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A B S T R A C T . 

Hopf Hypersurfaces 

Jose Kenedy Martins 

This thesis is concerned with Hopf hypersurfaces of Kahler and nearly Kahler man

ifolds and gives special emphasis to the cases of hypersurfaces of complex projective 

spaces and of the 6-sphere endowed with its nearly Kahler almost complex struc

ture. Although there is already a wealth of investigations done in the case of complex 

space forms and the 6-sphere, a ful l classification of these hypersurfaces in the former 

spaces was done under assumption of constancy of the rank of its focal map. Here, 

the classification is revisited and this assumption is removed although a complete 

classification is still not obtained. The characterization of the Hopf hypersurfaces 

of the 6-sphere as tubular hypersurfaces around almost complex curves is used to 

determine among these hypersurfaces special examples which have constant mean 

curvature or are Einstein hypersurfaces. The invariants needed to decide when a pair 

of hypersurfaces of and CP" are respectively G2-congruent and holomorphically 

congruent are determined and this result is applied to characterize the hypersurfaces 

of these spaces whose Hopf vector fields are also Killing field. Finally, the linearly 

full almost complex 2-spheres of with at most two singularities are determined 

up to G2-congruence of their directrix curves and this is used to determine the space 

of linearly ful l almost complex 2-spheres of with suitably small induced area. 
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Along the Journey of the Hero 

He who evolves 

Spiritualises all matter 

But he who is descending to unconciousness 

sees only matter everywhere 

Knowledge, feelings and thoughts 

Are all still matter 

Though subtler 

How could a carp understand a shark ? 

The dolphin shall certainly go far 

But he shall only master the Journey 

When ignorance and passion and goodness 

Are all left behind 

Thereafter, there shall only be 

Real Love 

Real Wisdom 

Truth. 

(by Ahky) 
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Nivarlina and Zamhar 
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Introduction. 

The study of hypersurfaces or curves of Riemannian manifolds has always been 

facilitated by the fact that these are the submanifolds of lowest co-dimension or 

dimension. However, we are far from achieving any kind of unified treatment in 

the investigation of these particular submanifolds despite of the impressive progress 

made in the 20th century. Nevertherless, mathematicians have obtained enumerable 

results in this area by considering special ambient spaces or by making further 

assumptions to be satisfied by these submanifolds. 

In this piece of work we shall consider real hypersurfaces of special ambient spaces 

such as the 6-sphere and the complex projective spaces and also hypersurfaces of 

more general spaces like Kahler and nearly Kahler manifolds. The 6-sphere is a spe

cial example in this category since it is endowed with a non-Kahler nearly Kahler 

almost complex structure. Nevertherless, an almost complex structure of the ambi

ent space yields in each of its oriented hypersurfaces a special tangent vector field 

which is obtained by applying the almost complex structure of the ambient space 

to a unit normal vector field of the hypersurface. Henceforth, we shall name this 

special vector field as the Hopf vector field of the hypersurface. 

A hypersurface of a nearly Kahler manifold is said to be a Hopf hypersurface when 

the foliation given by its Hopf vector field is geodesic, in other words, when the 

integral curves of its Hopf vector field are geodesies of the hypersurface. 

Some beautiful and elegant studies of these hypersurfaces have already been carried 

out throughout the last twenty years and to the best of my knowledge i t was Yoshiaki 

Maeda [31] who in 1976 published the first results concerned with these hypersurfaces 

for the case of the complex projective spaces. In 1982, Cecil and Ryan [18], assuming 

the constancy of the rank of the focal map of the hypersurface, characterized the 

Hopf hypersurfaces of the complex projective spaces as open subsets of tubes around 

complex submanifolds. In 1986, Kimura [29] used the result of Cecil and Ryan and 

the work of Takagi [39] on homogeneous hypersurfaces of the complex projective 



spaces to characterize the Hopf hypersurfaces of constant principal curvatures as 

tubes around some special complex submanifolds of this complex space form. In 

1989, Berndt [2] has obtained similar characterizations for the Hopf hypersurfaces of 

complex hyperbolic space forms. Finally, in 1995 Berndt, Bolton and Woodward [5 

gave a complete characterization of the Hopf hypersurfaces of the 6-sphere as tubular 

hypersurfaces around almost complex curves, these curves being fully classified in 

9 . 

I t is worth mentioning here that most of the content of each chapter of this thesis is 

made up of original research and we have opted for distributing among the sections 

any basic background material accordingly to the needs of each particular chapter. 

In the sequel, we give a brief layout of this work. 

In chapter 1, we state some of the main results already known about the charac

terization of Hopf hypersurfaces of complex space forms and of the 6-sphere. We 

give particular attention to the Hopf hypersurfaces of this sphere, determining spe

cial examples of hypersurfaces with constant principal curvatures, constant mean 

curvature and also those which are Einstein hypersurfaces. 

In chapter 2, we use the transitive action of the excepcional Lie group G2 on the 

6-sphere to obtain a special type of rigidity for hypersurfaces of this sphere. Namely, 

given an isometric immersion / : M —)• 5^ of a non totally umbilic hypersurface M of 

the 6-sphere whose second fundamental form has rank greater or equal to 3, we prove 

that this immersion is extendable to an element of G2 if and only if its derivative 

maps the Hopf vector field of M to the Hopf vector field of / ( M ) . This result is firstly 

obtained for the case of a Hopf hypersurface in section (2.2) and then generalized 

to any hypersurface in section (2.3). Carrying on with congruence of hypersurfaces, 

we obtain a new proof for a similar theorem on rigidity of hypersurfaces in CP" 

obtained by Suh-Takagi in [38 . 

The last two sections of chapter 2 are dedicated to giving an application of these 

rigidity results above to determine the hypersurfaces of the 6-sphere and of the 



complex projective spaces whose Hopf vector fields are Killing fields. 

In chapter 3, we give the first steps on the way to investigate Hopf hypersurfaces in 

more general Riemannian manifolds. We do this in section (3.2) whereby we start 

by characterizing the complex space forms as the Kahler manifolds all of whose 

geodesic hyperspheres are Hopf hypersurfaces. Still in this section, we consider the 

reflection map and the push maps induced by a hypersurface of a Kahler manifold 

and then we determine necessary and sufficient conditions to be satisfied by these 

maps in order that the hypersurface be a Hopf hypersurface. 

In section (3.3), we obtain some geometrical properties of Hopf hypersurfaces of CP" 

which as well as being relevant on their own also suggest that the assumption used 

by Cecil-Ryan to characterize Hopf hypersurfaces as tubes can actually be proved. 

This is exactly what is done in section (3.4), that is, we use all the geometrical 

understanding achieved about Hopf hypersurfaces of this complex space form in 

order to prove that if we assume that every continuous principal curvature function 

defined on the hypersurface admits a corresponding continuous principal vector field 

then the rank of the focal map of a Hopf hypersurface in this space is indeed constant. 

We prove this by means of a special construction of vector fields along geodesies 

normal to the hypersurface. Therefore, our approach to this problem is to deal with 

the Hopf hypersurface from a quite extrinsic geometrical viewpoint. 

Chapter 3 is closed with the important fact that the l i f t of Hopf hypersurfaces under 

a holomorphic Riemannian submersion n : W W are also Hopf hypersurfaces. 

This can provide us with a means to obtain examples of Hopf hypersurfaces in more 

general Kahler manifolds which could possibly be non tubular hypersurfaces. 

As we have mentioned above the Hopf hypersurfaces of the 6-sphere are characterized 

as open subsets of tubes around almost complex curves. Thus we are also motivated 

to obtain explicit examples of such curves. For this reason, in chapter four, we 

are mainly interested in finding all the linearly ful l almost complex 2-spheres of 

with at most two singularities. In order to do this, we construct in section (4.4) 



an example of such a curve for each given sigularity type and then we prove that 

any other such a curve has directrix curve C^-QCiuivalent to that one given in our 

example. In the last section of this chapter we determine the moduli spaces of these 

curves with suitably small area. 



Chapter 1 

Special Hypersurfaces of S^. 

1.1 Introduction. 

Some authors have investigated Hopf hypersurfaces in complex space forms, obtain

ing a good wealth of results which essentially characterize these hypersurfaces as 

tubular hypersurfaces around complex submanifolds. Although the 6-sphere is not 

a Kahler manifold, it can be endowed with a nearly Kahler almost complex structure 

and a complete characterization of the Hopf hypersurfaces of as open subsets of 

tubes around almost complex curves is known. We state the results concerned with 

these characterizations in section (1.3) and in section (1.4) we determine those Hopf 

hypersurfaces of the 6-sphere with particular geometrical properties. 

Let M be a submanifold of a Riemannian manifold M. We shall use, throughout 

this thesis, the notation ( ,) , V, P to denote the metric, Riemannian connection 

and curvature tensor respectively of M whilst all the corresponding induced objects 

on M shall be denoted simply by (,) , V, R. 

The normal bundle _LM of M in M is a manifold. In fact, i t can be seen as a vector 

bundle which is a subbundle of the restriction to M of the tangent bundle of M. 

We shall name the restriction of the exponential map of M to the normal bundle of 



1.1 Introduction. 6 

M , given by G{p,v) := expp{v) for {p,v) e±M, as the normal exponential map 
of M. I t is possible to prove that if M is complete then G is defined for all (p, v) 
and if M is compact then G maps diffeomorphically a neighbourhood OM oi M C 
_L M onto a neighbourhood of M C M . In order to simplify our notation we shall 
consider the map $r '-^M —> M obtained from G as 

^r{p,v) = G(p,rrj), (1.1.1) 

where J}M denotes the unit normal bundle of M. 

Definition 1.1.1 For each r > 0 we define the tube of radius r around M as the 

image set ^ri^)- 1'^ particular, if M is a hypersurface of M, we say that any open 

subset Ms C $5(±^M) is a level hypersurface associated to M. 

If M is compact then for suflBciently small r, Mr is a submanifold of M and the 

restriction of G can give us a diffeomorphism from | (p , v) £lM with \v\ = r | onto 

Mr C GiOu). 

We shall use extensively throughout this thesis the notation and abreviation 7 = 

J(p,n) to denote a geodesic of M parametrized by the archlength and satisfying the 

initial conditions 7(0) = p e M and 7(0) = 77 G± JM. In terms of the normal 

exponential map G we have 

lip,r,){r) = G{p,rrj). (1.1.2) 

Definition 1.1.2 Let TT denote the canonical projection of the normal bundle of M 

onto M. We say that a point q e M is a focal point of multiplicity v > 0 of M 

if there exists a point (p, rj) elM such that q = G{p, rj), and the Jacobian of G has 

nullity ^ 0 at (p, 77). 

Remark 1.1.1 When M is a hypersurface of a Riemannian manifold M and ^ is a 

unit local normal vector field defined on M, we shall consider throughout this thesis 

the focal map of M with respect to the field ^ defined as follows. Let W denote the 
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set of all the points q E M such that the geodesic 7(g_ )̂ contains at least one focal 

point of M. Then the focal map takes each point q E W to the first focal point of M 

situated in the corresponding geodesic 7(9,^). ^ 5 we shall see further ahead in this 

chapter, it turns out that if M is a Hopf hypersurface of a real or complex space form 

then the focal map is defined on M and its focal points occur at the same distance 

of the hypersurface, thus in this case the focal map is just for a convenient real 

value r. 

For the next definition and elsewhere in this thesis we shall only be considering 

orthogonal (almost) complex structures of the manifolds involved. 

Definition 1.1.3 Let M be a Riemannian manifold endowed with an orthogonal 

almost complex structure J. Let M be a hypersurface of M. Let ^ be a local unit 

normal vector field on M. The tangential vector field U := e X{M) will be called 

the Hopf vector field of M and we shall say that M is a Hopf hypersurface of 

M if the integral curves of U are geodesies of M, that is 

Vc/[/ = 0. (1.1.3) 

We shall make an extensive use of Jacobi fields throughout this work. These have 

been a powerful tool employed by differential geometers to approach a large range of 

mathematical issues. I t is very easy to find a good wealth of the basic theory about 

these fields in the literature, however, we shall use quite often in this thesis the 

characterization of a Jacobi field as a variational vector field defined by a geodesic 

variation and we shall also make some use of the following property. 

Lemma 1.1.1 Given p G M, let rj denote a local normal vector field defined on M 

and let Arj be the shape operator of M with respect r]. Then a Jacobi vector field 

W(s) defined along a geodesic 7 = 7(p,„)(5) of M, shall satisfy the conditions 

W{0) e TpM and W{0) ^^,(^(0)) G l ^ M , (1.1.4) 
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if and only ifW{s) is the variational vector field corresponding to a geodesic variation 

f : (-e,e) x [0, r] —> M of j complying with the following conditions 

f{t, 0) G M for each t e (-e, e) and ^ { t , 0) 6±^(,,o) M. 

In this case, we shall say that W is a M-Jacobi field of M . 

(1.1.5) 

In addition, it is important to highlight here the following facts. Since the M-Jacobi 

field W is orthogonal to 7, the variation given in the lemma yields locally a surface 

of M , which implies = §1% and consequently [y,W] = 0. Therefore, if f 

denotes a local unit normal field on the tubular hypersurface Mr around M, then 

the corresponding shape operator A^^ of Mr satisfies: 

{A(W)(r) = -iV,W)ir). 

A proof for Lemma (1.1.1) can be found for instance in [21 . 

(1.1.6) 

We finish this section giving a general illustration of a tube or a tubular hypersurface 

in order to set up the typical geometrical frame that we have in mind for most of 

the results to be obtained in this thesis. 

ambient 
space M 

tubular 
hypersurface M 

cr/ ^^^^ 
/ integral curve \ geodesic 

— /of the Hopf vector field 
/ ^ \ ^\ 

\ o f length r 

/ focal set M 
/ of the hypersurfaccv 

Figure 1.1: A tube Mr around the submanifold M of M. 



1.2 Nearly Kahler hypersurfaces of R^. 

1.2 Nearly Kahler hypersurfaces of R'̂ . 

In this section we shall first recall how any hypersurface of the Euclidean space W 

can be given an almost complex structure J. This is due to the fact that MJ inherits 

a special structure (cross product as defined below) when viewed as the imaginary 

part of the Cayley numbers. Secondly, using this almost complex structure, we shall 

see that the 6-sphere and MP are the only hypersurfaces of W which are nearly 

Kahler, that is, the almost complex structure J satisfies the condition (1.2.5) below. 

On the other hand, as will be made clear in Lemma (1.3.2), the study of a Hopf 

hypersurface of a nearly Kahler almost complex manifold is facilitated in the sense 

that, in this case, the integral curves of the Hopf vector field are geodesies of the 

hypersurface if and only if this vector field is principal. Therefore, it is a natural 

question to argue which hypersurfaces of (R'', x ) shall be nearly Kahler. 

Let us recall how to define a cross product on M^. The Cayley numbers (also called 

octonians) are defined in terms of the quaternion numbers H by (!) = EI © H. This 

set can be endowed with a normed algebra structure by defining the multiplication 

of their elements as 

(a, 6).(c, d) := (oc - db, da + 6c). (1.2.1) 

This multiplication induces a vector cross product on W = (viewed as the 

imaginary part of O) as follows. We first define a cross product x : O x O ^ 

by 

xxy = ^(yx) = ^{yx - xy) = -^{xy - yx) = -^(xy). (1.2.2) 

This map is clearly bilinear and alternating (x x x = 0). Moreover, when restricted 

to W X it yields a vector cross product x on W which is related with the ordinary 

Euclidean inner product (,) by the following elementary relation. 

u X (v X w ) ( u X v) X w = 2(u, w)v - (w, v)w - (w, v)u. (1.2.3) 
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Remark 1.2.2 Calabi (c.f. [17]) has shown that the triple scalar product {u x 

V, w) is skew-symmetric. He actually considers this property as part of his axiomatic 

definition of an abstract vector cross product. 

It follows from this remark that, given a unit vector u e , the linear operator 

Ĵ ^ : R ^ R'' defined by Ju{v) = u x v is skew-adjoint. Moreover, using (1.2.3) we 

see that Ju is anti-involutive, that is, |y±= —7. Therefore, Ju • ^ u-^ is an 

isometry and Ju has kernel spanned by u. 

Let M be a hypersurface of R^ and we consider M endowed with the induced metric 

and connection (,) and V respectively. Given ^ G M , let ^ denote a local unit 

normal vector field on M defined around q. Then we can define an isomorphism Jg 

o f T . M b y 

J,{v) :=^xv. (1.2.4) 

Thus, we get a tensor J which is an orthogonal almost complex structure on M. 

In general, this tensor is not parallel, that is, V J 7̂  0. However, in the following 

proposition, we shall determine for which hypersurfaces of R'', the almost complex 

structure obtained in this way satisfies the nearly Kahler condition 

(VxJ)X ^ 0. (1.2.5) 

R^ is clearly one such hypersurface since (R^, J) is isomorphic to . 

Another example is the 6-sphere. Indeed, this follows from the fact that {'VxJ)y is 

the component of X x y tangent to S^, which is a straightforward consequence of 

the definition of J. Hence with the standard metric < , > and the corresponding 

Riemannian connection V is a nearly Kahler manifold. Henceforth, we shall be 

always considering endowed with these structures just defined. 

I t turns out that these two examples are the only ones, as we prove next. 

Proposition 1.2.1 The only nearly Kdhler hypersurfaces ofW are the open subsets 

ofS^ orR^. 
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Proof: 

Let ( M , J) be a nearly Kahler hypersurface of (R^, x ) , where J is defined as above. 

Let V and V denote the Riemannian connections of W and M (induced) respec

tively. 

Let q e M and let ^ be a unit local normal vector field on M. Let A = denote 

the shape operator of M. Then for any smooth unit vector field X G X(M) , we 

have 

VxiJX) ={Vxi)xX-h^x{VxX) 

= X x A X ^ ( x { V x X ) . (1.2.6) 

On the other hand, using the nearly Kahler condition we get 

Vx{JX) = VxiJX) + (AX, JX)^ 

= Cx{WxX) + (AX,JX)C (1.2.7) 

Thus, it follows from (1.2.6) and (1.2.7) that 

{AX,JX)^ = X X AX. (1.2.8) 

Taking the cross product of (1.2.8) with X and using (1.2.3) we obtain 

AX = aX + PJX. 

In particular, i f X is a principal vector of A, say AX = XX then so is JX because 

P = (JX,AX) = X(JX,X) = 0. 

Therefore, given a point ^ G M , we can find an orthonormal basis 

{ c i , 62, 63, Jei, J e 2 , Jes} of TgM with each vector being an eigenvector of A. 

Assume Acj = XjCj for j = 1, 2,3. Then 

A{ei + Cj) = XiCi + XjCj = a{ei + ê ) + p{Jei + Je^), 

which implies that the eigenvalues are the same, say A. Similarly, we can verify 

that the eigenvectors Jci , J e 2 , Jcs correspond also to a same eigenvalue, say {j,. 
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Finally, choosing i ^ j we get from the following equation that X = fi. 

A{ei + Jcj) = Xci + fiJej = a{ei-{- Jcj) + p{Jei — Cj). 

Therefore, the hypersurface M is totally umbilic and consequently it is an open 

subset of either a hypersphere or a hyperplane. O 

The exceptional Lie group G2 is defined as the group of automorphisms of the Cayley 

algebra ((9,.), that is, G2 = {g e GU(R) / g(x.y) = g{x).g(y) V x,y e O} but 

using elementary properties of O and G2, we can actually think of this group as the 

subgroup of 50(7) which preserves the vector cross product of R^, that is 

G2 = {ge S0{7)/g{a x 6) - ^(a) x ^(6) V a, 6 G R^}. (1.2.9) 

Definition 1.2.4 A G2-basis of W is an orthonormal basis { e i , . . . ,67} for this 

space satisfying the relations 

ei X 62 = 63, ei X 64 = 65, 62 X 64 = ee, x 64 = 67. (1.2.10) 

Hence, if ei, 62, 64 are orthonormal vectors of R^ such that 64 -L ei x 62 then ei, 62,64 

determine a unique G2-basis for R''. Furthermore, an element of 50(7) lies in O 2 if 

and only if it maps any (and hence every) 02-basis to a 02-basis. 

It follows from equation (1.2.3) and the relations (1.2.10) that the elements of a 

02-basis for R'' satisfy the following multiplication table 

1 2 3 4 5 6 7 

1 0 63 - 6 2 65 - 6 4 - 6 7 66 

2 - 6 3 0 ei 66 67 - 6 4 - 6 5 

3 62 - e i 0 67 - 6 6 65 - 6 4 

4 -ee - 6 7 0 61 62 63 

5 64 -e? ee - e i 0 - 6 3 62 

6 e? 64 - 6 5 - 6 2 63 0 - 6 1 

7 65 64 - 6 3 - 6 2 61 0 

(1.2.11) 
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1.3 Classification theorems. 

In this section we state the main results known on Hopf hypersurfaces of and 

complex space forms. The next two lemmas are proved in [5] and are important 

basic facts when dealing with Hopf hypersurfaces. 

Lemma 1.3.2 M is a Hopf hypersurface of a nearly Kdhler manifold M if and only 

if the Hopf vector field is a principal curvature vector field, that is, A^[U) = all 

where A^ is the shape operator of M with respect to ^ and a is a function on M 

which we will call the Hopf principal curvature. 

Lemma 1.3.3 The Hopf principal curvature of a Hopf hypersurface of is con

stant. 

Proof: 

By the Codazzi equation we obtain grad{a) = (Ua)U. Consider the 4-dimensional 

orthogonal complementary distribution to U on M: X> =±U C TM. Recall that 

the gradient vector field satisfies < grad(a),Z >= Z(a) for every smooth section 

Z e X{M) of the tangent bundle TM. Thus for any Z e V we have Za = 

(Ua) < Z,U >= 0 and in order to prove the lemma we just need to show that 

Ua = 0 since TM = D®U. But, in particular, for X and Y 'mVf^ X{M) we have 

X,Y]a = X(Ya) — Y{Xa) = 0, so that if Ua 0 on an open subset of M then the 

distribution V would be integrable there and since it is J-invariant this would give 

us a 4-dim almost complex submanifold of which does not exist according to the 

proof given in [26]. Hence, Ua = 0 and a = constant. Q 

Remark 1.3.3 In the case of Hopf hypersurfaces of non-Euclidean complex space 

forms Maeda [31] has also proved that the Hopf principal curvature is locally con

stant. 

Example 1.3.1 The totally geodesic almost complex curves of are exactly the 

2-spheres obtained as the intersection of with the 3-dimensional vector subspace 
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ofW which are closed under the vector-cross product x ofW (associative 3-planes). 
Furthermore, the open subsets of a tube around such curves are Hopf hypersurfaces 
all of whose principal curvatures are constant. 

Indeed, in order to see the first part of our example let us consider a totally 

geodesic almost complex curve S of S^. Since S is totally geodesic, there exists 

a 3-dimensional subspace V of R'' such that S = V Ci S^. Given p 6 5, we can 

choose an orthonormal basis {Xi,X2} of TpS such that X2 = J{Xi), for S is an 

almost complex curve. 

Now, since {p,Xi,X2} is a basis of V, in order to prove that V is an associative 

3-plane we just need to check the x-invariance of these basic vectors which is a 

consequence of the following equations. 

p x X j = J{Xj) eTpS CV 

X1XX2 =XiX J{Xi) 

= X,x{px X i ) 

- - X i X ( X i x p) 

= peV. 

