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ABSTRACT 

Cosmic strings and scalar tensor gravity 

Caroline dos Santos da Silva 

This thesis is concerned with the study of cosmic strings. We studied the values 
for the Higgs mass and string coupling for which the gravitational effect of an infinite 
cosmic string in the context of the Einstein theory is not only locally but also globally 
weak. YVe conclude this happens for strings formed at scales less or equal to the 
Planck one wi th Higgs mass being less or equal to the boson vectorial mass. 

Then we examined the metric of an isolated self-gravitating abelian-Higgs vortex 
in dilatonic gravity for arbitrary coupling of the vortex fields to the dilaton. We 
looked for solutions in both massless and massive dilaton gravity. We compared our 
results to existing metrics for strings in Einstein and Jordan-Brans-Dicke theories. 
We explored the generalisation of Bogomolnyi arguments for our vortices and com
mented on the effects on test particles. YVe then included the presence of an axion 
field and examined the metric of an isolated self-gravitating axionic-dilatonic string. 

Finally we studied dilatonic strings through black hole solutions in string theory. 
We concluded that the horizon of non-extreme charged black holes supports the 
long-range fields of the Nielsen-Olesen string that can be considered as black hole 
hair and whose gravitational effect is in general the production of a conical deficit 
into the metric of the black hole background. YVe also concluded that the effect of 
the dilaton on the horizon of these black holes is to generate an additional charge. 
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Introduction 

There has been an enduring interest in topological defects in general since their formation 

is predicted in a wide class of elementary particle models which assume phase transitions 

in the early universe, and a particular interest for strings that can lead to very interesting 

cosmological consequences [1]. 

When formed at grand unification (GUT) scales, strings may generate density liuctii-

ations sufficient to explain the galaxy formation [2.3] and their gravitational effects in the 

context of the Einstein theory are not only locally but also globally weak even though they 

are infinite objects and therefore very massive. However other phase transitions may have 

happened in the early universe and strings may have formed ar other scales and apart 

their non-significant cosmological consequences their properties are nonetheless important 

to be studied when regarded as solutions of the low energy action for the supersynnnetric 

unifying model. Meanwhile it also seems likely that gravity is not given by the Einstein ac

tion, at least at sufficiently high energy scales, and the most promising alternative seems 

to be that offered by string theory, where gravity becomes scalar-tensor in nature [41. 

Scalar-tensor gravity is not new. it was pioneered by Jordan. Brans and Dicke '5i. who 

sought to incorporate Mach's principle into gravity. The implications of such actions on 

general Friedmann-Robertson-Walker cosmological models have been well explored [6-8]. 

however, the implications for theories of structure formation have not been so well stud

ied, in particular those for the perturbations of the microwave background [9] and for 

the radiation from a cosmic string networks [10]. Finally as infinitely strings are vortex 

solutions extended to spatial infinity, they also can provide hairs for black holes when 

threading them [11-13] being another example of physical systems where due to inclusion 

of matter fields in the horizon the non-hair theorem [14]. stating that a stationary black 

hole is uniquely determined by its mass, electromagnetic charge and angular momentum, 

is not verified [15-18]. 

1 



Introduction 2 

Therefore this thesis is organised as follows: in chapter 1 we present a brief introduction 

to topological defects, in particular to strings, explaining the conditions for their formation, 

and focusing on their relevance in the context of the hot big bang cosmology. We then 

review their gravitational effects in the context of Einstein gravity and introduce some 

notations and methods useful for the following chapters. In chapter 2 we study the values 

for the Higgs mass and string coupling for non-singular cosmic strings in Einstein gravity. 

In Chapter 3 we examine the gravi-dilaton field of a self-gravitating cosmic string in 

both massless and massive dilaton gravity for arbitrary coupling of the vortex fields to 

the dilaton. We then include the presence of an axion field and examine the metric of 

an isolated self-gravitating axionic-dilatonic string. In Chapter 4 we examine whether 

dilar.onic strings can thread black holes in string theory and study their gravitational 

effects on the black holes backgrounds. Finally in Chapter 5 we summarise the most 

important results of our research. 

Notations and conventions 

In this thesis we use "vortex units", i.e. such that the string width is of order unity 

(i.e. \f\ti — 1) with h = c — KB = \/A// = 1. where h is the Planck constant, c the 

velocity of light. KB the Boltzman constant. The gravitational coupling is no more G. 

the Newton's constant, but instead e - 8~Gr/~ which for example gives for cosmic strings 

formed at GUT scales (;/ ~ 10 i e GeV) that s ~ l ( ) _ l > . Lengths and masses have inverse 

dimensions and for conversion to cgs units it is useful to remind the values at the Planck 

scale: mpl = ^ ~ 10 1 9 Gev ~ LO fig and l p l = ^JM ~ 1CT19 Gev~x ~ K)- ' i : i an. 

We also take a mainly minus signature for the metrics, i.e.. ( + . — . — . — ) . 

file:///f/ti


Chapter 1 

Introduction to cosmic strings 

1.1 Introduction 

This chapter presents a brief introduction to cosmic strings, which are topological defects 

that may have resulted from phase transitions in the early universe. They are very mas

sive objects and therefore their gravitational effects may be significant. In this chapter 

we review some of these effects in the context of Einstein gravity, under some approxima

tions for the string model, emphasising the most important results for leading chapters. 

Therefore this chapter can be roughly divided into two parts. The first part, including 

Sections 1.1 — 1.4. presents an introduction to cosmic strings explaining their formation 

in the context of the early universe by using topological arguments. In the second part 

(Sections 1.5 - 1.7) we concentrate on static straight strings and look for some of their 

gravitational effects in the context of the Einstein gravity. For a critical Higgs coupling 

(Sections 1.5 — 1.6) solutions for Einstein's equations are exact for a string model where 

the energy is uniformly distributed along a transversal plane of the string and two extreme 

regimes are discussed: the wire string and the superrnassive string, whose gravitational 

effects are similar to those for the global strings which are reviewed in Section!.!. 

1.2 The standard cosmological model 

The standard cosmological model (SCM) assumes the cosmological principle (CP) which 

states that the universe is. at least on the large scale, homogeneous and isotropic; i.e., it 

appears much the same to any observer placed wherever in the universe. It also comes from 
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the universality of the physical laws that they must be valid anywhere in the universe. For 

this reason this model uses Einstein's theory of general relativity [19] to describe gravity: 

the most prominent fundamental interaction on the large scales relevant to cosmology, as 

this is the most complete theory of gravity presently available. 

Despite the several successes of the SCM we will only concentrate on the crucial results 

necessary to explain the cosmological phase transitions and therefore the existence of 

topological defects in the primitive universe, i.e.. that the universe cools while it expands. 

The expansion of the universe, first observed by Hubble [20]. is predicted by the SCM 

which from the CP requires the spacetime to be described in terms of the Robertson-

Walker metric, given by: 

dr2 

ds1 = dt1 - a{t.) (d6~ - f - sin" 6 dip" ( I d ) 
1 - kr* 

where /, is the cosmological time. u(t) is the scale factor, and k a constant which represents 

the spatial curvature of the universe. For A; = 1 the universe is closed, while for k = 0 and 

k = - 1 it is open, being flat for k = 0 [21]. 

The CP also requires by the Einstein's equations: 

Gab = ^Tab (1.2) 

(we set. fur simplicity. HiirG = 1 for the purposes of this discussion only) homogeneity 

and isotropy for the matter source. Tab which therefore must take the form [22] 

Tub = -P9ab + {p + p)uuu.b (1.3) 

where ua is the four-velocity of the source {uaua — 1). p its energy density and p its 

pressure. 

The Einstein's equations can then be written as [23]: 

n=i+A-> (L4a) 

H = - f f 2 - i ( p + 3p) (1.4b) 

where 

and 

H = - . (1.6) 
a 
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are respectively the cosmological density and the Hubble parameters. 

For simplicity we take k = 0 and solve the equations of motion (1.4a)-(1.4b) for a 

universe either filled with dust, i.e.. p = 0. to get 

a x ( J (1.7) 

or filled with radiation, i.e.. p = j p [24] to get 

a x t.1- . (1.8) 

Considering now two comoving particles spatially located at /[ and l> and separated 

by a distance /. with / = j / . ' a(t)dl where dl2 — r2 [d92 -r sin~ 0 dtp2). it is clear that / grows 

in time with a(t) and therefore in any of these models the universe expands. This also 

gives that the density of energy of an universe filled by radiation [pT a ^ [24]) decreases 

faster than that of an universe filled by matter (pm x ^j) and therefore the early universe 

was much hotter as radiation dominates. 

Equations (1.4a)- (1.4b) also imply a conservation law: 

S («M+"5 («')=» ' L 9 ' 

which can be interpreted by using thermodynamics laws as the conservation of the entropy 

of a system in thermal equilibrium, i.e.. the universe expands adiabatically. Therefore it is 

also possible to relate the energy density of universes filled with matter or radiation with 

their temperature. Treating radiation and matter as an ideal gas in thermal equilibrium 

of fermions or bosons respectively, that relation can be written as [10] 

Tz< p* . (1.10) 

Thus whether matter or radiation dominated the universe cools while it expands. 

1.3 Phase transitions in the early universe 

Most particle physicists believe that the standard model of electroweak and strong in

teractions is just the low energy limit of a grand-unified theory. This suggests that the 

universe underwent some process of symmetry breaking. 
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It was probably Kirzhnits, [25], who was the first to realize that each spontaneously 

broken symmetry in particle physics corresponds to a phase transition in the early universe. 

The number of phase transitions that breaks the ful l grand-unified symmetry down to 

SU('i) x U[l)em depends on the unifying model. Although one can expect at least two: 

one at the energy scale about 10 1 6 GeV where the strong interaction became distinct from 

the electroweak one. and another at 100 GeV where the electroweak symmetry was broken. 

Cosmological phase transitions can give rise to defects of various kinds as explained in the 

next section. 

We now consider a toy model that produces cosmic strings after a cosmological phase 

transition. We take a complex scalar Higgs field. with a self-interacting ^ Mexican hat" 

potential given by 

H * ) = - n2)2 ( l . i i ) 

and represented in figure 1.1 

C l O ) 

Re<j) 

Im <b 

Figure 1.1: The Higgs potential for our toy model [26]. 

Finite temperature corrections add a T-'<I?r<5 term to the effective potential [27] and 

so at high temperature < <I> > = 0 while at lower temperatures, below the critical tem

perature. Tc, (T c

2 = | n 2) the Higgs field •'rolls down" to the minimum of the potential 

where < <£ > = n e l t f . If the temperature falls rapidly below the critical one, as happened 

in the primitive universe, there is only enough time for equilibrium to become established 

in a restricted space limited by the coherence length of the field fluctuations. The drop

ping in temperature of the universe, i.e., the rate at which the phase transition happened, 

depends on the rate of the expansion of the universe and therefore the coherence length of 

the field fluctuations is limited to the Hubble length. Beyond this limit different regions 

of space are not causally connected and therefore the Higgs field can have different phases 
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at different points in space and for whichever one we choose, the gauge symmetry is spon

taneously broken, all the vacuum states of the circle in the bottom of the potential of 

figure 1.1 give the same physical results. Hence q is called the scale of symmetry breaking. 

Ac the boundaries of those regions, the Higgs field will arrange itself so as to minimise 

the energy resulting in the creation of a topological defect (a string for this potential) as 

was first recognised by Kibble [28]. In order to better visualise how this process happens 

we use the physical analogue of a phase transition giving rise to cosmic strings presented 

in the reference [29] where a forest of pencils connected by strings is taken. At the high 

temperatures, the rapidly oscillating pencils are at all angles and therefore their mean 

position, i.e., their vacuum expectation values, is standing straight up. Cooling the pencil 

forest the pencils fall down and it can happen that in some regions they will fall leaving 

a pencil standing erect which therefore was trapped in a false vacuum state being the 

analogue of the cosmic strings defect. 

1.4 Topological defects 

A topological defect is a discontinuity in the vacuum as already stated in the previous 

section, and in conventional field theory can be classified according to the topology of 

the vacuum manifold of the particular field theory being used to model the physical set 

up: disconnected vacuum manifolds give domain walls, non-simply connected manifolds, 

strings, and manifolds with non-trivial 2- and 3-spheres give monopoles and textures re

spectively. In this thesis, we are concerned with cosmic strings which are defects associated 

with non-simply connected vacuum manifolds, i.e.. field configurations of the Higgs field 

which minimise the total energy and whose set of values for the Higgs field, which also 

minimise the potential, is not simply connected. We now consider the potential taken in 

(1.11) and show that it can give rise to strings. 

For that we take a circle in space such as that represented in figure 1.2 and fix vacuum 

values for the Higgs in this circle. We take a winding number, N, of one as winding once 

around the circle in space in the figure 1.2 one winds once around the circle in the Higgs 

values in figure 1.1. If in all the disk bounded by the circle in figure 1.2 the Higgs states 

were vacuum, continuity in space for the Higgs field would give that this circle could be 

contractible into a point where the Higgs field would have any value. As this is impossible 
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a = nJ2 a = n 

a = 3/1/2 a = 0 

<0> = 0 J 
in core 

Figure 1.2: Explaining string formation using topological arguments [26]. 

(in the absence of non-tr ivial spatial topology) it means that somewhere inside that disk 

the Higgs field has to leave the vacuum state which f rom continuity implies that there is 

a point where $ = 0. In this way continuity in an orthogonal direction to the plane of 

the disk demands that <I> = 0 at some point on any surface spanning the loop - this is the 

locus of the vortex as represented in figure 1.2. The wid th of the string, i.e.. its core it 

is taken to be the size of the compton wavelength of the Higgs particle, i.e. \ f \ t ) . The 

vortex can have no end (otherwise the spatial circle would be contractible to a poinr,) and 

therefore strings are one dimensional objects either closed in loops or infini te . 

In this thesis we only consider straight infinite strings which are very massive objects 

and therefore one expects to have significant gravitational effects as examined in the next 

sections. I n fact the w i d t h 5 of a string formed at a grand-unification scale q ~ 10 l t i GeV 

is of order 6 ~ 1 0 - 3 0 c m (take 5 ~ 77"1 for dimensional reasons) while its mass per unit 

length, fj,. is of order fi ~ 10 2 2 g /cm (take fi ~ -q2). 

In conclusion: there is a string inside of every loop where the Higgs field is vacuum 

and its phase changes by 27t. 
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1.5 The Abelian-Higgs model 

In order to establish notation and conventions we start to review the Nielsen-Olesen string, 

i.e.. a U ( l ) vortex of the Abelian-Higgs model described by the lagrangian: 

£ [ 4 M C ] = Da&Da$ - l-FabFab - ^ ( $ t $ _ r f f ( i . i 2 ) 

where Dc = V c + ze,4c is the usual gauge covariant derivative, and F u(, the field strength of 

the gauge field .4 C . At far distances from the core when the Higgs potential is minimum, 

i.e.. !'I>| = q. one requires that the covariant derivative of the Higgs field vanish, i.e.. 

= ieA^\ <& = 0 (1-13) 

which guarantees a finite energy per unit length for a local string. A gauge field A^ 

satisfying (1.13) is given by 

a ' = - W \ + i * ( u 4 ) 

where from the gauge invariance we included the arbi t rary gauge field / . M w i t h / an 

arbr i t rary funct ion. Therefore a natural way to rewrite the fields that makes manifest the 

physical degrees of our model is: 

$(xa) = f / A U ' V x U ' ' M (1.15a) 

Ac{x*) = -•'/>.(.£") - V c X ( x " ) j (1.15b) 
e' 

where we set / M = — where X. x a i ) d Pc a n - n o w r e a l - i n terms of these new 

variables, the lagrangian and equations of motion become 

C = V U A V U A - X2PaPa - ^FahF«b - i ( A ' - - 1) ' (1.16a) 

OX - PaPaX + l-X(X2 - 1) = 0 (1.16b) 

V'2 pb 
V u F a 6 + — — = 0 ' (1.16c) 

Thus Pt, is the massive vector field in the broken symmetry phase, F u(, = V a P( , — V(,-Pa 

its field strength, and X the residual real scalar field w i t h which it interacts, x l s n o t m 

itself a physical quantity, however, it can contain physical informat ion if i t is non-single 

valued, in other words, if j Vaxdxa = 2n N for some N (z Z which is also related wi th 

the magnetic f lux via the condition of the vanishing covariant derivative of the Higgs field 

giving § Aadla = Thus the true physical content of this model is contained in the 

fields Pa and X plus boundary conditions on Pa and X representing vortices. 
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1.5.1 The Nielsen-Olesen solution 

The simplest vortex solution is the Nielsen-Olesen (NO) vortex [30]. an infini te , straight 

static N = 1 solution wi th cylindrical symmetry. In this case, we can choose a gauge in 

which 

$ = n*o{R)elv (1.17a) 

.4C = -[PQ(R)- 1 ] V ^ - (1.17b) 
e 

where R and -p are cylindrical polar coordinates measured in "vortex unit..-;". i.e.. in which 

the string wid th is of order unity ( \ /Aa / ~ 1). In these units we note that the energy per 

unit length of the string, p.. is of order unity. Near the core where A'o = 0 one can choose 

a gauge in which = 0. i.e.. = 1. The energy and stresses of the vortex are given by: 

T/ = £ = J t f + ^ + / j 3 L + \[XS - I f (1.18a) 

T « = - V R = - A f - ^ - ^ - ^ - D a H-lSh) 

f : = - V z = f f . ( l . lSd ) 

t,» = - P , = " ^ " ^ + ^ ( . Y j - l ) * (L.lSe) 

and the magnetic field along the string is given by: 

9 P ' 
Bz = -~-^ (1.19) 

e/f. 

We look for vortex solutions, i.e. solutions of the vortex equations 

• - n ' - f + 5^ + i . Y 0 ( . Y i f - 1) = 0 (1.20a) 

- ^ o + f + £-*ofi> = 0 (1.20b) 

where P = = ^ ' s t n e Bogomolnyi parameter [31]. such that the Higgs scalar field 
P p' 

and the magnetic field are finite everywhere, which in particular requires -ft to be finite 

as R -> 0 and whose energy is finite. Therefore the appropriate boundary conditions for 

our problem are: 

A " 0 ( i ? - > 0 ) ->-0 (1.21a) 

P 0 ( f l - > 0 ) - i - l (1.21b) 
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and 

X q ( R - k x ) - * 1 (1.22a) 

P0(R -¥ oc) -> 0 . (1.22b) 

This string has winding number one: for winding number vV, we replace x by Nx- and 

so P by NP. Those equations (1.20a-1.20b) are coupled differential equations of second 

order for / i ^ 1 (or of first order for (5 = \) which in any case do not have analytical 

solutions. One can get asymptotic solutions near the core (R 0) or at far distances 

from that (R —r oc) as discussed in what follows. 

