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Abstract 

We examine the use of branes as probes of supergravity geometries which arise 

in the study of gauge theory/gravity dualities. We investigate the moduli spaces of 

supersymmetric gauge theories through moduli spaces of brane probes in the dual 

gravity theories. Preferred coordinate systems emerge in which the supergravity 

geometries can readily be compared to the gauge theory and various gauge theory 

quantities such as anomalous scaling dimensions can be read off. 

We also consider the physics of certain expanded brane configurations, called gi­

ant gravitons. We identify supergravity solutions which represent coherent states of 

these objects. We find a degeneracy between giant graviton probes and massless par­

ticles in a broad class of supergravity backgrounds and uncover a close relationship 

with charged particle states in lower dimensions. 
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Chapter 1 

Introduction 

The underlying theme of this thesis is to investigate various aspects of the role of 

brane physics in string theory. A complete understanding of the framework for 

incorporating a quantum theory of branes into string theory is still lacking and 

provides a serious challenge for the future. However, much has been learnt about 

the important role which branes have to play in understanding many diverse areas 

of quantum gravity and in this thesis we shall take the point of view of asking 'What 

can branes teach us about string theory?' 

A particular area of current interest in string theory in which branes are proving 

to play a crucial role is the field of gauge theory/gravity dualities. The original 

motivation for these remarkable dualities between non-gravitational field theories 

and higher dimensional theories of quantum gravity came from considering a duality 

in the description of branes in string theory. Much about these gauge theory/gravity 

dualities remains mysterious and in the following chapters we investigate ways in 

which brane physics can help us to probe the correspondence. 

In this introductory chapter, we review some basic facts about branes and gauge 

theory/gravity correspondences. In chapter 2 we focus on a particular gauge theory 

and its dual description in supergravity and study the physics of a brane probe in 

this background. This allows us to learn certain facts about the moduli space of 

vacua of the supersymmetric gauge theory. 

In chapter 3 we investigate further the link between the dynamics of brane probes 

in gravitational duals of gauge theories and the low energy physics on the moduli 



1.1. Branes 2 

space of the gauge theories. We find that there are certain natural choices for 

coordinate systems which arise in this context and allow for easy comparison between 

the two sides. In particular, we are able to rederive certain non-perturbative results 

about the anomalous dimensions of gauge theory operators from the gravity dual. 

In chapters 4 and 5 we study the so-called giant gravitons which are certain com­

pact brane states which exist in string theory backgrounds arising in the study of 

gauge theory/gravity dualities. In chapter 4 we investigate the gravitational descrip­

tion of these states and identify certain geometries which represent coherent states 

of giant gravitons. In chapter 5 we consider the physics of giant graviton probes in 

a class of backgrounds which arise as lifts of a five-dimensional gauged supergravity 

theory and show that in these backgrounds, the ground state description of giant 

gravitons is degenerate with that of massless particles. 

1.1 Branes 

We discuss the complementary descriptions of branes as classical solutions of super-

gravity and as D-branes in perturbative string theory. Some of the statements we 

make will be true for more general string theories but when we need to be specific 

we shall mostly refer to the type IIB string theory in ten dimensions. A review of 

the necessary string theory background is contained in [5], whilst D-branes are well 

covered in [6-8]. 

1.1.1 Supergravity p-branes 

The low energy limit of closed string theory is described by supergravity. The 

simplest way to understand this is to start from string perturbation theory on flat 

space. The massless modes of the string form a supergravity multiplet. There 

should be an effective Lagrangian for these modes to describe string theory at low 

energies. Since a' is the only dimensionful parameter in string theory, this effective 

Lagrangian will be an expansion in powers of a'. The leading order term is found to 

be a supergravity action. This was discovered in [9] by considering the conditions 

for conformal invariance of the worldsheet action for strings in curved backgrounds. 

September 17, 2002 



1.1. Branes 3 

This result can be easily understood since the supergravity action is the unique 

lowest order action with the relevant spectrum and supersymmetries. 

For this reason, supergravity provides a powerful tool for studying low energy 

string theory. In particular it can be used to learn information about regimes of 

strong coupling where string perturbation theory is not valid. This has been crucial 

in the development of many non-perturbative string dualities.1. 

Branes provide a particularly interesting class of supergravity solutions. As an 

example we shall review the 3-brane solution of type IIB supergravity. The idea 

behind the brane solutions is to find objects which are charged under the various 

(p + 2)-form field strengths which appear in the spectrum of supergravity theories. 

For example, type IIB supergravity contains (p + 2)-form field strengths F^p+2^ for 

p + 2 = 1,3 and 5. 2 Such a field strength can be expressed locally in terms of a 

potential F^p+2^ = dC^p+l\ We can integrate a (p-r-l)-form over a (p+l)-dimensional 

surface and thus we expect to find (p + l)-dimensional brane solutions which are 

charged under these potentials. 

The simplest such supergravity solution corresponding to a stack of N flat, co­

incident p-branes has p + 1 dimensional Poincare invariance along the brane and 

SO(9 — p) rotational symmetry in the transverse space. It also preserves half the 

maximal number of supersymmetries - a fact which is very useful in practice in 

finding the solutions. We present the brane solution and subsequent brane action 

in Einstein frame. For N 3-branes the solution takes the form [11]: 

3 6 

ds2 = H{y)-ll2Y,^dx»dxv + H{y)ll2Y,<lyidyi 

H,v=Q t = l 

= g3 = constant 

C ( 0 ) = constant 

F( 5 ) = G< 5 )+*G ( 5 ) , (1.1) 

1 For a review with references see [10] 

2The 5-form field strength is self-dual. The other p-forms have magnetic duals which are also 

relevant to our discussion. 

September 17, 2002 



1.1. Branes 4 

where 

L4 

G{5) = d{H~l) A dx° A dxl A dx2 A dx3 , y 2 = yY and # = 1 4- — . 

As we have mentioned, the supergravity action is only the leading order term in 

the a' expansion of the string theory low energy effective action. Thus a supergravity 

solution is to be trusted only in regions where the typical length scales of the solution 

are much larger than the string length ls ~ \/o7. The 3-brane solution has uniformly 

small curvature so long as the length scale L is much larger than the string length. L 

is given in terms of the number of branes N and the string coupling by the relation: 

L4 = 4TrNgsa'2. (1.2) 

Since the brane solutions contain sources for (p + l)-form fields, they are not 

solutions of the pure supergravity theory. A diffeomorphism invariant action which 

provides such a source is given by: 

S = TP ! C ( p + 1 ) , (1.3) 

where Tp is the charge of the brane. In fact the brane also has a mass and so 

the source action should contain couplings to the metric also. An action which 

provides a suitable source can be found which couples supersymmetrically to the 

supergravity [12]. The bosonic part of this action is given by a sum of Dirac-Born-

Infeld and Wess-Zumino-Witten terms and for the 3-brane it takes the form [13]: 

•5* = SDBI + Swzw, (1-4) 

where 

SDBI = ~T3 f d4a v / - d e t [ P ( C ) a b + e-^/ 2 J a 6 ] (1.5) 
J MA 

and 

Swzw = T 3 J (V(CW) + 7>(C ( 2 )) A T + ^ ( C ( 0 ) ) T A T j . (1.6) 

In these expressions, Ta\, = V(B)ab+2na'Fab, where F a j , is a U(l) gauge field strength 

on the brane. T 3 is the tension of a D3-brane and V denotes the pullback of a ten-

dimensional field to the brane worldvolume, M4, with coordinates <t°, . . . ,cr3. So, 

September 17, 2002 
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for example: 

w* = a~i&w- (L7) 

The appearance of a U(l) gauge field in this action can be understood from various 

points of view. In particular, the spacetime gauge invariance of B gets incorporated 

into the brane action by combining B with the gauge field to form the gauge invariant 

quantity T. The simplest understanding of the appearance of a worldvolume gauge 

field will come in the next section when we discuss the description of branes in 

perturbative string theory. 

1.1.2 D-Branes in String Theory 

We have discussed the existence of various supergravity solutions corresponding to 

p-branes carrying charges under (p+l)-form potentials. The mass of these objects is 

proportional to g~l and in the limit relevant to perturbative string theory gs —> 0 the 

solutions reduce to flat space everywhere except at the brane where the curvature 

diverges. Clearly, supergravity does not give an accurate description of the physics 

here and another picture is needed. 

Dp-branes are (p + l)-dimensional surfaces where open strings may end. This 

means that instead of considering a theory of only closed strings we admit also open 

strings which have endpoints on a given hypersurface. Open string loop diagrams can 

be reinterpreted as the emission or absorption of closed strings and so D-branes must 

be a source of the closed string fields. A classic calculation due to Polchinski [14] 

shows that Dp-branes are charged under the (p + l)-form potential with a charge 

equal to their mass. 

Once we introduce open strings the spectrum of the low energy theory is modified. 

In addition to the massless closed string states which form the normal supergravity 

multiplet there is a gauge multiplet of massless open string states with end points 

on the D-brane. In particular, for a single D3-brane of type IIB string theory, the 

massless open string states form a U(l) M = 4 vector multiplet. 

We may also consider D-branes in curved backgrounds. Conformal invariance 

of the open string worldsheet once again provides constraints and the D-brane has 

to solve equations of motion coming from a DBI action [15]. Combining this with 
September 17, 2002 
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Polchinski's result for the coupling to the RR fields and arguments involving e.g. 

T-duality [6,7,16] it is possible to reproduce, through string theory arguments, the 

full form of the brane action given above. Historically, the string theory derivation 

of the brane action preceded the supergravity result although we have chosen to 

present things in this manner to emphasise the fact that this action may be used 

even in situations in which perturbative string theory is not understood. 

1.1.3 M-branes and 11 dimensional supergravity 

This approach of using low energy supersymmetric actions to constrain the form of 

the dynamics in regions in which perturbative string theory is not valid, becomes 

even more useful when we move up to eleven dimensions. It has been conjectured [17] 

that the strong coupling limit of type HA string theory is described by an eleven 

dimensional theory known as M-theory. The low energy dynamics of this theory are 

described by eleven dimensional supergravity. The relation to the type IIA theory 

is that eleven dimensional supergravity compactified on a circle of small radius is 

described at low energies by type IIA supergravity. The type IIA string coupling 

constant is proportional to the radius of the circle. 

Eleven dimensional supergravity contains a four form field strength which couples 

electrically to an M2-brane and magnetically to an M5-brane. These objects can 

be described as supergravity solutions [18,19] and can also be described through 

superbrane actions [20,21] which couple to eleven dimensional supergravity. They 

have certain properties which are similar to the D3-branes of type IIB string theory 

although they lack the simple perturbative description which we have for D-branes 

which makes them harder to work with. We will have more to say about these 

M-theory branes during the course of the thesis. 

1.2 Brane probes 

Since D-branes are dynamical objects we may consider the dynamics of D-brane 

probes in supergravity backgrounds. The idea of such a probe experiment is to 

neglect the backreaction of the probe brane on the geometry and just study the 

September 17, 2002 



1.2. Brane probes 7 

brane dynamics in a fixed background. This may be seen as a first approximation 

to studying the full dynamics of the supergravity coupled to brane worldvolume 

actions. In fact, in many cases we will study situations in which a brane is probing 

a background sourced by branes of the same type in which case it may be possible to 

fully solve the coupled brane/supergravity equations by placing the probe branes at 

the source of the geometry. In other situations, there may be some supersymmetry 

preserved by the supergravity/probe configuration and we might be able to argue 

that our first order analysis should be a good approximation to an exact solution. 

Such probe 'experiments' will be a running theme of this thesis. We start with a 

simple illustrative example of the technique. Consider a D3-brane probing the type 

IIB supergravity background sourced by a stack of N flat, parallel D3-branes in flat 

space. This background is given in equation (1.1). We shall choose our probe to lie 

parallel to the stack of branes and moving slowly in the transverse directions. Also 

for simplicity we will set the U(l) gauge field on the brane worldvolume to zero. 

We can fix a convenient choice of worldvolume coordinates for the brane as 

follows. We set a0 = x° = t, a{ = x\ i = 1,2,3 and ym = ym{t), where the a'1 

are worldvolume coordinates and the x,i,ym are the spacetime coordinates of eqn. 

(1.1). In this gauge (commonly called static or physical gauge) it is easy to write 

down the resulting probe action: 

S = -T3J d4x V-detCP(G))+T 3 J 7>(C<4>), (1.8) 

where, 

V{G) = 

Ic 
^ 0 0 

+ Gmnymyn 0 0 o \ 
0 G n 0 0 

0 0 Gii 0 

V 0 0 0 ^ 3 3 y 

(1.9) 

and 

V(C^) = (cg>, + ymC%\23) d*x. (1.10) 

Substituting the values for the metric and R - R four-form given in equation (1.1) we 

find: 

S=-T9J d4x ^ r ^ l - i f - H'1 j . (1.11) 
September 17, 2002 



1.3. D-branes and gauge theory 8 

For a slowly moving probe we can expand out the square root keeping terms with 

at most two time derivatives. The final result for the effective action of the brane 

is: 

We can see that the potential terms in this action have vanished and furthermore 

all dependence on the harmonic function H has dropped out of the kinetic terms. 

Thus the brane responds to the background of the other branes precisely as it would 

to flat space, in this low energy limit. Further interpretation of this result will be 

provided after the next section in which we discuss the gauge theory which lives on 

a D-brane worldvolume. 

If we had not set the gauge field on the brane to zero in the calculation of the previous 

section, but rather maintained terms in the action with at most two derivatives 

acting on A also, we would have found a low energy Lagrangian corresponding to 

a U(l) gauge theory. The scalars corresponding to the transverse positions of the 

brane 4>m ~ ym/a' and the fermions, which we have suppressed, combine with the 

gauge field A to make up a vector multiplet of M = 4 supersymmetry in four-

dimensions. The low energy Lagrangian which we would have found if we had kept 

track of all the terms is that of the Af = 4 supersymmetric U(l) Yang-Mills theory 

in four-dimensions. 

If we had a system comprising N parallel branes, we might expect to find a 

U(1)N field theory. In fact a surprising enhancement of the gauge symmetry takes 

place. If we place the N branes close together it is possible for light open strings to 

start on one brane and end on another. When these extra light states are properly 

accounted for the massless states form a U(N) adjoint vector multiplet. The low 

energy theory on N coincident D3-branes is given by the N = 4 supersymmetric 

U(N) gauge theory in four dimensions [22]. 

Myers wrote down various terms in a non-abelian generalisation of the brane 

action [23]. As it should, this reproduces the U(N) SYM action at low energies in 

m 

(1.12) 

1.3 D-branes and gauge theory 

September 17, 2002 



1.4. The A d S / C F T Correspondence 9 

flat space. An interesting point about this action is that it includes terms which 

describe the coupling of branes to higher dimensional R-R forms via matrix com­

mutator couplings. This suggests that collections of lower dimensional branes can 

behave like a single higher dimensional brane in backgrounds with non-trivial R-R 

flux. The description of the lower dimensional brane worldvolumes is in terms of 

non-commutative geometry in which the positions of the branes at minima of the 

potential energy are given by genuinely matrix valued coordinates. 

Giant gravitons are an analogous phenomenon in which Kaluza-Klein modes 

expand into spherical branes. This occurs, for example, in backgrounds of the form 

AdS x S with RR flux through the sphere. This wi l l be described in chapter 4 and 

wil l be followed by investigations into the supergravity description of these objects 

and their appearance in more general backgrounds. 

1.4 The A d S / C F T Correspondence 

In this section we review some arguments of Maldacena [24] which point to a duality 

between type I IB string theory on AdS$ x S5 and M = 4 super Yang-Mills theory. 

We start by examining more closely the physics of a stack of N coincident D3-branes 

of type I IB string theory. As we have explained, the perturbative dynamics of such 

a system in flat space is described by open strings ending on the branes and closed 

strings propagating in the bulk. At energies below the string scale, we expect to be 

able to describe the physics in terms of an effective action for the massless modes : 

S e f f = Sbulk + Sbrane, (1-13) 

where Sbrane contains the dynamics of the massless modes on the brane and inter­

actions between the brane and the bulk. As we have discussed, certain terms of the 

brane action are captured by a (non-abelian) DBI + WZW action. The bulk action, 

meanwhile, contains a supergravity action plus higher derivative corrections. 

We can study the low energy limit of this physics in two complementary ways. 

The first way is to linearise the action about flat space and flat branes and then 

take a low energy limit. After taking this low energy limit the flat space/ flat brane 

ansatz is a solution to the equations of motion and we can consistently study the 
September 17, 2002 
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low energy physics in this background. The second way is to find a solution of the 

coupled equations, which corresponds to a set of flat branes sitting in their own 

background fields, and then take a low energy limit. We will see that these two 

approaches lead to very different pictures of the same physics. 

Let us first consider the expansion of the effective action about flat space. The 

leading order terms in the bulk supergravity action are found by applying a linearised 

ansatz for the supergravity fields about flat space. The resulting action describes a 

free theory of the supergravity modes. Interaction terms in the supergravity action 

and higher curvature terms in the ful l bulk action are suppressed in the low energy 

limit. 

The leading order terms in the brane action are found by substituting the lin­

earised ansatz for the supergravity fields into the non-abelian DBI-WZW action and 

then linearising this around an ansatz for flat coincident branes. For our purposes 

it wil l not be important that we do not know the fu l l non-abelian action, since we 

shall only keep the known leading order terms. The terms which survive the low 

energy limit are those in the action of M = 4 U(N) SYM theory. A l l interaction 

terms between the brane and the bulk are suppressed in this limit. The fact that 

these interaction terms vanish is crucial in ensuring the consistency of our ansatz. 

Thus, the low energy physics of a set of N coincident branes in flat space is 

described by a system consisting of two decoupled sectors: free supergravity in 

ten-dimensions and N = AU (N) super Yang-Mills in four dimensions. In fact, at 

low energies the U(N) theory is essentially a product of an SU(N) theory with a 

decoupled U(l) sector which represents the centre of mass dynamics of the branes. 

We now consider the problem from a different viewpoint. We know a solution 

to the coupled equations arising from the action (1.13). This was discussed in the 

previous sections and involves N flat coincident branes in the supergravity 3-brane 

background. We wish to investigate the low energy physics of this system. The 

brane solution contains a horizon at r = 0 behind which the branes are positioned. 

We should, however, be able to describe the whole physics in terms of the region 

outside the horizon. Thus we are studying the low energy physics of string theory 

in the brane solution. 

September 17, 2002 



1.4. The A d S / C F T Correspondence 11 

At first sight i t might seem that this physics can be described simply by free 

supergravity describing the long wavelength modes. This certainly describes one 

sector of the low energy theory since the cross section for absorption by the brane of 

supergravity modes goes to zero at low energies [25,26]. However, the presence of a 

horizon means that there are other states in the low energy theory. This is because 

we measure energies at infinity and states near the horizon undergo a significant red-

shift when measured at infinity. The correct way to isolate the degrees of freedom 

which survive the low energy limit was found in [24] and involves taking the near-

horizon l imit of the D3-brane geometry. In this limit we 'zoom-in' on the region near 

y = 0 where the geometry becomes that of AdS$ x S5. More precisely, to take a 

low energy limit, we can send a' to zero whilst keeping the mass y/a' of a stretched 

string fixed in this limit. We can do this by dropping the constant term in the 

definition of H(y) after equation (1.1). In this region, all string theory excitations 

survive the low energy limit and we find another sector of the low energy theory 

corresponding to string theory on AdS$ x S5. 

The Maldacena conjecture proposes a correspondence between the two descrip­

tions of the brane physics which we have discussed. I t is proposed that string theory 

on AdS5 x S5 is dual to N = 4 SYM theory with gauge group SU(N). 

We now discuss the range of validity of the two sides of the correspondence. The 

field theory has a good perturbative description in the limit of small't Hooft coupling 

A = 9YMN [27]. The factor of N in this coupling occurs because of combinatorial 

factors in loop diagrams in which traces are taken over the gauge group indices. 

On the other hand, the supergravity description is valid when the string coupling 

gs <C 1, in order to suppress loop diagrams, and when the radius of curvature of the 

geometry L is much larger than the string length L4/l* ~ gsN ~ A ^> 1. We see 

that the two weakly coupled descriptions are valid in complementary regimes. 

In its weakest form, the conjectured duality is expected to hold in the limit of 

large't Hooft coupling, A. The strongest form of the duality postulates that the 

gauge theory is dual to the ful l string theory for all values of gs ~ g\M and N. 

Finally we comment that there are versions of the AdS/CFT correspondence 

which hold for the theories on iV coincident M2- or M5-branes [24]. The near 

September 17, 2002 



1.5. Aspects of A d S / C F T 12 

horizon geometry of a stack of N M2-branes is AdSt x 5 7 and M-theory on this 

space is expected to be dual to the low energy limit of the theory living on the stack 

of branes. This is an Af = 8 supersymmetric theory which is the IR fixed point 

of the reduction to three dimensions of the A/" = 4 SU (N) gauge theory in four 

dimensions. 

For M5-branes, the near horizon geometry is AdS7 x 5 4 whilst the low energy 

theory on the worldvolume is a six dimensional M = (2,0) superconformal field 

theory. Some details of this theory are given in [28]. 

1.5 Aspects of A d S / C F T 

In this section we discuss various checks on the AdS/CFT correspondence and briefly 

outline the procedure for matching gauge theory quantities with results in string 

theory. 