Conversely, let V denote an associative 3-plane and consider the totally geodesic 

2-sphere = VnS^. Without loss of generality we can assume that V is generated 

by the vectors {61 ,62 ,63} of the standard basis of R'' because the group O 2 of 

automorphisms of R'' which preserve the x-product also takes canonical basis to 

canonical basis and preserve the almost complex structure of S^. Thus for p = 

we have 

Je3(Te3(5^)) = span{Je,{ei), Jes{e2)} 

= span{e2, - 6 1 } 
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Thus, if p G V and g is an element of G2 such that g{V) C V and gcs = p, then 

= T,S\ 

Therefore this 5^ is a totally geodesic almost complex curve of S^. 

To prove the second part of our example, we consider an open subset Mr of a tube 

^r{-^^ S) around S = VdS^ where V is generated by the vectors {ei , 62,63}. Let us 

fix a point q G Mr. By the definition of tube q = 7(p,^)(7') for some point (p, 77) eJ-^S. 

Let {Xi = p,X2,Xs} be an orthonormal basis for V such that X^ = Xi x X2 and 

X 4 = 77. Then there exists a unique element g £ G2 such that g{Xi) = ê , so that 

we can assume without loss of generality that p = 63 and = 64. Thus, 

7(5) = (cos 5)63 + (sin 5)64 (1.3.1) 

7(5) = —(sin 5)63 + (coss)e4 (1.3.2) 

J(i{s)) = l{s)xi(s) = eT (1.3.3) 

As a special case of the proof given for Theorem (1.3.3), we can define along 7 the 

vector fields Tj = (coss)ej for j = 1,2 and Tj = (sin5)ej for j = 5,6,7 in such a 

way that they are Jacobi fields satisfying the conditions (1.1.4). Moreover, using 

(1.1.6) we have 

A(ej) = (tanr)ej for j = 1,2 

^{^3) = - ( c o t r ) e j for j = 5,6,7. 

Since the point q is arbitrary, these equations prove that the principal curvatures of 

the tubular Mr hypersurface around S are tanr and — cotr. Furthermore, since 

^(ey) = -(cotr)e7 and U{q) = J{%{r)) = 67, 

we have A(U) = - ( co t r ) f / , in other words, the Hopf vector field U of Mr is a 

principal field and hence by Lemma (1.3.2) is a Hopf hypersurface. 
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The next four theorems show some results already known about the classification 
of Hopf hypersurfaces in complex space forms. The first one, is just a consequence 
of the results on homogeneous hypersurfaces of a complex projective space obtained 
by Kimura [29] and Takagi [39 . 

Theorem 1.3.1 (Hopf Hypersurfaces in Complex Projective Spaces) Let M 

be a connected Hopf hypersurface ofCP^ (n > 2) with constant principal curvatures. 

Then M is holomorphic congruent to an open part of one of the following real hy

persurfaces of CP^ : 

(i ) a tube of radius r G (0, | ) around the canonically (totally geodesic) em

bedded CP^ for some /c G { 0 , 1 , . . . , n - 1}, 

(ii ) a tube of radius r G (0, | ) around the canonically embedded complex 

quadric 

r ) n - l _ SO{n+l) 
^ ~ SO{2)xSO{n-l)' 

(iii ) a tube of radius r G (0, | ) around the Segre embedding of CP^ x CP^ in 

CP", wheren = 2k^l, 

(iv ) a tube of radius r G (0, | ) around the Plucker embedding of the complex 

Grassmann manifold C02,3 in CP^, 

(v ) a tube of radius r G (0, | ) around the canonical embedding of the Hermi-

tian symmetric space in CP^^. 

Theorem 1.3.2 (Hopf Hypersurfaces in Complex Projective Spaces, [18]) 

Let M be a connected orientable Hopf hypersurface o/CP" with Hopf principal cur

vature fi = —2cot(2r). Assume that the focal map $r of M has constant rank k 

on M. Then k is even and each point q e M has a neighbourhood V such that 

$r(-l-^ V) is a complex submanifold o/CP" and V lies on the tube of radius r over 

$r(-L^ y)- Furthermore, if M is compact then its focal set N = $7-(-L^ M) is a com

plex submanifold o/CP" and M lies on the tube of radius r around N. Conversely, 

every open subset of a tube of constant radius over a complex submanifold of CP^ 

is a Hopf hypersurface. 
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Theorem 1.3.3 ( Hopf Hypersurfaces in 5^, [5]) Let M be a connected hyper
surface of . Then M is a Hopf hypersurface of if and only if M is an open 
subset of 

(i ) a geodesic hypersphere, 

(ii ) a tube around an almost complex curve of . 

Theorem 1.3.4 (Hopf Hypersurfaces in Complex Hyperbolic Spaces, [2]) 

Let M be a connected hypersurface of CH^. Then M is a Hopf hypersurface with 

constant principal curvatures if and only if M is an open subset of 

(i ) a tube of radius r G around CH^, for 0 < k < (n - 1), 

(ii ) a tube of radius r G M"*" around MJT^, 

(iii ) a horosphere in Ci7". 

We are compelled to give here a concise proof for at least the first part of Theorem 

(1.3.3) because most of the ideas and constructions involved in this proof shall be 

referred to when proving some new results later on in this work. Although we shall 

not write here the proof for the converse of this theorem, it is worth mentioning 

that the main idea used in [5] to prove it is to show that the rank of the focal map 

of a connected Hopf hypersurface of is constant. 

Proof of Theorem (1.3.3): 

(<^) Open subsets of Tubes are Hopf Hypersurfaces. 

Let Mr be an open subset of the tube $r(J-^ S) around an almost complex curve S 

of S^. 

I f S is degenerate to a single point, that is, Mr is a geodesic hypersphere, then Mr is 

totally umbilic and in particular is an eigenvector of the shape operator of M^. 

Thus, by Lemma (1.3.2), is a Hopf hypersurface. 
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Now, assume S is non-degenerate. Let p G 5 and 77 G-L^ S. The geodesic 7 = 
of can be written as 

7 ( 5 ) = cos(s)p + sin(5)77. 

Thus, the unit vector ^ := 7(r) is normal to the hypersurface at the point 

q : = 7(r ) . 

Given X G Tp5^ H {R?]}^, we can define a Jacobi field Wx along 7 complying with 

the conditions 

Wx{0) = X^ (orthogonal projection of TpS^ onto TpS) 

W'x(O) = X-^ - A ^ X ^ (orthogonal projection of TpS^ onto ± p 5 ) , 

where denotes the shape operator of S with respect to 77. 

Let us denote by By(s) the parallel transport of a vector v G TpS^ along 7. Then 

the Jacobi field Wx can be written as 

Wxis) = COS{S)BXT{S) + sin(5)P;,x_^^;,T(s). (1.3.4) 

Thus, we can distinguish two particular cases. The first being when X is an eigen

vector of Ar,, say A^jX = XX. This implies 

^x{s) = (coss - Xsms)Bx{s). 

The second case is when X lies in {±p S) n (Rry)-*-, for which we have 

Wxis) = isms)Bx{s). 

By applying (1.1.6) to these equations and writting the principal curvature A as 

A = tan(^), we conclude that BX{T) is a principal vector of A^ with eigenvalues 

tan(r ± 9) and — cot(r) corresponding to the first and second cases respectively. 

Since S is an almost complex curve we have J{±pS) C-LpS, which implies that JTJ 

lies in (±pS)n (MJ])-^ and hence it follows from the nearly Kahler condition that 

is the parallel transport of Jr} along 7. Therefore, using the second case above and 

(1.1.6), we see that is an eigenvector of A^. Q 
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1.4 Special Hopf hypersurfaces of S^. 

In this section we use the characterization of the Hopf hypersurfaces of the 6-sphere 

given in the previous section, to determine those which have constant mean curva

ture, or constant principal curvatures and also those which are Einstein spaces. 

Carrying on with the procedure and notations above for calculating the principal 

curvatures on an open subset of a tube M C $r(-L^ S), let us now identify the Hopf 

hypersurfaces which have constant mean curvature and also those ones which have 

constant principal curvatures. 

Proposition 1.4.2 Let S be an almost complex curve of and let ±X{p,'r]) = 

±tan{6) denote the principal curvature functions corresponding to the shape operator 

Arj of S where (p, rj) varies on the unit normal bundle of S in S^. Then the function 

X (equivalently 6) is constant if and only if S is totally geodesic in . 

Proof: 

Let {Xi, X2 = JXi} denote an orthonormal frame of tangent vectors of S and let 

h be the second fundamental form of S m . First, we will prove that h satisfies 

h{Xr,X2) = J{h{X,,X,))=:v2. (1.4.1) 

h{XuX,) = -h{X2,X2)=:vi (1.4.2) 

Using that J is a nearly Kahler structure we have 

0 = {VxJ){X) = {VxJ)(X) + h{X, J X ) - Jh(X, X). (1.4.3) 

Equation (1.4.1) then will follow from the fact that the normal component of the 

right hand side of equation (1.4.3) must be zero, that is, h(X, J X ) = Jh{X,X). 

Putting X = JY in this equation we get h{JX, J X ) = -\-Jh[X, JX), and so 

h{X,X) = -Jh{X, J X ) = -h{JX, J X ) , 

from which equation (1.4.2) follows. 
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We note in passing that (1.4.2) is also an immediate consequence of the assumption 
that S is an almost complex curve because i t is well known that, in a more general 
situation, every almost complex submanifold of a nearly Kahler manifold is minimal. 

Observe that (1.4.2) and (1.4.1) are just saying that the image of the second funda

mental form, when non-trivial, is the 2-dim subspace generated by the unit normal 

vectors 
Vi V2 

r)i := and 772 : = . 
Vi V2 

Moreover, i f we define Ai := X{p,r]i) := \vi\ = \v2\, then it follows from (1.4.2) and 

(1.4.1) that: 

A , , ( X i ) = AiXi 
(1.4.4) 

^ , , ( X 2 ) - - A i X 2 . 

Now, suppose that S is not totally geodesic, then we can choose a point (p, 77) G-L 

such that h 0 { that is, Vi ^ 0 ^ V2} on a, neighbourhood W of (p,77) in ±^S. 

Thus, the unit normal fields 771 and 772 are defined in a neighbourhood ^ of p in 5. 

Let us consider vector fields ^1 and ^2 on S such that {771,772, ^ 1 , ^ 2 } is an orthonormal 

frame of normal fields on V. Then, we can define a curve ( = (p, ((t)) in the unit 

normal bundle ±^5* by 

l^i + ^fiT 

I f we denote by := the shape operators of S with respect to the family of 

unit normal vector fields ((t), then (1.4.1), (1.4.2) and (1.4.4) yield 

(Mx.),x,) = (h{x„xM) = i-if^%j^7r 
Vi + Ki 

where i,j G { 1 , 2}. In other words, X i and X 2 are eigenvectors of and 
/ • 

- A i 

Thus, 
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and hence the principal curvature function A is non-constant along the curve (p, ({t)) 
of the unit normal bundle of S*. 0 

Remark 1.4.4 Looking at the proof of Proposition (1.4.2) we see that the result 

stated there does not require the function X to be constant on -L S but it only demands 

that X be at each base point p e S independent of the choice of normal vector 

r] G-Lp S. Indeed, this is clear from (1.4.5) since that equation shows that A(p, ((t)) 

is not constant even for a fixed base point p. In other words, we can restate that 

Proposition saying that the function X{p, rf) depends only on the point p if and only 

if S is totally geodesic in . 

For the sake of completeness we must point out that the results in Proposition (1.4.2) 

and Remark (1.4.4) are valid for the more general situation of any submanifold 

of any Riemannian manifold as far as m > l̂ l̂̂ t̂ ) ^j^jg jg gQ because the 

main part of the proof given above depends solely on the existence of a normal 

vector orthogonal to the first normal space which has dimension less than or equal 

to !^il^ti) Nevertheless, it was convenient having written down the proof for an 

almost complex curve of the 6-sphere since this is the case we are most interested 

in this chapter. 

In Example (1.3.1) we saw that the tubular hypersurfaces of around totally 

geodesic almost complex curves have constant principal curvatures, now using Re

mark (1.4.4) we give a converse for this fact. 

Corollary 1.4.1 The Hopf hypersurfaces of constant principal curvatures of are 

the open subsets of either the geodesic hyperspheres or the tubes over the totally 

geodesic almost complex curves. 

Proof: 

Indeed, according to the proof of Theorem (1.3.3) the principal curvatures of a 

tubular hypersurface Mr around an almost complex curve S are of type - cot(r) 

and cot(r -|- 9) respectively, where ^ is a function defined on the curve S in such 
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a way that d=tan(^) are the principal curvature functions of S. Therefore, Mr has 
constant principal curvatures if and only if 0 is constant and hence the Corollary 
follows from Proposition (1.4.2). O 

As a consequence also of Proposition (1.4.2) we are going now to identify which 

Hopf hypersurfaces are Einstein (that is, the Ricci tensor is a multiple by a constant 

of the metric tensor) and which ones have constant mean curvature. 

Corollary 1.4.2 The Einstein Hopf hypersurfaces of S^ are the open subsets of 

(i ) a geodesic hypersphere. 

(ii ) a tube of radius r = arctan{\/2) over a totally geodesic almost complex 

curve of S^. 

Proof: 

The geodesic hyperspheres of S^ are Einstein spaces because we have more in general 

that geodesic spheres in S^ have constant curvature. 

Let M be a Hopf hypersurface of S^, say M is an open subset of a tube of radius 

r around an almost complex curve S. Then the Hopf principal curvature of M is 

a = — cot(r). 

Given p G 5, let 77 be a local unit normal vector field on S. Let us choose a local 

orthonormal frame {77, X 3 , X 4 , X 5 } of normal vector fields on 5 and also a local 

orthonormal frame { X i , X 2 } of principal vector fields on S with respect to 77, say 

Ar^Xi = tan{e)Xi and A ^ X 2 = -tan{e)X2. 

\i A = A^ is the shape operator of M with respect to a unit normal field ^ on M , 

and if for each i G { 1 , . . . , 5}, P^ = Pi(r) denotes the parallel transport of X^ along 

the geodesic 7 = l{p,r,){s) from 7(0) = p to j(r) = q e M, then according to the 
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proof of the first part of Theorem (1.3.3), we have 

ABi = tan{r + e)Bi 

< AB2 = tan{r - 6)82 (1-4-6) 

ABi = -cot{r)Bi (i=3,4,5). 

Let R and S denote the curvature and Ricci tensors of M, respectively. Let us denote 

also by < , > , the induced metric on M. As has constant curvature 1, it follows 

that the Gauss equation reduces to: 

< R(X, Y)Z, W >= < X,W ><Y,Z > - < X,Z ><Y,W > 
(1.4.7) 

< h{X, W), h(Y, Z)> - < h(X, Z), h{Y, W) >, 

where X, Y,Z,W G X(M) and h is the second fundamental form of M. Then we 

can rewrite the Ricci tensor as 

S{X, Y) = 4.<X,Y> + <AX,Y> trA- < AX, AY > . (1.4.8) 

Using equations (1.4.7) and (1.4.8) we can explicitly calculate the Ricci tensor on 

the basis {Bi, . . . , ^ 5 } of TqM as follows 

S{Bi,Bi) = 4 [tan(r + 61) + tan(r - 6) - 3cot(r)]. tan(r + 6*) - tan2(r + 6*) 

< S{B2,B2) = 4 + [tan(r + 6*) tan(r - 9) - 3 cot(r)]. tan(r - 9) - tan2(r - 9) 

S{Bi, Bi) = 4- [tan(r + (9) tan(r - 9) - 3cot(r)]. cot(r) - cot2(r) (i=3,4,5) 

(1.4.9) 

The equations (1.4.9) tell us that if M is an Einstein space then tan{r -I- 9) and 

tan(r — 9) are both equal to either — cot r or 2 cot r. Thus, in any case, the function 

9{p,rj) is constant and hence by Proposition (1.4.2), 5 is a totally geodesic curve, 

that is, ^ = 0. Moreover, when M is Einstein, equations in (1.4.9) also give us a 

unique radius for the tube, namely, r = arctan{y/2). Q 

Hypersurfaces of constant sectional curvature of real space forms have been studied 

by several authors (Fialkow [23], Struik [37], Burstin [15]) and are essencially char

acterized as geodesic hyperspheres and developable hypersurfaces. However, if we 
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consider the additional structure of being Hopf hypersurfaces then we can do the 
following remark. 

Remark 1.4.5 In the second type of Einstein Hopf hypersurfaces in the Corollary 

above, the sectional curvatures with respect to the planes spanned by the vectors 

{ P i , P2} and { P i , P 3 } are respectively equal to 3 and 0. Thus these hypersurfaces do 

not have constant curvature and hence, using that Riemannian manifolds of constant 

curvature are Einstein, we see that the geodesic hyperspheres are the only Hopf 

hypersurfaces of S^ which have constant sectional curvature. 

Definition 1.4.5 Let M be a hypersurface of an almost complex Riemannian man

ifold ( M , ( , )J) and let ^ be a unit normal field on M. We say that M is 

pseudo-Einstein if there exist functions a, 6 : M —)• R such that the Ricci ten

sor S of M satisfies 

5(X, Y) = a(X, Y) + b{X, JO{Y, JO-

The Einstein condition on a Hopf hypersurface is too severe, as we can see from the 

corollaries above. Nevertheless, we can argue if we could obtain some stronger result 

by imposing the less stringent condition of being pseudo-Einstein. However, unlike 

the situation in CP", investigated by Cecil-Ryan ([18]), this extra condition does 

not add anything new to our previous results. Indeed, if M is a pseudo-Einstein 

Hopf hypersurface of S^ contained in a tube over an almost complex curve 5, it 

follows from (1.4.9) that b = 0. Thus, M is actually an Einstein hypersurface. 

Corollary 1.4.3 The Hopf hypersurfaces with constant mean curvature c 0 are 

the open subsets of either a geodesic hypersphere with distance (polar) arctan(^) or a 

tube of radius r = arctan(^^"'"^y"'"^^) over a totally geodesic almost complex curve. 

Corollary 1.4.4 The minimal Hopf hypersurfaces of S^ are the open subsets of 

either the totally geodesic hyperspheres or the tubes of radius r = arctan(^) over 

the totally geodesic almost complex curves. 
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Indeed, these corollaries follow f rom the fact that their extra assumptions on the 

hypersurface imply that the function A(p, rj) is constant since the principal curvature 

functions at a point q = 7 ( r ) are given by 

a = - co t ( r ) , p = tan(r -\-9), 7 = tan(r - 6). 

Furthermore, the specific values for the radii in corollaries (1.4.3) and (1.4.4) are cal

culated directly f rom the condition on the mean curvature and the constant values, 

— cot(r) and tan( r ) , for the principal curvatures. O 

I t is wor th remarking in passing that Miquel ([32]) has obtained a particular version 

of the last two corollaries above for the case of complex space forms. He has proved 

that the compact Hopf hypersurfaces of constant mean curvature in a non-Euclidean 

complex space form are geodesic hyperspheres. 



Chapter 2 

Congruence of Hypersurfaces. 

2.1 Introduction. 

We start this chapter investigating a special type of r igidity for the hypersurfaces 

of the 6-sphere, namely we determine when are two hypersurfaces of the 6-sphere 

G2-congruent in the sense explained below. Our inspiration to tackle this problem 

came f rom a series of three papers [39],[38] and [19] where holomorphic congruence 

of hypersurfaces of complex projective spaces is studied. 

I n order to make our approach to r igidi ty or congruence of hypersurfaces as clear as 

possible, we give below what this means for us. 

Def in i t ion 2.1.1 Let M be a Riemannian manifold and let M be a Riemannian 

submanifold of M (with the induced metric). Let G denote a group of isometrics of 

M. We say that M is r igid in M with respect to G if every isometric immersion 

f : M M is extendable to an isometry of the ambient space M, in other words, 

there exists an isometry f G G such that f = f \M- IIT' this case we shall say that 

the manifolds M and f { M ) are G-congruent. 

I n real space forms, the r igidi ty of hypersurfaces whose second fundamental forms 

have rank greater or equal to 3 at every point is a well known classical result that 

26 
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can be found for instance in volume V of the Spivak's work [36 . 

The papers of Takagi mentioned above give a similar version of this classical rigidity 

for the case of complex space forms. We shall give later in this chapter a different 

rather classic approach to this problem in order to produce an alternative proof of 

Takagi's result. 

We dedicate the two last sections of this chapter to do some applications of these 

r igidi ty results. There, we determine the hypersurfaces of the 6-sphere and of the 

complex projective spaces whose Hopf vector fields are Ki l l i ng fields. 
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2.2 G2-Congruence of Hopf hypersurfaces in S^. 

Considering that G2 is the group of the isometrics of which preserve the al

most complex structure, we can naturally be curious to know what are the (72-rigid 

hypersurfaces of the 6-sphere. 

Defini t ion 2.2.2 Let g : M —> M be an isometric immersion of a Riemannian 

manifold M ^ " ~ ^ into a nearly Kahler manifold (M^™, J) and let ^ be a normal vector 

field on the hypersurface M = g{M) of M. Then we can define on M a s tructure 

vector field U and tensors ( f ) and A of type (1,1)^ as follows 

4>{X) = g:\Jg.X- < Jg,X,i > l ) 

A(X) = - g : \ ^ x i ) . 

R e m a r k 2.2.1 It is clear that the structure vector field U corresponds to the Hopf 

vector field g^U of g{M) with respect to the normal field f . 

When M is a submanifold of M and g is taken as the inclusion map then we shall 

denote these induced structures on the hypersurface M by C/, A. In this case 

they are more simply expressed by 

U = J^, (2.2.1) 

(f){X) = J X + < X , [/ > (2.2.2) 

We shall make extensive use later on of some basic properties, listed below, of these 

induced structures. A l l of them are easy to be checked and essentially they are 

just consequences of the definitions above and the properties of the almost complex 

structure J. We should also point out that they are also valid for the induced 

structures (U, (j)). 

(I)^X = -X + {X,U)U, (2.2.3) 
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(<^X, ct>Y) = {X, Y ) - ( X , U){Y, U), (2.2.4) 

( f ) is skew symmetric, (2.2.5) 

Ker(^) = span{U}, (2.2.6) 

( f ) : U-^ —y U-^ is a linear isometry, (2.2.7) 

{Vx(f>)Y = {AX, Y)U - (y, U)AX. (2.2.8) 

R e m a r k 2.2.2 Note that up to a choice of the normal vector field for the hypersur-

face, the tensor (j) determines and is determined by the vector field U. 

When M = and g is the restriction of a linear map (lying on SO(7)) to a 

hypersurface M of 5^, as w i l l be the situation in most of the results ahead, then we 

w i l l rather use the explicit definition of J in terms of the vector cross product of M'' 

and these structures can be rewritten as 

gUg = 9q^ 9^, (2.2.9) 

g4>iX)=gqxgX-^{X,U)gC (2.2.10) 

In this case the rate of change of the Hopf vector field w i l l play an important role 

wheii dealing w i t h the induced structures ((/>, ̂ ) because i t gives a direct relation 

between these structures and the corresponding second fundamental forms A and 

A. Namely 

VxU = -(j)AX + X X e + ( X , U)q, (2.2.11) 

g'^xU = -g^AX + g X x g i ^ { X , U)gq. (2.2.12) 

These equations can be easily obtained by using the Riemannian connections V and 

V of R'' and respectively. For example we obtain (2.2.11) as follows. 

