
Durham E-Theses

Software maintenance cost estimation with fourth

generation languages

Lamb, Raymond K.

How to cite:

Lamb, Raymond K. (1997) Software maintenance cost estimation with fourth generation languages,
Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4728/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4728/
 http://etheses.dur.ac.uk/4728/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

School of Engineering and Computer Science
(Computer Science)

Software Maintenance Cost Estimation With Fourth
Generation Languages

The copyright of this thesis rests
with the author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

Raymond K. Lamb

Submitted for degree of M.Sc.
1997

0 9 MAY 1997

Abstract

Software Maintenance Cost Estimation With Fourth
Generation Languages

Raymond K. Lamb

This thesis addresses the problem of allocation of software maintenance resources

in a commercial environment using fourth generation language systems.

The activity of maintaining software has a poor image amongst software

managers, as it often appears that there is no end product. This image will only improve

when software maintenance can be discussed in business terms, one of the main reasons

being that the maintenance costs can then be compared to the costs of not maintaining

the system.

Software maintenance wall continue to exist in the fourth generation environment,

as systems will still be required to evolve.

Cost estimation is an imprecise science, as there are many variables such as human,

technical, environmental and political which can effect the ultimate costs of software and

the resources required to maintain it. Some of the factors appear more obvious than

others, for example an experienced programmer can achieve a specific task in less time

than an inexperienced one. To fiilly estimate software maintenance costs these factors

need to be identified and weights assigned to them.

This thesis examines a means to identify these factors and their weights, and

produces the first cut of an equation which will enable the software maintenance

resources in a fourth generation language to be estimated.

- I I -

Acknowledgements

I would like to thank my supervisor, Mr M. Munro, for his help and guidance

throughout this project, and without whom none of this would have been possible.

I l l

Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should be

acknowledged.

- IV

Dedication

This work is dedicated to my wife, Joan.

- v •

Disclaimer

This thesis has not been submitted for any other degree at any other institution.

V! -

CONTENTS

1. Introduction 11

1.1 The Thesis Position 11

1.2 Criteria for Success 13

1.3 Thesis Overview 13

2. Software Maintenance and Fourth Generation Languages 16

2.1 Software Maintenance Definition 16

2.2 Problems Created by Software Maintenance 20

2.3 Types of Software Maintenance 21

2.4 Fourth Generation Language Definition 22

2.5 Fourth Generation Language Classification 24

2.6 Maintenance with Fourth Generation Languages 27

3. Software Cost Estimation 32

3.1 The Need for Software Cost Estimation 32

3.2 The Difficulty of Software Estimation 35

3 .3 Methods of Software Cost Estimation 37

3.3.1 Development 37

3.3.2 Maintenance 42

3.4 Model Evaluation 44

3.5 Factors Affecting Software Maintenance 45

- V I I

3.6 Fourth Generation Language Specific Factors 49

4. Data Modelling 53

4.1 Introduction 53

4.1.1 Pose the Question 54

4.1.2 Collect Data 54

4.1.3 Analyse the Data 55

4.1.4 Interpret the Results 55

4.2 Data Collection Methods 56

4.3 Statistics 58

4.4 Statistical Techniques 61

4.4.1 t-test 62

4.4.2 Analysis of Variance 63

4.4.3 Krustal-Wallis H Test 64

4.5 Curve Fitting 65

5. Survey 69

5.1 Survey Design 69

5.2 Normalisation of the data 83

5.3 General Results 92

5.4 Survey Results 98

V l l l

6. Application of the Results • 105

6.1 Introduction 105

6.2 Factor Weights 106

6.3 Software Maintenance Equation 109

6.4 Confirmation of the Results 116

6.5 Application of Results 117

7. Evaluation and Conclusions 122

7.1 Introduction 122

7.2 Comparison to Criteria to Success 124

7.2.1 Identification of Factors 124

7.2.2 Assignment of Weights 125

7.2.3 Equation for the Estimation of Software Maintenance 126

7.3 Evaluation of Research 126

7.4 Further Research 130

Appendices 131

Appendix A

Critical Values for the t-test at the 5% Significance Level 131

Appendix B

Critical Values for the analysis of variance at the 5% Significance

Level 132

- IX

Appendix C

The Survey 134

Appendix D

Hypothesis and Results 144

D . l Attributes of the System • 144

D.2 Personal Attributes 156

D.3 Volatility 177

D.4 Understandability of the Source Code 180

D.5 Management 188

D. 6 Use of Tools 190

Appendix E

Individual Survey Responses 195

E. l Initial Survey 195

E.2 Supplementary Survey 221

References 224

- X

CHAPTER 1

Introduction

Abstract: Large backlogs of computing tasks have built up, largely because software

maintenance uses the majority of data processing resources To allow this backlog to

be addressed more quickly fourth generation languages have been devised, but little

•work has been done to assess the effect of these products on software maintenance. Are

these products, which were designed primarily to allow rapid development, going to use

more resources in the maintenance phase, therefore making the situation as bad if not

worse, in a few years time? To assist, software maintenance structured techniques were

devised, which are aimed mainly at third generation languages, therefore, will the

advantages of these methods be lost with the introduction of fourth generation

languages? Are we simply replacing 77 billion lines of unstructured COBOL

[PENTZOLD87J ^Q^g ^ ,̂7/, 77 ijjiHorj lines of unstructuredfourth generation language?

1.1 The Thesis Position.

Bennett [BENNETT89] stated that the activity of maintaining software is not

generally regarded highly by software engineers or managers. Maintenance activity is

perceived to be less creative, less complex and less challenging than new development.

Managers within the computer industry currently have a poor image of software

maintenance, as it often appears that there is no end product, purely the software that

previously existed, and the minimum of resources are, therefore, devoted to this phase of

the software life cycle. This thesis addresses the factors which influence the allocation of

-11

resources that need to be assigned to software maintenance when using fourth

generation languages.

The resources used by software maintenance has led to large backlogs of tasks,

and fourth generation languages have been developed to address this problem, they have

however, been devised to increase the speed at which the software can be developed, but

little consideration has been given to their efiect on the maintenance phase. It is possible,

then, that fourth generation languages will use more software maintenance resources

than third generation languages, and make the situation worse, rather than better. A 20%

saving in development could be offset by a 10% increase in software maintenance, which

accounts for about two-thirds of the software life cycle.

To be as competitive as possible businesses need to be aware of all their costs,

otherwise resources and money will be wasted. A major problem with cost estimation for

software maintenance is that it depends on a number of factors, not all of which are

exact or easy to define, therefore it is often done badly or not at all . As a result of this

software maintenance suffers from a lack of effective management and a poor image

which v^U only improve when software maintenance can be discussed in business terms.

One of the main requirements for this change is that the resources required for carrying

out the maintenance can be defined and compared to the costs of not making the

changes.

The basic premise of this thesis is that a number of factors that influence the

amount of software maintenance can be identified, and tested using survey data. These

influences can then be used in three ways;

• To allow the factors to be considered during the development and maintenance

of the system. By considering the factors, those which increase software maintenance

can be minimised and those which reduce maintenance to be maximised and thus the

costs of software maintenance can be reduced to a minimum.

12

• To enable software maintenance costs to be estimated, thus allowing this process

to be discussed in business terms, which should assist this phase of the software life cycle

to gain parity with the other processes of the business. Resources could also be made

available when they were required, therefore, cutting down on wastage and allowing the

costs to be reduced.

• By considering the values for these factors a decision can be taken as to the best

time to rewrite the system. The estimation of costs for keeping the system running can

be compared with the costs of rewriting the system, and the large costs of keeping old

inefficient software running can be minimised i f it is cheaper in the long term to rewrite.

1.2 Criteria for Success.

The outcome of the research into fourth generation language environments and

software maintenance will be to produce a means to

• Identify a list of factors which influence the amount of software

maintenance in a fourth generation language environment.

• Assess the importance of the identified factors and assign

a weighting factor to them.

• Combine the weights for the factors to produce the first cut of an

equation for the amount of software maintenance a system written in a

fourth generation language will require.

1.3 Thesis Overview.

This thesis produces the first cut of an equation to estimate the amount of software

maintenance required by a particular system. It illustrates this by working through an

example when discussing the techniques. It should be remembered that software

- 13

maintenance cost estimation only provides an estimate of the required resources and

therefore it is likely to need adjustment for a particular installation.

In this thesis three elements are considered, software maintenance, fourth

generation languages and software cost estimation. The order is to firstly introduce

software maintenance, followed by fourth generation languages and a discussion of

software maintenance using fourth generation languages. Software cost estimation in a

third generation language environment is then included, and the factors which influence

cost estimation. The factors which influence software cost estimation specifically when

using fourth generation languages are then introduced, and these are then applied to

software maintenance cost estimation models.

Chapter 2 introduces software maintenance and discusses the effect of fourth

generation languages on software maintenance.

Chapter 3 introduces software cost estimation, and includes discussions on the

need for it and the difficulties involved. This Chapter also includes a discussion on the

resources that need to be scheduled to enable software to be properly managed.

In Chapter 4 data modelling and its techniques are discussed together with curve

fitting. The statistical techniques used when analysing the results of the survey are also

described.

In Chapter 5 the factors being tested are introduced, and the questionnaire used in

this research is described together with a summary of the results obtained from the

analysis of the data.

Chapter 6 brings together the conclusions from the preceding chapters, and

introduces an equation for the amount of software maintenance effort required to

maintain fourth generation language systems and tests the equation with results obtained

from a second survey. This chapter also includes a discussion on the use of the equation.

In Chapter 7 the conclusions from the research are evaluated with respect to the

criteria for success.

14

Summary: This chapter lays out the format for the thesis and shows an overview of the

need for the research. A discussion of the criteria for success of the research is also

included

15

CHAPTER 2

Software Maintenance and Fourth Generation Languages

Abstract: This chapter defines Software Maintenance and the problems it causes It

also discusses the growth in Fourth Generation Languages and their use to try to

resolve some of these problems. A classification of the types of Fourth Generation

Languages is also included

2.1 Software Maintenance Definition.

There are many different definitions of software maintenance, some companies

using time limits as a definition, for example any change requiring more than 5 or 10

day's effort being classed as development. Other companies classify every enhancement

as development and reserve maintenance purely for bug fixing. The definition that is the

most widely used [ANSI90] is;

"The process of modifying a software system or component

after delivery to correct faults, to improve performance or other

attributes, or to adapt to a changed environment".

An alternative definition, which concentrates less on the technical aspects of

software maintenance is that used by the Centre for Software Maintenance [CSM92] jg;

"Software Maintenance is the set of activities (both technical and

managerial) necessary to ensure that software continues to meet

organisational needs"

16

Software maintenance is therefore a very broad activity that includes error

corrections, enhancements of capabilities, deletion of obsolete activities, and

optimisation.

Survey data [CSM87] suggests that software maintenance accounted for 49% of

the total data processing budget in 1979, rising to 65% in 1986 and the indications are

that it is getting worse. One estimate suggests software maintenance costs more than £1

biUion in the United Kingdom per annum, and in many data processing departments the

cost exceeds that of development. The Gartner Group have predicted that by the middle

of the 1990s repairing old code could require over 90% of the systems processing

budget [BLACK92] 1977 software costs in the U.S.A. were in excess of $50 billion,

which represented more than 3% of the American G.N.P. for that year, and Lehman says

that these costs have now more than doubled and are comparable in other developed

countries [LEHMAN80] A Hoskyns survey of 905 British installation [GILB82]

concerning the percentage of time devoted to software maintenance is shown in Figure

2.1 overleaf

The resources devoted to software maintenance are one of the main reasons for

the shortage of staff, as shown by the number of companies trying to recruit experienced

personnel, and large backlogs of user requests. Often users of computer systems are

aware of the waiting lists for amendments and do not request desirable changes to the

system, this invisible backlog usually not being measured. Many companies have a 3 to 4

year visible backlog of applications [MARTE^83] waiting for implementation. A study

by the Sloan School Centre for Information Systems Research [MARTIN83] put the

invisible backlog at 164% of the declared one. The total backlog measured in this study

represented 179% of the entire base of installed applications.

- 17

Figure 2.1: Survey of 905 installations

25 T

20 4

? 15 I
a.

a« 10 +

5 +

% of Time Devoted to Software Maintenance

This backlog of applications has in many cases led to shortcuts being taken to

produce applications more quickly and these are being paid for later by increased

maintenance. Boehm [BOEHM75] quotes one case where the development cost of an

avionics system was $30 per instruction but the maintenance cost was $4,000 per

instruction.

All computer systems are required to evolve and will continue to do so with

fourth generation languages.

There are many functions of software maintenance including:

• To support user improvements. Software requirements are not static over the

life of the system and these requests for change will need including.

• Provision of mandatory upgrades due to government regulations and

management decisions.

18 -

• Provision of a continuity of services, by fixing bugs, recovering from failures,

and to accommodate operating system, database and equipment changes.

• To support maintenance improvements. Code documentation and databases

will need to be cleaned up periodically.

• To prolong the life of the software and to enable it to be kept up to date with

the requirements of the business.

Without maintenance the software in which the company has invested large

amounts of time and money would soon become worthless. Besides the obvious

financial costs of software maintenance, there are other less tangible costs. These costs

include:

• Development opportunities may be postponed or lost because of the resources

used by software maintenance.

• Development work may suffer i f staff are temporarily pulled off the project to

work on maintenance.
• Customers may become dissatisfied when requests for repair or modification

cannot be addressed in a timely manner.

• The overall software quality reduces as a resuh of changes that introduce latent

errors in the maintained software. This is because performing maintenance on

a program is more difficult than writing it. In many cases the person who

actually wrote the program has left or is not available, therefore the person

performing the maintenance has to read and understand the original

programmers style which is time consuming, particularly if the documentation

is out of date or inaccurate.

Software never stands still, i f it did it could be hardwired in microchips, the

essence of most programming is therefore maintenance.

19 -

2.2 Problems Created by Software Maintenance

The traditional third generation language software life cycle model

[MARTIN83] is:

Requirement Analysis 3%

Specification 3%

Design 5%

Coding 7%

Testing 15%

Operation and Maintenance 67%

Errors and omissions can occur at each stage, and the cost of correcting these

increases ten fold as the project progresses, which means that an error which costs £10

to fix in the specification stage costs £100 in the design and £1,000 in coding. Cutting

down on ertors and omissions introduced during specification and design therefore

dramatically reduces development and maintenance costs, while at the same time

increasing the quality of the finished product and therefore the service to the end user.

Boehm [BOEHM74] reports that in some large systems up to 95% of the code had to

be rewritten to satisfy changed user requirements and also that 12% of errors discovered

in a software system over a 3 year period were due to errors in the original system

requirements.

Ball [BALL87] published the results of a survey he had performed concerning

the problems associated with software maintenance, amongst several maintenance

management issues were extensive backlogs (30%), and what data processing

management wants versus what the user needs (30%). The percentages refer to the

percentage of respondents who quoted the problem.

Colter [COLTER88] ĝ ys that many people think that the money spent on

software maintenance is wasted, it is therefore vital that maintainers learn "The business

20

of software maintenance". At present software is not seen as a company asset, and this

needs to be addressed. This will enable software maintenance costs to be placed into the

business environment. For example, the cost of software maintenance over the next 12

months will be £10,000 but the effects of not spending the money is that no price

increases can be implemented, no new customers can be accommodated, etc.

2.3 Types of Software Maintenance

Swanson [SWANSON76] categorised software maintenance into three categories:

a) Perfective maintenance results primarily as a result of changes in users

requirements, but also includes: changes to enhance performance, improve cost-

effectiveness, improve processing efficiency, etc.

b) Adaptive maintenance adapts the software to changes in the data requirements or

the processing environments, for example the central database definition may change

or the hardware be altered. Adaptive maintenance includes implementation of a

database management system for an existing application system, modification of a

code from three to four characters, tuning a system to reduce response times,

converting a system from batch to on-line operation, modification of a program to

use a different terminal, etc.

c) Corrective maintenance corrects failures in the software. Traditionally it has been

seen as the prime Sanction of maintenance, that of fixing "bugs".

Zvegintzov [ZVEGINTZ0V91] produced a table of comparison between

software maintenance effort, and this was refined by Abran [ABRAN93] ^^d this is

shown in Table 2.1.

21

Table 2.1: Abran's comparison of maintenance effort:

Work

Category

LIENTZ80 GUIDE8J BALLSTb DEKLOVA90 ABRAN90

See Note 1

ABRAN90

See Note 2

Corrective 22% 10% 17% 16% 22% 21%

Adaptive 59% 69% 39% 43% 57% 60%

Perfective 16% 7% 29% 28% 7% 3%

User Support 3% 14% 15% 13% 14% 15%

Total

Non-

Corrective

78% 90% 83% 84% 78% 79%

Note 1: This research was published in 1990 but carried out in 1989.

Note 2: This research was published in the same paper as 1, but carried out in 1990.

Even a system that is totally reliable, completely meets user requirements and is

well structured will frequently be changed during the maintenance phase. Errors will

have to be corrected and amended to meet new or changed end user requirements.

Unless software systems are designed to be changed more easily without jeopardising

their quality, maintenance of these systems will continue to be a time consuming and

costly activity.

2.4 Fourth Generation Language Defmition.

The term fourth generation language refers to a class of data processing

languages developed in the mid 1970's that offer simplified expressions for common data

processing tasks. These languages allow for systems development in significantly less

time than with third generation languages.

22

The first generation of computer languages was machine code, the next

assembler, and the third the high level languages such as COBOL, FORTRAN and PL/1.

Even these high level languages do not make life totally easy for appUcation

programmers. The programmer needs to become involved in formatting the layout of

computer records, editing and validating input to the program, and organising the data

that the program works with. Often the programmer has to consider that the report

should have the standard heading at the top of the page, with a page number on the right

and the date on the left, but may have to write 30 or 40 program statements to

accomplish this.

Fourth generation languages were developed to make life easier for the

application programmer. With most fourth generation languages there are a set of

predefined defaults which the compiler or interpreter uses to make assumptions about

the users needs. For example, it may automatically select a format for a report, put page

numbers on it, select chart types for graphics display, put labels on the axes or on

column headings, and ask the user in a fiiendly, understandable fashion when it needs

more information. An assumption behind such languages is that a relatively large amount

of computer power is available for compiling and interpreting.

Fourth generation language has become a blanket term applied to an artay of

products covering everything from specialised report writers to extended database query

languages.

Codd, president of the Relational Institute and developer of the relational

database has said, [CODD85] "There is no definition of a fourth generation language

worth its salt, let alone any theoretical foundation Thus, any vendor can claim to

provide a product that supports a fourth generation language, and there is no basis for

checking or challenging such a claim".

A large portion of the degree of a systems maintainability is built in at the time it

is written, as many of the factors which influence the amount of software maintenance

23 -

are decided at this time, for example the language, the use of structured techniques etc.

and these can only be changed by rewriting portions of the system. One of the

advantages of fourth generation languages is that it allows parts to be rewritten more

quickly than with a third generation language.

Martin [MARTIN83] has said that a characteristic of a fourth generation

language is that an analyst can obtain results faster than he could write specifications for

a programmer. The analyst then works hand in hand with the user, creating what the

user asks for and refining it in a step by step fashion to adapt it better to the user's needs.

In the United Kingdom 45% of installations were making significant use of

fourth generation languages in 1986, and a further 30% were planning to introduce them

in the near fiature [IDPM86], so in a few years software maintenance using fourth

generation languages is likely to be a major factor to many companies.

2.5 Fourth Generation Language Classification

Although the term fourth generation language is in common use, they consist of

a range of products, and the tenn fourth generation environment would be more

applicable, however because it is in common use the former will be used throughout this

thesis.

Fourth generation languages are not just one type of tool, they consist of a wide

range of products, and to enable them to be compared, it is necessary to classify them

into categories. A report by the Institute of Data Processing Managers [IDPM86]

produced a list of 4 classifications of fourth generation languages and this is produced

below.

a) Application builders. These products require consideration to be given to the

systems design of the application being built. This means that they are for use by

computer experts, who will have to code a portion of the application using third

- 24

generation like statements. The skills required will not be so great as for third generation

language programming and considerable productivity gains can be achieved. Their range

of application is wide, and they tackle the whole of an application. Because of the

templating approach fourth generation languages limit the strategies which can be used.

Application builder fourth generation languages comprise:

• Complete sets of program fiinction packages:

• Database packages and data dictionaries

• Screen and report generators

• Enquiry languages

o A fixed processing cycle

• A powerfiil third or fourth generation language for calculation and

logic

Or

• Complex application packages

Examples of application builders are:

Application factory

BOS/ Speedbuilder

b) Transaction processing builders. These products are intended for professional

programmers but do not have the same range of use as application builders. They do not

include a database package. The target for transaction processing builders is mamre

installations that have already made a substantial investment in their existing database

and do not wish to incur the costs of change. They comprise:

• A subset of program fiinction packages, typically:

• Screen and report generators

• A fixed processing cycle

• A powerfiil third or fourth generation language for calculation

and logic

- 25 -

Examples of transaction processing builders are:

GAin

TELON

c) Management information systems. Professional programmers and end users, such

as managers, financial analysts, statisticians and market analysts can use these products.

Essentially they provide the facility for building and manipulating models. They

comprise:

• A sophisticated database package including time-series and/ or

muhi-dimensional data views

• A 'what i f modelling capability

• Statistical, financial or other specialist fimctions

• Enquiry languages

• A sophisticated screen and report generator including graphics

Drawing data from a database is a frequent use of these products. Data

processing professionals will normally build the model's database and the interface to

existing databases and frequently work with the end users in other areas.

An example of a management information system is E.I.S.

d) End user products. A fourth generation language that is an end user product will

require no skill for its use, or a minimum of such skills as can be acquired in, say a two

day course plus a few days experience by a person with no special programming

aptitude. These products are usually specialised and typically include:

• Database enquiry languages

• Report generator languages

• Spread sheet analyses

• Storage and retrieval packages

• Simple application packages

- 26 -

Examples of end user products are the Structured Query Language elements of

Oracle and Ingres.

These categories relate to their use in development, and are not intended to

relate to software maintenance.

2.6 Maintenance With Fourth Generation Languages

Over 77 billion lines of COBOL exist worid-wide[PENTZOLD87] and billions

more in other languages many of which will need maintenance for many years to come.

The rate at which new products are developed and released is at least 2.5 times faster

than the rate at which mature products become obsolete [TANG89] Some existing

systems are more than 20 years old, and COBOL will probably be around for at least

another 20. The lack of trained staff and the applications backlog have caused

companies to turn to fourth generation languages to enable quicker production of code,

the result being more programs to maintain. The effect of fourth generation languages

on software maintenance has attracted little research yet.

Chapin [CHAPIN84] h ŝ produced a list of 10 observations into the effect of

fourth generation languages on software maintenance:

1. Short fourth generation language programs less than about 45 lines of source

code long in total are distinctly easier, cheaper and faster to maintain than a fijnctionally

equivalent implementation in a third generation language.

2. Short fourth generation language programs less than about 45 lines of source

code long in total are usually faster, sometimes easier, but rarely cheaper to maintain

than a fiinctionally equivalent implementation in a third generation report writer, report

generator, file maintenance, or database access or enquiry language (e.g. RPG, MARK-

IV and Easytrieve).

- 27

3. The defauhs, explicit and implicit, and the tacit assumptions made in using a

fourth generation language are more troublesome in maintenance than in development.

They sometimes block what at first appears to be a "clean" way of getting the computer

to do something.

4. Programs and systems implemented monolithically in a fourth generation

language are noxious in maintenance. The worst offenders run from a few hundred to

thousands of lines of fourth generation code in length.

5. Programs and systems implemented in explicit modules in a fourth generation

language are better in maintenance than monolithically implemented ones.

6. Constraining data access is a major stumbling block in maintenance wdth

fourth generation language implemented programs and modules. Module interfaces

easily become both explicitly complex and extensive in such code.

7. With the technology available at the time when the article was written (late

1983), systems implemented with fourth generation languages were slower, more

difficult, and more costly to maintain than with third generation languages. Inter

program and inter system communications of data are often clumsy and obscure.

8. The amount of work a programmer does depends more on the power of the

language to be used in the implementation than upon the number of good lines of source

code written.

9. Maintenance work done with fourth generation languages appears to be

largely unsuccessful in correcting a common problem arising from their use in

development - they are computer resource hogs.

10. Adaptive maintenance work with fourth generation languages is being

contributed to by the vendors of the languages. In particular, the lack of forward

compatibility is troublesome.

Fourth generation languages programs in use are not usually as short as

recommended by Chapin, and it appears that since 1983 vendors have addressed some

28

of the issues raised by him. Fourth generation languages now often have large amounts

of compiled code called by individual commands which has improved performance and

reduced the hardware resources required. It is true of all languages that modular systems

are better in maintenance than monolithically implemented ones, and inter program

communication wdth fourth generation languages has been improved since the article

was written. It has been suggested that programmers who have used third generation

languages do not make good fourth generation language programmers because they

have more problems with the defaults implicit in the language than programmers who

have never used third generation languages.

The International Data Corporation [IDC84] gay that software maintenance

issues do not disappear with fourth generation languages. An interview with a fourth

generation user cited the following maintenance issues:

• Fourth generation language programs over 40 to 50 lines (approximately

equivalent to 500 to 800 lines of COBOL) were difficult to maintain. Programs over

a few hundred lines would approach being beyond maintenance.

• The operating system transparencies which make development so easy tend to

make maintenance more difficult.

• Cross database access (accessing databases other than those provided with the

fourth generation language, such as IDMS, TOTAL, etc.) is also a maintenance

problem.

• One traditional goal of maintenance, to increase run time efficiencies is not

possible; streamlining fourth generation language programs did not have much effect

on hardware usage.

• New product releases are a major maintenance issue, due to the fact that

forward compatibility does not often exist.

29

Grindley [IDPM86] reported that some companies with experience of fourth

generation languages found it economically sensible to consider rewriting their systems

rather than maintaining and patching existing software.

There are several types of effect which this move to fourth generation languages

can have on software maintenance:

• Simple hidden ertors can be avoided, a fourth generation language can deal

with certain aspects of the system automatically, for example it can determine the

first and last records.

• Fourth generation languages make the understandability of a program clearer,

and therefore easier for maintenance by a third person.

• Many fourth generation languages disallow ill-structured program constructs

which can cause trouble later.

• Many fourth generation languages are linked to data management systems with

built in data dictionaries. The programmer cannot misrepresent the data or fail to

declare variables.

• Many fourth generation languages are self documenting. Poor documentation

is likely to be a cause of maintenance difficulties with third generation languages.

The literature therefore suggests that fourth generation languages have

advantages and disadvantages in software maintenance. The advantages are:

• Software maintenance is reduced with programs of 40 to 50 lines in length

• Simple ertors can be avoided because the fourth generation language can deal

v^th certain aspects of the system automatically

• Many fourth generation languages are self documenting.

The disadvantages are:

• Assumptions made by the fourth generation language which assist in

development can cause problems in maintenance

30

• Streamlining the software to make it run better is not possible as this is a

language constraint

• Forward compatibility does not often exist with fourth generation languages.

Summary: Software maintenance is consuming vast quantities of data processing

resources which has meant that new software cannot be produced quickly enough. One

solution to this problem has been the use of fourth generation languages which allow

software to be developed more quickly than would otherwise be the case. This change

has led to an increase in the amount of software to be maintained Little research has

been carried out in this area, and therefore it is not known whether the software

developed with fourth generation languages consumes more or less software

maintenance resources than similar software developed in a third generation language.

Companies may, therefore, be investing in fourth generation languages for short term

gains, whereby quicker development is paid for later by increased maintenance.

31

CHAPTER 3

Software Cost Estimation

Abstract: This chapter discusses the needfor software cost estimation, and the

difficulties involved It also defines the resources which need to be estimated and

discusses some of the methods for software cost estimation, and goes on to include

evaluating software cost estimation models. A section is included to discuss cost

estimation during the software maintenance phase. The chapter goes on to include

some of the attributes which may have an effect on the amount of software maintenance

required.

