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Abstract 

The generation and propagation of harmonics in an atomic gas are described for 

the case of an incident Bessel-Gauss beam. Theoretical expressions are derived for 

the far-field amplitude of the harmonic field by solving the propagation equation 

using an elaborate integral formalism. We establish simple rules which determine 

the optimum Bessel-Gauss beam with respect to phase-matching as a function of 

the medium properties, such as the dispersion and the gas density. Target deple

tion due to photoionization and refractive index variations originating from both 

free electrons and dressed linear atomic susceptibilities are taken into account. The 

intensity-dependent complex atomic dipole moment is calculated using nonpertur-

bative methods. 

Numerical propagation calculations for hydrogen, xenon and argon are presented. 

For hydrogen we consider the third harmonic of a 355-nm, 15-ps pump beam up to 

3 X 10̂ ^ W/cm^ intensity, similarly for xenon, but at lower intensities. For argon 

we consider the 17*'̂  and 19^^ harmonic of a 810-nm, 30-fs pump beam around 10̂ ^ 

W/cm^ intensity. We compare conversion efficiencies and both spatial and temporal 

far-field profiles for an optimized Bessel-Gauss beam with respect to a Gaussian 

beam of same power and/or peak focal intensity. For the case of hydrogen, we 

investigate the effect of an ac-Stark-shift induced atomic resonance. We find all 

results in good agreement with our theoretical predictions. 

We conclude from our studies that Bessel-Gauss beams can perform better in terms 

of conversion efficiency than a comparable Gaussian beam. We find this to originate 

essentially from the more flexible phase-matching conditions for Bessel-Gauss beams. 

Bessel-Gauss beams also allow for spatial separation of the harmonic and the incident 

field in the far-field region, owing to the conical shape of their spatial far-field profile. 

Both features make Bessel-Gauss beams an attractive alternative to Gaussian beams 

in a limited but substantial number of experimental conditions. 

ui 
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Chapter 1 

About Harmonic Generation 

1.1 Introduction 

Harmonic generation in gases is by now a well established and continously expand

ing field of nonlinear optics. Its rapid development is spurred by the prospect of 

constructing table-top coherent X-ray sources based on this process, for applications 

in spectroscopy and biological imaging, and, of course, by its fascinating intrinsic 

physical interest. Though many aspects of the harmonic generation process are now 

well understood, conversion efficiencies, especially for higher-order harmonics, are 

still low. In this thesis we will therefore be mainly concerned with this particu

lar aspect about harmonic generation. More specifically, we shall investigate the 

possibility of increasing the conversion efficiency through better phase-matching by 

considering a different type of laser beam geometry, namely the Bessel-Gauss beam, 

and compare i t to the Gaussian beam which is traditionally used in harmonic gener

ation experiments. We will show the Bessel-Gauss beam to be of particular interest 

for harmonic generation processes in a negatively dispersive atomic gas. We will 

come back in more detail to the organization of the material in the present work at 

the very end of this chapter, after having exposed the basic physics and methods 

of harmonic generation. The following sections are also meant to clarify how the 

work presented in this thesis is embedded in past, current and future research about 

generation of harmonic radiation (in gases) through nonlinear optical processes. 

1 
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1.2 The basics of harmonic generation 
1.2.1 The perturbative regime 

Roughly speaking, to generate harmonics, all that is needed is a photon field in

teracting nonlinearily, i.e. with sufficient intensity for multiphotonic processes to 

happen, with some matter system coupling to the electromagnetic force. This sys

tem then absorbs simultaneously an integer number A'' of photons out of the incident 

photon field and, as one of all possible energy-conserving processes, emits a single 

photon carrying the total energy of the incident photons. Accordingly, this emit

ted photon is called the N-th harmonic. Not surprisingly, owing to the generality 

of the mechanism outlined above, nearly all matter systems can in principle emit 

harmonic photons or, macroscopically speaking, harmonic radiation. The simplest 

system, perhaps, is a free electron. Interestingly enough, it is even more straight

forward to compute the harmonic spectrum using the relativistic wave equations, 

because i t is possible to find, in this particular case, exact wavefunctions for the 

electron in the photon field without having to restrict to the dipole approximation^ 

as appears to be necessary in the nonrelativistic case. Detailed calculations have 

been performed in the relativistic case, both classically [198,199, 221] and using 

quantum field theory [34,41]. However, harmonic generation by free electrons is 

very inefficient and the first experimental observation of the second harmonic from 

free electrons dates from 1983 [74]. This is more than twenty years after the very 

first observation of second harmonic generation by Franken et al. in 1961 [80], who 

irradiated a crystal with one of the first laser beams available. Indeed, for efficient 

harmonic generation to happen, it is customary to use targets such as gases and 

solids, consisting of bound electrons which have to be promoted to an excited state 

or to the continuum by absorbing several photons^. The corresponding polarizabil-

ity of the bound system is then, in general, a measure of how efficiently harmonics 

^The well known dipole approximation exp(iA; • r ) w 1 neglects the momentum of the photon 
and is valid as long as the wavelength is long compared to the dimensions of the matter system. 
This is no constraint in practical applications where atomic and molecular systems are irradiated 
by infrared, optical or even ultraviolet frequencies. 

^Other states of matter have also been considered, such as plasmas in Ref. [60,126] and atomic 
clusters in Ref. [219,220]. For hquids, see, e.g., Ref. [191]. 
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can be generated in this way. Low-order harmonic generation at moderate intensi
ties has quickly become a standard textbook subject and good introductions to this 
field can be found in Boyd [33], Butcher and Cotter [40], Mills [141], Reintjes [191], 
Shen [203], Hanna, Yuratich and Cotter [92] and Delone and Krainov [64]. The 
emission of a given harmonic in this regime is successfully described by leading-
order perturbation theory, with the immediate consequence, that the probability of 
generating a harmonic decreases with the order of the process, A'̂ . Systems with 
inversion symmetry, such as atoms in their ground states, some molecules (e.g., di
atomic ones) and certain crystal classes, emit dominantly odd harmonics while all 
others systems may in principle radiate both odd and even harmonic orders. We will 
give a simple explanation of the first assertion by recalling that the wavefunction of 
a system with inversion symmetry can be taken a parity eigenstate. The interac
tion term in the dipole approximation and length gauge of the active electron with 
(odd-parity) position operator x with a light field of amplitude E is well known to 
be proportional to E --x.. Following the 'prescription' of harmonic generation given 
above, we have to consider the following amplitude, written for the sake of clarity 
as 

(0 |x | /Ar)(JA. |x | / ;V+l ) . . . ( /2 |x | / l ) ( / l |x | 0 ) , ( l . l ) 
II,—,IN 

where the sum over the intermediary states / j has to be taken and |0) is the initial 

state. Starting from the right in Eq. (1.1), the amplitudes will not vanish only if the 

two states involved are of opposite parity. But then, if A'' is even, \IN) and |0) have 

the same parity and the first amplitude in Eq. (1.1) vanishes. Clearly this result 

needs not to hold for higher-order transitions, e.g., electric-quadrupole transitions, 

but those contributions, if any, are much smaller. Even harmonic orders can be 

observed in atomic vapors, if the symmetry is broken by additional fields. Kim et 

al. [ I l l ] observed second harmonic generation in a potassium vapor and could show 

the ionization-induced space charge creating a dc-field within the medium to be at 

the origin of this effect. Even-order harmonics could in principle also be observed 

due to the presence of free electrons or through sum- or difference-frequency mixing 

processes of the fundamental with the odd-order harmonics, but the latter processes 

are, in general, forbidden to the same extent than direct even-order harmonic gen-
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eration. In the following we shall however concentrate on harmonic generation in 
rare gases by a single incident laser beam, and only odd-order harmonics will con
sidered. In the perturbative regime, the harmonic spectrum thus consists in general 
of a series of more or less rapidly decreasing peaks located at odd multiples of the 
laser frequency. 

1.2.2 The nonperturbative regime 

A new era in the field of harmonic generation opened when, with increasing intensity 

on target, the breakdown of perturbation theory was revealed^. The first experiment 

to show a modification in the harmonic spectra was carried out by Ferray et al. 

in 1988 [78]. In contrast to most of the previous works (see references in [78]), 

these authors used a fundamental of long wavelength, namely 1064-nm radiation 

from a Nd:YAG laser, which they focused into various rare gases (argon, krypton 

and xenon). The main features they noticed have now become the 'trademark' of 

the nonperturbative regime: The harmonic spectrum typically begins with a rapid 

decrease for the first few harmonics, followed by an extended plateau, where the 

harmonics are generated roughly at equal strength, the plateau ending more or less 

abruptly after some harmonic order is reached (cut-off). As we shall see later it 

was essentially passing to longer wavelengths (for a given intensity) which made it 

possible to enter the new regime of harmonic generation. 

In such an experiment, harmonic radiation from a large number of emitters is 

recorded. Thus, the first question to be elucidated was whether the particular form 

of the harmonic spectrum was already determined by the response of every single 

atom in the laser field (the single-atom response), or whether the propagation of 

the harmonics in the nonlinear medium in which they were generated would affect 

the shape of the spectrum. Soon after the experiment of Ref. [78], Kulander and 

Shore [115] performed numerical calculations, showing that the harmonic spectra 

observed by Ferray et al. could be essentially traced back to the single-atom re-

^In fact, this had already been realized earlier for a related process, namely above threshold 
ionization (ATI), see Ref. [151] for a review. 
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spouse, provided the calculation was done nonperturbatively. For this, they solved 
the 3D-time-dependent Schrodinger equation (TDSE) for a model xenon atom, us
ing otherwise the same parameters (intensity and wavelength of the fundamental) 
as in Ref. [78]. About the same time, similar results were found for calculations 
in atomic hydrogen by Potvliege and Shakeshaft [175], who solved the Schrodinger 
equation using the Floquet method (see chapter 2). A typical calculation is shown 
in Fig. 1.1, which nicely shows the formation of a plateau, followed by a pronounced 
cut-off', as the intensity increases. 

The state of the field of harmonic generation in rare gases around 1990 was reviewed 

in detail by L'Huillier et al. in Refs. [129,130], leaving still open the question of the 

origin of the shape of the harmonic spectrum. In the early 1990's, Krause et al. [113], 

after extensive numerical simulations, suggested an universal law that determines 

the position (that is, the harmonic order Wmax) of the cut-off, namely^ 

Here, Ip is the ionization potential of the atomic species considered, to the laser (an

gular) frequency and Up the ponderomotive energy. The latter is the time-averaged 

kinetic energy of an electron freely oscillating in a (linearily polarized) laser field, 

[/p(a.u.) = E'jAiv\ (1.3) 

Up (eV) = 9.33 X IQ-^" /^[W/cm^] [nm] (1.4) 

where Eo is the electric field amplitude and h is the intensity of the laser field^. 

From Eq. (1.2) is apparent that the width of the plateau can be infiuenced in various 

ways. The width increases for increasing laser intensity and increasing wavelength, 

as Up/u) oc X^. A larger ionization potential Ip is also helpful^ though the efficiency of 

harmonic generation starts to suffer from a lower atomic polarizability. On the other 

hand, Ip determines the saturation intensity Is, that is essentially the maximum 

value of II for which harmonic generation can be obtained before the atom is ionized. 

Obviously, the higher Ip the higher Is and consequently the higher the value of Up 

^The unit systems used throughout this thesis are the international system of units (SI) and 
atomic units (a.u.). If the latter are used, this will be clearly stated. 

®The expression for Up will be derived in Chapter 2. 
^HeHum has the highest available ionization potential, Ip = 24.59 eV. 
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Figure 1.1: Harmonic generation rates for atomic hydrogen for various intensities 
versus the harmonic order N [172]. The rates are normalized to the value for N = 3. 
The wavelength is A = 1064 nm. Only odd harmonics are produced due to the par
ity selection rules. The 9*'* and l l * ' ^ harmonics are often singled out when consider
ing 1064-nm radiation in hydrogen, as the energy of the 9*'̂  harmonic corresponds 
roughly to the (field-free) ls-2p transition, while for the 11*'' harmonic a strong 
inffuence of the Rydberg series is to be expected. 
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that can be effectively used^. A comparative study highlighting these various aspects 
has been carried out for several atomic and molecular gases* by Lynga et al. [127]. In 
the case Ip^ Up, Chin and Golovinski [46], using theoretical arguments, suggested 
the harmonic yields Fi and Y2 of two atomic or molecular systems with respective 
static polarizabilities cti and a2 to be related by 

Y2/Y^^{a2/a,f, (1.5) 

where A'' is the harmonic order. They found this prediction to agree well with 

experimental data. 

More generally, Ip and Up can be used to distinguish the two regimes mentioned 

above, where two different physical pictures have to be invoked to explain the har

monic generation process. The relevant parameter, 

has, in fact, been introduced a long time ago by Keldysh [110] to distinguish mul-

tiphoton ionization (MPI, 7 1) and tunnel ionization (TI, 7 <^ 1) in atomic 

systems. In the former case, the initially bound electron is promoted into the con

tinuum through absorbtion of several photons while in the latter case, typically for 

high intensities and low frequencies, the Coulomb wall is periodically tilted and 

lowered, allowing the electron to tunnel out every half-cycle through the oscillating 

barrier. An extreme case is reached when the barrier is suppressed at very high 

intensities. The electronic wavepacket can then simply flow over the barrier into the 

continuum [11]. This regime has subsequently become known as over-the-barrier 

ionization (OBI). It is worth noting that harmonic generation is again suppressed in 

this regime, therefore setting an upper limit on the efficiency of the tunneling mech

anism [148]. At such high intensities, solid targets appear to be a more interesting 

source of high-order harmonics than rare gases (see, e.g., Ref. [93] and references 

therein). 

'''That is, the maximum value of Up that enters the determination of A^max in Eq. (1.2) is roughly 
given by I = Is though II might be nominally higher. 

^Organic molecules (butane and butadiene) have been used as targets in harmonic generation 
experiments by Eraser et al. [81]. 



CHAPTER 1. ABOUT HARMONIC GENERATION 8 

With the help of the T I mechanism, the factor of 3.2 appearing in Eq. (1.2) was 
explained in a simple way by Kulander et al. [117] and Corkum [54] using classical 
dynamics. According to their two-step model, the electron appears in the continuum 
with zero velocity close to the nucleus, is accelerated in the laser-field and, provided 
the electron returns to the nucleus, emits a harmonic photon when falling back 
into the ground state. The maximum photon energy obtained in this way is thus 
Nm&J^ = Ip + Tinax5 where Tmax is the maximum kinetic energy acquired by the 
electron in the continuum. We give a brief account, on how T^ax can be easily 
computed. For linear polarization, one can restrict to ID, having to solve 

x{t) = -Eo cos{ujt + (j)) (in a.u.), (1.7) 

subject to the initial conditions i;(0) = 0 and 2;(0) = 0. (/> is the phase at i = 0 of 

the laser field of amplitude EQ. The solution of Eq. (1.7) is 

x{t) = {EQ/UJ^) [cos{u)t + 4>) - cos ^-I-a;t sin (?!>]. (1.8) 

Computing the kinetic energy, we arrive at the following expression, 

T = 8 cos^{u/2 + ( f ) sm^{u/2), (1.9) 

in units of C/p, where u = u)t. We have to find the maximum of T, subject to the 

constraint a; = 0 (the electron must be back at the nuclear position), which can be 

written as 

2 sin(w/2) sin((/) + M/2 ) = U sin </>. (1.10) 

Searching for «((/>) satisfying Eq. (1.10) for 4> e [0, TT] and inserting the solution into 

Eq. (1.9) leads to the graph shown in Fig. 1.2. Clearly, a distinct maximum appears 

around ^ « 18°, with T^ax ~ 3.17(f/p), thus corroborating the famous cut-off rule 

Eq. (1.2). 

Using classical arguments it is also easy to understand why the harmonic yield de

creases with increasing ellipticity of the laser field polarization, as was confirmed 

by Budil et al. [35]. Indeed, imparting some angular momentum to the electron 

deviates its trajectory, thereby reducing the probability of rescattering with the nu

cleus. Quantum-mechanically, taking for simplicity the case of circular polarization 
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S 1.6 

0.6 0.8 
(|) (rad.) 

Figure 1.2: Kinetic energy T gained by an electron released into the continuum at t = 0 
at the origin with zero velocity and returning to the origin after one return time, plotted 
versus the phase of the field at t = 0. 

in the multiphoton ionization regime, the dipole selection rules require the magnetic 

quantum number \m\ to be increased by one unit for each photon absorbed, thus 

making it impossible for the electron to fall back into the ground state by emitting 

just one photon in the dipole approximation ( |Am| < 1). The detailed dependence 

of harmonic generation on ellipticity is very complicated, though. Burnett et al. [39 

found the dependence of the harmonic yield on the ellipticity of the incident beam 

to be markedly different for harmonic energies below and above the ionization po

tential (in neon). Weihe et al. [230] measured the ellipticity of harmonics generated 

by intense laser pulses and found the axis of polarization rotated with respect to 

the axis of the elliptically polarized fundamental. They did not find any pressure 

dependence for this effect and concluded the single atom response to be the origin 

of the offset angle. This was confirmed by Mese and Potvliege [137] who carried out 

numerical simulations in atomic hydrogen to determine both the offset angle and 

change in ellipticity for various harmonics with respect to the fundamental. The 

dependence of the harmonic yield on the ellipticity can be used to control harmonic 

generation spatially with the use of birefringent optics. Mercer et al. [135] found 
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in this way, that the harmonics dominantly created in regions of linear polarization 
lead to annular harmonic beams whose angle of divergence could be continously 
varied. 

Many suggestions have been made on how to extend the plateau beyond the predic

tion Eq. (1.2). They include the application of an ultrastrong magnetic field such 

as to confine the electronic wavepacket, enhancing the probability of the electron 

returning to the nucleus^ [21,235], and the double plateau predicted by Watson et 

al. [229], which arises when the atom is prepared initially in a superposition of states. 

Two plateaus can also appear when using the molecular ion as target as shown 

by Zuo et al. [236], owing to the additional degrees of freedom in a molecule (vibra

tional states)^". Another suggestion was put forward by Moreno et al. [149,150]. It 

is based on the observation from Eq. (1.9) that the maximum energy gained by the 

electron in the tunneling regime would be 8Up (e.g., for M = TT and (f) = ir/2) and not 

3.2Up, if the electron were not restricted to rescatter with the nucleus. The authors 

thus argued that in a partially ionized medium, dense enough for neighbouring ions 

to be close enough to the ionizing atom [within a few times the electron's quiver 

amplitude, see Eq. (4.36)], the electron could be captured by one of the surrounding 

ions and emit harmonics of higher orders than predicted by Eq. (1.2). 

Soon after the quasi-classical explanation of the cut-off law Eq. (1.2), a quantum-

mechanical version of the two-step model was implemented by Lewenstein et al. 

132], validating the results from the corresponding classical model. Systematic ex

perimental studies in the tunneling regime, such as the one carried out by Miyazaki 

and Takada [147], confirmed the basic understanding of the mechanisms underlying 

the (high-order) harmonic generation process. I t is worth pointing out yet another 

simple physical picture describing the harmonic generation process in which the 

(time) periodic scattering of the electron with the atomic core is responsible for 

harmonic generation: a single encounter generates a broad bremsstrahlung spec-

^It should be stressed that the magnetic induction required is about B ~ 10̂  -10'* T compared 
to typically 10-15 T achievable with standard laboratory equipment. 

^''Because the molecular ion is the simplest one-electron system beyond hydrogen-like atoms, 
harmonic generation has been extensively investigated in this system (see, e.g., Ref. [170] and 
references therein). 
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trum which evolves into a typical harmonic spectrum after a sufl&cient number of 
rescattering processes [186]. 

1.2.3 Recent developments 

Nowadays, attention has focused on the control of (high-order) harmonic genera

tion in view of possible application as a new source of light (see section 1.5). For 

this, the coherence properties are, besides the overall conversion efficiency, the most 

important aspects to study. Ditmire et al. [65] performed the first measurement 

of the spatial coherence of high-order harmonics, carrying out a Young's two-slit 

type experiment. They found a good fringe visibility and concluded that the spatial 

coherence of the harmonics was significantly better than the one of similar radia

tion emitted by current soft X-ray lasers. A diff'erent but related experiment was 

reported by Zerne et al. [233]. The authors made two beams of harmonic radiation 

from independent sources to interfere by splitting the incoming fundamental beam 

and focusing the two parallel beams in the same gas jet but at different locations. 

The good fringe visibility of the interference pattern led to the conclusion that the 

two harmonic beams were locked in phase, despite the strong intensity-dependence 

of the phases in the generation process (see section 1.4.1). The coherence properties 

of high-order harmonics have been extensively reviewed by Salieres et al. [201 . 

Most of the investigations carried out over the past few years have in common a con-

tinous trend towards the use of ultrashort pulses, down to a few cycles per pulse [108 . 

Indeed, because the shorter the pulse duration the higher is the saturation intensity. 

As a consequence the atoms can experience a high effective ponderomotive potential 

Up before ionizing thereby allowing for the generation of very high harmonic orders. 

This was confirmed for very short pulses (< 100 fs), where harmonic orders higher 

than those .predicted by the cut-oflf law were observed by Zhou et al. [234] using 25 fs 

laser pulses. Comparative studies for different pulselengths in the range 25-200 fs by 

the same authors [48] showed an increase of the maximum harmonic order by about 

twenty in argon when decreasing the pulselengths from 100 fs down to 25 fs, keep

ing the peak intensity constant. Additionally, part of the enhancements reported 
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in [48,234] could be attributed to the significant change of the laser intensity during 
an optical cycle of the laser field the electron returning to the nucleus experiences, 
a feature which is also not taken into account when deriving Eq. (1.2). These two 
effects, which do depend explicitly on the short pulse duration, are therefore usually 
called nonadiabatic. 

Ultrashort pulses made i t possible to observe the highest harmonic orders up to date. 

Using a Ti:sapphire laser system (780 nm), Spielmann et al. [212] reached down to 

less than 4.4 nm harmonic wavelength in helium. Similar results for the same gas 

were obtained by Chang et al. [45], who, using the same laser system at 800 nm, 

observed harmonic radiation down to 2.7 nm. While the harmonics were discernible 

as peaks up to order 221, an X-ray continuum was observed above this order. The 

continuum extended to a maximum photon energy of 460 eV corresponding to a 

maximum order of 297. Neon, with the second highest ionization potential after 

helium, was also used in this experiment with similar results. 

A related topic is the possibility of generating ultrashort, attosecond harmonic 

pulses. This is in analogy to the mode-locking of a laser where various modes ampli

fied by the oscillator are forced to have a fixed phase-relationship, creating a series 

of pulses with well defined pulselength and pulse separation (see, e.g., Ref. [205]). 

The feasability of harmonic attosecond pulses has been predicted by Antoine et 

al. [6]. Though the harmonics are not phase-locked in the single-atom response, 

propagation effects were shown to be able to provide the necessary mode-locking. 

One way of selecting a single attosecond pulse out of a train of pulses makes use 

of a time-dependent degree of ellipticity (recall that increasing ellipticity strongly 

suppresses harmonic generation). Many authors have pointed out this as the route 

to follow [7,101]. I t is worth mentioning, that the generation and detection of such 

short X-ray pulses poses numerous technical problems, including the lack of suitable 

optical materials, but also require new measurement methods for the duration of 

these pulses [53,84 . 

Another possibility of generating very high harmonics is the use of a short funda

mental wavelength as less harmonic orders are needed to reach high energies. The 
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disadvantage of ionizing more rapidly the medium can sometimes be compensated 
by the onset of harmonic generation from ions [227]. Preston et al. [184] reported 
wavelengths down to 6.7 nm using a 248.6 nm KrF laser focused into a helium gas 
jet, corresponding to the 37*'̂  harmonic of the fundamental wavelength. They could 
identify the He+-ion to be responsible for the highest harmonics generated. This 
was also found by Krause et al. [113] in numerical simulations, who could show the 
He^-ion to be the source of an extended plateau. Again, this is due to a higher 
saturation intensity of the ion with respect to the corresponding neutral atom, thus 
allowing very high intensities to be used in experiments (up to 4 x 10̂ ^ W/cm^ in 
Ref. [184]). 

The tunability of harmonics by tuning the fundamental wavelength itself has rarely 

been studied, and if so, then seemingly only in connection with atomic resonances. 

Mittleman et al. [145] showed the wavelength of the harmonic radiation to follow 

smoothly the corresponding variations of the fundamental in N2 (at constant gas 

pressure and pulse energy) while dramatic changes were observed in xenon due to 

resonances close to the 7*̂* harmonic under investigation. Peet [164] has studied 

resonantly enhanced multiphoton ionization close to the 6s resonance of xenon by 

an internally created third harmonic field over a range of wavelengths spanning the 

width of the resonance (see chapter 3 for more details). 

An even wider range of effects can be studied when the atomic gas is interacting 

with two (or more, see Ref. [224]) laser modes. In most cases, two modes have been 

considered, in particular a coherent superposition of the fundamental with one of its 

harmonics. This case offers the possibility of coherence control of harmonic genera

tion through the variation of the relative phase between the two fields. This idea is 

based on the simple quantum-mechanical fact that two different paths leading to a 

given final have to be added up in terms of amplitudes and may thus interfere. This 

has been investigated theoretically by Potvliege and Smith [178,179] for hydrogen. 

They found that sometimes even a weak harmonic could significantly affect the ion

ization rate. The impact is equally significant on harmonic generation, as calculated 

both by Telnov et al. [216] for hydrogen and by Mese [136] for a Yukawa potential 
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using the same theoretical approach^^ Mese and Potvliege [138] have also computed 
the same processes for two incommensurate frequencies^^ and found little influence 
of the added weak field on the harmonic yield. Milosevic and Piraux [143] have gen
eralized the quantum-mechanical two-step model of harmonic generation introduced 
previously to bichromatic fields. In the region of parameters investigated, they pre
dicted a strongly enhanced harmonic yield and a lower cut-oflf than compared to the 
monochromatic case. Bichromatic fields of perpendicular polarization can also be 
used to obtain the time-dependent elliptical polarization used to generate ultrashort 
pulses as described above [8 . 

Instead of a second ac-field, the effect of additional dc-fields can be studied. Bao and 

Starace [22] investigated the effects of a static electric field on harmonic generation 

in atomic systems, H~ in particular. The strong static field (10^ V/m) severely 

breaks the initial inversion symmetry of the unperturbed atom and the harmonic 

spectrum peaks at both odd and even harmonic frequencies of comparable strength. 

The authors also found the odd harmonics in the plateau to be strongly enhanced 

in the presence of the static field. The latter result is somewhat contested by more 

recent calculations by Mese and Potvliege [139] and work towards the resolution of 

this question is in progress [140]. The inclusion of a static magnetic field occurs 

usually in connection with calculations in the relativistic domain (typically reached 

for intensities above 10̂ ^ W/cm^ ), where the magnetic field component of the laser 

field also comes into play [52,109]. While most of the earlier studies have been 

carried out using classical methods, the use of relativistic wave equations is a new 

trend in strong laser-atom interaction physics, though still limited to ID or 2D 

calculations (see, e.g., Ref. [119,190]). The quantum-mechanical approach is also 

necessary if spin dynamics are to be taken into account. 

Despite all these spectacular advances, the conversion efficiency in a typical short 

pulse (< 1 ps) higher harmonic generation experiment remains generally low. Dit

mire et al. [66] reported conversion efficiencies of up to 10"'' in helium in the spectral 

range 31.0-17.0 nm (corresponding to the 17*'* -3P' harmonics of 526.4-nm radia-

"The Sturmian-Floquet approach introduced in chapter 2. 
^^That is, the ratio of the two frequencies is not expressible as a (simple) rational number. 
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tion), while Preston et al. [185] measured conversion efficiencies of up to 5 x 10~^ in 
helium and neon in the spectral range 35.5-19.1 nm (corresponding to the 7"* -13*'̂  
harmonic of 248.6-nm radiation). Recently, attention has thus also turned to the 
generation of short pulses of low-order harmonics [12] and a conversion efficiency of 
up to 0.1 % into the third harmonic of 800-nm radiation in air and argon has been 
reported by Peatross et al. [163]. 

1.3 Single-atom response 

1.3.1 Theoretical approaches 

The need of having to treat the electron dynamics nonperturbatively in order to 

account satisfactorily for the harmonic spectra in the tunneling regime has led to 

the development of various techniques. The most straightforward approach is the 

numerical solution of the time-dependent Schrodinger equation (TDSE), or more 

generally, of the time-dependent Hartree-Fock equation (TDHF) for complex atoms. 

Kulander et al. [116] have approached this problem by replacing the nonlocal term 

in the TDHF by a suitable local potential, reducing the calculations to the evalua

tion of single-electron orbitals. Erhard and Gross [76] used time-dependent density 

functional theory to yield a local approximation for the exchange term. Taylor et 

al. [215] attempted to solve the TDHF without approximations for helium using 

massively-parallel supercomputers. Lappas et al. [120], using a ID model of he

lium, investigated the role of electronic correlation. They found no major difference 

between the fully correlated calculation and the single-active electron approach for 

harmonic generation. In the limiting case of a purely harmonic time-dependence 

(that is, neglecting the temporal envelope of the laser pulse), the Floquet method is 

another exact approach, allowing the time-dependent equations to be rewritten as 

an infinite system of coupled time-independent equations. This approach has been 

coupled with the R-matrix theory for describing complex atoms in intense electro

magnetic fields and has become known as R-matrix-Floquet theory. We will turn 

to the Floquet method in some more detail in chapter 2. For completeness we men-
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tion that a nonrelativistic QED version of harmonic generation in a n-level atom 
based on the Floquet method has been developed by Compagno et al. [51]. They 
related the harmonic spectrum to the hyper-Raman spectrum and suggested that 
the plateau observed in the harmonic spectrum could be due to the interference of 
both spectra. 

Semi-analytical models suffer from the lack of an analytical expression for the wave-

function of an electron in the combined potentials of the binding system and the 

light field. Though efforts have been made towards finding approximative analytical 

solutions to this problem [71,192], they are not of much help in actual calculations. 

The Lewenstein model, introduced in Ref. [132] and developed in Refs. [5,123], 

makes the following assumptions: The laser parameters are chosen such as to be in 

the tunneling regime. It is then possible to restrict essentially the atom to a single 

bound state (the ground state) which is coupled to the continuum when a strong 

external field is applied. Neglecting thus excited atomic states but also (possible) 

electronic correlation and the long-range part of the atomic binding potential, the 

Schrodinger equation becomes amenable to semi-analytical treatment, the integrals 

over the electronic momenta being evaluated using the saddle-point method (see, 

e.g., Ref. [29]). The saddle-points are derived from the requirement of the stationar-

ity of the classical action of the electron oscillating in the external field (neglecting 

the binding potential in this step). To this respect, the approach is thus also to 

some extent semi-classical, the quantum aspect being essentially determined by the 

number of saddle-points taken into account, to account for the interference of the 

different possible trajectories of the electron. Another semi-analytical model is that 

developed by Becker et al. [24-26], who used a delta-type potential to model short-

range potentials. Because of their similar assumptions and range of validity, both 

models can be shown to have common theoretical roots [27 . 

Of course, a myriad other attempts such as, e.g., purely classical methods or one-

dimensional models (see, e.g., Ref. [193]) exist and they have proven to yield useful 

insight into the physics of harmonic generation. But for all the useful information 

that has been drawn from them, one ultimately has to use one of the more sophisti

cated approaches outlined above for a realistic modelling of all aspects of harmonic 
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generation and for providing sufficiently accurate atomic data that can be used as an 
input for further calculations, e.g., the propagation of harmonic radiation through 
various media. We shall thus be content with mentioning a recent modelling of 
harmonic generation by a degenerate two-level system by Burlon et al. [37], who 
were able to give simple analytical formulas for the onset of the plateau, its width 
and the position of the cut-off of the harmonic spectrum, within the limits of this 
simplified atomic model. Balcou et al. [18]. used a confining anharmonic potential 
('Duffing' oscillator) to investigate both classically and quantum-mechanically high 
harmonic generation. I t emerges from those studies, that the formation of a plateau 
ending with a sharp cut-off is a quite general feature of any strongly driven nonlinear 
system. 

1.3.2 The harmonic spectrum 

The harmonic spectra are usually calculated semi-classically in the sense that the 

classical value for the dipole acceleration is replaced by its quantum-mechanical 

expectation value. Starting from the quantized radiation field, Sundaram and 

Milonni [213] (see also the Appendix of Ref. [27]) were able to show the validity 

of the semi-classical approach provided interatomic correlations could be neglected. 

Moreover, quantum fluctuations are also neglected in this way and only the mean 

dipole is taken into account [82]. The harmonic spectrum is thus essentially given 

by the Fourier transform (FT) of the single-atom dipole acceleration 

5 ( 0 ) o c F T | | ^ ( V ' ( x , t ) | x | ^ ( x , t ) ) p | . (1.11) 

This expression reduces in the Floquet limit of a purely harmonic time-dependence 

(or whenever contributions from the laser field envelope can be neglected) to 

5(f2) a f i ^ F T { | ( ^ ( x , t ) | x | V ' ( x , i ) ) p } , (1.12) 

where the Fourier transform consists of a sum of delta functions 6{fl- Nco) at (odd) 

multiples of the laser frequency u. To evaluate the dipole acceleration it is possible 

to apply Ehrenfest's theorem to the Hamiltonian of the atomic system, written here 
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in the velocity gauge as 

and describing an optically active electron in a local, space-dependent binding po

tential 14t(x) subjected to a laser field (in dipole approximation) and to evaluate 

the dipole acceleration as 

(P , . • Id 
dt^ 

(x) = - - ^ f ( p ) + - A ) . (1.14) 
mdt\ c J 

This has been done in Ref. [42] within the framework of the Lewenstein model 

of Refs. [123,132]. It was found in Ref. [42] that most integrals could be solved 

analytically without the saddle-point method, by a suitable analytical fit of the 

ground-state momentum distribution to simple transcendental functions. Eq. (1.14) 

is not the only way to calculate the dipole acceleration using the Ehrenfest theorem. 

The dipole acceleration can also be written as 

This form has been introduced in calculations by Burnett et al. [38]. It is particularly 

advantageous in numerical calculations as the wave function needs to be accurately 

known only close to the nucleus, where the electron experiences the strongest force 

due to the binding potential. In contrast, the length form Eq. (1.11) requires a good 

knowledge of the wavefunction even far from the nucleus and additionally requires 

a double numerical differentiation with respect to time. 

Besides harmonic spectra, recent interest has focused on time profiles, which can 

be obtained through analysis of the dipole acceleration [9]. Time profiles from the 

two-step model predictions and from the numerical solution of the TDSE have been 

compared by Faria et al. [77] and found to be generally in good (qualitative) agree

ment. For short pulses, the increasingly nonadiabatic regime leads to the observation 

of pulse-shape effects: Watson et al. [227] found the harmonics to be increasingly 

blueshifted when the peak laser intensity was increased. As already pointed out be

fore, the nonadiabatic effects originate in the intensity variations seen by an electron 

returning to the nucleus. This was subsequently confirmed by the same authors in 

a later study [228 . 
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Note finally that for the single-atom response the phase of the emitted harmonics 
is not of importance as the spectrum depends only on the modulus of the dipole 
acceleration as given by Eq. (1.11). I t is, however, never the single atom response 
which is observed in experiments but the collective response from a macroscopic 
target. Only for sufficiently thin targets (the harmonic radiation being emitted 
rather from a plane than from a volume) is the macroscopic yield refiecting the single-
atom response. Therefore, the phase of the atomic reponse can be of importance 
when considering the propagation of the harmonic fields through the medium in 
which they have been generated. We turn now to the investigation of the infiuence 
of propagation on the harmonic radiation that will eventually be emitted from the 
atomic gas. 

1.4 The propagation aspect 

1.4.1 General considerations 

A typical harmonic generation experiment we will be dealing with uses a (rare) 

gas target, confined to a gas cell or in form of a gas jet. A strong laser beam is 

focused into the gas, usually, but not necessarily, with the focal plane placed at the 

center of the medium. The type of focusing lenses together with the spatial intensity 

profile of the laser field determine the interaction geometry. For a Gaussian type of 

beam (see, e.g., Ref. [142,207]), for which the vast majority of harmonic generation 

experiments have been carried out, loose focusing designates the case where the 

confocal parameter b is much larger than the medium length L. A Gaussian beam 

can often be approximated by a plane wave in this limit. The opposite case is called 

tight focusing limit. There, the spatial intensity profile varies appreciably over 

the medium dimensions and the harmonic output generally reflects the behaviour 

of a small volume of atoms subjected to very strong fields [145]. The harmonics 

generated by the incident field have first to travel through the medium and might be 

modified in their characteristics during this propagation period, essentially through 

constructive or destructive interference with harmonics created at different points in 
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space and time. Formally, this stems from the fact that it is the amplitude (and not 
the modulus) of the single-atom response which enters the propagation equations 
as source term (see chapter 4). As a result, the phases of the harmonics within the 
medium will play a crucial role in what will be the measurable output in the far-
field. There, the harmonics have further to be separated from the nearly undepleted, 
thus very intense fundamental laser mode (considering the generally low conversion 
efficiencies). They are analyzed using various types of spectrometers, due to the 
vast range of wavelengths that is covered when generating harmonics up to very 
high orders. 

The presence of the phases leads above all to a discrepancy between the wavenum-

ber at which the harmonic is allowed to travel according to Maxwell's equations, 

namely^^ kg, which is determined by the medium properties at the g"' harmonic fre

quency (dispersion), and the wavenumber which is imprinted on the 5*'' harmonic, 

when it is generated through the nonlinear process. We will write the latter quan

tity, for the sake of clarity, as qki - K, where ki is the wavenumber of the laser 

field at the fundamental frequency. K is, in general, a very complicated function 

of time and space. It includes phases of the following origin: firstly, a geometric 

phase which depends only on the laser beam geometry and vanishes in the plane 

wave limit 6 » L. To illustrate its dependence on focusing, we state here a simple 

approximation to this phase factor [204], 

KgeoL = A*geo ^ 2{q - 1) t&n-\2L/b). (1.16) 

The geometric phase is thus largest in the tight focusing limit b <^ L and increases 

with the harmonic order q. K consists secondly of the atomic phase (sometimes 

called dynamically induced phase of the atomic polarization), which we had intro

duced briefly in the previous section. The atomic phase has been studied within the 

framework of the two-step model by Lewenstein et al. [124]. The authors found a 

very general expression for the intensity-dependence of this phase, namely a piece-

wise linear function, of slope -3.2Up/huj for intensities in the cut-off region (recall 

that Up oc / i ) , and of slope -5.8Up/huj in the plateau region. At any rate, the 

^^For the harmonic order we also use the symbol q as N might be confused with the density 
when considering propagation aspects. 
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atomic phase varies very rapidly at high intensities which is of particular impor
tance in the tight focusing limit. Intensity-dependent atomic phase effects in high 
harmonic generation have been subject to experimental investigation by Peatross 
and Meyerhofer [159,160], who could show them to affect the spatial far-field pro
files of emitted harmonics by adding broad wings to the otherwise narrow central 
peak around the propagation axis. On the other hand, use of this effect could be 
made by adjusting the laser focus position with respect to the nonlinear medium in 
order to control the temporal and spatial profiles of the emitted harmonics. Playing 
the geometric phase against the atomic phase, Salieres et al. [200] could demonstrate 
this control by focusing the laser sufficiently before the medium. Turning back to 
ki and kg, we find that they depend on space and time through the atomic density 
and linear atomic susceptibility and through the corresponding electronic quantities 
if ionization is to be taken into account. In fact, at sufficiently high intensities and 
for not too short pulses the free electrons will determine the refractive index and 
thus most of the medium properties. 

1.4.2 Phase-matching 

From the point of view of conversion efficiency, the most important aim is to reduce 

the difference between kg and qki - K to a. minimum over the whole nonlinear 

medium (and at all times during the laser pulse), so that the harmonic field can 

build up efficiently in the medium. The quantity 

Ak = kg-qk^ + K = Akdisp + K (1.17) 

is known as the phase-mismatch and phase-matching remains possibly the last prob

lem to be solved in the field as it is the key to high conversion efficiencies and, 

eventually, will determine whether in the future (high-order) harmonic generation 

can compete with the development of other X-ray sources, especially X-ray lasers. 

The heart of the problem lies in the fact that the dispersive phase-mismatch A/cdisp 

is often positive for neutral gases (and even more so if free electrons are present) 

while the geometric phase factor A$geo entering K is positive too. Phase-matching 

is generally worst in the tight focusing limit as follows from Eq. (1.16) and it espe-
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cially affects the higher harmonic orders. In experiments this effect can be traced 
by moving gradually from the plane wave to the tight focusing limit, resulting in a 
modification of the harmonic cut-off law (1.2), where the factor of 3.2 decreases down 
to approximately a factor of 2 [72,132, 226], thus limiting the maximum harmonic 
order which can be effectively generated. 

Owing to its central importance, phase-matching has been thoroughly studied (for 

recent work on this subject, see, e.g., Refs. [15,16,19,130,161] and references therein) 

and numerous methods have been suggested to circumvent the intrinsic limits it sets 

to an efficient production of harmonic radiation. Widely used traditional methods 

191] include the use of gas mixtures with a dispersion of opposite sign, such that 

Akdisp = A/ĉ Jgp + AA;ji]p = 0 in a plane wave geometry or a negatively dispersive 

atomic gas such as to offset the positive geometric phase in a more focused geometry. 

These techniques are useful for low-order harmonic generation in the perturbative 

regime where analytical expressions exist for optimum phase-matching conditions 

from which the values of the parameters necessary to achieve phase-matching can 

be inferred. They are less useful for high-intensity high-order harmonic generation 

because the outcome of an experiment can at best be 'predicted' by a full numerical 

simulation. Some recent suggestions include those by Shkolnikov et al. [204] who 

proposed the use of density-modulated media so as to cut out the regions of space 

within the medium where the harmonics interfere destructively^''. The same authors 

also pointed out that in plasmas high-order difference-frequency mixing would be 

a better phase-matched process than high-order harmonic generation and thus a 

more efficient way of generating short wavelengths^^. This approach however was 

shown to have inherent limitations by Kan et al. [107]. Another interesting method 

of eliminating out-of-phase harmonic generation was put forward by Peatross et 

al. [162]. These authors suggested the use of counter-propagating light to suppress 

out-of-phase harmonic generation in specific regions of the focus. The key point 

^^The principle of this method dates also back to the early days of harmonic generation and is 
commonly called quasi-phase-matching. 

