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Abstract 

The object of this thesis is the study of nanostructured thin films using inelastic 

light scattering and elastic x-ray scattering techniques. Their use in combination with 

other techniques is a powerful tool for the investigation of nanostructured materials. 

X-ray, Raman and Brillouin characterisation of cluster-assembled carbon films, 

promising for applications in the field of catalysis, hydrogen storage and field emission, 

is here presented. X-ray reflectivity (XRR) provided a measure of the density. Raman 

spectroscopy showed that the local bonding in these amorphous films depends on the 

size distribution of the clusters and that it is possible to select the cluster size in order 

to grow films with tailored properties. Brillouin scattering provided a characterisation 

at the mesoscopic scale and an estimate of the elastic constants, revealing a very soft 

material. 

XRR was employed to study density, layering and roughness of a wide range of 

amorphous carbon films grown with different techniques. Some films possess an 

internal layering due to plasma instabilities in the deposition apparatus. By comparing 

XRR with Electron Energy Loss Spectroscopy, a unique value for the electron 

"effective mass" was deduced~and a general relationship between sp- content and 

density was found. XRR and H effusion were used to determine the hydrogen content. 

A study of the size-dependent melting temperature in tin nanoparticle thin films 

was undertaken with a combined use of X-Ray Diffraction (XRD) and light scattering. 

A redshift in the position of a Rayleigh peak in the temperature-dependent Brillouin 

measurements was shown to be related to the melting of the nanoparticles and 

explained by an effective medium model. XRD also provided information on the low 

level of stress in the particles. Low-frequency Raman scattering was used to study the 

behaviour of the acoustic modes of a single particle as a function of temperature. 
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Chapter 1 
Introduction 

1.1 Nanostructured materials 
The growth of new materials with tailored properties is one of the most active 

areas of scientific research. In recent years great efforts have been devoted to the 

exploitation of novel structures, objects and phenomena rather than to the explanation 

of fundamental laws. Condensed matter physics has become, at least in part, the 

synthesis and the study of materials that did not before exist. One of the main fields of 

this research has been the study of structures whose properties (compositional, 

chemical, morphological, mechanical, electronic, vibrational, etc.) are related to 

characteristic lengths df~ the order of nanometres. These materials are called 

nanostructured materials, and nanostructures, nanoparticles, nanotubes, nanowires 

have become common words in modern physics. 

There are two distinct domains where nanostructures can be interesting for 

applications. The first is related to the desirability of miniaturising electronic devices. 

The second and more interesting domain is that of the nanostructured materials (e.g. in 

the form of films, or nanoparticles...) that show attractive mechanical, catalytic, 

magnetic, electronic and optical properties different from their bulk or even 

microcrystalline counterparts [1-4]. The physics and chemistry of solids have shown 

that most properties of solids depend on the microstructure or nanostructure, the 

chemical composition, the arrangement of atoms, and the size of the solid in one, two 

or three dimensions. By changing one or more of these parameters, the properties of the 

solid change. In nanostructured materials a significant fraction of atoms is in a 

configuration different from the bulk configuration (i.e. grain boundaries, surface 

bonds). Moreover, their atomic order is intermediate between that of amorphous 

materials (first-neighbour order) and that of crystalline materials (long-range order). 

Their peculiar properties are related to the size of the material building blocks, which 

can in principle be tuned. The new properties exhibited by nanostructured materials are 

due to different effects: 
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@ size effects, resulting i f the characteristic size of the building blocks of the 

nanostructure is reduced to the point where it becomes comparable to critical length 

scales of physical phenomena (e.g. the mean free path of electrons or phonons, a 

coherency length, etc.); 

® change of the dimensionality of the system, so that we can have characteristic 

2D or ID phenomena; 

© change of the atomic structure; 

® alloying of elements. 

The synthesis of materials or devices with new properties by means of controlled 

manipulation of their structure on the atomic level has thus become an emerging 

interdisciplinary field based on solid state physics, chemistry, and materials science. 

When considering nanostructured materials with novel properties, one can 

distinguish between two groups of materials. On one hand, we have materials with 

reduced dimensions or dimensionality, such as nanometre-sized particles, thin wires, 

thin films, quantum wells. On the other hand we have bulk solids (or films) with a 

nanometre-scale microstructure, where the atomic arrangement or the size of building 

blocks forming the solid (crystallites, or atomic and molecular groups) vary over a 

length of a few nanometres throughout the bulk. The atomic structure and the chemical 

composition may vary in space continuously, such as in glasses, gels or implanted 

materials. However we can also have materials, assembled from nanometre-sized 

building blocks, which are structurally heterogeneous, i.e. nanocrystalline materials 

with crystallites and grain boundaries, nanoparticles embedded in a matrix, cluster-

assembled materials. 

One of the most famous examples of the correlation between the atomic structure 

and the properties of a bulk material is the variation in the hardness of carbon when 

passing from graphite to diamond. Size confinement also has a spectacular application 

in carbon, for example in the family of carbon clusters, or fullerenes, including the 

most famous C6o Buckminsterfullerene [5], or in the family of multiwall or single wall 

nanotubes, which can be insulating, semiconducting or conducting materials [6] 

depending on the atomic arrangement. Moreover, doping of these new carbon forms 

has been investigated, in the hope of tuning the electronic properties. 

Thin films or multilayers form another type of nanostructured materials. Though 

structurally homogeneous, the reduced thickness strongly affects their properties, and 

the role of the surface becomes increasingly important. Amorphous carbon in the form 
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of thin films has received a huge amount of attention in the past ten years. Several 

applications have been found for these materials, from protective coating films, to field 

emission films for flat panel displays, to large area storage materials or supercapacitors 

(see sections 4.1 and 5.1). 

There are different ways to build nanostructured systems [3, 4, 7], for example 

atomic deposition, mechanical milling, chemical methods and gas aggregation 

techniques. The main requisites of these techniques are the ability to control the 

properties of the deposited materials and the efficiency of the production. One of the 

most explored ways to grow nanostructured materials is the assembling of clusters. 

Clusters are intrinsically nanomaterials, objects whose dimensions provide properties 

completely different from the bulk. The physical and chemical properties of these 

objects are size-dependent and they can be considered as building blocks for the 

synthesis of materials with tailored properties, controlled by changing the size and 

composition of the primeval clusters [8]. By assembling them for example as films, one 

hopes that some of the peculiar properties of clusters are retained in the solid form. 

The possibility of using nanostructures for the building of electronic and electro-

optic devices or for the assembling of materials with novel structural properties is thus 

intimately related to the capability of producing and manipulating small particles with 

defined and homogeneous sizes. For this reason this field of research can benefit from 

the efforts devoted to the characterisation of clusters and small aggregates. Aggregates 

of atoms in the nanometre size range, usually called nanoparticles, exhibit properties 

which can be considered intermediate between those characterising simple molecules 

on one side and bulk materials on the other side. Although in recent years a 

considerable amount of work has been done to study these objects, the production and 

investigation of small particles remains a challenging problem [9]. Efforts have been 

concentrated on the manipulation of the optical properties of semiconductor clusters 

through various degrees of dimensional or quantum confinement. From this point of 

view the best-known systems are quantum-well structures and only very recently have 

quantum dots become increasingly important [2, 9]. 

The assembling of clusters seems to be very promising particularly for thin film 

synthesis [10-13]. Compared to other techniques, the use of clusters offers new 

opportunities such as shallow implantation, control of cluster mass distribution and 

control of cluster deposition energies, which can allow the growth of films with a 

tailored nanocrystalline structure [10, 13]. Moreover, the low diffusivity of clusters on 
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a substrate causes different nucleation and growth processes compared to atom-

assembled films. A necessary requisite for a large scale and reliable use of this 

technique is the development of efficient production and characterisation methods to 

control cluster nucleation, deposition and coalescence [13-16]). 

Two main cluster deposition methods have been historically explored. The first 

idea was to produce beams of accelerated (ionized) clusters and take advantage of the 

incident kinetic energy to enhance atomic mobility even at low substrate temperatures. 

This method does not lead, in general, to nanostructured materials, but to films similar 

to those obtained by atomic deposition, with sometimes better properties. A more 

recent approach is to deposit beams of neutral clusters, with low kinetic energy to 

preserve their peculiar properties (characteristic of the free, isolated clusters) when they 

reach the surface. The limit between the two methods is roughly at a kinetic energy in 

the range 0.1-1 eV/atom. 

In particular, the application of cluster beam deposition to the synthesis of 

nanocrystalline carbon thin films seems to be very attractive. The control of deposition 

energy and mass distribution can in theory open the possibility of tuning the carbon 

coordination (sp2-sp3 ratio) in the film. Also, the introduction of fullerenic structures 

embedded in an amorphous matrix could influence the mechanical properties of the 

nanostructured materials [17, 18]. A great deal of experimental and theoretical work 

has been performed on carbon films grown from an atomic plasma ([19], see also 

Chapter 4). However the characterisation of cluster-assembled carbon materials lacks 

detail, despite theoretical investigations having been done on the properties of solids 

based on the assembly of small carbon units [20-22]. The structural and functional 

properties of amorphous carbon films, assembled atom by atom, are largely determined 

by the kinetic energy of the ions reaching the substrate during the film growth [1, 7, 8]. 

The use of carbon clusters, together with carbon atoms, can open new possibilities for 

the synthesis of materials where the structural and functional properties are also 

determined by the organisation of units with dimensions ranging from mesoscopic to 

nanoscopic scale [10, 23], 

1.2 X-ray and inelastic light scattering techniques 
For both nanoparticles and cluster-assembled materials, and especially for thin 

films, it is crucial to have diagnostic techniques allowing the characterisation of particle 
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structure, size distribution and of their variation during post-deposition processing. 

Both x-ray and inelastic light scattering have the advantage, over other techniques (i.e. 

electron scattering techniques), of being non-destructive, and this is very important 

particularly when studying thin films. Moreover, microscopy techniques (e.g. Atomic 

Force Microscopy) are usually limited to the study of surfaces. 

Vibrational spectroscopy and in particular Raman and Brillouin spectroscopy 

accomplish the task of providing information about the dynamics of phonons in small 

particles, substructures and thin films. Since exact theories have been formulated and 

tested to explain the confinement effects, these techniques, and in particular Raman 

spectroscopy, can also be used as particle size and nanostructure characterisation tools. 

The first works on the use of Raman scattering for the study of confinement 

effects have been published more than 20 years ago. Since then this technique has 

become a routine approach to the characterisation of small particle systems (e.g. study 

of particle size distribution). Raman scattering is now widely accepted as a standard 

characterisation technique for the study of amorphous carbons, and can provide 

information about the local bonding in these materials. 

On the other hand Brillouin spectroscopy is a very sensitive technique for the 

detection of acoustic modes, and if applied to supported thin films or multilayers it can 

provide useful information on their elastic properties. It can also be used to study 

disorder effects on the vibrational properties (e.g. in surface or volume fractal-like 

aggregates, or induced by the roughness). Vibrational characterisation of materials 

presenting multiscale granularity such as cluster-assembled carbon films is still poorly 

developed. 

Systems with a characteristic size ranging from a few nanometers to several tens 

of nanometers can be investigated with vibrational spectroscopy. Beyond these limits 

several problems remain. The structure of particles with size below a few nanometres is 

poorly known and difficult to describe theoretically. The assumptions made for the 

crystalline state are no longer valid. This implies the exploration of an ill-defined 

region where high structural disorder typical of amorphous solids coexists with features 

typical of nanocrystalline materials, leading to different contributions to the 

modification of the phonon spectra. This situation is particularly relevant and is often 

underestimated for disordered carbons. In these systems the presence of different scales 

of disorder and the coexistence of different allotropic forms confuses the interpretation 

of vibrational scattering from carbon. A similar situation can be found at the other 
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extreme of mesoscopic systems for scales of tens and hundreds of nanometres. These 

are lengths typical of acoustic phonons visible by means of Brillouin spectroscopy. 

X-ray scattering techniques are also widely used for structural characterisations. 

These include X-Ray Diffraction (XRD) for crystalline order investigation (it can also 

provide size information in the case of small particles), Wide Angle X-ray Scattering 

(WAXS) for radial distribution function determination in amorphous materials, Small 

Angle X-ray Scattering (SAXS) for obtaining structural information over a wider range 

of lengths (e.g. fractal or self-affine aggregation properties, radius of gyration of small 

particles), and X-Ray Reflectivity (XRR) for the determination of density, roughness 

and layering in thin films or multilayers. In particular, grazing incidence x-ray 

scattering is very powerful for the investigation of thin films. The grazing incidence 

geometry increases the x-ray path in the fi lm, and minimises the probing of the 

substrate (in particular i f the incidence angle is close to the critical angle of total 

external reflection of the film). This enhances the useful signal, from the thin f i lm, that 

can be detected. Moreover, by changing the incidence angle it is possible to tune the x-

ray penetration depth and thus probe thin films at different depths. This allows, for 

example, the study of buried interfaces. 

By combining inelastic light scattering and x-ray techniques a considerable 

amount of information can be gathered concerning the vibrational and structural 

properties of nanostructured materials. For example, XRR can be used to perform the 

structural characterisation needed for the thin film geometry modelling to be used in the 

analysis of Brillouin data (layering, thickness, density). XRD can be employed for 

particle size determination and crystalline order characterisation, indispensable in the 

interpretation of Raman or Idw^ffequency Raman spectra of nanosystems.Tn the case of 

nanocrystalline or amorphous materials (e.g. carbon) WAXS can help in interpreting 

the Raman data (e.g. providing information about the presence and size of ordered 

domains), while SAXS can be coupled with low-frequency inelastic light 

measurements to study the possible existence of dynamical or static self-affine 

properties of the system. 

In summary, not only can these techniques be combined to access complementary 

information, but also the results of one experiment can help provide the necessary input 

needed for the modelling, analysis and interpretation of the data obtained using a 

different experimental technique. 
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13 Aim of this thesis 
The subject of this thesis has been the study of different nanostructured materials, 

and in particular of thin films, using different techniques involving the scattering of 

electromagnetic radiation. Light scattering (with wavelength of the excitation light in 

the visible range) and different x-ray scattering techniques (x-ray reflectivity, x-ray 

diffraction, small and wide-angle x-ray scattering, from laboratory and synchrotron 

sources) have been employed, together with other characterisation techniques. In 

collaboration with several research groups we have obtained structural and dynamical 

information relevant to the study of both the properties and the deposition processes of 

the materials investigated. 

While inelastic light scattering provided information about the dynamical 

behaviour, only elastic x-ray scattering has been employed. Due to the smaller 

wavelength, x-ray scattering is more sensitive to the local ordering of atoms, and has 

been used to clarify aspects of the static structure of the materials under investigation. 

The experiments undertaken must be interpreted in the wider framework of a 

research project funded by the Italian National Institute for Condensed Matter Physics 

(INFM) and involving the partnership of the University of Milan, Politecnico di 

Milano, University of Durham, and other European and Italian research groups. The 

aim of the project was the design, construction and characterisation of a Pulsed 

Microplasma Cluster Source (PMCS), and the deposition and characterisation of 

cluster-assembled carbon films with tailored nanostructural properties. Many different 

characterisation techniques have been employed (as explained in chapter 5), and the 

work here presented is only a contribution to the whole research project. The control of 

the carbon film nanostructure can open interesting perspectives for the application of 

these systems for field emission, catalysis, and gas adsorption. In particular, due to the 

interest in the field emitting properties of nanostructured carbon films, a collaborative 

project with J. Robertson's group at the University of Cambridge, leader in the 

production and study of "atom by atom" assembled amorphous carbon films (from an 

atomic plasma), was started. Moreover, the possibility of using Brillouin scattering to 

determine the mechanical properties of tetrahedral amorphous carbon films (ta-C) 

grown in Cambridge strengthened this link. It was within the framework of this 

collaboration that the XRR study of density and layering properties of ta-C films was 

carried out. 
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The study of melting of tin nanoparticles as a function of their size was not 

directly related to the above-mentioned projects. This work was undertaken in 

collaboration with the University of Nice (sample growth) and the University of Pavia 

(optical characterisation). It proved to be an interesting example of the combined use of 

x-ray and inelastic light scattering techniques. 

1.4 Thesis outline 
In chapter 2 the theory behind the experimental techniques employed in this thesis 

is introduced. A simple classical picture and the fundamental ideas behind the quantum 

theory of Raman scattering are presented, and the characteristics of Raman scattering 

from small crystallites and amorphous materials are outlined. The theory of Brillouin 

scattering is then discussed, in relation to the elastic properties of materials and to the 

propagation of sound waves, particularly in the case of supported films. Finally the 

main theoretical points concerning x-ray reflectivity, diffraction, small angle scattering 

and wide angle scattering from amorphous materials, and related to the work here 

presented, are introduced. 

Chapter 3 briefly describes all the experimental requirements and the 

instrumentation required for the experiments performed and described in this thesis, 

both for laboratory and synchrotron measurements. The analysis techniques and fitting 

or simulating software employed for data analysis are introduced. 

The above-mentioned scattering techniques were able to provide a wide 

characterisation of the properties of the investigated materials, but attention was also 

given to some interesting aspects of the scattering itself, from such peculiar systems as 

nanostructured thin films. 

In Chapter 4 it is demonstrated how, in the case of a wide variety of carbon films 

(both pure and hydrogen or nitrogen containing), assembled "atom by atom", with very 

low surface roughness, x-ray reflectivity can be usefully employed to study their 

density, surface roughness and internal layering. Coupled with Electron Energy Loss 

Spectroscopy (EELS), XRR was used to obtain a single value for the effective mass to 

be used in density determination by EELS, and a general relationship between density 

and sp3 hybridization content was demonstrated. By coupling XRR with H effusion, we 

were able to determine the hydrogen content in these films. 
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In Chapter 5 the experimental results related to the cluster-assembled carbon 

films project are presented. After a brief introduction concerning the deposition 

technique, a section is devoted to the particular and widely studied case of Raman 

scattering from amorphous carbons. The study and characterisation of the films grown 

in the University of Milan, using Raman and Brillouin scattering and x-ray scattering 

techniques, is then discussed. It is shown how inertia! separation effects in the cluster 

beam, and the possibility of focusing the beam, enable the deposition of films in which 

the local bonding character and also the mesoscopic structure can be tuned. Brillouin 

scattering permits the evaluation of the elastic properties of the material. In addition to 

the material characterisation, inelastic light scattering from these nanostructured 

systems presents interesting aspects (e.g. presence of localised, non-propagating 

vibrational modes). 

Chapter 6 shows how a combination of high-resolution x-ray diffraction and 

Brillouin scattering was used to study the size-dependent melting transition in tin 

nanoparticles embedded in an amorphous matrix. Low frequency Raman scattering 

from acoustic vibrations of the particles was also studied across the melting 

temperature. 

Finally, chapter 7 reviews the main conclusions resulting from the work 

presented, and discusses the possible future developments of this research. 
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Chapter 2 

Experimental techniques: fundamental 

physics 

2.1 Introduction 
The results presented in this thesis were obtained using different techniques, 

which can be divided in two groups, i.e. inelastic light scattering and x-ray scattering. 

Raman scattering and Brillouin scattering fall into the first category; x-ray diffraction 

(XRD), small and wide angle x-ray scattering (SAXS and WAXS) and x-ray 

reflectivity (XRR) fall into the second category. This chapter will provide an overview 

of the theory behind~the techniques employed," with particular aftentioh to their 

application to thin films and nanostructured materials. 

Most of the light travelling into a medium is transmitted or absorbed according to 

the laws of reflection and refraction; a small fraction is diffused in all directions 

because of the inhomogeneities in the medium. Structural inhomogeneities are static 

diffusers and scatter the light elastically (without change of frequency). Density 

fluctuations due to atomic vibrations are dynamical diffusers, as well as charge or spin 

fluctuations. Inelastic light scattering by acoustic waves was first proposed by Brillouin 

[1]; inelastic light scattering by molecular vibrations was proposed by Raman [2]. For 

simplicity, we can say. that (at least in a crystal) Raman scattering is inelastic light 

scattering from optical phonons, while Brillouin scattering is from acoustic phonons. 

Grazing incidence elastic x-ray experiments are powerful, non-destructive tools 

enabling surface and sub-surface structures of thin films and multilayers to be explored 

at the Angstrom length scale, due to the small wavelength of x-rays. While XRD and 

WAXS permit the study of the crystal lattice and atomic arrangement, x-ray reflectivity 

can provide information about thickness, density and interface roughness of layers in a 

film. 

11 



2.2 Raman scattering 
Raman scattering is a widely used technique for the characterisation of many 

different materials. It can be used to investigate the vibrational dynamics of the 

molecules or lattice cells constituting the material, and it provides a sort of fingerprint 

of the molecule or crystal analysed. 

Let us consider the scattering of photons with energies in the range 2-4 eV by 

optical phonons. When the spectrum of a crystal illuminated with monochromatic light 

of frequency (OL is analysed, it is found that it consists of a very strong line at frequency 

(OL, as well as weaker lines with frequencies (Oi+tyiq), where <w/q) are phonon 

frequencies. The strong line centred at (OL is due to the elastic scattering of photons and 

is known as Rayleigh scattering. The other lines originate from inelastic scattering of 

photons by phonons and constitute the Raman spectrum. The Raman bands at 

frequencies fi^-co/q) are called Stokes lines, those at frequencies ct)£,+a>/q) are known 

as anti-Stokes lines. The intensities of the anti-Stokes lines are usually considerably 

weaker than those of the Stokes lines. In first order Raman scattering only optical 

phonons with q = 0 are involved, as a consequence of momentum conservation. 

A brief overview of Raman scattering theory is presented here; the reader is 

referred to ref. [2-7] for a more complete discussion of Raman scattering. 

2.2.1 Classical theory 
The classical theory of the Raman effect [4] is based on the fact that the incident 

electromagnetic field induces in the system a time-dependent dipole moment M ( f ) . The 

intensity of the scattering field is proportional to M ( 0 . The relationship between E ( f ) 

= EL(k£,ct)£)cos(krr-ct)LO and M ( f ) is expressed through the electronic polarizability 

tensor a and higher order factors: 

M = Q E + | / 3 E 2 + ... (2.1) 

a is a function of the electronic charge distribution and is thus sensitive to molecular 

vibrations. For small displacements with respect to the equilibrium position, it is 

possible to express a using a Taylor series as a function of the normal coordinates Q 

associated with the phonon (q, cuo), [i.e. Q = Q0 cos(q • r - 0)Qt) ]: 
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a = a0 + 
da 

Jo * 2 dQ2 
<22 + ... (2.2) 

Jo 

Let us consider the first order effect. From Eqs. (2.1) and (2.2) we have 

M(r) = a0EL cos(k L • r - (oLt) + 

if da" 
Qo^i 

cos((k L - q) • r - (coL - o)0 )t)+ 
cos((kL+q)-r-(Q)L+(0Q)t) 

+ ... 
(2.3) 

The scattered intensity per solid angle unit is proportional to the second derivative of 

the dipole moment and can be expressed as 

&o cos(k£ - r-coLt) + 

cos((k L - q) • r - (G)L - co0 )t)+ 

k\ cos((k L + q) • r - (o)L + co0)t) 

7(0 oc E + . (2.4) 

where 

'4 

a0(o4

L 

1 da 
4 w >o 

1 (d2a 
4 {dQ2 

G b 2 K - ^ o ) 4 

QZ((OL+(OQ)4 

(2.5) 

From Eq. (2.4) (or calculating the corresponding power spectrum) one can see the 

presence of the elastically scattered component and of the inelastic Stokes and anti-

Stokes components. Thus the classical theory exactly predicts the positions of the peaks 

in the Raman spectrum, but not the correct intensity ratio between the Stokes and anti-

Stokes branches. From Eq. (2.5) one obtains: 

Stokes _ {(OL-o>of (2.6) 
lanti-Stokes + 0)Q )4 

while experimentally it is found that the Stokes component has a larger intensity. Most 

of the light is elastically scattered (Rayleigh scattering). The frequency difference 

between incident and scattered light is called the Raman frequency or Raman shift. 

More phonons can be involved in the scattering process, thus contributing to the so-

called second order Raman scattering. Usually, the unit used to express the Raman shift 

is wavenumber, expressed in cm 1 (1 c m 1 = 30 GHz = 1.2407-10"4 eV). 
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2.2.2 Quantum theory 
The quantum theory of Raman scattering is rather complicated (see [5]). Only a 

very simple picture of the photon-phonon interaction wil l therefore be given. 

Let (O)L, k/,) be the photon in the laser beam, (Q)Sc, Kc) the scattered photon and 

(Q)j, q) the optical phonon involved in the scattering process. Energy and momentum 

are conserved between initial and final states. For the Rayleigh scattering: 

(2.7) 

(2.8) 

while for Raman scattering 

Q)L=(Osc±(Oj(q) 

Under usual experimental circumstances, C0L » <o/q), so that (OL = (OSC (typical 

values are (OL = 20000 cm"1 and £0, = 1000 cm"1). At these incident frequencies there is 

little dispersion, so that w(£fy,) = n((OSC) = n. kL and ksc are the wavevectors inside the 

crystal, and so \kL\ = n(Q)L)0)Jc = n{o)sc)Q)sJc = \ksc\. kL and ksc are much smaller than 

the Brillouin zone-edge wavector, and also q is very small. From here one can deduce 

the fundamental selection rule q = 0, that is, in first order Raman scattering only the 

optical phonons at the centre of the Brillouin zone can be excited. Moreover, in crystals 

other selection rules exist due to the symmetries of the unit cell (see below). 

A simple picture of the scattering process is given in fig. 2.1, where the virtual 

state is introduced only to model the scattering process and the perturbative process due 

to the photon; "absorption" of photon tiQ)Land "emission" of photon h(Oscaie 

simultaneous; this is not an absorption process. 

virtual level' 

hcoL 

r 

L 

hcoL 

r 

Fig. 2.1: Schematic representation of Stokes (left) and anti-Stokes (right) scattering. If the 

excitation energy hcoL is close to an electronic transition, resonance enhanced Raman scattering is 

possible. 
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I f the frequency of the incident radiation is close to the energy of an electronic 

transition, Raman intensity is strongly enhanced; the subsequent scattering 

phenomenon is called resonant Raman scattering. 

The simple quantum model here described accounts for the higher intensity of the 

Stokes lines with respect to the anti-Stokes lines. In fact the population in the ground 

vibrational state is much higher than that of the excited states, and taking into account 

that the states are populated according to Bose-Einstein statistics, one can obtain 

Janti-Stokes (0)L + (0j (q))4 kgT 

This ratio is always greater than one. The exponential factor is obtained only in the 

quantum theory, not in the classical one. 

Second order Raman scattering is a phenomenon involving two phonons at the 

same time. Without entering in details, we can say that selection rules are the same but 

take into account an interaction between two phonons and a photon: 

k, =k, +q'±q" 
L (2.10) 

(OL=(Osc±Q)l(q')±0)2(q") 

Frequencies observed in second order Raman spectra can be a combination (sum) of 

two phonon frequencies (coi+coz), an overtone (that is a combination of two phonons 

with the same frequency), or a difference {(0\-o>i). Now, since |kz.| = |kJC|, it must be ± q' 

± q" ~ 0. This means that the two phonons can now be from the entire Brillouin zone, 

provided that the vector sum of their wavevectors is close to zero. 

2.2.3 Raman tensor and selection rules 
When thermal fluctuations exist in the material the polarizability tensor can be 

written as a = (% + 8as (see Eq. (2.2)). Sas contains the fluctuations of the normal 

mode Qs, and this mode is Raman-active only i f at least one of the components of 8as is 

different from zero. 

Thus selection rules arise which depend on the symmetry of the equilibrium 

configuration and of the vibrational mode (see [4]). 
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2.2.4 Raman scattering from small crystalline domains and 

amorphous materials 
Conservation of momentum and the subsequent selection rule for the Raman 

scattering (q = 0) strictly hold only in an infinite perfect crystal. In a finite size domain 

the phonon cannot be described by a plane wave, but by a wave packet with spatial 

extension of the order of the domain size; this introduces a momentum indetermination. 

Let us consider Heisenberg's uncertainty principle: 

&p&x>h (2.11) 

For a phonon Ap = hAq and being Ax = d the crystal domain size, one obtains 

lit 
Aq> — . (2.12) 

a 
The smaller the crystal size, the greater the wave vector uncertainty; for very 

small crystal sizes nearly all the phonons in the first Brillouin zone can participate in 

the scattering event. This phenomenon is known as phonon confinement. Nemanich, 

Solin and Martin [8] showed that the Raman scattering intensity of a finite crystal is 

given by 

/(co) = ^ ^ S C ( q , « , ( q ) ) | F ( q ) | 2 F / 2 f , (2.13) 

<» t j [a)-<y,.(q)] +r 2 /4 

where n(a>) is the boson occupation factor, T is the phonon lifetime broadening, 

C(q,G)/q)) is the Raman coupling coefficient for a phonon of wave vector q, branch j 

and dispersion relation a>/q), and | F(q) | 2 is the wave vector uncertainty of the 

phonons involved in the light scattering (see also [9-12]). Introducing a greater number 

of defects so that the crystallites become smaller and smaller, and the material becomes 

amorphous, Shuker and Gammon [13] derived a formula for Raman scattering by 

amorphous materials: 

1(0)) = n ( - ( 0 ) + lC(Q))G(Q)) (2.14) 

CD 

where n((o) is the boson occupation factor, G(co) is the Phonon Density Of States 

(PDOS) of the disordered material (usually rather different from that of the crystal of 

origin) and C(<o) is a coupling coefficient, often unknown and often neglected. 
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2.3 Brillouin scattering 
Brillouin light scattering is the inelastic scattering of an incident optical wave 

field by thermally excited elastic waves (usually called acoustic phonons). Since the 

advent of lasers Brillouin scattering has received considerable interest for the 

characterisation of elastic and optoelastic bulk and surface properties of materials. 

From an empirical point of view, the two types of scattering (Raman and 

Brillouin) differ only in the distinction that optical phonons are involved in Raman 

scattering and acoustic modes are involved in Brillouin scattering. In both phenomena, 

the intensity of the scattered radiation depends on the change in the electronic 

polarizability (or susceptibility) of the crystal induced by the phonons. 

I f the wave vector q of an acoustic mode is exactly zero we are dealing with rigid 

displacements of the entire crystal lattice. Such displacements lead to no change in the 

polarizability and so do not contribute to Brillouin scattering. It is therefore necessary 

to consider small but nonzero wave vectors q, which correspond to sound waves. 

Due to the small frequencies of acoustic phonons for small q vectors, the 

Brillouin lines are separated by small frequency shifts, of the order of less than 1 cm"1, 

from the Rayleigh line. For this reason it is not possible to use a grating 

monochromator as for Raman scattering, but rather a Fabry-Perot interferometer must 

be used (see chapter 3). 

