
Durham E-Theses

On optimal search for a moving target

Jordan, Benjamin Paul

How to cite:

Jordan, Benjamin Paul (1997) On optimal search for a moving target, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4722/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4722/
 http://etheses.dur.ac.uk/4722/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

On Optimal Search for a Moving
Target

A thesis presented for the degree

of Doctor of Philosophy at the

University of Durham.

The copyright of this thesis rests
with the author. No quotation
from it should be published without
the written consent of the author
and information derived from it
should be acknowledged.

Benjamin Paul Jordan

Department of Mathematical Sciences,

University of Durham,

DURHAM, D H l 3LE.

April 1997

Abstract

The work of this thesis is concerned with the following problem and its derivatives.

Consider the problem of searching for a target which moves randomly

between n sites . The movement is modelled with an n state Markov chain.

One of the sites is searched at each time t = 1, 2 , . . . until the target is found.

Associated with each search of site i is an overlook probability a; and a cost

d. Our aim is to determine the policy that will find the target with the

minimal average cost.

Notably in the two site case we examine the conjecture that if we let p denote the

probability that the target is at site 1, an optimal policy can be defined in terms of a

threshold probability P* such that site 1 is searched if and only if p > P*. We show

this conjecture to be correct (i) for general C i ^ C2 when the overlook probabilities

Qfj are small and (ii) for general and Ci for a large range of transition laws for the

movement. We also derive some properties of the optimal policy for the problem on n

sites in the no-overlook case and for the case where each site has the same a, and Ci.

We also examine related problems such as ones in which we have the ability to divide

available search resources between different regions, and a couple of machine replacement

problems.

Preface : Motivating Example

Imagine you are a Coast Guard team leader, and you have just received a distress call

from a sinking ship. You know that there is a liferaft somewhere on the (finite) ocean you

patrol. Based on tidal charts and metrological information, you can build up some model

for the possible motion of that liferaft. At your disposal you have certain resources - a

boat and 2 helicopters, all of which can be used to search for this missing raft. You realise

that even if you look in the right place , there is a chance that you won't see the liferaft,

as it is small in comparison to large waves. Your aim is to find the liferaft as quickly as

possible. How best should you allocate your resources in order to achieve this aim?

The above is a motivational example of the work in this thesis and gives an idea of

one of the many applications of search theory We consider only the simplest cases and

develop theory which will hopefully be of use in future research in the field.

Acknowledgements

This work was carried out under the supervision of Dr. lain M. Macphee, without whom

life would have been very difficult, and whose curries and atrocious bowling provided many

amusing distractions. Moreover, he furnished the original problem to study, without real

ising, perhaps, the consequences of his actions.My further thanks go go to all my friends

in both the Mathematics Department and beyond, for their support and encouragement

over the last three years. Thanks also to my parents, brothers and all the Jaegers. Their

help (both financial and emotional) has been beyond necessary limits, and has made the

passing of time far easier. Above all, my thanks must go to Kristin for her continued

attention and devotion to a problem she has never understood. Without her, this work

would never have been completed.

This work has been sponsored throughout by the U.K. Engineering and Physical Sciences

Research Council, to whom I am greatly indebted.

Statement of Originality

This work was carried out by the author between October 1992 and June 1995. It has

not been submitted for any other degree either at Durham or at any other University.

No claim of originality is made for the review material in Chapter 1 or the background

mathematics in Chapter 2. Chapters 3 and 4 are based on a joint paper between the

author and Dr. I.M. MacPhee, although the original motivation and many of the results

are the author's own. Chapter 5 presents material not published before.

The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should be

acknowledged.

©Benjamin P. Jordan MCMXCVI

Contents

1 Introduction - A History of Search Theory 11

2 Decision Processes and Negative Programming 15

3 The General Search Problem 29

3.1 Introduction 29

3.2 Definitions 30

3.3 The Optimality Equation 31

3.4 Some Results for the Search Problem on n Sites 34

4 The 2-Site Problem 43

4.1 Introduction 43

4.2 Definitions 44

4.3 Properties of the Li{p) 46

4.4 Piecewise Linearity of V 51

4.4.1 Class 1: P i > P* and P2 > ^ * 58

4.4.2 Class 2: P i < P* and P2 < P* 69

4.4.3 Class 3: P i > P* and P2 < P* 71

4.4.4 Class 4: P i < P* and P2 > P* 74

4.5 Verification of Case Boundaries 79

4.6 Conclusion 81

6

CONTENTS 7

5 Extensions and Related Problems 91

5.1 Introduction 91

5.2 A Three Site Search Problem 92

5.3 Variable Resource Search Problems 107

5.4 Machine Replacement Problems 114

5.4.1 A Simple Problem 114

5.4.2 Extension of Problem 117

5.5 Conclusion 124

6 Conclusion 126

A Matlab Programs 129

A . l diffalpha.m 129

A.2 Ieprechaun2.m 131

A.3 resources.m 134

A. 4 replacement.m 136

B Maple Calculations 137

B. l Boundary between Regions 1 and 3 137

B.2 Boundary between Regions 2 and 3 142

List of Figures

2.1 Graphical representation of possible transitions in Example 2 26

3.1 Optimal first search regions in three dimensions 38

3.2 Transition structure in Example 3.3 39

4.1 Optimal strategies over V 45

4.2 Form of f{p) when > 0 and u > 0 48

4.3 Li{p) and L2(p) in Theorem 4.1 when A > 0 54

4.4 Li{p) and Z/2(p) in Theorem 4.1 when A < 0 55

4.24 Regions of optimal P* 80

4.5 Li{p) and L2{p) in case 1 when A < 0, showing 'cobweb' form of con

traction 82

4.6 Illustration of optimal cost function in Case 1 when A > 0 82

4.7 Form of the optimal cost function V{p) when F i , F2 > and A < 0 . 83

4.8 Optimal cost function V(p) for Class 1 with parameter values as in Example

4.3 83

4.9 Li(p) and L2(p) with parameter values as in example 4.3 84

4.10 Li{p) and L2{p) in Case 2 when A > 0 84

4.11 Li{p) and Liip) in Case 2 when A < 0 85

4.12 Optimal cost function V{p) for Class 2 with parameter values as in Example

4.4 85

L I S T OF FIGURES 9

4.13 Li{p) and I/2(p) with parameter values as in Example 4.4 86

4.14 L i (p) and L2(p) in Case 3 86

4.15 Optimal cost function V{p) in Class 3 with parameter values as in Example

4.5 87

4.16 Li{p) and L-2{p) in Class 3 with parameter values as in Example 4.5 . . . 87

4.17 Subgradients of L i and L2 88

4.18 Ordering of important points in case 4.1 88

4.19 Optimal cost function V{p) in Class 4.1 for parameter values as in Example

4.6 89

4.20 Li{p) and L2{p) in Class 4.1 for parameter values as in Example 4.6,

showing that Li2(P*) > P* > L2i{P*) - ordering of points is L i (P *) ,

L2,iP*),P*,L,2{n,L2{n 89

4.21 Ordering of important points in case 4.2 when LuiP*) > L2i(P*) > P* 90

4.22 Optimal cost function V{p) in Class 4.2 for parameter values as in Example

4.7 90

5.1 Boundary Lines in 3-site case 94

5.2 Optimal Cost Function V for Parameter values as in Example 5.1 97

5.3 Reverse view of Figure 5.2 98

5.4 Optimal first choice regions for parameters as in Example 5.1 99

5.5 Overlaying Exact Plane on Approximate Cost Function 101

5.6 Shaded area shows updated states for parameters as in Example 5.1 . . . 102

5.7 Overlaying Exact Plane for policy 2, (1) on Approximate Cost Function . 105

5.8 Overlaying Exact Plane for policy 3, (1) on Approximate Cost Function . 106

5.9 Optimal cost function with search options only 112

5.10 Optimal cost function with 2 levels of search intensity 113

5.11 Optimal cost function with 4 levels of search intensity 114

L I S T O F FIGURES 10

5.12 Piecewise linear optimal cost function 118

5.13 Updated beliefs, having seen item 120

5.14 Optimal cost function Va{p) with parameter values as in Example 5.4 . . 124

5.15 G(p) and D(p) for parameter values as in Example 5.4 125

A . l Possible triangles which can exist within the cube from floor{p) to ceiling{p)13l

Chapter 1

Introduction - A History of Search

Theory

Mathematics is the science which uses easy words for hard ideas.

E. Kasner and J. Newman - Mathematics and the Imagination

Throughout history, one thing that has characterised man's existence has been his

desire to search for things he does not know about. This search may take forms as

diverse as molecular discovery or of interstellar travel. It is surprising perhaps then that

the first definition of search theory as a mathematical concept was not until 1942, when

the U.S. Navy began work in its Antisubmarine Warfare Operations Research Group. Its

major brief was to examine the German submarine threat in the Atlantic, and many of

its results are collected in Koopman's Search and Screening [7]. Essentially the group

examined the problems of how to find submarines, but Koopman also defined the basic

probabilistic concepts of search theory - a prior distribution on target location, the idea

of a function relating search effort and probability and detection and the intention of

maximising probability of detection (or minimising time to detection) subject to search

effort constraints. Over the last 50 years these results have remained fundamental to

11

CHAPTER 1. INTRODUCTION - A HISTORY OF SEARCH THEORY 12

ail aspects of optimal search. Moreover, in spite of the changing priorities in the world,
search problems remain much the same in definition - a target (or targets) is lost and we
have to find it as efficiently as possible under search constraints.

Over the years following Koopman's basic work, search theory developed in many dif

ferent directions, although initially lack of computing power demanded that the problems

themselves be simple. Hence, before 1975, almost all search literature is concerned with

the optimal search for a wholly stationary target, with a mobile searcher. Stone [14] high

lights this fact by addressing very few moving target problems. His book covers solutions

to a wide variety of stationary problems and subsequent extensions have proved difficult.

The book by Ahslwede and Wegener [1] builds on Stone's book and discusses more mov

ing target problems. In about 1975, as computer power increased, people began to tackle

moving target problems in a new fashion, looking at algorithmic rather than analytic so

lutions, reflecting the needs of the end-user. This trend has continued until today, with

little development in terms of general theory The type of problem we are interested in is

a one-sided search problem in which the target does not respond to the searcher's actions.

This problem is obviously simpler than the more game-theoretic two-sided search problem

covered in books like that of Gal [4] and is the one more commonly studied. Essentially

such problems can be broken down into 2 classes

(i) Optimal search density problems, where the search effort can be infinitely divided

and search in one area does not affect search in other areas at other times. This

sort of framework is suitable for problems where the searcher moves much more

quickly than the target.

(ii) Optimal searcher path problems, where the allocation of search effort at any one

time affects the possible future allocations of search effort. This is suitable when

the target is at least as fast as the searcher.

Over the years many different types of problem have been raised in search theory, and

CHAPTER 1. INTRODUCTION - A HISTORY OF SEARCH THEORY 13

a great number of papers have been written on them. For a full review, the reader is
referred to the excellent survey by Benkoski et al. [3].

In this thesis ,we look at two main areas of search theory

(i) The problem of search for a target which moves around n sites following a Markov

chain. In particular we look at n = 2 and n = 3. At each time we can search any

one site.

(ii) The associated extension of problem (i) in which we have the option of dividing

search to any degree any searching more than one site concurrently.

Both of these problems fall into the first class of search problems,and both stem from

a 1970 paper by Pollock [11]. In this paper, he develops a basic 2-site search problem

with perfect detection in discrete time and space and solves it exactly. Since Pollock's

paper little has been published on this type of problem, the only papers of note being by

Kan [6], in which an n-site problem is discussed, and Nakai [8] where a 3-site problem

is examined. However, both of these papers deal with very tightly constrained sets of

parameters and offer little general theory of use to this thesis. Their exact relevance is

discussed more fully at the appropriate times. The continuous time analogue of the 2-site

search problem was solved by Weber [18] in 1989. The other type of problem we look

at in this thesis has also been solved in continuous time by Assaf and Sharlin-Bilitzy [2],

while the discrete time version has only ever been studied by Nakai [9].

What this clearly shows is that, coming into this research , I found little history on

which to base my ideas. As a result, I used computers to simulate optimal search costs

and hint at the possible solutions.

People often say mathematics is a difficult subject in which to research. My response

is to try to outline the questions facing mathematician when they have a problem they

want to solve.

(i) Does this problem have a solution at all?

CHAPTER 1. INTRODUCTION - A HISTORY OF SEARCH THEORY 14

(ii) What do we think that solution is?

(iii) Can we rigourously prove that our solution is the actual one? (This is the hard

part!)

Computers had helped me to achieve the first two parts. The final part you find before

you.

The structure of the thesis is as follows. In Chapter 2, we examine the underlying

mathematics required to look at search problems in more detail. In Chapter 3, we look

at an n-site problem in discrete time. This work is applied and developed in Chapter 4,

where we focus on the 2-site case. Chapter 5 offers further problems for examination, and

conjectures as yet unprovable results about them.

My own motivation in this research has always been to work on problems which have

real relevance , and it is my hope that the results found in this thesis will achieve that

aim. Read on, and judge for yourselves. I hope you find what you seek.

Chapter 2

Decision Processes and Negative

Programming

When fighting the forces of darkness, one should not wear one's best trousers.

P. G. Wodehouse - The Code of the Woosters

In this chapter, we will examine search problems in the context of underlying mathe

matical theory, outlining what has been proven about such problems and providing pre

liminary results which will be used in later chapters. To begin with, let us reformulate the

search problem outlined in the Preface in a more general mathematical format.

We are searching for a target which can be in one of n sites 5*1, 5 2 , . . . , 5„. At

each time point t = 0,1,... we choose a site and search it. Associated with

each site Si is a cost Ci and a probability of overlook ai. The object itself

moves from site to site between search times, choosing its next site according

to a Markov chain with transition probability matrix M = (Mij). Our aim is

to find the object while incurring the minimum expected cost.

Such a problem is an example of a Markov decision process with infinite horizon.

15

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 16

There is a sizeable literature on such problems, and much is known in general about

their solution. The results of this chapter are based upon the books of Whittle [20] and

Ross [12][13], although notation has been changed for convenience and continuity here.

Furthermore, it should be noted that this is not meant to be a comprehensive guide to

the subject, but merely highlights the important results which have been employed in the

research which follows. Interested readers are referred to either of the above texts for

further information.

Within the framework of a Markov decision process, we consider a process which we

can observe at times t = 0 , 1 , . . . to be in one of a number of possible states, which

we can label by the non-negative integers 0 ,1 ,2 , After observing the process and its

state, we choose an action from a set A of all possible actions.

In looking at such a process , we must choose actions according to some policxj, where

a policy is any rule for choosing actions. For example a policy might depend on the history

of the process up to that point, or it might be entirely randomised, in that it chooses

action A with probability PA- It is difficult to work with such a general structure however,

and in fact for the purposes of this thesis it is only necessary for us to look at a subset of

policies.

Definition 2.1

A Markov policy is a rule for choosing actions. More formally, it is a function from the

state space X and time to the action space TT : A' x No ^ .

An important subclass of policies is the class of stationary policies. These are im

portant because under certain common conditions which we will discuss later, the set of

stationary policies contains the set of optimal policies. This result was shown by Strauch

[15]. The restriction to stationary policies forms the basis for a huge amount of Dynamic

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 17

Programming w i th relevance not only to the problems which fol low, but also to renewal
theory and a host o f other topics.
Defini t ion 2.2

A policy is stationary if the action chosen at t ime t is dependent only on the state of the

process at t ime t, and not on t itself. More formally it is a funct ion f rom just the state

space X to the action space f : X A.

If the process is in state i at t ime t, and our policy tells us to choose action a then

two things immediately happen :

(i) We incur a cost C{i, a)

(i i) The next state of the system is determined by some transit ion probabilities Pij{a)

So if we denote by Xt the state of the process at t ime t, then

Def in i t ion 2.3

P,j{a) = P{Xt+i = j | X o , ao, Xi, ai,..., Xt = i,at = a)

and so costs and transit ion probabilities are only functions of the last state and last action.

It fol lows tha t if a stationary policy TT is used then the sequence of states {Xt : t =

0 , 1 , 2 , . . . } forms a Markov chain w i th transit ion probabilities P^j = Pij{7r{z)). It is for

this reason tha t the process is called a Markov decision process.

Our aim is to f ind policies which are in some sense opt imal , and to do this we need

to determine some opt imal i ty cr i ter ion, in this way, let us consider the cost incurred up

to t ime s, Cg. We are interested in problems where cost is separable, i.e. where:

C,^i2PoPi.-.Pt-iC{Xt,at)
t=o

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 18

where C{Xt,at) denotes instantaneous cost under action at, and the /3s are discount

factors. These discount factors can be interpreted as estimations of how future costs

mat ter less to us than present ones, and moreover tha t costs decrease in importance as

we get fur ther into the future. It should be noted tha t in the search example we consider,

= 1 , yt. However, we are also concerned wi th infinite horizon problems, so we are

look ing to minimise the infinite horizon cost

Now, this inf ini te sum can have meaning as

C = l i m Cs

i.e. the l imi t of the s-horizon costs.

There are three standard cases for convergence of this l imit . They are:

D The discounted case. Instantaneous costs C (X t , a j) are bounded and discounting

is uni formly str ict , i.e. \C{Xt,at)\ < C < oo and /3(t) < 5 < 1 for constants C, 5.

P The positive case. Instantaneous costs are non-positive.

N The negative case. Instantaneous costs are non-negative.

The apparent paradox in t i t les comes f rom the historical definit ion of C(Xt, at) as a reward

- hence a positive cost becomes a negative reward. It is clear tha t the search problem

we are interested in lies in the th i rd case - negative programming - as all our costs are

non-negative in searching. These costs can be interpreted as a cost in t ime, or a cost in

money for rent ing search equipment /paying searchers etc.

N.B. We wil l consider only negative programming cases for the remainder of this chapter.

Hence, unless otherwise stated, the results shown are generally good only for negative

programming examples.

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 19

Defini t ion 2.4

If we fol low some policy T T , then the expected s-horizon and infinite horizon costs wil l be

Vs{n,Xo) = E^{Cs\X,)

and

V^{7r,Xo) = E^{C\Xo)

respectively, which in the case of separable costs become

Vs{n,i)=E^[J2C{Xt,at)\X, = i]
t=o

oo
Vo,{7i,i) = E,[Y,C{Xt,at)\Xo = i]

t=d

Our aim is to f ind the opt imal cost, or to find the policy which costs us the least to

fol low over an inf ini te horizon:

Defini t ion 2.5

The opt imal s-horizon and infinite-horizon cost functions Vg and V over the set of Markov

policies are defined by

V { i) = i n f y o o (^ , ^)

Moreover as the search problem has Markov structure, we know tha t V \s a funct ion

of init ial state space XQ only (proof - see Whi t t l e [20], Chapter 22, Theorem 4.1)

Moreover, we can define an opt imal policy in the fol lowing manner.

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 20

Defini t ion 2.6

Policy TV* is opt imal if

O f course, V{i) may be infinite.

Moreover, as our search problem has separable costs we have a further impor tant result

T h e o r e m 2.1

If VS{TT,I) and Ko (7r ,«) are the expected s-horizon and infinite horizon costs under policy

TT as defined in Def in i t ion 2.4, then:
(i) Vs(7r,.) Voo(vr,.) as s oo, and VS{TI, .) is monotonely increasing in s

(i i) i n f V^s(7r,.) as s -> oo and Voo <V
TT

P r o o f

See Wh i t t l e [20], Chapter 22, Theorem 2 .1 . Vs{n,.) is monotonely increasing as a tr ivial

result o f the fact tha t we are working in the negative programming case.

Hence we can see tha t our s-horizon cost under policy TT tends to the infinite horizon

cost as 5 tends to oo, and tha t the lower envelope of s-horizon cost functions tends to

some funct ion Voo again as s tends to oo, which is less than or equal to our optimal

inf ini te horizon cost funct ion, V.

Now, if we define V to be the class of functions (f){x) f rom our state space X to the

real numbers and for any stationary Markov policy h, the operators L{h) and C f rom V

to V by:

L{h)(f){x) = E[C{xt, at) + (j){xt+i)\xt = x, at = h{x)

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 21

C(f){x) = i n f E[C{xt, at) + (f){xt+i)\xt = x,at = a
then we have the result:

T h e o r e m 2.2

The inf imal inf inite horizon future cost V{i) satisfies

V = CV

i.e. V solves the equil ibrium opt imal i ty equation

0 = (2.1)

If policy h is opt imal then also

V = L{h)V

P r o o f

See Wh i t t l e [20], Chapter 22, Theorem 4.2

Note tha t

K (^) = L (7 r i)L (7 r2) . . .L (7 r ,) (0)

for any policy T T , which simplifies to

y,(7r) = (L (^)) ^ (0)

for a stat ionary Markov policy. Moreover,

Vs = C'{0) and K o = j i m / : ^ (0)

where 0 indicates the element of V which is identically zero.

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 22

However, the impor tant point is tha t V need not be the unique solution of (2.1) above.
Indeed, a solution (j) of (2.1) can be the cost funct ion Voo(7r) for some legitimate policy
TT and yet TT need not be the opt imal policy.

E x a m p l e 2.1

Consider the fol lowing problem. We have a process which has only one state. A t each

t ime point we have to make the decision to either let the process continue which costs

us noth ing, or to stop the process which costs us 1 unit. We can consider the stationary

policies:

/ i = continue

/2 = stop

Our opt imal i ty equation (2.1) becomes

<P = mm{(j),l) (2.2)

It is clear t ha t the opt imal policy is / i , wi th infinite horizon cost V / j = 0. However (2.2)

is solved by any < / > < ! . Notably, i t is solved hy (j) = 1 = Vj^. Hence, Vf^ solves (j) = C(f),

but policy ./s is not opt imal . It is worth not ing, however, tha t if cont inuing costs us any

amount greater than 0, then the solution to (2.1) is unique, and policy /2 is opt imal .

Returning then, to our search problem, we want to find conditions under which there

is a unique funct ion V which satisfies

Viz) = min [C(z ,a) + E^^.(«)^0')] (2-3)

We also want t o know when Foo(0 — ^ (^) (^^ know tha t V^oii) < V{i)). First we show

tha t V is the smallest non-negative solution of the opt imal i ty equation (2.1).

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 23

Propos i t ion 2.1

If the non-negative funct ion u{i) is such that

«(^) = min [C(z ,a) + ^ P, , (a)u(j)] (2.4)
j

then u(i) > V{i).

P r o o f

Let g be a policy which takes minimising actions as determined by equation (2.4). Then,

C{z,g{'i.)) + Y . P M ^ H J) = rmn[Ciz,a) + J2P,,{a)u{j)] (2.5)
j " j

= 'u(?)

Now, let us consider an ordinary decision process problem, wi th a stop action added

to the set o f actions, which costs u{i) if used in state i {u{i) > 0 , V i) . Then (2.5) above

tells us tha t if we are in state i immediate stopping is equivalent to using policy g for one

stage and then stopping. Hence:

EgiCn\Xo = l)+Eg {u{Xn)\X^ = l) = U{i) .

As the funct ion u is non-negative, we can see

Vn{g,i) = Eg{Cn\XQ = i) < u { i)

and, le t t ing n tend to oo we find

Voo{g^i) < u{i)

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 24

Finally, using the fact tha t by def ini t ion, V{i) < Voo{g,i) for any policy g,

V{i) < u{{) .