^^That is, instead of obtaining the desired high frequency through harmonic generation of order 
q, (J — quo, one uses the process w = mui - I0J2, with ui uj2, m > I, as a, process of order m -f- /. 
Note that this process can also be used to tune harmonic generation: uji is then the frequency of 
a high power laser and uj2 the frequency of a less powerful but tunable laser [72]. 
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is that this can be achieved with a relatively weak (counterpropagating) field, so 
as not to induce further nonlinear processes. Finally, in determining the optimum 
focusing geometry for high-order harmonic generation, Balcou et al. [19] could show a 
graphical method monitoring the variation of the phases over the medium dimensions 
to be very helpful. 

1.5 Harmonic radiation in applications 

Possibly the main interest in studying harmonic generation lies in its potential appli

cations as a bright, coherent source of X-ray light, a domain which is traditionally 

reserved to synchroton radiation and powerful X-rays lasers (usually designed to 

support fusion experiments). Both sources require huge facilities and can be af

forded only on a national or international level. Al l the more desirable is therefore 

the design of a table-top X-ray source^ .̂ 

Harmonics have been used as a source of light on their own right since the early 

1990's. Haight and Peale [89] examined semiconductor surface states in Ge(ll l) :As, 

recording the spectra of photoelectrons ejected from the samples by short UV pulses. 

For this they created harmonics in a krypton gas up the the l l * ' * harmonic of a 610-

nm (2.03 eV) dye laser and focused the resulting UV light into the germanium 

sample. Harmonics as a source of light in spectroscopy have been used to measure 

radiative lifetimes of helium [121] and autoionizing states in krypton [17]. Balcou 

et al. [17] have also measured single-photon ionization cross sections of rare gases 

over the range 10 to 110 eV using higher harmonics (11*'* to 69*'* ) from a 825-

nm Cr:LiSAF laser and found them to be in good agreement with existing data 

obtained using different methods. Two-photon ionization in argon with third har

monic photons from a 248.6-nm KrF laser was observed by Xenakis et al. [232] which 

was, according to the authors, the first multiphoton process using XUV photons. 

Hassner et al. [93] have used high-order harmonics from a solid target (a thin poly-

^^For the characterisation of spectral wavelength ranges we follow Ref. [134]: ~2-20/xm: mid-
infrared (IR), 700-2000nm: near IR, 400-700nm: visible, 200-400nm: near ultraviolet (UV), 100-
200nm: vacuum UV (VUV), 10-lOOnm: extreme UV (XUV), <10nm: X-ray. 
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carbonate foil) created at very high intensities (exceeding 10̂ ^ W/cm^ ) to probe 

high-density plasma conditions. Indeed, high frequencies should only be transmitted 

through the plasma if larger than the plasma frequency, the latter being dependent 

on the plasma density. Possibly the most important application of very high-order 

harmonic generation will be the X-ray imaging of living cells and micro-organisms. 

For imaging purposes one must achieve a good contrast between carbon-based or

ganic structures embedded in a surrounding fluid, consisting essentially of water 

(thus oxygen). The region of interest lies in the narrow range between 2.3 nm and 

4.4 nm, the so-called water window, where X-rays are absorbed by carbon but not 

yet by oxygen [45,202,212 . 

1.6 Conclusions and aim of the present thesis 

In the present thesis, we shall be mainly concerned with the improvement of the con

version efficiency in a typical harmonic generation experiment. We have seen in the 

preceeding sections that it is phase-matching which controls the coherent built-up of 

the single-atom response within the nonlinear medium and therefore determines the 

overall, measurable harmonic yield. Several methods, of which we have mentioned a 

few and each having their own range of applicability, exist for improving the phase-

matching conditions. The aim of the present work is to thoroughly investigate yet 

another possible method by considering Bessel-Gauss beams, a very general class 

of solutions of the paraxial wave equation containing the Gaussian beam as limit 

case. We will show Bessel-Gauss beams to induce a noncollinear phase-matching 

geometry, making use of the fact, that Eq. (1.17), in fact is a vector relation, reduc

ing essentially to the scalar limit for Gaussian beams. The range of applicability 

will turn out to be restricted to negatively dispersive media. Regions of negative 

dispersion in atomic systems can be found close to resonances or above the first 

ionization threshold. Calculations in the vicinity of an atomic resonance at high 

intensities make it necessary to account (nonperturbatively) for ac-Stark-shifts in 

determining the atomic properties. We have therefore chosen, as a starting point, 

to use atomic hydrogen as nonlinear medium, essentially because it is possibly to 
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perform very accurate nonperturbative calculations for this system. Data of com

parable accuracy for more complex atoms is presently lacking or can only be gained 

with considerable computational effort. The emphasis in applications is on general 

concepts, however, and the conclusions we draw from this study are valid for atomic 

gases in general. Chapter 2 is thus devoted to the nonperturbative calculation of 

the single-atom response for atomic hydrogen. Chapter 3 introduces Bessel type 

beams in general and Bessel-Gauss beams in particular. Chapter 4 gives a detailed 

derivation of the harmonic far-field from which the measurable characteristics, such 

as conversion efficiency and spatio-temporal profiles, can be gained. Chapter 5 

presents an extensive review of the propagation calculations performed for atomic 

hydrogen up to high intensities involving the effects of the I5 - 2p resonance. Chap

ter 6 deals with analytical formulas for predicting the optimum Bessel-Gauss beam 

in the perturbative regime and supporting propagation calculations in both hydro

gen and xenon. Chapter 7 reports a high-order harmonic generation calculation in 

argon which has been carried out in connection with an ongoing experiment at the 

Laboratoire d'Optique Appliquee (LOA) in Palaiseau, France. We will draw our 

final conclusions from the material presented in chapters 5,6 and 7 thereafter. The 

appendices contain, amongst others, the description of an experimental realization 

of a Bessel type beam, which we have carried out during a visit at the LOA (Ap

pendix D) and a presentation of the propagation code, which has been conceived 

and written as part of this thesis (Appendix E). 



Chapter 2 

Floquet Calculations in Hydrogen 

at 355 nm 

2.1 Introduction 

For most of the calculations presented in this work, the basic atomic properties have 

been calculated using the Floquet method. This approach is based on a theorem from 

mathematics of the same name which discusses the general structure of solutions to 

differential equations with periodic coefficient functions (see, e.g., Ref. [96]). We take 

the Hamiltonian Eq. (1.13) as a starting point and consider a time-periodic, linearily 

polarized laser field with a vector potential given by A{t) = -BAQ sm(u)t + (p). 

Hence, the laser field amplitude is given by E{t) = -{dA/dt)/c ~ CEQ cos{Lot + 

( f ) , where EQ = AQLU/C. We can remove the term proportional to A'^{t) from the 

Schrodinger equation 

ih^^\^{t)) = Hmit)) (2.1) 

by the transformation 
.2 Pt 

"^(t)) ^ exp le 
2hmc^ 

where F{t) is found to be given by 

ip{t))= exp '-Fit) |V(i)>, (2.2) 

^2 172 e En 
F{t) = Upt - sin[2(a;t + (/?)]. (2.3) 

26 
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The time average of the derivative of F{t) is simply 

{F'{t)), = U, , (2.4) 

which is the ponderomotive energy as introduced in Eq. (1.3). The Schrodinger 

equation can now be written as 

in^^\m) = [H.t + v{t)Mt)), (2.5) 

where we have introduced the atomic Hamiltonian 

i^at = ^ - K t ( x ) , (2.6) 
Am 

and the interaction term V(t) , written as 

V{t) = exp[i{Lot + ( f ) ] + V+ exp[-z(a;^ + (p)], (2.7) 

with 

V l = ^ | ^ e . p , • V^ = Vl. (2.8) 
2mLo 

The Floquet ansatz reads 

N=+oo 
iPit)) = exp{-i£t/n) ewHN{cot + ifi)]\^N), (2.9) 

and transforms the Schrodinger equation (2.5) into an infinite set of time-independent 

coupled equations which determine the wavefunction and the quasienergy £ of the 

atomic system, namely 

{S + Nhw- i/at)|$iv) = + V-\^N+l) , (2.10) 

for all A'̂ . This set of equations is expanded on a basis set of known functions. I t 

is usually rather inconvenient to use the atomic basis set of bound and continuum 

states. Indeed, basis sets such as, e.g., B-Splines or Sturmian functions cover more 

readily coordinate space with a (necessarily) finite number of functions than does 

the atomic basis set. The program employed in this work uses a Sturmian basis 

set [181], that is 

{^\^N) = J2ciilYUr)S^niir)/r, (2.11) 
nlm 
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where 

S:^i{r) = Nni (-2mr)'+^ exp(zKr) iFi{l + 1 - n, 2Z + 2, - 2 m r ) . (2.12) 

iFi(a, 6, c) is the confluent hypergeometric function [1] and the Yim are the well 

known spherical harmonics. The parameter K can be chosen freely to optimize 

the calculations as long as 0 < arg(K) < 7r/2, which is imposed by the boundary 

conditions for an outgoing wave that is exponentially damped as r -> -Foo. The 

eigenvalues and eigenvectors of a subset of the system of coupled equations above 

(that is, for a finite number A'' of 'Floquet blocks' ) are then determined, e.g., 

by inverse iterations [176]. The convergence of the calculations is obtained both 

by including more and more basis functions n and angular momenta / in the sum 

(2.11) and by increasing the number of Floquet blocks A'̂ , until a specified accuracy 

is reached. The quasi-energy £ is complex and given by 

^ = Eat + Aac - i / i r / 2 . (2.13) 

The real part is the sum of the energy of the field-free atom, Eat, and the ac-

Stark-shift, Aac- The imaginary part is proportional to the ionization rate P, F = 

- 2 ImS/h. The quasi-energy (2.13) is only part of the total energy ^tot of the atomic 

system in the laser field, owing to the initial transformation (2.2) which had removed 

the energy shift induced by the A^ {t)-ieim. Thus, to describe the full system in terms 

of a time-independent energy, we let 

e,,, = e + {F'{t))t = s + Up. (2.14) 

In the case of a two-colour field consisting of a coherent superposition of the funda

mental field (amplitude Ei > 0, phase ip) and its q*'^ harmonic (amplitude Eg > 0, 

phase (j)), both polarized co-linearily, 

E{t) = [El cos{Lot + (p) + Eg cos{qujt + (f))]e, (2.15) 

we have to replace Eq. (2.7) by 

V(^) = Vi+ exp{-itot - icp) + Vi- ex-p{itot + 

+ Vg^ exp{-iqujt - i(l>) + Vg-exp{iqu}t + i(j)), (2-16) 



dN = dNiEi,Eg,(fi,(f)) = exp{~iNip). (2.19) 
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and Eq. (2.10) by 

{£ + Nnio-H,,)\^rf) = + (2.17) 

+ Vq+exp{-i(j) + iq(f)\^N^g) + Vg-exp{i(j)-iq(p)\^N+g). 

Recalling from section 1.3.2 that the atomic response to the driving laser field is 

sought in form of the atomic dipole moment, we obtain within the framework of 

Floquet theory [175 

d{t) = exp( - r t ) J do + ^ Re [2 dN exp{-iNujt)] i e, (2.18) 
I iV>0 J 

where we have defined the Fourier components of the dipole moment as 

• M=+oo 
($M-iv|ex|$M) 

.M=-oo 

In close analogy to the evaluation of the dipole acceleration with the help of the 

Ehrenfest theorem (section 1.3.2), it is possible to evaluate the dipole moment in 

different ways: in length form, as given by Eq. (2.19), in velocity form, with the 

position operator replaced by the momentum operator, and in acceleration form, 

with the position operator replaced by the gradient of the atomic binding potential. 

This provides additional tests for the accuracy of the numerical calculations to follow. 

Assuming perturbation theory to hold with respect to the field strength of the 

harmonic. Eg, we can express the dependence of dN=g on the field strengths as 

dg{Ei, Eg, cp, 0) = [dg{Ei) + €ox{q^^, Ei)Eg exp{-i(j) + iq(p)] exp{-iq(f) 

= dg{Ei) exp{-iqcp) + eox{q(^, Ei)Eg exp{-i(j)). (2.20) 

The first term is responsible for the generation of the q^^ harmonic and will serve 

as source term in the propagation equation as discussed in chapter 4. This term is 

nonperturbative in the sense that all orders of Ei are taken into account. In the 

weak field limit it reduces to the well known power law 

dg{E{)^e,x^^\-qio;uj,...,u)El. (2.21) 

^Note that the form of dipole moment is not related to the gauge. All calculations (wavefunction, 
quasienergy) are performed in velocity gauge, that is, V_ and y+ are functions of the momentum 
operator p as given in Eq. (2.8). 
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The second term of Eq. (2.20) is linear in Eg and hence xiQ'^i ^i) is the linear 
atomic susceptibility which determines the refractive index at the frequency qu). 
This susceptibility, however, is dependent on the (strong) fundamental field which 
dresses the atom. That is, expanding this quantity into powers of Ei, we obtain the 
well known expression, 

xiqco,Ei)=x^'\-quj;quj) + X^'\-q^;q'^,-^,(^)El + ... (2.22) 

where the second term in this expansion is. the so-called Kerr nonlinearity, leading 

to an intensity-dependent refractive index^. The atomic susceptibility at a given 

field strength Ei is then formally evaluated as 

, 1 ..,^ddg{Ei,Eg) . ^ . ddi{E) 
xiquJ,Ei) = -exp{i(f>) x ( ' ^ , ^ i ) - . (2.23) 

B=Ei eo " ^ " ^ dEg ' Av>-,^iv 

Note that because we need only the term linear in Eg, the atomic susceptibility is 

effectively independent of the phase (j). 

The application of the Floquet method to nonperturbative calculations in hydrogen 

has been developed by Chu and Reinhardt [50] in the late 1970's and independently 

by Potvliege and Shakeshaft [173] in the late 1980's. For exhaustive details about 

the method and applications to hydrogen within the Sturmian-Floquet approach 

used in this work we refer to Refs. [62,136,175-177] and references therein. A 

possible approach for more complex atoms is the R-matrix-Floquet theory [36,106 . 

The R-matrix theory distinguishes two regions of space, an inner region where the 

correlation between all electrons is taken into account, and an outer region, where, 

when it is reached by one of the electrons under the influence of the external field, the 

exchange effects of this particular electron with those remaining in the inner region 

can be neglected. The R-matrix is then essentially the mathematical expression for 

the matching conditions at the boundaries of the two regions and all information 

about the atomic system can be gained from this matrix. 

Clearly, effects depending crucially on the temporal shape of the laser field envelope, 

such as those discussed in section 1.3.2 (e.g., the blueshifting of the harmonics), can-

^The prefactor of x'̂ ^ in expansion (2.22) is a matter of convention and we have set it to unity 
for simplicity, as we do not calculate the terms on the right hand side individually. In fact, the 
power expansion is not at all valid in our case as the atomic levels entering the calculation of x^''^ 
depend on Ei as well (see next section). 
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not be accounted for by the Floquet approach. A possible exception are resonantly 
coupled states, which can be described by appropriately coupling the corresponding 
time-independent Floquet states with time-dependent coefficients [62]. For a suffi
ciently long pulse however - typically a few tens or hundreds of cycles when away 
from resonances, a few thousand cycles when close to a resonance - a single Floquet 
state yields a very good description of the strongly driven atom. Indeed, the atom 
then follows adiabatically the quasienergy trajectory leading from the bare atomic 
to the dressed Floquet state. 

2.2 The third harmonic order 

We will now apply the theory outlined in the previous section to the calculation 

of the atomic properties of hydrogen for an incident field of wavelength A =355 

nm, which corresponds to a photon energy of about 3.49 eV. For the calculation 

of the atomic data, the code of Ref. [181] is used, applying a single-colour field 

(oscillating at the fundamental frequency) for the calculation of the quasienergies 

and the atomic dipole moment responsible for the generation of the harmonics, and 

a two-colour field for determining the dressed atomic susceptibility at the harmonic 

frequencies^. The energy of the third harmonic (A3=118.3 nm) is somewhat in excess 

of the (field-free) ls-2p transition in hydrogen (at about A=121.5 nm). From the 

quasi-energy curves £ = £{Ii) of the dressed Is and 2p states, we find that with 

increasing intensity the Is state moves downwards due to an increasing ac-Stark shift, 

while the 2p state moves in the opposite direction (see Fig. 2.1). Both states are 

resonantly coupled around / i = 1.15xl0^^ W/cm^ , shifting off resonance at higher 

intensities [175]. The atomic data could only be determined up to / i = 3 x 10̂ ^ 

W/cm^ , because the 4-photon threshold is reached at about Ii = 2.94 x 10̂ ^ 

W/cm^ . Indeed, at this intensity the ac-Stark shift of the dressed ground state is 

Aac ^ -0.014 a.u. ~ -0.375 eV and Â ion = |(-13.6 - 0.375)|/3.49 = 4 photons 

^For the determination of the atomic data we can obviously let 0 = 0 and (p — O'm Eq. (2.20), 
as the Unear atomic susceptibility does not depend on (p and the atomic dipole moment is only 
determined up to an overall phase factor exp{—iqip). The phase ip will be used to accomodate 
for the local phase of the field within the nonlinear medium in connection with the propagation 
equations (section 4.2). 
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Figure 2.1: Energy levels (Re£ )̂ = £?at+Aac showing the ac-Stark shift in atomic hydrogen 
as a function of the intensity for a 355-nm field. Solid line: Is state, dashed line: 2p state. 
For better visualisation of the crossing, the 2p-level is shown shifted down by three times 
the photon energy. The field-free transition energy is AEis-2p ~ 10.2 eV, while 3Hu « 10.5 
eV. The crossing occurs around h = 1.15 x 10̂ ^ W/cm^ . 

are required to ionize the hydrogen atom. As a result of the nearby threshold, 

the Sturmian-Floquet method becomes inadequate as no finite basis set can fully 

represent the coupling to all the Rydberg states when the threshold is crossed. Note 

finally the value of the Keldysh parameter, from Eq. (1.6), 

2.4 X 10^ 
7 = (2.24) 

V/L[W/cm2]" 

At the highest peak intensity considered, / f = 3 x 10̂ ^ W/cm^ , we find 7 ?a 4.4. We 

are therefore essentially in the multiphoton ionization regime. We have calculated 

the nonperturbative dipole moments and the dressed atomic susceptibilities for the 

harmonics q =3, 5, 7 and 9. However most of the propagation calculations were 

carried out for the third harmonic and we will present detailed results in later 

chapters only for this particular case. We thus defer a short presentation of the 

atomic data for q =5, 7, and 9 until the last section of this chapter. 

In a first step, we test the assumption of Eq. (2.20), which allows us to determine the 

linear atomic susceptibilies. For this, we rewrite Eq. (2.20) in terms of intensities as 

\og,Mih,I,)-dg{h,Ig = 0)f]=log,,[\C{lM + \ogM (2.25) 

which is independent of the phases cp and (j). The result is shown for in Fig. 2.2 for 
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Figure 2.2: Test of assumption Eq. (2.20) for q' = 3 as described in the text. The thin 
sohd line is for 7i = 1 x lO^^ w/cm^ , the thick solid fine for A = 3 x 10̂ ^ W/cm^ . 

q = 3. There is no noticeable deviation from a slope of unity, up to intensities Ig !^ 

10~^/i, well beyond the harmonic intensities considered in this work, Ig < 10~^/i. 

Fig. 2.3 shows the dipole moment as a function of the intensity of the fundamental. 

Perturbation theory, characterized by a power law dependence as stated in Eq. 

(2.21), is valid roughly up to Ji = 10̂ ^ W/cm^ . At resonance, the modulus of 

the dipole moment is enhanced compared to the perturbative value but quickly 

saturates and decreases as the states shift off resonance at higher intensities. A 

very remarkable feature is the smooth variation of the phase of the atomic dipole 

in the vicinity of the resonance. For comparison we have shown on the same graph 

the corresponding phase of the 9*'* harmonic of a fundamental field with A = 1064 

nm which has a wavelength very close to the third harmonic of A = 355 nm. The 

1064-nm results vary much more rapidly owing to ac-Stark-shift induced resonances 

with low-lying Rydberg states^. 

Fig. 2.4 shows the dressed atomic polarizabilities for various wavelengths of the 

incident field and how the profile of the resonance and the intensity at which i t occurs 

do vary as the wavelength of the incident laser field is varied. It is apparent that with 

a lower wavelength the resonance could have been reached at a higher intensity but 

•^This fast variation over a significant range of intensities would be a major cause for an unpre
dictable phase-mismatch at higher intensities. Recall that the atomic phase is entering the term K 
in expression (1.17) for the phase-mismatch. This wih be discussed in more detail in section 5.5. 
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with a less pronounced resonance effect (Fig. 2.4c). Conversely a stronger resonance 
could have been obtained at lower intensities with a third harmonic wavelength 
closer to the field-free transition frequency (Fig. 2.4a). The magnitude of the 
polarizability for / i —>• 0 is however limited by the width of the field free ls-2p 
resonance due to various line broadening effects, including the natural linewidth due 
to spontaneous emission, all of which are not included in the Floquet formalism. In 
Appendix C we have therefore compared the Floquet results with the corresponding 
results from linear dispersion theory in the zero-intensity limit, taking the width into 

-3.5 

Intensity (W/cm'̂ ) 

Figure 2.3: Top: Phase of the atomic dipole moment at the third harmonic of A = 355 
nm (thick line) and at the ninth harmonic of A = 1064 nm (thin fine). Bottom: Modulus 
square of the atomic dipole moment at the third harmonic of A = 355 nm (thick line) and 
the corresponding perturbative power-law curve (thin line). In order to avoid confusion 
it should be stressed that the phase at the 9*'̂  harmonic shown only appears to oscillate 
rapidly because its values are restricted to the interval [—tt, tt]. In fact, the phase is 
(essentially) continously decreasing with increasing intensity. 
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Figure 2.4: From top to bottom: real (solid lines) and imaginary parts (dashed 
lines) of the dressed linear atomic polarizability at the third harmonic frequency of 
the fundamental wavelengths (a) A — 364 nm, (b) A = 355 nm and (c) A = 350 nm, 
respectively. The thin lines for A = 355 nm show the corresponding polarizability at 
the fundamental frequency. The polarizabilities are given in a.u. and are related to 
the atomic susceptibilities (in SI) by a simple conversion factor, given in Appendix 
A. 
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account. The choice of the third harmonic of A = 355 nm is thus based on the fact 
that, besides being very close to the 9*'* harmonic of A = 1064 nm, we achieve a good 
compromise between a sufficiently large region of intensity for which the medium 
is negatively dispersive and the magnitude of this dispersion, x(i^,-Si) - xil'^yEi). 
The latter is essentially dictated by the behaviour of xiQ^, Ei), as Re[x(w, Ei)\ ^ 5 
a.u. throughout the whole range of intensities (Fig. 2.4b). Additionally, A = 355 
nm as fundamental wavelength has been used several times in harmonic generation 
experiments in gases in the past (see Refs. [118,237] and the discussion in chapter 
5). 

As mentioned earlier, it is also apparent from Fig. 2.4, that the intensity-dependence 

of the dressed linear atomic susceptibility cannot be described by the simple pertur

bative expansion (2.22). This is due to the fact that close to resonance the quantities 

entering the calculation of the susceptibilities (e.g., the oscillator strengths) on the 

right hand side of Eq. (2.22) depend strongly on the laser intensity themselves. 

Calculations of atomic properties at the third harmonic frequency similar to ours 

have been performed for atomic helium: Van Enk et al. [75] have studied possi

ble schemes of enhancing the third-order nonlinear susceptibility x^^^—3cj; w, w) 

within the framework of perturbation theory via double resonances (involving an 

autoionizing state). The dressed linear atomic susceptibility has been studied using 

a nonperturbative approach by Cormier and Lambropoulos [55], who used a single 

active electron (pseudo-potential) model for helium and solved the corresponding 

TDSE. 

2.3 Two-colour ionization rate 

The harmonic fields generated in the medium might be strong enough to modify 

the ionization process induced by the strong fundamental. Two-colour multiphoton 

ionization of hydrogen by an intense laser field and its third harmonic has been 

thoroughly discussed in Refs. [178,179] for various wavelengths of the fundamental 

field and in the following similar results will be presented for A = 355 nm. I t is 
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Table 2.1: Ionization rate = —2Im£^ (in a.u.) for a two-colour calculation as a 
function of the ratio ^ = /3 / / 1 of the intensities of the harmonic and fundamental field, 
respectively. Three values for the phase, (f> = 0 ° ,90° , 180° and four values for the laser 
field intensity, = 1 x 10^^,5 x 10^2,1.15 x 10^^,3 x lO^^ W/cm^ have been considered. 
The numbers in parenthesis indicate powers of ten. 

1 = 0 f = 10-^ n 7f = 10-^ 

/ i = 1 X 10̂ '̂  W/cm'2 
<̂  = 0° 

= 90° 
( p = 180° 

9.36(-ll) 
9.36(-ll) 
9.36(-ll) 

5.04(-10) 
2.64(-10) 
2.20(-ll) 

2.56(-09) 
1.79(-09) 
1.03(-09) 

1.95(-08) 
1.71(-08) 
1.47(-08) 

/ i = 5 X 10̂ 2 w / c m 2 
0 = 0° 
0 = 90° 
( f ) = 180° 

1.21(-7) 
1.21(-7) 
1.21(-7) 

2.06(-7) 
1.33(-7) 
5.94(-8) 

4.66(-7) 
2.36(-7) 
4.32(-9) 

1.99(-6) 
1.26(-6) 
5.34(-7) 

Ii = 1.15 X 10̂ ^ W/cm^ 
0 = 0° 
0 = 90° 
0 = 180° 

8.58(-6) 
8.58(-6) 
8.58(-6) 

1.15(-5) 
8.80(-6) 
6.04(-6) 

1.96(-5) 
1.08(-5) 
2.08(-6) 

5.92(-5) 
3.12(-5) 
3.48(-6) 

/ i = 3 X 10̂ ^ W/cm^ 
0 = 0° 
0 = 90° 
0 = 180° 

1.08(-5) 
1.08(-5) 
1.08(-5) 

1.25(-5) 
1.09(-5) 
9.30(-6) 

1.68(-5) 
1.17(-5) 
6.58(-6) 

3.54(-5) 
1.93(-5) 
3.14(-6) 

important to assess the impact of the harmonic field on the ionization rate as the 

far-field method used in the work for calculating the propagation of the harmonics 

does not yield the harmonic fields inside the medium. Table 2.1 shows the two-

colour ionization rates for various laser intensities / i , ratios ^ = J 3 / / 1 and phases 

0.̂  I t is apparent from those results that the single-colour ionization rate is strongly 

infiuenced by the harmonic field. The ionization rate obtained considering the fun

damental field alone is lower in most of the cases compared to the corresponding 

two-colour rate. This is particularly severe for small values of 0, whereas for values 

0 ?s 180° the two-colour rate can be smaller than the single-colour rate [180 . 

To assess more accurately the influence of the harmonic field on the ionization 

process, we compute in the following the ionization probability at the end of a laser 

^We have setip = 0 in those calculations. In fact, it can be shown that for the calculation of the 
time-independent two-colour ionization rate, (p and (p may be replaced hy (p = 0 and ^ = ^ - q(p, 
respectively [179]. For the simphcity of notation we will continue to use (j). 
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Figure 2.5: From top to bottom: ionization probabilities for (a) ( j ) = 0°, (b) ( j ) — 90° 
and (c) (p = 180° as obtained from Eq. (2.26). The solid fines show the one-colour 
calculation for a 355-nm field. Results for the two-colour calculations are shown by 
dotted lines (^ = 10"^), dashed lines (^ = 10"^) and dot-dashed lines (^ = 10"^). 
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pulse, defined by 

/ ion(/ i ,e) = 1 - exp | - f°°^dh exp(-41n2iVr2)]d^| , (2.26) 

where / i is the laser (peak) intensity at the position of the atom and r is the pulse-

length defined as the FWHM of the temporal intensity profile, which we assume to 

be Gaussian. We will take r = 15 ps in the following. The period of the fundamental 

being T ^ 1.2 fs, the pulse thus contains over 12,500 cycles within the FWHM of the 

intensity envelope. For such a large number of cycles, the Floquet calculation using 

a single dressed state (namely the dressed Is ground state) can be shown to be in 

very good agreement with time-dependent methods even at resonance [182]. This, 

because all the population that is resonantly transferred to the dressed 2p state is 

rapidly ionized and contributions from this state are therefore negligible. Results 

are shown in Fig. 2.5, for the same phases 4> and the same ratios ^ than in Table 

2.1. Clearly it is the resonance which is responsible for the strong infiuence of the 

harmonic on the ionization process. However its influence results at the same time 

in a very rapid increase of the ionization probability in a narrow range of intensi

ties, thus limiting the range of variation of the ionization probability. The single-

and two-colour ionization probabilities start to diflFer significantly for conversion ef

ficiencies larger than 10~^ - 10"^. For ^ = 0° and 90° the single-colour calculation 

underestimates the ionization probability (Fig. 2.5a and b), while it essentially over

estimates it for (f) — 180° (Fig. 2.5c). The behaviour of the curve for ^ = 10~^ in 

(Fig. 2.5c) comes from the fact, that the two-colour ionization rate is significantly 

higher than the single-colour rate below the resonance but lower at and beyond the 

resonance (see Table 2.1). 

2.4 Higher harmonic orders 

In this section, we shall give a brief overview of the atomic properties for the har

monic orders q =5, 7, and 9. As the fifth harmonic is already above the ionization 

threshold ( 5 ^ 17.5 eV > /p = 13.6 eV) we expect quite generally the linear 

atomic susceptibilities for ^ > 3 not to be affected by any resonance structure, in 
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Figure 2.6: Atomic dipole moments of the S*'' (solid lines), 7*'̂  (dashed lines) and the 
9*'* (dot-dashed lines) harmonics of 355-nm radiation. Top: Phase of the atomic dipole 
moments. Bottom: Modulus square of the atomic dipole moments, the thin lines indicate 
the corresponding perturbative power law curves. 

contrast to the dipole moments for which the 3-photon ls-2p transition constitutes 

now an intermediate resonance. 

This is indeed shown in Fig. 2.6, where the modulus and phase of the atomic dipole 

moments display a behaviour similar to those for q = 3. The effect of satura

tion after the resonance is passed becomes less pronounced as the harmonic order 

q increases. As expected, the atomic polarizabilities are virtually constant over the 

whole range of intensities, as can be seen from Fig. 2.7. The magnitude of the nega

tive dispersion is much smaller than for g = 3 and decreases further with increasing 

harmonic order. 
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Figure 2.7: Dressed linear atomic polarizabilities at the 5*'* (solid lines), 7^'^ (dashed 
lines) and the 9*̂* (dot-dashed lines) harmonic frequencies of 355-nm radiation. The thick 
lines represent the real part, the thin lines the imaginary part of the polarizabilities. The 
polarizabilities are given in a.u. and are related to the atomic susceptibihties (in SI) by a 
simple conversion factor, given in Appendix A. 

In fact, the problem of determining the atomic properties for higher-order har

monics can be much more cumbersome if strong low-order harmonics are present, 

especially when resonance enhancement has to be reckoned with, as it is the case 

here. I f the third harmonic is sufficiently strong, we expect, e.g., for the genera

tion of the .5*'' harmonic besides the direct term^ X^^H~"5a;; w, w, w, a;)£'f also the 

term x^^H~5a;; 3a;,a;,a;)£'i£'3 to contribute. Similarly, the propagation of the 5*'̂  

harmonic will not only involve the terms x^^H^^o;; 5a;) and x^^K~^^y -to,uj)El 

but also x'^H~5a;; 5w, -3w, 3LU)E^ and x^^\-5co; 5a;, -3a;, a;, a;, a ; ) £ ' 3 , etc. Even a 

higher harmonic order can contribute if resonantly enhanced or well phase-matched, 

recall also that harmonics in the plateau region of the harmonic spectrum are gen

erated at roughly equal strengths. Hence, e.g., the 7*'' harmonic could contribute to 

the generation of the 5"̂  harmonic via the term x^^H~^^j '^^i —uj)ElEj. 

In the case of a very strong third harmonic, the quantities above have to be com

puted nonperturbatively, that is d^{Ei^ E3) for the dipole moment and x(5a;, Ei, E^) 

for the linear atomic susceptibility dressed by both the fundamental and the third 

harmonic fields. In the following we have computed ^5,7,9(71,/a) p for Ii = 10̂ ^ 

^For the sake of clarity we have omitted all phases in the following. 
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Figure 2.8: Modulus square of the atomic dipole moments for the harmonic orders q = 5 
(solid lines), g = 7 (dashed lines) and g = 9 (dot-dashed lines) versus the intensity of the 
third harmonic: comparison between single- and two-colour calculation, for two values of 
the intensity of the incident laser field, / i = 1 x 10̂ ^ W/cm^ (thick hnes) and / i = 3 x 10̂ ^ 
W/cm^ (thin lines). 

W/cm^ and / i = 3 x 10̂ ^ W/cm^ , and a range of intensities for the third har

monic up to Is ft; 10~^/i. The calculations thus assume implicitly that none of the 

harmonics q — 5,7 and 9 is affected by the others. The result of this calculation 

is shown in Fig. 2.8. The deviation of the two-colour results from the single-colour 

results is very marked for / i close to the resonance intensity (thick lines), but much 

less pronounced away from it (thin lines), and the magnitude of the enhancement 

increases with harmonic order. I t would be interesting to investigate the effect of 

the enhanced dipole moments of the higher harmonics on the conversion efficiency 

but the calculation of the corresponding linear atomic susceptibilities necessitates a 

nonperturbative three-colour code. The phase relationship between the fundamen

tal and the third harmonic would also have to be addressed. In the following, wave 

mixing processes will be neglected. Close to resonance and at high intensities, we 

will only consider third-order harmonic generation. We will point out wave mixing 

effects whenever required in connection with calculations done in this thesis. 



Chapter 3 

Bessel-Gauss Beams 

3.1 Introduction 

The output of a laser, generating a TEMQO mode, is generally well described by 

a Gaussian beam of order zero, and, in the limit of a large confocal parameter, a 

description of the beam in terms of plane waves is sufficient for most applications. 

Consequently the vast majority of all investigations of laser-matter interactions until 

the late 1980's have used Gaussian or plane wave amplitudes to describe the electrical 

field of the laser beam. 

In 1987 a new type of beam, solution to the homogenous Helmholtz equation, was 

introduced by Durnin [68] and, soon afterwards, realized experimentally [69]. This 

beam has become known as Bessel beam owing to its transverse structure which is 

given by a Bessel function of the first kind and of order zero (Jo) in this particular 

case. We will describe its properties in greater detail later when introducing the 

Bessel-Gauss beam. Indeed, both the Bessel and the Gaussian beam will then 

simply emerge as special cases of the Bessel-Gauss beam. 

The Bessel beam introduces two very important features compared to the Gaussian 

beam: first, i t is a difl^raction-free beam in the sense that its intensity profile does not 

dependent on the coordinate in propagation direction, but only on the transverse 

coordinate. Second, its momentum (wavenumber) has both a longitudinal and a 

43 
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radial component. I t is easy to imagine that this is likely to be of utmost interest in 
all cases, where this type of beam is used to generate secondary radiation in wave 
mixing processes where phase-matching is not limited to one dimension (that is, the 
propagation direction). 

For a long time research into the applications of Bessel beams had focused essen

tially on the nondiffracting aspect, concentrating on various experimental realiza

tions and investigating about the length of diffraction-free propagation that could 

be achieved, and how the Bessel beam did compare to a Gaussian beam with re

spect to power-transport efficiency [70]. In the original experiment by Durnin and 

co-workers [69] the Bessel beam was created by placing a thin circular slit in the 

focal plane of a lens while in Ref. [102] a confocal resonator with an annular ac

tive medium was used. Other methods for obtaining (near) diffraction-free beams 

include the development of an algorithm suitable for designing transmission filters 

yielding the desired beam structure [194], the use of axicons (to be discussed later) 

or spherical lenses showing aberration [94], holographic methods [57,133,195,223], 

the use of Fabry-Perot interferometers [58,98] and periodic gratings with circular 

symmetry [152,222]. Higher-order Bessel beams have also been created to optimize 

applications in optical metronomy (e.g., precision alignment over long distances). 

Indeed, rather than using the bright central spot of a zero-order Bessel beam it 

was suggested that greater accuracy could be achieved by using the narrower dark 

central spot of a higher order beam (recall J„(0) = 6no)- In Ref [61] such beams 

have been created using magneto-optic spatial light modulators. It is worth point

ing out that the latter study, besides the usual intensity profile measurements, also 

includes the measurement of the phase of these beams. Usually, if the interest lies in 

a long diffraction-free zone, apodization of the beam has to be considered. Indeed, 

though all methods mentioned earlier generate the transverse Bessel profile to some 

extent, the axial intensity exhibits generally oscillations which have to be smoothed 

out [31,59,95,104]. In Appendix D, we will report in some detail on yet another 

simple method by which we have experimentally generated a Bessel type beam. 

Bessel beam generators can also be classified according to their efficiency. The loss 

of incident energy is quite severe in the set-up of Ref. [69] (see above), while the 
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efficiency of holograms depends on the specific type considered, e.g., around 40 % 

efficiency for the hologram used in Ref. [133]. The most straightforward and most 

efficient optical element to generate a Bessel beam, perhaps, is the conical lens, 

or axicon [94]. The term axicon designates generally every optical element which 

produces a focal line rather than a focal points A serious disadvantage of the axicon 

lies in the difficulty of manufacturing a conically shaped lens of suitable optical 

quality and explains why axicons are hardly available commercially. The literature 

abounds with reports on research on axicon design and we refer the interested reader 

to Refs. [209,210] and references therein. Fig. 3.1 shows how a conical lens works 

in principle, the light rays having been drawn according to the laws of geometrical 

optics. I f 7 is the base angle of the lens and a is the angle at which the rays 

Figure 3.1: Simplified geometric illustration of the optical path through a conical 
lens (from Ref. [94]). 

emerging from the lens intersect the propagation direction, then by Snell's law. 

sin(7 + a) = n sinj. (3.1) 

where n is the refractive index of the lens. For small angles a, we obtain from Eq. 

(3.1) approximately 

a = (n - 1) tan 7. (3.2) 

^More specifically, an axicon which transforms a point source into a line focus is called a 
lensacon [112]. . 
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It is easy to see how the Bessel profile is generated in this way. We can decompose 
the wavenumber of the incident plane wave exp{ik • x) as 

k •x = k_Lpcos{(j)k - (j)) + k\\z, (3.3) 

where k = {k±, k\i, (j)k) and x = {p, z, (j)) are cylindrical coordinates, and 

fcx = A; sin a, k\\ = k cosa, /jy + k^ = k'^ = k^ . (3.4) 

We thus get, by adding up all the amplitudes, that is by integrating over the az-

imuthal symmetry of the emerging wavevectors lying on the surface of a cone of 

half-opening angle a, 

exp{ikzcos a) 
27r ./o 

/ d(j) exp[ikpsmacos{^k — (/>)] = Jo ikpsma)exp(ikzcosa). 
Jo 

(3.5) 

This is the azimuthally symmetric zero-order Bessel beam. We have not yet dis

cussed the polarization of the scalar amplitude obtained so far and we will come 

back to this aspect in some detail in section 3.5. We shall henceforth call a the 

conical half-angle of the beam, or - if there is no confusion possible - the Bessel 

angle for simplicity. I t is apparent from Eq. (3.5), that A; cos a is the longitudinal 

component of the beam's wavevector k, while sin a is expected to be the transverse 

component. This can be confirmed by computing the Fourier transform 

F{K) = [dxJo{kpsina)exp{ikzcosa)exp{—iK-x.), (3.6) 
{2Try J 

which, with the help of Bessel function closure relation [10], 

•"+00 
pdpJo (Ap) Jo (Bp) = {1/B)6{A - B), (3.7) / 

^0 
'0 

is readily evaluated as 

F{K) - ^S{K^\ -kcosa)^5{K^ -ksina). (3.8) 

We also note from expression (3.5), that a pure Bessel beam, very much as the plane 

wave, cannot be realized in practice as it would carry an infinite amount of energy^. 

^This is the reason why both the Bessel and the plane wave amplitude can describe diffraction-
free beams [142]. 
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Indeed, each lobe of the Jg-profile contains very nearly the same amount of energy. 
Letting 

Sj = T " ' dppJlip) = [p]^,Jl{Pm) - PpliP^)] /2 , (3.9) 

where pj and pj+i are two consecutive zeros of JQ (p) (and defining po = 0), we get 

computing the first few values, 

5 i = 0.779, 52 = 0.985, 53 = 0.995,.... (3.10) 

I t can be easily shown, using the asymptotic expansion of Jo and p^+i — pj TT, 

that Sj approaches unity as j -)• -l-oo. Recalling pi = 2.405, we find the diameter 

of the central spot to be given by 

d . ^ A . (3.11) 
TTsmo; 

To get a physically realizable Bessel beam in experiments one has to consider an 

apertured (or windowed) beam profile. As the laser beam incident on a Bessel beam 

generator typically has a Gaussian transverse profile, two possibilities appear. Ei

ther the incident, well coUimated beam is truncated so as to simulate plane wave 

illumination, and a truncated Bessel beam is generated, or the Bessel beam is natu

rally cut-off in the transverse direction due to the exponentially decaying Gaussian 

beam profile. The latter beam is known as Bessel-Gauss beam [86]. In the paraxial 

limit, the corresponding field amplitude can be obtained by solving the well known 

Fresnel integral (see Appendix D), 

E{p, Z) = ^ Qi[kz+kpy2z] f"" ^ ^ikry2z (^^^/2^) ̂  (3.12) 

with 

EA{r) = EQ JO (A;rsinQr) exp{-kr^/b), (3.13) 

where b is the confocal parameter. The integral (3.12) can be evaluated in closed 

form for R +oo [86]. In Section 3.3 we will derive the spatial amplitude of the 

Bessel-Gauss beam by explicitely solving the paraxial wave equation. A compara

tive study investigating the long-range propagation characteristics of Bessel-Gauss, 

Bessel and Gaussian beams using the Fresnel integral technique for a finite aperture 
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R has been carried out in Ref. [154]. I t emerges from this study that a Bessel-Gauss 
beam has less pronounced axial intensity fluctuations than the truncated Bessel 
beam but propagates less far than the latter. For our purposes is thus seems that a 
Bessel-Gauss beam is more appropriate for describing the incident laser beam than 
a truncated Bessel beam as we are more interested in a high beam quality over fairly 
short distances (of the order of the medium length). 