In terms of corpuscular theory of light, first order Brillouin scattering corresponds 

to an inelastic collision of a photon (COL, kL) with an acoustic phonon (o)j, q). As for 

Raman scattering, the photon either loses a quantum of vibrational energy (Stokes line) 

or acquires- such a quantum (anti-Stokes line). The conservation of energy and 

momentum are the same as in Raman scattering. For a complete presentation of 

Brillouin scattering theory the reader is referred to refs. [1 , 3, 4, 5, 14-20]. 

2.3.1 Phonon-photon interaction kinematics 
We assume that the incident wave is already travelling inside an isotropic 

medium, thus disregarding problems related to refraction and reflection of 

electromagnetic waves at the boundary. Let us assume that a single thermal elastic 

wave (acoustic phonon) is propagating within the medium with wavevector q and 

frequency ft);(q). This wave sets up a modulation in the dielectric constant e, which is 

viewed as a moving diffraction grating by an incident light wave. Then Brillouin 
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scattering can be explained by the familiar concepts of Bragg reflection and Doppler 

shift; conservation of total momentum and energy must be obeyed: 

(OSC =Q)L ±C0:(q) 
J (2.15) 

k , c = k , ± q 

for anti-Stokes (annihilation of a phonon) and Stokes (creation of a phonon) events 

respectively. The phonon wavevector (=105 cm"1) is much smaller than the dimension 
Q 1 

of the Brillouin zone (=10 cm" ), so information is provided only about phonons near 

the centre of the Brillouin zone (q = 0). In this region the dispersion relation is linear 

for acoustic phonons: 

GXq) = v|q| (2.16) 

where v is the velocity of sound. Using Eqs. (2.15) and the dispersion relation for 

photons (OL = (c/n)|kz.| and (OSC = (c//i)|k^c|, we have 

MH kJ v 
n|q| c 

vie is typically =10"5 so that |kJC| = |k/J = k. Thus we can write 

(2.17) 

|q| = — = 2fcsin(0/2) (2.18) 
hph 

where 0 is the scattering angle and Xph is the wavelength of the scattering phonon. In 

backscattering 0 = n and so 

i i An AK 

|q| = 2A= — = — n (2.19) 

where n is the refractive index and X L = XQIH (AO is the photon wavelength in vacuum). 

The measurement of the Brillouin shift VBS = A(o/2n = \(QSC-Q)L\/27Z leads to the 

possibility of measuring the sound velocity by the following formula: 

v = ^ — ! — = — (2.20) 
47msin(0/2) 2nsin(0/2) 

In backscattering 0 = n and so 

v = - ^ — U - ° - * L . (2.21) 
Am In 
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2.3.2 Elastic properties of materials 
It is useful to define here some elastic quantities that will be used throughout the 

thesis (see [21]). In an elastic medium the displacement vector field u(r,r) is related to 

the stress tensor o~«0(iy) by the generalized Hooke's law: 

(2.22) 
y5 U A S 

The strain tensor is defined as 

1 du y_+dus (2.23) 

Both the stress tensor and the strain tensor are symmetric, and it can be shown that the 

elastic constants CapyS can be identified by two indexes only (m and n) according to the 

following table: 

CafiyS • Cmn 

a(3—• m yd —*~ n 

11 1 23,32 4 

22 2 13,31 5 

33 3 12,21 6 

For an isotropic medium the elastic constant matrix reduces to 

C 1 2 C 1 2 0 0 0 

Cu C n 
0 0 0 

C 1 2 C 1 2 Cn 
0 0 0 

0 0 0 C44 0 0 

0 0 0 0 C<u 0 

0 0 0 0 0 

with only two independent constants since Cn = Ci\-2Cu- For an easy interpretation of 

the elastic constants, the elastic moduli E, G and B are introduced by the following 

relationships: 

(2.24) 

B = -V 
dp 
dV 
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where 8ji is the Kronecker symbol, V is the volume and p the pressure. E is the Young 

modulus, B is the bulk modulus, G (or pi) is the shear modulus and v is the Poisson 

ratio. Since there are only 2 independent constants, the following relationships hold: 

£ _ 3 C n ~4C44 g 
C -C 4 4 

M l '-44 
G = M = C44 

v _ C n - 2 ^ _ C 1 2 (2.25) 
2 ( C 1 1 - C 4 4 ) M i + M 2 

4 
fi = M l " -^44 

2.3.3 Elasto-optic coupling 
The electric field of the incident light induces a polarization that depends on the 

position and polarizability of the atoms of the equilibrium-state crystal. This property 

of the material is described by the dielectric susceptibility tensor % which relates the 

electric field E to the polarization vector P, or similarly by the dielectric constant tensor 

e, which relates E to the induction vector D. The propagation of an acoustic wave 

induces a displacement of atoms from their equilibrium positions, and so we must 

introduce a term 8e in the expression of the dielectric tensor. In a Born approximation 

description, that is a first order perturbative theory, the fluctuation of the polarization is 

induced only by the incident field, and not by the induced secondary field. We can 

write 

eap (r, 0 = + 8eal} (r, 0 (2.26) 

where e° is the tensor when no vibrations are present in the medium. The relationship 

between the fluctuating part of the dielectric constant and the strain tensor t] in the 

material is governed by the elasto-optic (or Pockels) coefficients kapY8'-

8eaf}(r,t) = kafjrSTiYS(r,t) (2.27) 

The elasto-optic coefficients represent the possibility of the material to be polarized as 

a consequence of a deformation of its structure. In an isotropic medium the indices of 

the elasto-optic tensor can be contracted in the same way as for the elastic constants 

(section 2.3.2), with ku = (&n-&i2)/2. 

20 



2.3.4 Theory of Brillouin scattering cross section 
To understand the intensity of the scattered wave and hence the form of a 

spectrum, one must be able to describe the strength of the interaction between photons 

and phonons. Selection rules arise in connection with the scattering angle, the 

polarizations of both photons and phonons, and their relative orientations with respect 

to the scattering plane. In a Brillouin scattering experiment one measures the power 

spectrum of a polarization component of the scattered field F 5 : 

S£s (co) = [2(ES(t + r)Es (r) *) eimdr (2.28) 

where (),/, indicates the thermal average. The scattered electric field can be computed 

by means of first-order perturbation theory (Born approximation). 

The expression for the scattered electric field [16, 20] in the far-field 

approximation [22], appropriate for most Brillouin scattering experiments, is 

f E eKksc'r~a>sc') } 
Es(r,t) = R e — — — - k , c x ( k , c x G ) (2.29) 

The components of the vector G (scattering integral) are given by the following 

expression 

G , = J ( & ^ 7 . ) e - ' ( Q r V r ' (2.30) 
v 

The transferred wavevector Q is defined as Q = k -̂k ,̂; e; are the components of the 

polarization vector of the electromagnetic wave. In a medium that is elastically and 

optically isotropic, Eq. (2.27) is simplified and the elasto-optic tensor reduces to two 

components: 

&ij=<*flv+<*2nu8ij (2-31) 

where <5j, is the Kronecker symbol and a\ = &11-&12, a.i = ^12- The spatial part of the 

displacement vector can be written as u = R e { u V q r } . Under this assumption the 

scattering integral becomes 

G=gje-KQ-q)r'dr' (2.32) 
v 

where 

gt = /[(a, /2)(u?q k + u°kq;) + ajufq^^ ]ek (2.33) 

Integrating over a volume V » | q | 3 we finally obtain 
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J e - . ( Q - q ) r 1

r f ] r . o c 5 ( Q _ q ) ( 2 _ 3 4 ) 

V 

which shows that scattering is possible only i f wavevector conservation is satisfied. 

From the previous equations it is now possible to give some general selection rules: 

o light scattered by transverse phonons is completely depolarized, i.e. it does not 

conserve the polarization of the incident wave; 

o there is no scattering by transverse phonons polarized in the scattering plane; 

o the intensity of scattering from transverse phonons goes to zero in 

backscattering (in elastically isotropic materials); 

o scattering by longitudinal phonons is fully polarized. 

2„3o§ Surface acoesMc plhomomis 

In 1887 Lord Rayleigh [23] proposed the existence of surface acoustic waves 

travelling in a semi-infinite medium. Since then many studies [14, 17, 19, 20, 24-27] 

have analysed this problem and shown that many kinds of surface waves can exist in 

semi-infinite media, or in thin films, free or supported (i.e. on a substrate), or in 

multilayers. 

When a thin film is considered, acoustic surface and bulk waves propagate in the 

total "film plus substrate" system. The theory of elasticity enables one to calculate the 

modes propagating in such a system and their dispersion relations, which usually 

represent the velocity of the mode as a function of q\\h, where q\\ is the phonon 

wavevector component parallel to the surface, usually fixed in a Brillouin scattering 

experiment and determined by the incidence angle (see below), and h is the film 

thickness. The calculation can be very complicated, depending on the system geometry, 

and often the modes and the dispersion relations have to be computed numerically. 

There can be many different modes (e.g. Rayleigh phonons and Sezawa phonons, 

which are guided waves in the film), and the vibrational spectrum can present both 

discrete and continuum regions. The modes can be differently polarized (shear modes, 

longitudinal modes, sagittal modes, i.e. polarized in the plane containing the wave 

direction of propagation and the surface normal direction). For the description of the 

possible acoustic modes in such a system we refer the reader to references [19, 20, 26, 

27]. 
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In particular, for a semi-infinite medium or a supported f i lm (e.g. a layer on a 

substrate), three regimes can be distinguished depending on the value of the surface 

wave velocity v with respect to the substrate transverse velocity v t

( s ) = y C ^ / p (called 

the "transverse threshold") and to the substrate longitudinal velocity v / s ) = y/Cn I p 

(called the "longitudinal threshold'").: 

1. Discrete spectrum (v < v t

( s ) ) , with two subcases in the case of a supported film, 

depending on the transverse sound velocity in the fi lm, v t

( f ) : 

• v t

( f ) < v t

( s ) . Two modes can be present, the modified Rayleigh wave 

("modified" refers to the presence of the substrate below the film) and the 

Sezawa wave. The velocity of the first is smaller than that of the latter; the 

Sezawa modes can also have v > v t

( s ) , in this case they are called pseudo-

Sezawa. The two modes have a dispersion relation in which v decreases as a 

function of q\\h\ 

• v t

( f ) > v t

( s ) . Only the modified Rayleigh wave is present; its dispersion relation 

is such that v increases with increasing q\\h (note that the Rayleigh wave is 

non-dispersive in the case of a semi-infinite medium); 

2. Continuum spectrum of mixed modes (v t

( s ) < v < v / s ) ) . Here, propagating bulk 

transverse waves and evanescent longitudinal waves are present. These waves 

must be thought of as wave packets with a pronounced surface localization of 

the longitudinal component. A maximum can be present at about v/ s ) , called the 

modified longitudinal resonance or modified high frequency pseudo-surface 

wave; 

3. Continuum spectrum of bulk modes (v > V| ( s )). Here, all modes are propagating 

bulk waves reflected by the surface. 

2.3.6 Opaque Materials 
In opaque materials, such as those studied in this thesis, scattering mechanisms 

different from those so far illustrated can exist [15, 17, 20]. Absorption reduces the 

active scattering volume (limited by the penetration or skin depth) and leads to non-

conservation of the component of the wavevector normal to the surface. We can define 

the transferred wavevector as a complex quantity 

Q = G l | L + ( ( 2 i - ^ " 1 ) i J (2.35) 
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where 8" is the skin depth. Substituting in Eq. (2.32) we have 

The component of the wavevector parallel to the surface is conserved and the scattering 

intensity for a volume peak is proportional to ! , i.e. its width is related 
< 5 - 2 + ( < ? x - Q i ) 2 

to the penetration depth. 

In addition to bulk phonons, scattering from surface phonons is possible. 

Surface acoustic phonons are completely characterized by their wavevector q\\ parallel 

to the surface. The wavevector conservation law for surface Brillouin scattering 

therefore becomes 

k

J C , | | - k z , | | = ± % ( 2 - 3 7 ) 

where k, c || and kz,|| are the projection of the scattered and incident photon wavevectors 

parallel to the surface, respectively. For backscattering from SAWs (Surface Acoustic 

Waves), q|| is fixed by the angle of incidence (fig.2.2), and the SAW phase velocity 

VSAW can be obtained by 

_ (A 0/sinfl,.)|Aft)| _ (A o /sin0, )v / 

An ~ 2 

where 0, is the angle between the incident photon wavevector and the direction normal 

to the surface. With scattering from surface phonons, it is not necessary to know the 

index of refraction of the medium to determine the SAW phase velocity, but the angle 

of incidence must be known. 

VSAW ; ~ (z.38) 

sc 

Fig. 2.2: Backscattering geometry of surface Brillouin scattering. 

24 



The spectrum of the scattered light is in general the union of a discrete and a 

continuum part [3, 15, 16]. In the low frequency discrete part one can detect lines 

associated with the true surface waves that can exist in the specific sample geometry 

with given elastic properties. Besides the Rayleigh wave other sagittal waves such as 

the Sezawa waves and the Stoneley waves (when v t

( f ) = v t

( s ) ) can be observed. 

Furthermore, shear horizontal surface waves (Love waves) can be detected. Also the 

continuous high frequency part of the spectrum, beyond the transverse threshold of the 

substrate material, can sometimes exhibit rather defined peaks corresponding to 

scattering by packets of bulk (or mixed) waves with a strong surface character, such as 

the longitudinal resonance. 

2.3.7 Ripple effect 
In opaque materials the elasto-optic effect, which is a volume effect, is less 

important due the reduction of the active scattering volume. Nevertheless, a new 

scattering mechanism is possible, called the ripple effect [17, 18], which is essentially a 

surface effect. Surface acoustic phonons induce a modulation of the surface profile. 

The electromagnetic field is thus incident onto a corrugated surface that can be 

considered as a dynamic grating that can scatter light. The importance of this 

contribution to the scattered intensity depends on the surface reflectivity and is active 

only for shear vertical modes, i.e. with a transverse polarization perpendicular to the 

surface. This effect can play a role both at the film surface and at the film-substrate 

interface. The resulting total Brillouin scattering cross-section is the result of a coherent 

sum between all the scattering mechanisms, i.e. interference between ripple and elasto-

optic effects is possible. 

2.4 Grazing incidence x-ray reflectivity 
X-ray reflectivity is a fast and non-destructive technique for the characterization 

of thin films, and in particular for single or multiple layers on good quality substrates. It 

has become a widely used technique over the past few years and the theory is well 

documented (see for example [28-37]). 
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For x-rays the refractive index in solids is slightly smaller than unity, so that total 

external reflection occurs at low angles of incidence. As the incidence angle 0, 

increases above a critical angle 6C, x-rays start to penetrate into the film. For x-rays the 

expression for the refractive index in the case of a substance with elements j (atomic 

number Z ;, molar masses Mj, density pj) is [28] 

n - ^ r ^ f , (2.39, 

where ro = e2/4n£omec2 is the classical electron radius, e is the electron charge, me is the 

electron mass, NA is the Avogadro number, c is the velocity of light, is the dielectric 

permittivity of vacuum and 

f j = Z j + f J ' + i f j " (2.40) 

takes dispersion and absorption corrections into account. Thus n can be written as: 

n = (2.41) 

with 5 = ^ r 0 A 2 £ ^ ( Z > + / : ) (2.42) 

and p ^ r ^ f L f - ^ p A . (2.43) 
2n j M j An 

where \x is the linear absorption coefficient, given by the product of the mass 

attenuation coefficient and the density (e.g. fi ~2.8p cm"1 for carbon at A=1.3926A 

[38]). 

From Snell's law (at the air/film interface) one can obtain the critical angle: 

Gc is usually very small, e.g. at A=1.3926 A it is 0.201° for Si and 0.245° for diamond 

(3.51 g/cm3). From this one can infer the electron density of the material provided the 

wavelength is known. Corrections due to anomalous dispersion are significant near the 

characteristic x-ray absorption edges. 

Above the critical angle x-rays begin to penetrate into the sample, and for an 

ideally smooth surface the reflected intensity falls off as (20)"4, as predicted by 

Fresnel's equations. For a real sample the fall off is more rapid, because of the surface 

roughness which scatters x-rays out of the specular beam [35]. 

26 



If we now consider a thin layer, of refractive index n\, deposited onto a bulk 

substrate, of refractive index ra2, reflections at the different interfaces will cause 

interference effects; in particular, there will be constructive interference when the path 

difference between the reflected beams is 8 = (m + l/2)A or 8 = mX, where m is an 

integer, for «i < ri2 and ni > ti2 respectively. Snell's law can show that this happens only 

at certain angles of incidence 

62

m=ec

2+^(m + \/2)2 or fl2=0 2 + _ ^ m 2 ( 2 4 5 ) 

4dz 4d~ 

for « i < ri2 and n\ > «2 respectively. Here again 6C is the critical angle at the air/film 

interface. 

The period AO of the fringes leads to a first determination of the layer thickness, 

for 8i» Qc: 

d = — (2.46) 
2A6 

The presence of a small surface layer of different density on the top of the film 

usually manifests itself in a modulation of the reflected intensity. The reflectivity curve 

thus presents a double periodicity, the short period corresponding to the total thickness, 

the long period to the thickness of the surface layer (see examples in Chapter 4). On the 

other hand, the reflectivity curve is less sensitive to the presence of a layer of different 

density at the film-substrate interface. Sometimes this situation is revealed by the 

presence of a beating effect, i.e. a modulation of the fringes amplitude. In the case of a 

multilayer (e.g. a repeated bilayer structure) the structure periodicity causes the 

presence of Bragg peaks in the reflectivity curve. For this situation Parrat [32] 

developed a recursive form of Fresnel's equations, imposing the continuity of the 

electric and magnetic fields across each of the interfaces of the multilayer. This leads to 

an expression from which the period of the superlattice may be calculated. 

In a real case all the interfaces are not perfectly smooth, but there are changes in 

the electron density either as a result of roughness at the interfaces or as an effect of 

grading. This will alter the specular scatter, which is sensitive to the electron density, 

causing its intensity to decrease [37]. The decrease is due to phase shifts induced by the 

grading in the electron density normal to the surface, while surface roughness scatters 

x-rays out of the specular beam. To separate these effects, impossible to distinguish 

from a specular scan, it is necessary to model the diffuse scatter. This can also give us 
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information about the degree of correlated or uncorrected roughness between the 

layers composing the fi lm. 

A fitting program (REFS-MERCURY, developed by Bede Scientific 

Instruments) has been used in this work to reproduce the experimental reflectivity data 

and to obtain the best model for the structural parameters of the films. Surface and 

interface roughness are considered within the distorted Born wave approximation 

(DBWA) using a Gaussian variation of the electron density gradient, so that the values 

obtained refer to r.m.s. roughness. 

In the Born wave approximation, the attenuation of the specular scatter, caused 

by the presence of roughness at the interface, is included through a Debye-Waller 

factor 

Ispec=I0exp(-q2

za2) (2.47) 

where qz is the vertical component of the scattering vector and a is the r.m.s. 

roughness. From conservation of energy, the diffuse intensity can be expressed as 

hiff = h ~ V = / 0 ( l - e x p [ - ^ 2 ( T 2 ] ) (2.48) 

The ratio of the integrated diffuse intensity to the integrated specular intensity 

will therefore only depend on the scattering vector and the roughness of the interface 

[33]: 

^ = e x p ( 9

2 a 2 ) - l (2.49) 
spec 

Thus by measuring the integrated intensity of the diffuse and specular scatter in a 

transverse scan (i.e. a scan in which the detector angle, and so qz, is fixed and the 

detector is scanned across the specular condition), the roughness of the surface can be 

deduced. This method assumes that all diffuse scatter is accessible. This is not true in 

general, and so this can result in an underestimation of the true roughness [30]. In the 

case of multiple interfaces [34] it is still possible to obtain estimates of the roughness 

with this method, provided that the interface roughness is highly uncorrelated (as in our 

case) from one interface to the other. 

2.5 X-ray diffraction 
High angle x-ray diffraction has been used in part of the present work to study the 

crystalline structure of metal nanoparticles. The position of the peaks in a 26 (scattering 
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angle) representation is simply related to the distance d between the scattering planes 

by Bragg's law: 

2dsm6=nX (2.50) 

where n is the diffraction order. The allowed values of d are related to the lattice 

parameters and the lattice type. 

The ful l width at half maximum of the diffraction peaks gives a measure of the 

crystal domain average size via Scherrer's equation [39]: 

D- ° M (2.5!) 
A20cos0 

where A is the x-ray wavelength, D is the grain size, A20 is the FWHM of the 

diffraction peak in radians and 0 the Bragg angle corresponding to the peak in question. 

In a standard 9/20 diffraction experiment, scattering is from planes parallel to the 

substrate. However, in our samples the crystallites were randomly oriented with respect 

to the substrate, and thus measurements at a fixed incidence angle were performed. 

Since we are dealing with thin films, very low incidence angles were chosen, in order 

to maximise the x-ray path within the film. 

2.6 Radial distribution study of non-crystalline 

materials 
Not all the samples studied were crystalline. The elementary formula for x-ray or 

neutron diffraction intensity by an assembly of atoms whether crystalline, amorphous 

or liquid can be written as 

/(q) - 5(q)|M(q)| 2 (2.52) 

where w(q) is the Fourier transform of a single atomic potential and |q| = 4^sin0/A is 

the scattering wavevector, when 20 is the scattering angle. 

The atomic form factor |w(q)|2 is supposed to be known independently, being no 

more than the scattering cross section of a single atomic potential for the radiation in 

question. In the case of disordered materials the measurement of 1(0) can thus be 

interpreted as the observation of the interference function or structure factor of the 

material itself [39-42]: 
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5 t a ) = T 7 E e x P H q - ( i i - r , ) ) (2.53) 
i j 

The basic assumption of homogeneity allows us to replace the summation over all 

sites with an ensemble average over site position measured relative to some standard 

site at r = 0; this gives: 

S(q) = 1 + nfg(r)exp(-/q • r)dh (2.54) 

where g(r) is simply the pair distribution function and n the atomic density. A 

diffraction experiment can determine the pair distribution of the atoms in the sample. 

Normally the specimen is macroscopically isotropic so that g(r) becomes the radial 

distribution function (rdf) g(r), and the structure factor depends only on the modulus of 

q, i.e. on the scattering angle 28. As g-»0 the integral diverges to generate a delta-

function singularity. Subtracting this singularity as the Fourier transform of unity, we 

obtain 

S(q) = \ + n[h(r)^^-47tr2dr (2.55) 
Jo V 

where h(r)=g(r)-l is the total correlation function. This integral is well behaved for 

large r and may therefore be inverted by standard methods. This gives 

i °° 
g(r) = 1 + — — f [S(q) - l]^.47tq2dq . (2.56) 

87T JnJ

0 qr 

Despite the analytical simplicity of these formulae, the Fourier inversion of an 

observed structure factor to give the rdf is subject to a number of practical difficulties. 

It is not possible to measure S{q) for all q, so that errors arise from the truncation of the 

integral at high and low values of q [39-44J. 

2.7 Small angle x-ray scattering 
Small angle scattering of light (SALS), x-rays (SAXS) [45-51], or neutrons 

(SANS) are important techniques for structural analysis of discontinuous media. 

Diffuse scattering arises from variations of scattering length density (neutrons), 

electron density (x-rays), or refractive index (light). The scattering process is 

characterized by an inverse relationship between feature size and scattering angle. 

Because of the wavelength similarity, the feature sizes studied by SANS and SAXS are 

similar (from 1 A to less than 1 fjm). The longer wavelength of visible light renders 
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SALS suitable for the study of larger structures (= 1 fim). Many porous materials are 

amorphous, which often complicates data analysis in the high angle region (q > 1 A " 1 ) . 

In the small-angle (small-g) regime, however, disorder has proved to simplify 

interpretation when power-law scattering profiles are observed. 

Let us consider fractal systems. One especially important characteristic of fractal 

systems is that many properties of these systems can often be described by quantities 

that are proportional to a power of another quantity. This relation is frequently called a 

power law. In particular, the intensity I(q) of the small-angle x-ray or neutron scattering 

from many disordered systems has been found to be proportional to a negative power 

An 
of the wavevector modulus q = —smd, where 29 is, as usual, the scattering angle. 

A 

Usually this dependence of I(q) is observed only when q satisfies the condition l / £ 2 « 

q « where <fi and | 2 are the characteristic (cut-off) lengths defining the range 

over which the structure behaves as a fractal (any real object is fractal only over a 

particular range of lengths). 

In the discussion of the small angle scattering from fractals (see [52-58]), it is 

important to consider two types of fractal systems: mass fractals and surface fractals 

(for a definition see [53]). Mass fractals, which are often aggregates of subunits, are 

structures for which the mass inside a spherical surface with radius r and with its centre 

at a point in the mass-fractal centre is given by M( r ) °= rD, where D (D<3) is the 

fractal dimension. A power law of the scattered intensity characterizes mass fractal 

objects: 

I(q) = I0q-°. (2.57) 

A surface fractal is a region with mass-fractal dimension 3, embedded in a space 

of euclidean dimension d=3 and bounded by a fractal surface with surface-fractal 

dimension Ds (where 2<D.S<3). In a scattering experiment, information about the 

surface fractal properties can be obtained from the following power law: 

I(q) = IQqD*-6. (2.58) 

A smooth surface yields a slope of -4 (this is Porod's law). 

For non-fractal systems, theories have been developed to calculate the intensity 

scattered by objects with different shapes and size distributions. For dilute isolated 

scatterers (spheres or pores), Guinier's approximation [39, 45] applies at small q 

values, providing a simple characterization of the mean sphere or pore radius of 
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gyration Rg. The initial profile (in the range where qR«l, being R the radius of the 

particles) decays as 

l(q) oc / 0 exp 
-RK q 

(2.59) 

so that a plot of \n[I(q)] vs. q2 has a slope proportional to Rs. 

I f the sample is made of interacting particles, the scattered intensity reflects both 

the geometry of the particles and their spatial correlations, and can be often written as 

I(q) = P(q)S(q) (2.60) 

where P(q) is the form factor of the particles and S(q) the structure factor of the 

assembly. 
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Chapter 3 

Experimental apparatus and data 

analysis 

3.1 Raman scattering 

3.1.1 Experimental apparatus 

Raman spectroscopy measurements were performed in the Materials Laboratory 

at Politecnico di Milano (Milan, Italy). Unpolarized Raman and micro-Raman spectra 

were recorded ex-situ, at room temperature and in back scattering geometry. An I.S.A. 

Jobin-Yvon T64000 triple grating spectrometer [1] and a liquid nitrogen cooled camera 

detection (CCD) system, frontally illuminated, were used. The excitation source was 

either the 514.5 nm line of an Ar ion laser or the 532 nm line of a frequency doubled 

Nd:YAG laser. The estimated spectral resolution was about 3 cm' 1. 

The micro-Raman spectra were measured using a 10X, 50X or 100X objective on 

an Olympus microscope. Power on the sample was monitored and always kept below 1 

mW in the micro-Raman configuration to avoid sample degradation. 

No degradation was observed in the films studied in this thesis using the macro 

configuration, where 5-10 mW on the sample were used. Sample degradation of the 

carbon films was checked by monitoring the changes in the graphitic features of the 

Raman spectra while increasing the laser power on the samples. 

It was possible to perform measurements in vacuum or in a controlled atmosphere 

(e.g. nitrogen) using an Oxford Instruments Optistat DN-V thermocryostat, where the 

temperature can be controlled from 80 K up to about 800 K. The vacuum, pumped by a 

rotary-turbomolecular pump system, can reach 10"6 Torr. 

The triple grating spectrometer is composed of three holographic gratings (1800 

lines/mm) to disperse and recombine light, as shown in fig. 3.1. The laser beam, after 

incidence onto the sample, passes through a slit and is then dispersed by the first 

grating. A second slit allows only a range of frequencies to be recombined by the 

second grating, before entering the final grating, which is the true spectrometer. After 
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the last stage the light is collected by the CCD matrix. It is possible to cover the 

spectral range 0-6000 cm"1. 

In a typical Raman spectrum, only the Stokes part, which is the most intense, is 

reproduced. 

gratings 

\ 

/ 
CCD matrix 

slits 

Fig. 3.1: Schematic view of the triple grating Raman spectrometer. 

3.1.2 In-situ Raman scattering 

The design and building of an apparatus for in-situ deposition and 

characterisation of cluster-assembled carbon films has been part of the work carried out 

in the last year. This instrument wil l enable Raman scattering to be recorded during the 

deposition of cluster-assembled carbon films by a portable source, CLARA (CLuster 

Assembling Roaming Apparatus), in ultra-high vacuum conditions. A schematic view 

of the apparatus is shown in fig. 3.2. It consists of a spherical chamber with a sample 

holder handled by a micromanipulator and equipped with flanges for connection with 

the portable source and the pumping apparatus. An optical quartz window allows 

entrance and collection of the laser light for the Raman measurements. 
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Fig. 3.2: Schematic view of the chamber for in-situ ultra-high vacuum Raman measurements 

during deposition of cluster-assembled carbon films. 

3.2 Brillouin scattering 

3.2.1 Experimental apparatus 
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Fig. 3.3: Schematic view of the experimental apparatus for Brillouin scattering measurements. 

Brillouin spectroscopy measurements were performed in the Materials Laboratory 

at Politecnico di Milano. The experimental apparatus for Brillouin measurements is 

shown in fig. 3.3. The key elements are the scattering geometry, the laser source and 

the high-contrast spectrometer. For the configuration adopted in our experiments we 
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used a backscattering geometry after reflection from a surface, suitable for opaque or 

semiopaque materials. 

The major requirement for the laser source is a stable continuous wave operation 

in a single longitudinal cavity mode. We used a cw Ar + laser (Coherent Innova 300, 

wavelength 514.5 nm), where single longitudinal-mode oscillation is achieved by 

means of an etalon inserted into the laser cavity. A A/2 retarder was used to select the 

incident polarization. The incident laser beam was directed by a small prism onto the 

sample surface, and was focused by a 50 mm objective lens, which was also used to 

collect the scattered light from the sample and direct it to the pin-hole at the entrance of 

the interferometer. The incident angle could be varied by a rotation of the sample in the 

range 0°-90°. If polarization of scattered light had to be analysed, a dichroic polarizer 

was inserted before the spectrograph. The laser power usually employed varied from 

tens to hundreds of mW. 

Also for Brillouin scattering experiments it is possible to perform measurements 

in vacuum at different temperatures by using the Oxford Instruments Thermocryostat 

described in section 3.1. 

The spectrometer consists of two plane parallel Fabry-Perot interferometers [2] 

mounted in tandem multipass configuration. Given the low intensity of Brillouin 

signals, single-photon counting is necessary for the detection system. We used a room 

temperature operated photomultiplier tube (Hamamatsu R-464 S) having less than one 

dark count per second. Standard electronics follow (amplifier, pulse shaper, Multi 

Channel Analyser). 

As explained in Chapter 2, frequency shifts in a Brillouin scattering experiment 

are very small with respect to the laser frequency (about 1 part in 103). For this reason a 

high-resolution, high-contrast interferometer is needed. The Sandercock spectrometer is 

based on the use of two Fabry-Perot (FP) interferometers in a particular configuration. 

