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Abstract 

The control of the testing process and estimation of the resource required to 

perform testing is key to delivering a software product of target quality on 

budget. 

This thesis explores the use of testing to remove errors, the part that metrics and 

models play in this process, and considers an original method for improving 

the quality of a software product. The thesis investigates the possibility of using 

software metrics to estimate the testing resource required to deliver a product of 

target quality into deployment and also determine during the testing phases the 

correct point in time to proceed to the next testing phase in the life-cycle. Along 

with the metrics Clear ratio, Churn, Error rate halving, Severity shift, and faults 

per week, a new metric 'Earliest Visibility' is defined and used to control the 

testing process. EV is constructed upon the link between the point at which an 

error is made within development and subsequently found during testing. To 

increase the effectiveness of testing and reduce costs, whilst maintaining quality 

the model operates by each test phase being targeted at the errors linked to that 

test phase and the ability for each test phase to build upon the previous phase. 

EV also provides a measure of testing effectiveness and fault introduction rate 

by development phase. 

The resource estimation model is based on a gradual refinement of an estimate, 

which is updated following each development phase as more reliable data is 

available. Used in conjunction with the process control model, which will 

ensure the correct testing phase is in operation, the estimation model will have 

accurate data for each testing phase as input. 

The proposed model and metrics have been developed and tested on a large 

scale (4 million LOC) industrial telecommunications product written in C and 

C++ running within a Unix environment. It should be possible to extend this 

work to suit other environments and other development life-cycles. 
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1 Introduction 

There is a growing problem with software, its size and complexity, the IT 

industries ability to deliver and the reliance we all have on software during our 

everyday lives. Norris [1] investigating industry trends says that, "system costs 

have become more and more dominated by the cost of software production 

over the last 20 years: 

1985 hardware 60% software 40% 

1995 hardware 20% software 80% 

Most of the problems in the IT industry over the last 10 years (notably the 

spectacular failures) can be traced to software problems". The size of the 

software utilised has also grown over the last 10 years [1]: 

Application 1985 lines of code 1995 lines of code 

Car less than 5K over 30K 

Telephone exchange about 1M from 5M to 25M 

Aircraft about 400K about 5M 

Television less than 10K up to 500K 

Database about 500K 

accessing 100MB data 

about 4M 

accessing up to 5TB data 

There is a problem with the delivery of software projects [1]: 

Project size 

million lines 

Average delay Cancellation 

probability 

0.1 2 months 5% 

1 1 year 14% 

2 1.4 years 18% 

5 1.8 years 25% 

10 2 years 36% 

20 2+ years 40+% 
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A number of companies in different market segments of the software 

development industry have also discovered that between 40% and 70% of the 

money spent on designing, developing and supporting a software product will 

be spent on maintenance [21 T31 [4]. Some of the maintenance costs will cover 

the changes necessary to keep the software in step with the underlying hardware 

and operating system changes that occur during the life of a system. A large 

proportion of the 70%, 32% [5], will be spent on fixing problems that had not 

been found during the implementation phase before deployment. For 

telecommunications software 34% of the maintenance work is repair [2]. 

Even though techniques and automation, structured design methods (SSADM, 

LBMS) compilers and high level languages are available, the software 

development process is still basically a human process. Any human process is 

prone to error and therefore design reviews, code walk-throughs and a range of 

testing practices are needed to expose the errors that are introduced during 

software development. 

In theory, formal methods should have removed the need for testing by now, 

with a formal proof of correctness. But the proof of correctness is often a more 

lengthy complex process than the initial program would have been, so that the 

errors are introduced during the specification phase, because this becomes the 

challenging part of the process. Formal methods may have a part to play on 

small safety critical problems, but they have not scaled up to industrial projects 

[6] [7]. Sommerville says [8] "The advantages of using formal software 

specifications are quite clear. However, there is one fundamental problem 

which so far, has militated against their use in the development of large 

software systems. The problem is that software specifications are often very 

difficult to construct and to understand. This is particularly true for high-level 

abstractions representing complex activities such as document formatting, 

aircraft navigation, etc. 

The difficulties in constructing formal specifications mean that their practical 

usefulness is currently limited. It is not economic to spend the time required to 

develop and debug formal specifications for even a small part of a large 

software system except, perhaps, in very critical applications where it is 
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intended to verify the resulting program." Even so small developments have 

achieved successful deliveries using a rigorous approach to specification [9] and 

rigorous program design [10], plus the use of formal verification has been 

applied to industrial developments or 1 - 2K lines of source code [11]. 

A recent study [12] within BT found that across ten large scale development 

projects the spend on testing as a proportion of the end to end implementation 

cost (specification to deployment) averaged at 30% (+/- 5%). Dorothy Graham 

[4] believes that typically testing consumes 40% of software development 

effort and 75% of maintenance effort. Osterweil & Clarke [13] have a higher 

figure, "statistics gathered over the past ten or fifteen years show that the 

testing, analysis and debugging costs usually consume over 50% of the costs 

associated with the development of large software systems". 

In common with other software developers BT has found that the cost to fix an 

error typically increases ten fold after each stage of the development life-cycle. 

It will cost about 1000 times more to fix an error found during operational use, 

than a error found at requirements stage. As an example, it was estimated that 

one US Air Force system cost $30 per instruction to develop and $4,000 per 

instruction to maintain over its lifetime [14]. Although errors are introduced at 

each stage of the development life-cycle it is imperative that they are found as 

soon as possible and preferably before moving on to the next development 

stage. Pressman [7] "Error rates for new programs cause customer 

dissatisfaction and lack of confidence." 

It is possible, although not as common, to over-estimate the testing cost as well 

as under-estimate [12]. Software is not expected to be error free, the cost of 

removing all errors prohibitively high for most industries. But the testing does 

need to remove the errors that will have an impact on operational use, and 

therefore reduce the cost of maintenance. 

The research and production of this thesis has been targeted at solving a 

particular problem encountered during software development and verification. 

When should a software build move from one phase of testing to the next and 

how can you estimate the cost of testing software. Industrial software 
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development projects will deploy different teams of engineers for each skilled 

task throughout the development lifecycle. The software development engineers 

will test their own code, possibly with the addition of peer reviews. A separate 

integration team will then be responsible for the integration and interface testing, 

and another team will cover the system validation activities. The system 

validation test team may also carry on to implement the reference model and 

customer acceptance testing, although for some organisations these will also be 

supported by separate teams. In practice the ownership and responsibility for 

the software, including overrun costs, is also passed along with the software 

between these teams. Each team will therefore wish to complete their testing to 

time and budget, passing the software on to the next stage as soon as possible. 

Each team will not wish to accept software that has not completed an earlier 

phase successfully as they will be inheriting the problems and cost to fix. This 

is sometimes described as the software being thrown over the wall between 

teams, i f it is passed on without completing the phase successfully and without 

consideration for the next team. 

A model is needed to show how faults are introduced, found and propagate 

around the parallel activities of the development and test lifecycle process. A set 

of metrics are required that can measure attributes of faults and provide control 

on the movement of software between the test phases. If the testing process is 

controlled and delivers a consistent quality product from each test phase the 

accurate estimation of testing resource will then be possible. 

1.1 Overview of Research 

This thesis explores the use of testing to remove errors, the part that metrics and 

models play in this process, and considers a new original method for 

improving the quality of a software product. The thesis investigates the 

possibility of using software metrics to estimate the testing resource required to 

deliver a product of target quality into deployment and also determine during 

the testing phases the correct point in time to proceed to the next testing phase in 

the life-cycle. The proposed model and metrics have been developed and tested 

on a large scale (4 million LOC) industrial telecommunications product written 

in C and C++ running within a Unix environment. It should be possible to 
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extend this work to suit other environments (e.g. main frames, pc's) and other 

development life-cycles, RAD. 

1.2 Thesis Outline 

The second chapter summarises software verification, definitions of testing and 

the product development process. A practical approach to testing is presented 

with special attention given to software validation. 

The third chapter entitled 'process control and measurement' provides a survey 

of metrics and models which provide a foundation for the work in this thesis, 

including definitions, evaluation and implementation methods. The reasons for 

applying metrics to a project are considered along with the impact on the 

product quality/cost balance. 

An overview of software development models is provided by the fourth chapter 

'development models'. Included are the main model types; sizing, cost 

estimation, and reliability, with the theory and practice of each explained. 

Complexity metrics are also discussed as they have formed the basis for a 

number of models. 

Original research is presented in the fifth chapter with a new fault propagation 

model and techniques to understand the parallel paths of faults from 

introduction to discovery. A new method of demonstrating the relationship 

between testing coverage and the chance of finding a fault is explained with the 

use of Venn diagrams. The possible uses for the fault propagation model, 

constructed for this thesis, are explained along with an experimental method to 

prove the model relationships. 

The hypothesis for this unique work on a testing estimation and process control 

model plus the metrics employed are explained in the sixth chapter. 

The seventh chapter outlines the case study, estimation of testing resource, and 

testing process improvements. A testing process model for data collection, 

along with the data collection forms and explanation for users, provides 

everything needed to start the metrics programme. 

The eighth chapter contains the results from the experimentation along with an 

analysis of the results and discussion of the implications. 
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The last chapter provides a summary of the thesis, the conclusions and the 

contribution made by this thesis. Recommendations are included on future 

research that could be undertaken to develop the proposed model for wider use 

and also refine it for improved results within the initial industrial area where it 

has been applied. 

The Appendix lists methods and techniques for software verification, providing 

a detailed reference of testing methods to support chapter two. The initial 

experimental model is refined and put forward as a practical estimation tool for 

industrial products in Appendix C. The detailed results tables can be found in 

Appendix D. 

6 



2 Software Verification 

"Software engineering is hindered by the fact that no consistent terminology 

exists to describe software systems," Sommerville [8]. 

The meaning of verification and validation is often blurred and confused, and 

"used in a variety of contradictory and confusing ways" says Howden[15]. 

"Although verification and validation may appear synonymous, this is not in 

fact the case" Sommerville [8]. 

Within this thesis verification is the testing by analysis or execution, proving 

that the output from one stage of the development life cycle is consistent with 

the stage before; specification meets all the requirements, the system design 

implements the specification, module design consistent with system design, the 

code follows the module design. Quality reviews are used to look for the 

inconsistencies between each of these stages. The testing phases, module, 

integration, and validation, can also be considered as verification activities. 

Module testing verifies that the coding and module design have been 

implemented correctly, integration testing of the modules verifies the system 

design, and validation testing verifies the system specification. Validation can 

be split down into the system test, to prove that the development specification 

has been met and reference model testing. Reference model testing evaluates the 

system under test in the users environment to start the process of confirming 

that the customer actually asked for the product that he needs. 

Verification: 'Are we building the product right ?' 

Validation: 'Are we building the right product ?' [16] 

The linkage between the development and verification phases is shown in 

Figure 1 ' V life-cycle on page 9. The ' V life-cycle model, which is a variant 

of the Waterfall model (similar to a set of cascading waterfalls), is a sequential 

model of the development life-cycle. "Although by no means a perfect 
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representation of what really happens, this model has been in widespread use 

for some 15 years now," Norris [2]. "The model also helps to clarify the 

involvement of the purchaser and supplier; for example, whoever has produced 

the specification also defines the corresponding system tests and performs the 

testing at the same level" Daily [17]. Myers [18] uses a similar diagram to 

show the correspondence between the development and testing process, 

although he also includes the end user at the top of the ' V . 

Other life-cycle models include incremental and evolutionary, which are cyclic 

models applied to projects where fast development (RAD) techniques are used 

because the requirements are not complete or changing [17]. The testing 

process control research within this thesis can be applied to other life-cycle 

models, but the case study and measurements are based on the ' V model. 

2.1 Introduction 

The definition of testing should be agreed and well understood, but this is not 

the case. The British Computer Society are unclear on the issue "software 

testing is at least the activities described in this book "[19]. 

Myers [18] says, "testing is the process of executing a program with the intent 

of finding errors" he then goes on to describe poor definitions of testing, 

"testing is the process of demonstrating that errors are not present; the purpose 

of testing is to show that a program performs its intended functions correctly". 

Abbott agrees with the impossibility of the poor statements, " i f software cannot 

be shown to be incorrect, it must be correct. But not practicable to test software 

by inputting all conceivable combinations of data. Testing therefore can never 

provide conclusive proof of correctness"[20]. 
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Figure 1 ' V life-cycle model 

Deutsch does not agree, "testing is defined as the controlled exercise of the 

program code in order to expose errors. When, according to pre-established 

criteria, the number and severity of errors fall below a specified threshold, it is 
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normally concluded that proper operation of the software has been 

demonstrated' '[21]. 

The IEEE explanation seems almost to f i t one of Myers 'poor definitions', "the 

process of exercising or evaluating a system or system component by manual 

or automated means to verify that it satisfies specified requirements or to 

identify differences between expected and actual results"[22]. 

To complete this range of views on testing, DeMarco dismisses testing apart 

from the catastrophic faults, he says that "software testing is essential because it 

removes a particularly irksome kind of defect, the kind that brings the system to 

a halt. But, in terms of its effect on defect density, testing borders on the 

irrelevant. The only way to make a drastic improvement in the quality of the 

code that comes out of the testing process is to make a drastic improvement in 

the quality of the code that goes into the testing process" [23]. 

Roper [24] agrees with DeMarco on the impact of testing on the defect density 

of code, " testing is just sampling". 

Before deciding on a definition for 'testing', an exploration of the key 

components from the definitions quoted so far, to check on some of the basic 

assumptions in use. The relationship between errors, faults, bugs and defects. 

Error, two explanations from the IEEE , "first - a discrepancy between a 

computed, observed, or measured value or condition and the true, specified, or 

theoretically correct value or condition. Second - human action that results in 

software containing a fault"[25]. 

Two from Myers, "one - a software error is present when the program does not 

do what its end user reasonably expects it to do. Second - an error is clearly 

present i f a program does not do what it is supposed to do, but errors are also 

present i f a program does what it is not supposed to do"[18]. 

DeMarco sees defects and errors as the same, "a deviation between desired 

result and observed result," he also has an unusual comment to make about 

bugs, "a bug is something that crawls of its own volition into your code and 

maliciously messes things up. It is certainly no reflection on you; it could 

happen to anyone. But a defect is your own damned fault" [23]. 
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Another view of defects [26], "a defect is the evidence of the existence of a 

fault"; so what is a fault? "a fault is an error in software that causes the software 

to produce an incorrect result for valid input." 

IEEE glossary entry for a fault [25], "an accidental condition that causes a 

functional unit to fail to perform its required function. A manifestation of an 

error in software. A fault i f encountered, may cause failure." 

For this thesis, Figure 2 Problem Terminology, pagel 1 shows the relationships 

between errors, faults, and defects. An error in the design or coding process 

results in a fault within the design or code. This may be exposed as a defect, a 

failure or unexpected/unpredicted result. 

Roper adds a possible multiplication factor to this relationship, which should 

not be overlooked, "one error may lead to several different faults, each of which 

in turn leads to several different failures" [24]. 

design or coding 
process error 

design or code 

defect, a failure 
or unexpected 
result 

Figure 2 Problem Terminology 
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The use of this terminology applied to the ' V life-cycle model is shown by 

Figure 3 ' V model; error, fault & defect on page 12. 
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Specification errors will be captured by the review procedure or result in a 

specification fault. These defects in the system will not be exposed until 

validation testing or customer use. Down the left hand side of the diagram the 

thickening arrows represent the increasing number of faults in the system that 

have not been detected by the reviewers. The arrows rising up the right hand 

side, indicate the discovery of defects in the system during testing and there 

subsequent removal. There are faults within a system because of errors made 

during the first four phases of development, that where not exposed during the 

verification of these phases. The faults continue to exist because the testing 

phases did not have sufficient coverage to expose them, or a test that should 

have exposed a fault was itself flawed. 

2.2 Testing defined 

Testing has been defined a number of times in past, and those definitions have 

reflected the approach to testing at that time. Gelperin and Hetzel [27] list the 

approaches to testing that have been taken over time. "Since testing is as old as 

coding, most people involved with software have a mental model of testing. 

However, there are significant differences in the definition of a scope and 

objectives for testing, that have resulted in different definitions of testing 

success. Unrecognised differences in mental models have resulted in confusion 

between and among customers, managers, analysts, programmers and testers." 

They divided the past four decades into periods based on the most influential 

testing model at that time: 

Testing phase models: 

• 1956 

• 1957 - 1978 

• 1979 - 1982 

Testing life cycle models: 

• 1983 - 1987 

• 1988 -

The debugging oriented period 

The demonstration oriented period 

The destruction oriented period 

The evaluation oriented period 

The prevention oriented period 
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During the first three periods (until 1982) testing took place after 

implementation, during a phase of the project tided testing. The testing life cycle 

models (from 1983) considered testing as an activity that is spread across all the 

phases of development and not just the time spent with the product once it has 

been completed. 

There has been an expectation that 'formal methods', proving a program 

mathematically, would provide the next step in software testing, but this has not 

been delivered for industrial projects at acceptable cost. 

The Debugging period 

The main concern at this time was the hardware and the reliability of the 

product. The terms 'testing' and 'debugging' where interchangeable and used 

by the programmer who 'checked out' his program. 

The Demonstration period 

Definitions started to appear: 

testing - make sure that the program solves the problem 

debugging - make sure that the program runs 

The goal for testing at this time was to show that a program did not have any 

faults, a demonstration of it working correctly. This was not a very effective 

method of selecting test cases and data as there was no incentive to find 

situations where the program would fail. 

The Destruction period 

The definitions changed: 

testing - fault detection 

debugging - fault location, identification and correction 

The goal now was to demonstrate that a program did have faults. This followed 

Myers [18] view that testing was the process of executing a program with the 

intent of finding faults. 
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The Evaluation period 

Testing became a product evaluation process spread over the complete life 

cycle. This covered the analysis, reviews, walk-throughs and testing activities 

during all development phases and not just the testing of the completed product 

The Prevention period 

Test planning, testability analysis and test design have side effects that improve 

the quality of software specifications. They reveal incompleteness, ambiguity, 

inconsistency and incorrectness of the specification by taking a different view of 

the specification. This also has the added advantage that it is cheaper to correct 

these mistakes at specification than to discover them in the final product. 

Prevention also includes the feedback of problems found with the development 

process to stop the same problems from occurring again in another product. 

A definition of 'testing' for this thesis: 

The evaluation of a system or subset of a system throughout the 

development life cycle, to establish a level of confidence in the system and 

the development process. 

This definition has components from the 'evaluation' model as the whole life 

cycle is covered during the testing, but mostly from the 'prevention' model as 

the development process is being considered along with the product. 

By analysis of the reported defects an estimate can be made for the number of 

faults in a system and the specification, design or coding process errors 

responsible. Scaling up of defect numbers to estimate the total for the system is 

theoretically impossible because of determining an accurate size measure for the 

sample and a truly representative sample to test, but practically may be close 

enough to be of use. 

The definition of testing given above adds a reason for projects to test the 

resultant products. When there is a reason for testing there must also be a 

reasoned approach as to when the testing should be stopped. 

Criteria for halting testing range from: 

running out of money and/or time, which must be the worst possible stopping 

point unless the reason for testing is to spend a fixed amount of money, to 

finding every fault in the system, requiring infinite resources. 
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Figure 4 Defect rate 

Measuring the faults found per week can give an indication as to the point of 

handover to the next stage or to the customer if it is validation testing that is 

being assessed. Figure 4 above, shows a typical plot of defects/per week with a 

level at which handover will be accepted [23]. Once over the hump of the graph 

the date at which this level will be reached can be predicted. A useful technique, 

but it does rely on the number of defects found being used to predict the 

number of defects uncovered, and the resultant quality. I f a poor set of tests are 

used, inadequate testing wil l give a false prediction. The only way to be sure is 

to assess the testing as well as the product under test. Mutation testing [see 

Appendix A] [28] is a technique that can be applied during validation testing 

and coverage analysis during module testing to assess the level of testing 

achieved. Appendix A, covers a number of standard testing techniques and 

Appendix B IEEE standards for test documentation. 

It is important to develop testing environments and test cases for products that 

can then be handed on to a support group responsible for the ongoing 

maintenance of a product. A regression testing environment and a full set of 

tests to run within that environment will save the support group a considerable 

amount of money and time [29]. 
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For most products it has been shown that 2.3 times the development cost of a 

product will be spent on maintaining that product out in the field, 30% 

development, 70% maintenance [3]. It is unlikely that any product managers 

plan to spend such a large amount on maintenance, but that is what happens in 

practice. A sizeable proportion of this large amount, will be the cost of re-

testing the product every time a change is made; scope for savings with a 

regression testing environment. 

Decisions on regression test coverage are best made joindy, developer and 

customer, as the main objective of the testing is to maintain the customers level 

of confidence in the product. 

2.3 The testing process 

The testing process is an important part of the product development life cycle, 

and the quality assurance of products. Testing is a technique used to asses the 

quality of a product. A product is likely to consist of a software component 

running on some hardware. 

Testing is carried out by the development organisation to ensure that the product 

performs as specified, which will include the product reliability. As 

maintenance costs can account for 70% [3] of the overall product life-cycle 

costs, attempts at reducing this overhead by ensuring the product is correct are 

worthwhile. The customer may also run his own acceptance tests or pay an 

independent testing organisation to checkout his proposed purchase. 

Identifying the customer and his needs is critical i f the right product is to be 

developed. The customer initially might not have been identified, so a profile 

put forward by a marketing department may be used. IT products might well be 

sold direct to customers, and products for a companies operational departments 

might well end up providing services to customers using an IT system. 
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2.4 The product development life cycle 

There are a number of methods used to describe the product development life 

cycle, although the majority are variations of the waterfall model. The variant 

shown in life-cycle, page 9, emphasises the verification stages of the life cycle 

and the linkage to development. Each phase of the ' V development life-cycle 

is explained below and includes the verification activities. "Software quality 

assurance is an 'umbrella activity' that is applied throughout the software 

engineering process" Pressman [7]. 

2.4.1 Requirements 

This is an explanation of what the customer requires, in their terminology. In 

the case of a new service, there is likely to be two different customers. End 

customers who are requesting the service from a company; and a department 

within the company who will run the service and let a development contract for 

the development of a system to provide the service. The department becomes 

the customer for the development as well as the service provider for the external 

customers. 

Ideally the requirements would come from the customer in a form that enables 

a direct translation into the specification. The other approach is to offer the 

customer a requirements proposal that can be modified as they clarify their 

ideas. This approach is taken with technology lead developments where the 

customer is not aware of new possibilities. 

"The requirements specification always fulfils the following two roles: 

It provides the primary input to the design phase. 

It gives a baseline against which acceptance tests are carried out." Norris [2]. 

The BCS [19] describe the criteria for testing a requirements expression " The 

testing criteria used at this stage are intended to prove that the Requirements 

Expression covers as many requirements as are realistically within the scope of 

the system. We look at completeness, consistency, feasibility, testability and 

referability". 
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2.4.2 Specification 

A document that will specify the product in an exact manner for use by the 

development team. Al l to often development projects fail because the 

specification was not up to standard. It is essential that the product is 

understood and can be specified before development starts [19]. 

It is sometimes argued that the software specification and the requirements 

definition are one in the same thing, but Sommerville says that there is a clear 

distinction," The principal function of the requirements definition is to set out 

those services which the software must provide the user. The requirements 

definition should be a user oriented document and must be expressed in terms 

which are understandable to him. On the other hand the software specification 

is intended for the software designer rather than the user. It is made up of 

abstract definitions of software components, not user services"[8]. 

The effort required to produce a quality specification and the attention to detail 

needed is often underestimated. Specifications should not include details of how 

the system is going to be implemented (unless the customer has specific 

implementation requirements) but what the system will do. 

Specification attributes [19]: 

Consistency of meaning 

Freedom from contradiction 

Unambiguous 

Testability 

Referability 

Feasibility 

The document should also be controlled under the project configuration 

management system (CM). The specification will no doubt change and 

therefore require the CM control to link it to the other changed design 

documents. This will assist traceability and provide an up to date specification 

for use during validation and ongoing support [17]. 
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One of the main trouble spots within development is the specification. If the 

specification is wrong a lot of money is wasted before the problem is 

discovered. The relationship between discovering a problem and the cost of 

fixing is shown by Figure 5, Cost to fix, on page 20 [12]. "A large data base of 

experience has verified that it is less costly to discover and rectify errors early in 

the development cycle" [21]. The earlier a mistake is made the later it is before 

that phase of testing is reached that will target finding the problems from the 

earlier implementation phase. Mistakes in coding are usually found at module 

test, mistakes in specification are not found until validation, because that is the 

first point in the project that the system comes together and can be verified 

against the specification, see Figure 6 Error linkage, page 21. Daily whilst 

discussing the ' V model says "The approach to testing is based on the results 

of each integration and build phase being assessed against its corresponding 

design or specification phase at the same level" [17]. 
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2.4.2.1 Verification activities during specification 

The main input from verification engineers during specification is an analysis of 

the specification for testability [30]. This normally takes the form of technical 

reviews, and must be the most effective method for tightening the 

specification[17]. Testability analysis will force the clarification of any 

ambiguous statements, as it is not possible to test a vaguely specified function 

properly [19]. 

As the specification progresses, so should the top level test plan; see Appendix 

B for test plan contents to meet IEEE829 standard [22]. The reason for starting 

work on the test plan before the specification is complete, is due to practicalities 

and cost. There is not much point in specifying a product that can't be tested, or 

a product where the cost of testing would be so prohibitively high, that the 

business case for the product fails. The verification engineers provide this 

feedback through the quality review process. 
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2.4.3 System Design 

The system design process defines how the product will be realised. The 

functionality split between hardware and software will be documented. Also the 

software structure down to the module level, the module interfaces specified, 

and a hardware overview produced. I f the software is designed to run on 

standard computing platforms (pc, client/server, Sun UNIX etc. [31]) then a 

specification for the equipment is needed. " Design provides us with the 

representations of software that can be assessed for quality. Design is the only 

way that we can accurately translate a customer's requirement into a finished 

software product or system", Pressman [7]. 

2.4.3.1 System design verification activities 

The top level test documentation will be completed, and the validation test plan 

started. As validation testing is a black box testing activity, tightly coupled to the 

specification and not requiring visibility of the design, adequate information is 

available for starting the production of test cases. The specification will change 

as the design is refined; the validation test plan follows these changes as an item 

under CM control. The verification engineers will also take part in the technical 

review of the system design. 

The validation of a software design is intended to achieve two objectives, 

Sommerville [8]: 

" To show that the software design is 'correct'; that is, the design should 

correctly implement the intentions of the designer. 

To show that the software is valid. That is, it should be demonstrated that the 

design meets the requirements in ful l" . 

2.4.4 Module design, low level design 

This is the detailed design of modules down to the level of detail where the 

information for coding is complete. In parallel the hardware engineers will have 
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produced a detailed hardware layout. " During the low level design, the internal 

logic for each component identified in the top level design is developed. 

Detailed data structures are developed and the units that compose each 

component are identified and designed. The primary output of the low level 

design phase is the low level design document" [32]. 

2.4.4.1 Module design verification activities 

The next level of verification plans, the integration test plan, proceeds as soon as 

the system design has been issued. The order in which modules are integrated 

together is carefully planned to maximise effective interface testing and 

minimise cost [7]. Feedback to development teams of the finalised order is 

important, as the first modules to be integrated should be developed early, to 

allow the earliest possible start date for integration. The development engineers 

will be producing module test cases as a parallel activity to designing the 

modules. 

2.4.5 Implementation 

The coding of the module software following the module design documents, 

takes place while the hardware is constructed. "Good programming - the 

production of reliable and maintainable programs - is a language independent 

process. Whilst high level languages such as Ada or Pascal simplify the 

process of converting a design into implementation, there is no reason why 

good programs may not be constructed in any languages whatsoever" [8]. 

The adding in of extra features by the development team or trying to sell side 

effects as extra features to the customer is a sign of problems to come. Not only 

will these late additions have not been thought through properly, and therefore 

wil l not work, but the customer has not asked for them; he may not want them. 

Development of software is a complex process that will always lead to some 

human error. Syntax errors will be picked up by the compilers; the errors that 

compile and run but with subtle differences to the required code, are the tricky 
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ones to find. "When the code is complete and has compiled without error, the 

development engineers conduct a code walk-through or peer review with one or 

more engineers. The purpose of the walk-through is the detection of errors 

before the unit enters any part of the test phase" [32]. 

2.4.5.1 Implementation verification activities 

Preparations for integration testing should now be complete, with the test 

environment in place and test cases written. Verification engineers move on to 

start producing the validation tests. 

2.4.6 Module testing 

This testing is normally carried out by the development engineers, and will 

confirm that the modules function as documented in the module design, plus 

conformance to the interface specifications. As modules pass the prescribed 

tests they are passed to integration, failed modules are returned for coding 

changes or design and re-coding for major problems. 

Module testing is a white box testing procedure (testing with knowledge of the 

internal operations), carried out by the developers [33]. Although the developers 

are the best people to carry out this work from the point of view of 

understanding the code, there is a problem - cognitive dissonance. People can 

rarely see their own mistakes, and are therefore unlikely to find any problems in 

their own software. There is another reason why developers do not make good 

testers for their own code. They will have spent a fair amount of time 

developing their software, trying to show that it works and therefore trying to 

prove that it doesn't work (this is the principle behind testing) is very difficult, 

indeed impossible for some developers who get very attached to their code [8]. 
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2.4.6.1 Module testing environment 

The best method for testing software modules is to simulate the environment 

that they will be operating in. The software module is run within a computer 

that presents the correct interfaces to the module code, sometimes called a test 

harness. The interfaces can then be driven with sets of data to exercise the 

module code and check that the correct functions take place with the relevant 

stimuli. Another advantage of this method of testing is that conditions that 

would be difficult to produce in the real product environment can easily be 

presented to the software via the drivers in this simulation environment. The 

test data should be stored for use later in the products life, so that enhancements 

to the system can then be regression tested at module level [19]. 

2.4.7 Integration 

Modules are linked together on the hardware and the interactions between them 

tested. The order that the modules are brought together needs to be carefully 

planned in advance of this stage, as the order of integration will determine the 

order that they will be developed in. 

There are four types of integration [32] [18]: 

1 Top down 

Starting with the software nearest to the user (the top of the software) the 

modules are integrated moving down through the layers of software. Stubs will 

be needed to respond to software calls to the lower levels from the modules 

under test. 

2 Bottom up 

The modules furthest away from the user but closest to the hardware are tested 

first followed by further layers being built on top of the tested software. As the 

user interface or control software will be the last layer to be added, drivers are 

needed to drive and test the lower level software. 

25 



3 Thread 

Any modules associated with a particular function are integrated and tested 

before moving on to the next function or thread. The capability of the system is 

gradually increased as more functions are added. Stubs or drivers will not be 

needed so long as the module design has been based on functions. 

4 Big bang 

No stubs or drivers are needed for this type of integration, all the software is 

loaded at the same time, and the machine switched-on to 'see what happens'. 

The big bang approach to integration is not a very successful method of 

integration as it is difficult to isolate the problems that will be found, and a large 

number will be exposed in this first coming together of the software. This 

approach does sound attractive, no stubs or drivers to produce, just load all the 

software together. 'The entire program is tested as a whole. And chaos usually 

results!" [7]. If a large number of problems are found and they can't be isolated 

then the only path to take is to re-plan the integration stage based on one of the 

other remaining methods of integration. This adds a large time and cost penalty 

to the project, project management will try to cut comers on this testing and a 

poor quality product finds its way out to the customers. 

Hetzel [34] identifies two major problems with integration testing in practice: 

"The first is integrating modules that have not been properly unit tested. Just as 

a single bad apple will quickly rot the entire barrel, it takes only several poorly 

tested modules to ruin a solid integration testing plan. Some form of quality 

check or acceptance must be made by the integration test team to ensure that 

modules are ready to be integrated. The second problem is failing to treat 

integration testing formally enough. Like all testing the integration tests must be 

designed and planned to ensure thorough coverage". 

The integration stage will verify that the overall design has been implemented 
correctly and that the interaction between modules and the interfaces are as 
specified [19]. 
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2.4.7.1 Integration testing environment 

Test stubs or drivers will be required depending on whether top down or 
bottom up integration has been chosen. Also needed will be hardware test 
equipment to check that the software is controlling the hardware correctly [32]. 

Royer [32] considers the problem of new or special hardware," it is here that 

the test engineer is most likely to encounter the 'chicken and egg' situation: the 

software is the best vehicle for verifying the hardware and the hardware makes 

it easy to verify the software. Which? There's no correct answer; the test 

engineer must select the most appropriate sequence". 