Before discussing the role of Bessel-type beams in nonlinear optics we will mention 

briefly here, for completeness, other types of beams discussed in the literature. In

deed, especially since the discovery of Bessel beams, more research has been devoted 

to finding and describing the properties and possible applications of new beam types. 

For instance another very interesting type of Bessel beam is obtained when the ordi

nary Bessel function JQ {Bessel-J-beam) is replaced by the modified Bessel function 

Jo (Bessel-I-beam). This beam has a radially unbound profile with a minimum on 

axis {p = 0) hence its characteristics are strongly dependent on the windowing pro

file. I f the latter one is chosen to be Gaussian, a closed expression can be given for 

the amplitude on axis [196]. Not only does this Bessel-/-Gauss beam has a slower 

axial decay than the Gaussian or the Bessel-J-Gauss beam, but also, for some range 

of the propagation parameters, has a different sign of the geometric phase, which 

has potentially interesting applications in nonlinear optics (wave mixing processes). 

Weber beams finally make use of the Bessel function of the second kind (or some

times also called Weber's function)., YQ, which is unbound at the origin and has to 

be suitably truncated [225 . 

For Gaussian beams finally, besides the well known Gauss-Hermite and Gauss-

Laguerre beams [207], work has been carried out on flattened Gaussian beams 

13,87]. I t is worth noting, that second-harmonic generation with higher-order 

Gauss-Laguerre modes has been recently investigated by Courtial et al. [56]. There, 

the second-harmonic photons have twice the orbital angular momentum^ of the pho

tons of the fundamental field. This leads to interesting possibilities of manipulating 

microscopic targets by imparting them a large angular momentum [155 . 

^The orbital angular momentum of a photon is associated with the azimuthal component of the 
Poynting vector. 
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3.2 Bessel type beams in nonlinear optics 

Compared to the application of Bessel beams mentioned above it took much longer 

to appreciate the possibility of using the Bessel angle as new parameter in optimizing 

nonlinear processes. 

Early descriptions of self-modulating effects of Bessel beams were reported in the 

late 1980's and were aimed at investigating the creation of long, unbroken laser 

sparks during the breakdown of a gas (see Ref. [4] and references therein). The first 

generation of a harmonic by a Bessel beam was reported by Wulle and Herminghaus 

231]. In their experiment, the second harmonic of 1064-nm radiation was generated 

in a KDP crystal and the tunability of phase-matching demonstrated by varying the 

Bessel angle continously. The Bessel beam was obtained with the help of a specially 

designed Fresnel-like zone plate. This had the advantage of generating a Bessel 

beam without too much loss of power as required for driving a nonlinear interaction 

efficiently. Very much at the same time a similar result was obtained using annular 

beams by Glushko et al. [85]. They created a wide annular beam by blocking a 

large part of the center of a disk-shaped shield which was then focused in a cone 

of half-opening angle a into a pure alkali vapor (sodium and rubidium). A large 

conversion efficiency into the third harmonic of 1064-nm radiation was observed and 

moreover a certain immunity of the harmonic yield with respect to variations of 

the atomic density. As pointed out in their work, momentum conservation imposes 

that the harmonic generated in the atomic vapor also has a conical geometry, with 

half-opening angle /? related to the conical half-angle a by the axial phase-matching 

condition 

3A;(a;)cosQ; = A;(3a;)cos^ (3.14) 

where k{uj) and A;(3a;) are the wavenumber at the fundamental and at the third 

harmonic frequencies, respectively. Moreover, for the particular beam geometry 

considered in their experiment, conservation of the normal components of the mo

mentum could also be achieved for values of (5 compatible with Eq. (3.14). In fact, 

the variations of the input parameters translating into variations of the refractive 

index (either because of the variation of pressure or because of Kerr nonlineari-
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ties) could then be shown to be compensated by a varying emission angle /?. They 
called this remarkable effect, which requires a negatively dispersive medium, self-
phase-matching. A theory of self-phase-matching was developed soon afterwards by 
Tewari et al. [217,218]. In this work the results of Glushko et al. were explained 
by treating the annular beam used in the experiment as a superposition of several 
Bessel beams with a narrow range of values for the angle a (see also section D.2) 
At the same time, the concept of an additional radial phase-matching condition 
was introduced, expressed as the required overlap of the Bessel profiles of both the 
fundamental and the harmonic field inside the medium. 

These insights were used by Peet and Tsubin [164-166] to investigate thoroughly 

third harmonic generation and resonant multiphoton ionization in xenon, comparing 

Gaussian, Bessel and annular beams. It was found that the Bessel beam displayed 

a broad ionization band owing to the self-phase-matching mechanism which allowed 

for efficient third-harmonic generation in a large spectral range on the high-frequency 

side of the 6s resonance, where the medium is negatively dispersive. On the other 

hand, absorption was very important for the third harmonic field generated close 

to the resonance by the Bessel beam of large conical half-angle a = 17° (see also 

section C.3) and the intensity of the Bessel beam, focused by an axicon, was low 

compared to the intensity of both the Gaussian and the focused annular beam. 

This resulted in the impossibility of measuring the third harmonic yield outside the 

medium for the pure Bessel beam. The annular beam, with a range of Bessel angles 

around 3°, behaved very much like the Bessel beam and its overall efficiency in 

frequency tripling compared very well to the Gaussian beam in similar conditions. 

A recent work proposed the use of Bessel-Gauss beams for probing the nonlinear 

refractive index of optoelectronic materials [99]. In the so called Z-scan method a 

tightly focused Gaussian beam induces self-focussing effects due to the intensity de

pendent refractive index of the medium: namely, when scanning the sample through 

the focal plane, a characteristic pattern of peaks and dips in the far-field pattern is 

recorded which permits the inference of the characteristics of the nonlinear refrac

tive index. The authors predicted a significantly enhanced sensitivity of this method 

(that is a larger ratio of the peaks with respect to the dips) when the Gaussian beam 
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amplitude is replaced by a Bessel-Gauss beam with a small conical half-angle a. 

3.3 The spatial field amplitude 

We will now turn to a brief description of the derivation of the Bessel-Gauss am

plitude, solving explicitely the paraxial wave equation. We follow closely a similar 

calculation by Overfelt [153\ 

Starting from the scalar wave equation in cylindrical coordinates (p, z, 0), assuming 

azimuthal symmetry from the outset, we have 

1 d f d 1 
_pdp\^dp) dz^ c'dt^ 

E{p,z,t) = 0. 

The ansatz for the solution of this equation is taken to be 

(3.15) 

E{p, z, t) = exp[i{kz — cot)] E{p, z), (3.16) 

neglecting, as usual in the paraxial approximation, the second-order derivative of 

the slowly-varying envelope function E{p, z) with respect to z. In this way we obtain 

pdp \ dp) ^ dz 
E{p,z)=0. (3.17) 

The ansatz for the dependence on the spatial coordinates is similar to the one for 

the Gaussian beam, except for an additional Bessel function. I t reads 

" kp^ " T- , / X T / A;psinQ; , „ E{p, z) = EiJQ[ — - — ) exp[iP[z)\ exp 
S\Z) L 2g (^)J • 

(3.18) 

Inserting Eq. (3.18) into Eq. (3.17) and using 

X — ksmap/s{z), (3.19) 

we arrive at the following equation 

kp 
Jo(x)[g'(^) - 1] + 

2ik'^ sin ap , 
s{z) 

+ Jo (a;) 
2ik 

W ) 
2kP'{z) 

s{z)\ 

ksina' 
= 0 
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which can be satisfied by requiring the three square brackets to vanish simultane

ously. I t is a straightforward matter to solve the resulting equations for s{z),q{z) 

and -P(^). The final result is 

E{p,z) = 
Ef 

:Jn 
A;psinQ: 

X exp 

yi7(w^ v i + . ( 2 V f . ) 
kp'^/b ikzsm'^a/2 

-?tan"^ {2z/b) (3.20) 
l + i{2z/b) •l-\-i{2z/b) 

Here, we have introduced the confocal parameter^ b, making use of the integration 

constants by requiring the amplitude in the focal plane z = 0 to be given by 

E{p,z = 0) = EfJo(A;psina) exp[—(p/two)^], (3.21) 

where WQ = \/b/k is the beam waist. E{, consequently, is the focal field-strength. 

I t is more convenient, though, to separate more clearly phase and amplitude of the 

Bessel-Gauss beam and we rewrite Eq. (3.20), including the travelling plane wave 

part from Eq. (3.16), as 

{2z/b), 

X exp {-k{p^ + z^ sin^ a)/b[l + {2z/bf]] 

X exp {i [kz{l - sin^ a/2) - tan"^ {2z/b)] ] 

X exp [ik {2z/b) (p2 + z'^ sin^ a)/b[l + {2zlbf]} . (3.22) 

While the radial distribution in the focal plane, as given by Eq. (3.21), is simply a 

damped Bessel profile, the amplitude for z > 6/2 is essentially a Gaussian function 

located about p = z sin a: 

E, 
EBG{p>2z/kbsma,z:^b/2) -i 

X exp I - kb . 2 ^ ( p - ^ s m « ) • + I 

\j2'K{2z/b)kpsin a 
/ 2̂ > 

(3.23) 

kz\l + 
2^2 

That is, in the far-field zone the beam propagates along the surface of a cone of 

half-opening angle a. 

"^Lr = b/2 is also known as Rayleigh length. 
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EBG reduces to the electric field amplitude of a pure Gaussian beam, 

z , / N f kpyb 
EG{P,Z) = = exp ' 

y/l + {2z/bf V l + (2^/^) 

X exp < I kz - tan-^ {2z/b) -b {2z/b) ^^'^^ 
1 - f {2z/bf 

for a; 0, and to the electric field amplitude of a pure Bessel beam. 

(3.24) 

£'B(P, Z) = Ef Jo (A;psin.Q;) exp (ikz cos a ) , (3.25) 

in the loose-focusing limit (b —> -|-oo) provided cos a ft; 1 — sin^o;/2, which is valid 

for small angles a up to fourth order in a.^ This difference can be traced back to the 

paraxial approximation - while the Bessel-Gauss beam is a solution to the paraxial 

wave equation, the pure Bessel beam Eq. (3.25) is an exact solution of the wave 

equation with no restriction on the angle a. We will assume the approximation 

above to hold and replace 1 — sin^ a/2 by cos a in Eq. (3.22). 

More general types of Bessel-Gauss beams exist, namely the higher-order Bessel-

Gauss beams, involving the Bessel function J„ [14], the modified Bessel-Gauss beams, 

involving the Bessel function /„ [14,196], the generalized Bessel-Gauss beams, con

sisting of a superposition of Gaussian beams at their waist plane and having their 

centres on a circumference of a given radius and their mean axes lying on the surface 

of a cone [14], the Super-Gaussian-Bessel beam introduced in Ref. [105], where the 

windowing profile is assumed to have the form exp[—(p/too)'*], and, last but not 

least, vector-beam solutions, that is solutions which are not restricted to the scalar 

wave equation [90,91]. We will discuss vector-beam solutions in connection with the 

polarization properties of Bessel-Gauss beam in section 3.5. 

We will restrict ourselves to the zero-order Bessel-Gauss beam as more general 

Bessel-Gauss beams would be even more difficult to realize experimentally at suf

ficiently high intensities and there is a priori no advantage to be expected from an 

azimuthally asymmetric beam with respect to phase-matching. 

'(1 - sin a/2) - cosa — a /8 -h higher orders 
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3.4 Properties of Bessel-Gauss beams 

We can compute the power carried by the Bessel-Gauss beam, Eq. (3.22), by inte

grating over the radial intensity profile. Using formula 6.633.2 of Ref. [88], 

^ dxxexp{-a^x^)Jo{ax)Jo{bx) = ^exp(^-^^^^^ Io(^-^^ , (3.26) 

and Jn{z) — Jniz)^, a straightforward calculation leads to the ^-independent ex

pression 

„ , , ^ / ^TTsin^aX ^ /bTrsm^a\ , , 
PBG(«) = PG exp Jo ( ^ ^ j ' (3-27) 

where Jo is the modified Bessel function of order zero, and 

PG = PBG(a = 0) = ^ / f (3.28) 

is the power carried by a pure Gaussian beam of the same focal intensity. It results 

from Eqs. (3.27) and (3.28) that the power of a Bessel-Gauss beam with o; ^ 0 is 

smaller than that of a Gaussian beam of same focal intensity and confocal parameter. 

Moreover, taking the derivative with respect to a, is it easy to show, using the 

properties of modified Bessel functions [1], that PBG(Q:) is a strictly monotonically 

decreasing function of a. 

Furthermore, Gaussian and Bessel-Gauss beams of same power have focal intensities 

and confocal parameters related by 

T U T U ( ^BGTTsin^aA / 6 B G 7 r s i n ^ Q ! \ 

JG,f OG = JscfOBG exp ^ J /o ^ j . (3.29) 

Therefore, a Bessel-Gauss beam has a larger confocal parameter than a Gaussian 

beam of same power and focal intensity, and a larger peak focal intensity than a 

Gaussian beam of same power and confocal parameter. 

I t is very interesting to compare the radial power density of a Gaussian beam and a 

Bessel-Gauss beam with a large confocal parameter in the focal plane, as shown in 

Fig. 3.2. With increasing angle a. the energy of the incident beam is spread over a 

large number of oscillations in the Bessel function. Clearly most of the Bessel-Gauss 

is the complex conjugate of z. 



CHAPTER S. BESSEL-GAUSS BEAMS 

B 0.6 

N 0.4 

20.0 
P (^m) 

40.0 

Figure 3.2: (a) Radial intensity profile, I{z = 0, p), and (b) radial power density, 
2'KpI{z = 0,p), of a Gaussian beam (dashed line, a = 0°) and a Bessel-Gauss 
beam (solid line, a = 1.2°) in the focal plane. The two beams have the same focal 
intensity, normalized to unity on axis, and the same total power, which is given by 
the total area enclosed by the curves and the p-axis in (b). The confocal parameter 
of the Gaussian beam has been set to 6G = 2 mm, the confocal parameter of the 
Bessel-Gauss beam is therefore, according to Eq. (3.29), 6BG = 48.7 mm. 
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Figure 3.3: Radial intensity profile for various ^-positions with & = 4 mm and 
a = 1.2°. 
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Figure 3.4: Radial intensity profile for various z-positions with 6 = 4 mm and 
a = 3.0°. 
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beam's power is concentrated in the secondary maxima in strong contrast to the 
Gaussian beam, where the maximum is close to axis followed by a fast decay. 

While for a values of \z\ small compared to b the beam shows essentially no diffrac

tion, the transverse profile changes considerably as b becomes smaller for given \z\ 

(and a). In Figs. 3.3 and 3.4 we show the transverse intensity profile of a Bessel-

Gauss beam with a confocal parameter 6 = 4 mm for various \z\ and a. First note, 

that for the same Bessel angle as in Fig. 3.2, a = 1.2°, in Fig. 3.3 we find less 

secondary peaks in the focal plane z = 0. As \z\ increases slowly, the transverse 

intensity profile approaches quickly the far-field pattern given by Eq. (3.23). This 

is all the more pronounced as the Bessel angle increases, as shown in Fig. 3.4. Note 

further that the peak is not exactly located at p = zsina but slightly before due to 

the p~^/^-dependence of the field amplitude in this Hmit, given by Eq. (3.23). 

We conclude this section by simply relating an important quantity for the character

ization of a laser beam, the M^-factor, which characterizes the angular divergence of 

a beam [208]. I t is defined as = 27raoaoo, where <TO and CToo are the second-order 

moments associated with the intensity distribution of the beam at focus and in the 

far-field, respectively. A closed expression can be obtained for the Bessel-Gauss 

beam of order n [30], the value for n = 0 is 

7 ' > 1, (3.30) 
^0(7) . 

where 7 = ^Trsin^ a/2X as in Eq. (3.27). In the Gaussian limit, a = 0°, one recovers 

the well known result = 1. is continuously increasing with 7 and thus with 

growing confocal parameter and/or Bessel angle and with decreasing wavelength. 

Recalling the far-field profile (large |2;|) of the Bessel-Gauss beam from Figs. 3.3 and 

3.4, the increase of is easily understandable. As far as applications of Bessel-

Gauss beams in nonlinear optics are concerned, we will see that this feature turns 

out to be an additional advantage as it will allow to separate spatially the harmonic 

field from the incident laser field in the far-field region, due to their respectively 

different cone angles. 
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3.5 Polarization of the Bessel-Gauss beam 

So far we have tacitly assumed that the Bessel-Gauss beams discussed in the previous 

sections may have any given state of polarization. In fact, it appears that such beams 

are not divergence-free, that is, they are not solutions of the full set of Maxwell 

equations. For the Bessel-Gauss beam this had to be expected as it is a well known 

feature of paraxial solutions of the wave equation [122], such as the Gaussian beam 

family. In Ref. [122] a power expansion of the Maxwell equations was carried out in 

terms of X/b and the Gaussian beam family found to be divergence-free to zeroth 

order. The same result was obtained for Bessel-Gauss beams in Ref. [91]. It is 

less obvious that this difficulty should also arise for pure Bessel beams, as they are 

ful l solutions of the scalar wave equation. Yet, the reason for this is simple - the 

vanishing of the divergence remains always an additional constraint on the solutions 

of the scalar wave equation, though it is used in deriving it . 

We are going to investigate this aspect in some detail in the following. Assuming 

a harmonic time-dependence of the fields, we may, because of the linearity of the 

Maxwell equations, seek solutions of the form 

E = Esi cos{ujt) + Es2 sm{u;t) = Re{2£;s exp{-iLot)} (3.31) 

B = Bsi cos{ujt) + Bs2 sm{cot) = Re{2Bs exp{-iujt)} (3.32) 

where the complex space-dependent amplitudes Es and Bs are solution of the free-

space Maxwell equations 

V-Es = 0 (3.33) V X £;s = iujBs (3.35) 

V Bs = 0 (3.34) V X Bs = -i{uj/c^)Es (3.36) 

Deriving the wave equation in the usual way, we obtain the following equivalent 

set of equations 

[V^ + {co/c)^]Es = 0 (3.37) 

Bs = - i ( l / w ) V X Es (3.38) 

V-Es = 0. (3.39) 
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The amplitude Eq. (3.25) for the Bessel beam amplitude can be recovered, provided 
Es = Ese with some space-independent (unit) vector e. However, because of Eq. 
(3.39), e • VEs = 0 is required, which, after a quick glance at Eq. (3.25), obviously 
does not hold if a > 0°. Based on this observation, Mishra [144] showed that it 
was possible to construct a diffraction-free Bessel beam solution of the Maxwell 
equations with predominantly linear polarization in a given direction. 

More generally, this problem can be avoided by recombining Eqs. (3.37) and (3.39) 

into 

V X V X - (oj/cfEs = 0, (3.40) 

which is called the vector wave or vector Helmholtz equation, the solutions of which 

are automatically divergence-free. The general expression for vector Bessel beam 

solutions of Eq. (3.40) has been given by Bouchal and Olivik [32]. We will rederive 

the result for linear polarization independently in a simple way by making use of 

the Bessel beam solution of the scalar wave equation. For this, we note that, letting 

k = u)/c, 

E /""^ 
Es = — 1 duA{u)ex]i{ik[xa{u)sma + yh{u)sm.a + zcosa]] (3-41) 

is a solution of Eq. (3.37), provided a^{u)^-\p-{u) = 1, u € [ui, u^]. We specialize here 

to Ml = 0, M2 = 27r and a{u) = — co&u,h{u) = — siuM. Taking the gradient of the 

exponential leads to fc = A;(—sinacosM, — sin a sin u, cos a). Hence, for the solution 

to be divergence-free it is sufficient to find A{u) such that A{u) • fc = 0 everywhere, 

which is readily achieved using A{u) = (1,0, tan a cos u). The integral Eq. (3.41) 

can be solved in closed form and yields, using cylindrical coordinates x = pcos4>, 

y = psiiKf), 

Es,x = Eo Jo{kpsma) exTp{ikzcosa) (3-42) 

Es,z — Eo{-'i)cos(j)tanaJi{kpsma)exi){ikzcosoi), (3.43) 

which is identical to the corresponding solution given in Ref. [32]. Clearly, for not 

too large values of the angle a, we find that describing a linearily polarized Bessel 

beam using Es,x only, as in Eq. (3.25), is a good approximation. A diff'erent but 
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related matter is how well the solution Eqs. (3.42)-(3.43) can actually be realized 
experimentally. The authors of Ref. [32] did investigate the tranformation of a 
linearily polarized plane wave by a linear axicon and found that the beam structure 
obtained is in good agreement with the one obtained Eqs. (3.42)-(3.43) only i f the 
beam's central spot is much larger than the wavelength. Again, as can be seen 
from Eq. (3.11), this is tantamount to requiring a reasonably small angle a. The 
reason for this restriction can be easily explained using our method introduced 
above. Indeed to simulate a linear axicon we have to require additionally A{u) to 
be normalized to unity (so as to have a genuine unit vector describing polarization), 
that is A{u) = (cos^ a + sin^ a coŝ  ix)"^/^ (cos a, 0, sin a cos u). This leads of course 
to yet another divergence-free solution of the scalar wave equation but it reduces to 
Eqs. (3.42)-(3.43) only in the limit of small a. No closed form of the integral can be 
given in this case. 

We will not pursue these investigations any further within the framework of this 

thesis but expressedly note as a conclusion from the study above that it is sensible 

to talk about a linearily polarized Bessel-Gauss beam, the expression for the field 

amplitude as given in section 3.3, provided the conical half-angle a is not too large. 

Research into the properties of large-o; Bessel beams is currently in progress [167 . 

3.6 Pulsed beams 

If a pulsed beam needs to be described, one can make use of the superposition 

principle to generate the desired temporal pulse shape. The monochromatic solution 

of the wave equation is thereby weighted with a frequency spectrum g{Lo), 

/

+00 

da; g{Lo) [EfJo [kp sin a) exp(A;2; cos a — ujt)], (3.44) 
00 

centered as some carrier frequency ojq. In Eq. (3.44) we have taken for simplicity the 

pure Bessel beam of Eq. (3.25). We assume the distribution ^(a;) to be Gaussian, 

(w - W o ) ^ ^ ' 
giu) = —, exp 
^ 2v/27hr2 81n2 

(3.45) 
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the prefactor being chosen in such a way as to normalize the integral of g{u)) to 
unity. A straightforward calculation then leads to 

E 
E-Q{p,z,t) = exp[i{koz cos a - LOot) / d^ exp(2A;osinQ;coS(?i)) 

27r Jo 

(3.46) X exp 
, 'psino;cos0-I-2;COSQ; 

" z in. z CT 

In the latter expression, one recognizes the pulselength r as defined in section 2.3. 

Clearly, provided psinQ;/(cr) <C 1, the distortion of the pulse shape due to this term 

is negligible. This will be the case in all subsequent calculations. Indeed, recalling 

from the figures in this chapter that p < 100 microns and typically o; < 5°, we 

obtain for a r = 15 ps pulse and a medium length of L = 1 mm the following orders 

of magnitude, 

cr = 4.5 mm, ps'ma<10pm., z cos a < 1mm. 

For the shape of the pulse we will thus simply assume the form 

pulse shape = exp - 2 In 2 
2; cos a ^ 

CT T 
(3.47) 

The Gaussian pulse shape is a very common intensity profile used in propagation 

calculations (see, e.g., Ref. [131]). The total energy carried by a Bessel-Gauss beam 

can now be evaluated and it is given by 

£B0 = £ " p W d t = ^ r P 3 0 (3.48) 

Ultrashort pulse versions of Bessel beams, so-called Bessel-X beams, have been also 

been introduced (see Ref. [211] and references therein). They are generated from 

femtosecond laser pulses and meant to allow for diffraction-free transmission of im

ages over large distances. The difficulty that arises when considering very short 

pulses is the possible dispersion of the Bessel beam generator, e.g., the frequency-

dependence of the refractive index of glass in the case of an axicon, resulting in a 

temporal spread of the pulse. The authors of Ref. [211] have investigated the pos

sibility of compensating this spread by playing the dispersion of the Bessel beam 

generator against the dispersion of the medium into which the resulting beam is 
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afterwards focused. An experimental realization of such Bessel-X pulses has been 
reported in Ref. [197 . 

We finally note that a family of Bessel-Gauss pulses can be obtained as exact so

lutions of the homogenous scalar wave equation (that is, without having to make 

the slowly-varying envelope approximation), provided the ansatz, given here for the 

azimuthally symmetric zero-order solution, has the form 

E{p,z,t) = exp[ik^{z + ct)]G[p,k+{z - ct)]. (3.49) 

The amplitude Eq. (3.49) thus consists of a plane wave travelling in -z direction 

and a general wave travelling in +z direction. This type of solution can describe 

the propagation of electromagnetic energy localized both in space and time. The 

amplitudes for the Bessel-Gauss beam of section 3.3 can be recovered by taking the 

appropriate limits. 



Chapter 4 

The Propagation Equations 

4.1 Introduction 

In the present chapter we will derive in some detail the expression for the harmonic 

fields as they emerge from the medium in which they have been created and travelled 

through. As starting point, we take the macroscopic Maxwell equations, 

V-D{x,t) = Pfree(x,t) (4.1) 

V - B ( x , 0 = 0 (4.2) 

V . E M = (4.3) 

- V x B { x , t ) = Jfree(x,^) + ^ ^ ^ (4.4) 

The relationship between the electromagnetic displacement vector D and the elec

tromagnetic field strength E is written in the usual way (see, e.g., Ref. [33]) as 

D = eoE-hP, (4.5) 

where we have introduced the macroscopic polarization P. A straightforward cal

culation leads to the propagation equations in the form 

eoV-E = - V - P - f p f r e e . (4.7) 

64 
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Unlike in section 3.5, the divergence condition (4.7) is not automatically included in 
the vector equation (4.6). Indeed, taking the divergence of the latter equation and 
requiring on physical grounds the continuity equation to hold for the free charges, 

V-Jfree + ^ = 0, (4.8) 

we obtain 

— {eoV-E + V-P-p,ree} = 0, (4.9) 

and thus 

eoV-E-{-V-P-p{,,e = Ht-\-G, (4.10) 

where H and G are two arbitrary space-dependent functions. E includes both 

the fundamental and the harmonic fields. In the present case, we will impose as 

boundary condition an incident laser pulse, whose amplitude vanishes at every point 

in space for t -> —oo. As a consequence, the macroscopic polarization P driven 

by the incident field, the harmonic fields generated by the nonlinear part of the 

polarization, and the build-up of free charges pf^ee due to ionization mechanims, 

necessarily obey the same boundary condition. Accordingly, H and G have to 

vanish because the right hand side of Eq. (4.10) vanishes at every point of space for 

t —>• —oo. 

Having seen in section 3.5 that it reasonable to make use of the divergence condition 

for the Bessel-Gauss family of field amplitudes (keeping in mind the restriction on 

the Bessel angle) we shall proceed in the same way here by inserting Eq. (4.7) into 

Eq. (4.6) and neglecting the divergence condition Eq. (4.7) in all further calculations. 

The basic propagation equation now reads 

Initially, for a neutral atomic gas, there are neither free charges (phee) nor free 

currents (Jfree)- At high intensities, though, the onset of strong ionization will result 

in a rapidly growing population of ions and electrons. One can neglect the effect 

of the ions "as the electrons are by far the lightest of the charged particles involved. 
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thus showing a much stronger response than the ions to the fields inside the medium. 
Further, the contribution of the ions to harmonic generation is generally thought to 
be less than those of the corresponding neutral atoms, essentially because of their 
lower polarizability. As already mentioned in section 1.2.3, the ionic contribution to 
the harmonic spectrum shows only up in those cases, where their higher saturation 
intensity prevents them from getting ionized as quickly as the corresponding neutral 
atoms. This is essentially the case for the highest harmonics generated at very 
high intensities in helium and neon with a short fundamental wavelength (< 500 
nm) [227]. I f hydrogen is considered in applications, the ionic contribution can 
of course be omitted altogether. In the following we neglect therefore all ionic 
contributions. 

The contribution of the free electrons can be treated in the following approximate 

way: assuming the electrons to behave classically, we may write 

Pfree(x,t) = -eA4i (x , i ) (4.12) 

Jfree(x,t) = -6 Afe\{x,t) Veliki, t) , (4.13) 

where A/'ei and v^i are the density and the velocity field of the electron gas, respec

tively. Using the simplest possible classical equation of motion, 

^ ^ ^ ^ ^ + ^coi.t^e.(x,i) = --E{x,t), (4.14) 
ot m 

where the damping term involving fcoii includes phenomenologically electron-ion 

scattering [187], we arrive at 

ajfree(x,i) . ^,e' 2 
= Ki{^,t)-Eix,t) + e 

ot m 
Ĵ coll-A/'el(x,t) -

aA4i(x,t) 
dt 

v,,{x,t), (4.15) 

and finally get, for the ful l wave equation. 

^ ' ^ - 7 ^ ^ - M , t ) - E = . . ^ (4.16) 

• - V ( V - P + eA/'ei) + e/io Ẑ collA/el dt 

Eq. (4.16) has to be solved simultaneously together with Eq. (4.14), while the relation 

between the velocity and the density of the free electrons (the latter being determined 

by the ionization rate) is further restricted by virtue of the continuity equation (4.8). 
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The last question that remains to be addressed is the form of the constitutive relation 
between the polarization P and the driving field amplitude E. We note first that it 
is convenient and customary to separate the linear contribution from the nonlinear 
contribution, 

P = Pl + Pnl (4.17) 

In what follows, we will consider only the linear part for simplicity, though the 

conclusions we are going to draw from the following considerations are independent 

of the order of nonlinearity. The relationship is local in Fourier space, 

PiAk,^) = eo^Xij{k,oj)E,{k,uj), (4.18) 
j 

where Xij is the susceptibility tensor and i,j = 1,2,3 are cartesian indices. The 

reason for this is the general assumption in physics of a local exchange of energy and 

momentum between particles. The susceptibility in Eq. (4.18) can (in principle) be 

evaluated by diagrammatic techniques (Feynman diagrams) from the field theory of 

the electromagnetic force [63]. As a consequence, the relationship between PL (X , t) 

and E{x,t) is generally nonlocal, 

PLAx,t) = eoJ21 dr J dx'xij{^,x',T)Ej{x',t-T). (4.19) 

Neglecting the spatial nonlocality is easily justified in our case, because it is tanta

mount to the validity of the dipole approximation which we have asserted in section 

1.2.1: neglecting the photon's momentum simply means, that Eq. (4.18) is effectively 

independent of the wavevector k. In coordinate space this amounts to a spatially 

constant field amplitude with respect to the dimensions of the atomic system con

sidered. We thus have to transform Eq. (4.16) into Fourier space only with respect 

to time, keeping the relationship between spatial coordinates local. Before doing 

this we suitably tailor the general equation (4.16) to our needs. We shall consider 

linear polarized fields throughout, as we have seen in section 1.2.2 that the harmonic 

yield decreases with increasing ellipticity of the incident field. Therefore, we let 

E{x,t) = eE{x,t) , P{x,t) = eP{x,t), (4.20) 
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e being a spatially fixed unit vector, and project Eq. (4.16) onto this direction. This 
leads to 

^ 8'^E FfP 

. i ( e . V ) 2 p - - ( e . V ) A 4 i + e 
Co eo 

Ĵ collA/el ^ 
at 

(e • • U e i ) . 

Little work has been done to study the influence of the terms appearing in the 

second line of Eq. (4.21) on the generation and propagation of harmonics in gases 

and they are usually omitted in the literature. This happens essentially because of 

two reasons: first, the term proportional to the gradient of the polarization vanishes 

in the plane wave limit, P oc exp(zfc • x) , because of e • A; = 0. Second, the effect of 

the free electrons is generally assumed to be essentially confined to a mere change 

of the refractive index, the contribution to which is given by the term proportional 

to J\fe\E in Eq. (4.21). Therefore, it is the equation given by the first line of (4.21) 

which is taken in most cases as starting point for propagation calculations [5,7,130, 

131,171,188,189,201,206] or expressions derived from this equation [158,160]. We 

shall follow this approach here. 

The transformation into Fourier space with respect to time is carried out in a way 

appropriate to quasi-monochromatic fields whose frequency spectrum is confined to 

a narrow bandwith around a given carrier frequency. The real fields are thereby 

expanded as 

f i x , t) = Y^ fg{x, t) exp(-iqtot) = /o(x, ^) + Re[2/,(x, t) exp{-iqut)], 

(4.22) 

and we obtain the propagation equation in Fourier space in the form 

V X H - H ' » ^ S , = - - ( ^ ) ' ^ ' N L , „ (4.23) 

neglecting all time derivatives with respect to the Fourier components fq{x,t) [130, 

131]. The refractive index Ug in Eq. (4.23) is given by 

rig = [l+Kti^,t)x.M+Ki{^,t)xeMY^\ (4.24) 
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where we have made use of 

PL,g{x, t) = eoxEgix, t) = eoA4t(x, t)x^t[qoJ, / i ( x , t)]Eq{x, t), (4.25) 

and defined the electronic susceptibility, 

= ^ = -8.970 X 1 0 - 3 4 . (4.26) 

In Eq. (4.25) we have made use of the macroscopical isotropy of the atomic gas 

and assumed a scalar relationship between the polarization and the driving field 

amplitude^. We have also replaced the linear macroscopic susceptibility by the 

product of the atomic density A/^t and the linear atomic susceptibility, which we 

have introduced in chapter 2. / (x , t) is the intensity at a given point in space and 

time in the medium and will be specified at a later stage. Al l quantities entering Eqs. 

(4.23),(4.24) and (4.25) are understood to be slowly time-varying on the scale of the 

fundamental period of the incident laser field but this (remaining) time-dependence 

is now entirely local. 

Going beyond the quasi-monochromatic approach leading to Eq. (4.23), the slowly-

varying envelope approximation (in the time domain) takes additionally the first 

time-derivatives of the fields into account, leading to 

V'E, + ^ [ 1 + A4iXei (9^) ]^ , + = -^0 [ojVP, + 2zquj^^ . (4.27) 

This approach has been used recently by the authors of Ref. [5]. However, several 

approximations have to be made. Firstly, the time-derivative of the polarization 

is dropped, except for the linear term given by Eq. (4.25), where only the time-

derivative of the electric field amplitude is taken into account. By further assuming 

the slowly-varying envelope approximation in the space domain (for the propagation 

direction z) to hold, Eq. (4.23) can be recovered by a transformation into the co-

moving frame [5,191], 

z = z', t ' ^ t - z/vg,,, (4.28) 

provided the group velocity Vg^g, which depends on the refractive index Eq. (4.24), 

is assumed to be constant. A more recent approach [7] consisted of solving Eq. 

^The harmonic index q is thus not related in any way to the tensorial indices i,j in expressions 
(4.18) and (4.19). 
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(4.23) for a continous range of frequencies and obtaining the time-dependence of the 
electrical field by a Fourier transform back to the time-domain. This is possibly the 
most accurate method to date, although it is an approximation with respect to the 
electronic contribution too, because as a product of two time-dependent functions, 
the term Af^iE in Eq. (4.21) is, strictly speaking, a convolution in Fourier space. 

We shall adopt a diflPerent approach here but one which is essentially equivalent to 

the slowly-varying envelope approximation outlined above. We replace expansion 

(4.22) by 

fix, t) = /o(x, t) + Yl Re[2/,(x, t)], (4.29) 

9>0 

and we assume that we can solve the propagation equation for each harmonic com

ponent q, 
1 d'klEgix,t)_ d'P^aX,t) 

V ^ . ( ^ ' ^) - ^ 5^ ' (4.30) 

separately, provided the smallest time-scale is still given by Tg = 2'K/qu. In writing 

down Eq. (4.30) we have already made use of an assumption introduced above, 

namely that the effect of free electrons is entirely described by an appropriate change 

of the refractive index, such that kg = ko,gng, where ko^g is the free-space wave 

number and Ug the refractive index as given in Eq. (4.24). Clearly, Eq. (4.30) 

reduces immediately to Eq. (4.23) if we go back to the quasi-monochromatic limit. 

Some advantages are associated with proceeding in our way. Firstly, as will be shown 

in detail in the next section, we can make use of the retarded Green's function to 

get a compact expression for the harmonic far-field, secondly, we shall be able to 

derive the slowly-varying envelope approximation in a simple way and thirdly, the 

correction beyond the slowly-varying envelope approximation can be obtained in 

principle, as long as its variation is still small on the time-scale set by Tg. 

4.2 Solution of the propagation equation 

Various approaches exist for solving Maxwell's equations or propagation equations 

in general. L'Huillier et al. [130] first used an integral method to solve Eq. (4.23) 
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and later a space-marching Crank-Nicholson scheme for solving the same equation 
numerically on a large grid [131]. Different schemes for the first-order Maxwell 
equations are discussed by Hile and Kath [97], and a beam propagation method 
based on Fade approximants has been presented by Chiou and Chang [47]. In this 
thesis, we will use an upgraded version of the integral method of Ref. [130]. Though it 
is not possible in this way to determine the fields inside the medium or the near-field 
outside the medium, this approach allows, however, for a semi-analytical treatment 
of the propagation aspects. This, besides speeding up the calculations and reducing 
the risk of spurious numerical effects, makes it possible to search more effectively the 
huge parameter space which is generated by the many tunable parameters involved. 
As we are also more interested in making a general comparison between Gaussian 
and Bessel-Gauss beams rather than trying to explain every 'wiggle' in the far-field 
profiles, this straightforward and robust method is all the more convenient. 

For the expression of the refractive index Eq. (4.24) we will take more specifically 

= [ l - f A 4 t ( x ) x , ( x , i ) ] i / 2 (4.31) 

Xg (x , t ) = [ l - / i o n ( x , ^ ) ] X a t [ 9 ' ^ , / ( x , i ) ] + / ion (x , t )Xel (gw), (4.32) 

where /ion(x, i ) is the photoionization probability^. Expression (4.32) thus assumes, 

that the interatomic distances are much larger than the distance the free electrons 

travel after ionization, which is a valid approach for dilute atomic gases and short 

pulses we are going to consider in applications. The photoionization probability 

/ion(x, t) is defined by generalizing Eq. (2.26) to the time-dependent expression 

/ion (x, i ) = 1 - exp I - y r [ / (x , t')] dt' I . (4.33) 

We proceed now to solve the propagation equation (4.30): following the approach 

outlined in Ref. [130], we assume = 1 in a first step^, which allows for an integral 

solution of the wave equation (4.30), namely [103] 

" a 2 p N L , , ( x , o E , { x ' , t ' ) = ( - f ^ ) I d x | x ' - x | - ^ 
^ 47r/ ^medium 

, (4.34) 
t^f-[kJqw)\^'-^\ 

^More precisely, /ion(x, t) is the probability that the atom, located at position x, is photoionized 
at or before time t. For simplicity, we shall continue using the expression (photo-)ionization 
probability. 

^This is analogous to the assumption of a constant group velocity made in connection with 
transformation Eq. (4.28). 
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where we do not have to add a solution of the homogenous equation as no fields 
are present at i -> -oo before the interaction is switched on. This is achieved by 
imposing an adequate t ime dependence on PNL ,? , namely by considering an incident 
laser pulse of finite duration. We reintroduce in a second step the spatio-temporal 
dependence of Ug, proceeding as shown in detail later. The basic assumption under
lying this two-step approach requires the medium to be dilute. We shall therefore 
require 

A 4 t ( x ) x i ( x , t ) , A 4 t ( x ) x , ( x , i ) < 1 (4.35) 

to hold. I t is ult imately the electronic contribution at the fundamental frequency 

which determines the l imi t of the vahdity of assumption (4.35). For example, using 

Eq. (4.26) for A = 355 nm, we need A/'at(x) < 10^° atoms/cm^ in order to achieve 

-A/'atXei('^) ^ 10~^. However, other considerations might independently put an upper 

l i m i t on the atomic density that can be used. Indeed, we have neglected previously 

the distances the free electrons travel compared to interatomic distances, an approx

imation which permits us also to neglect electron-ion or electron-atom scattering. 

A crude, but order-of-magnitude estimate of the validity of this approximation can 

be gained by considering the quiver amplitude of a free electron in the driving laser 

field, which we need to be much smaller than the average distance between two 

neighbouring atoms [2]. The quiver amplitude for linear polarization being given 

by4 [83; 

ao = Eo/oj^ • ( ina .u . ) (4.36) 

= 1.36 X 10"^' ^ / i [ W / c m 2 ] ^ 2 j ^ ^ | ( i n n m ) , (4.37) 

we can wri te this condition as ao < A^T^^^- For II = 10^* W/cm^ and A = 355 nm 

one obtains ao = 0.17 nm and therefore the requirement A/^t < 2 x 10^^ atoms/cm^. 

Thus, this does not present any additional constraint in our case. Yet another 

constraint is imposed by the possible defocalization of the fundamental due to the 

free electrons. This was found to be of marginal importance by L'Huil l ier et al. 

131] for Max ~ 5 X 10^'' atoms/cm^ , but quite relevant at higher densities by 

Al tucc i et al. [2]. In our case we w i l l use similar intensities as in Ref. [131], but an 

*The same notation as in Eq. (1.3) is used. 
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electronic susceptibility which is one order of magnitude smaller, due to our short 

fundamental wavelength. I f we additionally take the length L of the medium, over 

which defocalization can happen, into account, we can get a conservative estimate of 

the electronic density which should not be exceeded, namely A/'ei < X/Lxeii^), w i th 

Xei(w) from Eq. (4.26). For L = 0.5 mm, this leads to A ^ i < 6.3 x 10^^ electrons/cm^. 