A FP interferometer consists of two partially reflecting plane mirrors parallel to each 

other at a variable distance L. For normal incidence the instrument transmits light of 

wavelength A only if L = mXll, with m integer. Neighbouring orders of interference are 

separated in frequency by an amount Av = cllh = 150/L GHz mm"1. The interorder 

spacing is called Free Spectral Range (FSR). 

If we take into account multiple reflections inside the interferometer cavity, the 

transmitted intensity is given by the Airy function [2] 
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r ( L / A ) = 0 (3.1) 
4F 

n 

2\ 
1 + sin 2 (2^L/A) 

where To is the maximum transmission and F is the finesse of the interferometer, which 

depends on the flatness and reflectivity of the mirrors and determines the width of the 

fringes. The resolving power of the interferometer is defined as the FWHM of the Airy 

function, and is 

In our experiments F * 40. When the mirror spacing is scanned, the 

interferometer transmission can be tuned to analyse spectral components of the incident 

signal. The scanning stage [3] is mounted on top of an active vibration-isolating table. 

As the distance between the mirrors is scanned, these must remain parallel; a retroacted 

electronic system proposed by Sandercock [4], and using piezoelectric transducers, is 

employed Jot thispurpose. 

The contrast C of the interferometer can be defined as the ratio between 

maximum and minimum transmission of the Airy function: C = 1 + (2F/n)2. F cannot 

be higher than 100, and so C cannot be higher than 104. In a multiple pass configuration 

which can be 108-109. We used a 3+3 multipass configuration. 

The use of two FP in a tandem configuration [5] enables the FSR to be increased 

(also the spectral resolution slightly improves, the effective finesse is >100 in our 

interferometer). I f we choose, for the two pairs of mirrors, different distances L\ and L%, 

the transmission function is the product of the single interferometer transmission 

functions. The transmitted signal is a maximum only for the chosen wavelength, as the 

neighbouring orders are stopped by one of the two interferometers. 

Brillouin spectra were usually recorded at room temperature in backscattering 

geometry and in p-depolarized polarization conditions (incident light p-polarized, 

scattered light collected without polarization analysis), unless specified differently; at 

several incidence angles 0, with respect to the surface normal, in the range 10°-70°. 

When the substrate was Si (001), the [100] phonon propagation direction was 

examined, for which the analysis of the mode propagation is simpler. 

By changing the distance between the mirrors, different spectral ranges from 30 

GHz to 300 GHz have been adopted. The Brillouin signals on the carbon films were so 

low as to prevent the use of a narrow slit to limit the collection angle and increase the 

dv FWHM = FSR/F. (3.2) 

Cn=[l + (2F/iz)2]n (3.3) 

40 



resolution, except for the samples deposited on Al substrates, where a 3 mm wide slit 

was placed in front of the samples. The same slit was used for the measurements of the 

Sn nanoparticle films. 

In the above 0, range, surface phonons with wavevector (parallel to the surface) 

qn = —sin0, can be detected. In every spectrum a central peak, whose width is of the 

order of some GHz, is always present, and corresponds to the elastically scattered light. 

3.2.2 Analysis software 
In the Material Laboratory at Politecnico di Milano a software program has been 

developed [6] in order to calculate the theoretical Brillouin cross-section for a system 

consisting of a substrate and an arbitrary number of layers in the film. The software can 

compute the properties of acoustic waves travelling in the assigned geometry 

(dispersion relations, propagation, polarization). Provided that the density, the elasto-

optic constants and the refractive index are known for all the materials, the elasto-optic 

and the ripple part of the resulting Brillouin scattering cross-section can be obtained. In 

addition to this the software also calculates the Layer Projected Phonon Density of 

States (LPPDS), which is the phonon density of states as a function of depth from the 

fi lm surface [7]. This helps understanding the nature of the acoustic modes. 

Another piece of software [8] has been developed which allows, given the 

dispersion relations of the surface modes (i.e. the position of the surface peaks as a 

function of the laser incidence angle), for a statistical estimate of the elastic constants 

of a thin film. It thus solves the so-called "inverse problem". The solution is statistical 

in the sense that it provides the most probable values for the elastic constants 

compatible with the measured dispersion relations. 

3.3 X-ray scattering 

3.3.1 Experimental setups 
The x-ray data have been acquired using different x-ray scattering instruments, 

both in laboratory and at synchrotron radiation sources (SRS, Synchrotron Radiation 

41 



Source, at Daresbury, UK; and ESRF, European Synchrotron Radiation Facility, at 

Grenoble, France). The instruments employed were the Bede Scientific laboratory 

Grazing Incidence X-ray Reflectometer (GXR1) at the Department of Physics, 

University of Durham [9, 10], for x-ray reflectivity measurements; beamline 2.3 at the 

SRS in Daresbury [11, 12, 13] for WAXS, SAXS and x-ray diffraction; and beamline 

16 (BM16) at the ESRF in Grenoble for x-ray diffraction [14]. 

XRR measures the intensity reflected in the specular direction (0, = 6r) as a 

function of the grazing incidence angle. The XRR curves were measured on a Bede 

Scientific reflectometer (GXR1), with a Bede EDRa scintillation detector. The source 

was a copper target x-ray tube operated at 40 kV and 40 mA, monochromatized to the 

Cu Kp (A=1.3926 A). The specular reflectivity curves were measured as a function of 

incidence angle using a 6126 scan, with the detector stepped at twice the step of the 

specimen. Specular and off-specular reflectivity curves were measured for each sample, 

with 6j usually varying in the range 0-10000 arcseconds. with a step of 20 arcseconds. 

A -0.1° offset of the sample angle was used for the off-specular measurements. The true 

specular reflectivity curves were obtained by subtracting the off-specular measurement 

from the specular, to remove the forward diffuse scatter. 

XRR probes a macroscopic area of sample. The XRR curves of laterally 

inhomogeneous films are a convolution of different periods (i.e. the fringes are less 

marked). The x-ray beam is 1-5 mm wide and 100 /j.m high (as defined by beam 

defining slits), with a divergence of about 20". At very small angles of incidence, the 

footprint on the sample is 1-5 mm by 1-2 cm. This is particularly significant when 

comparing roughness from XRR to atomic force microscopy (AFM) or scanning 

tunnelling microscopy (STM), where the area probed is typically only 0.1-1 jUm2. A 

more detailed description of the GXR1 can be found elsewhere [9, 10]. Since several 

references exist concerning the alignment and experimental requirements for x-ray 

reflectivity (including Ph.D. theses from this University), the reader is referred to them. 

Some references in particular [9, 10, 15, 16] provide a description of the alignment and 

experimental procedures for the GXR1 and synchrotron beamlines. The same 

references give a description of the mechanisms of generation of the x-rays and of 

beam conditioning techniques (see also [17]). 

A typical x-ray scattering experimental set-up is shown schematically in fig. 3.4. 

The slit sizes shown are typical for reflectivity experiments. 
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Fig. 3.4: Schematic of a typical two-circle x-ray scattering experiment (Station 2.3 at SRS, 

Daresbury). 

The x-ray scattering experiments presented in this thesis rely on this basic 

scheme, although the exact nature of each component can vary from instrument to 

instrument. 

X-ray diffraction, SAXS (Small Angle X-ray Scattering) and WAXS (Wide 

Angle X-ray Scattering) were performed at synchrotron sources. Synchrotron radiation 

is produced when charged particles undergo a relativistic acceleration process [18, 19]. 

In a typical synchrotron radiation source, electrons are accelerated in a linear 

accelerator before being injected into a booster ring where they are further accelerated. 

When they have reached the required energy they are injected into the storage ring, 

which forms the major part of the source. At Daresbury SRS the energy of the electrons 

is 2 GeV and the ring has a circumference of 96 m; at the ESRF the energy of the 

electrons is 6 GeV and the ring has circumference of 750 m. The moving particles are 

guided round the storage ring by means of a series of steering magnets, while their 

energy is supplied by means of radio frequency cavities. As the charged particles 

accelerate round the storage ring they emit x-rays (Brehmsstralung or braking 

radiation) which are delivered to an experimental hutch via beamlines. In addition to 

x-rays produced at the bending magnets in the ring, insertion devices, such as wigglers 

and undulators, can also be used to generate different spectra of x-rays [18, 19]. For 

example, BM16, situated 56m away from a bending magnet, allows access to energies 

in the range 5-40 keV (A = 2.6-0.32 A). At SRS 2.3 wavelengths in the range 0.5-2.5 A 
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are available. The major advantages of synchrotron x-ray radiation are the very high 

photon flux, the collimation and thus low divergence of the beam, and the frequency 

spectrum of the emitted x-rays, allowing a wide range of wavelengths to be selected 

(i.e. energy dependent experiments can be performed on a single beamline). 

For experimental purposes, a monochromatic, low divergent beam is required 

before the generated x-ray beam reaches the sample. Due to the relativistic nature of the 

electrons, this low divergence is achieved inherently at a synchrotron (i.e. 

approximately 200" vertical divergence at SRS beamline 2.3). The wavelength can 

then be selected by using a monochromating crystal (e.g. a water-cooled Si (111) 

monochromator at SRS 2.3; after monochromation the angular divergence of the 

incident beam, at this station, is about 10"). At BM16 [14] the monochromator consists 

of two Si (111) crystals. The first is flat whilst the second can be bent to focus sagittally 

the beam. A horizontal focusing system is adopted with the source to crystal distance 

being equal to the sample distance. Such sagittal focusing does not affect the vertical 

collimation of the beam. Use of a further mirror placed directly down-stream of the 

monochromator allows the beam to be focused vertically, thus increasing the incident 

flux. In contrast to SRS 2.3, all the optics at the ESRF are housed in a separate hutch, 

resulting in a much lower experimental background noise. A layout of the beamline is 

shown in fig. 3.5. 
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Fig. 3.5: Schematic of the layout of BM16, ESRF. 

For all the instruments, the conditioned beam passes through a set of beam 

defining slits. These can be varied in height and width to give the required beam size 

and energy bandpass on the sample. 
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The detection of x-rays is of course critically important. In a typical reflectivity 

experiment the detector must be able to detect a totally reflected beam and then be 

accurate enough to handle the low intensity of the diffuse scatter. The difference in 

intensity can be of many orders of magnitude. The detector used in all the experiments 

was the Bede EDRa [20]. This high dynamic range detector has a minimum count rate 

of about 0.15 counts per second and was found to be non-linear for count rates greater 

than 410 5 counts per second. The dead time of the detector was calculated to be 350 ns. 

In order to define the resolution of the experiment, a series of slits are placed 

immediately in front of the detector, as shown in fig. 3.4, the height of the slits being 

the same as that of the incident beam. In addition, anti-scatter slits are placed on the 

detector arm close to the sample, in order to reduce the noise at the detector by 

eliminating extraneous scatter. In order to reduce further the absorption, the air path 

from the sample to the detector is typically evacuated at synchrotron beamlines. It is 

also possible to use Soller slits. Soller slits are a set of parallel thin foil sheets that 

absorb nearly all of the x-rays not travelling parallel to the metal sheets. 

The availability of high intensity, highly collimated beams of x-rays from 

synchrotron radiation sources has led to the widespread use of the parallel beam 

geometry for powder diffraction [21-24]. While Soller slit collimation of the detector is 

used for moderate resolution, use of a single crystal analyser not only increases the 

resolution, but also permits the possibility of parallel data collection in a a 

multidetector array [14]. The two circle diffraction instrument at station BM16 at the 

ESRF, which consists of two high-precision, heavy-duty rotary tables aligned coaxially 

on a base plate, has a nine channel array of 111 oriented Ge crystals each in front of a 

scintillation detector. Each channel is separated by 2°. At BM16 there is the option of 

using this set of analyser crystals in preference to the slits geometry. This analyser set

up was used to obtain the high angle diffraction data discussed in chapter 6. Another 

detector used for experiments at BM16 was a CCD camera for the collection of 2-

dimensional diffraction patterns. This device has the advantage of collecting the whole 

diffraction pattern in a few seconds, which is useful for example in measurements 

where the experimental conditions change very rapidly (e.g. temperature, pressure, 

chemical reactions); the disadvantage is in the need of a careful calibration to obtain 

quantitative data. Soller slits were used for x-ray diffraction measurements at SRS 

beamline 2.3. 
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A furnace for high-temperature powder diffraction measurements at temperatures 

up to 1600 °C has been recently commissioned at BM16 and used for the study of 

melting of the tin nanoparticles. A similar furnace has also been used at station 2.3 at 

the SRS. 

3.3.2 Analysis software 
Structural data of the films studied with x-ray reflectivity were extracted by fitting 

to the experimental curve a simulated reflectivity curve, using the Bede REFS-

MERCURY software package. This uses Parrat's recursive formalism of the Fresnel 

equations to calculate the reflected wave amplitude and thus the reflected intensity. A 

genetic algorithm is used to minimise the logarithm of the difference in the absolute 

intensity between the simulated and experimental curve as the model parameters are 

adjusted by the computer. 
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Chapter 4 

X-ray reflectivity from amorphous 

carbon films 

4.1 Introduction 
Carbon shows a variety greater than any other element in the types of chemical 

bonds it can form, both with itself and with other elements. In most chemical 

environments it forms electronic states that are close to the sp3, sp2 or sp' 

hybridizations, and in the crystalline state sp3 and sp2 hybridizations occur as diamond 

and graphite, respectively. In the amorphous state (for a good review see [1-4]), the 

possibility of intermediate hybridization states arises because some atoms in the 

network are in highly strained configurations. The symbol a-C is generally used to refer 

to a predominantly sp2 bonded carbon and the symbol ta-C (tetrahedral amorphous 

carbon) to a predominantly sp3 bonded network. Amorphous carbons containing 

significant hydrogen levels are denoted by the symbols a-C:H or ta-C:H. Amorphous 

carbons with a high value of sp3 content, density and hardness are also referred to as 

diamond-like carbon (DLC). Most of the literature refers to amorphous carbon in the 

form of a thin film. 

Hard amorphous diamond-like carbon (DLC) coatings exhibit mechanical, 

thermal and optical properties close to that of diamond. They can be deposited over a 

wide range of thickness by different deposition processes, on a variety of substrates at 

or near room temperature. Friction and wear properties of some DLC coatings can be 

very attractive for tribological applications. 

The first documented report of a dense amorphous carbon was made by 

Aisenberg and Chabot (1971) [5], while Aksenov and co-workers [6] were the first to 

use a cathodic arc in vacuum to generate a plasma. Since then many deposition 

techniques have been developed: high pressure and high temperature treatment of 

precursors, cathodic arc, laser ablation, plasma-enhanced chemical vapour deposition, 

electron cyclotron resonance chemical vapour deposition, ion beam deposition, 

sputtering, ion beam damage of glassy carbon or diamond, cluster beam deposition (see 
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chapter 5), etc. The properties of the films strongly depend on the average ion (or atom) 

energy used for deposition. 

The most important application of DLC films is in the field of tribological 

applications, e.g. for hard protective coatings. Their unique properties include high 

hardness and wear resistance, chemical inertness, lack of magnetic response, and an 

optical band gap ranging from zero to a few eV. The high hardness, good friction and 

wear properties, versatility in deposition and substrates and no requirement of post-

finishing make them very attractive in particular as overcoats for magnetic media and 

heads for magnetic storage devices. 

Carbon films are also being studied for optical and electronic applications, for 

example in heterojunction devices, field effect devices, field emission devices (e.g. for 

flat panel displays). 

The key structural parameters that determine the properties of amorphous carbons 

are the density, the sp3 fraction, the clustering of the sp2 phase and the hydrogen (or 

nitrogen) content. Electron Energy Loss Spectroscopy (EELS) is presently the method 

of choice to obtain the sp3 content (from the size of the n peak in the carbon K edge 

absorption spectrum), and the mass density (deduced from the valence plasmon energy 

in the low energy loss spectrum). EELS suffers from the main drawback that it is 

destructive and time consuming. It requires accurate procedures for data collection and 

analysis, which have not always been followed in published works. Indeed, to translate 

the valence plasmon energy into mass density, an appropriate choice of an electron 

"effective mass" is necessary, which is complicated by the presence of hydrogen or 

nitrogen. Furthermore, standard EELS analysis does not give any information about the 

possible layering within the films, unless using cross sectional EELS, which again 

implies a complex and careful sample preparation [7], 

In this chapter it will be shown how grazing incidence X-Ray Reflectivity (XRR) 

can be successfully applied to several different kinds of amorphous carbons in order to 

determine the density, roughness and cross sectional layering without any sample 

preparation or damage [8]. XRR gives information about the total electron density, 

which can be directly translated into mass density without any assumption of the value 

of the electron effective mass. 

Different authors have made different choices of the effective electron mass from 

which they have derived the mass density from the valence electron density [9, 10]. 

Three other methods are mainly used to determine the mass density of carbon films and 
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to benchmark the density derived from the plasmon energy, i.e. flotation, weight gain, 

and Rutherford Back Scattering (RBS). These independent density determinations 

never fully agreed with EELS [9-11]. There is a reasonable agreement for denser 

materials such as ta-C, even though with broad data scattering [9-11]. However, weight 

gain gives lower values than flotation and plasmon energy for porous materials because 

the latter measure the microscopic density [11]. Moreover, RBS is usually combined 

with profilometry, resulting in wide error-bars. 

XRR provides a probe of the near surface total electron density, whilst EELS is a 

probe of the valence electron density. Thus, the combination of XRR and EELS can be 

used to fit directly an effective electron mass. It will be shown how an appropriate 

choice of the effective mass gives a good agreement with the XRR mean densities, thus 

validating the use of the "quasi free" electron model to analyse the low loss spectrum. 

Indeed, a unique effective mass for all amorphous carbons and diamond is obtained [8] 

and the correct general relation between density and coordination for carbons is 

therefore presented. For samples containing nitrogen, the comparison of XRR and 

EELS, for samples of known composition, can provide a way to assess the number of 

nitrogen valence electrons to be considered in the plasma oscillations. 

XRR is also a powerful tool to check the cross sectional layering of films. When 

analysing a wide variety of films grown under different conditions it was found that 

extremely uniform or layered films can result from different preparation conditions 

within the same deposition system. In particular, we show that heavy layering is not a 

fundamental property of tetrahedral amorphous carbon (ta-C) films, but is linked 

instead to the functioning of the deposition apparatus. 

Hydrogen content is usually measured by Elastic Recoil Detection Analysis 

(ERDA) or nuclear reaction analysis. A combination of EELS and XRR can also 

provide a way to quantify the hydrogen content, even though the EELS measurement 

errors hinders this as a precise quantitative method. On the other hand, a combination 

of XRR and H effusion analysis is a precise and efficient way to obtain the hydrogen 

content. 

4.2 Samples 
Measurements were undertaken on tetrahedral amorphous carbon (ta-C), 

hydrogenated ta-C (ta-C:H), nitrogen-containing ta-C (ta-C:N) and ta-C:H (ta-C:N:H), 
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amorphous carbons (hydrogenated) a-C:(H), and nanostructured a-C films, all 

deposited on Si substrates (see Tables 4.1 and 4.2). 

Most of the samples were deposited by the Electronic Devices and Materials 

group in the Engineering Department at the University of Cambridge (UK). PLD 

(Pulsed Laser Deposition) films were deposited at the University of Trento (Italy) and 

nanostructured carbon films were deposited in the Nanoaggregates Laboratory of Milan 

(LAMiNa) in the Department of Physics at the University of Milan (Italy). 

Five sets of ta-C films, grown with different sources and under different 

deposition conditions, were analysed: 

• the first set was deposited using a single bend Filtered Cathodic Vacuum Arc 

(FCVA) system [10] with different substrate biases: -290V, -200V, -80 V, +10 V 

and with a floating potential (the bias determines the energy of the deposited ions); 

• the second set was deposited using a double S-Bend FCVA [12] at biases of -20V, 

-100V and-300V; 

• the third set was deposited using a single bend FCVA at a fixed bias voltage of -80V 

and for increasing deposition times (20, 30,45, 60 and 90 seconds); 

• the fourth set was deposited at a floating potential with increasing deposition times 

(25, 50 and 75 seconds) using the defocused beam of an S-bend FCVA in order to 

achieve a very low deposition rate (-1.5 A/s) and thus ultrathin films; 

• the f if th set was deposited by Pulsed Laser Deposition (PLD) at a laser fluence of 1, 

9, 20 and 31 J/cm2 [13] (the laser fluence controls the ion energy). 

Three series of ta-C:H samples were obtained using two Electron Cyclotron 

Wave Resonance (ECWR) sources (one slightly capacitively coupled) with an 

acetylene plasma and an ion energy ranging from 80 to 170 eV [14]. A value of 

approximately 30% for the hydrogen atomic content was derived by Elastic Recoil 

Detection Analysis (ERDA) for all the films [14]. One of the series consisted of two 

ultrathin (thickness less than 10 nm) ta-C:H films. 

One ta-C:H fi lm was deposited from methane with a Plasma Beam Source (PBS) 

[15] and ERDA analysis gave a value of -40% at. H. 

Three ta-C:H:N films were deposited by an ECWR source from N2/C2H2 gas 

mixtures, with known C/N and C/H ratios (measured by a combination of ERDA and 

XPS [16]). 

Two ta-C:N films were deposited by a combination of a carbon plasma, given by 

an FCVA, and a nitrogen plasma, given by an ECWR [17]. 
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Two a-C:H films were deposited from methane using a Plasma Enhanced 

Chemical Vapour Deposition reactor (PECVD), with an estimated H content -30-40% 

at., and one polymeric a-C:H fi lm was deposited with an estimated H content of ~40-

50% at. 

An a-C sample was deposited by DC magnetron sputtering [18]. 

Two nanostructured a-C films were produced by deposition of supersonic carbon 

cluster beams of different average cluster size generated by a Pulsed Microplasma 

Cluster Source (PMCS) [19] (see chapter 5). 

We thus analysed a wide variety of different samples covering the ful l range of 

materials usually considered in the literature. 

4.3 Experiment 

4SAEELS 

The EELS experiments were carried out by V. Stolojan and L.M. Brown at the 

Cavendish Laboratory (Cambridge, UK) on a dedicated VG 501 Scanning 

Transmission Electron Microscope (STEM) equipped with a spectrometer with a 

McMullan parallel EELS detection system [20]. The data analysis was performed by V. 

Stolojan and A.C. Ferrari, of the Department of Electronic Engineering (University of 

Cambridge). For each sample, forty spectra of the carbon K edge were collected, as 

well as the low-loss spectrum containing the plasmon and the zero-loss electrons. Both 

spectra were Fourier log ratio deconvoluted with the spectra of the electron beam going 

through vacuum [21]. The background was then removed from the carbon K-edge, 

followed by the removal of multiple scattering by deconvolution with the low-loss data 

by Stephan's method [21]. The n* peak at 285 eV of the carbon K-edge was modelled 

with a gaussian line-shape, and its area was normalised to the area of the a* edge in the 

window 284-310 eV. Referencing this to the equivalent area for graphite, the sp2 

content was obtained [10, 22]. The plasmon energy is derived by fitting the energy loss 

function to the single plasmon peak (see next subsection). Al l spectra were collected at 

a convergence angle of 7.4 mrad and an acceptance angle of 7 mrad, for 100 keV 

electrons. This particular choice of angles ensures that, at the energy of the carbon K-

edge, all directions in the sample are equally probed. The results are thus independent 

of any anisotropy within the films [23-25]. 
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4.3.1.1 Plasmon energy 
The low energy loss spectrum in EELS is related to the valence plasmon 

excitations and is proportional to the energy loss function, Im(-l/e); e is the complex 

dielectric function. In the free-electron limit, 6 is given by the Drude model [21] 

e ( E ) = l -
E2 + iET 

and so the energy loss function is 

(4.1) 

Im 
1 

e(E) 

E/ET 

(E -Ep ) +(ETY 
(4.2) 

where Ep is the plasmon energy and T is the FWHM of the energy loss function. The 

plasmon energy is defined as: 

.2 \i 

e0m* 
(4.3) 

where e is the electron charge, 6o is the dielectric permittivity of vacuum, ne is the 

valence electron density and m* is the electron "effective mass" (me being the free 

electron mass). The energy loss function reaches a maximum at: 

£ ^ = [ £ P

2 - ( I 7 2 ) 2 ] 1 / 2 (4.4) 

In order to derive the mass density of amorphous carbons from the valence electron 

density ne, it is assumed that C contributes with 4 electrons, N with 5 (though some 

groups suggest 3 valence electrons for N), and H with 1, thus obtaining: 

n =12 
( 3XC +4X^+1 

l L Y c + n X ^ + l 
(4.5) 

where p is the mass density, NA is the Avogadro number, Mc is the atomic carbon mass 

and XH=\-XC-XN (Xj is the atomic fraction of element f ) . Thus, the mass density 

becomes: 

l2HzNAe2 
•Mrm*E2

P 

( U X C + 1 3 X W +1 
3 X C + 4 X „ + 1 

(4.6) 

The usual approach has so far been to derive m* in Eq. (4.6) in order that the 

density of diamond (3.515 g/cm3) would correspond to its measured plasmon energy of 

33.8 eV [10]. This results in m*~0.85me. Further scatter in the m* comes from different 
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values of the diamond plasmon energy found in the literature (33.3 eV [21], 34 eV [10], 

33 eV [9]). Moreover, some groups proposed that given the high plasmon energy with 

respect to the typical band gap, the electrons should be considered totally free, thus 

assuming m*=me [26]. This introduces a further 15% difference in the derived 

densities, which must be taken into account when comparing data from different 

sources. 

Finally, whilst the fitting procedure to get the critical angle from XRR 

measurements (see below) is quite standard, in the literature Eq. (4.2) is not always 

used to fi t the plasmon energy and some groups use Emax instead of Ep in Eq. (4.3). 

Since a typical plasmon energy of a ta-C is -30 eV, whilst its FWHM is ~15 eV, using 

Emax instead of Ep introduces a difference of ~1 eV between Ep and Emax. This results in 

a further 5-10 % difference in the densities, i.e. 0.2-0.3 g/cm3 for a typical 3 g/cm3 

density. In this work Eq. (4.2) was always applied to fi t the measured plasmon energy. 

4.3.2 X-Ray Reflectivity 
Several papers about x-ray reflectivity measurements of pure and hydrogenated 

carbon films can be found in the literature [27-42], and most of them are devoted to 

density determination (mainly as a function of deposition parameters). Few are devoted 

to thickness or roughness determination. Lucas et al. [34] and J. Martinez-Miranda et 

al. [41] used XRR to follow the density evolution during annealing of sputtered 

amorphous carbon and PLD ta-C, respectively. The latter reported the presence of a 

feature attributed to a Bragg peak, due to a quasi-periodic array of scattering sites 

created by thermal annealing within the amorphous phase, without giving any 

explanation for it. Some studies were performed using neutron reflectivity (e.g. [35]) 

and Findeisen et al. [36] combined neutron and x-ray reflectivity to determine at the 

same time the density and the H content of the films. Logothetidis et al. [30-33] studied 

the relationship between roughness and thickness in r.f. magnetron sputtered a-C films. 

Zhang et al. [39, 40] conducted a thorough investigation of the effects of bias voltage 

and deposition pressure on hydrogenated amorphous carbons. Lucas et al. [34] first 

reported a multilayer structure for DC magnetron sputtered a-C films, with a C/Si 

interface of -1.5 nm and density -1.7 g/cm3, a bulk carbon layer of density -2.25 g/cm3 

and a surface layer of - 1 nm and density -1.2 g/cm3. Martinez-Miranda et al. [41] 

indicated the possibility of a multilayer structure in PLD ta-C films. Siegal et al. [43, 
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44] showed the presence of at least 3 layers in the structure of PLD ta-C films, by 

combining High Resolution Transmission Electron Microscopy (HRTEM), Rutherford 

Back Scattering (RBS) and XRR. They also observed an evolution in thickness and 

density of the layers as a function of the PLD energy density. Siegal et al. [45] recendy 

used HRTEM to observe a similar behaviour in a set of films grown with a single bend 

FCVA, proposing a physical mechanism, the backscattering subplantation, as being 

responsible for layering in carbon films [43]. 

Reflectivity curves as a function of the incidence angle were measured on the 

Bede Scientific GXR1 reflectometer (/Ul.3926 A). Specular and off-specular 

reflectivity curves were measured for each sample, with the grazing incidence angle 

usually varying in the range 0-10000 arcseconds, with a step size of 20 arcseconds. A 

-0.1° offset of the sample angle was used for the off-specular measurements. 

Films laterally inhomogeneous in thickness give a convolution of different 

periods in the reflectivity curve, and thus the interference fringes are less marked. The 

x-ray beam width, defined by the slit width was in the range 1-5 mm, and the beam 

height was 100 fmt. At very small angles of incidence the footprint on the sample was 

(1-5 mm) x (1-2 cm). Thus XRR probed a macroscopic area of the sample. 

By fitting the x-ray reflectivity data to simulated curves, obtained using the 

Bede REFS-MERCURY software package, more detailed information on the 

parameters of interest could be obtained, especially in the case of layered films. 

4.3.2.1 Density determination 

In amorphous carbons we have in general to consider three elements, carbon, 

hydrogen and nitrogen. From Eq. (2.44) the critical angle 9C is given by 

q - I f̂ Vo [Xc(Zc + f c ' ) + XH (ZH + f H ' ) + XN (ZN + fN)] 
c \ n (XCMC + X H M H + X N M N ) 

where X is the x-ray wavelength, p is the overall mass density and Xj is the atomic 

fraction of element j, Mj is the mass number of element j, Z} is the atomic number of 

element j, ro = e2/4n£omec2 is the electron classical radius, NA is the Avogadro number. 

At A=1.3926 A we have f / ~ 10'2 (electron units) [46], i.e. the dispersion corrections 

are very small. Thus letting^' = 0 we obtain, with XH = J-XC-XN: 
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p = 3A2NAe 
\Mcme6c 2 nxc +nxN + 1 

5Xc+6XN+l 
(4.8) 

where e is the electron charge, me is the electron mass, So is the dielectric permittivity 

of vacuum. We note that the dependence on the H content is quite small in the usual 

range XH = 10-50 % (e.g. for XN = 0, if 6C = 720" at A=1.3926 A , p is 2.3 g/cm3 when 

X w = 0.1 and 2.16 g/cm3 when XH= 0.5). 

The structure of Eqs. (4.8) and (4.6), giving the mass density via XRR and E E L S , 

can be directly compared. In Eq. (4.8) the unknowns are the critical angle 6C, the carbon 

fraction Xc and the nitrogen fraction XN. In Eq. (4.6) the unknown are the plasmon 

energy Ep, the carbon fraction Xc, the nitrogen fraction XN and the effective electron 

mass m*. It is assumed that N contributes with 5 valence electrons. Eq. (4.8) has a 

weaker dependence on the H content with respect to Eq. (4.6) (5Xc and 6XN, instead of 

3Xc and AXN, at the denominator), so the XRR density is less affected by any error in 

the determination of the H content. The approximations used in the derivation of Eq. 