3.1 The Need For Software Cost Estimation.

The competitive nature of business means that it is necessary to make an accurate

cost estimation of a software project. In order to conduct a successfiil development

project, it is necessary to understand the scope of the work to be done, the resources

required, the tasks to be accomphshed, the milestones to be tracked, the effort and costs

to be expended, and the schedule to be followed.

In the eariy days of computing, software costs represented a small percentage of

the overall cost of a computer based system. A sizeable error in estimates of software

cost had relatively little impact. Today, software is the most expensive element in many

computer based systems, and a large cost estimation ertor can make the difference

between profit and loss. Cost overruns can be disastrous for the developer.

As software estimation has to be done during the planning phase there are a large

number of unknowns. This makes this task difficult and error-prone. The decision to go

32

ahead with a particular project may be based on these estimates, and it becomes more

and more difficult to abandon a project once resources and costs have been allocated to

it. Cost over-runs of 300% and more are not unusual in software engineering,

particularly for tasks above the level of small systems.

The costs for the Department of Social Security Operational Strategy project

rocketed from £713 million to £2,000 million [HILL90] it ̂ as also reported that it was

unsure whether the project would enable staff savings to be made. This was on a project

that was supposed to pay for itself by cutting over 20,000 jobs.

There are three main areas of impact of this inability to reliably plan projects:

a) Economic - these are the most obvious on projects where the estimate is

grossly inaccurate. In the case of an internal systems department developing projects for

its own company, the late realisation that the project will not be completed anywhere

near the budget can resuh in the project being cancelled, with the associated waste of all

work done to date. A survey by Applied Research (New Jersey USA) across 125

American companies found that 75% of all development projects were abandoned before

delivery [HEWETT87]^ and initial misunderstandings of the scope of the project are

clearly one cause of failure. In the case of an outside contractor, underestimates will

resuh in going back to the client in an effort to secure additional funds. If the contract is

on a fixed price basis, the contractor will be saddled with the cost of the overrun.

b) Technical - when the budgeted end of the project draws near, but substantial

additional work remains, the tendency is to for the final tasks to suffer in order to

complete the project as soon as possible. Unfortunately, the last tasks are usually testing,

documentation, and training. Therefore the result is that the system is less reliable and

less well received by their ultimate users. While underestimation is not the only reason

for these problems, it is a contributing factor.

c) Managerial - when an unrealistic deadline draws near additional pressures are

brought to bear on the staff to complete the project in a hurry. Besides the likely short

33

term detrimental effect on the quality of the work produced, the long term effect on

morale is also costly. Personnel are taken from other assigrmients in order to "save" the

project in trouble, often resulting in a worse problem than the original one. Brooks law

[BROOKS75] states "Men and women are interchangeable commodities only when a

task can be partitioned among many workers with no communication between them.

This is true of reaping wheat and picking cotton; it is not even approximately true

. . . of programming" - adding people to a late software project makes it later. If this

problem is pervasive, then a sort of "crisis mentality" can develop, where only projects of

this type get any managerial attention. Also staff turnover can only increase.

Software costs and how they relate to various development, systems and

environmental factors need to be estimated in order that the typical commercial

calculations can be undertaken. In this way, the software element of a project is a typical

component for which financial resources have to be allocated, and it needs to be assessed

in normal commercial terms. Without a realistic estimate of costs, software developers

are in no position to tell a manager or client that the budgets and schedules are

impractical. They become "locked in" to an impossible time scale that can only end in

disaster and in the worst case the project is out of control from the start.

Because of the problems of estimation some organisations use a series of cost

estimates. A preliminary estimate is prepared during the planning phase and presented at

the project feasibility review. An improved estimate is presented at the software

requirements review, and the final estimate is presented at the preliminary design review.

Each estimate is a refinement on the previous one, and is based on the additional

information gained as a result of the additional work activities. Sometimes several

product options and associated costs are presented at the reviews. This allows the

customer to choose a cost effective answer from a range of possible solutions.

34

3.2 The Difficulty of Software Estimation

Software cost and effort estimation will never be an exact science. Too many

variables, for example human, technical, environmental and political can affect the

ultimate cost of software and the effort applied to develop it. However, software project

estimation can be transformed into a series of systematic steps that provide estimates

with an acceptable degree of risk. Boehm [BOEHM83] said "Today a software cost

estimation model is doing well if it caif estimate software development costs within 20%

of actual costs for 70% of the time, and on its own turf (that is within the class of

projects to which it has been calibrated). This is not as precise as we might like,

but it is accurate enough to provide a good deal of help in software engineering

economic analysis and decision making".

DeMarco

[DEMARC082] has outlined four reasons why software cost estimates

are typically not accurate:

1. Developing an estimate is a complex task, requiring a significant amount of

effort to do correctly. Unfortunately, a number of factors work against this. The first is

that estimates are often done hurriedly, without an appreciation for the effort required to

do a creditable job. In addition, it is too often the case that an estimate is needed before

clear specifications of the system requirements have been produced. Therefore, a typical

situation is an estimator being pressured to quickly write an estimate for a system that

they do not fially understand.

2. The people developing the estimates generally do not have much experience at

developing estimates, especially for large projects. Compounding this problem is the fact

that few firms collect project data with which to check new estimates. Therefore, project

managers often start by doing a bad job and never get any better.

The third and fourth problems are related and are:

3. An apparent human bias towards underestimation and

35

4. A management that asks for an estimate but really desires a goal. One problem

is that an estimator is likely to consider how long a certain portion of the system would

take, and then to merely extrapolate this estimate to the rest of the system, thereby

ignoring the non-linear aspects of systems development including the overheads

associated with co-ordinating a number of interconnected efforts. Another common

underestimation problem is that the estimator, often a senior staff member, estimates the

amount of time it would take them to do a task, forgetting the fact that probably large

portions of the system will be written'by'relatively more junior staff who will require

more time. These underestimates get compounded by the fact that management typically

tends to want to reduce the estimate to some degree, in order to make the bid look more

attractive or in order to "maximise productivity by reducing slack". Therefore, an

estimate that was probably too low to begin with gets fiirther reduced.

Estimating software maintenance costs for any particular system is very difficult.

The difficulties arise because these costs are related to a number of technical factors,

together with some relatively unpredictable factors which are unrelated to any technical

characteristics of the system. Sommerville [SOMMERVILLE85] suggests that these

include:

1. The application being supported. I f the application of the program is clearly

defined and well understood, the system requirements may be definitive, and perfective

maintenance due to changing requirements minimised. If, on the other hand, the

application is completely new, it is likely that the initial requirements will be modified as

users gain experience with the system.

2. Staff stability. It is normally easier for the original writer of a program to

understand and change a program rather than some other individual who must

understand the program by study of its documentation and code listing. Therefore, if the

programmer of a system also maintains that system, maintenance costs v^ll be reduced.

In practice, the nature of the programming profession is such that individuals change

36

jobs regulariy and it is fairly unusual for one person to develop and maintain a program

throughout its usefiil life.

3. The lifetime of the program. The usefiil life of a program obviously depends on

its application. The program will become obsolete if the application becomes obsolete or

if its original hardware is replaced and conversion costs exceed rewriting costs.

4. The dependence of the program on its external environment. If a program is

highly dependent on its external environment it must be modified as that environment

changes. For example, changes in a taxation system might require payroll, accounting

and stock control programs to be modified.

5. Hardware stability. I f a program is designed to operate on a particular hardware

configuration and that configuration does not change during the programs lifetime, no

maintenance costs due to hardware changes will be incurred. However, hardware

developments are rapid and so the program may need modification to use new hardware.

This process is distinct from moving the program to another computer system as the

required modifications normally involve enhancing the program to make use of improved

hardware or modifying assumptions built into the program about the hardware.

3.3 Methods of Software Cost Estimation

3.3.1 Development

There are many software estimation models, and some of these are discussed in the

next sections.

a) Expert Judgement. A widely used cost estimation technique is expert

judgement. This method relies on the experience, background, and a business sense of

one or more key people in the organisation.

The biggest advantage of expert judgement, namely, experience, can be a liability.

The expert may be confident that the project is similar to a previous one, but may have

-37

overlooked some factors that make the new project significantly different. Or, the expert

making the estimate may not have experience with a project similar to the present one. In

order to compensate for these factors, groups of experts sometimes prepare a consensus

estimate. This tends to minimise individual oversights and lack of familiarity with

particular projects, and neutralises personal biases and the desire to win the contract

through an overly optimistic estimate. The major disadvantage of group estimation is the

effect that interpersonal group dynamics may have on individuals in the group. Group

members may be less than candid due'to political considerations, the presence of

authority figures in the group, or the dominance of an overly assertive group member.

The Delphi technique can be used to overcome these disadvantages.

b) Delphi Cost Estimation [HELMER66] jhg Delphi technique was developed at

the Rand Corporation in 1948 to gain expert consensus without introducing the adverse

side effects of group meetings. The Delphi technique can be adapted to software cost

estimation in the following manner.

1. A co-ordinator provides each estimator with the system definition document

and a form for recording a cost estimate.

2. Estimators study the definition and complete their estimates anonymously.

They may ask questions of the co-ordinator, but they do not discuss their estimates with

one another.

3. The co-ordinator prepares and distributes a summary of the estimators'

responses, and includes any unusual rationales noted by the estimators.

4. Estimators complete another estimate, again anonymously, using the results

from the previous estimate. Estimators whose estimates differ sharply from the group

may be asked, anonymously, to provide justification for their estimates.

5. The process is iterated for as many rounds as required. No group discussion is

allowed during the process.

-38-

c) SLIM. SLIM [PUTNAM79] depends on a source lines of code estimate for the

products general size, then modifies this through the use of the Rayleigh curve model to

produce its effort estimates. The user can influence the shape of the curve through 2 key

parameters: the initial slope of the curve (the Manpower Build-up Index {MBI}) and a

productivity factor (the technology constant or productivity factor {PF}). An important

and somewhat controversial feature of the model is its strict time/ effort trade-offs,

where attempts at reducing SLIM's minimum time schedule are met with very large

effort increases. The Rayleigh curve is ah exponentially declining curve used to model a

number of development processes. The curve plots effort on the vertical axis and time on

the horizontal axis. The equation describes a build up followed by a slackening off for

the software development cycle, where people are added where they become usefiil and

then are transferred to other projects as the system is done, except for a decreasing

number of maintenance staff.

Much of the estimation power of SLIM comes from its software equation:

S = cKl/3td4/3

Where S = source statements

c = a technology constant (productivity factor)

K = the life cycle effort

td = the time of peak manpower

The SLIM user has control over 2 key variables, the Manpower Build-up Index

(MBI = K/td^) and the Productivity Factor (PF = c). The Manpower Build-up Index

adjusts the slope of the initial part of the Rayleigh curve. The higher the value the

steeper the curve and the faster the build up of staff on the project. This number

establishes when td will be reached, and thus the "minimum" time in which the project

can be completed. The larger the c value, the higher the productivity rate. The SLIM

user can choose these values either by calibration of the model with data from completed

39

projects, or by answering a series of 22 questions from which SLIM will provide a

recommended PF and MBI.

d) Function Point Analysis. One criticism of existing models is that they require a

user to estimate the number of source lines of code in order to get person months and

duration estimates. The fiinction point measurement was developed by Albrecht

[ALBRECHT79] Function points are at a higher level than source lines of code,

capturing information like the number of input transaction types and the number of

unique reports. Albrecht believes fiin"Ctibn points offer several significant advantages

over source lines of code counts. First it is possible to estimate them early in the life

cycle, about the time of the requirements definition document. This can be an important

advantage for anyone trying to estimate the level of effort to be required on a software

development project. Secondly, they can be estimated by a relatively non-technical

project member. Finally they avoid the effects of language and other implementation

differences.

Function points can vary 35% from the original fiinction counts. Once the fiinction

counts have been computed, they can be used to compare the proposed project with past

projects in terms of its size. Through these comparisons an organisation can begin to

develop cost estimates, first based upon analogies, and later, as additional data are

collected, through statistical analysis.

e) COCOMO. The most popular software estimation model is the Constructive

COst MOdel (COCOMO), developed by Boehm [B0EHM81] Based on his analysis of

63 software development projects, Boehm developed a model that predicts the effort and

duration of a project, based on inputs relating to the size of the resulting systems and a

number of "cost drivers" that Boehm believes affect productivity. COCOMO consists of

a hierarchy of 3 models:

1. Basic COCOMO computes software development effort as a fijnction of

program size.

40

2. Intermediate COCOMO computes software development effort as a fiinction

of program size together v^th an effort adjustment factor derived from assessments of

the product, hardware, persormel and project attributes (cost drivers).

3. Advanced COCOMO is the same as intermediate except that it has the impact

of each step of the life cycle, (analysis, design, etc.)

The basic COCOMO equations take the form;

E = ab(KLOC)bb

D = cb(E)db

Where

E is the effort applied in person months

D is the development time in chronological months

KLOC is the estimated number of delivered Unes of code (in thousands) for

the project

35, h\), %,d\) are constants which depend on whether the organic, semidetached or

embedded mode of COCOMO is being used.

The basic model can be extended to consider a set of cost driver attributes, which

are factors affecting the software effort. Cost drivers are fiiUy discussed later in this

chapter.

Boehm produced a list of 15 attributes to be rated on a sbc-point scale ranging

from "very low" to "extra high" (in importance or value). Based on the rating, an effort

multiplier is determined from tables published by Boehm, and the product of all effort

muhipliers is an effort adjustment factor (EAF). Values for an effort adjustment factor

range from 0.7 to 1.65. These factors are covered more fiilly in Section 3.6

The intermediate COCOMO model takes the form:

E = ai (KLOC)bi * EAF

Where

E is the effort applied in person months

-41

aj, bj are constants which depend on whether the organic, semidetached, or

embedded mode of COCOMO is used.

KLOC is the estimated number of delivered lines of code (in thousands) for

the project.

3.3.2 Maintenance

a) Lines of source code per programmer. A widely used estimator of personnel is

the number of source lines that can be niaintained by an individual programmer. Table

3.1 sunmiarises various figures which have been published for the number of source lines

of code (in thousands) an individual can maintain.

Reference Application Area KSI / Full time software

personnel

WOLVERTON80 Aerospace 8

FERENS79 Aerospace 10

DALY77 Real-time 10-30

GRIFFIN80 Real-time 12

ELLIOTT77 Business 20

GRAVER77 Business 20

LIENTZ80 Business 32

B0EHM81

25th Percentile

Numerous 10

B0EHM81

Median

Numerous 25

B0EHM81

75th Percentile

Numerous 36

42

An estimate of the number of fiiU time software personnel needed for maintenance

can be determined by dividing the estimated number of source instructions to be

maintained by the estimated number of instructions that can be maintained by a

maintenance programmer.

b) COCOMO. In a survey of 63 products in various application areas, Boehm

[B0EHM81] developed a formula for estimating software maintenance costs. The

estimation is calculated in terms of the Annual Change Traffic (ACT), defined as "The

fraction of a software product's sourtie instructions which undergo change during a

(typical) year, either through addition or modification".

The ACT quantity is used, in conjunction with the actual or estimated

development effort in person months, to derive the annual effort for software

maintenance.

The COCOMO equation for estimating basic annual maintenance effort (MM);yvf,

given the estimated development effort (MM)D, is

(M M) A M = (A C T) (M M) D

Boehra uses effort adjustment factors to adjust the original calculations, these are

largely the same as those for development, although some different effort multipliers are

used. The annual maintenance effort is then calculated as:
(M M) A M = (ACT) (M M) N 0 M (EAF)M

Where (^•1M)]\^0M is calculated from the nominal effort equations.

Boehm suggests that the maintenance effort can be estimated by the use of an

activity ration, which is the number of source instructions to be added and modified in

any given time period divided by the total number of instructions:

ACT = (DSIadded + DSImodified) / DSItotal

c) Belady and Lehman's Model. Effort expended on maintenance may be divided

into productive activities, including analysis and evaluation, design, modification, coding,

etc. and "wheel spinning" activities which involves trying to understand what the code

43

does, trying to interpret data structure, interface characteristics, performance bounds.

Belady and Lehman [BELADY72] devised the following expression as a model of

maintenance effort:

M = p + K(c-d)

Where

M = total effort expended on maintenance

p = productive effort (as described above)

K = an empirical constant

c = a measure of complexity that can be attributed to a lack of good design

and documentation

d = a measure of the degree of familiarity with the software

This model indicates that effort (and cost) can increase exponentially if a poor

software development approach was ,used, and the person or group that used the

approach is not available to perform maintenance.

3.4 Model Evaluation

The most critical question for a manager interested in using a software estimation

model is whether or not the estimates provided are sufficiently usefiil to justify using

them. One evaluation standard is the degree to which the models estimated effort in

work months (MMg) matches the actual effort (MM^). If the models were perfect, then

for every project MMg = MM^.

Because the importance of the absolute difference between MMg and MM^ varies

with project size, for example a 6 person month error is likely to be more serious with a

10 person month project than a 1,000 person month one, a percentage ertor test has

been recommended:

-44-

MMg-MMa

MMa

However as ertors can be of 2 types, underestimates, where MMg < MM^, and

overestimates, where MMg > MM^, it makes it difficuh to analyse a model's average

performance over the entire set of projects. A magnitude of relative ertor, or MRE test

is recommended as the 2 types of ertor do not cancel each other out when the average of

multiple errors is taken.
I MMg - MMa I

MMa

3.5 Factors Affecting Software Maintenance

In both development and maintenance there are many factors which influence the

amount of effort required. Some of these cost drivers appear obvious for example a

good programmer can achieve a specified task in less time than a bad one but other

factors although less apparent could have as large an effect.

Various research has been carried out into factors which influence development,

and these are summarised in Table 3 .2.

a b c d e f 8 h i j k S

DP Experience • • • • • • • 7

Aoplication Experience • • • • • • • / 8

Software Experience • • • • 4

Hardware experience • • • 3

Capability • / 2

Education / 2

In-house % • / 2

-45

Table 3.2 Cost estimation factors research (continued)

a b c d e f g h i j k S

Part time % • • 2

Facility Experience / 1

Programmers Participation • 1

Age of Product • 1

Morale of Staff • 1

Scheduling Constraints • • 3

Staff Load • • • 3

Travel • 2

Communication • 1

Modem Programming Practices • • • • • / 6

Tools • / • / 5

Language • • • • / 5

Response Time • • / • 4

Volatility / • 3

Reusable Code • 1

Classified • 1

Distance • 1

Existing Documentation 1

High Reliability • • • • 4

Required volatility • • • • 4

User Participation • • • 3

Number of User Organisations • • 2

User DP Knowledge 2

-46

Table 3.2 Cost estimation factors research (continued)

a b c d e f 8 h i j k S

User Application Knowledge • • 2

Database Size • 1

Complexity of the Product • 1

Run Time Constraints • 1

Memory Constraints • 1

Table 3.2 shows a summary of the variables used in various research, each row

represents a variable and each column the research. A summary column shows the

number of researchers using the variable.

Where:

GAYLE71

SCOTT74

WOLVERTON74

WALSTON77

CHRYSLER78 ;

PUTNAM78

g = ALBRECHT83 •

h = B0EHM81 ,

RUBIN

JONES86

BANKER87

SUMMARY

The paper by Banker, Datar, and Kemerer [BANKER87] addresses software

maintenance whereas the others address development.

a

b

c

d

e

f

1 =

j

k

S

47

From the table it is apparent that the experience of project team members, in

certain areas is believed to be a critical element, the capability of the staff is often

discussed but because of difficulty in measurement is rarely used.

In two areas of research the highest level of education, and amount of in-house

versus outside contractor staffing were considered. There were also researchers who

considered the percentage of part time workers, the amount of programmer

participation, the age of the programming team and their morale.

Project management variables; including schedule constraints, staff loading, travel

requirements and project communication are considered in some of the research. Project

communication should be helped by the use of fourth generation languages as project

teams tend to be smaller and often consist of only one or two people.

Two user variables have been considered in four of the previous papers, these are

high reliability - the importance placed on avoiding system failures and required volatility

- the degree to which the user-stated requirements changed over the course of the

project. Other user variables which have also been considered are the degree of user

participation in the project, the number of user organisations having sign off

responsibility, the user's data processing knowledge, and the users application

knowledge.

Technical environment variables are often included in productivity models and

included in Table 3.2 are modem programming practices, the use of software tools,

response time, the choice of the programming language, and the hardware/ software

volatility - the amount of change in the underlying environment in which the application

is being written. The use of reusable code, whether the work is classified, and in one

(1971) study the distance to the machine room has also been considered. Banker, Datar

and KemererI?ANKER87] ̂ gj-g considering the factors affecting software maintenance

and therefore also included the quality of the existing documentation.

48

3.6 Fourth Generation Language Specific Factors.

The COCOMO model of software cost estimation is applicable to third generation

languages, and the only allowance made for fourth generation languages is the use of

software tools cost driver.

Besides the general factors mentioned in the previous section, certain factors

which are specific to fourth generation languages or which are different with these tools

are:

a) Attributes of the System.

(i) Type of application. The type of application affects the level of

software maintenance as certain types of application are more prone to change than

others. This attribute is specific to fourth generation languages because fourth generation

languages tend to be application specific, whereas third generation languages were more

general.

(ii) Original time scale for development. I f the system was developed in

an inadequate time the testing, standards and documentation are usually the first

casualties, and this has an effect on software maintenance later. This is specific to fourth

generation languages because the time scales allocated for development with these

products are shorter. I f the time is short the temptation is to develop the application

using the fourth generation language even i f it is not the type of system at which the

fourth generation language is targeted.

(iii) Reliability of the underlying system. Generally fourth generation

languages are associated with a database management system and errors can occur in the

underlying software, rather than the user written application.

(iv) The degree of end user programming. This can effect the resources

required by software maintenance.

49

b) Personnel Attributes.

(i) Programming language experience of the development and

maintenance staff The experience of the programming staff with the fourth generation

language will effect the amount of software maintenance. This is included in the fourth

generation language specific factors because fourth generation languages require less

programming experience than third generation languages.

(ii) Training in the fourth generation language. Training in the use of

fourth generation languages will reduce the resources required by software maintenance.

(iii) Third generation language experience. It has been reported that third

generation language programmers do not make good fourth generation language

programmers as they tend to make poor use of the procedural elements of the languages.

Experience of third generation languages can, therefore, have a detrimental effect when

using fourth generation languages.

c) Volatility.

(i) Changes in hardware. Changes in hardware may cause software

changes. This is included as a fourth generation language specific factor because fourth

generation languages are at least as machine specific as third generation languages,

d) Understandability of the source.

(i) Programming style, methods and standards used in development. In a

survey by McClure [MCCLURE76] programmers reported that the standardisation of

style introduced by structured programming conventions made programs easier to

understand. IBM [BOEHM77] reported an average 40% productivity saving in real

time, business application, and systems applications software products employing

structured techniques. Other organisations [LY0NS81] reported that maintenance costs

for software development techniques are reduced by a ratio of 3:1 compared to

maintenance costs for unstructured software. Error rates in tested unstructured software

50-

averaged 1 error per 200 lines of source code, but in many structured software systems,

production error rates are averaging less than 1 error per 1,000 lines of source code

[MCCLURE78] xhese structured techniques were designed primarily for use in the

development of new software systems written in third generation languages, and as such

their benefits may be lost when moving to third generation languages. The use of

methods also applies to software maintenance, as the structure of the software will

rapidly deteriorate i f the structure is not maintained during this phase of the software life

cycle.

(ii) Complexity of the source code. The first task when performing

software maintenance is to understand the code before changes can be made to it. Some

source code is by the nature of it is more difficult to understand than other code. Fourth

generation language vendors claim that their products are easier to understand than their

third generation equivalents. Chrysler [CHRYSLER78] provides evidence that increases

in complexity in applications software go hand in hand with increases in the cost of

maintenance and declines in the morale and productivity of programmers and analysts.

(iii) Type of fourth generation language. The fourth generation language

used will greatly effect the understandability of the source, and some fourth generation

languages are more applicable to certain applications than others, as described in section

2.6.

e) Management

(i) Management of the project. I f a project contains a high degree of end

user programming, it may be more difficult to control than if just computer professionals

are involved.

f) Use of tools

(i) Prototyping. The use of prototyping can give a user a more accurate

portrayal of the system they required, and therefore reduced software maintenance. I f the

-51

system is not rewritten before being used in production then maintenance may be

increased.

(ii) Use of a data dictionary. A data dictionary, which is included with

many fourth generation languages can reduce greatly the amount of software

maintenance. A change in a record layout would just require a change to the dictionary

and recompilation of the programs, rather than a change to every individual program.

(iii) Types of tools used. Whether tools were used in development or

during maintenance. Software tools cover a variety of tasks, including cross referencers,

test data generators and interactive debuggers can all reduce software maintenance to

varying degrees.

Summary: Software is the most expensive element in many computer based systems, and

as such, estimation of the costs involved are essential if resources are not to be wasted

Software estimation allows resources to be scheduled and made available when

required. Although software cost estimation is an essential part of running a computer

project it is a difficult and inexact task. There are a large number of software cost

estimation techniques in use and most include cost drivers to adjust the effort as the

size of the system is not the only factor which influences the cost Various research has

been conducted into these cost drivers, but these are mainly confined to software

development using third generation languages.

52

CHAPTER 4

Data Modelling

Abstract: This chapter discusses data modelling and data collection methods, and

describes the disadvantage of each of the methods. It also includes a discussion of

statistics in general, and describes in detail some of the statistical methods which were

considered for use in analysing the data. A discussion is included on curve fitting and

methods of determining the fit of a particular curve. A section is included on the curve

fitting software which was used in this research.

4.1 Introduction

There are 4 major stages to data modelling, and these are shown diagramatically in

Figure 4.1.

Figure 4.1: The 4 stages of data modelling

1.

Pose Question — —

2.

Collect Data

< *
4.

Interpret Results

3.

Analyse Data

53

4.1.1 Pose the question

The first stage is to decide exactly what question it is that the research is

attempting to answer.

4.1.2 Collect data.

Having arrived at a specific question the next step is to find some data which can

be analysed to enable the question to be answered.

Data can be collected in various ways, the four main ones being:

• Observation. Observing the environment of interest. This has the advantage that

all the observations can be carried out by 1 person, and therefore to a particular

standard, which means that different peoples opinions do not play a part, but has the

disadvantage that only a limited amount of data can be collected in this way.

• Experimentation. This involves changing one or more factor and observing the

effects of the change or changes. The advantage of this method is that external factors

which are not part of the research can be excluded, but the disadvantage is that actually

measuring something may effect it, this is known as the Hawthorn effect.

• Survey. Although the area of interest is the target population, (in this case every

computer installation using fourth generation languages) it is not usually possible to

collect data about the whole population. Instead a sample of the population is taken

which is hoped will be representative of the population as a whole. This relies on some

of the target population completing a series of questions. The advantage of surveys is

that more information can be obtained in this way than by other means. The

disadvantages are:

- It relies on other peoples observations, and it is therefore difficult to set

standards

54-

- Often surveys are not completed

- The questions should be worded so that they are not leading the person

completing the questionnaire towards a particular answer

- The way that the questions are worded can be different from that which

was intended.

o Collection as a background task. Data is collected automatically as a

background task to the ordinary activities within the project. A machine tool control

system collects infonnation about what is going on as it is being used. The advantage of

this method is that it is automatic, the disadvantage being that i f the system is not seen to

be usefiil it may not be used.

Data collection has a cost in time and effort and perhaps in systems to support the

collection, this cost has to be weighed against the benefits. A general requirement is

therefore to minimise the costs of data collection.

Data collection methods are discussed more fijlly in Section 5.1.

4.1.3 Analyse the data

Using statistical techniques an analysis of the collected data is conducted to enable

the answer posed to be answered, the techniques available are covered in more detail in

section 4.4.

4.1.4 Interpret the results

Decide whether the results obtained satisfactorily answer the question posed, if not

it may be necessary to refine the question and repeat all 4 stages again.

