

volved during the transmission. However i t has been noted the set up time is always

constant and equal to 24 ms on the client side and 4 ms to the client side. In the

server side only part of the process is timed since the main server program starts

a new process to service the incoming TCP message, and then returns to listen for

new connections. The timers are located in the child process, and therefore i t is

Appendix A: Performance Measurements 227

not possible to time the first stages of the connection which are executed outside
this code. The constant set up time indicated is an expected result since i t has
been noted that for small packets the round t r ip time is always deterministic. I t
is possible to see that the sendO function always returns before the packets are
actually sent along the network. Since the sendO returns almost immediately i t
looks as i f the time associated wi th the receive action on the client side is long.
However i t is possible to notice f rom the timings and the graphs that the receive
funct ion always returns wi th in 5-10 ms after the transit of the packet along the
network. This strongly indicates that the send part of the TCP protocol is respon
sible for the problem. Since i t is possible to notice that the distance between the
packets in the oscilloscope traces is sometimes repeated i t indicates that several
effects contribute to the delays of the send function. For example the first part
of the traces in graphs A.9 and A. 13 are identical, while the second part of graph
A. 13 is the same as the first part of A. 10. The inconsistency of the traces makes
extremely diff icul t to locate the cause of the unexpected performance of TCP, and
their repeating patterns suggest that more than one cause may be present.

Appendix A: Performance Measurements 228

0.1

0)

E

T3
C 3
O

DC

0.01

0.001

0.1

Linux 1.2.13 80386)

0)

E

•o c
o
DC

0.01 --

0.001

100

0.1

E

. 9 - 0.01
I -
•D
c
o
DC

0.001

1000 10000
_1 1 1 1 L _ L

Linux 1.2.13 (80486)

- 1 1 1 1 \ 1 t—T—j

1000
- 1 — 1 — I — t -

10000

*
* *

i * * Linux 1.2.13 (Pentium)

-T 1 1 1 1 — I — i — r

100 1000
UDP message length (bytes)

10000

Figure A . l : UDP transmission protocol performance on three different platforms
running Linux 1.2.13

Appendix A: Performance Measurements 229

10

^ 0.1
c

^ 0.01 i

0.001 i

_ l • I I I I I _I I t I I 111 _1 ' 1 I • I •

oo I 0"

.0^

8 8 Linux 1.2.13 (80386)

100 1000
I 1 M I I 1 1 1 I I I I H 1 1 1 I 1 I I I

10000 100000 1e+06

10

E

S 0.1

^ 0.01

0.001

I 111 1_

Linux 1.2.13 (80486)

I I I I M I 1 1 — r -

100 1000 10000

10

CD

E

S 0.1
c

^ 0.01

0.001

'

T 1 1 1 I I I I [1 1 1 I I I I I

100000 1e+06
J t I ' • I I 11 I I 1 ' ' 1 1 1

Linux 1.2.13 (Pentium)

~T I T] \ 1 1 I I I M L ^ 1 1—I I I I I'l I 1 1—I I 1 I I I I 1 r

100 1000 10000 100000 1e+06
TCP message lengtin (bytes)

Figure A.2: T C P transmission protocol performance on three different platforms
running Linux 1.2.13

Appendix A: Performance Measurements 230

Linux 1.2.13

0.001 T ' ' I

100 1000 100001000001e+06

TCP message length (bytes)

Linux 2.0.29 0.01

0.001 •! • •'•'••'i • " I

100 1000 100001000001e+06

TCP message length (bytes)

Figure A.3: T C P transmission protocol performance of Linux 1.2.13 and 2.0.29 on
Intel 80486

1e+06

(/5 0)

Q-

•§> 100000
o

10000 4 t

Linux 1.2.13

100 1000 10000 100000

TCP message length (bytes)

1e+06

Figure A.4: Throughput of the Linux operating system as a function of the message
size

Appendix A: Performance Measurements 231

0.01 H

o

0.001

o

1

o »

o O

I ^ BSD/OS 2.0

0.01

0.001

BSD/OS 2.1

100 1000 10000

UDP message length (bytes)

100 1000 10000

UDP message length (bytes)

Figure A.5: U D P transmission protocol performance of BSD/OS 2.0 and 2.1 on
Intel 80486

•I 0.1 4

o

0.01

0.001

BSD/OS 2.0

10

0.1

0.01

111 1—I I 11 m l

I ' k l M 111

BSD/OS 2.1

0.001 ' I ' '

100 1000 100001000001e+06 100 1000 100001000001e+06

TCP message length (bytes) TCP message length (bytes)

Figure A.6: T C P transmission protocol performance of BSD/OS 2.0 and 2.1 on
Intel 80486

Appendix A: Performance Measurements 232

•S 0.01

T3
C

O
DC

0.001 -i
Sparc IPC (SunOS

100 1000 10000

CD

1 0.01
T3
c
o

DC

0.001 -i

- 1 1 1 L _ i -

100

CD

E

T3
c
O
DC

0.01

0.001 I

A A A A A

i S 2 ^ ^ S « i

I 11
Sparc IPC (Solaris)

1000 10000

Sparc Ultra (Solaris)

100 1000
UDP message length (bytes)

10000

Figure A.7: UDP transmission protocol performance of SunOS and Solaris on
different platforms

Appendix A: Performance Measurements 233

10

E

^ 0.1

^ 0.01

0.001

o o
o

Sparc IPC (SunOS)

100

CD

10

1

^ 0.1
c
O

0.001
100

10 ^

• I I I 1 l - [

1000
J -

"T 1—I I I I I I 1 1 1 — I ' l I I I

10000 100000 1e+06

. lid

. :
A

A
A A

A
A A

: 1 ,nuS. » ' Sparc! PC (Solaris)

0
E 1

^ 0.1
3 o

DC 0.01

0.001 i

1000 10000 100000 1e+06
I I ' I I I I I r I ' ' I I 1 I 1 I 1 I I I I I

Sparc Ultra (Solaris)

—1 1 — I — i - i r i~r[1 1 — r ' 1 i i i 11 i i i i i i i 11 i -

100 1000 10000 100000
TCP message length (bytes)

1e+06

Figure A.8: T C P transmission protocol performance of SunOS and Solaris on dif
ferent platforms