I f we go above the ls-2p resonance in hydrogen, described in chapter 2, we have to 

make sure that the in i t ia l atomic density is less than this value, as the medium w i l l 

be ionized to a large degree. In all other situations the restrictions on TVlt and on 

the medium length L can be relaxed. 

Provided we keep the restrictions made above in mind, we find that i t is sufficient 

to use the free-space wavenumber A;o,i, when calculating the intensity of the funda

mental on which the atomic response and the medium properties depend. Thus, we 

shall use 

T 2' 
E{p, z, t ) = EBG{p, Z, t) exp ^ - 2 In 2 

t — {ki/Lo)zcosa 
exp{-iujt), (4.38) 

where the time-dependence of EBG comes from the time-dependent refractive index 

that is, A;i(x, t) = A;o,i(l + Xi)]) for describing the field amplitude of a Bessel-Gauss 

beam wi th a Gaussian temporal profile as introduced in Eq. (3.47), and 

|2" 
lip, Z, t) I{p,z) exp <̂  - 4 l n 2 

t - (z/c) cos a 

T 
(4.39) 

1 + { 2 z / b y 

^o.ipsino; 

l + i (2^/6), 

X exp 
2ko,i{p^ + z^ sin^ a)/b 

(4.40) 
1 + {2z/by 

for calculating the intensity of the fundamental wi th in the medium. Only phase and 

intensity of the incident beam, as given by expressions (4.38) and (4.39), wi l l enter 

the calculation of the atomic quantities determining the generation and propagation 

of a given harmonic in the medium. We neglect in this way all possible effects 

of harmonic coupling^, and, in particular, the effect of multi-colour ionization (see 

section 2.3). 

^We shall give an example for the breakdown of this assumption in section 6.3.1. 
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I f the amplitude Eq. ( 4 . 3 8 ) is wri t ten in the form 

E{p,z,t) = \E{p,z,t)\ exp{iaTg[EBG{p,z,t)]} exp{-iLot), ( 4 . 4 1 ) 

we can identify the phase ut + (p m Eq. ( 2 . 1 5 ) w i t h the phase of the field i n Eq. 

( 4 . 4 1 ) , thus getting (p — - arg[J5'BG(p, 2̂ , ^)]- Therefore, the atomic dipole moment 

dq[E) f rom Eq. ( 2 . 2 0 ) , oscillating at the harmonic frequency gw, is given by 

dg{p,z,t) = \dg[I{p,z,t)]\ exp{i^^tlI{p,z,t)]}exp{iq8iTg[EBG{p,z,t)]} exp{-iqujt), 

( 4 . 4 2 ) 

where we have already appended the harmonic time-dependence f rom expression 

( 2 . 1 8 ) . We have also wri t ten dq{I) in terms of modulus and phase and $ a t is known 

as the (intensity-dependent) atomic dipole phase. For the macroscopic nonlinear 

polarization, which is the source term of the harmonic field in Eq. ( 4 . 3 4 ) , we thus 

get 

PNL,«(x,t) = A 4 t ( x ) [ l - f,on{p,z,t)]d,{p,z,t), ( 4 . 4 3 ) 

w i t h target depletion included in this way.. Calculating the second time derivative 

of this expression, one can classify the resulting terms according to inverse powers 

of qujT. We quote only the result up to first order in I/QLOT, 

_ ^2, ,2 -qWM,,{x) [1 - fiUp,z,t)]dg{p,z,t)T{p,z,t) ( 4 . 4 4 ) 

where, in expression ( 4 . 4 5 ) , we have omitted the term stemming f rom the time-

derivative of a,i:g[EBG{p, z,t)]. Indeed, i t would have introduced a term propor

tional to (dxi/dl) (dl/dt), which, because of assumption ( 4 . 3 5 ) makes i t negligible 

compared to the other corrections of the same order in l/qcor. T{p,z,t) is the 

slowly-varying envelope approximation. I t is possible, of course, to go beyond this 

l i m i t and compute the remaining terms of order l / (ga;r)^. A t this stage, however, 

we have to remember that the atomic quantities have been calculated using the 

quasi-monochromatic Floquet approach (chapter 2 ) and i t would be therefore of l i t 

tle use going beyond the slowly-varying envelope approximation in the propagation 

calculation. For ultrashort pulses, where the intensity varies appreciably over one 
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cycle of the driving laser field, i t is not possible any longer to compute the atomic 
quantities as a funct ion of the intensity alone. Rather, i t is necessary to evaluate 
the atomic response at every time-step during the propagation of the fields through 
the medium. This unified approach has been pioneered by Rae and Burnett [188] 
(and more recently by Christov et al. [49]) but the enormous computational effort 
restricts this method presently to one-dimensional model calculations. 

4.3 Far-field limit 

To obtain the far-field l imi t , we expand |x ' - x | in Eq. (4.34) as 

x ' - x | ~ |x ' | - [z'z + p'pcos{(j)' - (j))] + 0 ( l / | x ' p ) (4.46) 

wi th |x ' | = z''^ -\- p'"^ > |x | . This expression agrees to order [l/z') w i th the 

paraxial approximation given in Ref. [130], 

|x ' ~ x | ^ / - . + f''' + f^- f ^ P < ^ ° < < f - ' l ' ) + 0 ( 1 / 1 . ' - , (4.47) 
l{z z) 

but is better suited for additionally studying off-axis emission, which w i l l be of 

significance for Bessel-Gauss beams. We take |x ' | large enough for the terms in 

( l / | x ' p ) to be negligible in Eq. (4.46) and rewrite this expansion as 

- x ' - x | ~ z'^ + p''^ - zcosp - psinpcos{(j)' - (j)) (4.48) 

= {z'- z)cosp + p'sinp - psm/3cos{(l)'- (f)) (4.49) 

in terms of the far-field angle /?, 

(3=-tm-\p'/z'), (4.50) 

w i t h 

sin P = , cos /? = . (4.51) 

as shown in Fig. 4.1. 

According to Eq. (4.34) we have now to take the source term Eq. (4.44) at the 

retarded t ime t = t^et = t'-{kg/Lo)\x'-x\. Some care has to be taken, as both kg and 
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Figure 4.1: Definition of the far-field variables z',p' and p. 

tret depend on each other due to the two-step approach in solving the propagation 

equation outlined above. For the sake of clarity, we rewrite the source term Eq. 

(4.44) in the fo rm 

a [1 - / i o „ ( / ) ] \dg{imi) e x p { i $ a t ( / ) + z9arg [£;BG(/ ) ]} exp{-iqu;t), 

(4.52) 

where we have suppressed the dependence on the spatial coordinates and where the 

t ime dependence of the intensity / is understood. We first note that the source 

term depends on time only via the intensity, except for the fast oscillating harmonic 

time-dependence. In a first step, we thus replace in exp(-zga;tret) the retarded 

time ^ret by the f u l l expression given above, t' - {kg/Lo)\x' - x | , kg{I) being time-

and space-dependent itself. This term, as we shall see, determines essentially the 

phase-matching properties. Now, for all remaining terms, the retarded time enters 

only indirectly via the intensity dependence and we can safely assume kg/u ^ 1/c. 

Moreover, as appears clearly f rom Eq. (4.39), the intensity depends only on the 

combination tret — (z/c) cos a rather than on the retarded time alone, that is 

ctret - cos a = ct' - \Jz'"^ + p'^ -|- 2;(cos /? - COS a) -\- psmPcos{(j)' - 4>). (4.53) 

Recall f rom the discussion in section 3.5 that the term (p/cr)sin/?cos(0' - (p) is 

negligible on an absolute scale for all cases of interest, while {Z/CT){COSP - cos a) 

w i l l start to contribute wi th increasing medium length L and pulses becoming short 

{L/cT » 1). The time-shift ( - \ / r M - p ^ / c r ) affects far-field and time profiles but 
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not the overall conversion efficiency, as this shift is removed by a time integration 
over t' e ( - 00 , -l-oo)^. In summary, we have to evaluate 

^ ^ ( f ) = - ? W a t ( x ) [ l - / i o n ( / ) ] | d , ( / ) | ^ ( / ) (4.54) 

X exp (z {$a t ( / ) + qarg[EBG{I)] + kg{I)\x' - x | - qcot'}), 

at the retarded time given by 

Ctret -ZCOSa = ct' - y^^^ + p ^ + ^(cOS /? - COS Q;) . (4.55) 

The two middle terms of the phase factor in Eq. (4.54) can be writ ten, using Eqs. 

(4.38) and (4.49), 

m = q LiI)zcosa-Un-^{2z/b) + {2z/b) \kmp' + z^sin^a)/b] 

- I - kg{I)[{z' - z) cosP + p' sinP - psin/?cos(^' - (f)) 

This phase is therefore the sum of the phases originating f rom the (beam) geom

etry and the dispersion of the medium. We can now correct partly for the in i t ia l 

approximation of taking the refractive index constant when deriving Eq. (4.34). For 

this, we replace the actual phase $ ( / ) by the corresponding optical path integral 

along the main direction of propagation (see Ref. [130]), that is, the 2-axis. The 

modification thus amounts to a replacement 

kg{z'-z)-^ f kgiOdC, k,z-^ f k,{C)d(: + ko,iZmin, (4.57) 

where we consider a medium stretching f rom z^in to Zmax- To preserve the azimutal 

symmetry in the calculations, we shall assume A/'at(x) = Max{p,z) in the following, 

which is not a restriction in applications. Combining now Eqs. (4.31) and (4.35) 

into 

kg{p, z, t) ~ /Co,, [1 + A4t(p, z)xq{p, 2, t)/2] , (4.58) 

the resulting expressions are given by 

kg{z'-z) ^ h^g[z' -z-Zg{p,z,t)] (4.59) 

Zg{p, z, t) = f Ktip, Ox,{p, C, t)/2 dC (4.60) 
2max 

^Without affecting the boundaries of other integration domains. 
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and 

kiz ko,i[z + Zi{p,z,t)]' (4.61) 

Z,{p,z,t) = f Ktip,0xiipX,t)/2dC. (4.62) 

The careful treatment of the terms linked to axial propagation is very important 

because they are the largest terms appearing in Eq. (4.56) and possible cancella

tions (indicating axial phase-matching) have to be monitored accurately. The exact 

expression for the wavenumbers is much less of importance for the terms involving 

the radial coordinate p (and for the term containing sin^ a, owing to the small val

ues of the Bessel angle a). In fact, for the remaining wave numbers in $ ( / ) we can 

safely assume the corresponding free-space values - we shall come back to this point 

in section 4.5.2, when deriving the radial phase-matching condition. 

4.4 Spatio-temporal profiles and conversion effi

ciency 

We obtain the (slowly-varying) time-dependent harmonic intensity f rom the elec

tr ic field amplitude by averaging over the fast oscillating component, which is the 

harmonic oscillation exp{-iqLot') in Eq. (4.54), thus getting 

Igip',z\t') = 2ceo\Eg{p',z',t')\' (4.63) 

which w i l l be used to compute the time profiles of the harmonic intensity at a given 

point p' in the far-field plane ^'. From Eq. (4.63) the time profile of the harmonic 

power w i l l be computed as 

r+oo 
Pg{z\t')=27r / Ig{p',z',t')p'dp'. (4.64) 

Jo 

Depending on the spatial resolution of the detector, either Eq. (4.63) or Eq. (4.64) 

w i l l be more suited for characterizing the temporal shape of the generated harmonic 

pulse in the far-field region. The spatial far-field profile is defined as 

/

+00 
W,z',t')dt' (4.65) 

•00 
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and, finally, the conversion efficiency as 

/

+00 r+oo 
Pg{z', t')dt' = {!/£,) 27r / {Ig{p', z'))p'dp' (4.66) 

00 Jo 

where Ei = J^^ Pi{t')dt' is the energy carried by the pulse of the fundamental 

beam, as given by Eq. (3.48). In fact, the conversion efficiency is independent of z' 

as w i l l be shown in section E.3. 

We conclude this section by giving a summary of all the expressions which enter the 

calculation of the harmonic field amplitude in Eq. (4.63). Defining, f rom Eq. (4.55), 

the dimensionless time-variable 

2\/ln2[iret - ( z / c ) C O S Q ; ] / T 

v' - 2 V l n 2 [J z'^ + p'2 + ^(cos a - cos p)]/cT, 

(4.67) 

(4.68) 

we may write the intensity of the incident beam Eq. (4.39) and the ionization prob

abil i ty Eq. (4.33) as 

I{p,z,v') = I{p,z) exp{-v^) (4.69) 

fion[I{p,z),v'] = l - e x p j - ^ - ^ y r[I{p,z)exp{-v')]dv\ (4.70) 

The far-field envelope for the q^^ harmonic is given by 

260 V c / Vz^^T^ Jo 

^ K t { p , z ) [ l - fion{p,Z,v')] . , r . . 

1 - iz/\/z'^ + p'^)cosf3 

X T{p, z, v') e x p { z $ a t [ / ( p , z, v')]} exp{i(p{p, z, v')} , (4.71) 

this expression being valid for z' >• L. Further, 

J'{p,z,v') = l + 
8 V l n 2 

qujT 
v'il at 

dl 
iv' 

I d\dg 
dg\ dl 

— I 
r ( / ) r 

A^/W2 
(4.72) 

is the slowly-varying envelope approximation and 

ip{p,z,v') = ko,g{[z + Zi{p,z,v')]cosa-[z + Zg{p,z,v')]cosP} (4.73) 

ko^ipsina 
+ 9 i arg Jn 

tan"^ {2z/b) + (2z/b) 

l + i i2z/b)^ 

koAp^ + z'^ sin^ a)/b' 

1 + {2z/by 
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The propagation of the harmonic field thus consists essentially of solving, for each 
time step, a two-dimensional integral over the nonlinear medium. For numerical 
convenience the shift entering the retarded time Eq. (4.67) is evaluated as, 

^Jz'' + P" = z'+ ^ f ^ ^ , (4.74) 

and the term in z' is omitted. Therefore, the time reference at the detector plane 

at z' is given by t' - z'/c. We w i l l give more details about the propagation code in 

Appendix E. 

4.5 The Quasi-Stationary approach 

4.5.1 Introduction 

Though the time-dependent formalism developed in the previous sections is perfectly 

suited for our purposes i t is worth investigating a much simpler approach, which 

w i l l permit us to derive analytical expressions for phase-matching. In this way i t 

w i l l not only become possible to search more effectively the huge parameter space 

generated by the large number of parameters involved (which include essentially the 

atomic density A/Q , the medium length L, the confocal parameter b, the Bessel angle 

a and the harmonic order g), but w i l l also enable us to make predictions about 

the efficiencies of the various Bessel-Gauss beams (including the Gaussian beam as 

l im i t case) in generating a given harmonic order. Moreover, we w i l l show that in 

the regime where the approximations made in the following hold, the results are in 

very good agreement w i th the fu l ly numerical and time-dependent calculations (see 

section 5.3). 

I n the present approach, we make use of the fact, that i f the pulse duration is 

much longer than medium length L, cr > L , we can neglect all terms of the form 

C/cT, where ^ is any of the spatial coordinates. In fact, we shall neglect the pulse 

shape altogether and tabulate the harmonic generation rate as a function of the 

peak focal intensity I f , this rate then being integrated over the intensities according 

to the temporal shape of the laser pulse. More precisely, in analogy to the defini-
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t ion of the conversion efficiency rjg given by Eq. (4.66) as the ratio of the emitted 
harmonic energy to the energy carried by the fundamental, we may write i t for 
a time-independent calculation as the ratio of the emitted harmonic power to the 
power incident on target. As the latter is proportional to I f , according to Eqs. (3.27) 
and (3.28), the functional form of the conversion efficiency is given by 

VM = ^ ^ , (4.75) 

where Hg is proportional to the emitted harmonic power. Summing over the tem

poral distr ibution of the intensity we get 

/ _ + ~ d ^ i / , ( / f e x p [ - 4 1 n 2 ( V r ) 2 ] ) 

C^dtlfexp[-4\n2it/r)^] 
2 f+°° 

-j= / dxfig[I{exp{-x'^)], (4.76) 
Jo 

where we have introduced the normalized time x = 2 \ / l n 2 ( i / r ) and assumed a 

Gaussian temporal pulse shape as in Eq. (4.39). Note that, as expected in this 

l i m i t , the conversion efficiency depends only on the shape of the pulse but not on 

the pulse duration r . The spatial far-field profiles are averaged over the temporal 

pulse profile accordingly. In the weak field l imi t , where the power law Hg{I{) oc I f , 

as a consequence of Eq. (2.21), holds, one simply has 

v M ^ ^ U ^ i ) . (4.77) 

We expect a good quantitative agreement wi th the f u l l time-dependent calcula

tions, w i t h a possible exception in the case of strong ionization. Indeed, to model 

a time-independent ionization probability we use the end-of-pulse value defined in 

Eq. (2.26), namely 

/ i o n ( / p ) = 1 - exp | - y"^°°r[ /pexp(-41n2(^/ r )2)]di | (4.78) 

where Ip is evaluated f rom Eq. (4.40) for a given If and position wi th in the medium'^. 

Having set the upper boundary of the integral in Eq. (4.78) to infinity, we overesti

mate the ionization probability for a given Ip on the rising edge of the laser pulse. 

'''The ionization probability Eq. (4.78) is therefore the only quantity, where the pulselength r 
enters explicitely. 
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However, considering the time-symmetric evaluation of the conversion efficiency Eq. 
(4.76), the ionization probability wi l l at some stage be underestimated on the fal l ing 

edge of the laser pulse. Indeed, introducing the normalized time x = 2 v 1 i i 2 ( t / r ) as 

in Eq. (4.76), we find that the intensity has fallen f rom its peak value Ip down to I'^ 

after a time x' = [ l n ( / p / / p ) ] ^ / ^ . Consequently, the ionization rate wi l l be underesti

mated in the calculation of the time-independent conversion efficiency for intensities 

lower than Ip satisfying 

r[Il,exp{-x^)]dx= / r[Ipexpi-x^)]dx. (4.79) 
00 J —oo 

For guidance, assume a power law, F oc and Ip sufficiently close to Ip such that 

x' <^1. Then, to second order in x', 

Il = { l - x " ) I p , ^ ' ^ T I - (4.80) 

We w i l l not insist on the calculation of for various Ip in our case as i t does not 

help gaining more insight about possible quantitative changes introduced in this 

way and we refer to chapter 5 where results comparing the time-dependent and 

time-independent methods are discussed. I t follows f rom the considerations above, 

though, that the ionization rate is Ukely to be overestimated in the quasi-stationary 

approach. Actually, this w i l l tu rn out to be very useful as we can get at the same 

t ime an idea of how the results (e.g., conversion efficiency versus peak focal intensity) 

would be affected, i f two-colour ionization were to be of importance (see section 2.3). 

4.5.2 Phase-matching conditions 

We w i l l profi t f rom the quasi-stationary approach by deriving analytical expressions 

for phase-matching conditions in the case of sufficiently large confocal parameters, 

so that all terms z/b in the expression for the fields can be neglected (loose focusing 

l i m i t ) . For this we require typically b > 2L to hold^, the expressions being exact in 

the l i m i t L/b - ) • 0. In this case, we may write Eqs. (4.60) and (4.62) approximately 

'We will discuss this in more detail in chapter 6. 
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as 

Zi{p,z) « {Afo/2)Eip,z)xi[I^'\p)] (4.81) 

Z,{p,z) ^ {Mo/2mP,z)-aip)]x,[I^'\p)], (4.82) 

having introduced 

E ( p , z ) = r a(p,C)dC, (4.83) 

w i t h Ma.t{p,z) — MQG{p,Z), Afo being the (initial) peak atomic density and 0 < 

(^iP,z) < 1. To make sure that the medium properties cease to affect the harmonic 

propagation for z > Zmax, we require further E(p, 2; > ^ ^ a x ) = E(p, z^ax) = ^(p)-

We refer to Appendix B for a discussion of typical density profiles. We shall restrict 

to cases for which a{p) — g{p)L, where L is the length of the medium entering 

the description of the density profiles. By requiring this form to hold for all density 

profiles under consideration, we make sure that the optical path through the medium 

is the same for all profiles, given a medium length L. 

The intensity 1̂ °̂  (p) is now only dependent on the radial coordinate and its profile is 

essentially a Bessel function damped by a Gaussian as can be seen from Eq. (4.40). 

We obtain in this way the following expression for the phase (p of Eq. (4.73), 

+ p'^ + ko^cos a - cos P)z + ko,gaJ\foXq cos f3/2 

+ Afoko,g{xiCOsa-XqCOSp)i:{p,z)/2 

+ g arg[Jo (A;o,ipsina)] , (4.84) 

and, f rom there, for the harmonic far-field, using Eq. (4.71), 

2eo ^ ^ ' 2 _^p,2 \ c J Jo 

X |c?g[/(°)(p)]|exp{2garg[Jo(A:o,ipsinQ;)]} exp{z$at[/^°np)]} 

X Joiko,qpsm/3) exp{iD) F,{A,B,C)exp{iAumin) • (4.85) 

We have introduced the dimensionless integral 

/•"max 
F, = exp{-iAumin) / K'{u) exp{i[Au + BK{u)]} exp[-CK{u)] du, (4.86) 
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where 

K{u) = ^p,Lu)/gip)L, (4.87) 

and Mmin,max = Zmm,max/L. The Coefficients A, B, C and which do not depend 

on M, are given by 

A = A{p,p',z') = 2(g7r/A)a(cosQ;-cos/?) (4.88) 

B = B{p,p',z') = iq7r/X)dAfQRe{xiC0sa-XgC0sP) (4.89) 

C = C{p,p',z') = {qTr/X)molm{xiCOsa-XgCOs(3) (4.90) 

D = D{p,p',z') = {q7r/X)aMoXgCOsp. (4.91) 

Note that while C may be negative [because of I m ( x i ) > 0 and lm{xg) > 0], one 

always has 

Re{iD) - CK{u) = -[ImD + CK{u)] < 0, (4.92) 

for absorption, w i t h 

I m D + CK{u) = {qTr/X)aAfo lm{K{u)xi cos a + [ l - K{u)]xq cos p} . (4.93) 

The physical interpretation of Eq. (4.93) is an immediate consequence of the intro

duction of the optical path Eq. (4.57): Incident photons travel through an absorbing 

medium unt i l they reach a point u = z/L e [umin,Uimx] after an effective optical 

path i^ (u )cosQ; . A t u, the fundamental photons which have not been removed by 

absorption, create harmonic photons which in turn suffer absorption along their 

effective optical path [1 - K{u)] cos P out of the medium^. 

We refer to Appendix B for a discussion of the integral for various gas density 

profiles. Here we consider only the case of a rectangular profile, for which 

{C + i S ) [ l - cos S e x p ( - C ) ] + { S - i C ) sin S e x p ( - C ) 

w i t h S = A + B, SiS derived in Appendix B. [F^l is a maximum and is purely real 

for 5 = 0, both independently of C. Therefore, 5 = 0 is the axial phase-matching 

^The factors cos a and cos/3 reflect the fact that only propagation properties along the main 
direction of propagation are taken into account in F^. 
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condition. For C - 0, F^ takes the simple form 

F.{S,C = 0) = '^^^exp{rS/2), (4.95) 

which is the familiar sin (a;)/a: behaviour, typical for phase-matching in loose focusing 

geometries. The phase-matching condition 5 = ^ - 1 - 5 = 0 can be writ ten, using 

Eqs. (4.88) and (4.89), as 

_ 1 + Re(A/'oXi/2) n i 
cosP=^ „ .̂̂  c o s a = — c o s a , 4.96 

l + Re{AfoXq/2) rig ' ^ ^ 

in agreement w i t h Eq. (3.14). Note that this expression is, as expected, independent 

of a possible transverse modulation g{p) of the (initial) atomic density profile. Two 

l i m i t cases of Eq. (4.96) can be distinguished: the medium being fu l ly ionized (/jon = 

1), in which case 

c o s ^ = / - ^ ° ' ^ - f ) ' / % o s a , (4.97) 
1 - Mo\Xeiiqco)\/2 ^ ' 

or ionization being negligible, in which case 

^ l + Re[AAoXat(^)/2] 
cosP=-—zr-TT-r , COS a. (4.98) 

l + Re[A/;)Xat(H/2] ^ ' 

I n a fu l ly ionized medium the axial phase-matching condition can always be fulf i l led 

for any angle a, w i th P > a. The same conclusion applies as well to the case of a 

positively dispersive medium, Xat(9w) > Xat(w), in the other l imi t . However, for a 

negatively dispersive medium, x&t{'^) > Xa,t{Q^), Eq. (4.98) can be satisfied only for 

angles a satisfying 

l + Re[AfoxM/^] 

thus giving preference to far-field angles P < a. 

I t is unfortunately not possible to derive a similarly general formula for the radial 

phase-matching in a simple way, and we shall assume the low-intensity l imi t to hold, 

that is, no dependence of x&tiq^^) on the intensity of the incident field, negligible pho-

toionization and the dipole moment following the power law given by Eq. (2.21)^°. 

We note first, that i f g{p) = 1, axial and radial integration factorize, because the 

10 In particular, the atomic phase $at is then independent of the intensity. 
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c o e f f i c i e n t s 5 , C and D become independent of the intensity, and hence of p, in 
this l i m i t . The radial integral is then proportional to 

/>00 

/ dppJ^{ko,ipsma) Jo{ko,gpsinP) exp{-qko,ip^/b), (4.100) 

which is a maximum when the arguments of the two Bessel functions coincide, since 

q is an odd integer. The radial phase-matching condition, valid in the perturbative 

l i m i t , reads then 

sin ;9 = sin Q; = - sin Q; , (4.101) 
^0,9 q 

which implies P < a. The same conclusion applies, if, for any ^(p), takes the form 

of Eq. (4.95), and axial phase-matching is enforced, 5 = 0. In all other cases, g{p) 

can in principle be used to influence the radial phase-matching condition. In the 

following, we shall, however, assume expression (4.101) to hold because of ^(p) = 1. 

As noted at the end of section 4.3, i t is not necessary here, in contrast to the case 

of axial phase-matching, Eq. (4.96), to use the f u l l expression of the wavenumbers, 

because of the additional factor of g > 3 in Eq. (4.101) which sets the scale of the 

factor relating the two angles a and 

The fact that both Eq. (4.96) and Eq. (4.101) contain the far-field variables {p',z') 

in the fo rm of the angle /? accounts for the self-phase-matching effect [85] we have al

ready discussed in some detail in section 3.2: Rather than preventing phase-matching 

altogether, small changes in a, or in the refractive indices may simply result in 

changing the direction in which the harmonic is preferentially emitted. We have 

thus recovered the results previously obtained by Tewari et al. (see Refs. [217,218] 

and also section 3.2) in the perturbative l imi t , for a pure Bessel beam, however wi th 

a few notable differences. Indeed, the use of a Bessel-Gauss beam prevents f rom hav

ing an infinite value in the radial integral as i t is the case for a pure Bessel beam^^. 

Further, the far-field angle /? emerges naturally f rom the formalism and does not 

have to be introduced ad hoc as in their case. Perhaps most interesting of all, we 

stress that Eq. (4.96) is valid in any intensity regime as long as the assumption of 

a loose focusing geometry is valid. Note that this axial phase-matching condition 

^^This has also been pointed out recently in Ref. [166]. 
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is thereby not a relationship between fixed parameters (for a given value of P) but 
depends on the intensity and thus on the radial coordinate p. 

Comparing both phase-matching conditions, we recover the well known result that 

opt imum phase-matching is only possible in a negatively dispersive medium, wi th 

(5 < a [217]. El iminat ing the angle (5 in between Eqs. (4.96) and (4.101) gives an 

estimate of the angle a which, for a given medium, is expected to optimize phase-

matching, namely 

n ? — 

which, for all practical purposes, can be writ ten aŝ ^ 

«opt « [q'/{q^-l)]"'[2{n,-ng)Yl^ (4.103) 

«opt « [(lV{Q'-^)Y"Wo{Xi-Xq)Y"- (4.104) 

This shows that Ofopt can be expressed in a simple way as a function of the standard 

expression for the dispersive phase-mismatch in the paraxial l imi t , 

AA;disp = ^ ( n ^ - n i ) , (4.105) 

that is, 

«opt ~ [qViq' - [-(A/QTT) A^disp]'/ ' • (4.106) 

This angle exists as long as Re(xi) > ^Q{Xq)i a condition which depends both 

on the medium and on the intensity. The preferred emission angle fig of the q*'^ 

harmonic is then approximately Pg ~ a o p t / ? (for small angles). Eqs. (4.103), (4.104) 

or (4.106) are useful in (roughly) predicting the cone angle of the incident beam for 

which the harmonic yield is expected to be maximal. I t should be noted, however, 

that optimizing phase-matching for a > 0° cannot guarantee a higher conversion 

efficiency compared to the Gaussian l imi t , since increasing the angle a reduces the 

region where the atomic dipole moment is driven at high intensity, though this 

might be less important in a region of intensity where the atomic dipole moment is 

saturating. In the power law regime for the dipole moment, especially for a higher 

12 The first factor in the following equations can be neglected for 5 > 3. 
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order harmonic, only the central peak w i l l contribute while the power contained 

in the secondary maxima wi l l be lost (see Fig. 3.2). This obviously appears to be 

particularily severe i f both the Bessel angle and the confocal parameter are large. 

Quite generally, the efficiency of the Bessel-Gauss beam depends on the balance 

between increased phase-matching and loss of driving power. These aspects are going 

to be developed in the following chapters. The phase-matching conditions derived in 

this section are valid in the loose focusing l imi t . In chapter 5 we report calculations 

which are based on this assumption. In chapter 6 we w i l l relax this restriction and 

consider a broader range of focusing geometries. We wi l l also investigate in more 

detail the relationship between the maximum of the conversion efficiency and the 

opt imum angle aopt for phase-matching. 



Chapter 5 

Results for Hydrogen at 355 nm 

5.1 Introduction 

We are going to apply the method of obtaining the harmonic far-field characteristics 

developed in the previous chapter to the study of th i rd harmonic generation in a gas 

of atomic hydrogen. In fact, the present aim is twofold - not only beam geometries, 

namely the Gaussian and the Bessel-Gauss beam, w i l l be compared wi th respect 

to their overall efficiency in generating harmonics, but also the influence of an ac-

Stark-shifted resonance both on atomic and medium properties wi l l be investigated. 

I n order to make the comparison between a Bessel-Gauss beam and a reference 

Gaussian beam meaningful, we w i l l consider only incident beams of equal power 

and peak focal intensity I f , unless stated otherwise. Thus, when increasing the 

Bessel angle a. of the Bessel-Gauss beam, its confocal parameter has to be increased 

according to Eq. (3.29). We expect the differences between Bessel-Gauss beams 

and their Gaussian beam l imi t to become more pronounced wi th increasing Bessel 

angle a. Accordingly, our first task wi l l be to find, wi th the help of Eq. (4.104), a 

suitably large aopt- In the following, we wi l l take the in i t ia l atomic density to be 

^ 0 = 4 X 10^^ atoms/cm^ and assume a rectangular gas profile, as given in Appendix 

B w i t h g{p) = 1, and a medium length L - Zmax - Zmin = 0.5 mm. 

89 
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Intensity (W/cm ) 

Figure 5.1: Optimum cone half-angle aopt, defined by Eq. (4.104), as a function of the 
intensity. Solid line: The calculation includes photoionization (in the quasi-stationary 
approach), dashed line: photoionization is neglected. 

5.2 The optimum Bessel angle 

I n a first step, we calculate the optimum value for the cone half-angle a as given 

by Eq. (4.104). For a given (initial) atomic density, this value w i l l depend on the 

intensity-dependent generalized susceptibility as defined in Eq. (4.32). We take 

the intensity to be a simple parameter, and the ionization is taken into account in 

its time-independent version Eq. (4.78) according to the quasi-stationary approach 

outlined in section 4.5.1. The resulting curve cvopt = CKopt(-̂ ) is shown in Fig. 5.1, 

both w i t h and without photoionization being included in the calculation. The typical 

value found in the present case is aopt ~ 1.2° - 1.4° which is close to the value used 

by Glushko et al. [85] in the original experiment on self-phase-matching. To reach 

this value, we have to assume the fair ly high value of the atomic density, as given 
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in the introduction. Though much higher densities have been used for rare gases in 
harmonic generation experiments [66], the present value has to be regarded as too 
high for an experiment to be carried out in atomic hydrogen as molecular hydrogen 
tends to form^. Lower densities could be used for a somewhat longer fundamental 
wavelength because of a larger negative susceptibility closer to the resonance (see 
Fig. 2.4). But also other atoms, such as the alkali metals, have large oscillator 
strengths and extensive regions of strongly negative dispersion requiring less dense 
media to achieve the same order of magnitude for Qiopt- We keep the high density 
here, because, as pointed out in the introduction, i f aopt is too close to zero one 
cannot expect a big diff"erence between a Gaussian and a Bessel-Gauss beam. 

Though Eq. (4.106) is only valid in the perturbative l imi t , we expect a fair ly accurate 

prediction for aopt f rom the curve shown in Fig. 5.1 up to the resonance intensity. 

Indeed, the departure f rom the perturbative l imi t of the relevant atomic quantities 

w i t h increasing intensity is very smooth (see Figs. 2.3 and 2.4). We expect further 

at least some qualitative insight into the behaviour of Oopt at higher intensities. 

Considering first the curve neglecting photoionization in Fig. 5.1, one can see the 

opt imum angle ctopt to increase due to the corresponding variation of Re[xat(3w)]. 

Indeed, the latter decreases unt i l an intensity of about 8 x 10^^ W/cm^ is reached 

(Fig. 2.4). The medium then rapidly becomes positively dispersive and the value of 

aopt is purely imaginary, after having passed through zero. The role of the photoelec-

trons can be easily understood recalling the well known gas mixture technique for 

improving phase-matching [191]. Considering only the dispersive phase-mismatch 

see Eq. (1.17)] for a two-component gas, of which one gas, (A/ i ,Xi ) ) is negatively 

dispersive, the other one, {M2,X2), being positively dispersive, one obviously has 

<o >o 

A/jdisp oc Afi[xi{3uj) - Xi(w)]+A/ '2[x2(3u;) - X 2 ( w ) l , (5.1) 

and phase-matching can be achieved by adjusting the ratio of the two gas densities. 

^The harmonic spectra of H2 and H have been compared by Krause et al. [114]. Atomic and 
molecular hydrogen produce harmonics of comparable intensity and the spectra are very similar 
if the bond length of H2 is stretched to match the ionization potential of atomic hydrogen [114]. 
Possibly in a regime where dissociation in a strong laser field is the dominant channel for H2, an 
experiment using the hydrogen molecule would lead to results similar to those expected for atomic 
hydrogen. 
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In the present case, after a short glance at Eq. (4.32), the dispersive phase-mismatch 
can be wri t ten as 

<o >o 

Akdisp oc Moil - /io„){Re[xat(3w)] - Re[xM]}+Kfion [Xei(3w) - Xe\H] , 

(5.2) 

and the two gas densities are replaced by the depletion of the atomic density and 

the buil t-up of a population of free electrons, respectively, due to increasing pho

toionization at higher intensities. Considering the orders of magnitude involved, 

R e [ x a t ( 3 t ^ , / ^ 0 ) ] = -9 .2 X 10-2'cm^ Xei(3w) = -1.3 x l O ^ ^ ' c m ' 

R e f x a t l w J ^ O ) ] = 9 .3x10-24 cm ' Xe\{co) = - 1 . 1 x IQ-^^ c m ' , 

i t is easy to see that the dispersive phase-mismatch wi l l be dominated by the atomic 

susceptibility at the th i rd harmonic frequency and the electronic susceptibility at 

the fundamental frequency, both of which are of the same order of magnitude. The 

transition regime is in the range 8 x 10^^ _ 12 x 10^' W/cm^ approximately, where 

ionization is rapidly increasing (Fig. 2.5) and the sign of Re[xat(3w)] changing (Fig. 

2.4). Thus, as can be seen f rom Fig. 5.1, the electronic contribution on one hand 

accelerates the change of sign of the overall dispersion, leading to an imaginary 

value of Qiopt even before the resonance is reached. On the other hand the elec

tronic contribution balances the decrease of Re[xat(3a;)] towards the resonance thus 

restricting the variation of ctopt wi th the intensity. A control of phase-matching is 

therefore achieved to some extent. A similar use of the electronic contribution had 

already been suggested by Miyazaki and Kashiwagi [146] who considered th i rd har

monic generation in sodium at intensities high enough to ionize the sodium atoms 

significantly. The large negative dispersion of the metal vapor^ was compensated by 

adding xenon gas but a phase-mismatch was introduced at high intensities by the 

contribution of the free electrons to the index of refraction. This could in principle 

be compensated by taking the in i t ia l value of A/cdisp to be smaller than the opti

mum value when no free electrons are present. In their case, using A = 1064 nm 

^In their case the wavelength of the fundamental was A = 1064 nm and Re[xat(3w) - Xat('^)] 
-3 X 10~^^cm .̂ This value was intensity-independent due to negligible Kerr nonlinearities. 
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Table 5.1: Harmonic yield for a fixed focal intensity If of an incident Bessel-Gauss beam 
of cone half-angle a and confocal parameter 6BG- The results are normalized to unity for 
a = 0. The focal intensity is (a) 1.0 x 10̂ ^ W/cm^; (b) 5.0 x lO'̂ ^ w/cm^; (c) 9.0 x 10^^ 
W/cm^; (d) 1.1 X 10̂ 3 w/cm2; (e) 1.3 x lO^^ W/cm^; (f) 3.0 x lO^^ w/cm^. Bold figures 
indicate the local majcima. 

a (deg) ^BG 
(mm) 

(a) (b) (c) (d) (e) ( f ) 

0.00 2.0 1.00 1.00 1.00 1.00 1.00 1.00 
0.35 3.2 1.01 1.08 1.06 1.01 1.03 0.96 
0.40 3.9 1.02 1.14 1.11 1.02 1.06 0.90 
0.45 5.4 1.04 1.24 1.08 1.02 1.08 0.83 
0.50 7.4 1.07 1.31 1.08 0.98 1.01 0.71 
0.55 9.5 1.11 1.38 1.03 0.92 0.88 0.66 
1.00 33.7 1.75 4.80 1.14 0.71 0.87 7.05 
1.05 37.2 1.77 5.38 1.18 0.73 0.94 8.53 
1.10 40.8 1.77 5.91 1.23 0.75 1.02 10.05 
1.15 44.7 1.73 6.36 1.25 0.76 1.07 11.54 
1.20 48.7 1.66 6.69 1.25 0.76 1.10 12.87 
1.25 52;8 1.55 6.87 1.23 0.75 1.11 13.72 
1.30 57.1 1.42 6.87 1.17 0.71 1.09 14.36 
1.35 61.6 1.26 6.70 1.10 0.67 1.04 14.49 
1.40 66.3 1.08 6.34 1.01 0.61 0.96 14.04 

radiation, controlling the phase-mismatch wi th the help of free electrons would have 

been a more diff icult task due to the much larger electronic susceptibility. In con

trast, because we want to find an optimum Bessel-Gauss beam for phase-matching, 

we aim at keeping the negative dispersion large and constant, as i t determines the 

magnitude of ctopt according to Eq. (4.106). 

The next step is to calculate the conversion efficiencies for a sufficiently large range 

of Bessel angles in order to find the optimum angle and to compare i t w i th the 

theoretical predictions discussed above. The corresponding values of oiopt, calculated 

wi th in the quasi-stationary approach as defined in Eq. (4.75), are shown in Fig. 5.2. 

I n order to help interpreting the curves, results for a selection of intensities are 

shown in more detail in Table 5.1. Up to the resonance, we find the calculated 

values to follow closely the behaviour of the solid curve albeit at somewhat lower 

values of a. We w i l l come back to this point when dealing wi th more refined aspects 

of phase-matching in the next chapter. The sharp drop and subsequent steep rise 

in the resonance region are artefacts of the way the data is presented. In fact. 
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Figure 5.2: Optimum cone half-angle aopt- The solid hue is the same as in Fig. 5.1, the 
filled circles indicate the calculated values (see text). The dashed line is for guidance only. 

as becomes clear f rom Table 5.1, a secondary maximum develops slowly around 

a f i i 0.45° as the intensity rises [column (c)] due to the sharp drop of ttopt towards 

the resonance. This maximum takes gradually over the in i t ia l maximum around 

a = 1.2°, and causes the dashed curve in Fig. 5.2 to jump discontinously as only the 

absolute maximum is shown. The jump back to the in i t ia l maximum can be easily 

explained considering the energy distribution in a Bessel-Gauss beam. Recalling 

f rom Fig. 3.2 that the bulk of the beam's power is in the secondary maxima, i t 

is a straightforward matter to show that they are responsible for the renewed gain 

beyond the resonance. A t less than 15 % of the intensity of the central peak (that is, 

at around 2 to 3 x 10^^ W/cm^) , the secondary maxima are in a region of optimum 

phase-matching. Furthermore the medium in those regions is st i l l undepleted in 

contrast to the central peak of the incident Bessel-Gauss beam which, at / f = 2 to 

3 X 10^' W / c m ^ , ionizes rapidly the medium in a small cylindrical portion around 
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the axis of propagation. Indeed, masking the central peak reduces the conversion 
efficiency by about 90 % at I f = 5 x 10^^ W/cm^, but by only 3 % at 3 x 10^' 
W/cm^ . The greater effective power available at these intensities manifests itself in 
a larger conversion efficiency as shown in column ( f ) . 