One approach to system integration with new hardware is to integrate all the 

software modules first before loading them onto the target hardware. This 

requires an integration environment that will simulate the target hardware for 

the integration of the software modules. The advantages offered by this method 

include, early integration of software before the hardware has been completed, 

and the possibility of automating the integration testing as software will be used 

to simulate the hardware. The disadvantage is the effort to construct the 

simulated target hardware, and the availability of computing power to run the 

simulation and software under test in real time [8]. 

2.4.8 Validation 

The complete product is tested to gain confidence that the customers 
requirements have been met, and the products 'fitness for purpose' [35]. This 
type of testing is often called 'black-box' testing or system testing. If the 
product specification is of good quality then validation testing is a 
straightforward but, perhaps, lengthy process [34]. A drop in quality at this 
stage is normally a problem with project finance. "The process of system 
validation is laborious and is often the most expensive stage of software 
development" Sommerville [8]. Validation being the last stage of the 
development most of the money, time, and contingency will have been used so 
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the project management are pressurised into reducing the validation testing. 

Norris [2] discusses the squeeze on the testing stage after overspending on the 

earlier stages, "This is borne out by recent surveys, which indicate that there are 

relatively few practitioners in the UK industry who consider that enough time is 

allowed for testing - typically 15% of time and effort is considered a generous 

allowance. To learn how the software industry, as a whole, is likely to develop 

in this country, one should look at the examples set by leading companies in the 

USA, where testing is treated with as much respect as any other part of the 

software engineering discipline and a 40% allowance for testing is widely 

accepted". 

This being the last stage before customer trials, any problems that are not found 

in validation will no doubt be found by the customer. System testing is really 

split between integration and validation, as the only way to confirm the system 

design and its implementation during integration involves gradually building the 

system and testing until full system tests can be completed [34]. The integration 

system tests might well be repeated during validation, but as the software is 

likely to change during integration as problems are found, a rerun will be 

necessary on the new stable validation software. The validation testing 

environment is much closer to the users environment, and as such also 

warrants the rerunning of system tests to show that the product will perform as 

the user expects [34]. 

Pressman [7] defines validation testing; "validation testing can be defined in 

many ways, but a simple (albeit harsh) definition is that validation succeeds 

when the software functions in a manner that can be reasonably expected by a 

customer. Reasonable expectations are defined in the software requirements 

specification". 

The product can be considered as a black box, you can not see into it, and do 

not know what is happening inside the box. Tests are written from the details in 

the specification to show that a particular function is present and operates 

correctly, without knowing how it is functioning internally [34]. Due to the size 

and complexity of modern systems it is not possible to run all the tests that 

would be needed to gain 100% coverage of the system. A set of priority rules 

(listed below) can be applied to select the subset of tests that will provide the 

best possible coverage for the time and money available. AT&T [36] have 
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made use of similar priority rules to cut the testing on one project from 250,000 

test cases down to 40,000 and still achieve effective testing results. 

Testing that something doesn't happen is just as important as checking that 

something does happen. 

It is not only necessary to prove that the system operates as expected, but also 

to show that it has no unwanted extras. It is very easy to spend all the 

preparation time developing test cases to show the system functions in 

operation and not even consider checking that the system does not do 

something disastrous. Roughly equal time should be spent on these two 

approaches. 

Testing the system's capabilities is more important than testing its 

components. 

Users of a system are much more interested in progressing their total job, and 

will worry less about a screen layout being wrong if they can complete the job 

in hand. The objective then is to test the basic job that the system is performing 

from start to finish. 

Testing old capabilities is more important than testing new capabilities. 

Users of a system become annoyed if a facility that has been working well, fails 

when they are provided with a new release of software. This will cause them 

problems as they may have to change their working practices, whereas a 

problem with a new feature will not put them out as they did not have access to 

it before. 

Testing typical situations is more important than testing boundary value 

cases. 

Validation testing involves understanding how the user will use the system, and 

making sure that the system will not fail under those conditions. Boundary 

value analysis is an important technique which should be applied during 

module testing, but is not applicable to validation testing as the values selected 

are unlikely to be typical user values. 

Experienced verification engineers using error guessing techniques to provide 
provocative testing, will stretch the system further than the system tests [18]. 
But these tests still need to be planned in advance and not become an ad-hoc 
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activity on a user interface. In addition to functionality there are a number of 
abilities that are investigated during validation; maintainability, installability, 
extendability and usability. Performance testing and the product abilities are 
explained in more detail below, as they are just as important to a customer as 
the products functions [18]. 

2.4.8.1 Performance 

The testing of response times and throughput rates over a range of system 

loading and configurations. There are two further performance testing areas, 

volume and stress testing. 

Volume testing 

A throughput rate at or near the maximum for a period long enough to give a 

high degree of confidence that the system could carry on at this rate. As volume 

testing is expensive, tying up valuable models, a balance of cost against level of 

confidence is required [18]. 

Stress testing 

The subjecting of the system to heavy loads or stresses. Unlike volume testing 

this is a short burst of peak volume load. This technique is used to explore the 

systems response to loads greater than those specified as maximum. The 

system should gradually degrade its service or not offer process power to 

requests above the maximum rather than shut down or fall over if a peak above 

the normal limit is encountered[18]. 

This type of testing is most applicable to real-time, interactive, and process 

control systems. An example is the lifting of handsets by all the subscribers on 

a telephone exchange at the same time, an unlikely event, but not impossible. 

The telephone exchange should accept and route the maximum level of calls 

and reject any above that maximum limit. 
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2.4.8.2 Usability 

A subjective form of testing unless you have an end user to sit at the system 

with the manuals. Otherwise you asses whether the Human Computer Interface 

HCI [37], the user interface (including user manuals), matches the expected 

user intelligence and background experience of such systems. A check is made 

to assess the implementation for a consistent user interface; format, style, 

syntax, semantics, abbreviations, short cuts, meaningful outputs and 

straightforward error messages [18]. 

A secondary effect of usability testing will be to validate the user 

documentation against the implemented system. If an end user or a suitable 

substitute is available, provide them with a configured system and a set of tasks 

that represent the expected use of the system. Monitor the exercise for 

difficulties and misunderstandings encountered with the system. 

2.4.8.3 Reliability 

Hardware reliability can be assessed by accelerated ageing using temperature 

cycling and other environmental stress conditions, software is a little more 

tricky. Musa [38] says that software failures are different to the 'wearing out' 

process of hardware, "The large number of possible states of a program and its 

inputs make perfect comprehension of the program requirements and 

implementation and complete testing of the program generally impossible. 

Thus, software reliability is essentially a measure of confidence we have in the 

design and its ability to function properly in all environments it is expected to be 

subjected to". 

Weekend runs of systems under load is quite often the method used to gain 

confidence in a systems reliability, if a mean-time-to-failure (MTTF) in hours 

has been specified. Splitting the MTTF down into levels will assist the 

reliability measurement. 
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For example, a set of reliability requirements for a telephone exchange: 

10 entries per hour in software log 

1 minor restart (no calls lost) per 10 days 

1 major restart ( all calls lost) per 100 days 

1 rollback ( all calls lost, some software loaded) per 200 days 

1 reload (all calls lost, major software reload) per 500 days 

The first two of these will be tested during field trial, whereas a down time 

figure of two hours in twenty years can only be assessed by a sample period 

and a reliability model. 

2.4.8.4 Maintainability 

There are two main aspects to maintainability. The first is the support for the 

system, has it been developed in a manner which has produced maintainable 

code. This will cover design and code documentation, the structure and 

complexity of the code, plus regression testing coverage [19]. The best people 

to assess this aspect of maintainability will be the proposed maintainers. The 

second area to consider is the maintenance and diagnostic facilities provided on 

the system for the user and first line support engineer. 

2.4.8.5 Installability and extendability 

Installation procedures and time to install are important to the customer; what 

will be the down time and inconvenience caused when loading. It is also 

important to the selling organisation, trying to keep the installation time and 

therefore cost to a minimum. Installation tests that are used following customer 

installation to verify successful installation, will also require testing before use 

[18]. Once a system has been installed, its up and running, how easy will it then 

be to extend the system? These procedures are scrutinised and timed during 

field trials. 
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2.4.8.6 Recovery 

How does the system cope with hardware/software failures, and data errors. 
The creation of software faults, injecting data errors and simulation of hardware 
failures enables the systems recovery facilities to be exercised and timed if 
automatic recovery within a specified time is a requirement [7]. 

2.4.8.7 Security 

Security has become much more of an issue over the last few years as more 

software is accessed remotely, via the WEB [31] or via LAN/WAN [39] 

connections. Attacks from hackers, disgruntled employees or individuals after 

illicit personal gain is a likely occurrence. "Security testing attempts to verify 

that protection mechanisms built into a system will, in fact, protect it from 

improper penetration" [7]. 

2.4.8.8 Validation testing environment 

The testing of the product is from the customers view point, his interface into 

the system, so testers are likely to mimic a user of the system. The idea is to 

draw up the system and then decide where the boundary lies between the 

system and the user community [40]. As an example, an office system has 

been drawn showing the customer interface consisting of a maintenance 

terminal, user terminals via a LAN or RS232, telephones and an ISDN link 

[39]. Also shown is a programmers terminal, which has access to the high level 

application code via an Application Programmers Interface (API) and results in 

the testing boundary lying between software layers on that computer. During 

validation the components within the boundary are treated as a black box, only 

the actions and responses at the interfaces are of interest. 
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Once the boundary line has been drawn anything that cuts that line will require a 

tester or a human user, sometimes it is just not practical to provide automated 

testers for all of the interfaces, so a manual test is necessary. To fully automate 

the testing all the interfaces will need to be terminated with equipment that can 

analyse the actions taking place and respond in the expected way. These 

automated testers need to be connected together for synchronisation of testing 

and results, plus the ability to check that data has been passed across the system 

under test correctly. A common point is also needed for a test database, a 

method of linking the different test information for each of the automated 

testers to a common system function under test. This type of database would 

link the specification, functions under test, to the test cases for the automated 

testers involved and the results obtained [34]. Standards are now being 

developed for interconnecting test tools [41]. 
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One purpose of validation testing is to simulate the working environment and 

emulate the users of the system. For example, a background load applied to the 

system while individual functions are exercised, rather than an idle system. The 

test system will require typical user data, configuration and usage patterns so 

that tests can be carried out with a representative user load as background. It is 

not always possible to load the system sufficiently by providing external stimuli 

via the hardware of the system, due to the cost of a large amount of loading 

equipment. In this case message generators and test data generators are used to 

load the system processor [8]. 

Automated test case generation is the next step and has been demonstrated 

using a test specification (mapping input to output) to derive test cases and 

expected results [42]. This process still requires the production of a formal test 

specification, but test case generation based on output from the 

design/development tools will remove this activity. As an example research has 

shown that developments using SSADM tools could generate test cases from 

the logical data model, the data flow model and the entity life history charts 

[43]. 
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An automated testing environment makes an excellent regression testing 

system and should therefore be passed on to the support group for future use in 

a support role. The first use of a regression testing system should be validation, 

where the regression testing system is proved along with the system under test 

[29]. 
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2.4.9 Customer acceptance 

"Generally the acceptance test is just what it says: if the system passes the 
acceptance test the client will accept it: if it doesn't they won't. It is now that we 
realise the importance of having a system specification that is testable" [19]. A 
series of field trials or system demonstration are the normal methods of 
establishing if the customer requirements have been met. Alpha trials are 
normally sites within the organisation that developed the product, beta trials rely 
on 'friendly' customer sites outside the development organisation. The 
installation and support arrangements are also tested during the field trials [7]. 

This phase of the life-cycle should be a demonstration of the system working 

and not part of the suppliers testing, as Royer says "with the customer in 

attendance at a formal demonstration, and with acceptance of the software on 

the line, it should be clear that we're not looking for errors. That is, the last 

thing we want is a surprise from our system" [32]. 

If the product has been developed for a particular customer, he might impose a 

set of acceptance tests, require access to the results from the validation tests or 

have an independent assessment [44]. Acceptance that the development contract 

has been met, and payment is due, is likely to be tied to the results from the 

acceptance testing. Product acceptance testing, in this case, will form part of the 

contractual terms applied to the project [19]. 

This explanation of the verification life cycle may seem straightforward and in 

theory products should end up error free. Unfortunately many problems are still 

found in new products. "Not only are more errors made in the analysis and 

design stages as in coding (typically a ratio of 2 to 1), but while most coding 

errors are discovered during development (around 75%), most analysis and 

design errors (70%) escape to plague the user" [45]. 
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2.6 Summary 

This chapter has concentrated on defining some of the commonly used 

terminology for testing The terminology is not universally agreed amongst 

testing practitioners and is one of the reasons why it has been necessary to 

define them for this document. The ' V development model has been chosen to 

illustrate the verification phases as it is a well known and understood model. 

The testing aspects of each phase of the ' V have been explained. 

Other development models such as evolutionary delivery or prototyping will 

also have a similar set of verification activities associated with the development 

process. The main point to be made from this broad look at verification, is the 

emphasis on gaining a level of confidence in a module of software or a 

complete product, and not the impossible task of trying to prove that the 

software is 100% correct. This arises due to the impractical nature of trying to 

prove that something as complex as a computer program is correct and also the 

reality that no one would be prepared to finance such a costly task even if it 

were possible. 
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3 Process control and measurement 

"You can't control what you can't measure" [23], a statement often used, but 

not so often acted upon. 

The aim of this study is to improve the quality of a product through improved 

verification. The improvements must come from improved efficiency and 

effectiveness of verification, and not just an increase in testing resources and 

cost. Metrics are used to provide the improvements and also to measure 

present verification methods and show the impact of new techniques. Metrics 

on their own will not provide an understanding of the underlying process, just 

measurements of process or product attributes. The requirement is for a model 

constructed from metrics but also linking the metrics to each other. To take this 

concept further an appreciation of metrics and modelling is essential, and will 

therefore be covered over the next few pages. 

3.1 Software metrics 

"A software metric defines a standard way of measuring some attribute of the 

system development process" [46]. An attribute might be, the number of 

defects found, the cost of development or the code size. A system view from 

DeMarco, "a metric is the number you attach to an idea. More precisely, a 

metric is a measurable indication of some quantitative aspect of a system"[23]. 
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Software metrics fall into three categories [47] [48]: 

1. Process metrics which quantify attributes of the development process and 

are usually associated with some timescale. 

2. Product metrics are measures of the software product and deliverables; 

complexity, size, development cost, field failures are all product metrics. 

3. Resource metrics are used to measure the entities that are required by a 
process activity. Examples include personnel, tools, and methods. 

This is not a particularly tight classification and some software metrics might 

apply to the process and the product. If this is the case then the major influence 

should be used as a guide to classification. 

Metrics may consist of a single measurable attribute (primitive), or a 

mathematical combination of a number of measures (computed). 

For classification purposes there are a number of groups of software metric 

types [26]: 

® Size metrics. These are some of the most used metrics, as all programs 

have a size, it is easy to measure once the program has been produced and 

there is a high correlation between size and the cost of development. One of 

the popular size metrics is the number of lines of code, but this can also be 

very misleading for comparison purposes unless a line of code is actually 

defined. 

• Data structure metrics. A measure of the amount of data input, output or 

processed by a program. 

• Logic structure metrics. Included in this category would be reachability, 

number of paths and decision count metrics. 

» Effort (cost) metrics. This may seem to be an easy metric to collect, but 

trying to determine the actual effort from the maze of time sheets, overtime, 

interruptions, long hours, and informal discussions is not an easy task. 

® Reliability and defect metrics. Defect count, a measure of the number of 
errors that lead to design and code changes, is a standard component or a 
reliability prediction. The reliability is normally expressed as a mean time to 
failure (MTTF). 
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• Design metrics. A structured design is related to five design principles, each 

having associated metrics; coupling, cohesion, complexity, modularity and 

module size. 

• Composite metrics. A vector of metrics used to describe complexity. 

3.2 Modelling 

Modelling when applied to software engineering provides a scaled down 

version of a product or process that enables an early or reduced cost view of the 

product, in advance of the main project cost. Problems found with the model 

can be solved before any large costs are incurred on the project. 

"Modelling gives an inexpensive way to study essential aspects of a system 

long before the system is built" [ 23]. 

DeMarco goes on to explain the essential aspects as: 

• system behaviour - (embodied in a specification) specification model 

• system internal organisation - (embodied in a design) design model 

• project organisation - (embodied in a project plan) project model 

Models are used to provide the relationship between various system 

development attributes. There are a number of approaches to developing a 

model; theoretical, data driven, or a combination of both of these. For example, 

take a relationship between the cost of developing a product and the resultant 

code size of that product. A theoretical model, based on hypothesised 

relationship between cost and size, might be: 

cost = size 

This has been developed independent of any data, whereas a data driven model, 

the result of statistical analysis, might be: 

. 0.756 

cost = size 

A compromise between these two approaches is to use intuition to determine 

the basic shape and then data analysis to provide a constant: 

cost= 1.5 x size1 
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Although the model must be true to the data, to be considered useful it must 

also be simple to understand and use. The above model would be described as a 

static single variable model by Basili [49]. He also presents a static multi 

variable model as one with a number of parameters similar to Boehm's model 

[16]. 

A third type of model is the dynamic multi variable model. Dynamic because it 

produces a range of values (curve) rather than a single value, for example 

Rayleigh, Parr and Putnam curves. Examples can be found in the tutorial by 

Basili [49]. 

3.3 Application to software engineering 

Process metrics provide the data source for a development life-cycle model. 

The model therefore provides the linkage between the different process metrics. 

Motivation for the use of a development model and software metrics comes 

from a need to improve the process, and the quality of the resultant products. 

But it is not possible to control what can't be measured, or to compare without 

a standard measure. 

Improvements from the adoption of a metrics programme: 

• better control of the project, earlier indications of overrun and problems 

• better estimation of project cost and timescale 

• improvements and fine-tuning of the software development process 

• early prediction of product quality, especially reliability 

These claims are supported by a number of software engineering 'process' 

books [23] [49] [16] which cover the use of metrics and the benefits found. 

Grady & Caswell [46] aimed their metrics program at improving productivity 

and predictability. They explain productivity as a measure of output divided by 

input, or value divided by cost. It is interesting to note that productivity is made 

up not just of quantity, but also quality and reusability. 

There are a great number of improvements that can come from a metrics 

programme, but it is necessary to decide on a reason for collecting data and 
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check that the cost of collecting the data is not greater than the benefits. The 

most efficient way of gathering data is automatically, by extending tools already 

in use. A size metric provided by the compiler used, does not involve any extra 

manpower cost or effort to collect. 

There are some limitations to the use of metrics [26]: 

• Models wil l need to be calibrated for a particular development environment, 

from past project data. If a model is later used in another environment it will 

need to be recalibrated. 

• When comparing data from different models check the definitions of the 

metrics used. There are several definitions of 'lines of code' in use today 

that would give quite different values for the same piece of code. The 

problem is what to include as a line of code in the count; headers, 

comments, blank lines etc. 

• Models should be used to assist managers and not to replace them. A 

model can produce a prediction way off target i f the environment has 

changed, a manager can discount a prediction he does not believe. 

• Programmers will always try to optimise the attribute of a project that wil l 

show them in the best possible light (lines of code produced, fastest time 

per module). Metrics should not be used for evaluating staff because in 

trying to improve particular metrics the overall model will be thrown off 

course [23]. 

• The accuracy of predictions from a model must be linked back to the 

accuracy of the collected data. There is always a danger that model 

predictions are looked at without considering the range of accuracy. To 

ensure the accountability of any decisions made from a model, control data 

collected at the same time will provide a means of reconstructing the 

conclusions from the data. Control data would include; date, observation 

method, and accuracy of data. 

• "A software metrics program must not have a strategy unto itself. 

Collecting software metrics must not be an isolated goal. Software metrics 

can successfully be only a part of an overall strategy for software 

development improvement" [46]. 

43 



This last point about a strategy requires further amplification to fully understand 

the reasons for launching into a metrics programme. Improving product quality 

is often a key goal for an improvement strategy, but quality is a difficult product 

attribute to measure. 

3.4 Quality 

"Quality is recognised as one of the prime drivers behind the acceptance of our 

goods and services by customers. It has a direct effect on the cost of 

production, delivery, support and customer satisfaction. Assuming there is a 

commodity that customers want, quality is often the final tie break of 

competitiveness" [50]. 

Quality, in relation to software engineering, covers two main areas. The quality 

of the development process and the quality of the product developed. 

Standards for software development and assessment include BS5750 [51], 

ISO9000 [52], SPICE [53] and TicklT [54]. 

The quality of a product, when measured by the number of problems found, 

can be linked to the level of verification. The standard quality/cost/precision 

curve does apply to verification, there is an optimum level of testing to 

maximise the level of quality for the testing expenditure. There is an optimum 

point for maximum contribution at minimum cost, beyond which you are 

paying a considerable price for finding those last few errors. Gilb provides a 

quality/cost graph in his book, Principles of software engineering management 

[55]. The graph (Figure 7 Quality/cost graph, page 45) shows the cost of 

improving a quality tending towards infinite cost, as 100% of that quality is 

approached. There is certainly not a linear relationship between quality and cost, 

as the quality level approaches state of the art. 
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Figure 7 Quality/cost graph 

The graph below (Figure 8, page 46) builds on Figure 7 Quality/cost graph, 

page 45, and shows the impact of the cost of quality on the contribution to the 

product and the product price. The contribution will fall as the state of the art 

border is passed and the cost of quality rises steeply. The product price will 

reflect the rising cost of quality until the product becomes so expensive that it 

becomes unsaleable. Where there is a risk to human life (software for aircraft, 

manned spacecraft, military etc..) a very high level of quality will be attained, 

but with a high product price. 
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This measure of quality does not have the backing of all software practitioners. 

The problem is in linking the data from the graph to a real measure of quality, 

Conte explains " faced with the task of constructing an objective algorithm to 

measure an abstract concept such as software 'quality', one could measure the 

quality based on such items as the number of errors uncovered in testing, 

defects discovered per thousand lines of code, or time between the last two 

software failures. But does the number bear any relation to the abstract concept 

of quality"[ 26]. 

DeMarco has a completely different view of the relationship between testing 

and quality, "poor product quality is a sign of inadequate testing. Improving 

quality is as simple as increasing the investment in testing. While this idea is 

intuitively appealing, the facts don't bear it out at all. Incredibly, the testing 

investment is an inverse indicator of product quality. In one sample after 

another, we see that a heavy investment in testing is a symptom of poor quality, 

not a cure" [23]. But as Ferdand [50] says this is a complex relationship, "The 

problems associated with defect behaviour and quality are complex. They often 

involve a large number of elements and relationships. In software engineering, 
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for example, this may entail hundreds of thousands of lines of code and even 

more relationships. One has to deal with human nature as well as statistical 

laws of nature". 

There are two main reasons for the use of metrics and mudels during software 

development and support - Quality and project costs. 

Projects balance the quality of the product against the cost of development, as 

shown in Figure 9 Balance I , page 47. Throughout this thesis, diagrams will be 

used to illustrate the quality/cost balance and the different interpretations of 

quality in use today. If a poor quality product is released for customer use, then 

there will be a cost associated with this poor quality, "whenever a user speaks 

of 'poor quality,' this can almost always be translated into some kind of loss of 

money, time, or other resources" [56]. 

Quality 

Figure 9 Balance I 

Project costs cover the resource required to construct the software, equipment 

as well as manpower, and elapsed time. Why include elapsed time and not just 

man-months? Brooks [57] sums up the answer in his book, The Mythical 

Man-month; 

"Adding manpower to a late software project makes it later. This then is the 

demythologizing of the man-month. The number of months of a project 

depends upon its sequential constraints. The maximum number of men 

depends upon the number of independent subtasks. From these two quantities 

one can derive schedules using fewer men and more months. (The only risk is 

product obsolescence.) One cannot, however, get workable schedules using 

more men and fewer months. More software projects have gone awry for lack 

of calendar time than for all other causes combined." 
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"The quality determines cost principle: 

You cannot accurately estimate the costs of anything when cost determining 

quality attributes are unclearly defined" [55]. 

Two interpretations of quality are discussed by Watts [58] " Firstly , quality 

could be taken to mean the degree of excellence. This would suppose that there 

is a general agreement on the characteristics which are considered desirable and 

necessary (and the reverse) and also on the extent to which specific 

characteristics have to be present in order to fulf i l general quality standards. 

Since it seems to us that there can be no such general agreement, we reject this 

interpretation of quality. 

According to the second interpretation, quality is to be understood as the degree 

of compliance (or non-compliance) with the specified requirements. Quality 

requirements are statements on characteristics of a software product (for 

example, on its maintainability) and on the desired extent of these 

characteristics for the type of use intended. The question is not 'Which 

characteristics must a good product possess?' but rather 'By which 

characteristics would a product be suitable for type of use X?' and 'To what 

extent is a given product suitable for that type of use?' " 

Watts goes on to explain a conceptual framework for quality, which is similar 

to the quality attributes list referred to as FURPS by Grady and Caswell [46] 

given below: 

Functionality Feature set 

Capabilities 

Generality 

Security 

Usability Human factors 

Aesthetics 

Consistency 

Documentation 
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Reliability Frequency/severity of failure 

Recoverability 

Predictability 

Accuracy 

Mean time to failure 

Performance Speed 

Efficiency 

Resource consumption 

Thruput 

Response time 

Supportability Testability 

Extensibility 

Adaptability 

Maintainability 

Compatibility 

Configurability 

Serviceability 

Installability 

Localizability 

Hewlett-Packard [46] use FURPS to break down the product quality into its 

attributes. Each development project will have priorities set from the attributes, 

and a way of measuring them. The impact of changing one attribute can then be 

assessed against tradeoffs with other attributes. Improving functionality might 

reduce performance or reliability for example. The quality/cost balance can be 

redrawn as shown in Figure 10 Balance n, page 50. 
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Figure 10 Balance II 

Product metrics measure the quality attributes of a product and can therefore be 

used in the tradeoffs between the different attributes without upsetting the 

quality/cost balance. Explicit software quality objectives and priorities are 

needed, argues Boehm [59] "the degree of quality a person puts into a program 

correlates strongly with the software quality objectives and priorities he has 

been given. Thus, if a user wants portability and maintainability more than code 

efficiency, it is important to tell the developer this, preferably in a way which 

allows the user to determine to what extent these qualities are present in the final 

product." 

Denhand [56] " The fact that users and developers evaluate the quality of 

software differently has been known for some time." This means that although 

quality attributes like maintainability and extensibility can be measured in 

technical terms that a developer will understand, when it comes to the quality of 

the human factors attributes this must be understandable by the users. 

Otherwise it will not be possible for the users to evaluate the software for 

usability. 

Process metrics show how the quality/cost balance can change with 

improvements or degradation of the development process. "In manufacturing, 

the Japanese have demonstrated that productivity gains follow naturally from 

improvements in the process. Japanese companies are measuring software 

quality with the same interest that they showed in manufacturing quality" [46]. 

The measurement of product and process in relation to the quality/cost balance 

is shown in Figure 11 Balance ITI, page51. 
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The process metrics effectively show the position of the balance point, and the 

leverage that can be applied by changes to the process. Improve the 

development process and the result is an increase in quality for the same level 

of project cost. The result of process improvement is highlighted by Figure 12 

Balance IV, page 51. This effect works both ways and increased project cost 

would result from a change to a less effective process. 

same 
quality 

Quality 

U 

3 
Cost 

improved process 

reduced 
costs 

Figure 12 Balance IV 

Adding project management, feedback paths and control flow completes the 

picture of software development and the use of metrics. Figure 13 Balance V, 

page 52, shows the information flow from the metrics applied and the control 

flow from the project management decisions. 
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3.5 Methods of implementation 

The most important first step when starting a metrics programme is decide on 

the objective. In most cases the objective will be linked to the quality/cost 

balance. Improved product quality, reduced development cost or both, are the 

likely top level objectives. At a lower level the target might be improvements to 

a particular quality attribute or reduced cost of a particular process. Once there is 

an objective it becomes clearer which metrics will be important, and how much 

can be spent on the work. 
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An approach to implementing software reliability metrics used by Siefert [60] 

involved determining the 'best of class' metrics. This was achieved by a survey 

of 100 organisations (26 replied) asking for: 

there most frequently used measures 

the measures considered most important 

the measures that are the easiest to use 

measures that are the easiest to implement 

Weighted and average ratings produced for each of the above questions were 

combined to give a 'best of class' list, reproduced below: 

Rank Measure Normalised 

1 Fault density 16 

2 Failure rate 21 

3 Error distribution 26 

4 Defect density 29 

5 Cumulative failure profile 30 

5 Failure analysis 30 

6 Test coverage 44 

7 Fault days number 49 

8 Cyclomatic complexity 51 

9 Entries and exits 52 

10 Functional test coverage 53 

11 Mean time to failure 56 

12 Software science difficulty 62 

13 Graph theoretic complexity 64 

14 Software science listings & documentation 65 

15 Combined HW/SW operational availability 71 

The normalised value to the right of the table is determined by adding together 

the ranking a measure has in each of the seven ratings. Top of a rating is one 

point for that measure, second two points and so on. The best possible 

normalised value is therefore seven, i f the measure came top with all seven 
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ratings. The best measure in the list is 'Fault density with a normalised value of 

16, which is effectively the result of coming second in most of the ratings. 

The paper also includes a four-step implementation guideline: 

1. select measures from the table, based on data available, objective for the 

metrics programme, and culture of the organisation 

2. identify measurement standards 

3. performance is then measured against those standards 

4. evaluate the variance and fine tune the development process 

In this particular method the model is constructed from the development 

process used being superimposed onto a development life-cycle. The linkage 

between the model and real life is determined by experimentation with the 

model. The model is gradually built as the data from experimentation with the 

process provides the relationships between the different metrics. 

The metrics that David Siefert included in his survey, came from the IEEE 

Standard dictionary of measures to produce reliable software [61]. The standard 

lists 39 metrics, splitting them into product and process measures. The product 

measures consider both projected reliability prior to operation and operational 

reliability. To cover the different dimensions of reliability the measure has six 

subcategories: 

1. Errors, faults, failures - Count of defects with respect to human cause, 

program bugs, observed system malfunctions. 

2. Mean-time-to-failure, failure rate - Derivative measures of defect occurrence 

and time. 

3. Reliability growth and projection - The assessment of change, in how 

unlikely a failure will be during product testing and operation. 

4. Remaining product faults - The assessment of how unlikely a failure will be 

of the product, in development, test, or maintenance. 

5. Completeness and consistency - The assessment of the presence and 

agreement of all necessary software system parts. 

6. Complexity - The assessment of complicating factors in a system. 
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The process measures are divided into three subcategories: 

1. Management control - The assessment of guidance of the development and 

maintenance processes. 

2. Coverage - The assessment of the presence of all necessary activities tc 

develop or maintain the software product. 

3. Risk, benefit, cost evaluation - The assessment of the process tradeoffs of 

cost, schedule and performance. 

The measure classification index below is a cross index of the 39 measures 

against the classifications given above. The sequence of the 39 measures is 

as presented in the IEEE standards [61] [62]: 

Measure Product Process 

1 2 3 4 5 6 1 2 3 

Fault density X 

Defect density X 

Cumulative failure profile X 

Fault-days No. X X 

Functional/modular test coverage X X X 

Cause effect graphing X X 

Requirements traceability X X X 

Defect indices X X 

Error distribution X 

Software maturity index X X 

Man hrs per major defect detected X X 

No. of conflicting requirements X X X 

No. of entries/exits per module X X 

Software science measures X X 

Graph-theoretic complexity architecture X 

Cyclomatic complexity X X 

Minimal unit test case determination X X 

Run reliability X 

Design structure X 

Mean time to discover next K faults X 

55 



Software purity level X 

Estimated No. faults remaining, seeding X 

Requirements compliance X X X 

Test coverage X X 

Data or information flow complexity X 

Reliability growth function X 

Residual fault count X 

Failure analysis using elapsed time X X 

Testing sufficiency X X 

Mean-time-to-failure X X 

Failure rate X 

Software doc and source listings X 

Required software reliability RELY X X 

Completeness X 

Test accuracy X X X 

System performance reliability X 

Independent process reliability X 

Combined HW/SW system 

operational availability X 

3.6 Evaluating metrics, meta-metrics 

A meta-metric is a measure of a metric, that can be used to evaluate a metric. It 

is necessary to compare metrics when trying to find and evaluate suitable 

metrics for a particular purpose; meta-metrics provide the measures for 

comparing and selecting metrics. To monitor the performance of metrics over 

a period of time wil l also require the use of meta-metrics. A common approach 

taken to validate new measures is to show that they correlate with some well 

known existing measures. But this approach should not be taken, " i f there is no 

hypothesis about the reason for a relationship, there can be no real confidence 

that it is not spurious" [48]. 