A basic requirement is that the global symmetries of the two theories should 

match. The M = 4 gauge theory is in fact conformally invariant and so its global 

symmetry group contains the corresponding superconformal group SU(2,2|4). This 

contains the conformal group SO(2,4) and an SU(4) ~ 50(6) R-symmetry group 

as bosonic subgroups. There is also a doubling in the number of supersymmetries 

because of the failure of the ordinary supersymmetries to commute with generators 

of the conformal group. 

The AdSs x 5 5 solution has the same 5£/(2,2|4) superisometry group. In par­

ticular, the 50(6) subgroup corresponds to the isometry group of the 5 5 and the 

50(2,4) is the group of isometries of AdS$. The solution is maximally supersym­

metric and thus has 32 preserved supercharges in accord with the field theory. We 

wil l see other examples of gauge theory/ gravity dualities in later chapters and a 

first check wil l always be to match symmetries. 

A more detailed test of the correspondence involves matching the spectra of the 

two theories. In order to do this we need to be more specific about the way in which 

quantities from gauge theory match with objects in string theory. 

A first step [29,30] is to identify the boundary of the AdS5 space with the 3+1 
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dimensional space on which the field theory is defined. This is a reasonable thing to 

do since the boundary of AdS$ (in Poincare coordinates) is conformally equivalent to 

four dimensional Minkowski space. Also, the 50(2,4) isometry group of the AdS$ 

space acts as the conformal group on the boundary. 

Next we need some method for comparing correlation functions of gauge invariant 

operators, which are the objects of interest in the field theory, to quantities defined 

in string theory. The relevant object to compute in the string theory turns out 

to be the string partition function (or, in the limit of classical supergravity, the 

exponential of the supergravity action on a solution of the equations of motion) 

subject to certain asymptotic boundary conditions for the fields. 

We can treat supergravity on AdS$ x S5 as a five dimensional theory by expanding 

fields in terms of spherical harmonics. This will lead to an infinite number of coupled 

fields on AdS5. Near the boundary of AdS5 these fields will interact weakly with 

each other and we can perform an approximate analysis by considering fields which 

only couple to the background metric. Consider for example a scalar field of mass 

m, minimally coupled to the AdS& metric. The action for such a field is: 

S = \ j d5xjg(\d<j>\2 + m2<i>2) (1.14) 

For large y,3 the two linearly independent solutions of the equations of motion 

derived from this action behave as y7, where 7 is a root of the quadratic [29] 

7 ( 7 + 4 ) = r a 2 . (1.15) 

We can thus specify boundary conditions for 0 of the form: 

<t> ~ y^o, (1.16) 

where 4>o is an arbitrary function on the boundary. Under scaling transformations 

y -» ay, the boundary metric scales by a factor of a2 whilst 0 O scales by a1. Thus, 

cf>o is some object of mass dimension —7 in the boundary theory. The idea is to 

interpret a boundary value with dimension given by one root of (1.15) as a source 

3y is the coordinate introduced in eqn. (1.1) 
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for an operator of dimension 4 + 7 whilst the other root corresponds to a vev for 

such an operator [31,32]. 

A natural proposal for matching quantities between the boundary field theory 

and the bulk string theory is then 4 [29,30]: 

<y d * o ( * ) * 0 ( * ) ^ = z s t r i n g ( < M , ( i - i7) 

where the left hand side is the CFT partition function with an external source (/>o(x) 

coupled to a gauge invariant scalar operator and the right hand side is the string 

theory partition function with boundary values for a scalar field controlled, as in 

the discussion above, by 4>o- Similar relations hold for operators of other spins. 

Note that to make a complete specification of the correspondence i t is necessary 

to determine a precise dictionary between operators of the boundary theory and 

fields in the bulk. Also note that this relation is a formal identity for computing 

correlation functions in the M = 4 theory and comparing with string theory in 

the AdS5 x S5 background. However, i t immediately suggests an extension to non-

perturbative regimes where the sources are set to finite values. This leads to a whole 

family of gauge theory/ gravity dualities, some of which will be considered in the 

following chapters. 

Finally, note that in the limit in which classical supergravity is a valid approxi­

mation to the physics, the string partition function becomes: 

£ s t n „ 6 ^ o ) = e ^ W ^ » , (1.18) 

where <f>{x, y) is a solution of the supergravity equations of motion whose asymptotic 

behaviour is controlled by the boundary field <t>a{x). 

With this statement of the conjecture i t is possible to make various more detailed 

checks of the correspondence. First of all i t is possible to show that the relation (1-17) 

produces boundary correlation functions of the general form required for a conformal 

field theory. This beautiful result confirms that i t is reasonable to conjecture a 

duality between a bulk gravity theory on an AdS space and a boundary conformal 

4The following discussion is schematic. A more careful approach involves regulating both quan­

tities by the addition of suitable counterterms - see refs. [29,33]. 
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field theory. Furthermore i t ensures that the forms of two arid three point functions 

agree between the two theories since these are determined up to normalisation by 

conformal symmetry. 

In the limit in which classical supergravity is applicable, the spectrum of the bulk 

theory on AdS$ is known [34,35]. In this limit, the string modes become infinitely 

massive and so they consistently decouple from the supergravity modes. 

In order to compare with the boundary theory we need to know the gauge the­

ory spectrum in the limit of large t ' Hooft coupling, which seems like a tall order. 

However, the states in the supergravity Kaluza-Klein spectrum are all in short rep­

resentations of the superconformal algebra and have masses which are determined 

by their SO(6) representations. Consequently, we can reliably look for such states 

in the field theory at strong coupling. 

This programme has been carried out in some detail [29,36] and a complete 

matching is found between Kaluza-Klein states of supergravity and operators of 

protected dimension in field theory. This provides a highly non-trivial test of the 

Maldacena correspondence. As an example we list one family of protected operators 

which will concern us later on. 

The family of field theory operators which we consider are gauge invariant scalars 

of the form: 

Ok = t r ( X < h X i 2 . . . X i k ) ) - traces, (1.19) 

where the trace in the first term is taken over the gauge indices, to ensure SU(N) 

gauge invariance, whilst the second term subtracts SO(6) traces. I t can be shown 

[29,36] that these operators are superconformal primary operators 5 since they do 

not arise by acting with the supercharges Q on other operators. Furthermore, these 

operators are chiral since they are annihilated by some of the Q's. We conclude that 

the superconformal representations which are built by acting on these operators with 

the Q's are short. 

The scaling dimensions of these operators are related to their SO (6) represen­

tation [38]. In particular, the operator Ok falls into the /c'th symmetric traceless 

5 See the review [37] for more details 
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representation of SO(6) and has scaling dimension k. 

According to the conjectured duality there should therefore be a family of scalar 

fields, in the Kaluza-Klein spectrum of type I IB supergravity on AdS*, x S"5, in the 

/c'th symmetric traceless representation of 50(6) and with mass m2 = k (k - 4). 

This is in agreement with the supergravity analysis [34,35]. 

Having seen how to relate gauge theory operators to bulk K K fields, i t is possible 

to make a further check on the correspondence. This involves the explicit compu­

tation of various n-point functions of gauge invariant operators from a field theory 

and a supergravity perspective. For four-point functions and higher, the functional 

form of n-point functions is no longer fully determined by conformal invariance. 

Furthermore, the relative normalisation of two- and three-point functions can be 

tested. Various comparisons have been made and in some cases, bulk calculations 

have led to new predictions for gauge theory correlators which have subsequently 

proved to be correct. These predictions are generally non-renormalisation theorems 

which were conjectured on the basis that the strong coupling result from gravity 

agrees with a free-field computation in gauge theory. This provides further strong 

evidence in support of the AdS/CFT correspondence. 

1.5.1 Branes in the bulk 

I t is interesting at this point to review the brane probe computation of section 1.2 

in the context of the AdS/CFT correspondence. We found that a D3-brane probing 

the background sourced by a collection of N parallel D3-branes feels no potential 

and has a scalar kinetic term given by a flat metric. Since we expect that in the ful l 

version of the Maldacena correspondence, the theory dual to the boundary gauge 

theory will be the ful l type I IB string theory on AdS$ x S&, i t is interesting to 

consider the role of states corresponding to branes in the bulk. Furthermore, given 

the motivation for the correspondence in terms of the physics of a stack of branes, 

i t is clear that a single brane in the bulk which is parallel to the background branes 

should correspond to a picture in which there is a stack of N coincident branes and 

one other brane at some small distance. On the gauge theory side, this corresponds 

to breaking the low energy gauge group from SU(N + 1) to SU(N) x U(l) by 
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turning on scalar vevs. Wi th this interpretation in mind we see that the vanishing 

of the scalar potential in the D3-brane probe action indicates that there is a six-

dimensional moduli space of vacua which involve moving one brane away from the 

stack. This is mirrored in the gauge theory. Furthermore, the flat metric in front of 

the scalar kinetic term corresponds to a flat metric on moduli space in agreement 

with the requirements of M = 4 supersymmetry in the gauge theory. 

In the next chapter we discuss extensions of the Maldacena conjecture to other 

more complicated gauge theory/gravity dualities and develop techniques involving 

brane probes which allow us to further investigate the correspondence. 
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Chapter 2 

Probing An M = 1 

Renormalisation Group Flow 

In the previous chapter we have introduced the prototype example of a gauge the­

ory/gravity duality, between Af = 4 SU(N) SYM in the conformal phase and type 

I IB string theory on AdS$ x S5. I t is of great interest to extend this correspondence 

to theories with less supersymmetry and without conformal invariance, since such 

theories display a richer set of dynamics and are closer to realistic gauge theories. 

Furthermore, such theories provide powerful checks on the validity of the AdS/CFT 

correspondence and allow us to gain new insights into the duality. In this chapter 

we shall consider deformations of the original correspondence which lead to renor­

malisation group flows away from the Af = 4 theory in the UV to new theories in 

the IR. 

First we review the subject of holographic renormalisation group flows. We 

discuss a particular Af = 1 supersymmetric field theory which may be obtained as a 

relevant deformation of the Af = 4 theory. Next we review a supergravity solution 

which has been conjectured to be the dual of this renormalisation group flow. We 

give details of the calculations of [1,2] in which we consider a brane probe in this 

supergravity background and reproduce various results from the field theory. We 

also make strong coupling predictions about the metric on moduli space. 

18 



2.1. Holographic renormalisation group flows 19 

2.1 Holographic renormalisation group flows 

A simple way to introduce scale dependence into a conformal field theory is to 

perturb by a relevant operator in the UV. The effect of such a perturbation grows 

with decreasing energy scale and induces a renormalisation group flow. The IR 

physics of the theory may then be described by a trivial theory, a free theory or a 

new interacting conformal field theory. (Alternatively the perturbation may leave a 

theory which has no stable vacuum in the IR.) I t is natural to ask whether we can 

model such a renormalisation group flow in the dual string theory description. 

The starting point for our discussion of holographic renormalisation group flows 

is the equation relating Green's functions of the boundary field theory to quantities 

in the dual gravity theory, which we discussed in the previous chapter. We can write 

this relation formally as: 

where the equality is between series expansions about (f>o(x) = 0 and we are working 

in the regime in which classical supergravity is a valid approximation to the bulk 

theory. (Here we have chosen to use a new radial coordinate, r, for AdS space 

which is related to the coordinate, y, of the last chapter by y = er/L). I f we take 

this formula seriously we might expect that the two sides should agree at non-zero 

<j>o(x). I f we expand around <f)o(x) — A we are computing Green's functions in a new 

field theory in which we have deformed the Lagrangian by a term 

Thus we should expect that a new field theory which is related to the original CFT by 

a relevant or marginal perturbation will be described in gravity by a background with 

perturbed boundary asymptotics. In particular i f 0(x) is an operator of conformal 

dimension A in the CFT, then to first order in the perturbation we would expect to 

have to study a geometry with 

(SCFT+fdxO(x)4,0(x)) (<*>(r,z ) iS sugra (2.1) 

f dxO{x)X. (2.2) 

(f>(r,x) ->• e ( A - d ) r / i A , (2.3) 
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as r —> oo. Here, cf is the dimension of the boundary, which was taken to be four in 

the corresponding expressions of the previous chapter. 

In this section we identify a particular relevant deformation of the j V = 4 SYM the­

ory which preserves M = 1 supersymmetry and flows to a conformal field theory in 

the IR. The M = 1 supersymmetry gives us some control over the non-perturbative 

physics of the field theory. The fact that the theory is conformal in the UV and IR 

means that the dual geometry flows between two smooth AdS regions and so the 

supergravity description should be uniformly valid (at large N, A.) 

We start by writing the M = 4 SYM Lagrangian in terms of M = 1 superfields. 

The field content of the M = 4 theory is a single M = 4 gauge multiplet which 

consists of six real scalars, X j , four fermions, A a and a gauge field, A^, all in the 

adjoint representation of SU(N). We can combine the gauge field with one of the 

fermions, A4, into an M = 1 vector superfield. Meanwhile the other three fermions 

can be paired with complex scalars, <f>j = X2j-i + i X 2 j , to form three M = 1 chiral 

superfields, <frj. 

The superpotential for the chiral superfields is: 

where M = 4 supersymmetry requires h = QYM- (We label h by a different letter 

from the gauge coupling gYM since these are independent couplings once we break 

the M = 4 supersymmetry and undergo renormalisation group flow.) 

In this form, the theory has a manifest N = 1 supersymmetry with a C/(l) R-

symmetry and an SU(3) flavour symmetry which rotates the three <&j's. In order to 

introduce some scale dependence we perturb the theory by giving a mass to $3 , 

To see that this is a relevant deformation we note that in the pure Af = 4 

theory, the chiral superfields $ j have dimension 1 and thus the chiral operator $ | 
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W = / i T r ( $ 3 [ $ i , $ 2 ] ) , (2.4) 

1 SW = - m T r ( $ 2 ) (2.5) 
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has dimension 2. This leads to a perturbation of dimension 3 in the Lagrangian after 

performing the integral / d?d. Thus we expect that the perturbation will become 

less important at higher energies where the theory will return to the Af = 4 theory. 

(The reason that we spell this out in detail is that the regime where supergravity 

is valid is the strong coupling regime of large A and so we cannot merely count 

engineering dimensions of operators to see if they are relevant or not. In particular 

an operator like Y^i XiXi, which is not a chiral operator, is relevant at small A, but 

believed to have an anomalous dimension which grows like A 1 / 4 as A —> oo and is 

thus irrelevant at strong coupling [30].) 

In order to discuss the low energy physics of this flow we need to make use 

of various non-renormalisation theorems for M = 1 supersymmetric theories. In 

particular we shall use the results for the exact beta functions for the physical 

couplings in the effective Lagrangian: 

Pg ~ \ T { a d j ) - \ Y , T { R i ) ^ - ^ ) 
i 

Pa ~ 3 - d 0 - ^ ^ 2 n < ^ ' ( 2 - 6 ) 

i 

The first of these equations gives the NSVZ exact beta function [39] for the gauge 

coupling in a supersymmetric gauge theory and the second equation gives the exact 

beta function for the coupling a of an operator in the superpotential: 

aO = a f J $ ? \ ( 2 . 7 ) 

The terms 7 i are the anomalous dimensions of the operators $ i coming from the 

kinetic terms in the action, which are not protected by a non-renormalisation theo­

rem. Finally, Ri is the representation of the gauge group under which $ j transforms 

and T denotes the index of the representation. 

For the example at hand we find beta functions for g and the two couplings h 

and m : 

Pg ~ N(7l+72 + 73) 

Ph ~ 7 i + 72 + 73 

(3m ~ I - 2 7 3 . (2.8) 
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The important point to notice here is that the beta function for the gauge cou­

pling {3g is proportional to In order for a theory to be conformally invariant, i t 

is necessary that the beta functions vanish. In this case we would need: 

7i=72 = - ^ , ^ = \ ( 2- 9) 

Note that 71 = 72 = 7 because of an unbroken SU(2) symmetry rotating $! into <3>2-

The linear dependence of the beta functions suggests that there is a one-dimensional 

space of fixed point theories in the IR. In particular this tells us that the IR theory 

should have an exactly marginal operator and is thus an interacting conformal field 

theory. 

We finish this section by making a few further comments about the field theory. 

The theory preserves an SU(2) subgroup of the SU(3) flavour symmetry which was 

manifest in the Af =1 superfield formulation of the pure Af — 4 theory. This SU(2) 

rotates the two remaining massless chiral superfields, $1 and $ 2 - There is also a 

U( l ) R-symmetry under which the fields <&i, <J>2 and $3 have charges A, | and 1 

respectively so that each term in the superpotential has total R-charge 2. 

To determine the moduli space of supersymmetric vacua of the theory we need 

to find solutions to the vacuum equations for the complex adjoint scalars and then 

divide out by the gauge group. The vacuum equations which follow from the super-

potential (2.4), (2.5) are: 

+ m 0 3 = 0 

[<hM = 0. (2.10) 

^3 = 0, [0 i ,0 2 ] = O. (2.11) 

Solving these requires: 

In this case the moduli space is parametrized by the space of complex diagonal 

matrices <f>i and <j>2. Later when we study the physics of a D-brane probe in the dual 

geometry, we expect to find four flat directions in the potential. This corresponds 

to giving a vev to a single eigenvalue of each of the four real scalars X\, X2, X3, X4. 

Furthermore, we expect to find that the metric on moduli space should share the 
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SU(2) x U(l) symmetry of the theory. We can say rather more than this by realising 

the restrictions placed on the low energy Lagrangian for motions on moduli space, 

by A/" = 1 supersymmetry. We will return to this later. 

2.3 The dual geometry 

In this section we discuss the supergravity description of the LS flow introduced 

in the previous section. In general finding exact solutions to the non-linear type 

I IB supergravity equations, with given boundary conditions, is not an easy task. 

Fortunately, the particular perturbation which we are studying only involves bilinear 

operators and such perturbations may be studied in the context of a much simpler 

five dimensional supergravity. 

2.3.1 M = 8 SO(6) gauged supergravity 

The M — 8 SO(6) gauged supergravity theory in five-dimensions [40,41] is believed 

to be a consistent truncation of type I IB supergravity compactified on AdS$ x S5. 

The gauged supergravity represents the dynamics of a finite subset of the Kaluza-

Klein modes which is closed in the following sense. I f we set the remaining Kaluza-

Klein fields to zero and study the dynamics of the fields of the consistent truncation, 

these do not act as sources for the fields we have set to zero. Thus any solution of 

the gauged supergravity theory corresponds to a solution of the full type I IB theory. 

The reasons why one should be able to make such a truncation (in the absence 

of any symmetry arguments) remain obscure. However there is strong evidence that 

the truncation is consistent and in many cases i t is known how to ' l i f t ' solutions of 

the five dimensional theory to solutions of ten dimensional type I IB supergravity 

- i.e. it is known how to relate the fields of the five dimensional solution to ten 

dimensional fields via a highly non-trivial l i f t ansatz. 

Another way to look at this is as follows. Consistent truncation is equivalent to 

a particular kind of ansatz for solutions of type I IB supergravity. The most trivial 

kind of ansatz we can have is a single solution to the ten-dimensional theory. A 

less trivial ansatz wil l specify a family of solutions in terms of certain functions 
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which themselves obey some field'equations. We can start from a single solution 

- AdS5 x 5 5 - and ask if it is possible to embed this in a family of ansatze. The 

AdS5 x 5 5 solution itself has an 50(6) isometry on the compact space and has 32 

supercharges in ten-dimensions. I t turns out that we can gauge these symmetries 

in the five non-compact directions in the following sense. We can construct an 

ansatz which involves fields in the non-compact directions such that local SO (6) 

rotations of the 5 5 may be compensated by SO (6) gauge transformations of the 

fields and likewise for local supersymmetry transformations. The type I IB field 

equations automatically produce equations for the five-dimensional fields with these 

symmetries which are thus determined to be the equations of the AT = 8 gauged 

supergravity. 

2.3.2 The bulk field/ boundary operator dictionary 

The fields of the five-dimensional Af = 8 50(6) gauged supergravity are in one-to-

one correspondence with operators in the energy momentum tensor supermultiplet 

of the Af = 4 SYM theory. Here we shall focus on scalars in the two theories. 

The five-dimensional gauged supergravity has 42 scalar fields. 20 of the scalars 

are in the symmetric traceless component of a product of two 6's of 50(6) . They 

have the correct masses to be dual to field theory scalar bilinears of the form 

0 2 = Tr ( X ^ X j ) ) - traces. (2.12) 

A further 20 supergravity scalars are dual to fermion bilinears 

[Q\ 0 2 ] - Tr (A aA 6) + Tr ([<£', <f,J]<f,K). (2.13) 

and their complex conjugates. The final two scalars represent the complexified gauge 

coupling of the boundary field theory. 

The perturbation which we discussed in the last section involved adding a mass 

term for one of the chiral superfields $ 3 . In terms of component fields this corre­

sponds to adding masses for the fermion A 3 and the scalars X$,Xe. When we take 

into account operator mixing which occurs when we perturb the Af = 4 theory 1 we 

This is discussed in some detail in the review of ref. [37] 
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find that the fields we need to excite are dual to the operators: 

TV(A3A3) + Tr(0 1 [0 2 ,03] )+h.c . (2.14) 

and 
4 6 

^Tv(XiXi)-2j2rR(XiXi) (2.15) 
i= l i=5 

2.3.3 The five dimensional solution 

We have seen how the problem of finding a solution of type I IB supergravity with 

certain boundary conditions may be reduced to that of solving the five-dimensional 

M = 8 50(6) gauged supergravity. However, this remains an extremely complicated 

theory so that further simplifications are necessary. The strategy is to use the known 

symmetries of the field theory to make further simplifying ansatze. 