5.3 Conversion efficiency 

Considering the intensity distribution in a real pulse, we expect some of the results 

of the previous section, valid at fixed If without temporal averaging, to be partly 

masked in a time-dependent calculation. The reason for this is the strong intensity 

dependence of the atomic data beyond the perturbative regime. The optimum angle 

oiopt, additionally to the spatial dependence which lead to the contribution of the 

secondary peaks of the incident beam as discussed in the previou section, w i l l now 

rapidly change in time. We shall present calculations up to / f = 6 x 10^' W/cm^ 

, although atomic data are only available up to If = 3 x 10^' W/cm^ (see section 

2.2), based on the assumption that the regions of the atomic gas submitted to 

intensities above 3 x 10^' W/cm^ are sufficiently depleted for atomic properties to 

be irrelevant. More quantitatively, consider the ionization probability at a given 

point in the medium. Recall that i t can be writ ten as 

/ ion( / ,n) = 1 - exp { - ^ ^ / r [ / e x p ( - M ' 2 ) ] d M ' | , (5.3) 

using the reduced time u' = 2y/ln2{t'/T). I f IQ is the maximum intensity at a given 

point in the medium, the probability that the atom is ionized before this intensity 

is reached is given by 

I f a higher peak intensity If > IQ is used, the rising pulse w i l l reach the value of IQ 

at an earlier time u' — —«i, where Uf = ^ l n ( / i / / o ) > 0. The probability that the 

same atom has ionized when /Q is reached is thus 

= 1 - exp < ^ = / r[7oexp(2tiiM') exp(-'u'^)] du' > . (5.6) 
( 2v In 2 7-00 J 
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Table 5.2: Ionization probability / i for a maximum pulse intensity 7i when reaching the 
value /o = 3 X 10^^ W/cm^ . Data are for the dressed ground state of atomic hydrogen 
and r = 15 ps. Numbers in parenthesis indicate powers of ten. 

h [W/cm2 / i [%] 
lo 97.9 
4(13) 90.2 
5(13) 86.6 
6(13) 84.1 
7(13) 82.3 
8(13) 80.7 
9(13) 79.5 
1(14) 78.4 

Comparing Eqs. (5.4) and (5.6) shows that always / i < /o for an ionization rate F 

which is an increasing function of the intensity. In our case /Q = 3 x 10^^ W/cm^ , 

which is the maximum intensity for which the atomic data could be reliably com

puted. Table 5.2 gives the values for / i for intensities up to 10^^ W/cm^ . As 

can be seen f rom this table, about 16 % of the atoms survive the rising edge of a 

15-ps laser pulse of peak focal intensity /f . = 6 x 10^^ W/cm^ unti l the intensity 

/o = 3 X 10^^ W / c m ^ is reached. We assume that we can neglect the contribution 

of those remaining atoms in the calculations. To check the principle of such an 

approach wi th in the range of available atomic data, we have performed a similar 

calculation for JQ = 2 x 10^^ W/cm^ and / i = 3 x 10^^ W/cm^ successively including 

and neglecting all atomic data in the intensity range between IQ and / i . Despite a 

value of / i = 78.1 % in this particular case (that is, about 22 % of the atoms survive 

the pulse rise up to an intensity /Q = 2 x 10^^ W/cm^ ), we have found only l i t t le 

difference in the results (conversion efficiency, spatio-temporal profiles) whether or 

not the atomic data in the intensity range 2 to 3 x 10^^ W/cm^ were included in the 

calculations at a peak focal intensity of / f = / i = 3 x 10^^ W/cm^ . 

I n all of the following calculations we have fixed the Bessel angle to a = 1.2° as this 

value is close to aopt for a large range of intensities as shown in the previous section. 

Hence we have to take 6BG = 48.7. m m for the value of the confocal parameter in 

order to match both the total power incident on target and the peak focal intensity 
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of a Gaussian reference beam wi th a = 0° and be = 2 mm (I t is useful, at this point, 
to recall Fig. 3.2 before proceeding). 

The f u l l nonperturbative results for the Gaussian beam are reproduced in Fig. 5.3 

for various cases as described in the figure caption. We first note that the quasi-

stationary approach perfectly reproduces the fu l ly time-dependent calculation when 

photoionization is neglected but underestimates the conversion efficiency when pho

toionization is taken into account, even though there is qualitative agreement be

tween the two methods. Starting at If = 10^^ W/cm^ , which is already some

what beyond the perturbative regime for the Gaussian beam, an increasing phase-

mismatch manifests in form of a shoulder in the curves as the medium becomes 

more and more negatively dispersive wi th increasing intensity. The phase-mismatch 

is beautifully illustrated by the data f rom the calculations where absorption has 

been neglected (open triangles): at around I f = 5 x 10^^ w / c m ^ the value for the 

conversion efficiency is even below the other curves, demonstrating that the har

monics generated in this regime start to interfere destructively wi th in the medium 

i f the harmonics created at intensities close to the peak focal intensity are not re

moved by absorption. As the intensity approaches the resonance region, however, 

aopt tends quickly to zero (Fig. 5.1). As a consequence, the Gaussian beam becomes 

the opt imum Bessel-Gauss beam and the conversion efficiency quickly raises. I f i t 

weren't for strong absorption at resonance, the conversion efficiency would even be 

larger than the corresponding perturbative value due to an enhanced atomic dipole 

moment (see Fig. 2.3). Beyond the resonance all curves including photoionization 

saturate and the conversion efficiency decreases slowly but steadily. I f photoion

ization is neglected, an increasingly large fraction of the pulse contains intensities 

which favour a low aopt, thus, together wi th missing target depletion, sustaining a 

continous raise in the conversion efficiency. Note that there is a small region close 

to resonance where the conversion efficiency including photoionization is actually 

larger than when photoionization is neglected. As target depletion aff'ects the con

version efficiency just i n the opposite way, this is clearly a phase-matching effect. 

This comes as no surprise, recalling that the medium changes f rom a negatively to a 

positively dispersive medium as the refractive index starts to be dominated by the 
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Figure 5.3: Conversion efficiency for a Gaussian beam (a = 0°) versus the peak 
focal intensity I f . The confocal parameter is 6G = 2 mm. The curves represent 
results of the quasi-stationary calculations. The markers represent results of the 
time-dependent calculations. Solid line and filled triangles: f u l l results; dotted line 
and open squares: photoionization neglected; open triangles: same as filled triangles 
but w i t h absorption neglected; dashed line: perturbation theory. 
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free-electron contribution^. 

The corresponding results are shown for the Bessel-Gauss beam in Fig. 5.4. They 

remain much closer to the perturbative l imi t compared to the Gaussian case, in 

fact, up to the resonance i f absorption is neglected. The curve neglecting absorption 

does not cross the perturbative curve as in the Gaussian case, however, because 

the phase-mismatch has already become too important at this point (recall that 

the Gaussian beam is the optimum Bessel-Gauss beam in this region of intensities). 

A short transition period follows, where the contribution of the central maximum 

of the Bessel intensity profile quickly becomes negligible due to depletion (see end 

of section 5.2), resulting in a saturation of the conversion efficiency. Beyond the 

resonance, more and more secondary maxima reach a sufficiently high intensity 

to contribute appreciably to the harmonic generation process at optimum phase-

matching. W i t h photoionization being of less importance here than in the Gaussian 

case, the agreement of the quasi-stationary calculations wi th the fu l l time-dependent 

calculations is much better than in Fig. 5.3. 

Direct comparison of the conversion efficiencies for both beams up to 7f = 6 x 10^^ 

W / c m ^ is illustrated in Fig. 5.5 for those curves which include photoionization. A t 

the maximum intensity and for both absorption and photoionization taken into ac

count, the conversion efficiency for the Bessel-Gauss beam is about five times higher 

than for the Gaussian beam. The saturation shown by the conversion efficiency of 

the Bessel-Gauss beam at the highest intensities is likely to come f rom the onset 

of absorption. This can be inferred both f rom the corresponding curve neglecting 

absorption (open triangles) which continues rising steeply and the similar satura

t ion due to absorption below resonance, which affects the harmonic yield generated 

by the central peak of the Bessel-Gauss beam. As the conversion efficiency clearly 

exceeds 10"'* we have to remember the limitations set on the validity of one-colour 

ionization rate. We recall f rom section 2.3 (Fig. 2.5) that the one-colour ionization 

rate is likely to underestimate the true rate which can be significantly enhanced 

^In fact, as neither the geometric nor the atomic dipole phase play a significant role in this 
case, the phase-mismatch for the Gaussian beam is roughly equally important far below and far 
above the resonance due the same order of magnitude of the relevant susceptibilities (see previous 
section). 
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Figure 5.4: Same as Fig. 5.3 but for a Bessel-Gauss beam [a — 1.2°). The confocal 
parameter is 6BG = 48.7 mm. 
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Figure 5.5: Comparison of conversion efiiciencies up to 7f = 6 x 10^^ W/cm-^ between the 
Gaussian (dashed fines) and the Bessel-Gauss beam (sohd lines). The triangles are the 
same as in Fig. 5.4 (Bessel-Gauss beam), the circles are the same as the triangles in Fig. 
5.3 (Gaussian beam). 

by the presence of the strong th i rd harmonic. However, as we have overestimated 

the ionization probability in the quasi-stationary calculations (Figs. 5.3 and 5.4), 

we may expect similar results for a calculation which would take two-colour ioniza

t ion into account and the Bessel-Gauss beam would prove to be even more efficient 

because of the rapid target depletion in the case of an incident Gaussian beam. 

How do the conversion efficiencies reported in the previous figures compare to values 

cited in the literature? For Gaussian beams, th i rd harmonic generation using 355-

nm radiation has been carried out by several workers in the past. For intensities 

typically in the range 10^^ - 1 0 ^ ' W/cm^ , Zych and Young [237] reported conversion 

efficiencies of nearly up to 1 % in a phase-matched xenon-argon mixture while Kung 

118] used a pulsed supersonic xenon jet, achieving conversion efficiencies up to 10-*, 

comparable to those obtained in the present study. Th i rd harmonic generation 

in hydrogen was investigated by L i u et al. [126] using 1053-nm radiation, mainly 

for intensities much larger than the saturation intensity. In this plasma regime 
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the authors found only very low conversion efficiencies. More recently, Glushko 
et al. [85] (see section 3.2) measured a conversion efficiency of 1.5 % in frequency 
t r ip l ing of 1064-nm radiation focusing an annular beam in rubidium vapor. Peet and 
Tsubin [166] (see section 3.2) compared the efficiency of th i rd harmonic generation in 
xenon close to the 6s resonance for Gaussian, annular (a ^ 3°) and Bessel (a = 17°) 
beams, however they could not directly measure the conversion efficiency of the 
latter due to the strong absorption of the harmonics wi th in the medium. Indeed, for 
a = 17° to be an opt imum phase-matching angle, a large dispersion is required. Such 
an order of magnitude can only be found very close to the resonance as is shown 
in Appendix C. Recently, Peatross et al. [163] obtained around 0.1 % conversion 
efficiency into the th i rd harmonic by focusing 800-nm, 25-fs pulses in a gas cell 
backfilled wi th air or argon. 

A n interesting question at this point is, what happens to the conversion efficiency 

of the Gaussian beam when, at constant power, its peak focal intensity is varied. 

Results of the corresponding calculation are shown in Fig. 5.6. Each curve in this 

figure represents the conversion efficiency for a Bessel-Gauss beam wi th a = 1.2° 

and confocal parameter 6BG = 48.7 mm, relative to that of a pure Gaussian beam 

of same power, versus the confocal parameter of the latter. Thus the peak focal 

intensity of the Gaussian beam varies along each curve, according to Eq. (3.28). 

The two beams have same peak focal intensity If for be = 2 mm, which was the 

value adopted for drawing Fig. 5.3. Along each curve. If is higher (lower) for the 

Gaussian beam than for the Bessel-Gauss beam for 6G < (> ) 2 mm. In relatively 

weak fields, a comparable or better conversion efficiency can be achieved wi th a 

focused Gaussian beam, as i t drives the atomic dipole at higher intensity. However, 

in intense fields the Bessel-Gauss beam is always more efficient than a Gaussian 

beam of same power (the ratio always exceeds 1). As seen above, the conversion 

efficiency decreases rapidly above 1.1 x 10^^ W/cm^ in the Gaussian case, when 

photoionization becomes significant. The minimum of each curve in Fig. 5.6 occurs 

roughly at that intensity, and therefore moves to larger confocal parameters as the 

power increases^. 

^This figure diff'ers slightly from the figure published in Ref. [43]. There, for both the quasi-



CHAPTER 5. RESULTS FOR HYDROGEN AT 355 NM 103 

55 1.8 

" 1.6 

2.5 3.0 3.5 4.0 4.5 5.0 
Confocal parameter bg (mm) 

Figure 5.6: Conversion efficiency for an incident Bessel-Gauss beam (a = 1.2°, 6BG = 48.7 
mm) relative to that for an incident Gaussian beam of same power, versus the confocal 
parameter of the latter, bo- The conversion efficiency is larger for the Bessel-Gauss beam 
when the ratio is larger than unity. The peak focal intensity If of the Bessel-Gauss beam 
is: circles: 1 x lO^^ W/cm^; squares: 2 x lO^^ W/cm^; triangles: 3 x lO^^ W/cm^. Each 
curve corresponds to a given total power incident on target. E.g. for If = 10^^ W/cm^ , 
we obtain from from Eqs. (3.28) and (3.48) a total power of about 1.78 x 10^° mW, or, 
for r = 15 ps, a total energy of about 0.28 mJ on target. 

As already mentioned in chapter 2, we have l imited our calculations to the th i rd 

harmonic of A = 355 nm radiation because of lower atomic susceptibilities at higher 

harmonic frequencies. 

Xat(5a;) - 5 .4 x IQ-^^cm' 

Xat(7a;) ft; -2 .8 x . lO-^^cm ' 

Xat(9w) ? 

(5.7) 

1.7 X 10-2* cm ' 

and, consequently, the low values which result for the optimum phase-matching angle 

aopt for any reasonable value of the atomic density. Also, the propagation of the 

weaker 5*'' - 9*̂* harmonics is likely to be influenced, at least in our case, by the strong 

stationary approach and the time-dependent calculation, the approximation b > 2L leading to the 
simphfied expressions for the optical path integrals Eqs. (4.81) and (4.82) has been used. 
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Figure 5.7: Far-field profile for a Gaussian beam {a = 0°, 6G = 2 mm) as a function of the 
far-field angle /? for various peak focal intensities I f , obtained within the time-dependent 
approach. Thick dashed fine: fu l l calculation for 7f = 3 x 10^^ W/cm^ , thick solid hue: 
same but for I f = 1 x 10^^ W/cm^ , thin dashed Une: same as thick dashed hne but with 
photoionization neglected. 

t h i r d harmonic and effects of harmonic coupling would have to be investigated. 

Though this is commonly neglected in most of the propagation calculations in the 

literature, the possibility of this to happen has been pointed out in a simplified case 

study by Pons and Plaja [171 . 

5.4 Spatial far-field profiles 

The spatial far-field profiles, integrated over time as defined in Eq. (4.65) are shown 

and discussed in this section. For the Gaussian beam, they are shown in Fig. 5.7. 
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The harmonic profile is defocused for higher intensities due to the influence of the 
free electrons on the phase-matching conditions. Indeed, recall f rom Eq. (4.97) and 
the discussion thereafter, that strong ionization favours far-field angles P > a. More 
precisely, an estimate f rom Eq. (4.97) using the data of section 5.2 yields p ^ 1.1°, 
consistent w i t h the thick dashed curve shown in Fig. 5.7. We shall see in the next 
section, however, that the atomic phase contributes appreciably to the defocusing 
for the Gaussian beam. The radial phase-matching condition Eq. (4.101) favors 
/? = a = 0° for the Gaussian beam, thus harmonics are emitted mainly along the 
propagation axis of the incident beam^. 

In contrast, the harmonic tends to be emitted along a cone in the Bessel-Gauss 

case (Fig. 5.8), w i t h a preferred emission angle /? a/3 = 0.4° consistent wi th Eq. 

(4.101). Self-phase-matching manifests by slight variations of the preferred emission 

angle for a given ttopt- The broad maximum developing on axis for higher intensities 

arises f rom constructive interference between emissions f rom the secondary peaks of 

the incident beam. Its importance is less i f photoionization is neglected (see Fig. 

5.9) because the harmonic yield is then dominated by emission f rom the central 

peak of the incident beam. The far-field profile for a Bessel-Gauss beam calculated 

w i t h photoionization included but absorption of the emitted harmonic neglected 

is also shown in Fig. 5.9. This profile was obtained for a peak focal intensity at 

which the susceptibility xs is rapidly varying in the spatial region that contributes 

most to harmonic generation when absorption is turned off. That axial phase-

matching favors smaller far-field angles /5 for lower values of Re[x3] manifests by the 

disappearance of the maximum at /? = 0.4°. This eff'ect is normally masked by the 

absorption of the harmonic photons at pump intensities close to the resonance. 

Most interesting for applications is obviously the possibility of spatially separating 

the (strong) fundamental f rom the (weak) harmonic, peaking at different angles 

in the far-field. This had already been investigated experimentally by Peatross et 

al. [158] using annular beams. The high-order harmonics essentially peak on axis 

because /?opt tends to zero i f the harmonic order q is large. 

®In fact, the latter is a consequence of the pulse shape as the quasi-stationary calculation at 
fixed focal intensity If shows, that above the resonance ofF-axis emission can sometimes be larger 
than on-axis emission in the Gaussian case. 
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Figure 5.8: Far-field profile for a Bessel-Gauss beam {a — 1.2°, bo = 48.7 mm) as a 
funct ion of the far-field angle /? for various peak focal intensities I f , obtained wi th in 
the time-dependent approach ( fu l l calculation). Dashed line: / f = 3 x 10^^ W/cm^ , 
solid line: I f ^ l x 10^^ W/cm^ , long-dashed line: / f = 5 x 10^^ W/cm^ , dot-dashed 
line: If = 1 x 10'^ W/cm^ . 
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Figure 5.9: Far-field profile for a Bessel-Gauss beam {a = 1.2°, ba — 48.7 mm) 
as a funct ion of the far-field angle P for various peak focal intensities I f , obtained 
w i t h i n the time-dependent approach for If = 1 x 10^^ W/cm^ . Solid line: f u l l 
calculation (same as in Fig. 5.8), dashed line: photoionization neglected, dot-dashed 
line: absorption neglected. 
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5.5 The influence of the atomic dipole phase 

As we have seen already in chapter 2, we expect the atomic dipole phase to be 

of secondary importance in the present calculations, essentially because of its slow 

overall variation and the fact that we are both in the loose focusing and long pulse 

regimes, thus limit ' ing rapid spatio-temporal variations of the intensity wi th in the 

medium. Indeed, computing the conversion efficiency for both the Gaussian and the 

Bessel-Gauss beam discussed in the previous sections, we find typically less than 10 

% difference, i f the atomic phase is neglected in the calculations. This was tested 

in the intensity range / f = 1 to 3 x 10^^ W/cm^ , both for the fu l l calculation and 

for the calculation neglecting photoionization, and has to be compared to changes 

in the conversion efficiency of nearly up to one order of magnitude that result f rom 

the successive inclusion and omission of photoionization and absorption in the cal

culations. 

The impact of the atomic phase is more pronounced i f the spatial far-field profiles 

are considered, as can be seen f rom Fig. 5.10. There, i t appears clearly that part 

of the defocusing of the Gaussian beam, which we had attributed to the influence 

of the free electrons in the previous section, is actually due to the atomic phase, in 

agreement w i t h the experimental findings of Peatross and Meyerhofer [159,160 . 

As expected, the infiuence of the atomic phase is of lesser importance for the Bessel-

Gauss beam at high intensities where the secondary maxima of the incident beam 

are responsible for harmonic generation. This corresponds to an intensity regime, 

where the atomic phase varies only l i t t le . 

5.6 Temporal far-field profiles 

The time profiles of the harmonic intensity, as defined in Eq. (4.63), further illustrate 

the str iking differences between the two beams considered in the last section. As 

can be seen f rom Fig. 5.11, the time profile at the peak (/? 0.4°) of the harmonic 

generated by the Bessel-Gauss beam essentially retains the Gaussian profile of the 
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Figure 5.10: Influence of the atomic dipole phase on the spatial far-field profiles. 
Thick solid line: same as in Fig. 5.7, thick dashed line: same as in Fig. 5.8, th in 
lines: same as thick lines wi th the atomic dipole phase neglected in the calculations. 

fundamental's temporal pulse shape, except for distorsions around the resonance. 

On the other hand, for the Gaussian beam at /? = 0° in Fig. 5.12, the pulse is cut into 

two distinct pulses at resonance, the two parts dr i f t ing apart in time as the intensity 

increases. The analysis of the corresponding time-profiles neglecting photoionization 

and/or absorption suggests that there are essentially two reasons for this: Firstly, 

the Gaussian beam is better phase-matched towards the end of the pulse than on 

the rising edge because, as noted earlier, the population of free electrons built-up by 

photoionization compensate for the negatively dispersive atomic susceptibility. As a 

consequence Ak^isp vanishes in Eq. (5.2) and so does ttopt in Eq. (4.106). Hence, the 

Gaussian beam becomes optimally phase-matched. Secondly, absorption, following 

the t ime profile of target depletion, affects only the main part of the harmonic 

pulse created at the rising edge of the fundamental, whereas the second part of the 

harmonic pulse travels in an absorption-free medium. 

Note also that in the perturbative regime, the pulselength of the harmonic is given 
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Figure 5.11: Time profiles for the Bessel-Gauss beam for various peak focal inten
sities ( fu l l calculation). The th in solid line shows the Gaussian time profile of the 
incident beam. The thick lines are, dot-dashed: / f = 1 x 10^^ W/cm^ , long-dashed: 
/ f = 5 X 10^2 w / c m ^ , solid: / f = 1 x 10^^ W/cm^ , and dashed: / f = 3 x 10^^ 
W / c m ^ , respectively. 
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Figure 5.12: Time profiles for the Gaussian beam for various peak focal intensities 
( fu l l calculation). The th in solid line shows the Gaussian time profile of the incident 
beam. The thick lines are, dot-dashed: / f = 5 x 10^^ W/cm^ , long-dashed: If = 
5 X 10^2 w / c m 2 , solid: I f = 1 x lO^^ W/cm^ , and dashed: / f = 3 x lO^^ w / c m ^ , 
respectively. 
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by^ Tq = r / v ^ - For ^ = 3 and r = 15 ps this yield rs ^ 8.7 ps, in very good 
agreement w i t h the pulselength of the harmonic at low-intensity shown in Figs. 5.11 
and 5.12. 

^This is an immediate consequence of the power law Eq. (2.21) of the dipole moment in the 
perturbative hmit. 



Chapter 6 

Phase-matching Revisited 

6.1 Introduction 

In the present chapter we are going to investigate in much more detail the phase-

matching conditions we have derived in a simplified form in section 4.5.2. Recall 

f r o m there that expression Eq. (4.102) for the optimum Bessel angle aopt had been 

derived in the loose focussing l imi t L / 6 < 1, a reasonable criterion for validity being 

given by the requirement b > 2L. Though of secondary importance in connection 

w i t h the calculations of chapter 5, the geometric phases, represented by the terms 

in z/b in Eq. (4.73) might otherwise contribute significantly to the determination 

of the opt imum angle Ofopt- We shall answer this question by giving a more general 

expression for the opt imum Bessel angle, and we w i l l subsequently test the new 

formula w i t h the help of extensive numerical calculations, similar to those in section 

5.2 but here using the f u l l time-dependent code. A t the same time, we w i l l have a 

closer look at the approximations involved in deriving the expression for the opti

mum Bessel angle. Concerning the conversion efficiency for Bessel-Gauss beams we 

w i l l draw conclusions which are, in fact, largely independent of the atomic gas con

sidered, and we w i l l support those conclusions by comparing corresponding results 

f rom calculations for both atomic hydrogen and xenon. We wi l l report cases where 

the conversion efficiency significantly exceeds the corresponding values in the Gaus

sian beam l i m i t . Very much as in section 4.5.2, the formulas derived in the following 

113 
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w i l l be, strictly speaking, only valid in the perturbative l imi t . We have seen in chap
ter 5 under which circumstances they can remain valid when the non-perturbative 
regime is entered. I n this chapter we w i l l consider only low-order harmonics in the 
perturbative regime for the sake of il lustrating the effects of phase-matching. For 
high-order harmonic generation at high intensities we refer to our calculation in 
argon, reported in chapter 7. 

6.2 Phase-matching and conversion efficiency 

6.2.1 Preliminary remarks 

I n section 4.5.2 we had obtained the optimum Bessel angle by eliminating the far-

field angle /? between the two phase-matching conditions, the radial phase-matching 

condition Eq. (4.101) and the axial phase-matching condition Eq. (4.96). I t is clear, 

that though we define unambigiously an angle a = aopt in this way, where the two 

maxima of the phase-matching conditions coincide for the same far-field angle 

we cannot make any definite statement about the resulting conversion efficiency as 

a funct ion of a. Indeed, we had only assumed on these grounds the angle ctopt to 

be a good estimate for the Bessel angle which maximizes the conversion efficiency. 

However there is no reason, a priori , why optimum phase-matching should be tan

tamount to maximum conversion efficiency for a > 0°. Firstly, i t could be possible 

to achieve higher conversion efficiencies for angles a ^ ttopt for which the two phase-

matching conditions are fulf i l led separately, that is for two different values of the 

far-field angle (over which we w i l l have to integrate to get the harmonic yield), sec

ondly, the values of the maxima of the phase-matching conditions might also depend 

on the Bessel angle a. In the following we shall therefore refer to aopt as the opti

mum Bessel angle for phase-matching and to a^ax as the Bessel angle for which the 

conversion efficiency has its absolute maximum^ The dependence of the conversion 

efficiency on the Bessel angle a can be obtained as follows: The far-field amplitude 

^We continue to call aopt the optimum Bessel angle because other potential applications for 
Bessel(-Gauss) beams might require optimum phase-matching without aiming primarily at maxi
mum conversion efRciencies. 
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Eq. (4.85), as a function of the far-field variables {p',z'), can be writ ten as 

i ^ r ( p ' > - ' ) p c x - ; ^ i F , n G , r (e . i ) 

Here, is the axial integral Eq. (4.86) and Gp is the radial integral Eq. (4.100) 

which we rewrite here as 

r+co 

Gp = / dppMAp)n{Bp) e x p ( - a V ' ) , (6.2) 
Jo 

where 

^ = 9^0,1 sin/?, B = kQ^isina, = qko,i/b. (6.3) 

The conversion efficiency, f rom Eq. (4.66), is then given by 

(6-4) 

Recalling tan /3 = p'/z' we finally obtain 

'n,{a)oc / dptan/3\F,{a,P)\^\Gp{a,P)\\ (6.5) 

^0 

For large confocal parameters, cr̂  vanishes and Gp is sharply peaked for ^ — 5 

(see Refs. [217,218] and Eq. (3.7)), therefore selecting a precise value of the far-field 

P = a/q. The opt imum Bessel angle is then obtained by solving for the absolute 

maximum of Fz{aopt, ctopt/?)- Though this corresponds to optimum phase-matching 

for the same value of /5, even in this l imi t i t does not guarantee a^ax = Qiopt- Indeed, 

though we take F^ at its absolute maximum and Gp at a relative maximum, the latter 

is not the largest value the radial integral can take on. The absolute maximum of 

the radial integral is always 

Gp{a = 0°,/3 = 0°) = l/2a\ (6.6) 

thus favouring o; = 0°. The relative maxima of Gp obtained for o; > 0° are decreasing 

w i t h the Bessel angle. This feature accounts for the potential loss of driving power as 

the central peak of the incident Bessel-Gauss beam becomes narrower wi th increasing 

Bessel angle a, a feature we had already pointed out in the concluding remarks of 

chapter 4. The impact of this effect on the conversion efficiency can obviously not 

be predicted f rom phase-matching considerations alone. 
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I t is of course possible to investigate Eq. (6.5) numerically to obtain the precise 
nature of the function r]g{a). As this, however, amounts essentially to solving the 
propagation problem, except for the time integration, we t ry in the following to 
ju s t i fy in more detail the simple approach of section 4.5.2. I t led to expression Eq. 
(4.104) for the opt imum Bessel angle aopt which, in chapter 5, was found - after all 
- to be a reliable prediction for the angle amax, corresponding to the maximum con
version efficiency. In a first step, we note f rom the radial and axial phase-matching 
conditions of section 4.5.2 that the influence of the radial phase-matching condition 
on the determination of the optimum Bessel angle is rather l imited. I f we assume 
Popt < ctopt/Q, the contribution of the radial phase-matching condition amounts to 
the factor [g^/(g^ - 1)]^/^ in Eq. (4.104), which is of importance for g = 3 at most. 
I n the l im i t /? = 0° this factor disappears alltogether. I t is thus reasonable to start 
our investigation by taking the axial integral F^ out of the integrand at some value 
Po to be determined later, 

7]q{a)cx\F,{a,PoW / d/? tan/? |G,(a , /?)p . (6.7) 

We can see that i f the remaining integral Eq. (6.7) (not Gp(a,P) alone) is weakly 

dependent on a w i t h respect to F^, we can indeed expect the maximum of T]q{a) 

to be determined by the axial integral alone, hence ajmax ~ ^opt- This is likely to 

be the case i f F^ is strongly peaked itself while the loss of driving power associated 

w i t h the radial integral is not too important. Thus we need to know the behaviour 

of Gp{a,P) in more detail. This is the subject of the following section. 

6.2.2 Radial phase-matching 

We recall first the derivation of the radial phase-matching condition, Eq. (4.101), 

by inspection of the integral Eq. (6.2). For odd harmonic orders q the integrand of 

Eq. (6.2) is positively definite if A = B. Lacking an analytical expression for this 

integral, we concluded that this maximizes the integral, therefore A = B being the 

radial phase-matching condition. This conclusion was assumed to be independent of 

the harmonic order as long as q is an odd integer. We w i l l show now that A — Bis 

the maximum only for large confocal parameters (Bessel beam l i m i t ) , such as those 
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considered in section 4.5, and investigate the changes occuring for smaller confocal 
parameters. For this we determine the maxima of the integral Eq. (6.2) for a given 
B. Before considering an arbitrary (odd) q, we investigate the case q = 1. Indeed, 
the solution of Eq. (6.2) is known for § = 1 and given by Eq. (3.26) as 

/

+00 1 / A^ + B'^\ f A B \ 
dppexp{-a'p')MAp)Jo{Bp) = — exp - ^ j h [ j ^ j • (6.8) 

Let t ing 

X - A/^/2a = V/TT^/A y/qsinp, ^ = B/V2a = yJnb/Xil/^) sin a , (6.9) 

we find for g = 1 that the zeroes of the derivative wi th respect to x of the function 

/ e ( x ) = e x p [ - ( a ; 2 + a/2 ] / o (xO (6.10) 

are given by 

f[{x) = exp[-{x' + e)/2MhixO - xloixO] = 0 • (6 . 1 1 ) 

For small arguments of the modified Bessel functions in Eq. ( 6 . 1 1 ) we have [^Ji(a;^) — 

xIo{x^)] !^ 3;(^^/2 — 1 ) , thus x = 0 is a maximum independently of ^ up to ^ = \/2. 

For large arguments of the Bessel functions we have [^h{x() — xIo{x^)] ^ ^ — x and 

a; = ^ is the maximum of f^{x) in this l imi t . The f u l l plot of the function x = x{^) 

for which there is a maximum is shown in Fig. 6.1. We see that the maximum 

condition A = B (that is a; = ^) holds both asymptotically and for rr = ^ = 0. In 

Fig. 6.1 we can distinguish three regions, approximately defined as 

0 < e < ^ ( ' ^ ) , ê '̂ ) = \/2 (6.12) 

^ ( 0 ) < ^ < ^ ( i ) ^ ^ ( 1 ) ^ 3 (6.13) 

^(^^ < ^ < + 0 0 , ' (6.14) 

which correspond to a: = 0 (^ = 0°), a transitory region where x increases rapidly 

w i t h ^, and the asymptotic region x = ^ {P = a/q), respectively. This translates, 

according to Eq. (6.9), into the following bounds for the corresponding angles a, 

0<a<a^'\ a W - ^ ( 0 ) ^ X 7 6 ^ , ^ = 0° (6.15) 

<a< Q;(̂ ) , a^^^ = ^^i) ./X/b^, 0° </3<a/q (6.16) 

Q ; W < a < + o o , P = o:/q (6.17) 
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Figure 6.1: Thick soHd line: plot of the function x = x{^) maximizing the integral Eq. 
(6.8), X and ^ being defined by Eq. (6.9). The dashed fine is a; = ^. 

where q = I. Obviously 0;^°) = â ^̂  = 0° in the l imi t b —>• -l-oo and the maximum 

condition is then always A = B for any given B. 

How are these features changing when we consider harmonic orders q > 1? Because 

of the similari ty of the Bessel and the trigonometric functions, we can model these 

cases by replacing Eq. (6.2) w i th 

-+00 
G„ dp cos(Ap) cos^{Bp) exp{-ay^) (6.18) 

Using integral 3.898.2 of Ref. [88] we obtain for 9 = 1, following the same steps as 

above, a function f^^~^^ and its derivative wi th respect to x given by 

f^'-^\x) = exp[-{x' -F f ) /2] cosh(a;e) 2 , c2\ (6.19) 

and 

f^'-'^'{x) = exp[-ix' + f )/2][^sinh(a;0 - a:cosh(a;0] (6.20) 

respectively. The difference between expression (6.10) and (6.19) is that we have 

exp(-x)/o(a:) ~ OA/y/x for large x while exp(-a;) cosh(3;) converges towards 0.5 in 

the same l i m i t . As can be easily seen, this does not affect the maximum condition 

in the l imits ^ < 1 and ^ > 1, in which we are particularly interested in . Indeed, 
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we have both cosh(a;) ~ dcosh(a;)/dx = sinh(a;) and /o(a;) ~ d/o(a;)/da; = Ii{x) for 
large x, as well as cosh(O) = 7(0) = 1 and sinh(O) = / i ( 0 ) = 0. More precisely, for 
X <C 1 we find sinh(a;) ~ x while Ii{x) ~ x/2. This is the reason why we obtain 

= 1 using Eq. (6.20) compared to ^̂ ^̂  = ^ using Eq. (6.11). Thus, to make 
the modelling more adequate, we replace sinh(3;) by 2;/2 in the l imi t a; < 1. 

Af te r these preliminaries we are now ready to tackle the case of an arbitrary harmonic 

order. The corresponding power of g in Eq. (6.18) can be easily linearized using 

(g - l ) /2 , . 

cos '(5p) = — n cos[(g - 2/ . )Bp], (6.21) 

which is valid for odd integers q. Straightforward algebra leads to the function 

f ^ [ x ) = exp[-{x'+e)/2] (6.22) 

( 9 - l ) / 2 . X 

X Y [ l ] e x p { - [ ( ? - 2k)^ - 1]^V2}cosh[(5 - 2k)x(], 

which reduces to Eq. (6.19) for q = I. Differentiating f(^\x) w i t h respect to x, we 

find that the expression determining the zeroes x is now given by 

Eto^^' {l)exp{-[iq-2kY-l]em 

X {^{q - 2k) sinh[{q - 2k)x(\ - x cosh[{q - 2k)x^]} = 0 . (6.23) 

The asymptotic l im i t a;, ^ > 1 is determined by the only term in Eq. (6.23) which 

is not exponentially decaying, that is for k = {q - l ) / 2 . Because q - 2k = 1 and 

sinh(x.^) ~ cosh(a;^) in this l imi t we find again a; = { as being the (asymptotic) 

maximum condition, hence P — a/q f rom Eq. (6.9). We have verified this numer

ically f rom Eq. (6.23) up to harmonic order g = 9. The l imi t a;,^ < 1 has to be 

investigated numerically because of the exponential function appearing in Eq. (6.23) 

which leads to a transcendental equation for when searching for the range of 

values ^ for which x = Q. From Eq. (6.23) we obtain that ^̂ ^̂  decreases slowly f rom 

= 1 down to ^ 0.92. On the other hand, i f we replace sinh[(g - 2k)x^] by 

sinh[(g-2A;)a;^]/2 to model the behaviour of the modified Bessel function / i for small 

arguments as explained above, we find a value very close to \/2 for all harmonic 

orders considered (up to q = 9). We therefore conclude that Eqs. (6.12)-(6.17) hold 
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for any harmonic order though we cannot assign a precise value to ^(^^ and a^^\ How 
quickly do the maxima of the radial integral decrease with growing Bessel angle? To 
get a rough idea, we consider the case g - 1 for simplicity and letting a; = 0 in Eq. 
(6.9), we find /^(O) = exp(-^2). On the other hand, for the asymptotic limit, we 
let a; = ^ and we find this time f^{x = 0 = exp(-^^)/o(^^) which decreases only as 
0.4/^ for ^ 1. The important difference between these two limits is that the first 
one corresponds to Bessel angles a which all favour the value 0 = 0° and, therefore, 
does not yield any significant contribution to the integral Eq. (6.7) due to the factor 
tan j3 appearing in the integrand. On the other hand, once values of P are reached 
which contribute to the integral, the dependence of the maxima on the Bessel angle 
a has become very weak. 

We can now give a qualitative explanation why (or rather when) the optimum Bessel 

angle oiopt, as determined from the axial phase-matching condition, is a good esti

mate for the Bessel angle amax, where maximum conversion efficiency occurs. For 

large confocal parameters, Q;̂ '̂ 0 and the loss of driving power favours o; = 0°. 

Physically this corresponds to the Bessel beam limit, where the energy contained 

in the beam is spreading out over many Bessel nodes (see Fig. 3.2). Provided the 

axial integral is sufficiently peaked, we will still find the maximum conversion ef

ficiency for ctmax ~ Q!opt but the gain with respect to the Gaussian limit a = 0° 

cannot expected to be very high (if gain there is). This case is essentially described 

in chapter 5, below the resonance. Above resonance, or more generally when the 

dipole moment is saturating, the situation may reverse, because the power law de

termining the behaviour of the radial integral in the perturbative regime does not 

hold any longer. The energy contained in the secondary maxima can then contribute 

efficiently to the harmonic generation process as seen in chapter 5. For small con-

focal parameters, a large range of Bessel angles, starting from a = 0°, are strongly 

defavoured. Provided aopt > o:^°\ we expect not only the maximum of the con

version efficiency to occur at cvmax ~ Oiopt but also a significant gain in conversion 

efficiency with respect to the Gaussian limit a = 0°. This situation corresponds to 

a Bessel-Gauss beam with a large Bessel angle and a small confocal parameter. Its 

characteristics are very different from both the Gaussian and the Bessel beam limit. 
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Table 6.1: Values of a(°) and a(^\ defined in Eqs. (6.15) and (6.16), for various confocal 
parameters b and A = 355 nm. Al l angles are given in deg. 

b [mm 
1.0 0.86 1.82 
2.0 0.61 1.29 
5.0 0.39 0.82 
48.7 0.12 0.26 

Very much as for the Gaussian beam the power is concentrated close to axis but 

the phase-matching conditions are more those of a Bessel beam. The drawback in 

this case is the comparatively low power which can be upconverted for a given peak 

focal intensity. Moreover, it is more difficult to predict how this picture changes 

when going beyond the perturbative limit. 

We can summarize as follows: in a large number of cases, the Bessel angle predicting 

a maximum conversion efficiency can be obtained as the optimum phase-matching 

angle from the axial phase-matching condition. The recommended value for 

in Eq. (6.7) is /?o = oi/q. I f aopt < then ctopt should be recalculated letting 

/3o = 0°. Normally, this will affect only the case q ~ 3. Note that in principle 

the curve r]q{a) might, a priori, have several relative maxima and minima before 

reaching the absolute maximum ctmax ~ <^opt- If is not strongly peaked at aopt 

(e.g. too low atomic densities) and/or the confocal parameter is too large (in the 

perturbative limit), then 0 < a^ax < ocopt should be expected. In Table 6.1 we have 

given the values of a^'^^ and o;̂ ^̂  for A = 355 nm and a few confocal parameters of 

interest. The value 6 = 48.7 mm was used in chapter 5, where we had worked with 

an optimum Bessel angle aopt ~ 1-2°, much higher than the bounds given in Table 

6.1. Accordingly, we had found the far-field maximum given by Eq. (6.17), namely 

P « 1.2°/3 = 0.4°. The remaining values given in this table will be considered in 

later sections. 

We have seen so far how the radial phase-matching condition is affected when we de

crease the confocal parameter b. However, to complete this picture we have to study 

the influence of the 2;/6-dependent terms entering the harmonic far-field amplitude 
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Eq. (4.71) and which we had neglected in our earlier phase-matching considerations 

in section 4.5.2. The radial phase-matching integral has still the form of Eq. (6.2) 

but now with 

A = ko,q sin /?, B = 
ko^i sin a 2 _ qkQ,\/b 

(6.24) 
1 + 2iz/b ' 1 + 2iz/b ' 

The integral is therefore both complex and z-dependent. As a consequence, radial 

and axial integration do not separate and the integral Eq. (6.2) yields z-dependent 

phases which contribute to axial phase-matching. I t is artificial to distinguish ra

dial and axial phase-matching in this case and, in fact, more appropriate to talk 

about optimizing both modulus and phase of the integrand of the harmonic far-field 

integral. We shall be content to derive the first correction including the confocal 

parameter to the expression for the optimum Bessel angle of section 4.5.2 and to 

discuss qualitatively the modifications of the asymptotic maximum condition A = B 

due to focusing. For this we rewrite the solution of the integral Eq. (6.8) as 

exp 1 I 0̂ 
4^2 2a2 = exp 

{A-B) 
4cr2 

21 
exp 

AB 
2 ^ 

AB 
2^ 

(6.25) 

This makes the maximum condition A = B apparent and we can reformulate 

the problem of finding this condition by requiring the exponents of all exponen

tially decaying functions to be minimal^. The first of these exponents is there

fore -Re[{A - 5)2/40-2]. Going back to the full expression of the harmonic far-

field amplitude, Eq. (4.71), we have to replace d,(/) exp[i$at(/)] by the corre

sponding power law (Eq. (2.21)). Taking the full Bessel-Gauss amplitude Eq. 

