W Durham
University

AR

Durham E-Theses

Support for an integrated approach to program
understanding: an application of software visualisation

Chan, Pui Shan

How to cite:

Chan, Pui Shan (1998) Support for an integrated approach to program understanding: an application of
software visualisation, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk /4666,

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4666/
 http://etheses.dur.ac.uk/4666/
htt://etheses.dur.ac.uk/policies/

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://etheses.dur.ac.uk

Support for an Integrated Approach
to Program Understanding: An

Application of Software Visualisation

Pui Shan Chan

Ph.D. Thesis

The copyright of this thesis rests
with the author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

Centre for Software Maintenance
Department of Computer Science

U_niversity (_)f Durham

13 JAN 1999

Abstract

Program Comprehension is a key factor in providing effective software maintenance and enabling
successful evolution of software systems. The objective of this research is to provide a framework and

mechanism to facilitate the understanding of large software systems.

There exist a number of theories and models of Program Comprehension where each favours a
different approach to comprehension. It is evident that there is no real consensus on how maintainers
underétand software systems. The disparities in the comprehension strategies are largely dependent on
the personal and circumstantial factors. Factors such as the level of technical competence of the
maintainers, the size and cofnplexity of the piece of software, and the types and goals of the

maintenance activities can influence the process of comprehension.

This research proposes an alternative approach to Program Comprehension. It acknowledges that the
process of comprehension is opportunistic, and that the current comprehension theories are
inadequate in addressing this. There is a need for a more flexible approach towards comprehension,
and the Intégrated Approach proposed in this thesis provides a way for the utilisation of the various
comprehension theories under a single environment. It recognises that any one of the comprehension
theories may become active during comprehension. Under the Integrated Approach, maintainers have

the option of selecting and executing the various comprehension strategies as they see fit.

The Integrated Approach to comprehension is based on a matrix of Program Relationships between
Program Elements of a programming language. In this thesis, these Program Relationships are

derived for the C programming language constructs.

This work also involves the investigation of the roles of both textual and graphical representations
during the comprehension process. Both representations are commonly used to alleviate the problem

ol information overloading when maintainers trying to understand and maintain a software system.

The Integrated Approach is realised in a tool named PUI (Program Understanding Implements)

which provides an environment enabling the utilisation of various comprehension theories.

Acknowledgements

The author would like to acknowledge the University of Durham for the award of a research
studentship. Special thanks are due to my supervisor Mr. Malcolm Munro for all his help and
guidance throughout the course of this research. Many thanks must also go to my colleagues at the
Centre for Sqtftware Maintenance and especially to Miss Elizabeth Burd for her help in the writing of
- this thesis. Finally, I would like to thank my parents and Eng Tiong for their continuous support and

encouragement especially during the past three years.

Copyright

The copyright of this thesis rests with the author. No quotation from this thesis should be published

without prior written consent. Information derived from this thesis should also be acknowledged.

Declaration

No part of the material provided has previously been submitted by the author for a higher degree in

the University of Durham or in any other University. All the work presented here is the sole work of

the author and no-one else.

Table of Contents

1 IRtroduCtion ..o !
1.1 Software Engineeringc.ccocooiiiiiiiiiiii ettt I
1.1.1 The Software Crisis.. ... 1
1.1.2 The Software Process Modeocooieeiioiiiiioioo oo, 2
L1300 Definition ... 3
1.2 Software MaiNIENANCeccooviiiiiiiienrceceieitet ettt et e e 3
1.3 Program Comprenensionccoiiiieiiceiiintieneet et 4
1.4 Research Problem ... 6
1.5 Criteria fOr SUCCESScciiiiiiiiiiit ittt ettt e 6
1.6 TRESIS OVEIVIEW ...ttt ettt ettt ee et ean 8
2 Theories and Practices of Program Comprehension................................ 10
2.1 INOQUCHION ...ttt ettt et ee et ee e 10
2.2 Theories and Models of Program Comprehension...............ccocuv.n...... 10
2.2.1 Syntactic/Semantic Knowledgec.cocovvmiviioiiniioeicee e I
222 Systematic/As-needed APProachc.ocveevivieioiiieieeeeceie e 12
2.2.3 Hypotheses Verificationccccccviviiiioiiineneec e 12
224 BEACOMS ..ottt ettt ettt 13
2.2.5 Program Plans...........cccooiiin, RSO PT RSOOSR 14
22,6 A Cognitive MOEl........oocoiiiiiiiiiiiii e 15
2.277 Stimulus Structures and Mental Representationscocoeoiovoeiieceeoenoe 15
2.2.8 Anlntegrated Metamodel.........coocooiiiiiiiiiiiiieeee e, 16
2.3 Current Techniques and PractiCceso.oocoovoiiiiiiiie e, 17
2.3.1 The Concept Assignment Pro-blem ... 17
23,2 ModuliSAON ...ttt 17
233 Program SHCIME ..ot 18
2.3.4 Source Code Presentation...........coooievriiieeiiiieeeeice e 19
[Natural Namingcooooiiiiiiiii e, 20
II' COMIMENIS ...ttt e, 20
I Pretly-printing....ccoooo it 20
235 VISUALISALION ..ottt e, 21
I Problems in Laying Out Graphs in Two-dimensions..................coccooco. 22

IT Strategies for Improving Graphical Representations ..o, 22

Graph SImplfication...............ooooooooo oo 23

A
B CIUSIEIING .ot 24
€ Graph SHEING ..o 24
D Presentation.........cocoeoeeeinieeiooies e, e 24
I Program VisualiSation...........c.ocooeouiei oo 25
IV Definitions ...c.oooiiiiiiie e 27
V Survey of Program Visualisation SyStems.............covoeereveeoroeeeeooeoe 28
Sorting QUL SOING ...cc.erviiirieiiiis e 29
B BALSA e 29
C O VIFOR e 30
D Dependency Analysis TOO!ccoouiiviiiioiooenieeeeeeeeeeeoeee 31
E CARE e, 31
F o Pascal Genie. ..ot 33
G SHUMP VIEWS ..o, 33
H The McCabe Tool Set......ccocooiiiiiiiiiioiieice e, 33
I LOZISCOPE ..ot 34
T SNIFF4 e 34
K Code Measurement Tool and Code Monitor.................ccooeoereeevcee . 35
2.4 SUIMITIATY ...ttt ettt ettt ee oo e 35
A Framework for Evaluation ... 39
3.1 INErOAUCLON ..o e et 39
3.2 Research Methods.cccooiiiiiiiiie e 39
3.3 Cognitive Design Elements for Software Exploration ToolSccooveeroeooeeoo 40
3.3.1 Improve Program CompreRension..............co.ovovoueoeoeoe e 42
[Enhance Bottom-up Comprehensionc.ococoovoeeosioeoeeo 42
Il Enhance Top-down Comprehension..................ocoooeeooenooooioo 43
T Integrate Bottom-up and Top-down Approaches............cococeeoooovoooeoii, 43
3.3.2 Reduce the Maintainer’s Cognitive Overhead..................c.ccocoiooioii 44
I Facilitate Navigationccccoooiiniiiiiceoee e 44
II' Provide Orientation CUESoveeieiiiieeeioeeeeeee oo 44
I Reduce DIiSOrentationc.cooeviuoiiieeiseece oo 45
3.4 SUIMIMATY ..ot 45
An Integrated Approach to Program Understanding 47
4.1 Introduction........cooeoooeiiiio e 47
4.2 Integrated Approach ... 47
4.3 Program Elements and Program RelationShips...........ocoooooooeoeoo oo 52

4.3.1 GHOSSATY ..o e, 53

I The Program EISMEntsoocooveriveeeosoeooeooe oo 53
II' The Program Relationshipsooooiveiioioe oo, 54
4.3.2 The Table of Program Relationshipsccooveueovoeeioeeeeeeeoeeeeeeeeee 56
[IAentifier . ..o e 56
IT COMSIANL. ...t et 56
I Variable ... 56
IV ATGUMIENI. ..ot 57
Vo EXPIESSION ..ottt 58
VI Primitive TYPE ..o, 58
VII COmPIEX TYDPE...ooiuieiieie ettt 60
VIISTAEIMENToiviieiiieii et e, 61
IX0 BIOCK it 62
X FUNCHON e, 63
XL FIlE oot 64
4.3.3 The ACTIDUIES ..o 64
I SCOPE e 64
IT Storage Classooceivrririerieeee e, 65
4.4 A Framework for the Integrated Approach.........ocoooeeei oo 66
4.4.1 Context Sensitive Navigational Aidscccocoooivivioiiiiiieoeeeeeeeeeeeeeee 67
442 Information DiSPlaycoccooviiieiiiiiieie e 69
I Textual Displaycccocooiiimm e e, 69
A Search Erigine .. 70
B Homogeneous Information............occooooooiiiiiiiooi e, 70 -
C Heterogeneous Information.........coco.ovooiiioieoiciiieccoo e, 72
II' Graphical DISplaycoooiiiioiiiiaee e 72
A LayOul. . e, 74
B C0l0U e, 76
C CIUSIEIING 1o, 71
D Graph SHCINEoooiiiiii i e 717
4.5 SUIMIMATY ..ottt et ee e 79
Implementation ... 81
5.1 IRIOAUCTION ..ot e 81
5.2 THE PIOMOLYPE oottt 81
5.3 TOOI SUPPOTL. ..ot 84
5.4 A Brief Introduction to PUL ... 86
5.5 SUIMIMATY oot 89

iii

6.3

6.4

6.5

INUTOAUCHION ...l e, 90
AN OVEIVIEW .ttt 90
6.2.1 A Generation of the Top-down and Bottom-up Approaches............cccocwvvevvvon.... 90
[The Top-down Approach..........ccoccocooiiiiiiiiiiiiii e 90
I The Bottom-up Approach........c.ccocooooiiiiiiii oo 91
6.2.2 Structures of the Case SIS «..oovovvivvei e 91
Case StUAY ORNE ..o e 92
6.3.1 Content of ProOgrammscocoovoviiiiiiceee oo 92
6.3.2 Scenario DesCriptionooociieiriiieieii ettt 92
6.3.3 Expected Changes........... OO PO U UR TPt 92
I Filesortline.Co e 92
I FHe dsSort il e, 94
III File @S0t o € e e, 94
6.3.4 Using a Top-down Approach...........ceceoiioiioiieie oo, 95
[Detailed DeSCription..........c.eevuieieireiiiiiiiiiie e et eeanas 95
[T SUMIMATY ...ttt 106
6.3.5 Using a Bottom-up Approach........c.ccocooviiiiiiieiiioiccceeees e 109
[Detailed DeSCIIPUON.cieeeiiriieierieeie et 109
IT SUMIMATY .ottt 118
Case SUAY TWO ..o 120
6.4.1 Content of PrOgraImscccovviiiiiiiiiiiiii ittt 120
6.4.2 Scenario DeSCrPtONccooivririiriciie e, 120
6.4.3 Expected RESUIS ..o, 120
I File Format Oneccococoiiiiiii e 121
II File FOrmat TWO.......cocoiiiiiiiiiiie e 121
III File Format ThIeecoooviiiiiiiiii e 122
IV File FOrmat four........occoooiiiiiiiiiiii i, 122
644 Using a Top-down APProach..........ccoooeoiiiiiiiiiiiii e, 122
[Detailed Description...........cooiiiiiiiiiiiei e 122
II SUMMATY . .ot 134
6.45 Using a Bottom-up Approach........ocoeveoiiiioiiiii o, 136
I Detailed DeSCrPUON.......oooiiiiiiiiii e 136
IT SUMIMAry........ooi e, 143
DIESCUSSTON ..ottt e 144

Tl INOGUCTION oottt 146

7.2 Evaluation of the Integrated Approach...................ooooooii oo 146
7.2.1 Theories of Program Comprehension Revisitedccocoovoeomoeeooe 146

7.2.2 Integrated Approach ReviSitedo.iiioiioiies oo 148

7.23 Cognitive Design EICMENtSooovviiiiii oo 149

I Enhance Bottom-up Comprehensioncocoouvvooececeeieoo 149

I Enhance Top-down Comprehensionocoooovovvvvomieeeeeseee 150

I Integrate Bottom-up and Top-down Approaches.............cocoeeeeeveveovoeii] 151

7.3 Evaluation of the Implementationo.oocoooioiooio oo 151
7.3.1 Using the Web as the Underlying Structureocooooee oo 152

7.3.2 Cognitive Design EISIMENtSooiiies oo oo 152

I Facilitate Navigationocoocoooiiiiiii oo 152

I Provide Orientation CUESococeeuiiovimiiioi oo 153

IT Reduce DiSOTientationoocovouiimiiosoiioeeee e 154

7.4 Requirements fOr AULOMALIONvvieruinieieiieieeeee oo 154
TA L AUOMNALON ..ottt 155

742 TOOI SUPPOT ... 157

7.4.3 Graph Layout.......ccooeoiioiiiiiiieie oo, e 157

7.5 DISCUSSION ...ttt ettt 158

8 CONCIUSIONooooooeeeeeeeeeeeeeee oo 159
B0 INErOAUCTION ..ot 159

8.2 Summary of RESEATCHcoiiiiiiieiet e 159

8.3 Evaluation of RESEArchocoiiiuerieooeooe oo 161
8.3. 1 Criteria fOr SUCCESS .. vuvviirieeieiee oo 161

8.3.2 Evaluabion..............i e 162

8.4 FULUIE WOTK ..ot 164
APPENAIX A e 166
ApPendix B . e 169

Reerences. ... 172

List

Figure [-1

Figure 2-1
Figure 2-2

Figuré 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5

Figure 4-6
Figure 4-7
Figure 4-8

Figure 4-9

Figure 4-10
Figure 4-11
Figure 4-12

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figurc 5-7

Figure 6-1

of Figures

Program Comprehension in relation to other activities in the context of

Software Engineering ..ot e e 5
A Venn diagram showing the relationships among the termsc..coovovvovooooio. 28

A screen showing the code view, input, status message and graphical

representations of a data SITUCIUIEovioiriiiiiiecec e, 29
A screen shot Of VIFOR ..o e 30
The transformation and slicing mechanism provided by CARE.........cocoovevevovooo . 32
A snapshot of Pascal Genie running a program...............ccooeeeeeeeeeeeeoseeeeeeeoeo 32
A screen showing the running of the McCabe t001S...........ocoourveeeeeeeeeeoooseoo 34
Cognitive design elements for software exploration................cococoeeveeriooe 41
Two stages of the comprehension ProCeSS.............o.ocooiiiii oo 49
A set of navigational aids when the Program Element File is selected....................... 67
A set of navigational aids when the Program Element Function is selected............... 68
A set of navigational aids when the Program Element Variable is selected................ 68

Screen shots showing the use of a hypertext link across a set of hypertext

OCUIMENTS. ...t 71
Screen shots showing the use of a hypertext link to cross-reference information......... 73
A call graph of the function main () in the file sortline.c ..o, 74

A simplified control flow graph of the function main () in the file

SOTELATI® e € ottt 75
The function interface of the function gsort in the file sortline.c.....oooovii.. 75
Nodes which are connected to ‘readlines’ are highlighted using colour 76
The use of clustering technique on the call graph of the function build_call.. ... 78

The portion of call graph containing the node ‘build_sys_call’ and its

CONMMECUNZ NOUES ... 79
An overview of PUI together with the supporting toolS.........c.ocoovvoeoooo 82
The PUTI00L ... e 83
[nput to Graph £L e D 84
A snapshot of Graph Tool depicting a graph using the input from Figure 5-3............. 84
The start-up screen of PUL ... oo 86
Screen showing the VIEWDPOINES L....ooiiiioii oo 87
A typical screen of the PULOO ..o 87
Screen showing the overview of the system soxrtline ..o 95

vi

Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10

Figure 6-11

Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15
Figure 6-16
Figure 6-17
Figure 6-18
Figure 6-19
Figure 6-20
Figure 6-21
Figure 6-22
Figure 6-23
Figure 6-24
Figure 6-25
Figure 6-26

Figure 6-27

Figure 6-28

Figure 6-29

Figure 6-30

Screen showing information regarding the file sortiine.c ..o, 96

Screen showing the global data declarations in the file sortline.c.....cccoovnn.... 97
Screen showing the list of functions defined in the file sortline.C ..., 99
Screen showing information regarding the functionmain ()cccoooevevioeeien 99
Screen showing the control flow graph of the functionmain ()coovevenn, 100
Screen showing the function interface of the function readlines....................... 100
Screen showing the control tlow graph of the function readlines......................... 101
Screen showing information regarding the function gsoxtc.oooveeeeioveeeeei 103
Screen showing information regarding the function swapcoocvvvevveeeeeeee 105

Screen showing the list of functions defined in each of the files in the system

SOTEIATIO it 109
Screen showing information regarding the global variable 1ineptrcc.co........ 111
Screen showing that the global variable 1ineptr is used as an argument 111
Screen showing information regarding the function getlinecccoocvvevivven.. 112
Screen showing the list of functions which called the function getline.................. 113
Screen showing the list of functions which called the function alloc....................... 114
Screen showing the list of functions which called the function gsoxt....................... 117
The default screen when no parameter is supplied to the system convert.............. 121
Screen showing the overview of the system convert S 123
Screen showing the information regarding the functionmain ()ccccoeevvrvveevin .. 123
Screen showing the #define statements-in the file convert.c........................... 124
Screen showing the local variable declarations in the functionmain () 126
Screen showing information regarding the variable sta_in file........................ 127
Screen showing that the variable sta_in_file is used as an argument 127
Screen showing information regarding the function build_stadata................... 128

Screen showing information regarding the use of argument in the function
build_stadata O OO 129
Screen showing the local variable declarations in the function

DULLA StAAtA .o 131
Screen showing the list of functions defined in each of the files in the system

COMVEIE ..ottt et e e et e e 136
Screen showing the local variable declarations in the function

DBULLIA_ CABIAAEA (oot e 138
Screen showing information regarding the use of argument in the function

BULLIA_ CALAAEA oo 139

vii

List of Tables

Table 1 Program Relationships between Program Elements...........ccocooovoviivviioioiieeeeeeee 55
Table 2 Scope of Program EISMEntsc.ooooiiiciiiniie e 64
Table 3 Storage classes IN C ..o, 65

vili

Chapter One

Introduction

1.1 Software Engineering

1.1.1 The Software Crisis

The term Software Engineering was first introduced in the late 1960s to address the Software Crisis.
Thirty years on, the Software Crisis still has not been resolved [Pres92, Somm96, Vl1ie93].
Programming techniques have lagged behind the developments in software both in size and
complexity. Traditional techniques such as programming languages, tools and methods are primarily
developed to support programming-in-the-small. Transferring these techniques directly to the-

development of large programs therefore proved unfruitful.

The use of computers has now become an integral part of our lives. People are becoming more
dependent on channels of communication, more reliant on the vast traffic in the invisible data and
more connected to the computers that manage it. The following examples illustrate the scale of some

software development projects:

e the Dutch KM airline reservation system contains two million line of (assembler).
code [Vlie93]

* the UNIX operating system comprises over 3 700 000 lines of source code (System
V release 4.0, including Xnews and the X11 window system) [Vl1ie93]

¢ the NASA Space Shuttle software counts 40 million lines of abject code (this is 30
times as much as the software for the Saturn V projects from the 1960s) [Boeh81]

* the IBM OS360 operating system look 5000 man years of the development effort
[Broo75]

1.1.2‘ The Software Process Model

The evolution of the Software Process Model [Royc70] was one of the results after the identification of
the Software Crisis. The process model (the Waterfall model) reflected the view that software
development should be perceived as an engineering discipline. ’fhis was warmly welcomed by
software project management as it offered a means of making the development process more visible

and manageable.

There are a distinguishable number of phases in the Waterfall model, namely Requirement analysis,
Design, Implementation, Testing and Maintenance. Each phase can be divided into a number of

different activities [Somm?96]:

* Requirements analysis and definition: The system’s functionalities, constraints and
goals are established by consultation with the system users. They are defined in a

manner which is understandable by both users and the development staff.

» System and software design: The system design process partitions the requirements
to either hardware or software systems, and it also establishes an overall system
architecture. Software design involves representin g the software system functions so

that they may be transformed into one or more executable programs.

* Implementation and unit testing: During this stage, the software design is realised
as a set of programs. Unit testing involves verifying that each program meets its

specification.

* Integration and system testing: The individual programs are integrated and tested as
a complete system to ensure that the software requirements have been met. After

testing, the software system is delivered to-the customer.

» Operation and maintenance: Maintenance involves correcting errors which were
not discovered in earlier stages of the life cycle, improving the implementation of
system units and enhancing the system’s services as new requirements are

discovered.

This is a general model rather than a detailed process model. A number of different general models or
paradigims of software development can be derived from this such as the Prototyping model [Fair85]
and the Spiral model [Boeh86, Boeh88). The Waterfall model puts the emphasis on the importance of
the careful analysis and planning before any major decision is committed, and thus avoid wasting the

extraneous effort to re-develop a system. Management generally found this model useful for planning

and reporting. However, for. a given project these activities are not necessarily separated as strictly as

indicated above. Iterations and overlapping of activities may arise.

1.1.3 Definition
The definition of Software Engineering is given in [ANSI83]:
Software Engineering is the systematic approach to the development, operation,

maintenance, and retirement of software.

Software Engineering is concerned with systems developed by teams that collaborate over periods
spanning from months to years. It also encompasses both technical and non-technical (managerial)
issues. Sommerville [Somm96) points out that software is not just a collection of computer programs.
It includes the documentation necessary to install, use,-develop and maintain these programs. For
large software systems, the effort required to write this documentation is sometimes as great as

developing the systems themselves.

1.2 Software Maintenance

Studies have shown that organisations spend on average over half of their resources on software
maintenance activities [Alkh92, Dekl92, Lien80, Lien81]. Indeed, it is impossible to build software
systems which do not require some kind of maintenance effort. Over the lifetime of a system, its
original requirements will be modified to reflect changing needs and enhancements requested by
users, the system’s environment may change and errors, undiscovered during system validation, may

emerge [Schng&7].
Both the following definitions for Software Maintenance:

Modification of a software product after delivery to correct faults, to improve
performance or other attributes, or to adapt the project to a changed environment.

[ANSI&3]

Software Maintenance is the set of activities (both technical and managerial) necessary

to ensure that software continues to meet organisational needs. [CSM]

sum up the importance of careful planning and weli-organised management to Software Maintenance.
p p g g

Maintenance activities can be broken down into four main categories [Lien78, Lien80]:

e Perfective maintenance involves improving the functions of the software by
responding to user defined changes.

¢ Corrective maintenance involves the correction of processing, performance or
implementation failures. It includes activities such as bug fixing and correction of
software errors.

* Adaptive maintenance involves moditying the software in order to keep up with
environmental changes. It may involve changes in hardware or data.

* Preventive maintenance involves updating software in order to forestall future

problems and to increase maintainability.

Whether it is for corrective, adaptive, perfective or preventive maintenance, the key to all of these

activities is Program Comprehension [Mayr95, Oman90a].

1.3 Program Cbmprehension

Understanding how a program or an application is constructed and its underlying intent is essential to
the task of enhancing and/or the maintaining of the program. Research has shown that maintainers
spend a considerable amount of time studying' programs, especially when engaged in maintenance
activities. This figure can be as high as threc-and-a-half times as long as they studied the

documentation [Litt86].

One way of acquiring information about a progi‘am is from the documentation. It is widely understood
that good documentation can aid the process of understanding programs. However, the problem for
most maintainers is they have to maintain unfamiliar code that has been modified and the
accompanying documentation is usually out of date, inadequate, inconsistent or sometimes non-
existent. In the case where documentation does exist, maintainers may find it difficult to acquire
sufficient information from the document because it is not produced with their needs in mind. As a
last resort, they have to rely on the source code in order to gain an understanding of the programs.

Sometimes, the source code may be the only reliable documentation available to them.

Program Comprehension plays an important role in Software Maintenance as well as other activities
in Software Engineering. It can be used as an aid to Reverse Engineering [Robs91], Testing and
Debugging [Weis82, Weis84, Weis86], Reuse [Stan84],- Redocumentation [Basi82, Youn93], and
Learning, as shown in Figure 1-1. A good understanding of the source code is required before the
commencement of any of the activity mentioned above. For a maintainer, the primary desire is the

ability to decipher the source code accurately, quickly and efficiently.

Maintenance

Learning Reverse
Engineering

Program
Comprehension

Testing +
. Debugging
Redocumentation
Reuse
Figure 1-1 Program Comprehension in relation to other activities in the context of Software
Engineering

There are a number of theories and models of Proéram Comprehension advocated by psychologists
who are interested in studying the behaviour of programmers. Most of the work has been carried out
by observational studies, where typically, programmers are given a task to complete within a time
limit. Some of the programmers were tested against their understanding, while others were
encouraged to think out loud so that their thoughts could be recorded. The results indicate that
comprehension is performed in either a top-down or a bottom-up manner. However, Chan [Chan97],
Letovsky [Leto86a] and von Mayrhauser and Vans [Mayr95] believe that the process of
comprehension is an opportunistic approaéh where maintainers utilise both the top-down and the

bottom-up approaches whenever additional information is encountered.

There are a number of academic and commercial software maintenance tools available but most of
them are not powerful enough for use on a large scale as they offer limited analysing power. Most of
them are developed under the influence of a particular Program Comprehension theory which may not
be sufficient to cope with the diversity of the software maintenance activities. It is unlikely to find an
existing tool which has the capability to assist all activities which are encompassed by the various

cognition models for Program Comprehension.

1.4 Research Problem

The research program to be addressed in this thesis is to provide a framework that enables the

utilisation of various Program Comprehension theories and models in the same environment.

Programs are complex, abstract objects which include many components with many different
attributes that are interrelated in complicated ways. Maintainers may find it difficult to understand

and navigate through these complex interrelationships among different parts.

An important aid to the problems of Program Comprehension has been the use of static and dynamic
analysis tools which can provide useful and up to date information of a program. Through providing
different views such as call graphs, control flow graphs, data flow information, program slices and
Cross references,. a maintainer can utilise this information to gain a better understandin g of a program.
This information is mostly presented in textual and two-dimensional form at present, which can lead

to problems of layout and display for large amounts of information generated by the analysis tools.

The intention of this research is to investigate what can be done when a maintainer is overloaded with
too much information to deal with. The roles of both the textual and graphical representations will

also be investigated.

Graphical representations are useful for exploring relationships. For modern large-scale problems,
which require maintainers to understand large collections of information, solutions must be found for

managing these complex interrelationships. This problem can be decomposed into three subproblems:

¢ how to make a meaningful visualisation of a-single object
e how to make a meaningtul visualisation of a collection of objects

¢ how to allow the users to control the selection of the visualisation efficiently

The essence of the problem to be researched is that of providing a mechanism for maintainers to
achieve an understanding of a program by using the Program Comprehension theories which are

suitable to the task at hand.

1.5 Criteria for Success

A In order to facilitate the process of Program Comprehension, a maintainer needs to have access to
different kinds of information concerning a piece of source code. This can be in textual and/or

graphical forms. Hence:

¢ maintainers should have easy and quick access to informatioﬁat different levels of
abstraction during various stages of comprehension

* support should be provided for maintainers with various degrees of experience and
abilities

¢ support should be provided for the different. types of maintenance activities that they

may engage in

B There are a number of theories and models of Program Comprehension. Some researchers argue
that it is done in a top-down fashion, whereas others advocate that it should be conducted in a
bottom-up manner. There is no real consensus on how maintainers should perform
comprehension. Moreover, most maintainers may prefer to employ the use of a mixture of

strategies when the situation arises. Hence:

* any alternative approach to Program Comprehension proposed should address the

need for a more flexible approach
C The feasibility of the Integrated Approach proposed needs to be examined. Hence:

* itneeds to be demonstrated that it is feasible to realise the Integrated Approach in a

physical form which can be executed with minimal difficulty

D The size of a software system should not be a hindrance to the process of Program
Comprehension. Much research effort has been devoted to the development of techniques which

support understanding-in-the-small. Hence:

* the Integrated Approach should be equipped with the capability to support

understanding-in-the-large

In the context of this thesis, the term understanding-in-the-small is used to refer to the set of
activities that are associated with the understanding of small programs which are relatively
simple. The term understanding-in-the-large refers to the understanding of larger programs

which contain more complex program relations.

E The usability and practicality of the Integrated Approach and of the implementation needs to be

examined. Hence:

¢ both the Integrated Approach and the implementation should be measured against a

set of criteria, which should lead to an objective evaluation

1.6 Thesis Overview

The remainder of this thesis is organised as follows.

Chapter Two reviews two areas of Program Comprehension. In the first part of this chapter, the
theoretical background of the comprehension process and different Program Comprehension theories
and models will be discussed. This is followed by a review of the common techniques and practices
used by the maintainers during the comprehension process. It will concentrate on the use of
visualisation techniques. A number of strategies which can be used to improve the complexity of the
graphical representations will be presented, together with a survey of a number of Program

Visualisation systems.

Chapter Three describes a framework for the evaluation of the Integrated Approach outlined in
Chapter Four, the implementation outlined in Chapter Five and the Case Studies outlined in Chapter
Six. The first part of the chapter explores the use of research methods such as Surveys, Formal
Experiments and Case Studies. The second part of this chapter describes a set of objective criteria for
the evaluation. The set of criteria is divided into two branches. The first branch is intended to capture
various comprehension theories such as the top-down and bottom-up approaches. The other branch
addresses the cognitive issues of a maintainer while he browses and navigates the visualisation of the

programn structures.

Chapter Four introduces an alternative approach to Program Comprehension. The Integrated
‘Approach addresses the need for a more flexible approach to comprehension, and it provides a
framework and mechanism to facilitate the understanding of large software systems. In particular, it
discusses the use of Program Relationships through carrying out a systematic analysis of Program

Elements.

Chapter Five describes how the various Program Comprehension theories and models can be realised
by a simple browsing tool named PUI (Program Understanding Implement), which allows
maintainers to understand the relationships between Program Elements. The tool is based on a matrix
of Program Elements and Program Relationships which are designed to reflect the multi-dimensional

nature of programs.

Chapter Six demonstrates the principal use of the prototype by way of Case Studies. Demonstrations
of how both the top-down and the bottom-up approaches to Program Comprehension can be utilised
by using PUI is presented in this chapter. It shows how maintainers can use the prototype to recover

information as they browse through the various parts of a program representation.

Chapter Seven presents an evaluation of the work undertaken. It is-evaluated against the existing
Program Comprehension theories and models, the prototype implementation and the results of the
Casc Studies. They are evaluated against a hierarchy of cognitive issues raised in Chapter Three. This

is followed by a discussion on the requirements for automation.

Chapter Eight presents a summary of this research and evaluates the success of the research against

the criteria defined in section 1.5. An indication on the directions for further work is also presented.