(4.6) are weaker than the ones in Eq. (4.8). The weak point of Eq. (4.6) is the unknown 

electron effective mass which naturally arises from the assumption of a "quasi free" 

electron model. 

Some films such as ta-C:H films have a density (and therefore a critical angle) 

which is similar to or just smaller than the Si substrate density (2.33 g/cm3), so that the 

Si critical angle is often seen, and not that of the film. The presence of the film only 

acts as a perturbation on the shape of the critical angle (see fig. 4.1) and a simulation of 

the reflectivity curve is needed to extract the density information. In the case of films 

with very low density (e.g. cluster-assembled carbon films, or less markedly, in the 

case of a-C:H and a-C films) a double critical angle is distinguishable (fig.4.1), thus 

allowing a better determination of the density. In fact, if the layer density is lower than 

the substrate, X-rays start to penetrate when the incidence angle 0, becomes greater 

than the film critical angle and the reflected intensity falls sharply due to absorption in 

the film, subsequently undergoing total external reflection at the film-substrate 

interface. When the incidence angle becomes greater than the substrate critical angle, x-

rays penetrate into the substrate and a second intensity fall is seen in the reflectivity 

curve beyond the substrate critical angle (see fig. 4.1). 
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Fig. 4.1: Experimental X-ray reflectivity spectra for diamond-like a-C:H, polymeric a-C:H and 

cluster-assembled a-C films. Their electron density is lower than in the silicon substrate, so they show a 

double critical angle, as indicated. The top line is the reflectivity curve of a ta-C FCVA film, whose 

density is greater than in Si; in this case a single critical angle is detected. 

In general, i f the film is made of a bulk, dense layer with a top and a bottom layer 

that are less dense, the critical angle (and the density that one can obtain from it) is that 

of the bulk layer. This means that what we get from the analysis of the critical angle is 

the density of the densest layer and not the average f i lm density, which requires a fit of 

the multilayer structure. This is typically the case for ta-C films (see below). On the 

other hand, EELS provides an average of the density over the whole film thickness. 

The penetration depth for incidence angles &, greater than the critical angle is [44, 

47, 48]: 

D = 
2nq 

(4.9) 

where (4.10) 

and (see Eq. (2.43)) P = (4.11) 
4/r 
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Here, ;U is the linear absorption coefficient, given by the product of the wavelength-

dependent mass attenuation coefficient and the density (for carbon fx = 2.8-p cm"1 when 

A= 1.3926 A [46]). 

Indeed, the penetration depth just beyond the critical angle (Dc) of x-rays as a 

function of carbon mass density and absorption coefficient is 

£ > C = J ^ > (4-12) 

and its value is about 4 • 102 / —— nm for carbon at X = 1.3926 A . 
V Pig/cm3] 

The penetration depth increases as the incidence angle increases, and Dc is 

smaller for larger densities. For a density p ~ 3 g/cm3 Dc is -200-250 nm. I f the surface 

layer is thicker than Dc, we would directly see, in the specular scan, the critical angle 

corresponding to the density of the first Dc of this surface layer. In our case, the surface 

layer is usually less than 10 nm and so the x-rays penetrate without giving a "surface" 

critical angle. We thus directly see the density of the bulk layer (of its upper part, 

limited by the penetration depth at this density). If the surface region has a density 

gradient, or i f the distinction between the bulk and the surface layer is not sharp, the 

critical angle may be smoothed and refers to an average density of a surface region 

whose thickness is defined by the penetration depth. Thus, for layered films, the whole 

reflectivity curve must be simulated to obtain the density of the other layers and thus 

the total average density. Note that our definition of Dc gives values roughly 5 times 

bigger than the Dc derived by Siegal et al. [44], but in agreement with simulations of 

critical angles in structures composed of high and low density layers of various 

thickness. This difference stems from a different definition of the characteristic 

penetration depth at the critical angle, given the large gradient of D around 6C. 

However, Eq. (4.12) accounts better for the measured critical angles. 
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Fig. 4.2: Experimental x-ray reflectivity curves for most of the samples reported in Tables 4.1, 

4.2,4.4 and discussed in this chapter (continues). 
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Fig. 4.2 (continued): Experimental x-ray reflectivity curves for most of the samples reported in 

Tables 4.1, 4.2,4.4 and discussed in this chapter. 
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4.4 Results 

4 . 4 . 1 X - r a y r e f l e c t i v i t y 

Fig. 4.2 shows the experimental x-ray reflectivity curves for most of the films 

reported in Tables 4.1, 4.2 and 4.4 (see below) and discussed in this chapter. In the 

following some of these data wi l l be replotted, when convenient, to illustrate the 

discussion of the most important results. 

4.4.1.1 Density and layering 

Fig. 4.3 shows a typical XRR curve for a ta-C:H film. Only one fringe period can 

be seen, showing that these films consist of a single layer. The interference fringe 

period gives direct information on the fi lm thickness. Very good simulations of the 

measured curves were obtained for all ta-C:H films. The presence of a 1-2 nm layer of 

different (lower) density (possibly composed of Si, C and O [7, 34]) at the fi lm-

substrate interface, and sometimes of an approximately 1 nm thick layer at the film 

surface, gives an even better fit of the data. Ta-C:H films from the more capacitively 

coupled ECWR have a density in the range 2.3-2.4 g/cm3, whilst the others have 

densities in the range 2.1 -2.23 g/cm (see Table 4.1). 

r ! 10 ta-C -100V 
S bend FCVA 10 / ta-C:N 10 

10" • 

•e 10 • 

10" r 

/ 10 r ta-C:H:N 
ECWR ta-C:H 

i 10 2000 4000 6000 
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Fig. 4.3: X-ray reflectivity curves for tetrahedral amorphous carbon films. 
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A similar behaviour was found for ta-C:H:N and ta-C:N films, with a small 

surface layer (1-2 nm) and an interface layer sometimes thicker than in ta-C:H films 

(up to 4 nm in the ta-C:N shown in fig. 4.3). The thickness of these films was 

respectively in the range 80-100 nm (ta-C:H:N) and 30-40 nm (ta-C:N). Fig. 4.3 shows 

the reflectivity curve for a f i lm with 29% H and 16% N content and of a ta-C:N fi lm 

with 14% N content. The measured densities are reported in Table 4.1. 

Similar results (substantial cross-sectional uniformity) were obtained also for the 

a-C:H films, with the main difference being a clear double critical angle structure (see 

fig. 4.1). From this we deduced a density of 1.64-1.74 g/cm3 for the diamond-like a-

C:H films and 1.2 g/cm3 for the polymeric film. The fit of the latter film required the 

presence of 2 layers of 3.5 nm and 5.8 nm of lower density (0.85 g/cm and 0.9 g/cm ) 

at the Si/C and C/air interface, respectively (see XRR curve in fig. 4.4). The thickness 

of these a-C:H films was in the range 160-250 nm (Table 4.1). 

The magnetron sputtered a-C film showed a double critical angle, corresponding 

to a density of 1.7 g/cm3. The XRR curve (fig. 4.4) presents 3 different periodicities, 

corresponding to 360 nm (total thickness), 40 nm and 5 nm (surface layers); the 

simulation gives a density varying from 1.7 g/cm (in the bottom layer) to 1.15 g/cm 

(in the surface layer). 

A double critical angle structure was also detected for the nanostructured a-C 

films (fig. 4.1). The density varied from 0.8 to 1.4 g/cm3 depending on the cluster size 

(see chapter 5). Films grown with smaller average cluster size have a higher density 

[19]. 
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Fig. 4.4: X-ray reflectivity curves of various carbon films showing a surface layer. 
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For the ta-C films, it is easier to determine the film density from the single critical 

angle, as this is greater than the substrate critical angle, and as the film composition is 

well known. The uncertainty of the obtained density value is therefore smaller than in 

the hydrogenated films (Table 4.1). Densities up to 3.26 g/cm3 were obtained for an 

-88% sp3 film from the S-bend FCVA (bias -100V). However, for the single bend 

FCVA films, the reflectivity curves show multiple periodicity (fig. 4.4 and fig. 4.5), 

which indicates significant internal layering (not just 1-2 nm at the surface or at the 

substrate interface). They can be simulated taking into account three, or more, layers 

with different densities. This is supported by cross-sectional HRTEM measurements on 

the same films [45] and is similar to the findings of Siegal et al. [43, 44] on PLD ta-C. 

Thus the density deduced from the critical angle is that of the bulk, densest layer (and 

not an average film density) as explained before when discussing the x-ray penetration 

depth. The density of the other layers can be estimated with less accuracy from the fit 

parameters, but it is usually smaller, in the range 1.5-2.5 g/cm3. 

Fig. 4.4 shows the reflectivity curve of a single bend FCVA ta-C film grown at 

-80V bias. We can see a short period due to the overall film thickness and a long 

period due to a less dense 7 nm surface layer, as confirmed by simulation of the XRR 

data. Other films show more complex curves (fig. 4.5). The number of layers, their 

density, thickness, and roughness are all variable and the density of the top and bottom 

layers (and possibly of the bulk) is probably not constant (e.g. the interfaces are not 

sharp), whilst the sp3 content does not vary so much with bias (Table 4.1). Simulation 

of such a structure is difficult. 

Fig. 4.5 shows a simulation in which a three-layer model gives a reasonable 

account for the measured reflectivity in the case of the +10 V bias FCVA film. The 

model is reported in Table 4.3. However, only qualitative agreement with the measured 

data could be found. 
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Fig. 4.5: X-ray reflectivity of FCVA ta-C films showing internal layering. One reflectivity curve 

is compared to the simulated reflectivity. 

Table 4.3: Simulated model structure for the +10 V FCVA ta-C film, from substrate to top layer. 

Density (g/cm3) thickness (A) roughness (A) 
Si 10 
C 2.56 275 8 
c 2.72 370 8 
c 2.43 90 5 

The sharp uniform layer approach fails for the first series of single bend FCVA 

films grown at higher energies, for which the density is probably not constant inside 

each layer. The total thickness of this series of films was between 50 and 70 nm. XRR 

cannot give a complete quantitative description of very complex films (such as ta-C 

grown away from the optimum conditions). Coupling of XRR with cross sectional 

HRTEM, giving information about the structure of the films, could be a better starting 

point for fitting reflectivity curves, leading to a better determination of the density of 

the layers. The evolution of layering with bias was confirmed by HRTEM 

measurements of Siegal et al., that directly imaged the non-uniform structure [45]. 

Single bend FCVA films at -80V have always been considered ideal films, having the 

highest density and sp3 content, due to the optimum kinetic energy of the deposited 

atoms. These results would suggest that they are also the most uniform, with the 

thickest bulk layer and thinnest interfaces. A similar layered structure was found for the 

PLD ta-C films; fig. 4.6 shows the measured and simulated reflectivity curves for the 

sample grown at 9 J/cm2, resulting in 3 layers (see structure model in Table 4.1). 
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Layering in PLD ta-C was found also by Siegal et al. [43, 44]. They also reported the 

presence of a Bragg scattering peak attributed to quasi-periodical nm-sized regions of 

localised strain fields. However we never detected such a peak in any of the films we 

examined. 
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Fig. 4.6: X-ray reflectivity of a PLD ta-C film showing internal layering, compared to the 

simulated reflectivity. 

On the other hand, the series of samples grown with the S-Bend FCVA shows a 

much higher uniformity (fig. 4.3) and only a weak dependence of density and layering 

on the substrate bias (Table 4.1). Surface layers never exceed 1-2 nm, and the fi lm-

substrate interface layer never exceeds 3 nm. The thickest surface layer, 2 nm, was 

detected for the film grown at -300V bias. The highest bulk density was 3.26 g/cm3 

(corresponding to 88% sp3 content, at -100V bias). The high uniformity in these films 

was confirmed by Brillouin scattering measurements, since an optimum fit of the 

experimental data was obtained by considering the film as a single layer [49]. On the 

other hand, it was not possible to fi t the Brillouin measurements o f -80V films from the 

single bend FCVA i f a single layer was assumed [49]. 
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Fig. 4.7: X-ray reflectivity of ultrathin ta-C and ta-C:H films. 

Fig. 4.7 shows XRR data on ultrathin ta-C and ta-C:H films, indicating the ease 

of XRR to measure films in the nm range. In particular, the structure of the thinnest ta-

C, deposited at floating potential, consisted of 3-3.5 nm of 3.05-3.1 g/cm density with 

a 0.5-0.8 nm surface layer of 2-2.5 g/cm density and a 0.5-1 nm interface layer (see 

Table 4.2). 

In Fig. 4.8, reflectivity curves from some of the films previously discussed are 

shown together with the simulated curves, obtained by using the Bede REFS-

MERCURY simulation software package. The quality of the fits is affected mainly by 

parameters such as the bulk density, the total thickness, the surface and interface layer 

thickness, the surface roughness. On the other hand, the reflectivity curve (and thus the 

fitting procedure) is less sensitive to the density of the surface and interface layers and 

the roughness or grading between the layers, so that the error in the evaluation of these 

parameters is larger. 
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Fig. 4.8: Experimental (red dots) and simulated (black lines) reflectivity curves for some of the 

films discussed in section 4.4.1.1. 
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4.4.1.2 Etching 

XRR was also used to study the effect of etching on ta-C films grown with the S-

bend FCVA deposition system (bias -100 V, fig. 4.9). Etching has previously been 

tentatively used to remove small density surface layers, but we show that instead of 

removing them, new layering is produced. Two different types of etching were 

performed on the same film (in different regions of the deposition): with H 2 ions and 

with O2 ions. Before etching the film was 76 nm thick, with a density of 3.26 g/cm 

(determined by XRR); a small surface layer approximately 1 nm thick was probably 

present, with a lower density (= 2 g/cm3). 

After 0 2 etching, the thickness was measured to be 62 nm, with only a small 

surface layer 1.5 nm thick and 2.0 g/cm3 dense. H 2 etching resulted in a film still 76 nm 

thick, but with a surface layer of 3.5 nm thickness, whose density was about 1.7 g/cm 

(revealed by the strong modulation in the reflected intensity, see fig. 4.9). 
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Fig. 4.9: Reflectivity curves from a ta-C S-bend FCAV film, as deposited and after H 2 and 0 2 

etching. The modulation in intensity in the H 2 etched film is due to a small density, 3 .5 nm thick surface 

layer. 

4.4.1.3 Roughness 

XRR was used to measure atomic scale roughness. By combining specular and 

diffuse scatter, genuine surface roughness could be separated from compositional 

grading (i.e. smooth variations of density along the direction normal to the interface) 

[50], using Eq. (2.48): 

as deposited 
H etching 
0 2 etching 
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7 ^ - = exp (^ 2 <T 2 ) - l (4.13) 
1 spec 

Thus by measuring the integrated intensity of the diffuse and specular scatter in a 

transverse scan (fig. 4.10) the roughness of the surface could be deduced. Simulations 

show that in our films this method is sensitive mainly to the surface roughness, due to 

the small differences in electron density across internal interfaces. 
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Fig. 4.10: Transverse diffuse scattering curves from two ta-C films grown with different 

deposition times. The detector angle (i.e. the scattering angle) is fixed, while the sample is rocked around 

the specular condition. The maximum correspond to specular reflection. It is possible to note that the 

diffuse scattered intensity increases in the thicker film, where the roughness is higher. 

The top surface r.m.s. roughness was found to be in the range 5-10 A for all the 

films (Tables 4.1, 4.2 and 4.4 below), and no relationship between the roughness and 

the deposition parameters could be found. The roughness of the nanostructured carbon 

film was too large (several tens of nm [19, 51]) to be determined quantitatively from 

Eq. (4.13) or within the distorted Born wave approximation. 

To study the evolution of roughness as a function of thickness a series of films 

with increasing deposition times, from 20 s to 90 s, was prepared, using the single bend 

FCVA with -80 V bias. The r.m.s roughness increased with thickness, reaching a 

maximum at about 1 nm (Table 4.2). 

4.4.1.4 Comparison of film uniformity 

The hydrogenated DLC films consist mainly of a bulk layer with the possible 

presence of very thin Si/C and C/air interfaces. The cross sectional structure shows a 
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small dependence on the ion energy. Zhang et al. [40] reported the increase of surface 

and interface roughness (from 0.5 to 1.5 nm) and interface layer thickness (from 3 to 5 

nm) for a-C:H deposited with increasing ion energy. On the other hand we found a 

difference in the cross sectional nanostructure of the two ta-C series grown with single 

bend and double bend FCVA (see figs. 4.2,4.3,4.4 and 4.5). 

The films of the first series always consist of at least three layers of different 

densities, with a Si/C and C/air layers a few nanometers thick (up to 15 and 25 nm, 

according to HRTEM measurements by Siegal et al. [45] on a 55 nm film grown at 

-300V). Furthermore, the cross sectional structure is strongly dependent on the ion 

energy. FCVA films at -80V have always been considered ideal films, being the most 

dense and most highly sp3 ones [10]. They are also the most uniform, consisting of the 

biggest bulk layer and of the smallest interfaces. Moving from -80V the sp3 content 

does not change as drastically as the layering. Moreover the reflectivity curves of films 

deposited away from the optimum energy cannot be fitted satisfactorily only assuming 

different layers of fixed density, thus suggesting smooth interfaces with densities 

grading over a few nanometers inside each layer (as confirmed by HRTEM). Similar 

structures depending on ion energy are also revealed in ta-C films deposited with a 

completely different technique such as pulsed laser deposition [43, 44]. In this case, up 

to 4 layers with a "superdense" central layer were detected [43]. 

On the other hand double S-bend FCVA ta-C films showed a more uniform 

structure consisting of a high density bulk layer and two very small interface and 

surface layers, similarly to ta-C:H and a-C:H films. Finally, a significant surface layer 

was also found in the sputtered a-C film grown at much lower ion energy than ta-C. 

These data indicate that it is possible to grow very uniform ta-C and that heavy 

layering does not necessarily occur but it is dependent on the particular deposition 

conditions employed. The S-bend FCVA apparatus works on the same principle as the 

single bend FCVA, the S bend only providing a better filtering of the macroparticles 

[12]. There is no fundamental physical reason why one machine should produce 

uniform films and the other extremely layered ones. Indeed, the layering dependence 

on deposition energy is not predicted by the simple subplantation theory [52, 53]. 

Siegal et al. [43] proposed the backscattering of C atoms from the Si substrate as 

responsible for the development of the bulk dense layer and of the interface layer, 

predicting the scaling of the interface layer with increasing ion energy. However, this 

mechanism cannot be a proper physical explanation for development of layers well 
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over 1 nm thick, which is the range of C ions at the usual 10-400 eV deposition 

energies [52]. The range is clearly even smaller for C atoms back-scattered at the Si 

substrate. This cannot also explain layers in sputtered a-C, grown at very low 

deposition energy. They also proposed that the less dense surface layer should originate 

to counteract the stress energy resulting from the growth process. However, layered and 

uniform ta-C films have comparable stresses of ~ 10 GPa, thus showing that no stress 

releasing induced layering is present. Note also that the structure of the ultrathin S-bend 

ta-C films (Table 4.2) resembles that of the thicker S bend films, with a scaling of the 

bulk layer, but not of the surface and interface layers (that are -1 nm in both thick and 

thin films). 

A hint towards an understanding of the real origin of the layering comes by 

considering the plasma in a FCVA or in an ECWR source. An ECWR plasma can be 

kept running with extreme stability for hours. A FCVA plasma is intrinsically less 

stable. Depositions in one run for more than 3-4 minutes cannot be done and the spot 

on the cathode moves during the deposition, sometimes requiring repositioning in the 

centre and re-striking the plasma. This results in plasma fluctuations. A first check was 

made on the possible influence of the triggering of the arc during ta-C deposition, by 

producing a film in one single strike or in more than one. As reported in [7], the 

structure was unchanged, suggesting that triggering in itself has a negligible role on the 

growth process. However, plasma instabilities and transients in ion energy and current 

density during the deposition could be responsible for the layering. A series of films 

was thus produced with increasing deposition times, from 20 s to 90 s, at -80V, using 

the single bend FCVA. A new cathode was used and extreme care in the positioning of 

the striker was taken during the deposition. As shown in table 4.2, no surface layer 

(<1 nm) was detected and only a ~2 nm interface layer was produced. We then grew 

another film at -250V; we still found a 4 nm thick top layer, but the layering was much 

smaller (Table 4.1) than in films previously grown at similar bias (single bend FCVA 

-200V, -290V). Furthermore Davis et al. [7] analysed, by cross sectional high 

resolution EELS, samples prepared at -300V with the same single bend FCVA and 

very uniform films were obtained (with 5 nm interface and 1 nm surface layers). 

McKenzie et al. also reported layering in their FCVA ta-C films, and they attributed it 

to plasma instabilities during growth [54]. 

Thus, we think that heavy layering is not an intrinsic property of ta-C and 

extremely uniform ta-C films can be grown at various bias voltages. There is no 
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physical mechanism that can explain less dense layers of the order of 10 nm at the 

surface or interface, if the ion energy and current densities are kept constant. 

Backscattering from Si could contribute only in the first 1-2 nm. Further work has to be 

devoted to better investigate the relation between layering and plasma instabilities and 

a feedback system should be required to minimise them. It is clear that a similar overall 

density and sp3 content but different cross sectional nanostructure could give different 

tribological, mechanical, electrical and electronic behaviour. It is also clear that care 

should be taken whenever surface sensitive methods are compared to bulk methods. 

4.4.2 Comparison with E E L S 
XRR should be the method of choice to measure the mass density in amorphous 

carbon films (at least for films that are not heavy layered). Not only it is superior to the 

plasmon energy approach, but also to other methods such as floatation measurements 

and RBS + profilometry, given the errors in these destructive and time-consuming 

measurements. Yet, E E L S is still the standard choice for measurement of the sp3 

fraction, providing the plasmon energy at the same time. E E L S gives also the XC/XN 

ratio that can be used in Eqs. (4.8) and (4.6) [16,21]. 

Since XRR gives the total electron density and E E L S the valence electron 

density, we can directly fit an average effective electron mass m* for carbons, from our 

measured data. We did so for nitrogen free samples, to avoid the further problem of the 

number of valence electrons for N. Using the independent mass determination from 

XRR we thus obtain an effective electron mass that can be used to get a rough 

estimation of the density from the plasmon energy of all amorphous carbons. 

Considering Xn=0, we plotted the reduced density from XRR, 

R = pXRR(3Xc+\)(\IXC+l)~x, against the reduced density from E E L S , 

P = Mce0(l2h2NA)~lE2

P. If a unique m* exists, then R=(m*/me)P. We could fit the 

data in fig. 4.11 with a straight line with slope m*/me=0.87. 
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Fig. 4.11: Plot of reduced density of carbon films, from the valence plasmon energy and from 

XRR. The linear correlation allows an interband effective mass of m*=0.87m to be derived. 

This is the first direct evidence of the existence of a common electron effective 

mass for diamond and all amorphous carbons. Indeed, our fitted effective mass gives 

£/<diamond)~33.4 eV, in agreement with the measured value, within the 0.5 eV 

experimental error. The single effective mass thus permits density determinations via 

E E L S . For ta-C:H:N samples a good agreement with XRR was obtained using the fitted 

m* and 5 valence electrons, confirming in this case the assumption for Eq. (4.6). 

Corrections to the value of m* only become important for high hydrogen contents, such 

as in polymeric a-C:H, where m* is probably lower, about 0Jme (see [24]). 

We can now give a relationship between sp3 fraction and density, as shown in fig. 

4.12, where our data, together with those of Weiler and Fallon [10, 55-57], are plotted, 

scaled with our fitted m*. The H content of ta-C:H films is almost constant, between 25 

and 30 at. %. Note that there is no common sp3 density relationship for ta-C and ta-

C:H, differently from what proposed by Weiler. The increase of the density and sp3 

fraction for a fixed H content is the main difference between ta-C:H and a-C:H, where 

the increase in sp3 fraction is obtained through an increase in H content and, thus, a 

decrease in the density. Ta-C:H with higher H content will define lines parallel to the 

one in fig. 4.12. A series of a-C:H will give a line with an opposite slope with respect to 

ta-C or ta-C:H. A linear fit of the H free data gives: 

px [g/cm3] = 1.92+ 1.37* (4.14) 
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where x is the sp fraction. Eq. (4.14) would give a lower density than diamond for 

100% sp3 content (3.3 g/cm3), consistent with a random distribution of sp3 bonds and 

the lower extrapolated elastic constants for the hypothetical 100% sp3 ta-C [49]. 
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Fig. 4.12: Correlation of the density and sp3 fraction for various amorphous carbon films, 

showing a nearly linear dependence for the two classes of films, ta-C and ta-C:H. 

4.4.3 Hydrogen content 
Combination of Eqs. (4.8) and (4.6) suggests a way to determine the H content, 

once the critical angle and plasmon energy are known. I f we consider a N free sample, 

from Eqs. (4.8) and (4.6) we obtain: 

4 * 4 - 6 
XH=—^— (4.15) 

4 2 2*2 
with 8= C' Using our fitted m*/me we get S~ 9.0767 107 eV 2. 

A m* 

For a typical ta-C:H film, we found 6>c=3.4210"3±2.5 10"5 rad and £ p=27.12±0.5 

eV. This gives Jl)/=33 + 2 5 . 5 O at. %. The reason for the large error bars is clear. XRR is 

very insensitive to the H content. EELS is more sensitive, but the plasmon energy is 

determined with a much bigger experimental error than the XRR critical angle. Thus 

the information about the H content lies in the less precise technique. Moreover, the 

error bars connected with the m*/me fit introduce further scatter in the data. Eq. (4.15) 
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can thus be used to obtain a qualitative estimate of H content but it cannot give 

quantitative information. 

An alternative way to ERDA (Electron Recoil Detection Analysis) could be the 

coupling of XRR and Hydrogen effusion analysis. In fact, H effusion gives the total 

number of H atoms/cm2 [58]. XRR gives density and thickness. From Eq. (4.8) we get: 

6 ^ 
X H = - n 1 — (4-16) 

3AV C t 

where NH [H atoms/cm2] is derived from H effusion, and t is the f i lm thickness from 

XRR. 

H effusion measurements were performed at the University of Cambridge on a 

series of ta-C:H ECWR films grown at different ion energies. We applied Eq. (4.16) 

and the results are shown Table 4.4. 

Table 4.4: Critical angle, density, thickness, H content and roughness of the films mesured by H 

effusion and XRR. 

Sample Critical angle 
(arcseconds) 

Density 
(g/cm3) 

Thickness 
(A) 

H 
content 

(%) 

r.m.s. surface 
roughness 

(±1 A) 
ta-C:H 06 705±10 2.15±0.06 540 32 5 
ta-C:H 16 710±10 2.2010.06 810 25 6 
ta-C:H 10 598±7 1.5310.035 700 38 5 
ta-C:H 11 607±7 1.5710.035 820 39 5 
ta-C:H 12 602±7 1.5510.035 890 39 6 

4.5 Conclusions 
A wide variety of pure, hydrogen- and nitrogen-containing amorphous carbon 

films have been analysed via x-ray reflectivity. XRR was shown to be the method of 

choice to measure their density and cross-sectional nanostructure. We were able to 

correlate most of these properties with the source configuration adopted. By comparing 

XRR and EELS data we have been able to fit a common effective mass for all 

amorphous carbons and diamond, validating the Jellium approach to density from 

plasmon energy. We have thus shown the correct general relationship between sp3 

content and mass density for ta-C and ta-C:H films. 
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The cross-sectional structure of hydrogenated films was found to be quite 

uniform, with the presence of less than 1-2 nm interface and eventually surface layers. 

On the other hand, ta-C films can possess a heavily layered structure depending on the 

deposition conditions. However, layering is not intrinsic, but it is due to plasma 

instabilities in the arc, and uniform films can be grown. 

The S-bend FCVA deposition system was found to produce the most uniform ta-

C films. Plasmon energy measurement is convenient to get the average density of 

heavily layered films when fitting of the XRR data is difficult. 

XRR was also used to study the structure of ultra-thin carbon films, the effect of 

etching and the evolution of surface roughness as a function of thickness. 

Although the combination EELS+XRR could be used to get the H content, the 

error bars in determining the plasmon energy and in fitting the effective mass do not 

allow a reliable quantitative evaluation. On the other hand, a combination of XRR and 

H effusion provides a precise measure of the H content. 

The fast, non-destructive and simple structural characterisation allowed by the 

use of this technique is of great value. In our particular case, information provided by 

XRR is being used to analyse and model Brillouin scattering experiments for the 

determination of the film elastic constants [49, 59]. We believe that the thorough 

investigation here presented can open the possibility of a standard use of this technique 

in carbon film characterisation. 
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Chapter 5 

Raman and Brillouin scattering from 

cluster-assembled carbon films 

5.1 Introduction 
As a consequence of their peculiar structural, electronic, and mechanical 

properties [1], nanostructured materials are the subject of an increasing interest (see 

chapter 1). Among many methods of production of nanostructured materials [2] the 

assembling of clusters is very attractive, particularly for thin film synthesis. This is due 

to the possibility of correlating the final product with the properties of the precursors 

and so building a material with the required characteristics (for example nanostructured 

thin films where the original cluster structure is partially preserved after the deposition 

[3-6]). 

Several authors have proposed deposition by cluster beams as a tool for the 

synthesis of nanostructured thin films [6-10]. Intense and stable beams must be 

obtained with a good control of cluster mass and kinetic energy distribution. These 

characteristics can be obtained with the use of beams produced by supersonic 

expansion. Clusters produced in the gas phase are accelerated in a supersonic beam and 

then deposited on a substrate. 

As pointed out in chapter 1, the deposition of carbon clusters for thin film 

synthesis is very promising, due to the extreme versatility of carbon and to the 

possibility of controlling its properties by tuning the cluster size and kinetic energy 

distributions, in order to deposit materials with tailored properties. 

In the Nanoaggregates Laboratory at the University of Milan (LaMiNA) a novel 

plasma cluster source (PMCS: Pulsed Microplasma Cluster Source) has been designed 

and characterised in the past few years [5, 6, 10-14]. This source can produce cluster 

beams of any refractory material. In particular, by using pulsed supersonic carbon 

cluster beams, thin carbon films can be grown at high deposition rates. Due to inertial 

separation effects, typical of supersonic seeded beams, the cluster mass distribution can 

be varied to deposit films with a controlled nanostructure. The deposited carbon films 
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have been characterised by a number of different techniques [5, 10, 11, 15-25], such as 

scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman and 

Brillouin spectroscopy, optical reflectance and ellipsometry, Near-Edge X-ray 

Absorption Spectroscopy (NEXAFS), X-ray Photoelectron Spectroscopy (XPS), 

Electron Energy Loss Spectroscopy (EELS) and X-Ray Reflectivity (XRR). The 

analysis of the carbon films shows that, in the deposition energy range used, they have 

a nanoporous/ball-assembled structure, with an essentially sp2 character to the bonds. 