VxU =Vx(J(,)-{AX,U% 

= Vx((/ X e) - {Vx(q X i),q)q - {AX, U% 

= X x ^ + q x V x i - ( X x ^ , q } q - ( A X , U)^, 

= - M X + X x^+{X, U)q. 
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Propos i t ion 2.2.1 Let M be a hypersurface of and g G SO(7). Consider the 
tensors (U, U, ( f ) , ( j ) ) defined on M as above. Then g E G2 if and only if cf) = 4>-

Proof: 

I f G C2 the conditions w i l l arise naturally f rom the definitions, indeed for every 

q e M and X G TqM we have 

gUq = gqx g^ = g{q x ^) = gUq 

g^{X)=gqxgX + {X,U)gi 

= g{qxX) + {X,U)g^ 

= # ( X ) . 

{<=) 

A = A because g is an isometry of S^. This together wi th the assumptions gives 

g{q xX)=gqxgX for every X G T^M (2.2.13) 

g(( x X ) = g ( x gX for every X G TqM. (2.2.14) 

Indeed, the first equation comes f rom equations (2.2.2) and (2.2.10), and the second 

one comes f rom equations (2.2.11) and (2.2.12). 

Now, since U xX = {qx^)xX = ^x JX = ^ x ( j ) X , we obtain 

g(U x X ) = g{^ X ( f ) X ) = g^x g(j)X [from (2.2.14) 

= g^x g{q x X ) = g^ x (gq x gX) [from (2.2.13)] 

= gU X gX. (2.2.15) 

I f 9 G M and X = Xq G T ^ M is a unit tangent vector orthogonal to Uq then 

elementary calculations using the basic properties of the cross-product of W show 

that the ordered set 

{ q , ^ , U , X , q x X , i x X , U x X } 

is a G2-basis for ^ . Observe that equations (2.2.13).(2.2.14) and (2.2.15) say that 

{9q,9(.,9U,gX,g{qxX),g(^ x X),g{U x X)} 
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is also a G2-basis and hence g ^ G2. Q 

L e m m a 2.2.1 Let g € S0{7) and let M be a hypersurface of endowed with the 

induced structures {(f), (f),A = A) as described above, then (f)A — (j)A = A(f) - A(f). 

Proof: 

I f M is total ly umbilic then the lemma holds tr ivial ly. Thus assume that M is 

not total ly umbilic. Let a and b be distinct eigenvalues of A and let X and Y be 

corresponding principal vector fields of M , then f rom (2.2.11) and (2.2.12) we have 

-a{cl>X, F ) + ( X X ^, Y) = (WxU, Y) = -a(4>X, Y) + {gX x g^, gY) 

and 

- 6 ( < ^ r , X ) + ( y X = ( V y f / , X ) = -b{i>Y,X) + {gY X g^,gX). 

As (f) is skew symmetric, we get 

a ( ( 0 X , y > - {^X,Y)) = {A- X e,y> - {gX X 9i,gY), 

b({^X, Y) - (4,X, Y)) = {gY X g^, gX) - ( F x f , X ) . 

A n d thus we have 

{a-bmx,Y)-(4>X,Y)) = 0. 

Which implies 

( ( ^ - ^ ) X , Y ) = ii. 

Therefore, since A is symmetric, we conclude that {(j) — 4>) leaves all the eigenspaces 

invariant and consequently the equality (l)A — (pA = A(f) — A(f) holds on every 

eigenspace, and hence everywhere. O 

When M is a Hopf hypersurface of then in accordance w i t h Theorem (1.3.3) M 

is an open subset of the tube ^^(-L^S') around an almost complex curve of which 

is given in tu rn as the focal set of the focal map of In this case, we can 

give an explicit description of the integral curves of the Hopf vector field U oi M. 

Indeed, given a point q of M , say the end point of the geodesic 

^ = 7(p,77)(^) = cos(r)p + sin(r)77. (2.2.16) 
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Consider the curve a{t) of M , passing through q, given by 

(J{t) = 7 M * ) ) ( 0 = cos(r)p + sin(r)(5(^), (2.2.17) 

where 6{t) — cos(t)r] 4- sin(t)p x 77 w i t h t = ^r^. 

I n the following equations we use dot and pr ime to denote derivatives wi th respect 

to the variables 5 and t respectively. Now, by elementary calculations we obtain 

a' — s in(r)^ ' 

= - sin(t)77 + cos(t)p X T] = p X 6. (2.2.18) 

U{a) = ax e(a) 

= (cos(r)p + sin(r)^) x ( - sin(r);? + cos(r)6) = px 5. (2.2.19) 

Thus (7 is the integral curve of U through q and this proves the 

L e m m a 2.2.2 The flow Tt of the Hopf vector field of a Hopf hypersurface M C 

^r{-^^S) is given by 

^t{lip,,){r)) = 7(p,5(t))(0 = cos(r)p + sm(r)6(t). (2.2.20) 

I n particular, we note in passing that the integral curve of the Hopf vector field 

starting at the point 7(p,r7)(r) is geometrically originated f rom the rotation of the 

complex 2-plane at p spanned by the vectors {77, JT]}. 

Defini t ion 2.2.3 We shall name as generic Hopf hypersurfaces of those ones 

which are neither the geodesic hyperspheres nor subsets of a tube around totally 

geodesic almost complex curves. 

Propos i t ion 2.2.2 Let g be an isometry of (g G S0(7)) and let M be a generic 

Hopf hypersurface ofS^, then the following conditions are equivalent 

(i ) M = g[M) is a Hopf hypersurface, 
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( i i ) g{p X X ) = gp X gX for every p e S and X G TpS^, 

( i i i ) g maps the Hopf vector field U of M to the Hopf vector field U of M 

(U = U), that is g{q x ^) = gq x g(. 

Proof: 

( m ) =^ {i) 

The isometry f = g \M'- M M maps the geodesies which are integral curves of 

U to geodesies which are integral curves of U and hence by definition M is a Hopf 

hypersurface. 

{ii) <^=^ {iii) 

As an isometry of 5^, g maps the geodesic 7(p,<j)(r) to the geodesic 'y{gp,g6){r) thus 

f rom equations (2.2.18) and (2.2.19) we obtain respectively 

ga' = sm{t)gr] + cos{t)g{p x rj). (2.2.21) 

Uga = go- X 7i^gp,gs){r) 

= gcrx 9i{p,5){r) 

= 9(^x 9^ 

= gpx g6 

= cos{t){gp X grj) - sm{t)[gp x g{p x r])]. (2.2.22) 

Thus i f we use that g G 5 0 ( 7 ) and the vectors {gri,gp x g{p x 77)} are orthogonal 

to the vectors {g{p x r]),gp x gri}, then the equivalence {ii) <^=^ {iii) follows f rom 

equations (2.2.21) and (2.2.22). Note that under the assumption of either condition 

(i) or ( i i i ) , condition (ii) is t r iv ia l ly satisfied for every X G TpS, because in both 

cases the isometry g w i l l map the almost complex curve S into the almost complex 

curve g{S). 

( i ) = > ( n ) 

Since g is an isometry, i t takes the focal set 5 of M into the focal set S of M , 

moreover in accordance w i t h Theorem 1.3.3, the hypersurfaces M and M lie on 

tubes around the almost complex curves given by these focal sets. 
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I n order to prove that g and J commute along 5 we first recall that i t follows 
f rom equations (1.4.2) and (1.4.1) in Proposition 1.4.2 that the image of the second 
fundamental fo rm h (h) of S (S) spans a 2-dimensional J-invariant subspace Vi (Vi) 
of the normal space ±pS (±gpS). 

Secondly, as S (S) is an almost complex curve we also have that this normal space is 

J-invariant, thus i t can be decomposed as a direct sum of two J-invariant subspaces 

±pS = Vi®V2 

However, since g is an isometry of 5^, mapping 5* to 5, we have 

giTpS)=TgpS g(±pS)=lqpS g{V,)=V, g{V2) = V2 

thus using that g G 5 0 ( 7 ) plus the orthogonal properties of J we see that these maps 

commute on the subspace TpS and on each subspace Vj and hence they commute 

on TpS^ for every pE S. Q 

I t is worthwhile observing that the condition (ii) in the proposition above gives a 

way to improve this result by proving that actually an element g G 5 0 ( 7 ) satisfying 

those conditions lies in fact in C2. Although the following examples show that this 

would not be true for every Hopf hypersurface of S^, we wi l l prove below that i t is 

true for any generic Hopf hypersurfaces. 

E x a m p l e 2.2.1 Let M be a geodesic hypersphere of centred at the point 64. 

Consider the element F of 5 0 ( 7 ) defined by F{ej) = Cj for j / 3,7, ^ ( 6 3 ) = ej, 

F{ej) = —es, then F is the unique extension of the isometry f — F \M'- M ^ M 

and obviously F is not an element of G2. Moreover, F maps the Hopf vector field 

to itself. 

E x a m p l e 2.2.2 Let M be a Hopf hypersurface contained in a tube around the almost 

complex curve S = n where = 5 p a n { e 3 , 6 4 , 6 7 } . Consider the map F G 
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SO{7) given by F(e , ) = cj for j = 3,4,7, F{e,) = e^, F{e2) = e^, F{e^) = eg, 
F{eQ) = e^, then F ^ G2 and F is the unique extension of the isometry f = F \M'-
M —)• M . Furthermore, F does not map the Hopf vector field U of M to the Hopf 
vector field of F{M), that is U y ^ U . 

In order to see the later part of each example above we just remark that as F is a 

linear map then f rom (2.2.19) we have that at each point q = ^{p,r]) ^ M and F{q) 

the Hopf vectors are given respectively by 

Ug=pxr] and F{Uq) = Fp x Frj. (2.2.23) 

Therefore, Uq = Uq i f and only i f 

F{p X 7]) = Fpx Fr], 

f r o m which the properties stated in the examples follow. 

Propos i t ion 2.2.3 Let M be a generic Hopf hypersurface of the 6-sphere. Let 

g G S0{7), then M = g{M) is a Hopf hypersurface if and only if g ^ C2. 

Proof: 

( ^ ) 

I f ^ G G2 then g maps the Hopf vector field U of M to the Hopf vector field U of 

M so that f rom Proposition 2.2.2, M is a Hopf hypersurface. 

( = * ) 

I f M is a Hopf hypersurface, then f rom Proposition 2.2.2 we know that U = that 

is 

9{Q ^ = 9Q ^ 9i for every q e M (2.2.24) 

As we have just noted in the proof of Proposition 2.2.1, in order to prove that g € G2 

i t suffices to find a unit vector X = Xq e TqM orthogonal to Uq and satisfying the 
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following equations 

g(q x X ) = g{q) x g(X) (2.2.25) 

X X ) = ^ ( 0 X g{X) (2.2.26) 

giU x X ) = g(U) x g{X) (2.2.27) 

Consider M as an open subset of the tube $r(-J-^5) of radius r G (0, | ) around 

an almost complex curve 5. We have seen in Theorem 1.3.3, that the orthonormal 

eigenvectors {Bi} {i = 3 , 7 ) of the shape operator A of M at a point q = 7p,7y(r) G 

M are just the parallel transport Bi{t) along of orthonormal vectors {X^ G Tp5^}, 

where 

{ X i =p^X2 = r],Xs=pxr], X4, X^ = p x X^, XQ, X j = p x X^} 

is a 02-basis for M^, such that {XQ,X7 = p X XQ} is a basis for TpS and {X2 = 

rj, Xs = p X r], X4, Xs = p X X4} is a basis for J.^5. 

We w i l l show now that X = Bg = BQ{r) satisfies the equations (2.2.25) (2.2.26) and 

(2.2.27) and therefore g is an element of O2. Consider the vector field 

= g(jr) X Be) - g% x gBe, 

then L is a Jacobi field along 7,,. Indeed, 7^ = —jj^ and so L = —L. Moreover L 

also satisfies 

^(0) = g{p X Xe) - gpx gXe, 

L(r) = g(q x BQ) - gq X gB^, 

i ( 0 ) = g{r] X Xe) -gr]X gX^. 

I t follows f rom Proposition (2.2.2-ii) that for every curve cr in 5 and every vector 

field Z G X(S^) along cr, we have 

g{G X Z) = gax gZ. (2.2.28) 

Considering Z as parallel vector field along a and differentiating this last equation, 

we see that for each vector X G TpS and Z G TpS^, 

g(X xZ)=gX X gZ. (2.2.29) 
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Thus i t follows f rom (2.2.28) and (2.2.29) that L(0) = 0 and L(0) = 0 respectively. 
Therefore, the Jacobi field L vanishes identically. In particular L{r) = 0 which 
proves that BQ satisfies the equation 2.2.25. 

We can similarly prove that BQ satisfies the equations (2.2.26) and (2.2.27) by using 

respectively the following Jacobi vector fields 

L{s) = g{% X Be) - g% x gBe, 

L{s) = g{B6 X (7^ X %)) - gBe x g{^rj x %). Q 

C o r o l l a r y 2.2.1 Given a non-totally umbilic Hopf hypersurface M of S^, that is 

M is not a geodesic hypersphere, and g G S0{7) then U = U if and only if g ^ G2-

Proof: 

I f M is a generic Hopf hypersurface this is just a consequence of Proposition 2.2.2 

and Proposition 2.2.3. Therefore, we just need to prove the Corollary for the case 

when M is an open subset of a tube around a totally geodesic almost complex curve 

S. We can assume without loss of generality that S is the intersection of wi th 

the subspace of R'' spanned by the cannonical vectors { 6 1 , 6 2 , 6 3 } . 

Now, we know f rom (2.2.19) that U = U if and only i f for every p e H 

span{ei, 62, 6 3 } and rj G span{e4,65,65, 6 7 } we have 

g{p xr])=gpx gr], 

which implies that g maps the cannonical C2-basis of to another C2-basis and 

hence ^ G C2. O 
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2.3 G2-Congruence for hypersurfaces in S^. 

T h e o r e m 2.3.1 Let M be a non totally umbilic hypersurface of S^ and g G 5 0 ( 7 ) , 

then g maps the Hopf vector field of M to the Hopf vector field of g{M), that is 

U = U, if and only if g is an element of O2. 

Proof: 

The converse of the theorem is t r iv ia l . 

I f M is a Hopf hypersurface then the Theorem has already been proved by Corollary 

(2.2.1), thus we may assume that U and AU are Hnearly independent vector fields. 

Now, let us assume that U = U. Looking at Proposition (2.2.1), we see that i t is 

only necessary to prove that ( f ) = ^ . Moreover, \iU = U then (2.2.11) and (2.2.12) 

yield 

g(})AX - g^AX = g{X x ^) - gX x g(. (2.3.1) 

In particular, ioi X = U we have 

MU = 4>AU. (2.3.2) 

Using this and the fact that (j)'^ = (f)'^ when U = U, then we get 

^{(pAU) = (f'iAU) = i\AU) = i){(j)AU). (2.3.3) 

Hence ^ = (/) on the space V = span{U, AU, C/JAU}. Note that this space has 

always dimension three because (2.2.5) and (2.2.6) imply that (l)AU / 0 and (pAU 

is orthogonal to U and AU. Thus we have 

TqM = VqeWq 

where Wq is the 2-dimensional orthogonal complement V-^. 

By using those properties, (2.2.3) and (2.2.5), of (/> and 0, we can also see that W is 

invariant under these maps and i t follows particularly f rom (2.2.4) that </>, 0 : Vt̂  —> 

W are isometrics. 
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Now, since by their definitions (/) and (j) realize ^-rotations and dim{W) = 2 then 
( f ) = ^ or ( f ) = —4> on W. 

Therefore we just need now to prove that ^ = —(/) on W leads us to a contradiction. 

Henceforth let us assume (/>=—</) on VF. First we observe that W is invariant under 

the tensor A. Indeed, given any vector X eW, we have G W and so 

(A(f)X, U) = ((PX, AU) = 0. 

Using Lemma 2.2.1 together w i t h (2.2.5) and (2.3.2) we get 

{A(t)X, AU) = \ {(t)AX - 4)AX, AU) 

= -^{AX,MU)^\(AX,MU) 

= 0. 

A n d f rom Lemma 2.2.1 together w i t h (2.3.2) and (2.2.4) we obtain 

(A(/)X, (i)AU) = I {(l)AX - ^AX, (j)AU) 

^\{^AXAAU)-\i,i>AXM^) 

= \{{AX,AU) - {AX,AU)) = ^. 

Thus A^X G W for every X eW and consequently A{W) C W. 

The invariance of W under A together w i t h Lemma 2.2.1 imply that A and (j) 

commute on W and hence for each X E W we have 

{A(f)X, ( f ) X ) = {(PAX, (/)X) = {AX,X), 

and 

{AX, (t)X) = -{(j)AX,X) = -{A(PX,X) = -{AX,(j)X), 

which implies 

{AX, ( f ) X ) = 0. 

However, { X , (pX} is an orthonormal basis for W, so AX = kX for every X e W. 

Considering this in (2.3.1) we have 

2kg(l>X = g{X x ^ - 9X x g^. 
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and since 

g(l)X = -g^X = -gq x gX, 

we deduce that k = 0. Therefore the second fundamental form A vanishes on W 

and consequently (2.2.11) and (2.2.12) are reduced to 

VxU = X x ^ (2.3.4) 

gVxU = g X x gC (2.3.5) 

Substituting X by (/)X in these equations and using (2.2.2), (2.2.9) and (2.2.10), we 

have 

g{X xU)=gUx gX, (2.3.6) 

and hence 

g(q X VxU) = g(U x X ) f rom (2.3.4) 

= gX X gU f rom (2.3.6) 

= gVxU X gq. f rom (2.3.5) (2.3.7) 

Therefore, we have proved that 

H^xU) = -H^xU). 

However, VxU G V since in accordance wi th (2.3.4) this vector is orthogonal to W. 

This contradicts the fact that 0 and (p coincide on V . O 

Coro l lary 2.3.2 Let M be a non totally umbilic hypersurface of the 6-sphere whose 

second fundamental form has rank greater or equal to 3. Let f : M S^ be an 

isometric immersion of M. Then f maps the Hopf vector field of M to the Hopf 

vector field of f ( M ) if and only if there exists an element g E G2 such that f is the 

restriction of g to the hypersurface M. 

Proof: 

Indeed, f rom the classical r igidi ty for hypersurfaces of real space forms mentioned 

in the introduction of this chapter we have that the map / can be extended to an 

isometry of 5^ and hence the corollary follows f rom the previous theorem. O 
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2.4 Congruence for hypersurfaces in C P ^ . 

In 1973, Takagi ( [39] ) gave a rigidity theorem for hypersurfaces of the complex 

projective spaces which was equivalent to that well-known rigidity theorem for hy

persurfaces of a real space form, namely, he proved: 

Theorem 2.4.2 Let M be a hypersurface of CP" whose second fundamental form 

A has rank at least 3 everywhere. Let f denote an isometric immersion of M into 

CP" (n>Z). Then, 

(i ) (f) = (f) if and only if A — A, 

(ii ) If A = A then there exists a holomorphic isometry F of CP" such that 

F\M=f. 

We call attention here to the fact that the second part of the theorem above, as 

observed by Takagi, can be proved by following the same method used to deal with 

rigidity of hypersurfaces in real space forms. 

Recently, Takagi et al ( [19] ) have improved this result by showing that the rigidity 

of hypersurfaces in CP" depends in general only on the invariance of the Hopf vector 

field, that \sU = U. More precisely they have shown: 

Theorem 2.4.3 Let M be a hypersurface of CP" whose second fundamental form 

A has rank at least 3 everywhere. Let f denote an isometric immersion of M into 

CP" (n>2>). If U = U then f is a restriction of a holomorphic isometry o/CP". 

In this section, we shall give a new proof for this result, using the same method as in 

the case of hypersurfaces of S^. I t turns out that the approach we give here makes 

the proof clearer, simpler and more geometrical. 

Consider the complex projective space (CP", J, < > , V, P) endowed with the Fubini-

Study metric of constant holomorphic sectional curvature 4. Then its curvature 
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tensor R is given by 

R(X, Y)Z = (y, Z)X - {X, Z)Y - (y, JZ)JX + (X, JZ)JY + 2{X, JY)JZ. 

(2.4.1) 

Let M be a hypersurface of CP" with second fundamental form h and induced 

structures < > , V, P, etc. Let ^ be a unit normal vector field on M. The Gauss and 

Codazzi equations for M are respectively: 

(R{X, Y)Z, W) = (R(X, Y)Z, W) + {AX, Z) {AY, W) - {AX, W) {AY, Z) (2.4.2) 

{R{X,Y)Z,e) = {{Vxh){Y,Z),e) - {{Vyh){X,Z),i), (2.4.3) 

where the covariant derivative of the tensor h is given by 

{yxh){Y, Z) := Vxh{Y, Z) - h{VxY, Z) - h{Y, VxZ). 

In terms of the shape operator A of M, we can also write (2.4.3) as 

{R{X, Y)Z, 0 ={AX, VyZ) - {AY, VxZ) + {AZ, VyX) -
(2.4.4) 

- {AZ, VxY) + X{AY, Z) - Y{AX, Z). 

Thus, using (2.4.1), we have that for every hypersurface M of CP", the Gauss and 

Codazzi equations are simplified to 

R{X, Y)Z = {Y, Z)X - {X, Z)Y + {(j)Y, Z)(f)X - {(f)X, Z)(t)Y 

-2{(f)X, Y)(I)Z + {AY, Z)AX - {AX, Z)AY, (2.4.5) 

{yxA)Y - ( V y ^ ) X = 2{(I)X, Y)U + {Y, U)(})X - {X, U)(f>Y. (2.4.6) 

The rate of change of the induced vector fields U and U (if we are considering an 

isometric immersion g : M —> CP") is given by 

VxU = -(f)AX (2.4.7) 

VxU = -MX (2.4.8) 

This follows immediately from the Kahler condition Vx{JY) = J{yxY) on CP". 
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Theorem 2.4.4 Let M be a hypersurface of CP" whose second fundamental form 
has rank at least 3 everywhere and let g be an isometric immersion of M into CP". 
If g maps the Hopf vector field of M to the Hopf vector field of g{M), that isU = U, 
then g is the restriction of a holomorphic isometry of CP". 

Proof: 

Since U = U,ii follows from (2.4.7) and (2.4.8) that: 

(i)AX = ^AX for every X e X{M). (2.4.9) 

As g preserves the curvature, that is P = P, we obtain from (2.4.1) and (2.4.4) that 

{X, (f)Z)(l)Y + 2(X, (l)Y)(l)Z - (r, (/)Z)(/)X - (AX, Z)AY + (AY, Z)AX = 

(x, (^z)0y + 2(x, 0y)0z - (y, 4>zY^x - (Ax, Z)AY + (AY, Z)AX. 

Specializing this equation ioi Z = U we get: 

(X, AU)AY - (Y, AU)AX = (X, AU)AY - (Y, Au)Ax. (2.4.11) 

Specializing again this equation iorY = U we have for every X G X{M): 

(X, AU)AU - (U, AU)AX = (X, Au)Au - (U, Au)Ax. (2.4.12) 

If W denotes the orthogonal complement of the vector space span{AU, AU} then for 

any Y e X{M) and X eW, the equations (2.4.11) and (2.4.12) give respectively: 

(Y, AU)AX = (Y, AU)AX, (2.4.13) 

(U, AU)AX = (U, AU)AX. (2.4.14) 

Taking Y = AU and Y = Au in (2.4.13) we have for every X eW respectively: 

\AUfAX = (Au, AU}AX, (2.4.15) 

(Au, AU)AX = \AU\^AX. (2.4.16) 

Now we shall split our proof into two cases. 