Chapter Two

Theories and Practices of Program
Comprehension

2.1 Introduction

This chapter reviews two areas of Program Comprehension. In the first part of this chapter, the
theoretical background of the comprehension process and different Program Comprehension theories
and models are discussed. This is followed by a review of the common techniques and practices used
by the maintainers during the comprehension process. It will concentrate on the use of visualisation
techniques. A number of strategies which can be used to improve the complexity of the graphical

representations will be presented, together with a survey of a number of Program Visualisation

systems.

2.2 Theories and Models of Program Comprehension

Program Comprehension plays a critical part in all aspects in Software Engineeriﬁg, and especially in
software maintenance. Activities such as Reverse Engineering, Reuse, Testing and Software
enhancement will require a good understanding of the source code before any modification is to take
place. Research has shown that maintainers spend a considerable amount of time studying programs.
This figure can be as high as three-and-a-half times as long as they studied the documentation
[Litt86]. In the absence of a complete and consistent documentation, the source code may be the only
information the maintainers have. Hence, there is a strong desire for strategies and techniques which
can be utilised to facilitate the comprehension process. The following is a review of the literature on

the theories and models of Program Comprehension.

10

2.2.1 Syntactic/Semantic Knowledge

Shneiderman {Shne80] conjectures that the information chunking process is used in understanding
programs. Programmers abstract the information in the programs into chunks which are then built

into an internal semantic structures representing the programs.

Further, he suggests that programs are not understood on a statemeént by statement basis unless a
statement represents a logical chunk. Shneiderman and Mayer [Shne79] identify three types of

knowledge used in Program Comprehension:

* Syntactic Knowledge is the language dependent detail used for carrying out actions
or defining objects. For example, the use of semi-colons to terminate or separate
statements or the use of iteration words (DO, FOR, LOOP or REPEAT) is language-
dependent and arbitrary. This knowledge must be frequently rehearsed to preserve

retention.

¢ Semantic Knowledge of Software Engineer is meaningfully acquired by reference
to previous knowledge by example or by analogy. There is a logical structure to

semantic knowledge that is independent of the specific syntax used to record it.

* Semantic Knowledge of task-related knowledge is the domain knowledge about
the real-world in which the program operates. “For example, it may be the
knowledge of accountancy practices or air traffic control procedures. Any
knowledge of business rules defined by the users of the program also fits into this

category.

Information regarding a program is categorised into different levels of representation ranging from
high to low. High level representation allows a top-down comprehension approach to be used and low
level representation favours the bottom-up approach. Shneiderman and Mayer believe that the
semantic knowledge is acquired by experience and through active learning where new information is
consciously integrated with existing semantic structures. They found that the major difference’
between novice and expert programmers lies in the type of knowledge they possess. Experts tend to
concentrate on building a semantic representations of the programs, whereas novice programmers rely

more upon the retention of specific code.

11

2.2.2 Systematic/As-needed Approach
Littman ez al. identity the strategies that programmers were observed to use when studying small
programs [Litt86]. They believe that there are two basic a'pproaches to Program Comprehension. They

are the systematic approach and the as-needed approach.

* Systematic approach: When using this strategy, a maintainer examines the entire
program and works out the interactions among various components within the
program. This is completed before any attempt is made to modify the program. This

usually involves identifying the data flow and control flow between subroutines.

* As-needed approach: In contrast to the Systematic strategy, a maintainer
understands and studies only parts of d program which need to be modified.
Program reading time is thus minimised. Once the maintainer has gained enough

information, the modification is commenced.

Littman et al. suggest that the approach a programmer usés (o study a program strongly influences the
knowledge acquired. This knowledge directly determines whether the programmer can perform a
successful modification. They also identify two types of knowledge: static and causal knowledge. To
perform a successful modification, a programmer must be able to detect the static and causal
interactions among the functional components. Together, they enable the programmer to create a
strong mental model. This process corresponds to the systematic approach to Program
Comprehension. They believe it only the static knowledge is gathered, it will eventually lead to a
weak mental model and the programmer may fail to perform a successful modification. This process
corrésponds to the as-needed approach. The study shows that the systematic approach has been proven
superior to the as-needed approach on small programs. The authors argue that the use of systematic
approach may not be feasible on large programs. Programmers may be forced to use studying methods
similar to the as-needed strategy. It is therefore necessary to augment the as-needed strategy so that

additional information can be acquired.

2.2.3 Hypotheses Verification

Brooks [Broo83] believes that the theory of Program Comprehension is based on the reconstruction of
mappings between the problem and the programming domain. In his model, comprehension is an
iterative process of hypotheses verification and modification. A maintainer begins with an initial
hypothesis about the behaviour of a function which is generated from documentation or from sources
such as a program name or a variable name. This initial hypothesis leads the maintainer to expect
certain structures and operations in the program. These expectations form a second level of more

specific hypothesis about the function. Brooks calls these expectations ‘beacons’. An example which

he proposes is the swapping of values, which he believes is a beacon for a sorting routine. Once the
relatively specific hypothesis is established, the maintainer then tries to verify the hypothesis from
information in the code by refining or rejecting it iteratively until the hypothesis matches the actual
code. This process is repeated until sufficient information is obtained. Brooks argues that when
maintainers try to verity hypotheses, it is not by iine~to-line examination of source code but rather bya
series of increasingly specific hypotheses about the program functions. Knowledge of the problem
domain also plays a critical role in making hypotheses. The ability of making appropriate hypotheses

lies in the experience of a maintainer in a particular domain.

2.2.4 Beacons

Brooks introduces the concept of beacons [Broo83] and this concept is further explored by
Wiedenbeck [Wied86, Wied91]. In the study [Wied86], Wiedenbeck investigates whether beacons
exist as a focus for program understanding. Programmers were given a short time to both memorise
and understand a program. The results support her hypothesis about beacons. She concludes that the
process of comprehension is not liﬁcar, and each statement in the source code does not play an equal
role. She believes that beacons can give high level overviews of programs. However, these overviews
are not sufficient for debugging or modification purposes which may require a deeper level of

understanding.

In another study [Wied91], Wiedenbeck suggests that Program Comprehension is a gradual process of
assimilation through study. Beacons can be described as idiomatic or stereotypical elements in the
source code. She points out that most maintainers seem (o have a tendency to refer to the source code
to develop an overview of a program. This orienting phase is important because it allows a mental
map of the program to be developed. The mental map includes the basic goals and operations which

can be later used (o build a deeper understanding of the programs. The results of this study have

shown that;

* Programs with beacons were understood more accurately than those without.

Further, beacons can aid Program Comprehension even in unfamiliar programs.

* Beacons have the power to aid Program Comprehension when they appear in the
appropriate context; they also have the power to depress Program Comprehension

or even lead to ‘false comprehension’ (wrong hypothesis) when used

inappropriately.

Wiedenbeck concludes by stating that beacons do play a ‘large role in the initial high-level
comprehension of a program. They can help the programmers to gain overviews of programs with

minimal effort.

2.2.5 Program Plans
Much of the research effort has been devoted to. Program Plans [Leto86b, Solo84, Solo86]. Soloway
and Ehrlich [Solo84] suggest that experts have and use two types of programming knowledge in the

process of comprehending programs:

* Programming Plans arc program fragments that represent stereotypical action
sequences in programming such as a RUNNING TOTAL LOOP PLAN or an ITEM
SEARCH LOOP PLAN.

* Rules of Programming Discourse are rules that specify the conventions in
programming. For example, the name of a variable should usually agree with its
function. These rules set up expectations in the mind of the programmers about
what should be in the program. They are analogous to discourse rules in

conversation.

Soloway and Ehrlich argue that programs are composed from a number of programming plans that
have been adapted to fit the needs of specific problems. The composition of such plans are governed
by the rules of programming discourse. They believe that if the rules of discourse are violated, it can
make a program much more difficult to comprehend. For -example, the use of a variable name MAX in
a function would lead the programmer to expect the variable (o hold the maximum value of some
numbers, instead of expecting it to hold the minimum. If the latter is true, then the programmer would
need to employ additional processing techniques in order to reach the correct conclusion. The authors
conclude that programming plans and the rules of programming discourse do play a powerful role in
Program Comprehension. Experts have strong expectations about what programs should]ook like,

and it would be a real hindrance to programmers when those expectations are violated.

Letovsky and Soloway [Leto86b] suggest that the goal of program understanding is to recover the

intentions behind the source code. A maintainer may use the following to achieve this:

* Goal is used to denote the intentions

* Plan is used to denote the techniques for realising the intentions

In their model, program understanding is viewed as a process of recognising plans in the source code.
Program plans are conceptually distinct from algorithms and functions. The essential property of
program plans is that they can be composed in complex ways. For example, plans can be abutted,
interleaved, nested or merged. Algorithms are'sAim_ply the compositions of program plans. The

recognition of plans may be complicated by delocalised plans, where statements within a plan are

scattered throughout the whole of a program. Letovsky and Soloway [Leto86b] argue that when a
maintainer tries to perform a modification within a short time, he often forms a local and partial
understanding of the program by focusing his attention on the parts of the code which would be
affected. When neither the program nor the documentation reveals that certain pieces of code are
interdependent and that they are some distance away, the formation of a purely local understanding
can lead to an inaccurate understanding of the program as a whole. This.in turn can result in Incorrect
or inefficient comprehension. Letovsky and Sol'oway believe that the tendency of programmers to

make plausible but incorrect assumptions is considered as a fundamental problem for Software

Maintenance.

2.2.6 A Cognitive Model
Letovsky describes an empirical study of the cognitive process of Program Comprehension [Leto86a].
In the study, programimers were given a program to modify and were encouraged to think out loud so

that their thoughts could be recorded.

Based on the analysis on the empirical results, Letovsky develops a cognitive model of the subjects’
understanding processes. He views programmers as Knowledge Base Understander. A Knowledge

Based Program Understander consists of the following:

* A knowledge base. It encodes the expertise and background knowledge which a
programmer brings to the comprehension process. |

* A mental model. It encodes the programmer’s current understanding of the target
program. This model ev.olves in the course of the understanding process.

* An assimilation process. It interacts with the stimulus materials (target program

code and documentation) and the knowledge base to construct the mental model.

Base on the results of the empirical study, it is suggested that a mixture of top-down and bottom-up
strategies are employed in both the mental model and the assimilation process. Letovsky believes that
the human Understander is best viewed as an opportunistic processor capable of exploiting both

bottom-up and top-down cues as they become available.

2.2.7 Stimulus Structures and Mental Representations
Pennington [Penn87] believes that comprehension involves detecting or inferring different kinds of
relations between parts of a program. Based on the results from two studies, Pennington suggests that

comprehension leads to two different mental representations:

* A Program model. In this model, Pennington found that the mental representation
built is a procedural one (control-flow program abstraction) when a piece of source
code was shown to the programmers the first time. This representation is built from

bottom-up via the identification of beacons and programming plans.

* A Situation model. This model requires knowledge of the real world domains and
it tries to relate representations in the program model to the domain. The situation

model is complete once the program goal is reached.

Pennington uses text structure [Basi82, Broo83] and programming plan knowledge [Solo84] to
explain the program model development. It is created via chunking and cross-referencing. In the
situation model, the matching process takes information from the program model and builds
hypothesised higher order plans. These new plans are chunked to create additional higher order plans.
The program model can change even after the situation model construction has begun. Pennington
believes that programmers use the plans as input to the program model comprehension process. They
allow a cross-reference map to be built which is aimed to establish direct mappings from procedural
and statement-level representations to the functional and abstract program views. Higher order plans

may cause a programmer o enhance the program model.

2.2.8 An Integrated Metamodel

von Mayrhauser and Vans [Mayr94, Mayr95] express the view that none of the existing theories and
models for Program Comprehension can dccount for all the different behaviours of the programmers
when they try to understand unfamiliar source code. The Integrated Metamodel is formulated in order
to reflect the cognition needs for large software systems. It addresses some of the shortcomings of the
existing theories and models, and tries to piece together the relevant portions of the strategies in a

single model.
The integrated code comprehension model has four major components:

* Top-down structures
e Situation model
¢ Program model

¢ The knowledge base

This model combines the top-down approach (top-down structures and the knowledge base) proposed
by Soloway and Ehrlich [Solo84] and the bottom-up approach (situation and program models)
proposed by Pennington [Penn87]. The knowledge base is needed in order to build the other three

components successfully. Each of the first three components are involved in the internal

16

representation of a program. The knowledge base furnishes the process with information related to the
comprehension task and will store any new and inferred knowledge. For large systems, a combination
of approaches to Program Comprehension becomes necessary. Based on the results of the paper
[Mayr94]; both the authors believe that any three of the approaches may become active at any time

during the comprehension process.

2.3 Current Techniques and Practices

The following sections discuss the common techniques and practices often used by the maintainers

during the comprehension process.

2.3.1 The Concept Assignment Problem |

Biggerstaft et al. believe that concept assignment is closely linked to Program Comprehension
[Bigg93, Bigg94]. The authors explain that a person understands a program because he is able to
relate the structure of the program and its enviroﬁment to the human oriented conceptual knowledge
about the world. The problem of discovering individual human oriented concepts and assigning them

to their implementation oriented counterparts for a given program is the concept assignment problem.

Through the use of Case Studies, Biggerstaff et al. [Bigg93] has found that there is no definite
sofution to this problem. Automation of the process is difficult and it would require architectures that
process a range of information types varying from formal to informal. The study has also found that
understanding is derived from a process that relies strongly on plausible inference. They believe that
better understanding of programs felies on an a prior knowledge base that is rich with expectations
about the problem domain and the program architecture typical of that problem domain. Their views
echo with those suggested by Shneiderman and Mayer [Shne79] where the process of Program

Comprehension is built upon a knowledge base consisting syntactic, semantic and domain knowledge.

2.3.2 Modularisation

Wirth introduces a technique for program development by stepwise refinement [Wirt71] and Parnas
suggests the use of modularisation [Parn72]. Both of the approaches are aiming at improving the
‘understandability of the source code by hiding information at various levels of development. Other
techniques such as Jackson’s Structure Programming, or JSP (Jack85], and Object-Oriented Design,
or OOD [Booc91], are aiming at developing programs which have a specific structure and design in

order to improve reliability and maintainability.

Most maintenance activities are a cognitive skill. It is therefore subjected to the limitation of the
human brain, i.e., only a limited amount of information can be studied at a time. Shneiderman

[Shne80] conjectured that the information chunking process is used in understanding programs.

Maintainers abstract the information in the program into chunks which are then built into an internal
semantic structure representing the program. Complex problems are usually decomposed into sub-
problems until these ‘chunks’ are reduced to manageable sizes. This echoes with the views expressed

by both Wirth and Parnas.

JSP [Jack85] comprises three principles of structured program design..They are stepwise refinement,
the use of three structured control constructs, namely, sequence, iteration and selection, and finally,
data structure-based design. This design method is based upon a hierarchical view of the data
processed by a program. Jackson’s contention is that program designs should be dictated by the
characteristics of the data being processed. It is these characteristics which later determine the

structures of the programs.

Booch suggests that when designing a software system of any complexity, it is essential to decompose
it into smaller and smaller parts so that each one may be refined independently [Booc91]. Booch
believes that the use of OOD not only helps to organise the inherent complexity of software systems,
but it also supports software reuse directly. Booch believes that Object-oriented systems are more
resilient to changes because their designs are based upon stable intermediate forms, and hence better
able to evolve over time. Under OOD, software systems are viewed as collections of objects, where
each object manages its own state information. An object may comprise the data structure and
operations which it inherits from a class plus any other attribute which uniquely defines the object.

Conceptually, an object communicates by exchanging messages with other objects.

2.3.3 Program Slicing

The concept of Program Slicing was first introduced by Weiser [Weis82]. Weiser’s original version of
program slicing is classified as static slicing. Another type of program slicing was introduced in the
papers [Weis84, Weis86], which is known as dynamic slicing. Apart from these two types of program
slicing, techniques such as quasi-static slicing [Venk91], conditioned slicing [Luci96] and amorphous
slicing [Harm97], have also received a lot of attention. The following discussion will concentrate on

static and dynamic program slicing.
In his paper [Weis82], Weiser defines program slicing as:

The process of stripping a program of statements without influence on a given variable

ara given Statement.

Weiser believes that program slices are most usetul for understanding a program when they are
considerably smaller than the original program. He believes that experienced programmers are

mentally slicing and decomposing the program while debugging. Weiser introduces a formal

definition of slices and a mechanism to extract slices in programs in the paper [Weis84]. He believes
that slices have a very clear semantics based on the projections of behaviour from the program being
decomposed Program slicing is a method or mmnmsmg the amount of code to be studied when

debugging or understanding programs [Weis86].

An application of data flow and control flow analysis can be used to extract the slices from the
program which contain only those statements relevant to the computation of a given output [Weis86].
This technique is known as Dynamic slicing. A dynamic program slice is an executable subset of the
original program that produces the same computation on a subset of selected variables and inputs. in
other words, it consists of all statements that actually affect the value of an instance of a variable for a
given input. This technique has been further developed and reported in their work [Arga90, Kore88,
Kore97]. Dynamic slicing differs from the static slicing [Weis82] in that it is entirely defined on the
basis of a computation. The main advantage of dynamic slicing is that data structures such as arrays
and pointers can be handled more precisely and the size of the slice can be significantly reduced,

leading to a finer localisation of the fault.

The as-needed approach proposed by Littman er al. [Litt86] can be facilitated by the technique of
program slicing. Under the as-nceded approach, a maintainer understands and studies only parts of a
program which need to be modified. Once the maintainer has gained enough information, the
modification will commence. Weiser advocates that programmers do not have (o waste time learning
about irrelevant details, they can concentrate on the program slices instead which he believes can
shorten the comprehension time [Weis84, Weis86). However, the statements in a slice may be
scattered throughout the code of the larger program. Some crucial elements in a program may be left

out using this technique which may affect the correct behaviour of the program.

2.3.4 Source Code Presentation

The problem for most maintainers is they have to maintain unfamiliar source code that has been
modified and the accompanying documentation is usually out of date, inadequate, inconsistent or
sometimes non-existent. Improving ways of abstracting relevant information from the source code is

therefore much needed. This issue can be tackled in a number of ways:

* the use of natural naming
e the use of comments

e pretty-printing the source code

I Natural Naming

The development of high level languages such as Pascal and C was an important step towards
increasing source code readability and understandability. When a maintainer first encounters an
identifier, he would invariably try to infer a meaning from its name [Broo83]. The use of appropriate
namin'g for variables, functions and program files is thus essential to bridge the gap between the

programs and the semantics of the problem domain.

Laitinen [Lait95] believes that the objective of using natural names in source code is to increase
program understandability, which in turn facilitates software development and maintenance. Having
natural words in source code brings these documents terminologically closer to other types of
documents such as written English texts and graphical-textual models (software designs). Using

natural names in source code should therefore make the entire documentation simpler.

If there are two.versions of a functionally equivalent. program where each has a different visual
appearance, it is very likely that each may evoke a ditferent mental model in an observer’s mind. This
coincides with the results found in another study. Teasley has found that naming style is an important
factor in comprehension of programs written in high level procedural languages [Teas94]. The results
also show that experienced programmers are better at finding cues present in the textual material to

gain an understanding of the programs than the novice programmers.

II Comments

It is common consensus that the use of suitable comments can be an invaluable aid to the
comprehension process. The use of appropriate comments can be very powerful when used in
conjunction with suitable naming of identifiers used in source code. From the name of an identifier, a
maintainer form an assumption about:the functionality of that identifier [Broo83]. The Maintainers
then search for extra cues from the source code in-order to justify this assumption. Comments can be

valuable and effective in providing these extra cues.

III Pretty-printing

Pretty-printing, which was introduced by Ledgard {Ledg75], has gained much attention since the
1970s. It describes the use of indentation, spacing and layouts to make source code more presentable
and readable to the programmers. The principle behind pretty-printing is that the appearance of the

source code can affect the comprehension process.

Miara et al. [Miar83] have conducted a comprehension experiment and they report that the use of
indentation and block-structured source code can facilitate the comprehension process. They conclude
that if no indentation is used i a large program, it would be a real hindrance to the comprehension

process and the program would be difficult to follow. The idea of pretty-printing is further explored by

20

Baecker and Marcus [Baec90]. They developed a system, SEE, which can take the listings of a C
program and produce a book-like layout. Oman and Cook [Oman90b) have conducted several
empirical studies and they believe that the book paradigm is superior to traditional methods such as
natural naming and the use of comments. They argue that the book paradigm provides a method of
formatting which is consistent with the comprehension theories and models. By providing visual cues
and different ways to organise the source code, typographical formatting can reflect the underlying

structures of the source code and aid the comprehension process.

2.3.5 Visualisation

Purely textual source code is far from matching the maintainer’s cognitive model of a program,
though it may be the case that a maintainer will use the relative locations of program constructs
within the source code as a basis for the cognitive model. Formatting or pretty-printing of the source
code using techniques such as indentation and spacing can give the code some visible structures.
However this can only be viewed in small portions; the maintainer must still navigate the source code

to construct an overall model.

All the theories and models of Program Comprehension discussed in the section 2.2 agree that the
comprehension process involves an abstraction process and the construction of a cognitive model
during different stages of the comprehension process. The abstraction procéss works hand in hand
with the cognitive model. During the abstraction process, maintainers would look for various cues
from the source code and try to extract relevant information from them. A cognitive model is then
constructed which will later guide the maintainer to follow and understand the interrelationships

between the program constructs.

Ditferent levels of abstraction can be displayed using graphical representations. They can take on a
number of forms and can represent various views of the programs. The. most commonly used
graphical representation of a program is the call graph which shows the functions as nodes and the
function call relations as directed arcs depicting which functions are called and from where [Ryde79].
Other graphical representations used are the control tflow graph, module dependencies, file inclusion
hierarchies, hybrid call/control flow graphs, data flow and message passing. Each of these graphical
representations provides the maintainers with a different perspective on the software system though

none of them can give the full picture.

~ The use of visualisation techniques to facilitate the comprehension process can be an important step
R;l‘WHrd. The ultimate goal of Program Visualisation is to help maintainers to form clear and correct
mental images of a program’s structure and functions. Graphical representations are useful in that
they are easy (o understand and manipulate. These representations arc a natural way (o depict

relationships.

21

I Problems in Laying Out Graphs in Two-dimensions

It is widely acknowledged that there are problems in laying out graphs [Carp80, Gans88, Gans93,
Mess91, Rein8l, Sugi8l, Tama88, Walk90, Warf77, Weth79). The layout of graphs are governed by
both the aesthetic features and the semantic constraints of the drawings of graphs. Most of the
aesthetic features and constraints are incompatible in nature and trade-offs have to be made in order to
produce drawings that can convey the appropriate meanings. A considerable effort is required to select

criteria to suit the needs of a particular type of graph.

Batini er al. [Bati85] have analysed and compared two hundred different diagrams in order to find out
how the layout of the diagrams can be affected by the different aesthetic features and how these
features can affect viewers to perceive the diagrams. The sources of these diagrams were selected from
scientific papers, technical publications and industrial project documentation. Batini ef al. believe that
the difference between the human and automatic approaches in the layout problem lies in how the
conflicts between aesthetic features and semantic constraints are resolved. They found that automatic
tools usually adopt fixéd weights (trade-offs) in solving the incompatibilities, while human designers
tend to choose different weights for each application, thus reaching better results. They believe that

the key to alleviate the layout problems is to:

* find out as many layout criteria as possible
» find out the ranges of the weights usually adopted by designers in solving the

conflicts between such criteria

Each of the aesthetic features and semantic constraints which governs the readability of the drawings

may be:

e local or global

¢ hierarchic or flat

A feature or constraint is local when it refers only to a part of the drawing, it would be global
otherwise. In the same vein, a feature or constraint is hierarchic when it concerns the relative

positions of a set of symbols, it would be flat otherwisc.

I Strategies for Improving Graphical Representations

Studies have shown that most aesthetic features are incompatible in nature [Supo83, DiBa94].
Conflicts have to be resolved and trade-offs have o be made in order to produce drawings that can
convey the relevant information to the viewers. Moreover, the problem of layout for large amounts of

information generated by the static analysis tools is still left unresolved. It is widely acknowledged

22

that humans cannot handle highly complex systems. The systems are repetitively broken down until
they are divided into parts which can be handled with ease. Techniques such as graph simplification

and graph reduction are frequently used to managing the highly complex graphs.

It is widely accepted that graphical representations can offer better insights into a program when
compared (o the textual representations. Call graphs, control tlow graphs and data flow diagrams are
the most frequently used graphical representations. However, while graphical representations are an
improvement upon textual ones, they still have a tendency to provide maintainers with too much
information. For this reason, the Visualisation Research Group in Durham has carried out a number
of Case Studies to investigate the use of visualisation techniques [Burd96]. The Group has also
suggésted a number of strategies which can be applied in order to improve the readability of call
~graphs. The work concentrates mainly on the C programming language, but other languages such as

COBOL have also been investigated. The suggestions are:

e simplification involving the hiding of nodes
¢ clustering involving the grouping of nodes
¢ slicing involving the extraction of nodes

e presentation

Burd et al. [Burd96] maintain that the strategies identified are not intended to form a rigid method,
rather they provide a selection of strategies which the maintainers can select in order to produce the

best results for an application under maintenance.

A Graph Simplification
For a small and simple program, the global program behaviour can be examined and studied
-thoroughly. However, as programs grow in size and complexity, the task may no longer be trivial.

Burd et al. [Burd96] have identified five graph simplification strategies:

e to number arcs

s toisolate subgraphs

e 1o hide third party libraries

e to hide ANSI C standard libraries

* 10 hide external function calls to the application’s libraries

One major cause of clutter in call graphs is multiple calls of one function to another, which leads to
multiple directed arcs between the nodes. These arcs can be combined and replaced by a number
which denoles the number of function calls made. As a result, the number of directed arcs is reduced

and no information is lost.

23

Another strategy is Lo isolate any unconnected graphs. The rest of the strategics involve the hiding of
certain library functions. Obviously, if the aim is to investigate the behaviour of the source code which
-relates to those libraries such as memory management, then the hiding of the libraries may not be a

sensible approach.

The authors have observed that even after applying these strategies, one may still be left with a
complex relationship. The approach of information clustering may be more useful if the interactions

among the user defined functions are low and the interactions among the library routines are high.

B Clustering
Information clustering is the process whereby information is abstracted from the call graph and
represented as ‘common nodes’. The information clustering principle can be used in a number of

ways:

e grouping of function calls to other source code files
¢ grouping of function calls to other libraries

* grouping nodes into groups where nodes have a high degree of fan-in or fan-out

Burd et al. have again observed that the grouping of some nodes may increase the complexity of the
call graph in some cases. Nevertheless, it is possible to analyse and identify nodes which may benefit

from clustering.

C Graph Slicing

Graph slicing is another way of reducing complexity. Contrary to the technique of graph
simplification, the attention is given to a small number of nodes and their connecting nodes. By
concealing the rest of the nodes present in a graphical representation, a small section of the
representation can be studied with more attention. The slicing principle can be used in a number of

ways:

e toinvestigate the characteristics of function calls
e (o investigate the characteristics of library function calls

* (o investigate the ripple effect after a modification
D Presentation

Apart from the graph layout strategics, a number of other approaches to support the understanding

process have also been investigated by Burd ef al.:

24

* the use of colour

e hierarchical views

One use of colour is to indicate clustering and information encapsulation. It can also be used to
indicate connectivity. Conversely, colour can be used for concealment. To prevent distraction by the
appearance of certain nodes, these nodes can be sct to the same colour as the background. This in

effect is similar to the hiding principles described above, but leaving the nodes on the graph.

As the authors have pointed out, colour can also be used to identify a program’s hierarchical
composition. In>directed graphs, the nodes in each level are traditionally laid on one horizontal line,
and the levels are stacked vertically [Mess91]. The primary goal of the hierarchical layout is to try to
reveal the ancestral relationship among nodes clearly and unambiguously. In a perfect hierarchy, all
the nodes predecessors appear physically above, and all of the nodes successors appear physically
below it. However, rarely are such perfect hierarchies achieved, and thus using colour to represent

hierarchical levels is a more flexible approach.

III' Program Visualisation

Programs are built by many functional components and they are often related in complicated ways. In
the paper [Fitt79], Fitter and Green try to identify some of the principles that the designer of a
graphical notation should be aware of and they also highlight some of the problems associated with
the present notations. They point out that the use of diagrams has often been proven successful and
many of the graphical conventions can be learnt very quickly. They can reveal the structures inherent
in the underlying data or process by which entities are mahipulated and so graphical representations

make an excellent communication medium.
Fitter and Green propose that a good graphical notation should:

* present relevant information in a perceptual form
e restrict viewers (o objects that can readily be understood
e reveal the underlying mechanisms and be responsive to manipulation

e allow easy and accurate revision
Both authors admit that it is impossible to lay down principles that would ensure a good fit for a
graphical representation for a given set of aesthetic features and semantic constraints. All that can be

done is to eliminate the misfits.

Messinger et al. [Mess91] point out that many people still find it is difficult to tay out graphs with

many vertices and edges. For example, a viewer may find a reduction from 20 edge crossings Lo 10

25

improving readability whereas a reduction from 2000 o 1990 edge crossings is not likely to have the
same effect. To produce a graphic layout from application-generated data such as a parse tree
generated by a compiler, is also considered laborious. Not surprisingly, a lot of effort has been focused
on reconciling aesthetics features and semantic constraints of graphical representations such as
minimising edge crossings and balancing distribution of graph elements. Messinger et al. argue that
present technologies still do not allow large graphs, one with thousands of vertices and edges, say, to
be displayed in their entirety, and so some sort of display/browser interface must be employed. It is
important to provide a mechanism which can offer overviews, multiple views and hierarchical

abstractions of graphs.

The goal of Program Visualisation is to help maintainers form clear and correct mental images of a
S f=] g

program’s structure and functions. When combined with the abstraction power of human vision, the

interactive power of graphics environments will remain central to the efforts of harnessing computing

power.

Visualisation is often Widely understood as comprising only of.visual images. However, Price et al.
[Pric93] emphasise that the term Visualisation conveys more meaning than this restricted view. In
their opinion, visualisation is ‘the power or the process of forming a mental picture or vision of
something not actually present to the sight’. They argue that programming is visual because it
involves programmers reading textual information (source code) instead of reading serially a stream

of ones and zeros in the way an interpreter or a compiler does.

The idea of using visual representations to aid Program Comprehension is not new. In the 1950s, flow
charts were first introduced to present diagrammatic forms of the source code. In the 1970s, pretty-
printers (the use of spacing, indentation and layout) were employed to facilitate Program
Comprehension. Today, window interface techniques are gaining popularity. These techniques which
allow direct manipulation of objects on screens, take the full advantage of large-screen graphics and

windowing-based computer systems.