The most obvious simplification comes from the requirement of Poincare sym­

metry in the boundary theory. This means that the five dimensional solution should 

also have four dimensional Poincare invariance and thus coordinates can be chosen 

such that the metric has the form: 

whilst the scalars depend only on r. The other fields of the theory are taken to 

vanish. 

As we have discussed the field theory has an SU(2) x U(l) invariance all along 

the flow and this should be reflected in the dual geometry. It is possible to find 

such solutions by truncating the gauged supergravity to the space of scalars which 

are singlets of this group. (In fact the route followed in [42] was to construct the 

truncation to singlets of the SU(2) and then find U(l) invariant solutions of this 

theory. Details can be found in that paper.) 

The final symmetry requirement is that the flow should preserve M = 1 super-

symmetry. Analysis of the Killing spinor equations or BPS type conditions can be 

used to show that the scalars obey first order gradient flow equations coming from a 

superpotential. This superpotential is expressed in terms of two supergravity scalars 

as 1.4 
e2A(r) ( _ d t 2 + d x 2 + d x 2 + ^ 2 ) + ^ 2 ^ (2.16) 
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p and x as: 

W = ^ 4 ( c o s h 2 X - 3) - ^ ( c o s h 2 X + 1) , (2.17) 

The final result is that the five dimensional geometry is described by a metric of the 

form (2.16) along with the two scalars p and x- The equations of motion for p, x 

and the scale factor A are : 

dp _ 1 2dW _ 1 /p 6(cosh(2x) - 3) + 2cosh2 x\ 
dr ~ 6LP~dp~6L\ p ) 
dx = ldW = 1 / ( p 6 - 2 ) s i n h ( 2 x A 
dr L dx 2L\ p 2 J 

i t = - ^ W = - ^ ( p 4 ( c o s h 2 X - 3 ) - ^ ( c o s h 2 x + l ) ) • (2.18) 

There are two solutions of these equations with constant scalars, corresponding 

to the UV and IR fixed points of the flow. These fixed point solutions are given by: 

UV: p = l, x = 0, A=7

Z (2.19) 

i 1 2 5 / 3 r 
IR: p = 2«, X = 2 l o S 3 > A = T " Z - ( 2 2 0 ) 

An analytic solution to the flow equations with non-constant scalars is not known. 

However, i t may be checked numerically that there does exist a flow solution between 

the UV and IR fixed points. Furthermore i t is possible to analyse the asymptotic 

solutions in the scaling regions close to the UV and IR fixed points and compare to 

field theory expectations [42]. The UV asymptotics (r —> oo) are: 

X ( r ) aoe-"L + . . . ; a(r) = logp(r) \<%j*-*,L + + • • • ( 2 - 2 1 ) 

Following the discussion of section 2.1 we see that x i s dual to an operator of 

dimension 3 and a is dual to an operator of dimension 2 in the boundary theory. 

The constant a 0 is related to the perturbing mass m in the field theory Lagrangian. 

Meanwhile, a\ is related to a choice of vacuum state in the field theory. In order to 

flow to the conformal fixed point in the IR we need to choose 

o = % + J | log ao =-1.4694.. . (2.22) 
OQ V O 
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where the constant d is invariant under additive shifts in r and this value has been 

determined numerically. Other values of a correspond to unphysical flows or flows 

to the Coulomb branch of the theory. 

Rather more can be said about this five dimensional solution and its relation to 

the boundary field theory. In particular strong evidence was gathered for the duality 

by computing the Weyl anomaly in the field theory and finding that i t agrees with 

that calculated in the bulk. Furthermore, the spectrum of linear perturbations of the 

gauged supergravity around the IR fixed point was calculated and found to match 

with the spectrum of bilinear operators of the IR field theory. 

Our focus will be on some new results on the moduli space physics which uses 

brane probe techniques and thus requires knowledge of the fu l l ten-dimensional 

solution. This is the subject we turn to next. 

2.4 The lift to ten dimensions 

In this section we present the fields of the ten-dimensional l i f t of the flow solution. 

The ten-dimensional solution was found in ref. [43].The authors of that paper were 

able to make a l i f t ansatz suitable for supersymmetric flows which only involve the 

scalars p and x- This ansatz gives a solution to the type I IB supergravity equations 

of motion subject to p, x and A satisfying the flow equations (2.18). 

The Einstein frame metric is of the form [43,44]: 

ds2

0 = A 1 / 2 d s 2

4 + A _ 1 / 2 d s 2 , 

where, 

ds\ = L2 p\dzldt + dz'dz2) + p-^dz'd^) + 
sinh 2 x | 

X 1 

with 

(2.23) 

(2.24) 

A = X cosh2 x 

X = p " 2 cos2 9 + p4 sin 2 6. (2.25) 

The z*'s are complex coordinates on C 3 subject to the restriction ^ |z l | 2 = 1 which 

defines a five-sphere. We have introduced the angle 0 satisfying z1z1+z2z2 — cos2 6, 
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2 3 2 3 = sin 2#. The metric has a U(2) invariance under which (z1^2) transform as 

a doublet and also a U(l) invariance under phase rotations in the zz plane. This 

symmetry is broken to the expected SU(2) x U(l) by the other fields in the solution. 

Expressions for the R-R two-form potential, C(2), and the NS-NS two-form 

potential J5(2) are presented in ref. [43]. I f we were to consider fermionic terms in 

the brane action we would need to consider the coupling to these fields. 2 However, 

if we restrict to bosonic terms in the worldvolume action then, for the probes of 

interest to us, the pullback of these fields vanishes. 

We do need the result for the RR four form potential to which the D3-brane 

couples. In ref. [43], an expression was given for the field strength F(5) = dC^), but 

in fact i t is possible to integrate this up using the flow equations for p and x to give: 

C(4) = — 4w(r, 9) dxo A dx\ A dx2 A dx3 + ..., 
4A 

where w(r, 0) = ^ [ p 6 sin 2 0(cosh(2x) - 3) - cos2 0(1 + cosh(2x))] (2.26) 
ofr 

and the remaining terms in C(4) do not couple to the D3-brane probe which we 

consider. 

2.5 A D3=brane probe 

We now move on to the brane probe calculation. As in the example of chapter 1, 

the idea is to pull a single D3-brane off the stack which provides the supergravity 

background and thus probe a part of the Coulomb branch of the gauge theory where 

the SU(N + 1) gauge group is broken to SU(N) x U(l). The relevant part of the 

D3-brane action in Einstein frame is: 

S=-T3 [ dA£ detl'2[Gab + e~*'2Tab] +T3 [ ( c w + C ( 2 ) AJ- + \ c { Q ) T A A 
J MA J Mi \ * / 

(2.27) 

The meaning of the various terms in this action was described in chapter 1 after 

equation (1.6). 

2 See ref. [45] for a related example 
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The probe of interest to us is aligned along the '{t,xl,x2,x*} directions and 

moving slowly in the transverse directions. Accordingly we partition the spacetime 

coordinates into xl = {t,xl ,x2 ,x*} and ym = {r, zl,z1}. Our choice of static gauge 

is: 

x' = C, ym = ym(t). (2.28) 

Substituting the values for the supergravity fields into the brane action and per­

forming a low energy expansion (i.e. keeping only terms with up to two derivatives), 

we find an effective Lagrangian: 

C = ^ e 2 A A ^ m n y m y " - r 3 s i n 2 ^ / 9 4 ( c o s h ( 2 x ) - l ) 

^3 2A 

2 
A r 2 + p 2 ( l i 1 ! 2 + | i 2 | 2 ) + p " 4 | i 3 | 2 + ™ £ * | £ * * \ 

i 
- T 3 sin 2 0e 4V(cosh(2x) - 1) (2.29) 

The second term in the Lagrangian is a potential energy. In the flow to the 

conformal phase of the IR theory, the values of p 4 and cosh(2x) — 1 are non-zero 

for r < co and so the potential is minimized only at 9 = 0. Setting 0 = 0 leaves a 

4 (real) dimensional space spanned by {r,zl,zl,z2,z2}. This agrees with the field 

theory prediction for the dimension of this part of moduli space. Furthermore, 9 = 0 

is a fixed subspace under the SU(2) symmetry. This agrees with the field theory 

result in which the moduli space is given by = 0 and is also fixed under SU(2). 

In order to further interpret our low energy effective Lagrangian in the context 

of the boundary field theory, we need to fix coordinates in the bulk such that the 

coordinates transverse to the brane can be matched to gauge theory scalars. This 

will be the subject of the next chapter. 

2.6 Discussion 
In this chapter we have reviewed the gravitational description of a particular M = 1 

supersymmetric field theory renormalisation group flow and presented the results of a 

D3-brane probe computation in this background. The gravitational background with 
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a single brane in the bulk is expected to describe the field theory on the Coulomb 

branch where the gauge group SU(N + 1) has been broken to SU(N) x U(l). The 

low energy Lagrangian for this brane probe should encode the low energy physics of 

the U(l) sector of this theory. Thus our probe computation provides predictions at 

large N and large't Hooft coupling for this sector of the low energy physics in the 

field theory. 

One immediate result which we can check is that the probe sees the correct 

number of dimensions for the gauge theory moduli space. As we have described, the 

four flat directions in the probe potential agree with field theory predictions. Also the 

SU(2) x U(1) symmetry of the field theory is inherited by the supergravity geometry 

and thus is present in the brane probe action. Further checks and predictions will 

be made in the next chapter. 

We close with a comment on a remarkable feature of holography which is nicely 

illustrated by this example. Normally in discussions of holography the radial co­

ordinate r is thought of as an energy scale in the boundary theory. This is borne 

out in the flow solution of this chapter since the geometry asymptotes to AdS*, x S5 

for large r and to a warped product geometry of the (schematic) form AdS$ x M 5 

for small r. Here M 5 is the compact manifold with SU(2) x U(l) symmetry which 

emerges at the r —> — oo end of the flow. This geometry reflects the fact that the field 

theory at high energies approaches the M = 4 supersymmetric fixed point whilst 

at low energies i t is described by a new fixed point theory. This relationship can 

be made more precise by studying field theory Green's functions at different energy 

scales via computations in the bulk. These bulk computations are only sensitive to 

the details of the geometry over a range of values of r related to the energy scale of 

the operators in the Green's function. 

However a remarkable feature becomes evident when branes are used to probe 

the bulk. As we have seen a D3-brane in the bulk represents a state of the Coulomb 

branch of the theory. In particular, the position of the brane represents the vevs for 

certain gauge theory scalars. Thus the bulk geometry encodes a picture of the gauge 

theory moduli space as well as the renormalisation group flow of the theory. This is 

brought out particularly clearly in the example of this chapter since the geometry 
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describes a field theory with non-trivial RG flow and non-trivial moduli space. Of 

course the two pictures of the transverse geometry are interrelated since the scale of 

the scalar vevs sets the energy scale at which the U(l) theory on the probe decouples 

from the SU(N) theory. 
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Chapter 3 

The Kahler Structure of 

Supersymmetric Holographic R G 

Flows 

3.1 Introduction 

In order to extract useful predictions from gauge theory/gravity dualities we need to 

have a dictionary for comparing quantities between the two sides of the correspon­

dence. I t is not always obvious how this should work. As an example, supergravity 

has an invariance under local coordinate transformations which may nonetheless 

drastically alter the appearance of a solution. Similarly, field theories have an in­

variance under field redefinitions. In order to compare predictions from the two 

sides of the correspondence i t is useful to fix simple coordinate systems on both 

sides which make the process of matching straightforward. This is the main sub­

ject of the present chapter in which we use the special properties of D-brane probe 

moduli spaces to fix preferred coordinates in supergravity. 

The basic reason why D-branes are useful for fixing coordinates in this way 

is that the world volume theory on the brane is expected to match directly with a 

sector of the gauge theory dynamics. The world volume action for the brane encodes 

couplings between the bulk fields and the fields on the brane (i.e. the transverse 

scalars, gauge fields and fermionic superpartners) which correspond to fields of the 
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boundary theory. 

We pick up where we left off in the previous chapter with the effective Lagrangian 

for a D3-brane probe in the type I IB supergravity background dual to the Leigh-

Strassler flow. The expectation is that this Lagrangian should represent the low 

energy dynamics of the decoupled U(l) sector of the SU(N + 1) field theory broken 

to SU(N) x U(l) by scalar vevs. This field theory has M = 1 supersymmetry as 

well as a U(l) R-symmetry and an SU(2) flavour symmetry. By considering the 

restrictions which such symmetries place on the low energy effective Lagrangian for 

the U(1) theory on the brane we can find strong consistency conditions on our result. 

In particular, the metric on moduli space (part of the kinetic term in eqn. (2.29)) 

should be a Kahler metric. Once suitable coordinates have been fixed, our probe 

Lagrangian can be seen to have this property. 

Having thus used the symmetries of the field theory/ probe Lagrangian to fix 

coordinates on both sides of the correspondence, we can interpret our results directly 

in the field theory. In particular, the probe result predicts the anomalous dimensions 

of the fields on moduli space, agreeing with a non-perturbative result from field 

theory described in the previous chapter. This pleasing result provides some highly 

non-trivial evidence for the duality. 

Another result which we find is an exact formula for the Kahler potential all 

along the flow in terms of the scalars of the five-dimensional supergravity. We find a 

simple differential equation satisfied by the Kahler potential. I t is not immediately 

apparent why the Kahler potential should have such a simple form in terms of the 

five-dimensional supergravity scalars. A direct comparison with the gauge theory 

is difficult because of the lack of reliable strong coupling results for the Kahler 

potential. 

For the remainder of the chapter, we consider various other supersymmetric flows 

in the literature and once again use Af = 1 supersymmetry along with the relevant 

global symmetries to constrain the form of the low energy effective action for a brane 

probe. We compare this to supergravity results for the brane probes and again find 

preferred coordinate systems in which to study the duality. In all cases, the Kahler 

potential obeys the same simple differential equation (or a related one in the case of 
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eleven dimensional flows) which allows us to solve exactly for the Kahler potential 

along the flow. 

3.2 M = 1 supersymmetric Lagrangians in four 

dimensions 

The idea of our approach is to use the strong constraints which M = 1 supersym-

metry and various global symmetries place on the form of the low energy effective 

Lagrangian in order to fix simple coordinates in field theory and supergravity. Su­

persymmetric Lagrangians are most simply expressed in terms of superfields. We 

may represent the matter content of a four dimensional M = 1 theory in terms of 

chiral superfields. The most general terms of a low energy Lagrangian which involve 

at most two derivatives of these fields are: 

C = J d*eK{§\&*) - J #6W(&) + c.c. (3.1) 

In this equation K is a real function of the chiral superfields $ l and $ t l but not 

their derivatives whilst W is a superpotential. There may also be couplings to the 

gauge fields but these shall not concern us. We shall focus on the low energy physics 

of probes moving on moduli space and so the superpotential does not contribute to 

the action here. Expanding out the kinetic terms for the scalar components, 4>l, of 

the chiral superfields we find: 

C = g ^ p d ^ + . . . (3.2) 

where is the Kahler metric defined by the Kahler potential K, i.e. 

'« = WW'K(^l)- <3'3) 

Now suppose that we have some theory with M — 1 supersymmetry and global 

symmetry group G, which furthermore has a moduli space of supersymmetric vacua. 

We may pick complex coordinates on (a part of) the moduli space such that the 

symmetry group G is realised linearly and the kinetic term for motions on moduli 

space is given by a G-invariant Kahler metric. Such a metric may in general be 
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constructed from a G-invariant Kahler potential and so the task of determining the 

metric on moduli space is reduced to specifying a G-invariant real function of the 

complex fields parametrizing moduli space. 

In the following section we shall illustrate this procedure with the example of 

finding the form of an SU(2) x i7(l) invariant Kahler metric on the relevant part of 

the moduli space of the LS flow. 

3.3 The Leigh-Strassler flow revisited 

3.3.1 A Kahler metric on moduli space 

We recall the main results of the previous chapter. The Leigh-Strassler flow is 

described in supergravity by an SU(2) x U{1) invariant solution with M = 1 super-

symmetry. A single brane probe of the geometry has a low energy effective action 

given by equation (2.29). The moduli space has four (real) dimensions and the 

reduction of the low energy Lagrangian to this space is given by: 

Ar2 + p2{\z1\2 + \z2\2) + 
sinh 2 x I 

X 1 

i= i 

(3.4) 

corresponding to the metric on moduli space: 

2 
ds2 = ^e2A 

sinh x . 
Adr2 + p2 {\dzl\2 + \dz2\2) + 

i= l 

(3.5) 

Recall that as in the previous chapter, the z% coordinates are constrained by the 

equation ^ i \zl\2 = 1 and thus (on the moduli space z3 = 0) parametrize a three-

sphere. 

This metric inherits an SU(2) x U(l) invariance from the supergravity solution 

under which the fields transform linearly as: 

SU{2) : 

U(l) : 

, U € SU{2), 

(3.6) 
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Note that SU(2) x U(l) acts transitively on the z% coordinates whilst r is inert under 

this symmetry. 

We wish to find out i f the metric on moduli space (3.5) is indeed Kahler. We 

shall use the method outlined in the previous section to construct the most general 

Kahler metric in two complex dimensions with an SU(2) x U(l) invariance realised 

as in eqn. (3.6) on the complex coordinates. 

In order to proceed, we choose complex coordinates (u1, u1, u2, u2) which trans­

form in the same way as the z coordinates under SU(2) x U(l). We demand that 

the Kahler potential, K, is invariant under this SU(2) x U(l). Thus K is only a 

function of the quantity q defined as: 

q = ulul + u2u2. (3.7) 

The Kahler metric can now be easily determined in terms of derivatives of K with 

respect to q. For example: 

The complete expression for the metric in terms of the u coordinates is given by: 

ds2 = (du'du1 + du2du2)^- + \uxdux + u2du2\2^. (3.9) 
dq dq1 

We may now ask if our probe result for the metric on moduli space (3.5) may 

be brought into this form by a change of coordinates. Since the SU(2) x U(l) 

transformation of the u's was chosen to match that of the z's our only freedom is in 

choosing q as a function of r. Thus the coordinates should be related according to: 

u i = v * ) ^ (3-10) 

I t is a simple exercise to transform eqn. (3.9) into r, z coordinates to find: 

+ ( f ^ i ) K \z'dz' + z W f , (3.11) 

Comparing this metric with the probe result (3.5) and demanding that the two are 

equal, we find three equations for the two unknown functions q(r) and K(r) : 
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M ^ ' i r S ) K - • ( 3 1 2 ) 

%)K = T L ' ^ • <"3> 
<?^\K = | i V e M s i n h 2

X . (3.14) 

In fact it is more convenient to add the last two equations to get: 

( • ! ) « - ^ L 2 p 2 e 2 4 c o s h 2 x (3.14') 

Fixing q as a function of r corresponds to a preferred choice of complex coordinates 

(in particular the complex structure is determined) whilst fixing K corresponds to a 

choice of Kahler metric. Since there are 3 equations to satisfy and only 2 unknown 

functions, we expect that there will be one non-trivial consistency condition which 

needs to be satisfied if everything is to work out. 

Substituting (3.14') into (3.12) we get an equation for q: 

I = <315> 
Substituting this result for q into (3.13) we find a strikingly simple equation for 

K: 
d4- = T3Le2A , (3.16) 

Finally we need to check that (3.14') is satisfied. Substituting (3.15) into (3.14') we 

find that 

±(p2e2A) = ^e2A cosh2

 X , (3.17) 

is needed for consistency. Remarkably, this equation is a consequence of the su­

pergravity flow equations (2.18) which encode the M = 1 supersymmetry of the 

geometry. We have thus performed a strong check on the results of [43] and found 

that the metric on moduli space is indeed Kahler. 

The differential equations (3.15,3.16) defining q and K are tantalisingly simple. I t 

is possible to show in particular that K can be expressed in terms of the supergravity 

fields as: 
T3L2e2A 

i ^ = ^ - ( p 2

 + l ) . (3.18) 

This is a pleasing and unexpectedly simple result. 
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3.3.2 Scaling dimensions 

One result of the last section was that we were able to fix unique coordinates on 

moduli space by demanding that the supersymmetry and flavour symmetries be re­

alised linearly in the brane probe action. To recap, the SU(2) flavour symmetry 

uniquely fixed (up to rigid rotations) the angular part of the complex coordinates, 

(u 1 , u1, u2, u2), whilst the requirement of a Kahler structure fixed the radial part. 

The coordinates ul are thus expected to match directly with (the non-zero eigenval­

ues of) the complex scalar fields 4>l , i = 1,2. 

In the UV and IR limits, the field theory approaches conformal fixed points and 

as we have discussed in the previous chapter, there are definite predictions for the 

scaling dimensions of the chiral superfields in these limits. We can now ask i f these 

scaling dimensions are correctly reproduced by the ul coordinates in the supergravity 

solution. 

We start at the UV end of the flow which is just the standard AdS$ x S5 geometry. 

The AdS$ part of the metric is 

ds2 = e2Ar)^dx»dxv + dr2 where A = j , (3.19) 

which has a symmetry under which a rescaling of the brane coordinates x** is com­

pensated by a shift in the radial coordinate r: 

x -> -x eA aeA . (3.20) 
a 

In fact this is a symmetry of all the fields in the supergravity solution (since the 

scalars p and x a r e constant) and is thus a symmetry of the action of a brane probing 

this background. In terms of the coordinates on moduli space derived in the previous 

section, we have y/q ~ eA for large r and so the scaling symmetry becomes 

x -» -x y/q^ay/q. (3.21) 

In other words the fields on moduli space have scaling dimension 1 which matches 

with the field theory prediction for the scalar components of these chiral superfields 

in the M = 4 theory. 