Appendix A: Performance Measurements 234

T e k S E H S Single Seq 2 k S / s
FP-1 1

W i l l

n " i i J l

1 V 50 ms

F u n c t i o n
V Bars

T i m e
Uni ts

Seconds

CPil

69ms'
26ms

J - 6 0 0 m V

Cursor
Funct ion

Of f

H Bars

Paired

Figure A.9: Client; setup: 24, send: 3, rec: 66 r_trip: 69 - Server; setup: 4, rec:
28, send: 3

T e k a E I S S Single Seq 2 k S / s
--

I

IB

1 V

F u n c t i o n
V Bars

T i m e
Uni ts

Seconds

M 50 ms Chi

202mis
224 ms

J - 6 0 0 m V

Cursor
F u n c t i o n

O f f

H Bars

Paired

Figure A.10: Client; setup: 23, send: 3, rec: 206 r_trip: 209 - Server; setup: 4, rec:
153, send: 3

Appendix A: Performance Measurements 235

T e k S S E I S ingle Seq 2 k S / s
pp.! 1

iE3

W i l l i 1 V

F u n c t i o n
V Bars

T ime
Uni ts

Seconds

50ms Chi

118ms
140ms

J- - 6 0 0 m V

Cursor
Func t ion

Of f

H Bars

Paired

Figure A.11 : Client; setup: 23, send: 3, rec: 121 r_trip: 124 - Server; setup: 4,
59, send: 3

rec:

T e k S E H S Single Seq 2 k s / s
W

ED

mm 1 V

F u n c t i o n
V Bars

T ime
Uni ts

Seconds

M 50n}is

I

Chi

292ms
23ms:

I
I

J- - 6 0 0 m V

C u r s o r
Func t ion

O f f

H Bars

Paired

Figure A.12
190, send: 4

: Client; setup: 24, send: 3, rec: 298 r_trip: 301 - Server; setup:
L

4, rec:

Appendix A: Performance Measurements 236

T e k S E r a Single Seq 2 k S / s
IT-; -

IB

W i l l

|)r*><W«i-wiN»««-ii*(W*!

1 V

F u n c t i o n
V Bars

T i m e
Uni ts

Seconds

M 50 ms Chi

162ms
185ms

J- - 6 0 0 m V

Cursor
Funct ion

O f f

H Bars

Paired

Figure A. 13: Client; setup: 24, send: 3, rec: 166 r_trip: 169 - Server; setup: 4, rec:
27, send: 3

T p k H B T a Single Sea 2 k S / s

I E

W i l l 1 V

F u n c t i o n
V Bars

T i m e
Uni ts

Seconds

r

M 5 0 m s Chi

193ms
217ms

J- - 6 0 0 m V

C u r s o r
Func t ion

O f f

H Bars

J .

Paired

Figure A . 14: Client; setup: 24, send: 3, rec: 199 r_trip: 202 - Server; setup: 4, rec:
99, send: 3

Appendix A: Performance Measurements 237

[B

mm

F u n c t i o n
V Bars

1 V

T ime
Uni ts

Seconds

50 ms Chi

240m's
264 ms

J- - 6 0 0 m V

Cursor
Funct ion

Of f

H Bars

Paired

Figure A. 15: Client; setup: 24, send: 3, rec: 243 r_trip: 247 - Server; setup: 4, rec:
113, send: 3

Appendix B

Mathematical details of the

scheduling algorithm

The following notation has been used:

n number of jobs to be scheduled

m number of machines in the flow shop

tij processing t ime for the i t h job on the j t h machine

Fm{i]) total flowtime for job i followed by job j on m machines

F^{ij) simplified flowtime for job i followed by job j on m machines

In a two-job, two-machine environment where job i precedes job j , the two

possible flowtime sequences are shown in figure B . l . From the part A of the figure,

i f tji > ti2, i t is possible to see that the flowtime for job i is equal to [Ui + ti2).

Similarly the flowtime for job j is {tn + t j i + tj2). The total flowtime is the sum of

the two flowtimes:

F2[rj)=2Ui+U2+tji+tj2 (B . l)

Instead i f tji < ti2, as in the part B of the figure, the total flowtime is equal to:

F2(^J}^2tn+2U2 + tj2 (B.2)

Appendix B: Mathematical details of the scheduling algorithm 239

Machine 1

Machine 2

Machine 1

Machine 2

t i l

t i l

ti2

(A) tji >

hi

112

IJ2

t j 2

(B) tji <

Figure B . l : Gantt charts for the two machine problem

Both the equations B . l and B.2 are feasible. Therefore the minimum total fiowtime

can be expressed w i t h the equation:

F2(ij) = 2ta + ti2 + tj2 + max{tji,ti2) (B.3)

Inverting the order of the jobs such as job j precedes job i equation B.3 becomes:

F2(ji) = 2tji + tj2 + ti2 + max{tii,tj2) (B.4)

I t is possible to eliminate the common terms f rom equations B.3 and B.4, in order

to be able to obtain simpler expressions for the following analysis:

F2{ij) = + rnax{tji,ti2)

F2(^j) = 2tji + max{tii,tj2)

(B.5)

(B.6)

Appendix B: Mathematical details of the scheduling algorithm 240

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

t i l

t i l

t i l

ti2

Li3

(A)

H2

•^3

(B)

Li2 :

t j 3

I j 2

Li3

t j 3

t j 3

(C)

Figure B.2: Gantt charts for the three machine problem

The idea behind the proposed heuristic algorithm suggests the use of equations

B.5 and B.6 to find the possible simplified flowtimes, in order to determine the

sequence that minimizes the total flowtime. When the schedule is produced the

sequence i j or ji is used according to which has associated the smaller simplified

flowtime.