The use of visualisation techniques is particularly suitable to be used in conjunction with the Design
and the Maintenance phase of the Software Maintenance process model. Visualisation is used in the
Maintenance phase in two significant ways: for code comprehension and for impact analysis. Price et
al. believe that traditional use of call graphs, control flow graphs and entity-relation diagrams also fits

comfortably well inside the area of Program Visualisation.

26

1V Definitions

There is yet to exist an agreement on the definition of the term Program Visualisation, a list of

definitions are presented below:

Program Visualisation refers to the use of graphics to illustrate some aspects of the
program or its run-time execution. The original program is usually specified in a

conventional, textual manner. {Myer90]

Program Visualisation, in the general sense, is the use of various techniques to enhance

the human understanding of computer programs. [Pric93]

Program Visualisation is a mapping, or transformation, of a program to a graphical

representation. [Roma93]
Price et al. believe that Program Visualisation consists of several components. They are:

¢ Code Visualisation: It illustrates the actual program code by adding graphical
marks to it or by converting it to a graphical form, such as flow charts.

¢ Data Visualisation: It shows graphical forms of the actual data of thé program.

* Algorithm Visualisation: It uses graphics to show abstractly how the program

operates.
These components can also be incorporated in the static or dynamic analysis of programs.

Algorithm Visualisation is different from Data and Code Visualisation. It is the visualisation of a high
level description of program code and the graphics may not correspond to a specific piece of code,
whereas implemented code is visualised in Code or Data Visualisation. Dynamic Visualisation
systems can show the animation of the programs’ behaviour when they are executing. Static
visualisation systems, on the other hand, are limited to show the analysis of programs prior to

execution.

The term Visual Programming is often confused with Program Visualisation. Myers [Myer90] refers
Visual Programming to any system that allows the user to specify a program in a two- or three-
dimensional fashion whilst Price et al. {Pric93] prefer a more general definition. They consider that

Visual Programming is the use of visual techniques to specify a program.

27

A: Software Visualisation C1: Data Animation

B: Algorithm Visualisation C2: Static Code Visualisation
B1: Static Algorithm Visualisation = C3: Static Data Visualisation
B2: Algorithm Animation C4: Visual Programming

C: Program Visualisation C5: Code Animation

Figure 2-1 A Venn diagram showing the relationships among the terms

Price et al. try to clarity the confusion by proposing the model as shown in Figure 2-1. They suggest
using the term Software Visualisation to encompass all the activities. They define Software
Visualisation as the use of the crafts of typography, graphic design, animation and cinematography
together with modern human-computer interaction technology to facilitafé the understanding of

software systems.

V Survey of Program Visualisation Systems
A number of taxonomies on Program Visualisation have been carried out over the years. Most of them
try to identify the characteristics of the- visualisation systems and classify them into different

categories.

[n her book [Shu88], Shu focuses on the increasing degree of sophistication exhibited by Program
Visualisation systems ranging from pretty-printing to complex algorithm animation. Myers [Myer90]
proposes (o classify the systems along two axes: whether they illustrate the code, data or algorithm of
the program, and whether they are dynamic or static. Stasko and Patterson [Stas92] introduce scaled
dimensions in their four-category scheme covering Aspect, Abstractness, Animation and Automation.
Price et al. [Pric93] try to categorise the systems in a systematic way. They establish a taxonomy
hierarchy so that the taxonomy can be expanded and revised. The taxonomy comprises six basic
categories: Scope, Content, Form, Method, Interaction and Effectiveness. Roman and Cox [Roma93]
emphasise that their model qf visualisation is based on formally well-understood areas. Their model is
a mapping that leads to a classification of systems based on the Scope, Abstraction, Specification

method, Interface and Presentation of the systems.

28

D Dependency Analysis Tool
The Dependency Analysis Tool is developed to capture and analyse the program dependencies from C

programs [Oman90a, Wild91].
Wilde and Huitt [Wild91] maintain that the use of dependency graphs is an advantage because:

¢ users of the toolset can acquire the information they need without listing all the
dependencies surrounding their enquiries

¢ the dependency graph view is not bound by any language or environment

e indirect dependency can be found easily

e false dependency can be filtered out

The tool uses the concept of a dependency graph as a basic abstraction to simplify the understanding
of program relationships of which definitional, calling; functional and- data flow- dependencies are
analysed. Wilde and Huitt believe that this toolset can be either used directly or it can be used to

provide a base for constructing other maintenance aids.

E CARE

CARE, which stands for Computer-Aided RE-engineering, is a software tool that attempts to facilitate
the comprehension of C programs [Lino93, Lino94]. The tool itself is implemented in the C

rogramming language.
prog g

This code visualisation tool uses windows and browsers to display the data flow and the hierarchy
control flow of the C programs. CARE maintains a repository of structural and functional
dependencies for programs. Visualisation of such dependencies is accomplished by using a
presentation model which combines the data flow (called colonnade graphs) and the control flow (the
call graphs) information. A colonnade is an extension of the two-column display used by VIFOR and
it has been formally defined as a m-column graph. CARE also emphasises on the additional facilities

it provides: the partitioning (abstraction) techniques and the transformation mechanism.

Within the environment, a user can obtain either the colonnade representation of the data flow or the
hicrarchy representation of the control flow from the source code of a program. The reverse operations
are also supported. In addition, colonnade graphs can be transformed into call graphs or vice versa.
Graphical or textual slices can also be created from these representations. A summary is shown in

Figure 2-4.

31

F Pascal Genie

Pascal Genie [Chan91] is a system designed to create graphical displays of program data structures. It
provides displays for the simple data types as well as the composite data types (records, arrays and
pointers). Figure 2-5 shows a snapshot of the Pascal Genie running a program. The source code
window on the left shows the currently executing line highlighted with several function bodies elided.
The large window in the background is the call stack showing all of the data on the stack. Some
variables are elided completely, some are shown by their name only, and the variable charTree is
shown fully expanded with an automatically-generated binary tree showing the data. The program’s
input and output appear in the window near the bottom right and the execution control panel appears

at the bottom.

G SHriMP Views

SHriMP, which stands for Simple Hierarchical Multi-Perspective, is a visualisation technique
introduced by Storey and Miiller [Stor95]. In the “paper, ‘they describe_ a technique for visualising
software structures which are modelled as nested graphs, together With the use of fisheye views.
" Nested graphs are used for visualising the structure and organisation of a program, whereas the
fisheye views emphasise detail of current interest within the context of the overall program structure.
The fisheye view algorithm works by selectively enlarging sets of nodes within an area of interest
while simultaneously shrinking the rest of the graph. The authors argue that when visualising a large
amount of information, it is important to be able to create different views of the information where
each one provides a different perspective. They believe that this can be achieved by SHriMP which

provides a mechanism to create views that can show multiple perspectives concurrently.

H The McCabe Tool Set

The McCabe Tools' include tools for software and design validation, code comprehension and tools
for producing measurements and metrics for the software systems. The focal point of the McCabe
Toolset .is the BattleMap Analysis Tool®> (BAT) which provides a description of the analysis of _the
structure of a program and the flow of control (control flow graphs) within its corresponding parts.

Figure 2-6 shows a screen shot from the McCabe Tools.

A BattleMap shows the calling relationships between all of its modules. Other toolsets which can be
invoked from BAT including tools which produce various complexity metrics, provide analysis of the
dynamic behaviour of code in a testing environment and tools for aiding the understanding of the

software’s internal architectures.

' The McCabe Tools is a registered trademark of McCabe Associates.
? BattleMap Analysis Tool is a registered trademark of McCabe Associates.

33

extractor, there is a Class Browser and a Hierarchy Browser. The Class Browser can be used to browse
through locally defined and inherited elements of a class whereas the Hierarchy Browser displays the

inheritance hierarchy.

K Code Measurement Tool and Code Monitor

Code Measurement Tool® or CMT is a tool which collects information from the beginning of a
software project and builds up a project portfolio for that particular software. Information such as the
output from different metrics, the lists of changes made through various releases of the software and
the development costs is stored in a knowledge base. The ‘quality’ of the different releases of a
software can then be compared using the outputs from different metrics. CMT can also extract the
information it requires from the knowledge base to produce some measures on the development and
maintenance costs using different models, such as the COCOMO model [Boeh81]. A more ambitious
goal of CMT is to ‘train’ CMT to ‘learn’ the history and information available in the knowledge base
using a neural network. This is based on the idea that if any recurring patterns or trends can be
detected, then predictions on the costs and quality of the software which is under development can be
made. Code Monitor is the front end of CMT. It has a window interface which allows a user to pick

up various aspects of information about the software at various levels of abstraction.

2.4 Summary

Most of the theories and models of Program Comprehension discussed in section 2.2 are inferred from
the results obtained from observational studies, where typically, programmers are given a task to
complete within a time limit. In some studies, the programmers were tested against their
understanding at the end of the task whereas in other cases, they were encouraged to think out loud so
that their thoughts could be recorded. Despite the diversities on the theories and models of Program

Comprehension, they all possess a set of similar concepts:

* Program Comprehension is an assimilation process. A better understanding of a
program can be built from a knowledge base which consists of a varieties of
knowledge.

¢ The process of Program Comprehension is complicated and the behavioural patterns
of the maintainers correspond to the type of maintenance activities they are engaged
in.

e For large software applications, there will be a need to modify/augment the

strategies Lo suit particular needs.

* Code Measurement Tool is developed by British Telecommunications.

35

e Maintainers should record their understanding of the programs for the benefit of

future maintainers/developers.

‘The advancing power of computers have made it possible to manipulate larger and larger amounts of
information but humans are cognitively ill-suited for understanding the resulting complexity. All
information is readily available but users are unable to efficiently access individual items or maintain

a global context of how the information fits together.

Although visualisation is often associated with the colourful representations of exotic scientific
phenomena that frequently appear on the covers of magazines, it is important to recognise that
visualisation can be usefully applied to the most prosaic data. The goal of visualisation is to represent

data in ways that make them perceptible, and thus able to engage the human sensory systems.

The central problem to be addressed is what can be done when there is just too much information to
deal with. With some collections of information the traditional node-link graphical structure can be
used, but for modern real-world problems, which require users to understand large collections of
information, solutions must be found for managing the large amounts of complex information. This

problem can be decomposed into three subproblems:

* how to make a meaningful visualisation of a single object
» how to make a meaningful visualisation of a collection of objects

¢ how to allow the users to control the selection of the visualisation efficiently

In the same vein, programs are complex and abstract objects which include many components with
many different attributes that are interrelated in complicated ways. Maintainers may find it difficult to

understand and navigate through these complex interrelationships among different parts.

One way (o tackle this problem is to decompose the program into smaller components so as to scale
down the complexity to a manageable limit. Ideally, these components should group related concepls
and functions tdgcther. These components can then be analysed in turn and a deeper understanding of
a program can be built upon successive examinations. The understanding is then gradually

assimilated in the mental model which resides in the mind of the maintainer.

It can be argued that a maintainer does not need to have a thorough understanding of the program
structure before commencing a modification [Litt86, Shne79). He only has to concentrate on the areas
where modifications are to be made and other areas which will be affected by these modifications.
Nevertheless, even when the program has been decomposed into smaller components, the resulting

textual representation may not always reveal the interrelations straight away especially when the

36

important partitions and relations such as program architecture, are scattered in large amounts of

local information [Leto86b].

Visualisation of programs can be an important step towards the right direction. The ultimate goal of
Program Visualisation is to help maintainers form clear and correct mental images of a program’s
structure and functions. Graphical representations are useful in that they are easy to understand and to
manipulate. These representations can convey the abstract links and structures of the source code in a
relatively simple form. The information is presented in a form such that there is little room for
misleading interpretations which means the level of confusion and ambiguity caused by

comimunication can be minimised.

From the survey of Program Visualisation systems in section 2.3.5, it can be seen that the first major
effort in building software visualisation packages was concentrated on exposing the inner workings of
commonly used algorithms in the software systems. Packages such as Sorting out Sorting and BALSA
are of highly historical importance. Both of the packages made use of visual cues so that the essence

of the algorithms could be captured into visual forms.

After the success of Sorting out Sorting, the work of visualisation was expanded and extended to the
form of data visualisation. BALSA, Pascal Genie and SNiFF+ are among thé ones which support the
visualisation of program data structures. Programmers have been using simple debuggers, and
sometimes debuggers with visual aid, to keep track of the various states of simple data structures.
Obviously these data visualisation packages suit the purpose of a debugger perfectly but they may be
perceived as far more sophisticated to be used as debuggers. Take SNiFF+ for example, it is a

complete CASE tool designed for the development of Object-oriented software systems.

The work of software visualisation also branched into code visualisation at around the same time.
Static analysis tools for different languages have been built and most of the output for these analysis
tools is displayed graphically. There are a number of program relations which can be extracted from a

program. The function calls and the control flow relationships are the most frequently used.

Most of the code visualisation tools only provide a simple view of the software system with the rest of
the program information presented as text. However, some researchers have begun to explore the
possibilities of combining and linking simple relations together in the same environment. Systems
such as VIFOR, CARE, the McCabe tool set and Logiscope are examples of software packages which
support multiple views of source code. However, they are not based on any complele analysis of the
relationships between the elements of programming languages. They represent some useful
relationships derived in an ad-hoc way but they do not show any of the attributes associated with the

program constructs and relationships.

37

Study has shown that maintainers often want more information than is currently available on the
display but they are not sure what exactly would be most helpful [Shne86]. The ability to provide
different viewpoints on a same object, whether its a file, a function or a variable, is important because
it can provide various levels of detail about the object at different stages. A visualisation system which

can integrate and support a variety of program relationships is therefore much desired.

Early work on building the software maintenance tools was based on the use of simple relations of
function calls and control flow, such as the work carried out by Foster [Fost87] and Fletton [Flet88].
As programs grow in size and complexity, the gap between the types of information required by the
maintainers and the amount of information which can be provided by the maintenance tools widens. It
is shown in Table 1 (Chapter Four) that function calls and control flow are not the only relationships
present in a program. By allowing the other program relationships to be brought into the scene,
maintainers will be able to get access to information in a wider spectrum and in a more consistent

way.

38

Chapter Three

A Framework for Evaluation

3.1 Introduction

This chapter describes a framework for the evaluation of the Integrated Approach outlined in Chapter
Four, the implementation outlined in Chapter Five and the Case Studies outlined in Chapter Six. The
first part of the chapter explores the use of research methods such as Surveys, Formal Experiments
and Case Studies. The second part of this chapter describes a set of objective criteria for the
evaluation. The set of criteria is divided into two branches. The first branch is?:intended to capture the
processes of the various comprehension theories such as the top-down, bottom-up and a mixture of
both approaches. The other branch addresses the cognitive issues of a maintainer while he browses

and navigates the visualisation of the program structures.

3.2 Research Methods

In order to evaluate a piece of research, a new technique or technology, the impact on the related
processes and the environment that it is intended for operating in must be thoroughly investigated
before it can be put into practice. There are three commonly used evaluation methods: Surveys,
Formal Experiments and Case Studies [Kitc95, Pfle94]. Surveys are usually conducted after the
application of particular techniques or technologies which span across a number of projects and
organisations, whereas the purpose of Formal Experiments and Case Studies is to assess the use of the
technique or technology before it is put into practice. Formal Experiments are based on scientific
investigations which aim to provide an understanding of the processes and to expose any underlying
assumption that the research, technique or technology is based on. Case Studies, on the other hand,

can provide powerful and informative insights but they are less rigorous than Formal Experiments.

The choice of selectling the appropriate evaluation method depends largely on the scale and the nature

of the research, technique or technology concerned. The technique of Surveys is oflen used when the

39

investigation is spanned across a large number of projects or organisations. Surveys attempt to observe

and systematically characterise the techniques or technologies used over a number of projects.

Formal Experiments are sometimes difficult to conduct when the degree of control is limited. In
addition, they require considerate effort in the planning, preparation and replication of experiments.
The sample and the design of experiments must be carefully chosen in order to minimise the effect of
confounding factors. The cost of setting up Formal Experiments are generally higher than that of Case
Studies [Pfle94]. An appropriate degree of replication of experiments is required in order to attain

reliable results.

Case Studies are different from Formal Experiments in several ways. They are easier to plan and
organise than Formal Experiments. This implies that they cannot achieve the scientific rigor of
Formal Experiments and are cheaper to set-up. Case Studies are often associated with a particular
situation or organisation. The results obtained are context dependent .and thus are more difficult to
generalise. Nevertheless, they can provide sufficient information which can be used to assess the

suitability of the use of a technique or technology in a particular situation or environment.

The differences among the three research methods are important because the conclusions they yield at
the end may be ditferent for each case [Kitc95]. The results obtained from each of these methods must
be evaluated against a set of objective measures in order to increase the creditability of the conclusions

derived.

The technique of Case Studies is chosen in this thesis to demonstrate the major ideas of this research.
The success of this research is measured against a set of objective criteria described in the following
section. They are used to evaluate against the Integrated Approach to Program Comprehension
outlined in Chapter Four, the implementation outlined in Chapter Five and the case studies outlined

in Chapter Six.

3.3 Cognitive Design Elements for Software Exploration

Tools

The Integrated Approach to comprehension will be evaluated against a hierarchy of cognitive design
elements proposed by Storey ef al. [Stor97a]. The authors describe a hierarchy of cognitive issues
which can be used to guide the design of software exploration and comprcliension tools. The design
elements are organised into two branches: Improve Program Comprehension and Reduce the

Maintainer’s Cognitive Overhead. Figure 3-1 shows the hierarchy of coenitive desien clements.
g g g g

40

This hierarchy has two main branches. Under the branch Improve Program Comprehension, the
intention is to capture the essential processes of the various comprehension strategies. This includes
the cognitive design elements from El to E7. Under the branch Reduce the maintainer’s cognitive
overhead, it addresses the cognitive issues of a maintainer while he browses and navigates the

visualisation of the program structures. This includes the cognitive design elements from E8 to E15.

Indicate syatactic and
semantic relations between El
software objects
Enhance bottom- Reduce the effect of E2
up comprehension delocalised plans
l’ruvnde.nhslrnclwn E3
mechanisms
Support goal-directed,
/ hypothesis-driven E4
lmprove program Enhance top-down comprehension
comprehension compr \ Provide an adequate overview
R of the system architecture at ES
various levels of abstraction
Support the constrcution E6
Integrate bottom-up | _—"" of multiple mental models
and top-down
Cross-reference mental
i E7
camprehension T wtental model
Cognitive
Design Provide directional ES$
Elements navigational
Facilitate Support arbitary EY
navigation navigation
Provide navigation El0
between mental models
Indicate the maintainer’s Eil
current focus
Reduce the maintainer’s Provide Display the path that El12
cognitive overhead oritenation cues led (o the current focus
Indicate options for El3
reaching new nodes)
27 / Reduce additional effort El4
Reduce for user-interface adjustment
disoricntation \ Provide effective ElS
presentation styles

Figure 3-1 Cognitive design elements for software exploration

The hierarchy of the cognitive design issues is derived through .an examination of the cognitive

models of Program Comprehension. The following sections describe each of the cognitive issues in

detail.

41

3.3.1 Improve Program Comprehension

[t is argued that the comprehension model employed by a maintainer is dependent on a variety of
issues governed by the experience of the maintainer and the type of maintenance activity he is
engaged in [Mayr94, Mayr95]. It would be advantageous if a range of models are supported. The
following is a list of cognitive design elements which are extracted from various comprehension

models discussed in this paper [Stor97a].

I Enhance Bottom-up Comprehension
Storey et al. argue that a bottom-up comprehension involves reading program statements and
chunking them into higher level abstractions. This is repeated until an overall understanding of a

program is attained. This can be achieved by:

e identifying program units, such as variables, statements and functions, and the
relationships between themn
e browsing code in delocalised plans

e by building abstractions from lower level units
The following sections discuss each of the activities in detail. ¢

El Indicate Syntactic and Semantic Relations between Software Objects

The authors suggest that the syntactic and semantic relationships are essential during a bottom-up
comprehension. The syntactic relation can be derived from the source code by systematically
identifying a set of program units. The semantic relation can be attained by an analysis of the

relationships'between these program units.

E2 Reduce the Effect of Delocalised Plans

A delocalised plan is a result of the fragmentation of source code related to a particular algorithm or a
program plan. The authors argue that it can be cumbersome when reading fragments of code
belonging to a delocalised plan. This activity may involve frequent switching between files which can
lead to a fecling of disorientation. Techniques such as program slicing can be applied to identify the

fragments of code which belong to a delocalised plan.

E3 Provide Abstraction Mechanisms

The authors betieve that the process of building hierarchical abstractions from the low level program
units and their relationships is the most difficult part during a bottom-up comprehension. A
maintainer should be equipped with the capability (o create higher levels of abstraction by

systematically aggregating low level program units into higher level abstractions.

42

II Enhance Top-down Comprehension
The authors believe that a top-down comprehension requires application domain knowledge. A
maintainer formulates hypotheses and examines the source code in a depth-first manner in order to

verify their hypotheses. This can be achieved by:

* supporting the recording of hypotheses and linking them to relevant parts of the
program, as well as supporting the refinement of hypotheses
e providing overviews of the program so that the maintainer can explore its structure

in a top-down fashion
The following sections discuss each of the activities in detail.

E4 Support Goal-directed, Hypothesis-driven Comprehension
A maintainer should be equipped with the capability. to create, record and relate the hypotheses which
concern the properties of a program to relevant parts of a program. This information is valuable as it

can be used to facilitate future maintenance.

ES5 Provide an Adequate Qverview of the System Architecture at Variousﬂ.__Levels of Abstraction
Information regarding the software architecture should be provided at different levels of abstraction
during the top-down comprehension so that the maintainer can systematically explore the program

structures in a top-down fashion.

III Integrate Bottom-up and Top-down Approaches

The authors acknowledge that a maintainer will create and switch between various mental models
during the course of comprehension [Mayr94, Mayr95]. They believe that relationships such as
control flow, data flow and function abstractions are the keys to the creation of these mental models.
These relationships are often illustrated by using graphical representations. The integration of the
bottom-up and top-down approaches can be facilitated by supporting the construction and integration

of various mental models (graphical representations).

E6 Support the Construction of Multiple Mental Models

The authors believe that the mental models created by one maintainer are likely to be different to the
ones created by another maintainer. Support should be given for the construction of the mental models
which represent various aspects of a program. The authors suggest that various mental models of a

program may be represented by using both textual and graphical notations.

43

E7 Cross-reference Mental Model

The'authors believe that a maintainer often switches from one mental to another during the course of
comprehension [Mayr94, Mayr95]. This happens when a maintainer tries to cross-reference different
mental models mentally. This activity can be facilitated by supporting the cross-referencing of the

representations between various parts of the mental models (graphical representations).

3.3.2 Reduce the Maintainer’s Cognitive Overhead
Storey et al. believe that when comprehending large software systems, the cognitive overheads

imposed on a maintainer will increases rapidly. This problem can be alleviated by providing good

navigation facilities, meaningful orientation cues and effective information presentations.

I Facilitate Navigation

When exploring large software systems, it is important that a maintainer is equipped with the
facilities so that he can navigate through the vast amount of information with ease. The authors
suggest that the navigation facilities should include mechanisms for browsing source code, program
documentation, graphical views of program structures and documented mental models of the

programs.

E8 Provide Directional Navigation
Directional navigation are the mechanisms for aiding the reading of source code and program
documentation, the browsing of program relationships such as data flow and control flow and the

traversing of program structures in a top-down fashion.

E9 Support Arbitrary Navigation

Arbitrary navigation should be supported when a maintainer navigates to locations that are not

necessarily reachable by following direct links,

E10 Provide Navigation between Mental Models
The authors believe that to be able to navigate between the various mental models (graphical
representations) smoothly is the key to a successful comprehension. They argue that this is a non-

trivial problem as there may be one-to-many and many-to-one links from one model to another.

II Provide Orientation Cues
The authors suggest that orientation cues can be used (o inform a maintainer of his whereabouts when
exploring the program structures, how and why he is there and how to switch to a different focus

when required.

44

E11 Indicate the Maintainer’s Current Focus
During comprehension, a maintainer may need to access information relating to the many different
program units. The maintainer may become ‘lost’ in that vast amount of information. The use of

Judicious orientation cues can be used to reinforce the maintainer’s sense of focus and orientation.

E12 Display the Path that Led to the Current Focus

Recording why a maintainer is interested in a particular program unit may be very important. The
reason for reading a piece of code may be the result of verifying a particular hypothesis or because the
code must be modified in some way. The maintainer should be equipped with the facility which can

display the sequence of actions and show how a particular decision is reached.

E13 Indicate Options for Reaching New Nodes

Support should be provided so that a maintainer is made aware of the facilities available for further

exploration.

III Reduce Disorientation

When exploring a large information space, the problem of disorientation is a major issue. The authors
suggest that disorientation can be alleviated by removing some of the;‘ unnecessary cognitive
overheads resulting from poorly designed user interfaces, and by using special‘ised graphical views for

presenting large amounts of information.

E14 Reduce Additional Effort for User-interface Adjustment
Extra etfort should be made for the design of the user interfaces in order to reduce the cognitive

overheads which can induced by switching between different mental models.

E15 Provide Effective Presentation Styles
For complex graphical representations, automatic layout algorithms are often used to display the
representations in a more readable manner. Extra effort should be put into the layout of graphical

representations and for the general presentation of information relating to various program units.

3.4 Summary

Although this hierarchy of cognitive design elements is orientated towards the design of software

exploration tools, it is felt that the hierarchy is also suitable for the evaluation of this research.

[t is decided that the cognitive issues from the first branch of the hierarchy (E1 (o E7) are particularly

applicable for the evaluation of the Integrated Approach and the rest of the cognitive issues from the

45

second branch (E8 to E15) are suitable for the evaluation of the prototype, PUL The results of the
Case Studies will also be evaluated against the hierarchy. The first branch addresses the theoretical
issues of the comprehension theories which are closely related to the Integrated Approach, whereas
the cognitive issues addressed in the second are more inclined to the evaluation of the interactions
between the maintainer and the software exploration tool. An evaluation of the Integrated Approach,

the prototype and the Case Studies will be presented in Chapter Seven.

46

Chapter Four

An Integrated Approach to Program
Understanding

4.1 Introduction

This.chapter introduces a framework and mechanism for the facilitation of the understanding of large
software systems. In particular, it addresses the need for a more flexible approach to Program
Comprehension and discusses the use of Program Relationships, rather thafi Jjust those of function

calls and control flow through carrying out a systematic analysis of Program Elements.

Maintainers are usually under pressure to accomplish maintenance tasks as quickly as possible. The
problem for most maintainers is that they have to maintain unfamiliar code that has been modiﬁed
and the accompanying documentation is usually out of date, inadequate, inconsistent or sometimes
non-existent. More often than not, the source code may be the only information maintainers have got.

The problem is how the maintainers find a systematic way to uncover this information.

4.2 Integrated Approach

The process of comprehension is a cognitive skill and therefore it is extremely difficult for machines
to mimic human beings. It is widely acknowledged that a total automation of the comprehension

process will not be feasible as human input and interpretation are vital to the process.

Studies have shown that experienced maintainers are better at using various comprehension strategies
in order to direct their attention to areas which may contain crucial information about a program. A
comparison can be drawn between master and novice chess players. Controlled psychological
experiments have shown that chess masters are far more accurate than non-chess players at

remembering chess board positions taken from real games, where the placement of pieces arose in

47

.strategic play and represented meaningful tactical positions. These experiments have found that chess
masters remember positions based on certain patterns, alignments and structures. Experience and
knowledge accumulated over the years are the deciding factors in differentiating master chess players

from novice chess players [Stor97b].

The memorisation of the arrangement of chess pieces is comparatively simple for the master chess
players as there are plenty of visual cues. Maintainers, on the other haﬁd, do not have as many visual
cues available. The structure of a software system is arguably less defined and more abstract.
Nevertheless, tools are available which can make the comprehension process a little simpler and
smoother. The goal of software maintenance tools is to help the maintainers to form clear and correct
mental images of the source code, and sometimes it is achieved with the help of software visualisation.
Visualisation can provide alternative perspectives to textual information. Graphical representations
are more compact than the textual representation and they resemble the mental models constructed by
the maintainers. It is essential that maintainers are supplied with a range of visual cues (information

with various degrees of details) in order to obtain better understanding of programs.

Each theory and model discussed in section 2.2 in Chapter 2 favours a different approach to Program
Comprehension. Pennington’s [Penn87] theory is a bottom up approach whereas Brooks (Broo83] and
Littman er al. [Litt86) believe that comprehension should be performed £m a top down fashijon.
Letovsky [Leto86a] and von Mayrhauser and Vans [Mayr94, Mayr95] argue that maintainers will use
a mixture of both strategies depending on the cue of the additional information. The message is clear:
there is no consensus on how maintainers understand programs and each of those theories can only
model certain aspects of the maintainers’ behaviour during comprehension. Further, the
comprehension strategy used is also highly influenced both by the types and the goals of the
maintenance activities that a maintainer is engaged in. Most of the maintenance tools are not
powerful enough for use on a large scale as they only p'rov'ide limited analysing power. What is
needed is a software maintenance tool that can provide an environment which encompasses the

essence of the different theories and models.

The Program Comprehension process can be roughly divided into two stages. Figure 4-1 shows a
pictorial representation of this process. The first stage is information gathering. This is active when a
maintainer (ries to grasp an impression of the source code by glancing and wandering through the
source code. It usually happens during the early stage of the comprehension process, though this
activity can be repeated when the maintainer is in the latter stage of the process. The second stage is
more directly geared towards specific problem solving. In this stage, the maintainer may actively
reach out and look for cues and information regarding some program constructs such as a data type or
a function. Often, the maintainer may need to explore new sections of code when he gets deeper and

deeper into the area that he is analysing.

48

Exploration of

information First Stage
Analysis of Second Stage
information

Figure 4-1 Two stages of the comprehension process

Tﬁe two major aspects in the comprehension process are the exploration and the analysis of
information. It can partly explain why most of the comprehension theories and models are inadequate
in modelling the behavioural patterns of the maintainers. In order to capture both of the processes into
one environment, a software maintenance tool needs to be flexible enough so that the maintainers can
switch between the two processes when required. Moreover, the tool must Efovide a-wide range of
information about the source code to assist the maintainers in the analysis stage. This information
should be managed and presented to the maintainers in a systematic and controllable way so that they

will not be overloaded with too much information.

It is extremely difticult to contemplate exactly what kind of information a maintainer may need during
the maintenance activities. The required information is largely dependent on the maintainer’s
experience, the types and the objectives of the maintenance tasks, as well as the Program

Comprehension strategies used.
Maintenance activities can be broken down into four main categories [Lien78, Lien80]:

¢ Perfective maintenance involves implementing new functional or non-functional
system requirements. These are generated by software customers as their
organisation or business changes. Activities include understanding the system,
diagnosing and defining requirements for improvements, developing preliminary

and detailed perfective design, modifying program code, debugging and testing.