55

4.2 Population Distribution

For any given statistical situation there are a number of possible outcomes, for

example when tossing a coin there are 2 possible outcomes, heads and tails and each has

a equal possibility. If 10 coins are tossed, the result would be expected to be 5 heads

and 5 tails but on any particular experiment 6 heads and 4 tails, 3 heads and 7 tails, etc.

may be achieved. If the experiment was carried out 100 times the results shown in Table

4.1 may be achieved.

Table 4.1 Results of 100 tosses of 10 coins

Number of Heads 0 1 2 3 4 5 6 7 8 9 10

Frequency 1 2 5 12 18 23 16 10 9 3 1

This is shown as a diagramatically in figure 4.2.

Figure 4.2 Histogram of 100 tosses of 10 coins

25T

qi5 +

^1

If this was done an increased number of times the results would have been a

symmetrical bell shaped curve, such as figure 4.3.

-56-

Figure 4.3 Bell shaped curve obtained by increasing the number of results.

I f this experiment was repeated using a continuous variable such as height, mass or

time it would produce a similar shape although much more smooth.

A continuous random variable x havmg a probabiUty density fiinction where

f (x)= l _ e - (x - n) 2 / 2 a 2

is called a normal distribution curve.

The normal distribution is symmetrical about the mean, and over 95% of the

distribution occurs within 2 standard deviations of the mean either side. The 5% most

extreme outcomes of a statistical analysis are called the critical region. It includes the

outcome

0[+L 1[+L2[+] C[+],C[-] 2[-], l[-],0[-]

Where the number C is such that the combined probabihties of the outcomes add

up to 1/20, i.e. approximately 2 standard deviations. The number C being the critical

value at the 5% significance level.

-57

4.3 Statistics

There are various statistical techniques which can be used to analyse results and

the one used in this research takes the form of a hypothesis test. A null and alternate

hypothesis about the population is proposed, and the sample data is then examined to see

how it fits in with this hypothesis and inferred back to the population accordingly. I f the

sample data, which is taken as random, is sufl5ciently extreme then the original

hypothesis is rejected in favour of the alternate hypothesis, otherwise the conclusion is

that on the evidence of the sample data, the original hypothesis appears to be reasonable.

To test i f the sample data is sufficiently extreme a test statistic is calculated, this

depends on the form of the sample data and the hypothesis test to be used.

In a hypothesis test the probability distribution of all the possible values that the

test statistic could take i f the null hypothesis is true, then the 5% rejection rule is used to

decide whether or not to reject the null hypothesis at the 5% significance level. That is,

the null hypothesis is rejected in favour of the alternate hypothesis if the value of the test

statistic obtained from the sample is outside the 95% confidence interval, although this

includes the highest and lowest 2'/2%. Figure 4.4 shows this diagramatically.

Figure 4.4 Normal Distribution Curve.

95% Confidence Interval

-58-

Therefore there is a 1 in 20 chance of a hypothesis being rejected when in fact it

should be accepted.

With each of the statistical techniques a test statistic is calculated and compared to

a table of values, calculated from this 5% significance level.

In a survey using a random sample and inferring from data about this sample back

to the population the results may contain 2 types of error:

• Sampling error: the natural variation between individuals and the

random method ofth'eir selection can produce samples which are not

representative of the population. Data from an unrepresentative sample

will give inaccurate information about the population.

• Bias: this is the name given to all other errors and will consist of various

types:

- There is a possibility that a true null hypothesis has been rejected,

because at the 5% significance level there is a 5% chance of

rejecting the null hypothesis when it is true.

- A null hypothesis may not have been rejected even though it was

incorrect, this type of error could be reduced by increasing the

significance level but this would increase the probability of the

first type of bias error.

- I f the sample size is very small then it is quite possible that there

is insufficient evidence to reject the null hypothesis even when it

should be. Generally, i f not influenced by other factors, a large

sample size gives more accurate results, but also leads to higher

costs.

In this survey a sampling error could have occurred because medium to large

business organisations were targeted, although replies received showed organisations

59

ranging in size from 34 to 80,000 employees, and Data Processing departments from 1

to 900 employees.

When considering software maintenance cost factors, comparisons are made at the

level of lines of source code per person month, this relies on an accurate estimation of

the system size and amount of time allocated to software maintenance, i f this data is not

known, or is inaccurate, then the repUes to the other questions will be invalid.

The accuracy level of the reply needs to be considered as often for political

reasons the person completing a survey Teplies in a particular way, they may have been

responsible for the purchase of a particular tool and therefore reply that it was more

usefijl than it really was.

The wording of questions needs to be carefiiUy considered so that the respondent

understands the question being asked and is not led to a particular answer.

Certain factors may be connected, and therefore when the results are analysed the

independence of factors may need to be considered.

I f a sampUng method is used the target population also has to be considered to

ensure that the whole population is being sampled, and not an atypical subset.

Errors would also have occurred because o f

• the person completing the survey could be either too hard or too soft on

the organisation.

• the person completing the survey could have misunderstood the

question.

• organisations have different levels of user support, as often maintenance

and support are classed together.

• Because the 5% significance level is used there is a 5% chance that the

statistics produce a result that the factor does not affect software

maintenance when in fact it does.

-60-

The statistical techniques considered for use in the analysis of the surveys obtained

in this research are described more fijlly in Section 4.4.

4.4 Statistical Techniques

The actual test to be chosen depends on a number of factors including:

• the type of data

- Categorical data which is based on mutually exclusive categories

i.e. Labour, Conservative, Liberal Democrat or Other voters.

- Ordinal data which contains more quantitative information than

categorical data i.e. rating a brand of soap powder on a scale 1

to 10.

- Interval data which is actual measurements i.e. length in metres,

etc.

• the number of samples

• the size of the samples

• i f there are 2 samples, whether the data is paired i.e. the sample selected

is matched in pairs so that each pair possesses the same characteristics

(e.g. sex, age, etc).

• i f the sample data can be assumed to have a normal distribution, in

which case a parametric test should be used i.e. t-test. I f a normal

distribution cannot be assumed a non-parametric test should be used i.e.

Krustal-Wallis H test.

A number of tests can be used and the main ones considered for this research are

described in the following sections.

-61

4.4.1 t-test

The t-test (students t-test) is a test which can be used i f the data is:

• The data is interval is based on actual quantities in definite units, in this

research Imes of code.

• The population distribution can be assumed to be normally distributed.

• The data should not be paired in any way, i.e. not matched by systems of

similar characteristics.

• The standard deviations of the populations can be assumed to be

approximately equal.

• The sample sizes are small.

The test statistic is given by:

t = mjj - my /V((Sc2/nx) + (Sc2/ny))

The test statistic for the t-test is given by:

t = mx - myW((Sc2/nx) + (Sc2/ny))

where:

Sc2 = Z(x - mx)2 + Z(y - my)2 / ((nx - 1) + (ny - 1))

m^ = mean of sample x (The arithmetic mean is a measure of the level of

a batch; it is given by the sum of all the data values in the batch, divided by the batch size

and is often called average).

my = mean of sample y

nx = number of samples in x

ny = number of samples in y

The degrees of freedom is then given by:

(n x - l) + (n y - l)

-62-

The test statistic is then compared against a table of critical values (t^) (the values

for the t-test are shown at Appendix A) at the 5% significance level. I f the test statistic is

greater than or equal to t^ or less than or equal to -t^ then the hypothesis that the 2

values are equal is rejected in favour of the hypothesis that the 2 values are different.

4.4.2 Analysis of Variance

Analysis of variance is a statistical technique which may be used for making many

simultaneous comparisons, and it makes it possible to compare 3 or more samples

without comparing each of the values using the t-test. At the 95% significance level each

test has a 1 in 20 chance of the null hypothesis being rejected when in fact it is true, and

therefore a large number of tests is inadvisable.

The first step in the analysis of variance is to make two estimates of the variance of

the hypothesised common population: the within samples variance estimate, and the

between samples variance estimate.

The within samples variance estimate is calculated according to the following

equation:

2̂ k h - 2
cyw = (I I (X - X)) / (N - k)

The between samples variance estiniate can now be calculated as:

A2 k - - 2
= (In l (X-XQ)) / (k - 1)

63-

Where:

k = total number of samples

N = total number of data elements

X G = Grand Mean

A test statistic known as the F ratio is now calculated as follows:

F = between samples variance estimate / within samples variance estimate

The value of F is compared to tables of critical values based on the degrees of

freedom, the values for the 5% significance level are shown in Appendix B. I f the test

statistic is greater than or equal to t^ or less than or equal to -t^ then the hypothesis that

the 2 samples are equal is rejected in favour of the hypothesis that the 2 are different.

4.4.3 Krustal-Wallis H Test

The Krustal-Wallis H test is a test for deciding whether there is a significant

difference between three or more samples, and is a useful alternative to the analysis of

variance since it is a non-parametric test and therefore does not rely on assumptions

about the distribution of the variable.

In order to apply the H test, the data must be ranked, from lowest to highest, with

identical values being given the mean of the value they would otherwise have received,

e.g. i f 2 values are equal and ranked 9 and 10 they would both be given the value 9.5.

64

The sums of the ranks are then found for each sample. This information can now

be used to calculate H from the following equation:

H = (1 2 / N (N + 1) I (R 2 / N) - 3 (N + 1)

Where:

R = Sum of the rankings for each sample.

N = Total number of data elements

The Krustal-Wallis H test is not used in this research as a normal distribution curve

can be assumed as the factor being analysed was lines of code per person month.

4.5 Curve Fitting

The process of forming an equation to fit (satisfy) given data is called curve fitting,

for example given the points in Table 4.2.

X y

0 0

1 1

There are infinitely many equations that will satisfy a specified criteria. Examples

of criteria are that the equation goes through each point, or that the sum of the

difference between the squares is minimised.

In this research a computer program which computes the line of best fit was used.

The software examines the points for 25 equations and computes equation coeflBcients,

correlation coefficients, and best fit.

Included in the 25 fitted equations are:

• Y = A + B*X-Straight line.

• Y = A + B*X = C/X - Combined linear and reciprocal.

• Y = A + B/X + C/X*X - First and second order hyperbola.

- 6 5

• Y = A + B*X + C*X*X - Parabola.

• Y = A*X^B - Power.

• Y = A * B ^ l / X) . R o o t .

• Y = A*X^(B*X) - Super geometric.

• Y = A*e^(B*X) - Exponential.

• Y = A + B*ln(X) - Logarithmic.

• Y = A*B^X*XX: - Hoerl's equation.

• Y = A*e^((X-B)^/)/C) Normal distribution (Gaussian).

• Y = A*e^(ln(X)-B)'^2/C) - Logarithmic normal distribution.

There a several ways to determine the line of best fit including:

a) Inspection. Examining the pattern of dots on a scatter diagram and drawing the

line which seems to fit the pattern.

b) The arithmetic means method. This method uses groups of data to find the

arithmetic mean of parts of the scatter, and finds the Une of best fit by joining up these

partial means. Since the minimum number of means required to draw a straight line is

three points it is sometimes called the three-point method.

c) The method of least squares. The least squared method utilises the fact that

the equation of a straight line is always in the form:

y = a + bx

where x and y are dependent and independent variables.

The least squares method provides the equation of the straight line that is the best

fit to the points in a scatter diagram. In trying to find the best fit to the data the points

should be scattered on either side of any line drawn. The best line will be the one which

minimises the deviations of the scattered points fi-om the hne. As some of the points are

above the line and have positive values, whilst others are below the line and have

negative values, it is necessary to square the deviations to eliminate the minus signs. The

deviations are measured as vertical distances fi"om the line.

- 6 6

The equation can be found with the formulae:

a = y - bx

where:

a is the intercept on the axis

y and x are the arithmetic means of the data series

b is the slope of the line

and
n X xy - Zx Zv

b = n I x2 - (I x)2

where:

b is the slope of the line

n is the number of data pairs.

d) The coefficient of correlation. I f there is a linear correlation between two sets

of data it will either be positive or negative correlation. I f the observed values increase

together or decline together there is positive correlation. I f one increases as the other

decreases there is a negative correlation. The correlation coeflBcient (r) is calculated to

give a value from -1 to 1, and i f there is perfect positive correlation between the 2 sets of

data r = +1. I f there is no correlation between the 2 sets of data r = 0, while i f there is

perfect negative correlation, the correlation coefficient is - 1 .

The formula to calculate the correlation coefficient is:

r = (Z (x -x) (y -y) /n) / ([V l (x -x)2 /n] [V l (y -y)2 /n])

where:

y and x are the arithmetic means of the data series

n is the number of pairs of data

This formula can be written as:
r covariance of x and v ,

standard deviation of x multiplied by standard deviation of y

- 6 7 -

Summary: This chapter describes the 4 stages of data modelling:

• Pose the question

•Collect data

•Analyse the data

•Interpret the results

A basic discussion of population distribution and statistics was included with the

methods which were considered in the analysis of data. Curve fitting was also

discussed in this chapter together with some techniques which can be used to

check for the fit of the curve.

68

CHAPTER 5

Survey

Abstract: This chapter discusses the factors which were being tested, the design of the

questionnaire, the reasoning behind the questions and the information they were trying

to obtain. The general results whicH show the parameters of the research in terms

installation type and size are included in summary form in this chapter. A discussion

on the normalisation of the data into types of fourth generation languages is included

and the survey data from this research is normalised A summary of the results obtained

from the research is also included

5.1 Survey Design

In Chapter 3 the need for software cost estimation was discussed. Section 3.3

stated that the estimation of software costs cannot be an exact science as there are a

large number of factors which are not known. These unknown factors mean that the

best way to estimate costs for a particular project is that information fi-om as many

similar projects as possible should be considered and averaged to allow for any special

attributes of that project, which are not being considered.

The first stage was therefore to define the questions which the research was trying

to answer. As the question this research was trying to answer was which factors

influence the amount of software maintenance when using fourth generation languages,

it was not possible to test this directly. It was necessary to produce a list of factors

which were considered may influence software maintenance and to pose a question for

each of these.

69

By refining the factors introduced in Sections 3.5 and 3.6 a list of factors was

produced and these are:

• Attributes of the system

- The number of errors in the software

- The age of the product

- The required reliability

- The complexity of the product

- The type of application""

- The size of the system

- The original time scale for development

* elapsed time

* person months

- The reliability of the underlying system

- The number of user written programs in the system

• Personnel

-Staff ability

* development staff at time system was written

* maintenance staff

- Morale and motivation of staff

- Experience of staff in 4 main areas:

* The fourth generation language

* The computer environment

* The type of application

* Any third generation language

- Training of software maintenance staff in 3 key areas:

* Software maintenance

7 0 -

* The fourth generation language

* Any third generation language

- Change of staff

- Organisation of software maintenance

• Volatility

- Built in flexibility

- Number of requests for enhancements

- Hardware changes

• Understandability of the source

- Documentation

- Programming style

- Use of methodologies

- Use of site standards

- Use of meaningful names in the software

- Complexity of the source code

- The type of fourth generation languages used

• Management issues

- Management attitude to software maintenance

- The policy to recruit software maintenance staff

- The resources allocated to software maintenance

- The workload of the software maintenance staff

- The time allowed for individual changes

• Use of tools

- The use of tools in development and maintenance

- The use of prototyping

- The use of a data dictionary

71

Data is necessary i f an environment is to be understood and controlled. It was

then necessary to collect data which could be analysed to enable a judgement to be made

on the effect of these factors. There were two of the four ways in which the necessary

data could be collected - experimentation or survey. Experimentation was ruled out

because it would have been almost impossible to develop multiple systems which vary

only in the maximisation or minimisation of one factor. To fiilly consider the impact of

these factors on software maintenance the systems would then need to be kept running

for years to enable them to be considered over the whole software life cycle. Using

experimentation it would not have been possible to consider more than one or two

factors, because of these difficulties.

It was decided that the crucial element in this research was to obtain information

from as many sources as possible and because of this it was decided that the best method

would be by the use of a questionnaire.

The best method of completing the survey would have been through personal

contact with one person conducting an interview and completing a form. This, however,

had the disadvantage that again, this would reduce the number of responses which could

be obtained over a postal survey. To maximise the responses the surveys were

despatched by mail, targeted at:

• Medium to large companies, as these are the ones more likely to use fourth

generation languages

• Business applications, because these are the main targets for fourth

generation languages

The disadvantage of postal surveys is that they can have a limited success as often

the person receiving them, does not complete them, and a completion rate of less than

10% is not uncommon.

After the questionnaire was produced a few contacts were asked to complete the

survey and were questioned and the questionnaire was refined in response to their

replies. They were then asked to complete the survey again to ensure that the

information they were providing was that which the question was trying to obtain. The

final survey is shown in Appendix C. After this process 235 surveys were despatched in

2 batches with the results being analysed after receipt of the first batch to enable any

necessary changes to be included before the second batch was sent out, although no

changes were actually made.

The survey consisted of two parts, the first being general questions about the

company and its organisation, together with questions concerning the position of the

person completing the questionnaire, the second being specific questions about one

fourth generation system which was being maintained.

For the majority of questions the respondent was asked for their rating on a scale 1

to 5. This was convenient for three reasons:

• I f numeric information was required exact figures may not be at hand,

for example the number of errors in the software.

• Currently software maintenance resources are likely to be allocated by

expert judgement, and it is likely that the view of the software is likely

to affect this judgement.

• Once the factors are identified and a weight attached to them, it is likely

that the person estimating the resources will be providing the

information based on their judgement. I f the research gathers the

information in this way then it is as close as possible to its final use.

As the final aim of the research is to provide a weight for a range of values it was

decided that for as many questions as possible a rating of 1 (low values) to 5 (high

values) would be used. Again, this is because it is as close as possible to the way the

factors are likely to be used in the final method.

-73.

In some cases the questions were left open ended, for example question 43 "What

tools are used in software maintenance?" because it was thought that at a later stage

different categories of tools could be examined separately, i f it was thought necessary.

Due to the length of the original survey no questions were included to cross-check

previous answers, as it was thought that the length of the survey may deter people fi-om

completing them.

The questions asked fall into the following categories:

• Background

• Attributes of the system

• Personnel

• Volatility

• Understandability of the source

• Management issues

• Use o f tools

a) Background.

These questions were aimed at information which will enable the results to be

interpreted within the context of the research. The questions which fell into this category

were:

• The category to which the department and the organisation served by it

belong.

• The size of the DP department and the company.

• Whether the person completing the survey believes that fourth

generation languages have reduced software maintenance over similar

systems developed without them. This is a subjective opinion, and may

not provide an actual answer as the users expectations may increase

with the use of fourth generation languages and therefore make more

requests for change. The person completing the survey may therefore

74

say that fourth generation languages have not reduced software

maintenance, when in fact, what has happened is that since the

introduction of these tools the service provided by the data processing

department may have improved,

b) Attributes of the System.

Nine attributes of the system were considered and examined in the survey. They

were:

• The number of errors in the software. The information that was actually

required was the number of errors in the software which were

discovered in the last 12 months. As it was not possible to examine this

factor directly, it was therefore decided that the best question to ask

was how reliable the software had been in the past. Questions asked for

the reliability of the system over the last 12 months and the historic

reliability rated on a scale 1 (very unreliable) to 5 (very reliable). It also

allowed for the choice of 6 meaning a new system, in this case asking

for a rating of 1 to 5 for the expected reliability. The expected reliability

was a difficult question to answer for a new system but often a person

who was involved in the production of a system has some idea of how

reliable it is likely to be. This is based on their knowledge of how much

testing has been carried out etc. It is also possible that some assumption

of reliability has been assumed when allocating resources for software

maintenance over the next 12 months. This question also asks about the

history of the product, as often i f a product has been unreliable in the

past there is a reluctance to make changes, or is tested more thoroughly.

• The age of the product. A question asked how long the software has

been in operation.

75-

• The required reliability. The survey asked how serious the consequences

of failure are, 5 categories were given for this which were:

i) No real problem

ii) Problems

iii) Serious problems

iv) Financial disaster

v) Life critical

• The complexity of the product. The questionnaire asked for the

complexity of the tasks undertaken by the product to be rated fi-om 1

(very easy) to 5 (very complex).

• The type of application. Three questions asked for this information, the

main one being simply what type of appHcation is it? for example

financial. The name of the system and a brief description of what the

software does, were also asked as this would allow the classifications to

be broken down fijrther i f it was thought to be necessary.

• The size of the system. This is the major faaor which was assumed to

influence the amount of software maintenance, and this will be used as a

baseline against which all the other factors will be compared. Various

measures of system size were asked for to try and include the maximum

number of systems, including:

- Total lines of source code

- Total lines of executable code (excluding comments and

declarations)

- Number of entity relationships or similar (depending on the

Computer Aided Software Engineering tool used)

- The number of fiinction points

- The number of lines of job control

76

- The number of entries in a data dictionary.

These measures of system size were asked for both the system as a

whole and for the largest program to show if the system consisted of

one main program and very little else, as this may have an effect on the

amount of software maintenance.

• Original time scale for development. The questionnaire asked for three

pieces of information on the original time scale for development:

- Time scale lii'person months/ years

- Elapse time in months/ years

- The number of staff employed on the project.

Armed with this information and the system size it should be possible to

determine whether the original time scale was too short. I f this was the

case the testing and implementation phases are likely to be compressed

with an increase in software maintenance.

• The reliability of the underlying system. The survey asked how reliable

the fourth generation language is, this is because if failures with the

system are occurring this is likely to use software maintenance

resources.

• The number of user written programs in the system. The survey asked

how many user written programs there are in the system.

c) Personnel.

Various personnel factors were considered in the survey. These were:

• Staff ability. One question addressed the ability level of the staff for

each of development and maintenance. The average (mean)ability level

of the staff was asked to be rated on a scale 1 (very poor) to 5 (very

good). The question for development stated that the rating should be

assessed for the time the system was written, and this question allowed

77-

a rating of 6 (not known), as the system may have been written years

ago and the information no longer available.

• Morale and motivation of staff. A rating of software maintenance staff

on a scale 1 (very bad) to 5 (very good) was requested. An indirect

measure, for instance, the level of sick leave, staff turnover rates etc.

was considered but as this may be affected by other factors, therefore a

direct question was asked.

• Experience of staff. The suWey examined the experience of both

maintenance and development staff in 4 areas:

- The fourth generation language

- The computer environment

- The type of application

- Any third generation language

The average (mean) experience of the staff was classified into one of

three categories:

- Less than 6 months

- 6 to 12 months

- 1 to 2 years

- 2 to 3 years .

- More than 3 years.

Whilst the bands are not exactly equal, it was felt that they reflect stages

of experience, equating to trainee, beginner, average, good and expert.

• Training of software maintenance staff. Training in 3 key areas was

examined in the survey:

- Software maintenance

- The fourth generation language

- Any third generation language.

78-

The areas were rated under the following categories:

-None

- Insufficient

- Adequate

- More than adequate.

• Change of staff. The questionnaire asked i f the staff who developed the

system are the same people who are responsible for its maintenance.

The 3 possibilities were:

-None

- Some of them

- All of them.

• Organisation of software maintenance. The survey covered the

organisation of the software maintenance teams within the company.

The question asked whether the teams were:

- Separate development and maintenance teams

- Mixed maintenance and development

- Both policies

I f either the second or third options were answered the survey asked

what percentage of time was spent on software maintenance.

• Staff workload. The survey asked for a rating of 1 to 5 ranging from

vastly underworked to vastly overworked.

• Time allowed for individual changes. The survey asked for a 5 point

rating of whether the time allowed for individual changes were very

inadequate to very generous.

79-

d) Volatility.

Three volatility factors were considered in the survey:

• Built in flexibility. A rating, again on a scale of 1 (none) to 5 (lots) of

the flexibility for fiiture changes was requested in the survey.

• Number of requests for enhancements. The survey asked for the number

of changes to the system in the last 12 months. Again this was rated on

a scale 1 (none) to 5 (lots).

• Hardware changes". The survey asked whether any hardware changes

were expected within the next 12 months, and i f so were they likely to

require changes to the software.

e) Understandability of the source.

Factors which influence the understandability of the source were included in the

survey:

• Documentation. The rating of the standard of the documentation was

requested, again using the scale 1 (non-existent) to 5 (excellent).

• Programming style, methodologies, and site standards in documentation

and maintenance. The questionnaire asked if any of the following were

used;

- Meaningfial names in the software

- Comments in the source code

- Site standards

- A measure of complexity

- A methodology in development

- A methodology in maintenance.

Often companies use these methods but not in their purest form,

therefore with all these questions a middle ground was allowed besides

the definite Yes and No answers.

80

The survey also asked for a classification of an overall understandability

of the source code on a scale fi^om 1 (very muddled) to 5 (very clear).

• Complexity of the source code. The survey also included a question

about the complexity of the code itself, rather than the tasks undertaken

by it. Again the scale 1 (very easy) to 5 (very complex) was used.

• The type of fourth generation language used. The questionnaire asked

which fourth generation was used, and this could be used to define the

category of the language.

f) Management issues.

Management issues were considered in the survey:

• The management attitude to software maintenance. A question was

included in the survey asking how management see software

maintenance in relation to development, 5 categories of answers which

were:

- Much less important than development

- Less important than development

- About the same

- More important than development

- Much more important than development.

As with some of the previous questions it may be necessary to consider

the role within the organisation of the person completing the survey.

• The policy to recruit software maintenance staff. A question was

included asking what the strategy for the recruitment of software

maintenance staff was employed within the organisation. The following

categories were used:

- Staff are recruited specifically for maintenance

- Trainees are used and then moved to development

81

- Other, which the respondent was asked to specify.

• The resources allocated to software maintenance. The survey asked for

the resources which have been allocated to software maintenance within

the previous, current and next 12 months. A question was also included

as to whether the time allocated to individual changes was sufiBcient,

again using the scale 1 (very inadequate) to 5 (very generous). As this is

only part of the picture a question also asked about the workload of the

staff involved in soflJware maintenance, again on the scale 1 (vastly

underworked) to 5 (vastly overworked). The survey also asked a

question which of the following did the person completing the survey

include in software maintenance. The following list was provided:

- Emergency repairs

- Changes to correctly reflect the specifications or correctly utilise

system resources

- Upgrades to adapt to changes in processing requirements

- Amendments to adapt to changes in regulations

- Growth amendments performed to adapt to changes in data

requirements, or to the addition of new programs, new users etc.

- Enhancements for changes requirements

- Support for users of the system

- Changes which take less than 1 day

- Changes which take less than 3 days

- Changes which take less than 5 days

- Changes which take less than 10 days

- Changes which take less than 20 days

This question could be used to determine the tasks expected from the

software maintenance resources.

82

g) The Use of tools

Three factors related to the use of tools were included in the survey:

• The use of tools in development and maintenance. Three questions were

included concerning the use of tools, the first asked whether any

Computer Aided Systems Engineering (CASE) tools were in use in the

company. The others asked what tools were used during development

and maintenance.

• Prototyping. A quesfion asked whether the system was prototyped

when it was written, and if so was it rewritten before being used in

production.

• The use of a data dictionary. The survey asked if a data dictionary was

used on the system and if so, what for.

5.2 Normalisation of the Data

The first stage in analysing the results of the survey was to convert the surveys

into a common measurement which could be used for comparison. As previously stated

in Chapter 3 the traditional method has been Lines of Source Code per Person Month,

and it was considered appropriate to use a measure of system size per person month in

this case. The survey asked for a number of measures of system size, and these were

converted to one common measure using the replies fi-om the others. Of the 47 replies, 8

did not use a fourth generation language, 9 gave no indication of the system size and 4

gave no indication of the resources allocated to software maintenance these were

excluded from the analysis of the results, meaning that in the analysis of the factors 26 of

the surveys were used.

The replies are shown in Table 51.

83

Table 5.1: Replies to question on system size.