(3.22) to the g*'* power, we see that, besides the p-dependent terms already taken 

into account, we also have to take the exponentially decaying z/6-dependent term 

exp{—qko^iz'^sm'^a/b[l -\- (2z/6)2]} into account. I t is a straightforward matter to 

evaluate the sum of these two contributions and the resulting exponent is given 

(except for an overall minus sign) by 

Re 
(A - Bf 

4(T2 + 

-\-kl sin^ a 

qko^iz'^ sin^ a 
b[l + {2z/by' 

1 
1 + {2z/by 

= kl g sin P"^ — 2ko,i /co,? sin a sin P 

. 1 + (2^/6)2 • + (6.26) 

^Recall that exp(-a;)/o(a;) ~ OA/y/x for large x. 
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We replace 1/[1 -F {2z/by] by an average value F, between 0 (for L/b +00, where 
L is the medium length) and 1 (for L/b=0). Trying to make the exponent vanish 
alltogether does not lead to real valued angles for F < 1. I f we look for the minimum 
by deriving Eq. (6.26) with respect to a, we find the angles a and P to be related 
by 

P = a [F/q + q{l - F)], (6.27) 

where we have assumed sino; ft; a and sin/? ft: p. Thus, we recover /? = a/q in the 

limit F -)• 1. On the other hand, we obtain P = qa> am the limit F -)• 0. 

Before turning to axial phase-matching, we briefly recall our findings so far: axial 

and radial phase-matching condition are, in most cases, largely independent of each 

other. While axial phase-matching determines essentially the optimum Bessel angle 

for maximum conversion efficiency, radial phase-matching infiuences the spatial far-

field profile. For a given focusing geometry (L, b) we find that there is no far-

field peak at all for Bessel angles a below a certain value a^^\ The far-field peak 

subsequently emerges and reaches a value p = a/q but may take on larger values if 

a is further increased and F < 1. 

6.2.3 Axial phase-matching 

In this section we shall derive an expression for the optimum Bessel angle which 

contains the first correction due to focusing and which will be valid for any of the 

gas density profiles given in Appendix B. Indeed recall that Eq. (4.104) is only valid 

for a rectangular gas profile. The leading order correction is given by the term 

proportional to tan~^(2z/6) in Eq. (4.73) as we shall see later. We have pointed out 

in the last section that the radial integral, being complex and ^-dependent will yield 

terms which contribute to the axial phase factors. One of these is 

which is the prefactor of Eq. (6.2) depending only on the exponential appearing in 

this integral. This term changes qidin~^{2zlb) in Eq. (4.73) into ( 9 - 1) tan~^(22;/6). 
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Al l remaining phases are similar to the corresponding term proportional to z'^ sin^ a 
in Eq. (4.73) and we will ignore these terms in the following. Therefore, we take as 
starting point the axial phase to be given by 

^(z) = ko,q {[z Zi{z)]cos a - [z -\- Zg{z)]cos P} - {q-l)tsin-^ {2z/b) , (6.29) 

where, from Eqs. (4.62) and (4.60), 

Z,{z)=Mo^{z)xi{I)/2, Zq[z) =A/-o[S(z) - L ] x , ( / ) / 2 , (6.30) 

and the gas density profiles are assumed to be 2-dependent only, 

E(z) = a{z)dz. (6.31) 

In the expressions (6.30) we have kept the intensity / as a fixed parameter, as the 

previous derivations remain valid, if the linear atomic susceptibilities are weakly 

dependent on the intensity. Unlike in section 4.5.2, where we obtained the axial 

phase-matching condition from the complete expression of the axial integral F^, 

Eq. (4.86),' we will proceed here simply by requiring the variation of the phases 

over the axial medium dimensions to be minimal. In fact, the full expression for 

Fz is only of use if one needs an analytical expression for the axial integral for 

computational purposes, but it is not required for determining the optimum Bessel 

angle ctopt- The great advantage of the method outlined below is that we will obtain 

oiopt for all gas density profiles given in Appendix B, the disadvantage (from the 

computational point of view) being that the actual propagation calculations have 

to be carried out fully numerically despite being in the perturbative regime due to 

the lack of a closed expression for F^. An analytical expression for F^ would have 

been especially helpful in the tight focusing limit, where the proper convergence of 

the fully numerical calculations can be a particularly awkward task. 

Ideally, the derivative of ^, 4>'{z) = d4>/dz, should vanish so as to have no phase 

variations over the medium dimensions. As, in practice, 4>'i^) will assume both 

positive and negative values, we will require the angle a to be chosen in such a way 

as to minimise the total area enclosed by the square of this function and the z-axis. 

More precisely, we look for the minimum with respect to the Bessel angle a of the 
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function 

where we consider the square of the derivative in order to avoid cancellation of the 

areas above and below the 2;-axis, thereby forcing the points of the curve ^'{z) to 

be as close as possible to zero. Writing the derivative of ^{z) as 

^ ^ ' { z ) = P { z ) c o s a - Q { z ) c o s p - \ ( I - ~ \ R { Z ) , (6.33) 
I^Q,q -Kb \ q ) 

where 

P{z) = \^M^G{Z)XXI2 (6.34) 

Q[z) = 1-\-Afoa{z)xg/2 (6.35) 

Riz) = l/[l + {2z/bf], (6.36) 

we find after some elementary calculations the following expression for the derivative 

of 5(Q;), 

S'{a) = 2sina [ - cosaFi + cos/JFs + A(l - l / g ) / 7 r 6 F 3 ] . (6.37) 

The functions Fj appearing in Eq. (6.37) are defined by 

Fi = - / 'P^{z)dz (6.38) 
^min 

1 rzmax 

F2 = - / P{z)Q{z)dz (6.39) 

^3 = 7 / P{z)R{z)dz. (6.40) 

6.2.4 A formula for the optimum Bessel angle 

We can now combine the results from the two previous sections: requiring the square 

brackets to vanish in Eq. (6.37), expanding the cosines up to second order in a and 

P, respectively, and using P ft; a/q as the radial phase-matching condition, we obtain 

• 2 ( F i - F 2 ) - 2 A ( l - l / g ) / 7 r 6 F 3 T ' / ' 
a, opt Fi - F2/g2 

(6.41) 
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Now, 

rzmax 

2 ( F i - F 2 ) = (2/L) / P{z)[P{z) - Qiz)]dz 

= - X,)/L] / P{z)a{z)dz 

/

2 m a x 

a{z)dz 
min 

= J^oiXl-X<,MZma.)/L 
= A^o(xi - Xq) 

and for the denominator. 

Fi = F2 ft; 

while for F3 we may use 

1 /"^max ^ 

P ^ - l J R{z)dz = 2L 
, _ i / 2zYnax \ , -I ( 2-Zniin 
tan —:— - tan ' b ) V b 

Recalling ^min = —-Zmax, for the gas profiles under consideration, we finally obtain 

in this way. 

L q^ 
TJ [^^^^^-^^^-Vb['-q)[L'^^ 

2'Zmax 

b 

1/2 

(6.42) 

We stress again, that the radial phase-matching condition enters this expression 

only in form of the prefactor [q^/{q^ — 1)]^^^. This factor has to be omitted if a first 

calculation of the optimum Bessel angle using Eq. (6.42) yields a value ttopt < Oi^^\ 

where â ^̂  is defined in Eq. (6.15). 

Recall, from Appendix B, Zmax = 0.5L for a rectangular gas profile, Zmax ~ 0.78L 

for a truncated Lorentz gas profile and Zmax = L for a cosine-square gas profile. 

In order to make the connection with the expressions derived previously for the 

optimum Bessel angle, Eqs. (4.103)-(4.106), we consider a rectangular gas profile. 

While up to now we had not to distinguish clearly between plane wave limit and 

loose focusing limit, we will henceforth define more specifically the plane wave limit 

by L/b 0 and X/b 0, and the loose focusing limit by L/b -> 0 at \/b fixed. 

We obviously recover Eq. (4.104) in the plane wave limit, but we remain with an 
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additional contribution, lowering the value of the optimum Bessel angle, in the loose 
focusing limit. Hence, this is the leading correction to the plane wave limit as all 
other phases vanish in the limit L/b = 0. Very much as in Eq. (4.106), we can write 
the optimum Bessel angle again as a function of the well known phase-mismatch for 
the Gaussian beam in the loose focusing limit, namely 

«opt ~ [qViq' - l)m-{X/q7r)Aku]'/' , (6.43) 

with [130,191], 

Ak{ = Akdi,p + 2{q-l)/b. (6.44) 

In the tight focusing limit we have L/b > 1 and consequently F3 0. In this case, 

Eq. (6.42) suggests that we recover the value of aopt of the plane wave limit. This 

would imply the Gaussian beam to be optimally phase-matched in a dispersionless 

medium in the tight focusing limit, which is known not to be the case [130,191]. 

On these grounds and because we have neglected phases which contribute to higher 

orders in L/b, we expect the breakdown of our derivation to occur typically for 

confocal focusing geometries {L ^ b). 

From Eqs. (6.42) and (6.44), finally, we recover the well known fact that the Gaus

sian beam is the optimum Bessel-Gauss beam in the plane wave limit for a dis

persionless. medium (e.g. an appropriate gas mixture), that is for Ak^isp = 0, and 

for a moderately negatively dispersive medium in the loose focusing limit, provided 

Akif = 0. It is easy to see how the flexibility of Bessel-Gauss beams comes into 

play in these cases. Consider e.g. the condition Aku = 0. For a given macroscopic 

dispersion and harmonic order q, this condition fixes automatically the confocal pa

rameter b. For a given peak focal intensity I f , phase-matching with a Gaussian beam 

can thus be obtained only for one single value of the input power, this value being 

given by Eq. (3.28). On the other hand, we may achieve phase-matching, for a fixed 

peak focal intensity, for a large range of confocal parameters (thereby varying the 

input power continously) by simply choosing a Bessel-Gauss beam with a conical 

half-angle given by Eq. (6.43). 
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6.3 Results and discussion 
6.3.1 Introduction 

The following calculations will be carried out in the weak-field limit, for which 

the expressions derived in the previous sections are valid. In order to check the 

accuracy of Eq. (6.42), we have to fix the confocal parameter while tuning the 

Bessel angle a. As a consequence, at least one of the two parameters, total incident 

power or peak focal intensity, will have to vary with the Bessel angle a. Note that 

we could keep both the peak focal intensity and the total energy on target, Eq. 

(3.48), fixed, provided we increase the pulse duration r such as to compensate the 

loss in incident power, the latter being a decreasing function of the Bessel angle 

at fixed peak focal intensity If according to Eqs. (3.27) and (3.28). However, an 

increasing pulse duration affects the photoionization probability and thereby both 

phase-matching and target depletion. As the conversion efficiency itself already 

relates the energy of the harmonic to the energy of the incident beam, the best 

choice is to keep all parameters fixed, except for the total power (and therefore the 

total energy for a given pulselength), which will now depend on the Bessel angle a. 

I t is important to stress at this point that, because we work within the perturba

tive regime, we can compute conversion efficiency curves which are, under certain 

circumstances, completely independent of the atomic gas considered. Indeed, the 

atomic properties enter the calculation only via the linear atomic susceptibilities and 

the prefactor in the power law Eq. (2.21)^. Therefore, if we compute the ratio R{a) 

of the conversion efficiency of the Bessel-Gauss beam to the conversion efficiency of 

the Gaussian beam limit (a = 0°), this prefactor will drop out, and so will the gas 

density Ao appearing in the overall prefactor and the peak focal intensity I f . As a 

consequence, for a given focusing geometry {L, b) and a given wavelength A of the 

incident beam, the ratio R{a) will be essentially independent of the atomic gas pro

vided that the value of the dispersion, proportional to J\foRe{xi-Xq) > 0) is the same 

and absorption is negligible. R{a) will also be independent of the peak focal inten-

^That is, the q^'^ -order nonlinear susceptibility describing the generation of the q^'^ harmonic 
for the atom under consideration. 
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sity I f . We expect this universality of the curve R{a) to hold typically to the same 
extent as Eq. (6.42) correctly predicts the optimum Bessel angle. The advantage of 
having only to require the macroscopic dispersion to be equal is obviously that the 
dispersion per atom, Re(xi - Xq), does not have to be the same for every atomic 
system under consideration in order to obtain the same curve R{a). On the other 
hand, Re(xi - Xq) must be evaluated at the same wavelength of the fundamental 
because the ratios X/b and X/L enter the propagation calculations. This restriction 
can be removed if both L and b are changed accordingly with the wavelength, as 
the ratio L/b remains then unaffected too. We have, however, made no attempt to 
demonstrate the latter assertion and we will restrict to the same wavelength of the 
fundamental for all atomic systems considered, A ft 355 nm. The ideal candidate for 
a comparison with atomic hydrogen is xenon. The third harmonic of A = 354.7 nm 
(the wavelength used in Refs. [118,237]) lies just below the 5ci[|] resonance. This 
resonance has the largest oscillator strength in xenon (see section C.3). Moreover, 
both xenon and atomic hydrogen are ionized by four photons at this wavelength 
and we are therefore essentially avoiding problems due to resonances involving the 
harmonic generated in the medium. This is different e.g. for a wavelength A ft^ 440 
nm of the fundamental, where the third harmonic lies below the 65 resonance in 
xenon. Here, we have the possibility of a reabsorption of the third harmonic via 
resonant two-photon ionization 3hu) + fko from the 4 / state [73]. Of course our 
propagation code cannot cope with this type of problem, as we have neglected all 
harmonic couplings from the outset. Luckily, this type of process has usually a clear 
signature in experiments, both due to the missing (third) harmonic and the strong 
ionization signal from the resonant state [166] and problems related to this effect in 
treating harmonic generation in our approximation can, in general, be anticipated. 
Another, though somewhat less optimal, candidate for comparison is krypton. Two 
possibilities appear: for A ̂  369 nm, the third harmonic lies just below the 5s res
onance, for A fti 348 nm, the third harmonic lies just below the 5s' resonance, both 
of which have the largest oscillator strengths in krypton [44]. These two options 
differ by the number of photons required for ionizing the atom: four photons are 
needed for A = 348 nm, five for A = 369 nm, the ionization potential of krypton 
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being Ip = 14.0 eV. At A = 369 nm, we would have, a priori, to expect resonant 
two-photon processes close to the ionization threshold. The remaining noble gases 
are unsuitable at these wavelengths^. 

In the following we shall restrict to a comparison between atomic hydrogen and 

xenon at A = 355 nm. The linear atomic susceptibilities for xenon are evaluated 

with the help of the Sellmeir formula (see Appendix C), the third-order nonlinear 

susceptibility entering the power law Eq. (2.21) is taken to be x^^^ = 5.6 x 10~^^ 

esu [118]. The conversion into the dipole moment in atomic units is described in 

detail in section E.3.2. 

In all of the subsequent calculations, we have fixed the values of some of the parame

ters, unless stated otherwise, as follows: the pulselength is r = 15 ps, the peak focal 

intensities are If = 10̂ ^ W/cm2 for atomic hydrogen and If = 5.7 x 10̂ ^ W/cm2 for 

xenon. These two intensities correspond approximately to the maximum value for 

which the power law Eq. (2.21) holds^. Moreover, the two different values will enable 

us to check, whether the curves R{a) are indeed independent oi I f . The wavelength 

of the incident laser field is A = 355.0 nm for atomic hydrogen and A = 354.7 nm 

for xenon. We present our calculations in the following in form of case studies: 

No. l : Compares atomic hydrogen and xenon for third harmonic generation of 355-

nm radiation for a focusing geometry (L, b) = (0.5,5) mm. The peak gas 

density is Ao = 4x10^^ atoms/cm^ for atomic hydrogen and A/Q = 1.95x10^^ 

atoms/cm^ for xenon. 

No.2: Compares atomic hydrogen and xenon for third harmonic generation of 355-

nm radiation for a focusing geometry {L, b) = (0.5, 2) mm. The peak gas 

density is Ao = 4x 10̂ ^ atoms/cm^ for atomic hydrogen and Ao = 1.95 x 10̂ ^ 

atoms/cm^ for xenon. 

No.3: Compares atomic hydrogen and xenon for third harmonic generation of 

355-nm radiation for a focusing geometry (L, b) = (1,1) mm. The peak gas 

•̂ We recaU from Table 5 of Ref. [191] that the wavelengths for which the rare gases first exhibit 
a negative real part of the linear atomic polarizability are: hehum: 58.4 nm, neon: 74.4 nm, argon: 
106.6 nm, krypton: 123.5 nm, and xenon: 147 nm. 

^For hydrogen, see Fig. 2.3, for xenon see Ref. [118,237]. 
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density is Â o = 1 x 10̂ ^ atoms/cm^ for atomic hydrogen and J\fo = 4.8 x 10̂ ^ 
atoms/cm^ for xenon. 

No.4: Investigates fifth harmonic generation of 355-nm radiation in atomic hydro

gen for the two focusing geometries {L,b) = {1, 5) mm, with A/'o = 6 x 10̂ ^ 

atoms/cm^ and (L, b) = {1,1) mm, with A/'o = 1 x 10̂ ^ atoms/cm^ . 

No.5: Investigates third harmonic generation of 355-nm radiation in xenon with 

reference to the experiment by Kung [118] for various confocal parameters. 

In particular we investigate the dependence of the conversion efficiency as 

a function of the medium length L. (The pulse duration is r = 2.9 usee in 

this case) 

6.3.2 Case study No.l 

We consider here a case rather similar to the one discussed in chapter 5 but with 

a fixed confocal parameter while the total input power is varying. We take L =0.5 

mm and b =5 mm. The peak atomic density for atomic hydrogen is A/'o = 4 x 10̂ ^ 

atoms/cm^ . In order to obtain the same macroscopic dispersion we need a peak 

atomic density of A/'o = 1.95 x 10̂ ^ atoms/cm^ for xenon. Table 6.2 gives the 

optimum Bessel angles for hydrogen and xenon as calculated from Eq. (6.42). A 

range of angles is given for hydrogen as the linear atomic polarizability at the third 

harmonic frequency is already weakly intensity-dependent (see Fig. 2.4). For this 

reason we will compare the conversion efficiency curves with respect to the gas 

density profiles only for xenon, having assumed the linear atomic polarizabilities 

to be intensity-independent throughout. The resulting curves for the conversion 

Table 6.2: Calculated values for ojopt) as given by Eq. (6.42) for atomic hydrogen (H) and 
xenon (Xe) and (L, b) = (0.5,5) mm. For xenon, both the rectangular gas profile (RP) 
and the truncated Lorentz gas profile (TLP) have been considered. 

aopt (deg.) H Xe 
RP 1.18-1.23 1.22 
TLP . - 0.96 
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Figure 6.2: Top: Absolute conversion efliciencies for atomic hydrogen (circles and 
solid lines) and xenon (squares and dashed lines) versus the Bessel angle a for 
the following focusing parameters: {L, b) = (0.5,5) mm. Filled symbols are for a 
rectangular gas profile, open symbols for a truncated Lorentzian gas profile. Bottom: 
Normalized conversion efficiencies R{a) with respect to the value in the Gaussian 
limit {a = 0°). The total energy on target drops from 7.1 x 10~^ mJ {a = 0°) to 
6.1 X 10~^ mJ {a = 1.80°) for hydrogen, and from 4.0 x 10'^ mJ to 3.5 x 10"^ mJ 
for xenon. 
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Figure 6.3: Symbols as in Fig. 6.2. Left: Position of the absolute maximum (off-axis) of 
the spatial far-field profile in terms of the far-field angle P, versus the Bessel angle a. For 
guidance, the curve P — a/Z is also shown (thick line). Right: Ratio of the maximum 
off-axis to the value on axis versus the Bessel angle a. 

efficiencies are shown in Fig. 6.2. In the top figure the absolute conversion efficiencies 

are given. They are larger in the case of xenon compared to atomic hydrogen, 

as expected, due to xenon being more polarizable. Rectangular gas profile and 

truncated Lorentz gas profile lead to approximately the same maximum conversion 

efficiency, which is about f« 5 x 10"^ in this case for xenon. If a rectangular gas 

profile is used, the maxima of the curves occur in the range a = 1.15 —1.20°, in good 

agreement with the figures given in Table 6.2. For the truncated Lorentz profile, 

the corresponding curve peaks around a = 1.00 - 1.05° compared to aopt = 0.96°. 

The bottom figure of Fig. 6.2 shows the normalized conversion efficiency curves 

R{Q) corresponding to the curves in the top figure and illustrates the universality 

of the quantity R[Q) with respect to the atomic species considered, provided the 

criteria listed above are satisfied. Fig. 6.3 shows the evolution of the far-field angle 
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P, at those points of the spatial far-field profile where the largest peak exceeds the 

maximum on axis, the corresponding ratio of the heights being given in the right 

hand side figure. The far-field peak emerges in between a = 0.8 - 1.0°^. This value 

is actually fairly close to the value of a^^^ given in Table 6.1 for 6 = 5 mm. Though 

this must be taken with some caution, we point it out at this stage because of similar 

findings in the following case studies. The curve approaches slowly the value a/3 

well beyond the value a = aopt and increases rapidly afterwards. The peak height 

is similarly enhanced. 

6.3.3 Case study No.2 

In this study we move somewhat closer to the confocal focusing geometry {L = b) 

and monitor the changes in the curves with respect to those shown in the previous 

case. Table 6.3 gives the values of the optimum Bessel angle for L — 0.5 mm and 

6 = 2 mm. The peak atomic densities for hydrogen and xenon are unchanged. 

The corresponding curves are shown in Fig. 6.4. For the rectangular gas profile, 

the maxima have moved to a ft; 1.10°, for the truncated Lorentz gas profile, the 

maximum can now be found at a ft; 0.95°. Both values are still in good agreement 

with the values of aopt given in Table 6.3. Note again, from the bottom figure of 

Fig. 6.4, the very good agreement between the curves R{a) for atomic hydrogen 

and xenon. As in the previous section, i t can be seen, that, though the maximum 

conversion efficiency is roughly equal for both gas density profiles, the relative gain 

^The stepsize for the Bessel angle a was dictated by the variations of the conversion efficiency 
curves. As a consequence, the onset of the ofF-axis maximum is not always determined to a high 
precision. In the present case we have redone the calculation and found the far-field peak to emerge 
within the range a = 0.85 - 0.90°. 

Table 6.3: Calculated values for aopt, as given by Eq. (6.42) for atomic hydrogen (H) and 
xenon (Xe) and (L, b) = (0.5,2) mm. For xenon, both the rectangular gas profile (RP) 
and the truncated Lorentz gas profile (TLP) have been considered. 

aopt (deg.) H Xe 
RP 1.11-1.16 1.15 
TLP ' - 0.87 
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Figure 6.4: Same as Fig. 6.2 but for 6 = 2 mm. Top: Absolute conversion efficiencies 
for atomic hydrogen (circles and solid lines) and xenon (squares and dashed lines) 
versus the Bessel angle a for the following focusing parameters: {L, b) — (0.5,2) 
mm. Filled symbols are for a rectangular gas profile, open symbols for a truncated 
Lorentzian gas profile. Bottom: Normalized conversion efficiencies R{a) with respect 
to the value in the Gaussian limit {a = 0°). The total energies on target are obtained 
from those given in Fig. 6.2 after multiplying by 2/5=0.4. 
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Figure 6.5: Symbols as in Fig. 6.4. Left: Position of the absolute maximum (off-axis) of 
the spatial far-field profile in terms of the far-field angle /3, versus the Bessel angle a. For 
guidance, the curve /3 = a/3 is also shown (thick line). Right: Ratio of the maximum 
off-axis to the value on axis versus the Bessel angle a. 

is less in the case of a truncated Lorentz profile. From Fig. 6.5 we can see the 

onset of an absolute maximum off-axis in the spatial far-field profile occurring for 

even larger values of a than those reported in Fig. 6.3. The harmonic emission is 

preferentially along the propagation direction for Bessel angles a < 1.30°. Note 

again the agreement betw^een this value and the value of â ^̂  in Table 6.1 for 6 = 2 

m m . As the range a < a^^^ now also includes the optimum angles ccopt given in 

Table 6.3 we recalculate these values omit t ing the term [q^l{q^ - 1)]^^^ in Eq. (6.42) 

(that is we assume /? = 0°). We find in this way oiopt = 1.08° for a rectangular gas 

profile and ttopt = 0.82° for a truncated Lorentz profile for xenon. The agreement 

w i t h the maximum of the curve for the rectangular gas profile is now excellent, while 

s t i l l being fair in the case of a truncated Lorentz profile. The peak height relative 

to the local maximum on axis is lower when compared to the previous case. 
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6.3.4 Case study No.3 

Compared to the two previous studies, we have now moved to a confocal focusing 

geometry, L = b = 1 mm. A t the same time, we have increased the gas density, 

so as to obtain large opt imum Bessel angles: A/'o = 1 x 10^^ atoms/cm^ for atomic 

hydrogen and A/'o = 4.8 x 10̂ ® atoms/cm^ for xenon. Theses angles are listed in 

Table 6.4. Fig. 6.6 shows the absolute and normalized conversion efficiencies for both 

atomic hydrogen and xenon. Unlike in the previous cases, the conversion efficiency 

curves pass through a pronounced minimum around a = 0.9° before reaching the 

absolute maximum at higher values of the angle a. We attribute this minimum to 

the delicate balance between a loss of driving power when increasing the angle a 

and the continously improving phase-matching. In fact, one can show, that this 

min imum disappears again, i f the power law for the dipole moment is replaced by 

a flat dipole moment We had pointed out the possibility of a departure f rom the 

single-maximum curves R{a), such as those in Figs. 6.2 and 6.4, when discussing 

radial phase-matching in section 6.2.2. We note in particular the large increase in 

conversion efficiency in agreement w i th the predictions made in that section. This 

gain is even large in terms of absolute output energy, considering that the energy on 

target in the Gaussian l imi t is only 5.4 times larger than for the Bessel-Gauss beam 

w i t h a = Qfopt. Note however that a low confocal parameter limits the overall input 

power that can be upconverted for a given peak focal intensity. 

Whi le the maxima shown in Fig. 6.6 agree well wi th the values given in Table 6.4 for 

a rectangular gas profile, the behaviour of the corresponding results for a truncated 

Tor this calculation, we had taken dq(;I) to be constant for intensities in the range I = I{ down 
to / = 10"^ I{, followed by rapid cut-off. 

Table 6.4: Calculated values for cvopt, as given by Eq. (6.42) for atomic hydrogen (H) and 
xenon (Xe) and {L,b) — (1,1) mm. For xenon, both the rectangular gas profile (RP) and 
the truncated Lorentz gas profile (TLP) have been considered. 

ttopt (deg.) H Xe 
RP 1.82-1.90 1.87 
T L P - 1.47 
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Figure 6.6: Same as Fig. 6.2 but for (L , 6) = (1,1) mm. Top: Absolute conversion 
efficiencies for atomic hydrogen (circles and solid lines) and xenon (squares and 
dashed lines) versus the Bessel angle a. Filled symbols are for a rectangular gas 
profile, open symbols for a truncated Lorentzian gas profile. Bottom: Normalized 
conversion eflSciencies R(a) w i th respect to the value in the Gaussian l imi t (a — 
0°). The tota l energies on target are obtained f rom those given in Fig. 6.2 after 
mul t ip ly ing by 1/5=0.2. 
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Figure 6.7: Symbols as in Fig. 6.6. Left: Position of the absolute maximum (off-axis) 
of the spatial far-field profile in terms of the far-field angle /3, versus the Bessel angle a. 
For guidance, the curve /3 = a/3 is also shown (thick fine). Right: Ratio of the maximum 
off-axis to the value on axis versus the Bessel angle a. 

Lorentz profile is strikingly different: Beyond the minimum at a = 0.9° the curves for 

xenon are vir tual ly identical for the two gas profiles in terms of absolute conversion 

efficiency, while for the normalized conversion efficiency, the curves for xenon and 

for atomic hydrogen corresponding to two diff'erent gas profiles are very close. In 

fact, the same pattern can be observed in Figs. 6.2 and 6.4 provided the curves for 

the truncated Lorentz profile are shifted to the right so as to overlap the curves for 

the rectangular gas profile. We therefore expressedly note the breakdown of Eq. 

(6.42) for the truncated Lorentz profile in the confocal focusing region. 

The behaviour of the absolute maximum of the spatial far-field profile, for which 

the position and the ratio peak/axis are shown in Fig. 6.7, are similar to those 

of the previous case studies: the slope of the (roughly) linear function /? = P{a) 

increases w i t h the focusing. I t seems that the ratios peak/axis diminish accordingly 
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but this may be due to the l imited maximum value of the Bessel angle a for which 
the calculation has been carried out. We note finally that while the normalized 
conversion efficiency curves R{a) for xenon and atomic hydrogen in the case of 
the same (rectangular) gas density profile have become dissimilar, the position and 
height of the absolute maximum off-axis are st i l l in close agreement. Again, the 
appearence of the far-field peak is well described by the corresponding value of a^^^ 
given in Table 6.1. 

6.3.5 Case study No.4 

I n this case study we report briefly on the generation of the fifth harmonic of 355-

nm radiation in atomic hydrogen. Due to the low atomic susceptibility at the cor

responding harmonic frequency (see section 2.4), this (and the higher order) har

monic (s) are of l imited interest for this particular value of the wavelength of the 

fundamental (in atomic hydrogen). Nevertheless, i t is useful to check, whether the 

concepts developed so far regarding the phase-matching conditions do also hold for 

5 > 3 as they should. The conversion efficiency curve for a loose focusing geometry 

( L , b) = {1,5) m m and peak atomic density TVQ = 6 x 10^^ atoms/cm^ (a rectangular 

gas profile was assumed) is shown in the top figure of Fig. 6.8. The optimum Bessel 

angle, evaluated f rom Eq. (6.42), is ctopt = 0.43°, in excellent agreement wi th the 

(small) maximum of the corresponding curve. The absolute conversion efficiency in 

the Gaussian l imi t is 77 = 5.1 x 10"^^ The bottom figure in Fig. 6.8 is for a confocal 

focusing geometry, {L, b) = (1,1) mm, and a peak atomic density of A/Q = 1 x 10^^ 

atoms/cm^ . Despite this high value of the atomic density, the optimum Bessel angle 

is only ttopt = 0.14°, in 'good' agreement wi th the fact, that no maximum could be 

found in the calculations. The spatial far-field profiles did not exhibit any peaks, in 

qualitative.agreement w i th the values of â ^̂  given in Table 6.1. 
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Figure 6.8: Top: Normalized conversion efficiency i ? ( Q ! ) for atomic hydrogen at the fifth 
harmonic versus the Bessel angle a. The parameters are L = 1 mm, 6 = 5 mm and 
A/o = 6 X 10^^ atoms/cm^ (rectangular gas profile). Bottom: Same as above but with 
6 = 1 mm and A/Q = 1 x 10^^ atoms/cm^ . 

6.3.6 Case study No.5 

The aim of this last study is to make a calculation similar to the one of chapter 5 

but for a case where experiments have already been carried out for the Gaussian 

l i m i t . We refer here in particular to the experiment by Kung [118] on th i rd harmonic 

generation in xenon at 354.7 nm wavelength. We have used the data provided by 

Kung about this experiment to test the overall accuracy of our propagation code 

and the atomic data for xenon. We refer to section E.3.2 for a detailed report 

on both the experiment and our test calculation. In the present section we wi l l 

revert to the mode of comparison wi th respect to the type of the incident beam 

used in chapter 5, namely keeping the total power and peak focal intensity constant 

while the confocal parameter is varied wi th the Bessel angle thereby involving large 

confocal parameters. Thus the phase-matching conditions for the optimum Bessel-

Gauss beam are well defined and independent of L. Therefore, for the optimum 

Bessel-Gauss beam we can also test the dependence of the conversion efficiency 
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on the medium length L. In case of exact phase-matching, this should be simply 
a power law. The xenon gas density has a rectangular profile wi th a FWHA'I 
of L = 1 mm, the (peak) gas density being Afo = 1.75 x 10^^ atoms/cm^ which 
corresponds approximately to the end of the th i rd coherence length maximum in 
the Gaussian l im i t (Fig. E.2). The gas density corresponding to the end of the first 
coherence length, A/Q = 6.4 x 10^^ atoms/cm^ , is too low (for the present values 
of the linear atomic polarizabilities) to allow for a sufficiently large optimum angle 
Qfopt-^ Fig. 6.9 shows how the results depend on the Bessel angle a: the conversion 
efficiency, after having passed a minimum around a = 0.70 - 0.80°, peaks around 
a = 1.15 - 1.20° in excellent agreement w i th aopt = 1.20° f rom Eq. (6.42)^ The 
normalization at a = 0° corresponds to an absolute value for the conversion efficiency 
of T] = 1.2 X 10~^. The gain is rather moderate as expected, very much of the same 
order of magnitude than found in the calculations of chapter 5 at low intensities for 
atomic hydrogen (see e.g. Table 5.1). The absolute maximum of the far-field profile 
appears, after some fluctuations in a region of very low conversion efficiencies, at the 
'correct' position given by /3 = aopt /3 over a rather large interval of Bessel angles, 
centered approximately at a = cxopt- The confocal parameter required to keep the 
incident beam's energy constant increases rapidly wi th the Bessel angle. Despite its 
large value for a > aopt, we find that /? takes on larger values than predicted by the 
asymptotic radial phase-matching condition P = a/3. We could not find any simple 
explanation for this behaviour. 

To test how well phase-matching is realized for Bessel angles around aopt, we have 

set Q; = 1.17° and calculated the conversion efficiency as a function of the medium 

length L. The corresponding curve, shown in Fig. 6.10 is seen to saturate rapidly, 

reaching a maximum oi r) = 3.2 x 10"^ for L = 9 - 10 mm. Considering the large 

value of the confocal parameter, b = 185.5 mm, one would have expected to be in 

a situation where expression (4.95) for the axial integral holds, therefore defining 

a coherence length Lcoh = 7r / 5 . In principle, we should be able, by fine-tuning a 

and/or A/Q, to obtain an arbitrari ly large value of Lcoh- I t turns out that this is 

^In this case one finds 0 < amax < Qopt-
^Calculated in the plane wave limit, independent of the value of the confocal parameter b. 
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Figure 6.9: Top: Normalized conversion efficiency for xenon versus the Bessel angle 
a; for L = 1 mm, A/Q = 1.75 x 10^^ atoms/cm^ and a constant energy on target of 
6.24 mJ. Middle: Far-field angle /? of the absolute maximum of the spatial far-field 
profile versus the Bessel angle a. Bottom: Confocal parameter of the Bessel-Gauss 
beam at constant peak focal intensity If = 5.7 x 10^^ W/cm^ and constant energy 
6.24 mJ [corresponding to a peak power of 2 M W and a pulse duration of 2.9 nsec 
( F W H M of the intensity)] versus the Bessel angle a. 
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not possible because, despite the small ratios L/b, the Bessel-Gauss beam is not 

diffraction-free for values L > 1 mm. This can be seen from Eq. (4.40) where the 

exponentially decaying term along the ^-d i rec t ion has an order of magnitude given 

by 

(J = A-K ~ — sm a. 
A 0 

(6.45) 

For L = 1 m m one obtains O = 0.06, for L = 4 m m already 0 = 1.03. Conse

quently, Eq. (4.95) does not hold and the curve shown in Fig. (6.10) departs almost 

immediately f rom the L^-power law for exact phase-matching. The bot tom figure 

of Fig. 6.10, finally, shows the far-field profile of the th i rd harmonic for a medium 

length L = 10 mm. The position of maximum has dropped (with increasing L) to 

a value /? = 0.36°. Most of the harmonic energy is contained in the off-axis peak, 
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Figure 6.10: Left: Conversion efficiency for xenon at a = 1.17° versus the medium length 
L. For L = 1 mm, the value is the same than in Fig. 6.9. Right: Far-field profile of the 
third harmonic for a = 1.17° and L = 10 mm versus the far-field angle /?. 



CHAPTER 6. PHASE-MATCHING REVISITED 145 

especially emission in forward direction is strongly suppressed. 

6.4 Summary 

I n this chapter we have given a fair ly comprehensive account on phase-matching wi th 

Bessel-Gauss beams in the perturbative l imi t . We have argued that the optimum 

value for the Bessel angle which is likely to maximize the conversion efficiency is 

determined by the axial phase-matching condition while the radial phase-matching 

condition governs the spatial far-field profile. Numerical calculations reported in 

this chapter support these findings which are based on a simplified semi-analytical 

investigation of the harmonic far-field amplitude. The main result of this chapter is 

expression (6.42) which predicts the optimum Bessel angle beyond the loose-focusing 

l i m i t for any gas density profile (provided i t satisfies the general criteria given in 

Appendix B) . Expression (6.42) can usually be considered reasonably accurate down 

close to the confocal focusing l imi t , where i t breaks down. A closed expression for the 

opt imum Bessel angle in the tight focusing l imi t , i f i t exists, could not be obtained. 

In the case studies 1,2,3 and 4 we have kept the focusing geometry fixed in order 

to assess the accuracy of expression (6.42) for the optimum Bessel angle. The com

parison between different Bessel-Gauss beams, the Gaussian beam l imi t included, 

is therefore somewhat hampered by the fact that the energy on target necessarily 

decreases w i t h the Bessel angle. Even when this decrease is taken into account, 

a significant gain compared to the Gaussian l imi t can be achieved considering the 

conversion efficiencies reported in these studies (except for study No.4 which did 

only serve the purpose of checking the formula for the optimum Bessel angle). A 

particularly interesting feature confirmed in studies 1,2 and 3 is the independence 

of the normalized conversion efficiency curves of the atomic gas, provided a certain 

number of (not too stringent) conditions are met. 

I n study No.5, very much as in chapter 5, a rapidly growing confocal parameter 

was required to keep the total energy and peak focal intensity on target fixed while 

increasing the Bessel angle. As expected, we find the increase in conversion efficiency 
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to be low for very large confocal parameters. Indeed, the energy on target is spread 
over a large number of Bessel nodes. This energy is lost in the perturbative regime 
where the secondary maxima of the incident beam cannot contribute efficiently to the 
harmonic generation process. I n fact, based on the experience gained in chapter 5, 
we could carry out the same calculation as in study No.5 for a peak focal intensity 
in the range I f = 5 - 6 x 10^^ W/cm^ , where all the contributions to harmonic 
generation come f rom the secondary maxima just below saturation. As seen in 
chapter 5, the intensity-dependent atomic quantities are of negligible importance in 
this case as the central peak of the Bessel profile can be omitted in the corresponding 
calculations. Although we have not done this calculation we expect, in analogy to the 
case for atomic hydrogen, significantly higher conversion efficiencies at high energies 
on target compared to those reported in Figs. 6.9 and 6.10. The low increase in 
conversion efficiency is in stark contrast to the findings of case study No.3, where a 
low confocal parameter (but also a larger dispersion) was used. For similar values of 
ttopt the Bessel-Gauss beam wi th the lower confocal parameter is thus more effective 
(in the perturbative regime) as the power is concentrated closer to the axis. On 
the other hand, a lower confocal parameter l imits the power on target which can be 
converted into harmonic radiation. 



Chapter 7 

Results for Argon at 810 nm 

7.1 Introduction 

In this chapter we w i l l investigate a completely different regime than previously 

studied in hydrogen and xenon. The present calculation was motivated by the 

projected use of the large-scale laser facili ty at the Laboratoire d'Optique Appliquee 

(LOA, Palaiseau, France) for an experiment on higher-order harmonic generation 

by focusing an annular laser beam, similar in many respects to a Bessel beam, in an 

argon gas jet . The powerful 'yellow room' 30-fs, 810-nm terawatt Ti:Sapphire laser 

is capable of delivering up to 300 mJ on target, though only a fraction of this energj' 

may be usefully employed in high-order harmonic generation experiments because of 

the otherwise quasi instantaneous formation of a plasma which drastically reduces 

harmonic emission. We have already carried out an experimental realization of the 

Bessel type beam to be used in this context at the LOA laser facility. We refer to 

appendix D for a detailed account of this experiment. 

7.2 Atomic properties of argon 

A problem is posed in the present application by the very short pulse duration. In

deed, a 30-fs pulse of 810-nm radiation contains only about eleven cycles wi th in the 

147 
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F W H M of the intensity profile. This is relevant for both the atomic response to the 
dr iving laser field and the treatment of the pulse envelope of the propagating har
monic. While the theory developed in chapter 4 allows for the propagation of short 
pulses, i t assumes, however, the atomic data to depend on time only via the inten
sity. This is a consequence of the Floquet approach (see chapter 2), which provides 
the atomic data as a function of intensity only, assuming a negligible variation of the 
intensity over one optical cycle. We have nevertheless adopted the same approach 
for the present calculation in argon: the data for the atomic dipole moment can been 
obtained by applying the Floquet method to the 3D-delta-potential model (see sec
t ion 1.3.1). In particular, for the calculations in argon reported in this chapter, the 
atomic dipole moments have been obtained f rom Ref. [67]. W i t h i n the framework of 
the 3D-delta-potential model, the ionization potential Ip of the atom under consid
eration is replaced by an effective ionization potential Ip, which corresponds to the 
energy difference between the ground state and the first excited state of opposite 
pari ty [26]. For the case of argon, w i th an ionization potential of Ip = 15.8 eV and 
a ground state configuration ^5o(3s^3j9^), the two first excited states of opposite 
pari ty are the ^P3/2(4s) and the ^Pi/2(4s') states. This corresponds to an effective 
ionization potential of Ip = 11.6 eV and Ip = 11.8 eV, respectively. The ^Pi/2(4s') 
state lies somewhat higher than the ^P3/2(45) state but has an oscillator strength 
about four times larger than the latter [44]. Considering the overall accuracy of 
the following calculation, the small energy difference between these two states is 
neglected and we have used Ip = 11.6 eV. Note that we also neglect the possible 
contribution of all other excited states to the dipole moment in this way. Wave 
mixing processes are also neglected in this calculation. 