We start by defining the asymptotic vortex solutions near the core for ,6 r1 I (bur. finite) 

using the regularity of the stress energy tensor. The vortex equations (1.20a)-( 1.20b) near 

the core become 

£ W = = ^ (1.23a, 

R 
P' 

R 
X " P " (1.23b) 

B 

as 

^ » f d - A j ) . (1.24) 

Regularity of the stress energy tensor requires jf dx' J—g T[ :x J dRR.T[ -~ 0 when 

R 0. Let us first take the "worst possibilitxj"' i.e.. T[ ~ j^- This gives f rom (1.18a) 

thar .Y 0

2F ( )

2 ~ 0{R) and that d Ptf ~ O(R) which integrated gives 

wi th K\ a positive integrating constant. Therefore PQ would diverge for R -> 0 which is 

absurd as the magnetic field would become infini te . The only possibility is therefore to 

take K[ = 0 : i.e.. Pa = 1. Now using the other condit ion. XQPQ ~ 0 ( \ f R ) . as well XQ 

would diverge for R —>• 0 as f rom (1.23a) it comes 

X ° ~ R 2SR { } 

with Ki an integrating constant. This means that the energy density does not behave like 

in the "worst possibility". Instead we take T £

£ ~ b\ w i t h b\ a positive constant which now 

it is consistent w i t h the required behaviour for the vortex fields. To argue that we note 
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that now f rom (1.18a) and ^ have to be f ini te , i.e.. 

XQP0 ~ O(R) (1.27a) 

P o ~ 0 ( i ? ) (1.27b) 

We take P(J ~ -^-R. and solve the vortex equations (1.23a)- (1.23b) to get XQ ~ 63. i.e.. 

X0~b3R (1.28a) 

F 0 ^ l - 6 2 — . (1.28b) 

wi th />j and /;;J positive integrating constants. 

We now take 3 = 1 for which the vortex equations (1.20a)-( 1.20b) can be reduced to 

the first order set of equations: 

A„ = — — (1.29a) 

Pu = f ( A ' o J - D (1-2%) 

which near rhe core become 

A'y ~ (1.3(Ja) Xofo 
Ft 

(i.30b) 

and whose solutions are s t i l l given by (1.28a)- (1.28b) w i t h now /jo = 1. 

This gives that near the core the magnetic field is constant (up to this order) wi th 

magnitude 

B* = ± . (1.31) 
e 

We now study the asymptotic solutions at far distances f rom the core. For that we 

now use another method that proves to be useful for later chapters and that consists of 

an analysis of the equations wr i t ten as an autonomous dynamical system (d.s.). In this 

case equations (1.20a)-(1.20b) give the d.s.: 

X'Q = Y (1.32a) 

Y' = -SY + P 2 X 0 S 2 + ^ ( A 0

2 - 1) (1.32b) 

Po = Q (1.32c) 

Q' = Q S + ^ (1.32d) 

5 ' = - S 2 • (1.32e) 
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where S = Y and Q are the derivatives of XQ and Po, and which w i l l be studied 
near the cri t ical point (c.p.) (1 ,0 ,0 .0 ,0) w i t h {XQC. YC, PQC, QC, SC) being generic critical 
coordinates. Hence we take XQ = XQC + 5X, etc. w i t h very small perturbations, i.e.. 
|<J-Y| <g; 1 and wri te this d.s up to lowest order in the perturbations. This gives 5 ~ 0 and 

(<LY 0)' - SY (1.33a) 

{6Y)'-5XQ (1.33b) 

(6P0)'~6Q (1.33 c 

SPQ 
( 6 Q ) ' ^ - f (1.33d) 

which gives immediately for the vortex fields: 

X o ~ l - K 3 e - R (1.34a) 

P 0 - KAe ^ (1.34b) 

wi th K-\ and K\ two integration constants, i.e.. the str ing fields (and so the magnetic 

field) die off exponentially fast. From (1.34b) it follows that in these units the Compton 

wavelength for the vector boson. 6„. is <)v = y/3 while it is of order unity lor the Higgs 

particle. In the presence of other fields such as the di laton field or the gravitational one 

of a black hole it is then natural to compare the size of the di latoa particle or of the black 

hole wi th these scales as is done in chapters 3 and 4. 

We now discuss quali tat ively three limits where either ,8 —> 0. (5 = 1 or 3 —> ?c. 

( i ) / 5 - 0 

As the Higgs field has to be rearranged at the distance ~ m j f 1 , when 8 decreases this 

rearrangement has to take place at larger distances and the amount of energy of the vortex 

to be rearranged (proport ional to rn2

H) decreases so that the spatial gradient of the Higgs 

field decreases vanishing in the l im i t 8 - 4 0. Therefore XQ is settled to its core value and a 

string never forms. F ix ing q and mv this l imi t can be obtained when A -> 0 and therefore 

V(<&) —> 0 and then the only non-vanishing contr ibut ion for the lagrangian in (1.12) conies 

f rom the magnetic field, i.e., in this l imi t one recovers electromagnetism. In particular it 

includes the vacuum case. 

( i i ) Q = 1 
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This is the cr i t ica l Higgs coupling case for which the vortex is supersymmetrizable [10] 

as the vortex equations (1.20a)-(1.20b) can be reduced to the set of first order coupled 

differential equations given in (1.29a)- (1.29b) whose solutions for a winding number one 

are plotted in figure 1.3. In the presence of gravity this value for p is s t i l l a special value 

\ 
\ 
\ 

\ \ 
\ 

Figure 1.3: X0(R) and PQ(R) for a p = N = 1 vortex [32]. 

as discussed in the next chapter. 

( i i i ) (3 -> co 

From (1.20b) one gets PQ(R) = 1 - K.5 ^ - w i t h K--, a positive integration constant and 

consistency w i t h (1.34b) requires = 1 and K5 = 0. i.e., PQ{R) = 1 and so AC(R) = 0. 

i.e., the s tr ing turns into a global string as discussed later in Section 1.7. This l imi t wi l l 

be taken for the axionic-dilatonic string considered in chapter 3 to get dyonic solutions. 
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I t is also useful to review the self-gravitating Nielsen-Olesen vortex in Einstein gravity, 

as much of the formalism can be used directly in the next chapters. To include the self-

gravity of the s t r ing (along the z axis), we require a metric which exhibits the symmetries 

of the source, namely, translational invariance along its length (i.e.. z —» z + h, w i th h a 

constant) and rotat ional invariance around the core (i.e., x -> —x, y —> —y, x —»• y) i.e. 

cylindrical symmetry. 

The line element for a cylindrical system along the z axis is then given by 

ds2 — goodt2 - (jxx{dx2 ~ dy2) - g::dz2 . (1.35) 

In a surface where t and z are constants, dl2 = dx2 - f dy2 can also be wr i t ten as dl2 = 

dR2 - f R2 dip2 and therefore the general cylindrically symmetric metric is given by [33! 

d.i2 = e 2 ( "'- e ) ( ' / / ." - dR2) - S'-'dz' - a2H-'2vdtp2 (1.36) 

(where 7. 111, a are independent of z.-$). The string couples to this metric via its energy 

momentum tensor T a(, f rom the Einstein's equations 

Cai, = tT,lb (1.37) 

where 

T a b = 2 V f l X V „ . V + 2X-PaPb - 23FacFb

c - £gab (1.38) 

where 

e = $TrGn2 (1-39) 

is the gravitat ional string coupling in these units. 

Cyl indrical symmetry of the source demands the vortex fields not to depend on z and 

ip. I f in addi t ion one requires a static string then T ; : = —Cy:: and as well T t £ = -Cgu, 

i.e.. T/ = T r and the stress energy tensor can be seen to be boost invariant. This in turn 

implies through the Einstein's equations (1.37) that for a static metric 

7 = 2i/; (1-40) 

which we w i l l assume from now on and therefore: 

ds2 = e 7 [dt2 - dR:2 - dz2] - a-e-'idp2 . (1.41) 
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The gravity of cosmic strings w i t h i n the context of the Einstein's theory has been well 

explored under various approaches that s impl i fy the non-linear nature of the Einstein's 

equations [34]. I n what follows we use the linearised gravity to f ind an approximation 

to the str ing metric while in the next section we review the Vi lenkin [35] and Gott [36] 

approximations for the string model. The energy and stresses are given by 

X2 p'1 p'- 1 
T/ = £ = e"' X'2 + e~- — ^ - + (3— + - { X 2 - I ) 2 (1.42a) 

a- a- 4 

7 * = ~Vr = - e - \ Y ' - 4- e ' f ^ ^ - 6 ^ + - L \ 2 - l ) 2 (1.42b) 
a- a- 4 

•>
 v 2 ' Y'2p- p1- l 

T * = - V , = e-A"-' - e<—- - !J— + - ( A ' - ' - l ) * (1.42c) 
v a- a- 4 

T: = - V : = f t (1.42d) 

and the Einstein and vortex equations can then be read off respectively as [32] 

a" = -eae lS - V R ) (1.43a) 

[a-/)' = f.at(VR+V-) (1.43b) 

a'-/ = -cW2 — eae~''pR (1.43c) 

i (n A " ) ' = ^ h1'- - '\ ( A - - 1) (1.43d) 

f P ' \ ' Y- P 

Also for future reference, the Bianchi identity gives 

V'R + ( V R - V t > ) ( - - ^ ) + i V R + -/'£ = 0. (1.44) 

We now look for the gravitational effects of these strings assuming small str ing coupling, 

i.e.. e <§C 1 which in particular is valid for strings formed at G U T scales (e ~ 1 0 - f a ) . We 

then take a perturbative expansion for the fields to get for zeroth order (flat space) 

a = R V = 7 = 0 X - A'o P = P0, (1-45) 

w i th (1.44) giving 

(RVoR)'= V o i p . (1.46) 

These are the Nielsen-Olesen solutions discussed in the previous section which are valid 

near the core of the string where the symmetry of the Higgs potential remains unbroken 

and therefore gravi ty decouples f rom the gauge fields [26]. Thus near the core and up 
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a = 

7 = 6 / RVoRdR 
Jo 

to terms of order O(R) the vortex fields X0 and P0 are given by (1.28a)- (1.28b) (where 

b2 = 1 for (3 = 1). 

To first order in e the string metric is given by [37] 

1 - t [RR(£Q - V,R)dR R + t lRR-(£0 - VoR)dR. (1.47a) 
Jo Jo 

(1.47b) 
10 

where the subscript zero indicates evaluation in the flat space limit;. Note that when the 

radial stresses do not vanish, there is a scaling between the time. ~ and radial coordinates 

for an observer at in f in i ty and those for an observer s i t t ing at, the core of the string. The 

only case in which these stresses do vanish is when >3 = 1 which wi l l be analysed in the 

next section. 

We conclude this section by demonstrating the asymptotically conical nature of the 

corrected metric. Note that since the string functions A'o and P<) rapidly fall off to their 

vacuum values outside the core as shown in the previous section, the integrals in (1.47a) 

- (1.47b) rapidly converge to their asymptotic, constant, values. Let 

A = t /?.(£„ - V , R ) d R I1.48a) 
•hi 

,R 
B = ( R2(£N - Vl)R)<l,R (1.48b) 

•hi 
f R 

D = e RVoR 11.48c) 

then the asymptotic form of the metric is 

where 

d.S = eD[di2 - dR2 - dz2} - R2(l - A ~ | ) V D V 
h 

= di2 - dR2 - dz2 - R2(l - A)2e-'2Ddip2 (1.49) 

t = e%t, z = e^z. R = e^{R+—^—) (1.50) 
1 J\ 

This gives f rom (1.49) that in the spatial sections transverse to the str ing, i.e.. where R. 

z, and t are fixed, a circumference has a length 

L = 2KR{\ - A)e~D ~ 2 * 6 ( 1 - [A + D)) (1.51) 

which therefore represents the geometry of a conical space in which a wedge of angle 

A = 2n{A + D) = 27te J R£adR = 2TT€^ (1.52) 
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Figure 1.4: The conical nature of the str ing spacetime. 

has been removed f rom locally Hat space as represented in figure 1.4. The deficit angle 

is proportional to the energy per unit length of the str ing which in units natural to the 

vortex is given by ft w i th 
A + D 

(1.53) 

and it is independent of the radial stresses, but that there is a red/blue-shift of time 

between inf in i ty and the core of the string if they do not vanish. Final ly this gives that 

the asymptotic s tr ing metrics in (1.4U) can also be wr i t t en as 

ds- = dt2 - dR- - dz2 - R2(l - e ft)2 dtp2 1.54) 

We now discuss the effects of the asymptotically conical string's spacetime in test 

particles which move along the geodesies of the spacetime that for a radial motion in a 

plane transverse to the string, dz — 0. are given by: 

R ' + — + k = E2 

R2 
:i .55) 

where the dot denotes a derivative wi th respect to the proper time along a timelike 

geodesic, or an afRne parameter for photons. The parameter k is either one or zero, 

representing either a massive particle or photon respectively. E and h are constants of the 

motion representing energy and angular momentum respectively, and are given by: 

E = gui - i 

h = ^ £ ± = - ( \ - t f t ) R ^ 
1 — efi 

(1.56a) 

(1.56b) 
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From (1.55) one sees that the radial motion of a geodesic is the same as the classical 

t rajectory of a uni t mass particle of energy -j- w i t h an effective potential given by 

eff 2 £ 2 + 2 
[1.5?: 

which is an identical effective potential to that of a particle moving in flat space. (The 

presence of the ep, terms in the defini t ion of h shows that the spacetime is not globally 

flat, but conical.) A l l non-static trajectories therefore escape to inf ini ty , and satisfy 

h 
R > 

\/E! - k 
[1.58) 

Now let us consider two particles approaching a str ing and freely moving in a normal 

plane to that as represented in figure 1.5 by the two parallel paths (dashed and dotted 

Figure 1.5: Effects of a conical string :s spacetinie on test particles [381. 

lines). The string is located in the apex of the cone w i t h angle A . According to the 

discussion for the geodesies presented above these particles w i l l escape to inf in i ty wi th 

h being constant, i.e.. when they arrive at the edge of the wedge they continue on the 

other side at the same angle to the wedge as these sides are identified. By this way the 

string conical spacetinie introduced an inward velocity in each particle. Thus the particles 

converge in the region behind the string and an over-dense wake forms generating density 

perturbations. This mechanism may seed galaxy format ion as first pointed out by Silk 

and Vi lenkin in reference [2]. 

I f instead of particles one considers photons their trajectories w i l l escape as well for 

infini ty. This gives that two light rays coming f rom a point source placed behind a string 

create two images of the source, one on either side of the wedge. This is the gravitational 

lensing effect represented in figure 1.6 which for strings formed at G U T scales ( A ~ 1 0 _ b ) 

may be observable in images of distant galaxies and clusters [39]. 

We note that when the str ing coupling e increases, i-.e., the linear mass density increases, 
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Quasar 

Observer 

Identify 

Observer 

Figure 1.6: Effects of a conical string's spacetinie on test photons [1]. 

the geometry of the spacetime around the str ing changes drastically beyond a certain value 

as examined in the next chapter. 

1.6.1 The critical coupling 

In this section we review the approximations taken by Vi lenkin and Got t in references [35; 

and ^36' respectively to determine the gravitational effects of a cosmic string. 

In the Gott approximation [36] the energy of the str ing is d is t r ibuted uniformly along 

a cylinder of f ini te radius. ftp. i.e.: 

£[R)=(JO R<R,> 

£{R) = 0 R>RQ 

(1.59a) 

[1.59b) 

w i th RQ greater than or equal to the size of the core. i.e.. RQ > 1 in these units and po a 

positive constant. The str ing energy per length in vortex units given in (1.53) is then 

-ftp Po 
2 

(1.60) 

To get the gravitat ional effects of these strings we solve the geometry equations (1.43a)-

(1.43c) but first we note that in this case the field equations (1.43d)-(1.43e) reduce to 

XP 
X' = 

a 

P' = l-a(X2 - 1) 

a = 1 - e[(X~ - l)P -r 1] 

7 = 0 

(1.61a) 

(1.61b) 

(1.61c) 

(1.61d) 

a first order set of coupled differential equations as one might expect f r o m the fact that 

the model admits a supergravity extension. 
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This gives that the pressures VQR and Vo<p in (1.42b)-(1.42c) vanish everywhere. In 

fact they only vanish everywhere for 8 = 1 [32], and the only gravity equation to solve is 

(1.43a) that becomes 

a" = -ea£ (1.62) 

whose regular solution at the core which is continuous at R = RQ is: 

sin (,/epo R) 
a(R) = V V J _ r ; R < R„ (1.63a) 

sin (jtpn RQ) , 
a(R) = W

r l l °' + c o s ( Y / ^ R Q ) ( R - R Q ) R>RO. (1.63b) 

We now study two extreme l imits for the magnitude of ^/epo RQ : either when it is very 

small or very large. 

T h e wire mode l 

We first take the l imi t where yeprj -ft) <^ 1. Using equations (1.63a)-( 1.63b) it is easy 

to see that one recovers the results of the previous section, i.e.. this l im i t corresponds to 

the weak Held approximation where gravity is linearised. In particular taking the l imit 

/?o — 5 - I), and f ix ing the energy per unit length, we can see that T[ tends to the Dirac 

d is t r ibut ion. 6(R). in the two-surface where t and z are constants, i.e.. 

R £ { R ) = f i S ( R ) (1.64) 

and the energy gets very well localised. In this way the stress energy tensor gets simplified 

in the core as: 

T< = ^ [5(R), 0. 0, 6(R)] (1.65) 

This approximation was first taken by Vi lenkin [35]. I t corresponds to the l imi t where 

A —» oo (and e —> oc such that B — = 1) and it is the so called 'lwire approximation"' 

as such defects can be well approximated as lines w i t h vanishing thickness. Al though there 

are processes where the thickness of the string is relevant or the weak field approximation 

is not suitable and other methods have to be applied [34,40,36]. I n particular one expects 

that in the presence of long range fields such as that of a massless di la ton or of an axion 

the thickness for these strings is non-negligible and therefore the "wire approximation' 

is no longer valid as i t w i l l be examined in chapter 3. 
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Supermassive strings 

We now f ix po and RQ to be finite and increase e such that one gets 

y/epo~Ro = ( 2 n + 1) TT (1.66) 

for some large integer n , i.e., we are taking ^/Jpo RQ 2> 1. 

In the l im i t e —> oc it then follows f rom (1.63b) that a(R > RQ) < 0. As near the 

core a{R) — R. by continuity we have that somewhere at a finite distance. f rom the 

core a(R.) = 0 (and therefore a surface where t, z. and R, are constants), circles wi th 

finite radius R. have vanishing length, i.e., the string's spacetime becomes singular. In 

fact that happens for e > 1 as explained in next chapter. I n this l imi t strings formed at 

phase transitions at scales well above the grand-unification scale and which might have 

taken place in the early universe as discussed in the next chapter and therefore strings 

are called "supermassive" as they couple strongly to gravity. Their strong gravitational 

effects at large distances are then similar to those of the global strings, another type of 

cosmic strings presented in the next section. 

1.7 Global strings 

For the interpretat ion of some solutions presented in chapters 2 and 3 we introduce another 

type of string: the global string, which arises as a result of a global symmetry breaking 

and does not carry a gauge magnetic flux. 