Case 1: AU + 0. 
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Since rank^l is at least 3, there exists a vector X e W such that AX ^ 0, so from 
(2.4.15) and (2.4.16) we have AX ^ 0, AU 0 and {AU,AU) 0, moreover by 
taking the quotient between those equations we get \{Al],AU)\ = |At/||^?7| and 
hence 

AU = bAU, 

where b = ± } ^ - Using this in (2.4.15), it follows that AX = 6AX for every 

X e W. However, from (2.4.9) and (2.2.4) we also have \AX\ = \AX\ for every 

X ^ W and so 6 = ± 1 . Choosing if necessary, the oposite normal vector field on 

g{M), we can assume 5 = 1. Thus, 

AX = AX, (2.4.17) 

AU = AU. (2.4.18) 

If {AU, U)^0 then substituting (2.4.18) in (2.4.12) we obtain A = A. 

If {AU, U) = 0 then from (2.2.7) we can choose a vector X G U-^snch that (^X = AU 

and so 

X = -(f)AU = -MU, 

A(AU) = A{(f)X) = A^X = -A^'^iAU) = A{AU). 

This together with (2.4.17) implies A = A, which reduces (2.4.10) to 

{X,cl>Y)<j)Y = {X,4>Y)^Y 

therefore, for every X G t/^we have (/)X = ±4)X. 

Because Ker((f)) = Ker{(j)) = span{U}, we must have (f) = ±(f). But we know that 

(f)AX = (f)AX and hence </> = 

Case 2; AU = 0. 

In this case the Codazzi equation (2.4.4) for the hypersurfaces M and g{M) are 

written respectively as: 

{R{X, Y)U, f ) - 2{(I)AX, AY) (2.4.19) 

{R{g,X, g.Y)gM, 0 = 2 ( M ^ , AY) (2.4.20) 
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On the other hand, using the curvature tensor of CP" as given in (2.4.1), we have 
for every X,Y eU-^. 

R{X,Y)U = 2(<i>X,Y)i 

R{g^X,g^Y)gM = 2(i>X,Y)l 

thus 

(cl^X, Y) = (MX, AY) 

(iX,Y) = (4)AX,AY). (2.4.21) 

In other words, recalling that (t)A — (f)A, we have 

AM = (j) (2.4.22) 

AM = 4) (2.4.23) 

Now, taking Z = Y in (2.4.10) we have 

3(X, (/)Y)(i)Y - (AX, Y)AY + (AY, Y)AX = 

3(x, - (Ax, Y)AY + (AY, Y)AX 

Putting Y = —(l)AX in this equation and using that 

(f)Y = AX and AY = -AM^ = -(l>X, 

we obtain for every X e U-^. 

<X,AX > AX =< X, Ax > Ax. 

However, 

\AX\ = \MX\ = \MX\ = \Ax\ 

and hence AX = ±Ax. From (2.4.22) we see that the restriction A : U^ —> U^ is 

non-singular so that Ker{A) = span{U} and hence A = ±A on U-^. Choosing an 

apropriate normal vector field, i f necessary, we can assume A — A. Therefore, from 

(2.4.22) and (2.4.23) we have (/> = 

Therefore, the proof of the theorem follows from Theorem (2.4.2). O 

(2.4.24) 
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2.5 H - K vector fields in S^. 

The Hopf vector field of a hypersurface in a nearly Kahler manifold will be called H-

K vector field when it is also a Killing field. In this section we intend to characterize 

those hypersurfaces of whose Hopf vector fields are H-K vector fields. 

For hypersurfaces in CP", Berndt (see [4] for details) has proved that the Hopf 

foliation of a hypersurface is a Riemannian foliation if and only if the Hopf vector 

field is an H-K vector field. 

In investigating in depth the Hopf vector field of any hypersurface (not necessarily 

Hopf) we shall actually prove here (example (2.5.3) and Theorem (2.5.5)) that the 

only hypersurfaces of the 6-sphere whose Hopf vector fields are H-K vector fields 

are the geodesic hyperspheres. This is a surprising fact about the nearly Kahler 

since we shall see in Theorem (2.6.6) that for complex projective spaces any Hopf 

hypersurface around a totally geodesic complex submanifold satisfies this condition 

on the Hopf vector field. 

We start by recalling that a vector field X in a Riemannian manifold (M, < > , V) 

is a Killing field when its flow is locally an isometry. We shall also make use of the 

classical equivalent to this definition given by the so called Killing equation: 

< V y X , Z>=- < WzX, Y > . (2.5.1) 

Lemma 2.5.3 If M is a Riemannian manifold which admits a Killing field X of 

constant length, then the integral curves of X are geodesies. 

Proof: 

From the Killing equation (2.5.1) we have for every Y G X{M) 

< WxX, Y>=-< VyX, X >= 0. 

Thus,VxX = 0. O 
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Lemma 2.5.4 Let {S, (,), V) be an almost complex curve of a nearly Kdhler Rie

mannian manifold {M, (,), V ) . Then S is totally geodesic in M if and only if every 

unit normal vector field r]{t) of M, defined along a smooth curve p{t) of S, satisfies 

Proof: 

( ^ ) 

I f 5 is a totally geodesic almost complex curve, then the property stated in the lemma 

follows from the fact that {p, Jp} is a basis for TpS and the following calculation 

{%v,p) = -{v,^pP) = o 
(2.5.2) 

(Vp77, Jp) = -{rj,VpJp) = {Jrj,Vpp) = 0. 

( ^ ) 

Conversely, assume that S is an almost complex curve satisfying the property in the 

Lemma. Since the vector field r]{t) is orthogonal to the tangent vector fields p{t) 

and Jp{t), we have 

{ArfP.p) = {T}, Vpp ) = - ( V p 7 7 , p ) = 0 
(2.5.3) 

{Ar^p, Jp) = (77, V p J p ) . = - (Vp?7, Jp) = 0, 

where the last equality in each case follows from the assumption. Therefore, Ajj[p) = 

0 and hence = 0 because the curve ^ ( 5 ) of S is given arbitrarily. O 

Example 2.5.3 The Hopf vector field of a geodesic hyper sphere of is an H-K 

vector field. 

Let us first consider a great hypersphere. There is no loss of generality if we choose 

M = y n 5^ where V = e^^ because this hypersphere can be mapped to any other 

one via an element g e G2 and this transformation shall certainly map the H-K 

vector field of M to an H-K vector field of g{M). 
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In this case, the unit normal vector field ^ = 64 to M is constant and the Hopf 
vector field at a point ^ G M is just [/^ = 64 x q. Thus 

(VxU, Y) = (Vx(e, X q),Y) = (e, x X, Y). (2.5.4) 

Therefore, using equation (2.5.1) and the fact that the product (X x Y, Z) is skew-

symmetric we conclude that [/ is a Killing field. 

Now, let M be the small hypersphere of centred at the point p = e^. This 

hypersurface is just a degenerate tube of radius r around the degenerate curve 

S = {p}. However, we note that all of our calculations to determine the flow J^t of 

the Hopf vector field remain valid in this situation. 

In order to prove that U is a Killing field, we start by assuming this to be true and 

out of that assumption we deduce the natural candidate for the local isometry !Ft 

which describes the fiow of U. 

As the rank of the second fundamental form of M is 5, we have by the rigidity of the 

hypersurfaces of spheres that J^t can be extended yielding a 1-parameter subgroup 

of 50(7) which we shall still denote by J^f From linearity of !Ft and Lemma (2.2.2) 

we obtain 

cos(r)J^te4 + sm{r)Ttr} = cos(r)e4 + sm(r)6(t). (2.5.5) 

Each Tt must map the focal set of M to itself and since the focal set of M is just 

{ 6 4 } , we have ^ ^ 6 4 = 6 4 . Thus (2.5.5) can be simplified to 

Tt'H = cos(t)7y + sin(t)(e4 x rj) for every ry G e^. (2.5.6) 

I t is immediate to verify that the map Tt defined as above is indeed an element of 

S0(1). Moreover, it is worth mentioning that Tt lies in G2 only for the values t = 0 

and t = 7rsin(r). 

In the following, we determine the action of on an integral curve a of U in order 
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to check that J^t corresponds, indeed, to the flow of U. 

Ttcr(0) = cos(r)e4 -I- sin{r)Tt'il 

= cos(r)e4 -f- sin(r)(5(t) 

Theorem 2.5.5 The geodesic hyperspheres are the only connected hypersurfaces of 

whose Hopf vector fields are H-K vector fields. 

Proof: 

Let M be a connected hypersurface of with unit normal field ^ and H-K vector 

field U. I t follows from Lemma 2.5.3 that M is a Hopf hypersurface, say that M is 

a subset of a tube $r(-L ̂ 5') where S is an almost complex curve of S^. We shall 

assume that the Hopf principal curvature a = — cot(r) is not zero, that is, r / | . 

Thus the second fundamental form of M has rank at least 3 everywhere since it is 

proved in Theorem (1.3.3) that the a-eigenspace of M has dimension at least 3. 

From the well known rigidity of hypersurfaces of a real space form [36] we have 

that under the assumption that the second fundamental form having rank at least 

3 everywhere, any isometry between hypersurfaces of a sphere is extendable to an 

ambient isometry. Therefore, the flow !Ft of the H-K vector field U can be realised 

as the restriction to the hypersurface of an isometry of S^, which we shall still name 

as Tt-

Now, we prove that the almost complex curve is a connected component of the fixed 

point set of each isometry Tt. Geometrically, this is almost evident for since J^t is 

the flow of the Hopf vector field, we can expect that the action of the isometry J^t on 

M, and similarly on each tubular hypersurface around S, is just to turn it around 

the curve S. This idea is based on the fact that we already know from Theorem 

(1.3.3) that the Hopf hypersurfaces of are subsets of tubes. However, we call 

attention to the rather subtle fact that the proof we give in the sequel does rely 

only upon the formula obtained in Lemma (2.2.2) for the flow of the Hopf vector 
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field and this formula in turn depends only on the fact that the focal map of a Hopf 
hypersurface is constant along the integral curves of the Hopf vector field. 

S is connected because it is the image of the connected tubular hypersurface M 

under the focal map, which is a continuous map. 

Since is an isometry of and maps open subsets of M to open subsets of M 

then J^t also maps open subsets of the focal set S to open subsets of S. 

On the other hand, by construction, the map J^t maps an integral curve a of the 

Hopf vector field of M to itself. Thus it follows from Lemma (2.2.2) that Tt must 

fix the point p E S which corresponds to the integral curve a. Therefore, J^t fixes 

every point of S. 

Moreover, it follows from the fact that S is the set fixed by the linearity of J^t 

and Lemma (2.2.2) that for 5 G (0, | ) we also have J^t(l{p,T])(s)) = 7 ( p , j ) ( s ) , that is 

the isometries Tt perform a non-trivial rotation of each tube of constant radius s 

around the curve S. 

Now, using the property that 5 is a connected component of the fixed point set of 

we shall prove that the curve S is totally geodesic by two diff"erent methods. 

The first method shall essentially make use of the linearity of J^t and the formula 

(2.2.20) for the flow of the Hopf vector field whilst the second one will explore the 

fact that J^t is a one-parameter subgroup of 50(7). 

Method 1: 

Using that J^t is linear and fixes S, from (2.2.20) we obtain 

J^tV = cos{t)rj — sin(^)(p x 77) for every (p,77) EJ^S. (2.5.7) 

Let us consider an arbitrary smooth curve {p{s), rf(s)) in JlS. Then by diflE"erentiating 

(2.5.7) along this curve we have 

J^tV = cos{t)r] - sin(t){(p x 77) + (p x 77)}. (2.5.8) 
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Thus, since jr '̂- '̂̂ ^^"^^(p) = J^r\p) = p and using (2.5.8) we have 

(J^tV,?) = cos{t)(f],p) - sin(t)(p xr},p) - sin{t)(p x rj,p) 

=^ (rj,p)(l - cos(t)) = sin{t)(Jp,r]) 

=^ (r), Jp){l - cos{t)) = - sin{t)(p, rj) 

=^ (r},p){l - cos(t)f = -sin'(i)(p,rj) 

=^(rj,p){l-cos{t)) = 0 

=^(fj,p) = 0, 

and hence by Lemma 2.5.4 the almost complex curve S is totally geodesic. 

Method 2: 

We want to prove that the almost complex curve S is totally geodesic and we 

already know that 5* is a connected component of the fixed point set of the isometry 

= In order to do that we shall consider a conjugation = g~^Tg by an 

element g G 50(7) such that T be an element of the standard maximal torus of 

50(7) . Then g maps the fixed point set of T exactly to the fixed point set of T and 

hence S = g(S) is also a connected component of J^. 

Therefore, we can describe ^ by !FX = AX where A is the matrix 

A = 

^ Ro 0 0 0^ 

0 P i 0 0 

0 0 P 2 0 

0 0 0 1 

with Rj = 
cos 9n sm 

— sm cos Oj J 

and 9j = Ojit) 

Since T fixes any point p = {po,...,Pe) G S then our matricial representation for !F 

yields for each j G { 0 , 1 , 2} a homogeneous system as follows 

cos(6'j) p2j + sin{9j) p2j+i = P2j 

-sin(ej) p2j + cos((9j) P2J+1 = P2J+1 

Which implies 

(cos(6'j) - l)p2j + sin(ej)p2j+i = 0 

- sin{ej)p2j + (cos(6'j) - l)p2j+i = 0 
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This homogeneous system must hold for every real value t and every point p E S, 
thus its discriminant = 2(1 — cosdj) vanishes if and only if the function cos9j(t) 
is identically equal to 1 so that for at least one value j G {0,1,2}, say j = 0, we 
must have AQ ^ 0 otherwise J^ would be the Identity map. Therefore, the two first 
coordinates of any point of S vanish. 

By using these systems, we can also conclude that Rj = ( J i ) if and only if for 

some point p e S we have p2j / 0 or P2j+i ^ 0. Consequently, there are only three 

possibilities for our isometries and their fixed point sets V, namely: 

easel. case2. case3. 

\ 0 0 0 0 0 1 / V 0 0 0 0 1 / \ 0 0 0 0 1, 

V = n span{es, ..,e7} V = H span{e5,eQ,e7} V = D span{e3,e^,e7} 

Since in all these possibilities the set V would be connected, we should have S = V. 

However, in the first case dimV = 4. Since the other two possibilities give S totally 

geodesic and g is an isometry then S is also totally geodesic. 

Now, in order to conclude the proof of the theorem we recall the example (1.3.1) 

where we have showed that a totally geodesic almost complex curve of is given 

by 5 = n 5^ where is spanned by vectors {vi,V2, Vs} of a G2 basis { v i , u j } . 

This gives us an obvious contradiction in the equation (2.5.7). Indeed, for 77 = 1/4 

and p G {vi,V2} we have 

7̂ 5 = 7̂ 1 X = X ?;4 = VQ. 

O 
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2.6 H - K vector fields in C P " . 

In this section, we shall make use of Theorem (2.4.4) on holomorphic congruence for 

hypersurfaces in CP", to prove that the hypersurfaces of CP" which have a Killing 

Hopf vector field are exactly the open subsets of tubes around totally geodesic 

complex submanifolds. This result has already been proved by Berndt [4] but we 

give here a simpler and more geometrical proof. 

We will think of ^^n+i naturally included in C""*"̂  so that the Hopf fibration 

TT : 5̂ ""*"̂  —> CP" is a Riemannian submersion with linear isomorphism TT* : Hz -> 

T7r(2)CP" for each z G 5^"+\ where H^ denotes the tangent subspace {Mz}-*-n 

{Riz}-^ of T^5^"+^ The natural complex structure on H^, given by the complex 

multiplication by i, induces via TT^ the standard complex structure J on CP". 

The Hopf fibration can be used to describe the geodesies of CP" as projection 

of horizontal geodesies of 5̂ ""*"̂ , in other words, given ( G Tp(CP"), as TT is a 

Riemannian submersion, then the geodesic 7(p,c)(5) of CP" is the projection of the 

horizontal geodesic 

7(p,C)(5) = cos(s)p sin(s)C, (2.6.1) 

where the tilde notation is used here to denote corresponding points and horizontal 

vectors under the maps TT and TT^ respectively, that is 

7(p,c)(5) = ^(7(p,o( '5)), with { (2.6.2) 
TT, ( 0 = c . 

Let M be a Hopf hypersurface of CP" and as usual let ^ denote a local normal field 

on M. 

By using similar procedure here, as in the case of the 6-sphere, we can also describe 

the integral curves of the Hopf vector field explicitly. 

However, we shall recall first the fundamental calculation done by Cecil-Ryan ([18]) 

for the derivative of the normal exponential map O of M . They have shown that 
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given q e M and a vector X G TqM, if we denote by X its horizontal l i f t to Hz 
where 2; is a point in the fibre 7r~^(g), then 

a |(,,,) ( X ) = d7r^{cos(r)X - sm{r)(Y - {X, ii)zz)}, (2.6.3) 

Where ^ = diTzil^), w = cos(r)z + sin(r)^ G n~^{F{q,xi)), Y = A^X, and the 

vector on the right hand side belongs to T^^^"^^ but not necessarily to H^. 

We call attention to the diff'erence between our notation for the points z and w and 

that of Cecil-Ryan, which unfortunately is swapped. 

Using (2.6.3), Cecil-Ryan located the focal points of a Hopf hypersurface of CP", 

as we summarize in the following 

Lemma 2.6.5 Let M he a Hopf hypersurface o/CP". IfU = J^ denotes the Hopf 

vector field of M and a = —2cot{2r) is the Hopf principal curvature of M, then 

given q e M 

( i ) G . | „ „ „ ( [ / ) = 0 

(ii ) ( X ) = 0 whenever X G TgM is a principal vector of (M,^) 

corresponding to the principal value — cot(r). 

(iii ) ( X ) ^ 0 otherwise. 

Now, to determine the integral curve a of U through a given point q e M, we first 

note from the lemma above that the focal map of M is constant along the integral 

curves of the Hopf vector field, that is, G{(T, = p. 

Next, we consider a geodesic 7 = 7(p,^) of CP" normal to M at g and connecting the 

points q and p, where 77 denotes the tangent vector to 7 at the point p. We shall 

assume 7 to be parametrized by the arclength s from p to q and so 7(0) = p and 

7(r) = q. 

Let a be the curve in 5̂ ""*"̂  obtained as the end points of the geodesies j^-where 

S = 6(t) = cos(t)fj -\-is'm(t)fi and t = . , / — ^ , 
sin(r) cos(r) 
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in other words, a{t) = 7(p,5(t))(^)- Let us define the vector 5 = TT^5 and the curve 

a(t) 

— 7(p,<5(t))(^)- Then the following calculations show that a is indeed the integral 

curve of U through q. 

In equations (2.6.4) and (2.6.5) below we must consider carefully along the curve d 

only the horizontal components of the vectors A and B, that is, their projections on 

H,. 

O = (7 r^ |a ) (^ ' ) 

= (7r^|^)(sin(r)^') 

= (7r^ |^) (^) where A = — \ - { c o s { t ) i f i - sm{i)f]\. (2.6.4) 
cos(r) 

= J^Aa (7(p,J-)(^)) 

= TT^I^ ( - s\n{r)ip + cos(r)i^) 

= TT^I^ (P) where B = (— sin{r)ip - f cos(r) cos{t)ifj — cos(r) sin(t)fj). (2.6.5) 

Noting that 

(B, a) = (B, ia) = 0= (A, a) and (A, ia) = tan(r), 

we can see that the projections of the vectors A and B on the space H^ are exactly 

the same and hence a = U(a). Therefore, using all the notation above we have 

Proposition 2.6.4 The flow of the Hopf vector field of a Hopf hypersurface o/CP" 

can be described as: 

^t(7ip,v){r)) = 7M)(^) = 7r(cos(r)p + sin(r)^). (2.6.6) 

As we noted in the introduction of this section there is a contrast between the 

hypersurfaces with H-K vector fields in and those ones in CP". The later being 

a broader category than the former. Although Berndt ([4]) has proved the following 

result, we give here an alternative proof as a nice application of the holomorphic 

congruence of hypersurfaces in CP" discussed in section (2.4). 
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Theorem 2.6.6 Let M be a connected real hypersurface o/CP". Then the Hopf 
vector field U of M is an H-K vector field if and only if M lies on a tube of constant 
radius around a totally geodesic complex submanifold. 

Proof: 

Let us assume first that U is an H-K vector field. This implies, using Lemma 2.5.3, 

that M is a Hopf hypersurface. Let J^t denote the fiow of U on an open subset of 

M. I t follows from Theorem (2.4.4) that for each t the map Tt can be extended to 

a holomorphic isometry of CP" which we shall also name as J^f Thus, we obtain a 

1-parameter subgroup Bt of SU(n + 1) such that 

J^t{A^)) = 7r{Bt{z)). (2.6.7) 

As in the case of (cf. Theorem (2.5.5)), we can also show here that the focal 

set A'' of M is a connected component of the fixed point set of J^t and the proof 

is exactly the same as in that proposition since, as we mentioned above, Lemma 

(2.6.5) shows that the focal map is constant along the integral curves of U. 

On the other hand, it follows from (2.6.7) that the inverse image = 'K~^{N) 

consists only of points in C"+^ which are eigenvectors for the linear operator Bt. 

Therefore, A" is a disjoint union of eigenspaces of Bt, say 

N = V,^U...UV,^. (2.6.8) 

However, if A" is not just a single eigenspace V^, we would have a contradiction to 

the connectivity of A" since in this case we would write Â  as a disjoint union of 

closed sets 

N = 7r{V,JU...U7r{Vj. 

Therefore, the focal set of M is the totally geodesic complex submanifold of CP" 

given by the projectivisation of the complex linear subspace N = Vx. 

Conversely, let M be an open subset of a tube $ r ( A ' ) of radius r around a totally 

geodesic complex submanifold. If we make use here of some properties of the Hopf 
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hypersurfaces of CP", then we can give a short proof of the fact that U is an H-K 
vector field. Indeed, in this situation we have in accordance with Proposition (3.4.4) 
that the only possible eigenvalues for M are Aq = o; = —2cot(2r), Ai = — cot(r) 
and A 2 = tan(r). Using this we can verify that U satisfies (2.5.1) as follows. 

Since U has unit length and Vc/[/ = 0, we just need to verify (2.5.1) for vectors Y 

and Z orthogonal to U. Moreover, because of the linearity of {VylJ, Z) with respect 

to these variables, we just need to prove that equation for any pair of eigenvectors 

Y and Z. Thus, we have a few cases to consider. 

If Y and Z lie in the same eigenspace Vx then it follows from (2.4.7) and (2.2.5) that 

(VYU,Z) = - ( M Y , Z ) 

= ~X(<f^Y,Z) 

= \{YAZ) 

For the other possibility we need to mention the property proved by Maeda (cf. 

Remark (3.3.3)) which shows in particular that the eigenspaces Vi = V A J and V 2 = 

are invariant under the operator (f). Thus, for each i G {0 ,1 ,2}, the space (f)Vi 

is orthogonal to the spaces {Vj}j^i. Therefore, given i G { 1 , 2}, Y e Vi and Z e Vj 

with i / j , we have 

{VYU,Z) =~\{cf>Y,Z) 

= 0 

= ~(Y,VzU). 

o 



Chapter 3 

Hopf Hypersurfaces in the Large. 

3.1 Introduction. 

The main purpose in this chapter is to prove the assumption used by Cecil-Ryan in 

Theorem (1.3.2) to characterize the Hopf hypersurfaces of the complex projective 

spaces. However, we shall start the chapter by investigating Hopf hypersurfaces in 

more general spaces. 

In the next section we define the reflection and push maps induced by hypersurfaces 

of (nearly) Kahler manifolds in order to give an alternative characterization of Hopf 

hypersurfaces in these spaces. 

In section (3.3), we deduce some properties of the principal curvatures of the level 

hypersurfaces of a Hopf hypersurface. These properties together with the construc

tions of special vector fields enable us to prove our main result. 