Five meta-metrics are described by Conte [26] which map reasonably well on 

to the seven criteria of goodness for software measures described by Watts 
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[58]. The information from these two sources has have been merged to produce 

the list of meta-metrics below. 

1. Simplicity. Does the metric lead to a simple result that is easily interpreted? 

A single, intuitive value, like the number of reported errors as a software 

quality metric, is simple. 

2. Reliability. Reliability indicates the degree of accuracy with which a 

characteristic can be measured. It is therefore a measure of the 

reproducibility of the measuring results; it depends on stability and 

precision of measuring, as well as on the constancy of measuring 

conditions. 

3. Validity. Does the metric measure what it purports to measure? It is easy to 

demonstrate that lines of code is a valid measure for program size. A 

measure is only valid if it is justified that one should infer the real 

characteristics from the indicators (the observable properties). There are a 

number of validation methods; the measure is compared with an external 

criterion (external validity), with other measures already proven valid 

(internal validity), with expert estimates (concurrent validity), or with 

estimated values (predictive validity). I f there is reasonable similarity 

between the measure and the comparison criterion, it is likely that the 

measure is valid. 

4. Robustness. Is the metric sensitive to the artificial manipulation of some 

factors that do not affect the performance of the software? 

5. Prescriptiveness. Can the metric be used to guide the management of 

software development or maintenance. A metric used to guide 

development, will be assessed during the development and not at the end. 

Watts uses the term usefulness in a similar way to indicate the extent to 

which a particular measure satisfies a practical need when it is used to 

quantify a particular characteristic. 

6. Analysability. Can the value of the metric be analysed using standard 

statistical tools? The lines of code metric is easily analysable, while a yes/no 

binary type of metric is not. The other approach is to decide i f the metric is 

economical. A measure is economical i f the determination and evaluation of 

measured values involves low cost in comparison with the benefit gained. 
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7. Objectivity. A measure can only be considered objective if it is free from 

any subjective influences of the measurer. As well as measurement, 

evaluation and interpretation will also alter the objectivity of a metric. 

3.7 Evaluating models 

The only way to validate a model is the collection of evidence (data) to show 

that the model does actually work. The data can be collected from a series of 

similar projects or experimentally in parallel using teams set up to produce the 

same software under controlled conditions. 

Experimentation is the best method for proving models and metrics. The 

environment can be closely controlled and individual factors changed one at a 

time to see the effect on the model. The results unfortunately do not always 

lead to a straightforward mathematical relationship. For example, an 

experiment to find the best link between complexity metrics, code failures and 

time to fix, came to this conclusion: 

"Based on this experiment we conclude that, for similar programming 

environments and assuming a stable programming personnel situation, 

structure would have a significant effect on the number of errors and labour 

time required to find and correct errors. This relationship is not expressible as a 

mathematical function; rather, complexity measures partition structures into 

high or low error occurrence according to whether the complexity measure 

values are high or low respectively" [63]. 

The cost of setting up parallel teams and development environments is 

normally prohibitively expensive. It is seldom possible, outside university 

environments, to fund or collect together teams for this scale of experiment; so 

data, that can be compared from similar projects and environments is used. A 

validity check will therefore be needed to examine the data for consistency and 

accuracy. Fenton & Pfleeger [47] are concerned that exploratory research in 

software engineering is often conducted on artificial problems in artificial 

situations because of the high cost of running large scale studies, "practitioners 

refer to this body of research as 'toy' projects in 'toy' situations. The number of 
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research studies using experienced practitioners (rather than students or novice 

programmers) is minuscule". 

Then the next step is to see i f the data matches the model. Basili, from a paper 

titled Data collection, Validation, and Analysis [49], " I f the data supports the 

model, then it reinforces our understanding of the software development 

process and product. If the data does not support the model, then we must 

further analyse the model and the appropriateness of its application to the data 

and the data collection environment. It is possible that the data collection 

environment did not satisfy some of the assumptions of the model, explicit or 

otherwise. We can use this data either to refine or refute the model or to gain 

new insights into our software development environment. In any case, the 

application of the model to the data often generates more questions than it 

answers and sets the stage for new analysis and collection of new data." 

Confirmatory studies might well change just one parameter on a project to 

validate the model predictions for that change. It would obviously take a 

considerable number of projects to confirm the predictions of a complex model. 

The only alternative is the high cost option of experimentation. 

3.8 Summary 

Metrics are important for continued improvements to software verification. But 

they must be validated (use of meta-metrics) and linked together within the 

framework of a model. The model will also require validation and is best 

achieved with real project data or experimentation. A stated objective is needed 

before embarking on a metrics programme, to focus the need for metrics and to 

stop the collection of data for its own sake. A cost/benefit analysis of the 

proposed programme will no doubt be asked for, so a good starting point is to 

consider just a minimum set of metrics that are easy to collect and use. 

The flow chart on page 60 summarises the procedure for applying metrics and 

models into a number of steps. 
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C START ) 

Agree objective for the progn m 

Identify metrics that would assist measurment 
in order to meet the objective 

Evaluate the metrics and select a minimum set 
Search for automatic data collection tools 

Collect data using the metrics and tools 
To increase the database look at past projects for data 

From the data collected develop a model that will 
link the metrics together 

Select meta-metrics for the programme 
eg: model accuracy, ease of use, cost of running 

Continue the collection of data from an 
increased number of projects 

yes 

Analyse the information from the meta-metrics 
Are there any major problems with the programme? 

I no 

S e e if any further metrics can be added to the programme 
Fine tune the model 

Figure 14 Flow chart for a metrics programme 
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4 Software Development Models 

"The current status is: 

• there is now a fairly complete solution to a (very restricted) part of the 

problem 

• there is active research in areas where advances are likely 

• parts of the problem look near impossible" 

Littlewood [64] 

To provide an understanding of the progress to date on the use of models, this 

chapter reviews a number of popular models which have been used for sizing, 

cost estimation and reliability. The underlying theory for some of these models 

has been included, along with studies and experiments based on the use of these 

models. Complexity metrics have also been included as they have influenced 

the thinking behind a number of models. 

4.1 Sizing 

Sizing models have been around for a number of years and are supported by a 

number of tools, but are not as fashionable at present as the cost estimation 

models. Even so, a prerequisite for a number of the cost estimation models is a 

value for the size of the software. So sizing models are still important even 

though there is a range of sophisticated cost models available today. 

There are five different approaches to sizing in use at present; sizing by analogy, 

size in size out, function point analysis, linguistic approach, comparison of 
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project attributes. An explanation of each is given below along with a list of 

commercially available tools that are based on each of the methods described. 

For further information about the tools, including suppliers, see USAF report 

[65]. 

Sizing by analogy 

This method tries to relate the proposed project to a set of previously developed 

modules or system, of similar function and hardware base. Accuracy depends 

on the correctness of the size data held already and the validity of the 

comparison between the systems. 

Tools: ESD software sizing package 

SSA (Software Sizing Analyser) 

QSM Size planner, fuzzy logic 

Size in size out 

An approximate size is input and then refined to give a closer estimate of the 

proposed system. This refinement might use expert consensus (Delphi 

technique1) [66] or in the case of SSM (Software Sizing Model) an automated 

question and answer session to build up module sizes. The Delphi technique 

has been extended by Boehm and Farquahar [16] to include a group meeting of 

the experts to discuss the estimates, although the individuals estimates remain 

anonymous. This has been named the Wideband Delphi technique and has been 

shown by Boehm [16] to offer improved results over the original method. 

Tools: SSM(Software Sizing Model) 

Function point analysis 

Developed in 1979 by Albert Albrecht and refined in 1983 [67] as an alternative 

to the lines of code metric. Function points relate development effort to the 
' Developed by RAND corp in 1948. Set of anonymous estimates from experts 
summarised by a co-ordinator and returned to the experts; process is iterated a number of 
times until agreement. 
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amount of user function delivered. The information processing of the system is 

first split into five categories; external inputs, external outputs, external 

inquiries, logical internal files, and interfaces. The data in the five categories is 

counted, and then modified by a processing complexity value made up from 

14 program characteristics to give a function point count. If the program size is 

required in the 'lines of code' measure, a conversion table based on language 

options is needed to convert from function points. 

Albrecht and Gaffney [67] suggest that as function points can be estimated 

early from the requirements, that this value is then converted into lines of code, 

which is much more difficult to estimate early, but does give a good measure 

for development effort. Their paper covers this two step effort estimation 

method and also compares the theory of function points to Halstead's software 

science metrics [68]. 

Tools: BYL(Before You Leap) 

SPQR Sizer 

QSM Size planner, function points 

Linguistic approach 

This approach is based on Halstead's [68] software science work. It provides a 

relationship between the number of operators and operands to program size. 

Pseudo code will be needed before the count can take place. 

Tools: ASSET-R (Analytical Software Size Estimation Tool - Real time) 

Comparison of project attributes 

Like sizing by analogy this method requires previous project data, but rather 

than comparing system functions, project attributes are compared. The typical 

attributes to be compared might include: reliability, complexity, number of 

screens, reports etc.. 
Tools: CEIS (CEI Sizer) 

QSM Size planner, standard components 
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A report for the USAF-air force cost centre [65], evaluating the models against 

a known project of 9,177 LOC produced the table of results below: 

Model LOC 

ESD 37,600 

SPQR 35,910 

BYL 22,402 

PRICE SZ 21,410 

ASSET-R 11,943 

SSM 11,700 

ASSET-R 6,622 

The two estimates for ASSET-R reflect two different approaches used to derive 

the model input. ASSET-R along with SSM provided the most accurate size 

estimates for this experiment. ESD, CEIS, SSA, QSM fuzzy logic and SSM 

can be applied the earliest in the life cycle, during requirements analysis. BYL 

and ASSET-R score for providing a user friendly interface and user support. 

The function point approaches (ASSET-R, BYL, QSM function point, SPQR), 

QSM fuzzy logic and PRICE SZ require the least knowledge or experience in 

the application area to be effective. 

Application areas for the models: 

• ASSET-R, CEIS, PRICE SZ, QSM, SSM virtually all user environments 

• ESD limited to applications comparable to those held in the database 

• BYL, QSM function point, SPQR not validated for scientific or real time 

systems 

4.2 Estimation 

The estimation of software costs started with the sizing models that predicted a 

size for the proposed software. The cost estimation came from comparing the 

predicted size with past projects of a similar size and noting the cost of these 

comparable projects. Jones [69] in 1978 provided a different method based on 

multiplying costs per line of code by a size estimate. 
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In 1981 Barry Boehm published 'software engineering economics'[16] which 

included the cost estimating model COCOMO (Constructive COst MOdel) 

developed at TRW. The table below, from Boehm [16], shows the strengths 

and weaknesses of software cost estimating methods taken from his book. 

Algorithmic models 

These methods provide one or more algorithms which produce a software cost 

estimate as a function of a number of variables which are considered to be the 

major cost drivers. COCOMO is an example of an algorithmic model. 

Strengths: Objective, repeatable, analysable formula 

Efficient, good for sensitivity analysis 

Objectively calibrated to experience 

Weaknesses: Subjective inputs 

Assessment of exceptional circumstances 

Calibrated to past, not future 

Expert judgement 

This method involves consulting one or more experts, perhaps with the aid of 

an expert consensus mechanism such as the Delphi technique. 

Strengths: Assessment of representativeness, interactions, 

exceptional circumstances 

Weaknesses: No better than participants 

Biases, incomplete recall 

Analogy 

This method involves reasoning by analogy with one or more completed 

projects to relate their actual costs to an estimate of the cost of a similar new 

project. 

Strengths: Based on representative experience 

Weaknesses: Representativeness of experience 
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Parkinson 

A Parkinson principle ( "Work expands to f i l l the available volume") is 

envoked to equate the cost estimate to the available resources. 

Strengths: Correlates with some experience 

Weaknesses: Reinforces poor practice 

Price to win 

The cost estimate developed by this method is equated to the price believed 

necessary to win the job. 

Strengths: Often gets the contract 

Weaknesses: Generally produces large overruns 

Top down 

An overall cost estimate for the project is derived from global properties of the 

software product. The total cost is then split up among the various components. 

Strengths: System level focus 

Efficient 

Weaknesses: Less detailed basis 

Less stable 

Bottom up 

Each component of the software job is separately estimated, and the results 

aggregated to produce an estimate for the overall job. 

Strengths: More detailed basis 

More stable 

Fosters individual commitment 

Weaknesses: May overlook system level costs 

Requires more effort 
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Boehm describes COCOMO as a composite algorithmic model [16] using both 

top down and bottom up estimating. The data for the model came from 63 

projects developed during the period 1964 - 1979, which includes a wide range 

of sizes, productivity rates and seven different languages. The model is split 

into three levels; basic, intermediate and detailed. The projects are also split into 

three, covering three different modes of software development: 

"Organic mode 

In the organic mode, relatively small software teams develop software in a 

highly familiar, in-house environment. Most people connected with the project 

have extensive experience in working with related systems within the 

organisation, and have a through understanding of how the system under 

development will contribute to the organisations objectives. 

Semidetached mode 

The semidetached mode of software development represents an intermediate 

stage between the organic and embedded modes. "Intermediate" may mean 

either of two things: 

An intermediate level of the project characteristic 

A mixture of the organic and embedded mode characteristics 

Embedded mode 

The major distinguishing factor of an embedded mode software project is a 

need to operate within tight constraints. The product must operate within (is 

embedded in) a strongly coupled complex of hardware, software, regulations, 

and operational procedures, such as electronic funds transfer system or an air 

traffic control system" [16]. 

Basic COCOMO provides an effort equation for each mode of development: 

Organic MM=2A(KDSIj> ,1.05 

Semidetached MM=3.0(KDSI)] ,1.12 

Embedded MM=16(KDSI)] ,1.30 

M M = Man Months 

KDSI = a count of source statements 

Basic COCOMO is within a factor of 2 of actuals 60% of the time. 
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Intermediate COCOMO is an extension of basic COCOMO to improve 

accuracy (within 20% of actuals 68% of the time) and level of detail. A nominal 

estimate (MM)nom provided by the equations below is then modified by 

fifteen cost driver multipliers. 

Organic ( M M ) n o m = ^2(KDSI)m 

Semidetached (MM)nom = 10(KDSlf2 

Embedded ( M M ) n o m = 1S(KDSI)120 

The table below shows the cost drivers, the ratings that can be selected for each 

of them and the multiplier value that is applied to the nominal effort estimation 

equations above. More information is provided by Boehm [16] on how to 

judge which rating to use for each of the cost drivers. 

The detailed COCOMO model has development phase sensitive, effort 

multipliers, for each of the cost driver attributes. This is to cater for the real 

world situation where attributes affect some development phases more than 

others. Detailed COCOMO also avoids the problem of having to provide 

separate cost driver ratings for different product components by using a three 

level product hierarchy, Boehm: 

"Some effects, which tend to vary with each bottom level module, are treated at 

the module level. 

Some effects, which vary less frequently, are treated at the system level. 

Some effects, such as the effect of total product size, are treated at the system 

level" [16]. 
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Cost drivers very very extra 

low low nom high high high 

Product attributes 

R E L Y Required software reliability0.75 0.88 1.00 1.15 1.4 

DATA Data base size 0.94 1.00 1.08 1.16 

CPLX Product complexity 0.70 0.85 1.00 1.15 1.30 1.65 

Computer attributes 

TIME Execution time constraint 1.00 1.11 1.30 1.66 

STOR Main storage constraint 1.00 1.06 1.21 1.56 

VIRT Virtual machine volatility 0.87 1.00 1.15 1.30 

TURN Computer turnaround time 0.87 1.00 1.07 1.15 

Personnel attributes 

ACAP Analyst capability 1.46 1.19 1.00 0.86 0.71 

AEXP Applications experience 1.29 1.13 1.00 0.91 0.82 

PCAP Programmer capability 1.42 1.17 1.00 0.86 0.70 

V E X P Virtual machine experience 1.14 1.07 1.00 0.95 

L E X P Programming language exp 

Project attributes 

MONP Use modern prog practices 1.24 1.10 1.00 0.91 0.82 

TOOL Use of software tools 1.24 1.10 1.00 0.91 0.83 

SCED Required development sched 1.23 1.08 1.00 1.04 1.10 

The same fifteen cost driver attributes are used in the detailed model as found in 

the intermediate, but they are spread over the hierarchy: 

The module level is described by the cost drivers which tend to vary at the 

lowest level, module complexity, programmers capability and experience; 

CPLX, PCAP,VEXP, LEXP. A table is constructed which consists of values 

for each cost driver above, for each module and for each development phase. 

Subsystem level uses the drivers which tend to vary from subsystem to 

subsystem; 
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RELY, DATA, TIME, STOR, VIRT, TURN, ACAP, AEXP, MODP, 

TOOL, SCED. A similar table is used for each cost driver within each 

subsystem, and then repeated for each phase. 

The system level includes the nominal effort and schedule equations and the 

breakdown between phases. 

COCOMO is evaluated by Conte et al [26] and these observations made: Basic 

COCOMO does not perform well on its own database, the intermediate does 

much better. The effort multipliers have a great effect on the results; the 

maximum estimated effort is some 800 times the minimum. This provides 

great flexibility and range but also great volatility. 

The 16 parameters present a weakness, as large amounts of data needs 

collecting and maintaining. It is not considered necessary to use multipliers 

accurate to two significant digits when estimating the size is subject to errors of 

50% or more. A number of the multipliers could be combined, so that the 

parameters could be reduced to 3 or 4 and still stay within the accuracy of the 

model. 

The data from the 63 projects was used to develop the model and its 

multipliers empirically. The model might not work so well on projects that are 

not similar to the to the 63 that the initial database was created from. Although a 

wide size range of projects was used (2K - 1,000K lines, business & 

scientific), development methodologies and languages have come a long way 

since 1964 - 79. Conte [ 26] puts forward a set of modified equations for 

intermediate COCOMO based on a process of calibration, using a large number 

of projects: 

Organic ( M M ) n o m = 16(KDSI)lm 

Semidetached (MM) = 19(KDSI)ln 

nom 

20 Embedded (MM) = 2.9 (KDSlf 

DeMarco [23] raises an objection to any model that uses lines of code as an 

indication of volume of work, "You can't count lines of code at the beginning 

of a project, you have to estimate it. Most people are not much better at 

estimating line count than they are at estimating resultant development costs." 
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But he does agree that this type of model can be very useful after the point in a 

project at which an accurate count of lines of code can be made. The model can 

then be used for prediction over the remainder of the development work; for 

example, unit test and integration costs. 

A criticism often made of the COCOMO model is the lack of consideration 

given to the effect of team size on productivity. There is not a linear relationship 

between the number of programmers used and the productivity of that team, 

which should be reflected somehow by estimation models. "Adding manpower 

to a late software project makes it later" [57]. Partitioning work between 

programmers increases the co-ordination effort and the communication needed 

between all the programmers. The model COPMO, developed by Thebaut [70], 

includes a metric for team size as well as the project size. But just like project 

size, team size is likely to be unknown at the start of a project. 

Rather than using team size as an input to the model, what is really required is 

for the model to determine the most useful team size (optimal staffing pattern) 

that would result in the earliest delivery date. This type of model is referred to 

as a time sensitive model. 

Norden [71] of IBM plotted manpower curves from projects during the sixties. 

He found a strongly recurrent staffing pattern, one that matched the Rayleigh 

distribution. There was no evident reason why staffing rates should fit a 

Rayleigh curve, but the data showed that they did. 

This work was followed by Putnam [72] in the seventies, who developed a 

resource allocation model. Based on the Rayleigh distribution the model was 

validated using a number of Army projects in the early seventies and then tuned 

with the data from several hundred additional projects. The model is used to 

forecast effort and manpower loading as a function of time. 

Effort forecast is based on: 

Volume of work 

Difficulty gradient (complexity measure) 

Project technology factor (staff experience, programming environment, 

hardware constraints, program complexity) 

Delivery time 
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Manpower (staff profile) is based on: 

Total cumulative manpower 

Project acceleration factor (how quickly the project can absorb staff) 

Project month (the month of interest) 

Putnam [73] has also incorporated his model into a software product called 

SLIM (Software Life cycle Methodology). 

Conte et al [26] evaluated the Putnam model and found that it worked well on 

large systems, but overestimated on medium and small size systems. The 

model relies heavily on the size and development schedule attributes. It is also 

sensitive to the value of the Project technology Factor; a change in value of one 

to this factor and the effort may change by as much as 100%. 

The model tends to exaggerate the effect of schedule compression on 

development effort. Putnam uses a fourth power relationship between delivery 

time and effort. Cut the delivery time in half and sixteen times more effort is 

needed to complete the project. The reverse is also true up to a point; extended 

delivery time allows a reduction in the team and improves the productivity. I f 

the delivery time is extended too far then there will be a decreasing sense of 

urgency about the project, the more chance there is of a specification changes 

due to changes in the target environment, and inflation will increase costs. 

Some managers consider the Rayleigh curve as inappropriate for the start and 

finish of projects as the Rayleigh curve has a zero start and finish value. Most 

projects start from a non-zero level and reduce to a constant level during 

maintenance. A model based on the Rayleigh curve but with a non-zero start 

and finish is the model proposed by Parr [74] whilst working at Imperial 

college. He concluded; "the model is shown to be sufficiently detailed for it to 

be possible to show how the use of different methodologies could affect the 

natural work profile associated with the project; state-of- the-art projects 

requiring a trial and error approach will have effort curves skewed to the left, 

while more standard tasks admitting a highly structured approach should 

display curves skewed more to the right." 
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Another model very similar to Putnam's model which performs better under 

schedule compression is the Jensen model. Evaluation by Conte et al [26] 

showed that overall the model performed slightly better than the Putnam model. 

DeMarco's cost model described in 'controlling software projects' [23] has 

three basic predictors which are available at different points in the development 

life cycle: 

• 'bang' a measure of true function to be delivered, as perceived by the user 

(spec) 

• design weight (design) 

• implementation weight (code) 

The cost model is driven by the three predictors so that as a stronger predictor 

becomes available, as the project progresses, it can be used in place of an earlier 

one. The model uses the best data available at the time to gradually increase the 

accuracy of the estimations as the project progresses. Some predictors are better 

suited to providing forecasts for particular component costs than others, as 

shown in the table below. 

Predictor Used to forecast 

Bang design effort 

conversion effort 

acceptance test generation 

documentation 

user training 

Design weight total effort 

implementation effort 

debugging effort 

defects 

residual defects 

maintenance characteristic 

machine time 
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Implementation weight total effort 

unit testing effort 

integration effort 

acceptance testing 

defects 

residual defects 

maintenance characteristic 

machine time for testing 

An attempt to combine the best features of the most widely used models 

resulted in SOFTCOST, a composite model developed at the Jet Propulsion 

Laboratories by Tausworthe in 1981 [75]. It is based on the GRC' model [76], 

Walston-Felix study [77] and Rayleigh Putnam model [72]. 

It uses 68 parameters deduced interactively by asking 47 questions. Little 

confidence can be gained from the model as it has not been tested on a 

significant database. It is unnecessarily complex with a total of 68 parameters 

and yet assumes a simple linear relationship between effort and size. 

4.3 Complexity metrics 

This particular group of metrics have been applied to many of the different 

models (cost, reliability, defect, quality, productivity) and have received a lot of 

research attention. The importance of complexity metrics as the bases for a 

number of models warrants a section to consider past history and the use of 

complexity metrics. 

There are two aspects to complexity: 

1. Complexity from the human point of view, psychological complexity. This 

is concerned with the difficulty encountered during the development and 

' GRC - General Research Corporation 
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support of software; why is it that some programs are much harder to 

develop, understand and support than others? 

2. Complexity as the software is applied to a machine. The computational 

complexity and how to make the best use of the underlying computers 

capabilities. 

The majority of the complexity metric work has concentrated on the analysis of 

the code to obtain some measure of psychological complexity. Halstead's 

'Software science' [68] developed at Purdue university during the seventies is 

one of the most well known approaches to complexity. 

A program is considered by Halstead, to be a collection of tokens (basic syntax 

units) which can be either operators or operands. Operators are command 

names IF, WHILE, FOR, and arithmetic symbols + , - , / . Operands are the 

data, variables, and constants of a program. 

Software Science metrics: 

77, = number of unique operators 

r] 2 = number of unique operands 

N j = total occurrences of operators 

N 2 = total occurrences of operands 

Size of program (token count) N = N^ N2 

Vocabulary r) = T]1 + 7]2 

Volume V= Nxlo^ J] 

Volume can be interpreted as the number of mental comparisons needed to 

write a program of length N. 

Potential Volume V* =(2 + rj 2*)og,(2 +7]2*) 

There are a number of ways of implementing an algorithm, the one that has 

the minimum size has the potential volume V *. 

V* 
Program level L = — 

V 

The program level for a module has a maximum value of one, when the 

minimum size program has been used. 
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Difficulty D=— 

Effort E= *N>m°* 11 

Effort is measured in elementary mental discriminations. 

John Stroud proposed that the human mind is capable of making a limited 

number of elementary discriminations per second. This has been called the 

Stroud number, b and usually varies between 5 and 20. 

£ 
Programming time T =— (/J = 1 $ 

Language level A = Lx V =I?V 

The language level is used to characterise a programming language. 

Halstead's metrics (A,V* ,E) have not all found support or validation from 

project data [26], while others (7^, ry2) continue to be used by researchers. The 

most important impact of this work and its publicity, has been to encourage 

further research effort into software metrics. 

The other well quoted complexity measure is McCabe's [78] Cyclomatic 

complexity number v(G). Designed to measure the number of distinct basic 

paths through a program, it utilises a directed graph or flowgraph1 of a program 

to define v(G). 

v(G) = e - n + 2 

e =number of edges (or arcs) 

n =number of nodes in control flow 

i flowgraph - the structure of an algorithm represented graphically 
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The example below of a complexity graph, Figure 15 page 77, has eight nodes 

and nine edges, giving a Cyclomatic complexity of three. 

1 

8 

Figure 15 Complexity graph 

McCabe suggested an upper limit of ten for Cyclomatic complexity, to allow 

for the proper testing of the code. Modules which have a value of ten or greater 

should be examined to see i f the number of decisions can be reduced. I f that is 

not possible then system design should be returned to so that the module can be 

re-partioned. The metric can also be arrived at using code analysers to count the 

decision points in the code. 

v(G) = DE + 1 

DE = decision count. This is the IF, DO, WHILE, CASE and other conditional 

and loop control statements. Compound conditions in conditional and loop 

controlled statements are counted individually as decisions. 

McCabe [79] presents a methodology for structured testing, from design 

through coding to unit test, using the V(g) complexity metric. The paper also 

identifies a metric called 'essential complexity' that is used to evaluate proposed 

changes to a program during maintenance. McCabe and Schulmeyer [80] 

extend the ideas of essential complexity to the direction of regression testing 

and the use of Data Flow Diagrams (DFD's) to assist functional testing. 
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A number of studies [81] [82] [83] have used McCabe's and Halstead's 

metrics and compared them with the number of errors found, time to fix, 

program size and time to comprehend a program. 

Curtis et al [84] produced empirical evidence from two experiments to show 

that software complexity metrics are related to the difficulty programmers 

experience in understanding and modifying software. Although, the 

correlation's observed were not as high as those reported by Halstead [68] and 

the number of statements in the program proved to be as strongly related to 

performance on the experimental tasks as the Halstead and McCabe metrics. 

Walsh [85] produced a set of recommendations for utilising McCabe's 

complexity measure: 

• "The complexity measure should be viewed as a structured programming 

technique and employed with other structured programming techniques to 

enhance software reliability. 

• The complexity measure should be used to create a more testable and 

maintainable system be warning designers when a program has become to 

complex. 

• The complexity measure should be used to evaluate alternative designs with 

the goal of finding the simplest possible solution to the problem 

specifications. 

• The complexity measure should be used as a more through and methodical 

testing process which quantifies the amount of work necessary for reliable 

testing. 

• The complexity measure should be viewed as an aid to the maintenance 

process via its strengthening of testing and the limiting of the complexity of 

the program to be fixed. 

• The complexity measure should be used on existing software to identify 

programs that will be difficult to maintain and extend. These programs are 

prime candidates for redesign." 

A conclusion from a paper by Schneidewind and Hoffmann [63] states, "It 

would be worthwhile to use complexity measures as a program design control 
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to discourage complex programs and as a guide for allocating testing resources. 

The use of complexity measures in this fashion should be tested on large 

programming projects so that the hypothesis can be tested under more typical 

conditions." 

Ottenstein [86] used the data from a number of studies to validate her model 

(based on complexity metrics) but also considers that a large carefully run 

experiment is still required; "although the model fits the available data 

surprisingly well, many factors which could have an effect on the number of 

bugs present in a program were not considered. More carefully gathered data is 

needed to determine if the model is indeed useful. Studies to determine what 

other factors are important in predicting numbers of bugs should result in 

improvements to the model or perhaps other, more accurate models. 

Experiments to test the hypotheses on which the model was based might also 

produce interesting results." 

The STARTS guide [87] concludes, "in isolation , not a great deal of weight 

can be attached to such measures. Their use in identifying modules or sections 

of code with a gross deviation from the norm, thus indicating where attention 

and possible remedial action by a more experienced programmer than that 

currently assigned to the task could be worthwhile." The majority of these 

independent experiments and studies have shown that complexity metrics can 

assist in keeping design complexity within safe limits and can direct testing 

towards modules most likely to have the highest error rate. It has not been 

shown conclusively that the complexity metrics offer any more than this, nor 

has it been shown how cost effective it would be to employ these metrics on a 

project. 

The Harrison and Cook MMC metric [88] attempts to capture the complexity 

due to the interrelatedness of the various parts of the software system and the 

individual complexities within the smaller components making up the system. 

The former is referred to as "macro-complexity" an the latter as "micro-

complexity". The metric is referred to as the macro-micro complexity (MMC) 

measure. 

MMC = macro-complexity * average(micro-complexity) 
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where micro-complexity is the Cyclomatic complexity of each subprogram 

within the module, and macro-complexity is calculated as follows: 

subprograms 

^ \globd)' (subprograms- 1)]+ \param(i)" ( 1 -

glob(i) number of times global variables are used in subprogram i 

param(i) number of times parameters are used in subprogram i 

DI(i) is the documentation index, the quality of the internal documentation of a 

subprogram. The ratio of comment lines to total lines for the subprogram was 

used by Harrison. 

4.4 Reliability and Defect models 

Software 'reliability' and 'defect count' are two different views of the same 

type of model. How many defects are there in a program is another way of 

deciding how unreliable the program will be, the inverse of reliability. Defect 

models are concerned with the total number of errors in a program at the 

different stages of development and when released to the field. Reliability 

models are more useful for predicting when the software will fail, and the time 

between failures. It would seem plausible that once the number of defects 

within a program are known it should be possible to predict the reliability of the 

program. But the exact relationship between errors present and reliability is not 

yet known, and it is not possible to go straight from the number of defects 

present to predict reliability accurately [89]. 

Software reliability is different to hardware reliability, because software does 

not become unreliable due to ageing as hardware does. Al l the possible errors 

are present in the software from the start, it is the use of the software that will 

uncover them in time. But it is possible for the number of errors in software to 

increase via maintenance activities. Beizer [90] "with maintenance included in a 

theory of software reliability, the theory should predict that software does wear 

out in the sense that it is no longer economically modifiable". 
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There are two main fields of use for these models: 

Prediction of the total number of errors remaining in a software product. This 

enables a decision to be made on the extent of testing, should testing continue or 

should the product be released? The number of errors remaining prediction 

provides the data for a 'cost of testing' v 'cost of failure in the field' calculation. 

The improvement in reliability from continued testing can be estimated. " The 

ultimate objective of studying software reliability is to predict future failure 

behaviour and to provide information for decision making" [91]. 

The second use of defect models is to increase the effectiveness of testing, 

which can result in reduced costs or a better quality product. The prior 

knowledge of which software modules are prime candidates for high fault 

levels, is used for the allocation of testing resources. The modules that are likely 

to have errors are well tested due to the extra effort that has been directed at 

them. A policy of equal testing effort for every module might waste a lot of 

time on modules that don't have any errors. 