The lagrangian for an isolated U{\) global string is [ l ] : 

I n order to make manifest the physical degrees we write for an inf ini te straight string the 

Higgs field as in (1.15a) w i t h x — V where x I S the massless Nambu-Goldstone field and 

obtain 

The energy and stresses of the vortex can be obtained immediately f r o m those for the 

local strings, (1.18a)-(1.18d) setting P0 = 1 (and (3 = cc) giving: 

A >\2 (1.67) 

1 
£ = (VaX)2 + X2 ( V a X f - - ( x 2 - l ) (1.68) 

tl = e = x'2 + § + \ ( x 2 - i ) 2 (1.69a) 
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f g = ~VR = -X'i + | f + l-(Xi - l ) 2 (1.69b) 

f* = -V* = X12 - | f + \{Xl - l ) 2 (1.69c) 

f : = - V z = t l

t (1.69d) 

which do not fal l off to zero rapidly enough as for the gauge strings due to the presence of 

the massless Nambu-Goldstone field \ - i n f a c t t n e Higgs asymptotic far field is s t i l l given 

by (1.34a) which now gives that 

Ti = ± [ l . 1. 1. -11 (1.70) 

This gives that the energy per unit length of the string at far distances f rom the core 

becomes 

/ i - l n ( / ? ) (1.71) 

i.e.. much of the energy defect is distributed outside the core which is a very much different, 

behaviour f rom the very localised energy of the Nielsen Olesen string. The energy per unit 

length of the str ing is then infinite. 

We also note that the asymptotic stress energy momentum given in (1.70) is not Lorentz 

invariant (T/ x (1 . - 1 . - 1 . - 1 ) ) . This gives that the spacetime is no more static I I 1 . 

In the presence of Einstein gravity and due to its coupling to the N'ambu-Goldstone 

field such strings have long-range gravitational interactions and therefore the gravitational 

field associated w i t h global strings is not asymptotically Hat and due to the infinite vortex 

energy per unit length the spacetime outside the core is singular. Al though there are 

non-singular s t r ing solutions when one requires the large amount of the vortex energy to 

result in a large effective kinetic mass. i.e.. taking a non-static s tr ing spacetime as first 

proved by Gregory in reference [42]. 



Chapter 2 

Non-singular cosmic strings in 
Einstein gravity 

2.1 Introduction 

The cosmic strings which produce relevant astrophvsical effects are those formed by the 

GUT scale. Their gravitational fields are weak as their string coupling is small (t ~ 

10 _ f i ) [10]. However other phase transitions may have happened in the early Universe 

and strings may have formed at other scales. Even though these strings are ruled out 

from observations, one cannot exclude the possibility of their formation and subsequent 

elimination by some other process such as inflation [43]. When formed at scales above the 

Planck mass, i.e., for e > 1 and for a critical Higgs coupling, their gravitational effects are 

strong and static strings become singular somewhere at a finite spatial distance from their 

cores. Although there is always the possibility of topological inflation [44]. Meanwhile 

strings formed at smaller scales, (i.e.. when e < 1) are non-singular [32,45.46]. 

For a non-critical Higgs coupling, Laguna et. al. [47] showed that strings become 

singular for ,5 = 2 with t = 0.849 and that their asymptotic spacetime is of a Kasner [48] 

type. They. [47], also present non-singular string solutions for (3 = 2 with e = 0.817 and 

e = 0.502 for which the asymptotic spacetime is Minkowski minus a wedge of 2iytjj.. as in 

the asymptotic string solution found first by Vilenkin [35] and deduced by using a weak 

field approximation. Fitting the values for (3 and e for the singular string case one gets 

e ~ / ? - ° - 2 . 

In this chapter we extend the works in refs. [45r47] by studying for a non-critical 

24 
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Higgs coupling the string's gravitational effects (with no approximations taken for the 

stress energy of the string.) The fully coupled Einstein-Abelian-Higgs non-linear system is 

studied by using a qualitative analysis of autonomous dynamical systems and it is argued 

that strings are non-singular for < 1 and e < 1. 

2.2 The dynamical system 

We look for non-singular self gravitating string solutions of the Abelian-Higgs model in 

Einstein gravity already introduced in Section 1.6 of chapter 1. For that we write the 

equations of motion (1.43a)-(1.43e) as the autonomous d.s.: 

X' = Wy + g X a (2.1a) 

W[ = -y Wx - zgX a- gaW{- gX Vy (2.1b) 

a' = V l + - 2 ( X 2 - l ) - y a (2.1c) 

VI = - = V'i - \ = (X- - 1) - X Wx + {l- - 1) X'2 g a (2.1d) 

.// = -2eg2X-a2 -~eg(X2 - I ) 2 - y 2 (2.1e) 

g'==u (2. i f ) 

= -yz + 2e 3g V2 + 2e3gV\ ( X 2 - 1) + l- e g (,6 - 1) ( X 2 - I)2 (2.1g) 

and the Bianchi identity (1.44) as the constraint: 

yz = )z2 + eW2 + 2eWl9Xa + t(5gV2 - tpgV\(X2 - 1) + -eg{B - l)(X2 - l ) 2 (2.2) 

where: 

\\\ = X ' - g X - (2.3a) 
a 

a=- (2.3b) 
a 

V y ^ - P ' - l - ( X 2 - l ) (2.3c) 
a I 

y = - (2.3d) 
a 

g = (2.3e) 

z = i (2.3f) 

and look for the values of e and 0 for which string solutions are non-singular. 
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2.2.1 Vacuum solutions 

Since we expect that non-singular strings will tend asymptotically to vacuum at far 

distances from the core, it is necessary to characterise the vacuum solutions. We take 

f. = p = 0 and solve the d.s. (2.1a)-(2.1g) under the constraint (2.2) to get two branches 

of solutions given by 

yc = — ^ — (2.4a) 
an + Qo 

zc = 0 (2.4b) 

gc = e'° (2.4c) 

for branch I and 

d 

Ik- ~ ~Tp ( ' - ' J i l 1 

an. -r ttt) 

* = ( 2 - 5 b ' 
r/, = e 7 0 [dR. + « 0]"' (2.5c) 

for branch I I with 70- d and QQ being integrating constants. 

The first class of solutions (2.4a) -(2.4c) is regular at R. = 0 provided d = 1 and 

7o = a 'u = D and the spacetiine is non-singular while the second one (2.5a) -(2.5cJ gives 

for ^ < 0 a singular spacetime at the distance R = — ^ from the core. For simplicity we 

take ^ < 0 in further sections. 

For branch I . consistency with the vortex equations requires gc to be finite. As argued 

in what follows consistency of these solutions require one of two cases: either we take d 0 

with any value for c*o or we take d = 0 with ao ^ 0. The case d — = 0 is excluded. 

Let us first take d ^ 0 with any value for ctQ. At asymptotic far distances from the 

core one obtains: 

Vc = zc = 0 (2.6a) 

gc = e'° . (2.6b) 

We note that in this case z converges asymptotically faster than y which is a useful result 

for Section 2.6. 
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We now take d = 0 with ao # 0 which gives the same asymptotical values for the 

variables y, z and g as in (2.6a) and (2.6b). In this case z converges asymptotically at the 

same rate as y. 

Otherwise when d = Qo = 0 it appears that apparently y is undetermined. However 

one can calculate a from the definition of y in (2.3d) to get ac = 0. By combining aC0Te > 0 

with a'core > 0 one can immediately conclude that yc < 0. It is also shown in Section 

2.6 that y is monotonically decreasing at finite distances from the core and therefore this 

case corresponds to yc = -oc for which the vortex fields do not approach their vacuum 

expectation values and therefore this case is excluded. 

We now consider branch I I of vacuum solutions and proceed as above. Again consis

tency with the vortex equations require gc and yc to be finite which implies thar d ^ 0 

and d = cvo = 0 are excluded. We then take d = 0 with QQ ^ 0 and taking the limit d -? 0 

first (and then R —> oc) we get yc and zc as in (2.6a) with now 

9c = e 7 0 ^ . (2.7) 

We also note that the metrics for this branch can be written as: 

ds'2 = e'f (3d)3 pi [fit- - i/c-j - dp- - (3d) T P T d^r (2.S) 

with dp = ea di? which is an analogy of a Kasner type metric [48] and which for d = ao = 0 

it is exactly the asymptotic singular solution presented in ref. [47]. 

In the following sections we look for the values for e arid / i for which strings are non-

singular. 

2.3 The critical Higgs coupling case 

The Equations of motion 

We now take a critical Higgs coupling, i.e., (5=1. foi which the equations of motion 

are given by (1.61a)-(1.61d). This results in 

'2X2 P2 

a — — t 
a 

(2.9) 
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and therefore for a > 0, a" < 0 which combined with (1.61c) gives 0 < a' < ct'core = 1 

when e < 1. Therefore the C-energy given by [33]: 

9 EC{R) = 47 r ln (2.10) 

is well defined everywhere in the region at finite distances from the core and therefore 

regular strings at the core are non-singular for e < 1. 

We now take e > 1. Using (1.61c). a' changes sign somewhere at a finite distance 

from the core becoming negative and therefore a vanishes somewhere at finite distances 

from the core. This means that in the spatial sections transverse to the string where the 

coordinates R. z and t are fixed, a circumference has vanishing length, i.e.. the metric is 

singular. 

Therefore we conclude that for the critical Higgs coupling, static strings are singular 

for £ > 1 and non-singular for e < 1. We now show these results by using a qualitative 

analysis of the equations of motion written as an autonomous d.s.. 

Using the equations of motion (1.61a)-( 1.6U1). one obtains z = \V\ = \\ ~ 0 and g = 1 

with the constraint (2.2) being trivially verified. This means that the 7-dimensional d.s. 

in (2.1a) -(2.1g) is reduced to the 3-dimensional one given by 

a' = — - a b + t u2 k -r tub (2.1 la) 

b' = b2{e-\)+ebah (2.11b) 

h' = 2a(h+l) (2.11c) 

where 

b = - (2.12a) 
a 

h = X'2 - 1 . (2.12b) 

In these variables the coordinates for the vacuum asymptotic solutions are finite and 

therefore to find non-singular strings it is enough to study the d.s. near the critical points 

in the finite, region of the phase space which in this case is 

S i = ( 0 A , 0 ) (2.13) 

with (a c, bc. hc) being generic coordinates. First we note that this critical point corresponds 

to asymptotic non-singular solutions of branch I (take d = 70 = 0 and ao ^ 0) and of 

branch I I (take d = 70 = 0 and ao = !)• 
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We now proceed with the classification of B\. We first take e ^ 1 for which bc = 0 and 

write the d.s. (2.11a)-(2.11c) near that critical point by taking linear perturbations for the 

variables around that point. In this case the critical point is degenerate, that is the linear 

perturbations are not conclusive for its classification, higher order perturbations being-

necessary. A different method, specific to degenerate critical points, is then necessary. For 

example one can use the blow-up method [49]. In this method one substitutes the critical 

point in an n-dimensional space by an 7i-dimensional sphere. In this way it is possible to 

determine the directions for which the d.s. attracts or repels from the critical point and 

therefore remove its degenerate behaviour. Applying this method to the critical point B{ 

one concludes that after the substitution of this point by a 3-sphere this critical point is 

transformed into several other degenerate critical points, each one requiring the blow-up 

method to be applied. As a result this method may not be efficient in this case, as it has 

to be applied several times with no guarantee of being successful. One could apply other 

methods to treat degenerate critical points [50]. however in this case and for our aim it is 

enough to classify the critical point B\ in the invariant surface b = 0 to which it belongs 

and where the d.s. can be written as 

Linearising the d.s. around the projection of By in this surface, i.e.. D\ = (0.0). where 

(ar.hc) are generic coordinates, one concludes that D\ is a saddle critical point '49| and 

therefore so also is B\. This means that, for regular strings at the core there is at least 

one approaching direction to the critical point B\ corresponding to non-singular string 

solutions and at least one repelling direction from that point corresponding to singular 

string solutions as proven in what follows. For that it is enough for a starting point 

to settle down the vortex field X in its vacuum value and analyse the evolution of the 

other variables. Therefore we analyse the d.s. at the surface X = 1 which is taken to be 

invariant. 

1 
a (2.14a) 

/).' = 2a(h + 1). (2.14b) 

When X = 1, h = 0 and the d.s. (2.1 la)-(2.11c) becomes 

a ' \ = \ = (e — 1) a6 (2.15a) 

b1 = ( e - l ) 6 2 (2.15b) 

- 2a. (2.15c) 
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Taking X = 1 to be an invariant surface (a = 0) the d.s. (2.15a)-(2.15c) becomes 

a j f = l = 0 (2.16a) 

6; Y = 1 = (c - 1) b2 (2.16b) 

h'x=l = 0. (2.16c) 

Let us take e < 1. From regularity at the core one gets bcore > 0 with b'C0Te < 0 and 

therefore the variable b starts to decrease from positive values. Using (2.11b) for e < 1 the 

variable 6 decreases monotonically. i.e.. b decreases monotonically from positive values until 

its vanishing critical value at asymptotically far distances from the core. Therefore the 

critical point B\ is reached later than the invariant surface X — 1 as required. Therefore 

the evolution of the variable b still supports our initial assumption. However it is still 

necessary to check whether the evolution for the variable a still supports that assumption. 

Using the regularity at the core one obtains acore > 0 with a'rure < 0 and therefore the 

variable a starts to decrease from positive values. Using (2.11a) and e < 1. the variable 

a decreases monotonically. i.e.. from positive values until it vanishes at far distances from 

the core. Again this supports our initial assumption. 

Therefore there are suitable initial conditions for a regular string at the core so that 

the vortex fields are settled down into their vacuum values at far distances from the core, 

with the geometry evolving towards the vacuum one. meaning that the d.s. for these 

string solutions reaches the critical point Z?t. Therefore for e < 1 and P = 1 strings are 

non-singular. The case e — 1 will be considered separately in the next section as the 

d.s. (2.11a)- (2.11c) is reducible. However, one can use the above results with the only 

difference being that from (2.16b). the d.s. reaches the critical point B\ at the same time 

as it reaches the invariant surface X = 1. 

Finally we take e > 1. We now argue that there are no regular conditions at the core 

for which the d.s. reaches the invariant surface X = 1 (where a = 0), i.e.. the d.s. never 

stops in the surface X = 1 because that is non-invariant. 

As already noted for a regular string in the core one obtains b'core < 0 and from (2.16b) 

one gets b'x=y > 0, i.e., b' vanishes somewhere at finite distances from the core where 

0 < X < 1. From the equation (2.11b) it results that b has two extrema, i.e., for &i = 0 

and for b% = — 2(^1) • As a starting point we take these extrema to be different so that one 
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can take for the initial conditions the regular conditions at the core. Since between those 

extrema the variable b decreases, this means that we have to set bn > b\ and therefore 

ah < 0. We now take the region where b > 0 (because the d.s. starts to evolve from there 

for regular strings at the core), and study whether it stops or still evolves having reached 

the surface b = 0. 

Let us first suppose h < 0. We now look for a region for the variable a for a regular 

string at the core so that a 0 and so that the d.s. stops evolving in the surface 6 = 0. 

We conclude that there is no suitable region for which a -> 0 when imposing initial 

conditions regular at the core or for any other initial conditions. To get this result we use 

the equation (2.11a). We first assume that there are two different extrema for the variable 

a. i.e.. a_ and a + . where a_a + = ^ > 0 and a_ + = - t ( t

f t ~ L 1 > 0 as we are assuming 

a region where b > 0 with h < 0. This means u_ > 0 and a T > 0 and between them 

i.e.. u_ < a < a+. one gets a1 > 0. This means that there is a region suitable with the 

initial conditions a'roril < 0 and a t o r e > 0 but for which the variable a does not stop ar. its 

vanishing value a'u=0 < 0. One concludes that under no other initial conditions can the d.s. 

stop at the surface u = 0. One gets the same conclusions if instead we take the extreina 

for the variable a to coincide, i.e.. a_ = a+ = - > 0 as the d.s. evolves so that 

a —T a+.. provided at:ore > a + (which seems to be possible from regularity as u c o r ( J = ^c). 

One could think that this surface, i.e.. a = u_. could evolve towards the surface a = 0 

while b -> 0 and / i ^ O . but now we note that a_ = a T means that (e - l )-6- - 2eh2 = 0. 

i.e. the d.s. reached the surface where 6 = (as we are taking b > 0 for h < 0) and 

therefore = a_ = Therefore the d.s. never evolves so that a —r 0. Therefore we 

conclude that there are no regular initial conditions at the core or other initial conditions 

so that the d.s. stops to evolve at the critical point B\. 

We suspected this impossibility would be related with the sign for h and then we 

supposed that h > 0 in the region where b > 0. This gives that both extrema for the 

variable a are negative, i.e., a_ < 0 and a+ < 0 and the conclusion remains the same as 

there are no initial conditions regular at the core or other initial conditions so that the d.s. 

evolves towards the surface a = 0. Finally we suppose that the extrema for the variable 

a coincide, i.e., a_ = a+ = which now gives a —• a + = — a n d as well the d.s. 

never evolves so that a —> 0. 
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Therefore there are no initial conditions for regular strings at the core so that for e > 1 

the d.s. evolves towards the critical point B\. 

In conclusion for e > 1 and 0=1 strings are singular. 

2.3.1 T h e cr i t ica l Higgs coupling case wi th e = 1 

For e = 0 = 1 the variables a and h evolve separately from the variable b and therefore 

instead of studying the d.s. (2.11a)- (2.11c) one can study the 2-dimensional sub-dynamical 

system given by 

whose phase space, i.e.. a{h). is given in the figure 2.1 and was first presented in [51]. 

This figure proves that there are suitable initial conditions, i.e.. coordinate values at the 

core, so that the d.s. evolves into the critical point D\. As b decreases monotonieally this 

means that there are also suitable initial conditions for b so that the initial 3-dimensional 

d.s. in (2.11a)- (2.11c) evolves towards the 2-dimensional d.s. (2.17a) -(2.17b) and there

fore strings are non-singular for € = 0 = 1. 

2.4 The non-critical Higgs coupling case in a flat spacetime 

In this section we take a non-critical Higgs coupling, i.e.. 0 ^ 1 in a flat spacetime. i.e.; 

e = 0, where obviously string solutions are non-singular. We use this qualitative analysis 

of the equations of motion to develop several useful techniques for the analysis done in the 

next section. 

2.4.1 T h e dynamica l system 

When e = 0 one obtains from the constraint (2.2) that z = 0 or y = | , the latter of which 

would not be regular at the core of the string, and is therefore excluded. From (2.lg) 

a' h a 9 
K = 2a {h + 1) (2.17b) 

(2.17a; 
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Figure 2.1: The phase space u(/i) for d = e = 1 [51;. The disk represents the poinr. 
£>i = (0.0). 

une also obtains that z = 0 is an invariant surface. As ; = 0. i.e.. g = 1 one gets the 

7-dimensional d.s. (2.1a) -(2.1 g) is reduced to the following 5-dimensional one: 

X' = W\+Xa (2.18a) 

W[ = -yWi - aWi - X\\ (2.18b) 

a1 = V l + l - ( X 2 - l ) - y a (2.18c) 

V[ = -XWV + ( i - l)X2a (2.13d) 

y' = -y2 (2.18e) 

whose critical points in the finite region of the phase space are: 

Ai = (0,0, a c, 0) (2.19a) 

A-2 = (±1 ,0 ,0 ,0 .0 ) (2.1%) 
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with Ai = (XC)Wic,ac,ViC,yc) being a generic critical point. We now proceed with the 

analysis of each critical point. 

The critical point corresponds to the non-evolving solution where the vortex fields 

remain at their core values, and is therefore not relevant. 