In the last section of this chapter, we prove that the l i f t of a Hopf hypersurface under 

a holomorphic Riemannian submersion is also a Hopf hypersurface and this provides 

a way to obtain examples of Hopf hypersurfaces in spaces other than complex space 

forms. 

58 
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3.2 Hopf hypersurfaces of Kahler manifolds. 

The geodesic hyperspheres of complex space forms are the simplest examples of 

Hopf hypersurfaces, as we can see from Theorems (1.3.!),(!.3.2) and (1.3.4). Con

sequently, we can question naturally about what can be said of the geometry of a 

Kahler manifold all of whose geodesic hyperspheres are Hopf hypersurfaces. It turns 

out that this fact actually characterizes the complex space forms as we shall prove 

now. 

We shall be considering some common terminology throughout this chapter which 

we mention next. Given a Kahler manifold M with metric {,) and complex structure 

J, let M be a hypersurface of M and let f denote a unit normal vector field defined 

on a neighbourhood (9 C M of a point q e M. We can use the exponential map 

of M to extend ^ to a local unit vector field 7(p,o(" )̂ where p e O and 

i{p,ai^) = expp{sQ. 

When M is a hypersurface of a nearly Kahler manifold M then the vector field Us 

defined along 7 = 7(p,^)(s) by Us = J7, is parallel along 7. Indeed, 

W^Us = J(V^7) = 0. (3.2.1) 

Theorem 3.2.1 Let {M, J) be a Kahler manifold. Then M is a complex space form 

if and only if every geodesic hypersphere of M is a Hopf hypersurface. 

Proof: 

( ^ ) 
It is clear from the results on Hopf hypersurfaces of complex space forms stated in 

the first chapter that every geodesic hypersphere of these spaces is indeed a Hopf 

hypersurface. 

(^) 
Given q e M and a unit vector X G T^M, let 7(5) = expq{sX) be the geodesic of 

M starting at q in the direction X. Then, Us = J'y(s) is the Hopf vector at 7(5) 
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of the geodesic hypersphere Qg centred at q and radius s. Thus, if As denotes the 
shape operator of the hypersurface ^ 5 , we have 

AsiUs)=asUs, (3.2.2) 

where 0:5 is the Hopf principal curvature of Qs-

Now, we show that the rate of change, in a radial direction, of the shape operators 

of tubular hypersurfaces satisfies a Riccati diff"erential equation, namely: 

{%As){Z) = Al{Z) + R(Z,i)'y, (3.2.3) 

where Z is a vector field, orthogonal to 7, defined along 7 and {VjAs)(Z) = 

V^(AsZ) - As{V^Z). Indeed, equation (3.2.3) follows from the definition of the 

curvature tensor 

P(^,7)7 = Vz V^7 - Vz7 - V[z,^]7 

= V ^ ( ^ Z ) - V ( _ ^ , ^ _ v , ^ ) 7 

= %(AsZ)-AlZ-As{%Z). 

By using (3.2.1), (3.2.2) and (3.2.3), we obtain 

R{UsA)i = {c^s-al)Us. (3.2.4) 

Given a tangential vector Y e TqM such that Y is orthogonal to both vectors X 

and J X , let Yg denote the parallel transport of Y along 7. Then (3.2.4) implies 

(R(Us, 7)7, Yg) = 0 for any 5 7̂  0 and hence by continuity we have 

(R{JX,X)X,Y) =0. (3.2.5) 

However, i t is well known (see for example [33] or [41]) that the condition (3.2.5) on 

the curvature tensor characterizes the complex space forms. O 

It is convenient to point out here that the Riccati equation (3.2.3) for the second 

fundamental forms of the tubular hypersurfaces around a submanifold P, encom

passes essentially the same information as the Jacobi differential equation which 
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defines Jacobi fields on M. This equation has been useful to study the geometry of 
tubular hypersurfaces in general, (c.f. [25] and references mentioned there.) 

We remark that Vanhecke et al used Jacobi fields (for details see [42]) to show that 

the complex space forms are characterized by the fact that their geodesic hyper

spheres are quasi-umbilical with respect to their Hopf vector field. Thus the result 

we have proved above improves that of Vanhecke et al in the sense that, being 

Hopf hypersurfaces, the geodesic hyperspheres of complex space forms satisfy some 

further geometrical properties. 

Remark 3.2.1 The theorem above can be proved also using Jacobi fields instead of 

the Riccati equation, however, the proof would be less elegant. 

Definition 3.2.1 Let M be a hypersurface of a Riemannian manifold M. Then for 

some e > 0 and locally on M, we can define the reflection map y{ on a tubular 

neighbourhood of an open subset O of M by putting 

where q ^ O, s ^ (~^)^) ^ is a unit normal vector field on O. For each 

s € (—e,e); we also define the push map ^ 5 by 

= 7(,,f)(s). (3.2.7) 

We will denote the level hypersurfaces of by Ms so that =^UMs and the 

restriction IH^ of maps Ms into M_s, whilst ^ 5 maps M into Ms 

Lemma 3.2.1 Let a{t) be a smooth curve of a hypersurface M in CP". Let f 

denote a unit normal vector field on M. Then the variational vector field W(s) 

defined along 7(a(t),o(^) ^i^) = i (7(a(t),o(5)) satisfies 

^.(W(s)) = W{-s) (3.2.8) 

%.{a'{t)) = W{s). (3.2.9) 
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Proof: 

Indeed, the lemma follows from direct application of (3.2.6) and (3.2.7). O 

Remark 3.2.2 Note that M is the fixed point set o/^H and so ifDi is an isometry 

then M is a totally geodesic submanifold of M. 

Indeed, this is just a consequence of the well known fact that a connected component 

of the fixed point set of an isometry of M is a totally geodesic submanifold of M. 

But we should note that particularly for the refiection map we can also prove this 

directly. Although the proof we give below is assuming that M is a hypersurface, it 

can be similarly applied to submanifolds of higher codimension. 

Given g E M, let ^ be a local unit normal vector field on M and let X G TgM be 

an eigenvector of A^. Let us consider a curve cr on M with a{0) = q and cr'(O) = X. 

Then the geodesic variation 7(̂ ,̂ ) of the geodesic 7(,_̂ ) gives the variational vector 

field W(s) along 7(q,^)(5) which is a Jacobi field satisfying conditions (1.1.4) and so 

the shape operator A^ of M satisfies (1.1.6), so that W(0) = -A^(W{0)) = -XW(0). 

Now, if 91 is an isometry then it follows from (3.2.8) that the function |VK(5)p is 

even. Thus, its derivative is an odd function which implies W[0) = 0 and hence 

A = 0. 

Theorem 3.2.2 If M is a hypersurface of a nearly Kdhler manifold M satisfying 

condition (^) below, then M is a Hopf hypersurface. 

(•) : for each s G (—e, e), 9̂  maps the Hopf vector field of Mg 

to a scalar multiple of the Hopf vector field of M_s. 

Proof: 

Let M be a hypersurface of M satisfying the condition in the Theorem, then in order 

to prove that M is a Hopf hypersurface we will just verify that the Hopf vector field 

U of M is a principal vector field. 

Given q e M, consider a local unit normal vector field ^ of M defined around q. Let 
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A = denote the second fundamental form of M . I t follows from (3.2.6) that 

^*l7(..o(^) = (3.2.10) 

By assumption there exists a smooth function g{s) = g(q, s) such that 

yi,\-,^„,(s) (Us) = 9(s)U.,. (3.2.11) 

We can fix the point q because in what follows we shall be considering the rate of 

change of the function g only in the radial direction. Since 9̂  is a smooth map, 

using (3.2.1), we have 

9\4^,Us] = [^.i,^Ms] 

=^^.{%Us) - ^.{VuA) = V^^^^Ms - V^,t / .^*7 

=^V^,c / .^*7 = + ^*(Vt;,7)- (3.2.12) 

Now, let As denote the shape operator of the level hypersurface Ms with respect 

to the normal field 7(5), then if we substitute (3.2.10) and (3.2.11) in (3.2.12) we 

obtain 

g{s)A_sU-s = -9(s)U_s - ^MsUs), (3.2.13) 

so that by taking the limit when s goes to zero and recalling that the reflection 

restricts to the identity map on M , we finally have 

AU(g) = -Jff(0)[/(<?). (3.2.14) 

And hence M is a Hopf hypersurface. O 

Proposition 3.2.1 A hypersurface of satisfies the condition (-k) if and only if it 

is a Hopf hypersurface. 

Proof: 

Let M be a Hopf hypersurface of . Then by the characterization given in Theorem 

(1.3.3) we may assume M c $^(^•'̂ 5') for some almost complex curve 5 in S^. Let 
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us define = 7(p,^)(r ± s) G M±s. According to the characterization of integral 
curves of the Hopf vector field given by Lemma (2.2.2), we have that the integral 
curve ag{t) of the Hopf vector field Ug of Mg passing through q'^ is "y(p,Ss(t)){f + s) 
where 

6g{t) = cos{—^ -)7] + s i n ( ^ - ^ -)p X 77. (3.2.15) 
^sm(r + 5)^ ^sm(r + 5)^ ^ ^ 

On the other hand the integral curve (7_s{t) of U-g passing through q~ = ^{q'^) is 

7(p,5_3(*))(^-5) where 

S_g{t) = co s (—^ r)rj + s in(-—^ -)p x 77. (3.2.16) 
sm(r - s) sm(r - s) 

From the definition of the refiection map we have 

^(7(p,..(.))(r + s)) = 7(p,..(.))(r - s). (3.2.17) 

By observing that 

Sg{t)=S^g{kt), (3.2.18) 

where k = , we see that (3.2.17) is reduced to ^{as(t)) = a^s{kt) and hence 

^^iUsiq-")) = ^.{cTgiO)) = k&_g{0) = kU_g{q-). (3.2.19) 

o 

In the next section, we prove a similar converse to Theorem (3.2.2) for hypersurfaces 

of CP". 

Theorem 3.2.3 / / a hypersurface M of a nearly Kahler manifold M satisfies the 

condition [irk) below, then each level hypersurface Mg is a Hopf hypersurface. 

{irk) : for each s G (-e, e), ^ 5 maps the Hopf vector field of 

M to a scalar multiple of the Hopf vector field of Mg. 

Proof: 

Let us use the same notation and terminology as in the proof of Theorem (3.2.2). 
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Here we can give a simpler proof since by using the assumption we see that the 
push map ^ 5 wil l map the integral curve a oi U to the integral curve, possibly 
reparametrised, as of Us- This fact implies that there exists a smooth function /(s) 
such that the Jacobi field V{s) along ^{q,(){s) defined by V(s) = ^7(^,^)(s) can be 
expressed by: 

V{s) = f(s)Us. (3.2.20) 

Using (3.2.1), we obtain V = fUg- Now, observing that V satisfies the conditions 

(1.1.4), that is, y is a Mg-Jacobi field, then we have from (1.1.6) that 

AsUs = AsV{s) = -V = -fUs, (3.2.21) 

and hence Ms is a Hopf hypersurface. O 

In the next section, we give a similar converse to Theorem (3.2.3) for hypersurfaces 

of CP". 

The following result is proved in a manner similar to that of Proposition (3.2.1). 

Proposition 3.2.2 A hypersurface of satisfies the condition {irk) if and only if 

it is a Hopf hypersurface. 



3.3 Properties of the Hopf hypersurfaces of CP". 66 

3.3 Properties of the Hopf hypersurfaces of CP^. 

We give in this section some further geometrical properties of Hopf hypersurfaces in 

CP" which not only point out more evidence that they are indeed tubular but also 

highlight some special features of the geometry of such hypersurfaces. 

Let M be a Hopf hypersurface of CP". Let { and U = denote a unit local 

normal field and the corresponding Hopf vector field respectively. As we mentioned 

in Remark (1.3.3), the Hopf principal curvature a of M is locally constant, thus we 

may consider 

a = -2cot(2r) , 

for some constant r G (0, | ] . Moreover, using Gauss and Codazzi equations, Maeda 

([31]) has shown the following main result known about the geometry of a Hopf 

hypersurface of CP". 

Theorem 3.3.4 Let M be a Hopf hypersurface o/CP" with Hopf principal curva

ture a. Let A denote the shape operator of M with respect to a unit normal vector 

field ^ on M and let (j) be the tensor on M induced by the complex structure of CP" 

as defined by (2.2.2). Then these tensors satisfy the following relation 

A(l)A = (t) + ^{A(l)^(i)A). (3.3.1) 

Remark 3.3.3 ^ 5 Maeda observed, the result above shows in particular that if X 

is a principal vector field of M with principal curvature X, orthogonal to the Hopf 

vector field U, then (pX is also a principal vector field with corresponding principal 

curvature X, where 

Equivalently, if we consider the principal curvature X given in terms of a new func

tion e : M ^Rby X = - cot(r + 6') then A = - cot(r - 6'). 
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The local constancy of the Hopf principal curvature a of M is not an isolated fact 
in the sense that using the Codazzi equation (2.4.6) for M we can actually prove 
the following 

Proposition 3.3.3 Let X be a unit smooth principal vector field of a Hopf hyper

surface M C CP" corresponding to a principal curvature function A. Then A is 

constant along any integral curve of the Hopf vector field U. 

Proof: 

Using that the Hopf principal curvature a is constant, it follows from (2.4.6) that 

U{X)X = aVxU - A{VxU) - XVuX + Ai^uX) -

Thus, using (2.4.7) and (3.3.2) we get 

U{X)X = A{\/uX) - XVuX - (1 + ttA - AA)(^X. (3.3.3) 

Consequently, the inner product of this equation with X yields 

U(X) = 0. 

o 

Remark 3.3.4 If X is a unit smooth principal vector field with corresponding prin

cipal curvature X, then it follows also from (3.3.3) that V [ / X is a principal vector 

field corresponding to the same principal curvature X if and only if X = X and hence, 

using (3.3.2), if and only if X = — cot(r) or A = tan(r). 

We shall see now that, in general, almost every principal vector of a level hypersur

face of a Hopf hypersurface M in CP" is obtained simply by parallel transporting 

principal vectors of M along normal geodesies, more precisely we have 

Theorem 3.3.5 Let M be a Hopf hypersurface o/CP". Let X be a unit principal 

vector at q e M corresponding to an eigenvalue X such that X is either equal or 
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orthogonal to the Hopf eigenvector U at q. Then for each s, the parallel transport 

X(s) of X along the normal geodesic 7 = 7(5,^) (5) (that is, ^ = 7(0) G J - ^ M) starting 

at q, is a principal vector of the level hypersurface Ms. 

Proof: 

Let us consider a curve cr of M such that a(0) = q and a'{0) = X. Then the 

2-parameter family of geodesies in CP" 

^(^.<) = 7<„s,(s) 

yields the Jacobi field 

defined along the geodesic 7(5). Then W satisfies the initial conditions W{Q) = X 

and W(0) = -AqX = -XX. 

On the other hand, let / : R —)• R denote either the solution of the differential 

equation / = - / if X is orthogonal to U, or the solution of / = - 4 / \i X = U, 

satisfying the initial conditions /(O) = 1 and /(O) = - A . Then, using the curvature 

tensor R for CP" as given by (2.4.1) we obtain 

Therefore, fX{s) is also a Jacobi field along 7 having the same initial conditions as 

W and hence W = f X ( s ) . However, by construction, W is a Ms-Jacobi field for 

each s and so As(W(s)) = - W(s), which implies 

AsX{s) = -j^is)-

If we denote the Hopf principal curvature by a = — 2cot(2r) and if we write the 

principal curvature as A = — cot(r + 9) then for the case when X is orthogonal to 

U, the function / is given by 

sin(r + (9 -h g) 
^^'^ = sin(r + ^) • 

o 
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Note that in particular, applying this result to the Hopf eigenvector, we have also 
proved the following 

Corollary 3.3.1 The level hypersurfaces of a Hopf hypersurface in CP" are also 

Hopf hypersurfaces. 

Theorem 3.3.6 A hypersurface o/CP" satisfies either the condition (^) or (irk) if 

and only if it is a Hopf hypersurface. 

Proof: 

One direction has already been proved in accordance with Theorems (3.2.2) and 

(3.2.3). So if M is a Hopf hypersurface, let us show firstly that the push maps ^ 5 

satisfy {-ki^). 

Indeed, given g G M , let a be the integral curve of the Hopf vector field U which 

passes through q, say (7(0) = q. Then i t follows from (3.2.9) that 

= * ( ^ ' « ) 

= f{s)Us, (3.3.5) 

From which ( ^ ) follows. 

Now, for the reflection map we set up W{s) = fX{s) in (3.2.8), which yields 

d^{Ug) = 4rr^- (3.3.6) 

Therefore, M also satisfies (k). Q 
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3.4 Tubular hypersurfaces of CP^. 

We recall here Theorem (1.3.2), where Cecil-Ryan, under the assumption of con

stancy of the rank of the focal map of a hypersurface, characterize the Hopf hy

persurfaces of CP" as open subsets of tubes around complex submanifolds. Now, 

looking at the calculation for the derivative of the focal map. Lemma (2.6.5), we can 

see that this assumption is equivalent to the constancy of the rank of the principal 

curvature — cot(r), wherever this value be a principal curvature for the hypersurface. 

We shall investigate hereafter what is the behaviour of the principal curvatures of 

a Hopf hypersurface of CP" from the extrinsic viewpoint, that is, considering the 

hypersurface as part of a family of level hypersurfaces. Our intention in doing that 

shall be to collect as much information as possible about the principal curvatures in 

order to determine the rank of the principal value — cot(r). 

It is worthwhile highlighting here that from the intrinsinc point of view the best 

geometrical property that we know about a Hopf hypersurface in CP" is the elegant 

result of Maeda stated in Theorem (3.3.4). However, this result does not seem to 

be sufficient to evaluate the behaviour of — cot(r) as an eigenvalue of the shape 

operator of the hypersurface. 

The main results of this section which are concerned with the characterization of 

the Hopf hypersurfaces of CP", shall use the crucial constructions of tangent vector 

fields Xt and Vt that we now start to describe. 

Let us fix a point g in a Hopf hypersurface M of CP". Then, according to Proposition 

(2.6.4) we can write q = j(r) = 7(p,„)(r) and the integral curve of the Hopf vector 

field f / of M is described by a{t) = jt{r) = 7(p,5t)(̂ ) where 6t = cos{t)r] + sm(t)Jri 

and t 2t 
sin(2r) ' 

In Corollary (3.3.1), we showed that the level hypersurfaces Mg of M are also Hopf 

hypersurfaces. Thus, we just need to replace r by s in the description above in order 

to describe the integral curve ag of the Hopf vector field Ug of the level hypersurface 
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Ms starting at the point 7(5). 

Definition 3.4.2 Given a vector XQ G TqM orthogonal to the Hopf vector U(q), 

let Xo{s) denote the parallel transport of XQ along 7(5). Then we can construct 

a smooth vector field Xt along a{t) in two different manners which we shall name 

hereafter as 

Case I . 

The vector field Xt{r) is defined as the parallel transport of Xo{0) along 7^(5) from 

the point p to the point a{t). 

Case I I . 

The vector field Xt(r) is defined as the parallel transport along 7^(5) from the point 

p to the point a(t) of the vector 

Xt{0) = cos(^)Xo(0) + sin(^) JXo(O). (3.4.1) 

Remark 3.4.5 The vectors {XQ(0), JXo(0)} are orthogonal to the vectors {r],Jr]} 

because Xo(r) and JXo(r) are both also orthogonal to the vectors {'yo{r),Uo{q)}. 

Therefore, in both constructions above Xt{0) is orthogonal to 6t for every t. Thus, 

by elementary properties of parallel vector fields we have that Xt{s) is orthogonal to 

itis) for each value oft and s. In particular, this makes it clear that Xt{s) is indeed 

a tangent vector field defined along as{t) on the level hypersurface Ms. 

Definition 3.4.3 Let us denote the induced Riemannian connection of each hyper

surface Ms by the same symbol V . Then, for each construction of Xt{s) as given in 

Definition (3.4.2), we associate the following vector field 

Vt(s) = ^u.Xt(s) + '^<l>Xt{s). (3.4.2) 

The constructions of Xt and Vt may appear artificial at first. However, as we shall see 

in Theorem (3.4.7), they arise quite naturally when considering the case of tubular 

hypersurfaces. 
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In the sequel, we shall need to recall some basic facts about Jacobi fields of CP" in 
order to prove our next proposition. 

The Hopf fibration TT : 52n+i _^ £pn ^g^^ write down Jacobi fields of 

CP" in terms of Jacobi fields of the sphere. Indeed, let 7 = J{q,i){s) be a geodesic 

of CP" which is lifted to a horizontal geodesic 7 = 7(q,o(s) in the sphere. Then the 

Jacobi fields along 7 are given as follows. 

Lemma 3.4.2 The Jacobi field W{s) along 7(5) satisfying the initial conditions 

W{0) = X and W{0) =Y is determined by 

W(s) = cos(s)Bx(s) + sin(5)Pr(s), (3.4.3) 

where Bz{s) denotes the image under TT* of the parallel transport B^{s) of Z along 

7(5) . 

Proof: 

Indeed, we first need to observe that the variation of 7 given by 

P(s, t) =: cos(s) (cos(t)^ -\- sm{t)X) -\- sm(s) (cos(^)^ + sin(t)y), 

consists of horizontal geodesies since the initial tangent vector of each of these 

geodesies are horizontal. Consequently, the projection F{s,t) = 7r(F{s,t)) is also a 

geodesic variation. Secondly, we note that the former variation corresponds to the 

Jacobi field 

W = cos{s)Bj^{s) + sin(s)Py(5). 

O 
Let us first have a close look at tubes around complex submanifolds of CP". We 

shall do this in order to get a good picture of the geometrical relation between the 

principal curvatures of a tubular hypersurface around a complex submanifold and 

the principal curvatures of this core. 
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Proposition 3.4.4 Let M be an open subset of a tube $r(-L^ N) of radius r around 
a complex submanifold TV"" of CP^. The principal vectors of M at a point q = 
7 ( r ) = 7(p,,,)(?^) are obtained according to the following cases 

(i ) A^B = -2cot{2r)B, 

where B(s) = 7r*(Bj^) and W{s) = sm{s)B{s) is the Jacobi field along 

7 satisfying the initial conditions W{0) = 0 and W{0) = Jrj. Note that 

B = Ji = U. 

(ii ) A^B = - cot{r)B, 

where B{s) = 'K^(Bj^) and W{s) = sm(s)B{s) is the Jacobi field along 

7 satisfying the initial conditions W(0) = 0 and W{0) = X e (_Lp 

T V ) n { v } ^ 

(iii ) A^B = -coi{r^e)B, 

where X is a principal vector of the shape operator A^j of N corre

sponding to the principal value cot{9), B{s) = 7T^{B-^) and W{s) = 

(cos(5) — cot(^) sm(s))B(s) is the Jacobi field along 7 satisfying the ini

tial conditions W{0) = X e TpN and W(0) = -Ar^X = - Q,c>i(e)X. 

Proof: 

The proposition follows immediately from Lemma (3.4.2) and the fact that the 

Jacobi field W satisfies conditions (1.1.4) and hence satisfies (1.1.6), that is, W{Qi) = 

-A^WiO). O 

Remark 3.4.6 In the Proposition above we can highlight some useful facts. The 

first, being that (i) shows that every tube around a complex submanifold is indeed a 

Hopf hypersurface. Secondly, it follows from (ii) that the multiplicity of the eigen

value — cot(r) is exactly 2{n — m) at each point of the hypersurface M. 