Dunn [89] says that at the start of testing the number of defects are related to six 

items: 

1. Size 

2. Complexity 

3. Development environment, methodology, languages 

4. Programmer competence 

5. Passive defect removal procedures previously performed 

6. Stability of requirements and top level design 

"Assuming items 3,4 and 5 are fairly consistent from project to project, in 

theory we should be able to perform regression analysis on items 1,2, and 6 -

by using some modelling technique for each - to estimate the number of bugs 

that will have to be removed. However, item 6 is not readily quantifiable by any 

theoretic technique. Perhaps the most realistic approach to item 6, given still 

vivid memories of whatever turmoil attached to the early development stages, is 

to upgrade the number of bugs estimated from 1 and 2 by some intuitive ratio. 
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What we are left with, then, is a formula in which 

Number of bugs = F(complexity, size) 

As a practical matter, it is unlikely that a formula for the number of bugs as a 

function of complexity and size can be formed except by averaging the 

normalised history of a very few relevant projects, with size and complexity 

considered independently. Then one can go with whichever of the two seems 

the more consistent" [89]. 

The models in use at present are still limited, there are areas that are not covered 

very well by today's models. Dale [92] listed the important issues that are 

hardly covered by these methods and models: 

• "What are the consequences to the user of the faults remaining in this 

software? 

• How should we go about developing this software in order to meet this 

target of reliability? 

• How should we apportion the system reliability target to software and 

hardware? 

• How do we predict the reliability of this system, which contains a great deal 

of software?" 

There are also two different types of defect models: 

Static model - metrics are used to estimate the number of defects within the 

software. This model can target a particular phase of development or provide a 

total for the complete development process. 

Dynamic model - this model relies on the past defect discovery rate of the 

project to estimate the future level. 

4.4.1 Static models 

Akiyama's study in 1971 [93] was based on data obtained from Fujitsu relating 

to a single development project. Although the study was based on this early 

data it has been used by a number of researchers. 
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Metrics used: 

S Lines of code 

DE Decision count 

J Number of subroutine calls 

C Complexity of debugging (DE + J) 

The four metrics above are utilised in separate equations for the calculation of 

the total number of defects. 

Equations: 

d^ = 4.86 + 0.018 S 

d,ot = -1.14 + 0.2 DE 

= 6.9 + 0.27 J 

t i o t =-0.88 + 0.12 C 

d^ Total number of defects (during testing and within 2 months of release). 

An analysis [26] of the results from the nine modules of the development 

project provided PRED(.25), % of predicted values that fall within 25% of 

actuals, as: 

S = .44 

DE = .78 

J = .67 

C = .78 

This shows that DE and C provided reasonable estimates for the total number 

of defects. But it might not be so appropriate, to continue to use it on today's 

programming environments as considerable improvements have been made to 

these environments since 1971. Use of this out of date data would result in 

incorrect predictions. 

Motley & Brooks study [94], 1976 (for the Rome Air development centre). 

Data from two large command and control projects was collected, although 

different metrics were used for the two projects. As well as error data, code 

analysers collected 53 metrics from one project and 15 from the other. A multi 

linear model was used, which was reduced by factor analysis to remove some 
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of the metrics that were linearly related to one another. Application of a 

stepwise multilinear regression technique selected independent variables from 

the metrics that remained to determine the coefficients for the equation which 

represents the model. Conte et al [26] suggest that the brute force application of 

multilinear regression often leads to results that cannot be reasonably 

interpreted. An example of a 10 variable model from the study is given below. 

^ = - 0 . 4 6 5 * 4 +0.762X 5 + 0.544X g - 0 . 1 7 6 X n - 0 . 3 8 6 X ^ 

+0.6 X 2 8 + 0.436 X 3 ? - 0.386 X 4 2 - 0 . 3 7 4 X 5 1 + 0.602 X 

Variable Definition 

X4 Number of USING instructions which establish data structure interface 

X5 Number of comment statements 

Xg Number of unconditional branch instructions 

X^7 Number of instructions performing scale/round operations 

X23 Number of times address variables are referenced 

X28 Number of times fixed-point variables are referenced 

X37 Number of variables referenced but not defined within the program 

X42 Number of non-nested DO loops 

X51 Number of source instructions in all 4 t h level DO loops 

X53 Number of source instructions in all 6* level (and beyond) DO loops 

The model does have some strange variables; a positive coefficient for X5 

suggests that the use of comments leads to defects. Although this could mean 

that the developers only comment against the difficult to understand or complex 
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area's of code. Also the 4 t h and 6 level DO loops (X5], X53) are specifically 

included in the model without the other DO loop levels. 

"The results are typical of those studies using regression analysis - the 

'goodness of fit' may be reasonable, but the potential use as a predictive model 

is very limited"[26]. 

Extensions of Software Science by both Halstead [68] and Ottenstein [86] have 

led to defect models. The Software Science V metric (Volume) is a measure of 

the number of mental comparisons needed to write a program of length N. 

Halstead, Ottenstein and later Lipow [95], Gaffney [96], all base the calculation 

for the number of defects on the equation below, although they all use different 

methods to determine V. The constant 3000 was defined as the 'mean number 

of elementary mental discriminations between potential errors in 

programming'. The model has been shown to work well with some published 

data, such as the Akijama study, but has not worked well with other studies. 

300C 

Potier's study [97] used error data from compiler developments to identify 

metrics that could direct testing by predicting the most likely error prone 

modules. This is a different approach to the prediction of total defects which is 

much more fraught with problems. One of the problems with total defect 

estimation is the accuracy of the data to validate the model. A low defect count 

may be due to good programming or poor testing. I f the overall defect count is 

considered, then poor testing will result in more field faults, but only i f the user 

usage pattern uncovers the errors. In all these cases it is difficult to decide i f the 

model is wrong or that the defects have just not been found to match the model 

prediction. At this point it is possible to argue that a model that predicts errors 

that are not found by testing or by the user is perhaps too much of a theoretical 

model, the interest lies in the defects that are going to be found. Models that can 

direct testing to the most likely error prone modules appears to be much more 

useful. 
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Potier's model is based on some of the software science metrics, Cyclomatic 

complexity, path and reachability metrics. As some of the metrics are related to 

length, a set of normalised metrics are used by dividing the metrics by the 

program length. 

The mean values of a metric for a set of procedures that had errors and a set 

that did not have errors are then calculated. The discriminent effect of a metric is 

defined as the ratio of these mean values. I f a metric M has a mean value of 25 

for the modules that did not have errors and a mean value of 52 for the modules 

that do have errors, then somewhere between these two is a threshold value that 

is used to decide i f a module is likely to have errors or not. Non-parametric 

discrimination analysis is used to select a set of metrics and their threshold 

values, so that a decision tree can be constructed. 

Y N 
m<52 

T T 
298,42 67,28 

T T 
15,41 34,19 

? 
28,11 4,17 47,189 13,152 

Figure 16 Decision Tree 

To use the decision tree the metrics data recorded for a module under 

investigation is compared with the decision points on the tree, following 

through the tree until a leaf node is reached. That leaf node will have a pair of 

numbers, indicating the number of modules with errors and the number 

without, from past data. This result shows that it is difficult to arrive at a 
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threshold value that will give a clear cut result. Figure 16 Decision Tree on page 

86 is an example of a three level decision tree, each level is based on a separate 

metric and its threshold level. 

A study by Harrison [88] considered a range of metrics that could be used for 

directed testing1. Data from a compiler development project (35K lines of C, 20 

modules) was used to compare these metrics: 

Module size - lines of code 

McCabe's V(g) metric 

Halstead's effort measure 

Harrison & Cook's MMC metric 

Although none of the metrics gave a perfect match of testing effort to errors 

found, the MMC metric provided a considerable improvement over lines of 

code. McCabe's V(g) metric did not result in a significant improvement over 

lines of code, Halstead's effort measure performed somewhat better. 

This study cannot be considered completely impartial as only one set of data 

was used and the conclusion reached supported Harrison's own metric as the 

best performer. In this case the MMC metric did fair the best, but how it would 

perform over the data from a number of different projects cannot be surmised 

from one experiment. 

The objective of Shen's study [98] in 1983, was to find the best predictor, at 

three points in the development process, for the total number of faults present in 

a program. Based on Software Science metrics, an analysis of the metrics took 

place at the end of design, coding and testing phases to determine which metric 

was the most accurate predictor of defects. The unique operands metric r|2 was 

found to be the best predictor for all phases, decision count DE was a close 

second for prediction after design and coding, which supports Akijama's 

results. It is very surprising that at the end of testing when the testing defect 

count (d x) is available that x\2 provides a better prediction of the total defects 

(dm) than the initial testing (d {). 

i directed testing - the allocation of testing effort to modules to maximise error detection. 
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d! = defects found during testing 

d 2 = defects found during field use 

The success of these models is dependent upon the relevance of the data and the 

continued relationship between the collected metrics. It has been found that the 

models are tied to the development environment in which the model was 

developed and are not generally applicable to other environments. 

4.4.2 Defect density 

Al l studies have shown that larger modules have more defects [26], which ties 

in perfectly with Halstead's V metric. It is interesting to consider a metric that is 

independent of the modules size and that can be used as a measure of the 

modules quality. By dividing the defect count of a module by its size a 

normalised metric called 'defect density' is arrived at. 

defect density = number of defects in module 

module size 

Unexpectedly it has been found [99] [94] [98] that larger modules have a 

lower defect density than smaller modules. The reverse would be expected as 

larger modules tend to be more complex. Shen et al [98] found a minimum size 

(500 lines) above which error density can be considered unrelated to module 

size. Modules below the minimum size have increasingly higher defect 

densities. Gaffney [96] also comes to the conclusion that there is an optimum 

size for a module, from the point of view of error density. 

Explanations put forward for larger modules having lower defect densities: 

Longer programs less thoroughly tested. Motley & Brooks [94]. 

Proportionally less interface code in larger modules. Basili & Perricone[99]. 

Larger modules coded with more care. Basili & Perricone [99]. 
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The result of learning; programmer more familiar with the operators and 

operands in duplicated code of larger modules [87]. 

To counter these studies Lipow [95] using Halstead's estimation for the 'bugs 

per line' shows that this defect density metric does increase with the size of the 

program. 

Perhaps the answer to this stalemate situation, with experiments and 'proof for 

both sides, is the conclusion that the experiments are not accurate enough. 

Using estimates for the number of defects in a program or counting the ones 

found through testing will not provide the total number of defects for a large 

program. I f the exact total is not known then the exact density cannot be 

calculated either. 

4.4.3 Dynamic models 

A dynamic model includes the component time; this is the interval of time 

between failures. It is a random interval, with a cumulative distribution F®, and 

probability density function f(r). 

Reliability R(r) = 1 - F(r) 

MTTF = J rf(r )dr = J R( r)dr 
0 0 

Hazard rate h(r) is the probability that the software fails during the interval 

(r,r+dr) given that it has not failed before r. 

Some models assume that all errors found during development and testing are 

fixed without introducing any further errors. The reliability of the software 

therefore increases, and this type of model is referred to as a 'reliability growth 

model'. The cost of testing and fixing can be balanced against the increased 

reliability of the software. Other models do not consider fixing, and assume 

that the software is being tested to asses the reliability at the time of testing. 

89 



An assumption is made that the testing environment and pattern of usage is 

representative of the users environment and that the reliability measured during 

testing will be the same as that experienced by the customers. Unfortunately it 

is difficult to predict the users environment and pattern of usage before the 

software is released to the customer. More research is needed to establish how 

usage patterns affect software failure rate; that is the link between testing and 

user. Lack of reliable data for dynamic models has also made the validation of 

the models difficult. 

The Musa reliability growth model [100] 1975,1980, can cope with execution 

time i f the software is running continuously or on calendar time i f it is not. 

Assumptions: 

Test input sets are selected randomly 

Al l software failures are observed 

Failure intervals are independent of each other 

The hazard rate is fixed during an interval between failures 

The hazard rate is proportional to the number of defects remaining in the 

system, and is a decreasing function of the execution time 

The rate of defect detection is proportional to the hazard rate 

MTTF(t) = — = — e" 
hit) cd,nl 

d requires estimation from a static model, parameters b & c are determined 

from the defect history of a similar program. 

As testing may be halted while problems are fixed, and the program is not 

therefore running continuously, it is necessary to convert the execution time (t) 

into calendar time. The model has been shown to predict a slower rate of defect 

detection early in the testing process and a faster rate than actual during the later 

stages of testing. 

Musa and Ackerman [101] describe the use of the model by AT&T for 

predicting the failure rate of a switching system and returning a value for the 

failure intensity overestimated by only 5% over a period of one year, "How do 
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you validate that a piece of software loaded into a processor functions correctly? 

The answer is that you take advantage of both the fact that you are dealing with 

a vast number of possible input states and the fact that for commercial grade 

software only a small percentage of these states will result in failure. These 

conditions make a rigorous statistical approach possible - this is the essence of 

the technology of software reliability measurement." 

Jelinski-Moranda model [102], Shooman model [103], and the Schick-

Wolverton model [104] can all be described as 'General Poisson Models'; they 

are all deterministic reliability growth models and share the first four 

assumptions of the Musa model. An assumption made by these models is that 

no new errors are introduced as faults are fixed. In general this assumption is 

not true and can therefore lead to invalid estimates. The Musa model partly 

overcomes this problem by using an estimate of the total number of errors that 

will be found (dtot), and therefore takes into account errors introduced by 

fixing, so long as the estimate is accurate. 

Ramamoorthy and Bastani [105] suggest that there are three ways of modelling 

failure rates: 

1. deterministic - the general Poisson models are deterministic reliability 

growth models as the residual failure rate decreases by a known amount 

after each error correction. 

2. stochastic - different errors have different failure rates, so a better approach 

is to model a random failure rate. The stochastic reliability growth model 

does model a random failure rate, but it still has a constant failure rate 

between error conditions. 

3. bayesian - a bayesian model shows a varying failure rate between the error 

conditions. The failure rate is viewed from the testers point of view; the 

longer the period of time from a failure the more confidence a tester will 

have in the program. 

The three approaches are shown below in Figure 17 Failure rate models, page 

92. 
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Figure 17 Failure rate models 

Littlewood & Verrall [106] consider the software failure process to be the result 

of two sources of uncertainty; the selection of input and the state of the 

program. A set of inputs wil l cause a program to fail and these inputs wil l be 

arrived at randomly. The state of the program will change with fault fixing. I f 
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all faults are corrected first time, the reliability growth is deterministic. This 

model assumes that the faults are probably fixed and that the reliability growth 

is probabilistic. Littlewood and Verrall have used the Bayesian reliability 

growth approach as the basis for their model. 

The Remus and Zilles [107] defect removal model for predicting the number of 

errors remaining at various stages of development is outlined below, Figure 18 

Defect removal model, page 94. This model also does not expect perfect fault 

fixing. It has been developed from work by Jones and Turk [108] on a model 

of the defect removal process. The model makes use of easily made 

measurements, such as the number of major problems discovered during 

reviews, inspections and testing to estimate the number of defects that will be 

discovered during the products lifetime. Also estimated is the cumulative 

efficiency of testing (CRE), and the rate at which defects propagate from one 

defect removal step to the next (1/m). 

MP = major defects found during inspections and reviews 

PTM = number of defects found during testing 

TD = total defects over life of product 

Q2 = remaining errors over life of product 

CRE = cumulative removal efficiency 

MP 

PTM 

TD = MP' M 

( / / - ! ) 

MP 

CRE = 0 " 2 - l ) 
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Figure 18 Defect removal model 

Studies to find a universally 'best' model have not uncovered a single, simple 

mathematical model that can cover the great variety of software. Littlewood 

[109] argues that comparison of models should be based on the quality of the 

software predictions and not their underlying assumptions and plausibility in 

relation to software engineering practices, "Mathematical modelling to 

predict/forecast software reliability is intrinsically difficult 

• software is pure design 

• software fails because of intellectual faults 

« understanding the problem is a social process 

Sociology and economics may be better metaphors than physics: this does not 

bode well..." [64]. 
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Beizer's [90] view is that "no one model of software reliability appears to have 

a distinct superiority to any other, and none seems ready for practical 

application. No person in their right mind today should agree to contractually 

binding software reliability requirements or predictions. That is, making a 

proven minimum mean-time-between-failure, say, a contractually binding 

component of system acceptance". Beizer lists six criticisms of software 

reliability models: 

1. There is no notion of bug severity 

2. There is an implicit assumption that testing is done at its worst instead of its 

best. Good testing is not random nor in any sense uniform across the set of 

program paths. Good testing focuses on improbable paths. No model 

offered takes into account the tester's integrity, cunning and dedication to 

make the system crash. 

3. High-load crashes are more frequent than low-load crashes. Bug 

discovery's not only a function of the number of transactions executed 

under test, but also of the rate at which the transactions were presented to 

the system. 

4. The efficiency of debugging is assumed to be independent of the systems 

reliability. The longer the systems been in operation, the subtler the 

remaining bugs are and the dumber the debugger. Both of these lead to a 

constant number of bugs in the system over time. 

5. The impact of maintenance is ignored. 

6. Bug discover rate is assumed proportional to test intensity, or constant with 

time, or decreasing with time. In reality it goes up and down. 
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4.5 Summary 

Sizing models are best suited to particular development environments, and 

some of them require a database of past project information before they can be 

used effectively. The USAF [65] evaluation shows the wide range of results 

from the sizing models, one of them providing an estimate four times larger 

than the target. The estimating models like COCOMO provide much more 

information, in the form of costs, effort and manpower profiles but they do 

tend to be much more complex than the sizing models and therefore require 

more effort to use them. Some of the estimating models also need as input, an 

estimate for the size of the software to be produced, before they can provide the 

cost and manpower predictions. If this is the case, then the inaccuracies of 

estimating the size in the first place wil l be passed on into the further 

predictions. In general, the use of these two types of models on real projects, 

should be treated with caution. Validation of the model to be used against past 

project data from the proposed development environment is advisable before a 

commitment to use the model is made. 

The complexity metrics are best employed in keeping module complexity 

within certain limits and for the direction of testing resources to modules with 

high complexity and associated high defect counts. In the same way, the defect 

and reliability models are best used to identify the modules that will have the 

high defect counts rather than trying to determine the exact number of defects in 

the software at any one time. The use of any of these models appears to be 

wide open1; because of the need to tailor them to the intended environment (or 

build a database of past project data) it is very difficult to prove in advance that 

they would be cost effective for a particular company or project that has not 

used one before. 

' There are no restrictions to the use of these models, but also no well defined and 
demonstrated advantageous. 
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5 A Fault Propagation Model 

Fault finding is often considered as a single activity during 'testing', 

unfortunately the real life situation is complex, due to the interactions between 

parallel activities within the development life-cycle. Therefore before it is 

possible to start measuring the effectiveness of testing, an understanding of 

faults is needed. Where are they introduced and discovered, in a life-cycle 

context, and how do the measures of testing coverage relate to the chance of 

finding the faults. 

This chapter introduces original research which has resulted in a new fault 

propagation model and techniques to describe the flow of faults and the 

relationship between faults and test coverage. An explanation on how these 

techniques and model, constructed for this thesis, represent the parallel flow of 

faults at each stage of the life-cycle is provided. 

The fault propagation model is required to demonstrate in a simple 

diagrammatic form the possible paths of a fault through the development 

lifecycle from introduction to discovery and on to fixing, plus the parallel nature 

of fault propagation. In addition to the opportunity of creating further faults 

whilst trying to fix one, there is also the possibility that a fault will not be fixed 

and will loop around the fault propagation model again until discovered. To 

understand and control the testing process measurements are required for each 

path in the model and the effectiveness of the process applied at each phase of 

the lifecycle. The control metrics explained in chapter 6 & 7 of this thesis are 

based on the mapping between the creation and discovery of faults and rely on 

the ability to distinguish between initial development errors and errors made 

whilst fixing a fault. 
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A software error introduction/removal model (Figure 19 Error intro/removal 

model, page 98) was developed by Boehm [16] as a conceptual model to aid in 

the understanding of software reliability during software production. It was 

used to define a 'required reliability' factor for the COCOMO model. The 

model shows that a percentage of errors are introduced at each stage of the life-

cycle and a percentage eliminated during other stages. The model also suggests 

that the percentage eliminated at a stage is dependent upon the amount of 

resource (cost) applied during the error avoidance or error removal activities. In 

a section entitled 'difficulties in completing the picture' Boehm admits that each 

error removal activity will be highly effective against some classes of errors, 

and much less effective against others. 

Overall error rale 60/KDSI Documentation srrnrs MR/KDBh 

code errors (15/KDSI) • 

residual errors 

Requirements 
errors (5/KDSI) 

Design errors (25/KDSI) 

percentage 
of errors 
eliminated 

% % 

r 
Cost, C C C C 

Automated independent simulation design 
requirements requirements inspections 

V&V activity 

field 
testing 

KDSI = Thousands of Delivered 
Source Instructions 

Figure 19 Error intro/removal model 

Although there is not a simple relationship between faults removed and cost, 

the principle of adding cost drivers into the model for the different removal 

processes would be valid and useful i f the capacity for finding faults by using a 

particular method is known in relation to the total number of faults present. 
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As each removal method will only be effective against certain types of faults the 

percentage of each type of fault in the system is needed before this principle can 

be put into practice. 

Norris et al [110] analysed a set of projects to determine where the faults were 

actually caused, as most of the data available today, like the Boehm model, is 

either old or based on projects in the USA. The Norris data set, they admit, is 

based on a small set of projects, but it does cover the maintenance phase: 

Requirements 38% 

Design 23% 

Installation 7% 

Maintenance 32% 

The after acceptance figure of 39% to cover deployment, is typical of 

development projects as a large proportion of the spend on a project will be 

during maintenance, but the 38% on requirements does not align with the 

Boehm model. The requirements problems where split between functional and 

non functional requirements (performance, reliability, usability etc.) and this 

could point to greater expectations from customers and more emphasis today 

on the quality aspects of a product. 

In addition to not covering the maintenance phase the Boehm [16] error 

introduction/removal model does not include the possibility of fault removal 

activities introducing further faults or not fully correcting the ones being worked 

on. To be of use during software testing a model that considers the propagation 

of faults through the life-cycle, including those introduced during fault removal 

activities is required. A fault propagation model has been constructed for this 

thesis that supports all the fault propagation paths through the life-cycle, with 

the use of set theory notation and Venn diagrams to describe relationships and 

results. 
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5.1 Propagation of faults through the life cycle 

The ripple effect of changes and the parallelism of the modification phases, due 

to the discovery of faults, results in a complex environment in which faults are 

found and corrected. To understand how faults enter a product, are found and 

resolved is best explained by looking at the development and testing phases 

with the paths that faults take between the phases highlighted. 

An overview of the proposed fault propagation model is shown in Figure 20, 

page 102, which provides a diagrammatic view of the phases and the top level 

fault paths. Each of the development phases is shown as consisting of a main 

activity, like system design, and also the process of fault correction for that 

phase; e.g. modify system design. The main fault 'highway' is shown as a 

thicker line in the diagram, this is the route for the faults between the 

development phases. This representation follows the life-cycle presented earlier 

and also the expectation that the earlier the fault is introduced the later in the life-

cycle it can be detected. This is shown by the testing phases removing faults 

from the main highway and passing them back to the relevant development 

phase for correction. Validation testing is shown passing faults across to the 

modify specification phase. 

It is only with good quality development methodologies and procedures that the 

data required to see this overlay of fault propagation paths on top of the life-

cycle can be found. With an undisciplined approach to software development it 

is not possible to filter out these paths and therefore expose the fault generating 

culprits. Without adequate control it is indeed very difficult to predict the state 

of the product with all the phases operating at once. 

To simplify the diagram text and equations representing the flow of faults, a 

short hand form of identification is given below using set theory notation. 
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software development phases: 

r requirements 

s specification 

sd system design 

md module design 

c code 

mt module test 

it integration testing 

vt validation testing 

ct customer testing and use 

a all phases 

a set of measures: 

F faults found 

I faults introduced 

examples: 

l s n Fv = the faults that are introduced during specification and found in 

validation 

(7 u / ( i j ) n F ( = the specification and system design faults found by the 

customer 

Each of the development life-cycle phases is taken in turn, with an explanation 

of fault activity and a detailed diagram which is an expansion from the basic 

building blocks shown in the overview Figure 20 Fault propagation model, 

page 102. 
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5.1.1 Specification 

The specification is produced from the requirements, but there is likely to be 

faults with the requirements which will be reflected in the specification. Faults 

will also be introduced by the specification process itself; as shown by the 

'process errors' arrow in Figure 21, page 104. On completion of the 

specification there is a review procedure to capture faults introduced by the 

errors in the specification process. Not all of the faults will be discovered and 

the development process will continue with a requirements and specification 

that contain undiscovered faults. The faults that are uncovered by the review are 

dealt with by the 'modify specification' process. Again not all the these faults 

wil l be removed correctly, in fact the modification process is likely to introduce 

more new faults (per hours effort) than the original specification work. Some 

will be found by review, others that slip through the review wil l remain in the 

specification. 

The modification of the specification process has a number of other input 

routes. Change requests for the specification might well occur as the customer 

requirements change. Customer requirements do tend to be dynamic and will 

change with the market opportunities and the movements of the competitors. 

As the development proceeds there will also be feedback, firstly from system 

design and later from module design due to technical or commercial changes 

that become apparent when that point of development is reached. These design 

changes might force changes in the specification to keep the two in step. 

Later still in the project, specification faults will be exposed by the validation 

testing(vt) or even the customers (ct) use of the system. Some specification 

faults might also show-up towards the latter stages of integration testing (it) 

when defects with functionality across the system become apparent. It is very 

unlikely that any specification faults will be found during module testing, due to 

the low level of this type of testing and the lack of an overall system view. No 

feedback line has therefore been shown from 'module test' to 'modify 

specification'. 
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5.1.2 System design 

System design inherits a requirements and specification that may contain faults. 

Tf they are not found during the system design activity, or by subsequent 

review, then they will be contained in the system design as faults. The system 

design process is also subject to error, and the resultant increase in system 

design faults. System design faults not found at review will be passed on to 

module design; those detected will be corrected by the 'modify system design' 

process. Problems relating to system design that are found during module 

design, integration testing, validation testing or customer use are all directed to 

this process for correction. 

Modifications to the system design might not correct all the faults returned and 

may also introduce some new ones in the process. Change requests for the 

system design caused by modifications to the specification wil l also arrive at the 

modification process. These later changes are more likely to introduce new 

faults than the original design work. The review stage is there to capture errors 

with this process, but some faults will find their way down to the module 

design. 
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5.1.3 Module design 

Undiscovered faults in the proceeding stages ripple down to cause problems 

with the module design. Faults with the specification and system design 

unearthed during module design are fed back to be corrected. As all the testing 

stages have the potential for locating module design problems, there are 

feedback paths from module, integration, validation and customer use to the 

'modify module design' process. Also change requests from system design 

will be acted upon by making modifications to the module design. This is the 

last stage before coding, where any undiscovered design faults will then be 

implemented in code. 

5.1.4 Coding and Module testing 

The design is implemented by the coding process (Figure 24 Code and test, 

page 109), which may flush out some of the module design problems. But it is 

unlikely to find system design or specification faults due to the level of detail 

entailed in coding; 'cant see the wood for the trees' fits the coding position very 

well. The same applies to module testing; coding and module design faults are 

found, but no impression is made on the specification and system design faults. 

A view of the paths inside the process blocks of module code and test is given 

by Figure 25, page 111 which shows how the higher level design faults pass 

straight through the module test process. The diagram also shows that a 

percentage of the module design and coding faults will be found. 

The path for coding and module design faults is split, with the ones not found 

feeding into the main highway of undiscovered faults and the ones that have 

been found passed back for modification. The actual value for this percentage 

can be calculated from the equation below, but only as a post-mortem exercise 

when the product has been retired. It is only then that the total number of faults 

would have been found. While the product is still in use there is always the 

possibility of another fault being found by the users. 
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The number of module design and coding faults found during module test, 

| ( / w u / ) n F j 

The total number of module design and coding faults found during module, 

integration, validation testing and customer use, 

| ( / m r f u / J n ( F , u F , , u F v , u F j | 

The percentage of module design and code faults found by module testing: = 

( / - ' U / ' ) n F " xlOO 

The top line is affected by three factors: 

A - The set of the test cases. This is difficult to calculate for large modules 

as the number of possible test cases increases dramatically with size. 

B - The number of test cases that are incorrect and do not therefore 

uncover faults that they should have. 

C - The number of test cases that do locate faults but are not recognised as 

such due to poor analysis of the test results. 
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Due to the limitations imposed by the three factors above there is a restricted 

possibility of finding module design and coding faults. The maximum 

percentage possible is calculated in the equation below. 

I l l 



possible% ModuleFaults = ( ru / c )n (An(5uC) ) xlOO 

An explanation of coverage is needed as it can be interpreted a number of 

ways. It is not the tests that will be run from the total of all possible 

combinations, but the tests to be run from the representative combinations. It is 

not humanly possible to test every single combination of data and use, for even 

a fairly small module. The starting point is to decide what would be a sensible 

set of tests, to give a high confidence rating for the testing. Boundary value 

analysis, equivalence partitioning and typical values are used to restrict the test 

cases to a sensible level. The coverage is then calculated as the percentage of 

these tests that it is proposed to run. Obviously different test engineers will take 

the boundary value analysis and equivalence partitioning to different levels, 

they will have different views on what represents typical values, so calculating 

and interpreting sensible test coverage is not an exact science. 

Set theory is an ideal medium in which to explain the relationship between the 

faults and the test coverage. The set of all possible failures with a system and 

also the set of tests needed to find all those possible failures is represented by 

the reference set 'Z ' in the Venn diagram below. 

Venn diagram 1 Reference set 

This total set of all possible failures is very large, it could even be considered as 

tending to infinity for most commercial software packages. The representative 

combinations ' Y ' are a subset of 'Z' ( Z 2 Y ) while still a large number, they 

are less than infinity. In addition to showing the set of tests that make up the 

representative combinations, set 'Y ' is also the set of failures that the tests 
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would uncover if they where used. The actual test coverage applied during 

testing, and the possible faults that could have been found are shown by ' A ' . 

The set ' A ' is a subset of ' Y ' and also therefore of ' Z ' ( Z 3 Y D A ) . A set 

of actual faults 'X ' , which will be a subset of ' Z ' , can be superimposed onto 

the Venn diagram, as an example to show which faults will be found. 

X 

Venn diagram 2 Fault & coverage set 

By adding in the sets 'B ' (incorrect tests) and ' C (poor analysis of test results) 

see Venn diagram 2 Fault & coverage set, page 113, where 'B ' and ' C are 

both subsets of ' A ' and splitting set 'X ' down into a number of areas the result 

of this coverage set and fault set can be described, see Venn diagram 3 Set X, 

page 114. 
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Venn diagram 3 Set X 

Set 'X ' (1-5 ), actual faults within a system: 

1) XC\(ZC\Y) Faults are not found, as this area is not even covered 

by the representative combinations. Nobody has considered this part of the 

system with regard to testing. 

2) XC\(Y C\A) This area has been considered and is documented as 

part of the representative combinations; but no tests have been included in the 

actual test coverage and the faults will not therefore be found. 

3) I n C The intersection between the actual faults 'X ' and poor 

analysis of test results ' C leads to the faults not being recognised although the 

tests have been run. Note that 'B ' and ' C are subsets only of 'A ' , as it is not 

possible to have incorrect tests or poor analysis of tests that do not exist as part 

of the test coverage to be applied. 

114 



4) Xr\B This intersection between the actual faults 'X' and incorrect 

test cases also results in the faults not being found. 

5) The faults are found in the area shown as the overlap between the test 

coverage 'A ' and the actual faults 'X ' minus the areas 'B ' and ' C . 

The aim in test selection is to achieve the best possible overlap between the tests 

to be run and the faults. The ideal is a test set which completely encompasses 

the set of faults but with a minimum of tests over and above the ones needed to 

find all the faults. The aim during test preparation, running and analysis is to 

reduce the 'B ' and ' C areas to the empty set, by not producing incorrect test 

cases or missing faults during the analysis of results. 

The faults that are found are solved by modifications to the module design or 

re-coding. The tests that initially found the problem are then repeated, plus 

some extra regression tests to gain confidence in the changes and to show that 

no new faults have been introduced. 

The results of initial testing and bug fixing is shown in Venn diagram 4 Initial 

testing, page 116. Set 'D ' represents the outstanding faults after bug fixing. The 

intersection of 'X ' and 'D' are the original faults that have not been cleared 

correctly. The rest of 'D' covers the new faults introduced during the 

modification process. Some of these new faults he outside 'A ' , the test 

coverage attained with the test set, which means that these faults wil l not be 

found if the test coverage remains the same. The area of 'X ' outside of set 'A ' 

are the original faults not found during the initial testing and wil l remain hidden 

i f the test coverage does not change. The rest of 'X ' within 'A ' , but not 

overlapped with 'D ' are the faults successfully found and cleared. 

faults found = |X n (A n (B u C))| 
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Venn diagram 4 Initial testing 

To regression test set 'X ' , increase the tests to capture all of 'D ' and the area of 

'X ' not covered originally, the test coverage 'A ' will need to be increased as 

shown in Venn diagram 5 Regression test set, page 116. 