This structure has also been predicted by theoretical studies [26]. NEXAFS and XPS 

measurements have shown that the sp content is always higher than 60%, and that the 

sp3 fraction, i f present, does not exceed 20%. The high surface roughness has been 

studied by AFM [17], and found to be increasing with thickness (20-200 nm for 

thickness in the range 100-1000 nm). The source performance and the cluster beam 

prior to deposition have also been characterised carefully. 

Possible applications of these films have been investigated. Nanostructured forms 

of carbon possess field emission properties ([25] and references therein), which can 

render the material suitable for application in flat panel display devices. Moreover, the 

high degree of roughness and the nanoporous character mean that the specific area is 

huge. This could open the possibility of using this material for hydrogen storage or 

even as the building material for electrodes in supercapacitor devices [18]. 

In this chapter it is demonstrated how Raman scattering and Brillouin scattering 

can be used to study the deposited films and understand the correlation between the 

cluster size distribution and the beam characteristics on one side and the deposited 

material on the other. 

5.2 Sample deposition apparatus 
A supersonic beam can be schematically described as a gas stream expanding 

very rapidly from a high-pressure region source to a low-pressure region through a 

nozzle. The characteristics of the beam are mainly determined by the size and shape of 

the nozzle orifice and by the pressure difference between the two regions [27]. 

Compared to effusive beams used in Molecular Beam Epitaxy, supersonic beams 

provide higher intensity and directionality allowing the deposition of films with very 

high growth rates [28, 29]. 

A schematic view of the deposition apparatus is shown in fig. 5.1. It consists of 

three differentially evacuated chambers and operates in the high-vacuum regime. 
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Fig. 5.1: Scheme of the cluster-assembled carbon film deposition apparatus. The source is in the 

first chamber; deposition takes place in the second chamber. The third chamber hosts a TOF Mass 

Spectrometer for beam characterisation. 

The cluster source is placed in the first chamber, where the typical base pressure 

is about 10"7 torr; during source operation the average pressure is in the range M0" 5 -

3-10"5 torr. The supersonic cluster beam then enters the second chamber through an 

electroformed skimmer of 2 mm diameter. The second chamber is equipped with a 

sample holder that can intersect the beam, a quartz microbalance for beam intensity 

monitoring, and can alternatively host a beam-chopper or a Fast Ionization Gauge for 

time-of-flight measurements of the velocity distribution of particles in the beam. 

During deposition the background pressure in this chamber is about 10"7 torr. The third 

chamber hosts a linear time-of-flight mass-spectrometer (TOF/MS), collinear to the 

beam axis [14]. The detector of the TOF/MS is sensitive to high-speed neutral clusters 

as well as to ions [13]. 

The cluster source is a PMCS (Pulsed Microplasma Cluster Source), a modified 

version of the Pulsed Arc Cluster aggregation Ion Source (PACIS) [30]) and it works 

on the principle of vaporising the material used for cluster production with a pulsed 

electric discharge. A schematic cross-section of the source is sketched in fig. 5.2. Two 

graphite electrodes are facing each other in a small cavity inside the ceramic body of 

the source. A pulsed valve injects a buffer gas (helium) in the cavity just before an 
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electric discharge takes place between the electrodes. The discharge, driven by a high 

voltage (between 500 and 1500 V), is very intense (1000 A) and lasts a few tens of 

microseconds, producing the ablation of the cathode material. This is quenched by He 

and condenses in clusters, which are carried out of the source in a seeded supersonic 

expansion through a nozzle of 2 mm diameter and 8 mm length. The presence of the 

gas favours thermalization in the cavity and cluster aggregation. During typical 

operation the average pressure inside the cavity is several hundred Torr and the source 

body reaches a temperature of about 400 K. The temperature of the carrier gas evolves 

rapidly down to about 100 K as expansion takes place and the source empties. The 

velocity of the carrier gas is about 2000 m/s when the first clusters come out of the 

nozzle, but slows down to about 1000 m/s towards the end of the cluster pulse. A 

velocity slip of the clusters with respect to the carrier gas is also present but is of some 

relevance only for clusters exiting late from the source, when the stagnation pressure is 

reduced. The use of a cavity, where cluster aggregation occurs (the residence time is a 

few ms), is beneficial for several reasons [10, 31]. The erosion of the cathode does not 

affect significantly the dynamics of the gas during the expansion; moreover the 

presence of the cavity itself decouples the cathode sputtering from the cluster formation 

process. The stability of the source is substantially improved and electrode erosion 

affects mainly the intensity but not the mass distribution of the clusters. During the 

residence time further growing takes place (e.g. cluster-cluster coalescence), so that 

large particles with complicated shapes may be formed. 

anode rod 

thermalization 
cavity 

pulsed valve 

r 
nozzle 

ceramic 
body 

cathode rod 

Fig.5.2: Schematic cross-section of the cluster source. 
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The characterisation of the cluster mass distribution and charge states in the beam 

has been performed with a linear time-of-flight (TOF) mass spectrometer [14], while 

cluster fluxes have been characterised with the quartz microbalance and with a Faraday 

cup. With typical discharge conditions, a lognormal cluster mass distribution in the 

range of 0-2500 atoms/clusters is obtained, with its maximum at about 400-500 

atoms/cluster and average size at about 900-1000 atoms/cluster (fig. 5.3). The centre of 

mass of the size distribution and the charge state are strongly influenced by the 

presence of the thermalization cavity; mass distribution and energy are influenced by 

the residence time of the clusters in the cavity, which in turn depends on parameters 

such as the maximum pressure reached in the cavity, its volume, and the conductance 

of the nozzle. The mass distribution of cluster ions (cations) is substantially different 

from that of neutrals, and it is in the range 0-1200 atoms/cluster (with a mass 

distribution centred at 350 atoms/clusters). This is probably due to a trade off between 

cluster growth and charge neutralisation; the growth of large clusters requires long 

residence times inside the source, but this increases the chance of being neutralised. 

2.0x10 

01 
01 

500 1000 1500 2000 2500 

carbon atoms/cluster 

Fig. 5.3: Typical mass distribution of carbon clusters used as precursors of thin films. 

By growth rate measurements, performed with the quartz microbalance, the 

overall beam intensity has been estimated to be in the range of = 3-10 1 4 -M0 1 5 particles 

s"1 sr"1 (depending on the source parameters such as the discharge voltage). A fraction 

of about 10% of the total average flux is due to anions, while cations are about 2%. The 

typical kinetic energy of an average-size cluster is thus about 0.3 keV. This means a 

typical value of energy per atom lower than 0.2 eV/atom, well below the binding 

energy of carbons in the cluster. At cluster impact on the substrate surface there is thus 
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no substantial fragmentation of the aggregates. Of course coalescence and aggregation 

processes take place during deposition, nevertheless the deposited films may keep a 

memory of the structure which the clusters had in the gas phase [3-6]. The source-

skimmer distance A t and the background pressure strongly affect the expansion. 

Depending upon A* a shock wave can be produced in front of the skimmer, causing 

mass separation effects and changing the final characteristics of the beam [27, 32]. In 

usual experiments, the nozzle-skimmer distance has been varied from 40 to 16 mm. 

With A* = 40 mm deposition rates of 5 nm/min are routinely obtained on a substrate 

placed at 300 mm from the source (even rates up to 50 nm/min can be achieved with 

the help of a particular device called a "focuser", see below). Circular films with 1 cm 

radius and uniform thickness can be deposited in the second chamber of the apparatus. 

By intersecting the beam in the first chamber with a larger substrate, films with an area 

of several cm 2 can be prepared with an approximately gaussian thickness profile. 

In fig. 5.4 we show SEM micrographs of the cluster-assembled films. 

Micrographs of the films were taken with a Cambridge Stereoscan 360 scanning 

electron microscope with a 5 kV SEM acceleration and a 150 pA probe current by the 

LaMiNA group. 

; 

: 

! 

i 

i 

Fig.5.4: SEM micrograph of the surface of typical cluster-assembled carbon films, at different 

magnification (courtesy Emanuele Barborini, LaMiNA, Milano). 

An AFM picture (fig. 5.5) shows the granular structure based on clumps of 

spherical aggregates with typical diameter of few tens of nanometers. 
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Fig. 5.5: AFM image (left) and contrast image (right) of the surface of a typical film (courtesy 

Alessandro Podesta', LaMiNA). 

It has been reported that i f species with different weights are present in the gas to 

be expanded, the heavier constituents concentrate along the core of the beam [27, 33-

36]. We shall call this effect inertial separation or focusing. Different mechanisms have 

been proposed to account for this effect. Waterman and Stern have suggested that the 

flux of lighter species diverges radially more rapidly after the nozzle due to the greater 

thermal velocity component [35]. Reis and Fenn [33] have shown that mass separation 

can be obtained by exploiting the interaction of the beam with the shock wave detached 

from the skimmer. In particular, due to their different inertia, light species follow 

diverging streamlines after the shock front, while heavy species are not diverted and 

can follow straight trajectories through the skimmer (see fig. 5.1). Due to this effect 

large clusters are concentrated in the central portion of the beam, whereas the lighter 

ones are at the periphery. 

Thin film deposition has been performed by intersecting the cluster beam with the 

substrate placed on a 3-axis micromanipulator. The temperature of the substrate (Si, A l , 

Ag) can be controlled from 77 to 600 K. A mechanism has been designed in order to 

tilt the source axis with respect to the skimmer axis, so that only selected portions of 

the beam can enter the second chamber. Thus, clusters with a more uniform size 

distribution (bigger sizes from the centre of the beam or smaller sizes from the 
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periphery of the beam) can selectively be deposited with uniform thickness over an area 

of some cm 2. Selection of the cluster size distribution can also be achieved by changing 

some operational parameters in the source (e.g. gas pressure and nozzle diameter, and 

thus residence time in the cavity). 

Finally, a device, called a "focuser", has been designed and built in order to 

achieve a filtering effect (e.g. a selection of only the very small clusters), and a low 

divergence of the beam at the exit of the ceramic body of the source [37]. The device is 

based on a particular design of the source nozzle and very narrow, low-divergence 

beams can be obtained (the angular divergence is less than 1°, compared to a 

divergence of about 12° for non-focused beams). The effect of this device is to 

enormously increase the inertial separation effect, normally occurring in molecular 

beams, by forcing the clusters through particular trajectories inside the nozzle, thus 

selecting only the very small clusters along the axis of the beam. Thus, very high 

deposition rates can be achieved (up to ten times with respect to the non-focused 

beam), and compact, close packed films can be deposited. These turned out to be much 

smoother than films grown in standard conditions. Moreover, not only space focusing, 

but also an "energy focusing" effect is obtained, i.e. a more effective cooling of the 

particles in the beam (their transverse velocity with respect to the axis of the beam is 

lower and this contributes to the compactness of the films). Thus, not only the bonding 

topology, but also the mesoscopic structure and the surface morphology can be varied 

by tuning the source deposition setting. 

In the following sections Raman scattering characterisation of cluster-assembled 

films is presented, in order to correlate the bonding topology in the films with the size 

o f the clusters, in relation to the study of the inertial separation effect. Raman scattering 

has also been employed to study the products of the arc discharge between the 

electrodes, in order to clarify some aspects of the ablation process. It is then shown how 

Brillouin scattering can be used to study the elastic properties of the films and to 

evidence the differences in the films produced with and without the "focusing" device. 

Confined, non-propagating vibrational modes due to the disordered, discontinuous 

nature of the films were detected. X-ray scattering techniques have also been used 

(XRR to study the density of the films, WAXS to test their amorphous nature, SAXS to 

verify their possible fractal nature). 
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5.3 Raman scattering from cluster-assembled 

carbon films 
Raman scattering is widely employed as a standard tool for amorphous carbon 

characterisation. The principal features detected in amorphous carbon Raman spectra 

and their interpretation wil l be discussed in the next subsection. In this section it wil l be 

shown how Raman scattering has been used to characterise, at a nanometer scale, the 

different types of carbon films that the cluster beam source is able to produce due to a 

selection of the deposited clusters. Raman spectroscopy has also been useful in the 

characterisation of the source operation, of the cluster growth mechanisms and of the 

beam structure. It has been possible to: 

• show that the clusters in the beam have a different size and nature depending on 

their distance from the axis of the beam (inertial separation or focusing); 

« deposit &lms-with-^f$erent-loeal^bonding^ropeFtie& by seleeting-th© precursor 

clusters and so demonstrate a memory effect in the deposition of cluster-

assembled carbon films (i.e. the f i lm bonding topology follows the cluster size); 

• show that the "focusing" device produces beams which are uniform in terms of 

cluster composition; 

• characterise the plasma products inside the thermalization chamber. This has 

helped to understand the electrode ablation processes. 

Moreover, Raman measurements have been performed on all the deposited films 

for a standard and fast characterisation of the produced material, a sort of fingerprint of 

the film. Power density on the sample has always been kept under 10 W/cm 2 to avoid 

damage or graphitization. For this reason spectra were acquired without use of 

microscope objectives. The spectral region from 300 cm"1 up to 3400 cm"1 has usually 

been recorded. 

5.3.1 Raman scattering from carbon and fitting of carbon 

spectra 
Raman spectroscopy is a standard non-destructive tool for the characterisation of 

crystalline, nanocrystalline and amorphous carbons (for a complete discussion refer to 

[38-61]). The Raman spectrum of diamond consists of the T2g 1332 cm"1 zone centre 
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mode. The Raman spectrum of disordered graphite shows two rather sharp modes, the 

so-called G (from Graphite) peak at about 1580-1600 cm"1 and the D (from Disorder) 

peak around 1350 cm"1. They are usually assigned to the zone centre phonons of E2g 

symmetry and to the K-point phonons of Aig symmetry (activated due to disorder-

induced relaxation of the q = 0 selection rule), respectively. These features also 

dominate the Raman spectra of nanocrystalline and amorphous carbons. In amorphous 

carbon, the Shuker and Gammon formula [62] applies (Eq. (2.14)). The Raman 

spectrum is thus directly related to the vibrational or phonon density of states (PDOS) 

of the material. The PDOS of an amorphous carbon is different from that of graphite, so 

it is not correct to say that the G and D peak come from maxima in the graphite PDOS. 

Visible Raman spectroscopy is about 200 times more sensitive to sp2 sites, since visible 

photons preferentially excite their it states, while uv Raman excites both n and a states 

and thus can probe both the sp and the sp sites, allowing a direct measurement of the 

sp3 fraction, which is not possible with visible Raman spectroscopy. So visible Raman 

spectroscopy is sensitive mainly to the sp2 phase present in the material, and to its 

PDOS as modified by the degree of disorder. 

The G peak origin lies in the stretching vibration of two neighbouring sp2 bonded 

atoms. It is thus visible also in carbons where 6-fold graphitic rings are not present. 

Recent studies have explained the origin of the D peak and its dispersive nature. Its 

origin is from the phonons around the K point, corresponding to breathing modes of 

aromatic 6-fold rings. These modes are resonantly excited when the laser photon 

energy matches an electronic excitation of an aromatic cluster [38]. 

Other features can be observed in a typical spectrum (see e.g fig. 5.7 in the next 

section). In the low frequency range we observe a broad hump extending from roughly 

650 cm"1 to 800 cm"1; this broad peak has been reported also for sputtered a-C and 

related to a peak in the PDOS of graphite. The region between 1000 and 1800 cm"1 

presents sometimes, in addition to the D and G peaks, weak features at about 1100 cm"1 

and 1450 cm"1. The region between 2000 and 3400 cm"1 presents features due to second 

order Raman scattering. The main contribution in this region is a broad structured 

feature between 2400 and 3400 cm"1, with maxima at about 2700 and 2900 cm"1; the 

origin of these features lies in the corresponding second-order peaks of the disordered 

graphite, but broadened due to the amorphous nature of the samples. A peak sometimes 

appearing at about 2150 cm"1 is believed to be the fingerprint of acetylenic triple carbon 

bonding (C=C) [63, 64]. 
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Different parameters can be identified to classify the various carbons according to 

their degree of disorder (see e.g. [38, 40, 42, 43, 45]). Most of the information on 

amorphous carbon comes from the 1000-1800 cm"1 region, and in particular from G and 

D peak positions, widths and intensity ratio. The two most important parameters are the 

G peak position and the IQ/IG intensity ratio. The values of these parameters follow a 

particular trend during a so-called "amorphization trajectory" [38] from graphite to 

nanocrystalline graphite and then to amorphous or even tetrahedral (high sp3 content) 

amorphous carbon. In the range of amorphization degree of our materials, the G peak 

tends to downshift and broaden with increasing disorder. 

In the case of disordered graphite, Tuinstra and Koenig [40] found a relationship 

(TK) between the D/G intensity ratio (JL/IG) and the size L of the graphitic crystallites 

still present in the material: 

44 
L= [A] (5.1) 

I I I 
LD< LG 

This relationship was verified using x-ray diffraction. Cuesta et al. [60] performed a 

test of the TK relation for a wide range of carbons. They found that Raman 

spectroscopy tends to underestimate the size of the crystalline grains due to the 

dominant effect of small crystallites. For amorphous carbons (and this is the case of 

interest for the films studied in this thesis) Eq. (5.1) does not hold any longer: when the 

number of 6-fold graphitic rings starts to decrease, ID decreases as well. Thus in 

amorphous carbon a higher IQ/IG value indicates a higher degree of ordering. 

As explained before, the Raman spectrum of carbon materials is mainly sensitive 

to in-plane modes (sp2) providing information on the behaviour of the sp2 bonded 

component (e.g. disordering). No direct information on the sp* hybridized atoms can 

be obtained (although some correlation has been found between Raman features and 

sp3 content, and calibrations obtained to calculate the sp3 content in carbon films grown 

with the same deposition technique). 

In order to compare Raman spectra from different carbons, fitting of the D and G 

peak region is often performed. The simplest fit consists of two Lorentzian functions 

(often used for crystals or microcrystals, arising from finite lifetime broadening) or two 

Gaussian functions (expected for a random distribution of phonon lifetimes in 

disordered materials). It is sometimes not sufficient to fit the data with only two 

gaussians corresponding to the D and G peak respectively. It is necessary to use three 

or four gaussians to simulate the PDOS intensity rising between the D and G peaks (i.e. 
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the G peak asymmetry). This kind of fit, however, presents problems of stability and 

existence of a single solution. Many valid examples can be found in the literature of fits 

with a Lorentzian function for the D peak and a Breit-Wigner-Fano (BWF) function for 

the G peak [56-59, 61], since the asymmetry of the BWF takes into account the 

intensity at =1100 cm"1 and «1450 cm'1 due to the PDOS. This fitting procedure was 

used for the data presented in this chapter. 

The analytical lineshape of the BWF is: 

z „ a + 2 ^ ) > 
7(v) = ^ (5.2) 

l + ( 2 ^ ) 2 

where q < -1 is called the coupling coefficient. VI q is called the coupling parameter. 

A Lorentzian lineshape is obtained when q~l —> 0. The Full Width at Half Maximum 

(FWHM) is given by 

FWHM = (5.3) 
q - 1 

The curve maximum is slightly shifted from Vo and is located at 

r 

While \q\ is decreasing, the BWF lineshape changes from Lorentzian to a more and 

more asymmetrical one. Elman et al. [61] showed dependence between the coupling 

parameter TI q and the graphitization process induced by thermal annealing in graphite 

samples amorphized by ionic implantation (i.e. decreasing -TI q with increasing 

annealing temperature). Further analysis of this relationship can be found in the works 

by McCulloch et al. [56, 57]. 
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Fig. 5.6: Fitting of two different Raman spectra with lorentzian (D peak) arid Breit-Wigner-Fano 

(G peak) wavefunctions. 

In fig. 5.6 it is possible to see a Lorentzian+BWF f i t of Raman spectra for two 

different cluster-assembled carbon film. An important difference with respect to the 2-

gaussian f i t is that with a gaussian f i t the D peak position is always overestimated and 

falls above 1400 cm"1; this is because the D peak fitting function must take into account 

the high intensity between 1400 and 1500 cm'1. The kind of f i t adopted, having no 

particular physical meaning, is not really important. When one is interested in 

comparing the Raman spectra of different samples (i.e. when one or more deposition 

parameters are varied), it is important to use the same fitting procedure for all the 

samples. In this way one is able to use relative indices such as Ir/fc, D and G peak 

positions, peak widths, and also the BWF q value to compare the different materials. 

5.3.2 Amorphous character of the cluster-assembled carbon 

films 
In fig. 5.7 a Raman spectrum from a typical f i lm produced with the cluster source 

is shown. We can recognise in the spectrum all the features typical of a very amorphous 

form of carbon. In the low frequency range we observe the broad hump extending from 

roughly 650 cm"1 to 800 cm"1 related to a peak in the PDOS (Phonon Density Of States) 
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of graphite. The region between 1000 and 1800 cm"1 shows the G and D bands typical 

of amorphous carbon. The region between 2400 and 3400 cm' 1 presents features due to 

second order Raman scattering, with broad maxima at about 2700 and 2900 cm"1. A 

peak appearing at about 2150 cm"1 in the cluster-assembled films was sometimes found. 

We believe it to be the fingerprint of triple carbon bonding (C = C stretching) [63, 64]. 
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Fig.5.7: Raman spectrum of a cluster-assembled film grown with typical deposition conditions. 

The small peak at about 2330 cm'1 comes from a vibration of the N2 molecule in the air path. 

For all the samples the recorded spectra are typical of an amorphous carbon with 

a prevalent degree of sp2 carbon coordination. They present the usual D and G band, 

whose shape, relative intensity and width are typical of sp2 disordered carbon films (the 

bands are broadened and asymmetric with a high degree of overlap). It means that the 

Raman spectrum is closely related to the Phonon Density Of States (PDOS) of the 

material, according to the Shuker and Gammon formula [62]. The PDOS of this 

material is different from the PDOS of graphite because of the presence of a high 

degree of disorder (bond angle and length defects, presence of different coordination 

with respect to graphitic sp2). The degree of disorder is so high that for this material 

the intensity ratio Ic/Ic is not in the range where the Tuinstra-Koenig relationship [40] 

is applicable. This means that ordered graphitic domains, i f present, do not exceed 10-

15 A in size (i.e. a few 6-fold rings, probably rich in bond length and angle defects; 

also 5-fold and 7-fold rings are possibly present, according to theoretical studies [65, 

66]). 
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Fig. 5.8: Diffraction pattern (A = 1.3 A) of a cluster-assembled carbon film (after subtraction of 

background). No particular differences were found between films grown in different conditions. The two 

sharp peaks correspond to (311) and (430) reflections from the silicon substrate. 

The completely amorphous nature of the films was confirmed by wide angle x-

ray scattering measurements (fig. 5.8), at SRS beamline 2.3, in a grazing incidence 

geometry. The incidence angle was set to be close to the f i lm critical angle (see section 

5.4 below), in order to investigate the fi lm and minimise the probing of the Si substrate. 

Only two very broad features with maxima at a wavevector value q = 1.55 A"1 and q = 

2.9 A' 1 , respectively, were observed (with a width of about 10 degrees at A = 1.3 A). 

These features are reminiscent of the (002) peak at ^=1.8-1.9 A"1 and of the so-called 

(10) band [67] at <7=3.0-3.1 A"1 in turbostratic graphite [68], and are indicative of 

average interatomic distances of about 4.05±0.1 A and 2.1510.1 A respectively (the 

width coming predominantly from the distribution of atomic distances in the 

amorphous material rather than from confinement effects). This diffraction pattern is 

characteristic of sp2 hybridized and very amorphous carbon, in particular of carbon 

black or amorphous carbons obtained by high temperature annealing [68-72]. The 

detected signal was very low and noisy, especially at high scattering angles, even at the 

Synchrotron Radiation Source (SRS) beamline 16.3. This did not allow an accurate 

calculation of the radial distribution function. 
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5.3.3 Characterisation of carbon materials produced in the 

arc discharge 
A schematic view of the source has already been presented in fig. 5.2. The 

graphite rods face each other in a cavity whose volume is about 2 cm 3, and the nozzle of 

the pulsed valve for the helium injection faces the surface of the cathode. The pulse 

duration is typically a few hundred microseconds, and just before the valve closes, a 

voltage is applied between the electrodes. A plasma is produced, which is confined in 

the region between the valve nozzle and the cathode. The ablation occurs from a small 

region where the helium plasma strikes the cathode surface removing atoms via 

sputtering. The cathode is constantly rotated along its axis and this allows constant 

ablation rates (and thus constant beam intensities) over long periods. A feedback 

mechanism controls the valve opening time in order to maintain the optimum pressure 

conditions for the ablation process; The process is different from what happens in 

typical fullerene DC discharges [73-76]: the cathode, and not the anode, is eroded and 

the ablated material does not preferentially accumulate on the other electrode (in this 

case the anode), but rather resides in the cavity and is then expanded into vacuum. 

Raman spectroscopy has been performed on the inner core of the carbon material 

deposited on different anodes during the operation of the deposition apparatus. A l , Cu, 

C, Ag, Ni anodes were employed to investigate possible differences in the ablation 

process. Raman spectroscopy was also performed on the external surface of these 

deposits, and on the eroded region of the corresponding cathode. 

A reference graphite spectrum (fig. 5.9) was taken on the undamaged lateral 

surface of a graphite cathode. This shows as main features the D peak at 1354 cm"1, the 

G peak at 1585 cm"1 and a quite sharp (FWHM about 70 cm"1) second order peak at 

2715 cm"1. The G peak is more intense than the D peak (JD/IG = 0.45), giving the 

graphitic domains a linear dimension L of 100 A according to the Tuinstra-Koenig 

formula. The D and G peaks have respectively a FWHM of 53 cm"1 and 24 cm"1. 
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Fig. 5.9: Raman spectra of the graphite composing the cathode and of the materials produced 

during ablation and deposited on the anode. 

The inner core of the material deposited on the anode shows, on microscopic 

investigation, a columnar structure, with filaments in it. Its Raman spectrum (fig. 5.9) is 

typical of a graphitic material, with D and G peaks clearly separated. Nevertheless, 

some differences are evident with respect to the undamaged graphite of the cathode, 

irrespective of the anode material used for the discharge: 

• the D peak is more intense than the G peak (Ic/h = 1-3); 

• the G peak is blue-shifted at 1589 cm"1 and shows a structured shape with a 

shoulder at about 1622 cm"1; 

• the D peak and the second order peak are red-shifted, respectively at 1340 cm"1 

and 2683 cm"1; 

• the G peak FWHM is greater than in the reference graphite spectrum (50 cm' 1); 

• a new peak appears at 2930-2940 cm"1. 

The inner core has been analysed also for the deposits obtained using different 

anodes (Cu, C and Ni). The reason for using metallic anodes lies in the possibility of 

catalysing the formation of nanotubes, as reported in the literature [73]. The spectra 

were very similar to the ones described above. 
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Fig. 5.10: Raman spectra of the external part of the material deposited on the anode and of the 

region on the cathode where sputtering occurred. 

For comparison, a very similar spectrum has been measured from the cathodic 

(and not anodic) deposit produced by a DC discharge between two graphite electrodes 

in a helium atmosphere for fullerene production, where nanotubes are believed to form 

[73,74]. 

The outer surface of the anode deposit has also been analysed for different 

deposits corresponding to the different anode materials. The resulting spectra (fig. 5.10) 

reflect the typical Raman fingerprint of a carbon material at the first stages of 

amorphization (probably mixed with a graphitic phase, still in the range of validity of 

the - Tuinstrar-Koenig relation), with the D and G peaks still distinct but partially 

overlapping (G and D peak at 1342 and 1593 cm' 1, second order peak, very broad, at 

2700 cm' 1). 

The eroded region on the cathode has also been analysed. Here carbon more 

amorphous in nature than that forming the outer surface of the anode deposit is present. 

Different degrees of amorphization for the eroded region were found, and they are very 

similar to what was found in the deposited films. 

The spectra of the inner core of the deposit cannot be assigned with absolute 

reliability to nanotubes. They indicate a graphitic, rather ordered form of carbon. This 

material is less ordered than the undamaged graphite of the cathode. It has a greater 

ID/IG ratio, corresponding (if the Tuinstra-Koenig is still valid also for nanoparticle 
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carbon) to a size L of about 30 A. The G peak is broader and with the 1620 cm"1 

shoulder, and a new feature appears at 2930 cm"1. However, the systematic red-shift of 

the D peak and of the second order peak at about 2700 cm"1 is typical of curved 

nanoparticles of carbon [73-88] (onion-like carbon, fullerenic nanoparticles and 

nanotubes), perhaps mixed with an amorphous carbon phase (distorted bonds between 

these ordered objects). These statements are supported by the TEM images of the 

material, showing the presence of a nanoparticle kind of carbon. Moreover, the fact that 

the Raman spectrum of this material is very similar to that of the deposit obtained in a 

DC discharge, in which nanotubes are formed, suggests the presence of a fraction of 

nanotubes in it. 

The discharge generates an amorphous carbon phase on the cathode, while the 

materials deposited on the anode possess a high degree of order. Corresponding to 

particular discharge conditions, in which a bulk deposit is formed, this bulk material is 

terminated with a cap made of a different, more amorphous kind of carbon. A structural 

difference between the inner and the outer material is already evident from the SEM 

pictures of other deposits. The absence of relevant differences when using anodes of 

different materials supports the idea that the carbon plasma formation process is 

independent from the arc discharge, and due to sputtering of the cathode by the He 

plasma. 

5.3.4 Raman scattering study of the inertial separation effect 
The inertial separation effect in the cluster beam is interesting, due to the 

possibility of tuning the mass of the deposited clusters by simply selecting the inner or 

the outer region of the cluster beam in the deposition chamber with a tailored skimmer. 

To analyse this phenomenon a sample was grown by placing a large area substrate 

directly in front of the source, before the skimmer, in order to intercept the whole 

section of the cluster beam leaving the source nozzle. A deposition with a diameter of 

about 3 cm was obtained. This sample is called BEAM. Its thickness ranges from 

roughly 10 nm at the periphery to roughly 1000 nm in the centre, as measured by a 

laser interferometry technique [89]. 

Since clusters maintain, at least partially, their original structure [23], the films 

should be reminiscent of the precursor clusters and present different coordination and 

local order. Experimental and theoretical investigations have shown that small carbon 
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clusters roughly below 40 atoms have chain or ring structures whereas larger clusters 

have the tendency to form three-dimensional cage-like structures characterised by sp2 

coordination [90-92]. Separation effects in front of the skimmer should enrich the 

periphery of the beam of small chain-like clusters, leaving large fullerene-like clusters 

in the beam centre. Films grown using the periphery of the beam are therefore expected 

to show a very disordered structure; on the other hand, films grown with the central 

region of the beam should be characterised by a disordered graphitic structure 

reminiscent of the fullerene-like character of the clusters. 

Raman spectra were measured in points at different radial distances from the 

centre of the deposition (corresponding to the cluster beam axis). 
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Fig. 5.11: Raman spectra from sample BEAM measured in different points, from the periphery 

(top) to the centre (bottom). The red arrow indicates the softening of the G peak; the blue arrow the 

position of the D band. 