Next we consider the IR end of the flow solution. Here the solution again has 

the scaling symmetry (3.20) except that A = 2 ^ z in this case. The coordinate y/q 
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goes like <Jq ~ exp {^kz) ~ (eA)3^4 a n < ^ thus the scaling symmetry becomes 

1 
x -» —x 

a 
(3.22) 

Therefore, we see that the massless fields have scaling dimension 3/4 here. This 

agrees with the field theory result (2.9) which followed from a nonperturbative anal­

ysis of the vanishing of the exact beta functions. I t is very pleasing that this result 

is encoded in the supergravity solution in this way! 

3.3.3 Comments on the Kahler potential 

The scaling arguments of the previous section only require knowledge of the complex 

coordinates on moduli space and the asymptotic form of the supergravity solution. 

In section 3.3.1 we also found a simple expression for the Kahler potential all along 

the flow. I t is difficult to make a direct comparison between this result and the 

gauge theory owing to the lack of non-renormalisation theorems to protect the field 

theory result at strong coupling. However, a few observations are possible. 

The UV and IR limits of the Kahler potential are particularly simple as the 

Kahler metric becomes conical in these limits. 1 Consequently, the Kahler potential 

is a simple power of q in these limits. This power is determined by dimensional 

analysis. The Kahler potential has dimension 2 (since i t appears in the Lagrangian 

with an J d48). In the UV, q has dimension 2 and so K ~ q whilst in the IR q has 

dimension 3/2 and so K ~ g 4 / 3 . I t is straightforward to check that our result for K 

(3.18) has these asymptotics. 

A further check would be to investigate the next to leading order corrections to 

K in the limit of large vevs. I t is straightforward to expand the result for K as a 

series expansion at large r and it should be possible to compare this to a perturbative 

calculation in field theory. This would provide an interesting test of the result. 

Perhaps the most intriguing result which we have found is the simple differential 

equation satisfied by K (3.16). As we shall see this result also holds for a variety 

1This is because we have a situation in which conformal invariance is being broken by a single 

scale - the position of the brane in the bulk - and thus the physics should appear the same at all 

radii, leading to a conical metric. 
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of other holographic renormalisation group flows which preserve at least M = 1 

supersymmetry in four dimensions. We now turn to the investigation of these other 

flows using the techniques we have developed in this section. The next solution we 

consider represents a flow to the Coulomb branch of the Leigh-Strassler theory. 

3.4 A More General M = 1 Flow 

3.4.1 The Ten Dimensional Solution 

In this section we consider a related ten dimensional supergravity flow which was 

presented in ref [46] and is another l i f t from five-dimensional gauged supergravity. 

The five-dimensional solution involves the same scalars p and x as in the previous 

flow, but allows a new scalar, ft = logv, to vary. Switching on /3 breaks the SU(2) x 

U(l) symmetry to U(l)2, and corresponds to turning on a vev on the Coulomb 

branch of the Af = 1 theory which we explored previously. 

The new ten-dimensional metric is of the same general structure as given in 

equation (2.23), with equation (2.16) for the first component. The new warp factor 

Q, is given by: 

n2 = cosh x (V cos2 (f> + v-2 sin 2 (f>)^^- + p4 sin 2 9^ ' , (3.23) 

whilst the metric on the compact space is 

L 2 

ft2 
ds2 = ^ [p~4 (cos2 6 + pe sin 2 9 {y-2 cos2 <t> + v2 sin 2 <£)) dQ2 

+p2 cos2 9{u2 cos2 <j> + v~2 sin 2 (f>)d^2 

—2p2{y2 — v~2) sin# cos# sin4>cos<f>d6d(f) 

+p2 cos2 9{u~2 cos2 (f>d<pl + v2 sin 2 (j>dip\) +p~4 sin 2 0<2y?2] 
L2 

Q6 
+ — sinh 2 x cosh2 x(cos2 0(cos2 cpdipi - sin 2 (j>dy2) - sin 2 0d<p3)2(3.24) 

The U(l)2 symmetry is generated by the Killing vectors d/dipi and d/d<p2. The 

superpotential for this flow is given by [46]: 

W = ^p 4(cosh2x - 3) - - ^ ( i / 2 + ^- 2)(cosh2x + 1) , (3.25) 
r 
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which generalises the superpotential in equation (2.17). The equations of motion 

for the supergravity fields are: 

dp _ J_pidW _ 1 ^2p 6(cosh2x - 3) + (u2 + i/" 2)(cosh2x + 1) 
dr 6Z/ dp 12L \ p 
du _ 1 2dW _ 1 /(cosh2x + l ) ^ 2 - ^ - 2 ) ' 
~d7 ~ 2LV ~W ~~ AL V p2 

dx _ 1 dW _ sinh 2X f p 6 - {v2 + v~2)' 
~dr ~ L~dx 2L 

^ - { v 2 + v-2)^ 

dA = 2

 w - 1 f P 6 ( c o s h 2 * ~ 3) ~ (v2 + ^ 2 ) (cosh2x + ( 3 2 6 ) 

dr 3L 6L \ p2 ) 

The authors of ref. [46] probed the solution with a D3-brane. Once again the moduli 

space has four real dimensions , which agrees with the interpretation of the solution 

as the LS theory on Coulomb branch. The result for the metric on moduli space is: 

ds2 = \%e2A [C(p" 2 cosh2

 Xdr2 + L2 p2dcf>2) 

+L2p2(u'2 cos2 <f)d(p\ + v2 sin 2 <j>dip%) 

+L2p2 sinh 2 x C _ 1 ( c o s 2 0 d<Pi — sin 2 <f> d(p2)2] , 

where C = ( " 2 cos2 0 + v~2 sin 2 <j>) . (3.27) 

3.4.2 A Kahler Potential 

Again we wish to use M = 1 supersymmetry and the flavour and R-symmetries of 

the theory to choose a special set of coordinates in which the action for the brane 

probe can be compared to field theory expectations. In this case the SU(2)xU(l) 

symmetry has been broken to U(l)2 by giving a vev to one of the massless fields. 

The U(l)2 symmetries are given by constant shifts in ipx and <p2. We wish to 

find a complex structure in which this metric is Kahler and the U(l)2 symmetries 

are realised linearly. We can choose: 

zx = y/u(r, 0 ) ^ , z2 = ^v(r,4>)e-iV2 , (3.28) 

and a U(l)2 invariant Kahler potential 

K = K{Zlzu z2z2) = K(u, v) . (3.29) 
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Proceeding as~before we write down the form of the metric which results from this 

Kahler potential. A short calculation gives 

d s

2

 = l ( d \ \ d u 2 + J _ ( d \ ( d ) K d u d v + l ( ^ 
4u2 V du) 2uv V du J \ dv J 4v2 V dv 

+ ( u ^ j Kdtf - 2 ^ , d , 2 + ( « | ; ) a ^ • (3-30) 

Comparison with equation (3.27) gives the following set of equations for u, v and K 

( u ^ ) 2 * = ~e2AL2p2(u-2 cos2

 (f> + smh2

XC1 cos4 (/)) 

2„2A/- ( „ - 2 „ _ u 2 „ / ^ " V , r 2„2 
W ( p - c o s h ^ ^ J + L V 

( f ^ ; ) 2 ^ = y e ^ L V ^ s i n ^ + s i n ^ x r ' s i n 4 ^ ) 

2„2A/- I „ - 2 _ „ L 2 „ I u i \ . T2J2 
4 , V - C | ^ c o s h ^ ( ^ J + L V ^ 

u &\ (VJL) K = Tie2AL2 2 g i n h 2 c - l c o g 2 ^ g i n 2 0 (3 3 ^ 
du J \ dv / 2 

( ^ ( S ) ( i ) + M S f f i ) ) -= 4uve2 AC ( p~l cosh* x ( ^7 

The solutions for u and v are 

it = / ( r ) cos2 <f> , t; = <?(r) sin 2 0 , 

where 

<*/ _ 2u2 dg _ 2 

We find an exact solution for the Kahler potential: 
T$ T2„2A ( „2f,.2 „-2\ • 2 i , l /„2,,-2 , „-4> K = ^ L 2 e 2 A [p2{u2 - v-2) sin 2 <f> + -{p'v'2 + p" 4 ) J . (3.33) 

As before the equations of motion (3.26) were needed in order to find a solution. 

The specific combinations of the equations used are rather simple and we reproduce 

them below: 

dr dr L 
d(e2Ao~4) e2A 

K I ) = ^ ( 3 - cosh(2X)) . (3.34) 
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In fact, this allows us to write down a remarkably simple solution for A as a function 

of p and v for the case v ^ 1: 

^ = 2( 2k -2, > ( 3 - 3 5 ) 

where A; is a constant. Using this expression we can simplify the Kahler potential: 

ff.££W*+^(£ + l) . (3.36) 

Once again K satisfies the simple differential equation (3.16). 

3.5 Pure Coulomb Branch Flows 

3.5.1 Switching off the mass 

It is quite interesting to study a special case of the above. Let us switch off the mass 

deformation by setting \ — 0- We can consistently do this in the flow equations 

(3.26) whilst allowing p and u to vary. In this case we are studying a purely Af = 4 

Coulomb branch deformation. With x = 0, the equations (3.34) simplify to yield 

the result 
„2A„2,,2 2AJi,-2 , r _ 2/1 -4 . 1 /n Q7\ 
e p v = e pu +fc = e p + « , [6.61) 

where k is the constant appearing in equation (3.35) and / is another integration 

constant. We can also write down a solution for equation (3.32) in this case: 

T2 T2 

a' a' 

Now i f we substitute into the expression (3.36) for the Kahler potential, we find 

K = ^ L 2 e 2 A ( p V sin 2 <t> + p2v~2 cos2 <t>) 

1 / \ [u + V) 

1 

This is the expected probe result [7] for a two complex dimensional subspace of the 

flat three complex dimensional moduli space which exists for the M = 4 theory on 

Coulomb branch. 
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3.5.2 The General Case of the Coulomb Branch 

There is in fact a broader class of jV* = 4 supersymmetric Coulomb branch flows 

which are accessible via five dimensional gauged supergravity. The five dimensional 

supergravity equations describing these flows were given in ref. [47] and a way to 

decouple these equations in order to find exact solutions was presented in ref. [48]. 

The ten-dimensional l i f t corresponds to a continuous distribution of parallel D3-

branes [49] and so the metric must take the form 

ds2 = E-^ilvdxiidxv + {dy\ + dy2 + ...+ dyl) , (3.40) 

for some harmonic function H(yi). A D3-brane probing this background has a flat 

metric on moduli space [7]: 

T T 
ds2 = -^-{dy\ + dy\ + . . . + d y f ) = -^(dzidzt + dz2dz2 + dz3dzz) , (3.41) 

coming from a Kahler potential 

K = ^(yl + yl + ... + yl). (3.42) 

In ref. [48] i t was shown that i t is natural to write the l i f t solution in terms of a 

radial coordinate F which satisfies, in the coordinates of our discussion: 

^ = 2Le2A , (3.43) 
dr 

and is related to the t/j by 

yi = (F-bi)txi , (3.44) 

where 6j are constants and £i are coordinates on a unit S5. Changing to F coordi­

nates we find that the Kahler potential is given by 

K = y £ ( F " b ^ 2 = y { f " E 6 ^ 2 ) > <3-45) 
i i 

from which we can read 
dK T 3 (3.46) 
dF 2 ' 

which when combined with equation (3.43) results in our equation (3.16) once again. 

In fact it is straightforward to generalise these results to the case of M 2 - and M5-

branes on their analogues of the Coulomb branch by adapting the results of ref. [50]. 
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In these cases we find 
dK 

TM2LeA , (3.47) 
<9r 

for M2-branes and 

^ TmLe" , (3.48) 

for M5-branes. I t seems that the Kahler potentials governing the metric on moduli 

space for supersymmetric holographic RG flows arising from gauged supergravities, 

always satisfy these equations. We have shown this for purely Coulomb branch 

flows, for the Leigh-Strassler flow and a generalisation, and in the next two sections 

demonstrate that i t is also true for another three families of examples. 

3.6 A n J\f = 2 Flow in D = 4 

In this section we consider the ten-dimensional supergravity dual of an jV = 2 

supersymmetric field theory RG flow. This field theory flow results from perturbing 

the M = 4 theory in the UV by an equal mass for two of the chiral superfields. The 

ten-dimensional flow solution was constructed in ref. [51], and has been studied via 

brane probing in refs. [52-54]. Again we wish to find an explicit form of the Kahler 

potential and check that equation (3.16) is satisfied. In this case the moduli space 

for a D3-brane probe is a one complex dimensional space and so i t is simple to find 

coordinates in which the metric is Kahler, since these are just the coordinates in 

which the metric is conformally flat: 

ds2 = dd~Kdzdz . (3.49) 

In fact such coordinates have already been found in refs. [52,53], and we reproduce 

the result here 

ds2 = ^ k 2 L 2 , C

 X9 dz dz , (3.50) 
2 ( c + 1 ) 2 v ' 

where 

c = cosh(2x) and z = e~^4 / { C + 1 j . (3.51) 

y ( c - 1) 

Note that this fixes the complex structure on moduli space but that in this case 

the flavour symmetries are insufficient to pin down a unique choice of complex 
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coordinates. Af — 2 supersymmetry is used in fef. [52] to match the scalar kinetic 

term with the kinetic term of the U(l) gauge field on the brane and so fix a unique 

set of coordinates2. However, for our purposes we only need the correct complex 

structure and so Af = 1 arguments are enough. To proceed we set u = zz and find 

, 2 d ( d \ , ,_ T 3 ; 2 r 2 ( « 2 - 1 ) , . 
ds= — [ u— Kdzdz = ——kL ——-—-— dz dz , 

du \ du 2 Au1 
(3.52) 

which has solution 

K = ^k2L2 Q ( u - u-1) + olog(u) + b (3.53) 

where a and b are constants. To get this expression for the Kahler potential into 

the form we want, we need to use the following solutions [51] for the supergravity 

fields A and p, 

= k-
sinh 2x 

K 2 ( f sinh x 
p = cosh 2x + sinh 2\ 7 + log — : — 

V L c o s h X 

I f we choose a = — \ and 6 = 7 then the Kahler potential simplifies to 

K = ^L2p2e2A , 

which on applying the relevant supergravity equations of motion 
1 / 1 

P t = 3 L ^ - p 4 c ° S h 2 x 
- = - - p smh4 X 

dA 
dr 

2_ 
3L 

( l 1 

p4 cosh 2x 

(3.54) 

(3.55) 

(3.56) 

can be shown to satisfy equation (3.16). 

3.7 Two J\f =2 Flows in D = 3 

Finally, we examine two examples of flows in eleven dimensions constructed in ref. 

[55]. The three-dimensional field theories on the M2-branes which source these 

eleven dimensional geometries are close cousins of the Leigh-Strassler field theory in 

2See also ref. [54] for further work and generalisations. 
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four-dimensions. Consequently, the eleven-dimensional flows are closely related to 

the ten-dimensional geometry dual to the Leigh-Strassler flow, which we studied in 

some detail at the start of this chapter. 

The first eleven dimensional solution flows between geometries of the form AdS± x 

S7 in the UV and AdS^ x M7 in the IR, where M7 is a compact seven-dimensional 

manifold. The flow preserves 4 supercharges (corresponding to M — 2 supersym-

metry on the three-dimensional brane worldvolume) and has an SU(3) x U(l) in-

variance. The similarity to the LS flow lies in the fact that this field theory also 

comes from a mass perturbation for a single chiral multiplet in the UV and induces a 

flow between conformal field theories. Some aspects of the field theory are discussed 

in [56], where the flow was first studied in four dimensional gauged supergravity. 

The second eleven dimensional flow which we consider arises from a second l i f t 

of the same four dimensional gauged supergravity solution which gives rise to the 

first flow. The geometry at the UV end of this flow is not AdS± x S7, but rather 

the near horizon limit of a collection of M2-branes at a conical singularity in flat 

five-dimensional Minkowski space x the conifold. We shall discuss this example in 

more detail later. 

3.7.1 An SU(3) x U(l) invariant flow in gauged supergravity 

In this section we present details of the analogue of the LS flow in four-dimensional 

M = 8 gauged supergravity. This solution was constructed in [56] (see also [55]). 

The flow preserves 2 + 1 dimensional Poincare invariance and so the metric can be 

written as: 

Two scalars are turned on and we call these p(r) and xir) m analogy with the 

corresponding five-dimensional flow. The superpotential is 

e^dx^dx^ + dr2. (3.57) 

^ 6 ( cosh(2 X ) - 3) - -^(cosh(2 X ) + 1) (3.58) 

leading to flow equations: 

dA 
dr W , 

dp _ p2 dW 
dr 6L dp 

dX 2dW 
dr L dy 
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3.7.2 The SU(3) x U{1) invariant lift 

We now consider the first of the two lifts of this four-dimensional flow solution to 

eleven dimensions . The l i f t ansatz for the eleven dimensional metric in ref. [55] is: 

ds2

n = A-'idr2 + e^^dx^dx")) + &L2ds2{p,X) , (3.60) 

where 

ds2(p, X ) = p2{dz1dz1 + dz2dz2 + dz3dz3) + p-6dz4dz4 + S m h ^ X > ) l^dzf , (3.61) 

with 

X = p~2 cos2 6 + p6 sin 2 e, 

A = ( X c o s h x ) " 4 / 3 . (3.62) 

The complex coordinates z1 are constrained by the equation \zl\2 + \z2\2 + \z3\2 + 

| z 4 | 2 = 1 and thus span an S7. The angle theta is defined via the equation |z 4 | 2 = 

sin 2 6. 

The three-form potential, which couples to an M2 brane probe, is also given in 

ref. [55] and a brane probe calculation is performed which reveals that the moduli 

space has 3 complex dimensions (as expected for a deformation of the UV theory 

by a mass for a single chiral multiplet) and is situated at sin 2 6 = 0. Using these 

results i t is straightforward to read off the metric on moduli space for an M2-brane 

probe: 

DS2 = lMleA ( ^ * d r 2 + L2ds2(p, X ) U d u i i ) , (3.63) 

where 
3 3 

ds2(P, x)Uduii = p 2 Y l d z W + p 2 s i n h 2 xi E z W \ 2 • (3-64) 
The next stage is to calculate the form of the most general SU(3) x U(l) in­

variant metric in three complex dimensions with which to compare this result. As 

in the similar example of section 3.3.1, SU(3) invariance will automatically imply 

invariance under the larger group SU(3) x U(l). 

In fact i t will be useful to have the general form for an SU(n) invariant Kahler 

metric on C \ Let to 1, w 2 , . . . , wn be coordinates on C We assume that the co-
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ordinates ( w 1 , . . . , wn) transform in the fundamental representation of SU(n). In-
variance under this group implies that the Kahler potential K depends only on the 
combination 

q = wlwl + w2w2 + ... + wnwn . (3.65) 

Let us reparametrise C" ~ R + x 5 2 " - 1 with coordinates zl,... ,zn,q . The zl,s are 

complex coordinates on an 5 ' 2 n _ 1 of unit radius and are related to the w's by 

wi = yfqz{ . (3.66) 

A short calculation gives the Kahler metric in these coordinates as: 

^ = {%)2,< ** + {%) K t + * 1 1 W • 
Now we wish to compare this result (for n = 3) to the metric on moduli space 

of the flow solution. Substituting equation (3.64) into (3.63) and comparing with 

equation (3.67), we get three equations for the two unknown functions q(r) and 

K(r): 

k2{%) „ , . . Kdq2 = ^ V A - W 2 , (3.68) 
4g z \ aqj I 

Q 2 ™ \ R = T M l e A L 2 P 2 S I N H 2 X ( 3 7 Q ) (4) 2 

Consistency of these equations requires that 

±(eAp2) = ^eAcosh2x, (3.71) 

which is a consequence of the supergravity equations of motion. Then the solutions 

for K and q are: 

TM2L2

 A ( 2 , 1 \ dq 2 * = ^ p ^ + _ ) , (3.72) 

We observe again that this Kahler potential satisfies the equation (3.47). 
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3.7.3 The T 1 1 flow 

Interestingly, there is a second l i f t of the same four dimensional gauged supergravity 

solution which led to the eleven dimensional example of the previous section. This 

was also constructed in ref. [55]. The second eleven dimensional geometry is similar 

to the first, but with the stretched five spheres (spanned by zl, z1, i = 1,2,3) replaced 

by stretched T^ ' s . The details are in ref. [55] and since we shall only be interested 

in the moduli space of an M2-brane probe, we shall not go into detail here.3 

The metric on moduli space for an M2-brane probing this geometry is again 

given by equation (3.63) except that equation (3.64) is replaced by 

ds2(p, x)|moduii = p2ds%i,x + p2 sinh 2 x^(di> + cos9id<pi + cos0 2 #2) 2 , (3.73) 

and the metric on T 1 , 1 is [57]: 

ds2

Ti,i = ^(dif> + cos9id(f)i + cosQ2d<$>2)2 + ^{dO2 + s i n 2 0 i#? ) + ^{dOl + s i n 2 0 2 # ! ) • 

(3.74) 

In particular, the 5 5 's in equation (3.64) have been replaced by T ^ ' s so that for 

large r (p —> 1 , x ~• 0) the two moduli spaces approach flat M 6 , and the Ricci flat 

Kahler conifold, respectively. 