The next theorem points out the geometrical relevance of the vector field Vt for the 

study of the principal curvatures in the case of a tubular hypersurface. 
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Theorem 3.4.7 Let M be an open subset of the tube ^ r ( -L^ N) of radius r around 
a complex submanifold N o/CP". Let q = 7(p,„)(r) E M and let XQ G TgM be a 
vector orthogonal to U{q). Then the vector fields Xt and Vt, as given in Definitions 
(3.4.2) and (3.4.3) satisfy the following properties 

(i ) If XQ is an eigenvector of M corresponding to the eigenvalue — cot(r) (re

spectively, — cot(r -\-0)). Then, for every s G (0, r ] , the vector field Xt{s) 

constructed in case I (case II) is a principal field along Og corresponding 

to the eigenvalue — cot{s) (respectively, — cot{s + 9)). 

(ii ) Vt{s) 7̂  0 for every s G (0, r ] , in Case I. 

(iii ) Vt(s) = 0, in case II and consequently Vus^t = —^4>^t-

Proof: 

Item (i), for Case I , follows imediately from item (ii) of Proposition (3.4.4). To 

prove (i) for Case I I , we note that from item (iii) of Proposition (3.4.4), we have 

Vxo(o)^ = - cot(^)Xo(0), which implies 

V^^,,,5t = -coi{e)Xt{Q). (3.4.4) 

And hence, using again item (iii) of that proposition, (i) follows. 

Now, in order to prove (ii) and (iii), we need to consider the geodesic variation 

F(s,t) = J(p,s^){s) with its corresponding variational Jacobi field Wt{s) = ^{s,t). 

Then for each t, Wt is a M5-Jacobi field since it satisfies condition (1.1.4) and hence 

AgWt = —Wt, where Ag denotes the shape operator of the level hypersurface M 5 . 

Using Proposition (2.6.4), we see that Wt satisfies the initial conditions 

Wt(r) = U{a{t)) and Wtir) = 2cot{2r)U{a{t)). 

Therefore, setting h{s) = , we have Wt{s) = h(s)Us because h{s)Us is also a 

Jacobi field along 7^ satisfying the same initial conditions. 

I t follows from (2.4.1) that 

R(iuWt)Xt = -2h^Xt. (3.4.5) 
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On the other hand, using the definition of the curvature tensor and the following 
fact 

[ju Wt] = %,{hUs) - V.uA'ft) = [o^sh + h)U = 0, (3.4.6) 

we obtain 

2sin(2s) 
sin(2r) 

cos(2 
sin(2r) 

— /Cos(2s) , V , , 
= ^ 7 . ( — k v ^ ^ « ) (3.4.7) 

and hence 

= 0. 

In other words, the vector field h{s)Vt{s) is parallel along the geodesic 7f(s). There

fore, using this parallelism, (ii) follows from the limit 

]imm) = — ^ ^ J X t = 0, 
s^o sm(2r) 

and (iii) follows from (3.4.1) and the Umit 

lim{hVt) = ^ - — ^ J X t = 0. 
s-^o^ ^ dt sin(2r) 

o 

Remark 3.4.7 The parallelism of the vector field hVt is equivalent to the property 

^itVt = agVt because of h(s) satisfying h{s) = —ash{s). 

In each construction given by Definition (3.4.2), the vector field Xt{s) satisfies the 

basic property below which shall be used extensively to prove some oncoming results 

in this section. 
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Lemma 3.4.3 The vector field Xt{s) is orthogonal to the Hopf vector field Ug. 

Proof: 

Let Wt(s) be the M^-Jacobi field defined along jt as in Theorem (3.4.7). Then, using 

that Wt{s) = h{s)Us we have 

h{s)(Xt,Us) = (Xt,Wt), 

which by differentiation with respect to s yields 

h(s)(Xt, Us) = {Xt, V ^ W i ) Using that Xt and Us are parallel along 7^ 

= (Xt,Vwn) Using (3.4.6). (3.4.8) 

Thus, calculating the limit of (3.4.8) when s goes to zero we obtain 

= 0. 

Therefore, using again that Xt and Us are parallel along 7^, we have {Xt,Us) = 0 

which proves the Lemma. O 

Inspired by the geometrical properties of the tubular hypersurfaces of CP" described 

above, we can show now that these properties hold in general for any Hopf hypersur

face of this space form. Thus, we shall be henceforth considering M as an arbitrary 

Hopf hypersurface of CP". 

We shall prove next that in the case of our generic Hopf hypersurface M, the vector 

fields Xt and Vt also satisfy properties similar to those obtained in Theorem (3.4.7) 

for tubular Hopf hypersurfaces. 

Theorem 3.4.8 Let M be a Hopf hypersurface o/CP". Let q = 7(p,^)(r) G M and 

let XQ G TqM be a vector orthogonal to U{q). Then the vector fields Xt and Vt, as 

given in Definitions (3.4.2) and (3.4.3) satisfy the following properties 
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(i ) Vt(s) / 0 for every s G (0, r j , in Case I. 
(ii ) Vt{s) = 0, in case II and consequently Wus^t — —^(pXt. 

(iii ) / / in addition we assume that M is analytic and XQ is an eigenvector of 
M corresponding to the eigenvalue — cot(r) (respectively, — cot{r-\-9)), 
then for every s G (0, r ] ; the vector field Xt(s) constructed in case I (case 
II) is a principal field along GS corresponding to the eigenvalue — cot(s) 
(respectively, — cot(s -\- 9)). 

Proof: 

The proof of item (i) and (ii) can be carried out in the same manner as that given 

in Theorem (3.4.7) for tubular hypersurfaces as far as we can show that the vector 

field h{s)Vt here is also parallel. According to the Remark (3.4.7), this parallelism 

is equivalent to V ^ ^ T ^ = OLsVt, which can be proved as follows. 

The vector field Xt is orthogonal to 7^ by Remark (3.4.5) and is also orthogonal to 

Us by Lemma (3.4.3). Thus, we have 

W ^ X , = VusXt. (3.4.9) 

We have proved in Theorem (3.3.1) that Ms is a Hopf hypersurface and so 

[iuUs] =v^,Us-VuAt 

= asUs. (3.4.10) 

Thus, using the results above and (2.4.1), we obtain 

"^jt^u.Xt = Vu,%,Xt + V[^,,us]Xt + R{ju Us)Xt 

= -2(f>Xt-^asVu,Xt. (3.4.11) 

Now, applying (3.4.9),(3.4.10) and (3.4.11) to (3.4.2), we have 

= ( ^ - 2)cl)Xt + asWu^Xt 

= asVt since = 4 + . (3.4.12) 
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The last part of the theorem shall be proved by showing that the following vector 
field Zt{s) defined along as{t) is identically zero. 

Zt = AsXt - XXt, (3.4.13) 

where Ag denotes the shape operator of the level hypersurface Mg. 

First, we notice that the analyticity of the ambient space CP" and of the hypersur

face M imply that we can construct a local analytical unit normal field on M. Thus, 

the field Zt is also analytic and it is identically zero if and only if all the derivatives 

of Zt with respect to t vanish at t = 0. 

In order to simplify our notation we shall omit any subscript s since it is clear 

that we are considering all the geometrical objects involved as defined on each level 

hypersurface Mg. 

I t follows from the Codazzi equation (2.4.6) together with (2.4.7) and the fact that 

Ms is a Hopf hypersurface that 

VuiAXt) = VxMU) - A(Vx,U) + A{VuXt) - (j>Xt. (3.4.14) 

We can also diflPerentiate (pAXt using (2.2.8) as follows. 

Vu{(l>AXt) = (t>Vu{AXt) (3.4.15) 

We shall first consider the situation when AXQ = - c o t ( r + 0)Xo and Xt is con

structed as in Case I I . Then, recalling that the Hopf principal curvature a is con

stant, we have from (3.4.14) 

Vu{AXt) = -a(f)AXt + A(l)AXt - ^A(J)Xt - ^Xt Using item (ii) 

= -^(l)AXt Using (3.3.1), (3.4.16) 

and hence (3.4.15) can be simplified to 

Vu{^AXt) = ^AXf (3.4.17) 
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Thus, it follows from (3.4.16) and (3.4.17) that the n-th derivative of AXt is given 

by 
f 

{-ly^^i^Y^AXt if n = 2m + 1. 
V ^ ( A X , ) = <̂  (3.4.18) 

{-\f[%YAXt if n = 2m. 
V. 

On the other hand, it follows from item (ii) and (2.2.8) that the n-th derivative of 

Xt is given by 
r 

{-\T^^{%Y<f>Xt i f n = 2 m + l . 
V ^ ( X , ) = <̂  (3.4.19) 

{-\Y'{%YXt if n = 2m. 
V. 

Therefore, it follows from (3.4.18), (3.4.19) and the assumption AX^ = XXQ, that 

all the derivatives of at t = 0 vanish. 

The proof for the situation when AXQ = - cot(r)Xo and Xt is constructed as in 

Case I , is now just a consequence of the previous case. Indeed, in accordance with 

Theorem (3.3.4), i f is any eigenvector at q corresponding to a principal curvature 

cot(r + 9) with 9^0 then XQ is orthogonal to both vectors YQ and JYQ since the 

eigenvalues are all distinct. Consequently, the parallel transport Xt along jt remains 

orthogonal to the parallel transport Yt of the rotated vector Yt{0) = cos(|)yo(0) + 

sin(|)JFo(0). Thus, the vector Xt{s) must lie in the eigenspace V_cot(r). O 

Theorem 3.4.9 Let M be a connected Hopf hypersurface o/CP" with Hopf prin

cipal curvature being — 2cot(2r). Let X be a continuous principal vector field on 

M corresponding to a continuous principal curvature function A : M —)• R. If X 

assumes the value — cot(r) at a particular point qo ^ M then X is constant. 

Proof: 

The set of points where the function A assumes the value - cot(r) is certainly closed 

and so because of M being connected we can obtain our theorem by proving that 

this set is also open. Next, we shall prove this by contradiction. 

Let us assume the existence of a sequence of points g„ G M converging to go ^ 

such that at each of these points we have A„ = A(g„) ̂  — cot(r). Thus, if we define 
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A in terms of a new function 9 by putting A = — cot(r + ^ ) , our assumption can be 
read as lim^„ = 0. 

For each n G { 0 , 1 , . . . } we shall denote the integral curve of the Hopf vector field 

starting at the point qn by a^(t). Along each of these curves we can apply the 

construction given in Definition (3.4.2) to obtain a vector field X^ satisfying the 

initial condition X^{r) = X{qn). 

Thus, using Definition (3.4.3), we have vector fields X " and VJ" satisfying the prop

erties stated in Theorem (3.4.8), that is, for each t we have V^^ ^ 0 and for each 

n / 0 we have V^ = 0. 

Now, since the vector field V^ depends continuously on the initial condition given 

for the vector field , we must have 

n—>oo 

which contradicts the properties satisfied by these vector fields that we have just 

mentioned. O 

Corollary 3.4.2 Let M be a connected Hopf hypersurface of CP" such that every 

continuous principal curvature function on M corresponds to a continuous principal 

vector field. If — cot(r) is an eigenvalue at a point of M then it will be an eigenvalue 

at any point of M with the same multiplicity. 

Proof: 

I f we order the principal curvatures of M at each point as 

< A2 < . . . < A2n-1, 

then each Aj is a continuous principal curvature function and using the theorem 

above we see that if Â - assumes the value — cot(r) at some point then it must be 

constant and hence — cot(r) must have constant multiplicity. O 
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Corollary 3.4.3 Let M be a connected Hopf hypersurface o/CP" such that to every 
continuous principal curvature function there corresponds a continuous principal 
vector field. Then M lies in a tube around a complex submanifold of CP". 

Proof: 

The result follows from Corollary (3.4.2) and Theorem (1.3.2). O 
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3.5 Liftings under Riemannian submersions. 

In this section we point out a natural way of getting Hopf hypersurfaces in Kahler 

manifolds other than complex space forms. In order to accomplish this we shall see 

in the next theorem that a holomorphic Riemannian submersion lifts Hopf hypersur

faces to Hopf hypersurfaces and so the following theorem can be useful to establish 

a relation between the Hopf hypersurfaces of two (Nearly) Kahler manifolds. In 

particular, we could use this result to understand the geometrical behaviour of the 

Hopf hypersurfaces in one ambient space in terms of the known behaviour of their 

corresponding projections in another ambient space. Furthermore, the next theorem 

also gives new examples of Hopf hypersurfaces in Kahler manifolds not of constant 

holomorphic sectional curvature. 

Theorem 3.5.10 Let (W, J) and {W, J) be Kdhler manifolds. Let TT : W W be 

a holomorphic Riemannian submersion. If M C W is a Hopf hypersurface of W 

then M := 7r~^(M) is also a Hopf hypersurface ofW. 

Proof: 

Given q e M, let ^ be a local unit normal vector field on M and let ^ be the 

corresponding horizontal local vector field defined along M , that is, <i7r(f) = f. I t 

follows that f is also a unit normal vector field on M. Indeed, given a tangent 

vector V G Tq{M), let us consider its decomposition into horizontal and vertical 

components v = v" . Then 

(Iv) = dv") = {d^iO.dniv")} = = 0, 

where in the last equality we have used that dn preserves the length of horizontal 

vectors. Thus, U = J^ is the Hopf vector field of M with respect to f, moreover, 

because of TT being holomorphic, we have d7r(U) = U. 

The vertical space V = Ker{d7T) and horizontal space H = V^ are invariant under 

J, since d7T(JX) = Jdn{X) = 0 for every X G V and J is an isometry oiV ® H. 

Consequently, U is the horizontal l i f t of U. 
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The connection V induced on W by the Riemannian submersion is related to the 
Riemannian connection V of 1^ by the O'Neil's formula (cf. [24]) 

where X and Y are horizontal lifts of X and Y respectively. In particular, for 

X = Y = U we have 

VfjU = VuU = -ai, 

which implies that 

V^U = 0 . 

Therefore, it follows from Lemma (1.3.2) that M is a Hopf hypersurface. O 

One more point we would like to remark here is that tubular hypersurfaces of a 

Riemannian manifold are lifted under Riemannian submersions to tubular hyper

surfaces. More precisely, we have 

Proposition 3.5.5 Let W and W be Riemannian manifolds. Let ir : W ^ W 

be a Riemannian submersion. If N is a Riemannian submanifold of W then for 

r sufficiently small, the tube T = ^r{-^^ A )̂ of radius r around N is lifted to the 

tube T = $r(-L^ N) of radius r around the submanifold N = 7T'^{N), that is, 

f = 7T-\T). 

Proof: 

Given q e T, let q e 7r~^(q)- By assumption, there exists a geodesic 7(p_̂ ) in W, 

of length r, connecting the point q = ^(r) to a point p = 7 ( 0 ) G N such that 

T] — 7 ( 0 ) G-L pA". The Riemannian submersion TT lifts 7 to a horizontal geodesic 

7 of Vl̂  with 7 ( 0 ) = p e N and j(r) = q. Moreover, this geodesic l i f t meets T 

orthogonally as we now show. 

Given any vector v G TpN, we can decompose it into horizontal and vertical com

ponents, say V = v" -\- . Then, 
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and hence q lies on the tube of radius r around A". 

On the other hand, every vector normal to A" is horizontal and consequently, using 

some basic properties of Riemannian submersions (see for instance [24] page 97.), 

every geodesic 7 starting at a point of A" and orthogonal to A" is horizontal. Then, 

for small r, i t follows by uniqueness of geodesies that 7 is the l i f t of a geodesic 7 of 

same length and normal to A". Therefore, <^r(^^ A") = 7r~^($^(_L^ A")). O 

Theorem (3.5.10) can be applied to flag manifolds, providing a way to find Hopf 

hypersurfaces in spaces other than complex space forms. In order to do such example 

we need first a few definitions and preparation. 

Definition 3.5.4 A flag manifold is a homogeneous space G/H where G is a 

compact Lie group and H is the centralizer of a torus in G. 

If G/H is flag manifold then the subgroup H contains a maximal torus T of G. 

Our example of Riemannian submersion will come out of the fact that we can build 

up G-invariant metrics and complex structures on the flag manifolds G/T and G/H 

in such a way that the projection TT : G/T G/H is & holomorphic Riemannian 

submersion. In order to do so, let us first look at flag manifolds from the infinitesimal 

viewpoint. 

We refer to Burstall and Rawnsley [14] for a detailed treatment of flag manifolds. 

Definition 3.5.5 Let g be a semisimple Lie algebra and let g'^ denote its complex-

ification. A subalgebra of g^ is a Borel subalgebra if it is a maximal solvable 

subalgebra of g'^. A subalgebra of g'^ is a parabolic subalgebra if it contains a 

Borel subalgebra. If G'^ is a Lie group with Lie algebra g'^ then a subgroup P of G^ 

is a parabolic subgroup if its Lie algebra is parabolic. 

A flag manifold G/H can also be realised as a homogeneous space G'^/P where P 

is a parabolic subgroup of G'^ such that H = G D P. 
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Let us denote by g, h, t and p the Lie algebras of G, H, T and P respectively. It is 
well known that by choosing a set of simple roots A+ = { a i , . . . , q ; / } with respect 
to the Cartan subalgebra t'̂ , we can decompose the complex semisimple Lie algebra 

into root eigenspaces {g"''} as follows 

aGA+ q G A + 

Furthermore, the parabolic subalgebras of g*̂  are determined (c.f [28]), up to 

conjugation, by the subsets of A+. More precisely, given a subset S C A"^ and 

if we denote by T(S) the set of all positive roots which are linear combination of 

roots in 5, then we have a further decomposition of g*̂  

g^ = t ^ ® E g"® E g""® E g ' ® E g"'-
a e r ( 5 ) aeT{S) Pe^\T{S) /3eAl-\T(5) 

where the complexification of the Lie algebra h and the parabolic subalgebra p are 

given respectively by 

aeT{S) aeT{S) 

and 

p = t ^ ® E g"® E g~"® E g"-
aET{S) aeT{S) /3eA^\T(S) 

Thus, we have in particular, that the Lie algebra g admits the following decompo

sitions into direct sums 

g = t 0 n and g = h ® m, 

where 

n - (g ^ (g" ® g"")) and m = ^ (g H (g^ 0 g-^)). 

aeA+ peA+\T{S) 

Now, as G is semisimple and compact, the Killing form B of g can be used to 

define an Ad(G)-invariant inner product {X,Y) — -B(X,Y) on g. Therefore, the 

restrictions (, )|n and (, )|in yield AdiJ^) and Ad{H) invariant inner products defined 

on these subspaces respectively. 
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Since the metric (,) is Ad{G)-mYanant, we have in particular that for any t e T 

and X , y G n 

{Ad{t)X, Ad{t)Y) = (X, y ) , (3.5.1) 

Thus, giving Z e t and setting t = exp(sZ), we obtain from the differentiation of 

(3.5.1) that 

(adzX, Y)-h(adzY,X) = 0. 

Therefore, the subspaces gfl (g" 0g~") and gO (g^0g~^) are orthogonal whenever 

a ^ ±/?, and hence n = t-*- and m = h-*-. 

This implies that m is the horizontal subspace He C Te[G/T) of the projection TT 

at the identity e, where here we are identifying the tangent spaces Te{G/T) and 

Te(G/H) with the subspaces n and m respectively, via the derivative at e of the 

natural projections G ^ G/T and G —)• G/H. Consequently, we have that the 

identity map dir-e : / / g —)• m is an isometry. 

Using the left translations Lg : G/T ^ G/T and Lg : G/H ^ G/H, we can induce 

G-invariant metrics on these homogeneous spaces by requiring that for each g ^ G 

these translations are isometrics. Then the projection TT is a Riemannian submersion 

because we can write down its diflterential at the point p G G/T as 

diTg = dLg o dTT-e o d L g - i . (3.5.2) 

The equation above follows from the fact that for each g e G we have ir-goLg = LgOiTe. 

A comprehensive study of almost complex structures on homogeneous spaces has 

been done by Borel-Hirzebruch in [12] and for the special case of flag manifolds 

Wang [43] has characterized these homogeneous spaces exactly as the ones which 

admit a complex structure. We shall not go into the details of their work but in 

order to set up complex structures on our flag manifolds we need to mention the 

following main result 

Theorem 3.5.11 The G-invariant complex structures on a flag manifold G/H are 

in one-to-one correspondence with the splittings ofT^(G/H) into Ad[H)-invariant 



3.5 Liftings under Riemannian submersions. 87 

subspaces 

/ 3 f c e ( A + \ T ( S ) ) / 3 fce (A+\T(S) ) 

where Ek = ± 1 . 

Let us give a G-invariant complex structure to G/H by fixing a splitting for 

Tf{G/H) as in the theorem above. Then, we can obtain a complex structure of 

G/T by considering a splitting oi T^{G/T) as follows 

Ti'%G/T)= J2 (g'''')eT^'%G/H) and T§'\G/T) = J2 {g-''''')®T^'\G/H), 

where 6k — ± 1 . 

Indeed, this splitting is y4(i(T)-invariant because of the very definition of the root 

subspaces {g^}. 

Therefore, using (3.5.2) and the fact that the root spaces g" and g~" are complex 

conjugate for every a G A+, we can see that TT is a holomorphic map with respect 

to the complex structures given to G/T and G/H. 

We conclude this section ilustrating the theory above with the specific example of 

complex projective spaces. 

Example 3.5.1 Let T be a maximal torus for the Lie group SU(n-\-l). Then every 

Hopf hypersurface o/CP" = SU(n-\- 1)/S(U{1) x U{n)) is lifted by the projection 

TT : SU{n + l)/T ^ SU(n -\- 1)/S{U{1) x U(n)) to a Hopf hypersurface of the flag 

manifold SU{n-\- l)/T. The metrics and complex structures considered in these flag 

manifolds are constructed as above. 



Chapter 4 

Superminimal Surfaces of S^. 

4.1 Introduction. 

Although the Hopf hypersurfaces of the 6-sphere are tubular hypersurfaces around 

almost complex curves, we cannot find explicit examples of these hypersurfaces for 

the simple reason that in general it is not so easy to get an explicit description of 

these curves. 

In this chapter, we use the harmonic sequence associated to a weakly conformal 

harmonic map / : 5 —>• 5^ in order to determine explicitly all the linearly full 

almost complex 2-spheres of with at most two singularities. The use of harmonic 

sequence is a very well known technique since, in recent times, it has been used by 

several authors ([20],[22],[6]) and we shall give here the same treatment as in [6], 

which was suitably specialized for the case of the spheres. Thus, our next section 

is entirely dedicated to establish this background and to state the main results 

already known about almost complex curves of the 6-sphere that we shall need in 

this chapter. 

We shall see that the singularity type of the particular almost complex 2-sphere 

mentioned above has an extra symmetry and this shall permit us to determine the 

moduli space of such curves with suitably small area. 
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4.2 Harmonic sequences and harmonic maps. 

A map i/j : S ^ W between Riemannian manifolds is harmonic if it satisfies the 

Euler-Lagrange equation 

t r ( V # ) = 0. 

Throughout this chapter, we shall use S to denote a Riemann surface and z = 

x-\-iy shall denote a local complex coordinate z on S. In this case, the harmonicity 

condition of ^ is simplified to 

( V a # ) ( J ) = 0. (4.2.1) 

Let F 5 be a complex vector bundle over the Riemann surface S and assume that 

V is a connection on V. By the Koszul-Malgrange Theorem, V admits the structure 

of a holomorphic vector bundle. Here a section s is a holomorphic section if and 

only if 

V A 5 = 0. (4.2.2) 
dz 

Given a harmonic map ipo := ip : S CP", several authors ([44],[22],[20],[6]) have 

dealt with the sequence of harmonic maps ipk '• S CP" obtained from ip via an 

inductive construction of a sequence of complex line bundles over S. In the sequel, 

we outline this construction and give some of the main features of this sequence. 