These spectra are shown in fig. 5.11, with intensities shifted for clarity. The shape 

and the shift of the G band are typical of amorphous sp2 carbon. The D peak is present 

as a broad shoulder on the left of the G band. The peak at 2150 cm"1 is quite unusual for 

disordered carbon produced by depositing carbon atoms or ions (though a similar peak 

is found in amorphous CN films and assigned to the O N stretching vibration [93]). As 

already stated, it can be attributed to the presence of carbon chains characterised by sp 

acetylenic bonding [63, 64]. The evolution from the inner to the outer region of the 



deposition is evident: the spectra corresponding to the outer region are clearly 

indicative of a more amorphous and disordered sample, with an intense 2150 cm' 1 peak 

developing. In fact smaller clusters are believed to have chain-like configurations, with 

C=C bonds. These spectra are compatible with higher sp3 content, even i f Raman 

spectroscopy cannot prove it. The spectra of the region close to the deposition centre 

are indicative of a more graphitic carbon; this could be due to the fact that bigger 

clusters have an average hybridization similar to graphitic sp2. 
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Fig. 5.12: Evolution of Raman parameters from the centre of the deposition towards the periphery 

in sample BEAM. 

Very good fits of the data were obtained using a BWF + Lorentzian f i t in the 

region 1000-1800 cm"1. A clear evolution of the most indicative fitting parameters, 

such as G peak position and FWHM, Ic/h, BWF coupling parameter, was obtained, 

indicating a transition to a more amorphous and disordered carbon (see fig. 5.12). 
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Fig. 5.13: Raman spectra of films deposited using different tilts of the source axis with respect to 

the skimmer axis. The peak at 521 cm"' is the first order Raman scattering from the Si substrate. 

We have exploited separation effects to deposit thin films with different cluster 

mass distributions also by using the tilt mechanism for the source described in section 

5.2. This permits the deposition of films with different characteristics, but which are 

uniform over an area of 1-2 cm . The top spectrum in fig. 5.13 corresponds to a source 

tilt of 8.75°, i.e. selection of a region rich in small clusters (periphery of the beam). 

Going from the top to the bottom spectrum in fig. 5.13, one can follow the evolution 

from an amorphous carbon towards a disordered graphitic structure by shifting from the 

periphery of the beam towards the central region large clusters (smaller tilts). This 

evolution is confirmed by a hardening of the G peak, the appearance of a well-defined 

D band and by the narrowing of the two lines. A l l these parameters are in agreement 

with a graphitization of the sample. Raman spectra of films with increasing thickness, 

but deposited using the same source tilt (i.e. same cluster size distribution), were 

practically identical. This confirms that thickness does not affect the local bonding 

topology of carbon atoms (on the other hand, thickness-related structural effects are 

evident at a mesoscopic scale, as shown in the next section). The effect of cluster size 

on Raman spectra was also confirmed by studying films in which the size distribution 

was varied by adjusting the source operational parameters (e.g. pressure). 
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Separation effects in the beam offer the possibility of producing films 

characterised by different nanostructures and coordination. This technique does not 

require the use of mechanical filters and it works with neutral particles. It is well 

known that gas-phase synthesis of carbon clusters can efficiently produce acetylenic 

species [94]; our experiments suggest that they can be deposited and that they can 

survive. Further investigations in order to identify the 2150 cm'1 peak have involved 

the study of the peak evolution as a function of temperature. This was done in vacuum, 

using the Oxford Instruments fhermocryostat described in section 3.1.1. We observed a 

progressive graphitization of the film material, and the acetylenic peak disappeared at 

about 600 K, in agreement with previous studies on the thermal stability of the C=C 

triple bond [95]. 

5.3.5 Deposition of films by focused beams 
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Fig. 5.14: Raman spectra of thick films deposited using a focused beam and a non-focused beam, 

respectively. They correspond to the thick films studied with Brillouin spectroscopy in section 5.5. 

The use of the low-divergence, high-intensity focused beams (as explained in 

section 5.2) permits the deposition of compact and smooth films, from clusters with 

smaller sizes than those obtained, on an average, with unfocused beams. Raman 

spectroscopy (fig. 5.14) has shown that the bonding in these films reflects the nature of 

the precursor clusters, similar to what is observed in the very amorphous films 

deposited with high source tilts (i.e. from the periphery of beam). On the other hand, 
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films deposited in the same deposition chamber with a standard source configuration, 

without beam focusing or source tilting, are less amorphous in nature (fig. 5.14). 

Moreover, Raman spectroscopy confirmed that films deposited by focused beams are 

uniform, in terms of local bonding, over the whole deposition area. 

§o3»6 Possible presence of large graphitic particles In the 

centre of the beam 
Raman spectroscopy has proved very useful also for the detection of problems in 

the source functioning and in the deposition process. Since the cluster beam 

composition is strongly affected by the pressure conditions in the source, and thus by 

the valve pressure and opening time, valve opening-arc discharge delay, etc., optimum 

conditions have been analysed and identified. For example, under particular 

circumstances (non-optimum pressure conditions), uniform films but with a darker 

region at the centre were deposited. Raman spectra corresponding to the central and 

external region are shown in fig. 5.15. 
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Fig. 5.15: Raman spectra of a film deposited in non-optimum deposition (pressure) conditions: 

center of deposition (top) and external region (bottom). 

The spectra look similar, and the G peak position, the second order features and 

the peak at 2150 cm"1 are typical of a very amorphous carbon, like that produced in the 

periphery of the beam under normal operation conditions. Nevertheless, the central 
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region shows anomalous sharp features superimposed on the D and G bands and on the 

second order at about 2700 cm"1. The first guess was that this was a composite material, 

with an amorphous component and a graphitic component. 

Indeed, by subtracting the two spectra, a spectrum corresponding to 

nanocrystalline graphite was found (fig. 5.16). The Tuinstra-Koenig relationship gives 

a value of about 50 A for the size of the graphitic domains. A subsequent analysis of 

the cluster beam composition revealed the presence of huge graphitic particles, formed 

under these particular source conditions. Of course the advantage of using Raman 

spectroscopy is that it is a fast and non-destructive method and it does not require 

accurate time-of-flight characterisation of the beam population. 
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Fig. 5.16: Raman spectrum resulting from the subtraction of the two spectra of fig. 5.15: a typical 

nanocrystalline graphite Fingerprint is obtained. 

5.4 Density measurements by x-ray reflectivity 
X-ray reflectivity measurements have been carried out on carbon cluster-

assembled films [96] (see also Chapter 4). Nevertheless, the huge surface roughness 

(also confirmed by SEM pictures) results in a very high diffuse scatter, so that the 

specularly reflected intensity falls very rapidly with angle. No interference fringes were 

seen, from which the thickness of the films could be inferred (fig. 5.17a), in any of the 

films. Moreover, the carbon films possess a high fraction of voids and have a porous 
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structure, so that their density is lower than that of the Si substrate. This means that 

only the Si critical angle, or a double critical angle in some samples, could be seen (fig. 

5.17b). Specular reflectivity curves were measured, with the incidence angle 0, varying 

in the range 0-2000 arcseconds, with a step of 10 arcseconds. 
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Fig. 5.17: a) typical complete reflectivity curve from a cluster-assembled carbon (no interference 

fringes, fast intensity fall); b) double critical angle (from C and from Si) in two samples with different 

densities. 

The only information obtainable from these measurements is thus the density of 

the films, from the first critical angle, where a double critical angle is detected. The 

density in the case of films grown by non-focused beams has a value of 0.8-1.0 g/cm3, 

in accordance with other measurements (e.g. optical ellipsometry). In films deposited in 

the first chamber (such as film BEAM) the density ranges from 0.8-0.9 g/cm3 to 1.2 

g/cm3, moving from the centre towards the periphery of the deposition. In the case of 

films grown using a focused beam (and thus smaller clusters) the more compact nature 

of the films is confirmed by the higher density value of p = 1.25±0.05 g/cm3. 
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5.5 Brillouin scattering from cluster-assembled 

carbon films 
As discussed in chapter 2, inelastic light scattering can be used to study the 

vibrational properties of materials and in particular Brillouin scattering (BS) can detect 

thermally excited acoustic waves (long wavelength bulk or surface acoustic phonons) 

propagating in the medium. 

In this section it is shown how BS can be used to study, at a typical length scale 

of hundreds of nanometers, the mesoscopic vibrational properties of the cluster-

assembled nanostructured carbon films produced by the cluster source. 

Brillouin scattering spectra were recorded at room temperature and in the 

backscattering geometry, using the Sandercock interferometer with the A*=514.5 nm 

Ar* laser excitation. The samples were kept in vacuum using the Oxford Instruments 

thermoeryostat to-prevent damage by -phote^oxidation effeets. These effects have 

already been observed in Brillouin measurements of fullerite crystals [97, 98] and have 

been seen also in the cluster-assembled carbon films, resulting in the formation of holes 

in the samples. The spectra were recorded with a free spectral range of 30 GHz using a 

laser power of 35 mW onto the sample. Due to the low signal intensity, long (about 180 

minutes) acquisition times were required. 

5.5.1 Films grown by a non-focused beam 
The first measurement was earned out on a thick (thickness > 1 \im) film grown 

in standard deposition conditions, without tilting the source or focusing the beam (thus 

depositing the clusters from the central region of the beam, see its Raman spectrum in 

fig. 5.14). Only damped bulk acoustic phonons could be detected (see fig. 5.18). The 

typical wavelength of these phonons was XPh = 170 nm (see section 2.3.1, Eq. (2.19)). 

This indicates that for a length d > Xph the films can be modelled as a continuum with 

translation invariance and effective elastic constants, although structural disorder at 

smaller scales scatters the phonons significantly. The presence of a rather strong central 

peak in the spectra can be ascribed to non-propagating (overdamped) or confined 

vibrational excitations within the films, probably connected with different correlation 

lengths smaller than d. The damped bulk acoustic phonons could be coupled to the 
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confined modes by a relaxation mechanism. The films exhibit a high degree of surface 

roughness and multiscale granularity; this leads to considerable broadening of the 

phonon peaks and to the presence of an intense elastic background. This impeded the 

measurement of surface phonons, which were detected only in thinner films. 

In fig. 5.18 a weak and broad peak is just visible at about 17 GHz together with a 

strong central peak about 10 GHz wide. Varying the incidence angle 0, did not shift the 

peak position in frequency, which is a behaviour typical of bulk phonon peaks. 

Assuming that the f i lm is elastically isotropic the transverse peak should not be visible 

in backscattering. So the observed peak at frequency Vi can be assigned to scattering 

from the longitudinal (L) bulk phonon with wavevector q={4it/X)n and phase velocity 

v\=Xvi/2n. The longitudinal sound velocity v L is connected to the adiabatic bulk 

modulus B and shear modulus fx by the formula 

where p is the mass density, Cu is one of the elastic constants, B and \x are the bulk and 

shear modulus respectively. A direct ellipsometric measurement at 514.5 nm of the 

index of refraction n of a f i lm deposited in the same conditions gave n = 1.5 [23]. We 

thus obtain v L = 2900 m/s. We can assume p = 0.80-0.85 g/cm3, from the x-ray 

reflectivity measurements, and so Cn is about 6.5 Gpa (see Table 5.1 below). B and \x 

cannot be evaluated from the shift of only one bulk peak and analysis of the surface 

modes in thinner films must be undertaken. 

Fig. 5.18: Brillouin spectrum of a thick film grown with standard deposition conditions (without 

focusing of the beam). Points are experimental data, line represents data after smoothing. 
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The second series of measurements was carried out on sample BEAM in the same 

points where the Raman spectra were acquired. It is useful to remember that in this 

sample a variation in the thickness across the approximately gaussian profile (measured 

with the laser interferometry technique) corresponds to a variation of the precursor 

cluster size and also, probably, of the material nanostructure. 

On the outer border of the deposition, far from the deposition centre, the f i lm 

thickness is very small (about 10 nm); the f i lm becomes thicker moving towards the 

centre (up to 1 \im). We expect the Brillouin spectrum of the thinner region to be a 

modification of the Si substrate surface spectrum, due to the presence of a very thin 

carbon film. This spectrum should vary as a function of thickness, and should become 

similar to the spectrum of the bulk sample, with a big central peak, close to the centre of 

the deposition where the fi lm is thicker (and more graphitic). This is precisely what was 

observed (see fig. 5.19). The Rayleigh surface peak detected at 14.7 GHz for a pure Si 

substrate undergoes a redshift (about 300 MHz) for very thin carbon coverage; the peak 

then broadens as the layer thickness increases, until the central peak intensity does not 

allow the detection of surface modes. Indeed, a surface can not even be defined when 

the roughness is of the order of 100 nm or more. 

Theoretical modelling of the dynamical behaviour of such a system is being 

developed in Milano. There is great interest in the central peak, characteristic of this 

system, which could give information on a fractal dynamical structure of the films (the 

so-called fractons discussed below in section 5.6). The interest is in the study of the 

dynamical properties of a system that cannot be thought of as a continuous fi lm, having 

a "ball-assembled" structure with voids in it. 

The problem while studying this f i lm is the inherent coupling between two 

deposition parameters that vary together, the thickness and the precursor cluster size 

distribution. Since many studies (see for example [99]) show that in thin films the 

degree of surface roughness increases with increasing thickness, we may expect that the 

rise of the central peak, which we attribute to a rising disorder in the mesostructure of 

the fi lm, is due to the increasing thickness while moving towards the centre of the fi lm, 

and not to the variation of the size of the precursor clusters, which is believed to have an 

influence on the local nanometer order but not on the mesoscopic structure. Indeed, 

AFM measurements have shown that the huge roughness of cluster-assembled carbon 

films is a function of their thickness, and not of the size of the precursor clusters. 
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Roughness, of the order of tens or hundreds of nm, was found to increase linearly with 

thickness and saturation was not reached even for films thicker than 1 fim. 
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Fig. 5.19: Brillouin spectra from different points of sample BEAM, from the periphery (bottom) to 

the centre (top). 

In order to test the effect of the thickness-related roughness, and separate 

thickness and cluster size distribution effects, on Brillouin scattering measurements, 

three series of films were grown. Each series consists of films grown with the same 

source conditions, but having different thickness. The source parameters were varied 

from one series to the other in order to achieve a different selection of the precursor 

cluster size distribution, but a substantial homogeneity over the area of the film. The 

difference in the local order (as well as the homogeneity within a single film or a single 

series) was demonstrated by Raman spectroscopy, as shown in section 5.3.4. It is thus 

possible to decouple the effect of varying the thickness from the effect of varying the 

precursor cluster size. The series were called "series 1", "series 2" and "series 3", going 

from the most amorphous (small clusters) to the most graphitic one (large clusters). 

While thick films (thickness > 500 nm) and the film BEAM were grown on Si 

substrates, for the Brillouin measurement of these films and of thin films in general it 

turned out that a different substrate was preferable. Measurements from thin films 

grown on Si presented a very low signal-to-noise ratio. This can be ascribed to the non-

negligible width (50-60 GHz) of the central peak that can be seen in the measurement 
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of a pure Si substrate, whose origin is a second order Raman difference mode. We thus 

decided to deposit the thin films on polycrystalline Al foils whose thickness was about 

10 nm. Provided that the surface is smooth enough, this substrate allows a better signal-

to-noise ratio, principally for the following reasons: 

• absence of a wide central peak; 

• high surface reflectivity of the substrate, and so bigger interaction of light with the 

film. Al is a metal, and the imaginary part of its refractive index is so high (2.03) 

that there is virtually no penetration in the substrate. This also accounts for the fact 

that the ripple effect is predominant over the elasto-optic contribution from the 

volume of the substrate, and this makes the Brillouin measurement more sensitive 

to the film properties. Also Raman measurements from films deposited on Al 

showed a signal intensity up to five times higher than in films deposited on Si. 
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Fig. 5.20: Brillouin spectra from films of "series 2", deposited using unfocused beams, with the 

same cluster size distribution but different thickness. In these measurements the incidence angle is 50°. 

The effect of varying the thickness is reflected in the nature of the modes travelling in the film and in 

their velocity. 

In fig. 5.20 Brillouin scattering measurements for the films of "series 2" are 

shown. No particular difference has been found in the evolution of the central peak 

between the three series. This confirms that, as predicted, the localisation effects 

represented by the central peak are not affected by the local order (and thus by the 

cluster size), but only by the surface mesostructure, which is in this case a function of 
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thickness. We observed that increasing the film thickness, from a few tens to some 

hundreds of nanometres, a strong localisation is reached, in which the acoustic phonons 

do not propagate along the film surface (and a surface is probably not even well 

defined). 

The effect of varying the size distribution of the deposited clusters has instead an 

effect on local bonding and on the elastic properties of the films, which is reflected in 

the position and dispersion relation of the surface acoustic peaks at a fixed thickness. 

Apart from the considerations on the origin of the central peak, the surface features 

observed in thin films can in fact be used to calculate the material elastic constants. 

This has been the object of extensive study and of a degree thesis project [100] in the 

Materials Laboratory at Politecnico di Milano. 

One thin film for each series (thickness about 100 nm) has been measured 

varying the laser incidence angle between 10° and 70 in order to obtain the dispersion 

relation for the observed surface phonons (i.e. their frequency shift as a function of the 

incidence angle). The very thin films have been chosen to avoid, in the analysis of the 

data, complications arising from the central peak. The observed peaks have been 

assigned to a Rayleigh mode and to a Sezawa mode, and from the dispersion relation 

the elastic constants of the films have been estimated, using the software described in 

section 3.2.2 (fig. 5.21). The situation is that of a "slow film on a fast substrate", i.e. 

v t

( 0 < v t

( s ) (see section 2.3.5). 
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Fig. 5.21: a) Brillouin spectra from film "thin 3" as a function of the incidence angle; b) 

dispersion relation for the velocity of the Rayleigh and Sezawa peak in the same sample; the dashed line 

represents the transverse threshold of the Al substrate (courtesy C. Casari, Politecnico di Milano). 
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Differences in the calculated elastic constants were evidenced between the three 

samples. It was found that the Young modulus E increases (Table 5.1) from about 3 

GPa to about 7 Gpa moving from a very amorphous f i lm to a more graphitic one, while 

G (shear modulus) increases from about 1 GPa to about 2.5 GPa. Also Cn increases, 

and this could explain why in thick films a higher value of Cu was found for the non-

focused fi lm, where the local bonding is less amorphous than in focused films (see 

below). The films are called, in Table 5.1, "thin 1", "thin 2" and "thin 3" going from the 

most amorphous to the most graphite-like. In polycrystalline graphite G = 2-5 Gpa 

[101]: this means that our films have a shear modulus comparable to that of graphite, 

confirming the sp2 nature of most covalent carbon bonds. The porous disordered 

structure is instead responsible for the very soft value of the Young's modulus. This 

indicates a low-density, isotropic material with shear properties similar to those of 

graphite but with a different compressibility. 

Table 5.1: Values of the elastic constants £ and G for 3 thin film ("thin 1" is the most amorphous, 

"thin 3" the most graphitic) deposited with a non-focused beam, for the thick film deposited with a non-

focused beam and for the thick film deposited using a focused beam (see Section 5.5.2). 

SAMPLE Nominal 
thickness (nmj £ (Gpa) G = CAA= H (Gpa) 

thick non-focused > 1000 6.5 — 

Thin 1 100 2.7 1.1 
Thin 2 80 3.4 1.6 
Thin 3 100 7.2 2.6 

thick focused 1100 5.3 2.4 

5.5.2 Films grown by a focused beam 
Films with a completely different nanostructure, more compact and smoother, can 

be grown using the focusing device described in section 5.2. 

A thick film of thickness about 1.1 u,m (measured by AFM) was deposited with a 

focused beam (small divergence) to achieve a high fraction of small cluster sizes with 

great selectivity with respect to the large clusters (see Raman spectrum in fig. 5.14). 

The films obtained in this way are more close-packed and smoother with respect to 

those deposited without beam focusing, and this reflects in Brillouin spectra where 

peaks and features are well defined and the broad central peak is absent. 
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These spectra are interesting mainly for the absence of the central peak and the 

high intensity and small width of the Rayleigh peak (see fig. 5.22), never observed 

before from nanostructured carbon films. This feature supports the conclusion that long 

life acoustic phonons can propagate along the f i lm surface. In other words, at a 

mesoscopic scale of observation, this fi lm appears as a homogeneous elastic 

continuum, and the relatively low surface roughness, acting as surface structural 

disorder, only introduces a small acoustic damping factor without hindering the phonon 

propagation. This fact is consistent with a smooth surface f i lm of compact material 

made of close-packed small clusters and it is important in comparison with the results 

of the experiments on the PMCS films deposited without beam focusing in which the 

surface roughness increases with the f i lm thickness (see also [16]). As shown above, 

for this kind of films the surface Brillouin spectrum for a thickness comparable to that 

of the focused beam fi lm (> 1 ^.m) showed a central peak, and either no surface peaks 

or only a very weak bulk peak, because of the huge surface roughness (not allowing the 

propagation of surface modes). The only way to obtain information from surface 

Brillouin experiments on non-focused beam deposited PMCS films has been to 

measure thin films deposited on aluminium substrates in order to achieve a higher 

signal-to-noise ratio. Nevertheless RW peaks in these spectra showed lower intensities 

and higher widths than in the thick focused film, pointing to a non-negligible damping 

factor in the acoustic phonon mean lifetime caused by the surface disorder. 

The detection of acoustic modes in a thick f i lm gives an advantage, with respect 

to a thin f i lm, in that we can consider the film as a semi-infinite medium and so the 

nature and the characteristics of the acoustic waves propagating in the system are not 

affected by the thickness and thus by the presence of the substrate. In our experiments 

the limit is about 500 nm. 

Thus Brillouin scattering experiments were carried out to determine the velocity 

v of either surface acoustic waves (SAW) or bulk waves (BW) and possibly determine 

the elastic properties of the film without the need for a complete dispersion relation in 

thin films. When the thickness is higher than 500 nm the film can be regarded as a 

semi-infinite medium, a BW can travel inside the material, while the SAW velocity is 

non-dispersive and its propagation is not affected by the presence of the substrate. 

Spectra recorded at different angles of incidence (0, =50° and 70°) are shown in 

fig. 5.22. They are characterised by three peaks: the peak just before 5 GHz and the one 

around 8 GHz correspond to surface and pseudo-surface waves respectively and are 
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characterised by a frequency shift depending on the angle of incidence 0,. The former is 

a Rayleigh wave (RW). The latter is a longitudinal resonance (LR) or high-frequency 

pseudo-surface wave. This is a surface mode of a mixed character; its longitudinal 

polarization component is bounded near the surface while its shear polarization 

component is unbounded and radiates elastodynamic energy into the bulk. The broad 

peak at about 11 GHz is a true bulk mode and it has been assigned to the longitudinal 

bulk wave (LB) due to the isotropic assumption that does not allow the transverse bulk 

wave to be visible in backscattering geometry. Our interpretation of the observed peaks 

is also strongly supported by numerical simulation of the total scattering cross section 

(see below). 
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Fig. 5.22: Brillouin spectra from a focused film, at two different angles of incidence, 0,=5O° and 

0,=7O°. The surface spectrum is characterised by the dependence on the angle of incidence of the peak 

frequency (Rayleigh wave, RW, and longitudinal resonance, LR) while the bulk spectrum presents a 

longitudinal bulk, L B , wave with a fixed frequency position. In the small inset boxes fitting of the 0=50° 

spectrum is shown (courtesy C. Casari, Politecnico di Milano). The numerical simulation of the 

scattering total cross section (line) is superimposed to the experimental points in the right box while in 

the left one the RW peak was fitted separately with a fitting procedure using a pseudo-Voigt function. 

As explained in chapter 2, SAWs are visible as peaks at characteristic frequencies 

depending on the incidence angle 0, according to Eq. (2.38): 
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while BW are usually observed at higher frequencies given by Eq. (2.21): 

In 
(5.7) 

where n is the refractive index of the medium. 

Fitting peaks to the experimental data (as shown in fig. 5.22), we found 

vR= 1240150 m/s for RW velocity and vL=2070±50 m/s for the LB and LR velocity. For 

a semi-infinite medium the velocity of the surface Rayleigh wave V R depends only on 

the longitudinal and transverse bulk wave velocities vL and V T . Solving numerically the 

corresponding equation (see [102]) we found VT=1390 m/s. The velocities V L and vT 

and the corresponding frequencies Vi and VT represent the thresholds between the 

discrete and the continuum regions of the spectrum (see section 2.3.5). In particular for 

a bulk material the RW is always at a frequency lower than v? (Vj < VL), the LR mode 

is exactly at Vi and the LB wave is at a frequency higher than Vj.. 

The propagation velocities of the observed modes can be used to determine the 

elastic properties of the material. The longitudinal bulk wave velocity v L is directly 

connected to the C\ \ elastic constant by the formula vL = -yJCn I p where p is the mass 

density. Using the value p = 1.2510.05 g/cm3 obtained by X-ray reflectivity, we obtain 

Clt=5.410.2 GPa. A value of 2.410.1 GPa was found for the shear modulus (^=G=Cw), 

determined using the relation V T = y / p . Knowing C\ \ and C44 allows one to 

characterise completely the elastic properties of an isotropic material and other elastic 

constants such as the bulk modulus B, Poisson ratio v and Young's modulus E can be 

determined. We found £=5.3 GPa, 5=2.2 GPa and v*=0.1 (see Table 5.1). These values 

are comparable to those obtained for the thin films (thickness of about 100 nm or less) 

deposited with the unfocused beam, in particular they are close to the values of the 

harder film of the thin film series (Table 5.1). The comparison with diamond elastic 

constants £=1141 GPa, B=442 GPa and v*=0.07 again indicates a very soft and highly 

deformable material. 

The presence of both the longitudinal bulk wave and the surface resonance 

reveals a non-negligible elasto-optic effect as a scattering channel in addition to the 

ripple effect mainly responsible for the RW peak. This occurrence permits us to 

determine, without any other information, the real part of the refractive index as the 

JC^/p 
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ratio between the frequency position of the LR and LB modes: Vi/Vut = n/smd, and so 

n is evaluated to be about 1.4 (in agreement with ellipsometry measurements [23]). 

The total scattering cross section was studied by Carlo Casari in the Materials 

Laboratory at Politecnico di Milano [100], by numerical simulations based on a Green's 

function approach, using the software described in section 3.2.2 [103]. The calculus 

requires the knowledge of the values of p, n, Q and the elasto-optic coefficients % 

The peak positions depend only on the physical quantities (p, Re(n) and Q ) determined 

experimentally, while Im(n) and % are responsible only for the relative peak intensities. 

The simulation can reproduce the experimental frequencies of the peaks. It does not 

succeed in calculating the intensity ratio between the discrete and the continuum 

spectrum for this kind of fi lm. The reason of this is related to some physical 

phenomena that the homogeneous continuous elastic model does not include in its 

calculation, the most relevant in this case being the acoustic damping caused by the 

local disorder. For this reason we reported separately in the insets of fig. 5.22 the fit of 

the RW peak with a pseudo-Voigt function and the result of the numerical simulation 

for the continuum spectrum superimposed on the experimental points. A reasonable 

agreement for the peak intensities was achieved using &y/=8, ki2=2 and fc«=3. These 

values are only a rough evaluation of the order of magnitude of the elasto-optic 

constants, but so far they have never been measured in this kind of material. In 

particular the intensity ratio IU/ILB of the LR and the LB peak is strongly related to the 

kn/k.44 ratio while the absolute values of Icy have a weaker correlation with the intensity 

of the whole continuous part of the spectrum. 

The imaginary part of the refractive index is responsible for the opacity 

broadening of the bulk peak and we used a value of 0.2 in an attempt to reproduce the 

experimental width of the LB peak. This value is in perfect accordance with the results 

of ellipsometry measurements [23]. 

Finally the layer projected phonon density of state (LPPDS) [104] calculated for 

the parallel (LPPDSx) and transverse (LPPDSz) polarization components with respect 

to the film surface are plotted in fig. 5.23 and reveal the surface nature of the RW and 

the pseudo-surface features of the LR wave. These simulations do not show the LB 

wave because they compute only the acoustic spectrum without considering the 

electromagnetic interaction. The analysis of these plots confirms our assumptions on 

the nature of the observed peaks, showing the positions of the transverse and 

longitudinal thresholds and pointing out that the LR wave is bounded partially at the 
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surface but extends partially also in the bulk. The RW has an exclusive surface nature 

and its peak is the result of the interference effect between the ripple scattering 

mechanism, active only for the transverse polarization component, and the elasto-optic 

effect, while the LR peak is visible only through the elasto-optic channel [105-107]. 
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Fig. 5.23: 3D and contour plots of the simulated layer projected phonon density of state LPPDS 

for the polarization component perpendicular to the surface (LPPDSz, bottom graphs) and parallel to the 

surface (LPPDSx, top graphs) showing the RW and LR depth behaviour. The longitudinal and transverse 

thresholds between the discrete and continuum regions of the spectrum are also shown in these plots 

(courtesy C. Casari, Politecnico di Milano). 

Finally, a series of thin films with thickness varying in the range 60 nm-400 nm 

was deposited with focused beams and measured for comparison with the series 1, 2 

and 3 grown in standard configuration, without focusing (see fig. 5.24 and fig. 5.20). 

The difference is that now, although the nature of the detected surface modes is the 

same, there is no central peak. This must be ascribed to the compact nature of these 

films and to the smooth surface. AFM measurements have revealed that in this films 

the surface roughness is one order of magnitude smaller than in non-focused beams 

[17] (even in the periphery of a non-focused beam, despite the inertial separation effect, 

some big particles are probably present, which are instead eliminated by using the 

"focusing" device; moreover the divergence of a non-focused beam is much higher). 
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Fig. 5.24: Brillouin spectra from films deposited using a focused beam and having different 
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5.6 Disorder and confined modes 
In disordered materials acoustic waves can be localized; the breaking of the 

translational symmetry does not allow the propagation of phonons as plane waves. A 

weak localization can be described by introducing a finite phonon lifetime, i.e. a 

broadening of the corresponding phonon peak in Brillouin measurements. This 

corresponds to an acoustic wave damping over a characteristic damping length (see 

also chapter 6 for damping of acoustic modes in metallic nanospheres). For strong 

localization the acoustic wave does not exist and localized, confined vibrational states 

can be excited. 

A particular type of localization exists in materials with a fractal or self-similar 

organisation (see e.g. [108-114]). Many materials have been shown to possess a fractal-

like static structure in a length interval defined by the lower and upper characteristic 

lengths £ and £ 2 (see section 2.7 and [99]), for example using Small Angle X-ray or 

Neutron Scattering (SAXS or SANS), or even Small Angle Light Scattering. In this 

case the localized vibrational states have been studied and excitations possessing a 

dynamical fractal nature have been called "fractons". These modes are observed when 

studying the materials over dynamical lengths in the range £\»§i; phonons with 

wavelength larger than £2 can propagate as they see the material as a homogeneous 
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effective medium. Several studies by Raman and particularly Brillouin spectroscopy 

have been devoted to investigate the presence of such excitations. 