Lines of

Code

Lines of

Executable

Code

Entity

Relat'nships

Function

Points

Lines of Job

Control

Entries in

data

Dictionary

25 210

27,400 15,840 52

85,400 60,000 2,000

1,000 1,200

88,000 2,600 1,000 450

100,000 80,000

140

7,800

800,000 300,000 110

15,000 14,500

60

1,430

35,000 400 5,000

69,000 65,000

1,000,000

155,540 1,232 400

6,000,000 3,000,000

1,125,000 5,000 500

30

40,000 78 450

1,500 10,000

84

Table 5.1: Replies to question on system size (continued).

Lines of

Code

Lines of

Executable

Code

Entity

Relat'nships

Function

Points

Lines of Job

Control

Entries in

data

Dictionary

1,500

2,500 2,150

400 400 30

45,000 25,000 500

71,000 53,000

48,000 107

120,000 100,000 10,000

685,000

2,000

As 22 of the replies specified the system size in lines of code, and this was by far

the most common method specified, it was decided to use this as the measure of system

size. It should be noted that it appears that in most cases the number of lines of code has

been rounded to the nearest thousand, or even guessed less accurately. This rounding

should not have a significant effect on the end results providing that it is not too

inaccurate, as the intention of the research is to provide an estimate of the amount of

software resources, to within 20%.

Three of the systems were specified in both number of entities and lines of code

and these calculated to be:

40,000/78 = 512.8

2,500 I S =500

2,000 / 5 =400

Total 44,500/88 =506

-85-

Therefore if the system size was only given in the number of entity relationships

the number of entity relationships was multiplied by 500.

Only one of the systems specified the size in fiinction points and lines of source

code and this calculated to be:

88,000/2,600 =34

Therefore for the conversion 34 lines of code per fimction point was used.

To enable the system to be compared all systems were therefore converted into

lines of code per person month (LOC/PM). The figure used was the amount of software

maintenance required by the system for the previous 12 months, as this was thought to

be the most reliable. In many cases the amount of software maintenance resources

allocated to the system was being greatly reduced in the following financial year, but it

was thought that this was probably due to a recession and as software maintenance has a

low priority in management's view it was receiving the largest cuts. In many cases the

staff who were maintaining the system were overworked and the resources were being

cut to a half or even one third of those for the previous financial year. It was not known

at this stage whether the resources could be reduced by this amount and the system still

be maintained.

The number of lines of code being maintained is shown in Table 5.2

Table 5.2 Number of lines of code per person month being maintained -

replies from survey.

Language LOC/PM LOC/PM LOC/PM LOC/PM Language

Average

Smart/400

SYNON/2

Oracle

Ingres

850

972

1,250

1,972

1,250

2,083

1,500

2,222

2,160

850

972

1,540

2,092

86-

Table 5.2 Number of lines of code per person month being maintained

Language LOC/PM LOC/PM LOC/PM LOC/PM Language

Average

Line 2,200 2,200

Natural 2,210 2,210

Pro-IV 2,125 2,125

Focus 1,000 1,945 4,000 2,315

Nomad 1,250 3,558 6,666 3,825

Ramis 4,566 4,566

Ideal 3,333 6,000 4,667

Mantis 21,666 21,666

Unisys Link 15,930 15,930

Ingrev 19,800 19,800

SQL Windows-

Forms

25,000 25,000

Telon 27,780 27,780

It can be seen from this table that there is a major difference between the amount

of software maintenance a system requires depending on the fourth generation language

used. It was also noted that there appeared to be 3 groups consisting of

Group A - Smart/400, SYNON/2, Oracle, Ingres, Line, Natural, Pro-IV and

Focus.

Group B - Nomad, Ramis and Ideal.

Group C - Mantis, Unisys Link, Ingrev, SQL Windows - Forms and Telon.

These groupings are based on the average number of lines of code being

maintained for a particular language. They do not relate to the classification of fourth

87

generation languages discussed in Chapter 2 as these were development categories and

here a maintenance category is being considered. In order to verify that this is a

reasonable grouping the lines of code were related to the type of application. In

considering this there are four possibilities as shoAvn in Figure 5.1

Figure 5.1: Lines of code related to type of language
Same

Type of
System

Same
Different

Fourth Generation Language

Different

a) the systems are of the same type and written in the same language in

which case the amount of code being maintained per person month will

be approximately equal.

b) the systems are of the same type and written in the different

languages in which case the amount of code being maintained per

person month will not be expected to be the same.

c) the systems are not of the same type and are written in the same

language in which case the amount of code being maintained per

person month will not necessarily be the same.

-88

d) the systems are not of the same type and written in different

languages in which case the amount of code being maintained per

person month will be expected to be different.

As financial systems are the largest category in the survey, this has been used to

compare the above possibilities. Table 5.3 shows the number of lines of code for

financial systems together with their languages.

Table 5.3 Lines of code maintained per person month for financial

Language Lines of Code Lines of Code

Smart/400 850

SYNON/2 972

Oracle 1,250 1,500

Ingres 1,972 2,083

Natural 2,210

Focus 1,945

Nomad 3,558

Ramis 4,556

Ideal 6,000

Mantis 21,666

Ingrev 19,800

SQL Windows-Forms 25,000

Telon 27,780

-89

a) There are 2 financial systems written in both Oracle and Ingres, and

in Oracle 1,250 and 1,500 lines of code are maintained in each of their

systems, and 1,972 and 2,083 in Ingres.

b) Table 5.3 shows that shows that 1,250 lines of code are being

maintained with Oracle and 4,566 are being maintained with Ramis and

27,780 with Telon.

c) In Oracle non financial and financial systems are written and it shows

that 1,250 and 1,500 lines are maintained per person month in the

financial systems and 2,160 in a stock control system.

d) 2,160 lines of Oracle code are being maintained in a stock control

system and 6,000 in an Ideal financial system and 15,930 in a Unisys

Link M.I.S. system.

All these resuhs confirm that the languages appear to fall into three distinct

categories.

In this case:

Group A has 15 samples with a mean of 1,849.

Group B has 6 samples with a mean of 4,229

Group C has 5 samples with a mean of 22,035

The comparisons are therefore shown in Table 5.4.

Variance Estimate Degrees of Freedom

Between Samples 780,423,154.49 2

Within Samples 73,516,075.42 23

90-

The calculated F ratio is therefore 10.615, and as can be seen from Appendix B the

critical value for the appropriate degrees of freedom is 3.42, and therefore statistically

these figures show that at the 5% significance level it was considered that there were

three classes of fourth generation language.

, To enable comparisons between the types of language to be made a conversion

was made. The mean of the three types was used to obtain a weighting factor by dividing

the mean by the mean of Group A (the lowest value), these are shown in Table 5 .5.

Group A B C

Average 1,849 4,229 22,035

Conversion 1.0 4,229/1,849 = 2.3 22,035/1,849= 11.9

This conversion has been applied to the lines of code per person month from the

surveys and the results are shown in Table 5.6.

Table 5.6 Number of lines of code per person month being maintained

Language LOC/PM LOC/PM LOC/PM LOC/PM Language

Average

Smart/400 850 850

SYNON/2 972 972

Oracle 1,250 1,250 1,500 2,160 1,540

Ingres 1,972 2,083 2,222 2,092

Line 2,200 2,200

Natural 2,210 2,210

Pro-IV 2,125 2,125

Focus 1,000 1,945 4,000 2,315

Nomad 547 1,556 2,915 1,673

91

Table 5.6 Number of lines of code per person month being maintained

Language LOC/PM LOC/PM LOC/PM LOC/PM Language

Average

Ramis 1,997 1,997

Ideal 1,458 2,624 2,041

Mantis 1,818 1,818

Unisys Link 1,337 1,337

Ingrev 1,662 1,662

SQL Windows-

Forms

2,098 2,098

Telon 2,331 2,331

After the conversion these three types of language can be shown to be

approximately equal, as can be seen from Table 5.7.

Group A Group B Group C

Minimum value 850 547 1,337

Maximum value 4,000 2,915 2,331

Mean value 1,849 1,831 1,849

5.3 General Results

Forty seven replies were received from the survey, and the results in this section

are all classified by the number these replies, and set the scope of the survey. A number

of industrial categories were given and the number of responses for each of these are

shown in Table 5.8.

92

Table 5.8 The industrial categories of the departments and

Industrial Category Department Organisation

Aerospace engineering 1 1

Chemical/ Allied products 1 1

Computer hardware 0 1

Computer software 23 6

Food/ Drink/ Tobacco 0 1

Instruments/ Electrical/Electronics 1 1

Mechanical engineering 1 2

Petroleum/ Coal/ Rubber 2

Textiles/ Leather goods/ Footwear/ Clothing 1 1

Transportation equipment/ Vehicles 1 1

Banking/ Credit agency 7

Business and professional services 1 0

Communications and information media 1 2

Distribution and associated trades 0 1

Health services 0 2

Insurance/ Assurance 5 5

Leisure and recreational services 1 2

Public administration 1 1

Transport/ Travel and supporting services 5 5

Retail 0 2

Public utilities (Gas/ Electricity/ Water) 1 3

Total 47 47

93

One of the respondents did not supply a company size, and excluding this the

minimum was 34, the maximum 80,000 and the average size was 6,578.63.

The maximum DP Department size was 900, minimum 1 and average 243.04.

The survey asked whether the respondent was a software maintdners or a manager

of a software maintenance team and the results are shown in Figure 5.2.

Figure 5.2 The position of the respondents to the survey.

Q Software Maintainer
• Manager of Software

Maintenance Team
BBoth
• Ottier
• No Answer

The survey included a list of categories which are classed as software maintenance

under the definition given in Chapter 1. A question then asked which of these categories

were classed as software maintenance, the number of replies for each of these categories

are given in Table 5.9. Where a time limit was applied the lower categories were also

assumed to be included, for instance if changes which take less than 10 days was given,

changes which take less than 1, 3 and 5 days were also included, even if they were not

marked.

94

Table 5.9 Number of replies who included category as software

maintenance.

Description Count

Emergency repairs 44

Changes to correctly reflect the specifications or correctly utilise system

resources

36

Upgrades to adapt to changes in processing requirements 37

Amendments to adapt to changes in regulations 34

Growth amendments performed to adapt to changes in data

requirements, or to the addition of new programs, new users etc.

36

Enhancements for changed requirements 31

Support for users of the system 37

Changes which take less than 1 day 39

Changes which take less than 3 days 36

Changes which take less than 5 days 34

Changes which take less than 10 days 27

Changes which take less than 20 days 24

All of these categories are included in the types of maintenance introduced at

section 2.3, but the results show that approximately one-third of the respondents did not

include perfective as maintenance, whilst most (94%) include emergency repairs.

Of the respondents 39 used a fourth generation language and 8 did not, this

percentage is artificially high as the survey was targeted at companies who do.

Twenty five respondents used a Computer Aided Software Engineering (CASE)

tool and 21 did not. One did not answer this question

The survey asked whether the respondent thought that the fourth generation

language had reduced software maintenance, and these results are shown in Figure 5.3.

-95

Figure 5.3 Whether respondents thought the fourth generation

language had reduced software maintenance.

16 - r

14 4-

12 4-

10 +

8 4-

S +

4 +

2 +

O No - Maintenance has
increased greatly

n No- Maintenance has
increased

B About the same
• Yes- Maintenance has

reduced
U Yes- Maintenance has

reduced greatly
El No Answer

These results show that the majority of the respondents (22) feel that fourth

generation languages have reduced software maintenance, with only one reporting an

increase and 14 answering about the same.

The replies to the question about management's view of software maintenance is

shown in Figure 5.4.

-96

Figure 5.4 Management view of software maintenance.

26 T

20 +

15 +

10 +

6 +

Q Much less important than
development

BLsss important than
developinent

•About the same
• More imporUnt than

development
• Much more important

than development
QNoansvuw

I.

These results show that, on average, managers do rate software maintenance on a

par with development, 13 seeing it as less important, 10 as more important and 22 about

the same.

Replies to the question on strategy of recruitment of software maintenance

programmers is shown in Figure 5.5.

Figure 5.5 Strategy used to recruit maintenance programmers.

38
35 -r

30 •

26 -

20 •

16 • •

10 •-

6 - •

0 • -

13 Stair recruited spedlicayy
for maintenance

•Trainees used and then
moved to development

H other (mainly as and
wtien required)

• Mixed first 2 answers
GNoi

• ••• • --•V.V.V.-.-.-.-.V. I

The results show that companies normally recruit software maintainers as and

when required.

-97

5.4 Survey Results

All results in this section were calculated by lines of code per person month and

were initially analysed using the t-test. This is because the number of categories to be

chosen from i.e. the scale 1 to 5 was an arbitrary choice, and another scale could have

been chosen for example, 1 to 3, or even a YES/ NO answer. The t-test was therefore

used as a first cut, to see i f any of the categories could be combined, with the resulting

combined categories being analysed through the appropriate test, t-test or analysis of

variance, depending on whether there were more than 2 combined categories.

Following the first cut adjacent groups with no significant difference between them

were combined i.e. i f the initial results showed that there was no significant difference

between 1 and 2 and 4 and 5 then the analysis of variance would be used to compare 3

samples (1 and 2 combined, 3, and 4 and 5 combined). I f when the groups were

combined only 2 categories remained the t-test would be used against these 2 samples.

Combinations of non-adjacent groups were not considered logical and therefore were

never combined unless the intermediate group or groups were combined.

Any survey which did not answer a particular question was excluded from the

resuhs for that question. Section 5.1 introduced the list of factors to be tested and the

rationale behind the survey. A copy of the survey is shown at Appendix C and the fiill

results are at Appendix D, together with the rationale behind the hypothesis and a

discussion of the results. The raw data is shown in Appendix E.

The analysis of the results are shown in Table 5.10.

-98

Hypothesis - The amount of software

maintenance is dependant upon . . .

Number

of

surveys

analysed

DifTerence

between

factors

Hypothesis

_proved

Difference

between

factors

Hypothesis

not proved

The history of the reliability of the system 22 /

The reliability of the system in the last 12 months 25 /

The age of the system 26 /

The required reliability of the system 26 /

The complexity of the tasks undertaken by the

system

26 /

The type of application 26 /

Development effort in person months compared

to estimates of development effort

22

The elapse time of development when compared

to estimates of development time

23

Reliability of the fourth generation language 25 /

The number of user written programs 26

The mean ability level of the staff at the time the

system was developed

26 /

The average ability level of the software

maintenance staff

26

The morale of the software maintenance staff 26

- 9 9 -

Hypothesis - The amount of software

maintenance is dependant upon . .

Number

of

surveys

analysed

Difference

between

factors

Hypothesis

proved

Difference

between

factors

Hypothesis

not proved

The experience of the development staff with the

fourth generation language

23 /

The experience of the development staff with the

computer environment

23 /

The experience of the development staff with the

type of application

23 /

The experience of the development staff with any

third generation language

22 /

The experience of the software maintenance staff

with the fourth generation language

23 /

The experience of the software maintenance staff

with the computer environment

23 /

The experience of the software maintenance staff

with the type of application

23 /

The experience of the software maintenance staff

with any third generation language

22

The level of training provided specifically for

software maintenance

25

The level of training provided for the fourth

generation language

25 /

- 100

5.10 Summary of Survey Results (continued).

Hypothesis - The amount of software

maintenance is dependant upon . . .

Number

of

surveys

analysed

Difference

between

factors

Hypothesis

proved

DifTerence

between

factors

Hypothesis

not proved

The level of training provided for any third

generation language

26 /

Whether the staff maintaining the system are

those who developed it

26 /

The workload of the software maintenance staff 25 /

The time allowed for individual changes 26 /

Whether any flexibility for fiiture changes was

built into the system at the time it was written

26 /

The number of enhancements included in the

system in the previous 12 months

26 /

Expected hardware changes 26

The quality of the documentation 25

The use of site standards 26 /

The use of comments in the source code 26 /

5.10 Summary of Survey Results (continued)

Hypothesis - The amount of software

maintenance is dependant upon . . .

Number

of

surveys

analysed

Difference

between

factors

Hypothesis

proved

Difference

between

factors

Hypothesis

not proved

The use of meaningfijl names in the software 25 /

The use of a methodology in the development of

the system

26 /

The use of a methodology in the maintenance of

the system

26 /

The understandability of the source code 26 /

The complexity of the code 26 /

Management's view of software maintenance

against their view of development

25 /

Whether the system was prototyped during

development

26 /

Whether the prototype was rewritten before

being used in production

7 /

Whether a data dictionary is used in the system 25 /

The use of tools in the development of the

system

23 /

The use of tools in software maintenance 24 /

102

Summary: The data to test the factors which influence the amount of software

maintenance was collected by means of a survey, and the analysis was done initially by

the use of the t-test, to enable classes to be combined Three categories of fourth

generation language were identified and the amount of software maintenance per

person month was adjusted to provide a common value to enable the different classes of

language to be compared The hypotheses were examined in this chapter to see which of

the factors discussed in section 5.1 had a significant influence on the level of software

maintenance. The original list was refined to 12 factors which did significantly

influence the resources required by software maintenance. These 12 factors are:

Attributes of the system

• Development effort in person months being adequate

• Elapsed development time being adequate

• The number of user written programs in the system

Personnel attributes

• The development staff having more than 6 months experience of the computer

environment

• The software maintenance staff having more than 6 months experience with the

fourth generation language

• Provision of trainingfor the fourth generation language

• Training provided for any third generation language

• Drawing the software maintenance staff from the development staff

Volatility

• Building in flexibility for changes when the system is written

Understandability of the source code

• Always using meaningful names in the software

103

Use of tools

• The use of prototyping during the development of the system

• Using tools during the development of the system

-104-

CHAPTER 6

Application of the Results

Abstract: This chapter uses the factors which influence the amount of software

maintenance, applies a weight to them and produces an equation to calculate the

amount of software maintenance a system written in a fourth generation language will

require. The chapter also discusses the use of the factors and the equation.

6.1 Introduction.

Chapter 5 introduced a list of factors which were considered may have an

influence on the amount of software maintenance resources when using fourth

generation languages. The chapter then examined these factors to see whether the

evidence showed that they actually have a significant effect on software maintenance.

The original list was reduced to 12 factors which are:

• Development effort in person months being adequate.

• Elapsed development time being adequate.

• The number of user written programs in the system.

• The development staff having more than 6 months experience of the computer

environment.

• The software maintenance staff having more than 6 months experience of the

fourth generation language.

« Provision of training for the fourth generation language.

• Training provided in any third generation language.

- 105-

• Drawing the software maintenance staff from those who originally developed the

system.

• Building in flexibility for changes when the system was written.

• Always using meaningful names in the software.

« The use of prototyping during the development of the system.

• Using tools during the development of the system.

6.2 Factors Weights.

The identified factors will not influence the amount of software maintenance equally and

a weight was assigned from the mean of the normalised value of software being

maintained i.e. the mean of all the surveys which gave that answer. These means are

shown in Table 6.1.

Table 6.1 Mean of amount of software being maintained for each

factor.

Factor Yes No

Development effort in person months being at least

that predicted by the COCOMO basic organic

model based on the current system size.

2,010 942

Development elapse time being at least that

predicted by the COCOMO basic organic model

based on the current system size.

2,039 1,423

Number of user written programs being less than

100

2,130 1,218

Development staff experience of the computer

environment less than 6 months

905 2,106

- 106-

Table 6.1 Mean of amount of software being maintained for each factor

(continued)

Factor Yes No

Software maintainers experience of the fourth

generation language less than 6 months

1,350 2,090

Provision of training for the fourth generation

language at least adequate

2,018 842

Training provided for any third generation

language at least adequate

1,988 790

All software maintenance staff drawn from

developers of the system

2,355 1,698

Built in flexibility at the time the system was

developed more than average

2,143 1,449

Always using meaningfial names in the software 2,103 1,158

The use of prototyping during the development of

the system

2,363 1,660

The use of tools in the development of the

software

2,371 1,645

These factors show that the means of these factors are different from each other

and a weight can be derived from these figures by division of these means and these are

shown in Table 6.2 with the highest mean being given a value of one.

-107-

Table 6.2 Weights for the factors identified.

Ref Factor Yes No

(i) Development effort in person months being at least

that predicted by the COCOMO basic organic model

based on the current system size.

1.0 2,010/942 = 2.1

(ii) Development elapse time being at least that predicted

by the COCOMO basic organic model based on the

current system size.

1.0 2,039/1,423 = 1.4

(iii) Number of user written programs being less than 100 1.0 2,130/1,218 = 1.7

(iv) Development staff experience of the computer

environment less than 6 months

2,106/905 =

2.3

1.0

(V) Software Maintainers experience of the fourth

generation language less than 6 months

2,090/1,350

= 1.5

1.0

(vi) Provision of training for the fourth generation

language at least adequate

1.0 2,018/842 = 2.4

(vii) Training provided for any third generation language

at least adequate

1.0 1,988/790 = 2.5

(viii) All software maintenance staff drawn from

developers of the system

1.0 2,355/1,698 = 1.4

(ix) Built in flexibility at the time the system was

developed more than average

1.0 2,143/1449= 1.4

(X) Always using of meaningful names in the software 1.0 2,103/1,158= 1.8

(xi) The use of prototyping during the development of the

system

1.0 2,363/1,660= 1.4

(xii) The use of tools in the development of the software 1.0 2,371/1,645 = 1.4

- 108

These weights can then be used by reading off the figure from the columns

corresponding to the answer from the survey.

6.3 Software Maintenance Equation.

Section 6.2 showed the weights for the factors identified in Chapter 5, and section

5.2 showed that there were three distinct maintenance classes of fourth generation

language. A curve fitting program 'was used to derive an equation for the best fit. As

many of the surveys had the same effort adjustment factor, and the criteria was to

produce an equation which would fit to within 20% of the obtained points, the values

were combined where the effort adjustment factors were equal. The computer program

produced an equation for the best fit for the allocation of software maintenance

resources in person months:

NSS * f(EAF)

where NSS = Normalised System Size

f(EAF) = fijnction of effort adjustment factor

and:

NSS = SS/LAF

where SS = System Size

LAF = Language Adjustment Factor

The Language Adjustment factor is that derived in section 5.2, and is:

Group A -1.0

(Smart/400, SYNON/2, Oracle, Ingres, Line, Natural, Pro-IV and Focus)

Group B - 2.3

(Nomad, Ramis and Ideal)

Group C-11.9

(Mantis, Unisys Link, Ingrev, SQL Windows - Forms and Telon)

- 109

f(EAF) = ln(EAF) * 0.0002 + 0.0001

EAF is that derived from the 12 factors identified in Chapter 5 and weighted as

shown in Table 6.2. It is simply all the weights multiplied together.

The computer program produced a value for the correlation coefficient r of 0.96,

and the fit of this equation to the obtained data is shown later in this chapter in figure

6.3. '

The fiiU format of the equation is:

Annual software maintenance resources =

(SS/LAF) * (ln(EAF) * 0.0002 + 0.0001)

The EAF is in the range:

1.0 to 715.4

and the range of ln(EAF) is:

0 to 6.573

Multiplying this range by 0.0002 is the same as dividing by 5,000 and provides

the range:

Oto 0.001315

Adding the 0.0001 ensures that f(EAF) is not zero, otherwise i f all factors were

1.0 i.e. software maintenance was reduced to a minimum the formula would provide an

estimate of zero man months to maintain the system. After this calculation the new range

is:

0.0001 to 0.001415

- 110

Although these figures are small, the highest value is greater than 14 times the

smallest, showing that these factors do have a significant effect on the amount of

software maintenance resources required by a system.

From these figures the range of software maintenance resources in man months

required annually by systems of particular sizes are:

1,000 lines 0.1 to 1.41

5,000 lines 0.5^- to 7.07

10.000 lines 1.0 to 14.1

20,000 lines 2.0 to 28.2

50,000 lines 5.0 to 70.7

100,000 lines 10.0 to 141.5

These figures show that the estimate in man months related to system size is

linear, i.e. it takes the form:

Figure 6.1. Normalised System Size plotted against Estimate

E
s
t

m
a
t
e

Normalised System Size

111

The equation shows that the EAF has a logarithmic relation to the estimate:

Figure 6.2 Effort Adjustment Factor plotted against Estimate

Effort Adjustment Factor

Table 6.3 shows the individual weights for the fifteen of the surveys (numbered 1

to 15) who supplied all the required information. The factors i to xii are those shown in

Table 6.2 and the weights are those appropriate to the individual answers. All these

individual scores have been multiplied together to give an Effort Adjustment Factor

(EAF), also shoAvn in Table 6.3.

- 112-

Table 6.3 Calculated effort adjustment factors

i ii iii iv V vi vii viii ix X xi xii EAF

1 1.0 1.0 1.7 2.3 1.5 2.4 2.5 1.4 1.4 1.8 1.4 1.4 243.33

2 1.0 1.0 1.7 2.3 1.5 2.4 2.5 1.4 1.4 1.8 1.4 1.4 243.33

3 2.1 1.4 1.7 1.0 1.0 1.0 1.0 1.4 1.0 1.8 1.4 1.4 24.69

4 2.1 1.4 1.0 1.0 1.5 1.0 1.0 1.4 1.0 1.0 1.4 1.4 12.10

5 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.0 1.4 1.4 11.29

6 2.1 1.4 1.7 1.0 1.0 1.0 1.0 1.4 1.0 1.0 1.0 1.4 9.80

7 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.0 1.4 1.4 8.07

8 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.0 1.4 5.76

9 2.1 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.0 1.4 1.4 5.76

10 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.0 1.4 1.0 5.76

11 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.0 1.4 1.0 5.76

12 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.0 1.4 1.0 5.76

13 2.1 1.4 1.0 1.0 .1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 4.12

14 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 4.12

15 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.0 4.12

The System Size (SS) and Language Adjustment Factor (LAF) derived in Table

5.5 is used to determine a Normalised System Size (NSS) by the formula NSS =

SS/LAF. This Normalised System Size together with the Effort Adjustment Factor

(EAF) can be used to provide an estimate of the resources required to maintain the

system. This can then be compared to the actual resources allocated, given by the

survey. The difference between the two values, together with the actual value can be

used to provide a percentage accuracy for the estimate. This is shown in Table 6.4.

113-

Table 6.4 Estimates versus actual software maintenance resources.

No. System Size

from survey^

L.A.F. Normalised

System Size

E.A.F. Estimate Actual %

Difference

1 2,500 2.3 1,087 243.33 1.30 2 35.00

2 35,000 1.0 35,000 243.33 41.96 36 16.56

3 685,000 11.9 57,563 24.61 42.67 43 0.77

4 12,500 11.9 1,050 12.10 0.63 0.63 0.00

5 27,400 2.3 11,913 11.29 6.97 6 16.17

6 300,000 1.0 300,000 9.80 166.94 144 15.93

7 45,000 1.0 45,000 8.07 23.29 30 22.37

8 2,000 1.0 2,000 5.76 0.90 0.9 0.00

9 71,000 1.0 71,000 5.76 31.96 36 11.22

10 85,400 2.3 37,130 5.76 16.72 24 30.33

11 100,000 11.9 8,403 5.76 3.78 4 5.50

12 265,000 1.0 265,200 5.76 119.39 120 0.51

13 48,000 2.3 20,870 4.12 8.00 8 0.00

14 40,000 2.3 17,391 4.12 6.66 6 11.00

15 155,540 1.0 155,540 4.12 59.60 72 17.22

Table 6.4 shows the calculated resources required by software maintenance against

the actual resources 12 of the 15 are within 20% of the actual, this calculates to 80% of

the tested systems. Of the other three systems, one is very small giving an estimate of 1.3

as opposed to 2 person months, and another provides an estimate of 23.29, whereas in

this case the 20% range is fi-om 24 to 36 person months.

114

It can be seen from Table 6.4 that systems 2 and 9 are written in the same class of

language, and both use 36 man months effort to maintain, however system 2 is 35,000

lines and system 9 is 71,000 lines. This difference is accounted for by the difierence in

EAF (243.33 and 5.76).

A graph of the actual values compared against the estimates is shown in Figure

6.3. As there were 3 factors Effort Adjustment Factor, Normalised System Size and

either the estimated or actual person months effort the Normalised System Size / Man

Months was plotted against the Effort Adjustment Factor. There are 2 values with an

Effort Adjustment Factor of243.33 which are not included on this graph, as the scale

required would affect the detail which could be seen for the other values.