To proceed we first note that the SU(2) x SU(2) symmetry of the conifold met­

ric is preserved for all values of r. Therefore, we need to find the general form of 

an SU(2) x SU(2) invariant Kahler metric on the conifold and compare to equa­

tions (3.63), (3.73). Such metrics have been studied in ref. [57] and we shall rederive 

a result of that paper below. 

The conifold is a surface in C 4 parametrised by four complex coordinates z\, z2, z3 

3 It may seem rather surprising that there should be two different lifts of a single four dimensional 

solution. A possible explanation is that the four dimensional solution may be embeddable in two 

ways in a larger four dimensional gauged supergravity with other fields representing e.g. twisted 

sector modes of M-theory on an orbifold of AdSi x S7. In particular, if there were some decoupling 

between twisted and untwisted sector modes, the same values for the untwisted fields p, \ could 

perhaps occur with different constant values of the twisted fields. There would then be two different 

solutions to lift to eleven dimensions which might be expected to differ in topology in roughly the 

way which we find here. 
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and 24 , which satisfy an equation 

z\ + 4 + zj + zl = 0. (3.75) 

An SU(2) x SU(2) = 50(4) invariant metric depends only on the combination 

p = z\Z\ + z2z2 + Z3Z3 + z 4 2 4 . (3.76) 

Thus, to construct an SU(2) x SU(2) invariant metric on the conifold we can start 

with our equation (3.67) for an SU(4) invariant metric on C 4 and then restrict to 

the conifold using equation (3.75). For convenience and in order to adjust a couple 

of notations we reproduce the equation for an SU(4) invariant metric on C 4 here: 

= 4^ ( 4 ) ^ + {%) Kdi,dit + if2$) K Iiid*'' <377) 

where the f j ' s parametrise an S7, i.e. E f j l j = 1. In fact i t wil l be more convenient to 

work in terms of a radial coordinate q — | p 2 / 3 for reasons which will become clear. 

In these coordinates the SU(4) invariant metric becomes: 

^dzidzi - ^\zidzi\2 

+ 9 
(3.78) 

Finally, we need to restrict to the conifold by applying equation (3.75) to the f j ' s . I f 

we reparametrise in terms of the coordinates4 on T 1 ' 1 introduced in equation (3.74), 

then we find the following form for the general SU(2) x SU(2) invariant metric on 

the conifold: 

* 2 = ^ { q ^ K d e + { q i ) K [ i s l " ] 

+ l i f d ^ ) K ^ + c o s W l + c o s W2) 2. (3-79) 

I t is now straightforward to compare this metric with the metric on moduli space 

(3.63), (3.73), to extract equations for K and q. The equations which K and q 

satisfy are precisely (3.68), (3.69) and (3.70) with solution (3.72). I t should be 

noted, however, that q has a different definition than i t did in the flow of the previous 

section. 

4The reader should refer to ref. [57] for the explicit form of these coordinates in terms of the 

ZiS. 
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3.7.4 Scaling dimensions 

Since the eleven dimensional geometries which we are considering flow between 

asymptotic geometries containing an AdS4 factor, the corresponding field theories 

flow between conformal fixed points in the UV and IR. Consequently we may once 

again discuss scaling dimensions of the field theory operators. Our field theory 

arguments in this section are rather heuristic owing to the lack of a Lagrangian 

description of the IR fixed point theory on a stack of N M2-branes and should be 

considered as providing a rough way to understand the supergravity results, which 

we believe to be correct. We could perhaps make these arguments more rigorous by 

staring in the UV with the dimensional reduction of the four dimensional M = 4 

gauge theory but we shall not attempt this here. 

First we consider the flow from the AdS4 x S7 geometry in the UV. Let us consider 

the field theory which in the UV contains four chiral superfields with i = 1 . . . 4. 

Suppose that all four chiral superfields are coupled together in the Lagrangian. Then 

the scaling dimensions (di) of the fields satisfy 

dx + d2 + d3 + cJ4 = 2 , (3.80) 

and di = | by symmetry. The flow solution corresponds to perturbing the superpo-

tential by a mass term for $ 4 

SW = ^ T r $ 2 . (3.81) 

This leads to a ^-function 

pm = m(2d4 - 2) . (3.82) 

Thus the IR values of the scaling dimensions are d 4 = 1, d\ = d2 = c?3 = | . 

Let us compare with the limits of the flow solution written in the coordinates of 

section 3.7.2. The UV end of the flow is just AdS± x S7 and has a symmetry under 

the scaling (3.20), with A = j^. The radial coordinate on moduli space from section 

6 is yfq ~ exp(£) ~ {eA)1^2 and so the scaling symmetry becomes 

x —¥ —x y/q -> a l ' 2 y f i . (3.83) 
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At the IR end of the flow A ~ and ^ ~ e x p t p ^ ) ~ {eA)1^. The scaling 

symmetry is 

x - )• V? « 1 / 3 \ / 9 - (3-84) 

These are all in agreement with the scaling dimensions of the massless scalar fields 

derived above. 

We can now consider the Kahler potential at either end of the flow, as we did 

in section 3.3.3. In three dimensions K should have scaling dimension 1. At the 

UV end of the flow, since ^fq has scaling dimension 1/2, K ~ q as before. For 

the IR end, y/q has scaling dimension 1/3, and so K should obey K ~ q3/2. Let 

us compare this with the results we found in section 3.7, equation (3.72). We see 

that for r —> —oo, K ~ eA and q ~ ( e A ) 2 / 3 . This implies K ~ q3?2, matching the 

result from the classical scaling argument above. Note that the scaling argument 

does not give the Kahler potential for arbitrary r (where the scaling symmetry no 

longer holds). 

For completeness, we note that i t is possible to extract scaling dimensions for 

the UV and IR ends of the conifold flow of section 3.7.3. Since the large field limit 

of the flow gives the moduli space as the conifold, i t is natural to assume that the 

dual field theory will be an orbifold, with the M2-branes at the origin. The conifold 

arises as the moduli space of vacua of a set of fields restricted by a D-term equation 

which is the defining equation (3.75) of the conifold. Then, a good description of 

the field theory on moduli space is in terms of fields A{ and Bj, as in ref. [58] (called 

Xi and Yj in ref. [59]). There is an additional complex field, say which has a 

superpotential giving i t a mass, which drives the flow. Carrying out the supergravity 

analysis as above, we find that the scaling dimensions of the A's and B's are 3/8 

in the UV and 1/4 in the IR. These numbers are simply 3/4 times the dimensions 

of the fields in the other flow. A guess for the superpotential which couples all 

the fields is W ~ e i j ' e k l r T x { A i B k A j B i ^ ) , for which the ^-function vanishes if $ has 

dimension 1/2 in the UV, and 1 in the IR, the latter also fit t ing nicely with a mass 

term mTr$ 2 . 
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3.8 Conclusions 

In this chapter we have continued to investigate the physics of the moduli space of 

holographic gauge theories by probing with branes. We have succeeded in finding 

good coordinates in which to study the supergravity duals by putting the metric on 

moduli space for a brane probe into a manifestly Kahler form. One nice point in these 

calculations has been the way in which the first order supergravity equations which 

ensure the N = 1 supersymmetry of the ful l supergravity geometry are precisely 

what is needed to ensure that the metric on moduli space is Kahler. 

Furthermore, we have shown that by working in these natural coordinates we can 

give a simple derivation of the scaling dimensions of the massless chiral superfields. 

The usual method for calculating dimensions of fields from the dual supergravity 

involves linearising fluctuations about a given background and is computationally 

rather tedious. Also these analyses of the linearised fluctuations lead to predictions 

for the spectrum of gauge invariant composite operators rather than the basic chiral 

superfields. 

We have studied a wide variety of flows preserving different numbers of super-

symmetries and in different dimensions. Remarkably, we were able to find an exact 

expression for the Kahler potential in terms of the supergravity fields in every case. 

This is exciting since gauge theory results for this quantity at strong coupling were 

not previously available for theories with a low amount of supersymmetry. 

I t certainly seems worthwhile to study these results further and to try to extract 

the gauge theory predictions in their clearest form. In particular, the expression 

for the Kahler potential in terms of the supergravity fields is not directly related 

to an expression in terms of the basic fields in the gauge theory but rather relates 

the renormalisation group flow equations of the gauge theory coupling constants 

to that of the Kahler potential. This is because the supergravity scalars represent 

renormalisation group profiles of gauge theory couplings. 

As an example of the way in which this works we recall the maximally super-

symmetric Coulomb branch flows. In these examples, supersymmetry constrains the 

Kahler potential to have a very simple form in terms of the chiral superfields since 

the metric on moduli space is flat. However, i t looks more complicated in terms of 
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the supergravity scalars. We can of course change coordinates in this case to see 

that the supergravity reflects the simplicity of the gauge theory. 

In another example, the two eleven dimensional lifts of the same four dimensional 

gauged supergravity of section 3.7 have identical Kahler potentials in terms of the 

supergravity fields, but represent quite different field theories. 

In each of the examples we have considered, the Kahler potential satisfies a re­

markably simple differential equation (3.16) (or (3.47), (3.48) in eleven dimensions). 

I t would be very interesting to try to understand better the origins of this equation 

in the gauged supergravity and also its interpretation in the dual gauge theory. 
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Chapter 4 

Superstars and Giant Gravitons 

4.1 Introduction 

In the previous chapters, we have seen that certain states of the boundary theory in 

gauge theory/ gravity dualities are well described by branes in the bulk. In particular 

we have studied the coulomb branch of gauge theories. The picture in the bulk is of 

branes breaking off from the stack which provides the background geometry. This 

is a very natural picture given the way in which the brane description was used to 

motivate the AdS/CFT correspondence. Below we review some arguments which 

led to the discovery of another class of bulk states which are described by branes -

the giant gravitons. 

In the simplest case of string theory on AdS*, x S5, giant gravitons are com­

pact spherical D3-branes stabilised against collapse by a magnetic coupling to the 

background RR field. Alternatively, they should have a microscopic description as 

non-commutative bound states of Kaluza-Klein states of the supergravity blowing-

up in the presence of RR flux according to a version of the Myers mechanism. The 

details of the microscopic description in this case are not yet fully understood (al­

though see [60,61]) and here we will focus on the macroscopic description in terms 

of D3-branes. 

The chapter is structured as follows. In the next section we review some field 

theory arguments which hint at the role of brane physics in describing certain states 

of string theory on AdS^xS5. Following that we review the original probe calculation 
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of [62] which brought to light the existence of giant graviton states. We also discuss 

various extensions of this construction [63], [64] and [65]. 

Next we discuss the description of giant gravitons as supergravity solutions. 

This is based on work of [66] and our paper [3]. We identify supergravity solutions 

with the relevant masses and angular momenta to represent coherent states of giant 

gravitons and find that dipole moments in the form fields are present as expected 

for collections of spherical branes. These 'superstar' solutions were originally found 

when considering a consistent truncation of the type I IB supergravity theory di-

mensionally reduced to AdS$ where they appear as the supersymmetric limits of 

charged black hole solutions. Once lifted back to the full ten-dimensional theory, 

the solutions carry internal momentum along the three commuting Killing angles 

on the five-sphere. In both five and ten dimensions, the supersymmetric solutions 

display naked singularities. However, within the context of ten-dimensional type 

IIB superstring theory, there is a physical interpretation in which the singularities 

are generated by distributions of giant gravitons. 

We also study the analogous superstar solutions in M-theory compactified on 

AdSj x 5 4 and AdS± x S1. We show that these eleven-dimensional supergravity 

solutions can be interpreted as being sourced by distributions of giant gravitons 

which in this case are M2 or M5 branes. 

4.2 The stringy exclusion principle 

It remains an outstanding problem to provide a full string theory description of 

quantum gravity on AdS^ x S5 . In particular, it is not known even how to perform 

perturbative string theory in this background. 

The SYM description is expected to be useful for small't Hooft coupling, A, and 

the small gs, large JV, large A limit should be well-described by supergravity. As we 

have reviewed in chapter one, certain protected operators in the spectrum can be 

compared and found to match between these two descriptions. 

It is straightforward to extend the analysis of the SYM spectrum to finite N. 

We can then use this as a guide to what we should expect to find in the spectrum 
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of the bulk theory away from the supergravity limit. For simplicity we consider the 

same operators as in chapter one, i.e. operators of the form : 

Ok = tr ( X ( i l X i 2 . . . X i k ) ) - traces. (4.1) 

For finite N these operators are not all algebraically independent. In particular, 

for k > N, Ok can be written as a sum of products of Oj with j < k. According 

to the interpretation of single trace operators as single particle states in the bulk1, 

this suggests that the Kaluza-Klein towers of particles should truncate at k = N. 

This idea, first investigated in the context of AdS3 black holes [68], is known as the 

stringy exclusion principle. 

Attempts to explain this phenomenon in the string theory picture led to the 

discovery of giant graviton states. The problem is that a cutoff on Kaluza-Klein 

states with momentum of order N is difficult to understand from a supergravity 

perspective since AT is encoded in the large-scale structure of the geometry (e.g. via 

the length scale L). The resolution is that particle states expand into branes which 

are extended objects and thus sensitive to the large scale geometry. As more and 

more momentum is added the branes expand further until they reach a maximum 

size given by the radius of the compact sphere, L. This mechanism can account for 

the kind of cutoff expected from the stringy exclusion principle. In the next section 

we review a brane probe calculation which gives the relation between Kaluza-Klein 

momentum and size for the expanded branes and produces a family of BPS states 

with the expected form of cutoff. 

4.3 Giant gravitons 

In this section we review the calculations by various author's [62-64] which show 

that there are stable expanded brane states in backgrounds of the form AdS x S. 

We consider the dynamics of a D3-brane in AdS*> x S5. We shall work in global 

coordinates on the AdS space. The metric is : 

1See [67] for a nice explanation of this interpretation and its limitations. 
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ds2 = - ( l + ^ j d f 2 + (l + J^j dr2+r2d&3+L2 (d62 + cos29d(f>2 + s in 2 0dft£), 

(4.2) 

where dQ2 is the metric on the three sphere S3 at constant r and t in the AdS space 

and dfi,2 is the metric on the three sphere S 3 at constant 9 and <f> on the five-sphere. 

The utility of writing the metric in this way will become clear shortly. The self-dual 

R R five-form field strength is: 

F ( 5 ) = j- (eAdS5 + eS5), (4.3) 

where tAdsb is the volume form on the AdS space and ess is the volume form on the 

five-sphere. We can use the coordinates introduced above to integrate this locally 

as : 

^ ( 5 ) = dC$ctric + dC%lgnetic (4.4) 

where 

C f i L i c = - J d t A C%lgnetic = L 4 sin4 9d<j> A e5a. (4.5) 

The labels 'electric' and 'magnetic' which we have given to the two pieces of the 

four-form potential refer to the fact that the electric part couples to a static brane 

(owing to the presence of the dt term) whereas the magnetic part does not. In order 

for a brane to couple to the magnetic potential it will have to have some angular 

momentum on the five-sphere. In fact it is easy to see that a D3-brane wrapped on 

the S3 and moving in the <f> direction will couple to this potential. 

Thus we consider an ansatz in which the brane is a spherical D3-brane at constant 

9 and moving in the 4> direction. For consistency, it should also follow a geodesic in 

the AdS space and we choose the geodesic at r = 0. Finally, we can consistently set 

the gauge field on the brane to zero. The action for this brane probe is : 

S = -T3J #ay/-det{V{G))+Tz j V(C^) 

= j-Jdt^-sin3 dyj 1 - cos2 9L24>2 + sin49L^j , . (4.6) 
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where in the second line we have substituted in our ansatz for the brane motion and 

integrated over S3. Also, we have substituted N = T3V3L 4 where V3 is the volume 

of a unit S3. 

Since 0 is a cyclic variable we replace it by the conjugate angular momentum 

and find a Hamiltonian: 

U = ^-yjp2 + tm29(p-sm2 0) 2, (4.7) 

where p = P^/N. This Hamiltonian is a sum of squares and so it is straightforward 

to minimise over 9 for fixed p. The minima are at 8 = 0 and sin 20 = p. The 

first minimum corresponds to a pointlike configuration as can be seen by inspection 

of the metric at 9 = 0. The second minimum corresponds to an expanded giant 

graviton. Both minima have the same energy : 

U = P*/L. (4.8) 

This probe calculation indicates that there are expanded brane states which 

are degenerate with massless particle states with the same angular momentum and 

energy. Since the expanded branes are compact and do not wrap a topologically non-

trivial cycle, they carry no net D3-brane charge. Thus, all their quantum numbers 

match those of the Kaluza-Klein states and we expect to find mixing between the 

two. As expected, the expanded states form a finite family of BPS states with 

< N since sin 20 < 1. 

This calculation generalises to the case of spherical M2 brane and M5 brane 

probes in AdSj x S 4 and AdS± x S7 respectively. (Note that the probe brane is 

the magnetic dual of the branes which form the background since the probe couples 

to the magnetic potential of the background.) These calculations are carried out 

explicitly in the references [62,63]. 

For M2 brane probes of AdS7 x S 4 there are degenerate minima at 9 = 0 and 

sin# = PQ/N, where 9, <f) are the corresponding angles on the four-sphere2. Mean-

2 We pick coordinates on a D-dimensional sphere such that the metric is dd2

D = d92 +cos 2 9d<j>2 + 

sin 2 0dQ2

D_2 
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while for M5 brane probes of AdS± x 5 7 , the degenerate minima are at 9 = 0 and 

sin4 9 = PQ/N. In all cases the BPS relation is given by eqn. (4.8). 

4.3.1 Giant gravitons from holomorphic surfaces 

In fact, there is a beautiful geometrical construction of a more general class of giant 

gravitons, due to Mikhailov [65]. The idea is to think of the S5 of AdS^ x 5 5 as 

being embedded in R6 ~ C 3 . We think of C 3 as a cone over S5 and then Killing 

spinors on S5 are given by parallel spinors on C 3 [69]. There are a large class of 

supersymmetric branes in C 3 given by holomorphic surfaces since such a surface is 

calibrated3 by u> A u where u is the Kahler form on C 3 . The idea is then that these 

holomorphic surfaces should lead to supersymmetric brane configurations on the Sb 

base of the cone. 

The details of the construction are contained in [65] and we just present the 

result here. Supersymmetric giant gravitons on AdS$ x S5 are given as follows. 

They are the intersection of holomorphic surfaces in C 3 with the S5 base, rotating 

at the speed of light in the direction £ \ ~ : , given by acting with the complex 

structure on the radial direction of the cone. 

It is easy to see that the giant gravitons we have considered are a special case in 

which the holomorphic surface is a flat complex two plane. In this case the inter­

section with the S5 is a three-sphere. Furthermore, since the (/>2 and <j>z directions 

lie completely within the spatial world volume of the brane, rotation at the speed 

of light in the ^ ^ direction reduces to rotation at less than the speed of light in 

the transverse 4>x direction. 

We note that if we chose a null time coordinate in the + ]TV ^ direction the 

giant gravitons would be static branes. It would then presumably be possible to 

modify the set up of [72] to directly describe these as generalized calibrations. 

3See refs. [70,71] for a discussion of the connection between calibrations and supersymmetry 

for branes. 
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4.3.2 Giant gravitons as baryons 

The construction of the previous section shows that there are rather a wide variety 

of supersymmetric giant graviton states in the bulk theory. This calls into question 

the idea that these states should be dual to the single trace operators Ok described 

previously. In fact a more detailed investigation suggests that these are not precisely 

the correct operators to consider. 

The first thing to note is that the construction of the previous section generalises 

immediately to other supersymmetric geometries which arise as the near-horizon lim­

its of branes at conical singularities. In order for such a near-horizon geometry to 

be supersymmetric, the cone must be Calabi-Yau [58,69,73]. In this case holomor-

phic surfaces are once again calibrating and the whole construction of giant graviton 

states can be precisely repeated. 

Examples of such supersymmetric near-horizon geometries are AdS5 x T 1 1 and 

various orbifold examples. In these cases, some of the giant gravitons, correspond­

ing to branes wrapping topologically non-trivial cycles, had already been studied 

independently and had been proposed to correspond to baryon operators in the 

boundary field theory [74-76]. This was the clue for the proposals of [67,77,78] to 

identify giant gravitons in general with baryon-type operators in the field theory. 

This proposal has now passed a number of tests. In particular these operators 

carry the correct R-charges and fall into finite families with cutoffs to match the mo­

mentum bound on giant gravitons. Indeed a detailed matching of baryon states and 

supersymmetric giant graviton states has been performed [78]. Also these operators 

have been shown to be orthogonal at large N, even for large values of the R-charge 

and are thus reasonable candidates for the duals of single brane states [67]. 

It may be a little confusing that we have introduced two sets of operators - the 

trace operators Ok and now some baryon operators - in the context of giant gravitons. 

The point is that these operators are different choices of bases for the chiral operators 

in the gauge theory. It is to be expected that the stringy exclusion principle should 

hold whatever choice of basis we make for the chiral operators. The Ok states are a 

good description of supergravity modes of low angular momentum. Meanwhile, the 

baryon states are a good description of the expanded giant gravitons. There is no 

September 17, 2002 



4.4. Giant gravitons in supergravity 63 

contradiction here, since the expanded brane description and the supergravity mode 

description are valid in complementary regimes - the branes are a good description 

so long as they are large and so carry large momentum whilst the supergravity 

perturbations are a good description for small angular momentum. Since there is 

no good semi-classical description which interpolates between these two regimes it 

is not suprising that we find ourselves working in two different bases of operators in 

the dual gauge theory. 