Venn diagram 5 Regression test set 

Those faults correctly solved are represented in the fault propagation diagrams 

(Figure 24Code and test, page 109; Figure 25 Internal, code and test, page 111) 

by the oval with the word 'fixed' inside it. The faults that have not been 

correctly solved and the faults added due to the modifications, that then slip 

through the module testing, will pass on to the integration testing phase. 
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5.1.5 Integration testing 

The tested modules come together, with the interfaces between them being 

exercised and functionality across the complete system being tested when the 

majority of the modules have been integrated. It will be mostly system design 

faults and module interface faults that are found at integration time, although 

some specification faults might be found when the functionality across the 

system is exercised. Any faults found at this stage are passed back to the 

relevant area (specification through to code) for correction. This phase is also 

susceptible to process errors as well as lack of coverage, with both of these 

leading to faults that were introduced earlier not being captured at this point. 
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Figure 26 Integration test 

5.1.6 Validation testing 

The aim of validation testing is to show that the developed product is the one 

that the customer actually wanted. In addition it must be possible to install, 

maintain and extend the product, along with it being usable. Performance and 

reliability should be in line with the customer requirements. Therefore faults 

with the specification are usually found at this stage because the testing 

118 



environment is so close to the customers. Other lower level faults found at this 

stage indicate missing tests at the integration or module testing stage. This type 

of testing is the last chance to exercise the product before it goes to field trial. 
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specification 

faults not found 
during module, 
integration or 
validation testing 

system design 

module design 

coding 

validation tesmg 

undiscovered 
faults from all 
preceding 
stages 

Figure 27 Validation test 

Coverage is not so much of a problem for validation testing, as it would be 

impossible to achieve a high coverage at this level of testing. Instead customer 

data and usage patterns are used to flush out the faults that a customer is likely 
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to experience. The main reason for faults not being found will be due to not 

selecting representative data and usage patterns for the testing. 

Over the life of the product the customer will find a number of faults which 

have been missed by the various testing phases. Once a fault has been identified 

by the customer, and passed to the support group, the reason for the fault is 

investigated and then passed to the relevant phase for modification. There will 

be a residual level of faults in the product that are not found by the customer. 

These are the type of faults that require a specific usage pattern and data that has 

not been used during testing or by the customer, or an unusual set of 

circumstances to trigger the fault. I f they have not been found by the time the 

product is retired then they do not give any cause for concern, in fact if they 

have not been found by this point in time no one is aware that they exist. 

The expansion of the testing boxes (see Figure 25, Figure 26, Figure 27) shows 

the split between the faults being found at that stage and those that continue on 

through to the next level of testing. By collecting data on where the faults are 

introduced and where they are found it would be possible to evaluate if 

improvements to the development or testing process really are providing 

improved products with less faults, or just shifting the problems to another part 

of the life-cycle. 

5.2 Parallel processes 

The phases have been stepped through one at a time for explanation purposes, 

but in real life once the product has reached validation all the modification 

phases will be in operation at the same time. The faults found during the 

different testing phases will be passed back to the relevant modification phases 

which in turn will produce changes which have knock on effects elsewhere in 

the overall process. To appreciate what is taking place within these parallel 

processes, measurements at each of the phases are needed to build up a 

composite picture of the activities. 

A set of metrics are required for the collection of this data, but there will be a 

large amount of data to collect because of the low level within the overall 

system that this data becomes apparent. The answer is automated collection, the 
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question then becomes 'what automated system?'. Al l the fault data identified 

so far will be entered onto the problem reporting scheme for the development 

project, so a link into that system could provide the capture and recording point 

for the data. This possibility will be given further consideration in section 9.2 of 

this thesis looking at the operational use of the proposed model. 

5.3 Summary 

This chapter introduces the results from original research into fault propagation, 

with a new fault propagation model proposed. It has also been demonstrated 

how this model can represent the detailed flow of faults at each stage of the 

development life-cycle, using set theory notation to capture the flow between 

phases. The detailed fault flow present at each life-cycle phase has been 

explained, phase by phase, and it has also been pointed out that in a real life 

project, all of the phases are running in parallel and therefore creating a complex 

fault propagation situation. Venn diagrams have also been used to explain the 

relationship between faults and test coverage. 
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6 Hypothesis 

This chapter describes a new metric Earliest Visibility EV, and the hypothesis 

that there is a relationship between the phase that a fault is introduced and its 

EV. This leads on to provide a method for determining the true stage of a 

testing activity in the testing life cycle, based on the EV of faults found during 

the testing activity. 

6.1 A testing process control model 

There are contrasting views on how useful defect prediction can be to industrial 

software development projects. Ferdinand's view [50], "the goal of a well-

planned software development project should not be to predict fewer defects 

during development. The goal should be to correctly predict the defects that are 

inherent in that statistical process, and then extract the defects that were 

predicted. Furthermore, quality of the resulting software has little to do with the 

number of expected defects. The quality of a delivered product is a function of 

the residual defects that exist in the software when it is put into productive use, 

and it is also reflective of whether or not the functional content of the software 

meets the requirements of its users". 

Beizer [90] takes a different view. " The question of when the system wil l be 

ready for cutover seems at first glance to be intimately related to the number of 

bugs remaining - but it doesn't have to be. Suppose we've designed a set of 

tests which we believe will constitute an adequate check-out of the system. The 

builder and the buyer have agreed that when that set of tests has been passed, 

the system is ready for operation, no matter how many bugs remain be it one or 

a thousand. The pragmatic issue, then, is not how many bugs remain but when 
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is the system considered to be useful - or at least sufficiently useful to permit 

the risk of failure. I never saw a system not go into operation because we 

couldn't predict how many bugs it had". 

Predicting the number of faults in software does not therefore have a practical 

application unless the criticality of the problems and the likelihood of them 

being found by the user can also be predicted. The testing process control 

model proposed in this thesis will concentrate on improving the control of the 

process to remove the maximum faults, but will not predict the number of 

faults to be removed. 

Earlier in this thesis (see section 5.1) it has been described how faults 

introduced in the different phases of the development life-cycle are tested for 

during specific testing phases; e.g. system design problems are found during 

integration testing. The hypothesis constructed for this research proposes that 

there are certain categories of faults that are associated with specific 

development phases, and that the faults created are exposed in a linked testing 

phase. If this link between types of faults, there inception and detection, exists, 

then it would be possible to predict the position in the development life-cycle, 

from the type of the majority of faults being found at that time. 

By collecting data on the faults being found, analysing the data to determine 

which category of fault is being found, and then comparing the results with the 

fault propagation model it wil l be possible to determine which phase of testing 

is actually taking place. If predominately coding faults are being found in what 

the project manager believes to be validation testing there will be some resource 

and elapsed time problems to face before the product is ready for release. This 

is because the testing taking place has only progressed as far as module testing. 

At present projects might move from one phase of testing to another due to a 

variety of reasons: 

© the project plan is followed exactly without consideration to the real state of 

the project 

» the budget/time for testing has been reduced and therefore moving on to the 

next phase of testing early will save time/money 
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e the general opinion is that the next phase has been reached 

» all the tests have been run for the current phase of testing, therefore the next 

phase is due 

© not many faults have been found, so it must be time to move on 

The importance of understanding which testing phase is taking place can be 

explained in terms of the quality of the testing. Module testing verifies that the 

coding process has not introduced any faults and that the coded module 

performs as specified in the module design. In addition the coded module must 

respond to illegal or error conditions in a sensible manner. Defensive coding of 

the module is needed to trap possible error conditions that might arise in use 

and recover in a predetermined way when something unexpected does take 

place. This type of testing is only sensible at module level when harnesses 

surrounding the module code can control completely the environment 

encapsulating the module. 

As testing progresses through the testing life-cycle phases, this tight control 

over the interface to the module is not possible. Black box testing takes place 

during the validation phase so the test engineers are not aware of the break 

down into modules, let alone module interface definitions. Therefore the task of 

making sure that a module is error free must be tackled during module testing 

as it will not be possible during the later testing phases. Each testing phase 

attacks a different aspect of product verification and builds upon the preceding 

phase. If one phase of testing is not completed satisfactorily then it will only be 

by chance that a latter stage of testing finds an outstanding problem from an 

earlier stage. 

If module testing faults are found during validation this is indicative of poor 

module testing. Validation testing is unlikely to uncover many module design 

or coding faults because of the black box approach to testing, so a return to 

module testing is required in this case. Hetzel [34] "the rush to get systems 

testing started makes us fall prey to accepting poor unit testing and to integrate 

with little planning or formal interface testing. Just as a single bad apple will 

quickly rot the entire barrel, it takes only several poorly tested modules to ruin a 

solid integration testing plan." 
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Any system that can indicate when to move on to the next testing phase or flag 

a potential problem in moving on too fast could not only help the project 

manager understand the extent of the testing that has been completed, but also 

in improving the quality of the end product. Sroka & Gosling [111] "reasoned 

and timely decision making is the cornerstone of effective project management. 

To make good decisions, the project manager must be able to understand why 

actual progress differs from expectations." Deciding on the optimum point to 

move to the next testing phase is a widespread problem, as stated at a USA 

direction setting workshop for research. "Humans are relied upon to use their 

intuition and judgement to create testcases, evaluate the results, and decide when 

sufficient testing has been done. Further, there are no widely accepted formal 

guidelines or standards for determining when adequate testing and analysis 

have been done" [13]. 

The standard life-cycle diagrams and product development management tools 

used today imply that testing moves through distinct testing phases in discrete 

steps. In reality the testing phases overlap in time. It would be wasteful of 

elapsed time to programme in testing as a serial activity. Integration testing will 

actually start as soon as the first two modules have been tested, so long as the 

module development plan produces the modules in the correct order for 

integration. Validation testing might well start with an early release from 

integration as soon as the initial functionality has been proven. This overlap of 

the testing phases is shown in Figure 28 Testing overlap, page 125. 

Module 1 
Module 2 m 

Module 3 
Module testing 

Module 4 

Integration testing 

pre-release y y Full release 

Validation testing 

Figure 28 Testing overlap 
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Hetzel [34] suggests that plotting the number of faults found against time can 

be used to determine the testing time required to complete testing, " in larger 

projects useful status information can be obtained from cumulative plots of 

faults found versus testing effort or time. It can be observed empirically that 

the plots take on a characteristic exponential shape and that as the shape 

develops it becomes possible to use it to roughly gauge the testing time or effort 

remaining or the total number of errors remaining in the system". 

An ideal method then, for deciding when and how to move between testing 

phases could be built into a model using fault category data. A graph (see 

Figure 29 Fault category graph, page 126) showing the fault categories against 

time for past projects, overlaid with data plotted from a project under 

development, would highlight the best time to make a controlled move to the 

next phase of testing for each module, integration build and release. But for 

these graphs to indicate the time at which a move to the next phase of testing is 

required, the fault category data must be relevant to the life-cycle phase which is 

being observed. For example the 'system design faults' graph must contain 

data on system design faults that have been found during integration testing, 

and not data on any faults, that happen to have been found during integration 

testing. 

system design • 

specification faults 
module design 
&code faults 

time — > 

module integration validation testing phase testing testing testing 

Figure 29 Fault category graph 
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The fault category data therefore needs to provide, for each fault analysed, the 

point in the testing life-cycle at which it should have been found. A new original 

metric that identifies fault category, in relation to life-cycle phase, is proposed 

and called Earliest Visibility, EV. 

For each fault there should be a window of opportunity for discovery which 

will start with the EV and continue on through the rest of the testing phases. 

This is shown in Figure 30 Earliest Visibility, page 127 , where the first fault 

has an EV starting at validation and the second could be found from module 

testing onwards. 

module integration validation acceptance customer use module integration 

i i 

module integration 

EV 

1 \ 

EV 

Figure 30 Earliest Visibility 

The expectation is that faults should be found during their EV test phase, 

because that particular test phase will have a set of tests designed to find that 

type of fault. The objective of the experimentation for this thesis, is to show that 

there is a relationship between the phase that a fault is introduced and its EV. 

Having established the EV for each fault it wil l also be possible to look for the 

relative levels of faults associated with each of the testing phases. 
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For example faults introduced during the specification phase will be exposed 

only by the validation and customer testing. The EV wil l therefore be 

validation as this phase comes before customer testing in the overall life-cycle, 

and the faults should be found during validation, any later and this indicates 

poor validation testing. 

ct - customer testing 

vt - validation testing 

it - integration testing 

mt - module testing 

r - requirements 

s - specification 

sd - system design 

md - module design 

c - code 

The expected relationships are: 

I s n ( F v t u F c t ) EV = vt 

Key: 

L n F ct EV = ct 

I s n ( F v t u F c t ) EV = vt 

I s d n (F i t u F v t u F c t ) EV = it 

I m d n ( F m t u F i t u F v t u F c t ) EV = mt 

I c ° ( F m t u F i t u F v t u F c t ) EV = mt 
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Each fault therefore has EV as an attribute, it is the testing phase that should 

discover the fault based on the reverse linkage to the development phase that 

introduced fault. Having established the EV attribute for each fault reported 

during a testing phase and measured the number of faults that have been 

discovered post EV, the metric (post EV) can then be used to control the 

movement of the software through the test phases. The post EV metric is 

defined as the percentage of faults found during a test phase that should have 

been found earlier, these faults have been found post their predicted EV. I f a 

high percentage of faults are being found post EV during a test phase, this is an 

indication that the previous test phase had not been effective and the software 

should therefore be returned to the previous phase for further testing. 

Although EV is fundamental to the proposed model a number of other metrics 

will be explored during the case study to determine the best metrics for life-

cycle control. 
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6.2 Estimation of testing resources 

The estimation of testing resources and elapsed time for testing, suffers the 

same problems as development estimation at the start of the project. There is 

nothing tangible to work on; most of the widely used estimation models are 

based on a comparison with past projects within a particular organisation, 

development methodology and personnel. If any one of the variables change 

then the comparison and predictions from the information stored in the past 

project database is not truly valid. By keeping any changes to a minimum the 

closer the estimate will be to the actual resource and elapsed time. This will 

provide a model similar in concept to DeMarco's cost model [23], in that the 

model uses the best data available at the time to gradually increase the accuracy 

during the project. 

The testing estimates can be drastically improved as the start of test execution 

approaches, because the size of the code to be tested will be known. This has 

been shown to have a very close link to actual development effort [16]. It is 

quite often used as an input to estimation models for development, even though 

the code size used is an estimate. Unfortunately the development engineer 

would have to deduce by comparison with other past projects the expected lines 

of code. Whether estimating the actual code size is any more precise than 

estimating the development effort is debatable. 

Fenton & Pfleeger " we have noted that a collection of related models each 

based on measurable data available at a given stage of development, is likely to 

be more accurate than a single, generic model. Early estimates necessarily 

require use of incomplete information. Thus, estimation is likely to be 

improved by taking two related steps: basing preliminary estimates on 

measures of available products, and re-estimating as more information 

becomes available and more products are produced" [47]. 

IPL, Information Processing Ltd [112], found that "the division of effort 

between activities (design, review, code, test, rework) could be used to estimate 

the effort required for activities subsequent to module design". Although IPL 

found that this estimation technique can only be expected to be accurate on a 

large scale. 
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To provide an estimate for the total testing effort required (across all testing 

phases) a two pass system is therefore proposed. The initial estimate based on a 

straight forward percentage of the estimated development effort, or a separate 

analysis of the specification into function points or equivalent sizing measure. 

The second pass estimation would be based on a revised estimate produced 

when the actual code size is known. Re-estimation can then be applied 

following each testing phase to refine and confirm the estimate. A database of 

past projects will be essential i f the mapping from the measurement metrics 

(LOC, function points, development effort) to the actual effort required, is to 

increase in accuracy with time. 

Testing is made up of a number of activities which will have a set of 

relationships between them that will reflect the effort that each activity requires. 

These relationships once understood could provide a method for refining the 

total resource estimates as the testing work progresses. For example; the more 

effort that is spent on testability analysis of a specification might give an 

indication of the size of the overall project and therefore influence the estimate 

for the overall testing effort. 

Rombach [114] found a set of effort estimates that he applied on NASA SEL 

projects: 

Preliminary design 15% 

Detailed design 17% 

Code/test 26% 

System test 23% 

Acceptance test 19% 

The database of testing data should therefore cover the effort spent on each of 

the activities so that the links between the activities can be found and useful 

metrics developed. Before deciding therefore on what measurements to take 

and why, an understanding of the testing process is needed, based on a case 

study, which identifies the individual activities and the measurements that can 

be taken. 
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6.3 Summary 

If the hypothesis put forward in this chapter can be proved correct, there will be 

a number of opportunities for improving the effectiveness of testing using EV 

measurement: 

1. a method for deciding the optimum point at which to move onto the 

next phase of testing, and therefore managing the cost/quality 

balance for the project. 

2. an indication that the testing has moved on too quickly and that a 

return to a previous phase is required to find and remove remaining 

faults. 

3. by controlling the movement of testing between phases for a 

number of projects a fault database with the relationship between the 

number of faults per stage can be collected. This data can be used to 

produce a prediction of fault level for later stages of testing. 

4. providing a measurement of the testing effectiveness by test phase 

and fault introduction rate by development phase. 

A model based on re-estimation is proposed for testing resource estimation. 
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7 Case study 

There are two objectives for the testing estimation and process control model: 

improvements to the testing process - section 7.2,7.3 

better estimation of testing resource - section 7.4 

Improvements to the testing process results in improved efficiency, reduction in 

cost of the system tested and a higher quality product. By measuring where 

testing effort was spent on various projects an improved model for testing 

effort estimation can be built, based on re-estimation. 

The two objectives are taken in turn and expanded to cover the metrics to be 

collected and the methods to be used during the case study, following some 

information on the case study development project. 

7.1 Development project background 

The case study follows the development and testing of a telecomms network 

and service management system, IMS - Integrated Management System. 

The system consists of an X-windows user interface, database, core processes, 

interfaces to collect real time network data, an interface to feed processed data 

onto higher order management systems and additional bolt on modules for 

reporting, archiving and data loading. The core software for release 3C6, 

contained 4,002,424 lines of code (C and C++) within 4,724 files, running in a 

UNIX environment. 
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Figure 32 IMS internal structure 

The IMS internal structure diagram on page 134, provides a view of the bought 

in platform components SunOS, Oracle database, SQL forms, X-windows, 

Xterm and X.25 communication. 

The processes developed for the IMS include: 

U I User Interface 

UMR Unsolicited Message request 

SM System Manager 

CM Configuration Manager 

FM Fault Manager 

Comm CMEP interface 

IPC Inter Process Communication 

DDAL Direct database Access 
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Figure 33 IMS deployment 

The system can be configured for network management operations where a 

number of networks provide real time events into the system that are processed 

and then displayed graphically. With a backward channel through the network 

interface, the system can send back control messages to re-route services 

around network failures. Information on customer services that have been 

impacted by a network failure is passed to a second variant of the system that is 

used by the customer service management team so that they can inform a 

customer of service failures. Customer services are depicted as logical routes 

between geographical locations, following the mapping from the physical route 

which is managed by the network management system. 

7.2 Experimentation - EV 

The model of fault propagation described in chapter 5 follows similar concepts 

to the Remus & Zilles model [107] of defect removal. Both models support a 

number of defect removal steps, and also the likelihood that some new faults 
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will be added and some old faults will not be fixed correctly when trying to fix 

the original set of faults. The models do differ over the level of detail for the 

fault removal steps. The Remus & Zilles model provides a generic fault 

removal step which can be applied at any inspection, review or testing stage, 

and provides a global fault level for the complete development process when all 

the individual steps are added together. In addition to the number of faults at 

each step the fault propagation model proposed in this thesis, chapter 5, also 

considers the type of fault, which leads to a better understanding of the fault 

removal process at each individual stage of the development. 

A common metric used to measure testing progress is the percentage of test 

cases completed [3] [113].This provides a measure of the progress in running 

test cases, but this is not a measure of the quality of the software. Just because 

all the test cases have been run it does not mean that testing has been completed 

satisfactorily. Other measures are required to measure the quality of the 

software so that more test cases can be produced if the quality level required has 

not been reached. Also there is an opportunity to stop testing even if all the test 

cases have not been used, if the measures indicate satisfactory quality. 

Unfortunately the measures in use today are not precise, and can not guarantee a 

quality level, but the objective is to provide a better method than the number of 

test cases completed as a measure of quality. 

The possibility of using Earliest Visibility (EV) analysis to determine when to 

move into the next phase of testing, when the required quality level has been 

reached or alternatively to use it as a check to decide i f the project management 

view of the project phase aligns with the reality from the testing results, has 

been identified in chapter 6. Experimentation is required to show that EV can 

be used to determine the optimum point at which to move through the test 

phases accurately and to evaluate the validity of this method for industrial scale 

projects. The data required for analysis is obtained from project fault reports. 

The terminology may vary between projects, so that the fault reports might also 

be called problem reports, incident reports or trouble log. But it is the first 

documentation of problems found during testing that is of interest, no matter 

what it is called. 

136 



The experiment will concentrate on the analysis of all the problem reports and 

will be focused on answering these three questions for each of the problems 

reported: 

• at what stage in the development process was the problem introduced? 

• at what stage in the testing process was the problem found? 

• with improved testing would it have been possible to find the problem 

earlier? 

Along with each individual fault report, the testing phase in which the fault was 

discovered and the development phase in which it was introduced are also 

required. An engineer with a good understanding of the particular problem then 

has to decide the earliest point in the overall testing that the problem could have 

been identified. 

The relationships to be considered are: 

• customer requirements errors have an EV during reference model 

testing 

• specification errors have an EV during validation testing 

• system design errors have an EV during integration testing 

• module design errors have an EV during module testing 

• coding errors have an EV during module testing 

A second use for the EV metric, is to provide a measure of Testing 

Effectiveness' by test phase. This can only be applied at the completion of all 

the test phases for a system build and a period of field use i f the build is 

released. The measure compares the number of faults found during a specific 

phase that have associated EV, with the total number of faults with that EV. 

The number of faults found when they should have been against those that have 

been found later then they should have been. This therefore provides a measure 

of how effective a particular test phase has been at removing the faults that 

should be unidentified during the test phase, those with an EV equal to the 

phase. Comparing these values across the testing phases will identify the test 

phases that require investigation as they are not delivering the testing needed for 
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a quality product. The Testing Effectiveness equations for each test phase are 

listed below: 

module testing = 
( / . u / ) n ( F , u F . , u F , u F , ) 
^ ma c ^ v m/ if vr ct ' 

x i O O 

integration testing = sd v if mt ' x l O O 
L^(FmluFituFvtuFJ 

validation testing = 
/ n ( F t , u F , u F J 

x lOO 
/ n ( F , u F , u F , u F , ) 

s ^ mt it vt ct' 

The equations provide a comparative measure of testing effectiveness, not an 

absolute measure, due to the limitations on the scope of testing. The limitations, 

the three variables A, B, C that reduce the maximum test coverage are explained 

in chapter 5 with the use of Venn diagram 2 Fault & coverage set, page 113. 

7.3 Testing process control improvements 

In addition to EV a number of other metrics are included during the case study 

to determine the best combination of metrics that can be built into a testing 

process control model. 

Bellcore [113] use a combination of metrics as criteria for completing the 

system test phase. Metrics employed include; number of system tests executed, 

and passed, number of open TT's, TT rate, number of open critical TT's and 

stability (performance and reliability measure). 

7.3.1 Clear ratio 

If the number of faults corrected is plotted on the same graph as faults found, 

this is often used to predict the testing effort required to complete testing and the 

status of the testing. Hetzel [34] says, "it will show if debugging is becoming a 
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serious obstacle to testing progress and provide a further indication of true 

status". 

ITT programming, Dunn [89] (see Figure 34 Worrisome trend of TT's. Page 

139) apply trend analysis to open and closed trouble tickets, to provide 'leading 

indicators' to warn of impeding problems. 

If the error rate is increasing, or if the fixes are introducing more errors than are 

being cleared, the project will fail unless action is taken to improve the quality 

of the work, including re-coding the troublesome modules. A ratio will be used 

in the proposed testing process model, faults found/faults cleared. 

opened 

closed 

Time 

Figure 34 Worrisome trend of TT's. 

7.3.2 Churn 

Two types of churn are covered within this thesis, requirements and bug fix 

churn. Churn can be used as a measure of the change in perceived 

requirements. If the requirements change, then the further through the 

development activities the larger the impact on the re-work that will be needed. 

Increased functionality, enhancements or scope creep are also considered to be 

requirements changes. The requirements might change because the customer 

changes his mind or because the developers realise that the requirements have 

been interpreted incorrectly. Tice [3] calls this requirements definition stability, 

"how well do the users understand what they want, how well does the 
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developer understand what the user wants". Tice suggests this stability can be 

measured by comparing the number of units (modules) affected by change 

compared to the total system size in units. Dunn includes a stability measure as 

part of a defect estimation algorithm [89] and admits that it is not quantifiable 

by any theoretical technique, but a simple count of change requests applied to 

requirements or top level design, can be used as a measure. 

The second type of churn is caused by bug fix activities. Ince [6] talks about 

how software will 'rust', with more and more changes carried out on the 

system its structure degrades. "The reason is twofold: first, staff unfamiliar 

with a software system are usually assigned to its maintenance; second, 

relatively low grade staff are also employed in this activity. What happens then 

is that a software system, when released, starts off with a clean architecture. 

During maintenance, errors are discovered and new requirements arise, and 

random hacks are made to the system. This results in interfaces between 

modules becoming more complex and the logic inside modules becoming 

more tortuous. What happens is a progressive rusting of the software system 

which adversely affects further maintenance effort: as the system rusts, further 

changes become more difficult and consumes more resource". 

In both cases, requirements and bug fix, the code and possibly the design wil l 

be changed by engineers that did not create the code initially or to a greater 

extent than initially envisaged. There are two impacts of churn: 

1. Over time and a number of builds, changes wil l have been made upon 

changes and it wil l become increasingly difficult to make further changes 

without introducing faults. 

2. The greater the number of changes taking place in parallel for the same 

build, the greater the risk of faults being introduced because the design and 

code become unstable due to the large amount of change. 

The measure that will be used within the proposed testing process control 

model to asses churn will be the actual number of changes made 

(enhancements and bug fix) compared to the initial scope for the build. 
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7.3.3 Error rate halving. 

A study carried out by Rombach [114] at NASA's software engineering 

laboratory, found that the error rate halved with each subsequent testing phase. 

This phenomenon can be seen in Figure 35 Error rate halving, page 141. 

o O _i 

3 3 

e 

code/test 

X 
J£ X, XX 

X X 

system test acceptance test operations 

Figure 35 Error rate halving 

In testing communications software Siemens [115] have found that the 

percentage of faults found in each testing phase is similar for most development 

projects and can therefore be used to predict the number of faults that should be 

found during each testing phase. The results from Siemens show that the 

percentage of faults found at each phase: 

60 - 70% during development 

15 - 20% during system test 

2-5% during field trial 

3 -10% during operational use 

This reduction in error rate following each phase of testing is expected, although 

it has been shown that problems can be introduced at each phase of testing. So a 

poor specification, but with good coding, will result in a lot of failures at 

customer acceptance, but not many errors during module and integration 
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testing. This measurement can still be used as a guide and any anomalies can be 

picked up early. The reduction in error rate should also be measured during a 

life-cycle test phase for each subsequent build. Some modules may require 

several compile and test phases before they are ready for integration with other 

modules. During integration testing several build and test phases may be 

needed before system validation can start, and during validation several builds 

may be needed before the system is ready for operational use. Again it is 

expected that the error rate wil l fall following each subsequent build and test 

cycle within the testing life-cycle phase. 

7.3.4 Severity shift 

Another measure that can be used during builds within a test life-cycle phase is 

severity shift. There are likely to be critical problems found during each phase 

of the testing life-cycle, but within a test phase the builds should move from 

identifying critical and highs to mediums and lows, as the important problems 

are fixed. A shift is therefore expected from high criticality faults to low faults 

over a number of builds. 

This will be less obvious i f fixes introduce further critical problems or gateway 

problems are found. The gateway problems hide an area of functionality or 

code, that can not be accessed until the gateway problem has been fixed. When 

it has been fixed another set of problems are found in the code that can now be 

accessed, and it may contain further gateway problems and critical faults. The 

effect can be similar to peeling layers from an onion, but with an unknown 

depth and therefore time to fix all the problems hidden. 

7.3.5 Faults per week 

The rate at which faults are being found, assuming a fixed size test team, 

provides an indication on how easy it is to find faults and therefore when the 

testing should be completed, or how effective the test team are at finding faults. 

A common feature during testing and maintenance is for the fault rate to 

increase for a while following a build/release until the most frequently 
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encountered faults are recorded and then for the rate to fall and stabilise at a low 

level. Within HP [46] this is called "the hump phenomenon". 

7.4 A process model for data collection 

The testing process model developed and used during the analysis of testing 

resource usage is illustrated in Figure 36 Testing process model, page 144. The 

large circles represent the major testing phases, with the smaller circles showing 

the activities associated with each phase. The squares are the output's expected 

from each phase. Each phase is described below with the activities, the rows in 

the data collection form, highlighted in bold text. 
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Figure 36 Testing process model 

7.4.1 Information gathering 

A data collection form has been produced (Figure 37 Metrics collection form -

A and B, page 147,148) which maps onto the major testing phases and the 

associated activities identified on the process diagram. Each of these major 

144 



testing phases is now taken in turn and expanded with a description of the 

activities that will be measured. 

It is interesting to note that the first major phase was seen as information 

gathering and not just about the system under test, but also the process being 

used for development and interaction with the test team. A fair amount of effort 

goes into understanding the product and development process which is often 

overlooked when estimating testing effort. Information gathering is likely to be 

at its highest at project start up, but will also take place during the strategy and 

planning activity, and the test preparation activities. 

7.4.2 Testability analysis 

At this early stage in the identification of metrics it will be worth collecting the 

number of problems raised during the testability analysis as well as the hours 

spent on this activity. System questions should also be noted as this might also 

lead to a good indication of the quality of the specification and the resulting 

development. Testability analysis may not be significant in the overall testing 

activity but it is worth measuring and removing if not significant. 

7.4.3 Strategy and planning 

After the normal project start up process of information gathering, the first 

major activity is a strategy document to outline the proposed testing strategy 

and a set of top level plans providing the base resource data for the testing 

project. Time spent deciding on the process that will be used during the testing 

work is recorded under process. This includes start and finish criteria for the 

testing, re-testing criteria, support arrangements and the quality assurance 

procedures that wil l be used on the testing project. Approach covers the 

technical aspects of the way in which the testing will take place and will lead 

onto the testing environment and test tools necessary to support the chosen 

approach. 
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A first cut is needed in the strategy document to show how the testing of a 

system is going to be grouped. This work is referred to as partitioning. Test 

design (TD) documents follow on in the preparation phase for each area 

identified in the strategy. Deciding on what configurations to test, the data that 

should be used and the likely usage patterns that might be applied by a 

customer, develops into a set of scenarios. A lot of information gathering is 

associated with this activity as the base data has to come from marketing or 

potential customers. 

Project plans detailing the resources (manpower and non-manpower) are 

produced and calendarised over the project life. The dates for the completion of 

the milestones are also planned at this stage. The strategy and planning activities 

have a test strategy document as a deliverable. So the time spent in producing 

the documentation and reviewing the deliverable are two activities that can be 

recorded on the data collection sheet. 

7.4.4 Preparation - test team 

The preparation activities are split between test preparation and test environment 

preparation, as the work is different and separate teams are likely to be used so 

that the activities proceed in parallel. 