Figure 6.3 Graph of Estimated LOC/MM against actual.

3,000.00

2,500.00 I

2,000.00

1,500.00

1,000.00 -

500.00 -

0.00

o
a

o X ^

o ^
X Estimate

o Actual

0.00 5.00 10.00 15.00 20.00 25.00
EAF

Boehm [BOEHM83] said, "Today a software cost estimation model is doing

well i f it can estimate software development costs within 20% of actual costs for 70% of

the time, and on its own turf (that is within the class of projects to which it has been

calibrated)". The cost estimation model developed here refers to software

maintenance but it is within this range, and it is thought that the prediction of software

maintenance costs is more difficult than development costs because of problems with

definition of sofhvare maintenance.

115-

6.4 Confirmation of the Results.

Having obtained the equation, the next stage was to test its effectiveness against

data which had not been used to derive it. A reduced survey was prepared containing

just those questions relating to the factors which had been identified as having a

significant effect on the amount of software maintenance. This survey contained

questions 1, ll(relevant part), 17, 22, 23, 24, 29(relevant part), 30, 31, 33(relevant

part), 42 and 44 fi-om the original survey. The other questions were removed in the hope

that due to the reduction in size of the survey more responses would be received. Eighty

five shortened surveys were despatched and 14 were received, of these 9 contained all

the relevant information to test the equation. Table 6.5 shows the calculation of the

effort adjustment factor for these 9, the roman numerals refer to those weights in Table

6.2.

Table 6.5 Calculated effort adjustment factors for the additional data

i ii iii iv V vi vii viii ix X xi xii EAF

1 2.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.10

2 1.0 1.4 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.8 1.4 1.0 4.94

3 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.0 1.4 1.0 8.07

4 2.1 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.0 1.4 1.0 5.76

5 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.4 5.76

6 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.0 1.0 1.0 5.76

7 2.1 1.0 1.7 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.4 1.0 6.99

8 2.1 1.0 1.0 1.0 1.0 1.0 2.5 1.4 1.4 1.0 1.0 1.0 10.29

9 2.1 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.0 1.0 1.0 4.12

116

An estimate of the amount of software maintenance was calculated for each of

these 9 new surveys using the derived equation and the appropriate Language

Adjustment Factor. The resuhs are shown in Table 6.6. The percentage difference is

calculated in the same way as that in Table 6.4.

Table 6.6 Estimates versus actual software maintenance resources for the

additional data

No. System Size

from survey

L.A.F. Normalised

System Size

E.A.F. Estimate Actual %

Difference

1 3,000 1.0 3,000 2.10 0.75 0.75 0.00

2 650 1.0 650 4.94 0.27 0.25 7.41

3 15,000 1.0 15,000 44.45 12.88 12.0 6.83

4 331,133 2.3 143,971 4.66 58.71 48.0 18.24

5 20,000 11.9 1,681 8.07 0.87 1.0 14.94

6 5,000 2.3 2,174 5.76 0.98 1.0 2.04

7 15,000 1.0 15,000 6.99 7.33 7 4.50

8 9,000 1.0 9,000 10.29 5.10 5.00 1.96

9 21,000 1.0 21,000 4.12 8.05 8 0.62

These figures confirm the validity of the equation within the limits of 20% of the

actual costs for 70% of the time.

6.5 Application of Results.

The 12 factors which were identified in Chapter 5 to have a significant effect on

software maintenance in fourth generation language systems can be classified as either:

• fixed at the time of development

• changeable during maintenance.

117

The fixed factors are:

• the time of development in person months

• the elapsed time of development

• the number of user written programs

• development staff experience with the computer environment

• the amount of flexibility in the system

• the use of prototyping during development

• the use of tools in'develbpment

The changeable factors are:

• the fourth generation language experience of the software maintenance

staflf

• fourth generation language training

• third generation language training

• maintainers drawn fi^om development

• use of meaningful names in the software. This is a changeable factor as

sections of the code could be rewritten to change this factor.

System 2 from the original data can be used to show how varying the factors it can

influence the estimate of software maintenance resources required. This system is a good

one to illustrate the use of the equation as with the exception of factors (i) and (ii) all the

weights are greater than 1 shovwing that improvements could be made in these areas.

Table 6.7 shows how the estimate changes when a factor is changed.

- 118

Table 6.7 Ad justment of the factors

Changed Factor Adjusted EAF Adjusted Estimate Saving - person

months

original

system

243.33 41.96 -

(iii) 143.14 38.25 3.71

(iv) 105.80 36.13 5.83

(V) 162.22 39.12 2.84

(vi) 101.39 35.83 6.13

(vii) 97.33 35.55 6.41

(viii) 173.81 39.61 2.35

(ix) 173.81 39.61 2.35

(X) 135.19 37.85 4.11

(xi) 173.81 39.61 2.35

(xii) 173.81 39.61 2.35

All changeable

factors

10.73 20.11 21.85

All fixed factors 22.68 25.35 16.61

All factors 1 3.5 38.46

I f factors (i) and (ii) were inadequate as well as all the other factors, this would

produce the worst case, and revise the estimate upwards to 49.51 person months.

This example illustrates that varying the factors, the estimate for maintaining this

system varies from 3.5 to 49.51 person months. Assuming that the system would be the

same size i f it was rewritten COCOMO estimates a 100 person month development

(although the actual was 660 person months) consideration can now be given to

rewriting this system.

119-

I f a 10,000 line system was taken which was being maintamed, and has all the

factors greater than 1 (i.e. the software maintenance was maximised). I f a decision was

taken to reduce software maintenance and various factors were taken and addressed the

maintenance could be reduced as shown in Table 6.8.

Factor EAF Estimate in

Man

Months

Initial system 715.4 14.14

Provide adequate training for the 4GL 298.08 12.4

Provide adequate 3GL training 119.23 10.56

Use staflf with at least 6 months experience of the 4GL 79.49 9.76

Use maintainers who developed the system 56.78 9.08

Rewrite to always use meaningfiil names in the

software

31.54 7.9

Table 6.8 shows that by addressing these factors the software maintenance effort

required to keep the system running has been reduced from 14.14 man months to 7.9 a

saving of 6.24 man months of 44%.

It should be considered when using this equation that it provides and estimate of

the amount of software maintenance resources required, and it may therefore need to be

adjusted for any particular installation.

Summary: The weights for each of the 12 factors can be multiplied together to

obtain an effort adjustment factor (EAF). The system size can be adjusted by a

Language Adjustment Factor to give a normalised system size (NSS). These two factors

can be combined into NSS *f(EAF) to provide an estimate in person months of the

- 120-

software maintenance resources required by a system written in a fourth generation

language. The f(EAF) is ln(EAF) * 0.0002 + 0.0001, and therefore the full equation is:

Annual software maintenance effort in person months =

(SS/LAF) * (ln(EAF) * 0.0002 + 0.0001).

- 1 2 1 -

C H A P T E R ?

Evaluation and Conclusion

Abstract: This chapter summarises the results of the research.

7.1 Introduction.

Software maintenance uses over half of the data processing resources with

traditional third generation languages, which has led to large backlogs of computing

tasks. To alleviate this problem fourth generation languages have been designed which

enable software to be developed more quickly than previously.

Software maintenance will not disappear with systems written in fourth generation

languages as these programs will have to evolve and require changes to correct faults,

etc. Little research has yet been done to assess the effect of fourth generation languages

on software maintenance. They were designed to allow rapid development, but if they

use more resources in the maintenance phase the situation could be at least as bad, i f not

worse in a few years.

Software maintenance is often seen as producing nothing, merely maintaining the

status quo, because of this often managers have a low opinion of software maintenance

and tend to view development as a higher priority.

This situation could be improved i f software maintenance could be discussed in

business terms. To enable this to be done a means of estimating software maintenance

costs needs to be used. When department budgets are set the Data Processing manager

needs to be able to quote the costs for keeping a system running and the consequences

122

of not paying them. This would enable software maintenance to be treated on an equal

status as all the other business fiinctions.

There are various cost estimation models, mainly for estimating development

costs, and most of these have cost drivers related to various factors. In this research the

methods to produce an equation were introduced, together with an actual worked

example. A survey was carried out and the results analysed, initially using the t-test and

then either the t-test or the analysis of variance. This enabled the first cut of a list of cost

drivers which significantly influence the amount of software maintenance when using

fourth generation languages to be produced. From these factors an equation was

formulated to provide an estimate of the software maintenance resources required to

keep a system running for twelve months. It should be noted that this equation is only

the first draft and will require fiarther refinement. It is included only as a worked

example, and as the sample size was small another survey may produce significantly

differing results.

These factors can be used in the following ways:

• To allow the factors to be considered during the development and maintenance

of the system to enable software maintenance resources to be minimised.

• To enable the correct resources to be assigned to software maintenance, this

would also enable business decisions to be made concerning software maintenance, as

when a system was designed the development and maintenance costs could be

considered.

• Consideration could be given to these factors and a decision can be taken to

decide the best time to rewrite the system. The estimation of costs for keeping the

system running can be compared to the costs for rewriting.

123

7.2 Comparison to Criteria for success.

The expected outcome of the research into fourth generation language

envirormients and software maintenance was to produce a means to:

• Identify a list of factors which influence the amount of software

maintenance in a fourth generation language environment.

• Assess the importance of the identified factors and assign

a weighting factor'to them'

• Combine the weights for the factors to produce the first cut of an

equation for the amount of software maintenance a system written in a

fourth generation language will require.

7.2.1. Identification of Factors.

An analysis of the resuhs of this survey showed that there were three software

maintenance categories of fourth generation languages. The amount of code being

maintained by each of these categories was significantly different. The means of these

classes were manipulated to produce a language adjustment factor, which could be used

to produce a normalised system size.

A number of factors which were considered may have a influence on the amount of

software maintenance were examined and from the survey results this was reduced to a

list of twelve, these being:

• Attributes of the system

- Development effort in man months being adequate when compared to the

estimate from the basic COCOMO organic model

- Elapsed development time being adequate when compared to the estimate

from the basic COCOMO organic model

124-

- The number of user written programs in the system being less than 100

• Personnel attributes

- The development staflf having more than 6 months experience of the

computer environment

- The software maintenance staflf having more than 6 months experience with

the fourth generation language

- Provision of adequate training for the fourth generation language

- Adequate training for any third generation language

- Drawing the software maintenance staff from the development staflf

• Volatility

- When the system is written building in flexibility for future changes

• Understandability of the source code

- Always using meaningful names in the software

• Use of tools

- The use of prototyping during the development of the system

- Using tools during the development of the system

7.2.2. Assignment of Weights.

Weights were assigned to each of these factors, based on the mean of the amount

of software being maintained per person month from the answers to the survey. The

highest value being assigned a value of one, and the lower value assigned a weight

greater than this. The value of these weights was shown in Table 6.2

- 125-

7.2.3. Equation for the Estimation of Software Maintenance.

Section 5.2 showed that from the survey resuhs obtained there were three distinct

software maintenance categories of fourth generation languages and these together with

the system size were used to produce a normalised system size (NSS). The weights for

the identified factors, derived in section 6.2, when multiplied together produced an

Effort Adjustment Factor (EAF). These were then be used in the equation:

Annual maintenance effort in "person months =

Normalised System Size * function (Effort Adjustment Factor).

where:

Normalised System Size = System Size / Language Adjustment Factor

fimction(Effort Adjustment Factor) = ln(EAF) * 0.0002 + 0.0001

The actual equation developed from the survey results produced an estimate of the

required annual software maintenance resources was therefore:

(System Size /Language Adjustment Factor) * (ln(EAF) * 0.0002 + 0.0001)

This equation produced estimates within 20% of the actual values for 80% of the

cases examined from the survey.

7.3 Evaluation of Research.

In the previous section the research was compared to the criteria for success

outlined in Chapter 1. This section takes a more objective view of the research and the

results obtained. The research was a success because of the results obtained. However,

the research has a number of weaknesses some of which could be corrected by further

work. The weaknesses are as follows:

126

a) The form of the questionnaire was taken from that by Lientz and

Swanson[L^NTZ80]^ and was modified for this research. It was clear from some of the

returned questiormaires that some of the questions were either ambiguous or diflBcult to

answer. This could have been cleared up by replacing questions, or by follow up

telephone enquiries. At the front of every questiormaire was a definition of software

maintenance, which was an attempt to force the respondents to use this so that similar

factors were being compared. However, question 5 of the questionnaire asked which

factors were included in software riiaintenahce, and the answers varied widely with some

including all the factors, and others only including those changes taking less than 5 days.

These factors could account for some of the differences in the resources allocated to the

software maintenance of different systems.

b) In the original survey questions to cross check with previous questions could

have been included, this was not done as the questionnaire was already a considerable

length, however, information as to how certain questions had been interpreted would

have been obtained, an example of this is, the definition of adequate training in a third

generation language in a fourth generation language system.

c) The sample population may have been in error because only medium to large

business organisations were targeted. A sample covering the full range of businesses by

size and activity would have had far more confidence in the results. This would highlight

i f large companies and small companies at in different ways when using fourth generation

languages. Fourth generation languages, however, are not widely used in small

companies and therefore the questionnaire was targeted at medium to large companies.

- 127-

d) The number of returned questionnaires was small (26) leading to a small sample

size for statistics. In all 47 replies were recorded, 8 did not use fourth generation

languages, 9 gave no indication of system size and 4 gave no indication of resources

allocated to software maintenance. A larger sample size would have given more

confidence in the results, particularly as some of the classes being analysed contained

only 1 or 2 responses. In all statistical research a larger sample size is better than a small

one, however there are problems in obtaining the extra data. The original survey was

sent to 235 businesses, but only 26"usable responses were received, but this could have

been increased by 50% i f the 9 had been contacted for an indication of system size and 4

for the resources for software maintenance. The lack of responses is however, almost

always a major problem with postal surveys.

e) The main driver for comparison of systems and effort was lines of code. It was

hoped to use a standard measure of system size independent of the language (e.g.

function points). This is because the number of lines of code is not particularly relevant

to some fourth generation languages. The questionnaire therefore asked for system sizes

based on:

• Total lines of source code

• Total lines of executable code (excluding comments and declarations)

• Number of entity relationships, diagrams of similar (depending on CASE tool

used)

• Function points

• Lines of job control

• Number of entries in the data dictionary

Most respondents used total lines of code as a measure which may have been

interpreted differently by different respondents and a more precise definition of lines of

code, together with examples could have been given. This, coupled with the different

128

verbosity of the languages surveyed, led to a wide range of values of lines of code. The

natural solution to this was to normalise the data to equalise the differences caused by

the use of different languages and this was successfully done and justified in Section 5.2

of this thesis. However, this normalisation process was based on a small sample and

requires a much larger sample to validate the process.

f) The three groups of fourth generation language that resulted fi-om the

normalisation process on the lines of co^e should have been examined closely and

compared with the classification of fourth generation languages carried out by

Grindleyt^P^^^]. The 3 groups obtained fi-om the survey in section 5.2 (shown in

table 5.5) relate to software maintenance and those specified by Grindley in section 2.5

are a development classification. The classification derived within this thesis may be a

classification which may be related to the amount of code produced to accomplish a

particular task whereas the Grindley classification may be a classification of the attributes

of the tools used in development.

g) The validation of the results was conducted against a small sample size (9 of 14

returned questionnaires). This sample is too small, and a large sample would have given

more credence to the results, again problems were caused by businesses not completing

the questionnaire. The length of the questionnaire was reduced to try to solicit more

responses, however, as explained in d) the lack of responses is almost always a major

problem with postal surveys.

h) When calculating the equation in 6.3, because it was impossible for the formula

to pass through every point exactly (some systems were the same size after

normalisation, but used a different amount of software maintenance), the formula was

therefore calculated to pass within 20% of as many points as possible. A different

129

formula would have been obtained by excluding certain points to make it exactly pass

through as many points as possible, or i f the outliers had been removed.

7.4 Further Research.

Further research can to be carried out in the following areas:

• The three groups of fourth generation languages identified in section 5 .2

need to be considered to decide what factors of the language influence the grouping.

This would enable a test to decide into which of the classes any specific fourth

generation language would fall.

• These three software maintenance classes of fourth generation language

need further research to consider whether the factors of the language which influence the

amount of software maintenance could be incorporated into their design.

• Further validation of the 12 factors from the research by a survey and

in-depth interviews to confirm that they are the only factors and that they do play a

significant part in the required amount of software maintenance resources.

• Further validation of the weights assigned to the factors by a survey and

in-depth interviews to determine the accuracy of the weights and enable them to be

fiirther refined.

• The equation was a first cut and was formulated from the respondents

of the survey, and the results may be better for these cases than in the general case.

Research, therefore needs to be carried out to find out i f this equation holds for all fourth

generation language systems.

• The results of this research need to be compared with third generation

languages to determine whether fourth generation languages offer any maintenance

savings over these traditional languages.

- 130-

APPENDIX A

Critical Values for the t-test at the 5% Significance Level

Degrees of
Freedom

Critical Value

k
Degrees of

Freedom

Critical Value

k
1 12.706 21 2.080

2 4.303 22 2.074

3 3.182 23 2.069

4 2.776 24 2.064

5 2.571 25 2.060

6 2.447 26 2.056

7 2.365 27 2.052

8 2.306 28 2.048

9 2.262 29 2.045

10 2.228 30 2.042

11 2.201 31 2.040

12 2.179 32 2.037

13 2.160 33 2.035

14 2.145 34 2.032

15 2.131 35 2.030

16 2.120 36 2.028

17 2.110 37 2.026

18 2.101 38 2.024

19 2.093 39 2.023

20 2.086 40 2.021

- 131

APPENDIX B

Critical Values for the analysis of variance at the 5% significance Level

Degrees of freedom for between samples variance estimate
1 2 3 4 5 6 7 8 9

D 1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5
e 2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

g 3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
r 4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
e 5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
e 6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
s 7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
0 9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
f 10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
f 12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
r 13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
e 14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
e 15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
d 16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
0 17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
m 18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
w 20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
i 21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
t 22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
h 23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
i 24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
n 25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
s 27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
a 28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
m 29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22

P 30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
1 40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
e 60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04
s 120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96

00 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

132-

Degrees of freedom for between samples variance estimate
10 12 15 20 24 1 30 1 40 60 120 CO

D 1 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3
e 2 19.4 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50

g 3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53
r 4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
e 5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36
e 6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
s 7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93
o 9 3.14 3.07 3.01. 2.94 2.90 2.86 2.83 2.79 2.75 2.71
f 10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
f 12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
r 13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
e 14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
e 15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
d 16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01
0 17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
m 18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
w 20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84
i 21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
t 22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
h 23 2.27 2.20 2.13 2.05 2.01 1.96 1,91 1.86 1.81 1.76
i 24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
n 25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69
s 27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
a 28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
m 29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

P 30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
1 40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
e 60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39
s 120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25

00 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00

133

APPENDIX C

Copy of Survey

SOFTWARE MAINTENANCE

Software maintenance is defined as work done on a software system after it becomes
operational. Therefore software maintenance includes:

* understanding and documenting existing systems

* extending existing functions

* adding new functions

* finding and correcting bugs

* answering questions for users and operations staff

* rewriting, restructuring, converting and purging software

* managing the software of an operational system

* other activities which go into running a successful software system

Software maintenance is therefore a very broad activity that includes error corrections,
enhancements of capabilities, deletion of obsolete capabilities, and optimisation.

134-

CONFIDENTIAL SURVEY
ALL INFORMATION WILL BE TREATED IN THE STRICTEST CONFIDENCE
Name
Position in company
Company name

1. In which industrial categories do the department, and the organisation served by
the department, primarily belong? (Enter the one letter corresponding to the most
appropriate answer.)

Manufacturing industries:

a. Aerospace engineering
b. Brick /Pottery/ Glass/ Cement etc.
c. Chemical/ Allied products
d. Computer hardware
e. Computer software
f Construction and civil engineering
g. Food/ Drink/ Tobacco
h. Instruments/ Electrical/ Electronics
i . Mechanical engineering
j . Metal goods/ Machinery
k. Paper/ Paper products/ Printing/ Packaging
1. Petroleum/ Coal/ Rubber
m. Ship building and marine engineering
n. Textiles/ Leather goods/ Footwear/ Clothing
o. Timber/ Furniture
p. Transportation equipment/ Vehicles

Non-manufacturing industries:

q. Agriculture/ Forestry/ Fishing
r. Banking/ Credit agency
s. Business and professional services
t. Communications and information media
u. Distribution and associated trades
V. Education
w. Extraction and processing of natural resources
X. Health services
y. Insurance/ Assurance
z. Leisure and recreation services
aa. Public administration
ab. Transport/ Travel and supporting services
ac. Software house

Department: (Enter letter or specify other)
Organisation: (Enter letter or specify other

- 135

2. How many people are employed in the company?

3. How many people are employed in the DP department?

4. What is your role in the DP organisation?
Are you:

a. Software maintainer
b. responsible for the management of a software team
c. both

5. Which of the following do you include in software maintenance?
a. emergency repairs
b. changes to correctly reflect the specifications or correctly utilise system
resources
c. upgrades to adapt to changes in processing requirements
d. amendments to adapt to changes in regulations
e. growth amendments to adapt to changes in data requirements, or to the addition

of new programs, new users etc.
f enhancements for changed requirements
g. support for users of the system
h. changes which take less than 1 day
i. changes which take less than 3 days

j . changes which take less than 5 days
k. changes which take less than 10 days
1. changes which take less than 20 days

6. How are the software teams organised within the company?
a. separate software maintenance and development teams
b. mixed maintenance and development
c. both policies

7. Do you use a fourth generation language (4GL) in your company?
YES/NO

- I f Y E S which one

I f YES how reliable is the fourth generation language itself?

Very Very
Unreliable > Average Reliable
< >

1 2 3 4 5

136-

8. Do you use a Computer Aided Software Engineering (CASE) tool in your
company?

YES/NO
- I f YES which one

9. Do you consider that your fourth generation language has reduced software
maintenance over similar systems developed without these tools?

a. no - increased maintenance greatly
b. no - increased maintenance
c. about the same
d. yes - maintenance has reduced
e. yes - maintenance has reduced greatly

10. How would you describe the morale of the staff involved in software maintenance?
Very Very
Bad Average Good

1
.>
5

11. What training has been/ is provided specifically for:

None Insufficient Adequate More than
adequate

Software
Maintenance
The Fourth
Generation
Language
A Third
Generation
Language

12. How does management see software maintenance?

a. Much less important than development
b. Less important than development
c. About the same
d. More important than development
e. Much more important than development

13. What is the strategy for the recruitment of maintenance programmers? e.g. are
trainees used and then moved to development, etc.

a. staff recruited specifically for maintenance
b. trainees are used and then moved to development
c. other, specify

137-

CHOOSE A SYSTEM DEVELOPED USING THE
FOURTH GENERATION LANGUAGE

14. What is the name of the system?

15. What does the software do?

16. What type of application is it? e.g. financial?

17. How many user written programs are there in the system?

18. How long has the software been in operation?

19. In what mode is the fourth generation language used? e.g. systems programs only,
use of user written programs, etc.

20. How reliable has your software been in the past?

HISTORY:
Very
Unreliable Average

Very
Reliable

<

New
System

_>
1

LAST 12 MONTHS:

Very
Unreliable Average

Very
Reliable

New
System

>
1

- I f this is a new system how reliable do you expect it to be in the next 12 months?
(if possible to estimate)

Very
Unreliable Average

Very
Reliable

1

21. How serious are the consequences of failure?

a. No real problem
b. Problems
c. Serious problems
d. Financial disaster
e. Life critical

>
5

138-

22. System size - fill in the values where appropriate:
System Largest

Program
, Total lines of source code

, Total lines executable code (excluding comments and
declarations)

, Number of entity relationships, diagrams or similar

(depending on the CASE tool used)

, Function points

Lines of job control

, Number of entries in data dictionary

23. What was the original timescale for the development of this system?

, Man months/ years

Elapse time in months/ years

, Number of staff employed on the project

24. How many man months have been allocated to the software maintenance of this
project:

Previous 12 months

Current 12 months

Next 12 months

25. What was the average (mean) ability level of the development staff at the time the
software was developed?

Very Very Not
Poor Average Good Known

.>
1 2 3 4 5

-139

26. Are the staff involved in software maintenance:

Vastly Vastly
Underworked Average
Overworked

>
1 2 3 4 5

27. Is the time allocated for individual changes generally:

Very Very
Inadequate Average Generous
< >

1 2 3 4 5

28. What is the average (mean) ability level of the maintenance stafi?

Very Very
Poor Average Good
< >

1 2 3 4 5

140-

29.

Less than 6
months

6 to 12
months

1 to 2 years 2 to 3 years More than 3
years

a)
Development
staff: Before
working on
the project
what was the
average
(mean)
experience of:
(i) The Fourth
Generation
Language
(ii) The
Computer
Environment
(iii) Type of
Application
(iv) Third
Generation
Language
(e.g. COBOL)
b)
Maintenance
Staff. What is
the average
(mean)
experience of:
(i) The Fourth
Generation
Language
(ii) The
Computer
Enviroiunent
(iii) Type of
Application
(iv) Third
Generation
Language
(e.g. COBOL)

30. Are the staflF who developed the system the same people who are responsible
its maintenance?

for

a. None
b. Yes some of them
c. Yes all of them

141

31. When the system was developed was any flexibility for future changes built in?

Average Lots None
<

1
>
5

32. How many enhancements were included in the software in the last 12 months? (If
this is a new system how many are expected in the next 12 months)

None
<

Average Lots

1 2

3 3. Are any of the following used?

>
5

YES NO SOME
Data dictionary

Meaningful names
in software
Comments in
source code
Site standards

34. I f you use a data dictionary, what do you use it for?

35. How would you describe the overall understandability of the source code?

Average
Very
Muddled

Very
Clear

1
>
5

36. How would you describe the complexity of the tasks undertaken by the software?

Average
Very
Easy
<

1

Very
Complex

.>
5

- 142

37. How would you describe the complexity of the code itself (as opposed to the tasks
undertaken by it)?

Very
Easy
<

Average

1

38. Do you use a measure of complexity?
YES/NO

- I fYES, Which

39. Were any methodologies used in development?
YES/ YES BUT NOT PURE/ NO

- I f "YES" or "YES BUT NOT PURE" which methodologies?

40. Are any methodologies used in maintenance of the software?
YES/ YES BUT NOT PURE/ NO

- I f "YES" or "YES BUT NOT PURE" which methodologies?

41. How good is the documentation for software maintenance?

Non-existent
<

Average

43. What tools are used in software maintenance?

Very
Complex

>
5

1 2 3 4

42. What tools were used in the development of the software?

Excellent
>

44. Was the system prototyped when it was written?
YES/NO

- I fYES was it rewritten before being used in production?
YES/NO

45. Are any major changes expected to the hardware in the next 12 months?
YES/NO

- I fYES. what

I f so, will they require software changes?
YES/NO

IfYES, what

143-

APPENDIX D

Hypotheses and Results

All results discussed in this appendix were calculated by lines of code per person

month and were analysed using the t-test. Any values which did not receive any answers

in the surveys are excluded from the tables. Section 5.1 introduced the list of factors to

be tested and the rationale behind the survey. A copy of the survey is shown at appendix

C.

D.l Attributes of System

a) The number of errors in the software.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the history of reliability of the system.

(ii) The amount of software maintenance required by a system is

dependant upon the history of reliability of the system.

Rationale and Results

This factor was included because i f a system has a history of unreliability there may

be a resistance to change the software, or extra testing may be carried out. Question 20

of the survey asked for information concerning the history of reliability of the system.

The analysis of the results for this factor is shown in Table D. 1.

- 144-

2 and 3 2 and 4 2 and 5 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

3 8 13 5 10 15

Critical

Value tc

3.182 2.306 2.160 2.571 2.228 2.131

Calculated

Test

Statistic

2.698 1.074 1.033 -2.096 -1.345 0.224

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)
i

in favour of (ii) and therefore it does not appear that the history of reliability of the
t

system has a significant effect on software maintenance resources.