Let £ be the tautological line bundle over CP". Let LQ and LQ be the pullbacks 

via tpo of £ and £ ^ respectively. LQ and LQ are endowed with naturally induced 

connections for they are vector subbundles of the trivial C"+^-bundle over S. 

Explicitly, i f 5 is a section of a subbundle L of the trivial bundle S x C"^^, then s 

may be regarded as a map S C"+^. Given X G T^S, we can define a connection 

Vxs by the orthogonal projection (Xs)^ of Xs onto L. Similarly, we also define a 

connection in L ^ . Thus the line bundles LQ and LQ have structures of holomorphic 

vector bundles over S. 

The map ipo determines a bundle map : -̂ ô ^ -̂ o"- Indeed, if we consider a 
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holomorphic local section /o : 5 —)• \ {0} of LQ, then we define dofo = (^)^% 

and ao/o = (11)̂ 0. 

I t follows from (4.2.1) and (4.2.2) that do (do) is a holomorphic (anti-holomorphic) 

bundle map if and only if ipo = [/o] is a harmonic map. Therefore if / i := dofo is 

not identically zero then it is a holomorphic section of the bundle LQ and hence its 

zeros (if any) are isolated. Let ZQ be such a zero, then for some holomorphic local 

section / i we have fi{z) = {z — ZQYfi{z) with /i(zo) / 0. This latter map will then 

yield a well-defined map il)i{z) := [/i(-2;)] from S into CP" and / i is a meromorphic 

local section for a complex line bundle Li C LQ. 

By defining di in a similar way, and verifying that /2 := is a holomorphic local 

section of L ^ , we can prove that T/^I is also harmonic. 

Therefore, as long as the bundle section fk is not identically zero, that is, il^k-i is 

not anti-holomorphic (or ijjk+i is not holomorphic, when considering the descending 

sequence given by 5 ), we can carry on with this process, defining a sequence ijjk = 

fk{z)] of harmonic maps such that the local sections fk are characterized by the 

following properties: 

= fp+i+d,(log\fp\')f, 

= fp+i + apfp where ap := dz{log\fp\'^) (4.2.3) 

^ = where 7 . : = ^ . (4.2.4) 

It is known [22] that the harmonic sequence terminates at one end if and only if it 

terminates at both ends. If this happens, we say that each element of the sequence 

is superminimal and it is customary to consider the range for the indices starting 

at the holomorphic element of the sequence, that is, (^j)J_Q denotes the harmonic 

sequence of ip. This holomorphic map is usually named in the literature as the 

directrix curve associated to ip referring to the terminology adopted when dealing 

with harmonic 2-spheres in ^^"^(cf. [1]). 
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If iprn = [fm] foi" somc harmouic map fm '• S S^, then we can consider fm 
as a nowhere vanishing global holomorphic section of LQ S O that the sequence of 
meromorphic sections f j will also satisfy the condition: 

7m+k = ( - l ) ' l / m + . l V m - . . (4.2.5) 

In particular, 

\fm+k\\fm-k\ = l. (4.2.6) 

Note that in this situation, the element ipo will necessarily be in the middle of the 

sequence, that is n = 2m, because fm-j-k = 0 if and only if fm-k = 0- Moreover, 

(4.2.3) and. \fm\ = 1 implies 

d \ d d 
^^fm = / m + 1 . {NotaUoTi 9,:= — = - ( — - I—)] (4.2.7) 

Definition 4.2.1 We say that a map from a Riemannian manifold N into CP" is 

linearly full, when its image is not contained in any complex space form CP^ for 

k < n. 

If the Riemann surface is homeomorphic to the sphere S"^ then Wolfson [44] shows 

that the corresponding complex line bundles are mutually orthogonal and conse

quently the harmonic sequence terminates, that is, all the harmonic 2-spheres of 

CP" are superminimal. Moreover, in this case, the length of the sequence achieves 

its maximum, n + 1, if and only if ̂  is linearly full . 

A detailed discussion of the holomorphic curves of a complex projective space can 

be found in [27] (pages 263-268), but here we describe some material on this topic 

to be used in this chapter. 

Let -0(2;) = [f{z)] : S —)• CP" be a holomorphic curve from the Riemann surface 

S into CP", where f : S ^ C"+i \ {0} is a local holomorphic l i f t of ip. Then 

the j*^-osculating curve of ip is the holomorphic curve Gj : S ^ CP"^ ( where 

Uj := [J+J] - 1) defined by 

a,(z) = [ / A . . . A / ( ^ ) ] ( ^ ) , 
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where /̂ ^^ = | ^ and j = 0 , n - 1. 

A higher order singularity of ip is a point p E S which is a singularity for some 

j*^-osculating curve ( j = 0,1, . . , n — 1). The ramification index of aj at a point p 

is the order Vj^i of this point as a zero of the derivative of the curve aj. 

Thus, the holomorphic curve ip is said to have singularity type (r'i,r2, ,--,rn) at 

the point p. 

If 5 is a compact Riemann surface, then the curve ip has a finite set = {pi,-.,Pk} 

of higher order singularities. We shall denote by Pj+i the sum of the ramification 

indices of aj at each singularity, that is, 

k 
RHi = J2r,^M) (4-2.8) 

2=1 

and we shall refer to P^+i just as the ramification index of aj. Moreover, we can 

define the total ramification index of I/J as the sum Rj-

Then, we shall say that the holomorphic curve IJJ or any element of its corresponding 

harmonic sequence has singularity type ( r i ( p ) , . . . ,r„(p)) at the point p and has 

total singularity type ( P i , . . . , P„) . 

The curve ip is totally unramified when its total ramification index is zero. Oth

erwise, ip is said to be fc-point ramified if the set has cardinality k. 

In terms of a local complex coordinate z for S centred on p, that is z(p) — 0, i t is 

possible to determine a basis {VQ, Vn} for C"+^ in such a way that the holomorphic 

map / can be written in the normal form 

n 

f{z) = Y,z'^+--^'^h,{z)v,, (4.2.9) 
2=0 

where /co = 0, ki = ri{p) + l {j = 1,... ,n) and hi(z) denotes a holomorphic function 

satisfying hi{0) ^ 0. 

If ip : S"^ ̂  CP" is 2-point ramified, then we can find a local complex coordinate 

for so that the higher order singularities of I/J (if any) occur at z = 0 and 
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2: = oo. Indeed, this follows from the fact that the Mobius group of conformal 
transformations of the 2-sphere acts triply transitively on 5^. 

We observe that -0 is a holomorphic map between algebraic varieties, since S"^ = CP^, 

and so ijj is an algebraic map (c.f. [27]), that is / is a rational function. Without 

loss of generality, we may assume / to be a C"+-^-valued polynomial function. 

Definition 4.2.2 We say that a harmonic map : ^ CP" has 5^-symmetry 

if there exists non-trivial S^-actions on 5^ and CP", where the action on CP" is by 

holomorphic isometrics, such that for all z e S"^, 

i;{e'^z)=e'^ijj{z). 

Remark 4.2.1 It is shown in [7] (see Theorem (4.2.1) below) that such a map ip 

is either 0-point or 2-point ramified, where in the later case, the singularities of ip 

occur exactly at the two points of S"^ fixed by the -action. 

We are now able to state the main results ([7],[10]) to be used in the following 

sections, which are concerned with the characterization of the /c-point ramified har

monic 2-spheres of CP" for k <2. 

Theorem 4.2.1 Let ^ : 5^ —)• CP" be a linearly full harmonic map with S^-

symmetry. Then there exists a holomorphic coordinate z on 5^ such that the di

rectrix curve ipo = [fo] of ip can be expressed up to holomorphic isometrics of CP" 

by 

/o(^) = X^z^^+-+H, 

where {vo,... ,Vn} is an orthogonal basis 0/C""*"^ and the scalars kj are positive 

integers. Furthermore, ip is either totally unramified or 2-point ramified. In the 

latter case ip has singularities at z = 0 and z = 00 with corresponding singularity type 

at z = 0 and z = 00 given respectively by (/ci — 1,..., A;„ — 1) and (A;̂  — 1 , . . . , /ci - 1). 

Theorem 4.2.2 Let ip : S'^ CP" be a linearly full harmonic map which is k-point 

ramified for k <2. Let z be a complex coordinate on S"^, then 
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(i ) The higher order singularities of ijj (if any) occur at z = 0 and z = oo if 
and only if its directrix curve 'ipo{z) = [fo(z)] can be written in the form 

n 

fo(z) = Y,^''^-^''yp. (4.2.10) 

where the scalars kj are positive integers and the vectors Vj constitutes a 

basis o/C"^^. Furthermore, ip has -symmetry (with fixed points of the 

S^-action at z = 0 and z = oo) if and only if the basis {VQ, ... ,Vn} is 

orthogonal. 

(ii ) '0(5^) C RP" and one of the conditions (and so both) in the first equiv

alence stated in (i) occurs if and only if n = 2m for some integer m and 

the following properties are satisfied. 

kj = kn-j+i for i,j n}, 

{vj, Vi) = (-l)-^(5(,. ,_ , )^Aj , for z, j G { 0 , . . . , n} , 

where a is a constant and A.- := —-—^^- , ' "^ '^"1^ ' " ,^ , r. 

The constant / i in the theorem can be chosen to be 1 by rescaling the homogeneous 

coordinates of CP". However, we will avoid this in order to facilitate our calculations 

later on when determining examples of superminimal almost complex curves. 

Remark 4.2.2 The theorem above shows in particular that there does not exist a 

1-point ramified linearly full harmonic 2-sphere in CP". 

Definition 4.2.3 Two maps ip,ip : S ^ CP" are said to be projectively equivalent 

if there exists [A] e PGL(n + 1, C) so that = [^]('0). 

Corollary 4.2.1 Any two k-point ramified (k < 2) linearly full harmonic maps 

: 5^ ^ CP" with the same singularity type are projectively equivalent. 

Proof: 

According to Theorem (4.2.2) these curves are uniquely determined by their singu

larity type and a choice of basis for C"+^. Thus, item (i) of that theorem shows that 

the corresponding directrix curves diflfer by an element of GL{n + 1, C). O 
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4.3 The twistor fibration T T : - > 5^ 

Let denote the quadric of CP", which is the Kahler submanifold defined 

= {[x] e CP" such that (x,x) = 0}, 

where (,) denotes the Euclidean inner product of C""*"̂ . 

The twistor fibration TT : — ) • 5^ is defined by the map 

TT([X]) = - ^ x X x. 
X ^ 

We shall see in the next section that the superminimal almost complex curves of the 

6-sphere can be characterized as the projections of a special type of holomorphic 

curves of this quadric. This led us to investigate what is the group of holomorphic 

transformations of the quadric which preserves the superhorizontal distribution to 

be defined ahead. 

Although TT is not a Riemannian submersion, it is quite close to that as we shall see 

below. Moreover, the fact that TT can be easily expressed in terms of the cross prod

uct X on R'' (extended C-linearly to C'') yields some good methods to investigate 

properties of any lifting. 

The exceptional Lie group G2 acts transitively on the manifolds and in such 

a way that these manifolds can be realized also as the homogeneous spaces 6*2/^/(2) 

and G2lSU{2>) respectively (c.f. [35] for details). By considering these homogeneous 

spaces, it is possible to show ([35]) that the twistor fibration just defined is nothing 

but the canonical projection of the first space onto the second one. 

We can write any element of , without loss of generality, as [x] = [a — ib] where 

a and b are orthonormal vectors of W. In this case TT reduces to 

TT[X\ = a X b. (4.3.1) 

Remark 4.3.3 It follows from the characterization of G2 as the group of automor

phisms of {Ml, x ) that the map TT is G2-equivariant, that is, 7r[gx] = g{7T[x]) for 

every g e G2-
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Using the Hopf fibration we know that the tangent space of CP" at a point [x] e CP" 
is r[a;]CP" = {v e C"+^ such that (v,x) = 0}. This implies that the tangent space 
of at a point [x] G is given by 

= {v e C"+^ such that (v,x) = 0 and {v,x) = 0.} 

Using the definition of TT we have 

i 
7T^\[x](v) = 7-^-{x X v - X xv). (4.3.2) 

Thus, the vertical distribution on defined as the kernel of TT* is given by the set 

of those tangent vectors v G T^^jQ^ such that the imaginary part of re x i ; is zero. 

However, writting v = c-{-id, using (1.2.3) and the notation ^ and ^ to denote the 

imaginary and real part of a vector, we have 

^(x xv) X d = a - (b X c) X d = -^{x xv)xc 

^{x xv) X c = b - (ax d) X c — ̂ {x xv)xd. 

Thus, ^(x X v) = 0 if and only if ^{x x v) = 0 which implies that the vertical 

distribution is characterized by 

V[a;] = KeriT^ = {v e T[:,]Q^ such that xxv = Q}. (4.3.3) 

We should also note that V[x] is an isotropic subspace of T[x]Q^ since using (1.2.3) 

we have for any v G V[x] 

0 -V X (x xv) = 2{v, v)x. 

This yields a distribution of isotropic subspaces H' := V of the horizontal spaces 

H = V-^, which we henceforth will name as the superhorizontal distribution. I t 

follows then from (4.3.3) that this vector space is characterized at [x] by: 

H' = {v e T[^]Q^ such that xxv = 0}. (4.3.4) 

Incidentally, looking at the point VQ = TTIX] G as a real vector of C^, it is clear 

that VQ G T[x]Q^. Moreover, VQ is a horizontal vector since using Remark (1.2.2) we 

have for any vertical vector v E V 

{7r[x],v) = [x X x,v) = -(v X x,x) = 0. \/ v e V. 
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Furthermore, the equation above also shows that VQ is orthogonal to H'. Thus, 

using the 1-dimensional complex space D spanned by VQ, we can split the horizontal 

distribution as follows. 

H = D®H'. (4.3.5) 

We shall investigate now how far the map TT is prevented from being a holomor

phic Riemannian submersion, by looking at its behaviour concerning to length-

preservation and C-linearity of its diflPerential. We split these properties into two 

lemmas. But we must notice firstly that as G2 acts transitively on and n is 

G2-equivariant, it suflUces to verify these properties at any convenient point of Q^, 

say Xo = ei — ie^. 

Lemma 4.3.1 TT* is length-preserving in H' and it reduces the length by a y/2-factor 

in D. 

Proof: 

At this point X Q , we have VQ = 7r[a;o] = —64, V = spanc{vi = 62 — ie^, V2 = e^ — icj) 

and H' = spanc{vi,V2). Now, using (4.3.2) we get 

^*l[xo](^o) = - e i 

7^*l[xo](^i) =2e7 

'^*\[xo]{'^2) = -2e6. 

Thus, the lemma follows from the fact that with respect to the Fubini-Study metric 

in CP^, these vectors have lengths \vo\ = \/2 and = |?;2| = 2. O 

Lemma 4.3.2 TT* is C-linear in H' and it is C-anti-linear in D. 

Proof: 

This lemma also follows easily from (4.3.2) and the definition of the almost complex 

structure on since in this case we have 

^*l[xo](^^o) = 6 5 =-7r [2 ;o] X 7r*(?;o) =-JTr[xo]{^*M) 

T^^llxojim) = -2e3 = TTIXO] X 7T^{vi) = J [̂a;o] (TT* (t'l)) 

7r*|[a;o](̂ ^2) = 2e2 = 7T[XO] X 7r*(?J2) = J t t M (^T* (^'2)) • 

o 
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These lemmas show that although TT is not a Riemannian submersion it is not so 
far from this. Consequently, bearing in mind the main result of section (3.5), we 
could argue if it is possible that the l i f t M = 7r~^(M) of a Hopf hypersurface M of 

would still be a Hopf hypersurface in Q^. However, it is not hard to see that the 
horizontal l i f t of a normal vector field on M cannot lie either in the distribution D or 
in H'. This fact makes clear that M cannot be a tubular hypersurface. Furthermore, 
the decomposition (4.3.5) of the horizontal distribution makes it rather complicated 
to work with the Riemannian connection of Q^. 

We shall see later on in this chapter that the superminimal almost complex curves of 

are in 1-1 correspondence with the holomorphic curves of which are tangential 

to the superhorizontal distribution. This motivates us to determine what is the 

group of holomorphic transformations of which preserves the superhorizontal 

distribution. 

Let us consider the Lie group Hi = {\I e GL{n + 1,C) : A G C*} and its Lie 

subgroup H2 = {XI G SO(n + 1,C) : A G C and A"+i = 1}. It is well known 

(for instance, [27] page 65) that PGL(n + 1, C) = GL{n + 1, C)/Hi is the group of 

holomorphic transformations of CP". 

Lemma 4.3.3 S0{n-\-l,C)/H2 is the group of holomorphic transformations of the 

quadric Q"~^. 

Proof: 

Every holomorphic transformation T of the quadric Q^~^ is extendable to a holo

morphic transformation of CP", see for instance page 178 of [27], thus we can 

assume without loss of generalization that T G PGL{n + 1,C), say T = [X] where 

X G G'L(n + l ,C) . 

Let q = [a — ib] £ Q"~^, where a and b are orthonormal vectors of R""""̂ . We can 

decompose the matrix X as X = A-\- iB, with A and B being real matrices. Then 
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X(q) e g " - i i f and only if 

Aa - Bb\ = \Ab + Ba 

(Aa-Bb) l{Ab + Ba). 

From which, by taking a = Ci and b = ej, and using the notation A^ := Ack and 

Bk := Bck, we obtain for z, j G { 1 , 2,.., n -I-1}: 

-h |P^f - 2 (^„ Bj) = | ^ , f + |P,p + 2{Aj, B,) (4.3.6) 

(A,, A,) - (Bi.Bj) = {Bj,A,) - ( A , A J . (4.3.7) 

If we consider twice (4.3.6) interchanging i and j , we obtain 

{Ai, Bj) = -{Aj, Bi) for every i j 

Ail"^ - |P,p = - |Pjp for every i j . 

From the second equation above we can define the scalar a = |AiP — |Pip. 

Similarly, we can use (4.3.7) twice to get 

{Ai, Aj) = {B^, Bj) for every i / j 

(Bi, Ai) = (Bj, Aj) for every z, j, 

and from the second equation above we can also define the scalar /? = (Bi,Ai). 

Therefore, it follows at once from these properties that 

X'X = (A'A - B'B) + i(A'B - f B'A) = (a + 2ip)I 

and hence if we define A := a -f- 2ip then A / 0 because X G GL(n + 1, C) and we 

have -^X e 5 0 ( n + l , C ) . O 

In the next proposition we will need the following elementary properties of the 

distributions D, H' and V. 

D[x] = 
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Remark 4.3.4 Let G2 be the group of automorphisms of (C'', x ) . It is clear from 
the definition O'^d the characterization of the superhorizontal distribution given 

in (4.3.4), that G2 is a Lie subgroup of S0{7, C) and it preserves the superhorizontal 

distribution. 

Proposition 4.3.1 The group G of holomorphic transformations of which pre

serves the superhorizontal distribution is G2 • 

Proof: 

In accordance with the remark (4.3.4) above, we have G2 C G. Let [g] be an 

arbitrary element of G, that is, [g] G S0{7, C)/H2. Thus -\-g or -g lies in 50(7, C). 

By assumption we have for every [x] G and v G H'^^-^ that 

gxx gv = 0. (4.3.8) 

We shall first observe that g also lies in G. Indeed, given v G H^ we have v G Vji] = 

Hir and hence 

gx X gv = gx X gv = 0. (4.3.9) 

The superhorizontal subspaces at the points [XQ] = [ei —ie^] and [xi] = [ei —ie^] are 

"̂ ['2:0] ~ spanc{e2 + zeg, 63 + icj) and H^^^^ = span^ie-j + 262,63 + ie^) respectively. If 

we then apply (4.3.8) and (4.3.9) to these vectors at their corresponding points, we 

obtain 

gei X ge2 = ge^ x gej = ge^ x ge^ (4.3.10) 

gei X ges = ge^ x ge^ = gej x ge5 (4.3.11) 

gei X gee = ge^ x ge2 = ge^ x ge^ (4.3.12) 

gei X gej = ge^ x ge^ = ge2 x ge^ (4.3.13) 

The vectors {gei, ..,^67} are orthonormal with respect to the Euclidean product (,) 

in C'' since 

(gei^gej) = {gci.gej) = {g^ge^.e^) = S^j. 
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Recalling that (* x *, *) is skew-symetric, we see that 

(ge^ X gcj^gcj) = 0. 

Thus it follows from (4.3.10) that gci x ge2 = ± ^ 6 3 . 

I f gei X ge2 = gcs then we can use directly (4.3.11), (4.3.12) and (4.3.13) to show 

that {gci, ..gcj} is a G'2-basis for C'' and hence g G • 

Similarly, if gci x ge2 = —ges then we can repeat the same process above to deduce 

that -g e G^. Q 
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4.4 Almost complex 2-spheres of S^. 

Definition 4.4.4 Let S be a Riemann surface. We say that a smooth map / : 5 —)• 

is an almost complex curve of the nearly Kdhler if /* is complex linear. 

Therefore, using a local complex coordinate z = rc + i?/ for 5 we can characterize 

these curves by 

dyf = f x d j . (4.4.1) 

It follows that almost complex curves of are weakly conformal maps which are also 

harmonic because if we diff'erentiate (4.4.1) again, we obtain / x (d^xf + dyyf) = 0. 

Therefore an almost complex curve f : S ^ determines a harmonic sequence 

of maps ipk : S ^ CP^ so that ipo = [ f ] . Using this sequence and some invariants 

associated to their elements, a ful l classification of these curves was obtained in [9 

according to the following four types: 

(I ) Linearly ful l in and superminimal, 

( I I ) Linearly ful l in but not superminimal, 

( I I I ) Linearly ful l in a totally geodesic in 5^, 

( I V ) Totally geodesic. 

A result of Bryant [13] highlights the importance of the Type-I almost complex 

curves of S^. Bryant has shown that every compact Riemann surface of any genus 

can be realised as such an almost complex curve of the 6-sphere. 

In this section we shall obtain explicitly all the 0-point and 2-point ramified linearly 

full almost complex 2-spheres of the 6-sphere. This is done by using the normal 

form for such surfaces as given by Theorem (4.2.2). 

In particular, we will also prove that these surfaces are uniquely determined by their 

singularity type up to ^2 "Equivalence of their directrix curves. It is worthwhile 

mentioning here that a similar result in the more general situation of harmonic 2-
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spheres of 5*" and CP" has been obtained in [8] but replacing, of course, the group 

by 5 0 ( n + l ,C) . 

Part of the multiplication table given in the following proposition was obtained in 

9] by using slightly diflFerent calculations. 