For the Perfective maintenance, a maintainer needs to explore the relationships

between the program code and the changes required as a result of the user requests

49

and/or business changes. For example, if the input data to a system is (o be changed,
a maintainer may have to look at the data definitions and structures used by the
system, the variables that are associated with the data structures and the functions

that are dealing with the input, output and manipulation of the data structures.

* Corrective maintenance involves the correction of processing, performance or
implementation failures. It concerns bug fixing and correction of software errors.
Activities include understanding the system, generating/evaluating hypotheses

concerning problem, repairing code and testing.

For the Corrective maintenance, a maintainer needs to understand, explore and
assess the relationships between the program code and the software faults. He may
have to examine the data flow relationships between variables, control flow

relationships between statements and function call relationship between functions.

* Adaptive maintenance involves moditying the software in order to keep up with
environmental changes. It may involve changes in hardware or data. It does not
lead to changes in the system’s functionality. Activities include understanding the
system, defining adaptation requirements, developing preliminar"ﬁ).; and detailed

adaptation design, modifying program code, debugging and testing.

For the Adaptive maintenance, a maintainer needs to understand the impact of the
program code regarding the environmental changes. In particular, special attention
is required for dealing with the system interface and functions which utilise the

built-in libraries provided by the hardware or the operating system.

¢ Preventive maintenance involves updating software in order to forestall future
problems and to increase maintainability. Activities include understanding the
system, defining lists of changes for improvement, modifying program code/system

documentation, debugging and testing.

For the Preventive maintenance, a maintainer needs (o have knowledge about the
program structures the and system architecture. It concerns updating
documentation, adding comments and improving the modular structure of the

system.

Information is required at different levels of abstraction ranging from high to low depending on the

type of maintenance.

50

Another deciding factor influencing what kind of information is required for comprehension is the
level of technical competence of the maintainers themselves. Experiments have shown that there are
differences in how expert and novice programmers understand programs, and that both groups seek to
look for different cues in the source code. This can be attributed to the different types of knowledge
that a maintainer may possesses. The results of those experiments have shown that expert
programmers often tend to conceptualise different areas of the source code and then map them to the
application domain, whereas novice programmers tend to confine the comprehension process in the

programming domain knowledge.

An obvious solution to get round this problem would be to develop specific tools which are geared
towards the different types of software maintenance activities and for the different Program
Comprehension theories and models. This solution is only feasible when it is certain that the type of
the software maintenance activities is not to be changed regularly and that the comprehension process

is carried out by following a particular theory.

Another way of tackling this problcrﬁ involves explicitly exposing the interrelationships between the
many program constructs within the source code. In theory, the source code itself should contain all
the information a maintainer may need in order to obtain some degree of knowledge. Instead of
anticipating and planning for the information that a maintainer may need, the attention is now
focused on exposing the program relationships between the program constructs. The emphasis of the
comprehension process is now on how the maintainers can make use of the information provided,
rather than leaving them to chase for the elusive information themselves. This is the basis idea of the

Integrated Approach.

The maintainers can make use of the information regarding the program constructs and relationships
in order to expand or to refine their line of investigation as they see fit. This approach is realised by
first identifying the program constructs and the interactions between them. and then setting up a
framework to assist with the analysis of these program constructs and relationships. Relevant
information about a particular program construct can be attained by examining related program

constructs and program relationships.

The Integrated Approach does not iinpose any restriction on how the process of comprehension should
be performed. On the contrary, it enables the utilisation of different comprehension theories and
models. It is flexible and it allows comprehension to be conducted according to preferences of the
maintainers. As described before, the use of a particular comprehension strategy alone may be

insufficient. This approach allows the essence of the different strategies to be captured and performed

51

in a single environment. Maintainers can exploit the use of various strategies throughout the

comprehension process as they examine the program constructs and relationships.

4.3 Program Elements and Program Relationships

Program Elements are program constructs used in a program. The grammar of a programming
language governs the way these Program Elements are used. When assembled together, the Program
Elements make up programs. The programs are in turn used as building blocks for larger software
systems. This research is interested in the understanding of programs written in the C programming
language [ANSI84, Kern78, Kern88]. Typically, a C program may include Program Elements such as
identifiers, constants, variables, expressions, types, statements, functions and files. The inter-
relationships which arise between these Program Elements are often simple and straightforward, but

they can become complicated depending on how these Program Elements are used.

Various problems may arise over time as programs grow in size and complexity. Maintainers may
find it difficult to understand and navigate through the complex interrelationships among the Program
Elements. Nevertheless, these complex interrelationships and interdependencies can be untangled
with ease if various Program Elements and Relationships are identified at an early stage. These
Program Relationships may be used as a handle to tackle the task of comprehension. Most of the
common problems found during comprehension are related to the confusion of different
interrelationships. For example, variables which have ditferent scopes and meanings but have the
same name can sometimes cause havoc. By examining the Relationships between two Program
Elements carefully, a more accurate picture about these elements can be established and it may lead to

better understanding of the system as a whole.

A natural form of representing relationships is graphs. Examples such as call graphs and control flow
graphs are Irequently used to illustrate higher levels of abstraction of programs. At present, most of
the effort has been concentrated in devising tools to support the analysis of mainly two Program

Relationships:

» the calling relations which is between functions and functions

e the control flow relations which is between statements and statements

Disentangling the difterent relationships in a program efficiently is essential to the process of program
understanding. The tunction calls and control tlow relationships have gained a lot of attention because
they are simple and intuitive. Undoubtedly, the analysis of thesc relationships can yield a substantial
amount of information about the source code itself. For example, measurements such as the

complexity of a piece of code can be obtained from analysing these two relationships. Nevertheless,

52

modern programming languages are not just built from the utilisation of the function calls and control
flow relationships. Other Program Elements and Relationships present in the source code should
arguably be of equal importance and they also hold important information about the source code.
These other Program Elements and relations may have been overlooked as they are perceived as less
informative. This information, however, holds the links which can bridge the gaps between the

‘chunks’ of knowledge acquired by just analysing the control flow graphs and the call graphs.

A far more informative overview of a program can be attained if various program relationships
between program constructs are supported and brought into play. Table | shows the relationships
which may be present in a C program. The table should be read from left to right, and from top to
bottom. For instance, the relation between an Argument and an Identifier is has an, and it should be
read as Argument has an Identifier. On the whole, the table possesses a high degree of symmetry
with a few exceptions. The following is an explanation of the terminology used and a discussion of all

the Program Relationships between pairs of Program Elements shown in Table 1.

4.3.1 Glossary

I The Program Elements

The main Program Elements in the C language are as tollows.

Identifier is a name associated with Constant, Variable, Argument, Function and File.

Constant is a storage unit where data is stored and will remain unchanged throughout the execution
of a program. It includes numeric constants, character constants, string constants and enumeration
constants.

Variable is a storage unit where data .is stored. It can be changed by other Program Elements during
its lifetime.

Argument is the parameter (formal/actual) passed to a Function.

Expression is a symbolic representation of a mathematical or logical statement.

Primitive Type includes void, char, short, int, long, float, double, signed,
unsigned, enum, pointer (*) and array ([1).

Complex Type includes struct and union.

Statement is a coded instruction which the program can recognise and carry out.

Block includes a list of declarations followed by Statements. ‘

Function is a sequence of Statements that are grouped (ogether to perform certain tasks.

File includes a collection of declarations and/or definitions.

53

I The Program Relationships
The main Program Relationships in the C language are as follows. The relations referred (o here are
those given in Table | with appropriate tense changes. The relations can also be both active and

passive.

To Associate a Program Element with another indicates that they are connected in some way.

To Call a Program Element indicates that the flow of control is passed from another Program Element
onto that Program Element.

To Coerce a Program Element to another involves explicit/implicit type conversion.

To Contain a Program Element indicates that the element is part of the definition of another.

To Declare a Program Element indicates that it is introduced to the program for the first time in
accordance with the rule of scope.

To Define a Program Element indicates that it has been assigned a value or a full definition.

To Depend on a Program Element indicates that the value one Program Element is directly linked to
affected by that element.

To Follow a Program Element indicates the presence of ordering.

To Have a Program Element indicates that one Program Element must possess another to complete a
definition. .

To Have I/O interface with a Program Element indicates that one Progranglement communicates
with another by way of exchanging information.

To Have the same interface as indicates that one Program Element possesses the same parameter
declaration as another.

To Have the same name as indicates that the names of two Program Elements are identical.

To Have the same type as indicates that the types of two Program Elements are identical.

To Have the same value as indicates that the values held by two Program Elements are identical.

To Import a Program Element by a file indicates that its declaration (and/or the definition) is copied
and incorporated into that file.

To Return a Program Element indicates that a value and it’s associated type is assigned to a memory
location upon the completion of the instructions.

To Use a Program Element indicates that it is involved in the definition of another Program Element.
The type of a Program Element is compatible with another indicates that the types are

interchangeable.

54

Unm 8depalUl O/) Sey 'Aq papiodw st 'suoduwl 58SN 'sulejuod a|1d
Ul pesn s "ur peuyap St Ui PeJE[dap S| SE 6oEpaiul Bwes eyl sey 'Aq paed 8 'S(ed uonoung

Uy pasn st Ui pasn s| Xo0ig

U1 pasn sl Ul Pesn S| 'seuljap '$a1e|oap NEVEEH

U1 Pasn s) 'Ul PaJeoap s

Ul PBSN S| 'U| paIej3ap Si

8dA} xojdwoy

Ul Pasn sI Ut peIejoap sl

Ui pSSN §) 'U) paigjoep Sl

adX] aapiwiiig

Ul pasn §| Ul pasn si uolssaidx3
Upasn si U paiejdap si U) pasn st Ul paJejosp sl Juswnbiy
Ul paSN S "ul PBUIJaP SI Ul PaIedap S Ul pasn s! 'ul paliap si 'uj PaJeDap s EICEREY
Ut pesN st 'U1 pale|osp sl Ul pasn si Ul paJejoap S| JuElsuo)
UI'pasn s Ul paiejoap si Ut Pasn s1 Ul paJeoap si FEIMIDEL]

a4 uopouny
SUBILOY EEIEE) sasn el
SUIEJUOD Sulejuod suinjas 'sasn tonoungy
AQ Pamo||0} 'SM0)|0) Sulejuod sasn ¥oolg
U1 pesn s| AQ Pamo)|O} S 'SMO]|0} BEEEOEEERER UETTEITS
Ul pasn st Ul paJe[oap s) U) Pasn s} Ul paIedap si yum siqedwod sif adA) xajdwo)
Ul pASN 1 Ul pa1ejddp S| Ul P3SN S| Ul PaJE|dap Si 'IIM PBlelo0SSE Sif.] ur pasn si| adA] samiuiig
Ul pasn s) ul pasn si B B Sey uolssaldxg
Ul pasn si UI' palelosp S| B Sey yuawnbly
Ul pasn sI “ul paulyep si ‘Ul paiejosp s Ul pasn si 'uj paulap si ‘Ul paie|oap st e sey a|qelEA
Ul PaSN §i Ul PaJejoap s Ul pasn s1 'Ul PaJeoap Sl UM PSJEIDOSSE 5] JUBISUOD
ul pasn si Ul P8sn Si "Ul paJeoap st UM PaIeIdosse s| Jaynuap|

3o0|g9 uswaies adX} xsjduog

sasn sasn sasn a4
suin}al ‘sesn sasn sasn uonoung
sasn EERL FER 3o0]g
S@5N 'saJejoap ‘e sey : R saJejoap, jusuwialels
sasn V/N yim pajeloosse si| adA] Xejduion
Ylim 3|qnedilod si 7oy paoIsoo S| Ul Pasn ST "YIIM PSJBIDOSSE s Ylim pejeroosse si| odKL eaniuiidg
B Sey Ul pasn s| 'sasn SE pasn sl uolssaidxg
B sey ue's| se adA} auies auj sey yuawnbiy
B sey Ul pasn s| Se PaSn S| ‘Se paiejoap & EICCIETN
UIIM PBIEBIDOSSE §) urpasn si SE pasn s| JuBISUO]
Y)IM P8IBIJOSSE S| Ul pasn si YiiM DBJBIDOSSE St 18uap)

adA] aAnwug uoissaidxg juawnbly
sasn sasn S9SN 'ue sey ajly
s35n sasn $asn "ue sey uonoung
sasn Sasn sasn ¥o0[g
SaSN '$auljop 'saledap S9SN 'salejoep sasn Juawalels

Pa1e[O0SSE I

UJIM P3IeIJOSSE S|

UlIM PBIBIDOSSE §)

adX] xaiduio)

YlM pajeioosse si

M PoIeID0SSE

odf] aAniwig

sasn sasn uolssaldx3y

EE]] EE] EEE wawnbay

uo Juapuadap s! ‘se adAl alues s} sey uo Juapuadap si ‘'se adA] slues sy} S8y ue sey algelep
se sdf) swes sy seyf se anjea swes o sey ‘se odA} swes ay) sey [ue aney Aew]uesey juesuo)

Y}iM PBIBIdOSSE S| YIIM POJBIDOSSE S| SE SWEBU SWES ay] Sey J3uap)|

o|qeLeA

ugisuon

18uap]

Table | Program Relationships between Program Elements

55

4.3.2 The Table of Program Relationships
I Identifier

An Identifier is used to give a Program Element a name.

An Identifier has the same name as {[another)] Identifier)
An Identifier is associated with { Constant, Variable, Argument, Primitive Type, Complex Type}
An Identifier is used in {Expression, Statement, Block, Function, File}

An Identifier is declared in {Statement, Function, File)

II Constant
A Constant is a storage unit where data is stored and will remain unchanged throughout the

execution of a program.

A Coﬁstant has an [ma.y have an] {Identifier}

A Constant has the same type as { Constant, Variable}
A Constant has the same value as {[another] Constant)
A Constant is used as { Argument)

A Constant is used in { Expression, Statement, Block, Function, File} d

A Constant is associated with {Primitive Type, Complex Type}

A Constant is declared in {Statement, Block, Functions, File}

By definition, a constant can be a numeric constant (Primitive Type int/£loat), character constant
(Primitive Type char), string constant (Primitive Type array of char) and enumeration

constant (Primitive Type int).

III Variable
A Variable is a storage unit where data is stored. The data which it holds can be changed during its

lifetime.

A Variable has an/a {Identifier, Primitive Type, Complex Type}

A Variable fius the same type as { Constant, [another] Variable)

A Variable is dependent on { Constant, Variéble}

A Variable is declured as { Argument)

A Variable is used as { Argument) _

A Variable is used in { Expression, Statement, Block, Function, File}
A Variable is declared in {Statement, Block, Function, File)

A Variable is defined in {Statement, Block, Function, File}

56

Example: int X, Y, Z;
X =y + 2 * z;

It can be deduced from the above example that Variable 3:

e has an Identifier
® has a Primitive Type int;
® has the same type as the Constant 2
® has the same type as Variables y and z
* is dependent on the Constant 2, Variables y and z
* isdeclared in the Statement int x, y ,z;
e isused in the Statement int x, vy ,z;
_® isused inthe Expression x = y + 2 * z
e isdefined inthe Stafement X =y + 2 % z;

» isused inthe Statement x = y + 2 * z;

IV Argument
An Argument is the parameter passed to a Function. The Argument can be either formal at the point

of declaration or actual at the point of function call.

An Argument has an/a {Identifier, Primitive Type, Complex Type}
An Argument is a/an { Constant, Variable, Expression }

An Argument has the same type as {[another] Argument)

An Argument is declared in {Statement, Function, F ile}

An Argument is defined in {Statement, Function, File}

An Argument is used in {Block, Function, File)

Example: printf(“pi = %£f\n”, 22/7);

It can be deduced from the above example that the Argument 22/7:
e is an Expression
* has a Primitive Type £loat

* isused in the Statement printf (“pi = %f\n”, 22/7);

e isused in the Function printf

Expressions can be used as actual arguments as illustrated in the above example.

57

V Expression

An Expression is a symbolic representation of a mathematical or logical statement.

An Expression uses {Identifier, Constant, Variable, [another] Expression}
An Expression is used as { Argument}
An Expression is used in {[another] Expression, Statement, Block, F unction, File}

An Expression‘ has a {Primitive Type, Complex Type)

As every variable and constant is associated with a Type whether it is Primitive or Complex, an

expression which comprises constants, variables and operators should also have a Type.

Example: int X, Y;

It can be deduced from the above exampie that:

e the Expressiony * 3 usesa Constant 3

e the Expressiony * 3 usesa Variabley

¢ the Expressiony * 3 has a Primitive Type int

. lhé Expression y * 3 is used in the Expression (x = y * 3)
* the Expression (x = y * 3) has a Primitive Type int

¢ the Expressiony / 3 uses a Constant 3

» the Expressiony / 3 usesa Variable y

* the Expressiony / 3 is used in the Expression (x = y / 3)
e the Expressiony / 3 has a Primitive Type £loat ‘

e the Expression (x = y / 3) has a Primitive Type int

An Expression which has different Primitive Types for each operand will automatically converted

the lower precision Primitive Type into a higher precision Primitive Type.

VI Primitive Type
A Primitive Type is a pre-defined type built into the programming language. It cannot be broken up

further into smaller units.
A Primitive Type is associated with {Identifier, Constant, Variable, Argument, Expression,

Statement}

A Primitive Type is used in { Expression, Complex Type, Statement, Block, Function, File)

58

A Primitive Type is declared in {Statement, Block, Function, File)
A Primitive Type is coerced to {[another] Primitive Type)

A Primitive Type is compatible with {[another] Primitive Type}

Examples: char ‘*name;
chaxr[50] address;
int age;

It can be deduced from the above examples that:

* the Primitive Type pointer to char is associated with the Identifier name

* the Primitive Type pointer to char is associated with the Variable name

e the Primitive Type pointer to char is declared in the Statement char *name;

e the Primitive Type void is associated with the Statement char *name;

* the Primitive Type array of char is associated with the Identifier address

e the Primitive Type array _of char is associated with the Variable address

* the Primitive Type array . of char is declared in the. Statement char [501]
address;

e the Primitive Type void is associated with the Statement char [50] address;

e the Primitive Type pointer to char is compatible with the i’rimitive Type array
of char

¢ the Primitive Type int is associated with the Identifier age

* the Primitive Type int is associated with the Variable age

¢ the Primitive Type int is declared in the Statement int age;

e the Primitive Type void is associated with the Statement int age;

In addition, in the case where the operator = is involved and the types on both sides are different, the

type of the right operand is coerced to the type of the left operand which is the type of the result.

Example: int X, ¥

It can be deduced from the above example that:

¢ the Primitive Type int is associated with the Variable y
e the Primitive Type int is associated with the Constant 3
¢ the Primitive Type int of the Variable v is coerced to the Primitive Type

float before the arithmetic operation

59

e the Primitive Type int of the Constant 3 is coerced to the Primitive Type
float before the arithmetic operation

¢ the Primitive Type £loat is associated with the Expressiony / 3

* the Primitive Type £1loat of the Expression y / 3 is coerced to the Primitive
Type int after the arithmetic operation

 the Primitive Type int is associared with the Expression (x = y / 3)

VII Complex Type
A Complex Type is a type built from Primitive Type.

A Complex Type is associated with {Identifier, Constant, Variable, Argument}
A Complex Type uses {Primitive Type)

A Complex Type is compatible with {{another] Complex Type}

A Complex.Type is declared in {Statement, Block, Function, File}

A Complex Type is used in {Statement, Block, Functions, File}

By definition, struct and union are both a Complex Type. Structures and unions may consist of
different Primitive Types. For exalhple, the details of an employee may inclade a name and his age.
It is possible to represent this information separately using two different data structures: a name can
be represented using an array of characters and the age can be represented as an integer. However, it
may become inconvenient if the details of more than one employee are to be stored. The use of the
Complex Type struct would be a more sensible choice. The following example shows a data

structure which can be used to represent the above information.

Example: struct employees {
char name[29];
int age;

} employee;

It can be deduced from the above example that:

s the Complex Type employees is associated with the Identifier employees
s the Complex Type employees is associated with the Variable employee

* the Complex Type employees uses the Primitive Type pointer to char
* the Complex Type employees uses the Primitive Type int

¢ the Complex Type employees is declared in the above Statement

60

The Relationship between Complex Type and Constant is associated with but it is less commonly
used. Nevertheless, it is possible to declare a Complex Type Constant in the same way as the

Primitive Type Constant.

Example: struct employees {
char name{29];
int age ;

}:

const struct employees Chan = {“Pui-Shan Chan”, 25};

The above construct is a constant declaration. It can be deduced from the above example that:

s the Complex Type employees is associated with the Identifier employees
* the Complex Type employees uses the Primitive Type pointer to char
* the Complex Type employees uses the Primitive Type int

¢ the Complex Type employees is declared in the first Statement

¢ the Complex Type employees is associated with the Constant Chan

e the Complex Type employees is used in the second Statement

In theory, the values stored in the fields name and age will not be changed during the lifetime of the

Constant Chan.

VIII Statement
A Statement is a coded instruction which the program can recognise and carry out. In this thesis,
Statement also includes the C pre-processor statements #define and #include on the assumption

. of simple use of the #define statements to define values.

A Statement uses {Identifier, Constant, Variable, Expression, Primitive Type, Complex Type}
A Statement declares { Constant, Variable, Argument, Primitive Type, Complex Type, Function}
A Statement defines { Variable, Function)

A Statement has « {Primitive Type)

A Statement follows {[another] Statement)

A Statement' is followed by {{another] Statement)

A Statement is used in {Block, Function, File)

Example: main () {
int X, Y, Z; [1]
X =y = 2; [2]
z =3 * (x/ y); [3]

printf(“z = %d\n”, z); [4]

6!

It can be deduced from the above example that:

Statement [1] uses the Identifiers 3,
v and z

Statement [1] declares the
Variables x, y and z

Statement [1] declares the Primitive
Type int

Statement [1] has a Primitive Type
void

Statement [1] is followed by
Statement [2]

Statement {[1] is wused in- the .

Function main ()

Statement [2] uses the Identifiers x
and y

Statement [2] uses the Constant 2
Statement [2] defines the Variables
xandy

Statement [2] uses the Variables
and y

Statement [2] uses the Expression y
= 2

Statement [2] uses the Expression x
=y =2

Statement [2] has a Primitive Type
void

Statement [2] wuses the Primitive
Type int

Statement [2] follows Statement [1]
Statement [2] is followed by
Statement [3]

Statement [2] is used in the Function

main()

Statement [3] uses the Identifiers X,y
and z

Statement [3] uses the Constant 3
Statement [3] defines the Variable z
Statement [3] uses the Variables x, y
and z

Statement [3] uses the Expression (x
/' Y)

Statement [3] uses the Expression 3 *
(x / vy) B

Statement [3] wuses the Primitive
Types int and £loat

Statement [3] has a Primitive Type
void

Statement [3] ;ollows Statement [2]
Statement [3] is followed by Statement
(4]

Statement [3) is used in the Function
main ()

Statement [4] uses the Identifier z
Statement [4] uses the Variable z
Statement [4] has a Primitive Type
void

Statement [4] follows Statement [3]
Statement [4] is used in the Function
main()

Statements [1], [2], [3] and [4] defines

the Function main ()

IX Block

A Block includes a list of declarations followed by Statements.

A Block uses {Identifier, Constant, Variable, Argument, Expression, Primitive Type, Complex

Type)

62

A Block conrains {Statement)
A Block follows {[another] Block}
A Block is followed by {[another] Block }

A Block is used in {Function, File}

A Block contains both declarations and Statements. These declarations are nested within an

enclosing Function.

Example: main () {
const two = 2;
int X;
scanf (“%d”, &X);
if X <= 0 then {
printf (“X = %d\n”, X);

}
else {

int z = 5;

printf(“X = %d\n”, two * z);
}

Here, the Variable z is declared in and is defined in the inner Block in the else part of the if

Statement, which is used in the Function main (). ®

X Function

Function is a sequence of Statements that are grouped together to perform certain tasks.

A Function has an {Identifier)}

A Function uses {Identifier, Constant, Variable, Argument, Expression, Primitive Type,
Complex Type}

A Function returns { Primitive Type, Complex Type)

A Function contains {Statement, Block)

A Function calls {Function}

A Function is called by{Function)

A Function has the same interface as {[another] Function)

A Function is declared in {File)

A Function is defined in {File)

A Function is used in {File}

The most noticeable Program Relationships in this group is the calls and the is called by

relationships. These are commonly used in the static analysis of programs.

63

XI File

File includes a collection of declarations and/or definitions.

A File has an {Identifier)

A File uses {Identifier, Constant, Variable, Argument, Expression, Primitive Type, Complex
Type, Function)

A File imports {File}

A File contains {Statement, Block, Function}

A File is imported by {{another] File}

A File has I/0 interface with {[another] File)

4.3.3 The Attributes

Apart tfrom the Program Relationships which can be deduced between the pairs of Program Elements,
attributes which are affiliated to the Program Elements and the Relationships can provide the extra
information that a maintainer may need. These attributes are generally associated with the scope and
the states of the Program Elements, and also measurements, which are usually in the form of software

metrics.

I Scope

The Scope of an identifier is the region of the program over which occurrences of each can be
matched with the defining declaration. In C, nested function declaration is not allowed. Any Program
Element declared inside a function is only visible within that function by default. Program Elements
which are declared in this fashion are of a local nature. Once the function is exited, these Program
Elements cease to exist (with the exception of static variables which will be discussed in the next
section). It is however, possible to.declare a Program Element of a global nature. It means this
Program Element has a scope that encompasses the entire file and thus can be used for
communication between functions. It can be done by declaring the Program Elements outside the
function definitions. Table 2 shows the attributes atfiliated with each of the Program Elements from

Table 1.

Scope Scope
Identifier local, global Complex Type |local, global
Constant local, global Statement local
Variable local, global Block local
Argument formal, actual [Function global
Expression local File global
Primitive Type |local, global

Table 2 Scope of Program Elements

64

IT Storage Class
Besides a type, variables in the C programming language can be designated to have a particular
storage class. It is used to determine how the compiler allocates memory to that variable. There are

four storage classes, namely auto, extern, static and register.

Global variables in C are classified as static variables, meaning that they come to existence when the
program is executed and it continues to exist until the program terminates. A static global variable
cannot be accessed by functions in other files other than the one in which it is declared. Local
variables are by default classified as auto variables. This is due to the fact that memory is allocated
automatically to these variables when a function is executed and then deallocated when the function
terminates. It is possible to declare local variables as static, however. If a static local variable is
assigned a value the first time when a function is called, it will retain its value on subsequent calls of

the function.

The register storage class can be specified only for local variables. Such a declaration will
instructs the compiler to store the value of a local variable in a register. The register storage class
can also be applied to a formal argument in a function. Since arguments are passed to functions

through memory, the supplied argument value is loaded into a register when the function is executed.

The extexrn storage class does not create a variable, but it only informs the compiler of its existence.
When a global extern declaration is made outside a function, it indicates that the variable referred to
is declared in another file. In order words, global extern declaration enables global variables to be

shared among several files.

A function can be declared as static. Such as function can be called by other functions within the
same program file, but not by functions in other files. A function can also be declared as extern. It

works the same way as an extern variable. The above discussion is summarised in Table 3.

Storage Class

Variable auto, static, register, extern

Function static, extern

Table 3 Storage classes in C

65

4.4 A Framework for the Integrated Approach

As discussed before, more informative overviews of the programs can be attained if various Program
Relationships between Program Elements are supported and brought into play. Mosl of the software
maintenance tools discussed in section 2.3.5 in Chapter Two offer some degree of visualisation. For
example, the relationships function calls and control tlow are frequently illustrated in various
graphical forms in those tools. However, the use of the graphical representations in some cases may be
unhelptul due to their scale and complexity. The attention of the users is often drawn back to the
source code as there is inadequate support for extracting information from these graphical
representations. Most of the users may prefer to construct a mental model of their own whilst others

may prefer to trace the relationships by drawing lines to link different areas of the source code.

The Program Elements and Relationships are the key to the Integrated Approach. The Program
Elements are linked together governed by the grammar of a programming language. When combined
together, they form various relationships. The Program Relationships between pairs of Program
- Elements represent various levels of abstraction of the source code. A higher level Program Relation
can be refined to a lower level one during comprehension and a lower level Program Relation can be
abstracted into a higher level one. For example, the relation imports between the Program Elements
File and File is of a higher level of abstraction than the relation follows between the Program
Elements Statement and Statement. It is argued that comprehension can be achieved by refining,

expanding and analysing the Program Relationships between pairs of Program Elements.

The process of Program Comprehension can be facilitated by setting up a framework. Program
Elements and Relationships discussed above are the basic ingredients in this framework. The other

components in the framework include:

* context sensitive navigational aids

* information displays which include both textual and graphical information

The context sensitive navigational aids are the focal point in this framework. They provide a

mechanism for easy access to the Program Elements and Relations shown in Table 1.

A natural way of representing relationships is in the form of graphs. The Program Relationships
shown in Table | can be casily illustrated graphically with the respective pair of Program Elements.
When the utilisation of graphical representations alone is insufficient, textual display can also be used

Lo provide extra information.

66

4.4.1 Context Sensitive Navigational Aids

Programs are built from Program Elements which are held together via a network of Program
Relationships. It is thié connectivity which enables the realisation of the Integrated Approach. When
one Program Element is under scrutiny during the comprehension process, it will inevitably pave the
way to other related Program Elements and subsequently reveals the underlying Relationships
between them. For example, when studying the Relationship File imports Files, a maintainer will be
presented with other Relationships such as File contains Functions. If he chooses to explore this
relation further, he will be presented with more Relationships such as Function returns
Primitive/Complex Type, and Function uses Variable. Information regarding a Program Element is
gathered by observing the interactions between the related Elements and analysing the Relationships.
Under the Integrated Approach, the path of information gathering is not fixed and the maintainer is
free to explore any of the Program Elements and Relationships that he chooses. It is flexible and it
allows comprehension.to be conducted according to preferences of the maintainer. The context
. sensitive navigational aids are designed to provide a mechanism to retrieve the relevant Elements and
"Relationships to the maintainer. Information can be attained by executing and swilching between
various comprehension theories and models. The following figures show a set of navigational aids

when the appropriate Program Elements are selected.