Hypothesis

(iii) The amount of software maintenance required by a system is

independent of the reliability of the system in the previous 12 months.

(iv) The amount of software maintenance required by a system is

dependant upon the reliability of the system in the previous 12 months.
Rationale and Results

This factor is equivalent to the amount of corrective maintenance required by the

system, which is usually referred to as 'bug fixing'. Question 20 of the survey asked for

information concerning the number of errors discovered in the software.

The analysis of the results for the reliability of the system in the previous 12

months are shown in Table D.2.

145-

Table D.2 Analysis of the results of the reliability of the system in the

2 and 3 2 and 4 2 and 5 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

1 5 15 6 16 20

Critical

Value tc

12.706 2.571 2.131 2.447 2.120 2.086

Calculated

Test

Statistic

0.723 0.802 0.180 -0.315 -0.783 -0.899

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (iii)

in favour of (iv) indicating that the reliability of the system in the previous 12 months did

not have a significant effect on the amount of software maintenance.

b) The age of the product.
I

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the age of the system.

(ii) The amount of software maintenance required by a system is

dependant upon the age of the system.

Rationale and Results

Question 18 of the survey asked for the age of the system. This factor was tested

as during the life of a system it undergoes three main stages:

• after installation errors are being discovered and the users are undergoing

training and are not used to the system

146-

• main phase where the system is used

• breakdown of the system when it becomes ready for rewriting

The analysis of the results for the age of the system are shown in Table D.3.

1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4

Degrees

of

Freedom

10 16 12 10 6 12

Critical

Value tc

2.228 2.120 2.179 2.228 2.447 2.179

Calculated

Test

Statistic

0.618 1.652 0.968 0.454 0.067 -0.584

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the age of the system does not have an significant effect

on the amount of software maintenance.

c) The required reliability of the system.

Hypothesis

(i) The amount of Software maintenance required by a system is

independent of the consequences of the failure of the system.

(ii) The amount of software maintenance required by a system is

dependant upon the consequences of the failure of the system.

147

Rationale and Results

This factor was included because i f the consequences of failure are more serious

then more testing and checking will be carried out using more resources. Question 21 of

the survey asked how serious the consequences the failure of the system are.

The analysis of the results of the consequences of failure of the system are shown

in Table D.4.

2 and 3 2 and 4 3 and 4

Degrees of

Freedom

22 10 14

Critical Value t .̂ 2.074 2.228 2.145

Calculated Test

Statistic

0.766 0.737 0.725

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the required reliability of the system does not have a

significant effect on the amount of software maintenance.

d) The complexity of the product

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the complexity of the tasks undertaken by it.

(ii) The amount of software maintenance required by a system is

dependant upon the complexity of the tasks undertaken by it.

148

Rationale and Results

This factor was included as the more complex the tasks undertaken by the system

the more software maintenance resources it will require. Question 36 of the survey asked

for a rating of the complexity of the tasks undertaken by the system.

The analysis of these results are shown in Table D.5.

Table D.5 Analysis of the complexity of the tasks undertaken by the

2 and 3 2 and 4 2 and 5 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

11 8 3 19 14 11

Critical

Value tc

2.201 2.306 3.182 2.093 2.145 2.201

Calculated

Test

Statistic

0.810 0.086 0.774 -1.510 0.104 1.122

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the complexity of the tasks undertaken by the system

does not have a significant effect on the amount of software maintenance it requires.

e) The type of application.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the type of application.

(ii) The amount of software maintenance required by a system is

dependant upon the type of application.

149-

Rationale and Results

The rationale behind this factor is that different types of system require different

amounts of maintenance. Question 16 of the survey asked for the type of application.

The analysis of the results for the type of factor are shown in Table D.6.

1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4

Degrees

of

Freedom

4 17 7 15 5 18

Critical

Value tc

2.776 2.101 2.447 2.120 2.776 2.101

Calculated

Test

Statistic

-0.726 -0.138 -0.299 0.958 0.205 -0.442

Discussion

All of these resuhs show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the type of application does not have a significant effect

on the amount of software maintenance.

f) The size of the system

This is assumed to be an essential element relating to the amount of software

maintenance, and in this research as in previous papers this is used as an element to

enable the systems to be compared. Question 22 of the survey asked for information

concerning the size of the system.

150-

g) The original time scale for development

The factors that the research was trying to test was not what the original time

scale for development was, but whether it was sufficient, or whether the development

time was compressed, thus reducing development but increasing maintenance.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the development effort in person months compared to

estimates of development effort.

(ii) The amount of software maintenance required by a system is

dependant upon the development effort in person months compared to

estimates of development effort.

Rationale and Results

Question 23 of the survey asked for information about the original timescale for

development.

It was necessary to set a baseline against which to measure, and for this the Basic

COCOMO model was chosen. The Basic model was used to avoid using any cost

estimation factors which may introduce errors in the research. The organic mode of the

model was used because it was considered that most of the software was developed in

house, albeit that some of the departments were acting as a software house within the

company. The model was not calibrated in any way due to the difference between third

and fourth generation languages as the figure was used only as a baseline.

It is appreciated that the figures being used in this calculation are the actual size of

the existing system, not that at the time it was written. This was thought appropriate as it

is likely that i f large parts were added to the system after it was used in production this

could have an adverse effect on software maintenance. The COCOMO estimates for the

-151

effort in person months and elapse time for development against the development time

are shovra in Table D.7.

D.S.I COCOMO

PM

COCOMO

TDEV

ACTUAL

PM

ACTUAL

TDEV

% EST/

ACTPM

%EST/

ACT TDEV

2,500 6.28 5.03 14 8 44.87 62.82

35,000 100.34 14.40 660 18 15.20 80.03

685,000 2,278.70 27.19 120 36 1,898.91 131.09

45,000 130.64 15.92 12 6 1,088.69 265.40

27,400 77.60 13.06 8 2 969.97 653.21

1,200 2.91 3.75 3 3 96.88 124.99

85,400 256.00 20.56 72 12 355.56 171.35

100,000 302.14 21.90 15 4 2,014.28 547.47

71,000 210.88 19.10 36 12 585.77 159.18

800,000 2,681.98 50.21 360 24 744.99 209.19

48,000 139.80 16.34 6 9 2,330.04 181.55

1,000,000 3,390.09 54.88 216 10 1,569.49 548.81

155,540 480.45 26.12 24 6 2,001.86 435.33

88,000 264.19 20.81 51 9 518.02 231.22

2,000 4.97 4.60 4 6 124.23 76.63

40,000 155.44 15.19 24 6 481.02 253.22

400 0.92 2.42 6 2 15.28 120.95

265,200 841.32 32.32 600 12 140.22 269.31

51,000 148.99 16.74 48 34.87

48,620 141.70 16.42 14 6 1,012.14 273.72

152-

Table D.7 Estimated development time against actual (continued).

D.S.I COCOMO

PM

COCOMO

TDEV

ACTUAL

PM

ACTUAL

TDEV

% EST/

ACT PM

%EST/

ACT TDEV

12,500 34.04 9.55 8 4 425.48 238.8

30,000 85.35 13.55 216 36 39.51 37.63

15,000 41.22 10.27 24 171.75

51,000 148.99 16.74 14 119.57

The table shows a wide range of percentages estimated/ actual person months,

ranging fi-om 15.20 to 2,330.04, these resuhs could be caused because of the power of

the language or large amounts of code have been added to the system since

development, as COCOMO calculates the development time based on the delivered

system size where the survey is based on current system size.

Table D.8 shows the analysis of the COCOMO model against the effort being

equal to, or more than predicted. '

Table D.8 Analysis of comparison between Basic COCOMO organic

model estimated effort against actual.

Less than 100% and 100% plus

Degrees of Freedom 20

Critical Value tf 2.086

Calculated Test Statistic -4.723

Discussion

These results show that software maintenance is increased i f the actual

development effort is less than that predicted by the Basic COCOMO model. This result

could be interpreted, given the discussion of COCOMO above that fast development

leads to increased maintenance.

- 153

Hypothesis

(iii) The amount of software maintenance required by a system is

independent of the elapse time of development when compared to

estimates of development time.

(iv) The amount of software maintenance required by a system is

dependant upon the elapse time of development when compared to

estimates of development time.

Rationale and Results ~ '

Table D.9 shows the analysis of the results of the actual time of development being

equal to or more than that predicted by the Basic COCOMO model.

Table D.9 Analysis of comparison between Basic COCOMO organic

Less than 100% and 100% plus

Degrees of Freedom 18

Critical Value t^ 2.101

Calculated Test Statistic -2.366

Discussion

These results show that software maintenance is increased i f the actual elapsed

time is less than that predicted by the basic COCOMO model. This result could also be

interpreted as fast development leads to increased maintenance.

h) The reliability of the underlying system

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the reliability of the fourth generation language.

(ii) The amount of software maintenance required by a system is

dependant upon the reliability of the fourth generation language.

- 154-

Rationale and Results

This factor was included because i f the fourth generation language itself is

unreliable extra software maintenance resources may be required to keep the system

running. Question 7 of the survey asked for the reliability of the fourth generation

language.

The analysis of the reliability of the fourth generation language are shown in Table

D.IO.

Table D.IO Analysis of results of the reliability of the fourth generation

2 and 3 2 and 4 2 and 5 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

5 8 8 13 13 16

Critical

Value tc

2.571 2.306 2.306 2.160 2.160 2.120

Calculated

Test

Statistic

-0.284 -0.606 -0.683 -1.093 -0.850 0.616

Discussion

All of these resuhs show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the reliability of the fourth generation language does not

have a significant effect on the amount of software maintenance.

i) The number of user written programs

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the reliability of the number of user written programs.

155

(ii) The amount of software maintenance required by a system is

dependant upon the number of user written programs.

Rationale and Results

The rationale behind this factor is that software maintainers give advice to users

for their programs and this time is recorded against software maintenance. Question 17

of the survey asked for the number of user written programs.

The analysis of systems with less than 100 user written programs and more than

100 are shown in Table D. 11.

Less than 100 and 100 plus

Degrees of Freedom 24

Critical Value t^ 2.064

Calculated Test Statistic 3.651

Discussion

These results show that software maintenance is increased i f the system contains

more than 100 user written programs.

D.2 Personnel Attributes.

a) Staff ability.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the mean ability level of the staff at the time the system

was developed.

(ii) The amount of software maintenance required by a system is

dependant upon the mean ability level of the staff at the time the

system was developed.

-156-

Rationale and Results

This factor has been included because it is assumed that a good development

programmer can produce a more maintainable system than a bad one. Question 25 of the

survey asked for a rating of the ability of the development staff.

The analysis of the resuhs for the average ability level of the development staff at

the time the system was developed is shown in Table D.12.

Table D.12 Analysis of results of average ability level of the staff at the

2 and 3 2 and 4 2 and 5 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

11 9 4 18 13 11

Critical

Value tc

2.201 2.262 2.776 2.101 2.160 2.201

Calculated

Test

Statistic

0.621 -0.099 -0.259 -1.286 -1.531 -0.241

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the ability level of the development staff does not have a

significant effect on the amount of software maintenance.

Hypothesis

(iii) The amount of software maintenance required by a system is

independent of the mean ability level of the software maintenance staff.

157

(iv) The amount of software maintenance required by a system is

dependant upon the mean ability level of the software maintenance

staff.

Rationale and Results

The rationale behind this factor is that a good software maintenance programmer

will perform software maintenance more effectively and quicker than a poor one.

Question 28 of the survey asked for information concerning the ability of the software

maintenance staff. "

The analysis of the results for the average ability level of the software maintenance

staff is shown in Table D.13.

Table D.13 Analysis of results of the average ability level of the

software maintenance staff.

2 and 3 2 and 4 3 and 4

Degrees of

Freedom

19 11 16

Critical Value t .̂ 2.093 2.201 2.120

Calculated Test

Statistic

-0.671 0.613 1.084

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the ability level of the software maintenance staff does

not have a significant effect on the amount of software maintenance required by the

system.

158-

b) Morale and motivation of staff.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the morale of the software maintenance staff.

(ii) The amount of software maintenance required by a system is

dependant upon the morale of the software maintenance staff".

Rationale and Results

This factor was included because it is possible that happy and motivated staff

produce better quality software quicker than badly motivated ones. Question 10 of the

survey asked for information concerning the morale and motivation of software

maintenance staff.

The analysis of the results for the morale of the software maintenance staff is

shown in Table D.14.

Table D.14 Analysis of results of the morale of the software

maintenance staff.

2 and 3 2 and 4 2 and 5 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

12 11 3 19 11 10

Critical

Value tc

2.179 2.201 3.182 2.093 2.201 2.228

Calculated

Test

Statistic

0.404 -0.109 -0.448 -0.603 -0.580 -0.063

159

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) showing that the morale and motivation of the staff does not have a

significant effect on the amount of software maintenance a system requires.

c) The experience of the staff.

Various factors are included for experience of staff and all of them are based on

the premise that staff with experience will produce a better product. The experience level

is measured for both development and maintenance staff for:

• The fourth generation language

• The computer environment

• The type of application

• Any third generation language - this is included because experience of

any third generation language can lead to a particular way of thinking which causes

problems with the defaults of a fourth generation language. Question 29 of the survey

asked for a rating of the experience of both development and maintenance staff in these

areas.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the experience of the development staff with the fourth

generation language.

(ii) The amount of software maintenance required by a system is

dependant upon the experience of the development staff with the

fourth generation language.

Rationale and Results

Table D. 15 shows the analysis of the results for the experience of the development

staff with the fourth generation language.

- 160

Table D.15 Analysis of results of the experience of the software

2 and 3 2 and 4 2 and 5 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

11 18 12 7 1 8

Critical

Value tp

2.201 2.101 2.179 2.365 12.706 2.306

Calculated

Test

Statistic

0.849 0.966 0.587 -0.602 -0.849 0.543

Discussion

Ail of these results show that there is insufficient evidence to reject hypothesis (i)
i

in favour of (ii) suggesting that the experience of the software maintenance staS" with the

fourth generation language does not have a significant effect on software maintenance.

Hypothesis

(iii) The amount of software maintenance required by a system is

independent of the experience of the development staff with the

computer environment.

(iv) The amount of software maintenance required by a system is

dependant upon the experience of the development staflF with the

computer environment.

Rationale and Results

Table D.16 shows the analysis of the results for the experience of the development

staff with the computer environment.

161-

Table D.16 Analysis of the development staff with the computer

1&2 1&3 1&4 1&5 2&3 2&4 2&5 3&4 3&5 4&5

Degrees of

Freedom

6 7 4 10 7 4 10 5 11 8

Critical

Values tp

2.447 2.365 2.776 2.228 2.365 2.774 2.228 2.571 2.201 2.306

Calculated

Test

Statistic

-4.411 -3.302 -3.361 ^.059 -0.456 0.927 0.498 0.917 1.501 -0.221

The results show a difference between those systems where the developers had

less than 6 months experience, and those systems where the developers had more than 6

months experience, and an analysis of just these values is shown in Table D. 17.

Table D.17 Analysis of development staff with less than 6 months

1 and 2 1 and 3 1 and 4 1 and 5

Degrees of

Freedom

6 11 13 21

Critical Value

tr

2.447 2.201 2.160 2.080

Calculated

Test Statistic

-4.411 -3.824 -3.750 -3.820

Discussion

These results show that software maintenance is reduced if the staff maintaining

the system have at least 6 months experience of the computer environment.

162

Hypothesis

(v) The amount of software maintenance required by a system is
independent of the experience of the development staff with the type of
application.

(vi) The amount of software maintenance required by a system is

dependant upon the experience of the development staff with the type

of application.

Rationale and Results

The analysis of the results for the experience of the development staff with the

application at the time the system was written are shown in Table D. 18.

Table D.18 Analysis of the development staff with the type of

1&2 1&3 1&4 1&5 2&3 2&4 2&5 3&4 3&5 4&5

Degrees

of

Freedom

8 9 4 6 11 6 8 7 9 4

Critical

Values t(̂

2.306 2.262 2.776 2.447 2.201 2.447 2.306 2.365 2.262 2.776

Calculated

Test

Statistic

-0.117 0.135 -0.198 -2.175 0.240 -0.023 -0.764 -0.176 -1.026 -1.983

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (v)

in favour of (vi) suggesting that the experience of the development staff with the type of

application does not have a significant effect on the amount of software maintenance.

-163

Hypothesis

(vii) The amount of software maintenance required by a system is

independent of the experience of the development staff with any third

generation language.

(viii) The amount of software maintenance required by a system is

dependant upon the experience of the development staff with any third

generation language.

Rationale and Results

Table D. 19 shows the analysis of the resuhs for the experience of the development

staff with any third generation language.

Table D.19 Analysis of results of the experience of the development

staff with any third generation language at the time the system was

developed

1 and 3 1 and 4 , lands 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

1 6 10 7 11 16

Critical

Value tc

12.706 2.447 2.228 2.365 2.201 2.120

Calculated

Test

Statistic

-0.044 0.066 0.192 0.160 0.353 0.142

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (vii)

in favour of (viii) suggesting that the third generation language experience of the

development staff does not have a significant effect on the amount of software

maintenance.

164-

Hypothesis

(ix) The amount of software maintenance required by a system is

independent of the experience of the software maintenance staff with

the fourth generation language.

(x) The amount of software maintenance required by a system is

dependant upon the experience of the software maintenance staff with

the fourth generation language.

Rationale and Results

Table D.20 shows the analysis of the results for the experience of the software

maintenance staff with the fourth generation language.

Table D.20 Analysis of the software maintenance staff with the fourth

generation language.

1&2 1&3 1&4 1&5 2&3 2&4 2&5 3&4 3&5 4&5

Degrees

of

Freedom

12 8 8 5̂ 10 10 7 6 3 3

Critical

Values t(̂

2.179 2.306 2.306 ' 2.571 2.228 2.228 2.365 2.447 3.182 3.182

Calculated

Test

Statistic

-2.488 -1.416 -1.141 -0.926 0.873 1.396 0.410 0.520 -0.079 -0.681

The results show a difference between less than 6 months and 6 to 12 months.

Table D.21 shows an analysis of less than 6 months experience compared with the other

values.

165

Table D.21 Analysis of systems where the software maintainers have

less than 6 months experience of the fourth generation language.

1 and 2 1 and 3 1 and 4 1 and 5

Degrees of

Freedom

12 16 20 21

Critical Values 2.179 2.120 2.086 2.080

Calculated

Test Statistic

-2.488 -2.394 -2.298 -2.354

Discussion

The results show that software maintenance is reduced i f the software maintenance

staff have at least 6 months experience of the fourth generation language.

Hypothesis

(xi) The amount of software maintenance required by a system is

independent of the experience of the software maintenance staff v^th

the computer envirorunent.

(xii) The amount of software maintenance required by a system is

dependant upon the experience of the software maintenance staff with

the computer environment.

Rationale and Results

Table D.22 shows the analysis of the results for the experience of the software

maintenance staff with the computer environment.

166

Table D.22 Analysis of results of the software maintenance staff with

the computer environment.

2 and 3 2 and 4 2 and 5 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

7 8 10 9 11 12

Critical

Value tc

2.365 2.306 2.228 2.262 2.201 2.179

Calculated

Test

Statistic

1.729 0.209 1.274 -1.207 -1.328 0.594

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (xi)

in favour of (xii) suggesting that the experience of the software maintenance staff with

the computer environment does not have a significant effect on the amount of software

maintenance.

Hypothesis

(xiii) The amount of software maintenance required by a system is

independent of the experience of the software maintenance staff with
i

the type of application.

(xiv) The amount of software maintenance required by a system is

dependant upon the experience of the software maintenance staff with

the type of application.

Rationale and Results

Table D.23 shows the analysis of the results for the experience of the software

maintenance staff with the type of application.

-167

Table D.23 Analysis of results of software maintenance staff with the

1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4

Degrees

of

Freedom

9 10 10 9 9 10

Critical

Value tf.

2.262 2.228 2.228 2.262 2.262 2.228

Calculated

Test

Statistic

0.242 0.292 -0.139 -0.117 -0.315 -0.439

Discussion

All of these results show that there is insufficient evidence to reject hypothesis

(xiii) in favour of (xiv) suggesting that the experience of the software maintenance staff
i

with the type of application does not;have a significant effect on the level of software

maintenance.

Hypothesis

(xv) The amount of software maintenance required by a system is

independent of the experience of the software maintenance staff with

any third generation language.

(xvi) The amount of software maintenance required by a system is

dependant upon the experience of the software maintenance staff with

any third generation language.

Rationale and Results

The analysis of the results for the experience of the software maintenance staff

with any third generation language are shown in Table D.24.

168-

Table D.24 Analysis of results of the software maintenance staff with

any third generation language.

2 and 3 2 and 4 2 and 5 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

10 11 17

Critical

Value tr

12.706 2.365 2.228 2.306 2.201 2.110

Calculated

Test

Statistic

0.485 0.134 0.549 -0.674 -0.480 0.675

Discussion

All of these resuhs show that there is insufficient evidence to reject hypothesis (xv)

in favour of (xvi) suggesting that the experience of the software maintenance staff with

any third generation language does not have a significant effect on the level of software

maintenance.

d) The training of staff.

The training of staff is included because it is assumed that someone who has

received an adequate level of training will produce a better product than someone who

has received no or little training. Training was separated into three factors:

• specifically for software maintenance

• for the fourth generation language

• for any third generation language

Question 11 of the survey asked for information concerning the training of staff in

these areas.

-169

Hypothesis

(i) The amount of software maintenance required by a system is
independent of the level of training provided specifically for software
maintenance.

(ii) The amount of software maintenance required by a system is

dependant upon the level of training provided specifically for software

maintenance.

Rationale and Results

Table D.25 shows the analysis of the results for training provided specifically for

software maintenance.

Table D.25 Analysis of the level of training provided specifically for

software maintenance.

1 and 2 1 and 3 2 and 3

Degrees of

Freedom

11 19 14

Critical Value t,-. 2.201 2.093 2.145

Calculated Test

Statistic

1.176 0.883 -0.944

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the level of training provided specifically for software

maintenance does not have a significant effect on the level of software maintenance.

Hypothesis

(iii) The amount of software maintenance required by a system is

independent of the level of training provided for the fourth generation

language.

- 170

(iv) The amount of software maintenance required by a system is

dependant upon the level of training provided for the fourth generation

language.

Rationale and Results

The analysis of the results for the level of training provided for the fourth

generation language are shown in Table D.26.

Table D.26 Analysis of results of the level of training for the fourth

generation language. "

1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4

Degrees

of

Freedom

15 17 19

Critical

Value tr

4.303 2.131 2.776 2.110 2.447 2.093

Calculated

Test

Statistic

0.649 •1.449 -2.191 -2.939 -4.380 -0.547

The results show a difference between insufficient and adequate and insufficient

and more than adequate. Table D.27 shows analysis of the comparison between none/

less than adequate and at least adequate.

Table D.27 Comparison of level of training for the fourth generation

language being at least adequate.

Degrees of Freedom 24

Critical Value tr 2.064

Calculated Test Statistic -3.658

171

Discussion

The results show that software maintenance is reduced i f at least adequate training

is provided for the fourth generation language.

Hypothesis

(v) The amount of software maintenance required by a system is

independent of the level of training provided for any third generation

language.

(vi) The amount of software maintenance required by a system is

dependant upon the level of training provided for any third generation

language.

Rationale and Results

The analysis of the results for training provided for any third generation language

are shown in Table D.28.

Table D.28 Analysis of results of the level of training for any third

1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4

Degrees

of

Freedom

1 19 4 18 3 21

Critical

Value tc

12.706 2.093 2.776 2.101 3.182 2.080

Calculated

Test

Statistic

-1.042 -2.608 -3.146 -1.440 -1.917 -0.723

The results show a difference between none and adequate. Table D.29 shows the

comparison of none and insufficient and at least adequate.

172

Table D.29 Training provided for any third generation language none/

insufficient and at least adequate.

Degrees of Freedom 24

Critical Value t .̂ 2.064

Calculated Test Statistic -3.173

Discussion

The resuhs show that software maintenance is reduced i f at least adequate training

is provided for any third generation language.

e)The Change of staff.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of whether the staff maintaining the system are those who

developed it.

(ii) The amount of software maintenance required by a system is

dependant upon whether the staff maintaining the system are those

who developed it.

Rationale and Results

This factor is included because it is assumed that the staff who developed the

system would have some knowledge of the system which would enable the software

maintenance to be done more efficiently. Question 30 of the survey asked for this

information.

Table D.30 shows the analysis of the results for whether the staff who are

responsible for the maintenance of the system were involved in its development.

173

Table D.30 Analysis of whether the staff who developed the system are

1 and 2 1 and 3 2 and 3

Degrees of

Freedom

18 14 14

Critical Value tc 2.101 2.145 2.145

Calculated Test

Statistic

0.750 -1.369 -3.126

The results show a difference between some and all. Table D.31 shows the analysis

of a comparison between All and none/ some.

Table D.31 Analysis of whether all the staff maintaining the system

Degrees of Freedom 22

Critical Value t̂ . 2.074

Calculated Test Statistic -2.094

Discussion

The results show that software maintenance is reduced i f all the people who

maintain the system were involved in its development.

f) Whether the staff are overworked or underworked.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the workload of the software maintenance staff

(ii) The amount of software maintenance required by a system is

dependant upon the workload of the software maintenance staff

174

Rationale and Results

This factor was included as this obviously affects the output of a software

maintainer. Question 26 of the survey asked for information concerning whether the

software maintenance staff are overworked or underworked.

Table D.32 shows the analysis of the resuhs for the workload of the software

maintenance staff.

Table D.32 Analysis of results of the workload of the software

maintenance staff.

1 and 3 1 and 4 1 and 5 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

7 13 1 20 8 14

Critical

Value tc

2.365 2.160 12.706 2.086 2.306 2.145

Calculated

Test

Statistic

0.358 0.188 0.667 0.014 1.575 1.010

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the workload of the software maintenance staff does not

have a significant effect on the level of software maintenance.

g) The time allowed for individual changes.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the time allowed for individual changes.

- 175'

(ii) The amount of software maintenance required by a system is

dependant upon the time allowed for individual changes.

Rationale and Results

This factor was included because i f changes are done quickly testing and checking

is not adequately done thereby mcreasing soflrware maintenance. Question 27 of the

survey asked for information on whether the time allowed for individual changes was

adequate.

Table D.33 shows the analysis of the results for the time allowed for individual

changes.

Table D.33 Analysis of time allowed for individual changes.

2 and 3 2 and 4 3 and 4

Degrees of

Freedom

20 19

Critical Value tr 2.086 2.365 2.093

Calculated Test

Statistic

0.037 0.153 0.074

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the time allowed for individual changes does not have a

significant influence on the amount of software maintenance.

-176-

D.3 Volatility.

a) Built in flexibility.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of whether any flexibility for future changes was built into

the system at the time it was written.

(ii) The amount of software maintenance required by a system is

dependant upon whether any flexibility for fiiture changes was buih

into the system at the time it was written.

Rationale and Results

This factor was included as it is possible to build flexibility into a system to enable

certain fiiture changes to be made more quickly. Question 31 of the survey asked for

information on whether any flexibility for fiiture changes had been built in.

Table D.34 shows the analysis of the results for the flexibility at the time the

system was written.

1&2 1&3 1&4 1&5 2&3 2&4 2&5 3&4 3&5 4&5

Degrees

of

Freedom

6 4 14 3 6 16 5 14 3 13

Critical

Values tc

2.447 2.776 2.145 3.182 2.447 2.120 2.571 2.145 3.182 2.160

Calculated 1.097 -0.401 -1.066 -1.756 -1.770 -2.629 -3.414 -0.676 -1.788 -0.911

Test

Statistic

177

The results show a difference between the category "minor" and categories "some"

and "lots", an analysis of these results is shown in Table D.35.