For the critical point A2 we note that as Xc ^ 0 and ac — 0 one obtains that B ^ 0. For 

the + sign for Xc this critical point represents an asymptotic string solution and therefore 

we proceed with its classification. Linearising the d.s. around this critical point one gets 

that for P < 1 it is a saddle critical point while for B > 1 there are two 2-dimensional 

surfaces, one in which the trajectories approach the critical point as for as stable focus 

and another in which the trajectories repel the critical point as for an unstable focus as 

shown in Sec.2.7. 

2.4.2 Necessary conditions for the convergence into the crit ical point 
and qualitative analysis of the d.s. 

In order to prove that strings are non-singular we now show that there is always a physical 

direction for the d.s. to reach the critical point Ao with Xc = 1 irrespective of the value 

of 6. We first note that as W\core - \\\c and V\COTe = V\c none of these variables can be 

monotonic. It follows from (2.18b) that they must have opposite signs at finite distances 

from the core and from (2. lSd) that when W\ > 0 we take B < 1 while for W t < 0 we 

take 6 > 1. 

Let us first take W\ > 0 and V\ < 0 with 8 < 1 at finite distances from the core. This 

shows immediately from (2.18a) and (2.18c) that X and a are monotonic variables either 

increasing or decreasing respectively. Noting that y is monotonic shows immediately that 

there are suitable regular initial conditions at the core such that the d.s. converges into 

the surface So with X = 1 and a — y = 0. 

Meanwhile for W\ < 0 and V\ > 0 with B > 1 at finite distances from the core it is 

not immediate that the d.s. converges into S2, because neither X nor a are monotonic. In 

order to prove that there are suitable regular initial conditions at the core so that the d.s. 

converges into the critical point A2 with Xc = 1 we use the same method as in section 

2.3. There we looked for the conditions for X = 1 with a = 0 to be an invariant surface 
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which we now apply to the surface Si where X = 1 with W\ = V\ = a = 0. Taking the 

first order perturbations near S\ the d.s. gets 

(6X)' = 6Wl + 6a (2.20a) 

(<Wi)' ~ -6Vi -y5Wy (2.20b) 

(6a)' ~ 5V\ + 8X — y 5a (2.20c) 

(tfVi)' ~ -5W{ + Q - i j da (2.20d) 

with the constraint (2.2) being verified trivially and where 6X = X-Xc. etc with \6 A'| < 1 

and where y is finite, i.e.. greater than the biggest perturbation. 

As y evolves separately with y -» 0 after a certain distance to the core the terms y<)\\'\ 

and y5a (respectively in equations (2.20b) and (2.20c)) become negligible because they are 

of second order in the perturbations. This gives that (5W\)' —> -6\-\. Using (2.20c) one 

gets (5a)" ~ and therefore convergence into Si is only guaranteed when 6a = 0. This 

gives that (5Vi)" ir 6\\ and (5Wi)" ~ 6Wy and therefore convergence into S\ requires 

6W\ —>• 0 and d\\ —± 0 at the same time. This means that up to this order it is nor, 

possible to distinguish which vortex field settles down first into its vacuum values Using 

(2.20c) it is possible to adjust the geometry, i.e.. the value for y and therefore the distance 

to the core, so that one gets y = yy being finite where y\ = , n . This gives (6a)' — 0 

and therefore 5a — constant which can be adjusted to the limit 6a = 0. Similarly there is 

a distance from the core where y = yi with y being finite so that y_> = ~jw^ a n d therefore 

6Wi ~ constant which as well can be adjusted to the limit 5Wy = 0. Now one requires 

that these distances coincide, i.e., that the d.s. tends to evolve in the direction 

a W\ 

so that 5W\ —» 0 and 5a —> 0 happen simultaneously. Therefore for any value for ,3 there 

is a physical direction so that the d.s. can evolve into the critical point Ai with Xc = 1. 

In conclusion we argued that there are suitable initial conditions at the core of regular 

strings so that the d.s. evolves towards the critical point .4o with Xc = 1 irrespective of 

the values for (3. 
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2.5 The non-critical Higgs coupling case in a non-flat space-
time 

Finally we consider the non-critical Higgs coupling case in a non-fiat spacetime. i.e.. ,5 # 1 

with e ̂  0. 

Now the d.s. to be studied is (2.1a)- (2.lg) with the constraint (2.2) and whose critical 

points in the finite region of the phase space, given generically by q,. = (Xc. W\,.. ac, Vlc. yc. gc 

are given by 

Using the results of Sec.2.2.1. one gets that the critical point qx corresponds to a 

singular asymptotic solution, (as gr = 0) either of branch I or of branch I I . where circles 

of finite radius have infinite length. Therefore it is not relevant when searching for non-

singular solutions. 

Therefore the relevant critical point is r/o with y,: ^ 0 (without loss of generality we take 

rlie positive root for qo). This is a degenerate critical point. Applying the blow-up method 

once, one obtains several degenerate critical points in the 7-sphere that replace the critical 

point, applying this method again, it turns out that there are still degenerated critical 

points in the 7-spheres that replace the degenerate critical points. This indicates that the 

blow-up method is not efficient. Therefore in this case, and for our aim. it is enough to 

classify the critical point using the linearised method. Using this method one proves (see 

Sec.2.7) that there are always two 2-dimensional surfaces, one where trajectories approach 

the critical point as for a stable focus (for 8 > 1) or saddle critical point (for (3 < 1) and 

another one in which the trajectories repel from the critical point as for an unstable focus 

{(3 > 1) or saddle critical point [f3 < 1). 

We now look for the values of ft and e so that the d.s. evolves towards the critical point 

UQ with gc 0. For that we analyse the evolution of some of the dependent variables. 

Study of the evolution of the variable y 

q0 = ( ± 1 . 0 . 0 . 0 . 0 . 5 ( : . 0 ) 2.22a) 

1 
(A" 1 .0.0.0 A, .0 .o 9i (2.22b) 

We first note that if the surface y = 0 were an invariant surface as in the previous 
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section, we could apply the same method and therefore the strings would be non-singular 

for any values for ft. But in fact y — 0 is not an invariant surface for e ^ 0. Even so, when 

e <S 1, this surface can be taken approximately invariant and we can use the argument of 

the last section to deduce that for e < 1 strings are non-singular irrespective of the values 

oip. 

We now argue that it is necessary but not sufficient that e < 1 for regular strings at 

the core be non-singular. Writing s = (2.1a)-(2.1g) gives 

y' + e(hs)' = -y (y + e(hs)) + e ( X 2 + 1) L2 - g2 a2 (2.23) 

(where h is given by equation (2.12b)). Assuming a non-singular solution, we can implicitly 

integrate from the core to get 

y — -ens H txp 
a 

0 « ) .24) 
/o y + e/is 

with (1 - t) given by examining (2.24) near the core. We now study the expression (2.24) 

near the critical point. For a non-singular solution this gives in particular that W\ —? 0. 

and h —> 0 and therefore s ga and lis -r 0. If one imposes that hs converges faster than 

- then one obtains: 
a 

y-rb(l-e) (2.25) 

(where b was already defined in (2.12a)) that is recognised as the same limit of /; for the 

case (5 — 1. As the solution is non-singular one obtains y —t 0. Using the results of Sec.2.3 

this gives that e < 1. This then shows that e < 1 is now a necessary (but not sufficient) 

condition for strings to be non-singular. 

2.5.1 Necessary conditions for the convergence into the cr i t ica l point q$ 
with gc ^ 0 

We now look for directions so that the d.s. converges into the critical point t/o with gc ^ 0. 

First we note that the surface S3 where X = 1 with Wi = Vi = a = z = 0 and g = gc 

is invariant. Proceeding as in the previous section we write the d.s. near 5.3 by taking the 

first order perturbations to get 

{SX)' ~ 6Wi +gc5a . (2.26a) 
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{5Wl)'~-gc5Vl -y5Wx (2.26b) 

{5a)' ~ 6Vi + 5X -ySa (2.26c) 

(2.26d) 

/ 2 
y =-y (2.26e) 

(6g)' ~ gc5z (2.26f) 

(<Sz)' ~ -ySz . (2.26g) 

The order of magnitude of gc and y is bigger than the order of the biggest perturbation 

and is finite. One also obtains from the constraint (2.2) that 

ySz-0 (2.27) 

i.e.. 6z ~ 0. Therefore z is the first geometric variable to reach its asymptotic vanishing 

value, as required in section 2.2.1 for branch I of vacuum solutions. 

For generality we do not substitute the value for g,:. 

Let us assume W\ —> 0 with W\ < 0 at finite distances from the core 1 (We are 

assuming gc = 1. For gc ^ 1 one shall take W\ > 0). Then using (2.1a) and the fact 

that X1 > 0 (from the spontaneous symmetry breaking) one gets -gXa < W\ < 0. It is 

also assumed that the constraint (2.2) is verified in all of the region at finite distance from 

the core which from the analysis of the next section is guaranteed for 6 < 1. Now from 

Sec.2.2.1 one requires that z 0 faster than y -> 0. So let us take W\ - r 0 with y finite, 

i.e.. ((JVV'i)' ~ 0. at a distance R = R\ from the core where y = y\ with 

6 V, 
Vl[Ri) = ^ g,: . (2.28) 

As for non-singular solutions y > 0 at finite distances from the core equation" (2.28) then 

gives 6\\ > 0. i.e., \ \ > 0 near the critical point. The distance R[ is then adjusted so 

that 6Wi ~ 0. 

It also proves consistent to assume 5a > 0 for non-singular solutions as shown in Sec.2.3 

for 0 = 1. We also take 0 < 1 as justified in the next section. Combining altogether in 

(2.26d) one obtains (5Vl)' > 0 and keeping Vy(R) > 0 for R > Ry this would give that 

5V\ would never converge into its vanishing asymptotic value. This means that one has 

to require W\ —¥ 0 at the same time as a —t 0 so that {5V{)' ~ 0 and therefore, up to this 

'This assumption comes from the study of the variable z. 
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order in the fluctuations, one can not distinguish which vortex field reaches its vacuum 

value first. We then require (5a(Ri))' ~ 0 which from (2.26c) and (2.28) gives 

SVX + 6X SVi 

* - —sr- —m* 
and where now y\ is adjusted so that 5a ~ 0. As 5W\ ~ 0 with 5a ~ 0 this gives from 

(2.26a)- (2.26g) and (2.27) that 5z ~ 0. 5X ~ 0 and 5V\ ~ 0 and therefore the surface S 3 

is reached. After that the variable y still evolves into its vanishing critical value, which 

from a previous section requires e < 1. 

Therefore we argue that when the d.s. evolves in the physical direction so that 

a W[ 

then for j3 < 1 and e < 1 the d.s. converges into the critical point qo with gi: ^ 0. 

Analysis of the constraint 

We now proceed into the analysis of the constraint (2.2) written as V[z) = 0 with: 
V{z) = l-z2 - yz + dV2 + 2eM'\gXa-e3gV2 -eftyV^X2 - 1) - i - ^g(3 - l)(X'2 - 1)' (2.31) 

to justify that the d.s. can evolve in the regions required in previous sections. 

The constraint (2.2) is verified when the determinant of 'P(z) is positive, i.e.. when 

Vi{Wi) = A P ( : ) > 0 with 

T W i ) = y2 - (tW* + 2eWl9Xa + et3gVf + epgV\(X'2 - I ) + l-eg(P - l)(X2 - i f 

(2.32) 

where we exclude the case where it vanishes. To argue that we note that if V\ [W\) = 0 

one gets that in particular the d.s. can evolve in the surface 

y = + 2eW,gXa + e(3gV2 + epgV^X* - 1) + Ug{(3 - \)(X2 - 1)2 . (2.33) 

The constraint gives z = 2y which is not verified near the core of non-singular strings and 

therefore this case is excluded. 

Now we note that for very large or very small values of W\ and using (2.32) one gets 

V\{W\) < 0 which is not what is wanted. In order to get Vy{Wi) > 0 we therefore require 

2 roots of Vi(W\) and hence the determinant of V\{W\). "Pi(Vi), to be positive, i.e., 

Vl(Vl) = eg2X2a2+y2-ePgVv

2-e0gVl(X2-l)-1-eg((3-l)(X2-l)2 >Q . (2.34) 
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Again we note that for large positive or negative values of V j , V\(Vi) < 0 and in order to 

get V\{Vi) > 0 we require the determinant of V\(V\) to be positive, i.e., 

e{3 g ( X 2 - l ) 2 + 4 ( y 2 + eg2X2a2 - \ e g (/3 - 1) ( X 2 - l ) 2 ) > 0 . (2.35) 

This shows immediately that (5 < 1 guarantees the existence of a region where V\(Vi) > 0. 

i.e.. where V\[W\) > 0 and consequently a region where the constraint (2.2) is verified. 

2.5.2 Qual i tat ive analysis of the dynamica l system 

Combining the results f rom the previous sections we finally conclude that there are suitable 

in i t ia l conditions for the asymptotic solutions of regular strings at the core to converge 

into the cri t ical point qo irrespective to the value for gc (gc ^ 0) when e < 1 w i th 3 < 1 

provided that for gc = 1 one verifies the conditions: 

-gXa < W\ < 0 

e {gXa)" + y2 - e ,8gV2 + pgV\(X2 - 1) + 9-((j - \){X2 - \f > 0 

(2.36a) 

- \eW\- + 2eWl0Xa + epgV2 + eiiyV^X'2 - 1) + -eytf - l ) ( X 2 - I ) 2 > 0 

(2.36b) 

(2.36c) 

wi th W\ —> 0. Meanwhile for gc ^ 1 and gc ^ 0 strings are non-singular for e < 1 wi th 

6 < 1 provided that one verifies the conditions (2.36b) and (2.36c) w i t h W\ > 0 and 

Wx -> 0 2 . 

2.6 Conclusions 

2.6.1 Conclusions 

In conclusion for e < 1 w i t h /3 = 1, and for f. = 0 or e 1 w i t h any value for (3. strings 

are non-singular. For /? < 1 and e < 1 we argued the existence of a direction so that the 

d.s. approaches the cr i t ical point qo w i t h gc ^ 0. i.e., that strings are non-singular. In 

particular we note that this result is consistent w i t h the results in the ref. [47]. 

"This assumption comes from the study of the variable 

file:///eW/-
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2.7 Appendix: Classification of the critical point qQ with 

In order to classify the cri t ical point qo w i t h gc ^ 0 we wri te the d.s. (2.1a)- (2.1g) in 

a neighbourhood of qo, i.e., we write X = Xc + 5X, w i t h \6X\ -C 1, etc, and take the 

corrections of f irst order to get the equations 

(<LY)' ~ SW\ + gcSa 

(SW\)'~-gcSVl 

(Su)1 ~ 6\\ + SX 

(6Vl)'^-6Wl + ( l - i ) 9 c 6 a 

(Sy)1 ~ 0 

{Sg)' ~ gc6z 

(Sz)1 ~ 0 

(2.37a) 

(2.37b) 

(2.37c) 

(2.37d) 

(2.37e) 

(2.37f) 

(2.37g) 

wi th the constraint (2.2) being verified tr ivial ly. From (2.37e) and (2.37g) it follows that 

Sy — 0 and Sz ~ 0 respectively, which also gives f rom (2.371) that Sg ~ 0. i.e.. IJ — yc. 

z = zc and g = gc. This implies that the cri t ical point is degenerate (up to this order the 

geometry is vacuum). This means that this method is not enough to classify the critical 

point. [49]. However for our aim it is enough to classify the projection of in the surface 

y = z = 0 w i t h g — 1. For that we write (2.37a)- (2.37d) in a matr ix form. i.e.. 

(2.38) 

" (&xy ' SX 

( m y = M 
s\\\ 

(Sa)' 
= M 

Sa 

m y . 6 y t 

wi th 

• 0 1 9c o • 
0 0 0 ~9c 
1 0 0 1 

0 - 1 9c { ) 0 . 

M = 

and determine the eigenvalues, A;, of M [49]. 

One gets that for (3 < 1 : 

1 

(2.39) 

I ± I - (2.40) 
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and therefore all the eigenvalues are real numbers w i t h some being positive while others 

being negative, i.e., the projection of the cri t ical point in this surface and therefore the 

cri t ical point itself behaves like a saddle cri t ical point [49]. 

Meanwhile for /3 > 1 

1 
1 ± i - 1 (2.41) 

and therefore all the eigenvalues are complex numbers w i th A ^ j = a±tb and A 2 / 4 = —a^ib. 

w i t h a and 6 real positive numbers. This means that f rom A t / 3 there is a surface where 

the trajectories repel f rom the projection of the cri t ical point like those for an unstable 

focus, while f rom the eigenvalues Ao/ 4 there is a surface where the trajectories attract the 

projection of the cri t ical point like those for a stable focus [49]. Therefore one concludes 

that as well for 3 > 1 there are directions for which trajectories attract the crit ical point 

and directions for which trajectories repel. 



Chapter 3 

Cosmic strings in axionic-dilatonic 
gravity 

3.1 Introduction 

This chapter is divided into two parts. In the first part, including subsections 3.1. we 

examine the metric of an isolated sell-gravitating Abelian-Higgs vortex in dilatouic grav

ity for arbi t rary coupling of the vortex tields to the dilaton. We look for solutions in 

both massless and massive dilaton gravity. We compare our results to existing metrics for 

strings in Einstein and Jordan-Brans-Dicke theory. We explore the generalisation of Bogo-

molnyi arguments for our vortices and comment on the effects on test particles. We then 

extend the previous analysis to the presence of an axion field and study in the second part 

(subsections 3.2) the metric of an axionic-dilatonic string. We get string asymptotic solu

tions by taking a supermassive Higgs l imi t in Sec.3.3.2. Finally we conclude emphasising 

the most impor tant results for the next chapter. 

Einstein's theory of general relativity is extremely successful at describing the dynam

ics of our solar system, and indeed the observable universe, nonetheless, i t probably does 

not describe gravity accurately at all scales [52] as first postulated by Dirac [53]. Partially 

motivated by the Dirac's idea and the possible existence of extra dimensions of the space-

time proposed by Kaluza and Klein [54j, Jordan. Brans and Dicke [5] proposed a theory of 

gravity whose purpose was to incorporate Mach's Principle. In this way the variations on 

the inert ial mass of a body caused by the surrounding Universe, assumed in that Principle, 

could be jus t i f ied f r o m the variations of the gravitat ional constant. Even so the Principle 

43 
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is not consistently just i f ied, as it does not explain gravity in vacuum. Nonetheless JBD 

theory has led to various alternative theories for gravity, most notably the scalar tensor 

family [55] and is related to the gravitational lagrangian inspired by low energy string 

theory [4]. To see this we compare the actions, which for the bosonic str ing theory takes 

the fo rm 

where <p is the di la ton and H^X is the field strength of the two form S M „ [56] and which 

for the J B D theory is given by 

where ^ is the .JBD scalar field and u its coupling constant, and see that in the canonical 

representation for the kinetic term of the field VP their gravitational sectors are identical 

The implications of such actions on general Friedman-Robertson-Walker cosniological 

models have been well explored [6-8] however, the implications for theories of structure 

formation have not been so well studied. Broadly speaking, there are two views on explain

ing structure formation - inflat ion or defects, the latter consisting of two subsets: cosmic 

string or texture [57] induced perturbations. While there is l i t t le to choose between these 

from the particle physics or large scale structure point of view, the implications of each of 

these theories for the perturbations of the microwave background are dist inct . However, 

calculations on the microwave background multipole moments do assume Einstein grav

ity [9], therefore i t is interesting to question whether these conclusions are s t i l l valid in the 

context of scalar-tensor gravity. Even i f the di laton acquires a mass at a fair ly high energy 

scale ( w i t h respect to the recombination temperature of the universe), at the core of a 

defect symmetry is restored and the physics is determined by the G U T scale, at which the 

dilaton might have rather different properties, impacting back on the cosmic microwave 

background. 