Since the SEM pictures of the cluster-assembled carbon films reveal a structure 

that resembles that of self-similar systems, and since AFM measurements have shown 

the same film to possess a self-similarly organised surface roughness [17], it appeared 

natural to investigate whether these materials have a volume fractal structure or can 

host fractons. In particular AFM studies [17] have shown that the growth of the cluster-

assembled carbon films implies a columnar growth due to a ballistic deposition with 

shadowing effects, with self-affine properties in the height-height correlation function 

and in the scaling of roughness with deposition time (see also [99]). 

• 1 i • i 

1 

in 

1 

1.2 0.8 

Log q (scattering vector [A'1]) 

Fig. 5.25: Small Angle X-ray Scattering (A=1.3 A), after subtraction of background, from a 

cluster-assembled carbon film grown under standard deposition conditions, down to a scattering 

wavevector value of 4nsin0/A = 0.025 A"1, corresponding to a length of about 25 nm. A linear fit is 

shown, corresponding to an exponent value of about 3.3. 

SAXS experiments have been performed to investigate this on station SRS 2.3 at 

Daresbury. Scattering wavevectors down to 0.025 A"1 were investigated (fig. 5.25), 

which means that structures up to a length of about 25 nm were studied. The exponent 

found (see Eqs. (2.57) and (2.58)) was about 3.2-3.3. Thus, there is no clear evidence of 

a self-similar volume structure, at least up to this length scale. We could interpret this 

result as the scattering from a fractal surface with fractal dimension 2.7-2.8, which is 

indeed possible for films showing a structure like that revealed by SEM pictures (fig. 
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5.4). To analyse this over larger lengths, one should be able to study smaller scattering 

wavevectors, maybe using a dedicated beamline, or even Small Angle Light Scattering 

(i.e. a larger wavelength). 

It has been shown (see e.g. [112-114]) that in inelastic light scattering the 

excitation of fractons should reveal itself in the presence of a low frequency scattering 

intensity following a power law: 

7 ( v ) o c V

a (5.8) 

where the exponent a depends on the fractal dimension of the system and on a 

"dynamical" fractal dimension. Different models give different expressions for a. 

Unfortunately, these measurements are very difficult, because the presence of the 

elastic laser peak and the background diffuse intensity strongly affect the exponent 

determination. The central peak in our Brillouin measurements was investigated, but no 

definitive evidence of such a dynamical behaviour could be found for our material so 

far. Nevertheless, the evolution of the central peak with thickness in BS experiments 

and the thickness-dependent roughness evidenced by AFM analysis suggest that the 

localization mechanism is governed more by the irregular surface features than by 

volume effects. 

5.7 Conclusions 
In this chapter the Raman and Brillouin scattering characterisation of cluster-

assembled carbon films (from the deposition of supersonic cluster beams produced by a 

Pulsed-Mieroplasma Cluster Source) has been presented, together with x-ray scattering 

characterisation. 

Being Raman spectroscopy a fast and standard technique for amorphous carbon 

characterisation, its use was indispensable to study the functioning of the source in 

different configurations and to relate it to the properties of the deposited films. Wide-

angle x-ray scattering and Raman scattering showed the amorphous nature of the 

carbon films. On the other hand, rather ordered forms of carbon (onion-like particles, 

graphitic particles, nanotubes) were found to be formed in the source cavity. Raman 

scattering measurements confirmed the possibility of growing films with different local 

bonding topology by exploiting the inertial separation effect occurring in supersonic 

cluster beams, and thus tuning the size distribution of the deposited clusters. 
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The possibility of enhancing the focusing of the cluster beam, in order to deposit 

smaller clusters and grow more compact, smoother films, was indirectly confirmed by 

Brillouin scattering experiments. These measurements also permitted the determination 

of the elastic properties of the carbon films, revealing a very soft material. I would like 

to remember that the determination of the elastic constants in thin films and the 

evaluation of the elasto-optic coefficients in the focused film have been carried out by 

C. Casari at Politecnico di Milano [100]. 

The possibility of a self-affine or fractal structure of the films was investigated by 

Brillouin scattering and Small-Angle X-ray Scattering, though no conclusive evidence 

was obtained. 

A general review of the complete work so far within the cluster-assembled carbon 

films project, together with some investigation of the control of the film nanostructure 

in view of possible applications (field emission, catalysis, and gas adsorption) can be 

found in refs. [5, 10, 11, 15-25]. At the moment of the submission of this thesis, a 

portable deposition apparatus (CLARA: CLuster Assembling Roaming Apparatus) has 

been designed and built, to be used for in-situ characterisation of the first stages of 

growth during thin film deposition. The contribution of the Materials Laboratory at 

Politecnico di Milano will be in the in-situ Raman scattering characterisation of the 

very first stages of growth. A UHV chamber with a micromanipulator and the 

possibility of interface with the Raman spectrometer and with CLARA has already 

been designed and assembled (see section 3.1.2), and the first experiments are about to 

be performed. 
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Chapter 6 

Melting of tin nanoparticles 

6.1 Introduction 
Nanoparticles have recently been the object of intensive work, both in the case of 

semiconductor quantum dots and metal nanocrystals [1-4]. Their properties differ from 

the bulk material properties, and strongly depend on their size. The main motivation for 

the growing interest in these systems is thus related to the possibility of tailoring their 

physical behaviour by tuning and controlling the nanoparticle size. 

For metal nanoparticles above a particle radius about 10 A the width of the 

discrete electron energy levels becomes comparable or larger than the separation 

between them. As a result, the conduction band becomes quasi continuous. When the 

radius R becomes > 200 A the behaviour of the nanoparticles progressively approaches 

that of the bulk metal [4]. In the intermediate size range 10 A < R < 200 A, significant 

deviations with respect to the bulk properties are observed, for example, in 

thermodynamic properties such as melting temperature and latent heat of fusion (see 

e.g. [5] and references therein), as well as optical properties. 

When the ratio of the number of surface atoms to the total number of atoms 

exceeds 1:3 the melting temperature of the particles decreases to about 2/3 To [6], since 

the reduced number of bonds on the surface causes an enhancement of thermal 

vibration. The melting temperature TM of a particle of radius R has been described by 

Semenchenko [7, 8] from a classical point of view. For R > 15 nm he predicted: 

TM = 7/0exp (6.1) 
pLR ) 

where To is the bulk melting temperature, p the volume mass density, L the latent heat 

of fusion and ysi the interfacial free energy between solid and liquid (difference 

between the solid and the liquid surface tensions ys and yd- A simple thermodynamical 

approach can model the reduction of the melting point and is based on the surface 

tension difference between the liquid and the solid phases. A key point in the 

discussion is that, according to the Laplace law, the pressure on the surface of a small 

liquid droplet is different from the external pressure, and the pressure difference is 

130 



given by Ap = pt - pexl - 2yt IR (i.e. in a sphere the surface tension creates a 

compressive force). A similar relationship is valid for a solid sphere, with ys instead of 

//. Eq. (6.1) (or similar relationships) is obtained imposing that the melting will occur 

when the chemical potentials of the solid and of the liquid phase are equal. For smaller 

sizes, different approaches have been adopted (e.g. molecular dynamics simulations [9, 

10]). In any case, experimentally it is well established [10] that 

^ = r ° ~ ^ - I (6.2) 
T T0 R 

which is simply the first order term in the series expansion of Eq. (6.1). 

The interface energy balance explains the phenomenon of surface melting, which 

takes place if ysv -ysl -ylv > 0 , where ysv, ysi and yiv are the solid-vapour, solid-liquid 

and liquid-vapor interfacial free energies [11]. In this case a thin liquid layer can exist 

considerably below the melting temperature of the whole particle, which, as stated 

above, turns out to be considerably lower than the bulk melting temperature. In 

addition, the phase transition is characterized by a hysteresis cycle [12] over a 

temperature range which can in some cases attain 150 K [3], which shows that melting 

takes place at temperatures above solidification (except for the very small sizes, where 

the hysteresis cycle disappears). The size dependence of the melting temperature has 

been observed experimentally [5, 10, 13-20] using X-ray diffraction [13, 19, 20], 

transmission electron microscopy and optical reflectance [5, 10, 14]. 

In this chapter, the use of in-situ high-temperature high-resolution x-ray powder 

diffraction to study the phase transition as a function of particle size is reported. The 

results are related to the measurement of a modified surface Rayleigh acoustic phonon 

in a supported SiOx film containing Sn nanoparticles, using Brillouin inelastic light 

scattering. The melting transition does indeed occur at the same temperature as an 

abrupt redshift in the Brillouin peak; the melting temperature has then been related to 

the measured size of the particles. In the second part, some Raman scattering and low-

frequency Raman scattering characterization will be presented, showing the detection 

of optical phonon modes and acoustic modes associated with the vibration of the 

nanoparticles. 
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6.2 Description of the samples and sample growth 
The samples studied in this work contained Sn nanoparticles, and were deposited 

onto a Si (100) oriented substrate. The nanoparticles were embedded in a SiO x (silica) 

amorphous matrix and were prepared by means of an evaporation-condensation 

technique in ultra-high vacuum (UHV) conditions [21], by P.Cheyssac and R. Kofman 

of the Condensed Matter Physics Laboratory (University of Nice). On a substrate kept 

at high temperature, a film of amorphous material is evaporated. After evaporation, the 

material constituting the nanocrystals is deposited on top so that its vapour is 

condensed on the underlying dielectric layer. The amorphous nature of the dielectric 

layer and its non-wetting or partially wetting character with respect to the nanocrystals 

are essential characteristics of the technique, together with the absence of strong 

perturbations due to chemical etching or mechanical distortions. During evaporation, 

the temperature of the substrate is kept at such a value that nucleation of nanoparticles 

takes place in the liquid phase, so that the surface tension plays a dominant role in 

determining the shape of the nanodroplets, which is approximately that of a truncated 

sphere. The liquid state of the deposit is an important step in the growth process, since 

it results in particles with a high degree of regularity. The temperature of the substrate 

is then lowered, so that the nanodroplets are frozen in the solid state, before being 

covered by an additional protecting amorphous layer; in this way, size and shape are 

kept constant. In order to improve the signal-to-noise ratio in the measurements, the 

total quantity of nanoparticles is usually increased by replicating the above-described 

depositions many times. 

If a small quantity of liquid material A is deposited on a substrate of a species B, 

the intermolecular forces resulting in the surface free energy and the interfacial 

energies will lead to the optimisation of surface area in relation to the interfacial energy 

between A and B. Consequently, a particle of material A will not be able to take an 

arbitrary shape on the substrate B. The equilibrium is described by the Young equation 

[21]: 

Y B =YAB+YA^S(P (6.3) 

where ( p is the contact angle between the two surfaces, YA and y B are the surface free 

energies of A and B respectively and YAB is the interfacial energy. In a real sample a 

wide range of contact angles can be found, due to the nature of the substrate 

(roughness, defects, etc.). One can distinguish three cases: 
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i) there is a flat layer instead of the particle (<p = 0, complete wetting); 

ii) the particle has a contact angle (0° < ( p < 90°, partial wetting; 90° < ( p < 180°, 

partial non wetting), generating a truncated sphere; 

iii) the particle is completely spherical (<p = 180°, complete non wetting). 

In our samples ( p ~ 90°, so that the particles have an approximately half-spherical 

shape [22]. 

The size distribution is bimodal (presenting an interesting similarity with other 

techniques) [21]. Its larger portion (= 95% in volume) is gaussian-like and has a 

relatively low size dispersion and a bell-like shape; a weak tail is also present at smaller 

sizes. By changing the growth parameters mean particle diameters between ten and a 

few thousand Angstroms can be produced. The parameter used to indicate the deposited 

nanoparticle material quantity in each layer is the so-called equivalent thickness, i.e. the 

thickness of a film containing the same volume of material, supposed to be continuous. 

Two series of samples were deposited and then studied. In the first series two 

samples were deposited with the same overall amount of Sn, but different nominal 

sizes: 2.5 nm (sample SnA, equivalent thickness 1.25 nm) and 20 nm (SnB, e.t. 10 nm). 

The overall thickness was 186 nm for both samples. For the second series, three 

different samples were deposited, each with the same volume amount of Sn but with 

different nanoparticle nominal sizes: 2.5 nm (sample Snl, equivalent thickness 1.25 

nm); 10 nm (Sn2, e.t. 5 nm); 20 nm (Sn3, e.t. 10 nm). The overall thickness was 186 nm 

for all the samples. A blank sample of SiOx, 186 nm thick, without Sn, was deposited 

for reference purposes (sample Snref). 

As the experiment involved use of expensive synchrotron radiation beamtime, the 

two samples of the first series were used for fast and preliminary measurements [23] in 

order to design the best experimental conditions for accurate measurements, which 

were performed on the samples of the second series. In the following only these final 

results, which were entirely consistent with the preliminary measurements, will be 

discussed. 

6.3 Brillouin scattering 
Inelastic light scattering has been widely used to study phase transitions [24]. 

Yet, to the best of our knowledge, the melting of neither a bulk crystal nor a 

nanocrystal has ever been examined in detail by this technique. 

133 



For all the samples the geometry of the system was designed to measure only one 

phonon peak at a fixed incidence angle. This peak is associated with a modified 

Rayleigh phonon propagating parallel to the surface and probing both the film and the 

substrate to a depth of the order of 270-300 nm with the vanishing tail of its 

displacement field. When the tin particles melt, their shear modulus drops 

discontinuously to a negligible value and the inverse of their bulk modulus jumps to the 

value of the finite compressibility of the liquid. This corresponds globally to a lowering 

of the effective elastic constants of the film. Thus the phase velocity of the surface 

phonon decreases abruptly inducing a redshift in the Brillouin peak position. In this 

way the melting temperature can be detected. 

Surface Brillouin scattering data were recorded in a backscattering geometry at a 

fixed incidence angle (60° or 70°), for all the samples and all the different temperatures, 

using the Sandercock six-pass tandem Fabry-Perot interferometer described in section 

3.2.1. For the temperature control the samples were placed inside the Oxford 

Instruments cryothermostat, with optical windows. The spectra were measured at 

different temperatures in the range 293-533 K, with a step size of 10 K and with a laser 

power of 40 mW incident onto the sample surface. This power was low enough not to 

enhance significantly the sample local temperature. Due to wave-vector conservation, 

surface phonons contributing to Brillouin scattering have a parallel wavelength (see 

chapter 2): 

A,, = Xol{2sin6) (6.4) 

(which is 297 nm for incidence angle 0, = 60° and 274 nm for 0, = 70°, for the argon ion 

laser wavelength Ao = 514.5 nm). The acquisition time for each measurement was about 

2 hours. For surface acoustic waves the measured Brillouin shift vBs is proportional to 

the wave velocity VSAW when the geometry of the experiment (i.e. the incidence angle 

6d is fixed, according to Eq. (2.38). We thus refer in the following only to the Rayleigh 

peak frequency. 

In fig. 6.1 Brillouin spectra from the sample Sn3 are shown. They correspond 

to three different temperatures (293 K room temperature, 473 K just below melting, 

493 K just beyond melting). Two features are important, a Rayleigh peak whose shift is 

about 9 GHz (undergoing a redshift beyond 473 K), and a central peak whose intensity 

(and FWHM) was not constant with temperature. 
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Fig. 6.1: Brillouin scattering for sample Sn3 at three different temperatures: room, before and 

after melting. Note the shift of the Rayleigh peak and the rise of a central feature. 
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Fig. 6.2: Position of the Rayleigh peak as a function of temperature in sample SnI (top graph), 

Sn2 (middle) and Sn3 (bottom). 

In fig. 6.2 we show the experimental Rayleigh peak position as a function of 

temperature for each of the three samples. These positions correspond in sample Sn3 to 
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a wave velocity variation from 2850 m/s to 2600 m/s. After an initially gradual 

variation, the final shift drop is rather sharp (it happens in a small temperature range of 

about 20 K) and it is always in the range 0.6-0.9 GHz. The transition temperature is 

between 473 and 493 K for sample Sn3, 453-473 K for sample Sn2 and 393-423 K for 

sample Snl (see Table 6.1 below). These values can be compared with the melting 

temperature of bulk tin, which is 505 K (232 °C). 

The wavelength A,|| of the Rayleigh phonon is much larger than the particle radius 

and so it is possible to avoid a detailed description of the phonon-particle scattering. 

One can treat the film as an effective medium with average elastic properties. The 

effective elastic constants B and /J, (bulk and shear modulus, respectively) of a film with 

spherical inclusions can be obtained within the Voigt-Reuss-Hill approximation [25] by 

the formulae 

3^2+4^2 
B = B 2 - f x ( B 2 - B x ) 

3BX +4^1, 

5(3B2 + 4/*2) 

(6.5) 

(6.6) 
9B 2 + fyu2 + 6(B 2 + 2/i 2 )fj.x / fu2 

where we can neglect the elastic anisotropy of the tin nanocrystals (XRD shows that the 

tin crystals have random orientation with respect to the substrate, see below). 1 is for 

tin and 2 for silica; fi is the tin volume fraction in the film. Fig. 6.3 shows \x as a 

function of \i\ for f\ - 0.2 (as in our films). 
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Fig. 63: Effective shear modulus fi of silica film containing a concentration /i=0.2 of inclusions 

of shear modulus (J.t vs nx. For solid Sn nanocrystals //i=0. For silica /i2=31.2 GPa and B2=36.9 GPa. 

136 



In order to obtain maximum sensitivity to nanoparticle properties, the sample 

geometry was designed to have only one Brillouin active surface phonon (modified 

Rayleigh phonon) travelling parallel to the surface and probing mainly the silica f i lm 

containing the nanocrystals. In this way the modified Rayleigh phonon is localised in 

the film and has only a vanishing tail in the silicon substrate. This result was achieved 

by computing the layer projected phonon density of states and the corresponding 

Brillouin cross section using the software described in section 3.2.2 [26, 27]. The 

results are shown in fig. 6.4 and fig. 6.5 respectively. 
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Fig. 6.4: Contour lines of the computed Layer Projected Phonon Density of States (LPPDS) as a 

function of the sample depth and frequency. The horizontal solid line at 186 nm represents the film-

substrate interface. 
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Fig. 6.5: Computed total Brillouin cross-section for our samples, showing the expected Rayleigh 

peak at a frequency of about 9 GHz. 
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In the case of very small sizes, when the particles melt, their shear modulus drops 

abruptly from a finite value to a much lower value (liquid phase). The contribution of 

the variation of the Sn nanoparticle density to the effective medium density across 

melting is negligible. The effect of varying B\ is negligible too (the inverse of the 

nanoparticle bulk modulus jumps to the value of the higher finite compressibility of the 

liquid), and so the main effect of the melting is an abrupt lowering of /u of the order of 

35% for our samples. In correspondence with this, computing again the Brillouin cross 

section, a redshift of the Rayleigh peak of the order of 1.5 GHz is found immediately 

beyond the melting temperature. Melting of bigger particles is indeed a two-step 

process, a surface melting followed by a complete melting. In real samples a size 

distribution exists leading to coexistence of solid, partially liquid and completely liquid 

particles at a given temperature. This corresponds to a progressive phase change in a 

rather wide temperature interval before the overall rather abrupt softening occurs. In 

summary, the softening of the shear modulus after melting is responsible for the 

decrease of the surface wave velocity (and so for the Rayleigh peak redshift). 

Experimentally a shift of 0.6-0.9 GHz was detected for all the samples. The 

agreement roughly within a factor of two with the experimental results represents a 

good test for the interpretation reported above, considering also that: 

a) the model computation was made using literature values of both tin and silica 

elastic parameters and the nominal f i lm geometry was used; 

b) effective-medium formulae do not describe particle scattering and do not include 

explicitly particle size but only the Sn concentration; 

c) x-ray diffraction (see below) indicates that melting is occurring in the same 

temperature range as determined by Brillouin scattering. 

A better quantitative interpretation would require going beyond the effective medium 

approximation to take explicitly into account particle size effects and not only the Sn 

concentration. 

Indeed, this interpretation can be considerably refined considering that a liquid 

manifests a non-zero shear modulus when responding to a high frequency excitation 

[28, 29]. This frequency-dependent effective shear modulus can be related to the 

viscosity r) of the liquid and to a characteristic relaxation time T. In other words, while 

a spontaneous non-equilibrium shear stress fluctuation decays in the liquid with the 

relaxation time T, the liquid can support shear acoustic waves propagation at 
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frequencies higher than 1/r. In general the phenomenon can be described by a 

frequency-dependent complex shear modulus [28]. 

A non-zero value of the frequency dependent shear modulus would mean a lower 

value for the decrease of the effective medium shear modulus across melting, and so a 

lower redshift for the Rayleigh peak. As size effects on both viscosity and relaxation 

times are unknown for metal nanoparticles we do not attempt to describe this effect 

quantitatively. 

The central feature, which is not present at room temperature, becomes more 

and more intense approaching the melting temperature, and after the shift of the 

Rayleigh peak the intensity seems to lower again (the central peak is wider than 30 

GHz and so our data are not precise enough to study this behaviour in detail for all the 

samples or to investigate the width of the peak). We show the behaviour of the central 

peak area as a function of temperature for sample Sn3 in fig. 6.6. 
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Fig. 6.6: Central peak area as a function of temperature in sample Sn3. 

In the vicinity of a first-order phase transition one may analyse this central 

feature in terms of a direct contribution of entropy fluctuations to the dielectric function 

fluctuations responsible for Brillouin scattering [23]. These fluctuations are expected to 

reach a maximum at the melting temperature. Otherwise its origin could possibly be 

related to the coupling of soft modes in the single particles with relaxing degrees of 

freedom through a damping process [30], arising from dynamic inhomogeneities in the 

semi-liquid particles in the vicinity of the phase transition. As the Rayleigh phonon is a 

mesoscopic excitation of the whole effective medium, it cannot be assumed as the soft 
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mode characterising the single particle melting. Indeed the soft mode could be 

identified with the acoustic modes confined in the particles and studied by low-

frequency Raman scattering as explained in section 6.5. 

6.4 X-ray diffraction 
X-ray diffraction was used to determine the crystallinity of the tin nanoparticles 

at room temperature and to study their structure as a function of temperature. In 

particular the nanoparticle melting temperature was measured as a function of their size 

(see also [19, 20]). High intensity, highly collimated beams of X-rays from synchrotron 

radiation sources were necessary for the detection of the very weak diffracted 

intensities scattered by the small tin nanoparticles in the amorphous matrix thin fi lm. 

(101 (200) 

Fig. 6.7: CCD camera image of the diffraction rings in sample Sn3. The strong diffraction rings 

not labelled are from the sample holder. 

Preliminary data [23] were collected on the high-resolution powder 

diffractometer on Station 2.3 (Soller slit collimation of the detector) at the Synchrotron 

Radiation Source (SRS) at Daresbury (UK), with an x-ray wavelength of 1.3 A. For the 

acquisition of most of the XRD profiles the two circle diffraction instrument at station 

BM16 at the European Synchrotron Radiation Facility (ESRF) at Grenoble (France) 

was employed, which consists, as described in chapter 3, of two high-precision, heavy-

duty rotary tables aligned coaxially on a base plate; and a channel array of 111 oriented 

Ge crystals (single crystal analysers) each in front of a scintillation detector. Each 

channel is separated by 2° [31]. 

The wavelength chosen was 0.55197 A, and detector only scans were acquired, 

keeping the incident angle fixed at about 5°. The reason for using a small incidence 
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angle is that this arrangement increases the x-ray path in the thin film, thus enhancing 

the interaction of the beam with the tin particles. The minimum value was limited by 

the geometry of the furnace. 

In addition to the data collected by the scintillation detector, CCD camera 

diffraction images of the films were acquired and showed continuous Sn diffraction 

rings (fig. 6.7), indicating that the nanoparticles are randomly oriented in the matrix, 

without any preferential orientation with respect to the Si substrate. A diffraction CCD 

image of the reference sample (matrix only) revealed no rings, demonstrating that the 

SiO x matrix was indeed amorphous. 
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Fig. 6.8: Diffraction pattern from sample Sn3. In this measurement X=l.3 A. 
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Fig. 6.8 shows a section of the diffraction pattern at room temperature for the 

sample Sn3. The four peaks detected (superimposed onto a varying background) index 

precisely to the 200, 101, 220, 211 diffraction peaks of the tetragonal structure of |3-tin, 

which is the stable tin phase at room temperature (white tin). The first two peaks were 

individually resolved for samples Sn3 and Sn2, while only a broad band due to the 

superposition of two very broad and low intensity peaks could be detected for sample 

Snl. We can thus affirm that at room temperature the nanoparticles are crystalline. 

The peaks can be fitted well to Gaussian functions as well as to Pseudo-Voigt 

functions (combination of a Gaussian with a Lorentzian); a fit to Lorentzian functions 

is good, but not excellent in the case of sample Sn2. This could indicate the presence of 

a small amount of strain in this sample. Using Scherrer's equation one can obtain an 

estimate of the average diameter L of the diffracting nanocrystals: 
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where A is the x-ray wavelength, 26 is the scattering angle and A(20) is the FWHM 

(Full Width at Half Maximum) of the peak. 
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Fig. 6.9: (200) and (101) Bragg peaks of tin nanoparticles in sample Sn3 (top graph), Sn2 

(middle) and Snl (bottom). Points represent experimental data, lines are Pseudo-Voigt fits to the two 

peaks. For Sn3 and Sn2 X = 0.55197 A; for Snl X = 1.3 A. 

In fig. 6.9 Pseudo-Voigt fits for the 200 and 101 peaks in the three samples are 

shown (in sample Sn2 the weight of the Gaussian component is predominant with 

respect to that of the Lorentzian component). The FWHM value obtained from the fit is 

the same for any of the three fitting functions. The calculated average diameters are 

4.5±2 nm (Snl, nominal size 2.5 nm), 11+1 nm (Sn2, nominal size 10 nm) and 18±1 

nm (Sn3, nominal size 20 nm). The agreement with the nominal values is good. 
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6.4.1 Temperature Calibration 
A furnace for high-temperature powder diffraction measurements at temperatures 

up to 1600 °C was employed for measurements of the diffraction profiles as a function 

of temperature. However, there is a serious difficulty in producing an absolute 

calibration of the sample temperature due to the inability of locating a thermocouple 

directly on the (rotating) sample. As it was not possible to determine the melting point 

directly from the furnace thermocouple, an internal calibration had to be performed in 

order to determine the temperature directly from the measurement of the lattice 

parameter of the single crystal silicon substrate on which the silica glass was deposited. 

However, the method is more widely applicable to high resolution powder diffraction, 

as silicon single crystal substrates are regularly used for their low background signal. 

The calibration of the furnace was also needed to compare XRD data with the 

Brillouin data. Due to the very high resolution of the Ge (111) analyser we were able to 

detect Hie "shift of a Si reflection from the substrate. This reflection indexes to the 

"forbidden" (002) peak of the Si structure, but could also originate from the 2 n d 

harmonic of the strong allowed (004) reflection. In fact, harmonic suppression is not 

complete in the monochromatization of the main synchrotron beam, and a weak A/2 

component is indeed incident onto the sample. 

In the powder diffraction patterns of the Sn nanoparticles films taken at station 

BM16 at the ESRF the fixed incident beam angle was about 5° and the sample was 

usually kept spinning at a rotation rate of 1 Hz. In fig. 6.10 reflections marked H arise 

from the sample holder, while the reflections from the Sn particles are indexed. The 

reflection from -the silicon single crystal substrate is indicated. Its position is in 

excellent agreement with that calculated from the wavelength determined from a silicon 

powder standard and is clearly a single crystal reflection. It is not present when the 

incident beam angle is offset by (more than) 2°. As the Ge (111) analyser, once 

calibrated, provides an absolute angular measure, we were able to check the assignment 

by moving the detector to the angular position for the 004 (allowed) Si reflection and 

displacing the sample. The 004 reflection was found in the position expected and 

saturated the detector. When the sample rotation was stopped, we were able to locate 

the 004 reflection in reciprocal space by successive displacement of the specimen and 

detector. The peak maximum occurred at a detector angle of 23.456°, corresponding to 

a lattice parameter of 5.431 A at 30°C, but with the specimen angle of 13.31°. This 

shows that the [001] direction is not coincident with the sample rotation axis. 
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It proved impossible to locate the position of the 002 reflection in reciprocal 

space in a similar manner as the precision of the diffractometer was insufficient to 

locate such an extremely narrow reflection with a stationary sample. However, due to 

the small angular offset of the [001] direction and the rotation axis, with the sample 

spinning, the 002 reflection flashes into the reflection condition twice per revolution. 

The narrow 002 Bragg peak (fig. 6.10) is limited by the Ge 111 analyser width, which 

at a wavelength of 0.55197 A is 6 arcseconds. 
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Fig. 6.10: Diffraction pattern for sample Sn3 showing the "forbidden" Si(002) reflection (left). 

Distorted 002 silicon peak due to the sampling error arising from the count time and revolution period of 

the sample. The line is a Lorentzian fit to the curve (right). 

As a result of its use as a standard, the thermal expansion coefficient of silicon is 

known very precisely. It is, however, small and to exploit this parameter as a 

thermometer we must have a high angular resolution diffractometer. For a temperature 

change of 10 °C, at wavelength 1 A the change in the 004 reflection Bragg angle is only 

2 arcseconds. The scattering angle therefore changes hy 0.4 arcseconds per degree. Eor 

slit-collimated diffractometers, even in the parallel beam geometry, this constraint 

makes the technique impossible. This is even the case for the Soller-slit collimation at 

the powder diffraction station 2.3 at the Daresbury SRS, where the resolution is 0.07° 

[31]. The use of a crystal analyser is thus necessary for the method to work and it is 

therefore applicable only to high resolution powder diffraction using synchrotron 

radiation [32-36]. With a crystal analyser calibrated against a silicon powder standard, 

the angular position of the detector provides sufficient precision to monitor the change 

in lattice parameter of the silicon single crystal. For a symmetrically cut 111 Ge crystal 

analyser, the FWHM of the Bragg reflection is 11 arcseconds at 1 A and when the peak 

centroid is determined by curve fitting, a precision approaching 1 °C can be anticipated. 
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The sample spinning does, however, present one significant problem when 

scanning the Bragg peak due to aliasing between the counting time and the period of 

rotation. In some sampling periods n rotations occur, while in others it may be n - 1 . If 

n is small, the peak shape can be very irregular (fig. 6.10) and care must be taken in 

determining the centroid of the peak. Despite this, it proved straightforward to fit the 

peak to pseudo-Voigt, or even simple Lorentzian, functions to determine the peak 

position. Repeated measurements at a single temperature indicated that the precision to 

which the peak centroid could be measured was 0.0003 degrees. From this peak 

position, it is straightforward to deduce the lattice parameter of the silicon. Relative to 

the lattice parameter at room temperature, the true temperature of the silicon can be 

deduced by assuming only the well-documented thermal expansion coefficient of 

silicon. 