Figure 4-2 shows a list of Program Relationships which may be of interest to the maintainer when he

is inspecting the Program Element File. The Program Relationships represenied by the navigational

aids are:
e File contains Function; Function is declared inlis defined in File....... [more on functions]
* File uses Constant; Constant is declared in File.........cocoooovooo [more on constants]
¢ File uses Variable; Variable is declared in Fileocvooo global variables]
* File uses Type (Primitive/Complex); Type is declared in File {more on types)
s File contains #define Statement ... [more on #define]
* File contains #include Statement ... [more on #include]
» File importstis imported bylhas I/0 interface with File [more on system]
File more on more en global mera on mora on fmora on mera on
MHeny functions conctante varighlec fypes #fofina #nelyda cyctam

Figure 4-2 A set of navigational aids when the Program Element File is selected

67

Figure 4-3 shows a list of Program Relationships which may be of interest to the maintainer when he
is inspecting the Program Element Function. The Program Relationships represented by the

navigational aids are:

* Function calls Function.........................c.c.co [call graph]

* Function is called by Function [called by...]

* Statement [in the Function] follows Statement [in the F unction]....... [control flow graph]
¢ Function uses Constant; Constant is declared in Function ... [constants]

* Function uses Variable; Variable is declared in Function.......................... [local variables]

'« Function uses Type (Primitive/Complex) ; Type is declared in Function... {types]

* Function uses Argument; Function returns Primitive Type.....oovvevie. [parameters]
* Function is declared inlis defined in lis used in File...........ocoooooooo [related files)
Eunetion eall callad eonirol fow -« loeal
lhluenu siaph by... sraph eonchanic variables Typeon parametere rdiatad filac

Figure 4-3 A set of navigational aids when the Program Element Function is selected

Fa

Figure 4-4 shows a list of Program Relationships which may be of interest to the maintainer when he
is inspecting the Program Element Variable. The Program Relationships represented by the

navigational aids are:

. Variable is declared in Functionccooovoiii [declared in...]
* Variable is used as Argument ... [as parameters...]
* Variable has a Type (Primitive/Complex)................c.c...c............ [variable type]
Yp
Variable declarad ac vytighla
Meny in... paramatae... type

Figure 4-4 A set of navigational aids when the Program Element Variable is selected

Information regarding a Program Element can be gathered by observing the interactions between the
related elements and analysing the Program Relationships. To limit the scope of the exploration and

to isolate the investigation to just one component at a time may hinder the comprehension process.

1

68

Maintainers may have difficulties in combining pieces of disjointed information, especially when the
number of components concerned increases. In an ideal situation, the process is continued without
interruptions until sufficient information about the program is attained. Hence, Program
Comprehension is both an assimilation and an opportunistic process. This non-deterministic nature is
the justification why the incorporation of an element of flexibility in a software maintenance tool is
important. Maintainers should be equipped with the ability to expand and refine the Program

Relationships so that they can explore the different aspects of a program when required.

The context sensitive navigational aids are designed with this purpose in mind. They provide a
mechanism for easy access to the Program Elements and Relationships discussed in Table . When a
Program Element or a Relationship is encountered, a maintainer will be presented with its details. His
attention will also be drawn to the other Program Elements and Relationships that are related to the
Program Element or Relationship first encountered. The navigational aids resemble the context
sensitive menu systems used in most modern day applications. For example, in-a word processor, the
menu changes when the cursor is placed upon an array of cells (tables) so that the extra features can
be used to operate on these cells. The context sensitive navigational aids are in place to ensure that the
process of comprehension can be continued without ‘interruption. They are designed to provide a
mechanism to retrieve the relevant Elements and Relationships. By explicitly exposing these
relationships, maintainers can have access to a wider range of information é::With various degrees of

granularity.

4.4.2 Information Display

In order to understand a piece of source code, a maintainer needs to acquire different levels of
information at various stages. Both the textual and graphical representations have distinct advantages
in depicting relationships at different levels. Textual representations are important because they
record exactly how different Elements are related to each other whereas the graphical representations
are a higher order abstraction of the Relationships described by the textual representations. In general,
the textual representations offer a lower level of insight into the programs and they provide the facts
about the programs. The graphical representations, on the other hand, offer a higher level overview.
In addition, they have the added advantage of being easily rearranged and manipulated. Higher orders
of abstraction can be obtained by reducing the complexity of the graphical representations. When
engaged in maintenance activities, maintainers may require an overview al one stage and get right
down to the statement level the next. The key to a useful software maintenance tool is to strike a

balance between the utilisation of visualisation and the traditional text-based static analysis tools.
I Textual Display

Text windows are used for the display of source code and information regarding the Program

Elements and Program Relationships in this framework. Experiments have shown that most

69

maintainers are often drawn back to the source code in order to infer or to verify their queries even
when they have been presented with other alternative representations. More often than not, it requires
manually tracing a Program Element, or a Program Relationship, in pages and pages of program
listing. The following describes techniques which can be used to enhance the usefulness of textual

representations.

A Search Engine
With the advance of CASE tools, a database of the Program Elements used in a program can be built
with ease. Information for each Program Element is recorded and can be made available in the form

of a searchable database. The criteria for a search machine may include the following:

* case sensitive search
* pattern matching search
* search patterns which form part of an identifier

* indicating a percentage of occurrences at file level, function level and statement level

The set of criteria helps to locate related information quickly and effectively.

B Homogeneous Information

Apart from helping to link different Program Elements together, the database has another application.
Since it holds the locations and scope of all the Program Elements within a program, it can be used to
locate a Program Element efficiently. These components can be linked together by way of hypertext

links. In a hypertext system, all text documents are indexed and held together by hyperlinks.

Figure 4-5 shows how the hypertext links can be extended across a number of documents. The figure
shows two screen shots with two different listings. The first one is the file convert.c and the

second one is the file use.h. Both program files are part of a systerm named convert.

In the first diagram, it shows a function main() in file convert.c together with the local variable
declarations. The data type UseData contains a hypertext link to its tull definition in a file named
use.h. A click on UseData will invoke the hypertext system to show its full definition in the file

use.h as shown in the second diagram.

The hypertext links allow information to be accessed instantly, thus helping to save time and to cut

down the possibility of human error.

70

C Heterogeneous Information

A program listing can also be annotated so that the Program Elements are linked to different areas of
the graphical representations and vice versa. This is a natural extension of the hypertext links. The
type of information which are held together via hypertext links need not be homogenous. Indeed, the

essence of hypertext links are the ability to link heterogeneous information together.

Figure 4-6 shows how the hypertext links can be used to cross-reference information in various
representations. In the first diagram, it shows a call graph for the function main() in the file
sortline.c. A click on the node ‘readlines’ in the call graph will invoke the browser to show the

definition of the function in a program listing as shown in the bottom diagram.

Both the textual and graphical representations can be made to contribute to the comprehension

process so that information can be attained in a more effective and cohesive manner.

II Graphical Display

A natural way of representing relationships is in the form of graphs. The Program Relationships
discussed in Table I can be illustrated graphically with the respective pair of Program Elements. The
most frequently illustrated relationships are function calls and control flow. It is evident that there are
still a number of relations which can be illustrated graphically as shown in Tgble 1. For example, the
relationships such as file inclusion and type dependencies can be depicted graphically to give an

overview of a program.

Visualisation is often associated with the problem of graph layout. It is widely recognised that the
problem of finding a graph drawing algorithm which satisfies a set of criteria is NP-hard [Supo83,
DiBa84] as the criteria are incompatible in nature. Nonetheless, algorithms can still be found for use
in different situations but the problem may still persist as it is governed by physical constraints such
as the size and resolution of a screen. For example, a graph cannot often be displayed in its entirety
and has to be squeezed into a window with vertical and horizontal scroll bars as visual aids. Only a
small portion of the entire graph can be studied at a time which makes it difficult to visualise the
whole structure. On the other hand, to display a graph in its entirety may not help to yield much
information about the underlying structure as it may be too complex to handle. What is needed is a
systematic way of decomposing the graphical representations so that they become less complex and
more manageable. A number of strategies which can be applied to these graphical representations are
suggested in section 2.3.5 in Chapter Two. These include the use of layout, colour, graph simplication

and grapph slicing techniques.

72

A Layout

Most of the graphical representations used in software maintenance tools are depicted in hierarchical
fashion. It is rooted in the culture of Computer Science practice. In the C programming language,
there is always only one starting point, i.c. the function main (), where all the rest of the program

follows. Figure 4-7 shows the call graph of the function main() in a file named sortline.c. A

complete listing can be found in Appendix A.

Apart from analysing the Relationship calls to extract information, the Relationship follow can also be
a useful source of information. In most cases, the graphical representations of the control flow
relationship often involve a larger number of nodes and arcs than that of the function call graphical
representations, and hence the denser the graphical representations, the less readable these
representations will be. Figure 4-8 shows a graphical representation for the control flow relationship.
It shows the control flow graph for the function main() in the file sortline.c. This
representation is a simplified version, which shows Program Elements such as the different types of
statement and the identifiers of the functions. Statements which are included in the graphical notation
are: for Statement, 1f else Statement, while Statement and switch break Statement. The
arcs are labelled with the letters u, t and £,. which represent the conditions needed in order to pass
the control from one Program Element to the another. The letter u stands for Unconditional, the letter
t stands for True and £ for False. In addition, the positions of the functi%n names in figure 4-8

indicate the sequence of function calls.

SinXx

X araph-too
File Graph Arc Commands {

AN
peor R s e B oo
Pt ¢ O

{;:é?:: fstrcmp] gprintfl {

End Perforn Layout,,

Figure 4-7 A call graph of the function main() in file sortline.c

74

Figure 4-8 A simplified control flow graph of the function main () in the file
sortline.c

Apart from the graphical representations for the Relationships calls and follow, there is another

Relationship which can be illustrated graphically. This is shown in Figure 4-9.

char *v[] Int left int right
(lineptr)) (nlines - 1)
) (left) (last- 1)
(v) (last + 1) (right)
Y
qsort
return
\
I void I

Figure 4-9 The function interface of the function gsort in the file sortline.c

75

The above figure is a graphical representation for function interface. The representation attemnpts to

depict the following Relationships between the Program Elements:

e Function and Argument

e Function and the Type that is returned by it
e Argument and Type

¢ Argument and Variable

e Variable and Type

The rectangular boxes in the first row show the Type and names of the formal Arguments declared in
a Function. The names in brackets represents the names of Variables which are the actual
Arguments when the Function is called, the oval shape shows the names of the Function and the

‘rectangular box in the third row shows the Type that is returned by that Function.

B Colour _

As mentioned in section 2.3.5 in Chapter Two, colour can also be used to identify a program’s
hierarchical composition. The primary goal of the hierarchical layout is to try to reveal the ancestral
relationship among nodes clearly and unambiguously. Perfect hierarchies rilrely exist in programs
because of features such as recursion. It may be difficult to locate the connecting nodes from a node
under investigation and colour can be conveniently used to illustrate this connectivity. Figure 4-10
shows how colour can be used to locate all the connecting nodes from the node ‘readlines’. The use of
colour can also be used to highlight library function calis, external function calls and nodes with a

high number of fan-in and fan-out.

File Graph Arc Comrands . !

(i)

A

igsort, urnel;nesi fr,e‘\ad“r\\%
e M v
S 4 'S
gsuap !strcnp! ,prmu' get]line Ealloci !stmpg

End Perform Layout,

Figure 4-10 Nodes which are connected to ‘readlines’ are highlighted using colour

76

C Graph Simplification
Information clustering is the process whereby information is abstracted by removing nodes from the

graphical representations. The information clustering principle can be used in a number of ways:

e to number arcs

s toisolate subgraphs

e to hide third party libraries

e o hide ANSI C standard libraries

* to hide external function calls to the application’s libraries

Figures 4-11 illustrate how graph simplification can be applied to reduce the overall complexity of the
graphical representations. The top diagram shows a graph call of a function named build_call.
The bottom diagram shows the same graph call with the library functions removed. For the purpose of

comparison, the relative positions of the remaining nodes in the bottom diagram are unchanged.

D Graph Slicing

Graph slicing is another way of reducing complexity. Contrary to the technique of graph
simplification, the attention is given to a small number of nodes and thei;; connecting nodes. By
concealing the rest of the nodes present in the graphical representation, a small section of the

representation can be studied with more care. The slicing principle can be used in a number of ways:

¢ (o investigate the characteristics of function calls
* to investigate the characteristics of library function calls

e o investigate the ripple effort after a modification

Figure 4-12 illustrate how graph slicing can be applied to extract a small portion of nodes from the
graphical representations. It shows the portion of call graph after applying the graph slicing technique
on the node ‘build_sys_call’. The node ‘build_sys_call’ is selected from the top diagram in Figure 4-

1.
This technique can be applied to any arbitrary nodes that are of interest to the maintainers. In

addition, the depth of the sliced graphical representations can be controlled by an attribute which

determines when the algorithm should terminate.

77

As programs grow in size and complexity, the gap between the types of information required by the
maintainers and the amount of information which can be provided by the maintenance tools widens. It
is shown in Table | that the Relationships calls and follows are not the only relationships present in a
program. These two Program Relationships receive a lot of attention because of their significance in
the way programming languages are used. A program consists of Program Elements which are
interlinked via a network of Relationships. By allowing the other Program Relationships to be brought

into the scene, maintainers will be able to get access to information in a wider spectrum and in a more

consistent way.

The Integrated Approach proposed in this chapter is based on a matrix of Program Relationships
between pairs of Program Elements. The Approach acknowledges that the process of comprehension
is opportunistic. Information about the programs can be gathered by expanding, refining and
analysing the Program Rélationships. It is a flexible and it allows various comprehension theories and
models to be performed in a single environment. The Program Elements and Relationships are
supported by a set of context sensitive navigational aids whereby information is presented using both

the textual and graphical representations.

80

Chapter Five

Implementation

5.1 Introduction

Static analysis tools are useful for extr'acting information from programs. Maintainers are more likely
to be overloaded with information extracted from these analysis tools as programs grow in size. This
chapter describes how the various Program Comprehension theories and models can be realised by a
simple browsing tool PUI (Program Understanding Implement), which allows maintainers to
understand the Relationships between Program Elements. The tool is based on a matrix of Program
Elements and Program Relationships discussed in Chapter Four which are designed to reflect the

multi-dimensional nature of programs.

5.2 The Prototype

The main objective of the prototype, Program Undsrstand'ing Implement (PUI), is to facilitate the
process of comprehension and it is based on a matrix of Relationships between pairs of Program
Elements discussed in Chapter Four. The PUI tool offers support to the top-down, bottom-up and a
mixture of both approaches by having a number of implements that probe the relationships between

the elements.

Figure 5-1 shows an overview of the composition of PUI which is enclosed in the inner rectangle.
CCG [Kinl95], which stands for Combined C Graph, is a static analysis tool and Graph Tool
[Bodh95] is a graphical display tool. Both were dcvcioped in the Department of Computer Science in
Durham. Perl] is a programming language available in the UNIX, Windows95 and Windows NT
operating systems. CGI, which stands for Common Gateway Interface, can take advantage of any
resource available to the server computer to generate output and it can also accept input from the user.

The main advantage of using CGI scripts is the ability to provide dynamic data and create dynamic

81

hypertext documents. HTML, which stands for HyperText Mark-up Language, is a standard set of

instructions which can be recognised by most of the existing hypertext browsing tools.

The input to CCG is the C programs. They may be either ANSI [ANSI84] or Kernighan and Ritchie
[Kern78, Kern88] C. The output of CCG is in a textual format. It is a CCG fact base which is a

representation of C programs. .

C programs

Perl scripts

TN

Graph Tool CGI scripts

Hypertext Browser

Figure 5-1 An overview of PUI together with the supporting tools

Pert is a language available in the UNIX, Windows95 and Windows NT operating systems. It has a
rich reservoir of functions for handling textual information. The output from CCG is fed into the Perl
scripts where information about the Program Elements and Program Relationships are extracted.

Program Relationships which can be represented visually are then translated into a format which is

82

5.3 Tool Support

The format of the CCG fact base is not compatible with the input format for Graph Tool and thus

relevant information must be extracted from the fact base and converted into a suitable format. Fi gure

5-3 shows a valid input for Graph Tool. It is a file dependency graph for a file named write.c. A

small portion of the source code in the file write.c is shown in Figure 5-2.

g,

object
object
link)
object
link)
object
link)
object
link)

e e e i I N Gty
e M~ e e

LU B R VR U X N
CoooO0oOoOoCOCcoo
COoOO0OO0OO0OCOO0OO
Ooo0oOoOO0OoO0O0OO

)
()

(write.
(write. _
00 (1
(gen.h
00 (1
(use.h
00 (1
(stdio.
00 (1

(_)

CoO0OoO0O0OO0OQCO
el i - o)

(_
«_

~)
directed) (LineSolid)

(

)} object
) object

directed) (LineSolid)

)

)

(

(_) (_

(directed) (LineSolid)
(

(

)

(

) object
} object

) object

directed) (LineSolid)

link

link

link

link

Figure 5-3 Input to Graph Tool

When used as an input to Graph Tool, the file in Figure 5-3 will produce a graph as shown in Figure

5-4.

h-lool<

File

Graph Arc Commands

ga;ite.C}

AN

furite,h|

igen.hl fuse.hl

Istdio.h|

End Perform Layout,

-d i

Figure 5-4 A snapshot of Graph Tool depicting a graph using the input from Figure 5-3

84

The numbers on the arcs represent the number of times a Program Relationship is used. The rectangle
box on the bottom of the right hand side is a context map. The map is a miniature of the entire graph
and it indicates the portion of the graph which is shown in the main window. The graphical

representations shown in Figure 5-2 and Figure 5-4 are identical,
There are three main functions of the Perl scripts:

I toextract the information relating to the relational aspects of the Program Elements
2 to translate this information into a format recognised by Graph Tool

3 to prepare the rest of the CCG fact base so that it is ready to be fed into the CGI scripts

Strategies on how to improve the layout of the graphical representations discussed in section 4.4.2 in

Chapter Four are realised in the second function.
The main objectives of the CGI scripts are:

I to provide a mechanism to probe the relationships between the Program Elements

2 to produce a set of hypertext documents using HTML

The first objective of the CGI scripts is to provide a mechanism to probe and to retrieve information
relating to the Program Elements and relationships in a context sensitive manner. This is done in the
form of the context sensitive navigational aids. Some of the context sensitive navigational aids are
shown in the bottom half of the Figure 5-2. A full discussion of these navigational aids is presented in

section 4.4.1 in Chapter Four. A demonstration of the use of these aids will be presented in Chapter

Six.

As discussed earlier, the Program Elements are held together by different Program Relationships. It is
difficult to try to find out the characteristics of a Program Element without stumbling on the related
Program Elements and Relationships. Maintainers should be provided with some degree of support so
that they are able to select and explore the many different Program Elements and Relationships when
required. For example, the CGI scripts can help to find out the name of the file which contains a data
type’s declaration when first encountered or they can be used to find out a list of functions which use
that data type. These CGI scripts are similar to the queries made in a relational database. When given
the names of a pair of Program Elements, these scripts try to retrieve information relating from the

matrix shown in Table 1.

85

From Figure 5-7, it is shown that the screen is divided into four frames. Starting clockwise from the

top left hand corner, they are named:

¢ Information display
e Listing
» Control panel 54

e Status report

The frame ‘Information display’ resides in the top left hand corner. It shows information about the
Program Elements and Relationships. This may includes a mixture of graphical and textual
representations. The frame next to it is ‘Listing’. It shows the source code listing of a program. The
frame at the bottom left hand corner is ‘Status report’. It records the Program Elements selected in the
previous screen. The widest frame next to ‘Status report’ is ‘Control panel’. It denotes the
navigational aids designed to help the users to navigate through the hypertext documents. These aids
will change according to the selected Program Elements and are based on the Relationships between

Program Elements shown in Table 1.

Most of the graphical and textual representations shown in the frame ‘Information display’ contain
hypertext links to other parts of the tool. The program shown in the frame ‘Listing’ is annotated with
special HTML tags. A change of context in ‘Information display’ will cause the browser in ‘Listing’
to point to a different area in the program listing. Each of the key words inside the control panel

represents an implement which retrieves information related to the Program Elements and the

Program Relationships.

All of the screens in the PUI tool have a title. The title of the screen shown in Figure 5-7 reads:

P U I: sortline: gsort.c: functions: gsort - Netscape

It shows the path which leads to the current focus. P U I is the name of the prototype, sortline is
the name of the system selected, gsort.c is the name of the file selected, functions is the last
Program Element selected, gsort is the name of a function found in the file gsort.c, and finally,

Netscape is the name of the hypertext browser.

88

5.5 Summary

The PUI tool presents the maintainers with a wide range of information and alternative perspectives.
This is achieved by providing a mechanism to retrieve information that range from a large and crude
representation to give an overview of the structure of a system, to a more fine and delicate
representation. The Program Elements and Relationships are interlinked and carefully managed in the

tool so information can be retrieved in a controlled and gradual manner.”

The Program Relationships shown in Table | can be easily illustrated graphically with the respective
pair of Program Elements. It is widely acknowledged that graphical representations can help
maintainers to attain a better insight into the progréln structures. Textual information such as source
code and system documentation also plays a key role in helping maintainers to form mental models of
the software. Both the graphical and textual representations complement each other as the graphical
representations are best suited for communicating abstract ideas and the textual representation for

recording and presenting the facts behind the abstract ideas.

89

Chapter Six

- Case Studies

6.1 | Introduction

The Integrated Approach described in Chapter Four is realised in a prototype named PUI (Program
Understanding Implement) described in Chapter Five. This chapter demonstrates the principal use of
the prototype by way of Case Studies. The Case Studies are based on two systems named sortline
and convert. Demonstrations of how both the top-dewn and the bottom-up approaches to Program
Comprehension can be utilised by using PUI will be presented in the following sections. The PUI tool
is a simple browsing tool which allows maintainers to recovér information as they browse through the

various hypertext documents.

6.2 An Overview
6.2.1 A Generalisation of the Top-down and the Bottom-up

Approaches
The following sections describe two general structures for the top-down and the bottom-up

comprehension approaches.

I The Top-down Approach

In order to achieve a top-down comprehension, a maintainer needs have knowledge of the domain
which is modelled by a software system and the environment which the system interacts with.
Information such as the system architecture, file inclusion, function calls and data dependencies play

an important part in the top-down comprehension.

Starting from the top level, a maintainer examines the system architecture to obtain an overview of

the system that he is investigating.

90

The maintainer then examines the file inclusion relationship and identifies a set of files which may

require further investigation.

The maintainer examines the function definitions within those files and identifies a set of functions,

statements, data structures and/or variables which require investigationss.

The maintainer formulates a set of hypotheses which are based on the type of maintenance activities
he is engaged in. The source code is examined in a depth-first manner. This involves tracing function
calls made within the set of functions, use of data structures and variables and the flow of control

between statements and statements. This process is repeated until al] the hypotheses are verified.

II The Bottom-up Approach
In order to achieve a bottom-up comprehension, a maintainer needs to have syntactic and semantic

knowledge of the programming language that a software system is written in.

Starting from the source code level, a maintainer browsg:s, locates and identifies a set of variables,

data structures, statements, and/or functions which réquire investigation.

Related statements are then grouped together based on the maintainer’s expectations. This helps the
identification of design decisions behind the source code. They are generally in the form of program

plans and beacons.

Information at the lower level is repeatedly abstracted into a higher level until the maintainer obtains

sufficient information to build a.mental model of the source code.

6.2.2 Structures of the Case Studies

The structures of Case Study One and Case Study Two are organised as follows. The Case Studies
include two systems named sortline and convert which are written for different purposes. They
are also different in size and complexity. Each Case Study will begin with a description of the
contents of the programs concerned. This will be followed by a description of a scenario and a list of
expected changes/results. Demonstrations of the use of the top-down and bottom-up approaches to

Program Comprehension will be presented together will a summary for each approach at the end.

91

6.3 Case Study One

6.3.1 Content of Programs

The system sortline contains three program files:

s sortline.c
° gsort.c

¢ gsort.h

The source code for the system sortline is taken from the book The C Programming Language
[Kerg88] from pages 108 to 110. It has been modified so that the original source code spans across
three different program files named above. A complete listing can be found in Appendix A. The

purpose of sortline is to read in a number of lines of text (maximum of ten lines), and to sort and

print them out in alphabetical order.

6.3.2 Scenario Description
The purpose of this scenario is to modity the inplit to the system soxtline so that it accepts only
integer inputs. In addition, the modification should not change the order of the output, i.e., the

numbers should be printed out in ascending order as intended in the original system.

The system sortline accepts character inputs at present. The source code contains a function
named alloc, which emulates the C library function malloc. All the memory management and

allocation in soxrtline is done via this function.

Demonstrations of how the top-down and the bottom-up approaches to Program Comprehension can

be utilised using PUI will be presented in the following sections.

6.3.3 Expected Changes

The modification will involve changes in data structures and any function definition which uses the
data types. A complete understanding of how the input data is stored and processed is essential before
the commencement of any modification. The following shows the list of changes which are necessary

for the modification.

I File sortline.c

The following statements which deal with dynamic memory allocation will be deleted:

#define MAXLEN 30 /* length of input line */ ... [S1]
#define ALLOCSIZE 100 /* available space */ ... [S2]
static char allocbuf [ALLOCSIZE]] .wcooooiooiooiiorooooooeoeooooooooooooooeo [S3]

92

static char *allocp = allocbuf;“”“m”“m””m”nm_”m“nm"nm“”m““m“L{S{

The function alloc Will be remOVed.o.civveioeeeeeeeeeeseeoeoeooo [S5]

The global data structure will change to:
int lineptr [MAXLINES];.............. e, e, e (S6]
The parameter declaration of the function getline will change to:

int getline (s).............. e e e e [S7)
int *s;

The definition of the function getline will change to:

int getline () ..o [S8]
int *sg;
{

int c;

¢ = scanf("%d", s);

return c;

The parameter declaration of the function readlines will change to:

int readlines(lineptr, mMaxlines) ... [S9]
int lineptr[];
int maxlines;

The definition of the function readlines will change to:

int readlines(lineptr, Maxlines) ..o [S10]
int lineptr(];
int maxlines;
{
int nlines, line;
nlines = 0;
while (getline(&line) > 0)
{
if (nlines >= maxlines)
return -1;
lineptr[nlines++] = line;
}
return nlines;

The parameter declaration of the function writelines will change to:

writelines(lineptr, NLINES) ..o [S11]
int lineptr!];
int nlines;

93

The definition of the function writelines will change to:

writelines(lineptr, nlines) ...

int lineptr[];
int nlines;

{
while (nlines-- > 0)
printf ("%d\n", *lineptr++);

II Filegsort.h

The parameter declaration of the function swap will change to:

SWAD (V, 1, 3) oo

int v[];
int I, j;

Thepmamewrdaﬂmaﬁonofmeﬁnmﬁonqsort“HHCMmgew:

gsort (v, left, xight) ...

int v[];
int left, right;

III File gsort.c

The definition of the function swap will change to:

SWaD (V, L, J) oo

int v[];

int I, j;

{
int temp;
temp = v{[i];
v[il = v{jl;
vijl temp;

The definition of the function gsort will change to:

gsort (v, left, xight) ..o .
int v([];

int left, right;

{

int i, last;
if(left >= right)
return;
swap(v, left, (left+right)/2);
last = left;
for (i=left+l; i <= right; i++)
if (v[i] < v[left])
swap (v, ++last, i);
swap(v, left, last);
gsort(v, left, last-1);
gsort (v, last+1l, right);

94

is the data structure that stores the input to the system sortline.

This data structure has to be changed in order to comply with the modification. It is changed to:
int lineptr [MAXLINES];

in the file sortline.c. Instead of declaring an array of pointers™o strings, the declaration is

changed to an array of integers. The change [S6] is complete.

Select the implement “more on function” in the frame ‘Control panel’ in Figure 6-3. It retrieves a list

of functions which are defined in the file sortline.c. This is shown in Figure 6-4.

Note that the title of the screen has changed again. It reflects the change in the selection of the
Program Element. Select “main” in the frame ‘Information display’ in Figure 6-4 to retrieve more
information on the function. The result is shown in Figure 6-5. It shows the call graph of the function
main(). The frame ‘Listing’ has positioned itself to reveal the definition of the function. The frame

‘Control panel’ in Figure 6-5 now reveals more implements.

The control flow graph of the function main () can be retrieved by selecting the implement “control

flow graph” in the frame ‘Control panel’ in Figure 6-5. The screen is shown in Figure 6-6.

From the control flow graph, the sequence of function calls in the function main() is revealed. The
first function call made within the function main() is readlines. The next function call is
dependent on the state of the system sortline. The continued sequence can be either gsort and
writelines, or print£. Each of these functions may have some impact on the global variable

lineptr and will be examined in turn.

A closer examination of these function definitions reveals that these functions communicate by
passing the variable lineptr as an actual argument. The parameter declarations of each of these

functions must be modified accordingly as a result.

Select “readlines” in the graphical representation in Figure 6-6 to retrieve more information on the
function. Select the implement “parameters” in the ‘Control panel’. The screen is shown in Figure 6-

7.

98

in the file sortline.c. The argument 1im is-now redundant and is eliminated as a result. The

change [S7] is complete.

The function definition of the function getline is changed to:

int getline (s)
int *s; e
{

int i;

i = scanf("%d", s);

return i; '

in the file sortline.c. The change [S8] is complete.

The next function to be examined is alloc. As explained in section 6.3.2, alloc is a function
which emulates the C library function malloc. The system sortline now accepts integer inputs
and therefore no dynamic memory allocation is required. The function alloc can be removed. The

change [S5] is complete.

Variables which are accessed by the function alloc are limited to the argument n, the identifier
ALLOCSIZE, and the global variables allocbuf and allocp. An examination of the identifier
and the global variables reveals they are not used by any other function. Thus, the argument n, the

identifier ALLOCSIZE, and the variables allocbuf and allocp can be removed from the file

sortline.c. The changes [S3], [S4] and [S2] are complete.

The next function to be examined is strepy. The function call to strcpy, which deals with string

manipulations, in the function readlines can be eliminated to reflect the change in the global data

structure.

All the functions that are referred to in the function readlines have been dealt with. The reference
to the identifier MAXLEN in the function readlines is eliminated to reflect the change in the
definition of the function getline. A closer examination reveals that the identifier MAXLEN is

accessed only by the function readlines. Thus, the following statement:

#define MAXLEN 30 /* length of input line */

is removed from the file sortline.c. The change [S1] is complete.

The function definition of readlines is changed to: .

int readlines(lineptr, maxlines)
int lineptr[];

102

The title of this screen is:
P U I: sortline: gsort.c: functions: gsort - Netscape

It shows the path which leads to the current hypertext document. The system selected is sortline,
the file selected is gsort.c, and the Program Element selected is Function, and the name of the

function selected is gsort.

The function declaration and definition of the function gsort are found in the files gsort.h and
gsort.c respectively. Within the PUI tool, comprehension is not bounded by the physical locations
of the various Program Elements. The title of the hypertext document and the frame ‘Status report’

are used to remind the user of the locations of the Program Elements last selected.