Calculations involving radiation f rom a cosmic str ing network generally make use of 

a "worldsheet — approximation" in which the string is treated as an infinitesimally thin 

source which moves according to, and has an energy momentum tensor appropriate for, a 

two-dimensional worldsheet governed by the Nambu action. Tha t this action is appropriate 

for the local s tr ing has been convincingly argued in the absence of gravity [30.58,59] but 

/ d*x^-ge-2° ( 
1 

H: R - 4 Vd>) 

( V * ) 2 

d xy/-g VR-UJ JBD (3-2) 

i f u) = - 1 . 
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as yet no proof exists in the presence of gravity. Nonetheless, the fact that the self-

gravitating infinite local vortex has a relatively small effect on spacetime lends credence 

to the worldsheet approximation for the string. 

In the presence of a dilaton. the worldsheet approximation may no longer be appro

priate. I f the di la ton is massless. there is no reason to expect that the string wi l l not 

have a long range effect on the dilaton. and even i f the d i la ton is massive, i t introduces 

an addit ional length scale which may st i l l have significant impact. I n the next section 

we take a modest step towards resolving this issue by examining the gravi-dilaton field 

of a self-gravitating cosmic string in dilaton gravity. In the f inal section we consider the 

impact of the axion. 

Considering the ful ly coupled nonlinear field equations of a particular local string model 

wi th dilaton gravity we w i l l also show that the Damour and Vi lenkin [60] conclusion that 

a low mass superstring dilaton is incompatible w i th a local network of strings formed at 

a G U T phase transit ion, may not be valid as it is strongly dependent on the coupling of 

the defect to the di laton. 

3.2 The Abelian-Higgs vortex in dilaton gravity 

We are interested in the behaviour of a static self gravi tat ing str ing whose metric is given 

by (1.41) when the gravitational interactions take a form typical of low energy string 

theory [4]. We take an empirical approach to cosmic strings in this background theory, 

not concerning ourselves w i t h the origin of the fields that form the vortex, but input t ing 

"by hand" the abelian-Higgs lagrangian given in (112) . To take account of the (unknown) 

coupling of the cosmic string to the di laton we consider a reasonably general form for 

the interaction of the vortex w i th the dilaton assuming that the Abelian-Higgs lagrangian 

couples to the d i la ton via an arbi trary coupling, e2a,p C, in the str ing frame as in the action: 

This action is wr i t t en in terms of the str ing metric, i.e., the metric which appears in 

the str ing sigma model [61]. I t proves useful to instead wri te the action in terms of the 

"Einstein" metric, which is defined via 

/ S = / d ^ x s f ^ e- ' 2 0 (-R - 4(V7A) 2 - V(<fr)) + e (3.3) 

9ab 9ab (3.4) 
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in which the gravitational part of the action (written in ''vortex units") appears in the 

more familiar Einstein form: 

5 = J dAxs/=g [-R + 2(V0) 2 - V{</>) + 2 e e 2 ( a + 2 ) < p r { X , P, e2lpg} 

where V(<t>) = e2<t,V{<j)) and [23] 

R = e 2 R + 6<? a 6 V a V 6 4> - 6r7a0Va<pV6</> 

(3.5) 

(3.6) 

Note however that this complicates the matter part of the lagrangian - a factor of e 2 a 

being picked up each time gab is used: 

6C[X, P,e2°g] 
Tab = 2- Knab Sg' 

= 2e--°[^aX^bX + X2PaPb] - 2'3<rA°FacFb

c - £gab. (3.7) 

The "E'in.stem"' equations are now 

Gab = e e - ( u - ' 2 ) ° T u 6 + Se 

where 

Sab = 2VadVb(D ~ - V(ib)<jab - (Vip)-gab 

represents the energy-momentum of the di laton. which has its equation of motion 

<P = --^—+e(a+l)e2{a-)°£[X.P.e2og} + ee 
4 a(p 

->(u---')o )F-e-Ao - - {X- - 1 

(3.8) 

(3.9) 

(3.10) 

When the coupling of the vortex to the di laton is bigger than to the geometry, i.e.. 

a > - 1 the vortex contr ibut ion to the dilaton field behaves like ordinary matter: i f <p could 

be considered as a gravitational potential then for a > - 1 there would be an attractive 

force as one can see comparing the dilaton equation w i t h the Poisson one. 

The stress energy then becomes: 

£ = e 2 ( a + 2 ) 0 

V R = e

2<a+'2>* 

•p _ e 2 ( a + 2 ) 0 

e-2o e - y X a + e 7 X 2 P 2 \ _ 4 ( 0 /3P ' 2 , [ X 2 - l f 
— T - + e 4 U — T - + : 

ev er 

-><P -e-~'Xu + e< 

a- 4 

(3.11a) 

(3.11b) 

(3.11c) 
a' I a ' 4 

I n terms of these variables, the f u l l equations of motion for the gravi tat ing vortex in dilaton 

gravity are 

a" = -ae7V(<-/>) - e a e 7 ( £ - V R ) (3.12a) 
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( o r / ) ' = -aetV{<p) + eae^Vn + V v ) (3.12b) 

a ' V = - I a e

7 V ( 0 ) + + a<p'2 + eae^VR (3.12c) 

a e 7 dV 1 
( a t f ' ) ' = — ^ + c(a + l ) « e 7 £ - - e a e 7 ( ^ + P v ) (3.12d) 

1 y p 2 i 
-(aX'Y = - 2 ( a + l).Y'c£/ + — — e 2 7 + - X { X 2 - l ) e T r + ' - * (3.12e) 
a a- 2 

a f — ) = -iP' - 2a®1 P' + P~lX2Pe1^20 (3.121) 

where e is the gravi tat ional strength of the string defined in (1.39). and V((f>) is the dilaton 

potential in units natural to the vortex. The Bianchi identity given in (1.44) in Einstein 

gravity now becomes 

e{ae'fVR)' = ea'e'V^ + ^ea~f'e<[VR - V- - 2£] - a'd'2 - {ad)'2)1 + ^aeV^- (313) 

(i) V((p) = 0 : Mass less dilatonic gravity 

We start by examining the case V{o) = 0. i.e. a massless di laton. as this ought, to be 

qualitatively the same as a cosmic string in Brans-Dicke gravity. 

In the case that the dilaton is massless the equations (3.12a)- (3.12c) are rather remi

niscent of the pure Einstein gravity vortex (1.43a) - (1.43c). however, there is one crucial 

difference - the constraint equation (3.12c) now contains an acp'2 term, and unless a ~ - 1 . 

acp' w i l l definitely be nonzero. Integrating the dilaton equation (3.12d) one gets: 

0 = _ ^ l + ( a + l ) [ R - 1 ± R ^ _ £ M + ( a + i ) e / i m j R a s R^oc. ( : j . u ) 
2 Jo R 2 

In order to explore this solution, let us first examine whether the thickness of the string-

can be neglected. For that we assume the "wire approximation" [35]. namely we set 

a e 7 £ (R) = (id(R) ; VR = VV = 0 (3.15) 

and verify consistency of the Einstein's equations, (3.12a)- (3.12c) the first two of which 

can be readily integrated to give 

a{R) = (1 - ejl)R (3.16a) 

7 ( f l ) = 0 (3.16b) 

but now we f ind a contradiction - using the di laton and geometry solutions presented in 

(3.14) and (3.16a)-(3.16b) respectively, it comes that the constraint (3.12c) is no longer 
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satisfied unless a = — 1. I t is wor th examining what has gone wrong here. The wire model 

is an approximate version of the stress-energy tensor which usually works well in Einstein 

gravity since the integral 

f < X ae>{VR + V v ) = 0 , (3.17) f 
Jo 
10 

which is no longer necessarily true in the presence of the di laton. A Bogomolnyi solution 

in flat space or Einstein gravity has the property that VR = V,P = 0. therefore the fact 

that we cannot consistently use the wire approximation for these variables (unless a = - 1 ) 

is an indication that a Bogomolnyi argument cannot exist unless a = - 1 . 

Instead, let us examine consistent vacuum solutions to (3.12a) - (3.12c) which should 

represent asymptotic spaeetimes for the string: 

a = dR + b (3.18a) 

7 = 7 o + - \n{dR + b) (3.18b) 
a 

f 
<p = 0„ + - f - \n(dR + b) (3.18c) 

Id 

where / = ±\/\dc - c1 from (3.12c). This gives a Levi-Civi ta [62] solution for the metric. 

(Note that if <p is constant, we have c = 0 or 4J.) The constants b,c,d.f are given by 

integrating (3.12a)-(3.12d) and to order e are 

d = l - A . b = B. c = 0. / = 2{a - 1)(.4 + D) = 2(u + l ) f / i (3.19) 

wliere .4. B. D are the integrals given in (1.48a)-(1.48c). We can therefore see that c cannot 

remain zero, and to order e 2. c = (a + l ) 2 e 2 ^ r . So. unlike the Einstein self-gravitating 

vortex, the d i la ton vortex for a ^ - 1 has a strong gravitat ional effect far f rom the core, 

albeit an 0 ( e 2 ) one 

ds2 % i ? ( u + 1 ) " > e V ( d i 2 - dR1 - dz2) - (1 - e A i ) ' 2 f i 2 " ( u " 1 ) " e " > A ' ^ 2 (3.20a) 

4> a (a + l ) e A l n f l . (3.20b) 

This metric agrees w i t h Gundlach and Ort iz [63], who derived the metric for a Jordan-

Brans-Dicke cosmic string. In the string frame. 

d's1 = e}*ds2 = R ^ ^ H a + D ^ ^ 1 [ d t 2 _ d R 2 _ d z 2 _ ( 1 _ e / i ) 2 i j 2 - 2 ( a + l , ^ V t / ¥ , 2 ] 

(3.21) 

which is almost, but not quite, a conformally rescaled cone. Note [63] that the radius at 

which non-conical effects become important is when R ~ e ( u + l ) 2 t " ' i " or r ~ \/Xqe'-a+li2t'ii', 
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therefore, for a typical G U T string, r = O ( 1 0 1 0 ' 4 ) ! i.e. well beyond any reasonable 

cosmological scale. 

This is reminiscent of metric of the global s tr ing [64], already introduced in Sec. 1.7 

of chapter 1, a system which has very strong asymptotic effects and was for some time 

thought to be singular [59]. The effect of the global str ing also becomes evident at very 

large radii ( e 1 ^ ) , however, unlike the metric (3.20a) the global str ing metric is actually 

non-static and has an event horizon at finite distance f rom the core [37]. 

We now calculate the back-reaction of the solution (3.20a)-(3.20b) on the vortex fields 

which linearised in the asymptotic far distance, gives that the long-range fall-off of the A' 

and P fields is changed to give: 

1 - X = exp [ - f i ' - T 1 " - 1 ' ^ ] (3.22a) 

P — exp -R (3.22b) 

which can be interpreted as a thickening of the core by a factor (1 -1- ^(a + l)e/ i) 

Now let us consider the special case a = — 1. In this case we see that (setting 7 = <p = 0 

at the core) 7 = —2cp and the vortex field equations (3.12e) - (3.121) reduce to their Einstein 

form. We therefore obtain the metric (1.49) and e2° = e~D which gives in the string 

frame 

ds2 = di2 - dR2 - dz2 - n2

E<r2'!Edip2 (3.23a) 

- f l ^ o c dt2 - dR2 - dz2 - (1 - e f t ' 2 R2 dtp2 (3.23b) 

i.e. there is no red/blue-shift of time between the core and in f in i ty in the str ing frame, no 

matter what the value of 0. 

Finally, let us consider (5 = 1. I n this case, to linear order VR = = 0, and 7 = <6 = 0 

to all orders, and indeed, the Bogmolonyi system (1.61a)-(1.61d) can be shown to provide 

the solution to the f u l l y self-gravitating str ing in this case. 

(ii) V{(p) = 2M24>2 Massive dilatonic gravity 

I n the absence of a preferred potential to take for the di laton, we w i l l use V(d>) — 

2M2cf)2, where M is the di laton mass in "vortex units '. Of course, we do not expect that 

this w i l l be the exact fo rm of the dilaton potential , however, a quadratic approximation 
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w i l l be valid provided 0 remains close to the m i n i m u m of the potential . For a G U T string 

we expect 1 0 - u < M < 1, representing a range for the unknown di laton mass of 10 3GeV 

- 10 1 5 GeV. The d i la ton equation (3.12d), then becomes 

(cup')' = ae'M24> + e(a + l ) a e 7 £ - -tae^{VR + V v ) . (3.24) 

Once again, we begin by considering the wire model for the string which again gives 

a(R) and -y(R) as in (3.16a) - (3.16b). However, the presence of the mass term in (3.24) 

now alters the fo rm of the dilaton. integrating (3.24) for the wire model gives 

<j>w = -(a + l)ej±KQ(MR) ;3.25) 

where KQ is the modified Bessel function. In this case, the constraint equation (3.12c) is 

satisfied for R > M. but for R < M we once again require 0{e2) corrections, this is nor, 

really surprising since this is w i th in the Compton radius of the di laton and we might expect 

a behaviour analogous to that of the massless dilaton. However, since these corrections 

are only significant for R ~ e 1 ' '". we can in this case safely ignore them. A t the string 

boundary, we have that <p ~ (a 4- l ) e / i ln .W =0(e). hence the quadratic approximation for 

the potential appears to be just if ied. 

For an extended source, we may solve (3.24) impl ic i t ly using its Green's function: 

0 = -eKo(MR) I IQ(\IR')R' 
Jo 

- t I 0 { M R ) r KQ{MR')R 
JR 

~ - ( a + l)e/lKo{MR) for R> 1. M « 1 

a + \)£{R!) - 1-{VR{R') + V,{R')) dR' 

{a+l)€{R')- -(VR(R') + V,(R')) dR' 

(3.26) 

which, unlike the massless dilaton case, is now in agreement w i t h the wire model estimate. 

A plot of (j)(R) is i l lustrated in figure 3.1 for a N — (3 — 1 vortex wi th various values of 

M. 

We may now wri te down the asymptotic solution for the cosmic str ing to order e as: 

ds1 = e" dr - dR1 - dz' - a r e ~<Edip2 

<t> 
ev — e 

-(a~-l)tiiKn(MR) 

(3.27a) 

(3.27b) 

Thus the spacetime is asymptotically conical in both str ing and Einstein frames. 

Now consider a = — 1. Now the dilaton is very strongly damped to zero outside the 

core therefore to a good approximation 0 = 0 outside the core, irrespective of M, and 
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The dilaton field produced by the vortex 

7 

Figure 3.1: A plot of the di laton field generated by N = 3=1 vortex for various values 
of the di laton mass. The factor (a -f l )e/ i has been scaled out of the dilaton. N'ore the 
reciprocal dependence of the dilaton fall-off on the mass, compared to the logarithmic 
dependence of the amplitude. 

therefore in both the Einstein and the string frames there is a red or blue shif t between 

the core and inf in i ty . 

Finally, if 3 = 1, we once again have 7 = 0 = 0. and (1.61a)-(1.61d) gives the first 

order equations of motion which this system satisfies. 

3.2.1 Bogomolnyi bounds for dilatonic cosmic strings 

The results of the previous section suggest that a = - 1 is a rather special point. Usually, 

for 0 = 1. the Bogomolnyi l im i t , the equations of motion for the cosmic str ing simplify 

- they become first order - and the vortex saturates an energy bound determined by 

the winding number of the vortex [65]. For the dilatonic vortex, this delicate balance 

appears to be destroyed, except in the special case a — - 1 . I n this section we would like 
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to formalise this by presenting an energetic argument that a topological bound can be 

saturated i f and only i f ft = —a = 1. 

Since the cosmic str ing is cylindrically symmetric, and we do not a priori wish to make 

any assumptions about the global behaviour of the spacetime. we use an energy tailored 

to the system at hand - the C-energy introduced by Thorne [33] and already presented in 

chapter 2: 

ER = AIT 7 - I n 
da 

3R 
= 4 - - ma (3.28) 

modified slightly to allow for the absence of the Newton constant. G. This energy can 

in tu rn be represented as the integral of the zeroch component of a covariantly conserved 

C-momentum vector: 

Er = / ae'-P°dR (3.29) 

where 

P° = 

2 

a1 

1 0EC __ _2_ 
2irae' 3R ae 

r . 1 - 1 
(3.30) 

Clearly every term in P° is positive semi-definite, and all vanish only in flat space, the 

latter three vanishing i f <p = 7 = 0. Now consider S. we may rewrite this as 

r = e 2 ( u - l ) o l -

+(P-D— e ' 2 0 

Q-

X 

+ 
1 

cv 

a 

A' - 1)P 

P' 1 
- e - 3 - - e ' 5 ( X J - 1) 
a 2 

3.31) 

In order to get a "topological" value for the C-energy. we need (7 — linv ') to be expressed 

in terms of X and P: alternatively, we require P ° to be a total derivative. For a = — 1. 

ft — 1. (p = 7 = 0 and the equations of motion given in (1.61a)-(1.61d) implies that all 

terms in P ° vanish except for the last expression in equation (3.31) for £ . We thus obtain 

2e 

(3.32) 

Ec = ] - [ [ X < - l ) P \ 

= - 2 J ( in [ l - e [ ( X 2 - l ) P + i}})' 

= - 2 1 n ( l - e ) = e + = r r + 0 ( r ? 4 ) 

-the topological bound. For a string wi th winding number other than one. we replace P 

by NP and hence Ec becomes - 2 1 n ( l - Ne) = Nrj2 + 0(r? 4 ) . 
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For 3 ^ 1 i t is immediately clear that this topological bound cannot be saturated due 

to the presence of the (3 - l)P'2 te rm in the integral. Similarly, i f a # - 1 , the equation 

of mot ion for <p shows that cp' must be nonzero due to the presence of the (a -I - 1)£ term 

on the right hand side of (3.12d), hence P° is s t r ic t ly greater than ^ S , and once again, 

the topological bound cannot be saturated. 

Therefore, by considering a fu l ly covariant relativistic def ini t ion of energy for cyl indri-

cally symmetric systems, we have shown that there exists a topological "bound''' for the 

energy of the vortices, in a rather analogous fashion to the topological quanti ty originally 

derived by Bogomolnyi [31] for flat space vortices, and this bound is saturated only for 

3 = -a = 1. 

3.2.2 Geodesies 

We finalise the section by discussing the motion of test particles following geodesies in the 

spacetimes presented in Sec. 3.1.2. According to experimental tests [66] any theory de

scribing gravity has to verify the Weak Equivalence Principle ( W E P ) . This principle states 

that any p<ith through spacetime of a freely fal l ing neutral test body is independent of its 

structure and composition. Therefore gravity has to couple in the same way to massive 

test particles and to photons. The obvious way is coupling directly to the metric in the 

string frame, which is what one usually does in scalar-tensor theories. In other words this 

principle states that one can transform away the gravitat ional field (which now includes 

the dilaton) locally by going to free-fall. Thus it is clear that when the gravitational ef

fects are different f rom those in Einstein's theory, i.e.. non-negligible contributions from 

the dilatonic sector, this principle is not verified. Therefore the W E P is not verified for 

a / - 1 . Clearly, since the string and Einstein frames are related by a conformal trans

formation, null geodesies w i l l be the same in either frame, but the geodesies of massive 

particles w i l l be different. 