Now we show tha t for search problems the opt imal i ty equation has a unique solution.

Def in i t ion 2.7

A search problem is a negative case Markov decision problem wi th a f inite action set and

a special state z (corresponding to detection of the target) where there is only one action

a and C{i,a) = 0, Pfi{a) = 1.

We now can use the fol lowing theorem to show uniqueness.

T h e o r e m 2.3

Suppose a search problem has a set of states / such tha t mmaPii{a) > a > 0 for all

I e / and Ej6 /u{ i} Pij{(^) — 1 fo"" states i and actions a. Then the solution to the

opt imal i ty equation (2.3) is unique.

P r o o f

First note tha t for any solution u to (2.4), u{i) = 0. Fix on some state i and suppose

tha t V{i) = C{i, Ci) + E j Pij{a'i)y{j) for some action a^. Then

u { t) - V { i) < C{^,a,) + J2P^A<^^HJ)-C{^,a,)~Y.P^M)VU)
j j

= ^ P , , { a ,) i u { j) - V { j)) (2.6)
j

< ^ P , , (a ,) s u p K j) - F (j) |

< (1 - tt) sup \u{j) - V { j) .

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 25

As u > V and o; > 0 this implies supjg^ |M(^) — V{i)\ = 0 and finally, by (2.6), that
u(i) = V{i) for all states i.

Th ink ing about our search problem, we have the result tha t if we can find a cost

funct ion which satisfies the opt imal i ty equation then it is the opt imal one.

We also want to know tha t we can use successive approximations to numerically

approximate the opt imal cost funct ion. Recall that

K o (0 = J i m K (^)

where

K(^) =min[C(z,a) + ^ P , , (a) K _ i (j)] >

and Vf) = 0.

T h e o r e m 2.4

When the act ion space A is f ini te and costs are all str ict ly positive then V „ (i) converges

monotonely to Voo{i) and

Voo(^) = Vii) I > 0.

P r o o f

As we already know tha t Voo{i) < V{i), the proof of the theorem is equivalent to proving

tha t V(i) < Voo{i)- By the above proposit ion, this is true i f V^o satisfies the opt imal i ty

equat ion Voo{i) = m inae^ [C(z , a) + Pzj{a)Voo{j), •

K o (^) = „ l imK (0

= lim min[C(^, a) + ^ P,, (a) K _ i (j)]
i

= min[C{i, a) + Y^ P„ (a) lim K - i (i)
J

= min[C(z, a) H- ̂ ^ ^ i (a) ^ o o (J)]

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 26

Hence the result is shown.

The importance of this is tha t we now know tha t V{i) = K o (0 = linis C^Vo{i) which

shows us tha t the opt imal policy can be calculated by i terat ing on Vo w i th operator £ .

The conclusions of Theorem 2.4 are not true in general. For example, consider the

fo l lowing scenario where the action space is not f inite.

E x a m p l e 2.2

Imagine the problem where the state space consists of the integers { 0 , 1 , 2 , . . . } . From

state 1, we have the choice of moving to any of the state {2 , 3 , . . . } . From state x, x > 2

we have to move to state (x — 1) and from state 2 we have to move to state 0. There

is zero cost associated w i th all moves, except the movement 2 0 which has unit cost.

Pictorial ly we have:

Figure 2.1: Graphical representation of possible transitions in Example 2

We can see easily tha t , by fol lowing a policy which moves us to a state greater than

s + 1 f rom state 1, we can have

r
0 if x = 0,1 or a; > s + 2

(2.7)
1 otherwise

From (2.8) i t follows tha t

V^(x) =
0 if a; = 0 ,1 .

1 otherwise
(2.8)

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 27

On the other hand, in an infinite horizon case, no matter where we choose to move from
state 1, we ul t imately reach state 2, and are forced to make the 2 —)• 0 transit ion. Hence

0 if a; = 0
V{x) = (2.9)

1 otherwise

Compar ing (2.9) and (2.10), we can see tha t Voo < V at x = 1- The proof of Theorem

2.4 fails at the point where the l imit and the minimisation are interchanged as here the

act ion space is not f ini te.

The fact tha t Theorems 2.3 and 2.4 hold is of particular importance to the work

which fol lows as it forms the just i f icat ion for all numerical experiments which have been

performed. To approximate the opt imal policy, we have used value iteration on a discreti

sation o f the state space using Mat lab. In this fashion, we have started f rom Vo{i) = 0

and iterated on the operator C via Vn = CVn-i- Programs for this can be found in the

appendices. There are other methods for approximating the opt imal solution, notably

policy improvement algorithms and linear programming techniques. However, we felt

these methods were not appropriate to our particular problem, and so they have not been

ful ly investigated. The concern of this thesis is not to discuss accurate approximations

to opt imal policies, but rather to prove analytical results about those opt imal policies.

Natural ly, in the course of doing this, we have approximated the opt imal policy in order

to get some idea about what is happening under certain circumstances, but we felt happy

about doing so because we knew tha t our iterated numerical solutions Ki were always

bounded above by the true solution V. We merely used the programs to offer evidence

of the t rue solut ion, and made them sufficiently accurate to be trusted as such. Further

discussion of this can be found in Appendix A. Our aim was never to produce a set of

programs which would be particularly quick or elegant. Tha t task is far better left to

programmers working closely w i th the end-users (i.e. the searchers themselves). To this

CHAPTER 2. DECISION PROCESSES AND NEGATIVE PROGRAMMING 28

point , however, l i t t le has been achieved in this direction using mathematical results. One
hope is tha t results of the sort found in this thesis wil l be of use in this sort of endeavour.
W i t h such thoughts in mind, let us now turn to the search problems themselves.

Chapter 3

The General Search Problem

There's somebody out therefor everyone - even if you need a pickaxe, a compass

and night goggles to find them.

Harris K. Telemacher (Steve Martin) - L.A. Story

3.1 Introduction

In this chapter, we wil l look in greater depth at search problems where we seek a moving

target on n sites. The main results of this chapter can be found in condensed form in

MacPhee and Jordan [5]. They extend those of Nakai [8], and develop the groundwork

and basic tools for a t tack ing the specific problems of chapters 4 and 5. To recap, in this

chapter, we examine problems of the type:

We are searching for a target which moves around between n sites choosing

its next site according to some Markov chain wi th transit ion probability matr ix

M — (Mij). A t t ime points t = 0 , 1 , . . . , we pick a site and search it .

Associated w i th a search of site i is a cost and a probability of overlook

ai.

29

CHAPTERS. THE GENERAL SEARCH PROBLEM 30

From the results of chapter 2, we know that this is a negative programming problem,
and we know methods of approximating the opt imal solution. To the author's knowledge,
there has been only one paper wr i t ten on the discrete t ime search problem on n sites, by
Kan [6]. Whi le this paper discusses similar problems to those under consideration here, the
aim there is to maximise the probabil ity of detection in a f inite amount of t ime, which is
not the same as our aim of minimising cost to detection. Necessarily, the opt imal policies
can be dif ferent. If this were not the case, then the policy which optimised expected cost
over inf ini te t ime would be the same as the one which optimised probability of detection
over uni t t ime - i.e. a myopic one-stage policy. Hence, the results of that paper are of
l i t t le use to this project.

3.2 Definitions

We denote the current state of the process at t ime t by the n-vector p{t) = {pi{t)), where

Pi{t) — P (t a rge t is in state i at t ime t). If we further denote by 5^ the event that the

target is in site z, then, at t ime t, Pi = P{Si).

At each decision t ime t, we choose a site and search it. Associated wi th each site i is

an overlook probabil i ty a^, so tha t even if we look in the right place we may or may not

be successful in our endeavour. Let Ui denote an unsuccessful search of site i. Then

a, = P{U,\S,)

The problem is tha t we don ' t know where the target is unti l we find i t . Wha t we are

t ry ing to do is infer its location f rom our unsuccessful searches. Using the distr ibut ion of

the target 's posit ion p{t) as our state variable, we can update this after every unsuccessful

search using Bayes Theorem.

If we are in state p at t ime t, and we look in site j and fail to find the target, then

CHAPTERS. THE GENERAL SEARCH PROBLEM 31

the probabil i ty tha t the target is in site i at t ime t - I - 1 is given by

. (. m) ^ ^ (3.1,

- 1 - (1 - a,)p, ^'-'^

Hence, fo l lowing an unsuccessful search of site j , we can update our state variable p{t)

using the operator Lj, to p{t + 1), where

, , i t + l) = i L M m . = ^ ^ f ^ ^ l ^ - (3.3)

For every one-stage action i, we have an operator Li, which takes us f rom state to state,

and {La{p{t)))i is equivalent to Pij{a) in chapter 2. For simplicity, we will suppress the

t ime dependency notat ion for the remainder of this chapter, so p{t) wil l be wr i t ten p. Let

us now turn our at tent ion to the opt imal i ty equation.

3.3 The Optimality Equation

We at tach a cost Ck to each search of site k. Wha t we want to do is minimise the

cost up to detect ion. Once again, we denote by 7r(p) our search policy i.e. 7r(p) tells us

which site to search if we are in state p. Recall that in this case n is dependent only on

p, not on t, as it is sufficient to merely consider stationary policies as a consequence of

Strauch's result [15] (see Defn. 2.2). Let T denote the t ime to detection. Then we find

(c.f. Def in i t ion 2.4)

which we want to minimise by choice of T T .

Looking at the search problem, we know that our cost is separable, so we can add the

costs of successive searches unti l the target is found. So

V{p; TT) = ^ (p) + 0 X P(Z7,(p)) + V(L . (p) (p) ; 7r)P(iY,(p))

CHAPTERS. THE GENERAL SEARCH PROBLEM 32

= Cn{p) + V(L„^p){p); 7 r) (l - (1 - Q;^(p))p^(p))

Then , let t ing V{p) denote mfV{p,TT) as before, we find

V{p) = mm[Ck + V{Lk{p)){l - (1 - a ,)p ,)] (3.4)
k

and equation (3.4) is our opt imal i ty equation.

Let d = {di,d2,...) di e {l,2,...,n} denote a sequence of search actions, which

is chosen independently of p according to some policy, and let £Z(„) denote the sequence

(dn, dn+i, • • •)• As in chapter 2, we can let V{p; d) be the expected cost fol lowing actions

d, s tar t ing f rom state p. Then

V{p-d) = + V{LM\di2))P{Ud,).

Now, we can use the fact tha t d does not depend on p to say

V{p-d) = Y,PkV{e,-d) (3.5)

k

where consists of the probabil i ty vector which has all of its mass on site k, which simply

says tha t V{.,d) is linear in p. We know from Theorem 2.3 tha t equation (3.4) has a

unique bounded solut ion. Moreover we can say that

V{p)=miV{p-d)
d

which says tha t V{p) is the lower envelope of a family of linear functions and is hence

concave.

In addi t ion, we know tha t we can approximate the opt imal cost funct ion V{p) by value

i terat ion using

K+i (p) = min[Cfc + V M p)) { 1 - (1 - ak)pk)]
k

However, our concern is not primarily wi th the cost funct ion but rather wi th the opt imal

policy, as this tells us what we must do in order to find the target in the minimal amount

CHAPTERS. THE GENERAL SEARCH PROBLEM 33

of time. While that amount of time is important, as it gives us some information which
can be of use in specific situations (for example, the expected amount of time to find
a missing liferaft would be of interest to relatives of the lost people), it is of secondary
importance in terms of our work as searchers. We are interested in how to find the target
as quickly as possible, independent how long this actually takes, or alternatively, we wish
to find the target as cheaply as possible. As our aim is to find the target, the actual cost
is not as important as the fact that it is optimal. What we want to know is how to achieve
our aim. The way we actually do this is to look at the optimal policy. We know that
this is stationary, it tells us that if we are in state p, then it is optimal to perform action
a, independent of time. In 1983, Ross [13] conjectured the following intuitively plausible
optimal stationary policy in the case where there are n = 2 sites.

Ross Conjecture

When we have 2 sites, if we denote pi by p, then there is some threshold value P*, 0 <

P* < 1 such that the optimal policy is to search site 2 when p < P* and to search site 1

when p > P*, with either action being optimal at p = P*.

It is worth noting that this strategy is not the same as the myopic one which tells

us to search whichever site gives us the highest chance of immediate success (i.e. if

Pi > Pj^j 7̂ then the policy is to search site i), which would be equivalent to P* = |

in the 2 site case. To see this consider the following

CHAPTERS. THE GENERAL SEARCH PROBLEM 34

Example 3.1(from Ross [13])

We seek a target which moves around between 2 sites according to a Markov chain with

transition probability matrix

Each search of any site costs us 1 unit (Ci = 6*2 = 1), and we have perfect detection, so

If p = 0.55, searching 1 finds the target with probability 0.55, while searching 2

discovers it with probability 0.45. Hence, a myopic strategy would say that looking in

site 1 was a better option. However, an unsuccessful initial search of site 2 leads to

certain discovery at the next search (as the target must have been in site 1 before,

so will be in site 2 at the next time phase). Unsuccessful search of site 1 results in

complete uncertainty as to the whereabouts of the target. Moreover, searching 2 results

in expected cost of 1.55 to detection, whereas searching 1 results in at least expected

cost of 1 + 0.45 X (1 + 0.5 X 1) = 1.675.

3.4 Some Results for the Search Problem on n

Sites

When we consider a structure in which there are more than two sites in which the target

might be located, our interest is again concerned with the regions Ai where it is optimal

to look initially in site i. The problem is that although Ross' conjecture has a simple and

intuitive structure on 2 sites, it has no real analogue in higher dimensions, as it is unclear

what is meant hy p > P* in, say, 3 dimensions. Moreover, the value P* is less important

to us, as it doesn't characterise the optimal search regions in the same way as it does in

CHAPTER 3. THE GENERAL SEARCH PROBLEM 35

2 dimensions. In 1973 Nakai [8] showed that in the 3-site case with perfect detection and

d = 1, the optimal regions Ai,A2,A3 are star convex with respect to the points

(1 , 0, 0) , (0 ,1 , 0) , (0, 0,1) respectively, where

Definition 3.1

A set S is star convex with respect to the point p° e S \f and only if p e 5 implies that

Xp + (1 - A)p° G 5'

His argument is quite complicated however, and most of it does not translate to higher

dimensions. In the remainder of this chapter, we generalise this result from 3 to n > 2

sites i.e. we show that the regions Ai, where it is optimal to make the first search in site

are star convex with respect to the points for i = 1,..., n, where is defined to be

the probability vector with all its mass on site i , e.g. , in 3 dimensions, ei = (1,0,0).

We recall the definitions of the Li from above, and note that in the no-overlook case

Li{p) = (1 - pi)~^ M'^ {p - piBi). We can also see Li{ej) = M^cj. Li{ei) is not defined

in the no-overlook case but this is not important.

It seems to make sense that if there is any state in which it will be optimal to search

site i first, it will be the state e ,̂ as, if we know for certain that the target is in that site, it

seems stupid to search anywhere else. Indeed, we can show this is the case under certain

conditions by looking at the subgradients of the optimal cost function V.

Definition 3.2

For some function P : A " ^ R, with epi(P) = {{p, f) : / < F{p)}, then a hyper-

plane (w^, —1)
P

f

= k (constant) supports epi(P) when (w^, —1)

€ epi(F) and (t j ' ' , - 1)
^ 0 ^

k for some
^ 0 ^

V / o y

P
> k for all

G epi(P)

CHAPTERS. THE GENERAL SEARCH PROBLEM 36

A vector w is a subgradient of F when the hyperplane (u^, —1) = k supports

epi(F)

In the context of the search problem we are concerned with, we can say that when

a sequence of actions d is optimal at a given p then {V{ei; d) , . . . , , y (e „ ; d)) is a

subgradient of V(.) at p.

Quite a lot can be gleaned from a direct study of these subgradients. When the target

is known to be at a particular site we have

Ci + a^V{M^ei; d) , k ^ x.
V{e,;{k,d)) = { (3.6)

Ck + ViM'^e.-d), k^i.

Moreover, we can see directly from (3.6) that, if the costs are not site specific (i.e.

Q = C , Vz), then

V (e,; (z, d)) -V{e,- {k, d)) =-{1 -)ViM^e^; d) < 0 (3.7)

which says that if the target is known to be at site i then it is best to start the search there,

as the expected cost will be less. We can now extend Nakai's result to n dimensions.

Theorem 3.1 (after Nakai)

In the no-overlook case if ei e Ai, the set Ai of initial probabilities p for which it is

optimal to look first in site i is star convex with respect to the point e .̂

Proof

Let V^{p) = d + (1 - Pi)V {Li{p)). The optimality equation for this case is V{p) =

mmV^{p). As e,; G Ai, V{ei) = Ci. Suppose that in state P it is optimal to first search
i

site i and consider p = XP + {1 - X)ei for A e (0,1). Now

Vip) < V\p)

CHAPTERS. THE GENERAL SEARCH PROBLEM 37

= a -t- (1 - {XP^ + 1 - A)) y ((1 - p,)-Hd^{XP + (1 - A)e, - (AP, + 1 - A)e,))

= Q + A(l - P)V ([A(l - P)]-^AM^(P - Pe,))

= Ay^(P)-f (i - A) a

= XV{P) + {l-X)V{e,)<V{p)

where the last inequality follows from the concavity of V. Thus it is optimal to search

site i first for all p = AP + (1 - X)ei for A G (0,1) which is precisely what it means for

Aj to be star convex.

Corollary 3.1

In the no-overlook case, with equal costs, the set Ai of initial probabilities p for which it

is optimal to look first in site i is star convex with respect to the point e .̂

Proof

The result comes straight from applying (3.7) to Theorem 3.1.

The case n = 2 establishes Ross' conjecture in the no-overlook case, a result which

was shown by Pollock in 1970 [11]. Numerical investigation of the case with three sites

suggests that the Ai are not actually convex in general, but rather star convex of the form

shown in Figure 3.1 below.

CHAPTER 3. THE GENERAL SEARCH PROBLEM 38

Figure 3.1: Optimal first search regions in three dimensions

When costs are not equal across all sites, it is less clear what we can prove. It is clear

from (3.6) that there will be occasions when it is not optimal to look in site i first, even

when in state i.e. there will be occasions when V{ei) < Ci. Consider the following

example.

Example 3.2

Consider a search problem on 2 sites, with transition probability matrix

(o A
M

1 1
V 2 2 y

We assume no overlook probability, and costs are Ci = 3 and C2 = 1. Then we can

clearly see that it is never optimal to look in site 1, so V{ei) = 2 ^ C^.

Essentially, what we want to be able to say is that, if there is any p such that V{p) =

CHAPTER 3. THE GENERAL SEARCH PROBLEM 39

Va{p) for some policy a where ai = i (i.e. p e Ai), then € However, this

conjecture, although seemingly trivial is, in fact probably not always true, as is suggested

by the following example, proposed by Penrose [10 .

Example 3.3

Consider the 6-state problem with zero overlook probabilities and transition structure as

shown in figure 3.2 below.

Figure 3.2: Transition structure in Example 3.3

For this example, let us consider costs of (10,10^, 1,10^, 5,10^). Then, when po = ei ,

strategy {always look in site 3} has expected cost l + jz^ < 10 for g < | and this strategy

must be optimal. When p^ = {1 - e)ei + 0.5ee5 + 0.5ee6 then V{po; 1, 5, 5, 5,...) =

10 + 10e = 10(l + e).

If we let 5"*" denote the action of searching both site 5 and site 3 simultaneously with

cost 5, then

y(po;5+,5+,5+,.. .) = 5 ((l - e) (l + - ^) + 2e))
l - q

CHAPTERS. THE GENERAL SEARCH PROBLEM 40

and for smallish e the strategy {always do 5~^} is worse than strategy {look in 1 once,
then always look in 5}. Of course, the action 5+ is not actually a legal action, but it
may help provide lower bounds for strategies which involve repeated searches of 5, and
for this reason it is worth examining.

So now we consider strategy 8m={look in 3 m times, then always do 5"*"}.

y (p o ; U = (l - e) (l + ^ g O + e^ + 5 ((l - e) r - ' T ^ + 2e)
j=0 ^ ?

= (l - 6) (l + ^ + ^) + (m-M0)6

Now let Zm = 4Y5^g"'"^ + em. We can see that decreases until q"^ < So

let us look at q = 0.88 < | and e = 0.05. Then m > = 33.88, so let

us take m* = 34 as that is the smallest whole number satisfying the constraints. Then

V{po; 5s4) = 9.33 + 2.2 = 11.53, while V{po; 1, 5, 5, 5, 5,...) = 10.5. Obviously there are

many other strategies which could be employed, but these seem to be some of the most

logical ones, and suggest that a counter-example does exist.

We can say the following, however, which is of particular interest when there are only

two sites.

Lemma 3.1

For any pair of sites i / j and any action sequence d, if < 1 and < m i n | ^ ^ y ^ |
^ I Mil; J

then y (e , ; {i,d)) < V{e, ; (z,d)).

Proof

For ? / j ,

Vie,;{i,d))-Vie,;{i,d)) = C, + a^V{M^e,- d) - C, - V{M'^e, • d)

= a,Y.M,,V{ek-d)-Y.M,,V{e,-d) (by (3.6))

CHAPTERS. THE GENERAL SEARCH PROBLEM 41

= ^V{ek; d){aiM,k- M,k) •
k

The lemma now follows from the inequality on ai and the observation that V{p-. d) > 0

for any proper probability vector p and sequence d since the search costs Q are positive.

The lemma simply says that a given search sequence will find the target for least cost

when the starting position of the target is the same as the initial search site as long as the

overlook probabilities are small enough. Unfortunately, this does not mean that we can

extend Theorem 3.1 to unequal costs (this would be equivalent to showing that G Ai, or

V[ei; (?,d)) < V{ei; (j , d)) , V j / i). However, we do obtain from this lemma a simple

characterisation of Ai when the are small enough. Suppose that p G A and that d is

an optimal sequence of actions at p. Then {y{ej ; d))^- is a subgradient X.oV{.) so that

Ai consists of those points where the i*^ component of the subgradient {y{ej ; d))^. is

the minimum component. What does this mean? If we consider V{p] d) as in (3.5), then

we can see that

V{p - d) = j2p,V{e,;d)=pVd (3.8)

where ~ {V{ei] d) , . . . , F (e„ ; d)). Then A consists of those points where V (e^-; d) <

V (e, ; d) V j ^ I. This is particularly useful in the case of n = 2 sites, as it means that

Ai consists of points where action d is optimal and V{ei; d) < V{e2; d).

Corollary 3.2

When there are n = 2 sites and ai < mm \ —— , —— }, a2 < mm < , - — } and
I M i l ' M12 J " IM21 M22 J

Q!i < 1, a2 < 1 then Ross' conjecture is correct.

CHAPTERS. THE GENERAL SEARCH PROBLEM 42

Proof

We will change variable to the scalar pi for simplicity. It suffices to show that V{l;d) —

V{0; d) is negative or positive as di = 1 or di = 2 respectively. To see this, suppose that

a sequence of actions d with = 2 is optimal at pi = p while a sequence d with di = 1

is optimal at pi = p < p. As the linear functions V{.; d) and V{.; d) are subgradients of

the concave function V'(.) it follows that V{p; d) < V{p] d) < V{p\ d) < V{p; d) but

this contradicts the optimality of d at p. Hence the above conditions force the optimal

policy to have threshold form.