4.4 Giant gravitons in supergravity 

For the remainder of the chapter we discuss a complementary way of studying giant 

gravitons in the bulk. If Kaluza-Klein particles are expanding into brane states this 

should be reflected in the supergravity solutions. In particular, we would expect 

to see dipole moments of the R R five-form field strength excited by the presence of 

expanded D3-branes. A first signal of this can be seen in the analysis of the linearised 

perturbations of supergravity around AdS$ x S 5 . In contrast with perturbations 

about flat space, the mass eigenstates in this case are mixtures of graviton and five-

form modes. This suggests that branes rather than particles are being produced. 

(A similar effect was discussed by Polchinski and Strassler [79] in investigating the 

role of dielectric branes in the description of M = 1* vacua.) 

In the following sections we discuss solutions to the full non-linear supergravity 

equations which display the expected properties of giant gravitons. 

4.5 The Superstar solutions 

Here we review some charged black hole solutions of gauged supergravity theories 

in four, five and seven dimensions and their lifts to ten dimensional type IIB and 

eleven dimensional supergravity. These solutions have supersymmetric limits which 

generally display naked singularities from which they get the name superstars. In 

the following sections we will describe the interpretation of these singularities as 

corresponding to coherent states of giant gravitons in IIB string theory and M-
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theory. 

4.5.1 Superstars in AdS^ x S 5 

As discussed previously, type IIB string theory has a spontaneous compactification 

on AdSs x S5 and there is believed to be a consistent truncation of the theory down 

to a five dimensional gauged supergravity with M = 8 supersymmetry and SO (6) 

gauge group corresponding to the isometries of the five-sphere. Here we consider a 

further truncation of this theory to a five-dimensional M — 2 supergravity theory 

with U(l)3 gauge group. This gauge group is the maximal abelian subgroup of 

50(6). An advantage of using this theory is that the lift ansatz to ten dimensions 

is explicitly known [80]. Moreover, the U(l)3 gauge symmetry corresponds to an 

unbroken U(l)3 isometry of the ten-dimensional theory which allows us to consider 

objects with conserved angular momenta along three commuting killing angles on 

the five-sphere. These objects will be giant gravitons. 

The bosonic fields of the five-dimensional Af = 2 supergravity with gauge group 

t / ( l ) 3 are the metric, three U(l) gauge fields A1 (i = 1,2,3) and two scalar fields 

which are usefully parametrized as Xi obeying XiX2X3 = 1. 

The Lagrangian for the theory is 

E~ L C = R ~ \ E ( * r W + ^ £ * r l - j £ x r 2 ^ ) 2 - ^ ^ F ^ A I 
i i t 

(4.9) 

which leads to the equations of motion: 

d(Xi2 * ( i ) 4 ) F 1 ) = —F2 A F 3 and cyclic permutations, (4.10) 

d{X-1 * ( M ) dXt) = £ M ^ e ^ X r 1 - X~2F^ A * ( 1 , 4 ) ^ ] , (4.11) 
i 

where =5^ — 1/3. 

The five-dimensional M = 2 supergravity admits charged AdS black hole solu­

tions [81,82] which in the extremal limit can be written in the form 

ds\A = - ( H ^ H ^ f d t 2 + { H . H i H ^ i f - W + dQj), (4.12) 

A* = -qiH~ldt t = l ,2,3, (4.13) 
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Xi = Hrl(ir1H2H3)l'\ (4.14) 

where we have introduced 

f = r 4 + j ^ H 1 H 2 H 3 , (4.15) 

Hi = r2 + qi-q3l (4.16) 

The (ft's are the three t/(l) charges and without loss of generality we have chosen 

Qi > 92 > 93 > 0. In this extremal limit there is a naked singularity at r = 0. 

The mass of this black hole is [81] 

M = - ^ - 5 > (4.17) 
4G 5 

The ten dimensional lift ansatz is [80] 4 : 

ds\0 = ^Hs\A + A " 1 ^ Xr\l?dfi + / i?[Ld* + A f ) (4.18) 
i 

and F( 5) = (7(5) + *G(5) where 

^(5) = | E ( * M - A * i ) e ( M ) + f E ^ *(1,4) dXt A d(^) 
i i 

+ f E X r 2 ^ ( ^ i ) A [Idfc + A*) A * ( M ) f |f a ) (4.19) 
i 

Here, dsf 4 and €(i)4) are the metric and volume form of the five dimensional 

geometry and *(i j 4) denotes the Hodge dual with respect to the five dimensional 

metric. A is given by 

A = E X ^ 2 - (4-2°) 
i 

The three quantities fa are non-negative real variables subject to the constraint 

J2i A — 1 a n d we parametrize them by 

/ / i = cos#i, H2 = sin#icos02) A*3 = sin^sin#2- (4-21) 

where 0 < 6\ < TT/2 and 0 < 02 < 7r/2. The angles are unconstrained with 

0 < (pi < 27T. In other words each pair {ni,(f>i} are planar polar coordinates and the 

constraint on the //» describes the embedding of a unit S 5 in flat R 6 . 

4 The lift in the case without the scalar fields (i.e. Xt = 1) was first found in [83]. 
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Finally the mass of the superstar solution can be written in terms of ten dimen­

sional quantities as: 
N2 „ 

(4.22) 2 L 3 

This follows from eqn. (4.17) and the standard relations between the five-dimensional 

Newton's constant and ten-dimensional quantities (see [66]). 

4.5.2 Superstars in AdSj x S4 

There is a similar story for eleven-dimensional supergravity compactified on AdS4 x 

S7 and AdS7 x SA. The S 4 compactification results in a consistent truncation to 

an M = 4 supersymmetric gauged 50(5) supergravity in seven dimensions [84,85]. 

Here we consider a truncation of this theory to an N = 2 supergravity theory with 

gauge group U(l)2, the Cartan subgroup of 50(5). The bosonic fields of this theory 

are the metric, two U(l) gauge fields A1 (i = 1,2) and two scalar fields Xi (see 

refs. [86,87] for more details). 

The seven-dimensional M = 2 supergravity admits charged AdS black hole 

solutions which in the extremal limit can be written in the form [88], 

dsl6 = - ( H M - ^ f d t 2 + {HxHtfl* {r'dr2 + r 2 dfi 2 ) , 

A1 = (H'1 - 1) dt t = l , 2 , 

Xi = { H l H 2 f b H ~ \ 

where we have introduced 

f = 1 + ii?H'H*' 

and the <fc's are the charges of the superstar. 

The mass of this asymptotically AdS-? solution is [89] 

The eleven dimensional lift ansatz is [86,87] 

2 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

ds2

n = A 1 / 3 d s 2

6 + A " 2 / 3 ( ±-L2dvil + £ - L [L2d£ + (Ldfr + A*f 
\ i=l 

(4.29) 
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for the metric, and 

1 1 
(Xa»2<* ~ A X ° ) e(J>6) ~ T A Xoe(i,6) - 2 XI x~ * ( 1 , 6 ) d X ° A 

a=0 a=0 a 

4 

- Y E ^ 2 ^ 2 A (d& + A'/L) A *( 1 > 6 ) fJ 2 ) > (4.30) 
i=l 1 

for the field strength of the supergravity three-form. The four-sphere is parametrized 

by embedding it into R5. We split R5 into two orthogonal two-planes parametrized 

by {fa, <f>i} (i = 1,2) and a real line parametrized by /J,0. The equation defining the 

sphere is $ + ii\ + n\ = 1. The <fo's are the two Killing angles on the sphere and 

we reparametrize the fa's by 

Ho = sin#i sin02 Mi = cos#i \x2 = sm6\ cos#2 , (4-31) 

The *(i )6) denotes the Hodge dual with respect to the seven-dimensional metric 

ds*6. Also X0 = ( X 1 X 2 ) " 1 and A = £ « = o * « / 4 -

Finally, the mass of the superstar (4.28) can be re-expressed in terms of eleven 

dimensional quantities as: 

i 

where N is the number of four form flux quanta through the four-sphere. 

4.5.3 Superstars in AdS^ x S7 

Finally we consider charged black hole solutions of N = 2 U(l)4 gauge theory in 

four dimensions which is a consistent truncation of the M = 8 50(8) theory arising 

from eleven-dimensional supergravity compactified on AdS± x S7. 

The bosonic fields of the four dimensional Af = 2 supergravity are the metric, 

four scalars labelled by Xi (i — 1,2,3,4) (XiX2X3X4 = 1) and four one-form gauge 

fields A1, (see, refs. [86,87] for more details). 

This theory admits quadruply charged AdS black hole solutions which in the 

extremal limit take the form [87,90], 
ds 2

> 3 = - (HiH2H3H4y1/2 fdt2 + {HxH2HzHtf12 {f~ldr2 + r2dn2) , (4.33) 

Ai = (Hr1 - l ) d t i = 1,2,3,4 , (4.34) 
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Xi = ( H ^ H ^ f 4 H-1, (4.35) 

where we have introduced 

/ = 1 + ^HXH2H3HA, (4.36) 

i?i = 1 + - . (4.37) 
r 

The mass of this AdS± black hole is [89] 

The eleven dimensional lift ansatz which may be used to lift four-dimensional 

solutions to solutions of the eleven-dimensional supergravity equations of motion, 

is [86,87] 

ds\x = A^dsl, + £ _ L [ p d £ + ( L # i + A f ) (4.39) 

for the metric, and 

2 4 L 4 1 
Fw = Z E - A X 0 ed.3) + 2 E x *(1>3) d X i A d3 

1=1 1=1 1 

- 7 E Y2dtf A + A < / ^ ) A (4-40) 
Z i=l A i 

for the field strength of the supergravity three-form. The seven sphere is parametrized 

by seven angular variables. We start by embedding the sphere into Rs with coordi­

nates /Uj, 4>i in four orthogonal two-planes. The fa's are Killing angles and the other 

angular variables are defined through 

/ii = cos 91 H2 = sin 6X cos 92 fa = sin 9\ sin 92 sin 93 = sin 0\ cos 92 cos 03, 

(4.41) 

such that //f + / i | + /xi + ^4 = 1. Also A = Y^=i -̂ iMi • 

Finally the mass of the superstar (4.38) may be re-expressed in terms of eleven 

dimensional quantities as: 

M= \L2 E ^ (4-42) 
i 

where iV is the number of seven-form flux quanta through the seven-sphere. 
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4,6 Interpreting the superstar singularities 

In this section we would like to understand the physics of the lifts to ten and eleven 

dimensions of the superstar geometries. We shall see that the naked singularities 

have various properties which suggest that they can be interpreted as particular 

distributions of giant gravitons. 

4.6.1 D3 brane superstars 

First we shall study the lift to ten dimensions of the five-dimensional superstar of 

equations (4.12)-(4.14). For simplicity we restrict to the case where only a single 

charge qi is non-zero. Inspecting the form of the lift ansatz for the metric (4.18) we 

see that the solution has angular momentum in the (f>\ direction coming from the 

term: 

with A1 —• —{q\/r2)dt asymptotically. This is the first piece of evidence that the 

geometry contains giant gravitons. We can see more generally that the presence 

of electric charge for the gauge field A1 in a five-dimensional solution will lead to 

angular momentum in the direction in ten-dimensions. 

Next we look at the lift ansatz for the R R five-form field strength (4.19). This 

time the relevant piece to pick out is the term: 

In the absence of electric sources in five dimensions, the equations of motion 

(4.10), (4.11) imply that dF^) = 0. However, if we have a source term on the right 

hand side of the five-dimensional equation of motion (4.10) then this will produce a 

source in ten-dimensions. Explicitly, for the singly charged superstar: 

ds2

l0 = A - 1 ' 2 ! 2 ^ 
X i 

[Ld<h + A1]2 + ... (4.43) 

= \ E x i 2 * (M)
 FU A d ( t f ) A \ L d < t > i + A i i + • • • (4.44) 

d(Xi2 *(i,4) Fl) = -2qi8(r)dr A d3tt, (4.45) 

corresponding to an electric charge of strength ~ qx at r = 0. 
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Inspecting the form of F(5) from eqn. (4.44) we see that in ten dimensions we get 

a non-zero integral from: 

for a surface M$ which is extended in the fj,i,(j>i directions on the five-sphere and on 

a three-sphere enclosing r = 0 in the AdS space. These are the directions transverse 

to a spherical D3-brane wrapping the 02, (j>2 and 4>3 directions on the five-sphere at 

r = 0 in the AdS space. We conclude that charged sources in five-dimensions are 

lifted to collections of spherical D3-branes in ten dimensions. 

In fact we can do rather better and find the precise distribution of giant gravitons 

on the S5. In order to detect the presence of D3-brane charge we need to choose 

a compact six-dimensional ball, B 6 , which intersects with the D3-brane source in a 

single point. The number of D3-branes captured in this way is given by the charge 

integral: 

where M.b = dB$. 

We expect that the source is a collection of spherical D3-branes wrapping the 

02,4>2,<f>z directions on the five-sphere at r = 0 and so the transverse spatial direc­

tions are r,9i,(f>i,ai,a2 and a3. We can choose a six-dimensional compact surface 

which intersects the source as follows. First of all the surface can span the S3 

parametrized by the cVs. We can also choose the surface to span the compact (f>i 

direction. In fact, since <f>i is a Killing direction, we expect the source branes to be 

distributed uniformly along this circle and we will be counting the total number of 

branes around the circle. 

Finally we need to choose a two-dimensional compact surface in the r, 9\ direc­

tions. We could choose to integrate over the 9\ direction and bound the region at 

finite r. This would count the total number of source branes. However, the branes 

are distributed non-uniformly in the 9\ direction. In order to find the precise form 

of this distribution we choose the following integration surface: 9\ < 9\ < 9\ + 89i, 

r < r 0 , where 89\ is arbitrarily small and rQ,9\ are constants. This surface only 

91 (5) 
MB 

(4.46) 

E 5), 167rGmT 10J3 J M 5 

(4.47) 
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intersects branes near 9\ = 9\. 

In order to find the number of D3-branes we now need to perform the flux integral 

(4.47) over the boundary of the region which we have specified. This boundary lies 

in the <f>\, a.{, z = 1,2,3 directions and splits into three pieces in the r, 9\ space. Two 

of these pieces are at 9\ = 9\ and 9\ = 0° + 89i and run in the r direction. The flux 

integral through these directions vanishes as the appropriate term in F( 5) is zero. 

The non-zero contribution to the flux integral comes from the boundary at r = r 0 

and gives: 

dOi 4TT 3 L 4 7 S 3 { a . } x S i W l } "i L2 

where i denotes the interior product of a vector with a form. We can also integrate 

over d\ to find the total number of giant gravitons: 

nx = N^. (4.49) 

To find the total angular momentum carried by giant gravitons we can use the 

result Pi = iVsin 2 8X for probe giant gravitons in AdS5 x S5. We find that the total 

angular momentum of the geometry carried by giant gravitons is: 

P ^ = J d 8 l P l { 9 x ) d g - = ^ ^ (4.50) 

This is equal [66] to the total angular momentum carried by the five-dimensional 

geometry [81]. The simplest way to see this is to use the BPS relation (4.8) to relate 

the angular momentum of the giant gravitons to their energy. We find that the total 

energy of the giant gravitons is: 

N2 

E = 2ls«i - ( 4 - 5 1 ) 

which agrees with the formula (4.22) for the mass of the superstar geometries. This 

lends support to the proposal that the superstar singularities are sourced by giant 

gravitons. 

In the next chapter we will provide some probe calculations in the superstar 

background to give further support for this. In particular we will derive the result 

Pi = N sin 2 9\ for probes in the superstar background as opposed to AdS*, x S5. This 

amounts to taking into account the backreaction of the branes and is an important 

step in justifying the approach we have taken. 
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We can generalize the calculations of this section to the case of the multi-charged 

superstar. The proposal is that the source is composed of three types of spherical 

giant gravitons with momenta around the (f>i,(j>2 and ^3 directions. We find the 

distribution of each type of giant graviton individually as for the single-charge back­

ground. The result for the total angular momentum carried by each set of giant 

gravitons is simply: 

P?tal = ^ (4-52) 

and the total mass of giant gravitons is given by adding up the contributions from 

the three sets: 
N2 

^ f l l = ^ E ^ (4-53) 
i 

Once again this agrees with the mass formula (4.22) for the superstar background. 

4.6.2 M2 brane superstars 

Here we repeat the analysis of the previous section for the AdSj x S 4 superstars. We 

begin for simplicity by considering superstars that have a single non-zero charge, q\. 

The lift ansatz for the metric (4.29) assures that this solution has angular momentum 

along <j>i. 

ds2

n = A-^tf^lLdfa + A1}2 + ... (4.54) 
where A1 -» —(qi/r4)dt asymptotically. 

The dipole moment excited by the M2-brane giant gravitons is given by the term: 

*FW = \ £ X i 2
 *dfi) F(2) A A Wi + + (4.55) 

i 
For the singly charged superstar: 

d(X^2 *(1>6) F1) = -2gi5(r)dr A d5tt, (4.56) 

corresponding to an electric charge of strength q\ at r = 0. 

Inspecting the form of *F(4) from eqn. (4.55) we see that in eleven dimensions 

we get a non-zero integral 
P *F{4) (4.57) L M7 
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for a surface M7 which is extended in the fa, fa directions on the four-sphere and 

on a five-sphere enclosing r = 0 in the AdS space. We conclude that charged sources 

in four-dimensions are lifted to collections of spherical M2-branes carrying angular 

momentum in ten dimensions. 

Once again, we can find the total number and distribution of giant gravitons on 

the four-sphere. We need to use the relation: 

n i = i s r T f *F*> <4-58) 
107rGrniAf2 J Mr 

where Gu is the eleven-dimensional gravitational constant, TM2 the tension of an 

M2-brane and n\ the total number of giant gravitons enclosed. 

Proceeding as before, we choose a compact eight-dimensional surface which in­

tersects with the M2-brane sources. The surface is extended over the five-sphere 

spanned by the aj's and also along the fa direction over which the branes are uni­

formly distributed. I t is chosen to include a finite range of r, 0 < r < r0 and an 

arbitrarily small range of 9i, 9\ < 9\ < 9\+89\. Performing the flux integral through 

the boundary of this region we find: 
dni qiN2 . . . 

w r ^ v ™ Q x * m K ( 4 5 9 ) 

According to the test-brane analysis in an AdS-j x 5 4 background [62], the size 

and angular momentum of a giant graviton are related by = N sin 61. Combining 

this with eq. (4.59) and integrating over 9\, we find the total angular momentum of 

the distribution: 

^ = * r * ^ = ^ < 4 - 6 o ) 

Using the BPS relation between momentum and energy (4.8) we find the following 

result for the total energy of the giant gravitons: 
E t ° t a l = u l F ' ( 4 6 1 ) 

This agrees with the mass of the superstar geometry given in equation (4.32). 

I t is straightforward to generalize the calculation to the case of superstars with 

two non-vanishing charges: gi # 0 and q2 ^ 0. The total angular momentum carried 

by each set of giant gravitons is: 

ptotal = ( 4 6 2 ) 

24 L 4 K ' 
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and the total energy of the giant gravitons is: 

t 

Once again these results agree with the supergravity calculation of the superstar 

mass (4.32) and provide further evidence that the superstars are built out of giant 

gravitons. 

4.6.3 M5 brane superstars 

Finally we turn to the analysis of the superstars in AdS^ x S7. Following the same 

route as in the previous two sections, we start by considering superstars with only 

one non-zero charge, q\. Inspection of the asymptotic geometry: 

ds2

n = A ' ^ L ^ l L d f a + A1]2 + . . . , (4.64) 

with A1 -» —(qi/r)dt asymptotically, tells us that there is angular momentum in 

the (f>\ direction. 

Furthermore, the l i f t ansatz for contains a piece: 

J 4 
FW = o E X i 2 *W» 4) A drf A lLd& + ^ ] • + • • • ( 4 - 6 5 ) 

1 i=i 

For the single-charged superstar: 

d{Xi2 *(1)3) Fl) = -2qi8{r)dr A d2£l, (4.66) 

corresponding to an electric charge of strength qi at r=0. According to eqn. (4.65) 

this wil l l i f t to a collection of M5-brane giant gravitons in eleven dimensions, whose 

spatial world-volume is the five-sphere parametrized by 62, O3, <j>2, <fo, 4>i- To see 

the details of this we compute the number and distribution of giant gravitons on the 

seven-sphere. 

An M5-brane is magnetically charged with respect to the supergravity three-

form potential. We consider a compact five-dimensional region which intersects the 

source M5-branes and is spanned by the two-sphere with coordinates a*, the circle 

spanned by </»i and the wedge 0 < r < r0, 0 j < 9X < 6\ + 89\. The flux through the 
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surface is proportional to the number of M5-branes enclosed, 

1 167TGHTA/5 IM4

 4' ^ ^ 

where G\\ is the eleven-dimensional gravitational constant, T^5 is the tension of an 

M5-brane and ni is the total number of giant gravitons making the superstar. 

Performing this flux integral for the region we have specified, with F(4) given by 

eqn. (4.65), we find the following distribution of branes in the $i direction: 

dm Sq1N1/2 . 
— = — 7 = — cos Ox sin 0i. (4.68) 

Next we calculate the energy of the above distribution. The test-brane analysis 

of [62] gives the relation between the angular momentum of a giant graviton and its 

position on the sphere as: 

P^=NrniAex. (4.69) 

Combining this result with eq. (4.68), we find the total angular momentum of the 

distribution, 

Jo dOi 3 L 

On applying the BPS relation between angular momentum and mass (4.8) we find 

a total energy : 

This agrees with the energy eq. (4.42) of the corresponding superstar. This is evi­

dence that the asymptotically AdS^xS7 superstars are indeed composed of M5-brane 

giant gravitons. 