Proposition 4.4.2 Let f : S be a linearly full superminimal almost complex 

curve. If [ipj = [fj])j^Q is the harmonic sequence corresponding to the harmonic 

map ips = [ f ] then the meromorphic local sections fk'.C^C^ have the following 

multiplication table for fi x f j , where the cross product x is extended C-linearly to 

c^• 

Ai 0 1 2 3 4 5 6 

0 0 0 0 -«/o -2z / i -2lf2 -^f3 

1 0 0 ifo ^ / i 0 -if^ 

2 0 0 ^/2 ^f3 0 - i f s 

3 ifo -^f2 0 if4 i f s - i f e 

4 2ifi 0 -^h 0 2ife 0 

5 2lf2 0 - i f b -2^/6 0 0 

6 i f i ifb i f e 0 0 0 

Furthemore, the following relation holds 

\U?\f,? = 2\f,\\ 

(4.4.2) 

(4.4.3) 

Proof: 

It follows immediately from (4.4.1) and (4.2.7) that fs = f is an almost complex 

curve if and only if 

/3 X /4 = z/4, (4.4.4) 

which by differentiation with respect to z and z (using (4.2.4) in the latter diff"eren-
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tiation) yields respectively: 

/3 X /5 = i f , (4.4.5) 

/ 2 X /4 = ifs. (4.4.6) 

Using (4.2.5) and (4.4.4) we get 

/ 2 X / a - z /2 , (4.4.7) 

which together with (4.4.5) gives 

/ 2 X / s = - i f 2 X ( f s X / s ) = i ( / 2 X / a ) X / s = - / 2 X / s . 

Thus, 

/2 X /5 - 0. (4.4.8) 

Now, by diflFerentiating (4.4.8) with respect to z and using (4.2.4) we obtain 

/ i X / 5 = - i f s . (4.4.9) 

Differentiating (4.4.5) with respect to z and using (4.2.3): 

f s x f e - h f , x f s = z f e . (4.4.10) 

Diff'erentiating this equation once more and using now the superminimality condition 

f7 = 0 (that is, d z f e = a e f e ) we finally have 

/4 X / g = X / s where A : = ae - a s - Q!4 (4.4.11) 

I t follows straightforwardly from (4.2.5), (4.2.6) and the orthogonality of the bundle 

sections fk that 

i f i , f j ) = (4-4.12) 

Thus if we take the cross product of (4.4.11) with /2 and if we use (1.2.3), we get 

/ 3 X / 6 - - Z / 6 + Z A / 5 . (4.4.13) 
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Substituting (4.4.13) in (4.4.10) yields 

/4 X /5 = 2ife - iXh. (4.4.14) 

The Euclidean product of this equation with / i gives 

-^A = ( / 4 X / 5 , / i ) 

= -(/ix/5,/4) 

= ^(/3,/4) 

= 0. 

Using (1.2.3) and (4.4.12), we have 

/4X/5P = ( /4X /5J4X75) 

= - | / 4 n / 5 p ( / 4 X / 5 , / 2 X / i ) 

= | / 4 n / 5 p ( / l , / 2 X ( / 4 X / 5 ) ) 

= | / 4 n / 5 p ( / l , - ( / 2 X / 4 ) x / 5 - ( / 2 , / 4 ) / 5 ) 
= I h W s l ' i f u - i f s x f s + fs) 

This, together with (4.4.14), proves (4.4.3). The remaining cross products in the 

multiplication table can now be easily verified by using the methods and equations 

obtained so far. O 

Remark 4.4.5 It is worth mentioning that the condition (4.4.3) characterizes the 

linearly full superminimal almost complex curves of the 6-sphere (cf. [9]) in the 

sense that a weakly conformal harmonic map f : S ^ is 0(7)-congruent to a 

linearly full superminimal almost complex curve if and only if (4.4.3) holds. 

We say that a map ip from a Riemann surface S into is superhorizontal if at 

each point of 5, -0* takes values in the superhorizontal distribution. We shall recall 

now the 1-1 correspondence (cf.[34]) between superminimal almost complex curves 
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in and holomorphic superhorizontal curves in Q^. We intend to make use of this 
correspondence later on in this chapter in order to work out expUcit examples of 
superminimal 2-spheres of S^. 

By using (4.3.4), the superhorizontal condition of ijj = [/] can be described analiti-

cally as follows. 

is superhorizontal <=^ f^\p{TpS)CHlp^p>^ = {veTif^p^]Q^:fxv = 0} 

^ / x / 4 a — + 6 — ) = 0 V a , 6 e M 
oz oz 

/ x / , = 0 and / x / , = 0. 

thus a holomorphic map ^ : 5 —)• is superhorizontal if and only if 

/ x | = 0. (4.4.15) 

The caracterization given above fits nicely with the following theorem due essentially 

to Bryant (see [30] and references in there). 

Theorem 4.4.3 A map g : S ^ is holomorphic and superhorizontal if and only 

if ijj = TT{g) : S is a superminimal almost complex curve in with directrix 

curve g where tt denotes the twistor map from onto S^. 

Theorem 4.4.4 Let f and f be linearly full almost complex 2-spheres of S^. Then 

their directrix curves are protectively equivalent if and only if they are also G*2-

equivalent. 

Proof: 

( ^ ) 

The converse in the theorem is obvious since G2 is a subgroup of 50(7, C). 

( ^ ) 

Let = [fj])^=Q denote the harmonic sequence corresponding to the harmonic map 

/ ] and let ipo denote the directrix curve of the harmonic map [ / ] . By assumption 

there exists an element [A] G PGL{7, C) such that -00 = [^/o • 
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It is shown in [8] (Theorem 3.3) that two linearly full harmonic 2-spheres of 5̂ "̂  are 
projectively equivalent if and only if they are 50 (2m-f 1, C)-equivalent. Thus we 
can assume in our particular case here that A lies in 50(7, C). 

According to theorem (4.4.3) the map Afo : 5^ —)• C'̂  is holomorphic and superhor

izontal and hence 

AfoxAn = 0. (/^ = f ) (4.4.16) 

We shall make use in the sequel of the following properties satisfied by the functions 

(<^j)^_o defined by equation (4.2.3). 

as = 0. Follows from (4.2.7), 

a -ae-j. Follows from (4.2.6), (4.4.17) 

^6 = as-f 0̂ 4. Follows from (4.4.3). (4.4.18) 

We differentiate (4.4.16) with respect to z and use (4.2.3), obtaining in this way 

the cross product between different vectors A f j . By repeating this process we can 

derive some relations among the cross product of the vectors A f j , namely 

AfoxAfi = 0 (4.4.19) 

AfoxAf2 = 0 (4.4.20) 

AfoxAfs = -Af,xAf2 (4.4.21) 

A f o x A f , = -2Af,xAfs (4.4.22) 

A f o x A f , = -2Af2 X Afs - 3Af, X A f , (4.4.23) 

AfoxAfe = -5Af2xAf,-4AfixAf,-^3asAf,xAf,. (4.4.24) 

As A G 50(7, C), it follows from (4.2.5) that 

{Af^,Af,) = {Af,,Af^) 

= {A'AfUj) 

= {-lYk^-j- (4.4.25) 
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The vectors {Afo,... .Afe} form a basis for since A e 50(7, C). Thus, from 
(4.4.21) we see immediately that Afo x Afs can be written as the linear combination: 

Afo X Afs = aAfo + bAfi + cA/2. 

But if we take the cross product of this equation with ^4/2 and Afi, then it follows 

that b = c = 0. Indeed, 

0 = Af2X (Afo X Afs) use (1.2.3) and (4.4.25) 

bAf2 X Afi use (4.4.20) 

= b(Afo X Afs), use (4.4.21) 

and 

0 = AfiX (Afo X Afs) use (4.4.25) and (1.2.3) 

cAfi X Af2 use (4.4.19) 

= -c(Afo X Afs). use (4.4.21) 

On the other hand, if we also take the cross product with Afe, we see that a = ±i. 

Indeed, 

a(Afo X Afe) = -Afe x (Afo x Afs) 

= (Afe X Afo) X Afs - Afs, 

and the Euclidean product of this with Afo gives: 

- 1 = a(AfoX Afe,Afs) 

= -a(AfoX Afs,Afe) 

= -a'(Afo,Afe) 

= a\ 

Let us first assume the case Afo x Afs = -iAfo. Then (4.4.22) yields Afi x Afs = 

lAfi, indeed 

-2 /̂1X /̂3 - A f o x A f , 

= i(Afo X Afs) X Af4 

= -i(Afo X Af^) X Afs 

= 2i(Af, x Afs) X Afs 

= -2iAf,. 
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Thus from (4.4.22) we get 

Afo X Af4 = -2iAfi. 

And this yields: 

Afi X A f , = '-(Afo X Af,) X A f , = 0. (Using (1.2.3) and (4.4.1)). 

Now, by using the equations (4.4.16),...,(4.4.25), we can carry on with this process 

to determine all the cross products of the vectors {Afo,.., A/e} and to verify that 

they satisfy the multiplication table (4.4.2) in the following sense 

A(fi X f j ) = A f , X A f j . 

Therefore, A is an element of G2 since {/o,.., fe} is a basis for C^. 

In the other case to be considered, that is, when Afo x Afs = iAfo, we can use the 

same procedure as above to prove that —A E • However, this contradicts our 

assumption that A G SO (7, C). O 

Let f : ^ he a, k-point ramified (k < 2) linearly full almost complex curve 

and let ijjj = [gj] ( j = 0,... ,6) denote the harmonic sequence corresponding to the 

harmonic map ips = [ /]• Then according to Theorem (4.2.2), we can find a local 

complex coordinate z for 5^ and a basis {vo, ..,VQ} for , so that the directrix curve 

0̂ = [90] can be expressed by: 

go =Vo + z'^'vi + z'^'^'^'vi + ^^=1+^2+^3^^ _^ 

(4.4.26) 
_|_ ^ki+k2+2k3y^ _|_ ^ki+2k2+2k3^^ _|_ ^2ki+2k2+2k3^^ 

Using the meromorphic sections gj we can choose a particular orthonormal basis 

{uo,.. • ,ue} for C'' so that each vector Uj spans the same complex line bundle as 

gj. Indeed, as for z 7̂  0 the function | ^ takes values in the sphere S^^ then by 

compactness there exists a sequence Zk ̂  0 so that for each i G { 0 , . . . , 6} we have 

lim ^ ( z k ) = Uj (4.4.27) 
ki-^00 gj 

I t follows immediately from (4.4.26) that the vectors Uj and Vj are related in a 

triangular way, that is 
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^̂ 0 = 0'{o,o)Uo 

Vl = 0(1,0)̂ 0 + (̂1,1)̂ 1 

V2 = CLi2,o)U0 + (̂2,1)̂ 1 + a(2,2)W2 

"̂̂3 = 0'{3,0)UO + 0'{3,i)Ul + Ci{3,2)U2 + G(3,3)W3 

V4 = CL{4,o)Uo + a(4,i)Wl + a(4,2)U2 + 0(4,3)'̂ 3 + <̂ (4,4)1i4 

5̂ = (̂5,0)̂ 0 + a^5,l)Ul + %,2)1i2 + a^5,3)U3 + ti(5,4)W4 + a(5,5)'̂ 5 

6̂ = CL^6,0)UO + a(6,l)'Wl + Cl(6,2)U2 + î(6,3)'î 3 + a(6,4)1i4 + a(6,5)'̂ 5 + a(6,6)W6 

where the scalars (a ( i j ) ) appearing in the linear combinations are complex numbers. 

From (4.4.27) and Proposition (4.4.2) we can easily determine the cross product of 

the vectors Uj and consequently also of the vectors Vj. Namely, the vectors Uj have 

the following multiplication table for Ui x uf 

0 1 2 3 4 5 6 

0 0 0 0 -iuo —iy/2u\ —i\/2u2 -ius 

1 0 0 z\/2uo iui 0 -ius —iy/2u4 

2 0 —i\/2uo 0 iU2 ius 0 —i\piu^ 

3 iuQ —iui -iu2 0 -iue 

4 i\f2u\ 0 -ius —m4 0 iy/2uQ 0 

5 i\f2u2 iU3 0 -iu5 —iy/2ue 0 0 

6 ius i\/2w4 iy/2u5 iue 0 0 0 

(4.4.28) 

Now, we notice that the coefficient 0(6,6) must be non-zero since / is linearly full 

and also /o is a holomorphic superhorizontal curve because of the characterization 

given in Theorem (4.4.3). These facts together with equation (4.4.15), give us a 

cumbersome but straigthforward calculation to determine the following example. 

Example 4.4.1 Let {ei,... ,67} denote a G2-hasis for W. Letki,k2 denote positive 

integers. Then the holomorphic map ipo = [go] : 5^ —)• CP^, determined by the 

polynomial go(z) = Ylj=i<^ji^)^j '^here the aj(z) are given by 

n — 3N/30fc2(fci+A:2) ^fci+A:2 i \/30 ^3fei +k2 
" U ^ ; - (3fci+A;2)(2A:i+fc2)'̂  ^ 2 ^ ' 

" 2 1 ^ ; - (3A:i+2A;2)(2A;i+A;2) 
,3A;i+2A;2 
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^ / \ i45V2kik^iki+k2) , •^/2^4:kl+2k2 
^^y^) — i3ki+2k2){3ki+k2)i2ki+k2)^ * 2 ^ ' 

"4l̂ j - 2ki+k2^ ' 
- i 3x/30/:2(fci+fc2) k^+k9. , „• v/30 3fci+A:9 

" S V ^ ; - ^(3A;i+fc2)(2A;i+fc2)^ 2 ^ ' 

^ _ 15V3kik2 ki _A_ j./o 3ki+2k2 

a6[Z) - ^(^ski+2k2)i2ki+k2)^ -1-iVoz , 
„ 45V2kik^{ki+k2) . x/2 „4fci+2fc2 
" 7 1 ^ ; - (3A;i+2A:2)(3A;i+fc2)(2;fci+fc2)2 2 ^ ' 

is the directrix curve of a linearly full -symmetric almost complex 2-sphere in 

with the same singularity type (ki — l,k2 — l,ki — l,ki — l,k2 — l,ki — 1) at z = 0 

and z = oo. 

Theorem 4.4.5 Let f : S'^ ^ be a k-point ramified (k < 2) linearly full almost 

complex curve. Then for a suitable choice of complex coordinate on S"^, the harmonic 

map [f(z)] : 5^ CP^ has the same singularity type (ki — l,k2 — l,ki — l,ki — l,k2-

l,ki — 1) at z = 0 and z = oo. Moreover, the directrix curve of f is G^-equivalent 

to the -symmetric curve given in the Example (4.4.1). 

Proof: 

Let il)o = [9o(z)] denote the directrix curve of the map [ / ( 2 : ) ] . The first part of the 

statement follows from item (ii) of Theorem (4.2.2) and the following observation. 

By comparing the exponents of the variable z appearing in the polynomial gxg^ = 0, 

we obtain the symmetry ks = ki in the singularity type. 

We can use (4.4.15) and Proposition (4.4.2) in order to determine the vectors (vj) in 

the simplest way so that they comply with the properties stated in Theorem (4.2.2). 

This would envolve some cumbersome calculation if the computer program MAPLE 

did not help us to execute these boring algebraic manipulations. Therefore, out of 

this little work, we can write down the vectors (vj) in terms of complex parameters 

{ r i , . . . , rs} as follows. 

- k,kl{k,+k2)rlrl 
~ {3ki+2k2){3ki+k2){2ki+k2y 

kik2rjr8 KiK2T^Tr8 I , \ 
1̂ = (3ti+2b)(2ti+t2)(''5"0 + 
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3̂ = (V2̂ 3̂ o + 27-4̂1 + 2r5W2 + V2us), 

= ^((\/2r3r5 - 2r6)wo + (2r4r5 - V2rs)ui + 2r|u2 + 2^/2r^Us + 2u^), 

V5 = (^r2r3r5 - ^rsr^rs + ryrg - r2re)uo - f (r2r4r5 - ^r2rs - r | r8)ui , 

+ (̂ 2̂ 5 - ^^3^8 - r4r5rs)u2 + y2(r2r5 - r4r8)^/3 + ^̂2̂4 + 8̂̂ 5, 

V6 = {rsri + Irj - r^rG)uo + rjUi + r6W2 + rsu^ + r4U4 + r^u^ + we-

By Corollary (4.2.1) we can assume / to be 5^-symmetric. Theorem (4.2.2) shows 

that the 5^-symmetric linearly full almost complex 2-spheres are characterized by 

the orthogonality of the vectors (vj) and hence according to the formulae above 

we must have r2 = . . . = = 0. Thus, the directrix curve is described by the 

2-parameter family 

kikl(ki + k2)rlrl kik2rjr8 
^'^^^ (3/ci + 2A;2)(3^i - f k2){2ki + k2y''' {3k, + 2k2){2k, + /c2)^ 

k2iki-hk2)rirl k2rirs 2k,+k.^ 
^ {2k, + ^2)(3^1 + /C2) {2k, + ^2) 

+ riẑ ^̂ +̂ Û4 + rsz^'^^^'^us + z^'^^^'^ue. 

Now, we shall apply a suitable conformal transformation to the domain and also 

apply an appropriate element of O2 to the co-domain in order to prove that / is 

indeed equivalent to the curve given in the example above. 

Let r be a complex root for the equation 

^2k^+k,^^^^ = V90. (4.4.29) 

Then we shall consider the conformal transformation z rz, and the element 

A e G2 defined by 

Auo := {:^Juo, An, := ( ; i f ^ ) ^ ^ i , Au2 := ( ^ ( ^ ^ ^ ^ ^ 2 ) ^ 2 , 

9̂0 A . . . - / Vl5 \„. A„. . _ f y/6 Aus := {^^2k,lZ,^Jus, Au^ := (^(3.^.2).,)^4, Au^ := (^(3. j2%),J^5, 

Aug := ( ; : (4^iW)^6-

Using (4.4.29) and the multiplication table (4.4.28) for the vectors Uj we deduce 

that 

A{ui X Uj) = Aui X Auj, 
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which implies that A ^ G2- Thus, the holomorphic curve g(z) is reduced to 

. . 90kik^(ki + k2) lbV6kik2 
^'^^^ ~(3/ci + 2A;2)(3A;i + k2)(2ki + k2)^''' ^ (3ki + 2k2)(2ki + k2)'' 

6\/l5/c2(/ci + A:2) k,+k2 , 6 ^ / 5 ^ 
^2A;i+A;2 ,̂ 

^ (2k, + k2) (3/Ci + /C2) ' ^ (2/Ci + k2) 

+ yi5ẑ ^̂ +̂ n̂4 + x/6z3̂ +̂'̂ Ŵ5 + z''̂ +''̂ ?/6. 
Using again that multiplication table we can also deduce by straigthforward calcu

lations that the vectors Cj ( j = 1 , . . . , 7) defined by 

uo = ^ ( - 6 7 + ie3), 

ui = 71(^2 - iee) 

U2 = ^ ( - e i +^65), 

Us = 64, 
^4 = ;7|(ei +ze5), 

^5 = 7f(e2 + ^65), 

We = ^ ( 6 7 + ^63), 

form a G2-basis for W and the holomorphic curve go(z) is written in terms of this 

basis exactly as the one we gave in the example. O 

Corollary 4.4.2 / / H°'^ is the space of linearly full totally unramified almost com

plex maps of into then 

Proof: 

Indeed, this follows from the theorem above and the fact that the harmonic sequence 

corresponding to a harmonic map [ / ] , where / G W'^, is uniquely determined by 

its directrix curve. Some care is required here since the composition of / with the 

antipodal map of gives also a harmonic map with that same directrix curve. 

However, the map - / i s fortunately an almost anticomplex curve as we can see 

from (4.4.1). O 

Let M denote the quotient set of the manifold N = {(p,q) ^ S"^ x S'^/p / q} by the 

equivalence relation: (p, q) = (a, b) if and only if (p, q) = (a, b) or (p, q) = (b, a). 
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Corollary 4.4.3 Let IP^''"^ denote the space of linearly full almost complex maps 
of into with 2 higher singularities each of type (ri, r2, ri, ri, r2, ri). Then 
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4.5 Superminimal surfaces of low area. 

Let V̂ o, • • • 5'0n '• S"^ —)• CP" be a harmonic sequence with corresponding local lifts 

fo,...,fn- S^\W CP" given in accordance with (4.2.3) and (4.2.4), where W is 

the set of all singularities of the harmonic maps ipp. Bolton et al have proved in [11 

that when ipp is an immersion, the area A(ijjp) of 5^ with the metric induced by ipp 

is given by 

A(ijp) = 7T(Sp_i-^6p), (4.5.1) 

where = 0 and Sp is the degree of the ( p - l)-st osculating curve Moreover, 

they calculate this degree in terms of the 7p invariants. Namely, 

Sp = ^ f jpdzAdz. (4.5.2) 
27ri jgi 

Bolton et al carry on working out the following global Pliicker formula, relating the 

ramification indices Rp of the curves Gp-i to the degrees 5p by 

Rp = —2 — 6p-2 + 25p_i - 5p, where p = I,... ,n. (4.5.3) 

Finally, they also write down the degrees 8p in terms of the the ramification indices 

Rp as follows 

P-l , 1 n - l 
Sp = (p+l)(n-p) + - - ^ J2ik + 1)P. + ^ - ^ ) ^ ^ - (4.5.4) 

A;=0 k=p 

Using these results for the case n = 6 we can now produce the following consequence 

Lemma 4.5.4 Let f : S'^ ^ S^ be a linearly full almost complex curve. Let (ipp)p^Q 

be the harmonic sequence determined by f . Then the ramification indices Rp of the 

associated osculating curves ap-i satisfy 

(i ) Rj = R7-j for j = 1,...,6. 

( i i ) R3 = R2-

Proof: 

Considering that / is superminimal (see paragraph after Definition (4.2.1)) item (i) 
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follows from direct application of (4.5.3), (4.5.2),(4.2.6) and (4.4.3), while item (ii) 
follows from (4.5.3), (4.5.2) and (4.4.3). O 

Proposition 4.5.3 Let f : be a linearly full almost complex curve with 

total singularity type {R,,... ^RQ). Then the area A{ip) of the harmonic map ip = 

f ] : CP^ is given by 

A ( ^ ) = 47r(6 + 2i?i-Ki?2). (4.5.5) 

Proof: 

Using the lemma above and (4.5.4) we have 

6s = 12-^4R, + 2R2=64. 

Thus, the Corollary follows from (4.5.1). O 

Theorem 4.5.6 Let be the space of linearly full almost complex maps of into 

of area Aird. Then d> 6 and 

( i ) n^ = w = G^, 

(ii ) is empty, 

{ill) = W^'^ = M xG'^. 

Furthermore, every element ofH^ has directrix curve G2-equivalent to the following 

-symmetric case 

g{z) = {70Vl5z^ - 126v^^^)ei + (70^/6/ + 75\/6z)e2 

-t-(135z + 70iz^)e3 + 210v^^^e4 + (70zv^^^ + 126z\/T5z^)e5 

-h(70i\ /6/ - 75iV6z)ee + (-135 + 70/)e7. (4.5.6) 

Proof: 

I t follows from (4.5.5) that the scalar d is given in terms of the total ramification 

indices, which are non negative integers, by 

d = 6-{-2Ri-^R2. (4.5.7) 
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From which we see that d = 6 ii and only if P i = 0 = P2, in other words the space 
is made up of the totally unramified curves. Thus item (i) follows from Corollary 

(4.4.2). 

If d = 7 then (4.5.7) implies P i = 0 and P2 = 1 which means that an element of 

would have only one singularity. But this is not possible as we have noticed in 

Remark (4.2.2). 

If c? = 8 then we have two possibilities for the total ramification indices of an element 

of H^. The first one being P i = 1 and P2 = 0 which cannot occur for the same 

reason above. Thus every element of this moduli space has total ramification indices 

P i = 0 and R2 = 2. In particular, an element of Ti^ must be 2-point ramified with 

singularity type at each point given by (0,1,0,0,1,0) and hence (iii) and (4.5.6) 

follow from Theorem (4.4.5). 

I t is worth mentioning here that an element of Ti^ is always an immersion since 

it occupies the middle position in the corresponding harmonic sequence and its 

singularities occur only in the second and fifth element of this sequence as we have 

just shown. O 
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