To determine up to which intensities the atomic data are required, we have estimated 

in a first step the ionization rate and the saturation intensity for argon using the 

A D K tunnelling ionization formula [3], as given by Ilkov et al. in Ref. [100]. We have 

taken the general formula (8) stated in Ref. [100], which includes the dependence of 

the tunneling formula on the Keldysh parameter 7 , Eq. (1.6). Applied to the case of 

argon, where we average the tunneling formula over the magnetic quantum number 

mi of the filled 3p^ shell - see Ref. [169], Eq. (61) - we obtain for a linearly polarized 
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incident field the ionisation rate w{F) as a function of the field-strength F,^ 
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where () indicates the integer part of the real number in brackets, FQ = (2/p)^/^, n* — 

Z{2Ip)~^l'^,l* = n* - 1, and Z is the charge of the resulting ion. We have only 

considered single ionization, that is Z = 1. The resulting (end-of-pulse) ionization 

probability, defined by Eq. (4.78), versus the intensity is shown in Fig. 7.1. The 

saturation intensity is approximately /s = 4 - 5 x lO^'' W/cm^ for a pulse duration 

of r = 30 fs.^ We w i l l consider in the following a range of intensities / j = 1 - 3 x 

10̂ "* W / c m ^ in order to l imi t the ionization of the medium. Thus we do not have 

^The ionization rate 'w{F) is given in atomic units. Electric field strengths and intensity are 
related by / = CF^/STT in atomic units. 

^For T = 250 fs we find a saturation intensity of approximately h = 2.5 x 10̂ ^ W/cm^ in good 
agreement with the value cited in Ref. [226] for A = 794 nm. 
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Figure 7.1: Ionization probability versus the intensity of a 810-nm, 30-fs pulse for argon, 
as defined in Eq. (4.78). 

any restrictions on the medium density or the medium length which are necessary 

otherwise in order to avoid a defocusing of the incident beam due to free electrons, 

as this feature is not included in our calculations. We neglect the contribution 

of the other harmonic fields present in the medium to the overall photoionization 

rate. Indeed, none of the low-order harmonics q=3, 5 and 7, which normally are 

the strongest harmonics present in the medium, are resonantly enhanced, and i t is 

assumed that the conversion efficiency for higher-order harmonics is sufficiently low 

for them not to aff'ect significantly the ionization process. 

For the range of intensities given above, we find f rom the cut-off rule (1.2), 

15.8 +19 .4 / i [10 i4W / cm2 
'max 1.5 

(7.2) 

the following values for the maximum harmonic order emitted^: iVmax ~ 23 for 

/ i = 1 X 10^^ W /cm2 and A^^ax ~ 49 for h = 3 x 10^^ W/cm^ . We therefore 

restrict the present study to harmonic orders lower than q = 23, all of which are 

then plateau harmonics'*. Otherwise, the precision of the experimental comparison 

between Bessel-Gauss and Gaussian beams might be affected by the low conversion 

efficiencies for harmonics situated beyond the cut-off of the plateau. A t the same 

^We have ignored the possible effect of propagation on the cut-off law [which reduces the 
prefactor of h in Eq. (7.2), see section 1.4.2] for this simple estimate. 

Recall from section 1.2.2 that plateau harmonics are generated at approximately equal strength. 
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time we want to investigate higher harmonic orders and we also have to find a 
suitable region of negative dispersion. For this, we have taken the values for the 
linear atomic polarizabilities for argon f rom Ref. [128]. I t emerges f rom there that 
the harmonic orders g = 17 and g = 19, corresponding to a wavelength of the 
harmonic of 47.6 nm and 42.6 nm, respectively, are particularly suitable for our 
purposes. Their linear atomic susceptibilities are roughly given as 

X a t ( t ^ ) = 47rapoi(a;) ^ 2.0 x 10'^^ cm^ (7.3) 

XAQ^) = 47rttpoi(gu;) ^ (-1.5 + i 2.5) x 10"^^ cm^ . (7.4) 

We have ignored any possible intensity dependence of the linear atomic susceptibil

ities, though we note that the 17*'̂  harmonic (corresponding to a photon energy of 

26.0 eV) is fair ly close to the i P i ( 3 s 3 / 4 p ) state at 26.6 eV and the 19*'* harmonic 

(29.1 eV) is very close to the ^Pi{3s3p^llp) state of about the same energy. A 

prior i , ac-Stark shift induced resonances could modify the behaviour of the linear 

atomic susceptibilities. 

The dipole moments for the harmonic orders q =17, 19, and 21 are shown in Fig. 7.2. 

Whi le the moduli follow a power law a / f , in agreement w i th Eq. (2.21), up 

to about Ji = 10^* W / c m ^ , the atomic dipole phases depart f rom constant values 

at already much lower values of the intensity. Beyond / i ^ 10^^ W/cm^ , the dipole 

moments rapidly saturate. The dipole moments are given in arbitrary units and 

we w i l l therefore only present conversion efficiencies (as a function of the angle a) 

normalized w i t h respect to the Gaussian l imi t a = 0°. 

7.3 Phase-matching and the atomic phase 

Expression (6.42) for the opt imum Bessel angle, derived in the perturbative l imi t , 

does not take the influence of the atomic dipole phase into account. Recall f rom 

section 1.4.1 that the atomic phase can be modelled for harmonics in the plateau or 

in the cut-off regions as a (piecewise) linear function of the intensity, 

$ a t ( / ) = - C f / p ( / ) / / i a ; + $ a t ( 0 ) . (7.5) 
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Intensity (W/cm ) 

Figure 7.2: Modulus square (top) and phase (bottom) of the atomic dipole moment of 
argon versus intensity for the harmonics q = 17 (solid line), q = 19 (dotted line), and 
q = 21 (dashed line). The wavelength of the fundamental is A = 810 nm. For the sake 
of clarity, the cosine of the phases has been plotted. Note also the different range of 
intensities of the two figures. 

Here, Up is the ponderomotive potential defined in Eq. (1.3) and depending linearly 

on the intensity, and C ^ 3.2 for a harmonic of order q for which the intensity is 

such that q > Njn&x in Eq. (7.2), C ^ 5.8 otherwise. As an example, we consider 

the 19*̂ " harmonic of argon f rom Fig. 7.2. We find Eq. (7.5) to be a good fit in this 

case for C = 3.2 and $at(0) = 1.15 rad for intensities up to 7i = 1 x 10^^ W/cm^ , 

as shown in Fig. 7.3.^ Provided we assume 

47r— sin a < 1 
Ao 

(7.6) 

^In fact, C changes nominally from the value 3.2 to 5.8 above 6.5 x 10̂ ^ W/cm^ for 9 = 19 as 
can be calculated from Eq. (7.2). 
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Figure 7.3: Phase of the 19*'' harmonic (filled circles), same as the dotted line in Fig. 7.2. 
Solid line is the fit given by Eq. (7.5). 

we can approximate the expression for the intensity, Eq. (4.40), by 

47rz^ sin^ a 

Let t ing further 

we f ind 

I{p = 0,z)^Iig{z) 9iz) = l 

C = CUj,{I{)/fku. 

Xb 

$ a t ( ^ ) = -Cg{z) 

(7.7) 

(7.8) 

(7.9) 

which is added to the axial phase variation Eq. (6.29). We follow now the steps 

outlined in section 6.2.2 wi th this additional contribution. When evaluating S{a), 

Eq. (6.32), i t is immediately obvious that all mixed terms drop out because of the 

functions P, Q and R being odd wi th respect to z, while $at is even^. We end up, 

therefore, w i t h a single contribution to the derivative of S{a), Eq. (6.37), 

128 ~oZ„ 
S'{a) = 2 sin a [F4 sin^ a cos a/2q^ 

® These parity considerations hold only if the medium is centered at the focus of the beam. 
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I n short, we have to replace Fi - F^/q'^ in the denominator of Eq. (6.41) by F i -
{F2 — Fi)/q^. We notice F 4 > 0 and consequently the atomic dipole phase reduces 
the opt imum Bessel angle in this approximation. This is irrespective of the sign of 
the phase but related to the even parity of the phase wi th respect to z. Further, 
the contribution of the atomic phase decreases wi th harmonic order q. This is an 
immediate consequence of the universality of Eq. (7.5): the constant C depends only 
very weakly on the harmonic order (and on the atomic system) [124], while both the 
dispersion and the geometric phases increase linearly wi th q. To assess the order of 
magnitude of F 4 , we assume a rectangular gas profile w i th z^ax = 0.5-L for which 
we recall ^ 1 = ^ 2 - 1- We find, using C = 12.8 for / f = 1 x 10^^ W/cm^ , a value 
F 4 ^ 1.8. For q > 17, (F2 - Fi)/q^ is much smaller than F i . Hence, the effect of the 
atomic phase on the optimum Bessel angle should be negligible for all calculations 
presented in this chapter. 

7.4 Conversion efficiencies 

For the present calculation, we have used parameters which could be realized ex

perimentally [20], while st i l l likely to produce results which are qualitatively similar 

to those obtained in previous chapters. We took the (init ial) atomic density to be 

Ao = 3 X 10^^ atoms/cm^ (which is about the maximum value that can be achieved 

w i t h the pulsed argon gas jet used) in order to maximise the optimum Bessel angle 

Qiopt- A truncated Lorentzian of F W H M = L = 1 mm (see Appendix B) describes 

accurately the gas density profile and working in the loose focusing l imi t , we w i l l as

sume a confocal parameter of 6 = 9.1 m m [20]. This yields, using Eq. (6.42), a value 

of ttopt ~ 0.22°. The experimental conditions in the present case are best simulated 

by keeping both the confocal parameter and the total energy on target constant. 

Hence, the peak focal intensity of the Bessel-Gauss beam increases wi th the angle 

a according to Eq. (3.29). The gain in conversion efficiency through better phase-

matching may therefore be masked by the larger atomic dipole moment at higher 

intensities. To assess the effect of increasing the peak focal intensity while searching 

for the opt imum Bessel angle, we have computed the conversion efficiency for the 
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Table 7.1: Harmonic yield for Bessel-Gauss and Gaussian beams of same power for various 
cases. The confocal parameter of the Bessel-Gauss beam is 6BG = 9-10 mm and its 
peak focal intensity If increases with the angle a according to E q . (3.29). The confocal 
parameter of the Gaussian beam decreases with increasing /f according to Eq . (3.28). The 
results are normalized to unity at a = 0° and If = 10̂ ^ W/cm^ for the full calculation. 
The columns display the following parameters and results: (a) Bessel angle a (in deg.), 
(b) Peak focal intensity If (xlO^^ W/cm^ ), (e) Bessel-Gauss beam: full calculation, (d) 
as in (c) but without photoionization, (e) as in (c) but without atomic phase, (f) confocal 
parameter bo (in mm) of the Gaussian beam, (g) Gaussian beam: full calculation, (h) as 
in (g) but without photoionization, (i) as in (g) but without atomic phase. 

a / f (c) (d) (e) (g) (h) (i) 
0.00 1.00 1.0 1.0 1.3 9.10 1.0 1.0 1.3 
0.20 1.22 1.5 1.5 2.2 7.46 1.5 1.5 2.2 
0.30 1.53 1.6 1.7 2.6 5.95 1.6 1.6 2.5 
0.40 1.98 1.7 2.0 3.0 4.60 1.5 1.8 2.7 
0.50 2.55 1.2 1.8 2.6 3.57 1.1 1.7 2.5 
0.60 3.18 0.8 1.1 1.6 2.87 0.8 1.4 1.8 

corresponding Gaussian beam at the same power and peak intensity (but necessarily 

different confocal parameter). Table 7.1 provides a summary of the results obtained 

f r o m the calculations for the harmonic order q = 17. Though the variations in the 

conversion efficiencies reported in Table 7.1 are small, we can clearly distinguish the 

features already encountered in previous chapters: the conversion efficiency for the 

f u l l calculation for the Bessel-Gauss beam peaks at a given value of the Bessel angle, 

of about a = 0.3° — 0.4° [column (c)] in the present case, which is larger than the 

predicted value of aopt ~ 0.22°. This is also the case i f photoionization is neglected, 

while achieving only a somewhat higher harmonic yield [column (d)]. I t clearly 

appears f rom the data above, however, that the conversion efficiency is mostly de

pendent on the variation of the peak focal intensity, as the same pattern can be found 

in the yields of the corresponding Gaussian beam [columns (g) and (h)]. Neglecting 

the atomic dipole phase in the calculations does not visibly affect the value of the 

intensity at which the maximum conversion efficiencies occur, though i t enhances 

the harmonic yields [columns (e) and (i)] . However, the fit Eq. (7.5) of the atomic 

phase holds only up to 7f = 1 x lO^'' W/cm^ and we have to postpone the discussion 

about the atomic phase unt i l later parts of this section. We have also performed 

the f u l l calculation for the Bessel-Gauss beam including the slowly-varying envelope 

approximation Eq. (4.72) in the calculations (not shown in the table). Though small 
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changes were noticeable, the overall impact on the conversion efficiency was below 
the accuracy of the figures given in Table 7.1. This is likely to be a consequence 
of the fa i r ly high harmonic order under consideration. Indeed, recall that the con
t r ibu t ion stemming f rom the slowly-varying envelope approximation is proportional 
to 1/q, the value of the prefactor entering Eq. (4.72) being approximately 5 x 10"^ 
despite the short pulse duration''. A similar argument has been put forward by 
the authors of Ref. [5] in their treatment of the slowly-varying envelope approxima
t ion. The weak dependence of the (normalized) conversion efficiency, as a function 
of the Bessel angle a, w i th respect to gas density profiles, the atomic dipole phase 
and ionization, has (at least) the merit of making measurements rather immune to 
fluctuations in the parameters of the calculations. 

In order to get a better understanding of the various mechanisms which might inf lu

ence phase-matching in the present short pulse generation of higher-order harmonics, 

we have carried out some calculations for the same atomic system, but for parameters 

simulating experimental conditions different f rom those considered previously. To 

disentangle the effects of both the phase-matching and the atomic dipole strength, 

we keep the peak focal intensity constant in the following and we fix its value to 

I f = 1 X 10^^ W / c m ^ in all further calculations. I t this way we also make sure that 

the atomic dipole phase is properly modelled by Eq. (7.5). 

We keep first the total power incident on target constant, thus varying the confocal 

parameter, which we have set tob = 4.0 mm at a = 0°. Furthermore, we have raised 

the atomic density to a value of A/Q = 6 x 10^^ atoms/cm^ in an attempt to obtain 

larger opt imum Bessel angles^. Table 7.2 shows the various parameters used in 

the calculations together w i th the normalized conversion efficiencies. The optimum 

angle ojopt, calculated according to Eq. (6.42), is varying wi th the confocal parameter 

before reaching the plane wave l imi t values of aopt = 0.83° for a rectangular gas 

profile and ttopt = 0.67° for a truncated Lorentz gas profile. The maxima of the 

conversion efficiency curves occur around a = 0 .50 -0 .55° , in much better agreement 

w i t h the predicted opt imum angles than in the previous study. Very much as seen 

'̂ For comparison, the prefactor would be the same for the third harmonic of a 170-fs pulse. 
*Note that photoionization is negHgible for the intensity considered in this calculation, thus the 

value of ^fo (or L) is not limited by a possible defocalization of the incident beam. 
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Table 7.2: Conversion efficiencies for various Bessel-Gauss beams at fixed total power 
and peak intensity / i = 10^^ W/cm^ for the harmonic orders ^ = 17 and q = 19. The 
Bessel-Gauss beam has a conical half-angle a (in deg.) and a confocal parameter 6BG (in 
mm). The optimum Bessel angle Oopt is determined from Eq. (6.42), where (RP) stands 
for a rectangular gas profile and (LP) for truncated Lorentz profile. The optimum Bessel 
angle is the same for 5 = 17 and g = 19 to the precision of the numbers given in this table 
(±0.01°). The results are normalized to the value at a = 0° (Gaussian beam limit): (a) 
q = 17 and a truncated Lorentz gas profile, (b) as in (a) but for a rectangular gas profile, 
(c) as in (a) but for q = 19 and (d) as in (c) but without the atomic dipole phase. 

a bBG "opt "opt (a) (b) (c) (d) 
0.00 4.0 . 0.55 0.26 1.00 1.00 1.00 1.00 
0.20 4.4 0.58 0.31 1.01 1.00 1.01 1.01 
0.30 5.2 0.63 0.38 1.02 1.02 1.06 1.04 
0.40 7.0 0.67 0.47 1.08 1.05 1.18 1.14 
0.50 12.1 0.75 0.56 1.19 1.12 1.44 1.31 
0.60 20.0 0.78 0.61 1.13 1.10 1.39 1.13 
0.70 28.2 0.80 0.62 0.90 0.98 1.01 0.65 
0.80 37.3 0.81 0.64 0.50 0.83 0.48 0.19 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Bessel angle a (deg.) 

Figure 7.4: Conversion efficiencies for the 19*̂ * harmonic of 810-nm radiation in argon 
versus the Bessel angle. A rectangular gas profile, with L = 1 mm, and a confocal 
parameter of 6 = 22 mm were assumed. Filled circles (solid line) are for the fu l l calculation, 
open circles (dashed line) are for the calculation where the atomic dipole phase has been 
neglected. 

already before in Table 7.1, we find the position of these maxima to depend only 

weakly on the gas density profiles or on the atomic dipole phase. The absolute yields 

differ only very l i t t le for all conversion efficiencies given in Table 7.2. 
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In a second calculation we have kept the focusing geometry fixed, taking the confocal 
parameter to be 6 = 22 mm. For a rectangular gas profile (L = 1 mm), this rises the 
value of the opt imum Bessel angle to ctopt = 0.79°. Peak focal intensity and atomic 
density are as before and the energy on target is decreasing wi th increasing Bessel 
angle. We have assumed a pulse duration ( F W H M of the intensity) of r = 150 
fs in this last calculation^. We have calculated here the normalized conversion 
efficiencies for the harmonic order q = 19, first including then neglecting the atomic 
dipole phase in the calculations. The resulting curves are shown in Fig. 7.4. The 
position of the maxima are now in very good agreement wi th the predicted value 
of aopt- As before, we find l i t t le difference in the normalized conversion efficiencies 
for both cases (this applies also to the absolute conversion efficiencies). Though the 
curves are in very good qualitative agreement wi th theory predicting a negligible 
influence of the atomic dipole phase on the optimum Bessel angle, a trend towards 
larger opt imum Bessel angles is discernible i f the atomic dipole phase is taken into 
account. We tentatively attribute this quantitative discrepancy to the neglect of the 
variation of the intensity wi th the radial coordinate in Eq. (7.7). 

7.5 Far-field profiles 

We do not attempt to discuss results for the spatio-temporal far-field profiles in much 

detail, as they are more difficult to converge than the overall conversion efficiency 

(see also section E.2). The latter is a fair ly 'robust' quantity in the sense that i t is a 

single number obtained by an integration over time and space and as such converges 

much faster (to the degree of precision given in the tables) than the shape of the 

various individual time- and space-dependent profiles which enter its calculation. 

The spatial far-field profiles of the harmonics essentially peak on axis, both for the 

Bessel-Gauss and the Gaussian beam. This comes as no surprise, as we already ex

pect a low value of the far-field angle Popt ~ Oopt/? due to the fairly high harmonic 

orders considered. This is also in qualitative agreement wi th the experimental find-

^The reason for this lies essentially in an improved convergence for calculations for large Bessel 
angles. Ionization is still negligible for a peak focal intensity of Jf = 1 x 10̂ '* W/cm^ . 
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ings of Peatross et al. [157] who generated higher order harmonics (from the l l " * 
harmonic of 1054 nm radiation onwards) using an annular beam (corresponding to 
a range of Bessel angles a 0.2° — 0.3°) focused into a xenon gas jet and found the 
harmonic radiation to be emitted essentially along the axis of propagation. In this 
way, the authors were able to separate the incident beam from the harmonic beam 
simply by placing an annular aperture behind the medium, blocking the emerging 
fundamental beam off-axis^°. 

7.6 Discussion and summary 

I n this chapter we have extended the application of the theory of harmonic gen

eration using Bessel-Gauss beams to higher harmonic orders. These calculations 

are rather exploratory in nature: the various atomic properties (dipole moments, 

linear atomic polarizabilities and ionization rate) have been obtained f rom different 

sources and are subject to rather crude approximations. This does not matter i f the 

model atom is taken as being defined by these data but application to argon is to 

be made cum granum sails. The use of Floquet data for pulse durations as short 

as 30 fs is at least questionable. We stress again that this is not affected by the 

fact that we did not find any significant difference in the results whether or not the 

slowly-varying envelope correction was included in the propagation calculations. 

W i t h regard to the results we note that our reported gains in conversion efficiency 

through the use of Bessel-Gauss beams are too small to be relevant f rom an exper

imental point of view. From a theoretical point of view, we find the dependence of 

the conversion efficiency on the Bessel angle to be in fair agreement wi th the theory 

and similar findings in the previous chapters. This agreement (and the gain in con

version efficiency) significantly increases wi th increasing optimum Bessel angle. In 

particular, we could show in the present case, both theoretically and through numer

ical calculations, the opt imum Bessel angle not to be affected by the atomic dipole 

^°Unfortunately, no study of the conversion efficiencies was reported in Ref. [157]. Note also, 
that the loss of intensity when creating the annular beam by blocking the central part of a Gaussian 
beam was approximately 50 % . 
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phase. Altogether, this study suggests that the use of Bessel-Gauss beams may 
lead to substantial improvements for the conversion efficiencies under experimental 
conditions which favor large Bessel angles for optimum phase-matching. However, 
because of the rather small negative dispersion of the system studied in this chapter, 
high gas densities are required to achieve a suitably large value for aopt- In view of 
the results of chapters 5, i t would be very useful to study the conversion efficiency for 
large Bessel angles and large confocal parameters, at peak focal intensities around 
/ f ^ 10^^ W / c m ^ - indeed, ionization occurs only in a narrow central region of the 
medium while all secondary peaks of the Bessel profile contribute to the generation 
of harmonic radiation just below saturation. 

Finally, we stress that even for negligible gains in conversion efficiency, the Bessel-

Gauss beam st i l l retains the advantage of facili tating the spatial separation of the 

harmonic f rom the fundamental in the far-field region. The harmonics are preferen

t ia l ly emitted along the propagation direction, while the fundamental has a conical 

shape in the far-field region, the conical half-angle being the Bessel angle a. 
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Conclusions 

This thesis reports the first theoretical and numerical investigation of harmonic 

generation in gases using the most general form of a (zero-order) Bessel-Gauss beam. 

Previous work has been l imited to beam geometries which are special cases of Bessel-

Gauss beams, namely Gaussian beams, Bessel beams and plane waves. Harmonic 

generation using Bessel beams has only been considered for low-order harmonics in 

the perturbative regime, both theoretically [217,218] and experimentally [85,165, 

166,231]. In the present work, we have extended the theoretical investigations to 

the nonperturbative regime. In addition to work on low-order harmonics, we have 

studied applications to higher-order harmonic generation. In contrast to previous 

work on Bessel beams, the propagation aspect is fu l ly time-dependent and allows 

for the simulation of realistic laser pulses. To the best of our knowledge, i t is also 

the first t ime that the effect of an ac-Stark-shifted resonance on the phase-matching 

properties has been investigated in such detail for any type of incident beam. 

Wha t conclusions can be drawn f rom the calculations presented in chapters 5 to 

7, considering that the overall aim of introducing the Bessel-Gauss beam was to 

improve the conversion efficiency in harmonic generation processes through better 

phase-matching? To put things into perspective, i t is worth stressing again that 

both the Gaussian beam and the plane wave are nothing but two special cases of 

the large family of Bessel-Gauss beams. As discussed in the connection wi th the 

derivation of Eq. (6.42) for the optimum Bessel angle, both the Gaussian beam and 

the plane wave can provide opt imum phase-matching for a number of cases and are, 

by definition, the corresponding optimum Bessel-Gauss beams. Hence, the search 

for a more general Bessel-Gauss beam providing optimum conditions relies more 

on situations where, due to externally imposed conditions on some of the focusing 

parameters (medium length, confocal parameter) and/or medium properties (gas 

density and profile, dispersion due to atoms or possibly to ions and electrons), the 

more ' t radi t ional ' beams are known to fai l in achieving phase-matching. A simple 

example is the phase-matching of a negatively dispersive atomic gas in the plane 
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wave l imi t : instead of mixing the pure gas wi th some other, positively dispersive, 
component, phase-matching can be achieved by use of a suitable Bessel-Gauss beam 
in the pure gas. 

The question about the potential usefulness of Bessel-Gauss beams^^ contains two 

different aspects of which we have treated only one in the present work. Indeed, 

we have always assumed, in our models and calculations, a Bessel-Gauss beam of 

to ta l energy and peak focal intensity on target comparable to the reference Gaussian 

beam. Therefore, we do not take power losses in the Bessel beam generator into 

account. This might hamper the conversion efficiency comparison, if, in fact, a much 

higher input power is required, in order to obtain the same power on target than for 

the reference Gaussian beam. Another problem might arise f rom the possible lack 

of a sufficient beam quality. Addit ional optical elements, e.g., such as to apodize 

the intensity fluctuations of the Bessel-Gauss beam along the propagation direction, 

might render the experimental set-up complicated and the power loss in the Bessel 

beam generator even more severe. Conical lenses do not exhibit any significant 

power losses but the Bessel angle cannot be tuned. Moreover, these lenses are 

diff icul t to manufacture and barely available commercially. From a conceptual point 

of view, the most satisfactory approach is the one by Jabczynski [102], who used 

a resonator w i th an annular active medium to generate a Bessel type beam. More 

generally speaking, the development of a laser system generating a Bessel-Gauss 

beam mode is desirable. Overall, the prerequisite for the successful application of 

Bessel-Gauss beams in nonlinear optics is an energy-efficient Bessel beam generator, 

delivering beams of (up to) high power densities, tunable in its characteristics (Bessel 

angle) and providing a spatial beam quality comparable to what can be achieved 

for Gaussian beams. 

The second aspect, which we have treated in detail in the present study, can be 

loosely formulated as follows: for which conditions is the gain in conversion effi

ciency through improved phase-matching significantly higher than potential losses 

in dr iv ing power, when increasing the Bessel angle a which defines the Bessel-Gauss 

beam (the Gaussian beam l imi t being given by a = 0°)? Losses in driving power 

^^It is always understood that this refers to harmonic generation processes only. 
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occur when, w i th increasing Bessel angle, the energy of the incident Bessel-Gauss 
beam spreads out radially into regions of lower intensities. Less power is therefore 
available in the central region driving the atomic dipole at high intensities. There 
is no answer which can be given a priori and only a numerical calculation of the 
conversion efficiency as a function of the Bessel angle a w i l l tell . However, we have 
developed qualitative and part ly quantitative criteria, which predict fairly accurately 
which Bessel-Gauss beam to choose in order to obtain larger conversion efficiencies 
than for a comparable Gaussian beam. These findings can be summarized as follows: 
as a rather elementary condition, we find that the Bessel angle which corresponds to 
a maximum conversion efficiency must be large enough in order for the Bessel-Gauss 
beam to be sufficiently distinct f rom the Gaussian reference beam. In this case, a 
good estimate for this angle is the optimum phase-matching angle CKopt, determined 
by Eq. (6.42). For large confocal parameters (the Bessel beam l imi t ) the energy of 
the beam w i l l spread out over a large number of nodes of the Bessel profile, which 
are of lower peak intensity compared to the central maximum. There is a strong 
competition between phase-matching and the loss of power driving the atomic dipole 
at high intensities. The gain in conversion efficiency w i l l be moderate and a high 
atomic density (more precisely, a large macroscopic negative dispersion) is required 
to make this gain through phase-matching prevailing over the loss of driving power. 
This situation may change completely in the high-intensity l imi t as we found in 
chapter 5. There, the dipole moment saturates and the secondary peaks reach an 
intensity where they can contribute efficiently to harmonic generation. The Bessel-
Gauss beam then offers in principle all the advantages of a plane wave geometry 
(smaller variations of the intensity wi th in the medium l imi t ing , e.g., the infiuence 
of the atomic dipole phase, at least along the propagation direction) together wi th 
improved phase-matching. W i t h respect to high-order harmonic generation, the re
sults of chapter 7, though less conclusive than the results for low-order harmonics 
reported in chapters 5 and 6, should therefore be greeted wi th cautious optimism. 
Smaller confocal parameters restrict the power carried by the beam closer to axis, 
even for larger Bessel angles. This was found to be suitable for working in the per
turbative l i m i t , where large gains in conversion efficiency where obtained. However, 
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for a fixed focal intensity, smaller confocal parameters l imi t the power on target 
which can be converted into harmonic radiation. 

Last but not least, we stress again the necessity of a negatively dispersive medium in 

order to achieve opt imum phase-matching wi th a Bessel-Gauss beam. Alkal i vapors 

are probably the best candidates due to their extended regions of negative dispersion 

coupled wi th large oscillator strengths. Their low ionization potential, however, l im

its their usefulness to low-order harmonic generation at moderate intensities. Rare 

gases are likely to be the best 'all round' components: i t is reasonably easy to find 

regions of negative dispersion and they are suitable for high-order harmonic genera

t ion . We recall f rom the introduction that many more atomic and molecular systems 

have been tested as target gases in harmonic generation experiments. Depending 

on their dispersion properties they might also be suitable for harmonic generation 

using Bessel-Gauss beams. 

No definite conclusions can be drawn for positively dispersive media f rom the present 

work. Furthermore, we have not studied tight focusing in sufficient detail to be able 

to draw conclusions w i t h respect to this particular focusing l imi t . Irrespective of 

the gain in conversion efficiency, the spatial separation of the harmonic f rom the 

fundamental is facilitated in the case of a Bessel-Gauss beam. The fundamental has 

a conically shaped far-field profile, the conical half-angle is given by the Bessel angle 

a. The harmonic is typically emitted much closer along the axis of propagation. For 

a Bessel beam, the preferred emission angle is simply a/q, where q is the harmonic 

order. For Bessel-Gauss beams of moderate and small confocal parameters the 

determination of the preferred emission angle is more complicated. 

In summary, Bessel-Gauss beams introduce an additional degree of freedom into the 

otherwise well known phase-matching conditions for Gaussian beams. The possi

b i l i t y of a substantial gain in conversion efficiency is given, provided the nonlinear 

medium is negatively dispersive. The application of Bessel-Gauss beams on a larger 

scale in harmonic generation experiments (or even in industrial devices) is likely 

to be dependent to the development of a Bessel-Gauss beam source of a quality 

comparable to existing sources for Gaussian beams. 



Appendix A 

Conversion Factors 

I n this appendix we discuss briefly the units of some of the most relevant physical 

quantities appearing in this thesis and also how to convert the pressure of an atomic 

gas, given in some experimental papers on the subject, into atomic densities. 

A . l Conversion between SI and atomic units 

A l l atomic data obtained wi th the Floquet code [181] are given in atomic units (a.u.). 

They have to be converted into SI units which are used in treating the propagation 

of the harmonic fields. 

The linear atomic polarizability ctpoi is computed as di^ = apo\ E in a.u. and defined 

as ĉ L = CQXE in SI units [see Eq. (2.20)]. As 47reo = 1 in atomic units, dividing 

by Co is equivalent to mult iplying by 47r. Further, the physical dimension of the 

polarizability being a volume, we have to mul t ip ly by al, the Bohr radius being the 

atomic unit of length, ao = 5.292 x 10"^ cm. Thus: 

Xat [cm^] = iiral ftpoi [a.u.J. ( A . l ) 

I n the literature, the electromagnetic displacement vector is often defined as D = 

£^-f-47rP instead of Eq. (4.5), see, e.g., Ref. [33]. In that case both the linear atomic 

polarizabili ty and the linear atomic susceptibility are the same quanti ty^ and the 

^As long as local-field corrections are negligible. 
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factor of 47r appearing in Eq. ( A . l ) has to be omitted. 

The dipole moment is defined in the same way in both unit systems, hence only the 

physical dimension has to be added, which is electronic charge times length: 

dg [SI] = eao dg [a.u. (A.2) 

A.2 Pressure and atomic gas density 

I n many experimental papers on harmonic generation in gases the pressure (in Torr 

or mbar) is quoted rather than the (peak) atomic density A/Q in atoms/cm^ . For 

gases in a gas cell, thermodynamic equilibrium can be assumed, and the ideal gas 

law holds. 

Mo [atoms/cm^ ] = 10 /{kT)p[mh&v], (A.3) 

where k is Boltzmann's constant, k = 1.381 x 10"^^ J / K . For a gas jet this is, strictly 

speaking, not valid. The pressure (and temperature) distribution determining the 

local gas density in the interaction chamber has to be calculated using hydrodynam

ics in order to model the flow of the gas f rom the gas container (at a given backing 

pressure) down to the gas nozzle and into the vacuum chamber. For all practical 

purposes, i t is generally assumed that the ideal gas law st i l l holds up to high pres

sures (in the vacuum chamber) though i t is difficult to give an upper bound for the 

val idi ty of this assumption. 

Recalling 1 Torr = 1.333 mbar and assuming that all laboratories are kept at an 

Table A . l : Comparison between cited and calculated values of the atomic density in the 
literature. The density A/Q is in atoms/cm^ (the numbers in parenthesis indicate powers 
of ten), the temperature T in °C, the unit of the pressure p is given in the corresponding 

Ref. p (cit.) T (cit.) AAo (cit.) A/o (calc.) 

[130] 15 Torr - 5(17) 5.0 (17) 

[2] 80 mbar - 2(18) 2.0 (18) 

[163] 1000 Torr - 3.2 (19) 3.3 (19) 

[85] 4.4 Torr 355 7(16) 6.8 (16) 
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average temperature of about T ^ 20°C, we arrive at 

Afo [atoms/cm^ ]^2.5x 1 0 ^ ^ [mbar] = 3.3 x lO^^p [Torr] . (A.4) 

This is generally in good agreement wi th the figures given in the literature. The 

following Table A . l gives an overview of the comparison between the cited values 

and those obtained f rom Eqs. (A.3) and (A.4). 



Appendix B 

Atomic Gas Densities 

B . l Gas density profiles 

We discuss here several gas density profiles a{p,z), having the general features as

sumed in section 4.5.2, namely 

0 < (7{p,z) < 1 (B.l) 

E ( ; 9 , w ) = HP) = 9ip)L, (B.2) 

where S(p, z) is defined by Eq. (4.83) and L is the length of the medium to be 

introduced in the following. Condition Eq. (B. l ) has two purposes; firstly, to make 

sure the density profile is defined as being positive definite, secondly, to allow for 

the interpretation of Ao as the peak atomic density by normalizing the largest value 

of the profile to unity. 

The first gas density profile we consider has a Lorentian shape given by 

with g{p) < 1, but otherwise arbitrary. Because of a{p, z = ±L /2 ) = a{p,z — 0)/2, 

L is the FWHM, which we take to be the definition of the medium length^ The 

^It is easy to describe profiles which are not centered at the focal plane z - 0 hy making the 
replacement z z — ZQ. 
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optical path integral Eq. (4.83) yields 

tan 
2z 

tan 
2z„ 

(B.4) 
LJ V L 

and in order to satisfy condition Eq. (B.2), we truncate the Lorentz profile such that 

Zmin = —{Ltanl)/2 ^ —0.78L and = —^min- A truncated Lorentzian profile 

for the description of the atomic density in a gas jet has been used e.g. in Ref. [5 . 

Another gas density profile is described by 

a{p,z) = g{p)cos'^{nz/2L) 

z) 
Z 1 . fTTZ\ Zmin 1 . /TT̂ minN 
- + - sm — sin — — 
L TT \ L J L TT \ L J 

(B.5) 

(B.6) 

where L is again the FWHM and z^ax = --^min = L. This cosine-square profile has 

the advantage of fitting experimental gas jet profiles as accurately as the truncated 

Lorentz profile while decreasing smoothly to zero. Fig. B . l shows a comparison 

between the Lorentz and the cosine-square profile. The experimental data points 

have been taken from Ref. [125]. Both curves fit these points reasonably well. 

The last density profile to be considered is the rectangular gas profile. It is suit

able for gas cells or gas jets with sharp boundaries. The rectangular gas profile is 

described by 

(^{p,z) = g{p) 

E(p,z) = g{p)-
2z 2Zxnm 

(B.7) 

(B.8) 

with z„ -^„in = L/2. 

B.2 The axial integral 

We turn now to the axial integral Eq. (4.86). Recalling the definition of K{u) from 

Eq. (4.87), we note first K{u < Umin) = 0 and K{u > Umax) = 1- Since K{u) is a 

monotonically increasing function of u, we can bring the integral Eq. (4.86) into the 

form 

F^{A, B, C) = ex.p{-iAum\n) [ exp{i[AK-\w) + Bw]} exp{-Cw) dw (B.9) 
Jo 
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Figure B . l : Comparison between the truncated Lorentz profile (solid line) and the 
cosine-square profile (dashed line) for fitting experimental data points of a typical 
gas jet profile (filled circles). The experimental data points have been taken from 
Li [125] and show the intensity of laser induced fluorescence light (in arb.u.) versus 
the position (in mm) of the detector. The gas density is taken proportional to the 
detector signal. The FWHM of this gas jet profile is approximately 1 mm and this 
value of L has been taken for the fitting profiles. 
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where K~'^{w) = u is the inverse function of w = K{u). Since 

f{w)dw< /' \f{w)\dw, 

we find immediately that 

irrespective of the values of A and B. 

For the truncated Lorentz profile we obtain 

K{u) = (l/2)[tan-i(2u) + l ] ( B . l l ) 

K'iu) = 1/(1 + 4^2) (B.12) 

K-\w) = tan[2{w -l/2)]/2, (B.13) 

whith Ujnin = - (1 /2) tan 1 and Umax = +(1/2) tan 1, however the axial integral 

cannot be obtained analytically in this case. This is diff'erent for the cosine-square 

profile, 

K{u) = 1/2 [u + (l/vr) smiiru) + 1] (B.14) 

K'{u) = cos\Tru/2) (B.15) 

with Wmin = - 1 and u^ax = +1- Inserting these expressions into the integral Eq. 

(4.86), we obtain after a straightforward calculation 

(B.16) X 

iV=-oo 

1 
_{z - (iV - l)Tr){z - NTX){Z - { N + l)7r)J ' 

where z = A^- B/2->riCl2. For the rectangular gas profile we simply have 

K{u) = u+1/2 (B.17) 

K'{u) = 1 (B.18) 

K-\w) = u ; - l / 2 (B.19) 

with = -1 /2 and ^min = +1/2. This leads to 

C + i{A + B)][\ - cos(^ + B) exp(-C); 
[A + BY + C^ 

[{A + B)-iC]sm{A^B) exp(-C) 
+ [A + Bf + C^ • ^ • ^ 



Appendix C 

The Sellmeir Formula 

C . l Introduction 

In this appendix we calculate linear atomic polarizabilities with the help of the well 

known Sellmeir formula [33,191]. This formula can be obtained from perturbation 

theory within the density matrix formalism (to account for relaxation terms) and is 

valid in the low-intensity limit. In this way we can check the Floquet results from 

chapter 2 in the vicinity of resonances, at least for the low-intensity limit. Moreover, 

the Floquet method does not take spontaneous emission into account, and for atoms 

il l a gas other line-broadening mechanisms become important, which we can also 

treat approximately with the Sellmeir formula. By comparing the imaginary part of 

the linear atomic polarizability obtained in both ways, we will be able to infer the 

minimum intensity to be reached for the intensity-induced width to be larger than 

the natural width due to spontaneous emission for the isolated hydrogen atom at rest 

and, more importantly, the corresponding minimum intensity to be reached for the 

light-induced width to be larger than the line broadening for the atomic hydrogen 

gas. We will also use the Sellmeir formula to calculate the frequency dependence 

of the linear atomic polarizabilities for xenon, as required for the calculations in 

chapter 6 and in Appendix E. The Sellmeir formula is given by 

a . „ ( A ) l c . n 3 1 . ^ E , - . _ , _ , ^ ^ ' ( C D 
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where we have expressed the frequency dependence in terms of the wavelength^ In 
this equation, Vg = 2.818 x 10̂ ^ cm is the classical radius of the electron and fi is 
the optical oscillator strength for the i-th transition at wavelength (in cm) and 
of width hFi (Fj in 1/s). Eq. (C.l) assumes a Lorentzian shape for the resonances. 
This is valid for the two cases considered, an isolated atom at rest, where Fj = F-'̂ ^ 
is the natural linewidth, and for an atom in a gas for gas densities where pressure 
broadening exceeds Doppler broadening, which is the case in the present work [79 . 
Thus, Ti = F f ^ in this limit, with 

r'f\l/s] « 1.1 X 10-2 Aj[cm] A/'o[at./cm^] f i . (C.2) 

Expression (C.2) is valid for self-broadening in a pure gas with a typical accu

racy of < 10% [79,156]^. To assess the importance of absorption, we will compute 

the absorption coefficient for a plane wave travelling a distance L through a linear 

medium [33], 

I{L) = /(O) expi-KL), KL = 87r\{L/X)Mo Im (apo i ) . (C.3) 

For A = 355 nm and q — 3, we obtain 

KL ^ 6.7 X 10^ L[mm] J\fo[&t./crn] Im(Q;poi)[cm^]. (C.4) 

The medium is increasingly opaque for KL > 1 and transparent for KL <C 1. 

C.2 Application to hydrogen 

We are specializing in the following to atomic hydrogen. The values of both the 

oscillator strengths fi and the transition rates F̂ "̂̂  for El-transitions to the ground 

state are well known [28], and the oscillator strength for the contribution of the 

continuum, fc, can be inferred from the oscillator strength sum rules, yielding fc = 

0.4350. We can therefore treat the continuum to a good approximation as a single 

discrete level with oscillator strength fc. The wavelength corresponding to this 

^Recall from Appendix A, Eq. (A.l) , that in this work there is a factor of 47r difference between 
the atomic polarizability and the atomic susceptibility. 

^The shift due to self-broadening is considered to be negligible. 
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transition, Ac, can be determined as follows: for A -> -l-oo (static limit) we know 
the value of the polarizability of hydrogen, namely oistat = 4.5 a.u. Thus, taking a 
finite number of bound and one continuum transitions, we require 

«stat ^ (̂ E f^^i + f'^^cj (C.5) 

to hold. We have neglected the widths here, as they are only of importance close 

to resonances. In Eq. (C.5), is the maximum number of bound states taken into 

account. Only a few bound states are needed to converge the results considering the 

range of wavelengths of interest (> 100 nm). Ac can be determined from from Eq. 