The possible cases of an environment where 2 jobs are processed by a set of 3

machines are shown in figure B.2. From the picture i t is possible to see that the

min imum flowtime is a function of the maximum among the following terms:

Appendix B: Mathematical details of the scheduling algorithm 241

{ t j l + t j 2) or iti2+ti3) or {ti2 + tj2)

which can be expressed as:

max{tj2 + max{tji,ti2),ti2 + Uz)

The expression of the tota l flowtime is:

F3(ij) = 2tii + {ti2 + tiz) + tjs + max{tj2 + max{tji,ti2),ti2 + Us) (B.7)

Similarly to the case of 2 jobs and 2 machines, i^3(ji) is the same of equation B.7 wi th

all the i and j subscripts reversed. Removing the common terms form F^^^ij) and

F3(jj) i t is possible to obtain the following expression for the simplified flowtimes:

F3(j^) = 2tii + ti2 + max{tj2 + max{tji,ti2),ti2 + tis)

^ 3 0 i) = 2^ i i + tj2 + max{ti2 + max{tii, tj2), tj2 + t j s)

I t is possible to provide similar expressions for pairs of jobs processes on m ma

chines. I n this case the flowtime equation is:

m

FmiiJ) = 2t , l + Y.kk + Rm (B.8)
k=2

A n d the simplified flowtime is:

m—1

= 2ta + E ^̂ fc + R*m (B.9)
k=2

where

i ? i = 0

R2 = ij2 + max{tji,ti2)

R3 = tjs + max{R2, ti2 + Uz)

R4 = tjA + max{Rz, ti2 + ti3 + ti4)

Appendix B: Mathematical details of the scheduling algorithm 242

m
Rm=tjm + max\Rra-uY.tik] (B.IO)

k^2

Rl, = Rm-tjm m>2 (B.ll)

Appendix C

Messages defined in MMS,

Profibus and the proposed

communication protocol

The following table presents a lists of the messages provided by MMS, Profibus

and the proposed communication protocol. The services are grouped in functional

categories.

Appendix C : Messages defined in M M S , Profibus and the proposed
communication protocol 244

a

a

13

3

C O

CO 1-2

5 1 1

o
OH

o

a
,o

C O

0)

ft ft
>>

-a

ft

o o
ft ft
CD <B

Pi fr;
a> o o

Xi '57
Pi

CO 1-3 Pi
t n OD M

03 -

I
-d
a

d

P

03

-d
^ 'QJ -1̂
O O i H Jf>

fl o
O o3 ^ OJ"

O O < Pi

C O

-d

13 O

o3

O ft
Pi

O

a -

Pi o Pi ^

;-(

-d
CD

i

Q

o
o

-d
CO
CU
o
o

<;
o3
O

C O

a>
O

.2 .52

-d
(V

ct>

<«
Q

1̂ ft o

(D o3

Q O

<;
ft

^ a
O) o3

•d
a)

Z
CI

<«
a; cy

Q Q O

bjO

-d

an

en
t

a
PI

bO
a o3

C3
ce o

l-l
a

'> . - H

B
ID >

I

Appendix C : Messages defined in MMS, Profibus and the proposed
communication protocol 245

O

I
Q

o
Q

fa

.2 §

a*
CO -e

I i
5 ^

QJ O

5 P

S

a*
CO
Q

Q &>
-is HIT <u tT3 P CO

11^
CD ^ , y

CO o a
Q P

o .a .S
^ M ^

Q Q

;3
3̂

O

o
o

O

o

'3
cr

a

1

o

a
a>

CO
<D
PI

qzl
0)

Q

2i S

CO r-i

a «

n3

CO
>>

CO H

g a

o o

a
bjO

CO

CO Q

53
CD

0)
n3

a ^
S OH

a _

a
hO

CO

CO

1.
o

5
Q

a a o

QJ _ >j ^
Pi CO

^ 9

o

• I
& i
:§ 9
Q O

c3

^ 2

0)

o

CO S
o

Q

Appendix C : Messages defined in MMS, Profibus and the proposed
communication protocol 246

(V

a
m , ,
(D ^

55 55 ;5 14

ft
o

o
o3
o

o

_o
o3
o

O

a
>

H

o

<:

PH
a

ft ^
4 J

O Q m zn Pi Pi i4

I -
S .2
a g

o

CD

(D ft

a 03 o o

?a
CD O

Cfi
P^
<D

03
O) !-l
o

CO
3
03

p.,

<D

CD O)

CO

O

o3
ft
O CD CD " <D

55 Pi Pi 14 O

<
H

O fl
ft cfl

CD a> QJ

O Pi Q

3
o3

CO

<;

o a
ft
a; 0)

O Pi Q

a;

_Q o3 n CO

Q j H t: a
S ft 5

Q; (D CD .—1

Q o Pi <i <; w

fcuO

11
a "

.2
- U 1-1

o3 o3

O 3

Z 3̂

03
a
a

CO

0

a
S3

CD -r;

a §

2 §

CD

Appendix C : Messages defined in MMS, Profibus and the proposed
communication protocol 247

Q
O

Q
O

o

5 p .a

• S O S

h5 CL, H

CO

i I
13 jf

o
- S ^ "3

o o s ^
a, CP

•5 O P

a
CD

a

a
a

ill

O
1-5

- a
o ^

Appendix D

Java performance

D . l Introduction

Java has been introduced as a platform independent language. When a Java pro

gram is processed by the Java compiler, it is transformed into Bytecode rather than

native machine code. This means that in order to execute an application written

in Java it is necessary to use a Java Virtual Machine, which interprets and exe

cutes the Bytecode on the local platform. Therefore the Java Bytecode represents

a platform independent format which can be executed on any system implementing

a JavaVM. However, recently, alternative solutions have been presented since Just

in Time (JIT) compilers and Java compilers have been introduced. JIT compil

ers transform the Java Bytecode into machine dependent instructions at execution

time. This maintains the platform independence feature of the Java Bytecode and

increases its execution speed. Java compilers transform Java programs into ma

chine dependent code, increasing performance, but losing platform independence.

Due to the fact that Java is usually used as an interpreted language, Java appli

cations cannot be as fast as the ones generated using a compiled language like C. It

has been reported that the language is on the average about 20 times slower than

C [Fla96]. Since no data regarding the performance of Java on a Linux platform

was available it was decided to carry out a series of tests in order to assess its

actual performance. In addition the performance of Kaffe [Pro97], a JIT compiler

Appendix D: Java performance 249

for Java, and Toba [PGTNW97], a Java compiler, were tested. KafFe is a virtual
machine which performs JIT code conversion from the abstract code to the host
machine's native code. Toba translates Java class files into C source code. This
allows the construction of directly executable programs that avoid the overhead of
interpretation.