From the name of the function, it is conjectured that gsort performs some kind of sorting algorithm
on a data structure. After inspecting the definition, it is determined that gsort is used to perform a

quicksort algorithm on a data structure which at present is an array of pointers to strings.

The type of the formal argument v in the function gsort is found and changed to:
int v(];

in the file gsort . h to reflect the change in the global data structure. The change [S14] is complete.

Select the implement “control flow graph” in Figure 6-9. It reveals that the sequence of function calls

made in the function gsort. The sequence is swap, strcemp and recursive calls to gsort itself.

The function swap is to be examined next.

Select “swap” in the graphical representation to retrieve more information on the function. The result

is shown in Figure 6-10.

The PUI tool has determined that no function call is made in the function swap. The function gsort
passes its formal argument v to the function swap as its actual argument. The parameter definition of

v in the function swap is found and changed to:
int vI[];

in the file gsort.h to reflect the change in the global data structure. The change [S13] is complete.

104

Select the implement “called by...” in Figure 6-10 to reveal a list of functions which cailed the
function gsort. It reveals that this function is called by the functions main() and gsort. Select
“main” to reveal more information on the function. The screen is shown in Figure 6-5. Select

“writelines” in the graphical representation to reveal more information on the function.

The type of the formal argument 1ineptzx in the function writelines is changed to:
int lineptr[];.

in the file sortline.c to reflect the change in the global data structure. The change [S11] is

complete.

The function call to print£ is changed to:
printf ("%d\n", *lineptr++);

in the file sortline.c to reflect the change in the global data structure. The change [S12] is

complete.

From the control tlow graph of the function main (), it reveals that the other sequence of function
calls in main() is readlines and print#. The last function to be examined is the function

printf. Anexamination of the function call reveals that no further change is needed.
The modification is complete. The input to the system sortline has been changed from a
character-based input to an integer-based input. The output of the system sortline produces a set

of numbers which are printed in ascending order. The revised program files can be found in Appendix

B.

II Summary

The following is a summary of a list of tasks performed during the top-down comprehension.

Locate the source files for the system sortline. Examine the architecture of the system

sortline.
Examine the relationship file inclusion to get a feel of the complexity of the system.

Locate the file which has the definition of the function main (). The file is sortline.c.

106

Examine the global variable and type declarations in the file sortline.c. The global variable and

type declarations are Changed. ... [S6]

The functions readlines, gsort, writelines and printf are called within the function

main().

The parameter declaration of the function readlines is found and changed in the file

SOTE LITIO . Coiiii ettt e ettt (S9]
The functions getline, alloc and strepy are called within the‘function readlines.

The parameter declaration of the function getline is found and changed in the file sortline.c.

The definition of the function getline is changed in the file sortline.c. ..o, [S8]

The function alloc in the file sortline.c is removed after the change in the global data

SITUCTUTE. .ottt et e b e e e ettt e e e et e e ettt e e e et e et e e et e e e et e e v ersee v [S5]

The following statements are removed from the file sortline.c as the variables are only used in

the function alloc.

static char allochuf [ALLOCSIZE] G ..o ieee e eeeeeseressie s eeeesrseese s
static char *allocp = allocbuf;ccccooovivvviiiniaeinnn..,
#define ALLOCSIZE 100 /* available space */

A statement is removed from the file sortline.c as the identifier MAXLEN is only used in the

fUNCHON T@AALAMES. (.viiiiiiiieiiiieie ettt et e s e er e e [S1]

The tunction call to strepy in the function readlines is removed. The definition of the function

readlines js changed in the file Sortline.c. ..o [S10]
The parameter declaration of the function gsort is found and changed in the file gsort .h.....[S14]
The function gsort, swap and stremp are called within the function gsort.

The parameter declaration of the function swap is found and changed in the file gsort .h. [S13]

The definition of the function swap is changed in the file @sort.c. ..cocoovvveeveereeeeeeern, [S15]

107

The function call to stremp in the function gsort is removed. The definition of the function

gsort is changed in the file @sort.c. ..o [S16]

The parameter declaration of the function writelines is found and changed in the file

SOTELIME . C. oo [S11]

The definition of the function writelines is changed in the file sortline.c. ... [S12]

The final function call made in the function main () is to the function print£. No change is needed

for this.

The modification is complete.

108

An examination of the files sortline.c, gsort.h and gsort.c reveals that the data structure

which holds the input to the system is declared in the file soxrtline.c.

Select “sortline.c” in Figure 6-11 to retrieve more information on the file. Select the implement
“global variables” in the frame ‘Control panel’ to retrieve the globalsyariable declarations in the file

sortline.c. The screen is shown in Figure 6-3. An examination of the variable declarations leads

to the deduction that;

char *lineptr[MAXLINES];

is the data structure that stores the input to the system sortline.

This data structure has to be changed in order to comply with the modification. It is changed to:
int lineptr [MAXLINES];

in the file sortline.c. Instead of declaring an array of pointers to strings, the declaration is

changed to an array of integers. The change [S6] is complete.

Select “lineptr” in the frame ‘Information display’ shown in Figure 6-3 to retrieve more information

on the variable. The screen is shown in Figure 6-12.

Select the implement “as parameters...” in the frame ‘Control panel’ in Figure 6-12. The result is
shown in Figure 6-13. It reveals the type of the variable 1ineptr, and it shows that it is used as an

actual argument in the functions readlines, gsort and writelines.

The type of the argument lineptr in the functions readlines and writelines is found and

changed to:
int lineptr[];

in the file sortline.c. The changes [S9] and [S11] are complete.

110

Variables which are accessed in the function alloc are limited to the argument n, the identifier
ALLOCSIZE and the global variables allocbuf and allocp. An examination of the identifier and

variables reveals that they are not used by any other function. Thus, the argument n and the following

statements:

A,
static char allocbuf [ALLOCSIZE];
static char *allocp = allocbuf;

are be removed from the file sortline.c. The changes [S3] and [S4] are complete.

The variable allocbuf refers to an identifier ALLOCSIZE, which is only accessed by allocbuf,

The following statement:

#define ALLOCSIZE 100 /* available space */

is removed from the file sortline.c. The change [S2] is complete.

Select “readlines” in the frame ‘Information Listing’ in Figure 6-16 to reveal more information on the
function. Select the implement “control flow graph” to retrieve the screen shown in Figure 6-8. It
reveals that a call to the library function strepy is made in the function readlines. The type of

the local variable 1ine in the function readlines is changed from:
char line [MAXLEN]; to int line;

in the file sortline.c to reflect the change in the global data structure.

The identifier MAXLEN is not used by any other function and the following statement is removed:
#define MAXLEN 30 /* length of irput line */

in the file sortline.c. The change [S1] is complete.

The definition of readlines is now changed to:

int readlines(lineptr, maxlines)
int lineptr[];
int maxlines;

{

int nlines, line;

nlines = 0;
while (getline(&line) > 0)
{
if (nlines >= maxlines)
return -1;.

115

lineptr[nlines++] = liﬁe;

}

return nlines;

in the file sortline.c. The change [S10] is complete.

. « . g . . : ' ~ . "‘i' . > . .
From the search engine, a list of functions which has made function calls to library functions dealing
with characters and strings are found. They are functions getline, readlines and gsort. The

function gsoxt is (o be examined next.

Select “gsort” in the frame ‘Listing’ shown in Figure 6-8 to reveal more information on the function.

The result is shown in Figure 6-9.

An examination of the call graph of the function gsort reveals that function calls to the functions

swap, stremp and recursive calls to gsort itself are made. The function swap will be examined

next.

The function gsoxt passes its formal argument v to the function swap as its actual argument. The

argument definition of v in the function swap is found and changed to:
int vI[]:

in the file gsoxt .h. The change [S13] is compléte.

The local variable temp in the function swap is defined to hold an array of characters. It is changed

to:
int temp;

in the file gsort.h to reflect the change in the global data structure. The change [S15] is complete.

The library function call to the function strcmp in the function gsort is removed. The if

statement in the function gsort is changed to:
if (v[i] < v[left])

in the file gsort.c. The change [§16] is completea.

Select the implement “call by...” shown in Figure 6-9 to retrieve a list of function which called the
function gsort. The result is shown in Figure 6-17. It reveals that gsort is called by the function

main () and is recursively called by itself.

116

The modification is complete. The input to the system sortline has been changed from a
character-based input to an integer-based input. The output of the systefn sortline produces a set
of numbers which are printed in ascending order. The revised program files can be found in Appendix

B.

- II Summary 5

The following is a summary of a list of tasks performed during the bottom-vup comprehension.
Examine the architecture of the system sortline.

Examine file inclusion to get a feel of the complexity of the system.

Locate the file which has the definition of the function main (). The file is sortline.c.

Examine the global variable and type declarations in the file sortline.c. The global variable and

type declaration are changed.cccooovmeiiiiuiiesonieoeeeeeeeeeeee e [S6]
The global variable is used in the functions rea_dlines, writelines and gsort.

The parameter declaration of the function readlines is found and changed in the file

SOXELINIO . Citriiiiiiii e e v [S9]

The parameter declaration of the function writelines is found and changed in the file

SOXtline.c. . et [S11]
The parameter declaration of the function gsort is found and changed in the file gsort.h.....[S14]

The functions getline, readlines and gsort have made function calls to the library functions

which deal with characters and strings.

The parameter declaration of the function getline is found and changed in the file sortline.c.

The definition of the function getline is changed in the file sortline.c. ... [S8]

The functions alloc and strepy are called within the function readlines.

118

The functions alloc is removed from the file sortline.c as it is no longer required after the

change in the global data StrUCtULE.coocoormvmmvrvvooriiroiemoocooomceo [S5]

The following statements are removed from the file sortline.c as the variables are only used in

the function alloc.

static char allocbuf [ALLOCSIZE];
static char *allocp = allocbuf; ...

A statement is removed from the file sortline.c as the identifier MAXLEN is only used in the

function readlines.coooiiiiiiiiiiie oo [S1]

The function strcpy deals only with strings and therefore the function is removed. The definition of

the function readlines is changed in the file sortline.c. .o [S10]
The functions gsort, swap and stremp are called within the function gsort.

The parameter declaration of the function swap is found and changed in the file gsort .h. ... [S13]
The definition of the function swap.is changed in the file gsoxt.c. T NP [S15]

The function stremp deals only with strings and therefore the function call is removed. The

definition of the function gsort is changed in the file gsort.c. oo [S16]
The definition of the function writelines is changed in the file sortline.c. ... [S12]

The final function call made in the function main () is the function print£f. No change is needed

for this function.

The modification is complete.

119

6.4 Case Study Two
6.4.1 Content of Programs

The system convert contains twenty five program files:

®¢ convert.c .
¢ cal.c,cal.h

e call.c,call.h

e ds.c,ds.h

* gen.c,gen.h

* mod.c,mod.h

* param.c, param.h
¢ prh.c,prh.h

¢ read.c,read.h

e send.c, send.h

* sta.c,sta.h

* use.c,use.h

e write.c,write.h

The source code is developed by an in-house team from the System Application Integration Unit in

the Network Integration Centre, British Telecommunications. The system convert is part of an

existing software maintenance tool used within the department.

The purpose of this system is to convert data obtained from an analysis tool into a suitable format for

the input to a front-end user interface. This is a stand-alone system with specific input and output

formats.

6.4.2 Scenario Description
The purpose of this scenario is to find out the names and the format of the input data files to the

System convert.

6.4.3 Expected Results

By way of executing the system, it is found that four different data files are required as input to the

system convert. Figure 6-18 shows a default screen when no parameter is supplied to the system.

120

Converter v1.0f. Written by David Heath, 1995.

Unusable number of parameters.
The option '-filename' must be given.
Usage : convert [options]

The [options] are:

-sta <file>

-use <file>

~cal <file>

-prh <file>

~ident <system name>
-type <C or COBOL>
-filename <filename>

The <files> are Xray output files to use to convert the Xray
output data to Infoflow input files.

Figure 6-18 The default screen when no parameter is supplied to the system convert

The parameters -sta <file>, -use <file>, -cal <file>and -prh <file> indicate that
system convert takes the respective files as its raw input. The keywords Xray and Infoflow are

also noted.

As this is a pure comprehension exercise, no modification is required. The following shows the names

and the formats for each of the input files.

I File Format One

A default filename will be 3tray . STA.ccoccorverrmieoeee [C1]

Each line will have the following format:

thirty-character String.......o [C2]
thirty-character string

thirty-character string

two-digit integer

two-digit integer

nine-character string

[I)

II File Format Two

A default filename will be 3tray . USE.cccocoovommmmooo [C3]

Each line will have the following format:

-@ thirty-character String.....ooooo [C4]
a thirty-character string ’

121

[I)

six-digit integer
five-digit integer
single character

single character
thirty-character string
thirty-character string

III File Format Three

A default filename will be xray.CAL. ...

Each line will have the following format:

by pep

thirty-character string
thirty-character string
single character
thirty-character string
thirty-character string
six-digit integer
three-digit integer
thirty-character string
five-digit integer

1V File Format Four

A default filename will be xray. PRH. ...

Each line will have the following format:

oo e

thirty-character string
six-digit integer .
thirty-character string
single character
thirty-character string

e

.. [C5]

.. [CT7]

6.4.4 Using a Top-down Approach

I Detailed Description

The following shows a demonstration on how PUI can help to carry out the comprehension by

following a down-top approach.

On starting up the PUI tool, a user will be greeted by a screen as shown in Figure 6-1. Select the

system convert by selecting its name.

122

#define PRH_INFILE "Xray.PRH"

These names correspond to the list of parameters supplied to the system as shown in Figure 6-18. It is

conjectured that these identifiers hold the default input filenames to the system,

An examination of the source code reveals that these identifiers are used in the function main().
by,

Select the Back button in Netscape’s own menu system in the second row to return to Figure 6-20.

Select the implement “local variables” in the frame ‘Control panel’ in Figure 6-20 to reveal the local
variables declarations in the function main (). The screen is shown in Figure 6-22. It is conjectured
that the variables sta_in_file, use_in_file, cal_in file and prh_in file are used to

hold the input filenames supplied in the command line.

The variable declarations in the function main() show that each of the local variables mentioned

above is initialised to hold the value NULL.

The following statements show how information is extracted from the prompt supplied in the

command line.

if (strcmp ("-sta", argvlcount]) == 0) {
if (count + 1 != argec) {
count++;
sta_in_file = argv[count];
} .
else display_instructions (argv(0]);
} .
else if (strcmp ("-use", argv(count]) == 0) {
if (count + 1 != argc) (
count++;
use_in_file = argv[count];
}
else display_instructions (argv[0]);
}
else if (stremp ("-cal", argvicount]) == 0) {
if (count + 1 != argec) {
count++;
cal_in_file = argv([count];
}
else display_ instructions (argv[0]);
}
else if (strcmp ("-prh", argvicount]) == 0) {
if (count + 1 != argc) {
count++;
prh_in_file = argv[count];
}

else display_instructions (argv[0]);

It no filename has been supplied, each of the local variables is then assigned a default value as shown

in the following statements:

if (sta_in_file == NULL) sta_in file
if (use_in file == NULL) use in file

STA_INFILE;
USE_INFILE;

125

records = record;

}
if (letter == '\n') { .
end = 1;
if (count < MAX_STA_LINE) fin = 1;
}
else if (feof(fp)) {
end = 1;
fin = 1; H5e
}
count++;

After finishing reading the text, a scries of function calls to the Function strip_string are made:

sysname = strip_string (records, 0, 29);
filename = strip_string (records, 30, 59);
name = strip_string (records, 60, 89);

level = atoi (strip_string (records, 90, 91));
type = atoi (strip_string (records, 91, 92));
total = strip_string (records, 92, 100);

The above instructions are repeated until the function build_stadata reaches the end of the file.
Select “strip_string” in the frame ‘Listing’ in Figure 6-26 to retrieve more information on the
function. An examination of the function definition of strip_string reveals that this function
dynamically allocates memory space for arrays. The following shows the signature of the function

strip_string.
char *strip_ string(string, start, end)
char *string;

int start;
int end;

It is deduced that the numeric parameters used in the function calls to strip_string in the
function build_stadata are the positions of characters within an array. The purpose of
strip_string is to extract characters within these positions and to create and copy those

characters into another array.

Return to Figure 6-26 by selecting the Back button in the second row of the menu system. Select the
implement “local variables” in the frame ‘Control panel’ in Figure 6-26 to reveal more information on
the local variables in the function build_stadata. The screen is shown in Figure 6-27. The types

of the variables sysname, filename, name, level, type and total are noted.

130

The comprehension is repeated as in the case of the variable sta_in_file.

The system has determined that the variable use_in_f£ile is of the type char *, It is declared
and used in the function main(), and is used as an actual argument in the function

build usedata. s,

From the call graph of build_usedata, it is determined that library functions which deal with file
input and output are called within this function. These include the functions fopen, fgets,
fscanf and fclose. An examination of the variable declarations in the function

build_usedata has found the following statement:
FILE *fp;

This confirms that this function indeed performs some operations on file input and output,

The variable use_in_£ile, which holds the default filename Xray.USE, is used as the actual

argument in place of the formal parameter infile in the function build_usedata.

The structure of the function build_usedata is very similar to the function build_stadata.
After opening a text file, the function build_usedata is instructed to read in the text on a line by
line basis, then to store the characters in an array. After finishing reading in the text, a series of

function calls to the function strip_string are made:

name = strip_string (records, 0, 29);

symbol = strip string (records, 30, 59);

line = atoi (strip_string (records, 60, 65));
group = atol (strip_string (records, 65, 69));
type record[69];

code = record[70];

file = strip_string (records, 71, 100);
filename = strip_string (records, 101, 130);

The above instructions are repeated until the function build_usedata reaches the end of the file.
The types of the variables name, symbol, line, group, type, code, file and filename are

noted.

The function build_usedata has also made direct function calls to the user defined functions

new_usedata, removecr and write_error. An examination of the function definitions reveals

that they do not interfere the input file in any way.

132

The comprehension process has concluded that the format for one of the input files is as follows:

thirty-character string

thirty-character string

six~-digit integer

five-digit integer

single character

single character

thirty-character string Ha,
thirty-character string

g

This file will have the default name xray.USE. Each line of the file has eight fields, and the strings
and integers must be of the exact length specified. Spaces must be used to fill the gaps whenever a

string or an integer is shorter than that specified. The result [C4] is confirmed.

Following similar steps outlined above, it is deduced that the format for the file with a default

filename xray.CAL is as follows:

thirty-character string
thirty-character string
single character
thirty-character string
thirty-character string
six-digit integer
three-digit integer
thirty-character string
five-digit integer

Doy

Each line of the file has nine fields, and that the strings and integers must be of the exact length
specified. Spaces must be used to fill the gaps whenever a string or an integer is shorter than that

specified. The result (C6] is confirmed.

The tormat for the last input file with a default filename xray.PRH is as follows:

thirty-character string
six-digit integer
thirty-character string
single character
thirty-character string

op e

Each line of the file has five fields, and the strings and integers'must be of the exact length specified.
Spaces must be used to fill the gaps whenever a string or an integer is shorter than that specified. The

result {C8] is confirmed.

The investigation is complete. The formats for the four different files have been recovered and the

names for each of the input file have been identitied.

133

II Summary

The following is a summary of a list of tasks pe;‘formed during the top-down comprehension.
Locate the source files for the system convert. Examine the architecture of the system convert.
Examine file inclusion to get a feel of the c01np!exity of the system.

Locate the tile which has the definition of the function main (). The file is convert . c.

Examine the #define Statements.oocovvooreocomioo [C1,C3,C5,CT]

Examine the use of the variables sta_in_file, use_in_file, cal_in_ file and

prh_in file. Each variable is examined in turn.

The variable sta_in_file is used as an actual argument in the function build_stadata. The

function declaration is found in the file sta.h and the function definition is found in the file sta.c.

A function call to function strip_string which is responsible for extracting characters from a
source file is found in the function build_stadata. The positions and the length of the characters

AFE MOLEA. ..o [C2]

The variable use_in_file is used as an actual argument in the function build_usedata. The

function declaration is found in the file use.h and the function definition is found in the file use.c.

A function call to function strip_string which is responsible for extracting characters from a
source file is found in the function build_usedata. The positions and the length of the characters

A€ MOTEA. .ot [C4]

The variable cal_in_f£ile is used as an actual argument in the function build_caldata. The

function declaration is found in the file cal.h and the function definition is found in the file cal.c.

A function call to function strip_string which is responsible for extracting characters from a

source file is found in the function build_caldata. The positions and the length of the characters

ATE NOTEA. 1o [Ce6]

The variable prh_in_file is used as an actual argument in the function build_prhdata. The

function declaration is found in the file prh.h and the function definition is found in the file pxh. c.

134

A function call to function strip_ string which is responsible for extracting characters from a
source file is found in the function build_prhdata. The positions and the length of the characters

BIE MOEM. oo [C8]

The investigation is complete.

135

Select “build_caldata” in the screen shown in Figure 6-28. An examination of the local variables

declared in this function has found the following variable declaration:
FILE *fp;

This confirms that this function indeed performs some operations on file input and output.

After opening a text file, the function build_caldata is instructed to read the text in a character
by character basis until the end of a line, and to store the characters in an array. The following

statements record these instructions.

while (end == 0) ¢

fscanf (fp, "%c", &letter);

if ((count >= 0) && (count <= MAX CAL_LINE - 1)) {
record[count] = letter;

}

else if (count == MAX CAIL_ LINE) {
record[count] = NULL;
records = record;

}

else if (count > MAX CAL _LINE) {
while (letter != '\n') fscanf (fp, "%c", &letter);

}

if (letter == '\n') {
end = 1;
if (count < MAX CAL_LINE) fin = 1;
else records[count] = NULL;

}

else if (feof(fp)) (¢
end = 1;
fin = 1;

}

count++;

After finishing reading the text, a series of function calls to the function strip_string are made:

name = strip_string (records, 0, 29);

section = strip_string (records, 30, 59);

type = records[60];

file = strip_string (records, 61, 90);

sect_name = strip string (records, 91, 120);

line = atoi (strip_string (records, 121, 126));
argument = atoi (strip_string (records, 126, 128));
variable = strip_string (records, 128, 157);

group = atoi (strip_string (records, 158, 162));

The above instructions are repeated until the function build_caldata reaches the end of the file.

An examination of the function definition of strip_string reveals that this function dynamically

137

The variable infile is a formal parameter belonging to the function build_caldata. Select the
implement “parameter” in the frame ‘Control panel’ to reveal more information. This is shown in

Figure 6-30.

It is revealed that the type of the argument infile is char *. The actual argument supplied to the

function build_caldata is the variable cal_in_file, and the function build_caldata is

called by the functionmain().

From Figure 6-18, it is deduced that the system ccavert uses -sta <file>, -use <file>, -

cal <file> and -prh <file> as arguments, and each <£ile> holds the name of an input file.

Select “main” in the frame ‘Information display’ in Figure 6-30 to retrieve more information on the

function. From the function definition of main (), the following statements are observed:

STA_INFILE;
USE_INFILE;
CAL_INFILE;
PRH_INFILE;

if (sta_in_file == NULL) sta_in_ file
if (use_in_file == NULL) use_in file
if (cal_in_file == NULL) cal_in file
if (prh_in file == NULL) prh_'in_file

The identifiers STA_INFILE, USE_INFILE, CAL_INFILE and PRH_INFILE are defined in the

#define statements at the beginning of the file convert.c.

Select the implement “more on #define” to retrieve a list of #define statements in the file
convert.c. The screen is shown in Figure 6-21. The identifiers used in the #define statements
are mostly self-explanatory. There are predominately two groups of names which contain the phase
INFILE and the phase OUTFILE. The ones containing the phase INFILE are: '
#define STA_INFILE "xray.STA"
#define USE_INFILE "xray.USE"

#define CAL_INFILE "xray.CAL"
#define PRH_INFILE "xray.PRH"

The variable cal_in_£ile, which holds the default filename xray.CAL can be overwritten when

a filename is supplied in the command line.

It is thus concluded that one of the input files will have the default name xray.CAL and the format
outlined above. Each line of the file has nine fields, and the strings and integers must be of the exact
length specified. Spaces must be used to fill the gaps whenever a string or an integer is shorter than

that specified. The result [CS] is confirmed.

140

From the result of a search on the library functions, it is found that the library functions fopen and
fclose are called in the user defined functions build_caldata, build_prhdata,

build stadata and build_usedata respectively. The function build_prhdata is the next

to be examined.
The comprehension is repeated as in the case of the function build_caldata.

Select the implement “File menu” in Figure 6-21 to proceed to the screen as shown in Figure 6-28.
Select “build_prhdata” in the frame ‘Information display’ to retrieve more information on the

function. An examination of the local variables declared in this function has found the following

statement:
FILE *fp;

This confirms that this function indeed performs some operations on file input and output.

After opening a text file, the function build_prhdata is instructed to read in a string of characters
and then to store them in an array. The length of the string is dependent on the identifier
MAX USE_LINE, which holds the value 131. This identifier is declared in the file use.h. The

following statement record these instructions.
fgets (record, MAX USE_LINE + 1, fp)

After finishing reading in the text, a series of function calls to the function strip_string are

made:

caller = strip_string (ch, 0, 29);

line = atoi (strip_string (ch, 30, 35));
called = strip_string (ch, 35, 64);
type ch[65];

file strip_string (ch, 66, 95);

The types of the variables caller, 1line, called, type and f£ile are noted.

The above instructions are repeated until the function build_prhdata reaches the end of the file.
The function build_prhdata has also made direct function calls to the user defined functions
new_prhdata and write_erroxr. An examination of these function definitions reveals that they

do not interfere the input file in any way.

The comprehension process has concluded that the input file format is as follows:

a thirty-character string
a six-digit integer

141

a thirty-character string
a single character
a thirty-character string

The result [C8] is confirmed. The next task is to find out the name of this input file.

The structure of the function build_prhdata is very similar to thegtructure of build_caldata.
An éxamination of the actual argument of the function build_prhdata has led to the variable

prh_in_£ile. This variable is declared in the function main ().

Further analysis has shown that the variable prh_in_f£ile holds a default value xray.PRH. This
will be the default tilename for the above file input format. The default filename can be overwritten if
a filename is supplied in the command line. Each line of this file has five fields, and the strings and
integers must be of the exact length specified. Spaces must be provided to fill the gaps whenever a

string or an integer is shorter than that specified. The result [C7] is confirmed.

From the result of the search, it was found that the library functions £open and fclose are called
by the functions build_caldata, build_prhdata, build_stadata, build usedata.
The remaining functions to be examined are the functions build_stadata and

build_usedata.

Following similar steps outlined above, it is deduced that the format for the file with a default

filename xray.STA is as follows:

thirty-charactexr string
thirty-character string
thirty-character string
two-digit integerx
two-digit integer
thirty-character string

LI O I O

The default filename can be overwritten if a filename is supplied in the command line. Each line of
this file has six fields, and the strings and integers must be of the exact length specified. Spaces must

be provided to fill the gaps whenever a string or an integer is shorter than that specified. The results

A

[C2] and [C1] are confirmed.

The format for the last input file with a default filename xray.USE is as follows:

thirty-character string
thirty-character string
six-digit integer
five-digit integer
single character

single character
thirty-character string

I O

142

a thirty-character string

The default filename can be overwritten if a filename is subplied in the command line. Each line of
this file has eight fields, and the strings and integers must be of the exact length specified. Spaces
must be provided to fill the gaps whenever a stlmg or an integer is shorter than that spec1fed The

results [C4] and [C3] are confirmed.

The comprehension is complete. The formats for the four different files have been recovered and the

names for each of the input file have been 1dent1f1ed

II Summary

The following is a summary of a list of tasks performed durihg the bottom-up comprehension.

Locate the source files for the system convert. Examine the architecture of the system convert.

Examine file inclusion to get a feel of the complexity of the system.

The functions build_caldata, build_prhdata, build_stadata and build_usedata
have made function calls to library functions which deals with file input and output, Each of the

functions is examined in turn,

The variable cal_in_file is used as an actual argument in the function build_caldata. The

function declaration is found in the file eal.h and the function definjtion is found in the file cal.c.

A function call to function strip_string which is responsible for extracting characters from a

source file is found in the function build_caldata. The positions and the length of the characters

are NOLEA. .ooooiiviiiviiiciee et e e e r s e [C6]

The variable cal_in fileis dependent on CAL_INFILE which holds the value xray.CAL. This

is the default filename for the format found in (GO e [C5]

The variable prh_in_f£ile is used as an actual argument in the function build_prhdata. The

function declaration is found in the file prh.h and the function definition is found in the file prh.c.

A function call to function strip_string whi'ch. i_s responsible for extracting characters from a

source file is found in the function build_prhdata. The positions and the length of the characiers

AIC MOLEA. oot [C8]

143

The variable prh_in_fileis dependent on PRE_INFILE which holds the value xray.PRH. This

is the default filename for the format found in [C8].ccocomoomoecemio [CT]

The variable sta_in_file is used as an actual argument in the function build_stadata. The

function declaration is found in the file sta.h and the function definition is found in the file sta. c.
‘ i,

A function call to function strip_string Whicﬁ is responsible for extracting characters from a

source file is found in the function build_ stadata. The positions and the length of the characters

are noted. s [C2)

The variable sta_in_file is dependent on STA_INFILE which holds the value xray.STA. This

is the default filename for the format found in (G2 e [C1]

The variable use_in_file is used as an actual argument in the function build_usedata. The

function declaration is found in the file use.h and the function definition is found in the file use.c.

A function call to function strip_string which is responsible for extracting characters from a

source file is found in the function build_usedata. The positions and the length of the characters

are NOLEd. ...oovviioiri e e, et ———— [C4]

The variable use_in_file is dependent on USE_INFILE which holds the value xray.USE. This

is the default filename for the format found in [CA). .o e [C3]

The investigation is complete.

6.5 Discussion

This chapter describes the feasibility of the Integrated Approach by way of Case Studies. The process
of comprehension has been conducted in both a tbp-down and a bottom-up fashion. The sections 6.3.3
and 6.4.3 contain two lists of tasks (goals) which have to be completed for each of the Case Studies.

The order of these tasks are determined by sequentially browsing through the source code.

The use of both of the approaches has been proven successtul in completing the modifications and

investigation using the PUI tool.

144

In Case Study One, the sequence of the tasks completed under the top-down approach is: [S6, S9, S7,
S8, S5, 83, S4, S2, Si, S10, S14, S13, Si5, S16, S11, S12]. The sequence of tasks completed under
the bottom-up approach is: [S6, 89, S11, S14, §7, S8, S5, 83, 84, 82, S1, S10, S13, S15, S16, S12).

In Cast Study Two, the sequence of the tasks completed under the top-down approach is: [C1, C3, C5,
C7, C2, C4, C6, C8]. The sequence of tasks completed under the bottam-up approach is: [C6, C3, C8,
C7,C2,Cl1, C4, C3].