That the slope V{1; d) —^(0 ; d) is negative or positive as di = 1 or di = 2 respectively

follows directly from Lemma 3.1 which establishes Ross's conjecture under the stated

conditions on the a,.

In this chapter, then we have examined the general search problem on n sites, and

shown that under the assumptions of no overlook and constant search costs, the optimal

first-search regions Ai are star convex with respect to the points e .̂ More importantly, in

the case of 2 sites, we have shown that Ross' Conjecture is true for a number of different

. u, u / . [^ 2 1 M 2 2 I , ^ . / M i l M12] . .
cases, notably when ai < mm < —— , —— > and a2 < mm < ——, —— > with no

I M i l M12 J IM21 M22 J

restrictions on the values of the d. However, we have no idea what the value of P*

actually is in any of these cases, merely the knowledge that such a threshold value exists,

and moreover the knowledge that the policy dictated by that threshold value is optimal.

With these results in mind, we can now turn our attention to the calculation of exact

optimal policies and an extension of Ross' Conjecture to any value of ftj and Q in two

dimensions.

Chapter 4

The 2-Site Problem

One of the principal objects of theoretical research in my department of knowl

edge IS to find the point of view from which the subject appears in its greatest

simplicity.

Josiah Willard Gibhs

4.1 Introduct ion

We now turn our attention to the simplest search problem for a moving target - the search

for a target which moves between 2 sites with Markov motion with a known transition

probability matrix. In this chapter, we consider such problems with site dependent overlook

probabilities, and site dependent search costs (i.e., ai ^ a2 and C i ^ C2). We know

from the results of chapter 3 that under certain conditions, Ross' Conjecture holds in

such cases; we seek to give evidence that it is true for all parameter values, and moreover

show that in this 2-site case the optimal cost function V is piecewise linear in p, and

where possible we seek to give a value to P*, the threshold parameter suggested by Ross'

conjecture. Let us simplify the notation for this case.

43

CHAPTER 4. THE 2-SITE PROBLEM 44

4.2 Definitions

Let us say that the target moves between the sites following the transition probability

matrix M, where

M
(a 1 - a ^

^ 1 - 5 b J
(4.1)

i.e. M i l = a etc. Let us class our state as being p = P{S^. Then P{S2) = 1 -p . Recall

the definitions of the functions Li from (3.3) before. These provide

(XxP + (1 - p)

and

p^a2{\-p)

and our optimality equation (3.4) becomes

V{p) = min{Ci + V{Lr{p)){a,p + (1 - p)); C2 + y(L2(p))(p + 0̂ 2(1 - p))} (4.4)

We conjecture that this cost function is piecewise linear in p. The following is helpful in

seeing why this result might be true.

Example 4.1

Suppose that V{t) = Ait-\-By for t near Li{p) and V{t) = A2t + B2 near L2{p). Then,

by substitution into (4.4) above, we find

V{p) = min{Ci + V{Li{p)){aip + {l-p))-C2 + V{L2{p)){p + a2{l-p))}

= min{Ci + (AiLi(p) + Bi){aip + (1 - p)); C2 + {A2L2{p) + B2){p + 0̂ 2(1 - p))}

= min{Ci + A i (l - 6) + 5 i + {Aiaia - Ai{l - 6) + 5 i a i - 5 i)p :

C2 + A2il- b)a2 + B2a2 + {Ma - ^(1 - 6)Q!2 + ^2 - B2a2)p}

CHAPTER 4. THE 2-SITE PROBLEM 45

i.e. we find that V is the minimum of two things that are linear in p.

What this means is that if V is linear on 2 intervals of p, then it will be linear on at

least one other. Moreover, if V has a corner at some point t (i.e. two separate linear

pieces join at t), then there might be another corner at L~^{t) where i is determined by

whichever of the two expressions in the minimisation (4.4) is less.

One way to interpret this result is to say that V is made up of a certain number of

strategies, each of which is optimal on an interval, as graphically shown below

V(p)

V(b;rf)

V(p;d)
V(p;d)

V (p ; d)

V(p;rf)

Figure 4.1: Optimal strategies over V

In order to show that V is piecewise linear, we construct such a function, and show

that it satisfies (4.4) above. To do this, we first need to look a bit further at I'i(p) and

L2{P)-

CHAPTER 4. THE 2-SITE PROBLEM 46

4.3 Propert ies of the Li{p)

Li{p) and L2{p) are both what is known as fractional linear mappings, which are often

used as generating functions in branching processes. It is known that they are closed

under the composition of functions. To see this, consider the following:

Example 4.2
sp -\-1 Bp -\- T

Let fip) = and P(p) = — — - be fractional linear mappings. Then:
^ ' up + v ^ ' Up + V ^

s{Sp + T) + t{Up + V)
u{Sp + T) + v{Up + V)
{sS + tU)p + (sT + tV)

{uS + vU)p + {uT + vV)

so the composition of two fractional linear mappings is a fractional linear mapping itself.

We are interested only in such mappings / where v > t > 0 as Pi(0) = (1 — 6) G [0,1]

and f(0) = - and where / is continuous on (0,1). The fractional linear mappings we are
V

concerned with, Li{p) and L2{p) can have two representations, so we choose ?; > 0 to

pick one of them. Further, we know that u + v>s + t>0, from continuity of / . Note

that this also ensures that up + v E [0,1], Vp G [0, I j . Let V = sv — ut. We can use this

to classify results for these mappings.

Lemma 4.1
sp ~\~ t

Let f(p) = , p G [0,11 be any linear fractional mapping and suppose that v > t >
up + v

0 and u + v>s + t>0. Then the equation /(p) = p has a unique solution q G [0,1],

/ (p) > (<)p when p < {>)q and further

(i) \fV = 0. then / (p) = ^ , V p G [0 , l] ;

CHAPTER 4. THE 2-SITE PROBLEM 47

(ii) if P > 0, then f{p) is increasing and convex when u < 0, concave when u > 0;

(iii) if D < 0, then f{p) is decreasing and concave when u < 0, convex when u> 0.

Proof

Consider the itemised cases first. The argument is based on differentiation of / . Note

that:

(•up + v)^ {up-\- vy

so these three claims are obvious. Further, the assumptions imply that 0 < / (O), / (I) < 1

so, by the strict convexity or concavity of / we know there is a unique root q of f{q) = q

with q e (0,1).

It is of interest to actually calculate the value of q as it will be used elsewhere. When
sp -\-1

u — 0, f{p) = is linear in p, so the claim f{p) — p has a unique solution is clearly

true, with q = — -—. When u ^ 0 we can see that as up + v > 0 for p E fO, l l , f(p) = p
V - s

is equivalent to up'^ + {v — s)p — t = 0. By analysis of the discriminant of this quadratic

we can show there are two real roots to this equation.

s — V

2u 2u

When V > 0 and u > 0 we can see (figure 4.2 below) that f'{p) ^ 0 as p oo, and

./'(p) ^ cxo as p —>̂ — - < 0, so the root which is in (0,1) must be the larger root.

CHAPTER 4. THE 2-SITE PROBLEM 48

Figure 4.2: Form of /(p) when V > 0 and u > 0

When V >0 andu<0 then / ' (p) ^ oo as p -> > 1, so the root in (0,1) is the

smaller root. When V < 0 and w > 0 then / '(p) -̂ ^ 0 as p oo and / ' (p) -+ -oo as

p ^ — ^ < 0, so the root in (0,1) is again the larger root. When V < 0 and u < 0 then

/ ' (p) -> -oo as p -> > 1 and / ' (p) -> 0 as p -oo, and hence the root in (0,1)

is the smaller root.

Hence by applying the above analysis to the formulae for q we find that

That / (p) > p for p < q follows immediately from the continuity of / and the fact

that /(O) > 0. The other inequality is similar.

There are other properties of linear fractional mappings which are of importance to

CHAPTER 4. THE 2-SITE PROBLEM 49

this thesis.

Lemma 4.2

Let / denote a linear fractional mapping with > t > 0 and u + v>s + t>0. Then

/ is a contraction mapping on an interval around q and when V ^ 0, exists and is

increasing or decreasing when / is. Further when

{\) V > 0 then for p < q, f^^{p) < p < f{p) < q and / ("^P) ^ g as n oo and

is increasing, while for p > q, q < f{p) < p < f~^{p) and /^"^(p) q as n ^ oo

and is decreasing.

(ii) r> < 0 then for p < q, q < f{p) < /"^{p) while for p > q, f'^ip) < f{p) < q.

For all p e [0,1], \ /^"^(p) — q \ ^ 0 monotonically as n —> oo and the differences

— q alternate in sign.

Proof

When V > 0, f is strictly increasing and hence / " ^ exists on [/ (0) , / (l)] and is also

increasing. In fact for V ^ 0, / " ^ p) = — for suitable p. Set f~^(p) = 0 for
up — s

p < /(O) and f~^{p) = 1 for p > / (I) . From Lemma 4.1 when p < q, f{p) > p and

when p > q, f{p) < p. By evaluating / " ^ on these inequalities we obtain the required

results.

When I? < 0, / is strictly decreasing and so exists and is decreasing. To show

the convergence of the iterates we must first show that \f'{p)\ < A < 1 near q. The

cases u > 0 and n < 0 are distinct but similar so only M > 0 is considered. Recall
V

that f'ip) = 7 — which is negative and increasing as f i p) is convex and further
[up + vY

~v
/ ' (0) | = — < 1 when -V < v'^. When -V > v"^ letp' denote the p where f'{p) = - 1 .

CHAPTER 4. THE 2-SITE PROBLEM 50

Clearly p' = ——^ and hence
u

p' <q
U-V - v) s - V 1 n —,

1
-2v <s-v + 2J-V + -{s + vy

(using ^{v - sy + 4tu = ^/{v + - iV)

and this second inequality follows from s + v > s + t > 0. Hence p' < q and so

A = |/ '(g)| < 1. Now we use the intermediate value property.

For p < p', f { p) > q. For p > q,

fip)~q = f { p) - f i q) = f'{x){p-q)

for some x € {q,p) by the intermediate value theorem. It follows that f { p) -q is negative

and \f{p) - q\ < X{p - q). A similar argument establishes that f { p) - q < \p - q\ for

p G [p'iq) and hence / contracts the interval [p', l]around q. The argument when u < 0

is similar (this time p' > q and / contracts the interval [0,p'] around q).

Finally we must show f { p) > {<)f~^{p) when p < {>)q. To show this we apply

Lemma 4.1 to the function f o f . Clearly / o / is a fractional linear mapping (by example

4.2), it is increasing and from the properties of / we have / o / (0) > / (I) > 0, fof{q) = q

and / o / (I) < /(O) < 1. Hence / o f { p) > (<)p as p < {>)q. Now evaluate on

this inequality to see that f { p) < (>) / " H p) as p < {>)q.

By thinking of the graph (p,/"^(p)) as the reflection of the graph {p,f{p) in the

line y = p on the {p,y) plane, these inequalities provide another demonstration that

I / ' (?) I<1 -

The preceding two lemmas apply directly to Li{p) and L2{p) and any compositions of

them. We can use them to show results about the optimal cost function V in our search

problem.

CHAPTER 4. THE 2-SITE PROBLEM 51

4.4 Piecewise Linearity of V

In this section we consider a policy 'search site 1 if and only if p > P * ' which we shall

call a threshold policy with parameter P*. We then calculate, in each of several cases,

the corresponding value function V and show that this function satisfies the optimality

equation (4.4). Hence, by the results of Chapter 2, this threshold policy is optimal. It

turns out that for any specified a / s and Q ' s a large range of the possible transition

matrix parameters fall into one of the cases treated in this section. This suffices to show

that Ross's conjecture holds for these parameter values. We are not able to show that

all parameter values fall into one of the cases and so the complete resolution of Ross's

conjecture remains an open problem although we offer evidence to support its validity for

all values of parameters.

The construction is split up into a small number of different classes. We shall first

give some more general definitions and remarks, and then examine each case in particular,

giving explicit solutions and examples. In the process of these calculations it turns out

that the value function V is piecewise linear in each case.

Definitions

Let A = a - (1 - 5) and let P i and P2 be values of p G [0,1] such that

respectively. Define L^+^ - o and when A ^ 0, C/̂ = L'^ and C/^+i = U,oU^

for A; = 1, 2 Let L j j = Lj o Li, L„ = L^,^ o . . . o L^,^ for any finite string of actions

(T = (cT i , . . . , (Tfc) and Ua = {La)~^, where Ua{p) = 0 for p < a and U„{p) = 1 for

p > 1 - 5 when A > 0 while U„{p) = 0 for p > 1 - 6 and t4 (p) = 1 for p < a when

A < 0.

Throughout the rest of this thesis we will also use angle brackets to denote a sequence

of actions repeated a number of times. For any finite string of actions a, let {o)n denote

CHAPTER 4. THE 2-SITE PROBLEM 52

the string repeated n times, and let (a) denote the string repeated indefinitely. Hence,
(1) denotes the strategy where at every point we search site 1, and ((1,2)) denotes the
strategy (1 ,2 ,1 ,2 , . . .) .

Unfortunately the natural way to describe a sequence of actions and the standard order

of composition of functions run in opposite directions which is the reason for the strange

definition of L^. Lemmas 4.1 and 4.2 show the existence and uniqueness of the Pi and

the existence of the Ua over suitable ranges of p when A ^ 0. The arguments required

to identify the corners of V are quite delicate and depend heavily on these properties of

the Li and Ui. in particular Lemma 4.1 applies directly to both Li and L2 and specialises

as follows.

Corollary 4 .1 (to Lemma 4.1) The equations Li{p) = p have unique solutions

2 - (a ia + b)- ^{aia + by - AaiA
Pi = 2 (1 - a i)

P2 =
a - 0:2(2 -b) + ^J{a + a2by - 4:a2A

2 (1 - 0 : 2)

Li{p) > {<)p when p < (>) Pi and further

(i) if A = 0 then Li{p) = L2{p) = a for all p e [0,1];

(ii) if A > 0 then Li is increasing and convex, L2 is increasing and concave and

L2{p) > Li{p) for every p G (0,1);

(iii) if A < 0 then Li is decreasing and concave, L2 is decreasing and convex and

L2{p) < Li{p) for every p e (0,1).

CHAPTER 4. THE 2-SITE PROBLEM 53

Proof

Lemma 4 . 1 applies directly to both Li and L2 and by substituting parameters we find that

T> = sv - tu = aiA for each Li. Further M = a i - 1 < 0 for L i while u = 1 - 0:2 > 0

for L2. As Li{0) = -^2(0) = 1 - 6 and Li{l) = ^ 2 (1) = a the other inequalities follow

directly.

It is important to notice that the problem splits naturally into two classes of transition

matrices, namely those with A > 0 and those with A < 0. This has the effect of nearly

doubling the number of different cases that need to be analysed but this seems to be

unavoidable.

Theorem 4.1

For the threshold policy with parameter P* < P i , the search sequence (1) is used on

P*, 1] when A > 0 and on [P*, Ui{P*)] when A < 0.

Proof

See Figures 4.3 and 4.4 below. When A > 0 and p > P* we see from Corollary 4.1 that

Pi(p) > p > P* f o rp G (P * , P i) while from part (ii) of the Corollary Li(p) > P i (P i) =

Pi > P* forp > P i so applying the threshold policy and an induction argument we see the

strategy (1) is used for p G [P*, 1]. When A < 0 we see from Corollary 4.1 and from part

(ii) of Lemma 4.2 that L i and Ui are both decreasing and Ui{P*) > L i (P *) > Pi > P*.

Hence L i (p) > P* for p G [P*,Ui{P*)] (L i maps this interval to [P * , P i (P *)] , while

reversing the orientation of the interval, so that if s > i for s, t G [P*,Ui{P*)] then

Li{t) > Li{s)). That strategy (1) is used on [P*,Ui{P*)] follows as before.

CHAPTER 4. THE 2-SITE PROBLEM 54

i-b

p p p 1

Figure 4.3: Li{p) and L2{p) in Theorem 4.1 wlien A > 0

L (P) U. (P) 1

Figure 4.4: Li{p) and L2{p) in Ttieorem 4.1 when A < 0

CHAPTER 4. THE 2-SITE PROBLEM

The essential point here is that there is an interval of probabilities upon which Li is a

contraction, as can be seen in figure 4.5 below. The general method applied in the next

section is to find a sequence of actions a and an interval upon which L„ is a contraction.

Optimal Policy

1,2,<1> 2<1>

0 X P P Pi

Figure 4.5: Li{p) and L2{p) in case 1 when A < 0, showing 'cobweb' form of contrac

tion.

Aside : A note on use of cobweb diagrams.

In this figure, we demonstrate how the threshold policy is determined from any point,

in this case from point x. We know x is less than P* so we have, by the definition of

a threshold policy to look first in site 2. Hence, we calculate L2{x), and find that it is

greater than P*. So our next action is to search site 1, and we calculate Li{L2{x)).

Continuing to use the threshold in this fashion, we can build up the strategy defined by

the threshold policy for every p.

CHAPTER 4. THE 2-SITE PROBLEM 56

Theorem 4.2

For a threshold policy with parameter P* < P2 the search sequence (2) is used on [0, P*

when A > 0 and on [[/2 (P*) , P*] when A < 0.

Proof

The proof is similar to that of Theorem 4.1.

We are now in a position to discuss the different classes in detail. Let us initially

consider cases when A < 0. Corollary 4.1 tells us that the Li have unique fixed points

and that Li(p) > L2{p) for all p G (0,1). Hence, P i > Pg for if P i < P2 then

L2(P2) < P 2 (P i) (as L2 is decreasing) and thus P2 < ^ 2 (^ 1) < ^ i (P i) = Pi creating

a contradiction. This leaves only three distinct cases:

• P i > P* and P2 > P*

0

Pi < P* and P2 < P*

0

• P i > P* and P2 < P*

0

CHAPTER 4. THE 2-SITE PROBLEM 57

In each of these cases we demonstrate that the cost function of the threshold policy

is piecewise linear and that the value of the threshold parameter P* required to make it

optimal can be explicitly calculated. When A > 0 then Pi(p) < p2(p) and hence Pi < Pj

by arguing as above. This, again results in three possible cases:

P2 > P* and Pi > P*

0 P P
1 2

P2 < P* and P i < P*

0 P P
2

P2 > P* and Pi < P*

0

It will be seen that the first two of these cases can be dealt with when discussing the

similar cases with A < 0 so we are left with four classes into which the problem can be

cleanly divided. We will demonstrate that for a large class of the parameter values the

piecewise linear function V, calculated using a threshold strategy with suitable parameter

P*, satisfies the optimality equation. Computer-based calculations discussed in section

4.5 strongly support the assertion that this is true for all possible parameter values.

The following notation is useful in describing the various cases. Let Qf = Ui{P*)

and similarly = U^{P*) for A; = 0, 1, . . . where = = P*.

CHAPTER 4. THE 2-SITE PROBLEM 58

4.4.1 Class 1: Pi > P* and P2 > P*

Theorem 4.1 tells us that the threshold policy uses the strategy (1) at least on the interval

P*, Ui{P*)]. We proceed in this case by examining the neighbourhood immediately below

P*, solving for P* and then finding the threshold policy for all p. Note that we cover

both A > 0 and A < 0 in this section.

Consider p < P*, and refer back to Fig. 4.3. Using the threshold strategy we look

first in site 2. For A > 0 we can apply Lemma 4.2(i) to find that L2{P*) > P* and

further L2{p) > P* for p G [U2{P*),P*] so by Theorem 4.1 the threshold policy uses

strategy d = (2, (1)) on this interval.

When A < 0, Lemma 4.2(ii) and the inequality Li{p) > L2{p) imply L2{p) > P2 >

P* for all p < P* and L 2 i (P *) > Ll{P*) > P* (the latter inequality coming from

L2 (P* < U2{P*) =^ P* < Ll{P*) as L2 is decreasing) so that, since Ui is decreasing,

L 2 (P *) < Ui{P*) (remember the definition of La). Thus the threshold policy uses

strategy (2, (1)) for p G [[/2 i (P*) , P*] (this interval is mapped into [P\Ui{P*)] by L2-

see fig. 4.4). For any A / 0 we know the strategies on an interval around P* and can

now calculate it explicitly.

Setting V{p; (1)) = Aip + Bi and V{p; (2, (1))) = A2P + B2 we obtain the following

equations:

A2P + B2 = C2^{AiL2{p) + Bi){p + a2{l-p)) (4.5)

Aip + Bi = C i + (AiLi(p) + P i) (a ip + l - p)

and P* is simply the p where these lines intersect. Solving the system for the Ai and Bi

we obtain

, C i D C-i 2-a^a-b

Ci 1 - a2 - A{1 - aia2) „ ^ , " 2 (1 - ^ l A)
A2 = r B2 = C2 + r :;

1 - 6 1 - a i 1 - 6 1 - o i

CHAPTER 4. THE 2-SITE PROBLEM 59

from which we find

_ B2-B1 _ 2 - Q;ia - 5 - 0:2(1 - Q iA) - § (1 - 6) (1 -

~ ^ 1 - ^2 ~ 2 - tti - q;2 - A (l - q;iQ;2)

which in the case where Ci = C2 = C and a i = 0:2 = a; simplifies to give

P* = ^ - " ^ (P I)
2 - (1 + Q;)A ^ '

We can now determine all of the corners of V by working outwards from P* in a systematic

fashion.

When A > 0 the corners are at (3^+^ < . . . < < P* where i is such that

Qi^^ < I - b < Q2 (where £ > 0 depends upon a, b and a but is finite for any

choice of the parameters). There are no corners below g^+^ because 1 ,2(0) = 1 - 6

so L2 maps [0 , ^ 2 ^ ^] into [g 2 ^ \ g 2] - have already considered the interval [^2;-^*]

and any interval [Q2'^^,Q2] is mapped to [Q2,Q2~^] by ^2- The coefficients of the

piecewise linear pieces of F can be found iteratively by working outwards from the intervals

adjoining P*. Suppose that V{-) = V{ -; d) has coefficients Ak and Bk on the interval

^2^^ , ^ 2 ' ^] - They can be determined from the equation

AkP + Bk = Cd, + [Ak-iLa, (p) + Bk-,)P{Ud,) .

(c.f. equation (4.5)). We are in the situation illustrated below:

CHAPTER 4. THE 2-SITE PROBLEM 60

V (p)

<2>

2, 2, <1>^

2, <1>

y''

, < 1 > /
1 /

Q Q

3 S
Q

Figure 4.6: Illustration of optimal cost function in Case 1 when A > 0

Consistency of these equations at the corners with previously calculated coefficients

follows by induction using consistency at corners already treated and the fact that except

at P* strategies on adjacent intervals start with the same action. In this case, on the

interval [Q^"^M2.