The Java Test Suite (Version 1.0) developed by the Open Group Research Insti

tute, Grenoble, France, was selected for carrying out the performance evaluation.

The test suite was developed with the objective of having a set of tools for verify

ing the correct behaviour of new Java ports. In addition it provides a benchmark

for comparing the performance of new ports with the original code from Sun Mi

crosystems. Furthermore it allows the comparison of the performance of Java with

C or C + + since some of the benchmarks are available in all three languages. The

suite contains five "chapters" named JavaPerf for performance, JavaCompare for

comparison with other languages, Java Valid for validation of the ports, JavaSafe

for exercising safety features, and Interactive for performing non automatic tests.

The test suite can be run in two modes, a batch mode where all the specified tests

write their results in HTML pages and an interactive graphic mode where each test

can be executed independently and display its result in a window.

A porting of the Test Suite to the Linux OS had to be performed in order to

compile i t correctly. Moreover some of the tests had to be adapted in order to

allow their execution using the JIT compiler and the Java compiler.

Al l the tests were performed on a Pentium 75 MHz with 16 Mbytes of RAM,

1 Gbyte EIDE HD, running Linux 2.0.25 (Slackeware 3.1 distribution). Since the

main interest of the exercise was the comparison of Java performance with com

piled languages only the tests included in the JavaCompare section were executed.

The Java interpreter from the JDK 1.0.2 port for Linux, the ka f fe JIT compiler

version 0.84, the toba Java compiler version 1.0.b6, and the gcc and g++ C and

C + + compilers version 2.7.2 were used.

A brief description of the meaning of the tests and their results extracted from

the test suite on-line manual is reported in the next section.

Appendix D: Java performance 250

D.2 Comparison of Java, C, C + + program per
formances

The benchmarks have been subdivided into five subsections according to the lan

guage tested feature. The subsections are: Plum tests (arithmetics tests), Byte

tests (taken from the Byte magazine tests), memory tests, Input/Output tests and

CPU tests.

D.2.1 Plum tests

They consist of arithmetics tests. These benchmarks were placed in the public

domain by Thomas Plum from Plum Hall Inc. They are simple benchmarks with

several appealing properties:

• They are short enough to type while browsing at trade shows;

• They are protected against overly-aggressive compiler optimizations;

• They reflect empirically-observed operator frequencies in C programs;

• They give a C programmer information directly relevant to programming.

Some minor modifications have been introduced in order to adapt the tests to Java.

The benchmarks are:

Operations on integers: This benchmark performs n iterations (default is

1000) of 1000 integer multiplications. It gives the time needed in milli-seconds to

execute this loop. The results are reported in table D . l .

Operations on register: This benchmark performs n iterations (default is

1000) of 1000 register integer operations (addition, shift, etc.). It gives the time

needed in milliseconds to execute this loop. The results are reported in table D.2.

Appendix D: Java performance 251

Iterations time (ms)
Java 1000 856
kaffe 1000 139
toba 1000 168
c 1000 130
C++ 1000 140

Table D . l : Operations on integers

Iterations time (ms)
Java 1000 836
kaffe 1000 67
toba 1000 100
c 1000 50
C++ 1000 60

Table D.2: Operations on register

Operations on long: This benchmark performs n iterations (default is 1000)

of 1000 long register operations (addition, shift, comparison, etc.). I t gives the

time needed in milliseconds to execute this loop. The results are reported in table

D.3.

Iterations time (ms)
Java 1000 881
kaffe 1000 140
toba 1000 199
c 1000 60
C++ 1000 60

Table D.3: Operation on long

Operations on shorts: This benchmark performs n iterations (default is 1000)

of 1000 short register operations (addition, shift, etc.). It gives the time needed in

milliseconds to execute this loop. The results are shown in table D.4.

Appendix D: Java performance 252

Iterations time (ms)
Java 1000 1058
kafFe 1000 103
toba 1000 126
c 1000 70
C++ 1000 60

Table D.4: Operation on shorts

Operations on doubles: This benchmark performs n iterations (default is

1000) of 1000 double operations (addition, multiplication, division, etc) . I t gives

the time needed in milliseconds to execute this loop. The results follow in table

D.5.

Iterations time (ms)
Java 1000 1075
kaffe 1000 684
toba 1000 256
c 1000 160
C++ 1000 160

Table D.5: Operations on doubles

Function calls: This benchmark performs n iterations (default is 1000) of 1000

function calls. I t gives the time needed in milliseconds to execute this loop. The

results of the test are reported in table D.6.

D.2.2 Byte magazine tests

These test are taken from the Byte magazine benchmark collection.

Appendix D: Java performance 253

Iterations time (ms)
Java 1000 2225
kaffe 1000 673
toba 1000 203
c 1000 190
C++ 1000 200

Table D.6: Function calls

The Hanoi tower problem: This benchmark computes the time needed to

solve tower of Hanoi problem with n discs (default is 20). The number of disc

permutations needed to solve the problem is 2" — 1. For 20 it means 1048576

permutations. The results follow in table D.7.

num disks time (ms)
Java 20 9429
kaffe 20 1415
toba 20 887
c 20 550
C++ 20 550

Table D.7: Hanoi tower problem

Recursion and memory management: game resolution: This benchmark

simulates a "puissance4" game resolution. I t will, for each player, compute the

best movement with a recursion level given as a parameter (default is 2). Each

recursion needs memory in order to copy the game board. The game board size

can be increased using the fill parameter (default size 7x7). The results are shown

in table D.8.

Drhystone: This test contains many procedure calls which are meant to repre

sent system programming environments. This is a modified version of the dhrystone

program. The results obtained with this version are not applicable to other ver-

Appendix D: Java performance 254

depth size time (ms)
Java 2 7x7 16108
kaffe 2 7x7 6785
toba 2 7x7 3341
c 2 7x7 420
C++ 2 7x7 530

Table D.8: Recursion and memory management

sions. The results are reported in table D.9.

iterations time (ms)
Java 1000 433
kaffe 1000 63
toba 1000 37
c 50000 779
C++ 50000 843

Table D.9: Drhystone

D.3 Memory allocation

This test performs allocation and deallocation (in C, C++) of a 1024 bytes array

in a loop performed 1000 times. In Java this test gives an indication of the cost of

garbage collection since the arrays are allocated and deallocated at each loop. The

results are shown in table D.IO.