The use of the prototype PUI has demonstrated that the Integrated Approach is flexible enough to
support comprehension in either direction. More importantly, it has also demonstrated that the user
can engage in the top-down and/or the bottom-up approaches at any stage during the comprehension

process.

145

Chapter Seven

Evaluation

7.1 Introduction

This chapter presents an evaluation of the work undertaken. It is evaluated against the existing
Program Comprehension theories and models, the prototype implementation and the results of the
Case Studies. They are evaluated against a hierarchy of cognitive issues raised in Chapter Three. This

is followed by a discussion on the requirements for automation.

7.2 Evaluation of the Integrated Approach

7.2.1 Theories of Program Comprehension Revisited

Each theory and model discussed in section 2.2 in Chapter Two favours a different approach to
Program Comprehensioﬁ. Pennington’s theory is a bottom-up approach [Penn87] whereas Brooks’s
approach is performed in a top-down fashion [Broo83]. On the other hand, von Mayrhauser and Vans
[Mayr94, Mayr95] and Letovsky [Leto8Ga] reason that maintainers use a mixture of both strategies
depending on the cue of the additional information. Others such as Soloway and Ehrlich [Solo84,
Solo86], Shneiderman and Mayer [Shne79] and Littman e al. [Litt86] advocate that Program
Comprehension is based on a knowledge base and it is a process of assimilation. The message is clear:
there is no consensus on how maintainers understand programs and each of those theories can only
model certain aspects of the maintainers’ behaviour during comprehension. The comprehension
strategies used by a maintainer are also highly dependent on both the types and the objectives of the

maintenance activity he is engaged in.
Software engineering activities are a cognitive skill and it is subjected to the limitation of human

brains, i.e., we are only able to study/memorise a limited amount of information at a time. A common

approach to tackle this problem would be to decompose a large program systematically into ‘chunks’

146

or the respective smaller counterparts. Shneiderman {Shne80] conjectures that the information
chunking process is used in understanding programs. His views are echoed by Burnstein and
Roberson, who believe that comprehension of a program begins by first processing the individual
statements and grouping them together into cohesive units called chunks which are components of a
mental model [Burn97].
o5

Littman et al. propose two strategies which can be used in Program Comprehension: the systematic
strategy and the as-necded strategy [Litt86). Both strategies arise primarily from different goals. The
former is used when the intention is to understand global program behaviour; the latter is used to
minimise the comprehension effort. For a large system which involves several hundred thousands of
lines of code, the as-needed strategy seems to be: the only solution. However, as Littman et al. have
pointed out, employing the as-needed strategy alone may not be sufficient. It only allows a weak
mental model to be constructed and it may lead the maintainer to an inaccurate comprehension
because he may not be aware of the interconnections between particular software components. It is

therefore necessary to augment the as-needed strategy so that additional information can be acquired.

Letovsky [Leto86a] argues that the comprehension process is a mixture of top-down and bottom-up
strategies. Maintainers may switch and exploit the two strategies when certain information becomes
available. Once the basic goals and functionalities have been recognised, the immediate
representations of the source code are later used as :. basis for a more detailed study. A mental model
' is then constructed to store these abstractions (goals and operations). Shneiderman [Shne80] suggests
that programmers do not store ‘raw information’ (the syntactic knowledge) in a mental model but
rather, they will abstract the information and store it into an internal semantic structure. This

knowledge can later be translated into different representations.

Soloway and Ehrlich [Solo84] believe that program plans play an important role in the
comprehension process. They detected that experts have strong expectations about what programs
should look like and these expectations would lead them to look for certain operations and structures
in the program. However, this process may be complicated by delocalised plans [Leto86b], where
statements within a plan are scattered throughout the whole of a program. Letovsky and Soloway
[Leto86b] believe that delocalised plans are more liable to misinterpretation and it is a fundamental
problem because maintainers have a tendency to make plausible but incorrect assumptions based on

local information.

Program plans are related to another branch of research: beacons. Brooks [Broo83] first introduced
the notion of beacons. Beacons are important in Brooks’s theory because they form the mappings
between the hypotheses of the maintainers and the actual program text. They represent key features

which a maintainer may look for when he encounters information like the name of a program or the

147

name of a variable. Wiedenbeck [Wied86, Wied91] has extended Brooks’s theory on beacons. She
refers to program plans as stereotyped program fragments. They represent features of a program
which strongly points to a function’s functionality and such are the features that maintainers are

generally looking for.

Pennington [Penn87] argues that the comprehension process is predominantly performed in a bottom-
up process. When programmers are asked to study a piece of source code for the first time, it is
strongly suggested that the procedural (control flow) relation dominates the programmers’ mental
representation of the source code. The results suggest the importance of the text structure knowledge

in the comprehension process.

von Mayrhauser and Vans [Mayr94, Mayr95] express a similar view to Letovsky [Leto86a]. They
advocate that the comprehension process is performed using a mixture of top-down and bottom-up
approaches. The four major components in this'metamodel are: the top-down model, situation model,
program model and a knowledge base. The ‘authors argue that maintainers seldom perform
comprehension in a single direction, i.e. in either a pure top-down or bottom-up fashion. Any one of
the four submodels may become active at any time during the comprehension process. The choice of
the use of these submodels is largely dependent on the cues available to and the preferences of the

maintainers.

From the overview of these Program Comprehension theories, it is evident that there is no real
consensus on how maintainers understand software systems. Each theory and models discussed above
favours a different approach to Program Comprehension. These theories attempt to model certain
aspects of the maintainers’ behaviour during comprehension. Chan [Chan97] and von Mayrhauser
and Vans [Mayr94, Mayr95] believe that the disparities in the comprehension strategies used are
largely dependent on the personal and circumstantial factors. Factors suchA as the level of technical
competence of the maintainers, the size and cofnplexity of the piece of software, and the types and

goals of the maintenance activities can influence the process of comprehension.

All of these strategies embody a common characteristic: they seek to model a continuous and non-
linear process within a set of parameters whereby knowledge is assimilated incrementally. Some have
expressed the concern that the sole use of any of the theories and models may be insufficient on a

larger scale. They may have to be augmented with other techniques when required.

7.2.2 Integrated Approach Revisited

More often than not, maintainers employ various strategies and use cues from either the source code
or the system documentation as guidance. It is argied that when maintainers are engaged in the

maintenance tasks, they are likely to exploit the use of both the top-down and the bottom-up

148

approaches when new information is encountered [Chan97, Leto86a, Mayr94, Mayr95]. An approach
which is flexible enough to support the use of different comprehension strategies, as well as having
the capability to cope with the different behavioural patterns of the maintainers, will be more

applicable.

The Integrated Approach involves explicitly exposing the interrefationships between the many
Program Elements within the source code. It is extremely difficult to contemplate exactly what kind of
information a maintainer may need during the maintenance tasks. Instead of anticipating, planning
and providing the information that a maintainer may need, the attention is now focused on exposing
the Program Relationships between pairs of Program Elements. This approach is realised by first
identifying the interactions between the Program Elements and then setting up a framework to assist
the analysis of those Elements and Relationships involved.
The Integrated Approach does not impose any restrictions on how the process of comprehension
should be performed. On the contrary, a maintainer is free to explore the Program Elements and
Relationships that he chooses and hence enables the utilisation of different comprehension strategies
and models. As discussed in section 7.2.1, the use of a particular comprehension strategy alone may
be insufficient. This approach allows the essénce of the different strategies to be captured and
performed in a single environment. Maintainers can. exploit the use of various strategies throughout
the comprehension process as they examine the Program Elements and relationships. Under the
Integrated Approach, maintainers are encouraged to make use of the information available, rather
than being put in a position to ponder on how to chase for the elusive piece of information. They can
make use of the Program Elements and Relationships in order to expand or to refine their line of
investigation as they see fit. Relevant information about a particular Program Element is attained by

examining other related Elements and Relationships.

7.2.3 Cognitive Design Elements -

The Integrated Approach to comprehension and results from the Case Studies are evaluated against a
hierarchy of cognitive design elements proposed by Storey et al. [Stor97a]. The framework is
discussed in Chapter Three. The following are the issues raised under the section Improve Program

Comprehension. This includes the cognitive design elements from El to E7.

I Enhance Bottom-up Comprehension

E1 Indicate syntactic and semantic relations between software objects

Storey et al. suggest that the syntactic and semantic relationships are essential during a bottom-up
comprehension. The syntactical relationships between the prograrﬁ units are governed by the grammar
of a programming language. The analysis of the semantic relationships between the program units

would require data-tflow or functional knowledge of a program.

149

The Program Elements described in Chapter Four represent the basic units that are present in a
program. Under the Integrated Approach, relationships such as control flow, function calls and data
dependencies have been identified so that maintainers can have easy access to the semantic
relationships. The table of Program Relationships is shown in Table 1 in section 4.3 in Chapter Four.
B

E2 Reduce the effect of delocalised plans

Program plans are program fragments which'represent stereotypical action sequences in a program.
The recognition of plans may be complicated by delocalised plans, where statements within a plan are
scattered throughout the whole of a program. The technique of program slicing is often employed to

retrieve the program plans [Weis82, Weis84, Weis86].

The Integrated Approach does not support program slicing directly, and hence no program slice will
be produced. Relationships such as the declaration and the use of variables have been identified which
in turns offers limited program slicing power. The analysis of variable dependencies can be achieved
by examining these relationships. For example, Figure 6-12 shows the declaration of the variable

lineptr and where it is used within a program. and Figure 6-13 shows how the same variable is

used as an argument,

E3 Provide abstraction mechanisms

The Program Relationships between pairs of Program Elements represent various levels of abstraction
of the source code. For example, the relation imports between the Program Elements File and File is
of a higher level of abstraction than the relation follows between the Program Elements Statement
and Statement. Under the Integrated Approach, a lower level Program Relationship can be abstracted
into a higher level one progressively by selecting the appropriate Program Relationships. For example,

Figure 5-6 shows a screen offering a selection of three different levels of abstraction.

II Enhance Top-down Comprehension

E4 Support goal-directed, hypothesis-driven comprehension

Under the top-down approach, comprehension is conducted by systematically establishing a mapping
between the source code and the corresponding application domain. A maintainer begins with an
initial hypothesis about the functionality of a program which is generated from documentation or from

sources such as filenames.
Under the Integrated Approach, maintainers can verify ‘their hypothesis by investigating the

interaction between the Program Elements and examining the Program Relationships using the

context sensitive navigational aids. For example, the -ecognition of the default input filenames to the

150

system convert is driven by the hypothesis that the names of identifiers and variables declared in

the programs reflect their purposes.

The Integrated Approach, however, does not support the documentation of these hypothesis and the
linking of them to specific parts of the source code.
Nz

E5 Provide an adequate overview of the system architecture at various levels of abstraction

In order to understand a piece of source code, a maintainer needs to acquire different levels of
information about the source code at various stages. The Program Relationships shown in Table 1,
which can be found in section 4.3 in Chapter qut', encompass various levels of abstraction. These
Program Relationships can be organised systematiczilly in the order of abstraction levels. Maintainers
are empowered with the capability to access information at different levels of abstraction during

comprehension under the Integrated Approach.

IIT Integrate Bottom-up and Top-down Approabhes

E6 Support the construction of multiple mental models

Both the textual and graphical representations play an equally important role during compreheﬁsion.
Under the Integrated Approach, information r-garding the Program Elements and Program
Relationships are shown in both textual and graphical forms. The Program Relationships are
illustrated using graphical representations wherever possible. All of them are augmented with textual
information extracted by the static analysis tool. For example, Figure 6-1 shows a graphical
representations of the relationship imports between the Program Elements File and File in the frame

‘Information display’. This information is reinforced in the frame ‘Listing’.

E7 Cross-reference mental model

The Integrated Approach comprisés several components: the Program Elements, the Program
Relationships, graphical and textual displays. These components are held together by the context
sensitive navigational aids, which link the corresponding graphical and textual representations for
cach of the Program Elements and Program Relationships. A discussion on the navigational aids can

be found in section 4.4.1 in Chapter Four.

7.3 Evaluation of the Implementation.

The Integrated Approach is realised in a prototype named PUL In essence, it is a framework where
graphical and textual representations are brought together using the technique of cross-referencing,

and driven by the Relationships between Program Elements. The main objective of the

151

implementation is to demonstrate that pure top-down and bottom-up comprehension, and

combinations of both approaches can be supported and utilised in a single environment.

7.3.1 Using the Web as the Underlying Structure

Other components which are present in PUI include a static analyser, a database containing facts
about a program, a textual display tool and a grapﬁjcal.displa'y tool “These components are brought
together under a uniform user interface using World Wide Web technologies. Most of the web
browsers have the capability to display many dif-fer.ent types of information including textual,
graphical, audio and visual information. In this case, the web browsers provide an ideal vehicle for the
realisation of the Integra'ted Approach. All of the information can now be captured in the same

environment which means that the notations, layout and representations are consistent throughout.

The idea of u[ilising the technologies of the World Wide Web is supported by Tilley and Smith
[Thiir95, Till97]. They believe that.the web is a convenient infrastructure for Re-engineering. They
argue that it is logical to exploit a technology which is widely available, at low cost and can be

employed with little effort.

Web browsers such as Netscape Communicator and Internet Explorer are widely used and they
provide simple and easy to use graphical user interfaces. In addition, the browsers have the added
advantage of having a cross-platform interface’ which means that PUI can be used in a number of

platforms such as PC, Macintosh and UNIX workstations.

7.3.2 Cognitive Design Elements

The implementation and results from the Case Studies are evaluated against a hierarchy of cognitive
design elements proposed by Storey et al. [Stor97a]. The framework is discussed in Chapter Three.
The following is a list of issues raised under the scction Reduce the maintainer’s cogniiivc overheads.

This includes the cognitive design elements from ER to E15.

I Facilitate Navigation

E8 Provide directional navigation

In the prototype, textual and graphical representations are placed in a windowing interface equipped
with vertical and horizontal scroll bars. These representations are transformed into hypertext
documents which contain ‘anchors’ or hyperlinks. They are always shown as highlighted text or
coloured graphic designs. These hyperlinks act as the glue which holds the many hypertext documents
together. For example, Figure 6-19 shows an overview of the system convert. Both the coloured

nodes in the graphical representation in the frame ‘Information display’ on the left, and the list of

152

filenames in the frame ‘Listing’ on the right contain the hyperlinks to their corresponding

counterparts.

E9 Support arbitrary navigation

The Integrated Approach encourages the users to explore the programs by repeating the process of
selecting and examining the Program Elements and Program Relatjpnships. The context sensitive
navigational aids provide the mechanism which helps the users to achieve this goal. It is flexible and
it allows comprehension to be conducted in a way preferred by the maintainers. Users can switch
instantly from one model of comprehension and engage in another by using the navigational aids. A

discussion on the navigational aids can be found in section 4.4.] in Chapter Four.

E10 Provide navigation between mental models

Under the Integrated Approach, the mental models of the maintainers are represented by a mixture of
textual and graphical displays. The graphical representations are annotated so that nodes in a graph
are linked to the corresponding piece of textual information such as the source code and output from a
static analysis tool. The source code is also annotated so that multiple instances of Program Elements

which are scattered throughout the software system can be located quickly and effectively.

II Provide Orientation Cues

E11 Indicate the maintainer’s current focus

Disorientation is a common symptom as far as using the World Wide Web is concerned. The
prototype has a special provision in the form of Status Report, which serves the purpose of informing
the users of their current focus. It shows the name of the system that a user is analysing and the names

of the Progi'am Elements currently selected.

For example, the frame ‘Status report’ shown in Figure 6-2 reads:

System: sortline
File: sortline.c
Selected: [files]

It shows that the system selectzd is named sortline, and the Program Element selected is the file
sortline.c. The frame ‘Status report’ changes according to the choice of the selected Program
Elements. The frame ‘Status report’ shown in Figure 6-3 has changed to the following when another

Program Element Variable is selected:

System: sortline
File: sortline.c
Selected: [variables]

153

E12 Display the path that led to the current focus
Special provision is also provided for displaying the path which leads to the current focus of the
maintainers. The path is displayed as the title of a hypertext document. The order of the sequence of
sélections is recorded by the web browser which can be displayed at any time. In the hypertext browser
Netscape, this is achieved by selecting Go in the first row of the browser’s menu system.

s
E13 Indicate options for reaching new nodes ,
Programs are built from Progtam Elements which are held together via a network of Program
Relationships. It is this connectivity which the context sensitive navigational aids are based upon.
These aids have two purposes: to retrieve the relevant information relating to the selected Program
Elements and Relationships, and to provide the options for reaching other types of information by
presenting the user with a list of related Elements and Relationships. A discussion on the navigational

aids can be found in section 4.4.1 in Chapter Four,

IIT Reduce Disorientation

El4 Reduce additional effort for user-interface ~djustment

Special consideration has been made during the design of the interface of the prototype to ensure
cognitive overheads are kept to a minimum. The notzﬁions, layout and formats of the graphical
representations and the navigational aids are consistent throughout the prototype. The hyperlinks are

always shown as highlighted text or coloured graphic designs.

E15 Provide effective presentation styles

The presentation and the relative positioning of the textual and graphical windows are consistent
throughout the prototype. This reduces the possibility of unpleasant surprises when retrieving
hypertext documents. Most of the hypertext documents within the prototype have a fixed format where
applicable, i.e., they are all divided into four different frames: Information display, Listing, Status

report and Control panel. A typical screen of the prototype is shown in Figure 5-7.

7.4 Requirements for Automation

The prototype described in Chapter Five is a realisation of the Integrated Approach outlined in
Chapter Four. The main objective of the Integrated Approach is to facilitate the process of

comprehension and it is based on a matrix of relations between pairs of Program Elements shown in

Table 1. The prototype consists of five parts:

* CCQG, a static analysis tool

* Graph Tool, a graphical display application

154

* Perl scripts
* CGI scripts
e aset of hypertext (HTML) documents

Essentially, the output from CCG is fed into the Perl scripts where information about the Program
Elements and Program Relationships are extracted. Program Relationships which can be represented
visually are then translated into a format which is recognised by Graph Tool. The rest of the textual
information is fed into the CGI scripts. The CGI scripts represent the implements of the prototype
which deliver contextisensitive information depending on the selections of the Program Elements and
Program Relations. The output, whether it is textual or graphical, is translated into HTML which can

be viewed using a web browser.

The objective of the following discussion is to examine the state of the prototype and to investigate the
effectiveness of the implementation in terms of the success of automation, the integration of tools

support, and proposed solutions to the problem of graph layout.

7.4.1 Automation

The main objectives of the Perl scripts are:

* toextract the information relating to the relational aspects of the Program Elements
* (o translate this information into a format recognised by Graph Tool

* (o prepare the rest of the CCG fact base so that it is ready to be fed into the CGI scripts

The first objective is to extract information from the static analysis tool. The information is then held
in a database which is created and maintained by the Perl scripts. The Perl scripts support the

extraction of the following Program Elements and Program Relationships:

e Constant has an Identifier * Variable has Primitive/Complex

* Constant is used as Argument Type

* Constant has Primitive/Complex * Variable is declared in Function
Type * Variable is used in Function

* Constant is declared in Function * Variable is declared in File

s Constant is used in Function * Variable is used in File

* Constant is declared in File. * e Argument has an Identifier

e Constant is used in File : © e Argument is deﬁned as Variable

¢ Variable has an Identifier * Argument has a Primitive/Complex

* Variable is used as Argument Type

155

Argument is used in Function
Primitive/Complex Type is
associated with Identifier
Primitive/Complex Type is
associated with Constant
Primitive/Complex Type is
associated with Variable
Primitive/Complex Type is

associated with Argument

Primitive/Complex Type is declared ‘

in Statement

Primitive/Complex Type is dgclared
in Function

Primitive/Complex Type is declared
in File

Statement declares Constant
Statement declares Variable
Statement declares Function

Statement declares Primitive/

Statement defines Function
Statement follows Statement
Statement is followed by Statement
Function fas an Identifier
Function uses Variable

Function uses Argument
Function returns Type

Function contains Statement
Function calls Function

Function is called by Function
Function is used in File

File has an Identifier

File contains Function

File uses Constants

File uses Variables

File uses Argument

File uses Primitive/Complex Type

File contains Statement

File imports File

Complex Type

These Program Relationships are chosen because they represent a small cross-section of the level of
abstraction generally found in a C program. They are used to demonstrate the principle of the

" Integrated Approach in the different scenarios in the Case Studies described in Chapter Six.

The second objective of the Perl scripts is to translate the're]ational information into a format suitable
for a graphical display tool. Relationships such as file dependencies, function calls, control flow and
function interface are illustrated graphically. All of the graphical representations are laid out
automatically with the exception of the function interface, which is drawn semi-automatically. One of

the file inputs for a graphical display tool is shown in Figure 5-3 in Chapter Five.
The third objective of the Perl scripts is to prepare the rest of the CCG fact base so that it is ready to

be input into the CGI scripts. Information which is related to the Program Relationships listed above

have been filtered out from the CCG fact base, and then redirected into various text files.

The main objectives of the CGI scripts are:

* to provide a mechanisin to probe the relationships between the Program Elements

156

* Lo produce a sct of hypertext documents using HTML

The first objective of the CGI scripts is to provide a mechanism to probe and to rétrieve information
relating to the Program Elements and relationships in a context sensitive manner. This is done in the
form of the context sensitive navigational aids discussed in section 4.4.1 in Chapter Four.

The second objective of the CGI scripts is to produce a set of hypertext documents by reading
information from a set of text files which have been previously processed by the Perl scripts. This
process is still largely semi-automatic with a large proportion of the hypertext documents. being

created manually.

7.4.2 Tool Support

Two of the components of PUI are CCG, a static analysis tool, and Graph Tool, a graphical display
tool. Both are complete and stand-alone applications which can be used in their own right. CCG has a
command-line interface and is largely run in the background. Graph Tool, on the other hand, has a
graphical user interface and it forms an integral part of the prototype. At present, most of the
graphical representations shown in the prototype are screen shots taken from Graph Tool. It means
that the graphical representations in the prototype are static in nature and direct manipulation to these
representations are prohibited. Similar graphical representations from other graphical display
applications have been tested and used in the prototype. It is found that the simplicity and flexibility of
the input format of Graph Tool would give an advantage over the others. A logical extension of Graph

Tool which can be fully integrated.into a web browser is yet to be developed.

Another important feature in the prototype is the textual information. It is displayed using a text
window with vertical and horizontal scroll bars as visual aids. These text windows, however, do not
support any textual manipulation. Text is displayed ‘as is’ and cannot be altered unless it is done via

the CGI scripts. The prototype itself does not support any other text processing tool.

7.4.3 Graph Layout

It is recognised that the problem of finding any drawing algorithm which satisfies the aesthetic
features and semantic constraints of a graph is NP-hard [Supo83, DiBa94]. The objective of this
research focuses on providing support which can help to alleviate the problem by implementing a
number of techniques suggested in section 2.3.5 in Chapter Two. Support has been provided for graph
simplification and graph slicing. Colour has also been used for highlighting nodes in the graphical

representations.

157

7.5 Discussion

The Integrated Approach embraces the idea that the process of comprehension is opportunistic and it
provides a means for the fusion of the various comprehension strategies. The way maintainers conduct
this process is influenced by the objectives of the maintenance activities they are engaged in and
governed by their personal preferences. The Integrated- Approach ac‘knowledges that any one of the
strategies may become active at any time and hence the need for aA;ﬁore flexible approach towards
comprehension. Under this approach, maintainers have the option of selecting and executing the

various strategies as they see fit. Pure top-down and pure bottom-up comprehension can also be

achieved as demonstrated in the different scenarios in the case studies in Chapter Six.

The concept of information management is not new. It is about setting a proper framework to organise
and retrieve relevant information. The PUI too} allows the maintainers to find out the information
* they require speedily, therefore reducing the time spent in studying the source code. Most of the
output from existing software analysis tools is quite simple. In some cases, a large amount of
information has either been filtered out, or simply lost due to successive transformations. The PUI tool
enables maintainers to acquire better overviews of the programs since information is introduced
gradually. The amount of information available to the maintainers will be limited to manageable

chunks at any stage so they can easily integrate the information together without feeling confused.

158

Chapter Eight

Conclusion

8.1 Introduction

This chapter presents a summary of this research and evaluates the success of the research against the

criteria defined in section 1.5 in Chapter One. An indication on the directions for further work on this

research is also presented.

8.2 Summary of Research

Program Comprehension plays a critical part in all aspects in Software Engineering, especially in
software maintenance. Activities such as Reverse Engineering and Reuse require the same amount of
skill and attention as Testing and Software enhancement. A good understanding of the source code is
required before the commencement of any of these activities. For a maintainer, the primary desire is
the ability to decipher the source code accurately, quickly and efficiently. Studies have shown that
maintainers spend a considerable amount of time studying programs, especially when engaged in
maintenance activities. This figure can be as high as three-and-a-half times as long as they studied the

documentation [Litt86].

Maintainers are often under pressure to accomplish the maintenance activities within a fixed time
frame and the sheer complexity of the programs makes the tasks seem formidable. In the absence of a
complete and consistent documentation, the source code may be the only information available to the
maintainers. As a result, there is a strong desire for strategies and techniques which can be utilised to
facilitate the comprehension process. The problem is how the maintainers find a systematic way to

uncover this information.

There are a number of theories and models ‘of Program Comprehension advocated by psychologists

who are interested in studying the behaviour of programmers. Most of the work has been carried out

159

by observational studies, where typically, programmeré‘ are given a task to complete within a time
limit. They were tested against their understanding, while the others were encouraged to think out
loud so that their thoughts could be recorded. Somé of the results show thz;t the approach to Program
Comprehension is performed in a top-down fashion whereas others suggest a bottom-up approach.
However, the authors Chan [Chan97], Letovsky [LetoB6a] and von Mayrhauser [Mayr94, Mayr95]
suggest thal an opportunistic approach which combines both the,, top-down and the bottom-up
approaches would be a more robust model.

This research proposes an alternative approach o Program Comprehension. It acknowledges that the
process of comprehension is opportunistic, and” that the current comprehension theories are
inadequate in addressing this. There is a need for a more flexible approach towards comprehension,
and the Integrated Approach proposed provides a wx 7 for the utilisation of the various comprehension
theories under a single environment. It recogriises'thal-'any one of the comprehension theories may
become active du-ring comprehension and maintainers have the option of selecting and executing the

comprehension strategies as they prefer.

The Integrated Approach to Program Comprehension aims to provide a solution to the problem of
information overloading. Information is systematic';t]ly categorised into different levels of abstraction
under the Integrated Approach. Relevant inforination about a particular Program Element can be
uncovered by analysing the Program Relationships and other related Elements. This approach does
not impose any restrictions on how the comprehension should be performed, instead it enables the
utilisation of ditferent comprehension strategies and models. It is flexible and it allows comprehension
to be conducted according to preférences of the mai:tainers. It is argued that the use of any one of the
theories and models discussed in Chapter Two alone may be insufficient. This approach allows the
essence of the different theories captured and performed in a single environment, and thus facilitating

the comprehension process in a more effective manner.

Static analysis tools are useful in extracting information from programs. Maintainers are more likely
to be overloaded with information extracted from these analysis tools as programs grow in size. It is
widely acknowledged that graphical representations can help maintainers to gain a much better
insight into the prografn structures. These graphicé] 'représentations are frequently used as aids to
comprehend programs. Most of the software mamtenance tools discussed in Chapter Two offer some
degree of visualisation which is based on the smlple relatlonshlps of function calls and control ﬂow
However, these graphical representations may not be very helpful due to their scale and complcxrty.
The attention of the users are often drawn back to the source code as there is inadequate support for

extracting information from the complex graphical representations.

160

This rescarch addresses more relationships than just those of function calls and control flow through
carrying out a systematic analysis of Program Elements and their Relationships. Study has shown that
maintainers often want more information than is éurrently available on the display but they are not
sure what exactly would be most helpful. The ability to provide alternative prospective on a same
element, whether its a file, a function or a variable, is important because it can provide information

with different granularity. 5

This research describes how the various strategies can be realised by a simple browsing tool, PUI
(Program Understanding Implement), which allows maintainers to understand the Relationships
between Program Elements. The prototype is based on a matrix of Program Relationships designed to
reflect the multi-dimensional nature of programs. This work is centred on the C programming
language. The programs may be either ANSI [ANSI84] or Kernighan and Ritchie [Kern78, Kern88]
C.

8.3 Evaluation of Research

The research is evaluated against a list of criteria defined in section 1.5 in Chapter One.

8.3.1 Criteria for Success
A In order to facilitate the process of Program Comprehension, a maintainer needs to have access to
different kinds of information concerning a pizce of source code. This can be in textual and/or

graphical forms. Hence:

* maintainers should have easy and quick access to information at different levels of
abstraction during various stages of comprehension

* support should be provided for maintainers with various degrees of experience and
abilities

* support should be provided for the different types of maintenance activities that they

may engage in

B There are a number of theories and models of Program Comprehension. Some researchers argué
- that it is done in a top-down fashion, whereas others advocate that it should be conducted in a
bottom-up manner. There is no real consensﬁé on how maintainers should perform
comprehension. Moreover, most maintainers may prefer to employ the use of a mixture of

strategies when the situation arises. Hence:

161

e any alternative approach to Program Comprehension proposed should address the

need for a more tlexible approach
C The feasibility of the Integrated Approach proposed needs to be examined. Hence:

* it needs to be demonstrated that it is feasible to realise the Integrated Approach in a

physical form which can be executed with minimal difficulty

D The size of a software system should not be.a hindrance to the process of Program
Comprehension. Much research effort has been devoted to the development of techniques which

support understanding-in-the-small. Hence:

e the Integrated Approach should be equipped with the capability to support

- understanding-in-the-large

In the context of this thesis, the term understanding-in-the-small is used to refer to the set of
activities that are associated with the understanding of small programs which are relatively
simple. The term understanding-in-the-large refers to, the understanding of larger programs

which contain more complex program relations,

E The usability and practicality of the Integrated Approach and of the implementation needs to be

examined. Hence:

* both the Integrated Approach and the implementation should be measured against a

set of criteria, which should lead to an objective evaluation

8.3.2 Evaluation

A The Integrated Approach to Program Comprehension is baséd on a matrix of Program
Relationships between Program Elements shown in Table 1. These Program Relationships are
derived for the C programming language ‘constructs. Each of these Program Relationships
represents a different level of abstraction of the programs ranging from high to low. They arc
organised systematically and maintainers are provided with support which gives them easy and
quick access to the information that they require. This is achieved by way of the context sensitive

navigational aids which are discussed in section 4.4.1 in Chapter Four.
Studies have shown that expert and novice programmers perceive programs differently, which

lead to the conclusion that both parties use difterent strategies during Program Comprehension.