(C.5) and be used to compute the polarizability from Eq. (C.l) . Depending on z^, 

Ac is typically in the range 65-68 nm in the present calculations. Fig. C.l shows the 

comparison between the Sellmeir formula and the Floquet data for the real part of 

the linear atomic polarizability in a range of wavelengths which includes both the 

ls-2p and the ls-3p resonances. Considering the simplifying assumption of a single-

state discrete continuum in applying the Sellmeir formula, the agreement between 

both calculations is very good. In fact, the Floquet method is by far more accurate 

than our simplified Eq. (C.l) away from resonances, but we want to make sure that 

the Floquet approach gives the correct result even in the vicinity of the latter. We 

have therefore given in Table C.l the corresponding values for the wavelength of 

interest in chapter 2. The agreement between the two calculations regarding the 

real part of the atomic polarizability is good and the intensities we will consider will 

always be larger than the minimum intensities shown in the last column of Table C.l . 

The intensity-induced width will thus always be larger than the natural width even in 

the vicinity of the resonance considered. In fact, only the values of the intensity given 

for the third harmonic wavelengths are of any relevance because absorption at the 

fundamental frequencies is entirely negligible for any reasonable value of the atomic 

density, as can be seen from Eq. (C.4). If we now include pressure broadening, the 

widths increase typically by three orders of magnitude for A/o = 1 x 10̂ ^ atoms/cm^ 

(which is the highest gas density we have considered for atomic hydrogen in this 

work). This yields, e.g., Im[Q;poi(A = 355/3)] 5.4 x 10~2^cm^, and therefore, with 

L — 1 mm, a value of KL = 3.8 x 10"^. The intensity-induced width leads to 

larger values of the imaginary part of the polarizability for intensities of the order of 
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Figure C. l : Linear atomic polarizability (in a.u.) for hydrogen versus wavelength. 
The curve (solid line) has been obtained from the Sellmeir formula Eq. (C.l) , the 
data represented by the circles have been obtained from a Floquet calculation (see 
chapter 2). Open circles correspond to a range of wavelengths for which the polar
izability is actually negative but shown positive for convenience. 
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Table C. l : Comparison between the Unear atomic polarizabiUties as obtained from the 
Floquet approach (chapter 2) and the Sellmeir formula Eq. (C.l) in the zero-intensity 
limit. The imaginary part of the intensity-induced width is practically zero (e). The third 
column gives the order of magnitude for the intensity to be reached for the imaginary 
part of the polarizability to be dominated by. the intensity-induced width, compared to 
the natural line broadening due to spontaneous emission. Numbers in parenthesis indicate 
powers of ten. 

A Floquet data Sellmeir data min. intensity 
[nm] ttpoi [cm^] Q!poi [cm^] [W/cm2] 

real part 
350 7.43(-25) 7.40(-25) -
355 7.41(-25) 7.38(-25) -
364 7.37(-25) 7.34(-25) -
350/3 -4.50(-24) -4.61 (-24) -
355/3 -7.35(-24) -7.52(-24) -
364/3 -1.13(-22) -1.45(-22) -

imaginary part 
350 e 8.21(-33) - 1(11) 
355 e 8.03(-33) - 7(10) 
364 e 7.74(-33) ~ 5(10) 
350/3 e 2.57(-30) - 1(8) 
355/3 e 6.12(-30) - 1(8) 
364/3 e 1.94(-27) ~ 1(8) 

10^° W/cm^ . Thus, even with pressure broadening included, the intensity-induced 

width will dominate the linear atomic polarizability in our applications. One should 

not conclude from these figures that, e.g., A = 364 nm is not a suitable wavelength 

because of a large value Im[Q;poi(A = 364/3)] « 2 x lO^^^cm^. Indeed, firstly, the 

minimum intensity to reach is roughly independent of the wavelength, very much as 

in the case of the natural linewidth shown in Table C.l , secondly and independently, 

because of the larger real part of the polarizability, the value of the atomic density 

necessary to achieve a given Bessel angle, according to Eq. (6.42), is lower. We shall 

come back to this point in more detail in the next section. 

C.3 Application to xenon 

We proceed in this section by relating similar results for xenon, as required for the 

calculations in section 6.2.1, following the steps outlined by Feet and Tsubin [166 
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Table C.2: Data for xenon entering the Sellmeir formula Eq. (C.l). The oscillator 
strengths fi are from Refs. [44,168]. The first column gives the state with J = 1 un
der consideration. Ei are the energy levels in eV, the corresponding wavelength of the 
transition to the ground state in nm, and Pj"^ are the transition rates as evaluated from 
Eq. (C.6), in 10^/s. r'f'^'^^^ are the corresponding rates from Ref. [134], where available. 

state fi 
p{n) 

i 
p(n),ref 

i 
'PV26s[l\ 
'Pl/2QS%] 
'P3/25d[l] 
'P3/2HI] 
^^3 /275[ | ] 

'PS/2HI] 
'P3/2HI] 
'P^/2SS[I] 
'Ps/27d[l] 

146.95 8.437 0.273 2.81 2.8 'PV26s[l\ 
'Pl/2QS%] 
'P3/25d[l] 
'P3/2HI] 
^^3 /275[ | ] 

'PS/2HI] 
'P3/2HI] 
'P^/2SS[I] 
'Ps/27d[l] 

129.56 9.570 0.186 2.46 2.5 
'PV26s[l\ 
'Pl/2QS%] 
'P3/25d[l] 
'P3/2HI] 
^^3 /275[ | ] 

'PS/2HI] 
'P3/2HI] 
'P^/2SS[I] 
'Ps/27d[l] 

125.02 9.917 0.011 0.15 -

'PV26s[l\ 
'Pl/2QS%] 
'P3/25d[l] 
'P3/2HI] 
^^3 /275[ | ] 

'PS/2HI] 
'P3/2HI] 
'P^/2SS[I] 
'Ps/27d[l] 

119.20 10.401 0.379 5.93 6.2 

'PV26s[l\ 
'Pl/2QS%] 
'P3/25d[l] 
'P3/2HI] 
^^3 /275[ | ] 

'PS/2HI] 
'P3/2HI] 
'P^/2SS[I] 
'Ps/27d[l] 

117.04 10.593 0.086 1.39 -

'PV26s[l\ 
'Pl/2QS%] 
'P3/25d[l] 
'P3/2HI] 
^^3 /275[ | ] 

'PS/2HI] 
'P3/2HI] 
'P^/2SS[I] 
'Ps/27d[l] 

112.93 10.979 ~ 0.001 0.02 -

'PV26s[l\ 
'Pl/2QS%] 
'P3/25d[l] 
'P3/2HI] 
^^3 /275[ | ] 

'PS/2HI] 
'P3/2HI] 
'P^/2SS[I] 
'Ps/27d[l] 

110.07 11.163 0.084 1.50 -

'PV26s[l\ 
'Pl/2QS%] 
'P3/25d[l] 
'P3/2HI] 
^^3 /275[ | ] 

'PS/2HI] 
'P3/2HI] 
'P^/2SS[I] 
'Ps/27d[l] 

109.97 11.274 0.022 0.41 -

'PV26s[l\ 
'Pl/2QS%] 
'P3/25d[l] 
'P3/2HI] 
^^3 /275[ | ] 

'PS/2HI] 
'P3/2HI] 
'P^/2SS[I] 
'Ps/27d[l] 108.54 11.423 0.023 0.43 -
'Ps/27d[l] 107.86 11.495 0.001 0.02 -
'PmHl] 
'Py25d'[l] 
'Ps/28d[l] 
' ^ 3 / 2 8 d [ | ] 

' ^ 3 / 2 l O s [ | ] 

107.04 11.583 ~ 0.001 0.02 -'PmHl] 
'Py25d'[l] 
'Ps/28d[l] 
' ^ 3 / 2 8 d [ | ] 

' ^ 3 / 2 l O s [ | ] 

106.82 11.607 0.191 3.72 -
'PmHl] 
'Py25d'[l] 
'Ps/28d[l] 
' ^ 3 / 2 8 d [ | ] 

' ^ 3 / 2 l O s [ | ] 

106.12 11.683 0.009 0.17 -

'PmHl] 
'Py25d'[l] 
'Ps/28d[l] 
' ^ 3 / 2 8 d [ | ] 

' ^ 3 / 2 l O s [ | ] 

105.61 11.740 0.097 1.93 -

'PmHl] 
'Py25d'[l] 
'Ps/28d[l] 
' ^ 3 / 2 8 d [ | ] 

' ^ 3 / 2 l O s [ | ] 105.50 11.752 0.029 0.58 -

-
96.11 
65.26 
12.40 

12.9 
19 
100 

0.9 
3.8 
8 

- -

for the computation of the linear atomic polarizability. The relevant data are listed 

in Table C.2, where the transition rates to the ground state ^So have been obtained 

from the oscillator strengths using the formula 

r(») (i/s) = k = 4.3391 X 10' E! leVl ^ 
' ^ ' •' A2[nm] Qi Qi 

(C.6) 

where Ei is the energy level corresponding to the wavelength of the transition, A ,̂ 

and gi are the statistical weights, Qi = 3 for all transitions in the present casê  [134 . 

Fifteen bound states have been taken into account and the continuum, above the 

first ionization threshold a,t E = 12.13 eV, has been modelled as a set of three 

discrete levels [168]. The real part of the linear atomic polarizability is shown in 

Fig. C.2. The static limit obtained in this way, Q!poi(oo) ^ 22.6 a.u., is below both 

the theoretical and experimental value cited in Ref. [128], oistat ~ 27.1 a.u. On the 

^We are considering J = 1 J = 0 transitions in xenon. 
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Figure C.2: Real part of the linear atomic polarizabihty for xenon versus wavelength. 
The regions where the curve is dashed correspond to regions, where this susceptibility is 
actually negative but shown positive for convenience. The resonances correspond to the 
first four energy levels given in Table C.2. 

other hand, we find for Ai = 354.7 nm and A3 = A/3 the values 

Re[apoi(Ai)] ^ 3.7 X 10-2'cm^ 

Re[o!poi(A3)! -1.4 X 10"^^ cm^ 

(C.7) 

(C.8) 

leading to a,n atomic phase-mismatch in very good agreement with the value cited 

by Kung [118] (see section E.3.2). I f we include pressure broadening, we find for 

A/Q = 4.8 X 10̂ ^ atoms/cm^ (which is the highest gas density we have considered for 

xenon in this work) a value of Im[Q;poi(A = 355/3)] ^ 2.2 x 10~^^ cm^, and therefore, 

with L = 1 mm, a value of KL = 7.1 x 10"^. No information about the intensity-

induced widths for xenon was available'* and considering that for intensities < 10̂ ^ 

^The intensity-dependence of the real part of the linear atomic polarizability starts to affect the 
conversion efficiency for third-order harmonic generation in xenon around 5 x 10̂ ^ W/cm^ at this 
wavelength [237]. 
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W/cm^ absorption is negligible for hydrogen (even when the larger light-induced 

shift is taken into account, see Figs. 5.3 and 5.4), we have simply assumed absorption 

to be negligible for xenon for this range of intensities in all calculations reported in 

this thesis. 

Consider now the experiment by Peet and Tsubin [166], which we had discussed in 

connection with the conversion efficiency in section 5.3. The authors had considered, 

amongst others, third harmonic generation in xenon using a Bessel beam with a = 

17°. We will show, that in order for a — 17° to be the optimum Bessel angle 

according to Eq. (4.104), one has to be too close to resonance, all harmonic radiation 

being absorbed within the medium as predicted by the authors. The real part of 

the linear atomic polarizability is evaluated fromi Eq. (4.104) as 

Re[apoi(A/3)] « - ( 1 - l/q^)[a^^t = 17°]V47rA/'o (C.9) 

and the corresponding imaginary part is determined from the Sellmeir equation. 

From there, the absorption coefficient KL is evaluated for A = 440 nm and a medium 

length L = 2 mm [168]. It is obvious from the figures shown in Table C.3 that 

the medium is completely opaque for the whole range of gas densities used in the 

experiment of Ref. [166]. Interestingly, the value of KL is essentially constant over 

this range which illustrates a point already mentioned at the end of section C.2: 

The closer the resonance, the higher is absorption but the lower is also the density 

required for obtaining a given Bessel angle. 

Table C.3: Absorption of harmonic radiation in the experiment of Peet and Tsubin [166] 
as a function of the atomic density A/Q (in atoms/cm^ ), determined from the pressure 
p in mbar, see Appendix A). The hnear atomic polarizability is in cm^: (a) real part, 
(b) imaginary part, at the harmonic wavelength, respectively. Numbers in parenthesis 
indicate powers of ten. 

p (a) , (b) KL 
100 2.5(18) -2.8(-21) 2(-22) 5(2) 
200 5.0(18) -1.4(-21) 8(-23) 4(2) 
400 1.0(19) -7.0(-22) 4(-23) 4(2) 
1000 2.5(19) -2.8(-22) 2(-23) 5(2) 
1500 3.8(19) -1.8(-22) l(-23) 4(2) 



Appendix D 

Experimental Realization of a 

Bessel Beam 

D. l Introduction 

In chapter 3 we had shortly discussed various ways of experimentally realizing Bessel 

beams. The present appendix describes an experimental realization of a Bessel type 

beam we have carried out in collaboration with Philippe Balcou and co-workers at 

the Laboratoire d'Optique Appliquee (LOA) in Palaiseau, France. The design of 

the Bessel beam generator and the subsequent measurements reported here were 

realized within the framework of the experiment on high-order harmonic generation 

in an argon gas reported in chapter 7. 

The Bessel type beam will be obtained essentially by illuminating an annular aper

ture. In the first section we investigate theoretically how the Bessel beam amplitude 

is going to be obtained. Section D.3 is devoted to the description of the experimental 

set-up. Both the measurements and the results are discussed in section D.4. Section 

D.5 provides a short conclusion, section D.6 contains the figures. 

180 
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D.2 Theoretical considerations 

Before embarking on the description of the experimental set-up, we first give a 

brief theoretical description of how a Bessel beam amplitude can be obtained by 

illuminating an annular slit. To this aim, we start from the (scalar) Kirchhoff-

Fresnel integral for the diffraction by a plane aperture A, which is given by [23 

, ,s 1 + z/R exp{ikR) 
2 R ' (°-« 

where R = [{x—x'Y+{y--y'Y^-z'^Y^'^ is the distance between the point of observation 

P{x,y,z) and the points A(x',y',0) of the aperture, and EA is the field amplitude 

incident on the aperture. We assume to be far away from the aperture, that is 

^/z'^ + p2 » p'^, where we have introduced cylindrical coordinates P{p,z,(j)) and 

A{p', 0, (f)'). We may thus expand R as 

R^^z^ + p2 
^ _ pp'cos{4) - (f)') _^ 1 p' /2 

z^ + p^ 

and Eq. (D. l ) can then be approximated by 

2 z2 + p2 
(D.2) 

X exp -ik 
pp' cos{4> - (f)') .'2 

exp ik (D.3) 

If further both the aperture and the incident field are azimutally symmetric, one 

obtains 

E{p,z) = _^,k'M^kV^^') f'' .,,^j,^l±llVl±l 

kpp' 

[ dp'p'E^ip') 
JSi 

„/2 
exp ik- (D.4) 

Moving to the paraxial limit, we write z = ZQ+AZ with ZQ > p and AZ/ZQ < 1, thus 

approximating ^/z^ + by ZQ+AZ and l/y^^ + ^hy {l-Az/zo)/zo, respectively. 

At the same time we introduce the new variables 

ai = - i = l,2 , 
zo 

(D.5) 
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82 Si 

optical axis zo 

Figure D . l : Definition of the angles and the far-field variable Az. 

(see Fig. D . l ) and obtain the electric field amplitude in the form 

E{p,Az) = -ikzoex-p{ikzo)exp{ikAz) {1 - Az/zo) / duuEA{uzo) 

kzQU^ ( Az 1 - .— X J( kpu 1 
^0 J 

exp (D.6) 
2 \ ZQ 

We can neglect AZ/ZQ in the prefactor but also in the argument of the Bessel function 

with respect to the argument of the exponential, provided p' ^ p, which requires 

> 5i ^ p. I f we assume a plane wave illumination of the aperture, EA,{UZO) = EQ, 

we arrive finally at 

E{p,Az) = -ikzoEoexp{ikzo) / duuJo{kpu) 
J ai 

X exp[ikAz{l - u'^/2)] exp{ikzoU^/2). (D.7) 

I t is easy to see from this expression, how an annular beam emerges as a super

position of Bessel beam amplitudes with a range of Bessel angles a G [ai,a2]-

Recalling the three approximations which have been made in deriving Eq. (D.7), 

namely ZQ ^ p,Si,62, Az <^ ZQ, and 81,62 p, we find that they are well satisfied 

under experimental conditions, where we typically have 

Zo 

^1,62 

Az 

P 

a few tens of centimeters 

a few millimeters 

a few millimeters 

a few tens of microns 

The paraxial version of the pure Bessel beam is easily recovered from expression 

(D.7) in the case where ai and 0:2 are close enough for the integrand to be taken at 
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the intermediate value a = {oti + a2)/2, leading to 

E{p, Az) = EQJQ (kpa) exp[iA;A^(l - a'^/2) (D.8) 

D.3 Experimental setup 

A simplified illustration of the experimental set-up is shown in Fig. D.2. A Gaussian 

L 

Figure D.2: Schematic illustration of the experimental set-up. 

beam is generated by a 632-nm He-Ne laser and widened to about 3 cm of diameter. 

The well collimated beam illuminates a //500 lens L which focuses the incident beam 

through the Bessel beam generator onto an object plane 0 , located at / = 495 mm 

from the lens L. Object plane and focal plane normally coincide, but the focal plane 

can be moved either way with respect to the object plane by moving the lens L. The 

object plane O is imaged with a / /20 lens onto a CCD camera, which records the 

intensity profile of the beam transmitted through the Bessel beam generator at the 

position of the object plane. The Bessel beam generator consists of an aperture A 

and a diaphragm D, located at CIA. and rf/? = 370 mm from the lens L , respectively. 

The inner diameter of the aperture being A, we have, using the notation from the 

previous section. Si — A /2 and ZQ = f — to yield 

A 
a i = ^ . (D.9) 

The value of ^2 was significantly larger than but we monitored the thickness of the 

annular beam with the help of a diaphragm D of maximum diametef 4 mm. This 
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adjustment was done online, that is, while displaying the output of the CCD camera 

on a video screen. In this way, the optimum opening of the diaphragm was regulated 

such as to obtain a maximum contrast on the screen up to a point where further 

reduction of the opening blurred the picture, thus indicating secondary diffraction 

of the beam due to the diaphragm. Note that Eq. (D.9) is therefore expected to be 

the lower bound for the measured range of Bessel angles. This lower bound could 

Table D . l : Expected values for the Bessel angle ai, as calculated f rom Eq. (D.9) 
for A = 12 m m and various O?A- The four th column refers to the figure showing 
the measured intensity profile f rom which the experimental value of the Bessel angle 
ckexp has been determined. The values shown include already the statistical errors 
(see next section) 

Figure 
[mm] [mrad] [deg] [mrad] [deg] 
76 14.3±0.2 0 .82±0.01 D.4 14.4-17.4 0.83-1.00 
152 17.5±0.2 l.OOiO.Ol D.5 17.5-21.9 1.00-1.25 
225 22 .2±0 .3 1.27±0.02 D.6 19-23 (?) 1.1-1.3 (?) 
282 28 .2±0.5 1.61±0.03 D.7 - -

be modified by varying the distance dA- Table D . l shows the values of the angle ai 

as predicted by Eq. (D.9) for A = 12 m m and for several values of the distance 

between lens L and aperture A. The statistical error on ai has been calculated as 

S(ai) = 
OA 

d A + 
dai 

df 
ddA : (D.IO) 

where we have made the conservative estimates 

df = ddA = 1 mm , d A = 0.1 m m , 

for the abolute accuracy to which the various lengths could be measured. The range 

of values for dA shown in this table was l imited due to restrictions on the size of the 

set-up for later applications. To access different ranges of values for the Bessel-angle, 

different lenses or apertures have to be taken. Table D . l also shows the measured 

values of the Bessel angles (where available), as discussed in the next section. 
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D.4 Measurements and results 

I n order to make absolute measurements of the spatial dimensions of the intensity 

profiles, we recorded the image of a finely graded scale, fixed in the object plane O. 

The recorded picture is shown in Fig. D.3. The gradings are nominally separated 

by a distance of 100 microns, thus the absolute scale for all subsequent pictures is 

Scaling factor: 1 cm = 37.0 microns . 

We have tested that this scale does not change appreciably, when the f/20 lens 

(which governs the magnification of the imaging) is slightly displaced along the op

tical axis: the scaling factor was observed to decrease by approximately 0.4 microns, 

when the f/20 lens was moved up to 3.5 mm away f rom the CCD camera. 

Figs. D.4-D.7 show the recorded intensity profiles for the Bessel beams of Table 

D . l . Each picture consists of 240 rows and 240 columns. To find the value of the 

Bessel angle (or rather the range of Bessel angles) we have analyzed the rows and 

columns separately to find the cut through the central maximum. A typical profile, 

corresponding to the vertical cuts at positions x = 100 and x = 101 of the profile 

of Fig. D.4, is shown in Fig. D.8. Only a fraction of the peak has been recorded 

because of the CCD camera being saturated in order to make the secondary peaks 

clearly visible. From Fig. D.8 i t is clear that i t is easier to measure the position of 

the maxima than,the position of the minima. As J'Q{Z) = -Jiiz), the positions of 

the maxima of JQ ( 2 ) are given by the zeros of Ji{z). The argument of the Bessel 

funct ion being z = kpa, according to Eq. (D.7), we obtain for the value of the angle 

a, as determined f rom the secondary peak, 

a, = ̂ ^ , (DID 

where A = 0.632 /^m is the wavelength of the He-Ne laser, pj is half the distance 

between the two maxima corresponding to the same ring and calculated as Pj[/^m] — 

Pj[cm] X S '{S = 37.0), and the zj are the zeros of the Bessel function Ji{z) [1]. The 

statistical error on the angles aj is evaluated as 

daj 

dpj 
dpj + 

daj 

a s 
dS, (D.12) 
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where we made the conservative estimates 

dpj = 0.05 cm , dS = 0.4 , 

for the absolute accuracy to which these quantities could be determined. The results 

of this analysis for Figs. D.4-D.6 is given in Table D . l . They might be less reliable 

for the values given in the th i rd row of this table, while they could not be obtained at 

all for the Bessel beam of Fig. D.7. I t is also possible to test whether the recorded 

intensity profiles are suitably modelled by a Jg-profi le by determining the ratios 

of the successive secondary maxima, the latter being given by Vj = Jl{zj). Taking 

again Fig. D.8 as an example, we see that the difficulty lies essentially in defining the 

zero-intensity baseline. Taking for the right hand side peaks y = 40 as baseline, we 

find (w2/'y3)exp, ~ 1.34 and ( f2/ 'y4)exp. ~ 1.81 compared to the theoretical values 1.45 

and 1.88 [1], respectively. Deviations f rom the theoretical values can be attributed 

to the fo rm of the radial cut-off, as a result of a truncation due to the finite apertures 

(truncated Bessel beam) or due to the exponential radial decay (Bessel-Gauss beam) 

in the case where the apertures are large enough for the radial profile of the incident 

Gaussian beam to decay. 

The most notable feature in the measured intensity profiles is the intensity pattern 

of the first r ing w i t h its threefold azimutal symmetry, which can also be found in the 

second r ing to some extent. Several factors might be responsible for this pattern. 

First, the central part of the incident Gaussian beam being blocked by the aperture, 

the Bessel beam is formed by interference of the outer wings of the Gaussian beam 

which have not, i n general, the same quality as the central part of the beam, thus 

possibly introducing an azimutal dependence as observed. Second, an azimutal 

dependence appears, i f the aperture or the incident beam are not properly aligned 

along the optical axis. A th i rd possibility is the deviation of the aperture f rom an 

annular shape. 
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D.5 Conclusions 

The experimental realization of a Bessel type beam described in this Appendix 

shows that, w i th an otherwise unsophisticated experimental apparatus, i t is possible 

to obtain intensity profiles, which are in fair agreement, both qualitatively and 

quantitatively, w i t h predictions f rom scalar diff'raction theory. Clearly, i t is possible 

to improve both the quality of the Bessel beam's spatial intensity profile and the 

measurement of its characteristics without too much effort. First, the beam quality 

can be improved by monitoring the alignment more accurately and improving the 

quality of the aperture, second, the monitoring of the beam characteristics would 

benefit f rom measuring the profiles both in the saturated and unsaturated regimes, 

so as to be able to resolve both the central peak and a sizeable number of smaller 

secondary peaks. A better shielding of the experimental set-up, and especially of 

the CCD camera, f rom stray light fields should also help to supress the background 

and allow for an easier identification of the minima (the baseline for zero-intensity) 

in the recorded profiles. A greater magnification of the imaging apparatus would 

add to the overall accuracy of the measurements. 

In subsequent measurements i t would be desirable to study the dependence on the 

confocal parameter in order to determine the length of the diffraction-free zone. 
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D.6 Figures 

Figure D.3: Image of a finely graded scale. The gradings are nominally separated 
by 100 microns. The distance between the left (right) hand edges of the vertical 
bars at x=50 and x=200 is approximately 81 mm, corresponding to 300 microns. 
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Figure D.4: Intensity profile of a Bessel type beam close to focus, corresponding to a 
(mean) value a « 15.9 mrad = 0.91° (see Table D . l ) . The central peak is saturated 
w i t h respect to the surrounding rings. 
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Figure D.5: Intensity profile of a Bessel type beam close to focus, corresponding to a 
(mean) value a ^19.7 mrad = 1 . 1 3 ° (see Table D . l ) . The central peak is saturated 
w i t h respect to the surrounding rings. 
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Figure D.6: Intensity profile of a Bessel type beam close to focus, corresponding to 
a theoretical (minimum) value ai w 22.2 mrad = 1.27° (see Table D . l ) . The central 
peak is saturated w i t h respect to the surrounding rings. 
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Figure D.7: Intensity profile of a Bessel type beam close to focus, corresponding to 
a theoretical (minimum) value cii w 28.2 mrad = 1.61° (see Table D . l ) . The central 
peak is saturated wi th respect to the surrounding rings. 
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Figure D.8: Overlap of the vertical cuts at a; = 100 and a; = 101 of the profile shown 
in Fig. D.4 f rom which an estimate of the range of Bessel angles a can be obtained 
f r o m Eq. D.9 by measuring the distance between the two maxima corresponding 
to the same secondary maximum (i.e. the same ring in the intensity profile). The 
horizontal cut in this figure at y = 40 is used as the reference baseline for measuring 
the height of the secondary peaks on the right hand side of central peak (see text) . 



Appendix E 

The Propagation Code 

E . l Introduction 

The propagation code has been conceived and developed on the basis of the ex

pressions given in section 4.4 for the computation of the harmonic field envelope 

Eq, Eq. (4.71). The code is wri t ten in F O R T R A N 77 and uses some of the NAG-

library's quadrature routines. The main integral over the nonlinear medium, Eq. 

(4.71), is carried out employing a method described in Ref. [214]: in this approach, 

a multidimensional integral, 

/ = [ / (x)dx, (E . l ) 
JGn 

where Gn is the unit cube in n-space, 0 < < 1, is evaluated as 

â ^̂  is an n-tuple of integers which depend only on A'' and f p indicates the 1-periodic 

extension of the function / over the whole n-space. The aim is to find the n-tuples 

â ^̂  such that \Q - I\ vanishes as rapidly as possible w i th increasing N. Making 

use of periodicity of / p , this function is expanded into a Fourier series 

/p(x) = ^ C(m) exp(27rzx • m ) , (E.3) 
m 

194 
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where the m are n-tuples of integers. Noting that 

C{m)= / ( x ) e x p ( - 2 7 r « x - m ) d x , (E.4) 

and C(0) = 7, one finds 

Q = j + Y ^ C(m) 5{m • o (^) ) , (E.5) 

w i t h 

i V - l 

5(m-a(^)) = (1/A^) J]] exp{27rz[m-a(^^]A;/A^} (E.6) 

= 1 i f m-a^^) = A^j , J = 0 , ± 1 , ± 2 , . . . (E.7) 

= 0 otherwise. (E.8) 

Hence, i n order to minimise the rest term in Eq. (E.5), one tries to find n-tuples 

â ^̂  such that m • â ^̂  ^ N j , j = 0, ± 1 , ± , . . . as often as possible. I t can be shown 

(see Ref. [214] and references therein) that in two dimensions a possible solution is 

given by 

iV = F, _ ^ a ( ^ ) = ( l , F , _ 2 ) , (E.9) 

where the Fj are the Fibonnaci numbers, 

Fj = + 7 ;_2 , Fo = 0,F^ = 1, j = 2,3,.... (E.IO) 

Subroutines which perform the computation of (complex) Bessel functions and both 

linear and bicubic interpolation are based on methods and formulas given in Refs. 

1,183. 
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E.2 The input file 

196 

A typical input file has the form 

ibeam ichoice IG ^G ^BG ^BG 

1 1 5.00dl2 4.0d0 5.00dl2 4.d0 

L A A/'o a T t-steps 

l.OdO 0.355d0 5.dl8 1.20d0 15.d-12 50 

nhar ifar imin istep imax nloc 

3 100 0 50 5000 5 

igas ie iatnpert iabsorb ishort 

1 1 1 1 0 

N f i rhomax ampli(t-) ampU(t-l-) nrout 

19 66 -1.6d0 1.6d0 4 

atomic data files 

filel file2 file3 file4 file5 

I n the following we give a brief explanation of each of the parameters appearing 

in the input file. 

ibeam: takes on the values 1 (Gaussian beam) and 2 (Bessel-Gauss beam). 

I f ibeam=l, the code uses the values JQ, bo, and a = 0, otherwise 

IBG, ^BG and the value of a given in the input file. 

ichoice: takes on the values 1 to 4. One of the four values JQ, IBG, ^G and 6BG 

is redundant and can be determined f rom the three others according 

to Eq. (3.29) for beams of equal power. The intensities are given in 

W / c m ^ , the confocal parameters in mm. 

ichoice=l: ( / G , ^ B G , ^ G ) — ^ ^BG 

ichoice=2: {lG,bBG,bG)—> IBG 

ichoice=3: ( /Q , -^BG, &BG) — ^ ^G 

ichoice=i: ( / B G , ^BG, &G) —^ ^ 

The value calculated supersedes the corresponding value given in 
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the input file. 

L: length of the medium in mm. 

A: wavelength in fj,m. 

Afo- ( ini t ial) peak atomic density in atoms/cm^ . 

a: Bessel angle in deg. 

T: pulse duration ( F W H M of intensity) in sec. 

t-steps: number of steps in the time propagation. 

nhar: harmonic order. 

ifar: far-field variable z' in units of L (see Fig. 4.1). 

imin : far-field variable p'^-^^ in units of A (see Fig. 4.1). 

istep: step-size of A p ' in units of A (see Fig. 4.1). 

imax: far-field variable p^^^ in units of A (see Fig. 4.1). 

nloc: localizes the first nloc maxima in the spatial far-field profile. 

igas: takes on the values 1 (rectangular gas profile) and 2 (truncated 

Lorentz profile). 

ie: takes on the values 1 (photoionization included) and 2 (photoion-

ization neglected). 

iatsus: takes on the values 1 to 3 and determines the way, the real part of 

the dressed linear atomic susceptibility is included. 

iatsus=0: all values set to zero 

iatsus=T. values as loaded (intensity-dependent) 

iatsus=2: all values set to the perturbative value ( 7 ^ 0 ) . 

iabsorb: same as for iatsus but for the imaginary part of the dressed linear 

atomic susceptibility (absorption). 
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ishort:. takes on the values 0 and 1. I f ishort=l, then the slowly- varying 

envelope approximation Eq. (4.45) is included in the computation. 

N f i : determines the Fibonacci number FNA (see section E . l ) for converg

ing the integration over the medium dimensions 

rhomax:, maximum radial distance pmax (in units of A) taken into account by 

the integration over the medium dimensions (see Fig. 4.1). 

a m p l i ( t - ) : lower bound of the reduced time v' in Eq. (4.69). 

ampli(t-f-): upper bound of the reduced time v' in Eq. (4.69). 

nrout: takes on the values 1,2,3,4,5,6,8,10,12,14,16,20,24,32,48,64. nrout 

controls the accuracy of the Gauss-Legendre quadrature (NAG-

routine DOIBAF) used for computing the integrals Eqs. (4.60) and 

(4.62). 

filel: file containing the intensity-dependent atomic dipole moment (mod

ulus, phase and their derivatives wi th respect to intensity). 

file2: file containing the ionization probability as a function of time and 

intensity. 

file3: file containing the complex linear atomic susceptibility at the fun

damental frequency as a function of the intensity. 

file4: file containing the complex linear atomic susceptibility at the har

monic frequency as a function of the intensity. 

file5: file containing the ionization rate, only used, i f ishort=l. 

The parameters which affect the convergence of the results (spatio-temporal profiles, 

conversion efficiency) are t-steps,istep,imaXiNfi,rhomax,nrout a.nd amplit(±). 
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E.3 Testing the code 
E.3.1 General considerations 

Mult ip le tests are performed by the code, in order to reduce as much as possible er

rors and inaccuracies. The input file is checked for its consistency and the accuracy 

of quadrature routines is monitored throughout the calculations. Results of those 

checks are wri t ten on status and info files, which can be consulted during the exe

cution of the program. The conversion efficiency is cross-checked by interchanging 

the order of integration, as stated in Eq. (4.66). 

In the following we report on an investigation which tests both the validity of the 

far-field approximation made in deriving the harmonic far-field amplitude Eq. (4.71) 

and its implementation by the code. We wi l l concentrate on the most stringent 

test, which requires the harmonic yield (or equally the conversion efficiency) to be 

independent of the the position z' of the far-field plane. Moreover, the corresponding 

spatial far-field profiles are shown to be only dependent on the far-field angle p. For 

this calculation we have taken the input file as given in the previous section, and 

varied the parameter ifar. In order for the comparison to be meaningful, we have to 

work at constant maximum far-field angle P, that is we have to vary istep and imax 

in the same way than ifar, all other input data remaining unchanged. The results 

are displayed in Table E . l . We have monitored the variation of the conversion 

eflftciency and the ratio of the first off-axis maximum to the maximum on axis. As 

the latter is about three orders of magnitude larger than the former in the present 

case, we expect this ratio to be much more sensitive to the variation of z' than the 

ratio of the conversion efficiencies. The relative errors have been calculated wi th 

respect to the results obtained for ifar=1000, 

E R R = x l O O % . ( E . l l ) 
nooo 

Selected far-field profiles obtained f rom the calculations above are shown in Fig. E . l . 

The normalized far-field profiles can be seen to depend only on the far-field angle 

/?. The far-field profiles converge wi th increasing parameter ifar rapidly to the same 

l im i t over the whole range of far-field angles p. The position of the first off-axis 
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Table E . l : Test of the independence of the calculations with respect of the far-field plane 
z'. The relative errors are determined with respect to the results for z' = lOOOL = 1000 
mm according to Eq. ( E . l l ) . E R R l is the relative error on the conversion efiiciency, ERR2 
is the relative error on the ratio of the first off-axis maximum to the maximum on cixis. 

ifar istep imax ERRl ERR2 
(%) (%) 

1000 500 50000 ^ 0.0 ^ 0.0 
800 400 40000 ^ 0.0 « 0.0 
500 250 25000 0.1 0.2 
200 100 10000 0.4 0.9 
100 50 5000 1.0 2.0 
50 25 2500 2.1 4.6 
40 20 2000 2.7 6.0 
20 10 1000 5.6 14.2 
10 5 500 12.2 40.0 

maximum does not vary with z' to the precision given in Table E . l . 

Similar checks carried out during the calculations reported in chapter 5, confirm the 

rule of thumb, that above z' ^ lOOL, the relative error due to finite z' is generally 

less than the overall convergence accuracy of a given calculation with respect to 

the parameters listed at the end of the previous section. The ^'-dependence of the 

temporal profiles is essentially removed by the transformation Eq. (4.74) which takes 

the time reference to be dependent on the far-field plane. We note that in the case of 

very short pulses the small remaining ^'-dependence can sometimes lead to spurious 

numerical effects affecting the tails of the temporal profiles. 

E.3.2 Comparison of results with existing data 

We have tested the overall reliability of the code by reproducing data already pub

lished in the literature for Gaussian beams. Particularly suitable for such a calcula

tion is the experiment by Kung [118] on third-order harmonic generation in xenon 

at the same fundamental wavelength, A = 354.7 nm, than we have used for atomic 

hydrogen throughout the thesis. The calculations here are compared to the experi

mental data of Kung for a power of 2 MW on target, the latter consisting of a pulsed 

xenon gas jet. To describe the gas jet profile we have assumed a rectangular gas 
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Figure E . l : Far-field profiles at various far-field planes 2;' as a function of the far-field 
angle /3. The curves are for ifar=10 (dot-dashed hue), ifar=20 (dashed line), ifar=4:0 
(dotted line) and i/ar=1000 (solid line). 

profile of length L =1 mm for the reasons outlined below. The reported beam waist 

is Wo = \/b/k = 30 ̂ m, yielding a confocal parameter b ^ A mm. According to Eq. 

(3.28), the peak focal intensity is then about I{ = 5.7 x 10̂ ^ W/cm^ in agreement 

with the value cited by Kung^ This value, of the intensity approximately delimits 

the power law regime [see Eq. (2.21)] from the saturation regime in xenon at this 

^Therefore, Kung assumes a Gaussian beam profile for tfie incident beam. He states this 
explicitely only when he refers to his calculated values for the conversion efficiency (footnote c in 
Table 1 of Ref. [118]), but notes at the same time that the actual incident beam has a doughnut-
shaped profile, without giving any further precisions. We therefore assume the incident beam to 
be well described by a Gaussian beam profile which is consistently described by the parameters 
given by Kung and perfectly matches his experimental results. 
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wavelength [118,237]. For the third-order polarizability of xenon, which enters the 
calculation of the dipole moment in Eq. (2.21), we have used the value cited by 
Kung, x^^-' = 5.6 X 10~^^ esu. The conversion into the dipole moment in atomic 
units is carried out using both Table IV of Ref. [130] and the table in Ref. [174]. We 
obtain in this way 

d{I) [a.u.] = 6.20 X 10'' x^'^esu] [I/h)^''^^, (E.12) 

where ^ = 3 in the present case .̂ The prefactor in this equation corresponds to a 

normalizing value of the intensity of /Q = 3 x 10^' W/cm^ . Using these data, and 

the linear atomic susceptibilities determined as reported in Appendix C, we have 

calculated the conversion efficiency for a Gaussian beam as a function of the atomic 

density A/Q. Fig. E.2 shows the comparison between the data obtained from the 

propagation code and the curve obtained from the following equation, 

„ . r ^ n 5 in ' { |At . .Af . ' + 2{q - l)/i. |Z./2} 

which gives the well known theoretical dependence of the conversion efficiency on the 

atomic density for a Gaussian beam in both the perturbative and the loose focusing 

limits [130,191]. Ak^t is the phase-mismatch per atom, obtained from Eq. (4.105) 

as 

Ak,, = AA;disp/A/'o = ^ ^ [ a p o . ( A / 3 ) - a,M)]. (E.14) 

In the present case we find, using the values of the linear atomic polarizability given 

by Eqs. (C.7) and (C.8), Ak^t. = -5.9 x 10~^^ cm^/atom, in very good agreement 

with the experimental value cited in Ref. [118], AA;at = -6.0 x 10"^^ cm^/atom. 

The constant C in Eq. (E.13) has been normalized such as to make the first maxima 

in Fig. E.2 coincide. The agreement between the results from the propagation 

code and the theory predicted by Eq. (E.13) is excellent and they both fit the 

experimental curve obtained by Kung'. As absolute value of the peak conversion 

efficiency, corresponding to the first maximum in Fig. (E.2), Kung cites a measured 

^Note that the conversion factor depends on the harmonic order. The prefactor in Eq. (E.12) 
is thus only valid for g = 3. 

^Fig. 2 of Ref. [118], filled symbols. His data could not be reproduced in Fig. E.2 because of 
the lack of information about the vertical scale of his plot. 
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Atomic density (x 10^^ atoms/cm^) 

Figure E.2: Conversion efficiency versus atoftiic density for the Gaussian beam as de
scribed in the text. Filled circles: data points obtained from the propagation code, solid 
line: conversion efficiency obtained from Eq. (E.13) by fitting the curve to the first maxi
mum at A/Q = 6.4 X10^^ atoms/cm^ . The second maximum occurs around A/Q = 1.75x10^^ 
atoms/cm^ . 

value o( r]q = 1.5 x 10~^ which compares very well to rj^ — 1.9 x 10"^ found in 

our calculation. The densities at which the two maxima occur are given by Kung 

as A/J^^ « 5.3 X 10̂ ^ atoms/cm^ (p=16.2 Torr) and A/J^^ ^ 1.6 x 10̂ ^ atoms/cm^ 

(p=48.6 Torr), respectively. These values are predicted by Eq. (E.13), provided one 

neglects the small shift due to the geometric phase. The absolute value of the atomic 

density can then be inferred from Eq. (E.13), as done by Kung, by identifying the 

two maxima with the first and third coherence lengths'*, 

TT 
-̂ coh — 3I'r,nh — 

TT (E.15) 

respectively, where the author assumed an effective width of L=l mm in Eq. (E.13), 

this expression being, in fact, only valid for a rectangular gas profile. I t is for 

this reason that we also have assumed a rectangular profile for the gas jet in our 

calculation. 
^The second coherence length corresponds, of course, to the minimum in Fig. E.2. 
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In summary, we have given a detailed presentation of a test calculation performed 
with our propagation code in the Gaussian beam limit and in the perturbative 
regime. The results obtained compare very well, both qualitatively and quantita
tively, with well known theoretical models, as given by Eq. (E.13), and published 
experimental data for xenon [118 . 
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