D.4 Input/Output

The test included in this section performs evaluations of the time required by input

and output operations.

Appendix D: Java performance 255

iterations time (ms)
Java 1000 113
kaffe 1000 121
toba 1000 371
c 100000 170
C++ 100000 240

Table D.IO: Memory allocation

PerfReadWrite: This benchmark tests file Read/Write performance. Each

write may be followed by a flush. The read/write block size and the number

of characters to read/write are program parameters. By default: no flush are

performed, read/write size is 1024 bytes, number_of_read/write is 1000, read/write

path is ". / tmp". The results follow in table D . l l .

iterations blocs size flush Write time (ms) Read time(ms)
Java 1000 1024 false 565 248
c 1000 1024 false 130 210
C++ 1000 1024 false 120 210

Table D . l l : Input/Output

D.5 C P U

The benchmarks in this section perform tests on language features and assess their

CPU time requirements.

Overloading: Test CPU performance for overload and override of methods in

classes (C-l—I- and Java). This test has a class with 50 methods with the same

name and has a hierarchy of 50 classes with methods overrided. The results are

shown in table D.12.

Appendix D: Java performance 256

number
loops

override
depth

override
time (ms)

overload
time (ms)

override
check

Java 1000 50 273 253 true
kaffe 1000 50 187 69 true
toba 1000 50 276 45 true
C++ 1000 50 85 27 true

Table D.12: Overloading

List of lists of objects: This test builds a tree describing a Year:

Year

I
j a n u a r y

I
I
I

w e e k l

I I I
february december

I I I
week2 week3 week4
_ l _ _ l _ _ l _

I
Sunday

I I I
monday t u e s d a y S a t u r d a y

I I
h o u r l hour 2

I
hour24

This builds a tree with 8461 small objects. Traversing the tree recursively yields

a list of objects contained in the classes year, month, week, day. The results follow

in table D.13.

Member access: The aim of that test is to evaluate the access time to mem

bers of classes in a tree of classes, the data environment is a tree. The test accesses

an integer through members of members of an object:

Appendix D: Java performance 257

iterations creation
time (ms)

listing
time (ms)

java 10 855 6240
c 100 31 2349

Table D.13: List of lists of objects

classl::memberl
I

class2::memberl
I

classl::member2
I

c l a s s 2 : .-memberl
I

c l a s s 9 : : I n t e g e r D a t a class9::integerData ...

In Java, the first access to a integerData is longer than the other ones (it must

calculate the offset) and the others access are faster. In C++ , this time is about the

same. NOTE: the tree creation may last about 30 seconds because java increases

its memory space while building the tree. This number is reduced to reduce it to 1

or 2 seconds by specifying java that it must initialize its memory space to N bytes

(default 2 Mbytes). The results are shown in table D.14

iterations creation
time (ms)

listing
time (ms)

average
(access/ms)

java 10 1923 136 37
C++ 1000 263 248 2064

Table D.14: Member access

Loop time: This test evaluates time for a loop to do: nothing, an assignation

(a=a), an i f with an assignation with a condition (always verified), an i f . . else

with an assignation in both cases. The results follow in table D.15

Appendix D: Java performance 258

number
loops

Results (in microsecs/Ioops)
number

loops
empty

loop
assignation if if., else

Java 1000000 2.513 3.173 5.24 5.652
kaffe 1000000 0.143 0.148 0.256 0.254
toba 1000000 0.214 0.269 0.427 0.428
c 1000000 0.083 0.082 0.124 0.196
C++ 1000000 0.082 0.083 0.140 0.139

Table D.15: Loop time

D.6 Analysis

From the data presented it is possible to see that Java performs worse than C

and C++ when tested against the benchmarks. The performance of Java in the

arithmetic tests is 5-20 times slower than the one of C and C-l—1-. In particular

the greatest diff'erence is found when register operations (such as shifts) are in

volved. However k a f f e usually has a performance comparable with C and C+-\-

and surprisingly toba performs worse than ka f fe in several tests. This is due to the

overhead introduced by the conversion of the Java code into C code. Nevertheless it

is possible to see that in the case of operations on doubles and function access toba

is superior to ka f f e . When the complexity of the benchmark increases, as happens

with the Byte benchmarks, it is possible to see that the Java performance is 20-40

times slower than C and C-l—f. k a f f e performs from 3 to 10 times better and toba

is twice as fast as ka f f e . The improvement in speed is great, but the execution

times are always slower in comparison with C native code. Automatic memory

management is inefficient in comparison with direct memory management offered

by C and C-|—1-. The figures associated to C and C-f—I- are 100 times smaller that

the one associated with Java, k a f f e has a performance similar to Java, and toba

is three time slower. This fact explains the slow performance of ka f fe and toba

in the recursion and memory management test when compared with C and C++.

The Input and Output operations require in j ava a time which is comparable with

the time employed by C and C++. The CPU benchmarks show again that Java

Appendix D: Java performance 259

is always less efficient than compiled languages. C + + code is 50 times faster than

Java in accessing a member of a class. The override time of toba is similar to that

shown for j ava, while the overload time is similar to that of the C + + code, j ava

gives loop times which are more than 20 times slower than C and C++. toba is 3

times slower while kaf f e is about only 2 times slower than C, and C++.

From the results shown here it is clear that JIT compilers and Java compilers

sensibly improve the performance over the interpreted version of Java applications.

Only in a few benchmarks do they have a performance comparable with equivalent

benchmarks written in C and C + + . However, the time to create an object does

not improve at all and therefore reducing the number of objects created by an

application is a good practice in order to improve performance.