V{p - ((2)fc+i,(l))) = Afc+2P + 5 ,+2

= C2 + (p + a2(l-p))(^fc+1^2(p)+5fc+i)

For our induction, let us assume that we have consistency at Q\~^, i.e., that AkJ^xQ\~^ +

Pfc+i = AkQ\-^ + Pfc. Then at p = Q\,

V{Q\ ; ((2)fc+i, (1))) = C2 + {Q\ + c.2(l - Q\)){A^^xQ\-' + P.+i)

= C2 + {Q\ + ^ 2 (1 - Q\)){AkQ\~^ + Pfc) (induction hypothesis)

= T / (g^; ((2) , , (l)))

CHAPTER 4. THE 2-SITE PROBLEM 61

and indeed the two lines do intersect at (52-

It remains to check that the function V constructed above satisfies the minimisation

step in the optimality equation (4.4). We do this with another induction argument.

Observe first that Ai = - C i / (l - 6) < 0 while A2 > Ai so that Aip-\-Bi < {>)A2P+B2

precisely as p > (<)P*. For p > P* this shows that V{p) = V{p; (1)) < V{p; (2, (1)))

which, as L2{p) > P* when p > P*, shows that V satisfies (4.4) for these p. Similarly on

[[/ i (P*) ,P*] , V{p) = V{p; (2, (1))) < V{p; (1)) so V satisfies (4.4) for p > [/i(P*) =

Q\. Before setting up the induction hypotheses note also that

y (Q } ; (1,2,(1))) = C, + {a,Q\ + l~Q\)V{P*;i2,m

= C, + iarQ\ + l-Ql)V{P*; (1))

= V{Ql;{l))>V{Ql-{2,m • (4-6)

To complete the induction argument take as hypotheses

(i) Ak>Auk>2

(ii) y (p ; (l , (2) , , (l))) > y (p ; ((2) , , (l))) f o r p G [Q ^ t / i (g r M] .

(iii) V{p; (1, (2), , (1))) > V{p; ((2),+i, (1))) for p G [U, (Q^), Q^-

Note that (i) is true for k = 2, trivially, (ii) is not true for /c = 0 but equation (4.6) shows

what happens in this case while (iii) does hold for A; = 0.

To establish (i) for A; > 2 assume it is true for some k > 2, so by applying equation

(3.8) we find

y (l ; ((2),_i, (1))) - y(0; ((2),_i, (1))) = A, > A,

Hence

y (l ; ((2) , , (l))) - 1/(0; ((2) , , (l))) = ^,+i

= V{a; ((2) ,_i , (1))) - 02V(1 - b; ((2)^ .1 , (1)))

CHAPTER 4. THE 2-SITE PROBLEM 62

> n a ; ((2) , _ i , (l))) - y (l - 6 ; ((2) , _ i , (l)))
= A [y (l ; ((2) , _ i , (l))) - y (0 ; ((2) , _ i , (l)))]
= AAk > A i

as \f Ak > 0 ,then A ^ ^ > 0 > ^ i , while if Ak < 0, then AAk > Ak > Ai and so result

(i) holds for all k. For part (ii) with A; > 1 we proceed as in (4.6) to get

viuM); (1, (2).+i, (1))) = v{u^{Q',); (1, (2) , , (1))) > viuM); ((2).+i, (1)))

by hypothesis (ii i). In addition,

V{0; (l , (2) . - M , (l))) - n O ; ((2),+i, (1)))

= C i + (1 - b)[V{l; ((2),+i, (1))) - 1/(0 ; ((2),+i, (1)))]

> C i + (1 - 6)^1 = 0

by hypothesis (i) and these are sufficient to establish (ii) for A; + 1 because V{p.; d) is

linear in p for any d. Finally, as (3.6) implies that V{p; (1, d)) — V{p; (2, d)) is decreasing

in p for any d and

viQ'2'-'; ((2).+2, (1))) = i ^ (Q r ; ((2).+i, (1») < V{Q^^'; [1, (2),+i, (1)))

by consistency at the corners and part (ii), we see that (iii) holds for p < ^ 2 ^ ^ The

constructed function V thus satisfies the optimality equation (4.4) and so equals the

minimal expected detection cost. It follows that we have shown that the optimal strategy

on [Q2 , Q2~^] is i{2)k, (1)), stopping when the target is first seen of course.

When A = 0 the preceding analysis holds with the interpretation that Q\ = Q\ = 0

so that V has only a single corner at P* < Pi = P2 = a.

When A < 0 things are a little different as unsuccessful searches do not have the same

effect on our belief about the target's whereabouts. Recall that the threshold strategy is

(1) fo rpG [P*,UiiP*)] and (2, (1)) on [Qli,P*], which is mapped into [P*,Ui{P*)]

by L2- In this case we find successive intervals alternately above and below P*.

CHAPTER 4. THE 2-SITE PROBLEM 63

The corners are at the points

Qif <...<Q\,<P*< U,{P*) < U,{Ql,) <...< U M i)

(where

QiV <a< Qiv Note that L i maps [U,{Qi,),l] into [Qit\Qii])- L2 maps an

interval [Q2i,Q2i^] over to [Ui{Q2i^),Ui{Q2i^)] which is mapped in turn by L i over to

Q2i^, Q2i^]- Consistency of the coefficients at the corners can be checked as before. The

optimal strategy on [Q'2i,Q2i'] is ((2,1)^,(1)). On [t/i(Q^r'), f/i(Q^r')] the optimal

strategy is ((1,2)^, (1)) (the required actions can be read off the list of subscripts on the

symbols describing the corners). First we need to assign parameters to the individual arcs

of V, and we do this as in figure 4.7 below.

A p + B

A p + B

A p + B

Figure 4.7: Form of the optimal cost function ^(p) when P i , P2 > P* and A < 0

CHAPTER 4. THE 2-SITE PROBLEM 64

We know that we have consistency at P*, so let us begin by considering the arc

Asp + P 3 . For p in the segment [Qi, Ui{Q2i)

F(p) = y(p; 1 , 2 , (1)) = C i + (« i p + (l - p)) F (L i (p))

= Ci + {a,p + {1 - p)){A2L,{p)B2)

And at Ui{P*) we find

y (f / i (P *) ; 1 , 2 , (1)) = C i + (a i [/ i (P*) + (l - [/ i (P *))) (^ P * + P2)

= C, + {a,U,{P*) + (1 - U,{P*))){A,P* + P i)

= y (f / i (n ; (i))

so we have consistency at Ui{P*). Now we look at A4P + P4 on the segment [Qli..Q2\]

F(p) = y(p; 2 , 1 , 2 , (1)) = C2 + (« 2 (l -p)+p)F (L 2 (p))

= C2 + (0 : 2 (1 - p) + p) (A 3 L 2 (p) + P3)

and at p = Q21 we find

y (Q 2 i ; 2 , 1 , 2 , (1)) = C2 + {a2{l-Q2i) + Q2i){A,Ur{P*) + B,)

= C2 + (0 2 (l - Q 2 l) + Q 2 l) (A i [/ i (P *) + P i)

= y (Q 2 i ; 2 , (l))

and we have consistency at Q2i. We can complete the consistency argument by induction.

Let us assume that we have consistency at some (^21 i e., the arcs A2fcP+P2A: and A2k+2P+

P2/C+2 intersect at p = Qfi- Now we consider arc A2fc+3P+P2A:+3 on [Ui{Q\]), f/i(Q2i"^). •

y(p;(l ,2) fc+i , (l)) = A2fc+3P + 52fc+3

= C i + (aiP + (l - p)) 7 (L i (p))

= Ci + {aip + (1 - p)){A2k+2Li(p) + B2k+2)

CHAPTER 4. THE 2-SITE PROBLEM 65

so at p = Ui{Q2i), we find

V{Ui{Q',,); (l , 2) , + i , (1)) = C i + ia.UiiQ',,) + (1 - f/i(Q^i)))(A2fc+2Q2 'i + ^2^+2

= Cr + + (1 - f / i (g^ i))) (A 2 .Q^ i + 52fc)

= l / (f / i (g ^ J ; (l , 2) , , (l))

and we have consistency at C/i(Q2i)- To complete the proof, we consider arc A2k+4P +

B2k+4 on [(32i"^) ^21" ,̂ •

2, (1,2)^+1,(1)) = A2k+4P + B2k+4

= C2 + {a2{l-p)+p)V{L2{p))

= Ci + {a2{l - p) + p) {A2k+3L2 (p) + B2k+3)

and at p = Q2i^ we discover

2, (1 , 2) ,+ i , (1)) = C2 + (a 2 (l - Q^i+^) + Q^ + ^) (A 2 f c + 3 f / i t e) + ^2^+3

= C2 + (a 2 (l - Q'2t') + Q'2t')iA2k+lUMl) + B2k+l)

= ViQ'2t\2,{l,2)k,{l))

and so we have consistency at Q2i^^- Hence by induction we have consistency at all

corners. We can now show that the function calculated V satisfies (4.4). To do this we

first show that F is a concave function so . . . A2k+2 < Mk < • • • < ^4 < ^2 < ^1 <

As < . . . < A2n-i < A2n+i • • • This is easiest done by induction following examination

of the transition structure we have in this case. We know that arc A^p + B^ is mapped

to A^p + B4 and then to Azp + B3 and so on. Consider then first the trio of arcs of V

A3P + B3, A2P + B2 and Aip + Bi- We can show the relationship between them as below

0

Ci

0

+
/

+

aia + 6 — 1 « ! — 1

1-b 1

A2

y B 2 j

aia + b-1 a i - l \ (Ai^

V 1 - 6

CHAPTER 4. THE 2-SITE PROBLEM 66

and we also know from consistency that

A2P* + B2

from which we can deduce

AiQl + 5 i

A,P* + B,

A1-A3

Bi - i?3
/

which with substitution gives

V

aia + 6 — 1 « ! — 1

1 - 6 1 \B,-B2 j

{A, - A,
(1

= {A, - A2)
I a^a + 6 — 1 tti — 1

1 - 6 1

so

-Q\{A^-A,) = {A^-A2){\-h~P*)

and so < A^ as y l i < and P* < P i < 1 - 6 For our inductive hypothesis, suppose

A2k-\ > A2k+i- Then, as above

\ /
a + — a2 1 — 0:2

Q;2(1 - 6) Q!2

a + 0126 - Q!2 1 - Q!2

0!2(1 — 6) a2

(a ^

y -62^+2 J

^ A 2 ^

f , \ (

\ ^2 /
+

V \ B2k+1 J

^B2k J \ ^2 /
+

V B 2k-l

and from consistency

A2k+2Q21 + -B2A:+2

^2/=+l^l(Q2]~^) + -62^+1

A2kQ\\ + -B2fc

^ ; t - l t / l (Q 2 r ') + 52fc-l

So we find by substitution

{A2k^2-A 2k,

I \
1

V "^21 y
= (^2A;+l-^2fc-l;

^ a + Q!26 — a;2 1 — 02 ^ ^

0:2(1 - 6) a2
J

CHAPTER 4. THE 2-SITE PROBLEM 67

and so we find

-QlM2k+2 - A2k) = (^2 (1 - 6) - a2U,{Ql^')){A2k+i - A2k-i)

and hence ^2A:+2 > A2k as A2k+i < ^2fc-i and Ui{Q2i^) < 1 - 6 by the definition of the

corners.

To complete the proof, we now take as our induction hypothesis that ^2^+2 > ^2*;-

Then as before.

/ \
A2k+3

y B2k+3 J

\

A2k+1

y B2k+1 J
and, by consistency

y C ^ j

((. \ (
+

0

V ^1 /

a^a + 6 — 1 Q!i — 1

1 - 6 1

aia + 6 — 1 « ! — 1

1 - 6 1

\ B2k+2 J

^(A2k^

yB2k J

A2k+5Ui{Q2i) + B2k+3 = A2k+lUi{Q2i) + B2k+1

A2k+2Q2l + -S2A;+2 — A2kQ21 + -̂ 2fc

so by substitution, we find

(A 2k+l A2k+3)
1

-Ul{Q'2l)
= (A2k - ^2^+2)

aia + 6 — 1 Q!i — 1

1 - 6 1

and so

-Ui{Q'li){A2k^i - /l2fc+3) = {A2k - A2k+2){1 - 6 - Q^i)

and so A2k+i > A2k+3 as 1 - 6 - Q^i > 1 - 6 - P* > 0. Thus the result is shown.

To show the minimisation step is satisfied we use another induction argument. For

simplicity, we will only show the argument for p < P* as the result follows similarly for

p > P*. Let us begin by considering the three arcs A^p + P3, Aip + Bi and A2P + ^2-

forpe [Q2i,P*] we want to show that C i + (Q;IP + 1 - p) y (L i (p)) > C2 + (p + 0 : 2 (1 -

p)){V{L2ip)). We know from Lemma 4.2 that fo rp < P* , Ui{p) > Li{p) > P i . Hence

CHAPTER 4. THE 2-SITE PROBLEM 68

taking first action 1 maps us to a state p' > P*. In fact, the segment we are interested
in, {Q2i,P*). is mapped to (L 2 (P *) , f / i (P*)) and (L i (P *) , L i (g 2 i)) by actions 2 and 1
respectively, where L i (P *) G {P*,Ui{P*)) and L i (g 2 i) € {U,{P*),UiiQ2i)). We want
to show that for p G {Q2i,P*) that action 2 first is optimal. To do this we examine the
two parts of the segment individually. On interval [Q\,P*) we find from (4.4)

V{p) = m i n l C i + (cvip + (1 - p)){A,L,{p) + B i) ; C2 + (p + «2 (1 - p)){AiL2{p) + B,)]

= m i n { V (p ; (l)) , I / (p ; 2 , (l)) }

= V{p-2,{1))

where the last result comes from the concavity of V and consistency at P*. So now

we consider {Q2i,Qi) which is mapped by action 2 into {L2{Q\),Qi) on which V{p) =

Aip + Bi and by action 1 into (Q i , I / i (Q2i)) on which V{p) = A3P + B3. Hence we are

comparing V{p; 2, (1)) with V{p; 1,1, 2, (1)). At p = Q?, we find

n o ? ; 1,1,2,(1)) - C^ + {a^Ql + {l-Ql)){AsQ, + B,)

= C, + {aiQl + {l-Ql)){A,Q,+B,)

To complete the proof on this segment, we need to show that V{p; 1,1, 2, (1)) > V{p; 2, (1))

for p < Q\. We do this by showing that the gradient of V(j)] 1,1, d) is less than the gra

dient of V{p\ d) for any strategy d for which V{p] d) has positive gradient.

Let V{p- d)=Ap + B with A> 0, B > 0 and let V{p] 1,1, d) = A'p + B'. Applying

the action 1 map twice we get

A' = {aia + 6 - i f A + (^ la + 6 - l) (a i - l)B + {a^ - l) [C i + (1 - h)A + B

= (a ia + 6 - i f A + {a^ - l) [C i + (1 - b)A + (a ia + b)B

< (aia + b - l f A < A

CHAPTER 4. THE 2-SITE PROBLEM 69

and the result follows. We are now in a position to complete the argument. Take as

induction hypothesis that V satisfies the optimality equation on {Q2i:Q2i^), so in par

ticular y((5^i; 1,1, (2,1), (1)) > y (Q^ i ; (2 , l) , (l)) and consider a segment (Q^ i+ \Qt i) .

As above we break the segment up into two sub-sections at f / i (Q 2 i) - 0 " the first,

(C /2(Q^i),Q^i), we must compare y(p; (2 ,1) , , (1)) with ^(p; 1,1, (2, % (1)). By the

above argument we know that V{p; 1,1, d) — V{p; d) decreases as p increases. From the

induction hypothesis V{Q^^; {2,l)k, {!)) > y (Q^ i ; 1,1, (2,1)^, (1)) so the inequality is

also true for p < Q2i- On the second sub-segment, we must compare V{p; (2,1)^, (1))

with V{p; 1,1, (2, l)fc+i, (1)) = V{p; 1, (1 , 2) ,+ i , (1)). By consistency at corner [/ i((5^i),

y(t / i 2 (Q^ i) ; i , (i ,2) , ^ i , (i)) = y (c / f (Q^ i) ; i , (i ,2) , , (i)) > m'(<3ti); 1, (2> 1). , (1))

by the argument for the previous sub-segment. Repeating that argument,

V{p;l,l,{2,l)k+u{^))>Vip; (2,1)^+1,(1))

for all p < Uf{Q2i)- Hence, by induction, V satisfies the minimisation step for p < P*.

A similar argument works for p > P*.

Hence, if P i > P* and P2 > P*, with P* as given above, we have found the form of

V{p) for all p G [0,1 .

Example 4.3

To get an example of this case take a = 0.3, 6 = 0.01, o;i = 0.7, 0:2 = 0.75, Ci = 1.4

and C2 = 1.5. With these values we find that P i = 0.6212, P2 = 0.5575 and using the

expression above P* = 0.3982 and the conditions describing class 1 are satisfied. We can

approximate the optimal cost function V using the Matlab program diffalpha.m which

can be found in the appendices. Using this program, we find the following graphs. This

example clearly shows the Li are of the form described in Corollary 4.1 and that V is

piecewise linear in p.

CHAPTER 4. THE 2-SITE PROBLEM 70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.8: Opt imal cost function V{p) for Class 1 w i th parameter values as in

Example 4.3

1

0.9

0,8

0.7

0.6

0.5

L ^(p)

-

2

x ' 1 1

-0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.9: Li{p) and L2{p) w i th parameter values as in example 4.3

CHAPTER 4. THE 2-SITE PROBLEM 71

4.4.2 Class 2: Pi < P* and P2 < P*

The same arguments that appeared in subsection 4.4.1 can be applied to this situation,

with reference to Figures 4.9, 4.10 below.

When A > 0 the threshold strategy for p G [0, P*] is (2) and for p G [Qi~^ ,Qi]\t is

((l)fc, (2)). V has corners at P* < < . . . < Q[+^ where r is such that Ql < a < Q[+\

When A = 0 the threshold strategy (2) is used for p G [0 ,P*] while (1 , (2)) is used

for p>P*>a.

When A < 0 the strategy (2) is optimal for p G [U2{P*), P*] while (1 , (2)) is optimal

for p G [P*, Q\2]. This time V has corners at U2{Ql2)<•••< U2{P*) < P* < Q\2 <

...<Q[r-

Figure 4.10: Pi (p) and L2{p) in Case 2 when A > 0

CHAPTER 4. THE 2-SITE PROBLEM 72

p p

Figure 4.11: Li{p) and L2{p) in Case 2 when A < 0

The value of P* can again be explicitly calculated and using a similar notation to case

1 we find

C2 1 - a i ~ A (l - Q;IQ;2) „ C2 1 - A
Ai = ; JWI = Gi +

1 - a 1 - o;2

C2
Ao, =

l - a
B2 =

1 — a 1 — a2

C2 1 - 0 + 0:2(1-6)

1 — a 1 — Q;2

and hence that
{l-a2){l-h) + %{l-a2){\-a)

2 — ai — a2 — A (l — 0:10:2)

which simplifies in the case where 0:̂ = 0: and Ci = C to give

p*
1 - A

2 - (l + a) A
(P2)

Example 4.4

An example of this class can be found by setting a = 0.001, 6 = 0.1, a i = 0.5,

0:2 = 0.4, C i = 1.2 and C2 = 1. From this Pi = 0.5548, and P2 = 0.3675. This

CHAPTER 4. THE 2-SITE PROBLEM 73

produces a value of P* = 0.6922. The optimal cost function solution in this case is

shown in figure 4.12 below.

Figure 4.12: Opt imal cost function V{p) for Class 2 wi th parameter values as in

Example 4.4

Figure 4.13: Li{p) and L2{p) w i th parameter values as in Example 4.4

CHAPTER, 4. THE 2-SITE PROBLEM 74

4.4.3 Class 3: Pi > P* and P2 < P*

This is the most straightforward of the four cases. By Lemma 4.2 we see that A < 0 and

by Theorems 4.1 and 4.2 above it is clear (c.f. Fig. 4.14) that threshold strategy (1) is

used for p G [P*,Ui{P*)] and threshold strategy (2) is used for p G [U2{P*),P*] and

arguing as in cases 1 and 2, V has corners at

. . . < Q21 < U2{Q\2) < Qli <Ql<P*<Ql< QI2 < UiiQli) < g?2 < • • •

where for example, L2 maps [Qn^,U2{Qi2)] to [Q 2̂> ^^1(^21)]- The threshold strategy

on [Q2i^, U2{Qi2)] is ((2, 1)A:+I, (1)) and the strategies on the other intervals can be read

off in the usual way.

Figure 4.14: Li{p) and L2{p) in Case 3

We can calculate P* just as in the earlier cases and we find, if Aip + Bi and A2P + B2

CHAPTER 4. THE 2-SITE PROBLEM 75

represent the arcs of V{p) which intersect at P* that

C i Ci 2-b-aai
- 'r^b - 1 - 6 l - « i

C2 „ C2 1 - 0 + ^ 2 (1 - 6)
A2 = I B2 =

1 — a 1 — a 1 — 0:2
and hence

^ C i (l - ft2)(a6 + (1 - a) (l - 0:1a) - A) + 6*2(1 - cvi)(A - Q6 - ^2(6 - 1)^)
(C i (l - a) + C2(l - 6))(1 - o: i) (l - «2)

which simplifies in the case 0:̂ = 0: and Cj = C to give

P* = - i ^ + - ^ (6 - a) (P3)
I — a — 0 i — a

Example 4.5

Taking a. = 0.3, 6 = 0.001, o;i = 0.5, 0:2 = 0.4, Ci = 1 and C2 = 0.9 we find that

P i = 0.6570, and P2 = 0.4998, and P* = 0.5884. The graphs are as shown in figures

4.15 and 4.16 below.

CHAPTER 4. THE 2-SITE PROBLEM 76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.15: Opt imal cost function V{p) in Class 3 w i th parameter values as in

Example 4.5

0 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.16: P i (p) and L2{p) in Class 3 wi th parameter values as in Example 4.5

CHAPTER 4. THE 2-SITE PROBLEM 77

4.4.4 Class 4: Pi < P* and P2 > P*

In this case, L2{p) > P i (p) and A > 0. In order to examine this case, we first need to

prove another result about the L^.

Lemma 4.3

When A > 0, P21 and L12 are increasing in p and Luip) > p2i(p) for p G [0,1 .

P r o o f due to Weber [19]

The proof works by developing the composition inequality which is easily seen to hold for

linear functions. Let us note for some parameterisation of the subgradients.

L i (p) = sup {a i (s) + 6 i (s) p }
se[o,i]

and

Now

P 2 (p)= inf {a2(t) + 62(t)p}

L2i{p) = Li{L2{p)) = sup inf {a i (5) + 61 (5)[02(i) + 62(t)p]}
5e[o,i]*e[o,il

Consider yi = ai{s) -\-bi{s)a2{t). We shall show yi < y2 = a2{t) + 62(^)01(5). Recall

that L i (0) = ^2(0) = 1 - 6 , Li{l) = 1.2(1) = a , L2{p) > Li{p) and L i is convex, and

L2 is concave. From these facts (see figure 4.16 below) it follows that ai(s) < 02(t) and

a i (s) + 61 (s) < m i n [l , a2{t) + 62(t) .