The linear thermal expansion coefficient is defined as a(7)=l//o(d//d7), where k 

is the lattice spacing at the reference temperature Tn. In cubic crystal a(T) is a scalar, 

independent of crystal direction. From a(T) the lattice parameter at the temperature T 

can be determined as 

T 

Data about the temperature dependence of a(T) can be found in the literature [37-40], 

and an analytical expression accounts very well for these data between 300 K and 1500 

K [39]: 

a ( D = [3.725 • ( l - e " 5 - 8 8 1 0 " 3 ( r _ 1 2 4 ) ) +5.548-lO^rj- lO" 6 K"1 (6.9) 

A parabolic fi t of these data between 300 K and 600 K (which is our range of interest) 

provides good accuracy, and from integration of the last equation an expression for the 

lattice spacing at a given temperature between 300 K and 600 K can be easily obtained, 

provided one knows the lattice spacing value at room temperature, which is 5.431 A. 

This expression fits very well the available data of the Si lattice spacing as a function of 

temperature [37, 39]. 

Unfortunately the Bragg angle of reflection of a given set of crystal planes 6 is 

shifted i f there is an "out of plane tilt" [41], that is i f the normal to the plane of 

reflection is not in the scattering plane but is misoriented by a small angle (p. In this 

case, there is an apparent Bragg angle 6' where sin0 = cos<p sinfl'. A simple 

approximation shows the error A8 in 6 to be 

l(T) = l0(]a(T)dT + l) (6.8) 
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Af9 = -y- tan 6 [radians] (6.10) 

The tan0 dependence can be considered a constant over the 6 range of our experiment, 

and so the tilt error only shifts the lattice parameter curve by a given amount. In the 

case of sample Sn3 we measured the 002 Bragg angle to be &'=( 11.6685/2)° at room 

temperature, while the actual value should be given by 26 = 2sin"1(A/5.431) = 11.6665°. 

This means that (p s 1.1°, so that A(20) = 0.002°. 

Fig. 6.1 la shows the measured lattice parameter of the silicon as a function of the 

temperature measured by the furnace thermocouple, located close to the heater but not 

in contact with the sample. The solid line is the lattice parameter l(T) predicted at 

temperature T from the published thermal expansion coefficient a. Noteworthy is the 

very substantial difference in the measured and predicted lattice parameter on heating. 

Replacement of the sample and change of sample holder resulted in a heating curve of 

differenfr l̂ope. 
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Fig* a) points: measured silicon lattice parameter as « function of furnace thermocouple 

reading for the calibration of temperature; solid line: lattice parameter predicted from the published 

thermal expansion coefficient and measured lattice parameter at 30°C; b) calibration curve. 

The calibration curve for the real sample temperature against temperature 

measured from the furnace thermocouple, resulting from the above described method, 

is shown in fig. 6.11b. The same calibration method has also been applied to a Si 

powder to test its reliability and the results show a remarkable agreement. 
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6.4.2 XRD as a function of temperature 
In fig. 6.12 the diffraction peaks are shown as a function of temperature for 

sample Sn3, and for sample Sn2. Three features could immediately be noted: the peaks 

positions change systematically with temperature, this shift is higher for the 101 peak 

and the peak intensity falls sharply to zero in a small temperature range (= 20 K). 

sample holder peak 20 ran nominal alia 303 K 10 nm nominal size O.0O3 0.002 

433 K 2 303 K 
0.002 

5 
N 463 K 

443 K 

0.001 483 K 0.001 

10.8 11.4 10.8 11.1 11.4 

scattering angle 29 scattering angle 26 

Fig. 6.12: (200) and (101) tin peak evolution as a function of temperature in sample 5n2(left) and 

Sn3 (right). 

The disappearance of the diffraction peaks indicates the loss of the crystalline 

order, and this can be identified with the melting of the particles. Within the precision 

of the temperature step size, it occurs at the same temperature as the abrupt redshift in 

the Brillouin spectra. In Table 6.1 the melting temperature detected for the three 

samples with Brillouin scattering experiments and with XRD measurements are 

reported. The agreement is good, particularly when considering that the temperature 

calibration was a major problem for the XRD measurements. The precision with which 

the melting temperature can be determined is thus limited. 

Table 6.1: 
Sample Brillouin Rayleigh peak 

shift (K) 
XRD melting temperature 

(K) 
Snl 393-423 393-423 
Sn2 453-473 443-463 
Sn3 473-493 463-483 

Fig. 6.13 shows the melting temperature as a function of the particle size 

determined from the x-ray diffraction data. In all cases, the values are lower than the 

melting temperature of bulk tin, which is 505 K (232 ° C). The solid lines are fits to 

Eqs. (6.1) and (6.2), from which we determine the interfacial free energy between solid 

147 



and liquid y,i to be about 0.1 Nm"1. Even though Eq. (6.1) is strictly applicable only to 

spheres of radius greater than 15 nm [7, 8] we believe that the ysi value we have 

evaluated is significant to an order of magnitude in our size range. 
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Fig. 6.13: Fit of equation T ^ T b u k - k / R (black line) and of equation TM=T0exp(-h/R) (red line) to 

experimental data. 

After melting, cooling of the samples down to room temperature did not result in 

immediate recovery of the crystalline structure of the particles. After one or two hours 

the crystallinity was recovered perfectly. 

In the case of the big nanoparticles (sample Sn3) the peaks were sufficiently 

sharp and intense to allow a precise determination of their position and as a 

consequence a precise measure of the |3-tin lattice parameters in the particle. This could 

be done as a function of temperature, thus allowing for a calculation of the pMin 

temperature expansion coefficients in the 20 nm nanoparticles. As we are observing the 

position of the 200 and 101 diffraction peaks, one can easily see that the tetragonal 

parameters a and c can be computed by means of the formula: 

where d is the spacing corresponding to the (hkl) diffraction peak (A=2dsin0). Knowing 

the position of the two peaks (200) and (101), a and c can be obtained. 

+ k I 1 (6.11) 
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are linear fits to the data for the calculation of the thermal expansion coefficients. 

In fig. 6.14 the a and c values, determined from the (200) and (101) reflections, 

are plotted in the temperature range 303-443 K. The room temperature values for bulk 

tin are a=5.83 A and c=3.18 A respectively. 

The lattice thermal expansion coefficient is defined as 

1 A/ 
l0 AT 

(6.12) 

where /<> is the lattice parameter at the reference temperature and A/ its variation over 

the small interval AT. The expansion is anisotropic in the case of tetragonal crystals and 

the expansion coefficients of bulk tin single crystals are reported to be ot between 

30-10"16 K"1 and 40-10"16 K 1 and Oa between 15-10"16 K' 1 and 20-10"16 K 1 , in the range 

300-500 K [42]. We obtain, from fig. 6.14, Ok = (50±10)10 1 6 K*1 and % = (20±5)-10"16 

K"1. At least for the largest particles there is no evidence of a different expansion 

behaviour with respect to the bulk. This can be interpreted as an absence of a high 

stress condition for the nanoparticles. There are two other considerations in support to 

this conclusion. First of all, the values of the lattice parameters at room temperature for 

both samples Sn3 and Sn2, where they can be calculated with sufficient accuracy, are, 

within experimental errors, equal to the a and c bulk values. This indicates that there 

are no major distortions with respect to the bulk lattice. Further, we can perform a Hall 
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analysis of strains (see for example [43-46]) where finite size and strain both contribute 

to the peak width 

Bcosd 1 sin# 
— = ~^r]-— (6.13) 

A L A 
(if the size and distortion line profiles are presumed to be Lorentzian), or 

ficosd f l Y ( sin0 
— I + (6.14) 

A 

(if the profiles are presumed to be Gaussian), where X] is the strain, L the particle size 

and P the peak FWHM. Knowing with good precision the 0 position and the FWHM of 

the first 4 diffraction peaks in sample Sn3, we can determine the contribution of strain 

to the width of the peaks. We find that the strain is very small (rj < 1%), well below the 

detection limits allowed by our data. 

In conclusion, the possibility of detecting the melting of tin nanoparticles of 

different diameters with Brillouin inelastic light scattering, from the redshift of the 

surface Rayleigh wave travelling in the fi lm, has been shown. This result has been 

validated and confirmed by XRD. Together with a series of basic characterizations 

(particle size, particle random orientation in the matrix, absence of significant stress) 

we have shown that the melting temperature, according to theory and previous 

experiments on other materials, decreases with decreasing size. 

6.5 Raman scattering and low-frequency Raman 

scattering 
In recent years several works have been published reporting low-frequency 

Raman measurements of acoustic vibrations confined in nanoparticles, usually 

embedded in an amorphous matrix [47-59]. In most of these works the nanoparticles 

are modelled as elastic bodies of approximately spherical shape. The theory [55, 60-62] 

shows that spheres can vibrate with two different types of eigenmodes, spheroidal and 

torsional, according to the classical theory of Lamb [60]. Theoretical calculations [63] 

have shown that selection rules exist which allow only some of these modes to be 

Raman active. The characteristic frequencies associated with these modes are usually 

only a few tens cm'1, and this is the reason why the corresponding effects are usually 

measured in the low-frequency region of the Raman spectra. Within the continuum 

approximation, the frequency of both modes is proportional to the sound velocity in the 
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material and to the inverse nanocrystal diameter, and low-frequency Raman scattering 

is often used to estimate the average particle size. 

At the mesoscopic scale, instead, long-wavelength surface acoustic phonons in 

the system composed by the thin f i lm, in which the nanoparticles are buried, together 

with the substrate, manifest the nanoparticle presence as a perturbation in their 

dispersion relations. As long as the wavelength of the phonons is much bigger than the 

particle size, the effect can be treated within an effective medium approach, mainly as a 

modification of the shear modulus of the film, as shown in the previous sections. This 

type of modified surface phonon has been detected by means of Brillouin scattering; 

while low-frequency Raman scattering by the acoustic modes of individual 

nanoparticles is incoherent, Brillouin scattering from long wavelength surface acoustic 

phonons is coherent. 

In this section the measurement of low-frequency Raman scattering from the 

localized acoustic vibrations in (3-Sn nanoparticles as a function of temperature, across 

melting, is reported for the first time; in this way we utilise a direct and local coupling 

between vibrational dynamics, structural changes and dynamic light scattering. In 

particular, the evolution of these modes with increasing temperature, as the 

nanoparticles undergo the melting transition, is used here for the first time as a direct 

evidence of the particle melting. A measurement of the optical Raman modes in Sn 

particles as a function of particle size and temperature is also reported. 

Raman measurements were performed in the range 30-200 cm' 1. The excitation 

was from the 532 nm line of the Nd:YAG laser. The samples were placed in the Oxford 

Instruments thermocryostat in which a 10"4 torr vacuum was induced in order to avoid 

scattering from the air, which produces a series of lines in the region of interest, due to 

the roto-vibrational spectrum of the molecules present in the atmosphere. In fig. 6.15 a 

spectrum with the sample Sn3 in the thermocryostat is compared with a spectrum of the 

sample kept in air. The power incident on the sample was limited to 10 mW. 
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Fig. 6.15: Raman spectra from sample Sn3 kept in air (top line) and in vacuum (bottom line), 

showing the optical phonons from (3-tin. 

For the low-frequency measurements the Sandercock multipass tandem Fabry-

Perot interferometer, usually employed for Brillouin scattering experiments, was used. 

The mirror distance of the Sandercock interferometer was set to 0.5 mm, thus allowing 

a free spectral range (FSR) of about 300 GHz, which roughly correspond to 10 cm"1 (1 

cm"1 = 30 GHz). For the temperature control the samples were placed inside the 

thermocryostat. The spectra were measured at different temperatures in the range 293-

533 K, usually with a step size of 15 K or 20 K. The excitation wavelength was the 

514.5 nm line from the Ar ion laser; a power of 40 mW was incident onto the sample 

surface. Data were recorded in a backscattering geometry with the beam at a fixed 

incidence angle (0 = 50°) with respect to the surface normal direction, for all the 

samples and all the different temperatures. 

40 cm 

i in air 

125 cm 

in vacuum 

6.5.1 Experimental results 
In fig. 6.16 the room temperature optical Raman spectra for samples Snl and Sn3 

and for sample Snref are reported. The high intensity elastic tail at low frequencies in 

the metal-containing samples is due to their high reflectivity. Measurements in a 

backscattering geometry but with a 50° incidence angle of the beam with respect to the 

direction normal to the sample surface helped to lower the elastic peak. 
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Fig. 6.16: Raman spectra from samples Snl, Sn3 and Snref (from top to bottom). 

The lines at 40 cm'1 and 125 cm'1 in the Sn3 sample are the visible optical Raman 

modes from tin [64-67]. In sample Snl only a very broad feature is visible. This 

broadening is due to quantum confinement and therefore to the relaxation of the q = 0 

selection rule for Raman scattering in the nanoparticles (for the phonon dispersion in 

tetragonal |3-Sn crystal see [68-70]). In the reference sample two peaks due to first (= 

521 cm"1) and second (s 300 cm"1) order Raman scattering in the Si substrate are 

visible, which shows that the tin-free sample is transparent to the laser light. 

As it will be shown in the next section, the eigenmodes of the tin particles are 

expected in a frequency region below 10 cm' 1. For this reason it was not possible to use 

a triple grating spectrometer as that employed for standard Raman scattering 

measurements, since the metallic particles strongly reflect elastically the laser light. 

The high contrast Sandercock interferometer, with higher resolution, was thus 

employed for these low-frequency measurements. 

Fig. 6.17 shows the low-frequency spectra at room temperature for the three 

samples containing tin and for the reference sample. The spectrum is flat in the case of 

the reference sample, except for the peak at about 140 GHz, which is the bulk 

longitudinal peak from the silicon substrate. This again shows the amorphous matrix to 

be transparent to the laser light. 
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Fig. 6.17: Low frequency vibrational spectra from samples Sn3, Sn2, Snl, Snref (from top to 

bottom, intensities shifted for clarity). 

For samples Sn3 and Sn2 a broad peak is detected, whose maximum is at about 

50 GHz and 85 GHz respectively, with a long tail at higher frequencies. In sample Snl 

this feature was not detected, but a central peak is present. 
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Fig. 6.18: Evolution of the low-frequency vibrational spectra with temperature in sample Sn3 

(intensities shifted for clarity). 
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Fig. 6.18 shows the evolution with temperature of the low-frequency spectrum 

for sample Sn3. The reference sample was also measured as a function of temperature, 

and no change was evidenced, as expected. 

Finally the evolution of the optical Raman modes as a function of temperature 

was studied (fig. 6.19) for sample Sn3, showing broadening and weakening of the 

Raman peaks as the temperature increases and the local translational order is lost; no 

sudden change in correspondence of the melting temperature could be detected, 

probably because short-range order is still present at the transition. 
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Fig. 6.19: Evolution of Raman-active optical phonons in sample Sn3 as a function of temperature 

(intensities shifted for clarity). 

6.5.2 Discussion 
From the analysis of the free vibrations of a sphere two different families of 

modes are derived. The spheroidal modes are characterized by an angular momentum 

number /=0,1,2,..., and their nondimensional eigenvalues depend on the material 

through the ratio vi/vt, where v> and vt are the longitudinal and transverse sound 
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velocities, respectively. Conversely, the torsional modes, characterized by an angular 

momentum number /= 1,2,3,... represent a vibration without dilatation and their non-

dimensional eigenvalues do not depend on the material. The allowed frequencies are 

labeled by n and / (harmonic or solution number, and angular momentum number, 

respectively; n=0 are the modes confined at the surface). 

When the particles are embedded in a matrix, different boundary conditions have 

to be taken into account (i.e. rigid or semi-rigid walls). This usually shifts the allowed 

modes to higher frequencies with respect to the free-sphere case. 

The peak frequencies are proportional to the sound velocities and to the inverse 

nanocrystal diameters, l/d. Generally one can always write: 

where d is the diameter expressed in cm and v t is the transverse sound velocity; c 

(velocity of light) is introduced to express the frequency in cm"1, as it is usual in 

literature. Si,n is a proportionality coefficient related to the eigenvalues of the allowed 

modes, and it depends on the angular momentum number /, the harmonic number n, the 

chemical composition and shape of the particle, the matrix, the boundary conditions. 

From selection rules [63] only 1=0 and 1=2 spheroidal modes are Raman-active at the 

first order. The 1=0 mode leads to completely polarized scattering (at least for an ideal 

sphere), while the 1=2 mode leads to depolarized scattering. A polarization analysis of 

the scattered light (parallel or perpendicular to the excitation light) was attempted, by 

introducing a dichroic polarizer before entering the interferometer, but the resulting 

signals were too low to give any useful information. 

Solving the eigenvalue vibrational equation for tin spheres, one obtains that the 

lowest frequency modes are the 1=2, n=0 spheroidal (S2,oS = 0.84) and the 1=2, n=0 

torsional (S2,o = 0.85). The sound velocities in bulk tin are v t = 1500-1800 m/s, and V ) = 

3200-3500 m/s [25]. 

In our measurements, after subtracting a lorentzian wavefunction to account for 

the elastic central peak, the peaks were fitted with a damped oscillator wavefunction 

(see fig. 6.20): 

v = S,, n^- [cm 1 ] (6.15) 

/ (v) = 

l -

o 

+ 2C 
o o 

(6.16) 

where £ is the damping factor. 
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Thus we obtained v0 =2 cm'1 (60 GHz), £ = 0.2 and v0 = 3.15 cm'1 (95 GHz), £ = 

0.3 for the 18 nm (Sn3) and the 11 nm (Sn2) particles respectively. These frequencies 

correspond to a St,n value of about 0.7, i.e. the frequency of the two peaks scales exactly 

as \ld but are lower than the calculated values. 
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Fig. 6.20: Room temperature low-frequency spectrum for sample Sn3 and Sn2. Points are 

experimental data; lines represent a fit with a damped oscillator wavefunction and a lorentzian central 

peak. 

The difference between the experiment and the theory could be ascribed to a 

deviation from the spherical shape, as expected in our particles (see [58]), or, less 

likely, to non-bulk values of the elastic constants. Indeed, the difference could also be 

explained by the presence of the matrix. In fact, some studies have found that new 

modes, at lower frequencies, are allowed when considering the continuity of the 

solutions at the particle-matrix interface [71,72]. 

Experimentally [49] it was found that, as the size decreases, the width of the peak 

gradually increases and its intensity rapidly decreases. This is usually attributed to 

damping, through an interaction with the matrix [73, 74]. Our measurements agree with 

these observations. 

The asymmetric broadening of the peaks could arise from a mixing of different 

vibrational modes. Saviot et al. [55] attribute the tail at higher frequencies to overtone 

vibrational modes broadened by the size distribution. Ferrari et al. [53] suggest that the 

particle surface roughness is expected to allow higher frequency modes to appear and 

this could explain the important long tail of the experimental peak. Montagna and Dusi 
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[62] affirm that for deviations from the spherical shape, at higher / values the 

protrusions on the surface with a small radius of curvature become more and more 

important. 

The absence of any peak in sample Snl could be due to: a) its intensity is too low 

to be detected (and indeed the intensity is usually reported to be decreasing with the 

particle size); b) the shape of the (very small) particles is too irregular; c) the size 

distribution is very dispersed; d) the vibrational modes are overdamped. 

Nisoli et al. [75] employed femtosecond pump-and-probe spectroscopy to study 

oscillations and damping in tin nanoparticles deposited with the same technique as for 

our samples. The observed oscillation frequencies are in agreement with our results, 

and also the damping was found to increase with particle size (see also [73]); the 

oscillations in the smallest particles (4 nm) were found to be overdamped. 

In the room temperature measurement of sample Sn3 a structured double peaked 

feature is present at the peak maximum. This could be due to the bimodal distribution 

of particles, which seems unlikely. A similar double feature was observed in reported 

measurements [55-57] and assigned to scattering from higher frequency modes. In our 

case other modes can be excluded because their frequencies would be too high (unless 

the 1=2, n=0, £2,0 = 0.85 torsional mode is allowed maybe due to deviations from the 

spherical shape). One could think that in a non-perfect sphere the degeneracy of the 1=2 

spheroidal mode is removed, as explained by Mariotto et al. [76]. 

For the analysis of the measurements at different temperatures, we refer to the big 

particles (fig. 6.18), where the low-frequency peak is most intense. As the temperature 

increases, the strong central peak starts to increase. It is still possible to detect the 

vibrational peak superimposed onto the central peak as a shoulder. At 473 K the 

shoulder disappears, in agreement with the previously measured melting temperature of 

the nanoparticles. Fitting of the spectra, to a superposition of a lorentzian central peak 

and of Eq. (6.16), showed a gradual softening and broadening of the vibrational mode 

together with an increase of the elastically scattered intensity. After the melting 

temperature no vibrational mode could be detected. 

The temperature dependence of the spectral density can be understood in the 

following way. In the case of the biggest particles melting should start at the surface. 

Just beyond surface melting temperature, the thin, viscous, liquid layer, coupled to the 

still solid vibrating sphere, damps the normal modes of the sphere (C, increases) and 

shifts the peak maximum at lower frequencies. 
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As the melting process extends to the bulk, slower fluctuations in the phase 

composition (melting nuclei) manifest themselves both as a further softening of the 

coupled acoustic mode and as a strong central peak [30]. As the modes of the smaller 

particles are already overdamped in the solid state, in this case melting gives rise only 

to the central peak increase. 

6 . 6 Conclusions 
In this chapter it was demonstrated how a combined use of high-resolution 

synchrotron x-ray diffraction and Brillouin scattering was successfully employed to 

study different aspects of the melting phase transition in metal (Sn) nanoparticles of 

different sizes, embedded in an amorphous matrix thin film. Interesting and novel 

features in the light scattering mechanism were observed and investigated. 

By performing surface Brillouin scattering measurements as a function of 

temperature, we detected an anomaly in the velocity of the Rayleigh wave travelling in 

the film, i.e. a softening of this velocity at high temperatures. The temperature at which 

the anomaly occurs was shown to be dependent on the particle size. XRD experiments 

confirmed that this temperature corresponds to the nanoparticle melting point and its 

trend as a function of the particle size is in agreement with theoretical predictions, 

although the transition is quite wide, due to the significant spread in the particle size 

distribution. A synchrotron-based furnace was used, and a careful calibration of the 

furnace temperature had to be performed. The anomaly in the wave velocity was 

explained by an effective medium model. XRD also provided information about the tin 

lattice structure ((3-Sn), the low level of stress in the particles, their random orientation 

with respect to the substrate and their average size. Raman scattering showed 

confinement effects in the detection of the optical phonons, and low-frequency Raman 

scattering was used to detect acoustic modes confined in the particles and their 

behaviour across melting. A broad central peak, whose intensity increases with 

temperature, was detected in the inelastic light scattering measurements. A possible 

explanation lies in the coupling of the particle acoustic modes with some relaxing 

degree of freedom, through a damping process probably involving the matrix-particle 

interaction. 

The combination of elastic x-ray and inelastic light scattering from thin films 

enables key structural parameters to be obtained and used in the modelling of the 
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Brillouin spectra, thus demonstrating the ability of the effective medium approach to 

interpret subtle effects in Brillouin spectroscopy. 
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Chapter 7 

Conclusions 

7.1 Summary 
This chapter will review the experimental results presented in the thesis and 

summarise the main conclusions that have been drawn. 

The aim of this thesis work was the study of different nanostructured thin films, 

and carbon films in particular, with inelastic light scattering (Raman and Brillouin 

spectroscopy) and x-ray scattering techniques (mainly x-ray diffraction and x-ray 

reflectivity). 

The main research undertaken was the characterisation of cluster-assembled 

carbon films grown with a supersonic cluster beam apparatus (PMCS, Pulsed 

Microplasma Cluster Source); it has been introduced and discussed in chapter 5. These 

films look promising for applications in the field of catalysis, supercapacitors, 

hydrogen storage and field emission (e.g. for flat panel displays). Moreover they are 

interesting for the study of the relationship between the properties of the clusters and 

those of the deposited nanostructured material ("memory effect"). Raman spectroscopy 

showed that the local bonding in the films is reminiscent of the size distribution of the 

precursor clusters. Deposition of larger clusters resulted in more graphitic carbon films, 

while deposition of smaller clusters led to carbon films of a more amorphous nature. It 

was demonstrated that it is possible to select the cluster size in order to deposit films 

with different, tailored properties. Moreover Raman spectroscopy gave a contribution 

to understanding the arc-discharge mechanism and the source functioning, and showed 

the growth of nanotubes and onion-like forms of carbon inside the source. Brillouin 

scattering demonstrated the difference at a mesoscopic scale between the films grown 

with a non-focused beam and the compact, smoother films grown using a focused 

beam. In the case of non-focused beam, the huge surface roughness was shown to 

increase as a function of thickness. An estimate of the elastic constants was obtained, 

revealing a value of the shear modulus similar to that of graphite. The value of the bulk 

modulus is very low, which is typical of a soft material with voids. Films grown with 
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smaller precursor clusters had lower values for the elastic constants. Additional 

information was provided by XRR (density of the films), WAXS (absence of relevant 

crystalline domains in the material) and SAXS (possible fractal-like character of the 

surface). 

As an extension of the programme on cluster-assembled carbon films, a 

collaboration was started with the University of Cambridge for the study of density, 

layering and surface roughness of a wide range of amorphous carbon films, using X-ray 

reflectivity. These films were assembled "atom by atom" with traditional deposition 

techniques. The results of this collaboration were presented in Chapter 4. XRR was 

shown to be the best technique for obtaining the density of pure, hydrogen-containing 

and nitrogen-containing amorphous and tetrahedral amorphous carbon films. XRR 

from carbon films presents some peculiarities when compared to the standard 

application of this technique. The critical angle is very similar to (and sometimes 

smaller than) that of the Si substrate, the films often possess an irregular, unwanted 

(and thus unforeseen) internal layering, with a density which is varying along the 

direction normal to the surface, and the elemental composition of the films is often 

unknown. These aspects were studied in order to give to XRR from carbon films the 

character of a standard technique. By comparing XRR results with EELS results, a 

unique value for the effective mass was deduced and a general relationship between sp3 

content and density was found (and proved to be depending on the hydrogen content). 

Lack in uniformity was detected in filtered cathodic vacuum arc ta-C films and 

assigned to plasma instabilities in the deposition apparatus. Use of x-ray reflectivity is 

non-destructive and timesaving with respect to cross-sectional EELS or TEM, 

sometimes employed in the past. The evolution of roughness with thickness was 

studied, as well as the effect of etching on thin films. XRR provided a characterisation 

essential for the analysis and interpretation of Brillouin scattering measurements from 

ta-C films performed at Politecnico di Milano, being capable of obtaining information 

from very thin films (about 3 nm). Finally, it was proved how a combination of XRR 

and H effusion can be used to determine with good accuracy the hydrogen content in 

carbon films. 

The last chapter was devoted to the discussion of the combined use of x-ray 

diffraction and inelastic light scattering for the study of the size-dependent melting 

temperature in tin nanoparticles, embedded in silica thin films. A small redshift in the 

position of a surface Rayleigh peak detected by Brillouin spectroscopy in the 
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temperature-dependent measurements was shown by XRD to be directly related to the 

melting of the nanoparticles. The redshift was explained by an effective medium model 

accounting for the softening of the f i lm shear modulus upon melting. The melting 

temperature is a well-defined function of size, as theoretically predicted and confirmed 

also by these experiments. XRD clarified the crystalline nature of the inclusions and 

their random orientation, and provided also information on the low level of stress in the 

embedded particles. Finally, low-frequency Raman scattering was used to study the 

behaviour of the acoustic modes of a single particle as a function of temperature, 

showing the coupling between these modes and some relaxation of the degrees of 

freedom, through a damping process. 

In summary, it has been demonstrated that a combination of x-ray and inelastic 

light scattering can provide a great deal of insight in the structural characterisation of 

nanostructured thin films, and that the combination of these scattering techniques with 

other techniques is a powerful tool for the investigation of these peculiar materials. X-

ray and inelastic light scattering have the advantage of being fast and non-destructive 

techniques. The wavelength range attainable (by changing the excitation from visible to 

ultra-violet or infra-red in Raman spectroscopy or by changing the x-ray energy in x-

ray scattering experiments) accounts for their flexibility, i.e. these investigation 

techniques can be used to study phenomena occurring over a wide range of length 

scales (atomic ordering with XRD, atomic vibrational dynamics with Raman scattering, 

particle acoustic vibrations with low-frequency Raman scattering, mesoscopic elastic 

properties with Brillouin scattering, mesoscopic structure of thin films with XRR, self-

affine or fractal structure and dynamics with SAXS and Brillouin scattering). 

7.2 Further work 
In the framework of the cluster-assembled carbon films project, the future 

directions of research point towards a better characterisation of the source control, in 

order to achieve a sharp selection of the cluster size and energy distribution. Moreover, 

possible applications of these films will be tested within the context of an international 

research collaboration between universities and private companies financed by the 

European Community. The field emission properties of these materials rely upon the 

capability of growing very thin films. Also, the investigation of the first stages of 

growth of cluster-assembled films is a challenging task, and can provide useful 
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information on the cluster mobility and aggregation, and the growth mechanisms of the 

very first layers. For all these reasons, the portable cluster source (CLARA) has been 

designed and realised, and will be coupled with several diagnostic techniques in the 

next months. Among these techniques, in-situ Raman scattering will be very useful for 

the comprehension of the first stages of the deposition phenomena. Brillouin scattering 

measurements are currently being carried out to study in more detail the effect of the 

multiscale disorder on the vibrational spectrum (i.e. the central peak). 

Although some works concerning X-ray reflectivity from carbon films have been 

published in the past, we believe that the wide spectrum of investigation carried out in 

this thesis work on almost all possible carbon films, pure and heterogeneous, and 

published in major scientific journals, will set this technique as a standard and fast tool 

for the characterisation of several properties of these films. Currently, measurements on 

SiC films are being performed, and we think that a detailed investigation of the effects 

of the deposition conditions on the surface roughness is what is most needed at the 

moment. 

The study of embedded nanoparticles is also very interesting. In particular, the 

study of the particle acoustic vibrations by low-frequency Raman scattering and their 

coupling with the central peak through some relaxation process is a challenging 

problem. Similar investigations are being currently carried out to study these 

phenomena in semiconductor nanoparticles/amorphous matrix systems. 

In summary, the work carried out had a heterogeneous character, both in the 

systems investigated and in the experimental techniques adopted. The unifying 

elements were the use of scattering from electromagnetic radiation and the study of 

films presenting some sort of nanostructure. The use of these techniques to characterise 

nanostructures is very recent and still not standardised, since interesting and peculiar 

features must be taken into account when passing from bulk materials to systems 

presenting some degree of confinement over a nanometre scale. The combination of 

inelastic light scattering and x-ray reflectivity applied to nanostructured thin films has 

proved to be capable of providing a great deal of information, especially when 

completed by other experimental investigations. Beside the materials characterisation 

aspect, we must also consider that interesting phenomena, related to confinement and 

disorder effects, and still lacking detailed investigation, manifest themselves in 

nanosystems similar to those here discussed. 
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