Appendix E

Glossary

A G V : Autonomous Guided Vehicle;

A R P : Address Resolution Protocol;

B U , B U S M : British United Ltd., British United Shoe Machinery Co.;

C A D : Computer Aided Design;

C S I : Closed System Interconnection;

C S M A / C A : Carrier Sense Multiple Access/Collision Avoidance;

C S M A / C D : Carrier Sense Multiple Access/Collision Detection;

C S M A / C R : Carrier Sense Multiple Access/Collision Resolution;

D B M S : Data Base Management System;

D S P : Digital Signal Processor;

F I F O : First In First Out;

H D : Hard Disk;

I P : Internet Protocol;

I / O : Input/Output;

Appendix E : Glossary 261

J I T : Just In Time;

J a v a V M , J V M : Java Virtual Machine;

L A N : Local Area Network;

M A C : Medium Access Control;

M A P : Manufacturing Automation Protocol;

M M S : Manufacturing Message Specification;

N C : Numerically Controlled (machine);

N F S : Network File System;

O M T : Object Modeling Technique;

OS: Operating System;

O S I , I S O / O S I : International Standard Organization Open System Interconnec

tion;

P C : Personal Computer;

P L C : Programmable Logic Controller;

R F C : Request For Comments;

R P D : Rapid Protocol Development;

R T O S Real-Time Operating System;

T C P : Transmission Control Protocol;

U D P : User Datagram Protocol;

V F D : Virtual Field Device;

V M : Virtual Machine;

V M D : Virtual Manufacturing Device;

W W W : Word Wide Web;

Bibliography

ABM87] S. Aggarwal, D. Barbara, and K. Z. Meth. SPANNER: A tool for the

specification, analysis, and evaluation of protocols. IEEE Transaction

on Software Engineering, 13(12):1218-1237, 1987.

Ada88] W. M. Adams. Manufacturing network performance and environ

mental measurements. In ENE'88, Baltimore, Ma, June 1988.

Ada90] W. M. Adams. Why 802.3 Ethernet LANs flourish in manufacturing

operations. Computer-Integrated Manufacturing Systems, 3(l):53-56,

1990.

AG96] K. Arnold and J. Gosling. The Java Programming Language. Addison

Wesley, 1996.

Alh96] K. Alhola. Katix mini-ip. available at: http://www.funet.fi/

~kate/mini-ip.html, 1996.

Ame92] American National Standards Institute, New York, NY. Database

Language SQL92, 1992.

AP82] I . Adiri and D. Pohoryles. Flowshop no-idle on no-wait scheduling to

minimize the sun of completion times. Naval Res. Logistics Quarterly,

29(3):495-504, 1982.

Ash88] C. M. Ashworth. Structured System Analysis and Design Method

(SSADM). Information and Software Technology, 30(3): 153-163,

1988.

BIBLIOGRAPHY 263

BBB+91] A. Bauer, R. Bowden, J. Browne, J. Duggan, and G. Lyons. Shop

Floor Control System - From Design to Implementation. Chapman

& Hall, 1991.

BBBB91] B. Biron, G. Bel, J. Cavaile 0. Baraust, and J. Burrieres. Integrat

ing simulation for workshop control. In Computer Applications in

Production and Engineering. North-Holland, 1991.

BBV91] A. Braccini, A. Del Bimbo, and E. Vicario. Interprocess communi

cation dependency on network load. IEEE Trans, on Software Engi

neering, 17(4):357-369, 1991.

BDBL91] D. A. Bradley, D. Dawson, N. C. Burd, and A. J. Loader. Mecha-

tronics. Chapman and Hall, 1991.

BDP95] E. Bertolissi, C. Daffara, and C. Preece. Rapid protocol development:

a framework for fast protocol implementation, in preparation, 1995.

Ben93] K. Bender, editor. PROFIBUS; The Fieldbus for Industrial Automa

tion. Prentice Hall, 1993.

BG76] M. C. Bonney and S. W. Gundry. Solutions to the constrained flow-

shop sequencing problem. Operations Research Quarterly, 24:869-

883, 1976.

BG91] M. Brill and U. Gramm. MMS : MAP application services for the

manufacturing industry. Computer Networks and ISDN Systems,

21(5):357-380, 1991.

BHS88] J. Browne, J. Harhen, and J. Shivnam. Production Management

System. Addison-Wesley, 1988.

BMK88] D. R. Boggs, J. C. Mogul, and C. A. Kent. WRL 88.4; measured

capacity of an Ethernet: Myths and reality. Technical report. Digital

Western Research Laboratory, 1988.

Boc90] G. V. Bochmann. Protocol specification for OSI. Computer Networks

and ISDN Systems, 18(3):167-184, 1990.

BIBLIOGRAPHY 264

BP96] E. Bertolissi and C. Preece. Assessment of real-time communication

capabilities of network protocols in distributed systems. In Proc. ITI

'96, pages 155-161, Pula, Croazia, June 1996.

; B W W H 8 8] J. Billington, G. R. Wheeler, and M. C. Wilbur-Ham. PROTEAN: A

high-level Petri net tool for the specification and verification of com

munication protocols. IEEE Transaction on Software Engineering,

14(3):301-315, 1988.

Car88] A. Carrie. Simulation of manufacturing Systems. John Wiley, 1988.

CB90] D. Chan and D.D. Bedworth. Design of a scheduling system for

flexible manufacturing cells. International Journal of Production Re

search, 28(ll):2037-2049, 1990.

CG85] B. Croft and J. Gilmore. RFC 951; Bootstrap Protocol (BOOTP).

Network Working Group, Menlo Park, September 1985.

Cla90] D. Clayton. Experimental system for networking autostitchers in the

factory. SATRA Bulletin, May 1990.

CLV93] S. T. Chanson, A. A. F. Loureiro, and S. T. Vuong. On tools support

ing the use of formal descriptions techniques in protocol development.

Computers Networks and ISDN Systems, 25(7):723-739, 1993.

Cod70] E. F. Codd. A realtional model of data for large shared data banks.

Communications of the ACM, 13(6), June 1970.

Cul96] A. G. Cullis. Sheffield Industrial Project Scheme; Electrostatic De

position, March 1996. Second Year Industrial Project, Dept. of En

gineering, University of Sheffield.

DB74] J. M. Van Deman and K. R. Baker. Minimizing mean flow time in

flowshop with no intermediate queues. AIIE Trans., 6:28-34, 1974.

Did89] Festo Didactic. Basi di data communication, 1989. course notes in

Italian.

BIBLIOGRAPHY 265

Dro93] R. Droms. RFC 1531; Dynamic Host Configuration Protocol. Net

work Working Group, Menlo Park, October 1993.

DVDR87] G. Doumeingts, B. Vallespir, DF. Darricau, and M. Roboam. Design

methodology for advanced manufacturing systems. Computers in

Industry, 9(4):271-296, 1987.