CHAPTER 4. THE 2-SITE PROBLEM 78

a + b p
2 2 V.^?^

+ b p
1 1

a + b
2 2

a + b
1 1

So

Figure 4.17: Subgradients of L i and L2

2 / 2 - y i > a 2 (t) + a i (s) [a i (s) + 6i(s) - a2(t)] - [a i(s)+6i(s)a2(t)^

= (a2(t) - a i (s)) [1 - ai(s) - 61 {s)

> 0

Hence

L2i(p) = L i (L2 (p)) = sup inf {o i (s) + 6i(s)[o2(t) + 62(i)p]}
se[o,i] ^£[0.1]

< sup inf {a2(t) + 62(t)[ai(s) + 6i(s)p]}
se[o,i] te[o.i]

< inf sup {02 (t) + 62 {t) [ai (s) + 61 {s)p]}
*e[o.ilse[o,i]

= HLiip))

= Li2{p)

CHAPTER 4. THE 2-SITE PROBLEM 79

From Lemma 4.3 it follows that L^ip) > p2i(p) for all p G [P i , P2] and so in
particular L i2 (P*) > L 2 i (P*) . It is helpful to split this case into three further subcases,
one where P2i(P*) < P* < Pi2(P*) and the others where P* < P2i(P*) or P* >

Pl2 (P*) .

Subclass 4.1: L2 i (P*) < P ' < Pi2(P*)

In this case Ui{P*) > L2{P*) and t/2(P*) < P i (P *) as shown in figure 4.18 below

(recall that L12 = L2 o Li)

P U (P *) L (P*) P* L (P*) V (P) p
1 2 I 2 ' 2

Figure 4.18: Ordering of important points in case 4.1

Neither of Theorems 4.1 or 4.2 apply to this case but it is quite simple in structure.

For an initial p > P* repeatedly search site 1 until the interval [L i (P *) , P *] is reached

and similarly for p < P* search in site 2 until the interval [P*,P2(P*)] is reached. From

the usual argument using the threshold policy and an induction argument it is clear the

strategy (1,2) is used on [P* , [/ i (P*)] and strategy (2,1) is used on [UiiP*)., P*]. P*

can now be determined in the usual fashion and the optimal policy is clear. V has corners

at the points

Qi<...<Ql<P* <Ql<...<Q[

(where i and r are chosen as before). The optimal strategy on [Qi,Qi'^^], for example,

is ((l) f c , (2 , l)) .

Repeating our procedure with the earlier cases we can find, using for example the

CHAPTER 4. THE 2-SITE PROBLEM 80

Maple symbolic algebra package:

CI(Q;IO:2(1 - 6 - a^) + aia"^ + 0:2(0 + 6 - a6) - a (l - 6) - 1)
p* ^

Ci{aia2i2A - b) - a(ai + 0:2) - 6 + 2) + C2(Q;IO:2(2A - a) - 6(0:1 + 0:2) - a + 2)
^2(1 - 6)(Q:ia2(l - 6) - Q:IQ + ^26 + g - 1)

Ci{aia2{2A - 6) - a(o:i + ^2) - 6 + 2) + C2(o;ia2(2A - a) - 6(ai + 0:2) - a + 2'

In the case where 0:1 = 0:2 and Ci = C2 we find

^ 2 - 6 + a (6 2 - 3 6 + 2 - a 2)

4 (l + o :) - (a + 6)(l + 3a) ^ '

Example 4.6

If we set a = 0.67, 6 = 075, ai = 0.19, ^2 = 0.22, Ci = 1.3, C2 = I then we find an

example of case 4 . 1 , where P* = 0.5324. To check this, we can calculate P i = 0.2787,

P2 = 0 .6201 , LuiP*) = 0.5380 and L2 i (P*) = 0.3436. The graphs in this case are

shown below.

CHAPTER 4. THE 2-SITE PROBLEM 81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.19: Optimal cost function V{p) in Class 4.1 for parameter values as in

Example 4.6

1

i

_ -L-

— 1

1

^ ^ ^ ^

- L X \
1 y 1
1
1

y . , ,1
-

0.9

0.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.20: ^ i (p) and L^ij)) in Class 4.1 for parameter values as in Example 4.6,

showing that Lx^iP*) > P* > L2i{P*) - ordering of points is Li{P*), L2i{P*), P*,

L,2{P*), L2{P*)

CHAPTER 4. THE 2-SITE PROBLEM 82

Subclass 4.2: P* < LiijP*) or P* > L^jP*)

These two cases are much the same as case 4 .1 in structure though they are rather

more complex. The graph below illustrates the first of these cases but as they are similar

we consider only the case LuiP*) > L2i{P*) > P*.

p U (P) L (P) P U (P) > P
1 2 1 1 ^ 2

Figure 4 . 21 : Ordering of important points in case 4.2 when Li2{P*) > L2i{P*) > P*

From the inequalities defining this subcase we have L2{P*) > Ui{P*) > P* >

Li{P*) > U2{P*)- The sequence {Qi}k increases to 1 so let m > 1 be such that

< L2(P*) < QT^^. Let T denote the string of m + 1 actions (2, (1) „) . Lemmas

4.1 and 4.2 apply to Lr which thus has a fixed point Pr. Since Lr{P*) > P* (or

equivalently Qr — Ur{P*) < P*), -Pr > P* and the sequence decreases to zero as k

increases. As L^iiP*) < L2{P*) and Li2{P*) > L2i{P*) > QT~' we see that Lu{P*) e

{Q^-\L2{P*)) and also Lri{P*) = o L2i(P*) < o Ln{P*) = L,r{P*) < P*

from which it follows immediately that Lr{P*) < Qi-

\fLi2{P*) > QT^henLiriP*) > P * a n d s o L , : [L,{P*),P*] ^ [Lir{P*), Lr{P*)] C

'P*,Qi] and Li : [P*,Qi] ^ [Li{P*),P*]. Each action in the string (r, 1) conforms

with the threshold policy which is thus (r, 1) on [Li(P*),P*] . The threshold strategy

on [P*,Qi] is (l , r) .

If LuiP*) < QT then Lir(P*) < P* and also Li(P*) < Qr. Now either Qr <

Lri{P*) or Q ; ^ + i < Lri{P*) < Q"^ for some n > 1. If L,i(P*) e (Q ; ^ + ^ Q ; ?] for

some n > 1 then Lri : [Qr, P*] ^ [Li(P*), L^i(P*)] C [Li{P*),Q:^] and for j =

n, n - 1 , ... ,1, Lr : ^-> [Q^r^Qt^l 't follows, after careful tracking, that

CHAPTER 4. THE 2-SITE PROBLEM 83

the threshold strategy on [Qr,P*] is (r, 1, (r) „) while on [P*,Lr{P*)] it is (1, (r), i+i).

It remains to treat the cases where Li^(P*) < P* and L^i(P*) e {Qr,P*]. From

Lxr(P*) < P* we know that the sequence Q^^ increases with k and Q i t > P*- In

addition, as Lri{P*) > Qr if follows that Lr{P*) > t / i(Qr) = Qir- introduce the

strings ai — IT and 02 = r. We are left with a case where the key inequalities are

L^.^{P*) > Ua,{P*) > P* > Lai(P*) > U^2iP*) which are equivalent to those illustrated

in Figure 4.21.

This class thus splits into infinitely many nested subcases in any one of which, in

theory, P* can determined by developing the usual method (the actual expressions rapidly

become extremely complicated). The corners of V can be found by working outwards as

before.

Example 4.7

Consider a = 0.95, b = 0.6, ai = 0.19, as = 0.22, Ci = 1.3, C2 = 1. We find that

P* = 0.6433 with LuiP*) = 0.8632 and L2i{P*) = 0.7333. Hence we are in Subclass

4.2 as P* < L2i{P*). Graphically, we have Figures 4.22 and 4.23 below. An analagous

example where P* > L^iP*) can be found by swapping the parameters site-wise i.e.,

when a = 0.6, b = 0.95, ai = 0.22, ^2 = 0.19, Ci = 1 and C2 = 1.3. Under these

circumstances, we find P* = 0.3566 with Pi = 0.0573, P2 = 0.5171, i:i2(P*) = 0.2663

and L2i(P*) = 0.1366.

CHAPTER 4. THE 2-SITE PROBLEM 84

0 0.1 0.2 0,3 0.4 0.6 0.6 0.7 0.8 0.9 1

Figure 4.22: Optimal cost function V{p) in Class 4.2 for parameter values as in

Example 4.7

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1 1 1 1 1
1 1

^ ' 1 C. J-
-—-;A-

/ '- p̂' -

y'

1
1
1
1
1

1

}

, 1 <
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.23: Pi(p) and P2(p) in Class 4.2 for parameter values as in Example 4.7,

showing that Li2(P*) > L2i{P*) > P* - ordering of points is Li(P*), P*, L2i(P*),

Li2(P*), L2{P*)

CHAPTER 4. THE 2-SITE PROBLEM 85

4.5 Verification of Case Boundaries.

In section 4.4 we divided the problem of checking the optimality of a threshold policy into

cases and found expressions for P* in each of these cases. The calculated V is the unique

solution to the optimality equation (4.4). It remains to check that all values of a.b, the

ai and the Ci result in a problem that falls into one of the listed cases. Let P* denote

the value of P* found for case i.

Consider the region A < 0 or equivalently a + 6 < 1. In this region Pi > P j and

case 4 cannot occur. Case 1 is described by the condition P* < P j < Pi while case 3 is

described by the condition P2 < P3* < P i . These cases have a common boundary along a

curve upon which Pi* = P3* = P2 . To check this we used a symbolic algebra package to

solve the equation Pi* = P2 for b in terms of a, the ai and the Ci and then repeated this

for the equation P3* — P2. We found that b was the real root in [0,1] of the same cubic

in each case. The actual expression is very long but in the special case where ai = a and

the Ci = C it simplifies to

a (l + a y + {a{l + a)a - 2a{3 + a))b^ + ((1 - a f a - a{l + a)a^ + 8a;)6

+ 1 + - 3a - a{a^ - \o? + 2a + 1) - a^{a - 1)^ = 0 .

Further details of this calculation can be found in the appendices. The boundary between

cases 2 and 3 can be found in a similar fashion (in fact the expression found for this

boundary is the same as given above but with a and b exchanged). This establishes that

the piecewise linear function V constructed in section 4.4 is a solution of the optimality

equation (4.4) for all ai and Ci and a, b such that a + 6 < 1.

When a + 6 > 1 things are less straightforward. This time Pi < P2 and case 3 cannot

occur. The boundary between case 1 and case 4 occurs along a curve where P* = Pi

and that between cases 2 and 4 along a curve where P2* = P2. The boundaries of case

4.1 are along the curves where P4 = P21 (the fixed point of L21) and P4 = P12 .

Figure 4.24 below shows which class of problem is obtained for all values of a and b

CHAPTER 4. THE 2-SITE PROBLEM 86

in (0,1) in the case where d = C and = a for cv = 0.2

0 0.1 l).2 0.3 OA 0.5 0.6 0.7 0.8 ().S) 1

Figure 4.24: Regions of optimal P*

On the boundary between cases 1 and 4 Pj* = P^ Recall that the optimal strategy

in case 1 is (1) on [P*, 1] and (2,(1)) on [Ql,P*]. The other side of the boundary

corresponds to case 4.2 as m ^ oo where formally the optimal strategy on a neighbour

hood below P* is (2, (1)) while on a neighbourhood above P* it is (1 , 2, (1)) which seems

reasonable.

The form of the piecewise linear V constructed in section 3 together with the calcu

lations of boundaries above have the following result as an immediate consequence.

Theorem 4.3

A threshold strategy is optimal for all parameter values ai, Q and {a,b) in regions 1, 2,

3, 4.1 and the various cases of 4.2 for which a threshold strategy can be determined. In

particular this includes all a and b such that a + b <1.

CHAPTER 4. THE 2-SITE PROBLEM 87

Numerical and computer based symbolic investigations support the conjecture that
there are no values of (a, b) in region 4.2 for which Ross's conjecture fails (these would
manifest themselves as gaps between the boundaries of the various subcases) but the
author cannot prove this. Methods examined include straightforward iteration of a dis
cretisation of all possible values of a and b while keeping ai and d fixed. However, as
can be seen from the above arguments, the interpretation given is a coherent one, and
one that appears to be correct. However, a proof remains elusive.

4.6 Conclusion

In this chapter, we have studied in some detail the simplest case scenario for searching

for a moving target. It is clear that such problems are far from simple when considered

in a rigorous mathematical format, and I hope to have demonstrated in the course of the

chapter how complex the solutions can be, and offered some explanation as to why these

questions have remained unanswered for so long. We now go on to look at extensions of

this problem, where the solutions are often unattainable.

Chapter 5

Extensions and Related Problems

The outcome of any serious research can only be to make two questions grow

where only one grew before.

Thorstein Veblen - The Place of Science in Modern Civilisation and Other

Essays

5.1 Introduction

This chapter is concerned with problems similar in nature to the two site search problem

examined in Chapter 4. Each is tangentially related but poses problems which cannot be

adequately solved as yet. Where possible, we conjecture results suggested by computer

simulation and extensions of 2 site theory.

The first problem we look at is the 3 site search problem - i.e., a direct extension of

the 2 site problem with an extra site.

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 89

5.2 A Three Site Search Problem

In this case, we have as our state variable the probability triple

P = {Pl, P2, Ps)

The target follows a path generated by the transition probability matrix M where

^ Mi l Mi2 Mi3 ^

M =

V J

M21 M22 M23

M31 M32 M33

Overlook probabilities and costs are as previously defined. From these, we can extend the

definition of Li{p) as in (3.3) to find

(xiMupi + M21P2 + M31P3 aiMi2Pi + M22P2 + M32P3 o^iMispi -f M23P2 + M33P3
1 - (1 - Gfi)pi 1 - (1 - a ; i)p i 1 - (1 - ai)pi

(5.1)

L2{p)
MiiPi + 0:2^21^2 + M31P3 M12P1 -f a2M22P2 + M32P3 MizPi + a2M23P2 + M33P3

1 - (1 - q;2)p2 1 - (1 - a2)p2 1 - (1 - a2)p2
(5.2)

L3{P)
MuPi + M21P2 + aaMgiPa M12P1 -I- M22P2 + ^aMsaPa MiaPi + M23P2 + 0:3^33^3

1 - (1 - Q;3)pa 1 - (1 - Q;a)pa 1 - (1 - Q;a)P3
(5.3)

and we find that our optimal cost function V{p) must satisfy

V{p) = mm{Ci + V{Lx{p)){l~{l-aM-C2 + V{L2{p)){l-{l-a2)p2):.

C3 + V{L3{p)){l-{l-a3)p3)} (5.4)

We can immediately see that in this problem we are dealing with a far more complicated

set of equations than previously. This is reflected in the fact that only one paper has ever

CHAPTERS. EXTENSIONS AND RELATED PROBLEMS 90

been published on the topic, by Nakai [8]. His paper is concerned only with perfect
detection and only examined highly constrained transition probability matrices, such as

entirely symmetric matrices of the form

M

(^ 1 ^ 1 ^ \
" 2 2

1—g _ 1—g
2 " 2

As a result it is difficult to extend his work at all, as his methods are very much tailored

to such cases.

When we look at such problems, we need to consider what it is that we are trying to

achieve. From the results of Chapter 2, we can conjecture the following

Conjecture 5.1

In a general 3-site case, the optimal first look strategy regions A are star convex with

respect to the corner points e ,̂ 2 = 1,2, 3.

However it is seemingly not possible to prove it by the methods shown in Chapter 2,

although we can prove its validity under certain constraints (i.e. (Xi — a. and Q = C Vz),

by using Corollary 3.1 and Theorem 3.2. It is our aim to determine exactly what these

regions Ai actually are in any given case. In a 2-site case this was a simple procedure,

as the regions were immediately characterised by the knowledge of the point P*. In the

3-site case and beyond however life is not so straightforward, as knowledge of P* (in this

case the point where all three regions meet) does not give us enough useful information.

What we in fact need to do is calculate the 3 boundary lines between different regions as

highlighted in Figure 5.1 below.

Unfortunately, none of the techniques used in the 2-site scenario as discussed in Chap-

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 91

Boundary 3

Boundary 1

Boundary 2

Figure 5.1: Boundary Lines in 3-site case

CHAPTERS. EXTENSIONS AND RELATED PROBLEMS 92

ter 4 apply adequately to such a problem, as we cannot merely concern ourselves with the
optimal policies near P*. In fact, we need to know the optimal policies right the way along
the boundaries in order to calculate them. As can be imagined, this might involve a huge
number of different regions which it would be necessary to calculate. Correspondingly,
there are going to be a vast number of different boundaries, each of which would apply
to some group of transition probabilities, search costs and overlooks. It seems unlikely
that the divisions would be as clean as the were in the 2-site case. It seems likely that
the formulae for boundaries between regions will vary depending on the exact parameters,
and moreover are likely to be very complicated and unwieldy to use or implement. Hence,
such an approach seems difficult, if not infeasible. We can conjecture further however the
following.

Conjecture 5.2

In a general 3-site search problem, the optimal cost function V is piecewise linear i.e.

the unit simplex in three dimensions can be divided into regions R such that V{p) =

SLi ^iPi + k for p e R, where the 5̂ and k are P-dependent constants.

This concept is strengthened by the extension of Example 4.1 to 3 sites. More im

portantly, numerical approximations to the optimal cost function V using the Matlab

program leprechaun2.m found in Appendix A, bear these conjectures out. Consider

the following example.

Example 5.1

If we set

M =

^ 0.8 0.1 0.1 ^

0.9 0.01 0.09

0.95 0.03 0.02

CHAPTERS. EXTENSIONS AND RELATED PROBLEMS 93

and set = 0.4, \fi and C i = 1, C2 = C3 = 0.5 then the approximate optimal cost
function and optimal first choice regions are given in figure 5.2, 5.3 and 5.4 overleaf.

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 94

1 0

Figure 5.2: Optimal Cost Function V for Parameter values as in Example 5.1

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 95

0 1

Figure 5.3: Reverse view of Figure 5.2

CHAPTERS. EXTENSIONS AND RELATED PROBLEMS 96

= site 1, X = site 2, o = site 3

^ f x ^ ^ ' ' ' ' ' ' '
;;xx);xxx) :xxxx 0 9)^xxxxx

") C X X X X X X x x x x x x x x x x x x x x x x x
) C X X X X X X X X X

0 8>^xxxxxxxxxx ^ ^•°)cxxxxxxxxxxx^^ > ; x ^
) (X X X X X X X X X X X X X X ^ ^

0 T ^ e x x x x x x x x x x x x x x x -̂ x x x x x x x x x x x x x x x x ^ x ^
) C X X X X X X X X X X X X X X X X X X X

0 & e x
o ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ x x x x x x x x

S o o x x x x x x x x x x x x x x x x x x x ^

o-48888888888§g^^^^^^^^^^^^x^xgx^|x
8§88888888888§g^^^^^^^^^^^^^^iix
o o o o o o o o o o o o o o o o o x x x x x x x x x x x x x x x x x

n ' 5 (i o O O O O O O O O O O O O O O O O O O X X X X X X X X X X X X X X X) K _
^ • ^ O X X X X X X X X X X X X ^ ^ ^ ^

o 8 8 8 8 o o o o o o o o p o p o o o o o o o o x x x x ^
() O O O O O O O O O O O O p p p p p p p p p p p p p X X X X X X | | ^ | | ^
() 0 0 0 O 0 O O 0 0 0 0 O O 0 0 0 0 0 0 0 0 O 0 p p p p X X X) K) K) K 5 K) ^ 8888888888888§8888888888888888eeeiiei)K^ 8 8 8 8 8 8 8 o o 8 o o o p p p p p p p p p p p p p p p p p p | ^
()ooooooooooooooooooooppppppppppp)K^^^|^^|^^^^^^ 0 1 () - o o o o o o o o o o o o o o o o o o p p p p p p p p p p p p p p | ^ ^ ^ | ^ ^ | ^ | | | ^ | ^- () o o o o o o o o o o o o o o o o o o p p p p p p p p p p p p p p ^ | | ^ | ^ | | | | | | | |
88888888888888888888888888888888^^^

oi8888888888888888888888888888888888fceie!eiieif^
0 oTl OY 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.4: Optimal first choice regions for parameters as in Example 5.1

CHAPTERS. EXTENSIONS AND RELATED PROBLEMS 97

However, we can say quite a lot about such an example. Based on the results of
chapter 4, we would expect such a set of parameters to take us to a region where the policy
{always look in site 1} would be optimal. If we assume piecewise linearity throughout,
and consider such a policy, we can find the equation of the plane determined by such an
action exactly. In fact, if we define

V{p) = Am + A2P2 + A^

for p e Ai, then we find, by substitution into 5.4 above

Aipi + A2P2 + A^ = Ci + V{Li{p)){l - (1 - a)pi)

which we can solve exactly to get

_ - M22 - M32)

A2 =

A.

M3i{M22 - 1) - M21M32

C i (M 2 i - M 3 i)

Mn{M22 - 1) - M21M32

Ci[(M22 - l) (M 3 i + 1) - M32(l + M21) + a (M i i (l + M32 - M22) + Mn{M2i - M31))
(1 - a)(M3i(M22 - 1) - M21M32)

Hence, we know the exact equation of a plane for V{p; {!)). We can compare this to the

approximate V calculated, getting the following graphs, when first overlaying one graph

on the other and then subtracting one from the other.

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 98

0 0 0 0

0 0

Figure 5.5: Overlaying Exact Plane on Approximate Cost Function

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 99

We can check that the optimal policy is indeed of the form (a i , (1)) with ai = z on

Ai, by examining where the Li{p) take us. Figure 5.6 shows clearly that we lie entirely in

Ai after one look, no matter which state we start from.

r

X X X

O.glxx^xx
. „ , xxxx xxxxxxx xxxxxxxx xxxxxxxxx

xxxxxxxxx xxxxxxxxxxx

0.6*;

xxxxxxxxxxxx xxxxxxxxxxxxx

xxxxxxxx^xxxxxxxx ;<x

im^i^^^^mmmm^^^^^x
3 Q X
D O O O X

3 X
Jooxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx
O Q X X X X X X X X X X X X X X X X X

00XXXXXXXXX)K5K¥!KJK
Q Q Q Q X X X X X X S K * * * * ! *

XXX3«3KX*S«*SK!((X 'OX^^MX******

o 0 ̂ M I I I I I I l ^ l ^ l ^ ^ ^

0.6 0.7 0.9 1

Figure 5.6: Shaded area shows updated states for parameters as in Example 5.1

Hence we have a three region optimal policy, with ((1)) being optimal for p G Ai,

(2, (1)) optimal for p e A2 and (3, (1)) optimal for p e ^3. The equations of the other

two planes can be found in a similar fashion as before, and they are given by (using Maple

output, where Ci is denoted by Ki, and a is given by a).