The TD's follow on from the direction set in the strategy, but for each area they 

go down to the level of detail where the individual test cases (TC) are identified 

and named or numbered. The TD's are reviewed by test engineers from the 

same project but different TD work area, and a representative from 

development. A documentation pilot trial is the concentration of effort into one 

TD work area, working all the way down through the documentation to 

completed TC's. 
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The Test Centre 

Metrics data collection 

Name: 

Project 

Date 77 

Information gathering 

area of interest 
activity product 

hours: 
process 

hours: 
start Up 
strategy & planning 
test preparation 

background, features, management,change 
user environment - use control, project interface 

Testability analysis 
hours: 

review of functional spec for testability 

Strategy & planning 
hours: 

process 
approach 
partitioning 
scenarios 
resources 
aocumemauon 
review 

t 

l/P, O/P & retest crteria, support, QA 

techniques, test tools & environmen 

split between TD's 

customer use, patterns & data 

manpower, nonmanpower, dates 

time spent writing strategy 

QA review of strategy 

Number of system questions raised 

Number of problem reports raised 

1-10,10 high 
Job satisfaction 

Figure 37 Metrics collection form - A 
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Preparation - test team 
hours: 

fas t ri fis ig n p mrii intion 

testdestan review 

te<strlnnimsintfltinn - p Int Iris! 

toQtpflco p r n r t i r t h n 

test c a s e review 

tost procedure s p e c - t e s t d a y s 

test Drocedure D reduction 

tfistprnnfiriurfi rfwicsw 

DIDV h a tests 

niiriit nf inteQTfltinn anri sys tem testing 

acceptance of deliverab les into validation 

Preparation - environment team 
hours: 

test tod spfirificatbn 

tfist tod rifivfihprmnt 

test tod proving 

test environment ( h e model) soecfication 

tfist finv imnmfint dev d op ment 

test environment DIOV h a 

test environment s u p p o r t s mahtenance 

Test execution & reporting 

run tests 

results analysis 

retest 

increased coverage - new tests 

test report production 

test report rev lew 

Figure 38 Metrics collection form - B 

The output is reviewed to see i f the resource expended is reasonable and that the 

level of detail achieved is correct for the particular project and staff involved. 
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This is a method for establishing early on in the project if the correct level of 

preparation and documentation has been specified. See Appendix B for further 

information on this technique. 

Test selection can take place several times during a testing project. The first time 

is on the completion of the TD's when a complete list of all the TC's to be 

produced is available. A review at this point might decide to increase coverage 

and therefore the number of TC's or reduce the number of TC's if there is an 

overlap in the coverage or just not the budget to go ahead with all of them. As 

the project progresses and more information becomes available on the areas that 

might need enhanced testing the coverage and test cases selected will be 

reviewed again. 

Test case production is the pulling together of all the information needed for a 

test case and then producing it. The TC's have been identified in the TD's, they 

have been through a selection process and the information needed is available 

from the system specification, design or user guide. A TC review is not always 

needed, but if it takes place it tends to be a peer review, looking at the details of 

a TC for accuracy and usefulness as a test. 

The test procedure (TP) is the working arrangement for running a series of 

TC's whilst utilising the same testing environment configuration. The 

instructions provide the order of the tests and a description of the test 

environment set-up. Test days are another way of providing a TP except that the 

tests will require a days worth of test time to run. They will all be in a related 

area with a specific run order. Test procedures may be used to supplement test 

days if a further breakdown of detail is required. The data collection form 

shows a column for the effort involved in deciding and specifying what the test 

days or procedures will consist of, and a row allocated for the man hours spent 

in producing them. This may be followed by a peer review to obtain agreement 

on the decisions or details. 

'Proving tests' is an activity to try out the prepared tests using the test 

environment and perhaps an early release of the system under test to determine 

if the tests are correct and will function as specified. The idea is to pre-empt any 

hold up in the testing programme due to tests failing because of a 

misunderstanding by a test engineer in producing the tests or the test 
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environment. Test engineers can make mistakes the same as development 

engineers. 

An audit of module, integration or system testing is used to understand the level 

of testing that has taken place during other testing phases and therefore help to 

determine the level of testing required during validation. It can also be used to 

check that the input criteria to validation has been met. 

Acceptance of deliverables into validation can just be a decision taken on the 

basis of the above audit, or it could be a set of tests that will be applied before 

the system is acceptable for validation. 

7.4.5 Preparation - environment team 

The test environment preparation has two main components to the work. The 

first area shown in the data collection form is the development of specific test 

tools. This is split into the specification, development and proving activities. 

The test tools will need testing, but to a lesser degree than the real system under 

test otherwise there will be a continual development of test tools to test each 

other to product quality. 

The second area, the specification, development and proving of the test 

environment includes the hardware/software model that will be used to test the 

target system, proprietary testers, communications and computing equipment. 

In fact anything that will be needed to run or support the test engineers apart 

from the tests themselves. 

The last row in this table is for the effort spent in maintaining and supporting 

the test environment and tools once they have been provided for use. 

7.4.6 Test execution and reporting 

The data collection form is completed with a table that covers the test execution 

and reporting. The number of man-hours spent in the execution of the tests is 

covered in the first row. The analysis of the test results data is catered for in the 

second row. Re-test is the running and analysis of tests that are run for a 

150 



second time due to a failure of the system under test or the test (or its 

environment) the first time around. 

As testing progress, certain areas of the system under test will be identified as 

having a higher proportion of faults than others. The more faults that are found 

in one area the higher the probability that there are further problems to be found. 

Extra tests will be needed to increase the testing of these 'hot spots'. The effort 

put into the development of additional tests during the testing phase is contained 

in the row called new tests. 

At some point in time a test report will be asked for. This could be on a fixed 

date when the report would give the testing to date and outstanding problems, 

or the test report might drift until the system under test is approved and the test 

report documents the history of the test period. The time spent producing the 

report and reviewing it goes into the last two rows respectively. 

Other items to be recorded: 

the number of system questions 

the size of the test strategy - pages 

the number of test designs & size - pages 

the number of test cases 

the number of test procedures 

the number of problem reports raised 

the number of new tests developed during actual testing 

the size of the test report - pages 

7.5 Data collection 

Having agreed the objectives for this case study, and decided on a testing 

process plus the data to be collected, the next activity concerned the actual data 

collection. For the estimation of testing resources it was decided to collect the 

number of hours spent on each activity on a weekly basis. This did not take the 

form of a time sheet, which might have resulted in some erroneous data due to 

the testing engineers spreading their 42 hours per week over the activities rather 

than recording what actually happened on the project. So only the hours spent 
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on the project testing activities are documented, the rest of their week will have 

been spent on non project activities. To be able to use the results to calculate 

back to the number of engineers required for an activity, a test team utilisation 

figure is needed. This is calculated on a weekly basis and provides the 

proportion of time that a test team would be available for project work; the 

equation for utilisation is shown below. 

% utilisation = total hours hooked to project that week * 100 

42 hours * number of staff on project 

The raw fault data that has been analysed for this thesis came from a number of 

sources. To validate the data and ensure that it can be used, data integrity 

checks have been made and any inconsistencies have been resolved. Because 

this data has been provided from different sources, using different data capture 

methods and specifications for data items, there has been a large amount of data 

mapping required. 

The fault data has been provided from: 

1. Change Request, CR, list covering faults and changes required. The 3,750 

entries had been identified during an 18 month period across integration, 

validation, reference model and field testing activities. CR's can be raised 

against the core system, other systems that interconnect, data, 

documentation and the installation process. Although there was no 

differentiation between changes to functionality and faults initially, they 

were held separately on the database towards the end of the observation 

period. 

2. Change review weekly notes. These provide information on the action taken 

to investigate and resolve CR's and other items raised at the weekly CR 

forum. 2,700 CR's covered. 

3. Field Incident Reports, FIR. 5,760 FIR's raised on a helpdesk by users of a 

number of supported systems. The incident reports do cover problems that 

are fixed by field engineers without the need to raise a CR against the 

system and also provide the background to a CR that has been raised due to 

a field problem. 
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4. Weekly validation testing reports. This report provides details on the 

number of problems raised, cleared or awaiting test with the validation test 

team. 

5. Release review documentation. For each version that is targeted at release 

for use in the field, a review takes place to confirm that the version is fi t for 

purpose and that it will be supported by the maintenance team. The review 

includes information on new functionality, problems that have been cleared, 

outstanding problems, work-arounds and performance data. 

6. Twice weekly development team status report. This provides the status on 

each outstanding CR, the analysis of the problem, fix proposal and target 

release. Each report tracks the progress of about 500 CR's. 

7. Scope statements. Each release starts life with a scope statement that 

provides a list of CR's to be fixed and new functionality that is planned for 

a release. 

8. Validation and reference model test reports providing detailed information 

on the test environment, build, test cases and the problems found. 

The information from all these sources has been pulled together, cross-

referenced and reconciled to provide the data required for the analysis of faults 

through the life-cycle. 1061 faults have been analysed in detail, covering version 

introduced, date, severity rating, life-cycle phase found, EV, fixed release, and 

type of fault - core software, data, system, installation. The only area where 

sufficient data has not been available, is module testing. Due to the geographical 

and departmental split of the development teams there is no structured way to 

record module testing failures. Also some teams may not be recording them if 

they can fix the problem on the fly. 

The problem can be visualised by looking at Figure 24 Code and test, page 109 

and realising that the feedback paths between the different life-cycle stages are 

following different operational processes and using alternative systems to 

record CR's. Also, that this situation applies within the module test box due to 

the large number of development teams working on the project, 200+ engineers 

within 12 development teams split across five separate development centres in 

the UK. 
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A large proportion of the time spent on this thesis has been dedicated to 

validating the data and reconciliation of differences, because the data has come 

from a diverse set of teams across the product life-cycle. This has been an 

iterative process, because quite often the data analysis has shown 

inconsistencies in the data and investigation has been needed to rectify the 

problem and improve the data integrity, before restarting the analysis. 

A typical problem encountered is one where the faults in different categories did 

not equal the total number of faults targeted for a build. The total faults targeted 

for a build (the build scope) should equal; the faults fixed and included in the 

build (the release statement), the faults that will be fixed in a later build (scope 

statement), and the faults not fixed (outstanding faults list). But as the data is 

held in different documents/spreadsheets created at different times to the 

original scope statement, they did not always equate. Typical reasons for faults 

disappearing include finding duplicate faults and faults removed as it is later 

decided that they do not cause a problem. Faults appear in the build due to a 

problem being found after the scope statement had been produced, fixed and 

included in the build. 

When a check on the data exposes an inconsistency the history of each fault 

associated with a build has to be tracked across the data sources until the 

problem has been resolved. 

7.6 Summary 

The case study has started with two objectives, this has led on to the 

identification of the data to be collected and the data collection methods. The 

background to the case study project the IMS, its internal structure and code 

size are explained. A testing process model has been proposed so that the 

testing estimation data can be linked back to the overall testing process. The 

next activity is the collection of the data from suitable software builds and the 

analysis to expose any problems with the metrics selected. 

154 



8 Results - Analysis and Discussion 

Chapter seven introduced the case study for this thesis, the IMS project, and the 

metrics identified for data collection. Chapter eight considers the results from 

the data collection and analysis, taking each of the metrics in turn to determine i f 

they should be a component part of the software testing estimation and process 

control model. 

8.1 Data Collection 

Data has been collected over an eighteen month period following the progress 

of the software through module, integration system and deployment testing 

plus the feedback from operational use. The system had been in use for about 

two years with one major re-work following release, before the monitoring 

started on the next release. The development consisted of new functionality, 

fixing point problems in the earlier version and re-writing modules that where 

beyond point fixes. 

Testing starts with the testing of the modules that make up the core processes. 

This included the user interface driver and database management. Integration 

tests the interfaces between all of these components by building them into a 

system that will run. System testing exercises the end-to-end operational 

workstrings which are supported by the functionality provided by the system. 

This includes the outer interfaces of the system and the external systems that 

interwork with it over the interfaces. The deployment or reference model test 

exercises the system in a configuration that replicates its intended use. 
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Figure 39 Build & release schedule 

Data captured from early builds 2A, 2B, 2C and 3 is provided in table 1 

showing severity shift and in table 6, faults per week plus clear ratio. 

The full data capture started during the testing for release 3C. Poor integration 

testing led to a number of releases which where not good enough to go beyond 

system test. Table 6 below, demonstrates how during this period (2A) faults 

had been introduced into the code faster than they had been corrected. The 

engineers trying to fix the faults were creating more then they where fixing. At 

this stage the development is out of control and wil l never be completed 

successfully unless a different approach is taken. 

A decision to de-scope the build's to provide a simpler set of functionality did 

succeeded in providing build's (2B,3) where the faults introduced rose slower 

that the faults being fixed. The functionality then had to be increased via a set of 

smaller incremental builds 3A, 3B, 3C, 3D. 3C and 3D occurred in parallel, 

building on 3B, but with the 3C work being fed directly into 3D to reduce the 

time scale down from having to do all the work in series. 

The scope of each of these builds did increase as faults where found during the 

testing phases. Build 3D was a failure due to the quadruple increase in scope 

(see table 5) and although not many faults had been reported against it (see table 

1) very little testing was completed as the build process proved unstable. 

Development continued to build upon 3C, providing a number of bug fix patch 

releases until 3C6, when following a full test it was released for operational use. 

One of the minor patch releases (3C2) included a new reporting module. The 

test data for this patch has been pulled out as a demonstration of poor module 

testing (see table 4). 
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Field problems from 3C6 and some re-work of the code instigated a new build 

(number 6) some 18 months later by a team put in place to maintain this 

system. This team (varying between 10 -20 engineers) produced maintenance 

builds every 4 - 6 months and are still supporting the system today (November 

98). Although the system is in use today for the network management 

operations it has been replaced by a new system for service management. The 

IMS software is undergoing maintenance work during 1998 to ensure that it 

will be millennium compliant and can continue to be used beyond 1999. 

8.2 Fault Analysis 

For each of the software builds 3C, CI to C6, 3D and 6 the detail results tables 

(Appendix D) show for each phase of testing the number of core faults found 

and the EV for each fault. The tables are converted to show the percentage 

figures. The tables also contain the number of system failures (beyond core 

software failures), problems caused by faulty data and installation problems. 

Key: 

Fault severity 

C Critical 

H High 

M Medium 

L Low 

Test Phase 

F Field 

M Reference Model - deployment test 

R Release test, system test 

P Point fix test 

I/T Integration Test and build 

V Development Verification - module test 

W Code/design Walk-through 

157 



Problem type 

C Core software 

D Data 

S System, including gateways 

I Installation script 

+E Enhancement, improvement 

R Specification change, new Requirement 

Development phase 

md&c module design and code 

sd system design 

s specification 

r requirements 

The test phases listed above map onto the fault propagation model (chapter 5) 

test phases as: 

Customer testing and use (ct) = F field use, M reference model/acceptance test 

Validation test (vt) = P Point fix test, R release test/system test 

Integration test (it) = I/T integration test and build 

Module test (mt) = V module test, W code walk through 

Some of the test phases identified are combined, carried out at the same time 

and it has not been possible to identify the data split between the two test 

phases. In this cases a combined result is shown (e.g. P/R). 

Summary Tables 

Table 1. Severity percentage for each build, excluding field faults 

2A 2B 2C 3 3D 3Call 6 

c 6 17 22 32 14 15 8 

H 10 33 37 36 32 45 63 

M 37 40 33 20 32 30 29 

L 47 10 8 12 21 10 0 

Total faults 157 126 144 164 28 423 24 

field faults - - - - - 145 
2 2 
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Table 2. Detail results for build 3C to 3C6 

1 3C 3C1 3C2 3C3,4,5 3C6 

c 22 17 1 16 13 

H 40 41 47 44 57 

M 31 39 20 34 25 

L 7 3 31 6 8 

Total faults 147 70 70 64 72 

Table 3. Percentage post EV 

3C 3C1 3C2 3C3,4,5 3C6 3D 3Call 6 

I/T 8 - 0 47 40 42 29 17 

P/R 17 33 57 38 35 19 35 11 

M 64 72 - 80 29 - 65 0 

F - - - - - - 55 50 

Table 4. Discovery, percentage by test phase 

3C 3C1 3C2 3C3,4,5 3C6 3D 3Call 6 

V/I/T 13 - 3 23 7 43 10 50 

P/R 56 64 97 61 83 57 70 38 

M 30 36 - 16 10 - 20 12 

Table 5. Increase in target scope 

3Call 3D 6 

target fix 35 47 24 

actual fix 115 191 55 

% increase 329% 406% 229% 
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Table 6. Faults per week/clear ratio 

2A 2B 3 3Call 6 

average faults per 

week 

35.5 17.7 21.2 

clear ratio [1.97] [1.20] [1.22] 3.68 0.44 

Table 7. Testing Effectiveness 

3C 3C2 3C3,4,5 3C6 3Call 6 

V 39 - - - 6 -

VT 69 0 55 38 36 80 

P/R 69 100 88 93 63 61 

M - - - - 77 100 

Table 8. Fault introduction 

3C 3C1 3C2 3C345 3C6 3Call 3D 6 

md&c 12 16 50 34 25 25 25 8 

sd 9 6 6 17 11 9 11 21 

s 61 66 31 39 40 50 57 58 

r 11 10 13 9 24 13 7 13 

Table 9. One phase PRE EV%, (actual number of faults). 

3C 3C1 3C2 3C345 3C6 3D 6 

V 13 - - - - - -

VT 25 (3) - 100(2) 13(2) 0 33 (4) 50 (6) 

P/R 12 4 13 10 20 6 -

M 23 8 - 0 0 - -
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Table 10. Two phases PRE EV%, (actual number of faults). 

3C 3C1 3C2 3C345 3C6 3D 6 

V 0 - - - - - -

I/T 0 - 0 0 0 8(1) 0 

P/R KD 0 0 0 0 0 0 

F Field problems. 

These are user specific problems within user environment, which result in a 

change to the requirements. The problems will be related to how the users 

actually use the system, operational process, user specific data, plus the 

environment/configuration (performance and interfaces). 

M Reference Model, deployment or customer acceptance test. 

This validation testing will expose typical user environment problems. This 

includes user data loaded for testing, operational workstrings, specific 

applications and interfaces developed to other systems. The main difference 

compared to field problems will be that the reference model may not have the 

ful l hardware configuration to replicate the user configuration, so that the non 

functionals like performance will not be exercised as in the live user system. 

Also work practices that are not documented as part of the workstring but are 

actually followed by users, will not be exercised. 

R Release system test. 

This will exercise a generic configuration, data and workstrings (end to end) 

across the core system, with standard application code, and systems that 

interface to the core. The system test should find the problems where the 

delivered system does not meet the system specification, by exercising the 

system in a typical user fashion. This will be the first time that all components 

of the system are exercised together. System test will not find user specific 

configuration, data or process problems. 
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P Point fix test. 

Individual fixes are tested within the system test environment. This will ensure 

that problems have been fixed and operate within the complete system. This 

will not prove that the system meets the requirements, just that a problem has 

been fixed. 

I/T Integration test. 

This will find the problems with the interfaces between components within the 

core software. The technical specification of the interface and data supported 

will be used to prove that the interfaces work and that the data is passed 

correctly. The complete system will gradually be built as the components are 

added and tested. Proving that the system does something useful is part of the 

system test not integration test. 

V Component test. 

The internal code of a module is tested up to the interface. Selected data is used 

plus boundary values and off scale values to ensure that for a given input the 

correct processed output is provided or error message. 

W Code Walk through. 

Similar to component test, to check code logic, data names and object 

definition, during the early stages of module design and code. 

8.2.1 Earliest Visibility E V . 

Before looking in detail at the fault tables, the principal of EV and how it can be 

used is shown by extracting the percentage fault results into a separate 

summary table. Table 3 shows the percentage of faults post EV per phase. This 

is the percentage of faults found during that phase of testing, that should have 

been found during an earlier phase. A dash '-' indicates no measurement, and 0 

means that only faults relevant to the testing phase had been found, as none had 

been identified that should have been found earlier. Therefore the lower the 

figure the better the testing during the earlier phases. As discussed earlier 

(chapter 6), each testing phase will expose the problems with an EV linked to 
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that phase. When considering the EV results for a test phase a simple way to 

view them is to split the results into pre and post EV failures: 

• post EV - failures that should have been found during an earlier phase of 

testing than the one in progress. The fault has been found later than 

expected, later than its EV. 

• pre EV - failures that you expect to find during the test phase in progress or 

in a later phase of testing. The fault has been found during the expected 

phase or earlier than expected, before its EV. 

Module coding problems should be found during module test / n Fmt, and 

system specification failures should be found during system test / (~^Fvt. If a 

problem is not found during the related EV test phase the testing is not good 

enough. The only way to deliver a quality product is for each testing phase to 

remove the faults that should be found in that phase, as each testing phase 

builds upon the one before it and will not necessarily find faults from an earlier 

phase (faults with an earlier EV). 

As you move through the testing phases there is a tendency to find more faults 

that have missed their EV, due to the number of testing phases that have been 

passed and the additive effect of the faults in each phase. 

The example of poor module testing of the patch 3C3 release shows that at 

integration testing almost 47% of the faults found are module coding faults. Not 

only is it unlikely that the integration tests will have found all the module coding 

faults, because the tests are targeted at finding different types of faults, but also 

the module coding failures are likely to be masking integration faults. Also 

build 3C2 has a post EV of 57% during system testing, which means that 57% 

of the faults found should have been identified in earlier testing phases. The 

more detailed tables will show that this patch release was almost a failure, not 

because of critical faults, but due to a large number of medium severity module 

coding errors. The system test team effectively had to produce and run the 

module tests. By contrast build 6 has a very low post EV failure rate, and 3C 

falls between the two sets of results. 

163 



Because this analysis is based on the type of faults found at different life cycle 

testing phases it can be applied to different software products, software 

languages and size of developments. As long as the testing phase life-cycle is 

defined along with the type of fault that will be tested for at each phase, this 

technique can be re-used. The target pre/post EV split will vary depending on 

the quality of the end product required. But following a couple of releases the 

target pre/post EV % figures can be calibrated to match the quality required. 

The metric EV is original work for this thesis and therefore requires evaluation 

to determine if it is suitable for use during software development. The meta-

metrics described in section 3.6 will be applied to EV and the three applications 

for the use of EV, process control, testing effectiveness and fault introduction 

rate. 

1. Simplicity. Does the metric lead to a simple result that is easily 

interpreted? Pre and post percentage measurements for EV by test phase 

provide a simple way to decide i f the correct phase of testing is taking place. 

Testing effectiveness is a percentage figure for each test phase showing the 

percentage of faults that have been found during the correct phase of testing. 

The fault introduction rate provides a split across all development phases. In 

all cases EV provides a simple result that can be easily interpreted. 

2. Reliability. Reliability indicates the degree of accuracy with which a 

characteristic can be measured. EV does rely on the interpretation of each 

fault, which development phase introduced the fault and therefore where it 

should be found. In most cases this wil l be obvious to an engineer 

associated with the project being measured and the results would be 

reproducible. 

3. Validity. Does the metric measure what it purports to measure? There is 

no implied association between EV and another measure, although there is 

a link with its use in testing process control. But the testing process control 

model proposed in this thesis does not rely solely on EV, a combination of 

metrics are used. 
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4. Robustness. Is the metric sensitive to the artificial manipulation of some 

factors that do not affect the performance of the software? The only factors 

that could impact EV when they change, is the life-cycle model being used. 

The development and test phases, the fault types associated with each phase 

should be defined at the start of the project and not altered throughout the 

measurement period. 

5. Prescriptiveness. Can the metric be used to guide the management of 

software development or maintenance ? A metric used to guide development, 

will be assessed during the development and not at the end. EV provides a 

way to measure and control the testing process during testing, plus the 

testing effectiveness and fault introduction rate results at the end of a testing 

life-cycle, for quality improvement. 

6. Analysability. Can the value of the metric be analysed using standard 

statistical tools? A simple spreadsheet can be used to calculate and present 

the EV results. The data required for EV can be captured as part of a fault 

report. EV is therefore economical as there is a low cost for collection and 

analysis of the data, with a high pay back in control of the testing process. 

7. Objectivity. A measure can only be considered objective if it is free from 

any subjective influences of the measurer. In the same way that Reliability 

can be influenced, so can objectivity by the interpretation of the faults into 

the development phase that generated the fault. 

The two meta-metrics where EV warrants closer scrutiny are Reliability and 

Objectivity, due to the interpretation of the faults by the measurer. For this case 

study the author interpreted the faults and the results show that this has proved 

accurate. One test that has been applied to the EV results is to check if any of 

the pre EV figures show faults being found two or more test phases earlier that 

expected. It would not be unusual for a small percentage of faults to be found 

one phase earlier than EV, see table 9. But if a large proportion is found earlier 

than EV, or by more than one phase earlier than EV, see table 10, then this 

would indicate a flaw in the concept of EV or misjudgement by the measurer in 

interpreting the fault data. The results from Appendix D, summarised in table 

10, show that across all builds in the case study, there is only two occurrence 

of faults being found more than one phase ahead of EV. Both of these relate to 

a single fault being identified two phases early, one in build C and another in 
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build D. The actual faults found one phase pre EV during I/T are shown in 

brackets in table 9 for clarification, as the percentage figures seem high but there 

is a low number of faults reported during I/T and the integration testing has 

included some system (P/R) testing. 

8.2.2 Testing Effectiveness 

EV can also be used to provide a measure of testing effectiveness by test phase; 

how effective has the testing been at removing the faults associated with that 

test phase. Table 7 presents the testing effectiveness measures as a percentage 

value, the higher the number the more faults that should have been found, have 

been found. A value of 100% equates to all problems with an EV equivalent to 

the test phase having been found. The values for this measure are only valid up 

to the last but one phase that data exists, for each build. The last phase will 

always be 100% because there are no further phases to show that faults have 

been missed. In this case a dash '-' is entered in the table. For some of the case 

study builds there is no value for the module testing phase effectiveness, as no 

data has been collected. But there has been module testing taking place and 

more importantly a number of faults with an EV of module test have been 

found during later test phases. Although it is not possible to calculate the testing 

effectiveness of module testing in these cases, it is certainly not 100% effective 

because of the number of faults that have been missed and found later. 

Build 3C1 and 3D have not been included in the table of results as there is only 

a result for one test phase in each case. An improvement over the earlier builds 

can be seen in the effectiveness of the integration testing I/T at 80% and 

reference model M testing at 100% for build 6. System testing effectiveness at 

61% for build 6 is similar to 3C all, but not as good as 3C345 at 88% and 3C6 

at 93%. The change in testing strategy for build 6 has therefore improved the 

effectiveness of integration and reference model testing, but system testing has 

lost the improvements seen growing through the C builds. 
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8.2.3 Fault introduction 

In addition to the EV metric supplying a measure of how effectively the faults 

have been removed, it can also provide a view of when the faults have been 

introduced. In order to establish the EV of a fault the stage at which it was 

introduced is required and is recorded as part of the data collection process. This 

therefore delivers a measure of development effectiveness (or non effectiveness 

as the fault introduction rate is measured) and provides a way to target, for 

improvements, the development phase that is creating the most faults. As this is 

expressed as a percentage of the total faults introduced (split across the test 

phases) it is used to highlight the phase introducing the most faults, but for a 

comparison between builds the actual number of faults needs to be compared to 

see if a reduction has been achieved. 

Table 8 above provides a view across the case study builds, where the values 

represent the percentage of the total faults that have been introduced at each 

development stage. From table 8 it can be seen that 3C2 had a problem with 

module design and code as 50% of the faults for this build originated from this 

development phase. Also build 3C6 has double the customer requirement faults 

compared to the other builds. 

8.2.4 Churn 

The original scope for each of the three build's 3C, 3D, 6 is shown in table 5. 

The total number of enhancements and problems to be fixed is used as a crude 

measure of the amount of changes being made for each release. There is a limit 

to the amount of churn that can take place on a piece of software before the 

structure and flow of the code is lost due to simultaneous changes by engineers 

that did not produce the code in the first place. 

It is difficult to determine the number of changes that can be made before the 

churn rate is too high and problems occur. It depends on the size of the initial 

build, how well spread the changes are and the interactions between the 

changes. Self contained changes spread over the software will have less 
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problems than a number of changes in the same area of code with a high level 

of interaction. 

A measure based on a percentage change of the initial build size or function 

point analysis may prove possible, but for this project a trial and error approach 

found the limit to the size of change possible. This limit to the amount of 

changes possible within a fix, build and test cycle became the maximum 

number of changes for the scope of a build. Therefore any scope creep will 

provide an indication of unacceptable churn. Whatever set of changes are 

planed (scope of build) other changes/fixes will be added (scope creep) as 

problems are found during the testing of the preceding build. The percentage 

increase from the original scope to the actual build, is shown in table 5. Build 

3D failed due to an unstable build, which in turn was due to the large number of 

changes (191 fixes) four times the initial scope for this build. 

High churn combined with poor module testing leads to the initial problems 

found with the 3C development, of faults being introduced faster than they can 

be fixed. I f the initial scope for a release is sensible then the ratio of actual scope 

to initial scope is an important indication of software build success/failure. It 

can be seen from table 5 that release 3D with a 400% increase in actual scope is 

a pointer to the failure of this build. 

8.2.5 Severity shift 

It was expected (see section 7.3.4) that early builds would have a large number 

of critical and high severity faults, and that these levels would decrease with 

further fix and build cycles. But it can be seen from table 1 that the critical faults 

start at a low level, 6% for build 2A, increase to 32% for build 3, and then drop 

to 8% for build 6. This set of builds took place over an 18 month period, with 

the first release at the end of the 3C patch builds. During this same period of 

time the high severity faults increased from 10% to 63%, while the medium's 

dropped from around 40% to 30%. The results for '3C all' in table 1 are the 

combined results from all the 3C patch builds shown in table 2. The same 
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pattern can be seen in table 2, which spans only six months, with a drop in 

criticals from 22% to 13% and a rise in high's from 40% to 57%. Build 3C2 is 

an exception, as this patch just added a reports package to the system and the 

functionality and importance is low compared to the full system. It is therefore 

unlikely that any critical problems will appear for build 3C2 unless the reports 

package impacts key functionality elsewhere in the system. 

It is difficult to explain the low level of criticals found in the early builds, but the 

shift from critical to high can be seen from build 3 onwards. The drop in 

criticals shows the software maturing as the original faults in the software are 

found over the extended testing period. But for each fault that is fixed or new 

piece of functionality that is added, there is the opportunity to introduce further 

critical faults. If a graph is used to plot the number of critical faults for each 

subsequent build, the release point can be predicted based on the quality level 

required for a release. The graph below (Figure 40 Critical faults per build, page 

169) shows both measures plotted for builds 3C to 6. It is more likely that the 

actual number of criticals (series 2) would be used rather than a percentage 

figure (series 1). Severity shift would therefore be used to track the maturity of 

the software, but to determine the likely quality of a build the actual number of 

outstanding faults and there severity wil l be used. 
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Figure 40 Critical faults per build 
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Further research is needed to establish if the shape of the graph below (Figure 

41 Percentage critical faults, page 170, build 2A to 6) is a common feature for 

the discovery of critical faults over a number of builds, or if for this project the 

reporting of low level faults dropped in importance as the project progressed 

and therefore skewed the early measurements. Because the low severity faults 

recorded for the first couple of builds will lower the overall percentage of 

criticals. 
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Figure 41 Percentage critical faults 

The other question that needs answering is whether the high severity faults 

would during future builds for this product, increase to a peak and then start to 

fall as the medium and low severity faults increase. For the testing process 

control model the fall in critical faults will be used as one of the indicators of 

software maturity and improved quality. 
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8.2.6 Error rate halving 

As explained in section 7.3.3, Rombach [114] found that the error rate halves 

with each phase of testing. Due to the dispersed development teams and 

different ways in which the results of module testing has been captured for this 

project, there is only a minimal set of data associated with module testing. 

Module testing fault count would be much higher than shown in the results 

tables and a drop from module to integration testing would be expected. Table 4 

therefore shows the results from integration, validation and reference model 

testing. Builds C, C I , C345 and C6 show that the majority of problems have 

been found during validation testing. This is the result of an ineffective 

integration testing strategy. During this period the integration team would 

produce a build from all the modules that made up the system and then run a 

simple system test to demonstrate that the system worked. They did not test the 

interfaces between the modules and the interface faults were not uncovered until 

validation testing or later. 

The strategy had changed by build 6, as one team of developers had been given 

the job of making changes to modules, testing them, integrating the modules, 

and testing the interfaces before running a simple system test. The results in 

table 4 for build 6 show a reduction in faults for each phase and suggest that for 

a well managed project with a test strategy that builds upon the preceding phase, 

error rate halving is correct. The testing process control model will use error 

rate halving as one of a set of measures to identify the correct progression 

through the testing life-cycle phases. 

8.2.7 Faults per week 

The average faults per week data is only available for the testing of build's 2A, 

2B and 3, see table 6. The size of the test team may not be constant throughout 

the project so a better measure, on a weekly basis, is the average faults found 

per man day effort. Over a number of build and test phases this metric can 

provide a view on how easy it is to find faults with the build under test. A low 

level could be due to the majority of the faults being found or poor testing. I f 
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the majority of faults have been found then depending on the target quality 

required, the next phase of testing can be started. I f the low measure is a result 

of poor module testing, then module testing must continue and further expertise 

applied to the testing to improve the results. When this metric is used in 

conjunction with the other metrics identified for the testing process control 

model, the reason for a low figure can be identified and the measure can be 

used to trigger the movement to the next build or test phase. 