EK93] M. Et t l and U. Klehmet. A performance comparison between the

fieldbus protocol standards Profibus and FIP. IFIP Transcation A:

Computer Science and Technology, 39:245-258, 1993.

Fla96] D. Flanagan. Java in a Nutshell. O'Reilly & Associates, Inc, 1996.

For96] Mits Forum. Maritime information technology standard, available

from: http://www.itk.unit.no/SINTEF/MITS/mits.html, 1996.

FR88] B. L. Foote and A. Ravindran. Production planning and scheduling.

Computers & Industrial Engineering, 15:129-138, 1988.

Fre88] J. R. Freer. Computer Communications and Networks. Pitman, Lon

don, UK, 1988.

Gal95] B. O. Gallmeister. P0SIX.4; Programming for the Real World.

O'Reilly & Associates Inc., 1995.

Gen87] General Motors. Manufacturing Automation Protocol - Version 3.0

Irnplementation Release, 1987.

GM95] J. Gosling and H. McGilton. The Java language environment; a white

paper. http://java.sun.eom/docs/langspec-draft5.l.Z, October 1995.

Gou93] M. G. Gouda. Protocol verification made simple: a tutorial. Com

puter networks and ISDN Systems, 25(9):969-980, 1993.

GR93] R. Gangadharan and C. Rajendran. Heuristic algorithms for schedul

ing in the no-wait flowshop. International Journal of Production

Economics, 32(3):285-290, 1993.

BIBLIOGRAPHY 266

Gru87] R. J. Gruber. In SID International Symposium Digest of Technical
Papers, page 272, Palisades, New York, 1987.

Hal92] F. Halsaall. Data Communications, Computer Networks and Open

Systems. Addison Wesley, 1992.

Har85] P. Hardy. Introducing Data Communication Protocols. NCC Publi

cations, Manchester, UK, 1985.

Hoa74] C. A. R. Hoare. Monitors: an operating system structuring concept.

Communications of the ACM, 17(10):549-557, October 1974.

HR91] C. M. Harmonosky and S. F. Robohn. Real-time scheduling in com

puter integrated manufacturing; a review of recent research. Int. J.

Computer Integrated Manufacturing, 4(6):331-340, 1991.

HS89] S. Heatley and D. Stokesberry. Analysis of transport measurements

over a local area network. IEEE Comm. Mag., 27(6):16-22, June

1989.

HS96] N. G. Hall and C. Sriskndarajah. A survey of machine scheduling

problems with blocking and no-wait in process. Operations Research,

44(3):510-525, 1996.

IEE85a] IEEE, Long Beach, California. CSMA/CD Access Method and Phys

ical Layer Specifications, IEEE Standard 802.3, 1985.

IEE85b] IEEE, Long Beach, California. Token Ring Access Method and Ph-

ysiscal Layer Specifications: IEEE Standard 802.5, 1985.

IEE95a] IEEE. POSIX.l; System Application Program Interface - Amend

ment 2: Threads Extension (C language), 1995. Also ISO/IEC 9945-

1:1990c.

IEE95b] IEEE. POSIX.lb; Application Program Interface - Real Time Exten

sions, 1995. Draft Version.

BIBLIOGRAPHY 267

IIK+91] H. Ichikawa, M. Itoh, J. Kato, A. Takura, and M. Shibasaki. SDE: In

cremental specification and development of communication software.

IEEE Transactions on Computers, 40(4):553-561, 1991.

Int84] International Organization for Standardization, Geneva, Switzerland.

Open System Interconnection: Basic Reference Model, ISO 7498,

1984.

JP94] M. J. Jubb and A. Purvis. Analysis of network protocol performance

in the context of multi-workstations parallel distributed applications.

Microprocessing and Micropogramming, 40(10-12):807-810, 1994.

JS97] P. Jain and D. C. Schmidt. Experiences converting a C-|—t- communi

cation software framework to Java. C+-I- Report Magazine, January

1997.

Ken83] W. Kent. A simple guide to five normal forms in relational database

theory. Communications of the ACM, 26(2):120-125, 1983.

KS80] J. R. King and A. S. Spachis. Heuristics for shopfloor scheduling.

International Journal of Production Research, 18:343-357, 1980.

KSN88] M. G. Ketchem, J. M. Smith, and B. 0. Nnaji. An integrated data

model for CIM planning and control. In Proceeding of the Int. Con/.

on Computer Integrated Manufacturing, pages 338-342, New York,

May 1988.

LB96] K. Lai and M. Baker. A performance comparison of UNIX operating

systems on the Pentium. In Proc. USENIX Technical Conference,

January 1996.

Lea96] D. Lea. Concurrent Java: Design Principles and Patterns. Addison-

Wesley, 1996.

Liu89] M. T. Liu. Protocol engineering. Advances in Computers, 29:79-195,

1989.

BIBLIOGRAPHY 268

MC87] S. A. Melnyk and P. L. Carter. Production Activity Control; A prac

tical Guide. Don Jones-Irwin, 1987.

McC88] J. McConnell. Internetworking Computer Systems. Prentice-Hall,

1988.

McM93] C. McMahon. CADCAM, from principles to practice. Addison-

Wesley, 1993.

Mil78] R. G. Miller, editor. Manual of shoemaking, produced by the Training

Department, Clarks Limited, (s.l.), C & J Clark Ltd, second edition,

1978.

ML93] B. L. MacCarthy and J. Liu. Addressing the gap in scheduling re

search; a review of optimization and heuristic methods in production

scheduling. Int. J. Prod. Res., 31(l):59-79, 1993.

MM88] D. A. Marca and C. L. McGowan. SADT - Structured Analysis and

Design Technique. Prentice-Hall, 1988.

MMCC95] A. Marsal, A. M. Mainch, M. D. De Castellar, and J. Cot. Study of

the dissipation of the electrostatic charge of leather. Journal of the

Society of Leather Technologists and Chemists, 79(4):115-118, 1995.

;Nag84] J. Nagle. RFC 896: Congestion Control in IP/TCP Internetworks.

Network Working Group, 1984.

NHAK89] S. Nakamura, H. Hirabayashi, J. Araya, and N. Koitabashi. U.S.

Patent 4851960, 1989.