We can easily generalize to the case of multi-charge superstars. The total angular 

momentum carried by each set of giant gravitons is 

J f " = (4-72) 

corresponding to a total energy 

^ ^ g ! ^ , , . (4.73) 
t 

Once again this agrees with the supergravity result. 
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4,7 Discussion 

In this chapter we have described various aspects of the physics of giant gravitons. 

We reviewed their description in terms of probe branes and as states of the boundary 

field theory. We then identified certain supersymmetric geometries as corresponding 

to the fields external to a collection of giant gravitons. These superstar geometries 

contain naked singularities and we have argued that giant gravitons have the correct 

properties to act as sources for these. 

An important omission from our analysis was a proper derivation of the momen­

tum size relations for giant gravitons in the superstar backgrounds. Furthermore, 

to complete the analysis and identify the superstars as solutions of supergravity 

coupled to the world volume actions of the giant gravitons, we should investigate the 

physics of probe branes in the superstar backgrounds. This is the subject to which 

we turn in the next chapter. 
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Chapter 5 

Probing with giant gravitons 

A well known example of a consistent truncation in supergravity is the reduction of 

the M = 1 theory in eleven dimensions on a circle. This produces type I IA super-

gravity in ten dimensions. The ten dimensional theory has a solution corresponding 

to a fundamental string which when lifted to eleven dimensions becomes a mem­

brane wrapped on the circle. A complementary result is that a membrane probe of 

the eleven dimensional l i f t ansatz, which is wrapped on the circle, behaves like a 

fundamental string probe of the type I IA theory [91]. 

In the previous chapter, we found that the extremal limits of charged black hole 

solutions in five dimensional N = 2 U(l)3 gauged supergravity l i f t to collections 

of giant gravitons in ten dimensions. The (extremal) charged black hole solutions 

represent the external fields sourced by a massive charged particle. In this chapter 

we investigate giant graviton probes in ten dimensions and we ask whether such 

a probe of the ten dimensional l i f t ansatz might have an expression as a charged 

particle probe of the five-dimensional theory. 

On the one hand this seems a reasonable expectation. We start with a D3-

brane action which couples in a supersymmetric way to the type I IB supergravity. 

The l i f t ansatz preserves a U(l)3 symmetry (corresponding to the three commuting 

Killing angles fa) and so we can consider probes which carry a non-zero, conserved 

angular momentum under one of these £7(1)'s. A probe carrying such an angular 
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momentum on the sphere 1 will carry a (7(1) charge from a five-dimensional per­

spective. We might expect that we can minimize the energy of a D3-brane probe 

with a fixed angular momentum by partially solving the equations of motion in the 

compact directions whilst leaving the motion in the remaining five non-compact di­

mensions undetermined. I f so this should produce a five dimensional action for a 

massive charged particle which couples supersymmetrically to the five dimensional 

supergravity. 

On the other hand, such a result wil l require a good deal of luck. In order for 

the ten-dimensional problem to admit a general solution for minimal energy config­

urations on the five-sphere whilst leaving the AdS dynamics completely unspecified 

requires a number of remarkable 'conspiracies' in the structure of the truncation 

ansatz. In fact this is what happens and for minimal energy giant gravitons with 

a given angular momentum, the ten dimensional dynamics simplifies to that of a 

charged five-dimensional particle probe. 

This then is the main result of the present chapter - a giant graviton probe 

of the ten-dimensional l i f t ansatz behaves as a charged particle probe of the five-

dimensional gauged supergravity. We do not show explicitly that this particle probe 

action is the bosonic part of a superparticle action. However, we observe a couple 

of facts which suggest that this is the case. In particular, the charge of the particle 

is equal to its mass in agreement with the BPS relation (4.17) for the extremal 

superstar solutions. Furthermore, the scalar field couplings to the probe are of the 

correct form to source the superstar geometry. 

We see that the l i f t ansatz encodes more than just the embedding of one su­

pergravity theory into another. I t also encodes the relation between the branes of 

the two theories. I t secretly contains an ansatz for l if t ing solutions of the lower di­

mensional supergravity, dynamically coupled to a particle, to solutions of the higher 

dimensional system of supergravity coupled to a brane. 

As a warm up to the main result, we also consider massless particle probes of 

the ten-dimensional l i f t ansatz. We take massless particles with angular momentum 

1 Note that for brevity we sometimes refer loosely to the non-compact part of these geometries 

as the 'AdS' directions and the compact part as the 'sphere' directions. 
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on the five-sphere which are expected to be degenerate with giant gravitons at least 

in the pure AdS5 x S5 background. We find that these particles also behave like 

charged particles in five-dimensions with the same action as the minimal energy 

giant gravitons. Thus we confirm that the degeneracy between massless particles 

and giant gravitons persists in more complicated backgrounds. 

As a corollary of our giant graviton probe calculations, we can confirm that the 

relation between momentum and size for the giant gravitons - namely P = N sin 2 6 

- which we used in the previous chapter, persists in any ten-dimensional solution 

which arises as a l i f t of the five-dimensional gauged supergravity. This fills in a 

crucial step in the logic of the previous chapter in which we argued that giant 

gravitons could correctly account for all of the angular momentum/energy of the 

superstar geometries. 

We can go further and probe the superstar backgrounds with giant gravitons 

with a view to finding out whether the branes which are supposed to source the 

singularities can in fact reach that region of the geometry. These probe calculations 

are very straightforward since they can be performed entirely within the context 

of the five-dimensional solutions. We simply have to probe the five-dimensional 

superstars with charged particle probes2. 

Our results are somewhat surprising. In the case of the singly charged superstars, 

the probes can be brought all the way in to the singularity where they sit at a 

minimum of their potential energy. In this way we see that the coupled equations 

of motion of the gravity/brane system are solved by a collection of giant gravitons 

in the single charge background. However, for the generic multi-charge geometries, 

the singularities appear to be repulsive - at least at the level of our analysis. This 

casts some doubt over their interpretation as physical solutions sourced by branes, 

although it is possible that curvature corrections could alter this conclusion. 

As a possible resolution of this puzzle, we consider so-called dual giant gravitons 

as probes of the superstar geometries. Since these probes carry the same angular 

momenta and masses as the ordinary giants i t might be possible that they play a role 

2 This case is in contrast to accepted lore that singularities of lower dimensional supergravities 

can only be explored properly within the context of their ten/eleven dimensional lifts. 
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in resolving the superstar singularities. We find that there always exist dual giants 

at BPS minima in the superstar backgrounds and speculate that the singularities 

expand into configurations of dual giants. 

5.1 A massless particle probe 

We start by considering the physics of a massless particle probe in a ten-dimensional 

geometry of the form given in equation (4.18), i.e. in a geometry which arises as a 

l i f t of a solution of the N = 2 U(l)3 gauged supergravity in five-dimensions. Such 

a ten-dimensional geometry has a U(l)3 isometry and so we may consider a particle 

with conserved angular momenta Pi, i = 1,2,3 along the three killing angles fa. 3 

Our strategy is to partially solve the equations of motion for such a particle 

probe by making an ansatz that the particle should have no kinetic energy in the 

S5 directions beyond that which is related to the motion in the fa directions. In 

other words, we set 9\ = 92 = 0 and then solve for the values of 9\,92 such that the 

equations of motion are satisfied. 

I t is a non-trivial statement that we should be able to do this without specifying 

the form of the five-dimensional fields or the motion of the probe in the non-compact 

space. In fact, these details decouple form the 9\,92 equations of motion under our 

ansatz and we find a simple five-dimensional action describing the effective dynamics 

in the non-compact directions. 

For convenience we start with the action for a massive particle in ten-dimensions 

and later take the mass m to zero. 

S = -mJ dtyj- det(V{g)), (5.1) 

where V(g) is the pullback of the spacetime metric onto the particle's world line and 

is given by 

V(g) = 9MNXMXN. (5.2) 

Here XM are coordinates on ten-dimensional space whilst we shall refer to coor­

dinates on the five-dimensional non-compact space as x^. x° = t and X M is the 

3See section 4.5 for definitions of the S5 coordinates. 
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derivative of XM wrt. t. The metric g^^ is given by equation (4.18). 

We consider a particle with angular momenta in the fa directions but stationary 

in the 61,62 directions. The Lagrangian becomes: 

C = - m ^ - A ^ ( g ^ x - ) - A~W ^ X ^ ^ L f a + A ^ f (5.3) 

Recall that A defined in equation (4.20) depends on the five-dimensional scalar fields 

Xi as well as the sphere coordinates #i,#2-

Since all the fields in the l i f t ansatz are independent of fa, the action we have 

written down has no explicit fa dependence and we can replace fa(i) with conjugate 

momenta Pi which are conserved in time. Since we have put no restrictions on the 

motion in the five non-compact directions and we have set 0f = 0 i t is convenient to 

remain in a Lagrangian formulation for these variables. The resulting Routhian is 

found to be4: 

where we have now taken the limit m —> 0. 

We need to find the minimum of the energy with respect to the \X{. I f we define 

4We will be required to perform several Legendre transforms of this type and it will be useful 

to have to hand a result which covers all the cases at once. Suppose we have a Lagrangian of the 

form: 

C = ^[-YX^ + Z + ^LWifa] 

X = A-^L'Bi^-^C^j2 (5.4) 

where A,Bi,d, Wi,X, Y and Z are functions of r and the other angles, but not of fa. The 

Hamiltonian (or Routhian) reached by performing a Legendre transform on fa is: 

1/2 

A1'2 ™i? +Y/Ci(pi-Wi) -Z (5.5) 

where pi = P$JN. 

September 17, 2002 



5.1. A massless particle probe 82 

vectors U and V by: 

Then 

for i Ui 

JXinj for i = 1,2,3 

1/2 

| U | V 

> U . V (Schwarz inequality) 

with equality iff. U and V are parallel. Thus the minimum of the energy occurs at 

nl = {PiI Y^j Pj)i taking into account the constraint J2i $ = 1-

I f we now set the fa's to these values we find a remarkable simplification in the 

Lagrangian for motion in the remaining directions. The resulting charged particle 

Lagrangian in five dimensions is: 

C = j (-PiXiyJ-g^xW + x«AiP^ . (5.7) 

We emphasize once more that in the calculation above, the choice of five dimen­

sional geometry (and background fields) and the motion of the particle probe in 

the five non-compact directions remains arbitrary throughout. I t is perhaps rather 

surprising that i t is possible to minimize the energy of a massless probe in the com­

pact space independently of these details. Presumably this is illustrating some very 

special properties of the l i f t ansatz. I t would be interesting to understand this in 

more detail. 

In the following sections we turn our attention to probe calculations involving 

giant gravitons. We have already seen that in AdS^, x S5, the physics of giant 

gravitons mirrors that of massless particles. I f this is to happen for giant graviton 

probes of the more general class of solutions, which arise as lifts from five-dimensions, 

it will require even more special structure in order to bring about the necessary 

cancellations and decouple the physics of the branes on the sphere from the details 

of the dynamics in the remaining directions. 
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5.2 The R—R four-form potential 

If we wish to probe the l i f t ansatz of eqns. (4.18) (4.19), with a giant graviton, we 

are presented with a new technical difficulty which was not present in the particle 

probe computation. We need to know the expression for the R-R four-form potential 

to which a D3-brane couples. The l i f t ansatz is presented in terms of G( 5), a part of 

the self-dual five-form field strength F(5) = G(5) + *G^) with indices mostly in the 

non-compact space. Since the giant graviton spans a three-surface inside the S5, we 

will need the explicit expression for *G(5) also. Furthermore we need to integrate 

F(5) to produce an expression for the four-form potential C(4) satisfying dC^ = F( 5). 

Details of these rather lengthy computations are presented in this section. The most 

important results are found at the end of the section starting with equation (5.24). 

5.2.1 From to *G($) 

In order to dualise G(s) we will need to dualise several forms in ten-dimensions 

which split into a p-form, a^, in the AdS directions and a q-form, in the 

sphere directions. The following result wil l be useful: 

where *(i T4) and * (5 ) refer to Hodge duals taken in the AdS directions and the sphere 

directions respectively. 

The remaining difficulty in dualising G^) resides in the fact that the sphere 

metric is given in terms of constrained variables (the /Vs.) Consider R? spanned by 

the fa's (without the constraint ^ ^ 2 = 1) aQd w ^ n metric: 

to S by ds\ . Suppose that ei, e2, e3 are a vielbein for R3 with the metric dsf, such 

that e-i = A - 1 / 2 Ylit^^u i - e - e 3 is a n n ^ normal covector to S. Then the following 

identity allows us to dualise forms within the surface S in a straightforward fashion: 

* ( 1 0 ) ( a A 0) = (-)«< 5-*>A(«-*>/ 2(* ( M )a A * ( 5 )/3) (5.8) 

dsl = Y,X^d£ (5.9) 

Let S be the surface given by J2i A*2 = 1 a n d denote the restriction of this metric 

*(2)a = *(3)(e3 A a). (5.10) 
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Thus, for example 

Vols = *(2)1 = * ( 3 ) A _ 1 / 2 ^ / / i d / i i = A1/2W, (5.11) 
t 

j 3 

where 

W = 7̂  eijkHidfij A d/Xfc = sin A d#2 (5.13) 
ijk 

is the volume form on the sphere Yli A*i = 1 embedded in flat R3 and Zij = 

I t is now relatively simple to dualise G(5) as given by equation (4.19). We find: 

2U 
* G ( 5 ) = - L—W y\ fj,i[Ld<f>i + A*] 

i 

~ ^2^2 X i d X i A ZijWi A A*« + 

where £/ = X)i(^tV? — A X j ) . After a little more algebra we find: 

2 
L A 2 G(5) = - 7 7 j E ( I ^ - M ' ) L ¥ A ^ + I T ] 

A: 

- S D» ( ^ ) A A ^[Ld4k + A" 

+^ xMZij A ^[Ldfa + Ak] A F(2) (5.14) 

where Z{ = e ^ ^ d / A For one-forms our notation is: 

A ^ * = 2 E3 e » i * ^ ' A ^ 

5.2.2 Integrating F( 5) 

We now have the complete expression for and we can proceed to integrate to 

find C(4). Our tactic will be to guess pieces of the expression for C(4), differentiate 

and subtract from F( 5). When differentiating expressions involving the fields of the 

five-dimensional theory, we may use the five-dimensional equations of motion. This 
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reflects the fact that the Bianchi identity for the self-dual five-form, dF^ = 0, is only 

satisfied modulo these equations of motion. We encountered a similar phenomenon 

when integrating the five-form potential in chapter 2. 

We start by evaluating 

D E ix^ *(M) dx<+xr2[Ld4n+A A *(M)4)] 

= \ E RF(^2)A V *(M) dXi + ^Yl rfwr1 *<M> DX>) 
+^ E dot)A * r 2 [ ^ + A A • ( l f 4 ) * ? 2 ) + ^ ^ x r 2 ^ , A *(M)F£ (2) 

i i 

- \ E ^ L < ^+ A i \ A <«~2 *(M> 4)) (5-15) 
i 

We can use the five-dimensional equations of motion (4.10) and (4.11) to replace 

the second and fifth terms. We find: 

D E 3 \ X i l *<M> + Xi2\Ld<t>i + A'} A *(M)/72)] 

= \ E A X * r l *(i,4) d * i + | E f i M H H i A ) X j X 

i ij 

E *r A 4) A + § E d ^ ) A ^r 2[^#i + ̂ ] A * ( M ) f?2 ) 

+ ^ ^ [ L # i + ^ ] / \ F f 2 ) (5.16) 

6 
L 
2 

It is now easy to check, using the identity 

u = Y,(x?ri - AXi) = Y,xr\rf -1) 
i i 

that this differs from the expression for G^) given in equation (4.19) by 

- j i E XT\IA - \ E ^ L d ^ + A ' i A - f E X^FUA *(M)4> 
i i k^i i 
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We next evaluate 

LZi/\(J,k[Ld(j)k + Ak 

= - E d» i ^ r ) d x » L Z i A ^ L d f a + A * ] 
i ^ ' k 

- L E (f -!) - ^ E 2 ^ 0 ^ - <y) w A M£<%+ 
i \ J / k 

-2LW /\ + (^E X I ~ 3 ) L W l\ ^[Ld(j>k + Ak) 
k \ i / k 

+E (^r)LZi f \ ^ L d ( f , k + ^ A 

ij ^ ' k^j 

= ~ E d» ( ^ r ) d x » L Z i A ^[Ldd>k + Ak] - U + ?£\LW/\ nk[Ld<t>k + Ak] 

+E ( ^ ) A ^ L d ( t > * + A " \ A ^ ( 5 - 1 7 ) 
ij ^ ' 

This expression can now be seen to differ from equation (5.14) for *G(5) by 

4LW / \ fik[Ld(f>k + Ak] - L ^2 Zt / \ / x f c [L# f e + Ak] A F/ 2 ) 

k i k^i 

As well as the equations of motion (4.11), we have used various useful identities 

which are listed below for convenience: 

dZ{ = 2fnW (5.18) 

Zi A dfXj = {Sij - ViHj)W (5.19) 

Zij\ik + Zkifij + Zjkfa = 0 (5.20) 

Zj - ^ E XiHiZiiij = --^y^jXiHiZij (5.21) 
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So, adding together and *G( 5), we see that 

( L ^ 
F ( 5 ) = 

D E £ K"1 *d,4) dX, + X-2[Ldfa + A*] A * ( M ) J F? 2 ) ] 

+ ^ - E ( ^ ) L ^ A ^ [ L ^ + ^ 
4 E ^(M) - £ E *r 2 4) A 

- ^ E + ^ A F ( 2 ) + A L W A ̂ L < ^ + 

3L^ 1 V i W 6 

L 
2 

The first two terms of this expression have been written as the derivative of a 

globally well-defined potential (assuming that the Al,s are well-defined, i.e. there 

are no magnetic strings in five dimensions.) The next two terms are five forms on 

AdS5 and so are manifestly closed, but their integrals will depend on the precise 

solution and are not needed here. The sum of the final three terms is closed but 

not exact. We can (partly) integrate these terms locally for [i\ ^ 0 to obtain the 

expression 

d \ - \ & A N k + Ak) A F f 2 ) + l\\Ld<i>k + Ak) A i f 2 ) 

+ d {L^ l \ »k[Ld<t>k + Ak^j - ^[Ldfa + A1] A F f 2 ) A i f 2 ) 

Putting this together with equation (5.21) (for j = 1) we can write the five-form 

field strength in terms of a four-form potential, well-defined for n\ ^ 0, plus terms 

which do not couple to the D3-branes we consider. Our final expression is 

' (5) D E A l X i l dX> + X ? \ L d * i + A l \ A 

+ d (-^l/\[Ldd>k + Ah] A F f 2 ) + \& / \ [ L # f e + Ak) A Fl 

V Jk#3 k^2 

+ d E XifrZu / \ Hk[Ld<f>k + Ak}^j - ^[Ldfa + A1} A i f 2 ) A F f 2 ) 

- i i E ^ ( M ) - f E x i 2 p U A ( 5 - 2 3 ) 
i i 
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Prom this expression i t is easy to read off the pieces of C^y. 

i 

- \ A l\\Ldfa + Ak] A F (

3

2 ) + \& [\\Ldfa + Ak) A i f 2 ) 

k^3 Jk̂ 2 

+ ^ Y \ XifrZu A ^[Ld4k + Ak] + (7(4) (5.24) 
A ^ i k 

where C(4) is a four-form satisfying 

dcw = - ^ E ^ M ) - \E^"24)A
 HmFw - + A l ] AF(2) A ^ ( 2 ) 

i i 
(5.25) 

In section 5.3 we will consider a D3-brane at constant 9\ so the above expression 

is well-defined (for = cos #i / 0) and after some simple manipulations, we find: 
C i1k^ 3 = s i n 4

 h c o s ^ sin0 2 ( X 2 cos2 92 + X 3 sin 2 0 2) (5.26) 

Finally in this section, we comment that our expression for C(4) makes mani­

fest the fact that F(5) satisfies the Bianchi identity dF^) — 0. This is certainly a 

requirement for consistent truncation and was not previously demonstrated to our 

knowledge. In the reference [80] the Bianchi identity for G(5) is partly checked, but 

*(?(5) is not found. 

5.3 Giant graviton probes 

In this section we consider probing the ten-dimensional l i f t ansatz with giant gravi­

tons. We find that, as with the massless particle probes of the previous section, 

it is possible to find minimal energy configurations in the compact directions with­

out specifying a particular five-dimensional solution or any particular motion of the 

probe in the five non-compact dimensions. As with the massless particle probes, the 

giant gravitons behave simply as massive charged particles in five dimensions. 

Our giant graviton probe will be a D3-brane with the topology of an S3 lying 

inside the S5. More precisely, the brane will 'wrap' the 92, <p2 and </>3 directions 

whilst moving rigidly in the 4>i direction at fixed 9\. The motion of the probe in the 
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non-compact directions remains arbitrary with the assumption that i t is independent 

of 62, <f>2 and 0 3 , i.e. we only consider rigid motion of the brane. While it is not 

initially obvious that this is a consistent way of embedding the brane, we will see 

that i t does in fact give a minimal energy configuration. Specifically we find that 

the brane action reduces to a particle action in five dimensions - independent of 62, 

4>2 and (p3 and with 6\ and (j>\ constant. 