Table D.35 Analysis of whether the flexibility for future changes was

Yes and No

Degrees of Freedom 24

Critical Value t^ 2.064

Calculated Test Statistic -2.735

Discussion

The results show that software maintenance is reduced i f more than average

flexibility for changes is built into the system at the time it is written.

b) The number of enhancements.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the number of enhancements included in the system in

the previous 12 months.

(ii) The amount of software maintenance required by a system is

dependant upon the number of enhancements included in the system in

the previous 12 months.

Rationale and Results

User enhancements use the largest amount of software maintenance resources

under third generation languages and therefore this factor was tested for fourth

generation languages. Question 32 of the survey asked for information concerning the

number of user enhancements in the system.

The analysis of the results for the number of enhancements included in the system

in the previous 12 months is shown in Table D.36.

- 178-

Table D.36 Analysis of the number of enhancements included in the

last 12 months.

1&2 1&3 1&4 1&5 2&3 2&4 2&5 3&4 3&5 4&5

Degrees

of

Freedom

3 5 6 7 8 9 10 11 12 13

Critical

Values tc

3.182 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160

Calculated

Test

Statistic

-0.145 0.674 0.046 0.453 1.044 0.410 0.905 -0.993 -0.506 0.663

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the number of user enhancements does not significantly

effect the amount of software maintenance with fourth generation languages. This was a

surprising result and may have been caused because the majority of the organisations

were software houses or were operating as software houses and may therefore exclude

user enhancements fi^om the definition of software maintenance under their contracts.

c) Expected hardware changes.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of expected hardware changes.

(ii) The amount of software maintenance required by a system is

dependant upon expected hardware changes.

179-

Rationale and Results

This factor was included because fourth generation languages tend to be machine

specific and therefore hardware changes may mean changes to the system. Question 45

of the survey asked for information concerning expected hardware changes.

Table D.37 shows the analysis of the results for whether hardware changes were

expected.

Table D.37 Analysis of whether any hardware changes were expected.

Yes and No

Degrees of Freedom 24

Critical Value t^ 2.064

Calculated Test Statistic -0.385

Discussion

All of these resuhs show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that hardware changes does not have a significant effect on

the amount of software maintenance.

D.4 Understandability of the Source Code.

a) Documentation.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the quality of the documentation.

(ii) The amount of software maintenance required by a system is

dependant upon the quality of the documentation.

180-

Rationale and Results

In most surveys where software maintainers are asked what they need to improve

software maintenance the most common answer is better documentation. Question 41 of

the survey asked for information concerning the quality of the documentation.

The analysis of the resuhs for the quality of the documentation are shown in Table

D.38.

Table D.38 Analysis of results of the quality of the documentation.

1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4

Degrees

of

Freedom

10 13 11 16

Critical

Value tc

2.571 2.228 2.306 2.160 2.201 2.120

Calculated

Test

Statistic

-0.892 0.536 •1.051 -0.190 -0.537 -0.141

Discussion

All of these resuhs show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that software maintenance does not have a significant effect

on the level of software maintenance. This is a surprising result but could be explained

by a number of reasons including:

• fourth generation languages are easier to understand and therefore

software maintenance requires less documentation than with third

generation languages

• programmers have found alternatives to documentation because

they expect it to be inaccurate.

181-

• the documentation is used to enable the change to be made more

quickly, but there is an overhead keeping it up to date.

b) Programming style, methodologies and site standards.

The rationale behind these factors is that they improve the understandability of the

software, thus making maintenance easier.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the use of site standards.

(ii) The amount of software maintenance required by a system is

dependant upon the use of site standards.

Rationale and Results

Question 33 of the survey asked for information concerning the use of site

standards, and Table D.39 shows the analysis of the results.

Table D.39 Analysis of the use of site standards.

1 and 2 1 and 3 2 and 3

Degrees of

Freedom

22 21 3

Critical Value 2.074 2.080 3.182

Calculated Test

Statistic

-0.695 -0.684 0.023

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the use of site standards does not have a significant effect

on the amount of software maintenance.

182

Hypothesis

(iii) The amount of software maintenance required by a system is

independent of the use of comments in the source code.

(iv) The amount of software maintenance required by a system is

dependant upon the use of comments in the source code.

Rationale and Results

Question 33 of the survey asked for information concerning the use of comments

in the source code and the analysis'of the results is are shown in Table D.40.

1 and 2 1 and 3 2 and 3

Degrees of

Freedom

23 21 2

Critical Value t^ 2.069 2.080 4.303

Calculated Test

Statistic

0.816 -0.072 -0.584

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (iii)

in favour of (iv) suggesting that the use of comments in the source code do not have a

significant effect on the amount of software maintenance.

Hypothesis

(v) The amount of software maintenance required by a system is

independent of the use meaningful names in the software.

(vi) The amount of software maintenance required by a system is

dependant upon the use of meaningful names in the software.

183-

Rationale and Results

Question 33 of the survey asked for information concerning the use of meaningfiil
names in the software and Table D.41 shows the analysis of the results.

1 and 2 1 and 3 2 and 3

Degrees of

Freedom

19 20 5

Critical Value t̂ ; 2.093 2.086 2.571

Calculated Test

Statistic

3.069 2.217 -1.300

These resuhs show a difference between Yes and the other values. Table D.42

shows the analysis of a comparison of Yes and the other values.

Table D.42 Analysis of Meaningful Names Used in the Software.

Degrees of Freedom 23

Critical Value t̂ ^ 2.069

Calculated Test Statistic 3.526

Discussion

The results show that software maintenance is reduced i f meaningfiil names are

always used in the software.

Hypothesis

(vii) The amount of software maintenance required by a system is

independent of the use of a methodology in the development of the

system.

184

(viii) The amount of software maintenance required by a system is

dependant upon the use of a methodology in the development of the

system.

Rationale and Results

The analysis of the results for the use of a methodology in the development of the

system are shown in Table D.43 which were derived from Question 39 of the survey.

Table D.43 Analysis of the use of a methodology in the development of

the system. '

1 and 2 1 and 3 2 and 3

Degrees of

Freedom

13 14 19

Critical Value t^ 2.160 2.145 2.093

Calculated Test

Statistic

0.378 -0.545 -1.020

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (vii)

in favour of (viii) suggesting that the use of a methodology in the development of a

system does not have a significant influence on the level of software maintenance.

Hypothesis

(ix) The amount of software maintenance required by a system is

independent of the use of a methodology in the maintenance of the

system.

(x) The amount of software maintenance required by a system is

dependant upon the use of a methodology in the maintenance of the

system.

- 185

Rationale and Results

Question 40 of the survey asked about the use of a methodology in the

maintenance of the system and Table D.44 shows the analysis of these results.

Table D.44 Analysis of the use of a methodology in software

maintenance.

1 and 2 1 and 3 2 and 3

Degrees of

Freedom

5 21 20

Critical Value tc 2.571 2.080 2.086

Calculated Test

Statistic

-0.221 -0.205 -0.061

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (ix)

in favour of (x) suggesting that the use of a methodology during the maintenance of a

system does not significantly influence the amount of software maintenance.

Hypothesis

(xi) The amount of software maintenance required by a system is

independent of the understandability of the source code.

(xii) The amount of software maintenance required by a system is

dependant upon the understandability of the source code.

Rationale and Results

The analysis of the resuhs for the understandability of the source code are shown

in Table D.45 which were derived from question 35.

- 186

Table D.45 Analysis of results of the understandability of the source

code.

2 and 3 2 and 4 2 and 5 3 and 4 3 and 5 4 and 5

Degrees

of

Freedom

11 13 4 18 9 11

Critical

Value tc

2.201 2.160 2.776 2.101 2.262 2.201

Calculated

Test

Statistic

-1.279 -1.170 -0.513 0.812 0.550 0.271

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (xi)

in favour of (xii) suggesting that the understandability of the source code does not

significantly influence the amount of software maintenance.

c) Complexity of the source code.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of the complexity of the code.

(ii) The amount of software maintenance required by a system is

dependant upon the complexity of the code.

Rationale and Results

Question 37 of the survey asked for information concerning the complexity of the

code, and Table D.46 shows the analysis of the results.

187

Table D.46 Analysis of the complexity of the source code

1&2 1&3 1&4 1&5 2&3 2&4 2&5 3&4 3&5 4&5

Degrees

of

Freedom

1 7 12 4 6 11 3 17 9 14

Critical

Values tc

12.706 2.365 2.179 2.776 2.447 2.201 3.182 2.110 2.262 2.145

Calculated

Test

Statistic

3.853 0.149 0.949 0.643 -0.962 -1.861 -1.430 0.589 0.291 -0.125

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the complexity of the source code does not have a

significant effect on the level of software maintenance.

D.5 Management.

a) Management attitude to software maintenance.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of management's view of software maintenance as

opposed to their view of development.

(ii) The amount of software maintenance required by a system is

dependant upon management's view of software maintenance as

opposed to their view of development.

188-

Rationale and Results

Management's attitude to software maintenance can have a significant effect on the

software maintainers view of their tasks, and thus influence the maintainers attitude to

their tasks and reduce their effectiveness.

Table D.47 shows the analysis of the results for management's view of software

maintenance as opposed to their view of development taken from question 12 of the

survey.

Table D.47 Analysis of results of management's attitude to software

maintenance.

a. and b a and c a and d b and c b and d c and d

Degrees

of

Freedom

7 10 4 17 11 14

Critical

Value tc

2.365 2.228 2.776 2.110 2.201 2.145

Calculated

Test

Statistic

-1.030 -1.657 -2.157 -1.972 -0.453 1.409

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that management's attitude to software maintenance does not

significantly influence the amount of software maintenance.

189

b)The resources allocated to software maintenance.

Question 23 asked for the resources allocated to software

maintenance. This is assumed to be an essential element relating to the

amount of software maintenance, and in this research as in previous

papers this is used as an element to enable the systems to be compared.

D.6 Use of Tools.

a) The use of prototyping.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of whether the system was prototyped during

development.

(ii) The amount of software maintenance required by a system is

dependant upon whether the system was prototyped during

development.

Rationale and Results

The use of prototyping can significantly reduce errors introduced in the early

stages of the development life cycle. Question 44 of the survey asked for information

concerning the use of prototyping.

The analysis of the resuhs for the use of prototyping is shown in Table D.48.

Table D.48 Analysis of the use of prototyping.

Yes and No

Degrees of Freedom 24

Critical Value tg 2.064

Calculated Test Statistic 2.419

190

Discussion

The results show that software maintenance is reduced i f the system is prototyped.

Hypothesis

(iii) The amount of software maintenance required by a system is

independent of whether the prototype of the system was rewritten

before being used in production.

(iv) The amount of software maintenance required by a system is

dependant upon whetheFthe prototype of the system was rewritten

before being used in production.

Rationale and Results

Prototyping can lead to parts of the system developed independently and added to

the system at a later date which can make software maintenance diflBcult, however

because the user is involved at all stages of analysis the quality of the completed system

can be greatly improved.

In all the cases surveyed the prototype was never rewritten before being used in

production, therefore hypothesis (iii) cannot be rejected in favour of (iv).

b) The use of a data dictionary.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of whether a data dictionary is used in the system.

(ii) The amount of software maintenance required by a system is

dependant upon whether a data dictionary is used by the system.

Rationale and Results

The use of a data dictionary can reduce the amount of software maintenance as the

dictionary can be changed and the programs recompiled, instead of making all the

191-

changes individually. Question 33 of the survey asked whether a data dictionary was

used on the system.

The analysis of the results for the use of a data dictionary are shown in Table

D.49.

Yes and No

Degrees of Freedom 23

Critical Value t̂ ; 2.069

Calculated Test Statistic 1.401

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (i)

in favour of (ii) suggesting that the use of a data dictionary does not have a significant

influence on the level of software maintenance.

c) The use of tools.

Hypothesis

(i) The amount of software maintenance required by a system is

independent of whether tools were used in the development of the

system.

(ii) The amount of software maintenance required by a system is

dependant upon whether tools were used in the development of the

system.

Rationale and Results

This factor was included because the use of tools can reduce the amount of

software maintenance.

Question 42 of the survey asked for information concerning the use of tools in the

development of the system and Table D.50 shows the analysis of the results.

-192-

Table D.50 Analysis of the use of tools in the development in the

software.

Yes and No

Degrees of Freedom 21

Critical Value t̂ ^ 2.080

Calculated Test Statistic 2.164

Discussion

All of these results show that software maintenance is reduced if tools were used

in the development of the system.

Hypothesis

(iii) The amount of software maintenance required by a system is

independent of whether tools are used in the maintenance of the

system.

(iv) The amount of software maintenance required by a system is

dependant upon whether tools are used in the maintenance of the

system.

Rationale and Results

The use of tools in the maintenance of the system can reduce the amount of

software maintenance.

The analysis of the results for the use of tools in the maintenance of the system are

shown in Table D.51 and this is taken from question 43 of the survey.

-193

Table D.51 Analysis of the use of tools in the maintenance of the

software.

Yes and No

Degrees of Freedom 22

Critical Value 2.074

Calculated Test Statistic 0.490

Discussion

All of these results show that there is insufficient evidence to reject hypothesis (iii)

in favour of (iv) suggesting that the use of tools in software maintenance does not have a

significant impact on the level of software maintenance required.

194-

APPENDIX E

E . l Individual Survey Responses - Initial Survey

Survey Number
1 2 3 4 5

Q 1 Dept. c y aa e e
u Org. c y aa r X

e 2 1,000+ 10,000 16,000 11,000 130
s 3 35 420 130 850 90
t 4 c b c b c
i 5 a,c-j a,b,d,e,fj,k,l a,b,c,e,g ALL a,b,c,e,i
0 6 c- 40% a b - 20% c - 70-80% b - 70%
n 7 YES YES YES YES YES

Which NOMAD NATU-RAL INGREV NOMAD INGRES

n Reliability 3 4 4 3 5
u 8 NO Y E S - SSADM YES Y E S Y E S -

m ENGINEER. AUTOMATE + SPEEDBUILDE AUTOM.-\TE +

b R,PDF

e 9 d C c d C

r 10 4 4 3 4 3
11- S/w Adequate None None None None
Maint.

4GL More than Adequate Adequate More than Insufficient
Adequate Adequate

3GL None Adequate Adequate More than Adequate
Adequate

12 d c c e b
13 c c c c c
16 Plant data Financial Admin Marketing M.I.S.
17 100+ . 20-30 25 None 40
18 3 years 5 years 9 months 18 months 3 years
19 System Application Both Systems User

Programs Programs written
20 5,5 2,4 4,4 5,5 5,5
21 c c b b c

- 195-

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
6 7 8 9 10

Q 1 Dept. e y e e e
u Org. Pub. Util. y t Retail Pub. Util.
e 2 80,000 2,000+ 3,000 50 5,500
s 3 70 180 3,000 50 60
t 4 b b a b a
i 5 a,c-l a,b,c,e a-f,h-l ALL a,e-i
o 6 b- varies a b - 20% c - 85% b
n 7 YES - YES YES YES YES

Which O R A C L E IDEAL INGRES INGRES SQL

WINDOWS

FORMS

n Reliability 5 4 5 4 3
u 8 Y E S - NO NO YES Y E S -

m ORACLE* ORACLE*

b CASE CASE

e 9 e C C

r 10 5 3 2 4 3
11- S/w Adequate Adequate Adequate Adequate Adequate

Maint.
Adequate 4GL Adequate Adequate Insufficient Adequate Adequate

3GL Adequate Adequate Adequate Adequate Adequate
12 c c c c c
13 c c c a c
16 Stock MDS Admin & Labour Asset

Control Support Financial Manag. Manag.
17 71 None 400+ 50
18 6 months 6 months 1 year 3 years 6 months j
19 Application System Systems User

Programs Programs Programs written
20 5,5 5,5 4,4 4,3 2,2
21 c b c c b

-196

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
11 12 13 14 15

Q 1 Dept. r ab e e e
u Org. r ab 8 r z
e 2 4,000 5,000+ 30,000 5,000 400
s 3 220 30 140 200 28
t 4 c c c b c
i 5 ALL a-e,g-j c-f j ALL a-gj
0 6 c-85% c a b-90% b-30%
n 7 YES YES YES YES YES

Which RAMIS ORACLE NOMAD UNISYS LINK SYNON/2

n Reliability 4 4 2 4 3
u 8 NO Y E S - TOPCASE NO NO NO

m 9 C d b C C

b 10 2 4 2 3 3
e 11- S/w None Adequate Insufficient None Adequate
r Maint.

4GL More than Adequate More than Adequate None

3GL
Adequate

More than
Adequate

Adequate
Adequate

More than
Adequate

Adequate Insufficient

12 d d c d b
13 c c c c a^
16 Financial Financial Payroll Alpha

Information
Accounting

17 68 None None 145 300
18 5 years 18 months 3 months 3 years Due to go

live
19 Appliation System Systems User written Bespoke

Programs Programs Programs Application software
only

20 5,4 5,5 5,5 4,4 3,n/a
21 d b b c d

197

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
16 17 18 19 20

Q 1 Dept. e y e e e
u Org. 1 y Retail i u
e 2 600 2,000 2,000 600 600
s 3 50 250 120 32 550
t 4 b c b b b
i 5 a-c,e,g-j a,d,g a-g,k ALL a,g,h
0 6 b-30% b-25 - 30% c - 30% b - 15-25% c - 40%
n 7 YES YES YES YES YES

Which FOCUS LING TELON PRO-IV FOCUS

n Reliability 5 5 5 3 3
u 8 YES- Y E S - LBMS NO Y E S - I E W YES-CSP

m EXCELERATOR SYSTEM

b ENGINEER

e 9 c e e C C

r 10 3 3 4 3 4
11- S/w None Insufficient Adequate None

D Maint.
4GL Adequate Adequate Adequate Adequate
3GL Adequate Adequate More than

Adequate
Adequate Adequate

12 c c b d c
13 c c c c a
16 Financial Customer

database
Financial Stock

Control
Stock

Control
17 None 20-30 None 40
18 2 years 4 years 2 months Due to go

live
6 months

19 Systems Systems Application User
programs Programs Programs Application

20 5,5 4,5 2,5 5,4 5,5
21 b c c b

- 198-

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
21 22 23 24 25

Q 1 Dept. e s y e y
u Org. 1 ac y Retail y
e 2 600 75 1,600 1,700 260
s 3 600 45 150 50
t 4 b b b c b
i 5 ALL A L L ALL ALL A L L

0 6 b - 80% C - 20% a a b-40%
n 7 YES YES YES YES YES

Which FOCUS IDEAL MANTIS INGRES O R . \ C L E

n Reliability 5 4 5 5
u 8 Y E S - l E F NO Y E S - LBMS Y E S - Y E S C A S E '

m SYSTEM SEVERAL DESIGNER

b ENGINEER

e 9 C d d e d
r 10 3 4 5 4 4

11- S/w Adequate Adequate Adequate None Insufficient
Maint.

4GL Adequate Adequate Adequate Adequate Adequate
3GL Adequate Adequate Adequate Adequate Adequate

12 b d b b b
13 mix a & b a a c c
16 Financial Market

research
Insurance Stock

Control
Financial

17 80 150 30 100 120
18 3 years 10 years 7 years 4 years 5 years
19 System

Programs
Application

Programs
Systems

Programs
20 5,5 2,5 5,5 5,5 4,4
21 b c c c

- 199-

E . l Individual Survey Responses - Initial Survey (Continued)

26 27 28 29 30

Q 1 Dept. e r e a e
u Org. ac r ac a e
e 2 500 6,000 40 27,000 150
s 3 450 400 15 800 70
t 4 c c b None None
i 5 a-e,g-l a,c-l a,b,g a,c-l ALL
0 6 a b b-25% a b -10%
n 7 YES YES YES YES YES

Which SMART/400 IDEAL IDEAL MA.NTIS INGRES

n Reliability 3 5 4 5
u 8 NO Y E S - HPS NO Y E S - I E F Y E S -

m (ICASE) TEAMWORK

b 9 d e d e
e 10 3 3 4 3 2
r 11- S/w

Maint.
Insufficient Adequate Adequate Adequate Adequate

4GL Adequate Insufficient More than Adequate Adequate

3GL None Adequate
Adequate

More than
Adequate

Adequate Adequate

12 a b d c c
13 c b c c c
16 Insurance Financial Commercial

Statistics
Operator
Interface

17 1,000+ 275 > 100 Many
18 3 years 2 years 7 years Still in

development

19 Systems
Programs

Development Screen
Presentation

20 3,4 5,5 5,5 5,5 3,4
21 b c b c

200

E . l Individual Survey Responses - Initial Survey (Continued)

31 32 33 34 35

Q 1 Dept. e e e ab Public Util.
u Org. d r e ab Public Util.
e 2 240 4,500 650 65 4,000
s 3 11 250 600+ 5 225
t 4 b b None c None
i 5 a-k a-d,f-l ALL a,b,h a„b,g,h,ij
0 6 b- 50% b- 80% c - 90% b- 50% b - 5%
n 7 YES - - YES YES NO YES

Which IMPLEMENTOR LINK SYNON CORVISION

n Reliability 3 5 5 5
u 8 YES- Y E S - SYSTEM Y E S -BIS IPSE NO Y E S - lEW

m IMPLEMENTOR ENGINEER

b 9 d d C e
e 10 3 4 3 3 4
r 11- S/w

Maint.
None Adequate Adequate Insufficient Adequate

4GL

3GL

Adequate

Adequate

More than
Adequate

More than
Adequate

Adequate

Adequate

Insufficient

Adequate

Adequate

Adequate

12 c d d b
13 c c a c
16 Marketing Financial Financial Real time

measured
values

17 140 600 3,000+ None
18 Still in

development
2 years 6 years Being

implemented

19 Application Application Control of Application
Development Development Data Development

20 3,4 5,5 4,5 3,5
21 b d d c

201

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
36 37 38 39 40

Q 1 Dept. z ab i ab ab
u Org. z ab i ab ab
e 2 400 43 3,500 130 34
s 3 1 4 20 16 1
t 4 None b b a
i 5 ALL e a-g,l a-g,l a-c,g
0 6 b - 60% b-100% b
n 7

Which
NO ^ NO NO NO NO

n Reliability

u 8 NO NO NO NO NO

m 9
b 10 3 3 3
e 11- S/w None None None None
r Maint.

4GL None None None
3GL None Adequate Adequate None

12 c b c d
13 1 c b c
16
17
18
19
20
21 1

202

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
41 42 43 44 45

Q 1 Dept. e e n P h
u Org. X r n P h
e 2 350 16,800 15,000 35,000 1,900
s 3 6 700 200 900 50
t 4 b c None None b
i 5 a-g a-d,f,g a-d,g-j ALL a-f,h
0 6 a b - 60% b - 70% b - 60% b - 25%
n 7

Which
YES ' NO NO YES

FOCUS

YES
PROGRESS

n Reliability 5 2
u 8 NO NO Y E S - I E F NO

m 9 e d
b 10 2 3 3
e 11- S/w InsuflHcient Adequate Adequate None None
r Maint.

4GL Adequate Adequate
3GL Adequate Adequate More than

Adequate
12 d c b c c
13 a a c
16 Financial
17 None
18 18 months
19 System

Programs
20 1,2
21 c

203

E . l Individual Survey Responses - Initial Survey (Continued)

46 47

Q 1 Dept. t r
u Org. t r
e 2 1,500 5,000+
s 3 49 300+
t 4 b c
i 5 a-f,l a,g-k
0 6 b - 30-40% C

n 7 YES - YES-
Which PRO-IV NOMAD

n Reliability 4 4
u 8 NO YES -lEW

m 9 d d
b 10 3 3
e 11- S/w None Adequate
r Maint.

4GL Adequate Adequate
3GL More than

Adequate
Adequate

12 c e
13 c c
16 Financial MIS
17 120+ None
18 5-6 years 2.5 years
19 Systems

Programs
All

programs-
20 5,5 5,5
21 c b

204-

E.1 Individual Survey Responses - Initial Survey (Continued)

Survey Number
1 2 3 4 5

Q 22 - LOC 2,500 40,000 2,000
u Lines exec. 2,150
e Code

s Entity 5 25 78 5
t relations.
i F.P.'s 7,800
0 J C L
n Lines

Data Diet 210 450
n Entries
u 23 8m,14m,2 50y,12m, 8m,4m,3 24m,6m,4 4m,6m,4
m 50
b 24 2,3,2 120,36,24 -,10days. -,2m,6m 0.9m,0.9m,
e 5 days 0.9m
r 25 3 3 3 2 3

26 5 4 3 4 3
27 3 3 2 3 4

28 5 3 3 4 3
29 a) (i) <6 mths < 6 mths < 6 mths < 6 mths <6mths

(ii) < 6 mths > 3 years 6 - 12 mths 6 - 12 mths 6-12mths
(iii) 6-12mths 6-12mths 2-3years 6-12mths <6mths
(iv) >3years 2-3years >3years 2-3years

<6mths b) (i) l-2years 6-12mths <6mths <6mths
2-3years
<6mths

(ii) 1-2 years 2-3 years 6-12mths 6-12mths 6-12raths

(iii) l-2years 2-3years 2-3years 6-12mths 6-12mths
(iv) 2-3years 2-3years >3years 6-12mths
30 b a b c a
31 2 5. 4 5 1
32 4 5 3 4 4

33 Data SOME NO YES NO
Diet.

Mean. SOME YES YES YES YES
Names

Comments YES YES YES YES SOME
in Code

Site YES YES YES YES NO
Standards

34 Doc X- ref Repository
& impact

analysis

205-

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
6 7 8 9 10

Q 22 - LOC 155,540 48,000 800,000 71,000 100,000
u Lines exec. 11,251 53,000 80,000
e Code blocks
s
t

Entity
relations.

i F.P.'s
0 J C L 1,232
n Lines

Data Diet 400 107 110
n Entries
u 23 24m,6m,4 6m,9m,2 360m,24m, 36m,12m,3 180m,48m,
m 20 6
b 24 0,72,36 0,0,8 240,-, 144 24,36,48 4 months
e 25 4 5 3 4 5
r 26 4 4 1 5 3

27 2 3 4 2 3

28 4 5 3 4 5
29 a) (i) <6mths l-2years <6mths 2-3years l-2years

(ii) l-2years >3years 6-12mths >3 years 2-3years
(iii) >3 years >3years <6mths 6-12 mths 2-3years
(iv) >3 years >3years <6mths 2-3years >3 years

b)(i) <6mths l-2years 2-3years 2-3years 6-12mths
(ii) 1-2years >3 years 2-3years >3 years 6-12mths

(iii) >3 years >3years 2-3years 6-12mths l-2years
(iv) >3 years >3years 2-3years 2-3 years 2-3years
30 c c b c b
31 4 4 4 3 4
32 4 3 5 5 5

33 Data YES YES YES NO YES
Diet.

Mean. YES YES YES YES YES
Names

Comments YES YES YES YES YES
in Code

Site YES YES YES YES YES
Standards

34 Maintain
definitions

Database
definitions

Database
definitions |

206

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
11 12 13 14 15

Q 22 - LOC 27,400 45,000 85,400 685,000 35,000
u Lines exec. 15,840 25,000 60,000
e Code

s
t

Entity
relations.