Nil96a] K. Nilsen. Embedded real-time development in the Java language.

In Embedded Systems Conference East, Boston, April 1996.

Nil96b] K. Nilsen. Issues in the design and implementation of real-time Java.

Java Developer's Journal, 1996.

BIBLIOGRAPHY 269

NS91] S. J. Noronha and V. V. S. Sarma. Knowledge-based approaches for

scheduling problems: a survey. IEEE Transactions on Knowledge

and Data Engineering, 3(2):160-171, 1991.

OP92] G. Olsson and G. Piani. Computer System for Automation and Con

trol, chapter 10, pages 317-368. Prentice Hall, 1992.

Peh90] B. Pehrson. Protocol verification for OSI. Computer Networks and

ISDN Systems, 18(3):185-201, 1990.

PGTNW97] T. A. Probsting, P. Bridges G. Townsend, J. H. H. Newsham, and

S. Watterson. Toba: Java for Applications, A way Ahead of Time

(WAT) Compiler. In Proceedings of the 3rd Conference on 00 Tech

nologies and Systems, 1997.

Pim90] J. R. Pimentel. Communication Networks for Manufacturing.

Prentice-Hall, 1990.

Pin95] J. Pinto. Fieldbus: an international view. Control and Instrumenta

tion, 27(2):48-49, February 1995.

Pos80] J. B. Postel. RFC 768, User Datagram Protocol. USC/Information

Sciences Institute, 1980.

PosSl] J. B. Postel. RFC 793: Transmission Control Protocol; DARPA

Internet Program Protocol Specification. USC/Information Sciences

Institute, 1981.

Pos82] J. Postel. RFC 821: Simple Mail Transfer Protocol.

USC/Information Sciences Institute, 1982.

PR83] RFC 854: J. Postel and J.K. Reynolds. Telnet Protocol specification.

Network Working Group, 1983.

PR85] J. Postel and J.K. Reynolds. RFC 959: File Transfer Protocol. Net

work Working Group, 1985.

BIBLIOGRAPHY 270

Pri91] D. Price. InterCIM standards agreed for all the current CAD/CAM

requirements. SATRA Bulletin, January 1991.

Pro97] Jolt Project. Kaffe: A free virtual machine to run Java code, available

from http://www.kaflLe.org/, 1997.

PS91] R. L. Probert and K. Saleh. Synthesis of communication protocols:

Survey and assessment. IEEE Transaction on Computers, 40(4):468-

475, 1991.

PVRS95] E. Pozzetti, V. Vetland, J. Rolia, and G. Serazzi. Characterizing

the resources demands of TCP/IP. In Proc. Int. Con/, on High-

Performance Computing and Networking, Milan, Italy, 3-5 May 1995.

[PW80] S. S. Panwalkar and C. R. Woollam. Ordered flowshop problems with

no in-process waiting: further results. J. Opns. Res. Soc, 31:1039-

1043, 1980.

Raj94] C. Rajendran. A no-wait flowshop scheduling heuristic to minimize

makespan. J. Opl. Res. Soc, 45(4):472-478, 1994.

Ran83] P. Ranky. The design and the operation of FMS. North-Holland

Publishing Company, 1983.

RB86] J. R. Rumsey and D. Bennewitz. Ion printing technology. Journal of

Imaging Technology, 12(3):144-151, June 1986.

RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.

Object-Oriented Modeling and Design. Englewood Cliffs : Prentice

Hall,, 1991.

RC90] C. Rajendran and D. Chauhuri. Heuristic algorithms for continuous

flow-shop problem. Naval Research Logistic, 37(5):695-705, 1990.

RD89] M.G. Rodd and F. Deravi. Communication Systems for Industrial

Automation. Prentice Hall, 1989.

BIBLIOGRAPHY 271

Roe95] D. Roeder. Fieldbus: Handicap hurdles. Control and Instrumenta
tion, 27(8):27-28, August 1995.

Sar93] P. Sargent. Inherently flexible cell communications: A rewiew. Com

puter Integrated Manufacturing Systems, 6(4), 1993.

Sch75] R. M. Schaffert. Electrophotography. Focal Press, London, 1975.

She92] L. B. Shein. Electrophotography and Development Physics. Springer-

Verlang, second edition, 1992.

Sol92] K. Sollins. RFC 1350: The TFTP protocol (Revision 2). Network
r
Working Group, 1992.

SR85] M. Stonebaker and L. Rowe. The design of POSTGRES. In ACM-

SIGMOD Conference of Management of Data, Washington, DC, May

1985.

SSM90] T. Suzuki, S. M. Shatz, and T. Murata. A protocol modeling and

verification approach based on a specific language and Petri nets.

IEEE Transaction on Software Engineering, 16(5):523-536, 1990.

Svo90] L. Svobodova. Measured performance of transport service in LANs.

Comput. Networks ISDN Syst, 18(l):31-35, 1990.

Tan81] A. S. Tanenbaum. Networks protocols. Computing Surveys,

13(4):453-487, December 1981.

Tan88] A. S. Tanenbaum. Computer Networks. Prentice-Hall, 1988.

Top93] S. K. Topis. Investigation of the Electrical and Mechanical Require

ments for the Automation of a Process in Flexible Material Manu

facture. PhD thesis. University of Durham, Durham, UK, 1993.

Tou89] N. R. Tout. Investigation of the Processes Required for the Automa

tion of Stitchmarking in Shoe Manufacture. PhD thesis. University

of Durham, Durham, UK, 1989.

BIBLIOGRAPHY 272

Wat94] R. C. Waterbury. Fieldbus forges ahead regardless. Intech, 41(1):38-

40, January 1994.

Wea88] A. Weatherall. Computer Integrated Manufacturing. Butterworth &

Co Ltd, 1988.

WH86] M. K. Wheatley and M. Hateley. Prediction of transport protocol

performance through simulation. In Siccom Con/. Proc., 1986.

Wil26] J. A. Wilson. Efi"ect of splitting on the tensile stregth of leather.

Industrial and Engineering Chemistry, 18:312-313, 1926.

Wu92] B. Wu. Manufacturing System Design and Analysis. Chapman and

Hall, 1992.

YC95] A. Yu and J. Chen. The POSTGRES95 User Manual. University of

California Berkeley, 1995.