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 100

so l ve (A l=A l *a *M l l -A l *M31+A2*a*M12-A2*M32-A3* (l -a) , A2=A1*M21-
A1*M31+A2*M22-A2*M32, A3=K1+A1*M31+A2*M32+A3, B1=A1*M11-
A1*M31+A2*M12-A2*M32, B2=a*Al*M21-Al*M31+a*A2*M22-A2*M32-
A3* (l -a) , B3=K2+A1*M31+A2*M32+A3, C l = A l * M l l - a * A l * M 3 1 + A 2 * M 1 2 -
a*A2*M32+A3*(l -a) , C2=Al *M21-a*A l *M31+A2*M22-a*M32*A2+A3*(l -
a), C3=K3+Al *a*M31+A2*a*M32+A3*a , C1,C2,C3,A1,A2,A3,B1,B2,B3);

B3 = -{-M21 M32 K2 - M31 M22 aK2 + MSI M22 a Kl

- M21 M32 aKl ~ M31 K2 + a M12 M21 Kl - M32 Kl

- M31 aKl - M31 aM12 Kl + M31 M22 K2 + M31 aK2 - Kl

+ M22 Kl -ta Mil Kl + a Mil M32 Kl + M21 M32 a K2

- M22 a Mil Kl) /(%2),B2 = -Kl (- 1 + a Mil - a M21 + M22

- M32 - M22 a Mil - a M21 M32 + a M12 M21 + a Mil M32

+ M31 a M22 - M31 a M12) / (% 1),B1 = Kl {-M31 - M22 Mil

- M31 M12 + M31 M22 - M21 M32 + M12 M21 + Mil

+ MUM3g)/(%l),A2 = - l^n-Mil^MSt)^ AS =-Kl(^i
' ^ l

- M31 +aMll + M22 - M21 M32 + M31 M22 - M32

- M22 a Mil + a M12 M21 + a Mil M32 - M31 a M12) / (% 2) ,

Al = K1(-M22^1 + MS2)^ Cl^KK-MSla- M22 a Mil
%1

- a M21 M32 + a Mil - M31 a M12 + M31 a M22 + a M12 M21

+ a Mil M32 + Mil - M31 + M22 - 1 - M22 Mil - M21 M32

+ M12 M21 + Mil M32 + M31 M22 - M31 M12 - M32) / (% 1) ,

03 = -{-M21 M32 K3 - M31 M22 aK3 + M31 M22 K3

- M31 Kl - M22 Mil Kl +M31aK3 -a M32 Kl

CHAPTERS. EXTENSIONS AND RELATED PROBLEMS 101

- M31 0? M12 Kl + M22 aKl - MSI K3 + M31 M22 o? Kl - a Kl
+ Mil Kl + M12 M21 Kl + M21 M32 a K3

+ a^Mll M32 Kl - M21 M32 a? Kl) / (% 2) , C2 = Kl {M21

- M31 + M22 - 1 - M32 - M31 a + a Mil - M22 a Mil

- a M21 MS2 + a M12 M21 + a Mil M32 - M31 a M12

+ M31 aM22) /(%!)]

%1 := -M31 + M31 M22 - M21 M32

%2:= M31 a M22 + M21 M32 - M31 a - M31 M22 - a M21 M32 + M31

Checking these off against the approximate optimal cost function as before we find

figure 5.7 and 5.8. This clearly gives evidence that the optimal cost function is indeed

piecewise linear in this case.

I

Of course, not all parameter values are going to work out this easily - this example

was chosen to make the calculations and policies easy to predict. By reference to chapter

4, we would expect the policies to be most complicated when M u , M22 and M33 were

all near 1. However, a full proof remains open for this problem, and as yet we can only

conjecture as to what the true solution might be.

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 102

0 0 0 0

0 0 1 0

Figure 5.7: Overlaying Exact Plane for policy 2, (1) on Approximate Cost Function

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 103

0 0 0 0

0 0 0 0

Figure 5.8: Overlaying Exact Plane for policy 3, (1) on Approximate Cost Function

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 104

5.3 Variable Resource Search Problems

We now turn our attention to a different extension of the 2-site search problem discussed

in chapter 4 - a search problem on 2 sites where we have a number of possible options

at each stage. At each point in time we can divide search effort into a certain number of

levels (which may be infinite) and we can search a number of different sites at the same

time. This changes the focus of the search problem in that Ross' Conjecture no longer

has a meaning, as we would expect there to be a number of intervals over [0,1] on which

different first-step policies were optimal. This problem stems from one first developed by

Nakai [9] in 1980. In his paper, he extends Pollock's [11] paper of 1970 to a problem of

search over 2 sites with perfect detection and unit cost search. His model allows three

choices at each stage - look in site 1, look in site 2, or wait. He gives a complete solution

to the problem but offers little room for extension to variable overlook/cost structures.

However, he does give interesting results in this case which suggest a general optimal

solution format. The general problem in discrete form has never been studied in published

form since then. The analogous continuous time version of this problem has been discussed

and solved in 1994 by Assaf and Sharlin-Bilitzky [2], in whose paper the target moves in

accordance with some continuous time Markov process and there is an infinite division of

search resource. Essentially, however, this paper is an extension of that of Weber [18],

although the results suggested in it are interesting for comparative purposes. Both [2]

and [9] offer a number of different scenarios into which any given case can fall depending

on the variable parameters, each of which has a different optimal policy structure. The

problem we seek to develop here is a new extension but is clearly related to both of the

above papers and the results of those papers must have influence on it.

The problem we discuss is one where we search over 2 sites but with a fixed constant

amount of total search resource available to us at any stage. We can divide this search

resource up into discrete amounts and apply them as best we see fit. This makes sense as

CHAPTERS. EXTENSIONS AND RELATED PROBLEMS 105

if, for example, we are searching for a liferaft and we have 2 helicopters at our disposal,
we have 6 choices at each stage.

(i) both helicopters grounded

(ii) helicopter 1 search site 1, helicopter 2 grounded

(iii) helicopter 1 search site 2, helicopter 2 grounded

(iv) both helicopter 1 and helicopter 2 search site 1

(v) both helicopter 1 and helicopter 2 search site 2

(vi) helicopter 1 search site 1, helicopter 2 search site 2

Obviously costs and overlook probabilities are directly related to the amount of search

effort put in. In the model proposed, the costs are linear and the overlook probabilities are

proportional to the amount of search effort invested .There is no real justification for these

relationships, and indeed other overlook and cost structures would lead to numerically

similar results to those shown. Formally, the model is as follows.

We search for a target which can be in one of 2 sites S*!, ^2 and which chooses its

next site according to some Markov chain with transition probability matrix M. We have

a fixed amount of search resource which can be allocated to search regions Si, 82 in any

way we see fit. Costs are linear in search allocation as are overlook probabilities. What

we say is that it costs us a certain amount Co to have our entire search resource idle, and

that to search sites 5*1 and ^2 at full intensity costs Ci and C2 respectively. Suppose we

allocate fraction r i of our search resource to search site Si and r2 to search 5*2. Then this

will cost us TiCi + r2C2 + (1 — r i — r2)Co. We want our overlook probability for site 5 i

to vary from 1 at r i = 0 to ai at r i = 1, where ai is the overlook probability associated

with a dedicated search of as in Chapter 4. Our overlook probability is calculated as

a[\ Once again, our aim is to try and minimise time to detection.

CHAPTERS. EXTENSIONS AND RELATED PROBLEMS 106

Once again, let us denote the state of our process by p = P(target in site 1). At
each stage we have a number of choices about how to allocate resources. To give some

definitions, if we have n units of resource, and we allocate Pi of them to site and /?2

A
n

attempt using Bayes' theorem to where

to site 52 (so r i = —) , then we can update our state after each unsuccessful search

a (l - a i ") p + (l - 6) (l - a | ^) (l - p)
%i,/32)W = a E.

{l-a{^)p+{l-a2-){l-p)

and our optimality equation is

V{p) = mm < —Ci H C2 + (1)Co

+y(L(^ ,^ ,) (p)) (l - (1 - af){l-p)^ (5.5)

Immediately we can see that this optimality equation is far more complicated than any

seen previously. When searching over two sites, with n = 1 (the simplest case) we find we

have 3 choices at each stage - look in 5 i , look in ^2 or do nothing. These have updating

formulae

, gp + 0:2(1 -6)(1 - p)

L{0fi)iP) = ap + i l - b){l-p)

V{p) = m i n { C i + y (L (i , o) (p)) (a i p + (l - p)) ;

C2 + V{L^o,i)(p)){p + Ml-p));

Co + n^(o,o)(p))}

which seems marginally more complicated than the optimality equation (4.4). What,

however, can we say about the solution of such an optimality equation? Piecewise linearity

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 107

is suggested and motivated by direct extension of Lemma 4.1 to this case, so it appears
likely that the following is true.

C o n j e c t u r e 5.3

The optimal cost function solving equation 5.5 above is piecewise linear.

Moreover, the following extension to Ross' Conjecture seems plausible.

C o n j e c t u r e 5.4 (after Ross)

In a 2 site varying resource search problem, /3i increases monotonely and /?2 decreases

monotonely as p increases.

What this means is that when we are fairly certain about the location of the target,

we put a lot of effort into searching for it. When we not so certain, we either hedge both

ways or we put little effort into searching anywhere. In the n = 1 case, it means that we

conjecture that we can have the following scenarios.

Look in Site 2 Look in Site 1

Look in Site 2 Do Nothing

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 108

Do Nothing Look in Site 1

Look in Site 2 Do Nothing Look in Site 1

We can use computer simulation to approximate the optimal cost function, which

bear out both of these conjectures, as can be seen from the following example which was

produced using the program resources .m which can be found in Appendix A. Examples

of the four above possible scenarios have been found, and no case has been discovered

where one of the structures does not apply. It is worth noting at this point that in

their paper covering the analogous continuous time problem, Assaf and Sharlin-Bilitzky

2] found strategies which involved up to 5 regions of optimal first-step decision, but

although I have investigated numerous collections of parameter values for the discrete

problem, I have found no evidence to suggest that such policies exist in this case.

E x a m p l e 5.2

Consider

^ 0.4 0.6 ^

V 0.2 0.8

with Ci = 2, C2 = 3, Cn = 0.01 and ai = 0.6 and 02 = 0.7. We can compare the effect

that adding different amounts of resource has to the solution to such a problem. With no

option but to search, we are in a normal 2-site search scenario, and our optimal solution

looks like Figure 5.9 below. With 2 levels of search resource it is in 5.10, and with 4 levels

of search resource, we have Figure 5.11.

CHAPTER S. EXTENSIONS AND RELATED PROBLEMS 109

Optimal cost function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlook probabilities - solid = site 1, dashed = site 2

0.8

0.6

0.4

0.2

- 1 1 1—

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.£

Figure 5.9: Optimal cost function with search options only

Optimal cost function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlook probabilities - solid = site 1. dastied = site 2
1

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.10: Optimal cost function with 2 levels of search intensity

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 110

Optimal cost function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Over1ool< probabilities - solid = site 1, dashed = site 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 5.11: Optimal cost function with 4 levels of search intensity

This example clearly shows how the optimal policy changes as more levels of search

intensity are introduced, and moreover how this affects the optimal cost function. One

thing which is worth noting is that the optimal cost function tends not to change for p

near 0 or p near 1. This makes sense as we are likely to be putting full search intensity

into searching a given site when we believe strongly that the target is there. This leads

to the natural conclusion that more use could be made of the results in Chapter 4 to

calculate these functions. However, as yet it seems unclear how best to do this.

It seems like this problem is the easiest to think about in terms of development of

general theory, and indeed in terms of practical application. However, as yet little of any

consequence can be said about such a problem.

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 111

5.4 Machine Replacement Problems

The final problem we examine in this chapter is a Markov decision problem raised in

Ross [13] concerning machine replacement. We conjecture that results already shown in

Chapter 4 can be extended to this problem. It seems likely that this is only one of a

whole class of problems which could be similarly examined, and possibly solved by such

methods, as numerous other problems have similar structure.

5.4.1 A Simple Problem

Consider the following problem.

A machine can be in any one of two states, good or bad. The machine produces

items, which are either defective or non-defective, at the beginning of each

day. The probability of a defective item is ai when in the good state and a2

when in the bad state, where a2 > (Xi. Once in the bad state, the machine

remains in this state until it is replaced. However, if the machine is in the

good state at the beginning of one day, then with probability 7 it will be in

the bad state at the beginning of the next day. Each day it must be decided

whether to inspect the machine at cost / or to wait. If we inspect and the

machine is defective then we replace it. Let R be the cost of replacing the

machine and let C be the cost incurred whenever a defective item is produced.

We say the process is in state p at time tifp 'is the posterior probability at time t that

the machine in use is in the bad state. We further discount future costs by a factor a

and the above is a Markov decision process with uncountable state space [0,1], and action

space {inspect, luait}. From the above description, events happen in the order {item,

action, transition}. When the state is p and the action chosen is {wait}, the expected

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 112

cost is:

{1 - p)aiC + pa2C

and the next state is:

(i-ph+p

When the action chosen is {inspect}, the expected cost will be:

I + {1 - p)aiC + pa2{C + R)

and the next state will be 7 as, after inspection, the machine is in the good state and 7

is the probability that it turns bad overnight.

Hence the a-optimal cost function T4 will satisfy:

Vaip) = mm{{l-p)aiC + p(y2C + aVa{p+{l-p)j);

/ + (1 - p)aiC + pa2{C + R) + a V ^ }

= C{p{a2 - tti) + ai) + min{Q!V;(7 + p{l - 7));

I + pR + aVM} (5-6)

It is known, Ross [13], that the a-optimal cost function is increasing and concave. We

now show this, together with the additional fact that if the optimal policy is to {inspect}

whenever the state p is greater than or equal to some threshold P*, then the cost function

is piecewise linear.

From equation (5.6) above, the second term in the minimisation is linear in p and

larger than the first term when p = 0. A threshold policy is optimal if our cost function

Va is increasing in p and concave and the second term is smaller than the first when p — 1.

To show that Va is increasing we use to the method of successive approximation: take

some nondecreasing function V^{p), substitute it in the right hand side of the optimal

cost equation (5.6) and define = CV^, with C as in Theorem 2.2. As each of the

terms in the minimisation is nondecreasing and C{p{a2 — cxi) + ai) is increasing it follows

that V^{p) is increasing.

CHAPTERS. EXTENSIONS AND RELATED PROBLEMS 113

Let = CV^~^ for n = 2, 3, — By induction each is an increasing function in
p. Now by Theorem 2.4, our optimal cost function is increasing, as we can successively
approximate it, starting from the nondecreasing function

Vo{p) = o,ype [0,1] .

That Va is concave is shown by writing it as the infimum of a family of linear functions,

just as in equation (3.5) and the sentence following it.

What is perhaps not known is that the optimal policy is a threshold policy (personal

communication from Dr. I. MacPhee) and hence the optimal cost function is piecewise

linear. This can be demonstrated if we define the threshold by

P* = mm{p : ̂ ^(7 + p (l - 7)) > / + pi? + a V ^ } (5.7)

and also

r(p) = 7 + p (i - 7)

so T(p) is linear in p, going from 7 at p = 0 up to 1 at p = 1. Note also that T{p) > p

when 7 > 0. (This is not surprising, because if 7 = 0, the machine never becomes bad!)

If P* > 1, the policy {wait} is optimal for all p and Va is linear. We now claim that

when P* < 1 the optimal cost function I4(p) 's piecewise linear, with corners at P*,

T-\P*), T-2(P*) ,T-("-i)(P*), r-"(P*), where n is such that T-"(P*) < 7 and

y-(" ' - i) (p*) > j_ Note that n exists whenever 7 > 0. Taking some point A = 7 + 5 > 7

{5 > 0), r"^(A) = -> 0 as 5 ^ 0. Hence, we can take a sufficiently small 6 to

ensure that T"^(A) < 7. Furthermore, T'^(p) < p when 7 > 0, so starting from any

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 114

point Q, T~ (Q) < 7 for some A^. Hence, our optimal cost function is of the form:

a^p + hn if r-"(p*) <p< r-("-i)(p*)

Va{p) = (5.8)
a2p + 62 if T-2(p*) < p < r - i (P*)

aip + 61 if T- i(P*) < jo < P*

flop + ^0 if P* < p

where the and hi are constant scalars, and the linear function aoj9 + 60 is the same

as the linear replacement cost in our optimal cost function equation (5.6). i.e. V„(p) =

aap + ho — I + aiC + p{{a2 - ai)C + R) +(y.Va{p(). Graphically, this result can be seen

in figure 5.12.

{<i\iait> , inspect)

f" (I*

fuiait . inspect!

-i^-'iP) f' (I*)

Figure 5.12: Piecewise linear optimal cost function

5.4.2 Extension of Problem

One way to extend the model is to build in Bayesian updating of our state variable and

base the replacement decision on the process state. At each stage we examine the item

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 115

produced and given that the machine is in state p, update our belief to D(p), if the item
produced was defective, and G{p) if the item was non-defective, where G{.) and D{.) are

D{p) = P(bad state | defective item)

G{p) — P(bad state | non — defective item) .

Using Bayes theorem we find

^ ^ a2P + 'yai{l-p)
a2P + ai{l -p)

and

X ^ (1 - Q ; 2) P + 7 (1 - 0 ^ 0 (1 - P)
"^^^^ (l - « 2) p + (l - a i) (l - p) •

It is worth noting that these, like T{p) above, are both increasing in p, starting at 7 when

p — Q, and rising to 1 when p =1. Moreover, applying Lemma 4.1, we find

Corollary 5.1

G{p) is always increasing and convex and D{p) is always increasing and concave, with

D{p) > G{p) yp e [0 ,1] .

Proof
Straightforward application of Lemma 4.1, remembering that a2 > cti.

Pictorially, we have the graphs shown in Figure 5.13 below.

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 116

G(p)

0 1

Figure 5.13: Updated beliefs, having seen item

Now we calculate the optimality equation. If we are in state p, and action {wait} is

chosen, the expected cost will be

pazC + [1 - p)aiC

and our next state will be G'(p) if we see a good item or P'(p) if we see a bad item where

the probability of seeing a good item is

p (l - a 2) + (l - p) (l - « i)

and the probability of seeing a bad item is

pa2 + (1 - p)ai

If we are in state p, and we choose {replace}, the expected cost will be

P + C ((l - 7) c ^ i + 7«2)

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 117

and our next state will be 7, as before. If we further define

K{p) = «! + (tts - ai)p

our optimality equation is

V^{p) = mm{C{{l-p)ai+pa2) + aMl~a2) + {l-p)il-a,))V,{G{p))

+ {{l-p)ai+pa2)Va{D{p))] ;

R + C ((l - 7)«i + 7Ĉ 2) + «14(7)}

= mm{CK{p) + a[{l - K{p))V^{G{p)) + K{p)Vc,{D{p))] ;

R + CK{j) + aVM}

This optimality equation appears similar to that of (4.4) and it is known that the

optimal policy is of threshold form. As the second term in the minimisation above is

constant it suffices to show that the first term is increasing and this can be shown as in

the previous subsection. Let be the n**̂ approximation and suppose it is increasing.

Now

V:^'ip) = min{M(p) ; R + CK{j) + aV^{j)}

where M{p) = CK{p) + a [(l - iC(p)) l /"(G(p)) + K{p)V;^{D{p))]. As the function

1 — K{p) is differentiable we know from the intermediate value theorem that for any fixed

p and p> p there exists p e [p-,p] such that

(1 - K{p))V:{G{p)) - (1 - K{p))V:{G{p)) = (1 - K'{p)){V^{G{p)) - C(G(p)))

and from this and the facts that K, G, D and are all increasing and 1 - K'{p) =

1 ~ a2 + ai e (0,1) it follows that M{p) > M{p) i.e. M is increasing and hence

is increasing. Hence, by induction and Theorem 2.4, is increasing and applying the

above argument again we see that the optimal policy is indeed of theshold form.

CHAPTERS. EXTENSIONS AND RELATED PROBLEMS 118

While the motivation for piecewise linearity extends to this case, it is not easy to
prove anything else. Notably, it is not possible to calculate P* at all, as we are stuck in
a Catch-22 situation, in that in order to calculate P*, we need to know 14(7), and to
know 14(7) we need to know P*! It would be nice to think that we could apply methods
similar to those used in Chapter 4 to this problem. However, the problem we encounter is
similar to that discussed in the previous two sections, in that we have an infinite number
of possible scenarios into which we could fall. While we can solve the problem exactly for
simple cases, such as ones where we never replace or we replace as soon as we see a bad
item, it is not clear what happens as soon as we have more than 2 linear pieces to the
optimal cost function as we can no longer be sure which section the value of 7 will lie on.
It is for this reason that an approach like the one in Chapter 4 is not feasible. Moreover,
even if we could work out all the possible scenarios which could exist, we would need to
completely solve each given problem in order to determine which one we lay in. However,
we can conjecture the following.

Conjecture 5.5

The optimal cost function in a machine replacement problem as described above is

piecewise linear.

This conjecture is again borne out by numerical experiment using the Matlab program

replacement.m as found in Appendix A. This allows us to solve approximately the

optimality equation 5.6 above.

Example 5.3

If we take the following parameter values

7 = 0.25, C = 3, P = 3, cvi = 0.1, Ci2 = 0.8

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 119

we find that P* ^ 0.7404. Graphically, the optimal cost function and G'(p) and D(p) can
be seen below.

I

Superficially, we could imagine such a problem as a 2-site search problem with overlook

probabilities I — ai and 1 — a2. Indeed, if our aim was to replace whenever we saw a

bad item, it could be fitted into such a format. However, under the given framework,

we cannot make this sort of a trick work. The problem arises from the fact that in the

Machine Replacement problem we make decisions about our next action after receiving

information (in this case after observing the latest item). In the previous search problems

we specified the control of the problem at the start (i.e. we decided what our actions were

going to be at all times), and we receive no information during the searching process. As

a result we encounter a further problem in that individual policies make little sense, as

there are 2 results we can get at any stage in that we can either see a good item or a bad

item. However, D{p) and G'(p) can work in opposite directions (i.e. -D(p) > p > G'(p)

for some p), meaning that at certain stages, we could have the policy {replace if we see

a bad item, but if we see a good item, then only if we see two bad items in a row}.

It seems likely from the formulae that there will always be corners at D'^{P*), Z)~^(P*)

etc., but other corners may well exist. It is for reasons like this that this problem remains

open and unsolved.

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,

Figure 5.14: Optimal cost function Va{p) with parameter values as in Example 5.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.i

Figure 5.15: G{p) and D{p) for parameter values as in Example 5.4

CHAPTER 5. EXTENSIONS AND RELATED PROBLEMS 121

5.5 Conclusion

In this chapter we have examined some still-unsolved problems and given evidence as to

what their solution might be without being able to complete a full proof. This work might

be regarded as a starting point for further research and should prove useful in the long term

research of Search theory and other Markov decision process based problems. Certainly it

seems possible that more could be made of the solution to the varying resource problem

by Assaf and Sharlin-Bilitzky [2] which has not been attempted, notably and attempt

to verify some of the possible optimal policies outlined in that paper. Such problems

represent a better attempt to successfully model real problems and will hopefully lead to

new results.

Chapter 6

Conclusion

The way you walk was thorny through no fault of your own, but as the rain

enters the soil and the river enters the sea so tears run to a predestined end.

Maleva (Maria Ouspenskaya) - The Wolf Man (1941)

In this thesis, we have examined a variety of different search problems and given solutions

to some and conjectured possible solutions for others. One thing, however, which has

characterised all of this work has been the simplicity of the problems themselves - we

have worked almost uniquely in two sites, and moreover the target motion is the simplest

possible kind. However, I feel the research bears testimony to the fact that such problems

are not as simple as they might at first appear. Over the course of doing this research, I

have attended numerous conferences and met many people, and I have often been asked

to explain what it is that I do. In reply, I have generally quoted the motivational example

given in the preface, together with a brief explanation of the exact nature of the solution.