8.2.8 Clear ratio 

The clear ratio metric for builds 2A, 2B, 3,3C all, and 6 have been measured 

using different standards. The first three are based on the number of faults 

found during the testing of a build, divided by the number of faults cleared (for 

whatever reason they have been cleared). The last two builds use confirmed and 

filtered faults divided by the number of fixes applied to the build. The data for 

these later two builds is therefore data that has been 'cleaned' to remove any 

inconsistencies or bad data. The data for the early build's is provided as it 

arrives from the data collection systems, before it has been cleaned. The ratio's 

can not therefore be compared directly between these two sets of results, but the 

general trend can. The ratio should start with a value greater than one, as the 

fault clearance process is front loaded, you have to find some faults before you 

can fix them. Once the initial faults within the first build have been discovered 

and a build and fix cycle is under way, the ratio should drop below one. Above 

one the ratio indicates that faults are being found faster than they are being 

fixed. I f this occurs during a build and fix cycle after the initial build faults have 

been found the project is out of control as the fixes being added to a build are 

introducing a greater number of faults into the build. 

The data in table 6 shows that this case study project did not stabilise until build 

6, where the clear ratio drops to 0.44. Further detailed analysis of the faults 

found from build 3C through to build 6 could be used to determine if the faults 

are from the initial build or introduced by the fixes applied to later builds. To 

ensure that the testing process control model can determine if initial build 
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problems are still being found or if the project is running out of control, fault 

data must be linked to its source, initial build or later fix. 

8.2.9 Assessment of combined measures 

Each of the metrics explained above provides a measure of the testing process 

and the resulting quality of the end product. Each metric can only provide one 

measurement, one view of the testing process, but there are a number of factors 

that can influence the end quality. To provide a model that will take into account 

the main factors that impact the testing process a number of metrics are needed 

and are used in combinations to obtain the view required. Each of the builds 

from 3Call onwards are discussed and how the measurements taken are related 

to the builds. 

3CaU 

There is a large number of faults found during the testing (423), with a large 

amount being critical (15%) and a poor clear ratio. The testing is therefore 

finding the faults, but from table 4 it can be seen that 70% of the faults have 

been found during system test and from table 3, that 35% of the faults are post 

EV. These 35% should have been found in earlier testing phases and points to 

poor testing during module and integration testing. Testing effectiveness 

measures of 6% for module testing and 36% for integration testing support this 

view. The detail results tables show that the 35% is split with a figure of 28% 

for faults that should have been found during module testing, and 7% for 

integration testing. The next phase of testing, reference testing, accounts for 

20% of the faults found, but now the post EV figure has risen to 65%. The 

reference model testing has been started too early as most of the 65% are faults 

with an EV of system test. This testing process is very inefficient because each 

testing phase is finding faults that should have been found earlier, time is 

therefore not spent on trying to find that faults that the phase is equipped to find, 

faults are missed, and the next phase is started but now with faults to be found 

from several testing phases that did not complete. Even during reference model 

testing of 3C all, 6% of the faults have an EV of module test. The 329% churn 

figure suggests that too much is being changed compared to the plan for this 
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release, which has resulted in the high level of faults within the code. It is 

possible to look in more detail at 3C all, as the information on the patch builds 

has been captured: 

® Build 3C. 147 faults found, 22% critical (see table 2), 56% of the faults 

found during system test and 17% post EV. The reference model testing 

found 30% (see table 4) of all the faults, but 64% post EV, all of them had 

an EV of system test (see table 3). Testing effectiveness is low at 39% for 

module test (see table 7), although this is probably due to a lack of data for 

module testing. 69% for integration and system testing, which is low 

compared to the target of 80%. Most of the errors are system specification 

errors at 61% (see table 8). This covers faults with the specification, 

incorrect interpretation or the system under test not meeting the 

specification. This build should have been returned to system test, and 

highlights problems with the specification or delivering to the specification. 

• Build 3C1. The number of faults dropped to 70, 66% introduced during 

system specification with a total of 17% critical, an improvement over 3C, 

but this might just be that the faults are not being found because the system 

test has a post EV figure of 33%, and reference model test has 72% with an 

EV of system test. 66% of the errors are specification faults, the highest 

percentage for any of the builds monitored. Another release that should 

have been returned to system test. There was not enough data across all the 

phases to provide a testing effectiveness result. 

• Build 3C2. This is the addition of a new reports module, 70 faults although 

only 1% are critical which is expected as this is not a major piece of 

functionality that will cause a lot of problems if it should fail. Most of the 

faults (97%) have been found during system testing, with a 57% post EV 

rate, 51% have an EV of module test. Looking at these figures together, 

with almost all the problems found during system test, but half of them 

should have been found during module test the analysis points to poor 

module testing. Unfortunately there is insufficient data to provide a measure 

of testing effectiveness to substantiate this claim but the fault introduction 

level for module design/code is 50% (the highest for any build) and most of 

174 



these did not get found until system test. The maximum 100% testing 

effectiveness is recorded for system testing, but 0% for integration testing 

effectiveness, showing that there are problems with integration testing as 

well as module testing. The impact of this module on the complete EMS 

system is low as the module is self contained with a minimum of 

integration with the system, but the cost of implementation for this module 

could have been reduced i f all the faults with an EV of module test had been 

found during module test and fixed, before the module reached system test. 

Build 3C3,4,5. 64 faults, 16% critical, a slight improvement over 3C1. 

There is an increase in the percentage of faults found during module testing, 

now 23% of total, 61% are still found during system test. The post EV 

figures show that a large number of faults are not being found as soon as 

they should, 47% post EV at integration test, 38% at system test (26% have 

an EV of module test) and 80% at reference model test (50% have an EV 

of module test, 30% an EV of system test). A fault introduction figure of 

34% for module design/code and 39% for specification show that although 

there is an increase in the number of faults found during module testing, 

there are a higher percentage of module faults that have been introduced. 

The testing effectiveness of the system testing is measured at 88%, but only 

55% for integration testing. Increase module testing or better quality module 

testing should have been applied to this build before the latter testing phases. 

Build 3C6. 72 faults, 13% critical, 83% found during system test with 35% 

post EV. Most of the faults are being found during system test, and a third 

of them should have been found in earlier testing phases. The testing 

effectiveness at system test is high at 93%, but integration testing is low at 

38%. The fault introduction metric identifies a figure of 24% for customer 

requirements, which is the highest for any build. This could have been due 

to the fact that this build did make it to field release and therefore more 

effort would have been applied during customer acceptance test when 

requirements faults would have been found. In summary, this build is still 

suffering from poor module testing, which results in wasting money on 

fixing problems at a higher cost later in the life cycle. 
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Build 3D 

Only 28 faults, 14% critical. The testing on this build was stopped during 

system test due to the build being unstable, so the discovery by phase table 

shows a high percentage for integration testing as the system testing was not 

completed. A high 42% post EV figure for integration testing identifies poor 

module testing, and is similar to builds 3C3 and 3C6. The main warning signal 

for this build is the high 406% scope creep on an already high target of 47 

changes. 

Build 6 

24 faults, 6% critical, discovery by phase approaching error rate halving, with 

low post EV rates of 17%, 11%, and 0%. The churn has been kept to 229% and 

on a small target of 24 changes. Clear ratio at 0.44 shows that the development 

phase is under control, with very few faults being introduced due to the target 

changes. Of the faults introduced, 58% are system specification faults and with 

only 61% effectiveness at removing them during system test this could still be 

improved. The 80% testing effectiveness for integration testing and 100% for 

reference model testing shows a good improvement over earlier builds. The 

improvements in the indicators for build 6 over the 3C builds can also be seen 

in the resultant field problems. Although 3C3 and 3C6 had short field lives (a 

few months) compared to build 6 (several years) 145 field reported faults for 

3Call is much higher than the 22 for build 6. Both have similar post EV 

figures for the field problems, 55% post EV for 3Call and 50% for build 6. So 

50% of the field problems found should have been identified during testing 

before release. 

8.2.10 Target measurements 

The early builds did not perform well and the metrics applied to them have 

shown up problems in over ambitious developments, poor quality of 

development, lack of integration, and poor testing. The last build measured, 
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build 6, performed much better with a successful development, little scope 

creep and a low level of faults introduced, restructured integration and improved 

testing. These builds therefore provide a range of results for the metrics being 

used and some target measures that can be applied to manage the testing 

process and determine the quality of the end result. More analysis is needed 

from other projects to calibrate the proposed testing process model, but based 

on the results so far the minimum expected before release is: 

• less than 200% scope creep 

• clear ratio below 1, after initial build faults have been found 

« error rate halving per test phase 

• post EV below 20% for each phase 

• critical faults less than 10% of total 

» faults per week. Plot over time, look for fall in rate 

© testing effectiveness of 80% minimum 

• development effectiveness (fault introduction ). Target highest error 

introduction rate. 

8.2.11 Detail results tables 

Appendix D, holds the detailed results tables. For each build of software there 

are two pages of tables. The first page holds the fault counts and second page 

the percentage calculation results. Taking each of the two pages in turn, the first 

page has five tables, one for each phase of testing. Each of these tables shows 

the number of core software faults found during the test phase, broken down by 

EV (columns) and criticality (rows). Core software faults are the software 

faults found within the IMS system under test, extra columns at the end of the 

tables also include a count of data problems, inter system faults (other systems 

that connect to the IMS), and installation faults, by criticality. These extra 

columns are not used any further during the analysis of the faults but do 

provide an indication of the number of these type of faults in relation to the core 

software faults. 

Below these first five tables on the first page are another two. The first collects 

the data required to calculate testing effectiveness. The columns represent a test 

phase and the associated faults of EV that should be found during the test 
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phase. The first row of the table holds the count of the number of faults with the 

correct EV for the test phase, that have been found during that phase and faults 

that have been found in earlier test phases but with this EV (pre EV faults). The 

next row holds, again by EV, the faults found that are post EV. In other words, 

the faults that should have been found during the phase under analysis, but in 

fact were found in a later phase. The third row provides the total number of 

faults found by EV (including field faults) by the addition of the first two rows. 

The last table on the first page collects together, by EV, the faults sorted by 

criticality for fault introduction by development phase. This table does not 

include faults found during field use, so that the different software builds can be 

compared, as field failures are only available for two builds. 

Where tables have no data this means for the early test phases it was not 

available, for the later test phases and field use this means that the software 

build did not progress this far through the testing life-cycle. The tables of results 

on the first page map across onto the tables on the second page, which provide 

the results of the calculations required for the metrics identified in this chapter 

of the thesis. 

The second page of results therefore, contains the five tables of results, which 

show for each test phase the percentage of faults found that are EV or earlier (in 

bold), and post EV (the faults found later than they should have been). The 

results are presented in rows by criticality and an overall post EV/ EV figure is 

presented at the top of each testing phase table. At the right hand end of each 

table, the total of the faults within each row is shown as a percentage of the total 

number of faults found during all phases of testing (excluding any field faults). 

The next table after the five EV tables, provides the results of the testing 

effectiveness calculation. The higher the percentage figure the greater the 

effectiveness. The results are split by testing phase per column. The last table 

presents the percentage of the total faults by EV and criticality, excluding field 

faults, split across the development phases. This provides a measure of the 

development effectiveness, or which phases are introducing the faults. The first 

five tables therefore provide a breakdown to EV per phase, and the last table the 

breakdown by EV across all phases. 
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8.3 Resource usage analysis 

The table below (Table 11, Resource usage analysis) presents the data collected 

over a one year period across three projects. The first project (1A & IB) 

follows the second main release of the IMS system plus a follow-on build and 

test phase to fix outstanding problems, so although there is some re-work of the 

test cases within the test preparation category most of the effort is spent on 

running the tests. 

% effort 1 A 1B 2 3 

process info 

gathering 

0 0 4 0 

product info 

gathering 

7 0 1 0 12 

strategy & planning 1 1 7 1 7 

testability analys is 1 0 1 0 

integration 

preparation 

0 0 14 0 

integration 

execution 

0 0 1 8 0 

system preparation 38 16 1 7 51 

system execution 31 78 20 2 0 

CM & build 7 1 1 0 

data development 14 1 1 0 

environment 1 3 7 0 

Total man hours 1980 1617 1714 173 

Table 11. Resource usage analysis. 
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There is little work needed (10%) to understand the product/process, define a 

test strategy, provide testability analysis or build a test environment as all these 

areas have been covered by the first release of the system. As this system has a 

data driven configuration there is a fair amount of work (14%) to ensure that the 

data is built and validated before system testing can start. The data build is re

used for the phase IB testing so no effort needed for the re-test. 

Project 2 is a new system to be tested so 29% of the total effort is needed to 

prepare for the testing. Both integration (32%) and system validation testing 

(37%) are covered, with in both cases the test execution taking slightly more 

effort than the test preparation. 

Project 3, as can be seen from the total effort, is a small development to be 

tested, delivered built and ready to test. In this case 29% of the effort is spent 

understanding the project and developing a test strategy and plan. A high 

percentage (51%) is spent on preparing the test cases and only 20% on test 

execution, this is probably due to the inefficiency of test case preparation for 

such a small project. 

8.4 Summary 

Details of the software build and release programme of the IMS system that 

has provided the data for the case study has been explained. The fault data has 

been analysed, by looking at the results from applying the metrics EV, testing 

and development effectiveness, Churn, Severity shift, error rate halving, faults 

per week and clear ratio to the data. By applying combined metrics to the IMS 

software builds it can be seen how the quality of the software is improved over 

time and how the metrics can identify problems in development and testing. 

The way in which the metrics can be applied, to control the testing process and 

movement through testing phases, plus a measure of quality that is used to 

decide i f a build should be released and the effectiveness of the testing, are all 

explored. Target values are proposed for the metrics. An explanation is given 

on how to read the detailed results tables in Appendix D. The analysis of the 

resource usage data provides the measures for a testing resource estimation 

model based on an evolving set of metrics that provide an estimate that 

increases in accuracy over time. 
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9 Conclusions 

This chapter concludes the thesis, with a summary, a review of the original 

objectives for this research, achievements, limitations and future work that 

could be undertaken to advance the proposed model. 

9.1 Thesis summary 

The first chapter of this thesis identified the increasing reliance on software as 

the use of computers and the size of programs continue to grow. Also the cost 

and time overruns, and the large proportion of effort spent in maintenance are 

discussed as some of the problems facing industrial development projects 

today. A review of the testing process, following the "V" life-cycle model 

through each of the phases from requirements to customer acceptance is then 

covered. 

The main point to be made from this broad look at verification, is the emphasis 

on gaining a level of confidence in a module of software or a complete product, 

and not the impossible task of trying to prove that the software is 100% correct, 

or that all the faults have been removed. This arises due to the impractical nature 

of trying to prove that something as complex as a computer program is correct 

and also the reality that no one would be prepared to finance such a costly task 

even if it were possible. 

The third and fourth chapters review the use of metrics and models within 

software engineering, provide an understanding of quality and form the basic 

reference on past work in this field. There is always a balance between quality 

and cost, with the attributes of quality (FURPS) providing one method of 
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measuring quality. An explanation of sizing, estimation and complexity metrics 

along with meta-metrics for validating metrics is included. Models provide the 

framework for metrics but like metrics also need validating with real data to 

prove that the results are accurate and practical. 

Sizing models are best suited to particular development environments, and 

some of them require a database of past project information before they can be 

used effectively. The estimating models like COCOMO provide much more 

information, in the form of costs, effort and manpower profiles but they do 

tend to be much more complex than the sizing models and therefore require 

more effort to use them. Some of the estimating models also need as input, an 

estimate for the size of the software to be produced, before they can provide the 

cost and manpower predictions. If this is the case, then the inaccuracies of 

estimating the size in the first place will be passed on into the further 

predictions. 

Complexity metrics are best employed in keeping module complexity within 

certain limits and for the direction of testing resources to modules with high 

complexity and associated high defect counts. In the same way, the defect and 

reliability models are best used to identify the modules that will have the high 

defect counts rather than trying to determine the exact number of defects in the 

software at any one time. 

Original work starts in chapter five with the presentation of a new fault 

propagation model which captures the parallel activities across the development 

life-cycle as faults are introduced and discovered. Set theory notation is used to 

describe the flow of faults between phases and Venn diagrams are used to 

explain the relationship between faults and test coverage. 

Predicting the number of faults in software does not have a practical application 

unless the criticality of the problems and the likelihood of them being found by 

the user can also be predicted. The testing process control model proposed in 

this thesis concentrates on improving the control of the process to remove the 

maximum faults, but will not predict the number of faults to be removed. 
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Earliest Visibility is explained in chapter six along with the hypothesis that there 

is a relationship between the development phase that a fault is introduced and its 

EV. There are a number of opportunities for improving the effectiveness of 

testing using the EV measurement: 

1. a method for deciding the optimum point at which to move onto the 

next phase of testing, and therefore managing the cost/quality 

balance for the project. 

2. an indication that the testing has moved on too quickly and that a 

return to a previous phase is required to find and remove remaining 

faults. 

3. by controlling the movement of testing between phases for a 

number of projects a fault database with the relationship between the 

number of faults per stage can be collected. This data can be used to 

produce a prediction of fault level for later stages of testing. 

4. providing a measurement of the testing effectiveness by test phase 

and fault introduction rate by development phase. 

A model based on re-estimation is proposed for testing resource estimation. 

The proposed model and metrics have been developed and tested on a large 

scale (4 million LOC) industrial telecommunications product written in C and 

C++ running within a Unix environment. The case study is explained in chapter 

seven. 

Chapter eight holds the results from the case study and explains how a number 

of measures can be combined to determine the status of a software build and 

the expected quality level. 
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9.2 Review of Objectives 

The two key objectives for this thesis: 

1. improvements to the testing process 

2. better estimation of testing resource 

delivered via a software testing resource estimation and process control model. 

This thesis explores the use of testing to remove faults, the part that metrics and 

models play in this process, and considers a new method for improving the 

quality of a software product. Improvements to the testing process results in 

improved efficiency, reduction in cost of the system tested and a higher quality 

product. By measuring where testing effort was spent on various projects an 

improved system for testing effort estimation can also be built. The thesis 

investigates the possibility of using software metrics to estimate the testing 

resource required to deliver a product of target quality into deployment and also 

determine during the testing phases the correct point in time to proceed to the 

next testing phase in the life-cycle. 

9.3 Achievements 

The thesis provides a ful l analysis of the results from the case study (Appendix 

D) and demonstrates how the metrics proposed can be used to measure aspects 

of the software testing process and estimate testing resource. The measures EV, 

churn, severity shift, error rate halving, faults per week, and clear ratio have 

been used across a number of builds during the development of a telecomms 

product and demonstrate how each measure can be used to piece together the 

status of a build, to determine how close it is to the target quality. The metrics 

also determine i f the correct phase of testing is taking place and can highlight i f 

a return to an earlier phase of testing is required. This in turn improves the 

resource estimate as improved accuracy of the resource measurement on 

preceding testing phases wil l result from better control of the testing phases. 
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Practical guidance is provided on using the metrics, including the data 

measurements required and an explanation on how a combination of metrics 

are used to construct a process control model. The use of a set of metrics to 

'control' the testing process is original work and the definition and use of EV 

for process control and testing/development effectiveness, is also original. 

Section 8.2.1 applies the meta-metrics described in section 3.6 to EV and the 

three applications for EV, process control, testing effectiveness and fault 

introduction rate. This verification of EV as a metric and its applications, for 

operational use by the analysis of the case study results and the use of meta-

metrics forms the basis of the thesis proposal and experimentation for software 

testing process control. 

9.4 Limitations 

The case study used to prove the hypothesis for EV and test the measures used 

in the process control model follows a standard ' V development life-cycle. 

While in theory the measures and model should be life-cycle independent, it has 

not been proven and any use with other types of development life-cycle should 

be evaluated first. 

In order to use EV for process control, each fault reported must be analysed to 

determine in which development phase it had been introduced and therefore its 

EV. This requires commitment from a development team to undertake this 

analysis and backing from the project manager to accept the cost of this activity 

and to act on the results. 

The testing estimation model requires calibration before it can be applied, so 

data from a number of past projects using the same skill base, 

development/testing tools or development methodology is needed. Any major 

changes to the skill base, tools or development methodology once the model is 

in use, will necessitate a re-calibration of the model. 

185 



9.5 Future work 

In order to resolve some of the limitations listed above, more analysis is needed 

from other projects to calibrate the proposed testing process control model 

described in chapter 8 and Appendix C. Also use of the model on further 

projects to demonstrate its potential, following the standard waterfall 

development process and other techniques like RAD, that are fast becoming the 

standard methods for development today. Because the EV analysis is based on 

the type of problems found at different life cycle testing phases it can be applied 

to different software products, software languages and scale of developments. 

As long as the testing phase life-cycle is defined along with the type of problem 

that will be tested for at each phase (process entry and exit point), this technique 

can be re-used. The target pre/post EV split will vary depending on the quality 

of the end product required. But following a couple of releases the target 

pre/post EV percentage figures and the other proposed metrics can be calibrated 

to match the quality required. 

It is difficult to determine the improvements that the process control model can 

bring to development projects unless parallel teams can test a developed 

product, one using the model, one relying on standard project management 

techniques. But this is not practical with industrial projects due to cost and the 

scarcity of testing resource. The only method that can be applied is to monitor 

the cost, delivery and quality of projects within a development organisation 

before applying the testing process model and then afterwards. I f no other 

changes, (new tools, development process, different products etc.) have been 

made during the observation period, any improvements are likely to be the 

result of applying the model. 

Further research is needed to establish if the shape of the percentage critical 

faults graph (Figure 41, page 170) is a common feature for the discovery of 

critical faults over a number of builds, or i f for this project the reporting of low 

level faults dropped in importance as the project progressed and therefore 
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skewed the early measurements. Because the low severity faults recorded for 

the first couple of builds will lower the overall percentage of criticals. The other 

question that needs answering is whether the high severity faults would during 

future builds for this product, increase to a peak and then start to fall as the 

medium and low severity faults increase. It will be important to establish a 

typical 'critical faults by build' graph as this is used as one of the indicators of 

software maturity and improved quality within the testing process control 

model. 

It has been difficult to collect data from the early testing phases of the projects 

monitored, but with a model and metrics defined it would now be possible on a 

new project to put the appropriate measures in place from the start and collect 

this early data. 

9.6 Summary 

This chapter contains a summary of the thesis, review of the objectives set out 

at the start of this thesis and demonstrates the extent to which they have been 

met, via the achievements. The limitations are considered and a section on 

future work (section 9.5) provides recommendations for improving this work 

where the objectives have not been met completely. This includes work that will 

expand the scope of the Software Testing Resource Estimation and Process 

Control Model to cover other development methodologies. 
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Appendix A Verification methods 

Error seeding (mutation testing) 

A predictive model for determining the number of remaining software errors or 

the effectiveness of the test cases. By injecting errors into the software and then 

counting the seeded versus existing errors found, an estimate of the outstanding 

errors can be made. This model is sometimes called the fishpond model. To 

save later embarrassment, good records of the seeded errors should be kept, 

e.g. 20 errors injected, 5 of them found by the test cases and another 3 

existing also found. Therefore as 25% of the seeded errors found, 3 represents 

25% of the existing errors; estimate for remaining errors = 9. 

Equivalence partitioning and Boundary-value analysis 

These two techniques are used to reduce the large possible range of tests down 

to a small subset that are most likely to find a problem. Equivalence 

partitioning is based on the principle of partitioning the input domain of a unit 

under test into a number of equivalence classes. The assumption follows that 

any value within that equivalence class is just as likely to find an error as any 

value within the class. Therefore it is not necessary to try all the possible input 

values within that class, one will suffice. If the value selected does not uncover 

a problem then it is expected that none of the other values would either. To 

identify the equivalence classes for a system take each input in turn and follow 

the procedure below. An input can be considered as the lowest level of 

identifiable data. 

Input examples: 

a user entered field within a screen as part of a menu interface a data byte 

representing a temperature from a temperature sensor the number of entries 

that a user can make to a particular prompt (enter three dates) 

Procedure: 

Form two equivalence classes initially, valid and invalid inputs. Split these 

classes into further classes if the program treats some input values in a 
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different manner (age, under 18 and over 65). For each of the equivalence 

classes produce a test case with an input value from that class. 

Boundary-value analysis complements equivalence partitioning and builds on 

the equivalence classes defined. The boundaries between equivalence classes are 

quite often error prone; therefore test cases that explore these areas have a high 

payoff rate. In addition to the boundaries between equivalence classes extra data 

dependent boundaries will be worth examining. 

Examples: 

If positive and negative values accepted, try zero and either side of zero. 

The maximum and minimum of input values, plus max+-l, min +-1. 

For the number of entries allowed, try the maximum, plus max+-l. I f the 

data structures are known for the program, tables, arrays, lists etc.. try 

the first and last elements. 

The counting system used, check magic numbers like 64,128,256. The 

boundaries for the output data should be treated in the same way that the 

input boundaries are exercised. 

Error guessing 

This is not a well defined technique but an intuitive process based on 

experience. The idea is to establish the types of errors that are likely to have 

been made during the design and implementation process, producing test cases 

to expose these errors. Error guessing should be used in addition to the other 

techniques identified and not as the only method of test case generation. 

Cause effect graphing 

This technique covers combinations of inputs, an area not covered by boundary 

value analysis or equivalence partitioning. As cause effect graphing very 

quickly becomes unworkable with larger specifications, a small part of the 

specification is worked on at a time. 

Al l the causes(inputs or classes of input) are identified, along with the effects 

(outputs or a changed system state). A Boolean graph linking the causes and 

effects is drawn following the specification semantics. The graph is then 

annotated with the constraints that describe the impossible combinations of 
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causes and effects. State conditions from the graph are converted into a limited-

entry decision table. Each column in the table can then be converted into a test 

case. 

Statement coverage 

Every statement in a program under test to be executed at least once. This is not 

a very satisfactory criteria, as some paths may skip a number of lines of code 

and yet still form the main route that the program will normally take. In this 

case the most useful path to test will have been missed by this technique. 

Decision coverage 

Each decision is forced through its true and false paths by the test cases. For 

multiway decisions (case statements) each possible outcome must be exercised. 

Another way of specifying decision coverage would be the coverage of all arcs 

on a flow graph. 

Condition coverage 

Each condition in a decision takes on all possible outcomes at least once. 

Testing principles 

To complete the background information on testing, statements from Myers 

'The art of software testing' have been included from his chapter on the 

psychology and economics of program testing - testing principles. 

• A necessary part of a test case is a definition of the expected output or 

result. 

• A programmer should avoid attempting to test his or her own program. 

• A programming organisation should not test its own programs. 

• Thoroughly inspect the results of each test. 

• Test cases must be written for invalid and unexpected, as well as valid and 

expected, input conditions. 

• Examining a program to see if it does not do what it is supposed to do is 

only half of the battle. The other half is seeing whether the program does 

what it is not supposed to do. 
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Avoid throw-away test cases unless the program is truly a throw-away 

program. 

Do not plan a testing effort under the tacit assumption that no errors will be 

found. 

The probability of the existence of more errors in a section of a program is 

proportional to the number of errors already found in that section. 

Testing is an extremely creative and intellectually challenging task. 

Testing is the process of executing a program with the intent of finding 

errors. 

A good test case is one that has a high probability of detecting an as-yet 

undiscovered error. 

A successful test case is one that detects an as-yet undiscovered error 
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Appendix B Test Documentation 

IEEE 829 [22] tesi documents: 

Test Plan 

Test-design specification 

Test-case specification 

Test-procedure specification 

Test log 

Test-incident report 

Test-summary report 

The diagram below shows the hierarchical relationship between the 

documents. 

The purpose and contents of the documents are then described following the 

diagram. 

TEST PLAN 

Purpose. To prescribe the scope, approach, resources, and schedule of the 

testing activities. To identify the items being tested, the features to be tested, the 

testing tasks to be performed, the personnel responsible for each task, and the 

risks associated with this plan. 

Outline. A test plan shall have the following structure: 

1. Test-plan identifier 

2. Introduction 

3. Test items 

4. Features to be tested 

5. Features not to be tested 

6. Approach 

7. Item pass/fail criteria 

8. Suspension criteria and resumption requirements 
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9. Test deliverables 

10. Testing tasks 

11. Environmental needs 

12. Responsibilities 

13. Staffing and training needs 

14. Schedule 

15. Risks and contingencies 

16. Approvals 

TEST-DESIGN SPECIFICATION 

Purpose. To specify refinements of the test approach and to identify the 

features to be tested by this design and its associated tests. 

Outline. A test-design specification shall have the following structure: 

1. Test-design-specification identifier 

2. Features to be tested 

3. Approach refinements 

4. Test identification 

5. Feature pass/fail criteria 

TEST-CASE SPECIFICATION 

Purpose. To define a test case identified by a test-design specification. 

Outline. A test-case specification shall have the following structure: 

1. Test-case-specification identifier 

2. Test items 

3. Input specifications 

4. Output specifications 

5. Environmental needs 

6. Special procedural requirements 

7. Intercase dependencies 

TEST-PROCEDURE SPECIFICATION 
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Purpose. To specify the steps for executing a set of test cases or, more 

generally, the steps used to analyse a software item in order to evaluate a set of 

features. 

Outline. A test-procedure specification shall have the following structure: 

1. Test-procedure specification identifier 

2. Purpose 

3. Special requirements 

4. Procedure steps 

TEST L O G 

Purpose. To provide a chronological record of relevant details about the 

execution of tests. 

Outline. A test log shall have the following structure: 

1. Test log identifier 

2. Description 

3. Activity and event entries 

TEST-INCIDENT REPORT 

Purpose. To document any event that occurs during the testing process which 

requires investigation. 

Outline. A test-incident report shall have the following structure: 

1. Test-incident-report identifier 

2. Summary 

3. Incident description 

4. Impact 

TEST-SUMMARY REPORT 

Purpose. To summarise the results of the designated testing activities and to 

provide evaluations based on these results. 

Oudine. A test-summary report shall have the following structure: 
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1. Test-summary-report identifier 

2. Summary 

3. Variances 

4. Comprehensive assessment 

5. Summary of results 

6. Evaluation 

7. Summary of activities 

8. Approvals 

Original improvements to the test documentation process. 

Pilot scheme. 

As soon as the test strategy has been completed and the preparation has started, 

documentation starts to become a major problem. The main culprit for eating 

up documentation effort are the test cases. This is due to the sheer number of 

test cases needed; there is a one to one relationship between test cases and tests 

that are run. The test case documentation effort can be out of proportion time 

wise when compared to the time required to run the tests. A test that may take 

seconds to run might well take an hour to document. So deciding on the level of 

detail for the tests and the amount of information to be held within the testcase 

is one of the first considerations. 

The normal way to approach the test preparation phase and the production of 

the documentation is top down, strategy first followed by the test design and 

then the test cases and procedures. By the time that it is apparent that an 

incorrect split has been made between the test designs or that the level of detail 

is wrong for the test cases, too much time will have been taken out of the 

project to put things right. This is because the activities are going on in parallel 

and by the time that the test cases are well under way the testing preparation 

time is almost exhausted. Although a standard set of documentation procedures 

and templates can be agreed across many projects the level of detail and the split 

of testing areas will change with every development project. Each project is 

different and it is these differences which create the unique approaches to testing 

and therefore the test documentation structure. 
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The idea behind a pilot scheme is to take the test documentation right the way 

down to completing some test cases but in a very narrow field. This could be 

considered as taking a slice through the test documentation. The level of detail 

required for the test cases can be established very early on in the test preparation 

phase, and a standard can then be applied to the rest of the test cases. If this 

approach is used for each of the test designs the split of the testing work 

between the test designs can be assessed, again before too much effort has been 

put into the test preparation. 
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Appendix C Estimation and process control model 

The metrics identified in the thesis and evaluated during the case study are 

combined to form the software testing estimation and process control model. 

Knowledge gained during the case study has been used to refine the model and 

set the ranges/limits for the measures. Direction is also provided on how to use 

the model operationally. 

Metrics - components of the model 

Some of the metrics defined in chapter 8 are used to determine if the correct 

life-cycle phase (phase) of testing is being undertaken, others are used to 

monitor progress within a phase and to control the repeat build process (repeat 

build). The effectiveness measures are used to monitor the procedures, methods 

and skills of the development and test teams (methods & skills). 