Expert programmers tend to look for cues which are at a higher level of abstraction whereas the

162

novice programmers tend to adhere to the source code and extract information from that
representation. Under the Integrated Approach, the Program Relationships represent different
levels of abstraction of the source code. support should be provided for maintainers with various

degrees of experience and abilities.

It is extremely difficult to contemplate exactly what kind of infoymation a maintainer may need
during the maintenance tasks. The required information is largely dependent on the maintainer’s
experience, the Program Comprehension strategies used, as well as the types of the maintenance
activities they are engaged in. Under the Integrated ‘Approach, information related to the source
code is systematically broken down into various Program Relationship which represent different
levels of abstraction. Maintainers can examine information relevant to their tasks by selecting and

analysing the appropriate Program Relationships.

An alternative approach to Program Compx"éhension is proposed in section 4.4 in Chapter Four.
The Integrated Approach acknowledges that ths process of comprehension is opportunistic, and
that the current comprehension theories are inadequaté in addressing this. The Integrated
Approach recognises that during comprehension, any one of the theories may become active and
it provides a way for the utilisation of the various comprehension theories. Under this approach,

maintainers are free to select and execute the various comprehension theories as they see fit.

The Integrated Approach is realised in a simpic;browsing tool named PUI, together with the help
of supporting tools such as CCG, a software analysis tool, Graph Tool, a graphical display
application and Netscape, a 'hypertexl browser. It lias demonstrated that the idea of analysing
Program Elements and Program Relations as an alternative approach to Program Comprehension
s feasible. The algorithms used to process the output obtained from CCG are efficient. Little

training is required in order to run the PUI tool.

Two software systems have béen used as Case Studies. The size of one of the systems named
convert is much larger than the other one named sortline. The system convert contains
twenty five program files with more than three thousand and five hundred lines of code. Although
it is only a medium-sized software system, it is argued that the Integrated Approach can

accommodate systems which are significantly larger.

The Integrated Approach organises and presents information in a systematic way. All the
Program Elements within the PUI tool are cross-referenced and thus the process of
comprehension is not bounded by the physical locations of the various Program Elements. With
the help of context sensitive navigational aids, relevant iﬁfonﬁaiion regarding a Program Element

is only a mouse-click away. In addition, the size of the pfogram files which the PUI tool can deal

163

with is dependeht on the analysis tool, CCG. At present, CCG is able to model programs of any

size [Kinl95].

E A framework of evaluation for the Integrated Approach, the implementation and the results of the
Case Studies is presented in Chapter Three and reported in Chapter Seven. A detailed analysis on

the usability and practicality of the prototype is also presented in section 7.4 in Chapter Seven.

8.4 Future Work

All the theories and models of Program Comprehension discussed in section 2.2-in Chapter Two share
the same theme: they attempt to identify unique features from the comprehension process, and place
them in a model which serves to define the process in some Way. The theories and models are valuable
as they have established a basic framework where research effort can be focused. They categorise the
comprehension process into top-down and bottom-up approaches. Research is needed to investigate
and establish a general process model for each of the two approaches so that they can be compared

and illustrated how the Integrated Approach fit ir. .-

The Program Elements and Relationships are the key to the Integrated Approach. The Elements and
Relationships are based on the C programming constructs which means they are strictly on a lexical
and syntactic level. Semantic relationships can be introduced- in order to enrich the Integrated
Approach as both the semantic and syntactic relationships play an equally important role in the

process of comprehension [Shne79].

The Integrated Approach is orientated towards the .C programming language. Work can be done to

extend this approach to other higher level programsing langnuages such as Pascal, C++ and Java.

The PUI tool is a simple browsing tool which takes advantage of the web document design
technologies. One of the shortcomings of PUI is that direct modifications cannot be made in real time.
The maintainers may encounter situations where they would like to record their understanding during
the comprehension process or to modify the source code when errors are found. A text editor and a
compiler may incorporate into PUI so that the maintainers are equipped with the ability to edit text
files and recompile the source code when required. Where appropriate, an area can be set aside for the
maintainer to record information about a Program Element or a Program Relation. This information

can be stored and then retrieved accordingly when the program component is encountered.
The implements (written in CGI scripts) are in the form of context sensitive navigational aids. They

are essential in the process of recovering information about programs. Nevertheless, the attributes

scope and storage classes, which are affiliated both to the Program Elements and the relations

164

discussed in section 4.3.3 can provide the extra information that the maintainers may need. Carefully
selected attributes can be incorporated into the Integrated Approach. Simple measurements of the
source code, Program Elements and Program Relationships, which are usually in the form of software

metrics, can also be included to provide a base for comparison between pieces of source code.

The present graphical representation used in PUI is limited to that of two-dimensions. Three-

REY

dimensional visualisation techniques can be used to enhance the power of visualisation [Greg94,

Riba%4, Walk93, Youn96, Youn97]. This may include the use of animation and Virtual Reality.

Appendix A

The following is a listing of the system sortline used in Case Study One before the modifications.

It consists of three files.

File: sortline.c

/* modified version of lines.c (K & R pgs 108-110) */

#include <stdio.h>
#include <string.h>
#include "gsort.h"

#define MAXLINES 10 /* max #lines tc be sorted */
#define MAXLEN 30 /* length of input line */
#define ALLOCSIZE 100 /* available space */

static char allocbuf [ALLOCSIZE];
static char *allocp = allocbuf;’

char *lineptr [MAXLINES];

char *alloc(n)

int n;
{ .
if (allocbuf + ALLOCSIZE - allocp >= n)
{
allocp += n;
return allocp - n;
}
else

return 0;

}

int getline (s, 1lim)
char sl[];

int lim;
{
int ¢,i;
i = 0; .

while (--1lim > 0 && (c=getchar()) I!= EOF && c != ‘\n')
s{i++] = c;

if (¢ == '\n')
s[i++] = c;

s[{i] = '\0';
return i;

}

int readlines(lineptr, maxlines)
char *lineptr(];
int maxlines;
{
int len, nlines;
char *p, line[MAXLEN];

166

nlines = 0;
while ((len = getline(line, MAXLEN)) > 0)
{
if (nlines >= maxlines)
return -1;

if ((p =alloc(len)) == NULL)
return -1;

line{len~1] = '\0';
strepy(p,line);
lineptr(nlines++] = p;
}
return nlines;

}

writelines(lineptr, nlines)
char *lineptrl[}];
int nlines;

{
while (nlines-- > 0)
printf ("%s\n", *lineptr++);
}
main{()
{

int nlines;

if ((nlines = readlines(lineptr, MiXLINES)) >= 0)

{
gsort(lineptr,0, nlines-1);
writelines (lineptr, nlines);
return 0;
}
else
{
printf("error : input too big to sort\n");
return 1;
}

167

File: gsort.c

/* filename: gsort.c */

swap(v, i, 3j)
char *vi[];

int i,3;
{ s,
char *temp;
temp = v{i];
viil = v[3];
vijl = temp;

}

gsort (v, left, right)
char *v[];

int left, right;

{

int i, last;

if(left >= right)
return;

swap (v, left, (left+right)/2);
last = left;

for (i=left+l; i <= right; i++)
if (stremp(v[i), v[left]) < 0)
swap (v, ++last, i);
swap (v, left, last);

gsort (v, left, last-1);
gsort (v, last+l, right);

File: gsort.h

/* filename: gsort.h */

#ifndef gsort_header
#define gsort_header

"void swap(char *v[], int i, int 3);

void gsort(char *v([], int left, int right);

#endif

168

Appendix B

The following is a listing of the system sortline used in Case Study One after the modifications. It

consists of three files.

File: sortline.c

/* modified version of lines.c (K & R pgs 108-110) */
/* modified to accept integer as input */

#include <stdio.h>
#include <string.h>

#define MAXLINES 10 /* max #lines to be sorted */

int lineptr [MAXLINES];

int getline (s)
int *g;
{

int c;

¢ = scanf("%d", s);
return c;

}

int readlines(lineptr, maxlines)
int lineptr([]; .

int maxlines;

{

int nlines, line;

nlines = 0;
while (getline(&line) > 0)
{
if (nlines >= maxlines)
return -1;

lineptr[nlines++] = line;
}
return nlines;

}

writelines(lineptr, nlines)
int lineptr[];
int nlines;

{

while (nlines-- > 0)
printf("%d\n", *lineptr++);
}
main/()
{

int nlines;
if ((nlines = readlines(lineptr, MAXLINES)) »>= 0)

{
gsort (lineptr, 0, nlines-1);

169

writelines(lineptr, nlines);
return 0;

}

else

{
printf("error : input too big to sort\n%);
return 1;

}

170

File: gsort.c

/* filename: gsort.c */

swap(v, i, j)

int v[];
int i,3;
{ ey
int temp;
temp = v[i];
vIi] = vI[3jl;
vIjl = temp;

gsort (v, left, right)
int v[];

int left, right;

(.

int i, last;

if(left >= right)
return;

swap(v, left, (left+right)/2);
last = left;

for (i=left+l; i <= right; i++)
if (v[i] < v[left])
swap (v, ++last, i);
swap (v, left, last);
gsort (v, left, last-1);

gsort (v, last+1l, right);
}

File: gsort.h

/* filename: gsort.h */

#ifndef gsort_header
#define gsort_header

void swap(int vI[], int i, int j);

void gsort(int v([], int left, int right);

#endif

171

References

[Alkh92]

[ANSI83]

[ANSIg84]

[Arga90]

[Baec81]

[Baec90]

[Basi82]

[Bati85]

[Bigg93]

[Bigg94]

M.
Alkhatib, G. The Maintenance Problem of Application Software: An Empirical
Analysis. Journal of Software Maintenance: Research and Practice. June '1992. Vol. 4,

No. 2, pages 83-104.
ANSVIEEE. Software Engineering Standards. Wiley-Interscience. 1983.
ANSIVIEEE. Software Engineering Standards. Wiley-Interscience. 1984.

Argawal, H., and Horgan, J.R. Dynamic Program Slicing. Proceedings ACM
SIGNPLAN ‘90 Conference on Programming Language Design and Implementation.
1990. ACM Press. Pages 246-256.

Baecker, R.M. Sorting Out Sorting; Narrated colour videotape, 30 minutes, presented at

ACM SIGGRAPH ‘81 and excerpted in ACM SIGGRAPH Video Review. No. 7, 1983.

Baecker, R.M. and Marcus, A. Human Factors and Typography for More Readable
Programs. Addison-Wesley, Reading, Massachusetts. 1990,

Basili, V.R., and Mills, H.D. Undérs'ta.'zding' and Documenting Programs. IEEE
Transactions on Software Engineering. Mar-cvzh 1982. Vol. SE-8, No. 3, pages 270-283.

Batini, C., Furlani, L., and Nardelli, E. What is a good diagram? A pragmatic
approach. Proceedings of the 4th International Conference on Entity Relationship

Approach. Chicago, IL. 1985.

Biggerstaff, T.J., Mitbander, B.G., and Webster, D. The Concept Assignment
Problem in Program Understanding. Proceedings of The Working Conference on
Reverse 'Engineering. May 21-23, 1993. Baltimore, Maryland. IEEE Computer Society
Press. Pages 27-43.

Biggerstaff, T.J., Mitbander, B.G,, and Webster, D.E. Program Understanding and

the Concept Assignment Problem. (joinihunications of the ACM. Méy 1994. Vol. 37,
No. 5, pages 72-83.

172

[Bodh95]

[Boeh81]

[Boeh86]

[Boeh88]

[BoocY1]

[Broo75]

[Broo83]

[Brow84]

[Brow85]

[Burd9o]

[Burn97]

[Carp80)

Bodhuin, T. An Interaction Paradigm for Impact Analysis. PhD. Thesis. Department of

C01nput¢r Science, University of Durham,]995_..

Boehm, B.W. Software Engineering Economics. Prentice-Hall. 1981,

i,

Boehm, B.W. A spiral model of software development and enhancement. ACM

SIGSOFT Software Engineering Notes. April 1986. Vol. 11, No. 4, pages 22-42.

Boehm, B.W. A Spiral model of software development and enhancement. TEEE
Computer. May 1988. Vol. 21, No. 5, pages 61-72.

Booch, G. Object-oriented Design with Applications. Benjamin/Cummings. 1991
Brooks, F.P. The Mythical Man-month. Addison-Wesley. 1975.

Brooks, R. Towards a Theory of the Comprehension of Computer Programs.

International Journal of Man-Machine Studies. 1983. Vol. 18, No. 6, pages 543-554.

Brown, M.H., and Sedgewick, R. A System for Algorithm Animation. Proceedings of

ACM SIGGRAPH ’84. ACM Press. New York. Pages 177-186.

Brown, M.H., and Sedgewick, R.. Techniques for Algorithm Animation. 1EEE
Software. 1985. Vol. 2, No. 1, pages 28-39.

Burd, E.L., Chan, P.S., Duncan, LM.M., Munro, M., and Young, P. Improving
Visual Representation of Code. Computer Science Technical Report 10/96. Department

of Computer Science, University of Durham. 1996.

Burnstein, I., and Robserson, K. Automated Chunking to Support Program
Comprehension. Proceedings of the IEEE 5th International Workshop on Program
Comprehension. May 28-30, 1997. Dearborn, Michigan. IEEE Computer Society Press.
Pages 40-49.

Carpano, M-J. Automatic Display of Hierarchized Graphs for Computer-Aided

Decision Analysis. IEEE Transactions on Systems, Man, and Cybernetics. November

1980. Vol. SMC-10, No. 11, pages 705-715.

173

[Chan97]

[Chan91]

[CSM]

[DeklI92]

[DiBa9%4]

[Fairg5]

[Fitt79]

[Flet88]

[Fost87]

[Gans88]

[Gans93]

Chan, P.S., and Munro, M. PUI: A Tool to Support Program Understanding.
Proceedings of the IEEE Sth International Workshop on Program Comprehension. May
28-30, 1997. Dearborn, Michigan. IEEE Computer Society Press. Pages 192-198.

Chandhok, R., Garlan, D., Meter, G., Miller, P., and Pane, J. Pascal Genie.
Available from Chariot Software Group, San Diego, Caljfornia. 1991.

Centre for Software Maintenance. University of Durham.

Dekleva, 8.M. Software Maintenance: 1990 Status. Journal of Software Maintenance:

Research and Practice. December 1992. Vol. 4, No. 4, pages 233-247.

Di Battista, G., Eades, P., Tammassia, R., and Tollis, I. G. Algorithms for Drawing
Graphs: an Annotated Bibliography. June 1994. This document can be obtained via

anonymous ftp from wilma.cs.brown.edu.
Fairley, R. Software Engineering Concepts. McGraw-Hill, New York. 1985,

Fitter, M., and Green, T.R.G. When do diagrams make good computer languages?
International Journal of Man-Machine Studies. 1979. Vol. 1 1, pages 235-361.

Fletton, N.T., and Munro, M. Red:;cumenting Software Systems using Hypertext
Technology. IEEE International Confersnce on Software Maintenance, Phoenix,

Arizona. 1988. Pages 54 - 59.

Foster, J.R., and Munro, M. A Documentation Method Based on Cross-Referencing.
IEEE International Conference on Software Maintenance, Austin, Texas. 1987 Pages

I81-18S.

Gansner, E.R., North, S.C., and Vo K.P. DAG - A program that Draws Directed
Graphs. Software Practice and Experience. November 1988. Vol. 18, No. 11, pages
1047-1062.

Gansner, E.R., Koutsofios, E., North, S.C., and Vo K.P. A Technique for Drawing
Directed Graph. IEEE Transactions n S_of[ware Engineering. March 1993. Vol. 19, No.
3, pages 214-230. ;

174

[Greg94]

[Harm97]

[Jack85)

[Kern78]

[Kern88]

[Kinl95]

[Kitc95]

[Koreg88]

[Kore97)

[Lait95]

[Ledg75]

[Leto86a)

Gregson, R.D. Virtual Reality and Program Comprehension: Application Using
Spreadsheet Visualisation. MSc. Thesis. Department of Computer Science, University of

Durham. 1994,

Harman, M., and Danicic, S. Amorphous Program Slicing. Proceedings of the [EEE
5th International Workshop on Program Comprehensiay. May 28-30, 1997. Dearborn,
Michigan. IEEE Computer Society Press. Pages 70-79.

Jackson, MLA. Principles of Program Design. Academic Press. 1985,

Kernighan, B.W., and Ritchie, D.M. The C Programming Language. McGraw-Hall.
First Edition. 1978.

Kernighan, B.W., and Ritchie, D.M. The C Programming Language. Prentice-Hall,
Englewood Cliffs, New Jersey. Second Edition. 1988.

Kinloch, D. A combined Representation for the Maintenance of C Programs. PhD.

Thesis. Department of Computer Science, University of Durham. 1995.

4 Kitchenham, B., Pickard, L., and Fiieeger, S.L. Case Studies for Method and Tool

Evaluation. IEEE Software. July 1995.-Vol. 12, No. 4, pages 52-62.

Korel, B., and Laski, J. Dynamic Program Slicing. Information Processing Letters.

October 1988. Vol. 29, No. 3, pages 155-163.
Korel, B., and Rilling, J. Dynamic Program Slicing in Understanding of Program
Execution. Proceedings of the IEEE Sth International Workshop on Program

Comprehension. May 28-30, 1997. Dearborn, Michigan. IEEE Computer Society Press.
Pages 80-89.

Laitinen, K. Natural naming in software development and maintenance. PhD. Thesis.

University of Oulu. 1995.
Ledgard, H.F. Programming Proverbs. Hayden, Rochell Park. New Jersey. 1975.

Letovsky, S. Cognitive Processes in Program Comprehension. Empirical Studies of

Programmers. Albex, Norwood NJ. 1986. Pages 58-79.

175

[Leto86b]

[Lien78}

[Lien80]

(Lien81]}

[Lin093]

[Lino%4]

[Litt86]

[Luci96]

[Mayr94]

Letovsky, S., and Soloway, E. Delocalized Plans and Program Comprehension. IEEE
Software. May 1986. Vol. 19, No. 3, pages 41-48.

Lientz, B., Swanson, E.B., and Tompkins, G.E. Characteristics of Application
Software Maintenance. Communications of the ACM. June 1978. Vol. 21, No. 6, pages
466-471. m

Lientz, B., and Swanson, E.B. Software Maintenance Management. Addison-Wesley.

1980.

Lientz, B. Swanson, B.E. Problems in application software maintenance.

Communications of the ACM. November 1981. Vol. 24, No. 11, pages 763-769.

Linos, P.K., Aubet, P, Dumas,AL.,‘ Hglleboid, Y., Lejeune, P. and Tulula, P.
Facilitating the Comprehension of C Programs: An Experimental Study. Proceedings of
the IEEE 3rd International Workshop on Program Comprehension. November 14-15,
1993. Washington, D.C. IEEE Computer Society Press. Pages 55-63.

Linos, P.K., Aubet, P., Dumas, L., Helleboid, Y., Lejeune, P. and Tulula, P.
Visualizing Program Dependencies: £n Experimental Study. Software Practice and

Experience. April 1994. Vol. 24, No. 4, pages 387-403.

Littman, D.C., Pinto, J., Letovsky, S., and Solo"vay, E. Mental Models and Software
Maintenance. Empirical Studies of Programmers. Albex, Norwood NJ. 1986. Pages 80-

98.

De Lucia, A., Fasolino, A. R., and Munro, M. Understanding Function Behaviors
through Program Slicing. Proceedings of the IEEE 4th International Workshop on
Program Comprehension. March 29-31, 1996. Berlin, Germany. IEEE Computer Society
Press. Pages 9-18.

von Mayrhauser, A., and Vans, A. M Dynamic Code Cognitive Behaviors For Large
Scale Code. Proceedings of the 1EEE 3rd International Workshop on Program
Comprehension. Washington, D.C. November 14-15, 1994. IEEE Computer Society
Press. Pages 74-81.

176

[Mayr95]

[Mess91]

[Miar83]

[Myer90]

[Oman90a}

[Oman90b]

[Parn72]

[Penn87]

[Pfle94]

[Pres92]

[Pric93]

von Mayrhauser, A., and Vans, A. M. Program Comprehension During Software
Maintenance and Evolution. IEEE Computer. August 1995. Vol. 28, No. 8, pages 44 -
55.

Messinger, E.B., Rowe, L.A., and Henry, R.R. A Divide-and-Conquer Algorithm for
the Automatic Layout of Large Directed Graphs. IEEE (Transactions on Systems, Man
and Cybernetics. January/February 1991. Vol. SMC-21, No. |, pages I-11.

Miara, R.J., Musselman, J.A., Navano, J.A. and Shneiderman, B. Program
Indentation and Comprehensibility. Communications of the ACM. November 1983. Vol.

26, No. |1, pages 861-867.

Myers, B.A. Taxonomies of Visual Programming and Program Visualisation. Journal of

Visual Languages and Computing. March 1990. Vol. 1, No. I, pages 97-123.
Oman, P. Maintenance Tools. IEEE>Software. May 1990. Vol. 23, No. 3, pages 59-65.

Oman, PW. and Cook, C.R. The Book Paradigm for Improved Maintenance. TEEE
Software. January, 1990. Vol. 7, No. 1, pages 39-45.

Parnas, D.L. On the criteria to be used in decomposing systems into modules.

Communications of the ACM. December [972. Vol. 15, No. 12, pages 1053-1058.

Pennington, N. Stimulus Structures and Mental Representations in Expert Com-
prehension of Computer Programs. Cognitive Psychology. July 1987. Vol. 19, No. 3,
pages 295-341.

Pfleeger, S.L. Design and Analysis in Software Engineering. Part 1: The Language of

Case Studies and Formal Experiments. Software Engineering Notes. October 1994, Vol.

19, No. 4, pages 16-20.

Pressman, R.S. Software Engincering: A Practitioner’s Approach. Third Edition.

McGraw-Hill. 1992.
Price, B.A., Baecher, R.M., and Small, LS. A Principled Taxonomy of Software

Visualizaiton. Journal of Visual Languages and Computing. September 1993. Vol. 4, No.

3, pages 211-266.

177

[Rajl90]

[Rajl96)

[Rein81]

[Riba94]

[Robs91]

[Roma93]

[Royc70]

[Ryde79]

[Schn87]}

[Shne79]

[Shne80]

Rajlich, V., Damaskinos, N., Linos, P., Khorshid, W. VIFOR: A Tool for Software
Maintenance. Software Practice and Experience. January 1990. Vol. 20, No. 1, pages 66-

77.

Rajlich, V., and Adnapally, S.R. VIFOR 2: A Tool For Browsing and Documentation.
Proceedings of the IEEE International Conference on Software Maintenance, Monterey,

California. November 4-8, 1996. IEEE Computer Society Press. Pages 296 - 300.

Reingold, E.M., and Tilford, J.S. Tidier drawings of trees. IEEE Transactions on
Software Engineering. March 1981. Vol. SE-7, No. 3, pages 223-228.

Ribarsky, W., Bolter, J., Op den Bosch, A., and can Teylingen, R. Visualization and
Analysis Using Virtual Reality. IEEE Computer Graphics and Applications. January
1994, Vol. 14, No. 1, pages 10-12.

Robson, D.J., Bennett, K.H., Cornelius, B.J., and Munro, M. Approaches to Program
Comprehension. Journal of Systems and Software. February 1991. Vol. 14, No. 2, pages

79-84.

Roman G-C., and Cox, K.C. A Taxonomy of Program Visualization Systems. IEEE
Computer. December 1993. Vol. 26, No. 12, pages |1-24.

Royce, W.W. Managing the development of large software systems: concepts and

techniques. Proceedings IEEE WESCON. 1970. Pages 1-9.

Ryder, B.G. Constructing the Call Graph of a Program. IEEE Transactions. on
Software Engineering. March 1979. Vol. SE-5, No. 3, pages 216-225.

Schneidewind, N.F. The State of Software Maintenance. IEEE Transactions on

Software Engineering. March 1987. Vol. SE-13, No. 3, pages 303-310.
Shneiderman, B., and Mayer, R. Syntactic/Semantic Interactions in Programmer
Behavior: A Model and Experimental Results. International Journal of Computer and

Information Sciences. 1979. Vol. 8, No. 3, pages 219-238.

Shneiderman, B. Software Psychology. Cambridge MA: Winthrop Publishers Inc. 1980.

178

[Shne86) Shneiderman, B., Shafer, P., Simon, R., and Weldon, L. Display Strategies for
Program Browsing: Concepts and Experiment. IEEE Software. May 1986. Vol. 19, No.
3, pages 7-15.

[Shu88] Shu, N.C. Visual Programming. Van Nostrand Reinhold, New York. 1988.

[Solo84) Soloway, E., and Ehrlich, K. Empirical Studies of Programming Knowledge. 1EEE
Transactions on Software Engineering. September 1984. Vol. SE-10, No. 5, pages 595-
609.

{Solo86] Soloway, E. Learning to Program = Learning to Construct Mechanism and
Explanations. Communication of the ACM. September 1986. Vol. 29, No. 9, pages 850-
858.

[Somm96} Sommerville, I. Software Engineering. Fifth Edition. Addison-Wesley. 1996.

[Stan84] Standish, T.A. An Essay on Soffwaré Reuse. IEEE Transactions on Software
Engineering. September 1984. Vol. SE-10, No. 5, pages 494-497.

[Stas92] Stasko, J.T., and Patterson, C. Understanding and characterizing software
visualization systems. Proceedings of the IEEE 1992 Workshop on Visual Languages.

Seattle, Washington. 1992. IEEE Computer Society Press. Pages 3-10.

[Stor95] Storey, M-A.D., and Miiller, H.A. Manipulating and Documenting Software Structures
Using SHriMP Views. Proceedings of the IEEE 1995 International Conference on
Software Maintenance. October 17-20, 1995. Opioh (Nice), France. IEEE Computer
Society Press. Pages 275-284.

[Stor97a] Storey, M-A.D., Rracchia, F.D., and Miiller, H.A. Cognitive Design Elements to
Supporf the Construction of a Mental Model during Software Visualisation. Proceedings
of the IEEE 5th International Workshop on Program Comprehension. May 28-30, 1997.
Dearborn, Michigan. IEEE Computer Society Press. Pages 17-28.

[Stor97b] Stork, D.G. The End of an Era, The Beginning of Another? HAL, Deep Blue and

Kasparov. 1997. This document can be obtained from this URL

http://www .chess.ibm.com

179

[Sugi8l1]

[Supo83]

[Tama88]

[Teas94]

[Thiir9s]

[Till97]

[Venk91]

[V1ie93]

[Walk90]

[Walk93]

[Warf77]

Sugiyama, K., Tagawa, S., and Toda, M. Methods Jor Visual Understanding of
Hierarchical System Structures. IEEE Transactions on Systems, Man and Cybernetics.

February 1981. Vol. SMC-11, No. 2, pages 109-125.

Supowit, K.J., and Reingold, EM. The complexity of drawing trees nicely. Acta
Informationca. 1983. Vol. 18, No. 4, pages 377-392. "

Tamassia, R., Di Battista, G., and Batini, C. Automatic graph drawing and readability
of diagrams. IEEE Transactions on Systems, Man and Cybernetics. February 1988. Vol.

- SMC-18, No. 2, pages 61-79.

Teasley, B.E. The effects of naming style and expertise on program comprehension.

International Journal of Human-Computer Studies. 1994. Vol. 40, pages 757-770.

Thiiring, M., Hannemann, J., and Haake, J.M. Hypermedia and Cognition:
Designing for Comprehension. Communications of the ACM. August 1995. Vol. 38, No.
8, pages 57-66.

Tilley, S.R., and Smith, D.B. On Using the Web as Infrastructure for Reengineering.
Proceedings of the IEEE Sth International Workshop on Program Comprehension. May

28-30, 1997. Dearborn, Michigan. IEEE Computer Society Press. Pages 170-173.

Venkatesh, G.A. The semantic approach to program slicing. ACM SIGNPLAN
Notices. June 1996. Vol. 26, No. 6, pages 107-119.

van Vliet, J.C. Software Engineering: principles and practice. Wiley. 1993.

Walker, J.Q. A Node-positioning Algorithm for General Trees. Software Practice and
Experience. July 1990. Vol. 20, No. 7, pages 685-705.

Walker, G.R., Rea, P.A. Whalley, S., Hinds, M., and Kings, N.J. Visualisation of
telecommunications network data. British Telecom Technology Journal. October 1993.

Vol. 11, No. 4, pages 54-63.

Wélrﬁeld, J.N. Crossing Theory and Hierarchy Mapping. IEEE Transactions on
Systems, Man, and Cybernetics. July 1977. Vol. SMC-7, No. 7, pages 505-523.

180

[Weis82]

[Weis84]

[Weis86]

[Weth79]

[Wied806]

[Wied91]

[Wild91]

[Wirt71]

[Youn96]

[Youn97)

[Youn93]

Weiser, M. Programmers use Slices when Debugging. Communications of the ACM.

July 1982. Vol. 25, No. 7, pages 446-452.

Weiser, M. Program Slicing. IEEE Transactions on Software Engineering. July 1984,
Vol. SE-10, No. 4, pages 352-357.

85
Weiser, M., and Lyle, J. Experiments on Slicing-Based Debugging Aids. Empirical
Studies of Programmers. Albek, Norwood NJ. 1986. Pages 187-197.

Wetherell, C., and Shannon, A. Tidy Drawings of Trees. IEEE Transactions on
Software Engineering. September 1979, Vol. SE-5, No. 5, pagesSl4-520.

Wiedenbeck, S. Processes in Conl/}uter Program Comprehension. Empirical Studies of

Programmers. Albex, Norwood NJ. 1986. Pages 48-57.

Wiedenbeck, S. The Inirial Stage of Progfam Comprehension. International Journal of

Man-Machine Studies. October 1991. Vol. 35, No. 4, pages 517-540.

Wilde, N., and Huitt, R. A Reusable Toolset for Software Dependency Analysis.
Journal of Systems and Software. February 1991. Vol. 14, No. 2, pages 97-102.

Wirth, N. Program development by Stepwise Refinement. Communications of the ACM.

April 1971. Vol. 14, No. 4, pages 221-227.

Young, P. Three Dimensional Information Visualisation. Technical Report 12/96.

Centre for Software Maintenance, University of Durham. March 1996.

Young, P., and Munro, M. A New View of Call Graphs for Visualising Code Structure.
Technical Report 03/97. Centre for Software Maintenance, University of Durham. April

1997.

Younger, E.J., and Bennett, K.H. Model-Based Tools to Record Program
Understanding. Proceedings of the IEEE 2nd International Workshop on Program
Comprehension. July 8-9, 1993. Capri, Italy. IEEE Computer Society Press. Pages 87-
9s.

/") ¢
2 ﬁ:i
@ L

S

o
i

181