(i) V((j>) = 2M2(p2 : Massive dilatonic gravity 

We begin by commenting on the massive dilaton. Here the metric is given by the 

Einstein cousin (3.27a) outside the Compton radius of the di laton, and is therefore conical. 

Geodesies are therefore the same as for the Einstein cosmic str ing, and indeed, since the 
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corrections w i t h i n the Compton radius of the di la ton are extremely small ( 0 ( e 2 ) ) , the 

geodesies throughout the whole spacetime in the Einstein frame are essentially the same 

as for the Einstein self-gravitating string already discussed in chapter 1. 

(i) V(d>) — 0 : Massless dilatonic gravity 

Now consider the massless dilaton. In the string frame the metric is given by eq. (3.21) 

and the radial mot ion of a test particle in a plane transverse to the string, dz = 0. is given 

by: 
• 2 h'2 ^ k E2 

+ #2(1-2! / ) + R»{2+u) ~ #2 I / ( I /+2 ) ( 3 ' 3 3 ) 

where v = (a + l ) e / i . and the dot denotes a derivative w i t h respect to the proper time 

along a timelike geodesic, or an affine parameter for photons. The parameter k is either 

one or zero, representing either a massive particle or photon respectively. E and h are 

constants of the mot ion representing energy and angular momentum respectively, and are 

given by: 

E = gat = R^-H (3.34a) 

h = = - ( 1 - tii)R2-v'-'lu^ (3.34b) 
1 — tjjL 

For a = - 1 . u = 0. and irrespective of whether the di laton is massive or massless. the 

geodesies are quali tat ively the same as for the Einstein cosmic str ing already discussed in 

Sec. 1.6 of chapter 1. 

We then consider a ^ — 1 . For comparison w i t h the effective potential given in (1.57). 

it is useful to redefine the radial coordinate R via 

which gives the p-radial motion as that of a unit mass particle of energy =^-, wi th an 

effective potential given by: 

f . f f = ^ „ , . , „ + £ [ ( " + 1 ) 2 P \ ^ • (3-36) 
2[(v + \ ) 2

P y ^ r 

Since u = 0(e) , to leading order this is 

A 2 , * 2 , 

= 2(1 + + ~2" <3 3 7 1 
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the terms involving u from (3.36). 

3.3 Cosmic strings in axionic-dilatonic gravity 

In the f inal part of this chapter we study the metric of a self gravi tat ing dilatonic string in 

the presence of an axion field. The gravi-axion-dilaton field is examined and its gravita

tional effects determined. Because there are no local axionic-dilatonic str ing solutions we 

take instead a supermassive Higgs l imi t to get asymptotic global string solutions known 

as dyonic universes. 

3.3.1 Singular axionic-dilatonic strings 

Assuming the gravitat ional interactions take a form typical of low energy string theory [4j. 

isolated axionic-dilatonic cosmic strings can be described in the str ing frame bv the action: 

S = d x \f—<] e - * ( _ / j _ 4 ( V r p ) 2 - V[<j>) + ^ H l „ x + eZaoC (3.38) 

where apart the dilatonic string sector already described in the previous section, there is 

an axion field described by an antisymmetric tensor BU\ w i th antisymmetric field strength 

H~HL>\ given by: H^x - di^B^w (where the brackets mean anti-symrnetrisation). 

Proceeding as for the dilatonic cosmic string, we wri te instead the action in terms 

of the "Einstein" metric, defined in (3.4) in which the gravitat ional part of the action 

appears in the more familiar Einstein form: 

1 
5 = J d - l * v ^ [ - f l + 2 ( V 0 ) 2 - V - ( ( / O + - e ^ 

and wri te the 11 Einstein" equations to get 

(3.39) 

Gab = e e 2 ^ 2 ) * T a b + Sab + Nt ab (3.40) 

w i t h Tab and Sab the energy-momentum tensors for the vortex and di la ton fields given in 

(3.7) and (3.9) respectively and Nab the energy-momentum tensor for the axion given by: 

Nab = ^ - A * [ Z H A X K H B

 X K - l-gABH2}. (3.41) 
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Considering the axionic antisymmetric tensor, B„\, as an independent variable, the equa

tion of mot ion for the axion is: 

VM[e-**H>u'x] = 0 (3.42) 

which can be s implif ied into a wave equation of motion for a massless scalar f ield. h(t. r. z. <p). 

evolving coupled to the di laton [7] 

Dh + 4 V ^ V „ / i = 0 (3.43) 

by wr i t i ng 

e - A o H ^ \ = e ^ h k ( 3 4 4 ) 

with e*it''u' the antisymmetric Levi Civ i ta tensor given by 

^cueab':f = - 3 ! ^ . (3.45) 

In terms of h. the energy-momentum tensor for the axion. (3.41). then becomes: 

^ah = \^°{h.Ji,b - ^Jablijh.jg'J}. (3.46) 

To include the self-gravity of the string we require a metric which exhibits the symmetries 

of the sources, namely the boost invariance for the matter and dilatonic sectors (Tq = 77. 

SJj = 5 : ) . Therefore we try first the static cylindrically symmetric metric given in (1.41). 

Consistency w i t h the assumed symmetry then requires /Vqo = —N::. i.e.. hj = h,: = 0 

and also NRV = 0, i.e.. h.R = 0 or h ^ = 0. Therefore there are two possible ansiitzt 

for the axion: either h{R) or h(ip). Consistency of the constraint equation (given later 

by (3.48c)) also requires to be a funct ion of R and therefore for the ansatz h(ip) we 

require — h. i.e., h(<p) = hip, w i th h a constant. 

( i ) h{R) 

Let us first assume h(R). Integrating the equation of motion for the axion (3.43) one 

gets: 

ah' = hoe"10 (3.47) 

where ho is an integrating constant, wi th the energy-momentum tensor for the axion given 

by: NQ = TV; = N* = -N% = \e~~'+A0hn where the prime means now the derivative 

w i t h respect to R. 
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The equations of mot ion for the geometry and for the d i la ton are respectively: 

a" = -ae'V{4>) - ^ { S - V R ) 

{on')' = -c*e7V(</>) + eae 7 (Pf t + V^) 

1 a~'~ K~ 
a '7 ' = - -ae'V{<p) + -!— + acp"'2 + eae~:T>R + -^-e~Ao 

2 4 4a 

4 0(p I la 

(3.48a) 

(3.48b) 

(3.48c) 

(3.48d) 

while the equations of motion for the vortex sector are given by (1.43d)-(1.43e): the same 

as for the dilatonic str ing as the axion does not couple directly to matter. For further 

reference, the Bianchi identity now gives: 

e ( « e 7 P R ) ' - tcle'-Vf - \ a i e : \ P R - V - - 2£] 

+a'<pr2 + (aqT-Y - ? e V ^ + aeAoh'[k'(^- + «,') + ^ ] = 0 (3.49) 
2 c)(j> 2a 2 

Let, us start to look for the string's gravitational effects at very far distances f rom its core, 

where for non-singular local strings we are in vacuum. 

Consider first the massless dilaton case. V(<p) = 0 for which the equations of motion 

for the geometrv and the dilaton become: 

a" = 0 

( c r / ) ' = 0 

a 7 = — 1_ a 0 + —fi 
4 ' Aa 

W ) ' = ^e-<«. 
la 

(3.50a) 

(3.50b) 

(3.50c) 

(3.50d) 

These equations are only consistent for the t r iv ia l case where the axion is "switched off"' 

and so results (3.20a) -(3.20b) for the dilatonic str ing s t i l l hold. Indeed one gets: 

a = dR + b 

C~> 

7 = C : J + -fLn[dR + b] 

8C 
<p = Ln -80o 

with 
V8C 

A - —-—Ln 

{Cosh(A)) 

dR + b 

(3.51a) 

(3.51b) 

(3.51c) 

(3.52) 

where C, C\, C-2, C3, d and 6 are integrating constants. 
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From the d i la ton equation (3.50d) i t comes that C is defined such that: 

( a 0 ' ) 2 = - ^ e - 4 * + 2C > 0 (3.53) 

and therefore C > 0. But now we find a contradiction:- integrating (3.48b) since the core 

and to lowest order in € one gets cry' = 0, i.e.. C> — 0. Using the constraint (3.50c). 

dC-i = \C\ + 2C, this gives C = 0 which is absurd. This means h' = <•/>' = 0. Therefore 

the only vacuum solution is the t r iv ia l one where the axionic sector is "switched off"1 and 

the di la ton is constant. This result s t i l l holds in the string frame and is in agreement wi th 

those presented in reference [67] for massless dilatons in a spacetime of four dimensions. 

Consider now massive dilatons (V'(0) = 2iV/-0 2). Apart f rom an intermediate annular 

region (bounded by the Compton wavelength of die di laton) . the long-range structure 

of the fields is as for the Einstein case because for distances f rom the core greater than 

the Compton wavelength of the dilaton the di laton field is essentially fixed. Hence the 

equations of mot ion for the geometry and the dilaton become: 

a = - ae 7 2A/ 'V 2 (3.54a) 

( t t y ) ' = -ae 7 2:V/ 'V- (3.54b) 

a y = _ a e - : V / V + — - M e ~<o (3.54c) 
4 4cv 

h-
0 = ae' A/-<£>-f ^ e - ' 0 . (3.54d) 

whose solution is: 

w i t h 

which f rom (3.54c) gives 

2a 

a - ao = C±R (3.55a) 

7 - 7 0 = -2ln[a0 +CUR] (3.55b) 

h - hi =-2<f>^ ln[a0 + dR] (3.55c) 

0 = 0! (3.55d) 

• W = C, = a2e'<M2 (3.56) 
20i 

0 ^ - I - I y / l - M s l (3.57) 

where qq, C4, 70, hi are integrating constants and C5 is a positive constant. 
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The asymptotic solution for the axionic-dilatonic cosmic s t r ing is then, to lowest order: 

ds2 = e"> [oo + CiR\-2 [dt2 - dR2 - dz2} - e~10 [ a 0 + C 4 i ? ] 4 dtp2 (3.58) 

w i t h 4> = (j>\ and the axion having very strong asymptotic effects as given in (3.55c). 

( i i ) h(<p) — hip 

Let us now consider the other ansatz for the axion. h(ip) = hip. The axion is no more 

a dynamical field and so its equation of motion gives an identity. The elements of the 

energy-momentum tensor are: NQ = N: - = - i V f - -^eA0ti2e~:' and the the axionic 

sector in the in i t i a l action (3.39) is given by -^e~A^H2^^ — ^e'lo~^K. 

The equations of motion for the geometry and the di la ton are now respectively: 

a" = -ae'V{o) - eae"(£ - V R ) l o (3.59a) 
2 a 

( t ry ' ) ' = -eve 7V{<p) + f.ae [VR + V •) (3.59b) 

a'-y' — —-ate''V(<b) + — 1- a<p'2 — toe "PR e1' ~A'D (3.59c) 
2 4 4a 

' H " I / -
[a,f>')' = — — + e(a 4- 1 )at'£ - -eae*" (VR + V-) + — e1"^'3 (3.59d) 

4 d(p 2 r 2 a 

and again the equations of motion for the vortex fields are the same as for the dilatonic 

string. The Bianchi identity is now: 

e{ae'VR)' - e aVT^- - | c r y ' e 7 [ P w . - V~ - 2£\ 

+«'<pn + ( W - ) ' - - e V ^ - - —eio---<t>' = 0. (3.60) 
2 o<p a 

Again, consider first the massless case. V{<p) = 0. Proceeding as for the previous ansatz 

we write the equations of motion for the geometry and the di laton: 

a' = -a</>' + q (3.61a) 

on' = V (3.61b) 

a y + a'{-2q - p) + (q2 + l-p2) + a'2 = 0 (3.61c) 

(ar//) ' = — h2e2-'+-Ub (3.61d) 
2a 

at far distances f r o m the core where it is vacuum, w i t h the Bianchi identi ty giving 

a ' / 2 + (a<t>12)' - — e 4 * + 2 V = 0 (3.62) 
a 
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where p and q are integrating constants. I n order to get the asymptotic solutions to those 

equations we wri te the constraint (3.61c) as the autonomous d.s.: 

u = -3u2 + 2(2q + p)ut - 2(q2 + P j ) i 2 

t' = —ut 

where t = ^ and u = Wr i t ing x = j = a' one gets: 

dx = Ux+^(q2 + ^)-2{2q + p)\ j 

(3.63a) 

(3.63b) 

which integrated gives 

t{x) = C(Q{x))*Exp 
v /2(p + 2</) f , v / 2(p + 2 r / - 3 x ) . 

: arctanl 

(3.64) 

(3.65) 
3 v V -Spq + lq2 1 v V - Spq + iq2 

with C a positive integrating constant and Q(x) — p2 4- 4r/2 — Apx - Sqx + 6x2. a non-

invertible expression for a(R) whose asymptotic regimes are then analysed. 

When \x\ the result f rom expression (3.65) is that t. —t zc where 

4 , ,! 
(3.66) 

Therefore the solution is: 

a — ao + Cy/J^ 

3C ; 5 

4 

3C) 

(3.67a) 

(3.67b) 

/c 

wi th C3 a positive constant and ao, 70 and fa being integrating constants. But now an 

inconsistency comes- consistency of equation (3.61d) requires C3 = h — 0, i.e.. the axionic 

sector for these solutions is ''switched off ". 

When x -»• x±. where Q{x±) = 0, therefore f rom expression (3.65) t -» 0. As a result 

the solution is: 

a = ao + x—R 

7 = 70 + - — £ n [ao + 

0 = fa + {— ~ \)Ln [ a 0 + x±R] 

(3.68a) 

(3.68b) 

(3.68c) 

which f rom (3.61d), as in previous asymptotic regimes, gives h = 0, i.e., the axionic sector 

for these solutions it is as well ^switched o f f " . 



Chapter 3: Cosmic strings in axion-dilatonic gravity 62 

Final ly when x —• 0 then, f rom expression (3.65) t -> t(0) and the solution is: 

a = aQ (3.69a) 

7 = 70 + — R (3.69b) 
oco 

<p = (f)o + —R (3.69c) 
a 0 

which, again, f r o m (3.61d) gives h = 0. In conclusion the only vacuum solution is the 

t r iv ia l one where the axion is "switched o f f " . The same result is obtained in the string 

frame. Moreover no solution (in the Einstein frame) is regular at the origin where NQ = 

^ e " 1 < ' , ~ 7 / r — 4 .̂ i.e.. eA® ~ R because f rom the di la ton equation (3.59d) one obtains 

cp ~ R whilst f rom the constraint (3.59c) one gets co ~ \fR. Therefore solutions of the 

equations of mot ion are non-string type solutions. 

It is worth examining the previous results. First we note that for the ansatz h{^p) = ^v" 

the elements of the energy-momentum tensor for the axion resemble those for a global 

string given in (1.70). This fact when combined wi th the absence of non-tr ivial vacuum 

solutions suggest that instead one shall look for global s tr ing type solutions whose form is 

given by [681 

ds2 = //' lit2 - dz2 - d/j2} - d f 1 . (3.70) 
I J fj-

Un the other hand at large distances from the core the form for the global string metric 

is the asymptotic l im i t of the Vlelvin metric, an exact solution of the Einstein-Maxwell 

equations in the presence of a magnetic field given by [69] 

ds2 = (1 + -B2R2)2 \dt2 - dR2 - dz2} - ^ " . j „.,,., V (3.71) 

wi th B the strength of the magnetic field along the axis of symmetry. Therefore the 

asymptotic form at far distances f rom the core for the metric of global strings can be 

obtained by taking the l imi t case when the mass of the vector boson vanishes. The Higgs 

field then decouples and one is left wi th the Einstein-Maxwell equations in the presence 

of the di la ton and the axion whose exact metric is the dyonic M e l v i n universe. Therefore 

in the next section we present asymptotic global type solutions by taking the asymptotic 

form of dyonic universes. 

3.3.2 Globa l str ing solutions: dyonic universes 

Dilatonic Melvin Universe 
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The dilatonic Me lv in magnetic universe is an exact solution of the Dilatonic-Einstein-

Maxwel l theory described by the action: 

(3.72) 

where R is the scalar curvature. cj> is the di la ton, whose coupling to the matter is unknown 

and generically described by a, and F is the field strength of any U{\) gauge field. .4. 

In the presence of a magnetic field B the equations of mot ion given by [70]: 

V„ \ t - ^ F ^ = 0 

•</> + l-ae-2a0 F'2 = 0 

R^ = 2 V ^ V „ « p + 2e-2aoFw)Fi: - \<j^e-2aoF2. 

admit an exact solution, the dilatonic Melv in magnetic universe, given by [70] 

\dt2 - dR2 - dz-

(3.73a) 

(3.73b) 

(3.73c) 

tls- = 1 + 1 T a—^-B2R2 

i«» = [ i + ^L±±B2R2 

A„ = - • 
r 

Bz = --

1 + a2)B(i + a i i i B - ' f f - J ) 

B 

(l + ai±is-»fl^""TTrr 

R2d<p'2 

(3.74a) 

(3.74b) 

(3.74c) 

(3.74d) 

Tl ie equations of mot ion are duality invariant as they admit an SL{2. R) electric-magnetic 

duali ty defined by: 

<p" = - 0 (3.75a) 

(3.75b) 

which can be used to generate an electromagnetic Melv in universe and that w i l l be gen

eralised in the presence of an axion in the next section. 

Dyonic Melvin Universe 

In the presence of an axion, the Melv in magnetic universe can be generated after 

applying a Peccei-Quinn and a duali ty t ransformation to the dilatonic Melv in magnetic 
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universe. Our s tar t ing point comes f r o m the bosonic part of the four-dimensional effective 

action of low energy str ing theory that includes the terms [71] : 

S = J d'x^g \-R + 2 ( V 0 ) 2 + ^ e - ^ H l , - e ^ F 2 

where H^x describes the axion, w i t h now 

(3.76) 

H = 0B + -AAF. 
4 

(3.77) 

I f we wri te the axion as in (3.44) the equations of motion can equally be derived from the 

action [71] : 

S = J d x 4 ^ 

wi th F the dual of F. 

-R + 2( V<p)2 + -e[0{Vh)2 - e - ' 2 a , F ' 2 - h F F (3.7S) 

I t is also convenient to combine the axion. h. and the di la ton. </>. in a complex scalar 

field. A = Ai + zA'j = h + ie'2® called the "axidilaton'\ In terms of A the action simplifies 

r,u '71] : 

S = d4X\/^g -R 
2A; 

-(XF2 - XF ] 3.79) 

where F± — F ±iF. The kinetic term for A in (3.79) is invariant under the Peccei-Quinn 

shift of the axiom h -» h + f and under the duali ty transformation A —> - \ . The latter, 

for h — 0. reduces to the 0 -> —0 transformation of (3.75a). 

The action as a whole is not invariant under this duality, because the Maxwell terms 

change sign, therefore the equations of motion given by [71]: 

V . ^ A d»Xd»X i , 
~lq~ + l ~ x ^ ~ ~ 2 F - ' ° 

XFf - A F ? J 0 

K-\iv - 779 •+- lXiby.pt - -Mg^r 
4A; 

(3.80a) 

(3.80b) 

(3.80c) 

are not invariant either. I n fact the Einstein equation (3.80c) is not invariant in general 

under the duali ty transformation [71] 

4>' = -<t> 

K = - X F + 

F' = - X F . 