Metric Application Description 

(section No.) 

post EV % phase 8.2.1 

Testing effectiveness methods & skills 8.2.2 

Development effectiveness methods & skills 8.2.3 

Churn repeat build 8.2.4 

Severity shift phase & repeat build 8.2.5 

Error rate halving phase 8.2.6 

Faults per week phase & repeat build 8.2.7 

Clear ratio repeat build 8.2.8 
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All the above metrics can be constructed from the data listed below. 

1) Individual fault reports containing: 

® Fault identification number (CR No.) 

® Date found 

© Severity 

• Software build 

» Testing phase discovered 

• Earliest testing phase for possible discovery (EV) 

• Root cause - initial build or previous fix 

2) Scope of build 

3) Fix list at build 

4) Testing resource applied 

The diagram below contains the process flow and metrics that make up the 

testing process control model. For each of the testing life-cycle phases there is a 

build, test, build review and fix cycle. This applies to module, integration and 

system builds. The build review wil l measure the improvements in the builds 

within a testing phase or identify failure if the clear ratio is too high, severity 

shift is missing, faults per week still too high or churn is too high. 

The monitor and review process runs alongside the build review and will 

monitor the results from each build within a testing phase, but will also use the 

EV and error rate halving metrics to determine i f the correct phase of testing is 

being applied. The process control monitor will provide advice to the project 

management team on whether to continue testing in the current phase, return to 

a previous phase because the post EV metric is too high, or move onto the next 

phase i f the build review, EV and error rate halving are within set bounds. 

On satisfactory completion of all testing phases the monitor review process wil l 

provide the data for a release review. 

In addition, as explained in chapter seven, EV is also used to provide a measure 

of the effectiveness of the testing by test phase and the development process 

(which development phases are making the least errors). This information is 

used to highlight any weak points in the development and test process and to 

target quality improvements. The measures can only be used on the completion 

of a development and test lifecycle, as EV results from each phase are required 
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before the results can be calculated. The development figures are given by 

development phase as a percentage of the total errors introduced across all 

phases. This will highlight the development phase introducing the highest 

percentage of errors, but to see i f improvements are being made over several 

builds then actual numbers rather than a percentage should be used. As the 

testing effectiveness measures provide a percentage of the expected faults found 

per test phase these results can be compared between builds to see if 

improvements have made a positive impact. 

Test phase: 
module 

integration 
validation 

ref model 

Bug fix 

I 
Build review 
- continue with 
next build 
criteria: 
churn 
severity shift 
faults per week 

Development 

module code 
Release 
review 

all testing phases ̂  ^ 
completed 

start next 
test phase 

Monitor 
& review 

continue testing 
return to last phase 
move to next phase 

criteria: 
EV 
severity shift 
error rate halving 
faults per week 

Figure 42 Testing process control model 
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Operational use 

Data capture with a minimum time and cost penalty to a development project is 

key to a successful metrics programme. Grady & Caswell, "the reason project 

managers collect data is that it is impossible to make responsible, informed 

decisions without it. However, there is a cost to data collection. It is an 

investment whose return depends on the implementation of the data collection 

and analysis process" [46]. The majority of the data required for the metrics 

proposed in this thesis can be collected via the trouble ticketing system and 

engineering timesheets. These are common data capture measures that wil l be 

in use in most software development organisations. But some enhancements 

will be needed to the data capture systems to increase the scope of the data 

collected to cover measurements such as EV. 

It is important to insure that the data is recorded accurately and that the data 

captured is not influenced by the measurement process. There is always the 

possibility that the data may be recorded in a way that presents an engineers 

work in the best possible way, or that it may influence an engineer to 

concentrate on certain aspects of work because they are being measured. Grady 

& Caswell, "software engineers can and wil l successfully work to maximise 

whatever elements you choose to give priority to" [46]. 

A simple spreadsheet (similar to Appendix D) can be used to calculate and 

display the proposed metrics. Data from the trouble ticketing and timesheet 

collection systems can be totalled on a weekly basis and entered into the 

spreadsheet. The metrics can then be displayed as a simple table showing the 

results of the spreadsheet calculations for each life-cycle phase and for each 

build/test iteration. The trends through the testing phases and builds can then be 

viewed directly from the tables, or as a set of graphs and used to provide 

management control to the testing process. The target measures provided in 
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section 8.2.10 can be used to identify a project that is progressing satisfactorily 

and one that is running into problems. A three tier scale can be used to provide 

a top level view of progress, with the scale for each metric calibrated to show: 

• project within acceptable limits 

• indication of possible problem, investigation required 

• outside acceptable limits, action required. 

Progress through the testing life-cycle can be influenced or controlled by the use 

of the metrics identified in this thesis. A requirement on moving between test 

phases or the release of a software build can be a set of metric results that are 

within specified limits. This control can be built into quality gates and the 

release review process. "A quality gate is, as its name suggests, a gateway that 

clearly delineates phases in a development life-cycle and provides the 

opportunity to audit and maintain appropriate quality levels at those points" 

Resource estimation 

Based on a combination of, BT testing experience [12] across ten projects (see 

section 1) and the results (section 8.3) of the measurements taken for the case 

study, plus the figures on cost estimation provided by Rombach [114] for 

NASA SEL projects, the proposed estimation model is: 

[12]. 

Total* = D,+Dd + C+Tr+T, + TS+A 
Key: 

Total , = estimation of total cost 
est 

Dp - preliminary design 

Dd = detail design 

C = code and module test 

D 
Dd = 0.17 x Total 

C=0.26 xTotal 

0.15 x Total 

est 

est 

est 

Tp = test preparation 

T. = integration test (I/T) 

7 = system test (P/R) 

A = acceptance test (M) 

Tp = d01xTotalesl 

T =0.075 x Total 

T = 0.085 x Total 

A = 0.19 x Total 

est 

est 

est 
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Estimation steps: 

1) Total,, = 

2) Total , = 

estimate (Dp + Dd+C) 

058 

D 
p 

0.15 

D + D, 
3) Total =-£ -

0.32 

D + Drf + C 
4) Total =-£• -

0.58 

D +D. + C + T 
5) Totals = - 2 * 2-

0.65 

D +D.+C + T +T 
6) TotalM=S- ^ ' 

0.725 

D + C + 7 +T +T 
7) Total =-£• rf p ' s 

0.81 

This resource estimation model does not include the cost of requirements 

capture and specification, it starts with the preliminary design and continues to 

the end of acceptance test. Deployment and maintenance has not been included. 

As described earlier in this thesis (section 6.1) the objective is to gradually 

refine the estimate as more data becomes available, so that by the time 

integration testing starts more than 50% of the estimate is based on actual data. 

Total^ is the estimate for the total resource cost for the project and at each 

stage of the life-cycle Total should be estimated using the best data available. 
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The estimate for the phase required should then be calculated from the 

equations in the key above, all based on Totalat. This process is started with 

an estimate from the development team on the cost of development, step 1. As 

soon as some actual measurements are available, completion of preliminary 

design Dp, the original estimate is replaced by the results of the calculation in 

step 2. It can be seen from the estimation steps that the value of Total^ is 

gradually refined as the development progresses and the accuracy of the 

estimates for the remaining phases will also increase. All the measurements and 

estimates will use the same units of measurement (man days, months, or years) 

although any one can be selected for use at the start. The model will require 

calibration for different development/testing environments (process, tools, 

skills), but because of the experience from a wide range of projects that have 

provided the data for this model only minor adjustments should be required. 

To ensure the accuracy of the estimates from this model, as it relies on accurate 

measurements of the phases completed, it should be used in conjunction with 

the testing process control model. Movement through the test phases will then 

be controlled and movement will be on the basis of completed testing and not 

completion of the testing budget for that phase. This will provide accurate 

resource measurements as input to the estimation model and the model can then 

produce accurate estimates as output. 

This is the key improvement over similar resource estimation models. Because 

the movement between test phases is being controlled, based on measurements 

to determine if a phase is completed, the data can be compared between projects 

using the same control mechanism. In the past the movement between the test 

phases has been an arbitrary judgement and the resource usage data is not then 

accurate for use in estimating further test phases. 
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Summary 

The metrics defined and analysed following the case study are used to construct 

a software testing estimation and process control model. A diagrammatic 

representation of the testing process control component of the model and the 

metrics used within the model is presented. The metrics are applied in four 

areas, resource estimation, testing phase control, software build release control 

and effectiveness of testing and development. The mapping from 

measurements to metrics is provided, so that the data required during a 

development project has been identified and can be applied from the start. 
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Appendix D Detail Results 
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Build C 

Results table 3C 
Phase=V 
EV CORE V l/T P/R M F total systen install da ta 
Critical 2 1 3 
High 5 5 
Medium 0 
Low 0 
Total 7 1 0 0 0 8 0 0 0 

Phase= 1/1 
EV CORE V l/T P/R M F total systen install da ta 
Critical 1 1 
High 1 1 
Medium 1 4 2 7 
Low 2 1 3 
Total 1 8 3 0 0 12 0 0 0 

Phase=P/ R 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 3 1 12 3 19 
High 5 3 23 3 34 
Medium 2 19 4 1 26 
Low 4 4 
Total 10 4 58 10 1 83 0 0 0 

Phase=M 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 6 4 10 
High 14 2 3 19 
Medium 8 4 12 
Low 3 3 
Total 0 0 28 6 10 44 0 0 0 

Phase=F 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Efficiency 
EV CORE V l/T P/R M 
EV 7 9 61 16 
postEV 11 4 28 0 
tota l 18 13 89 16 

Totals 
EV CORE V l/T P/R M F total 
Critical 5 3 18 7 0 33 
High 10 4 37 5 3 59 
Medium 3 4 29 4 5 45 
Low 0 2 5 0 3 10 
Total 18 13 89 16 11 147 



Build C 

Results tab le 3C% 
Phase=V 
EV CORE V l/T P/R M F Phase Total 
Critical 25% 13% 0% 0% 0% 38% 2% 
High 63% 0% 0% 0% 0% 63% 3% 
Medium 0% 0% 

0% 
0% 
0% 

0% 
0% 

0% 
0% 

0% 0% 
Low 0% 

0% 
0% 

0% 
0% 

0% 
0% 

0% 
0% 0% 0% 

Total 88% 13% 0% 0% 0% 1 5% 

Phase= 1/ 8% 92% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 8% 0% 0% 0% 8% 1% 
High 0% 8% 0% 0% 0% 8% 1% 
Medium 8% 33% 17% 0% 0% 58% 5% 
Low 0% 17% 8% 0% 0% 25% 2% 
Total 8% 67% 25% 0% 0% 1 8% 

Phase=P/R 17% 83% 
EV CORE V l/T P/R M F Phase Total 
Critical 4% 1% 14%, 4% 0% 23% 13% 
High 6% 4% 28% 4% 0% 4 1 % 23% 
Medium 2% 0% 23% 5% 1% 3 1 % 18% 
Low 0% 0% 5% 0% 0% 5% 3% 
Total 12% 5% 70% 12% 1% 1 56% 

Phase=M 64% 36% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 14% 9% 0% 23% 7% 
High 0% 0% 32% 5% 7% 43% 13% 
Medium 0% 0% 18% 0% 9% 27% 8% 
Low 0% 0% 0% 0% 7% 7% 2% 
Total 0% 0% 64% 14% 23% 1 30% 

Phase=F 0% 0% 
EV CORE V l/T P/R M F Phase 
Critical 0% 
High 0% 
Medium 0% 
Low 0% 
Total 0 

Totals 
EV CORE V l/T P/R M 
ef f ic ienc 39% 69% 69% 100% 

Totals 
EV CORE V l/T P/R M F Total 
Critical 3% 2% 12% 5% 0% 22% 
High 7% 3% 25% 3% 2% 40% 
Medium 2% 3% 20% 3% 3% 3 1 % 
Low 0% 1% 3% 0% 2% 7% 
Total 12% 9% 6 1 % 11% 7% 1 



Build C I 

Results table C I 
Phase=V 
EV CORE V l/T P/R M F total system install d a t a 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Phase= 1/ 
EV CORE V l/T P/R M F tota l systen install d a t a 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Phase=P/ R 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 1 2 2 5 
High 4 2 12 1 19 
Medium 6 13 19 
Low 1 1 2 
Total 11 4 28 2 0 45 0 0 0 

Phase=M 
EV CORE V l/T P/R M F tota l systen install d a t a 
Critical 5 1 1 7 
High 9 1 10 
Medium 4 3 1 8 
Low 0 
Total 0 0 18 5 2 25 0 0 0 

Phase=F 
EV CORE V l/T P/R M F total systen install da ta 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Efficiency 
EV CORE V l/T P/R M 
EV 0 0 28 7 
post EV 11 4 18 0 
total 11 4 46 7 

Totals 
EVCORE V l/T P/R M F tota l 
Critical 1 2 7 1 1 12 
High 4 2 21 2 0 29 
Med ium 6 0 17 3 1 27 
Low 0 0 1 1 0 2 
Total 11 4 46 7 2 70 



Build C I 

Results t a ble C l % 
Phase=V 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 
High 0% 0% 
Medium 0% 0% 
Low 0% 0% 
Total 0 0% 

Phase= 1/ 0% 0% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 
High 0% 0% 
Medium 0% 0% 
Low 0% 0% 
Total 0 0% 

Phase=P/R 33% 67% 
EV CORE V l/T P/R M F Phase Total 
Critical 2% 4% 4% 0% 0% 11% 7% 
High 9% 4% 27% 2% 0% 42% 27% 
Medium 13% 0% 29% 0% 0% 42% 27% 
Low 0% 0% 2% 2% 0% 4% 3% 
Total 24% 9% 62% 4% 0% 1 64% 

Phase=M 72% 28% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 20% 4% 4% 28% 10% 
High 0% 0% 36% 4% 0% 40% 14% 
Medium 0% 0% 16% 12% 4% 32% 11% 
Low 0% 0% 0% 0% 0% 0% 0% 
Total 0% 0% 72% 20% 8% 1 36% 

Phase=F 0% 0% 
EV CORE V l/T P/R M F Phase 
Critical 0% 
High 0% 
Medium 0% 
Low 0% 
Total 0 

Totals 
EV CORE V l/T P/R M 
efficiency 0% 0% 6 1 % 100% 

Totals 
EV CORE V l/T P/R M F Total 
Critical 1% 3% 10% 1% 1% 17% 
High 6% 3% 30% 3% 0% 4 1 % 
Medium 9% 0% 24% 4% 1% 39% 
Low 0% 0% 1% 1% 0% 3% 
Total 16% 6% 66% 10% 3% 1 



Build C2 

Results tab le C2 
Phase=V 
EV CORE V l/T P/R M F total systen install da ta 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Phase= \r 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 0 
High 1 1 
Medium 0 
Low 1 1 
Total 0 0 2 0 0 2 0 0 0 

Phase=P/ R 
EV CORE V l/T P/R M F tota l systen install d a t a 
Critical 1 1 
High 12 4 11 5 32 
Medium 6 6 2 14 
Low 16 3 2 21 
Total 35 4 20 9 0 68 0 0 0 

Phase=M 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Phase=F 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Efficiency 
EV CORE V l/T P/R M 
EV 0 0 22 9 
postEV 35 4 0 0 
tota l 35 4 22 9 

Totals 
EV CORE V l/T P/R M F tota l 
Critical 1 0 0 0 0 1 
High 12 4 12 5 0 33 
Medium 6 0 6 2 0 14 
Low 16 0 4 2 0 22 
Total 35 4 22 9 0 70 



Build C2 

Results tab le C2% 
Phase=V 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 
High 0% 0% 
Medium 0% 0% 
Low 0% 0% 
Total 0 0% 

Phase= 1/ 0% 100% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 0% 0% 0% 0% 0% 
High 0% 0% 50% 0% 0% 50% 1% 
Medium 0% 0% 0% 0% 0% 0% 0% 
Low 0% 0% 50% 0% 0% 50% 1% 
Total 0% 0% 100% 0% 0% 1 3% 

Phase=P/R 57% 43% 
EV CORE V l/T P/R M F Phase Total 
Critical 1% 0% 0% 0% 0% 1% 1% 
High 18% 6% 16% 7% 0% 47% 46% 
Medium 9% 0% 9% 3% 0% 2 1 % 20% 
Low 24% 0% 4% 3% 0% 3 1 % 30% 
Total 5 1 % 6% 29% 13% 0% 1 97% 

Phase=M 0% 0% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 
High 0% 0% 
Medium 0% 0% 
Low 0% 0% 
Total 0 0% 

Phase=F 0% 0% 
EV CORE V l/T P/R M F Phase 
Critical 0% 
High 0% 
Medium 0% 
Low 0% 
Total 0 

Totals 
EV CORE V l/T P/R M 
e f f i c i en t 0% 0% 100% 100% 

Totals 
EV CORE V l/T P/R M F Total 
Critical 1% 0% 0% 0% 0% 1% 
High 17% 6% 17% 7% 0% 47% 
Medium 9% 0% 9% 3% 0% 20% 
Low 23% 0% 6% 3% 0% 3 1 % 
Total 50% 6% 3 1 % 13% 0% 1 



Builds C345 

Results t a Die C345 
Phase=V 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Phase= 1/ 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 0 
High 5 4 1 10 
Medium 2 2 1 5 
Low 0 
Total 7 6 2 0 0 15 0 0 0 

Phase=P/ R 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 1 3 2 3 9 
High 1 1 10 1 13 
Medium 6 7 13 
Low 2 1 1 4 
Total 10 5 20 4 0 39 0 0 0 

Phase=M 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 1 1 
High 2 2 1 5 
Medium 2 1 1 4 
Low 0 
Total 5 0 3 2 0 10 0 0 0 

Phase=F 
EV CORE V l/T P/R M F total systen install da ta 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Efficiency 
EV CORE V l/T P/R M 
EV 0 6 22 6 
post EV 22 5 3 0 
total 22 11 25 6 

Totals 
EV CORE V l/T P/R M F total 
Critical 2 3 2 3 0 10 
High 8 5 13 2 0 28 
Medium 10 2 9 1 0 22 
Low 2 1 1 0 0 4 
Total 22 11 25 6 0 64 



Builds C345 

Results t a ble C345% 
Phase=V 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 
High 0% 0% 
Medium 0% 0% 
Low 0% 0% 
Total 0 0% 

Phase= 1/ 47% 53% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 0% 0% 0% 0% 0% 
High 33% 27% 7% 0% 0% 67% 16% 
Medium 13% 13% 7% 0% 0% 33% 8% 
Low 0% 0% 0% 0% 0% 0% 0% 
Total 47% 40% 13% 0% 0% 1 23% 

Phase=P/R 38% 62% 
EV CORE V l/T P/R M F Phase Total 
Critical 3% 8% 5% 8% 0% 23% 14% 
High 3% 3% 26% 3% 0% 33% 20% 
Medium 15% 0% 18% 0% 0% 33% 20% 
Low 5% 3% 3% 0% 0% 10% 6% 
Total 26% 13% 51% 10% 0% 1 6 1 % 

Phase=M 80% 20% 
EV CORE V l/T P/R M F Phase Total 
Critical 10% 0% 0% 0% 0% 10% 2% 
High 20% 0% 20% 10% 0% 50% 8% 
Medium 20% 0% 10% 10% 0% 40% 6% 
Low 0% 0% 0% 0% 0% 0% 0% 
Total 50% 0% 30% 20% 0% 1 16% 

Phase=F 0% 0% 
EV CORE V l/T P/R M F Phase 
Critical 0% 
High 0% 
Medium 0% 
Low 0% 
Total 0 

Totals 
EV CORE V l/T P/R M 
ef f ic ienc 0% 55% 88% 100% 

Totals 
EV CORE V l/T P/R M F Total 
Critical 3% 5% 3% 5% 0% 16% 
High 13% 8% 20% 3% 0% 44% 
Medium 16% 3% 14% 2% 0% 34% 
Low 3% 2% 2% 0% 0% 6% 
Total 34% 17% 39% 9% 0% 1 



Build C6 

Results t a ble C6 
Phase=V 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 0 
High 0 
Med ium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Phase= 1/ 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 1 1 
High 1 2 3 
Med ium 1 1 
Low 0 
Total 2 3 0 0 0 5 0 0 0 

Phase=P/ R 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 2 1 4 1 8 
High 10 4 14 4 32 
Medium 3 7 6 16 
Low 1 2 1 4 
Total 16 5 27 12 0 60 0 0 0 

Phase=M 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 0 
High 1 5 6 
Med ium 1 1 
Low 0 
Total 0 0 2 5 0 7 0 0 0 

Phase=F 
EV CORE V l/T P/R M F total systen install da ta 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Efficiency 
EV CORE V l/T P/R M 
EV 0 3 27 17 
postEV 18 5 2 0 
tota l 18 8 29 17 

Totals 
EV CORE V l/T P/R M F total 
Critical 2 2 4 1 0 9 
High 11 6 15 9 0 41 
Med ium 4 0 8 6 0 18 
Low 1 0 2 1 0 4 
Total 18 8 29 17 0 72 



Build C6 

Results t a ble C6% 
Phase=V 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 
High 0% 0% 
Medium 
Low 

0% 0% Medium 
Low 0% 0% 
Total 0 0% 

Phase= 1/ 40% 60% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 20% 0% 0% 0% 20% 1% 
High 20% 40% 0% 0% 0% 60% 4% 
Medium 20% 0% 0% 0% 0% 20% 1% 
Low 0% 0% 0% 0% 0% . 0% 0% 
Total 40% 60% 0% 0% 0% 1 7% 

Phase=P/R 35% 65% 
EV CORE V l/T P/R M F Phase Total 
Critical 3% 2% 7% 2% 0% 13% 11% 
High 17% 7% 23% 7% 0% 53% 44% 
Medium 5% 0% 12% 10% 0% 27% 22% 
Low 2% 0% 3%, 2% 0% 7% 6% 
Total 27% 8% 45% 20% 0% 1 83% 

Phase=M 29% 71% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 0% 0% 0% 0% 0% 
High 0% 0% 14% 71% 0% 86% 8% 
Medium 0% 0% 14% 0% 0% 14% 1% 
Low 0% 0% 0% 0% 0% 0% 0% 
Total 0% 0% 29% 71% 0% 1 10% 

Phase=F 0% 0% 
EV CORE V l/T P/R M F Phase 
Critical 0% 
High 0% 
Medium 0% 
Low 0% 
Total 0 

Totals 
EVCORE V l/T P/R M 
efficiency 0% 38% 93% 100% 

Totals 
EV CORE V l/T P/R M F Total 
Critical 3% 3% 6% 1% 0% 13% 
High 15% 8% 2 1 % 13% 0% 57% 
Medium 6% 0% 11% 8% 0% 25% 
Low 1% 0% 3% 1% 0% 6% 
Total 25% 11% 40% 24% 0% 1 



All C Builds 

Results ta Die allC 
Phase=V 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 2 1 0 0 0 3 
High 5 0 0 0 0 5 
Medium 0 0 0 0 0 0 
Low 0 0 0 0 0 0 
Total 7 1 0 0 0 8 0 0 0 

Phase= I/1 • 

EV CORE V l/T P/R M F tota l systen install d a t a 
Critical 0 2 0 0 0 2 
High 6 7 2 0 0 15 
Medium 4 6 3 0 0 13 1 
Low 0 2 2 0 0 4 2 
Total 10 17 7 0 0 34 3 0 0 

Phase=P/ R 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 8 7 20 7 0 42 50 7 
High 32 14 70 14 0 130 80 66 
Medium 23 0 52 12 1 88 30 47 
Low 19 1 11 4 0 35 12 19 
Total 82 22 153 37 1 295 172 0 139 

Phase=M 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 1 0 11 5 1 18 1 
High 2 0 26 9 3 40 6 
Medium 2 0 14 4 5 25 3 
Low 0 0 0 0 3 3 
Total 5 0 51 18 12 86 10 0 0 

Phase=F 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 2 4 8 4 7 25 9 1 
High 5 2 21 7 19 54 15 1 
Medium 1 1 11 5 27 45 15 2 
Low 2 3 4 0 12 21 1 1 
Total 10 10 44 16 65 145 40 0 5 

Efficiency 
EVCORE V l/T P/R M 
EV 7 18 160 55 
postEV 107 32 95 16 
tota l 114 50 255 71 

Totals 
EV CORE V l/T P/R M F tota l 
Critical 11 10 31 12 1 65 
High 45 21 98 23 3 190 
Med ium 29 6 69 16 6 126 
Low 19 3 13 4 3 42 
Total 104 40 211 55 13 423 



All C Builds 

Results t a ble allC% 
Phase=V 
EV CORE V l/T P/R M F Phase Total 
Critical 25% 13% 0% 0% 0% 38% 1% 
High 63% 0% 0% 0% 0% 63% 1% 
Medium 0% 0% 0% 0% 0% 0% 0% 
Low 0% 0% 0% 0% 0% 0% 0% 
Total 88% 13% 0% 0% 0% 1 2% 

Phase= 1/ 29% 71% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 6% 0% 0% 0% 6% 0% 
High 18% 21% 6% 0% 0% 44% 4% 
Medium 12% 18% 9% 0% 0% 38% 3% 
Low 0% 6% 6% 0% 0% - 12% 1% 
Total 29% 50% 21% 0% 0% : 1 8% 

Phase=P/R 35% 65% 
EV CORE V l/T P/R M F Phase Total 
Critical 3% 2% 7% 2% 0% 14% 10% 
High 11% 5% 24% 5% 0% 44% 3 1 % 
Medium 8% ' 0% 18% 4% 0% 30% 2 1 % 
Low 6% 0% 4% 1% 0% 12% 8% 
Total 28% 7% 52% 13% 0% 1 70% 

Phase=M 65% 35% 
EV CORE V l/T P/R M F Phase Total 
Critical 1% 0% 13% 6% 1% 21% 4% 
High 2% 0% 30% 10% 3% 47% 9% 
Medium 2% 0% 16% 5% 6% 29% 6% 
Low 0% 0% 0% 0% 3% 3% T% 
Total 6% 0% 59% 21% 14% 1 20% 

Phase=F 55% 45% 
EV CORE V l/T P/R M F Phase 
Critical 1% 3% 6% 3% 5% 17% 
High 3% 1% 14% 5% 13% 37% 
Medium 1% 1% 8% 3% 19% 3 1 % 
Low 1% 2% 3% 0% 8% 14% 
Total 7% 7% 30% 11% 45% 1 

Totals 
EV CORE V l/T P/R M 
ef f ic ienc 6% 36% 63% 77% 

Totals 
EV CORE V l/T P/R M F . Total 
Critical 3% 2% 7% 3% 0% 15% 
High 11% 5% 23% 5% 1% 45% 
Medium 7% 1% 16% 4% 1% 30% 
Low 4% 1% 3% 1% 1% 10% 
Total 25% 9% 50% 13% 3% 1 



Build D 

Results t a ble D 
Phase=V 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 0 
High 0 
Med ium 0 

0 Low 
0 
0 

Total 0 0 0 0 0 0 0 0 0 

Phase= 1/ 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 0 
High 2 2 4 
Med ium 2 1 3 
Low 1 2 1 1 5 
Total 5 2 4 1 0 12 0 0 0 

Phase=P/ R 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 1 3 4 
High 4 1 5 
Medium 1 1 4 6 
Low 1 1 
Total 2 1 12 1 0 16 0 0 0 

Phase=M 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Phase=F 
EV CORE V l/T P/R M F tota l systen install da ta 
Critical 0 
High 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Efficiency 
EV CORE V l/T P/R M 
EV 0 2 16 1 
postEV 7 1 0 0 
tota l 7 3 16 1 

Totals 
EVCORE V l/T P/R M F tota l 
Critical 1 0 3 0 0 4 
High 2 0 6 1 0 9 
Medium 3 1 5 0 0 9 
Low 1 2 2 1 0 6 
Total 7 3 16 2 0 28 



Build D 

Results t a ble D% 
Phase=V 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 
High 0% 0% 
Medium 0% 0% 
Low 0% 0% 
Total 0 0% 

Phase= 1/ 42% 58% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 0% 0% 0% 0% 0% 
High 17% 0% 17% 0% 0% 33% 14% 
Medium 17% 0% 8% 0% 0% 25% 11% 
Low 8% 17% 8% 8% 0% 42% 18% 
Total 42% 17% 33% 8% 0% 1 43% 

Phase=P/R 19% 81% 
EV CORE V l/T P/R M F Phase Total 
Critical 6% 0% 19% 0% 0% 25% 14% 
High 0% 0% 25% 6% 0% 3 1 % 18% 
Medium 6% 6% 25% 0% 0% 38% 2 1 % 
Low 0% 0% 6% 0% 0% 6% 4% 
Total 13% 6% 75% 6% 0% 1 57% 

Phase=M 0% 0% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 
High 0% 0% 
Medium 0% 0% 
Low 0% 0% 
Total 0 0% 

Phase=F 0% 0% 
EV CORE V l/T P/R M F Phase 
Critical 0% 
High 0% 
Medium 0% 
Low 0% 
Total 0 

Totals 
EV CORE V l/T P/R M 
ef f ic ienc 0% 67% 100% 

Totals 
EV CORE V l/T P/R M F Total 
Critical 4% 0% 11% 0% 0% 14% 
High 7% 0% 21% 4% 0% 32% 
Medium 11% 4% 18% 0% 0% 32% 
Low 4% 7% 7% 4% 0% 21% 
Total 25% 11% 57% 7% 0% 1 



Build 6 

Results table 6 
Phase=V 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 0 
Hiah 0 
Medium 0 
Low 0 
Total 0 0 0 0 0 0 0 0 0 

Phase= \r 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 1 1 
High 3 1 4 
Medium 2 1 4 7 1 
Low 0 
Total 2 4 6 0 0 12 1 0 0 

Phase=P/ R 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 1 1 2 
High 1 7 8 1 2 
Medium 0 
Low 0 
Total 0 1 8 0 0 9 1 4 0 

Phase=M 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 0 
High 3 3 
Med ium 0 2 
Low 0 
Total 0 0 0 3 0 3 2 0 0 

Phase=F 
EV CORE V l/T P/R M F total systen install d a t a 
Critical 1 6 7 14 1 2 
High 1 2 3 1 
Med ium 1 2 2 5 2 3 
Low 0 
Total 2 0 9 0 11 22 4 5 0 

Efficiency 
EV CORE V l/T P/R M 
EV 0 4 14 3 
post EV 4 1 9 0 
tota l 4 5 23 3 

Totals 
EV CORE V l/T P/R M F total 
Critical 0 0 2 0 0 2 
High 0 4 8 3 0 15 
Medium 2 1 4 0 0 7 
Low 0 0 0 0 0 0 
Total 2 5 14 3 0 24 



Build 6 

Results t a b l e6% 
Phase=V 
EV CORE V l/T P/R M F Phase Total 
Crit ical 0% 0% 
High 0% 0% 
Med ium 0% 0% 
Low 0% 0% 
Total 0 0% 

Phase= 1/ 17% 83% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 8% 0% 0% 8% 4% 
High 0% 25% 8% 0% 0% 33% 17% 
Med ium 17% 8% 33% 0% 0% 58% 29% 
Low 0% 0% 0% 0% 0% 0% 0% 
Total 17% 33% 50% 0% 0% 1 50% 

Phase=P/R 11% 89% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 11% 0% 0% 11% 4% 
High 0% 11% 78% 0% 0% 89% 33% 
Med ium 0% 0% 0% 0% 0% 0% 0% 
Low 0% 0% 0% 0% 0% 0% 0% 
Total 0% 11% 89% 0% 0% 1 38% 

Phase=M 0% 100% 
EV CORE V l/T P/R M F Phase Total 
Critical 0% 0% 0% 0% 0% 0% 0% 
High 0% 0% 0% 100% 0% 100% 13% 
Med ium 0% 0% 0% 0% 0% 0% 0% 
Low 0% 0% 0% 0% 0% 0% 0% 
Total 0% 0% 0% 100% 0% 1 13% 

Phase=F 50% 50% 
EV CORE V l/T P/R M F Phase 
Critical 5% 0% 27% 0% 32% 64% 
High 0% 0% 5% 0% 9% 14% 
Med ium 5% 0% 9% 0% 9% 23% 
Low 0% 0% 0% 0% 0% 0% 
Total 9% 0% 4 1 % 0% 50% 1 

Totals 
EV CORE V l/T P/R M 
efficiency 0% 80% 6 1 % 100% 

Totals 
EV CORE V l/T P/R M F Total 
Critical 0% 0% 8% 0% 0% 8% 
High 0% 17% 33% 13% 0% 63% 
Med ium 8% 4% 17% 0% 0% 29% 
Low 0% 0% 0% 0% 0% 0% 
Total 8% 2 1 % 58% 13% 0% 1 
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