During one interview with a Bonds Salesman from BZW I was asked this question to which

I gave my usual reply. The interviewer seemed somewhat taken aback by this answer and

asked in an incredulous voice 'and it's taken you three years to do this?'. Essentially,

this highlights a major point, which is that although the problems are simple in nature,

122

CHAPTER 6. CONCLUSION 123

their solution is complicated and the proof thereof is even more complex [c.f. quotation.

Chapter 1]. This point has always been the major stumbling block in the development of

search theory and is reflected in the lack of theoretic literature on the subject. Over the

last three years I feel a lot has been achieved and I hope that new theory is developed to

add onto this work.

What then, of the future of search theory? To my mind, the problems studied do have

real applications and these should be developed and exploited as far as possible. While I

admit to not being an expert on the practical application of search theory I cannot help but

feel that more could be done to bridge the divide between search theory and the practical

task of searching. This disparity was brought home to me during a series of seminars I

attended in 1994, the first of which was given by a member of the coast guard, and the

second by a mountain rescue search team leader. The naivety of some of the arguments

used for policy decisions was backed up by the harsh reality that the chances of being

found by a search-and-rescue team are next to nothing. My own feeling is that, as I have

discovered, the theory is very hard to develop, and moreover that in a realistic scenario,

trying to check which of the possible thousands of cases we lie in would be impractical

and very time consuming. As in all real life problems, we have to balance out the desire

for exact results against the time taken to achieve them. It is for this reason that full

value iteration is not viable for large scale problems.

The vision I have is for a future in which the (relatively) powerful computer facilities

available to searchers are used in an efficient fashion to help them in their task. This,

of course, involves a shift from closed-form analytic solutions to algorithmic work. De

velopment have already been made in this direction, as work on the FAB algorithm by

Washburn [17] and more recent work by Thomas and Eagle [16] on approximate solutions

using path constrained algorithms show. However, much remains to be done. Most im

portantly, one must always remember that at the end of the day it is not mathematicians

CHAPTER 6. CONCLUSION 124

or computer scientists who will be performing the searches. As much effort has to be

put into the development of a good user interface as to the algorithms themselves, for a

computer is only as good as its operator lets it be.

In conclusion, search theory is a wide ranging and multi-functional branch of mathe

matics. It has been studied in many ways and a great deal has been achieved. At present

it stands on the threshold of a new approach. I hope that the work of this thesis helps to

achieve new and better results.

Appendix A

Matlab Programs

A . l difFalpha.m

This program takes in parameter values, and calculates the optimal cost function for a

2-site search problem via. iteration. It outputs three graphs

(i) A graph of the optimal cost function V{p) against p.

(ii) A graph of Li(p) and L2{p) against p.

(iii) A graph comparing the cost of 1, (d) with 2, (d), where d represents the policy

suggested by the optimal cost function V{p).

We can use the values of p i , p2 and q l as output by the program to tell which case we

are in. These values correspond to the values of Pi, P2 and P* as described in Chapter

4. If we find we are in Case 4, we can use the values of L12 and L21 to determine which

subcase we are in.

clear

hold off

n=input('how many points? ') ;

a=input('P(box llbox 1) ? ') ;

125

APPENDIX A. MATLAB PROGRAMS 126

b=input{'P(box 21 box 2) ? ') ;

alphal=input('overlook probability for house 1 ') ;

alpha2=input('overlook probability for house 2 ') ;

cl=input('cost per look for house 1? ') ;

c2=input('cost per look for house 2? ') ;

vO=zeros(n+l,l);

vl=vO;

vO(l)=l;

i=l:n+l;

b a s i s = (i - l) / n ;

tl=round(n*(a*alphal*basis + (1 - b) * (l - b a s i s)) . / (a l p h a l * b a s i s + 1-basis));

t2=round(n*(alpha2*(l-b)*(l-basis) + a*basis)./(alpha2*(l-basis)+basis));

while max(abs(vl-vO))>0.00001;

vO=vl;

vl=min(cl+ vO(tl)'.*(alphal*basis+ (1-basis)) ,

c2 +v0(t2)'.*(alpha2*(l-basis) +basis))';

end

p l o t (b a s i s , v l)

hold on

ql=max(basis'.*(vl==max(vl)))

pause

C= [0,1,0, 1];

axis(C)

t t l = t l / n ;

tt2=t2/n;

t t t l = v l (t l) . * (a l p h a l * b a s i s + l - b a s i s) ' ;

t t t 2 = v l (t 2) . * (a l p h a 2 * (l - b a s i s) + b a s i s) ' ;

Ll=basis(round(n*(a*alphal*ql + (1 - b) * (l - q l)) . / (a l p h a l * q l + 1 - q l))) ;

L2=basis(round(n*(alpha2*(l-b)*(l-ql) + a*ql) ./(alpha2*(l-ql)+ql))) ;

L21=basis(round(n*(a*alphal*L2 + (l - b) * (l - L 2)) . / (a l p h a l * L 2 + 1-L2)));

L12=basis(round(n*(alpha2*(l-b)*(l-Ll) + a*Ll)./(alpha2*(1-L1)+L1)));

p l o t (b a s i s , t t l)

hold on

plot(basis,tt2,'g')

APPENDIX A. MATLAB PROGRAMS 127

plot (basis .basis , ' --uO
pause

hold off

p l o t (b a s i s , t t t l)

hold on

plot(basis,ttt2,'g')

ppl=(2-alphal*a-b-sqrt((alphal*a+b)'2-4*alphal*(a+b-l)))

/ (2 * (l - a l p h a l))

pp2=(a-alpha2*(2-b)+sqrt((a-alpha2*(2-b))"2 +4*alpha2*(l-alpha2)*(1-b)))

/(2*(l-alpha2))

Delta=a+b-l;

L12

L21

APPENDIX A. MATLAB PROGRAMS 128

A.2 leprechaun2.m

This program calculates the optimal cost function and first look optimal policy regions

for the 3-site problem as discussed in Section 5.1. It creates a lattice of points, and then

applies value iteration to approximate the optimal cost function. For each updated point

it calculates the triangle of lattice nodes which contains that point and then expresses

the original point as the weighted average of those three nodes. We encounter certain

problems with this approach, notably the decision as to which triangle a given point lies

in. This is highlighted by the diagram below.

'P , P > P)

Figure A . l : Possible triangles which can exist within the cube from floor{p) to

ceiling{p)

The further problem that this triangulation raises is that it has a tendency to 'smooth'

out ridges and corners. This brings questions about the accuracy of this function to the

true optimal cost function, which remain unclear. What we can say about the numerical

result is that it will be concave, as the effect of the triangulation produces a function

which always lies below the true optimal cost function.

APPENDIX A. MATLAB PROGRAMS 129

clear

n=input('how many points per side?');

'/. F i r s t we create the basis matrix in a logical fashion.

a=[0:n] ;

b=ones(size(a));
AB=l/n*a'*b;
L=tril(ones(n+l));
Gl=triu(AB)';
G2=rot90(Gl,3);
M(:,1)=G1(L);
M(:,2)=G2(rot90(L,3));
M(:.3)=l-M(:,l)-M(:,2);
clear AB;clear a;clear b;clear Gl;clear G2;clear L;
pack

'/, Put in the basic variables - transition matrix & overlook prob.

priors

•/, calculating new prior probabilities of where
'/. leprechaun is using Bayes' theorem

M01=M; H02=M; M03=M; MOl(:,l)=z*M(:,1); M02(:,2)=z*M(:,2); M03(:,3)=z*M(:,3) ;

7, working out prob(look in house i & don't see leprechaun) =hi

hl=(sum(M01'))'; h2=(sum(M02'))'; h3=(sum(M03'))';

Mll=M01*A./[hl h i h i] ; M12=M02*A./[h2 h2 h2]; M13=M03*A./[h3 h3 h3] ;
'/.Mll(0.5*n*(n+3) + 1,:) = [1 0 0];
•/.M12(n+1, :) = [0 1 0];
•/.M13(l, :) = [0 0 1];

clear MOl; clear M02; clear M03;
'/.clear h i ; clear h2; clear h3;
pack

'/, Now we work out which triangle in our triangulation contains the updated

APPENDIX A. MATLAB PROGRAMS 130

"/.point, using a boolean variable.

Rl=[l/n*ceil(n*Mll(:,1)), l/n*(floor(n*Mll(:.2)))] ;

R2=[l/n*ceil(n*M12(:,1)), 1/n*(floor(n*M12(:,2)))] ;

R3=[l/n*ceil(n*M13(:,1)), l/n*(floor(n*M13(:,2)))] ;

testll=0.5*(n*Rl(:,l)).*(2*n + 3 - n*Rl(:,l)) + n*Rl(:,2) +1

test21=0.5*(n*R2(:,1)).*(2*n + 3 - n*R2(:,l)) + n*R2(:,2) +1

test31=0.5*(n*R3(:,1)).•(2*n + 3 - n*R3(:,l)) + n*R3(:,2) +1

,l)>0).*(2*n + 3 - n*Rl(

,l)>0).*(2*n + 3 - n*R2(

,l)>0).*(2*n + 3 - n*a3(

,l)>0).*(2*n + 3 - n*Rl(

,l)>0).*(2*n + 3 - n*R2(

,1) +1) + n*Rl(:,2) + 1)

,1) +1) + n*R2(:,2) + 1)

,1) +1) + n*R3(:,2) + 1)

,1) +1) + n*Rl(:,2)) + 2

,1) +1) + n*R2(:,2)) + 2

,l)>0).*(Rl(:,l)>0).*(2*n + 3 - n*R3(:,l) +1) + n*R3(:,2)) + 2;

testl2=round(0.5*(n*Rl(:,1) -1).•(Rl(

test22=round(0.5*(n*R2(:,1) -1).*(R2(

test32=round(0.5*(n*R3(:,1) -1).*(R3(

testl4=round(0.5*(n*Rl(:,1) -1).*(R1(

test24=round(0.5*(n*R2(:,1) -1).*(R2(

test34=round(0.5*(n*R3(:,1) -1).*(R3(

testl5=0.5*(n*Rl(:,l)).*(2*n + 3 - n*Rl(:,l)) + n*Rl(:,2) +2

test25=0.5*(n*R2(:,l)).*(2*n + 3 - n*R2(:,l)) + n*R2(:,2) +2

test35=0.5*(n*R3(:,1)).*(2*n + 3 - n*R3(:,l)) + n*R3(:,2) +2

l l = [t e s t l l , t e s t l 2 , testl4]

12=[test21 , test22 , test24] ;

13=[test31 , test32 , test34] ;

l l l = [t e s t l 5 , t e s t l l , t e s t l 4] ;

112=[test25 , test21 , test24];

113=[test35 , testSl , test34];

l l l l = [t e s t l l , t e s t l 4 , testll+0.5*n*(n+l)];

1112=[test21, test24, test21+0.5*n*(n+1)] ;

1113=[test31, test34, test31+0.5*n*(n+l)] ;

testl6=(abs((l-Rl(:,1)-R1(:,2))-(l/n*floor(n*(l-Mll(:,1)-H11(:,2)))))<=0.0001);

test26=(abs((l-R2(:,1)-R2(:,2))-(l/n*floor(n*(l-M12(:,1)-H12(:,2)))))<=0.0001);

test36=(abs((l-R3(:,1)-R3(:,2))-(l/n*floor(n*(l-M13(:,1)-H13(:,2)))))<=0.0001);

for i=l:3

T r i l (: , i) = l l (: , i) .*testl6.*(Rl(: ,1)>0.00001) + I I K :, i) . * (l - t e s t l 6) .* (Rl (:, 1)>0.00001)

+ ll l l (: , i) . * (R l (: , l) < = 0 . 0 0 0 0 1) ;

Tri2(:,i)=12(:,i).*test26.*(R2(:,1)>0.00001) + 112(:, i).*(l-test26).*(R2(:,1)>0.00001)

+ 1112(:,i).+(R2(:,l)<=0.00001);

Tri3(:,i)=13(:,i).*test36.*(R3(:,1)>0.00001) + 113(:. i).*(l-test36).*(R3(:,1)>0.00001)

+ 1113(:,i).*(R3(:,l)<=0.00001);

end

end

end

APPENDIX A. MATLAB PROGRAMS 131

clear Rl; clear R2; clear R3; clear t e s t l l ; clear test21; clear testSl;
clear t e s t l 2 ; clear test22; clear test32; clear testl4; clear test24; clear test34;
clear testlB; clear test25; clear test35; clear t e s t i s ; clear test26; clear test36;
clear 11; clear 12; cleeir 13; clear 111; clear 112; clear 113;
clear 1111; clear 1112; clear 1113;
pack

1=1:1.5*(n+l)*(n+2);
ll=l:2*(n+l)*(n+2);
i l = [l ; l ; l ; l] ;
i=reshape(il,6*(n+l)*(n+2),1);
i2=reshape(11,4,0.5*(n+1)*(n+2));
i3= [i 2 ' 12' 12'];
j=reshape(i3',6*(n+l)*(n+2),1);

kl=reshape([M(Tril(:,1),:) ones(0.5*(n+l)*(n+2),1) M(Tril(:,2), :) ones(0.5+(n+l)*(n+2),1) M(Tril(:,3),:)
ones(0.5*(n+l)*(n+2),l)]',6*(n+l)*(n+2),1);

Sl=sparse(j,i,kl);
k2=reshape([M(Tri2(:,1),:) ones(0.5*(n+l)*(n+2),1) M(Tri2(:,2),:) ones(0.5*(n+l)*(n+2),1) M(Tri2(:,3),:)

ones(0.5*(n+l)*(n+2),l)]•,6*(n+l)*(n+2),1);
S2=sparse(j,i,k2);
k3=reshape([M(Tri3(:,1),:) ones(0.5*(n+l)*(n+2) , 1) M(Tri3(:,2),:) ones(0.5*(n+l)*(n+2) , 1) M(Tri3(:,3), ;)

ones(0.5*(n+1)*(n+2),1)]',6*(n+1)*(n+2),1);
S3=sparse(j,i,k3);

Mll(:,4)=ones(size(Mll(:,3)));
M12(:,4)=M11(:,4);
M13(:,4)=M11(:,4);
Dl=reshape(Mll',2*(n+l)*(n+2),l)
D2=reshape(M12',2*(n+l)*(n+2) ,1)
D3=reshape(M13',2*(n+l)*(n+2),l)

Wl=(reshape(Sl\Dl,3,0.5*(n+l)*(n+2)))'
W2=(reshape(S2\D2,3,0.5+(n+1)*(n+2)))^
W3=(reshape(S3\D3,3,0.5*(n+1)*(n+2)))^

clear Dl; clear D2; clear D3;
•/.clear SI; clear S2; clear S3;

APPENDIX A. MATLAB PROGRAMS 132

clear k l ; clear k2; clear k3; clear 11; clear 12; clear 13; clear i ; clecir j ; clear 1; clear 11;
pack

•/, Now we can iterate on the optimality equation!

vO=ones(size(hl));
vl=zeros(size(vO));
counter=0;
while.maxCabs(vl-vO))>=0.00001
v0=vl;
counter=counter+l;
t r i a l l = (v O (T r i l (: , l)) . * W l (: , l) + vO(Tril(:,2)).*W1(:,2) + vO(Tril(:.3)).*W1(:. 3)). t h l
trial2=(vO(Tri2(:,1)).*W2(:,1) + vO(Tri2(:,2)).*W2(:,2) + vO(Tri2(:,3)).*W2(:,3)).*h2
trial3=(vO(Tri3(:,1)).*W3(:,1) + vO(Tri3(:,2)).*W3(:,2) + vO(Tri3(:,3)).*W3(:,3)).*h3

v l = c + (m i n ([t r i a l l t r i a l 2 t r i a l 3] ')) ' ;
end
eps=0.00001;
t r i a l 4 = (a b s (t r i a l l - (v l - l)) < e p s) + 2+(abs(trial2-(vl-l))<eps) + 3*(abs(trial3-(vl-l))<eps) ;
"/. - 3 * (t r i a l l = = t r i a l 2) . * ((v l - l) = = t r i a l l) - 4 * (t r i a l l = = t r i a l 3) . * ((v l - l) = = t r i a l l)
•/.- 5*(trial2==trial3) . * (t r i a l 2 = = (v l - l)) + 6 * (t r i a l l = = t r i a l 2) . * (t r i a l 2 = = t r i a l 3) ;

test=ones(size(vl))*max(vl);
test2=[l:0.5*(n+l)*(n+2)]';
test3=test2.*(test==vl);
M(max(test3),:)

•/, Now we can draw a mesh plot of the optimal cost,

hold off
meshdomd :n+l, l : n + l) ;

ss=round(n*M(:,1)+1);
tt=round(n*M(:,2) +1);
vvl=vl-min(vl);
ZZ=sparse(ss,tt,vvl);
Z=full(ZZ);

APPENDIX A. MATLAB PROGRAMS 133

end
end
•/.for N=30:60:390;
mesh (Z, [30,30])
axis([0,n+1,0,n+1,0,max(vl)-min(vl)])
pause(0.5)
end
title('meshplot of expected searchtiraes')
pause

'/.lets look at the optimal f i r s t - l o o k strategies

•/.testl=M(trial4>0, :) ;

test2=M.*[trial4==l t r i a l 4 = = l t r i a l 4 = = l] ;
test3=M.*[trial4==2 trial4==2 trial4==2];
test4=M.*[trial4==3 trial4==3 trial4==3] ;
clg
p l o t (t e s t 2 (: , 1) , test2(:,2),'*r')
hold on
plo t (t e s t 3 (: ,1), test3(:,2),'xy')
pl o t (t e s t 4 (: , 1) , test4(:,2),•ob')
title('*=housel,x=house2,o=house3')

APPENDIX A. MATLAB PROGRAMS 134

A.3 resources.m

This program approximates the optimal cost function for the varying resource search

problem as found in section 5.2. I takes in parameter values, together with the number

of possible divisions of search effort and outputs 2 graphs, one above the other. These

represent

(i) A graph of the approximate optimal cost function

(ii) A graph of the overlook probabilities for searches of sites 1 and 2

It can operate with any number of search levels above 0.

•/, In this program ,we have some fixed amount of resources, and we can divide
•/. them between house searches, with bl of the resource going to 1 , and
•/. b2 to house2.
•/. F i r s t we input the basic variables
clear

clg
hold off
n=1000;
a=input('P(box llbox 1) ? ') ;
b=input('P(box 21 box 2) ? ') ;
cl=input('Cost of f u l l search for site 1 ? ') ;
c2=input('Cost of f u l l search for site 2 ? ') ;
c3=input('Cost of doing nothing ? ') ;
Zl=input('Basic overlook for site 1 ? ') ;
Z2=input('Basic overlook for site 2 ? ') ;
m=input('Number of levels of search (amount of resource available)? ') ;

•/.zl=l-Zl;
•/.z2=l-Z2;

ss=[0:m];
tt=ones(size(ss));
AB=l/m*ss'*tt;

APPENDIX A. MATLAB PROGRAMS 135

L=tril(ones(m+l));
Gl=triu(AB)';
G2=rot90(Gl,3);
s=Gl(L);
t=G2(rot90(L,3));

C=((l-s-t)*c3+s*c2+t*cl);
'/.alpha2=z2*t;
'/,alphal=zl*s;
for i=l:(m+l)*(m+2)/2
a l p h a l (i) = Z l - s (i) ;
alpha2(i)=Z2-t(i);
end
alphal=(l-alphal)';
alpha2=(l-alpha2)';

vO=zeros(n+l,l);
vl=v0;
vO(l)=l;

i = l : n + l ;
basis=(i-l)/n;

for 3=2:0.5*(m+l)*(m+2)
ttl = (a * (l - a l p h a l (j)) + b a s i s + (l - b) * (l - a l p h a 2 (j)) * (l - b a s i s)) ;
t t 2 = ((l - a l p h a l (j)) * b a s i s + (l-alpha2(j))*(1-basis))';
u (j , :) = (t t l . / (t t 2 0) ;

i f alpha!(j)==l;
u(j,n+l)=a;
end

i f alpha2(j)==l;
u (j , l) = l - b ;
end

end
u(l,:)=basis;
u=l+round(n*u);

for 1=1:0.5*(m+l)*(m+2)

APPENDIX A. MATLAB PROGRAMS 136

plot(basis,u(i,:))
hold on
end

while max(abs(vl-vO))>0.00001;
vO=vl;
for i=l:0.5*(m+l)*(m+2)
v(i,:)=C(i)+vO(u(i,:))'.*((l-alphal(i))*basis + (l-alpha2(i))*(l-basis));
end
[vv,l]=min(v);
vl=vv';

end
hold off
while max(abs(vl-vO))>0.00001;

vO=vl;
for i=l:0.5*(m+l)*(m+2)
v(i,:)=C(i)+vO(u(i,:))'.*((l-alphal(i))*basis + (l-alpha2(i))*Cl-basis));
end
[vv,l]=min(v);
vl=vv';

end
hold off

subplot(2,1,1),plot(basis,vl);
title('Optimal cost function')

subplot(2,1,2),plot(basis,alphal(l));
hold on
plo t (b a s i s , a l p h a 2 (l) , ' — r ') ;
axis([0 1 0 1]) ;
title('Overlook probabilities - solid = site 1, dashed = site 2')
for c=2:n+l
t e s t (c) = l (c) * (a b s (l (c) - l (c - l)) > 0) ;
end
t e s t (l) = l (l) ;
sparse(test)

APPENDIX A. MATLAB PROGRAMS 137

A. 4 replacement, m

This program approximately solves the machine replacement problem discussed in Chapter

5. It takes in parameter values and outputs two graphs

i A graph of the optimal cost function Va{p)

ii A graph of G{p) and D{p)

It also outputs the approximate value of P*.

clear
hold off
n=10000;
gamma=input('value of gamma (probability of good to bad) ? ') ;
c=input('cost per look ? ') ;
r=input('cost of defective item ? ') ;
alpha=input('discount factor ? ') ;
b=input('probability of bad item in bad state ? ') ;
a=input('probability of bad item in good state ? ') ;
vO=zeros(n+l,l);
vl=vO;
tl=vO;
t 2 = t l ;
vO(l)=l;
i = l : n + l ;

basis=(i-l)/n;
basiss=basis;

d=l+round(n*(b*basis + gamma*a*(l-basis))./(b*basis + a*(l-basis)));
g=l+round(n*((l-b)*basis + gamma*(l-a)*(1-basis))./((l-b)*basis + (l - a) * (l - b a s i s))) ;

i f b==l;
d(: ,l)=l+round(n*gainma);
end

i f a==0;
g(:,n+l)=n+l;
end

k=(basis*b + (l-basis)*a);

APPENDIX A. MATLAB PROGRAMS 138

while max(abs(vl-vO))>0.00001;
vO=vl;

vl=min((c*k(l+(n*basis)))' + (alpha * ((vO(g,:).*(l-((k(l+(n*basis)))')))+ vO(d,:). + ((k(l+(n*basis))))')),
r+c+(k(l+(n*basis)))' + alpha*vO(l+(n*gaMna),:));

end
end
look=(c*k(l+(n*basis)))' + (alpha* ((vO(g,:).*(!-((k(l+(n*basis)))')))+ vO(d,:).*((k(l+(n*basis))))'));
repl=r+c*(k(l+(n*basis))) ' + alpha*vO(l+(n*gaimna),:);
limit=r+c*a + alpha*vO(l+(n*gamma), :) ;
plot(basis,vl)
end
end
end
end
p=max(basis.*((abs(look-repl))==min(abs(look-repl)))')

Appendix B

Maple Calculations

B . l Boundary between Regions 1 and 3

First, we need to calculate the values of P I , P3 and P2.