The action for the D3-brane probe is: 

S3 = - T 3 J dtdfrdfadfa y-det(V(g)) + ivC%^ + k c f ^ \ (5.27) 

Our first task in evaluating this action will be to find the pieces of the RR four-

form potential which couple to the probe. I t is straightforward to read off the 

relevant pieces of from equation (5.24). We find 

^C + ̂ JU = - ^ s i n 4 M o s 0 2 s i n 0 2 a < j > (5.28) 

where a = X2 cos2 92 + X3 sin 2 02 and $ = L(f>i + xv' A\. 

Combining this with the terms coming from the pullback of the metric the action 

becomes: 

S3 = - T 3 L 3 J dtde2d<f>2d(t>3 ^ = ^ 1 c o s ®isin ^ « 1 / 2 y - g ^ x v - ^ r ^ 1 ^ 2 

- sin 4 0X cos 0 2 sin 02a<f> (5.29) 

We stress that the action at this point appears to couple together the fields repre­

senting the position of the probe in the sphere directions with the position in the 

AdS directions in a very complicated way. In particular note the coupling between 

the angles 9i, 62 and the five-dimensional scalar fields Xi in the terms involving A 

and a. 

Since all the fields in the l i f t ansatz are independent of <f>i, the action we have 

written down has no explicit </>i dependence and we can replace (j>i with a conjugate 

momentum (#2, 2̂> <fo) which is independent of time. The resulting Routhian is 

found to be: 
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COS2 0i 

a sin 4 6x cos 0 2 sin 0 2 

A V 3 

. 2 sin 6 0 iX 2 acos 2 1 sin* 9 I 

1 a yf-g^x^Xx Pi + — tan 2 9X 

X I 
1 i 

-.1/2 
i 2 0i cos 0 2 sin 0 2 ) 2 

(5.30) 

where N = V 3 T 3 L 4 and V3 = 27r2 is the volume of a unit S3 in R 4 . 

Minimizing over 9x is now straightforward. The expanded minimum 5 occurs 

when -P,^^) 02> ^3) = cos 02 sin 0 2 for some constant Pi and iVsin 2 0i = Pi . 

This is the promised derivation of the momentum-size relation for expanded giant 

gravitons in these more general backgrounds, which was needed to f i l l in a missing 

step in the argument of the previous chapter. In section 5.6, we provide a derivation 

of the corresponding result for the eleven dimensional, single-charge superstars only, 

by considering these geometries directly rather than by probing the general l i f t 

ansatz. Probe calculations of the general l i f t ansatz in eleven dimensions along the 

lines of the calculations presented here for the ten-dimensional case are currently 

being considered in [92]. 

I t is easy to check that our result for P^1 indeed implies that <f>x is constant 

and thus that our ansatz is consistent. I f we substitute these values back into the 

Routhian and integrate over 0 2, $2 and 0 3 the resulting particle Lagrangian is: 

I t is remarkable that the complicated action of equation (5.29) should reduce to 

such a simple form when we consider minimal energy configurations in the compact 

directions. The crucial step is that the Routhian (5.30) rearranges into a sum of 

squares to make minimization over 0i simple. That this should occur independently 

5 There is also a zero-size minimum at 9\ = 0 corresponding to the massless particle probe of 

the previous section. 

- (-PxXxy/-g^xW AlPx) + x (5.31) 
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of the details of the five-dimensional solution which we are lif t ing and of the mo­

tion in the AdS directions suggests that our ansatz for the motion of the brane in 

the compact directions manages to preserve some supersymmetry in the five non-

compact dimensions. Naturally, when we introduce a particular five-dimensional 

solution, supersymmetry may be completely broken. 

Equation (5.31) is the same Lagrangian for a charged particle in five dimensions6 

which we saw in the previous section. The conclusion is that probing with the giant 

graviton is equivalent to probing with a massless particle in ten-dimensions and both 

are equivalent to probing with a charged massive particle in five-dimensions. 

5.4 Superstars and giant gravitons 

In this section we apply the giant graviton probe results, which we have found 

for general lifts of the five-dimensional supergravity, to study the ten-dimensional 

superstar geometries of [66,80]. We discussed these geometries in some detail in 

the last chapter where we argued that they represent the supergravity backgrounds 

sourced by a collection of giant gravitons in AdS$ x S5. 

In order to identify the naked singularities in the superstar geometries as corre­

sponding to a collection of giant gravitons we should check whether giant graviton 

probes minimize their energy at the singularity. We consider giant graviton probes 

carrying angular momentum in the direction. The results of the previous section 

show that i t is equivalent to probe the five-dimensional charged black holes with the 

charged particle probe of equation (5.31). We insert the fields of equations (4.12)-

(4.14) into the probe action (5.31) and look for a stationary solution (x^ = 0 for 

/j, 7̂  0.) The resulting energy of the probe is: 

6 Our giant graviton probes only cover the case of a singly-charged particle, whereas the massless 

particles could carry charges under all three t/(l)'s simultaneously. It would be interesting to 

understand whether the more general giant gravitons related to holomorphic surfaces might play 

a role here as multiply charged states. 

Pi / 1 / 2 + ft 
L Hi 

(5.32) 
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The question we are interested in answering is whether the singularity r = 0 

corresponds to a BPS minimum (Ei = Pi/L) for each type of probe. I t turns out 

that there are several distinct cases to consider. 

• 9i = 92 = 93 = 0 - A l l three types of probe have a BPS minimum at r = 0 as 

expected since this is the case of pure AdS$ x S5. 

• 92 = 93 = 0 with <7i non-zero - The probe coupling to A1 has a BPS minimum 

while the probes coupling to A2 or A3 appear to have non-BPS minima (£2,3 = 

y/1 + q2<3/L2P2,3/L) at r = 0. 

• qs — 0 with qi and g 2 non-zero - For the probes coupling to A1 or A2, the 

energy saturates the BPS bound at r = 0 but the gradient of the potential 

is non-zero indicating an attractive force at the singularity. For the probe 

coupling to A3 the energy diverges as r —̂  0 and there is an infinite repulsive 

force. 

e A l l qi non-zero - The singularity is repulsive to all three types of probe. Fur­

thermore there is an infinite repulsive force on the probe coupling to A3 (and 

on the probes coupling to A1 in the special cases q^ = 93.) 

The meaning of these results is not entirely clear. For a singly charged superstar, 

the fact that a probe with the same type of charge as the background has a BPS 

minimal energy configuration at the singularity agrees with the interpretation of the 

singularity as a collection of giant gravitons. However, in the other cases agreement 

is not reached. A possible resolution is that curvature corrections to the supergrav-

ity background and to the D3-brane action could modify the results in these less 

supersymmetric cases. 

Another possibility would be that other states that carry the same angular mo­

menta and energy as giant gravitons could appear in the bulk and change the interior 

geometry, removing the need for the superstar singularities. In the next section we 

take a first step towards understanding this possibility by probing [3,66] the super­

stars with so-called dual giants [63,64]. A next step would be to look for supergravity 

geometries with dual giants in the bulk. We haven't yet considered this in detail. 
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5.5 Dual giants in the superstar background 

We search for solutions corresponding to expanded BPS states of dual giant graviton 

probes in the superstar geometries. These results first appeared in [66] although our 

method for finding the BPS solutions is original. 

The idea of the dual giants is to couple a probe brane to the electric RR potential 

rather than the magnetic potential to which the ordinary giants couple. I t turns 

out that there are once again expanded states with angular momentum and energy 

degenerate with the giant gravitons [63,64]. A discussion of these states in a field 

theory context appears in [64]. 

For the asymptotically AdS$ x S5 superstars, the relevant probe is a D3-brane 

wrapped on the S3 at constant r in the AdS space and orbiting in the fa directions 

at fixed 61,62. As with the massless particle probes we can consider a dual giant 

with three non-zero angular momenta. 

The action for such a probe is: 

S3 = - T 8 J dtd3

ai y-det(V(g)) + C < g o a a > + 4iC$aiaaaa] (5.33) 

Substituting in the fields of the multi-charge superstar and integrating over the 

three-sphere over which the brane is wrapped, we find the following Lagrangian: 

,2, 
£ = 

N 
L 

The corresponding Hamiltonian is: 

U = 
N 
T 

( r 2 - q3y 
L4 + n 

N 
T 

L2Hi L2 
- A 

N 
T (5.34) 

We will find BPS minima satisfying % = whenever Ho vanishes. If we define 
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vectors X and Y by 

| f c ! _ M f o r i = l i 2 , 3 

XA = 

* = W ^ ^ - ^ f o r i = 1 ' 2 ' 3 

\ 3 3 

Then 

H0 = \X\\Y\-X.Y 

> 0 (Schwarz inequality) 

with equality iff X and Y are parallel (X = XY.) 

Inspecting the metric ansatz (4.18) we see that A controls the size of the sphere 

which the brane wraps and in particular expanded branes are given by A ^ 0. In 

this case, the solutions of Ho = 0 are at r, / i j given by: 

tf£f^=*-*& (5.35) 

There may also be pointlike solutions with A = 0. This can only happen at 

r 2 = 0 and thus these states cannot play a role in resolving the singularity. 

We can find the radius at which the dual giants can appear in the bulk by 

summing the three equations in (5.35) over i. This gives: 

T*= T2+^{Pi-lX)- (5-36) 

To understand whether these dual giants have a role in resolving the superstar 

singularities we would need to look for supergravity solutions which asymptotically 

approach the superstar solutions, with branes in the bulk to carry the angular mo­

mentum. I t might then be possible to use the momentum-radius relation, derived 

here for the BPS dual giants, to perform an analysis similar to that involved in 

interpreting the superstar singularities. 
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5.6 Some eleven dimensional results 

In this section we briefly report on some giant graviton probe calculations in eleven 

dimensions. We have not considered giant gravitons probes of the general eleven 

dimensional l i f t ansatze although we would expect similar results to carry across 

to these cases also (see [92]). However, we have considered giant graviton probes 

in the single charge superstar backgrounds and found that (a) the required size-

momentum relations used in chapter 4 do indeed hold and (b) the branes can sit at 

the singularity and thus provide a physical source for the solution. This mimics the 

result for the single-charge solution in ten-dimensions. 

We have also considered dual giant probes in the multi-charge eleven dimen­

sional superstar backgrounds. Once again i t is always possible to find BPS minima 

corresponding to expanded dual giants. 

5.6.1 Probing superstars in AdSj x S4 

In the following, we present a brief summary of the M2-brane probe calculations for 

the superstars presented in section 4.5. We will restrict our attention to the simplest 

case of a singly charged superstar (i.e. only qx is nonvanishing). 

Our giant graviton probe will be a spherical M2-brane inside the 5 4 at constant 

9\ and moving on a circle in the (j>x direction. We wil l first consider this configuration 

at a finite radius in the anti-de Sitter space (i.e. away from the singularity) and then 

consider taking the test-brane to r = 0. The M2-brane couples to the three form 

potential satisfying dA^ = F^. Hence to evaluate the worldvolume action, 

we need to dualize given in eq. (4.30) and integrate to find A^3\ The result is 

F ( 4 ) = ~HX sin 2 0a cos 9XLd9x A sin 0 2 cos d2Ld92 / \ [ L < % + Afa] 
o 

+ ... 
= d (^-Hx A sin 0 2 cos 92Ld92 / \ [ L < % + A ^ + ... 

= dA^. (5.37) 
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The probe action is then 

S2 = - T „ -9 - 42* - M? #202 

= j j d t - A - V W ^ (1- - A-iHxfilUi + {Hr1 - l ) ] 2 ) 

+ ^ s i n 3 0 1 ( L 0 1 + i ? r 1 - l ) 

Now fixing the momentum p = P^/N, we find the Hamiltonian 

N 

1/2 

n = 

(5.38) 

(5.39) 

Minimizing K(r,9i) with respect to 9\ yields 0i = 0 or sin0i = p for arbitrary 

values of r. However, to find a true solution of the equations of motion, we must 

also minimize with respect to the radius. Setting sin0i = p, a short calculation 

shows that the minimum energy configuration is at r=0, and that the energy of this 

configuration satisfies the BPS relation: 

H(r = 0, Sin9l=p) = j p = ^ - (5.40) 

5.6.2 Probing superstars in AdS^ x S7 

The four-form and metric corresponding to the superstars in AdS± x S7 were given 

in section 3. The probe which we shall be studying in this case is a spherical M5-

brane inside the S7 at constant 9\ and moving on a circle in the <f>\ direction. Again, 

we begin by placing the probe away from the singularity and consider the limit as 

r —> 0. The M5-brane couples to the six-form potential satisfying dA^ = 

and so our first task is to dualize given in eq. (4.40) and integrate to find A^6\ 

We find 

>F<4> = %EX ^ 2 A

A | ^ sin 5 0! cos 9xLd9x A sin 3 0 2 cos 92Ld92 L A 2 

A sin 0 3 cos 93Ld93 /\[Ld<f>j + Aj

{1)] + ... 

d\-Hl 

sin 6 0i 
A sin 3 0 2 cos 92Ld92 A sin 0 3 cos 93Ld93 ^[Ld^ + A^} 

+ .. 
= dA®. (5.41) 
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Evaluating the probe action for the configuration described above yields 

5 5 = - T M 5 J dtd92d9zd^2d^d^ \y=g + 4 $ f l 8 ^ ^ 4 + MfcMsfcfc* 

= j j d t - A " 1 / 2 sin 5 91 ( i - - A - 1 ^ / ! ? ^ ! + (JJf 1 - l ) ] 2 ) V 2 

+ ^ S i n 6 0 1 ( Z , 0 1 + f f f 1 ~ l ) 

Again fixing p = P^/N, we find the Hamiltonian 

.(6) I (6) 

(5.42) 

' ̂ - ( + tan 2 ^ ( p - sin 4 9 ^ + (1 - H^)p 
Hi \HX 

(5.43) 

Extremizing H with respect to 9\ yields minima at 9\ = 0 and sin 4 9\ = p indepen­

dent of the radius. The r-dependence of the Hamiltonian is essentially as before and 

we once again find a solution to the equations of motion at r = 0 satisfying the BPS 

relation : 

H{r = 0, s i n 4 0 ! = p ) = P<t>i (5.44) 

5.6.3 Dual giants in AdS7 x S4 

We have also considered probing the M-theory superstars with dual giant graviton 

probes. In AdSj x SA, the dual giants are spherical M5-branes, spanning the S5 of 

the AdS7 space at constant r. They orbit on the S 4 at constant 9\ and 92 with fixed 

angular momentum conjugate to the angles fc. 

The probe Lagrangian takes the following form (after integrating over the 5-

sphere): 

1/2 

c = 0-
L 

- A 1 / 2 (£) ^ + E | j - E H ^ + ~ D l 2 

(5.45) 

Here L = 2L is the radius of the AdS space and N = LL2A2TM2, where A2 is 

the area of a unit S2 and TM2 is the tension of an M2 brane. Fixing the value of 
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Pi = Pfa/N we find the Hamiltonian: 

2 
-10 

+ A ^ 
L 1 0 

L4 L6 4 ^ L 4 
(5.46) 

Expanded minima of this action saturating the BPS bound H = (N/L) Pi 

occur whenever the following equations are satisfied: 

r 2 - M (5.47) 

5.6.4 Dual giants in AfS^ x S 7 

In Ad54 x SR, the giant gravitons are M5-branes whereas the dual giants are spherical 

M2-branes, spanning the S2 of the AdS4 space at constant r. They orbit on the S7 

at constant #i, 02 and 0 3 with fixed angular momentum conjugate to the angles 

<f>i-

The probe Lagrangian takes the following form (after integrating over the 2-

sphere): 

2 \ l ' 2 

£ = » 
L - A l / % £ jtif ~ + ( ^ r 1 - 1 ) ] 5 

+ ' A + £ ^ ( L * - 1 ) (5.48) 

Here we have introduced L — L/2 as the radius of the AdS space and N = 

LL5A5T5 where A5 is the area of a unit S5 and TMS is the tension of an M5-brane. 

Fixing the value of pi = P<t>JN we find the Hamiltonian: 

L4 

(5.49) 

Expanded minima of this action saturating the BPS bound H = {N/L)Y^Pi 

occur whenever the following equations are satisfied: 
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(5.50) 

5.7 Conclusions 

We have considered giant gravitons probing solutions of type I IB supergravity which 

are lifts of solutions of five-dimensional gauged supergravity. In particular we have 

shown that the structure of the l i f t ansatz ensures that the action for a minimal 

energy giant graviton reduces to that of a massive charged particle in five dimensions. 

The mass and charge of this particle are equal, suggesting that this is the bosonic 

part of a superparticle action. So i t seems that the consistent truncation ansatz 

applies not only to the pure supergravity fields but also to allowed sources in the form 

of brane actions which can be coupled to the supergravity action. The derivation 

of the particle action in this way is similar to the derivation of type I IA string and 

D-brane actions from M-brane actions using the truncation of eleven-dimensional 

supergravity to ten-dimensional type I I A supergravity [91,93]. 

In section 5 we looked at a specific example of a solution of five-dimensional 

gauged supergravity which lifts to the superstar geometry in ten dimensions dis­

cussed in [3,66]. We found, in the multi-charge case, that charged particle probes 

are repelled by the naked singularity and hence from the results of section 4, giant 

graviton probes are repelled by the superstar naked singularity. A possible conclu­

sion might be that these singular geometries could be resolved by the presence of 

configurations of dual giant gravitons in the bulk. Alternatively i t is possible that 

higher derivative corrections to the probe action or the supergravity solution might 

change the situation, since we are investigating regions of strong curvature. 

I t is certainly interesting that i t is possible to find BPS states corresponding to 

expanded dual giant gravitons in the general superstar backgrounds. This is consis­

tent with expectations from supersymmetry since these probes break the same su-

persymmetries as the background geometry. However, in order to determine whether 

these states do play a role in resolving the singularities i t would be necessary to find 

supergravity backgrounds which match the superstars at large r but contain dual 
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giants in the bulk modifying the small r behaviour. 
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Chapter 6 

Conclusions 

In this thesis we have investigated the physics of branes in the light of new insights 

provided by gauge theory/ gravity dualities. The study of branes probing holo­

graphic gauge theories, undertaken in chapters 2 and 3, has provided information 

about the strong coupling physics on the moduli spaces of these theories. Where 

gauge theory results were available, such as for non-perturbative scaling dimensions 

of operators, our techniques have provided a new derivation of these results from an 

alternative perspective. On the other hand, specific results for the Kahler metrics on 

moduli space, at strong coupling, are new and i t would be interesting to compare to 

computations in gauge theory. Particularly intriguing is the simple equation (3.16) 

and its eleven dimensional counterparts, which suggest a simple behaviour of the 

Kahler potential under renormalisation group flow at strong coupling. 

An interesting extension to the investigations of moduli space physics would be 

to try to reproduce the fu l l low energy Lagrangian for the gauge theory on a single 

brane probe. I t should be possible in particular to incorporate superpotential terms 

and kinetic terms for motion off moduli space into a ful l supersymmetric Lagrangian, 

at least in the regime of large vevs in which the Higgs bosons are very massive and 

can be consistently integrated out. We have made some progress in understanding 

the potential terms in this regime [2] and i t would be interesting to see how far 

this can be pushed. Likewise, i t is possible to make some progress with the kinetic 

terms for motions of the probe off moduli space. We can even reproduce the scaling 

dimension of the massive superfields in the LS flow [2] by putting the metric on a 
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subspace orthogonal to moduli space into a Kahler form. However, i t has proved 

difficult to find a metric on the ful l space of fields which is of the expected form and 

this remains a worthwhile problem for future study. 

Whereas in the early chapters our brane probe results led to new information 

about field theory, in chapter 4 and 5 the flow of ideas was mainly in the other 

direction. Motivated by puzzles arising from the known spectrum of BPS operators 

in field theory, the authors of [62] were inspired to find a new class of light states in 

string theory on backgrounds with RR flux, which are represented by compact branes 

carrying no topological charge. The existence of such states leads to fascinating 

possibilities regarding the description of quantum gravity on spaces with RR flux. In 

particular, detailed investigations of the spectrum instigated in [77] and continued 

in [78] confirm that we need to treat the compact branes quantum mechanically. 

Furthermore, the correct microscopic description of these states is likely to be in 

terms of non-commutative bound states of graviton modes expanding according to 

the Myers effect. The implications that extended objects and/or matrix valued 

fields should play a role in quantizing Kaluza-Klein gravity in these backgrounds 

seem sure to lead to developments in our understanding. 

Our contribution to this subject has been to show that these branes are evident 

even at the level of classical supergravity solutions. The description in supergravity 

adds extra weight to the arguments that Kaluza-Klein states do expand and also 

admits the possibility of a different way to investigate these states. One example of 

this is a conjectured duality between configurations with a small number of back­

ground branes and a large number of giant gravitons to configurations with a large 

number of background branes and a small number of giant gravitons which are based 

on a study of the relevant superstar geometries [94]. 

We have also found results about giant graviton probes in some more general 

backgrounds and seen that the degeneracy with Kaluza-Klein modes persists. We 

have found that these probes are naturally related to charged particles in lower 

dimensional gauged supergravities. We believe that this observation, which gener­

alises similar remarks about simpler circle reductions (see e.g. [91]), could lead to 

new geometrical insights into the old problem of consistent truncations. 
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In summary, whilst there is much still to learn about branes we can feel sure 

that they will play a central role in our understanding of quantum gravity. We have 

enjoyed finding surprising new ways in which branes fit into the beautiful structure 

of string theory and look forward to future developments with great interest. 
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