(3.81a) 

(3.81b) 

(3.81c) 

http://lXiby.pt


Chapter 3: Cosmic strings in axion-dilatonic gravity 65 

as the second and t h i r d terms are non-invariant [71] and t ransform into [71]: 

2A \FwFu

 p - \ \ o 9 l l v F 2 - ^ (2F,PK p + 2FupFil' - g^FF .) (3.82) 

Only i f the extra terms in this expression vanish wi l l the duali ty transformation map 

solutions into solutions. A duality transformation of the offending terms above shows that 

they transform into themselves wi th 

2FfipFl/" + 2FupFll

 p - g^FF -+ (\2 - A§) (2FPPFU ? + 2Fl/pFtl » - gpi/FF) (3.83) 

and therefore the Einstein equation is invariant when [71] 

2FWF„ " + 2FupFp " - gp„FF = 0 (3.84) 

which implies that i f this expression vanishes for a particular solution, it w i l l also vanish 

for its duali ty transformation of that solution. Thus, beginning wi th a solution one may-

build up a family of solutions. Indeed the Melvin magnetic universe verify the restriction 

(3.84) (the only non-vanishing field strength is F/;_- = \ , ) and therefore one can 

generate a axionic-dilatonic Melvin electromagnetic universe. To do this we start from the 

dilatonic Melv in magnetic solution (3.74a) - (3.74b) and obtain an axion f rom a shift / on 

a Peccei-Quinn transformation. A' = A -r / . then dualise i t . A' = — j . and finally rescale. 

A' = A ( / ' 2 + 1) [71]. One gets [71] : 

1 
A' = - • 

ti = 

F' = 

X + f 
f 

r-

r1 + 1 

,-Ao 

-2© 

P + e-

v 7 / 2 + 1 I 
+ e~2"F 

A' 
f = A 

(3.85a) 

(3.85b) 

(3.85c) 

(3.85d) 

(3.85e) 

w i th A',, A'T and A'R unknown. For the dilatonic Melv in magnetic universe FR,J = -p^ and 

therefore: 

e-2o 
F' = -

"ft* - k2-F'a,n — —Bi 

(3.86a) 

(3.86b) 
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wi th 

B, - —j=^==B ,3.S7a) 

B-2 = ,-i B (3.87b) 

where B-i is the magnetic field of the axionic sector and B2 = B\ + B2 w i t h k = 1 + B~.>R~. 

Using (3.74b) w i t h a = 1 to rewrite the di laton before the t ransformation one finally 

gets the exact dyonic Melv in electromagnetic universe, w i t h the axion and dilaton fields 

given by: 

h{Bi.B;.R) = „ f 2 5 L 7 r (3.88a) 

(3.88b) ,-2o{ B,.B-:.R) _ B[ 1 -r \ {B2 B 2 ) R2 

B'l - B j 4- I f t - i (gj* 5'-' _ fi-B j 1 

with the metric given by: 

ds2 = A: [</fJ - dR2 - - i R2 dip2. 

As expected this solution is consistent w i th the dilatouic Melv in magnetic universe. 

(3.74a) - (3.74b). which corresponds to the case where there is no axion ( / = (J) and so 

B\ = B (B-2 = 0) w i th e- '- v = e'-° = ^ L

l

B , R , -

A s y m p t o t i c g l o b a l s t r i n g so lu t i ons 

The asymptotic global string solutions at very far distances f rom the core are then 

obtained from (3.88a)-(3.88b) by taking the l imi t R -> oc. Therefore the axion and the 

dilaton are given by 

h { B * ' B * > R ) ^ i F B % ; ( 3 - 9 0 a ) 

<t>{Bx.B2.R) -> In 
BR 

1 7 2 

wi th the metric for the axionic-dilatonic global string given by 

s a = \dt2 - dR2 - dz2' 2 

(3.90b) 

ds' - , _ , 
- J 2 d t p 2 - ( 3 ' 9 1 ) 
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3.4 Conclusions 

67 

hi the first part of this chapter, we have derived the metric for U( 1) local cosmic strings in 

dilaton gravity bo th w i t h and without a potential for the di la ton. The (unknown) coupling 

of the Abelian-Higgs model to the dilaton is accounted for by coupling the Lagrangian to 

the gravitat ional sector by an arbi trary e 2 a o factor. 

For a massless di laton. the results are quali tat ively the same as those of Gundlach 

and Ortiz 631. who considered cosmic strings in J B D theory. Essentially, the metric is 

the same as the usual cosmic string, i.e. conical, in the Einstein frame, and conformally 

conical in the s t r ing frame on scales of cosmological interest. The di laton held has an effect 

that to 0{t ). the geometry acquires long range corrections, and on the very large scale, 

i /• ~ yXqe «-!•-'«-*- ). there is additional curvature, and the spacetime is not asymptotically 

locally flat in either frame. The exception is the special case a = — 1 . in which the massless 

dilatonic cosmic s t r ing has no long range effects (other than the deficit angle) and merely 

shifts the value of the dilaton between the core and inf ini ty by a constant of order <=.. For 

the special case .) = 1 there is no effect at all on the di la ton field, and the dilatonic string 

is the same as the Einstein one. 

For a massive di la ton. we find that, apart f r o m an intermediate annular region, the 

long-range structure of the str ing is as for Einstein gravity, as might be expected and so 

the metric asymptotes a conical metric, in both str ing and Einstein frames. The string 

••*••••• 
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core 

: 

Figure 3.3: A representation of the dilaton field surrounding the cosmic str ing for a ^ - 1 . 
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generates a d i la ton "cloud", approximately of w i d t h which is schematically depicted 

in figure 3.3. for a ^ — 1. The main exception to this quali tat ive and expected picture 

is that for a special value (a = - 1 ) of the coupling of the d i la ton to the fields which 

constitute the vortex the di la ton effectively decouples f r o m the str ing, showing l i t t le or no 

reaction to its presence. This occurs independent of whether the di la ton is massive, and 

independent of the specifics of the U ( l ) model, i.e. independent of the (3 values. 

The Bogomolnyi bounds for the dilatonic str ing were also considered and it was shown 

these can only be saturated in the special case a — — I. I n this case, the di laton effectively 

decouples f rom the string. 

The effects of these strings on test particles were also explored to conclude that in 

the str ing frame and for a massive dilaton geodesies are essentially the same as for the 

Einstein self gravi ta t ing string, i.e.. all non-static trajectories escape to inf ini ty . The same 

conclusions hold for a = - 1 . For a massless di laton and a ^ - 1 photons escape to inf ini ty 

and are inf ini te ly redshifted [a > - 1 ) or blueshifted (a < - 1 ) while for massive particles 

trajectories are bound for a > —1 or escape to inf in i ty for a < — 1 . I n the Einstein frame 

photon trajectories are identical to that of the str ing frame while al l massive particle 

trajectories are bound. 

Although it is beyond the scope of this chapter to derive the effective action of the cos

mic string, the results do support a Nambu approximation for the string, since they show 

that the metric is l i t t l e affected on cosmological length scales, and remains approximately 

flat locally (unlike the global str ing [64]). Damour and Vi l enk in [60] have recently explored 

the impact of a massive di laton on string networks using a model for the interactions which 

modifies the Nambu approximation by making the mass per unit length interact w i th the 

(massive) di laton. In other words, the worldsheets act as sources for the di laton which has 

a mass m^. They concluded that a TeV mass di la ton was incompatible w i t h a G U T string 

network. Our results largely back up this calculation, but w i t h one important caveat: 

The model used by Damour and Vi lenkin makes no reference to the details of the dilaton 

coupling to the particle physics model producing the strings, the abelian-Higgs lagrangian. 

i.e. their coupling is independent of our variable a. Therefore, one should renormalise 

their calculations by factors of (a + 1). This means that the conclusion that a TeV mass 

dilaton is incompatible w i t h str ing theories of structure format ion is only valid i f a is not 
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close to - 1 , For a — - l r , there w i l l be l i t t l e dilatonic radiat ion f r o m the cosmic string 
network,, and hence a much weaker constraint. • „ . ' \ . . ; v > . -• 

To sum up: the gravitational field of acosmic s t r ing in-dilat'on gravity^is surprisingly-

close to that of ah> Einstein cosmic string on cosmological distance scales. "However, i t is the 

microwave 'background rather :thah "cdsmological 6bsei-vati0ns,

I that'iprovides the tightest 

constraint oh the cosmic st'ringitheory of structure format ion . I f the .strings'; couple to the' 

dilaton directly (a = — 1), then such constraints are identical to those'derived in Einstein 

gravity. However, i f the str ing couples w i t h a different f r o m — 1 . then .the constraints of 

Damour arid V i l e n k i n [60] apply, and a "low" (i.e. close to electrOweak) mass- for the 

dilaton rules out the cosmic string scenario of galaxy formation. 

In the presence of an axion and for massless dilatons there are no local string type solu

tions and the asymptotic solutions for the gravi-axion-dilaton are given by the 'asymptotic 

l imi t of the di latonic Melv in magnetic universe in the presence of an axion. The axion is 

strongly damped to zero while the dilaton has very strong asymptotic effects similar r.o 

those for the. dilatonic string for massless di laton. 



Chapter 4 

Vortices and black holes in 
dilatonic gravity 

4.1 Introduction 

In this chapter we study analytically black holes pierced by a th in vortex in dilatonic 

gravity lor an a rb i t ra ry coupling of the vortex to the dilaton. We show that the horizon 

of the charged black hole supports the long-range fields of the Nielsen-Olesen vortex that 

can be considered as black hole hair for both massive and massless dilatons. We discuss 

thr gravitational back-reaction of the thin vortex on the spacetime geometry and dilaton. 

The effect of the vortex on the massless dilaton is to generate an addit ional dilaton flux 

across the horizon. 

The extrapolat ion of the black hole "no-hair' conjecture, in i t ia l ly proposed by Ruff in i 

and Wheeler [14] and stating that a stationary black hole is uniquely determined by its 

mass, electromagnetic charge and angular momentum, to the stronger statement of no 

dressing' of the horizon, has been proven to be false [11. 16-18]. A common feature of 

such 'counterexamples' is that they involve nontr iv ia l topology of the matter fields. In 

particular, in reference [11], i t was shown that for the Abelian-Higgs model in Einstein 

gravity, (see [15,72] for the relevant no hair theorems), a Schwarzschild black hole could 

indeed support long hair, namely, a [ / ( l ) vortex, which could either pierce, or end on 

the black hole horizon. This latter case is part icular ly interesting as it provides a decay 

channel for the disintegration of otherwise stable topological vortices [73-75]. 

I t was also established in reference [11] that the gravitat ional effect of a vortex which 

70 
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is thin relative to the Schwarzschild radius of the black hole is to change its metric to a 

smooth version of the Aryal, Ford and Vilenkin solution [76]: 

ds2 = (l - ^ dt2 - [\ - 2-?pj d r 2 - r 2 d 6 2 - r 2 { \ - e(i)2 sin2 0 dip2 (4.1) 

in which spacetime is asymptotically locally flat, but has a conical deficit angle 2 T T £ / J for 

a string w i t h energy density per unit length of fi. 

This work was then extended to other black hole solutions, namely to the Reissner-

Nordstrom black hole in Einstein-Maxwell theory [13.77.78] and to non-extreme electrically 

charged black holes w i t h a massless dilaton [12] in low energy str ing theory, and the main 

conclusion remains the same, i.e.. in the th in vortex l imi t the Abelian-Higgs vortex also 

provides hair for these black holes (although reference [12] has an incorrect back reaction 

analysis). 

In this chapter we extend the work of reference [11] to consider the Abelian-Higgs 

model coupled to dilatonic gravity, where the di laton may be massless or massive. Using 

the same method as in [11] we show that a Schwarzschild black hole can indeed support 

long hair, namely, a (7(1) vortex. To lowest order the vortex (wi th an arbi t rary dilaton 

coupling "a" ) introduces the same corrections on the geometry of the Schwarzschild black 

hole background as in [11]. and when the coupling of the di la ton to the vortex is non-

canonical in the s t r ing frame (a ^ - 1 ) . the vortex switches on non-constant values of 

the di laton along the horizon. We then extend these results to charged black holes, and 

using similar arguments we show that for a massless di la ton. magnetically charged black 

holes can support the Abelian-Higgs vortex for reasonable di la ton couplings to the vortex 

(|ct| <§ :0 (£ ' 2 ) ) . For weak electrically charged black holes we prove analytically that they 

can support the Abelian-Higgs vortex, again for reasonable values of the di laton couplings 

to the vortex. To leading order, the gravitational effect of the vortex on those black holes is 

to change their background geometries in an analogous fashion to the A F V metric, namely 

that a conical slice is removed f rom the geometry. However, for a ^ — 1 the deficit angle 

is no longer constant, and acquires a dependence on the background dilaton; in addition 

there are strong long range gravitational effects to 0 ( e 2 ) . The di laton becomes modified 

by a correction which has the same sign for both magnetic and electric black holes, so 

that if its magnitude is decreased for the magnetic, it is increased for the electric, and vice 

versa. 
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We also consider black holes with a massive dilaton which are qualitatively differ

ent [80,81] from their massless cousins [82]. As opposed to the single horizon plus space

like singularity causal structure of the massless dilatonic black holes, massive dilaton black 

holes can have two or three horizons and extremal solutions with a double or triple de

generated horizon. 

4.2 Black holes in string theory 

Charged black holes in str ing theory are solutions of the equation of motion of the low-

energy effective action in the Einstein frame [80-82]: 

Sdu-Max = J d ' x ^ [-R + 2(Vr/>)- - V(d>) - e~20 F2] (4.2) 

which are given by 

V „ (e-20F»u) = 0 (4.3a) 

4 d(b 2 

= 2 V / > V „ 0 - \j^V(o) + 2e-'2° F^ Fu " - \j^r2& F2 (4.3c) 

where F is the electromagnetic field strength of the Maxwell field which does not inter

act directly w i t h the Higgs field, and where we wi l l take V{</>) = 2M2(f>2 as the dilaton 

potential. 

A general spherically symmetric black hole solution has a metric of the form 

ds2 = \{r) dt2 - - J - dr2 - C2 [de2 + s in 2 9 dip2) (4.4) 
A(r) 

in which the electromagnetic equation of motion has the general magnetic solution 

F = QsmOdd A dip (4.5) 

and the equations of mot ion in the Einstein frame are [80,81] 

[C2 A </»']' = M2C2<fi - ^ e" 2* (4.6a) 

[C2X']' = - 2 M 2 C ¥ + ^ ^ (4-6b) 

[ A ( C 2 ) ' ] ' = 2 - 2 M 2 C V - ^ e - 2 * (4.6c) 

0 = C"(r) + C<P'2: (4.6d) 
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The electric solution is obtained by applying an electromagnetic dual i ty transformation 
to the equations of mot ion that preserves the metric but changes the sign of the dilaton 
and is explici t ly given by (3.75a)-(3.75b) in chapter 3. 

I n general (i.e. for nonvanishing dilaton potential) the solutions to these cannot be 

expressed in closed analytic form. Although when the di la tor i is massless ( M = 0), the 

black hole solution of the equations (4.6) \yith, a .pure magnetic charge Q is [82] 

ds2 = ^ 1 - 2-^j dt2'-- ^1 - ^ dr2 r - ^ (>d02-+ s i r i 2 - ^ 2 ) (4.7a) 

O2 

e~2° = l - ^ r (4.7b) 
Er 

the mass. E. and the charge, Q. are wri t ten in "vortex units", and are related by Q2 < 2E2. 

while for the pure electrically charged black hole w i t h a massless di la ton the metric is the 

same as for the magnetic black hole, but che di laton is now given by 

O2 

e2° = 1 - • (4.8) br 

4.3 Strings through black holes 

We now consider an isolated system of a dilatonic s tr ing threading a black hole and 

argue the existence of a vortex solution in the absence of gravitat ional back reaction. We 

begin by reviewing the argument of ref. [11] for the existence of a vortex solution in the 

Schwarzschild black hole background: 

d . s 2 = ( l - ^ ) dt2 - ( l ^ ^ y 1 dr2 - r2 [d92 + s in 2 9 dip2) (4.9) 

(where E is the mass of the black hole measured in "vortex uni ts") , since this is also a 

solution of an uncharged dilatonic black hole. 

We can choose a gauge in which the Higgs field <I> and the gauge field A M have the 

form 

$ = r /X( r , 9)eup 

1 •. . ._, 

(4.10a) 
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i.e. we are considering a winding number 1 vortex. Subst i tut ing these forms into the vortex 

equations of mot ion we obtain 

- ± [ r ( r - 2 E ) X , r ) r -
1 

' " ' r r 2 s i n 0 
X2P 

X y p 2 
[sm6X,e] e + '-{X2 - 1) + - f ^ - = 0(4.11a) 

+ 
suit 

sin# 

2 

= 0. (4.11b) 

To argue the existence of a vortex solution analytically, we assume that the black hole 

is large compared to the str ing width , i.e. E 2> 1. We then take -Y = X(R), P = P{R) 

wi th R = r sin#, and subst i tut ing in the vortex equations above, denoting the derivative 

wi th respect to R by a prime, we get 

2E 0 

- 1 + — s i n 2 0 X" + 
~R + 

X 

. 2E . , 
1 sin i 

T 

pi 

p " - n 

XP2 

X2P 

= o 

= 0. 

(4.12a) 

(4.12b) 

These can be seen to be the Nielseri-Olesen equations, given in (1.20a)-(1.20b) in chapter 

1. up to terms of the form s'ui2 0 times derivatives of .Y and P. I n and near the core, 

where R = r sind < 1. s in9 = 0{\) < 0(jr)\ so in this t h in vortex l i m i t , these corrections 

are negligible, and therefore to a good approximation the vortex equations are identical to 

the Nielsen-Olesen ones [30], and the Nielsen-Olesen solution is s t i l l a good solution in and 

near the core of a t h in vortex even at the event horizon (as proven in [11] using Kruskal 

coordinates) and the string simply continues regardless of the black hole as confirmed 

numerically in [11]. 

We now generalise these results to charged black holes in the presence of a dilaton. 

Proceeding as in [11] and [78] we look for a vortex solution by taking X = X(a), P = P{a). 

wi th a = Ce^s'mO which gives the vortex equations 

X_ 

a 
+ U - x C ^ - C ^ l 

+ - 1 + s i n 2 0 1 — A C 
"(Ce*)'" 

')] Cef ). 

2 A ^ r r - + A' + 2 a A ^ ' 

X P2 X 
± ^ + ± ( X 2 - l ) = 0 (4.13a) 

P 

a + s i n * 8 ( V C > m - + A C * ^ l + 2 a A 4 C * { C ' ° y ' 

1 - s in 2 6 1 - A C 

Ce* Ce* 

'{Ce*)r 

2 ) \ Ce* ). 