14

i F.P.'s
0 J C L 52 500 2,000 400
n Lines

Data Diet 5,000
n Entries
u 23 7.5m,1.5m, 12m,6m,3 6m,lm,8 10y,3y,5 53y,18m,
m 5 30
b 24 6,6,6 60,30,30 -,6,24 600,680, 36
e 500 (man
r days)

25 4 4 5 4 2
26 3 4 4 4 4
27 4 3 3 2 4
28 4 4 4 4 4

29 a) (i) >3 years l-2years l-2years 6-12mths l-2years
(ii) l-2years >3years 2-3years >3years 2-3years

(iii) >3years <6mths 6-12mths l-2years l-2years
(iv) 6-12mths >3 years 2-3years >3years l-2years

b)(i) >3 years 2-3years l-2years 6-12mths 2-3years
(ii) >3 years >3years 2-3years >3years 2-3 years

(iii) 2-3years 6-12mths 6-12mths l-2years l-2years
(iv) >3years >3years 2-3years >3years l-2years
30 b a. b b a
31 1 4 4 4 2
32 1 3 4 3 5

33 Data NO YES NO SOME YES
Diet.

Mean. YES YES- YES SOME YES
Names

Comments YES YES YES SOME YES
in Code

Site YES YES YES SOME YES
Standards

34 Part of
4GL

Field
repository

-207-

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
16 17 18 19 20

Q 22 - LOC 1,000 88,000 1,000,000 400
u Lines exec. 400
e Code

s
t

Entity
relations.

i F.P.'s 2,600
0 J C L 1,000
n Lines

Data Diet 450 30
n Entries
u 23 3m,3m,2 51m,9m,5 18y,10m, -,4y,16 6m,2m,3
m 11-43
b 24 1,1,0.5 30,40,30+ 36 24 0.1
e 25 3 4 3 . 4 4
r 26 3 4 3 3 4

27 3 2 3 3 3
28 3 4 3 4 4

29 a) (i) l-2years <6raths <6mths
(ii) l-2years >3years l-2years

(iii) >3years >3years 1-2years
(iv) l-2years >3 years 2-3years

b)(i) l-2years <6mths <6mths
(ii) l-2years >3years 2-3years

(iii) >3years >3 years 1-2years
(iv) l-2years >3years 2-3 years
30 b b c c a
31 4 4 4 3 3
32 3 4 2 4 2

33 Data NO YES YES YES YES
Diet.

Mean. NO YES SOME YES
Names

Comments SOME YES YES YES YES
in Code

Site SOME YES YES YES YES
Standards

34 Consistency Impact
analysis

File
definitions

Names &
data types

208

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
21 22 23 24 25

Q 22 - LOC 120,000 69,000
u Lines exec. 100,000 65,000
e Code

s
t

Entity
relations.

30 60

i F.P.'s 1,430
0 J C L 10,000
n Lines

Data Diet
n Entries
u 23 14m,6m,3 2m,-,4 18m,3m,6
m 24 25,6,3 36,36,36 6,6,3 1,1,1 24,24,24
b 25 3 4 4 3 4
e 26 3 4 4 4
r 27 3 3 3 3 3

28 3 4 4 5 5
29 a) (i) <6mths 2-3years <6mths <6mths

(ii) l-2years >3years l-2years <6mths
(iii) l-2years <6mths l-2years 1-2years
(iv) l-2years 2-3years >3 years 2-3years

b) (i) <6mths 2-3years 6-12mths 1-2years
(ii) >3years >3years 2-3 years 1-2years

(iii) l-2years 6-12mths >3years 2-3years
(iv) >3years >3years >3years 2-3 years
30 a a a a b
31 1 2 2 3 4
32 5 5 5 2 2

33 Data YES YES NO YES YES
Diet.

Mean. NO YES YES YES YES
Names

Comments NO YES YES YES YES
in Code

Site NO YES YES YES YES
Standards

34 Data
definitions

Part of
4GL

Central
repository

-209

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
26 27 28 29 30

Q 22 - LOC
u Lines exec.

e Code

s
t

Entity
relations.

i F.P.'s 1,500
0 J C L
n Lines

Data Diet 10,000
n Entries
u 23 -,14m,6 18m,24m,2 6m,8m,l
m 24 60,120,120 0.5
b 25 3 3 4 3 4
e 26 4 4 3 4
r 27 3 3 3 2

28 3 3 4 3 4
29 a) (i) l-2years 6-12mths <6mths <6mths

(ii) l-2years >3years <6mths >3 years
(iii) l-2years >3years >3years <6mths
(iv) >3years 2-3years <6mths >3years

b)(i) l-2years 6-12mths <6mths
(ii) l-2years >3years >3years

(iii) >3 years >3years <6mths
(iv) >3 years 2-3years >3years
30 a c b b
31 5 4 5 3 3
32 5 3 2 3

33 Data YES YES YES YES NO
Diet.

Mean. SOME YES YES YES YES
Names

Comments YES YES YES YES YES
in Code

Site YES YES YES YES YES
Standards

34 Part of
4GL

Part of
4GL

Corporate
data model

210

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
31 32 33 34 35

Q 22 - LOC 1,000,000 6,000,000
u Lines exec. 3,000,000
e Code

s
t

Entity
relations.

140

i F.P.'s
0 J C L 5,000
n Lines

Data Diet 600
n Entries
u 23 4m, 6m, 1 15m, 15m, 100+m,18m -,5m,10
m 30 ,up to 100
b 24 -,-,1 None,5%,
e 5%
r 25 4 2 3

26 4 5 4 3
27 3 2 3 3
28 4 3 3

29 a) (i) <6mths •<6mths 6-12mths <6mths
(ii) >3years <6mths l-2years >3 years

(iii) >3 years >3years l-2years <6mths
(iv)

b)(i)
>3years
<6mths

>3years
6-12mths

l-2years
<6mths

>3years
6-12mths

(ii) >3 years 6-12mths 2-3 years >3years
(iii) >3years >3years 2-3 years 6-12mths
(iv) >3years >3years 2-3years >3years
30 c c c b
31 4 5 3 5
32 3 5 5 1

33 Data YES YES YES YES
Diet.

Mean. YES YES YES NO
Names

Comments YES YES YES NO
in Code

Site YES YES YES YES
Standards

34 Repository Field
reference

Repository

-211

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
45 46 47

Q 22 - LOC .J , _

u Lines exec.
e Code

s
t

Entity
relations.

i F.P.'s
0 J C L
n Lines

Data Diet
-

n Entries

u 23 26m,10m,4 12m,15m,2
m 24 3,3,3 1,1.5,1 2.5,2.5,1.5
b 25 3 4
e 26 3 4 2
r 27 3 2 3

28 4 3 4
29 a) (i) <6mths <6mths <6mths

(ii) <6mths 2-3 years 6-12mths
(iii) >3 years 6-12mths <6mths
(iv) >3years >3years 6-12mths

b)(i) <6mths 2-3years 6-12 mths
(ii) <6mths >3years 6-12mths

(iii) >3years 2-3years 6-12mths
(iv) >3 years >3years 6-12mths
30 a b b
31 4 5
32 5 2 2

33 Data YES YES NO
Diet.

Mean. YES YES YES
Names

Comments YES YES YES
in Code

Site YES YES YES
Standards

34 Repository

212

E . l Individual Survey Responses - Initial Survey (Continued)

1 2 3 4 5
Q 35 4 4 4 3 2
u 36 3 5 3 3 2
e 37 3 4 4 3 4
s 38 NO YES-F.P's NO NO NO
t 39 Y E S BUT Y E S BUT Y E S BUT Y E S B U T NOT NO
i NOT PURE - NOT P U R E - NOT PURE PURE - JSDEV

0 YOURDON SSAMD -SSAMD SYSTEMCRAFT

n /SSADM

u 40 NO NO NO AS 39 NO
u 41 3 3 4 4 4
m 42 CASE INGRES NONE
b 4GL
e 43 NONE AS 42 NONE
r 44 YES/NO NO YES/NO YES/NO NO

45 NO NO NO NO NO

213-

E . l Individual Survey Responses - Initial Survey (Continued)

6 7 8 9 10
35 5 4 4 3 3
36 4 4 4 3 3
37 4 5 4 3 4
38 NO NO NO YES-IN

HOUSE
NO

39 Y E S BUT
NOT PURE -

SSADM

NO NO NO YES-
CASE

40 NO NO NO NO YES-
CASE

41 4 3 3 2 2
42 ORACLE*

CASE
DATACOM

DB
DEBUGGER INFORMIX CASE*DICT

&
DESIGNER

43 AS 42 AS 42 AS 42 AS 42 AS 42
44 NO YES/NO YES/NO YES/NO NO
45 NO NO NO YES -

Move to
any UNIX
platform.
Software
impacts.

NO

Q
u
e
s
t
i
o
n
i
n
u
m
b
e
r

214

E . l Individual Survey Responses - Initial Survey (Continued)

Survey Number
11 12 13 14 15

35 3 4. 5 4 2
36 4 3 4 4 3
37 5 3 4 3 4
38 NO NO NO NO NO
39 NO Y E S BUT

NOT P U R E -
ORACLE

Y E S -
MODUS

Y E S BUT
NOT PURE -

LSDM

NO

40 NO - AS 39 AS 39 NO NO
41 2 2 4 2 1
42 DEBUG SQL*PLUS INHOUSE

TOOLS
NONE DESIGN

AID
43 AS 42 AS 42 TEST

DATA
CREATOR

NONE

44 NO YES/NO NO NO NO
45 YES-

porting to
UNDC

NO NO NO NO

Q
u
e
s
t
i
i
o
n

n
u
m
b
e
r

-215

E . l Individual Survey Responses - Initial Survey (Continued)

16 17 18 19 20
35 2 4 3 3 3
36 3 5 3 4 4
37 4 4 1 4 3
38 NO NO NO NO NO
39 YES BUT NOT

PURE-

STRUCTURED

Y E S -
MODUS

Y E S BUT
NOT PURE

-SSAMD

NO NO

40 NO - AS 39 NO NO NO
41 3 4 3 3
42 NONE IPSE FLOW

CHART
43 NONE AS 42 AS 42
44 YES/NO NO NO NO YES/NO
45 NO NO NO YES-

Move to
new

hardware

NO

Q
u
e
s
t
i
o
n

n
u
m
b
e
r

-216

E . l Individual Survey Responses - Initial Survey (Continued)

21 22 23 24 25
35 4 3 4 3 5
36 3 4 3 3 5
37 1 5 3 5 4
38 NO NO NO NO NO
39 Y E S -

INHOUSE
NO YES-

INHOUSE
Y E S BUT

NOT PURE -
ORACLE

40 NO - NO NO AS 39 AS 39
41 1 4 3 4 3
42 MVS PMW FORMS
43 MVS NONE FORMS
44 YES/NO NO NO NO NO
45 NO NO NO YES-NEW

PROCESSOR

Q
u
e
s
t
i
o
n

n
u
m
b
e
r

-217-

E . l Individual Survey Responses - Initial Survey (Continued)

26 27 28 29 30
35 3 4 3 4
36 5 3 3 3 4
37 2 3 3 3 3
38 NO NO NO NO NO
39 Y E S BUT

NOT PURE -
R E V E R S E

ENG.

Y E S - CACI NO Y E S -
mw

Y E S -
INHOUSE

40 NO AS 39 NO AS 39 AS 39
41 3 4 4 3 3
42 NONE DATACOM NONE NONE
43 ERROR

MONITOR
ING

DATACOM NONE NONE

44 NO Y E S A ^ S NO NO NO
45 NO NO NO NO NO

Q
u
e
s
t
i
o
n

n
u
m
b
e
r

218-

E . l Individual Survey Responses - Initial Survey (Continued)

31 32 33 34 35
35 4 2 2 5
36 4 4 5 5
37 4 4 5 3
38 NO NO NO NO
39 Y E S BUT

NOT PURE -
YOURDON

NO Y E S BUT
NOT PURE

-SSAMD

NO

40 NO NO NO
41 2 2 3 4
42 IMPLEM-

ENTOR
NONE NONE lEW

43 AS 42 NONE NONE AS 42
44 YES/NO YES/NO NO YES/NO
45 NO NO NO NO

Q
u
e
s
t
i
o
n

n
u
m
b
e
r

219-

E . l Individual Survey Responses - Initial Survey (Continued)

1 46 47
35 3 3 4
36 3 4 4
37 3 3 3
38 NO NO

39 1 NO NO Y E S -
INHOUSE

40 NO NO AS 39
41 1 4 3
42 NONE

43 1 NONE
44 1 NO YESAHES YES/NO
45 1 NO NO

Q
u
e
s
t
i
o
n

n
o

-220

E.2 Individual Survey Responses - Supplementary Survey

Survey Number
1 2 3 1 4 5

Q 4GL Ingres Oracle Oracle Nomad Telon
u 22 - L O C 3,000 650 15,000 331,133 20,000
e Lines exec. 3,000 13,500 18,000
s code

t Entity 285 9
i relations
0 F.P.'s 350 80
n JCL

lines
820

n Data Diet 1,400 2,439 40
u Entries

m 23 6m, 9m, 3 2m,2m,l 12m,9m,2 13m,4m,5 4m,6m,3
b to 8
e 24 0.75m,0.75m, 0.25 12m, 12m, -,48m,48m lm,lm,lm
r 0.75m 12m

17 NONE 20 None 70 40
29 a) (ii) >12mths >12mths 6-12mths >12mths >12mths

b) (i) 6-12mths >12mths 6-12mths >12mths >12mths
11 -4GL Adequate Adequate Adequate Adequate Adequate

3GL Adequate Adequate Adequate Adequate Adequate
30 YES NONE NONE SOME YES
31 5 4 2 3 4

33 Mean. YES SOME YES YES YES
Names

44 YES NO NO NO NO
42 Unifaee,

Silverhom
Debugger Test data

generator
PMW

221-

E.2 Individual Survey Responses - Supplementary Survey (Cont'd)

Survey Number
6 7 8 9 1 10

Q 4GL Ideal Natural Focus Ingres Oracle
u 22 - L O C 5,000 15,000 9,000 21,000 20,000
e Lines exec. 4,500
s code
t
i

Entity
relations

0 F.P.'s
n JCL

lines
n Data Diet
u Entries

m 23 2m,3m,2 24m,24m,2 10m, 10m, 3 18m,9,2
b 24 - , lm, lm 7m 5m 8m,8m,6m
e 17 None 150 68 70 None
r 29 a) (ii) >12mths 6-12mths 6-12mths >12mths <6mths

b) (i) >12mths 6-12mths 6-12mths >12mths <6mths
11 -4GL

3GL

Adequate

Adequate

More than
Adequate
Adequate

Adequate

Adequate

More than
Adequate
Adequate

Adequate

Adequate
30 SOME YES NONE ALL YES
31 3 3 2 3 3

33 Mean. YES NO YES YES YES
Names

44 YES NO NO NO NO
42 PMW Inhouse Inhouse Test data

generator

222-

E.2 Individual Survey Responses - Supplementary Survey (Cont'd)

Survey Number
11 12 1 13 14

Q 4GL Nomad Ingres Pro-IV Oracle
u 22 - L O C 17,000 25,000
e Lines exec.
s code
t Entity
i relations
0 F.P.'s
n JCL

lines
-

n Data Diet
u Entries

m 23 3m,3m,3
b 24 2m
e 17 25 5 23 None
r 29 a) (ii) <6mths 6-12mths >12mths >12mths

b) (i) >12mths >12mths 6-12mths >12mths
11 -4GL Adequate Adequate Adequate Adequate

3GL None Adequate None Adequate
30 YES NO SOME YES
31 3 5 2 3

33 Mean. YES YES YES YES
Names

44 YES YES NO NO
42 Inhouse

223

REFERENCES

[ABRAN90] Abran A and P.N. Robillard. Proceedings of the CIPS

1990 Conference, Canadian Information Processing

Society, Ottawa, Canada, May 1990.

[ABRAN93] Abrah A and H. Nguyenkim. Measurement of the

maintenance process from a demand-based perspective.

Journal of Software Maintenance: Research and

Procedure Volume 5 Number 2, June 1993, pp 63 - 90.

[ALBRECHT79] Albrecht A.J. Measuring application development

productivity. Proceedings of the IBM Application

Development Symposium. Guide/ share. October 1979.

pp. 83 -92.

[ALBRECHT83] Albrecht, A. J. and J. Gaffhey Jr. Software fiinction,

source lines of code, and development effort prediction:

A software science validation. IEEE Transactions on

Software Engineering. SE-9, Number 6, November

1983, pp. 639 - 648.

[ANSI90] American national standard IEEE standard glossary

of software engineering terminology, ANSI/ IEEE

Standards. 610.12. 1990.

224

[BALL87] Ball R.K. Aerobic polls and broad definitions: The

Calgary connection. Software Maintenance News

Volume 5 Number 7, July 1987. Page 12.

[BALL87b] Ball R.K. 1987 Annual software maintenance survey:

Survey Results. Software Maintenance Association

Vallejo, California. 1987.

[BANKER87] Banker R.D., S.M. Datar, and C.F. Kemerer. Factors

affecting software maintenance productivity: an

exploratory study. Proceedings of the eighth

international conference on information systems.

Pittsburgh PA, December 6 - 9 1987. pp. 160 - 175.

[BATE87] Bate J. St.J. and D.B. Vadhia Fourth generation

languages under DOS and UNDC. BSP Professional

Books. Oxford, England. 1987.

[BELADY72] Belady L. and M. Lehman. An introduction to growth

dynamics statistical computer performance evaluation.

W. Frieberger, ed. Academic Press, 1972. pp. 503 - 511.

[BENNETT89] Bennett K.H. The software maintenance of large software

systems: Management, methods and tools. CSR 6th

Annual Conference on Large Software Systems. 1989.

225

[BLACK92] Black G. Maintenance: The never ending nightmare.

Software Management April 1992. pp 4 - 6.

[BOEHM74] Boehm B.W. Some steps towards formal automated aids

to software requirements analysis and design. EFIP74.

Amsterdam, Holland, pp 192 -197.

[BOEHM75] Boehm B.W: The high cost of software. Practical

strategies for developing large software systems.

Ed E. Horowitz Addison- Wesley Reading MA. 1975.

[BOEHM76] Boehm B.W. Software engineering. IEEE Trans. Comp.

Volume 25, Number 12, December 1976. pp 1226 - 1242.

[BOEHM77] Boehm B.W. Seven basic principles of software

engineering. Infotech state of the art reports: Software

Engineering Techniques. Maidenhead. 1977. pp 77 - 113.

[B0EHM81] Boehm B.W. Software engineering economics.

Englewood Cliffs N.J. 1981.

[BOEHM83] Boehm B.W. The economics of software maintenance.

IEEE. December 1983.

[BROOKS75] Brooks F. The mythical man month. Addison-Wesley,

Reading MA. 1975.

-226

[CACCAMESE86] Caccamese, A., L. Cappello, and G. Dodero. A

comparison of SLIM and COCOMO estimates versus

historical man-power and effort allocation. Unpublished

paper. (Test of COCOMO and SLIM against three

projects at Olivetti in Italy). 1986.

[CAP87] CAP. ICL productivity under control: Calipso 1987.

[CHAPIN84] Chapin N. Software maintenance with fourth generation

languages. ACM Sigsoft software engineering notes

Volume 9 Number 1. January 1984. Pp 41 - 42.

[CHRYSLER78] Chrysler E. Some basic determinants of computer

programming productivity. Communications of the ACM,

Volume 21, Number 6, June 1978. pp 472 - 483.

[CODD85] Codd E.F. Viewpoint. Computerworld Volume 19

Number 50. 16 December 1985. Page 18.

[COLTER88] Colter M. The business of software maintenance. Second

software maintenance workshop notes. Centre for

Software Maintenance, Durham, England. 13-14

September 1988.

[CSM87] Centre for Software Maintenance. Centre for Software

Maintenance, Durham, England. 1 October 1987.

227

[CSM92]

[DALY77]

Centre for Software Maintenance, Durham England. 1992.

Daly E. Management of software engineering. IEEE

Transactions on Software Engineering, Volume SE-3,

Number 3, May 1977.

[DEKLEVA90] Dekleva S. 1990 Aimual software maintenance survey:

Survey results. Software Maintenance Association,

Vallejo California 1990.

[DEMARC082] DeMarco T. Controlling software projects. Yourdon

Press, N Y. 1982.

[ELLIOTT77] Elliott I . Life cycle planning for a large mix of

commercial systems. Proceedings U.S. Army ISRAD

software workshop, August 1977.

[FERENS79] Ferens D. and R. Harris. Avionics computer software

operation and support cost estimation. Proceedings

NAECON79, Dayton, Ohio, May 1979.

[GAYLE71] Gayle J.B. Multiple regression techniques for estimating

computer programming costs. Journal of Systems

Management, Volume 22, Number 2, February 1971,

pp 13 - 16.

228

[GILB82]

[GILB83]

Gilb T. Software metrics. Studentlitteratur. Lund. 1982.

Gilb T. Design by objectives: Maintainability. Tutorial

on software maintenance IEEE computer society,

pp. 167 - 179.

[GOLDEN81] Golden J.R., J.R. Mueller and B. Anselm. Software cost

estimating: craft or witchcraft. Database 12(3) Spring

1981. pp 12-14.

[GRAVER77] Graver C. Cost of reporting elements and activity cost

trade-offs for defence system software, General research

corporation, Santa Barbara, CA. March 1977.

[GRIFFIN80] Griffin E. Real time estimating. Datamation. June 1980.

[GUIDE85] GUIDE International. Maintenance productivity

improvements through matrices and measurements,

GUIDE Publications, GPP-130. 1985.

[HELMER66] Helmer-Heidelberg O. Social technology. Basic Books,

New York. 1966.

[HEWETT87] Hewett J. and T. Durham. Computer aided software

engineering: commercial strategies. Ovum Ltd. London,

England. 1987.

229

[HILL90] Hill S. DSS fails to see the benefit of £2 billion system.

Computer Weekly 24 May 1990. Page 1.

[IDC84] International Data Corporation. Fourth generation

language: information generators to meet information

needs. IDC ISPS report Number 2563. Framingham

Ma. 1984.

[IDPM86] Institute of Data Processing Managers. Fourth generation

languages - how to use them. The Grindley Report.

London. 1986.

[JEFFERY87] Jeffery D.R. Time sensitive cost models in the commercial

MIS envirormient. IEEE transactions on software

engineering. SE-13(7). July 1987. pp 852 - 859.

[JONES86] Jones C. Programming productivity. McGraw-Hill

Book Company, New York, 1986.

[JONES88] Jones C. A ten year history of software engineering in

the ITT Corporation. Software Productivity Research Inc.

Cambridge, Mass.

[KEMERER87] Kemerer C.F. An empirical validation of software cost

estimation models. Communications of the ACM. 30(5).

May 1987. pp 416-429.

230

[KEMERER88] Kemerer C.F. Software cost estimation models.

September 1988.

[KITCHENHAM84] Kitchenham B. and N.R. Taylor. Software cost.

models. ICL technical journal May 1984. pp 73 - 102.

[KITCHENHAM85] Kitchenham B. and N.R. Taylor. Software project

development cost estimation. Journal of systems and

software 5(4) November 1985. pp 267 - 278.

[LEHMAN76] Lehman M.M. and L.A. Belady. A model of large

program development. IBM Systems Journal. 15(3).

pp. 225 - 252.

[LEHMAN80] Lehman M.M. and L.A. Belady. Programs, life cycles

and the laws of software evolution. Proceedings IEEE

68(9). pp 1060 - 1076.

[LIENTZ80] Lientz B. and E.B. Swanson. Software maintenance

management: A study of the maintenance of computer

application software in 487 data processing organisations.

Addison-Wesley, Reading, MA. 1980.

[LIU76] Liu C.C. A look at software maintenance.

Datamation Volume 22, Number 11. November

1976. pp51 -55.

231

[LY0NS81] Lyons M.J. Salvaging your software asset (Tools based

maintenance). AFIPS Conference Proceedings of 1981

National Computer Conference. Chicago. Volume 50.

4 - 7 M a y 1981. pp 337-342.

[McCLURE76] McClure C.L. Normalization and application structured

programming and program complexity. PhD dissertation.

Illinois Institute of Technology. 1976.

[McCLURE78] McClure C.L. Reducing COBOL complexity through

structured programming. New York, Van Nostrand

Reinhold Co. 1978.

[MARTIN83] Martin J. and C. McClure. Software maintenance: The

problem and its solutions. Englewood Cliffs N.J. 1983.

[MIYAZAKI85] Miyazaki Y. and K. Mori COCOMO evaluation and

tailoring. Proceedings of the eighth International

Conference on Software Engineering, pp 292 - 299.

1985.

[M0HANTY81] Mohanty S. Software cost estimation: Present and fiiture.

software - practice and experience. Number 11. 1981.

pp 103-121.

232

[PARIKH82] Parikh G. Some tips, techniques and guidelines for

program and system maintenance. Techniques of

Program and System Maintenance. Winthrop Publishers,

Cambridge MA. 1982. pp 65 - 70.

[PATKAU83] Patkau B.H. A foundation for software maintenance.

PhD Thesis, Department of Computer Science, University

of Toronto. December 1983.

[PETZOLD87] Petzold K. The COBOL maintenance crisis. First

software maintenance workshop notes. Durham,

England. 8 - 9 September 1987.

[PUTNAM78] Putnam L.H. General empirical solutions to the macro

software sizing and estimating program. IEEE

Transactions on software engineering. Volume 4,

1978. pp 345 -361.

[PUTNAM79] Putnam L.H. and A. Fitzsimmons. Estimating software

costs. Datamation, September 1979 pp 189 - 198,

October 1979 pp 171 -178 and November 1979

ppl37- 140.

[RATHBONE89] Rathbone M. On the straight and narrow. Computer

Weekly 16 March 1989. pp 40 - 41.

233

[RUBIN] Rubin H.A. Using ESTIMATICS E. Management and

computer services. Inc., Valley Forge, PA.

[RUBIN85] Rubin H.A. (Chairman). A comparison of cost estimation

tools (A panel session). Proceedings of the eighth

International Conference on Software Engineering. IEEE

Computer Society Press. 1985. pp 174 - 180.

[SCOTT74] Scott R.F. and D. Simmons Programmer productivity and

the Delphi technique. Datamation, Volume 20, Number 5,

May 1974. pp 71 - 73.

[SHARPLEY77] Sharpley W.K. Software maintenance planning for

embedded computer systems. Proceedings IEEE

COMPSAC77. November 1977. pp 520 - 526.

[SOMMERVILLE85] Sommerville I . Software engineering. Second

Edition. Wokingham, England. 1985.

[SWANSON76] Swanson E.B. The dimensions of maintenance. Second

international conference on software engineering

proceedings. San Francisco. 13-15 October 1976.

pp 492 - 497.

-234

[TANG89] Tang R. Third party software maintenance. Third

Software Maintenance Workshop Notes, Centre for

Software Maintenance, Durham, England. 19-21

September 1989.

[TINNIRELL085] Tinnirello P.C. Software maintenance in fourth

generation language environments. Data management.

March 1985. Pp 38 - 43.

[VERNER88] Vemer J. and G. Tate. Estimating size and effort in fourth

generation development. IEEE Software, July 1988.

pp 15-22.

[WALSTON77] Walston C.E. and CP. Felix. A method of programming

measurement and estimation. IBM Systems journal.

Volume 16, Number 1. 1977. pp 54- 73.

[WIENER84] Wiener-Ehrlich, W.K., J.R. Hamrick and V.F. Rupolo.

Modelling software behaviour in terms of a formal life

cycle curve: implications for software maintenance.

IEEE Transactions for software engineering. July 1984.

pp 376-383.

[WOLVERTON74] Wolverton W.R. Cost of developing large scale software.

IEEE Transactions on computers, Volume 23, June 1974.

pp 615 -634.

235

[WOLVERTON80] Wolverton R. Airborne systems software acquisition

engineering guidebook: software cost analysis and

estimating, U.S. Air Force ASD/EN, Wright- Patterson

AFB, OH. February 1980.

[WRIGLEY88] Wrigley C. and A. Dexter. A model for estimating

information systems requirements size: Preliminary

findings. Proceedings of the Ninth International

Conference on Information systems. November 30 •

December 3 1988. pp 245 - 255.

[YAU78] Yau S., J.S. Collofello and T. MacGregor. Ripple effect

analysis of software maintenance. Proceedings. IEEE

COMPSAC78, Chicago II. November 1978. pp 60 - 65.

[YOURDON86] Yourdon E. Tooling up for 1995. Datalink. 17

November 1986. Page 10.

[ZVEGINTZOV91] Zvegintzov N. Real maintenance statistics, software

Maintenance News. Volume 9 Number 2. 1991.

236