Al:=-C2/(l -b) ;

Al :-
1-b

Bl:=Cl / (l -b)*(2-b-a*zl) / (l -z l) ;

_ C i (2 - 6 - a 2 i)
{ l - b) { l - z l)

A2:=C2/(l-a);

C2
A2 :=

1 - a

B2:=C2/(l-a)*(l-a+z2*(l-b))/(l-z2);

_ C2{l-a + z2{l-b))

{ l - a) { l - z 2)

P3:=(B2-B1)/(A1-A2);

C2{l-a + z2{l-b)) _ CI { 2 - b - a z l)
{ l - a) { l - z 2) { l - b) i l - z l)

_ _Cl_ _ C2
l - b l - a

139

APPENDIX B. MAPLE CALCULATIONS 140

simplify(P3);

(- 2 CI + C2 - C2 zl - C2b~ C2a+C2 z2+ 2C1 z2+ 2C1 a +Clb

+ C2bzl + C2azl + C2ab- C2 z2 zl -2C2 z2b+C2 z2 b^

-2C1 az2 - CI z2b- CI ab+ CI azl - CI a^zl - C2abzl

+ 2C2z2bzl - C2 z2 b^ zl + Cl abz2 - Cl azl z2

+ Cla^zl z2)/{{-Cl + Cla-C2 + C2b){-l + z l) { - l + z2))

Pl:=(2-zl*a-b-z2*(l-zl*(a+b-l))-C2/Cl*(l-b)*(l-zl))/(2-zl-z2-(a+b-l)*(l-zl*z2));

2 - a . i - 6 - . 5 (l - . i (a + 5 - l)) - ^ ^ i i 4 l ^ i ^
PI •= 2 i

2 - zl ~ z2 - {a + b - 1) (1 - z2 zl)

P2:=(a-z2*(2-b)+sqrt((a-z2*(2-b))2+4*z2*(l-z2)*(l-b)))/(2*(l-z2));

P^2 := (^a-z2{2-b) + ^Ja^ - 4a z2 + 2ab z2 + z2H^ + 4 z2 - 4 z2 b^ /

{2~2z2)

Now, we check that the contours along which P I = P2 and P3 = P2 are the same.

contourl:=solve(Pl=P2,b);

contour 1 := RootOf(3 C2 Cl a + Cl^ zl"^ z2'^ - 4 Cl C2 - Q Cl'^ a

+ 2Cl^a^ + C2^ -2 C2^ zl - C2^ z2 + C2^ zl^ + 4C1^

+ 7 Cl^az2 + 2C2^ z2 zl - C2^ zl^ z2 - 2 Cl^ z2 + 4 Cl C2 zl

-C2Cla^-2CPazl -2Cl^zlz2 + 3Cl^a^zl -Cl^a^ zl

+ 6 CP azl z2 -5 CP zl z2 - C2 zl^ Cla-4C2 zl^ Cl z2

+ bC2 zl^ Claz2- C2 zl^ Cl a^z2-2 C2 zl Cl a

+ C2 zl Cla^ -6 C2 zl Claz2 + Cl a^ C2 z2 zl

+ 4C1 C2z2zl + C2 Cl az2 + Cl^a^ zl z2-4Cl^az2'^ zl

APPENDIX B. MAPLE GALCULATIONS 141

+ 2Cl^a'z2^zl - Cl^az2^ + 3CPazl^z2-3CPa^zl^z2
+ Cl^a' zl^z2-3CPzl^z2^a + 3Cl^zl^z2^a^

- Cl^a'zl^z2^ + z2^Cl'-5z2Cl^ + 2z2^Cl^zl-z2Cl^zl^

+ {-Cl C2 z2 zl + C2 z2'^ zl^ Cl + CI C2 z2 - C2 z2^ Cl zl) .Z^

+ {C2Cla-2Cl C2- Cl^a+C2^-2C2^zl - C2^ z2 + C2^ zl^

+ CP+ Cl^az2 + 2C2^z2zl - C2^ zl^ z2 + 2C1 C2 zl

- ACl C2 z2 - CP zl z2 + Cl'^ azl z2 - 3 C2 zl^ Cl z2

+ C2 zP Cl az2 - C2 zl Cl a-2 C2 zl Cl az2 - C2 z2^ zl Cl a

+ 7C1 C2 z2 zl + C2Claz2 + C2 z2^ Cl zl - 2 C2 z2^ zl^ Cl

+ C2 z2^ zl^Cla- Cl^az2^ zl - z2 Cl^ + z2^ Cl^ zl

+ C2 z2^ C1).Z^ + (-4 C2Cla- Cl^ zl^ z2^ + 6C1 C2

+ 5Cl^a- Cl^a^ -2C2^+ iC2^ zl +2C2^ z2-2 C2^ zl^

-4C1^ -6Cl^az2 -4C2^z2zl +2C2^zl^z2 + Cl^ z2

-6C1 C2 zl +3C1 C2 z2 + C2 Cl + Cl^azl +2 Cl^ zl z2

- Cl^a^zl - i Cl^azl z2 + 2Cl^a^ zl z2 + C2 zP Cl a

+ 7C2zl^Cl z2-6C2zl^Claz2 + C2 zl^ Cl z2

+ 3C2 zl Cl a - C2 zl Cla^ + 8 C2 zl Claz2 - Cl C2 z2 zl

+ C2 z2^ zl Cla~ 10 Cl C2 z2zl -2 C2 Claz2+ C2 z2'^ zl"^ Cl

- C2z2^zl^ Cl a + 3Cl^az2^ zl - Cl^ z2^ zl + Cl^az2^

~2CPazl^z2 + Cl'a^zl^z2 + 2Cl^zl^z2^a- Cl^ zl^ z2^

- z2^ Cl^ + 5 z2 Cl^ - 2 z2^ CP zl + z2 CP zP - C2 z2^ Cl)-Z)

APPENDIX B. MAPLE CALCULATIONS 142

contour2:=solve(P3=P2,b);

contour2 := RootOf(3 C2 Cl a + CP zl^ z2^ - 4 Cl C2 - 6 CP a

+ 2Cl^a^ + C2^ - 2 C2^ zl - C2^ z2 + C2^ zl^ + 4C1^

+ 7Cl^az2 + 2 C2^ z2 zl - C2^ zl^ z2 - 2 Cl^ a^ z2 + 4Cl C2 zl

-C2Cla'^-2Cl^azl -2Cl^zlz2 + 3Cl^a^zl -Cl^a^ zl

+ 6Cl^azl z2 -5Cl^a^zl z2 - C2zl^ Cl a-4C2zl^ Cl z2

+ 5C2zl^Claz2-C2zl^ Cl z2 - 2 C2 zl Cl a

+ C2 zl Cla^-6 C2 zl Claz2 + Cl a^ C2 z2 zl

+ 4C1 C2 z2 zl + C2Claz2 + Cl^ zl z2 - 4 Cl^az2^ zl

+ 2Cl^a^ z2^ zl - Cl^az2^ + 3Cl^azl^z2-3Cl'^a^zl^z2

+ Cl^a' zl^z2-3Cl^zl^z2^a + 3Cl^zPz2^a''

- Cl^a'zl''z2^ + z2^Cl'-5z2Cl^ + 2z2^CPzl-z2Cl^zl^

+ {-Cl C2z2zl + C2 z2^ zl^ Cl + Cl C2 z2 - C2 z2^ Cl z l)

+ {C2 Cl a-2Cl C2 - Cl^a+C2^ -2C2^ zl - C2^ z2 + C2^ zl^

+ Cl^+CPaz2 + 2C2^z2zl - C2^ zl^z2 + 2Cl C2 zl

- 4C1 C2 z2 - Cl^ zl z2 + Cl^azl z2-3 C2 zl^ Cl z2

+ C2zl^ Claz2 - C2zl Cla-2 C2 zl Cl az2 - C2 z2^ zl Cl a

+ 7C1 C2 z2 zl + C2Claz2 + C2 z2'^ Cl zl - 2 C2 z2^ zl^ Cl

+ C2 z2'^ zl^ Cl a - Cl^a z2^ zl - z2 Cl^ + z2^ Cl^ zl

+ C2 z2^ C1)^Z^ + (-4 C2Cla- Cl^ zl^ z2^ + 6C1 C2

+ 5Cl^a- Cl^a^-2C2^+ 4C2^ zl +2C2^ z2-2 C2^ zl^

-4C1^ -6Cl^az2 -4C2^ z2zl + 2 C2^ zl^ z2 + Cl^ a^ z2

-6C1 C2zl +3C1 C2z2 + C2 Cl a^+Cl^azl +2CPzl z2

- Cl^a^zl - 4 Cl^azl z2 + 2 Cl^ a^ zl z2 + C2 zl^ Cl a

APPENDIX B. MAPLE CALCULATIONS 143

+ 7 C2zP Cl z2-&C2zP Claz2 + C2 zP Cl z2
+ 3C2zl Cla- C2 zl Cla^ + 8 C2 zl Claz2- Cl C2 z2 zl
+ C2 z2^ zl Cla- 10 Cl C2 z2zl -2 C2 Claz2 + C2 z2^ zP Cl
- C2z2^zP Cl a + 3CPaz2^ zl - CP z2^ zl + CPaz2^
-2CPazPz2 + CPa^zPz2 + 2CPzPz2'a- CP zP z2^
-z2^CP + bz2 CP -2z2^ CP zl + z2 CP zP - C2z2^ C1).Z)

contourl-contour2;

0

i.e., contours 1 and 2 are identically the same, so the boundary is that contour. What

this shows is that there are no regions for which we have not found the optimal policy.

Now we can calculate the contour equations for the simple case, by setting ai = and

C\ = C2

zl:=z2;

zl := z2

C1:=C2;

Cl := C2

contourl;

RootOf ((z2 + z2^)-Z^ + {az2 -2 z2^ + az2^ -6z2) .Z^

+ {-a'^z2^-2az2 + az2^ + 8z2-a^z2 + a).Z-3az2^

+ 3 0^ z2^ -2z2 + z2^ + - z2^ + ia^ z2 - 2az2 - z2 + 1

- 3 a)

APPENDIX B. MAPLE CALCULATIONS 144

B.2 Boundary between Regions 2 and 3

The calculations involved in this case are almost identical to those of section 1. It is worth

noting the reversal of a and b in the simple case.

First, we need to calculate the values of P2, P3 and Pi.

Al:=-Cl/(l-b);

Cl
Al :=

1 - 6

Bl :=Cl / (l -b)*(2-b-a*zl) / (l -z l) ;

Cl { 2 - b - a z l)
Bl

A2:=C2/(l-a);

{ l - b) { l - ~ z l)

C2
A2 := 1-a

B2:=C2/(l-a)*(l-a+z2*(l-b))/(l-z2);

_ C2il-a + z2{l-b))
i l - a) { l - z2)

P3:=(B2-B1)/(A1-A2);

C2{l-a + z2{l~b)) _ Cl { 2 - b - a z l)

no._ i l - a) { l - z 2) (i - b) { l - z l)
^ Cl C2

\ - b 1 - a

simplify(P3);

- (- 2 Cl z2- C2 + Cl a^ zl - Cl zl z2 + Clazl z2- Cl azl

- Cl abz2 + Cl ab+ Cl z2b + 2Cl az2 + C2 z2b^ zl

-2C2z2bzl + C2abzl +2C1 + C2a+C2b+C2zl

APPENDIX B. MAPLE CALCULATIONS 145

- C2 b zl - C2 z2 + 2 C2 z2 b + C2 z2 zl - 02 ab - C2azl

- C2 z2 - 2 CI a - CI b) /{{~C1 + 01 a - C2 + C2 b) (-1 + z l)

{ - l + z2))

P2:=((l-z2)*(l-b)+Cl/C2*(l-z2)*(l-a))/(2-zl-z2-(a+b-l)*(l-zl*z2));

(l - . .) (l - M H - " ' ^ - g " -)
P2 := • ^

2 ~ zl - z2 - {a + b - 1) {1 - z2 zl)

Pi:=(2-zl*a-b-sqrt((zl*a+b)2-4*zl*(a+b-l)))/(2*(l-zl));

P-1 := (2-azl - b - \lo? zP + 2abzl + b'^ -Aazl -Abzl +Azl^ /(

2 - 2 z l)

Now, we check that the contours along which P2=Pi and P3=P2 are the same.

contourl:=solve(P3=Pi,a);

contourl : = RootOf(4 01 z2 02 ~ 2 02^ z2 zl + 01^ z2^ + 4 02^

+ 2 02^ zl^z2 + 02^ z2^ zP + 4 01 z2 02 zl - A 01 z2^ 02 zl

- 2 0l'^z2~i02 0l - 5 02^zl + 01^+ 02^ zl^ - zl OP z2^

- zl 02^ z2^ + 2zl 01^z2 - z l Ol^ + {2 01 z2 02 - 02^ z2 zl

+ 01'^ z2'^ + 02'^ + 02'^ zl'^z2 + 7 01 z2 02 zl - 3 01 z2^ 02 zl

- 2 01^ z2 - 2 02 01 - 02^ zl + 01^ - zl 01^ z2^ + 2zl Cl^z2

- zl 01^ - 4 01 02 zl - 01 zl^z2 02b+ 01 zl^ z2^ 02 b

+ CI zl^z2 02 + 01 zl^ 02 - 2 01 zl^ z2^ 02 + 01 C2bzl

- 02^ zl^ z2b- 02 01 z2b+ 02Hzl + 02 01 b

-2 01 z2b02 zl + 01 z2^ b 02 zl + 02^ z2bzl - 02^ b)^Z^ + (

- 6 01 z2 02 + 2 02^ z2zl -2 01^ z2^ -402^-2 02^ zl^ z2

APPENDIX B. MAPLE CALCULATIONS 146

- C2^ z2^ zl^ -10 01 z2 C2zl +7 Cl z2'^ C2 zl + 4 01^ z2
+ 6C2 CI +5C2^ zl -2 01^ - C2^ zl^+ 2 zl Cl^ z2^

+ zl C2^ z2^ -4zl Cl^ z2 + 2zl CP + 3 Cl C2 zl

+ Cl zl^ z2 C2h- Cl zl'^z2^ C2b- Cl zl^ C2 + Cl zl^ z2^ C2

-2C1 C2bzl +2C2^z2^zlH- C2^ z2^ zlH^ + 3 C2^ zl^ z2 b

- C2^ zl^z2 b^ - Cl z2 b^ C2zl +3 C2 Cl z2b- C2 z2 b^ Cl

-6C2Hzl + C2^ zl^b+ C2^ zlb^-4C2Clb+ Cl C2 b^

+ 8C1 z2bC2 zl -6C1 z2^ b C2 zl - 4 C2^ z2bzl

- 2 C2^ z2^ bzl +2 C2^ z2 zl + C2^ z2^ b^ zl

+ Cl z2^ C2 b^ zl + Cl z2^ C2b + 5C2H- C2^ b^ + C2^ z2 b

- C2^z2b^).Z

+ {-Cl zl^ z2 C2 - Cl z2 C2 zl + Cl C2 zl + Cl zl^ z2^ C2) .Z^

+ Cl C2bzl ~3 C2^ z2^zl^b + 3 C2^ z2^ zlH^ - 4 C2^ zl^z2b

+ 2 C2^ zl^z2 b^ + Cl z2 b'^ C2 zl + C2'^ z2'^ b^ zl + C2'^ z2 b^ zl

-2C2 Cl z2b+ C2 z2 b^Cl +7 C2Hzl - C2^ z2 b^ - C2^ zl^b

- 2 C2^ zlb^ + 3C2Clb- Cl C2b^-6 Cl z2 b C2 zl

+ 5C1 z2^ bC2zl + 6 C2^ z2bzl +3 C2^ z2Hzl

- 5 C2^ z2 b'^zl - 3 C2^ z2^ b^ zl - Cl z2'^ C2 b^ zl - Cl z2'^ C2 b

-6C2^b + 2C2^b^ - 2 C2^ z2 b + 3 C2^ z2 b'^ - C2^ z2^ b^ zl^)

contour2:=solve(P2=Pi,a);

contour2 : = RootOf(4 Cl z2 C2 - 2 C2^ z2 zl + Cl^ z2^ + 4 C2^

+ 2 C2^ zl^z2 + C2^ z2^ zl^ + 4 Cl z2 C2 zl - 4 Cl z2^ C2 zl

-2CPz2-4C2Cl -bC2^zl + C1^ + C2^ zl^ - zl Cl^ z2^

APPENDIX B. MAPLE CALCULATIONS 147

- zl 02^ z2^ + 2zl OP z2 - zl 01^ + {2 01 z2 02 - 02^ z2 zl
+ 01^ z2^ + 02^ + 02^ zPz2 + 7 0l z2 02 zl - 3 01 z2^ 02 zl

- 2 01^ z2 - 2 02 01 - 02^ zl + 01^ - zl 01^ z2^ + 2zl Ol^z2

- zl 01^ -4 01 02 zl - 01 zPz2 02b+ 01 zl^ z2^ 02 b

+ 01 zl^z2 02 + 01 zl^ 02 - 2 01 zP z2'^ 02 + 01 C2bzl

- 02^ zl^ z2b- 02 01 z2b+ 02Hzl + 02 01 b

- 2 01 z2bC2 zl + 01 z2^ b 02 zl + 02^ z2bzl - 02^ b),Z^ + (

- 6 01 z2 02 + 2 02^ z2zl -2 01^ z2^ -402^-2 02^ zP z2

- 02^ z2^ zl^-10 01 z2 02zl +7 01 z2^ 02 zl + 4 01^ z2

+ 6 02 01 +5 02^ zl -2 01^ - 02^ zl^+ 2 zl 01^ z2^

+ zl 02'^ z2'^ - 4zl 01^ z2 + 2zl 01^ + 3 01 02 zl

+ 01 zl^ z2 C2b- 01 zl^z2^ 02 b- 01 zl^ 02 + 01 zl^ z2^ 02

-201 02bzl +2 02^ z2'' zlH - 02^ z2^ zlH^ + 3 02^ zl^ z2 b

- 02^ zl^z2 b^ - 01 z2 5̂ 02zl + 3 02 01 z2b- 02 z2 b^ 01

-6 02^bzl + 02^ zlH + 02^ zlb^-4 02 0lb+ 01 02 b^

+ 8 01 z2b02 zl -6 01 z2^ b 02 zl - 4 02^ z2bzl

- 2 02^ z2^ bzl +2 02^ z2 b^ zl + 02^ z2^ b^ zl

+ 01 z2^ 02 b^ zl + 01 z2^ 02b+ 5 02"^ b- 02^ b^ + 02^ z2 b

- 02^ z2 b^).Z

+ {-01 zl^ z2 02 - 01 z2 02 zl + 01 02 zl + 01 zl'^ z2'^ 02) .Z^

+ 01 02 bzl -3 02^ z2^ zl^b + 3 02^ z2^ zlH'^ - 4 02^ zl^z2b

+ 2 02'^ zl^z2 b^ + 01 z2 b^ 02 zl + 02'^ z2^ b^ zl + 02^ z2 b^ zl

-2 02 01 z2b+ 02 z2 b^Ol + 7 02Hzl - 02^ z2 b^ - 02^ zl^b

- 2 C2^ zlb^ + 3 02 Clb- 01 02 b^-6 01 z2 b 02 zl

APPENDIX B. MAPLE CALCULATIONS 148

+ 5C1 z2^ bC2zl + 6 C2^ z2bzl + 3 C2^ z2H zl

- 5 (72^ z2 9 z l - 3 C2^ z2'^ b^ zl - Cl z2'^ C2 9 zl - Cl z2'^ C2 b

-6C2H + 2C2H^-2 C2^ z2b + 3 C2^ z2 b^ - C2^ z2^ b^ zl^)

contourl-contour2;

0

Now, again we can calculate the contour equations for the simple case.

zl:=z2;

zl := z2

C1:=C2;

Cl •= C2

contourl;

RootOf((z2'^ + z2).Z^ + {-dz2-2 z2^ + z2b + z2^b).Z^

+ {8z2 -2z2b + z2^b- z2^b'^ -z2b'^ + b)^Z + 3z2^b'^ - 3 z2^ b

- z2^ b^ - z2 b^ - 2 z2 + 1 + b^ + z2^ - 3b - 2 z2 b + 4 z2 b"^)

Bibliography

1] Ahlswede, R. and Wegener, I. (1979) Search Problems, John Wiley, Chichester.

[2] Assaf, D. and Sharlin-Bilitzky, A. (1994) Dynamic Search for a Moving Target

J . Appl. Prob. 31 pp 438-457.

[3] Benkoski, S.J., Monticino, M.G. and Weisinger, J.R. (1991) A Survey of the Search

Theory Literature Nav. Res. Logistics 38, pp 469-494.

4] Gal, S. (1980) Search Games, Academic Press, San Francisco.

[5] MacPhee, I.M. and Jordan, B.P.(1995) Optimal Search for a Moving Target Proba

bility in Engineering and the Informational Sciences 9, pp 159-182.

6] Kan, Y . C . (1977) Optimal Search of a Moving Target Operations Research 25, pp

864-870.

[7] Koopman, B.O. (1980) Search and Screening : General Principles with Historical

Applications, Pergamon, New York.

[8] Nakai, T. (1973) A Model of Search for a Target Among Three Boxes: Some Special

Cases J. Oper. Res. Soc. of Japan 16, pp 151-162.

[9] Nakai, T. (1980) A Search Model for a Moving Target in which the Decision Wait

is Permitted Math. Japonica 25, pp 597-605.

149

BIBLIOGRAPHY 150

[10] Penrose, M.D. (1995) Personal Communication.

11] Pollock, S.M. (1970) A Simple Model of Search for a Moving Target Operat. Res.

18, pp 883-903.

[12] Ross, S.M. (1970) Applied Probability Models with Optimization Examples,

Holden-Day, San Francisco.

[13] Ross, S.M. (1983) Introduction to Stochastic Dynamic Programming, Academic

Press, New York.

14] Stone, L.D. {1975)Theory of Optimal Search, Academic Press, New York.

[15] Strauch, R. (1966) Negative Dynamic Programming Ann. Math. Statist. 37, pp

871-890.

[16] Thomas, L.C. and Eagle, J.N. (1995) Criteria and Approximate Methods for Path-

Constrained Moving-Target Search Problems Nav. Res. Logistics 42, pp 27-38.

[17] Washburn, A.R. (1983) Search for a Moving Target: The FAB Algorithm Operations

Research 31, pp 739-751.

[18] Weber, R.R. (1986) Optimal Search for a Randomly Moving Object, J. Appl. Prob.

23, pp 708-717.

[19] Weber, R.R. (1994) Personal Communication.

20] Whittle, P. (1984) Optimisation Over Time, Dynamic Programming and Stochas

tic Control, Volume II, John Wiley, Chichester.