X2P 
= 0 (4.13b) 

where a dot means the derivative w i t h respect to a. These equations (4.13a)-(4.13b) are 
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the Nielsen-Olesen ones up to terms which may be w r i t t e n as 

'{Ce*)r 

7] = 

T2 = 

C2e2«> 

9 

1 - A C 

X , C 2 ( C ^ Y + X C 2 

(4.14a) 

(4.14b) 

mult ipl ied by derivatives of the vortex fields. Provided these correction terms are negli

gible in and near the core of a t h i n vortex, the Nielsen-Olesen solutions wi l l be a good 

approximation to the str ing threading the black hole. 

Having derived the general equations, we now look at electrically and magnetically 

charged black holes w i t h a massless and massive di la ton in tu rn . 

4 . 3 . 1 C h a r g e d b l a c k h o l e s w i t h mass less d i l a t o n . 

When the di la ton is massless (M = 0). the black hole solution w i t h a pure magnetic charge 

Q is given by (4.7a)-(4.7b) and we may therefore read off 

T, = 

T. = 

a- 2E 
r 2 .,. 

Q2 

2E 

9l 
IE1 Er 

Q 2 \ Ei 
aQ2 

Er r 

(4.15a) 

(4.15b) 

In and near the core of a th in vortex the charged correcting terms like (4.15a) are 

always negligible when compared w i t h the Nielsen-Olesen ones, as they are of order O(-^r). 

while the dilatonic coupling ones like the second part of (4.15b) are of order C ( 2 ^ - ) and 

therefore could be relevant for extremely large couplings of the di la ton to the vortex \a\ > 

C(cpr) > 0{E2). however, these are not part icularly realistic values (e.g. \a\ = 0. l , \ / 3 

is usual). Therefore to a good approximation the vortex solution is given by the Nielsen-

Olesen solution, and since a = r s i n # for the magnetic black hole, the solution is in fact 

identical to the Schwarzschild vortex. 

We also note that these conclusions do not change w i t h % and so s t i l l apply in the 

particular case where the black hole is extremal Q2 — 2E2. I n this case the horizon is 

singular in the Einstein frame w i t h a vanishing area [82], however in the string frame 

- 2 
ds2 = di2 - I 1 - — ( l - ^ Y dr2 - r2(d62+ s in 2 9 dip2), (4.16) 
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and the previously singular horizon r = 2E has been pushed off to inf ini te proper distance. 

Whether one could say that the str ing was or was not piercing the horizon is a moot point. 

Let us now consider a pure electrically charged black hole w i t h a massless dilaton. 

given by (4.7a)-(4.8). 

Now we obtain 

r - ° 2 ( 2 £ - Q2/E) 

T = 
(r - Q*IE)>-

2E ^ Q2a (r-2E) 

r + ~E~7(r- Q2/E) 
(4.17b) 

Clearly, when Q2 < E1 these terms are negligible for similar reasons as before. However, 

consider now the extremal (or near extremal) case O1 = 2E2 - qE. In this case, we see 

that 

a2q 
T< = ( r - 2 B + , ) ' < 0 l ' r / r ) 

1 < 0(a2/q2) (4.1Sb) 
°- 2E 

q + ( r - 2 E ) ( l - T - u - ^ ) 
(r-2E + q):i r 

We now see that close to the extremal l imi t , the Nielsen-Olesen approximation breaks 

down in the v ic in i ty of the horizon. What this means is that the th in vortex limit, has 

broken down, and our analytic approximation is no longer valid. However, if we examine 

the area of the horizon, 47rC 2 = 8nEq. we see that we might only reasonably expect a 

th in vortex approximation to work for Eq 3> 1. (or q 2> 1 if we look at the string frame), 

therefore, the breakdown of this method is due to the breakdown of the coordinate system 

at the horizon, which becomes singular in the extremal l imi t . 

At extremality. T\ = 0. and To, = j

r̂ )L•?£•)"' • For a ^ - 1 these terms eventually 

become important in the core when (r - 2E)~ r < 2E i.e. close to the horizon (which is 

also singular). As the size of the black hole is now zero this means that in fact the string, 

instead of penetrating the black hole, swallows it . Again this result does not depend on 

the frame. Note however, that for a — - 1 , our analytic approximation is exact and the 

Nielsen-Olesen solution gives the form of the string. Since a — 0 on the horizon, one could 

say that the f lux of the str ing was expelled. 



Chapter 4-' Vortices and black holes in dilatonic gravity 77 

4.3.2 Charged black holes with massive dilatons. 

When the di la ton is massive the character of the black hole background is in general differ

ent f rom the massless one as (4.7a). (4.7b) and (4.8) are no longer solutions of the geometry 

equations (4.3c). Quali tat ively speaking there are three dist inct types of black hole [80,81]. 

depending on the relative sizes of the black hole, E, and the Compton wavelength of the 

dilaton. A / - 1 . Black holes which are small compared to the Compton wavelength of the 

dilaton (EM 1) resemble the massless di laton solutions already discussed, which have 

the causal structure of a Schwarzschild black hole - a single horizon and spacelike sin

gularity. Those black holes which are large compared to the Compton wavelength of the 

dilaton (EM S> 1) resemble the Reissner-Nordstrom solution in the region exterior to the 

horizon, although it is possible that their overall causal structure is quite different in that 

there can be one. two or even three horizons [80.81]. The intermediate case EM = 0 ( 1 ) . 

is the borderline between these two behaviours, where addit ional horizons are possible 

and even a special extremal solution wi th a t r ip ly degenerate horizon occurs. These black 

holes have no approximate analytic description. 

When the Schwarzschild radius E is less than the Compton wavelength of the dilaton. 

i.e. E <?C A / - 1 , the black hole does not see the mass of the di la tou and behaves like 

the massless case, and therefore (4.7a).(4.7b) and (4.8) are good approximations to the 

true black hole background solution. We therefore expect the results of the previous 

subsection to apply, and in the th in vortex l im i t the vortex w i l l be given by the Nielsen-

Olesen solution. Since 1 E <C A / - 1 the dilaton is also effectively massless as far as 

the str ing is concerned. (Al though for a minimal di laton mass of m = lO^Gev this means 

black hole masses of rather less than 10 L 1 g, and hence would require a pr imordial black 

hole.) 

When the Schwarzschild radius E is much larger than the Compton wavelength of 

the di la ton -j^, i.e. E 3> JJ, the dilaton (and corrections to the geometry) are of order 

~j$rp < 0( MlE-:) and hence we can regard the di laton as being essentially fixed and the 

geometry as the Reissner-Nordstrom one 

ds2

 = ^ _ 2J. + Qpj dt2 _ ^ _ 2J_ + Qpj 1

 dr2-r2{d82+sin2 6 dtp2) (4.19) 

which is now being extremal for \Q\ ~ E. We can now use the results of [13, 78] to 
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conclude that in the t h i n vortex l i m i t , the Nielsen-Olesen solution is a good approximation 

to the vortex, and for extremal black holes there is a f lux expulsion phenomenon when the 

thickness of the str ing core becomes comparable to the black hole horizon scale. 

We now consider black holes for which Schwarzschild radius is similar in scale to the 

Compton wavelength of the dilaton EM ~ 1. I n this case, there is no simple analytic form 

for the geometry, and we must estimate the correcting terms (4.14) f rom the equations of 

motion. We first note that i f the charge of the black hole is small, the di laton field wi l l 

not differ much f r o m its vacuum value, being of order Q2/E'2 for EM ~ 1. Therefore the 

interesting regime in which to analyse the vortex is close to the extremal l imi t , QM = 0 (1 ) . 

One of the interesting features of massive dilatonic black holes is that they possess a richer 

horizon structure than that of the massless dilatonic solutions. I n particular, at QM — e/2. 

there is a phase transit ion in the types of extremal solutions possible. For QM < e/2 there 

is only one horizon, and the extremal solution corresponds to the singularity moving out 

to the black hole horizon (i.e. C = 0). For QM > e/2 an extremal solution similar to the 

Reissner-Nordstrom one occurs, in that A = A' = 0 at the horizon. For QM — e/2. there is 

a special t r ip ly degenerate extremal solution, where A. A' and A" all vanish. For all values 

of QM however, the solutions do have the common feature that <p is decreasing (increasing) 

outside the horizon for the magnetic (electric) black hole, that A monotonically increases 

f rom 0 to 1 outside the horizon, and finally that C" > 1 outside the horizon [80.81]. 

Therefore one needs to estimate the 77 wi th all this in mind. 

First note that 

(C + C<t>')2 < \C'2 - C24>'2\ = 

using (4.6c,4.6d). hence 

1 - XCC1 - M2C2cp2 -
Q2 

C2e2* 

O 9 
a~ T °~ 

(TV* - T l - " c ¥ ^ 

Then, using (4.6a,4.6c) one can show 

Q2 

T2 = T{ + - ; 

XCC + M W + - 1 

Q2 

M2C24>(1 -4>)- 2 - f r r - + 2(a + l)\Ccp'(C + Ccp') 

(4.20) 

(4.21) 

(4.22) 

(For the electric black hole, replace <p by \<j>\ except in the in i t i a l term.) Since these 

terms, for reasonable a, and w i t h the possible exception of Q?eu • c a n be shown to be 

at most of order unity, the magnitude of the 7i boils-.down to the min imal value of Ce*. 
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In most cases, this quanti ty attains its min imum on the horizon, however, for a small 

subset of solutions (namely those close to extremal, for which the value of the dilaton 

on the horizon, fa, lies approximately in the range [1 - l / \ / 2 . 1 ] ) . Ce* actually has its 

min imum outside the horizon, and the spacetime in the str ing frame has a wormhole-like 

structure [81]. 

We begin therefore by estimating Ce° on the horizon. Star t ing w i t h the magnetic 

black hole and evaluating (4.6a.4.6c) at the horizon, using the properties of the dilaton 

and metric functions, one can readily obtain the following inequalities for C^: 

C 

1 
1 - sj\ - 4 ; V / 2 Q 2 $ - e - ' - ° * 

" M ^ f a 

1 

(4.23a) 

1 + yjl - 4M'- 'Q 2 0 2 e-- ' 9 ' . (4.23b) 

Hence 

C 2 e 2 ** > 
Q2 

1 - ^ 1 - 4 A / 2 Q 2 0 2

i e - 2 « f c >Q2 (4.24) 
2M'2Q2<f)2e--^ 

I f Ce^ is minimised at the horizon, then clearly Tt = 0{Q~2) = 0(E~2). and the thin 

vortex approximation is satisfied. I f Ce° is not minimised at the horizon, then we note 

that the value of (f> required is of order unity [81], hence 0 ( C ' e ' ? | m ; n ) > 0{C'h) ~ 0{Q). 

and so 7] =0(E~2) in this case as well. Therefore magnetic black holes always admit a 

th in vortex approximation. 

For the electric black hole, the inequalities (4.23) are s t i l l valid, provided we replace 

<Pii by \(ph|. This however means that C\e2°h - C^e - ' 2 ' ' ' 5 ' ' '. and hence 

1 - ^ 1 - 4 M 2 Q 2 ^ e - - ' l ^ l < C2e^M 

< Mini — 
( M y f t l ' 2 iV/ 2 0 2 [ 

1 + ^ 1 - 4 M 2 Q 2 f / > 2

i e - 2 l ^ l (4.25) 

which gives no satisfactory bound on C^e 2 * h , as might have been expected, given the 

massless electric black hole. We therefore suspect that electric black holes are closer to 

their massless counterparts, in that unless QM > e/2, (so that \fa\ < 1), nearly extremal 

electric black holes w i l l have no analytic th in vortex approximat ion for the vortex. 

To sum up, in this section we have shown that in a wide variety of cases, the Nielsen-

Olesen solution gives a good approximation to the th in vortex solution in the presence 



Chapter 4- Vortices and black holes in dilatonic gravity 80 

of a black hole. The only si tuation in which i t does not give an adequate description is 

that of near extremal electric black holes where the di la ton is either massless, or has a low 

mass. In this case, a f u l l numerical study is required 1 . Since none of these arguments rest 

on the fact that the str ing must thread the black hole, we may conclude, as in [11]. that 

these arguments can be used to construct strings terminat ing on black holes. 

4.4 Gravitating strings 

In this section we consider the gravitational back-reaction of a th in vortex on the spacetime 

geometry and di la ton. using the same method as in [11.74.78]. i.e.. expanding the equation 

of motion in powers of e. the gravitational strength of the str ing, which is assumed small. 

Before starting, it is worth asking what sort of solutions we expect to obtain: for the 

Einstein string a known asymptotic metric is the A F V metric. One expects that the 

generalisation of the A F V metric is the dilatonic black hole metric (4.4). w i t h either a 

massive or massless dilatou. w i t h a conical slice removed. As we w i l l see. because of 

our choice of the arbi t rary coupling parameter a. the actual set of solutions obtained is 

somewhat more complex. 

We begin by considering the most general static axially symmetric metric 

where VJ. 7 . a are functions of (,' and p and the coordinates are given in "vortex units". 

For example, the massless dilaton black hole in axisymmetric coordinates is 

(dC,1 -r dp2) ) 1 • dip t^dt a e (4.26) 

P 
- 2A 

(4.27a) 

e 2 * „ 

R- + R- + 4E - 2A 
(4.27b) 

e ± 2 0 o 

[R+ + R-f - 4 A 2 

4 i ? + i ? _ 
R+ + -r 4 £ + 2A 
R+ + R_ + 4E - 2A 

(4.27d) 

(4.27c) 

where 

R\ = p2 + [c ± A ] 2 = [r - 2E + A ± A cos B]2 (4.28) 

'Such a study was performed by Moderski and Rogatko [84] for a = — L', and they do indeed observe 
the flux expulsion phenomenon. 
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w i t h A = E — This is obtained by using the coordinate t ransformat ion 

C = (r-E-^jcose (4.29a) 

p2 = ( r - j ( r _ 2E) sin" d . (4.29b) 

In these coordinates the (relevant) equations of motion are: 

a , « + a,pP = - v 7 3 ^ [7j" + Tp

p 

(a-0.c) c + (a-0,P) 1 ' 

7,c;c; + l.pi> -

4 e - 2 ' - -

a 
77- W 

T ? + T - ; + 7 J - v 

a p a ^ 
4:V/ 20 - 2e-'2oF-

+ e ^ - 4 ( l + a ) f / - 2 ( l ? + f f) + 2 ( f / - T<) j = 0 

wi th 

(4.30a) 

(4.30b) 

(4.30c) 

(4.30d) 

(4.30e) 

(4.31) 

where Su(,. T u(, and Kab are the energy momentum tensors for the di la ton. the vortex and 

the Maxwell held respectively wi th 

X2P2 1 
j < + f / J _ 2 g (2+2a)<*+2ti; + i ( _Y 2 - 1 ) 'V , + 2 a ) ' ? 

Y 2 P2 r 7«f =

 A ^ c(2-r2a)<H-2iy j . e(2-r2u)<B--2(7-w) ( X , , ) 2 + (X / 
r Q2 L ' ' ' 

+ - ( X 2 - l j V ^ 2 ^ - 4 e - , e , - - " ' - - a , f l \(P,P)2 + (P.J 
4 

J>1 _ e 2u)+(2-r '2o)«p 

a-

e - ^ ( X i P ) 2 + e--T(vY i ( i-)' J + 
. Y 2 P 2 

cr 
{PJ2 + (P<? 

,32a) 

(4.32b) 

and 

where 

Kab = 2e-20FaiFb

l --yabe-2»F2 

K\ + Kp

p=Q 

K\ = -K% = -~-e-2*\F2\ . 

(4.33) 

(4.34a) 

(4.34b) 
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We begin by examining the effect of the dilatonic vortex threading the Schwarzschild 

black hole since the lack of electromagnetic charge considerably simplifies the problem. 

First note that to 0(e) the geometry is unaffected by the di laton, and only reacts to the 

vortex energy-momentum. The metric is therefore given by the results in [11], giving 

da2 =(l-?p\ di2 -(i-^pj d f 2 - f ; d92 - f 2 (1 - . 4 ) 2 e~2D s i n ' 9 dip' (4.35) 

where the time, t, has been rescaled to the proper time at asymptotic infini ty, i = e~ t. 

etc. This metric is clearly that of a Schwarzschild black hole w i t h renormalised mass 

E = e% E. w i t h a deficit angle of 2rr(.4 + D) = 2n(.p, (independent of the radial stresses), 

and an apparent conical singularity which is of course smoothed out by the vortex. When 

the radial stresses do not vanish (p ?= 1) there is a red/blue-shift of time between infini ty 

and the core of the str ing [11]. 

We now calculate up to 0(e ) . the back reaction of the vortex on the dilaton. We 

use the spherical, Schwarzschild. coordinates for simplicity. We first look for the general 

coordinate dependence on the dilaton corrections, 01. For that we take Nielsen-Olesen 

solution for the vortex, up to corrections of order 0(E~2). 

X = X0(R) + 0(E~2) (4.36) 

P = P0(R) + O(E-) 

to write the source term in the dilaton equation (4.30d) that become: 

4e (a+l ) X'2 1 
2E . , \ X2P2 

sin- 9 ) + - ^ 3 - +e(a+2) ( x 2 - l ) 2 + 4 e a £ El 
R2 

(4.37 

2E o N 
1 sin 2 9 

(4.38) 

In and near the core sin# <SC 1 and X ~ XQ(R) and P ~ Po(R) while outside the core the 

correcting terms j s'm18 may not be negligible but now XQ and PQ fal l off rapidly [30]. 

Therefore, as up to negligible corrections the source term is only a funct ion of R one shall 

look whether one can assume a form <p\ — e f S { R ) where is the pure dilatonic cosmic 

string solution given in Section 3.1.2 of chapter 3 w i t h 

1 sin 9 
r 

V 
f" + ^ 

R 
M 2 f s + ^{V0R(R) + ?w{R)) - (1 + a)£0(R) = 0 . (4.39) 

For M2 = 0, this equation is clearly satisfied to order 0(E 2 ) since the di la ton is logarith

mic outside the core. For M2 ^ 0, the si tuation is slightly more subtle. I f the Compton 
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wavelength of the di la ton is much greater, or much less, than the Schwarzschild radius,, 

then the equation is valid, since the dilaton w i l l either be quali tat ively massless. or at its 

vacuum value near the horizon. However, for M~l ~ E, this analytic approximation will-

not. hold, and ' the funct ional fo rm of the di laton w i l l be modif ied in the vicini ty of the 

'horizon. Ina l l cases however, this approximatibn holds for rlarge radius. : " 

This shows that the vortex switches on a non-vanishing di la ton field on the horizon of 

the black hole. (f> = e f s { 2 E sinO). whichmeans that there is an effective dilatonic charge 

for the massless d i l a t on of V\ = 2E(a ~ l ) t f i . in other words, the charge generated by a 

fragment of cosmic str ing of length 2E. In this sense, the system behaves very much as if 

it can "see" the fragment of string behind the event horizon. 

Moving to the charged black holes, first note that the existence of a dilatonic vortex 

breaks the electromagnetic duali ty invariance via the presence of the £Q etc. terms in 

(4.30d) which only vanish for 0 = —a = 1. We w i l l therefore have to consider electric and 

magnetic black holes separately. First we note that the funct ion appearing in the analytic 

th in vortex approximation is now a = ae^ - 1^. I n order for this approximation to hold, the 

equations of mot ion for X and P imply that 

a l = e 2 V 7 - ^ + 0 ( £ ? - 1 ) 
G , a , e 2a>g2( - , - i f ) 

an + - ^ - ^ + 2 ( a + \)oi<bi = + 0 ( £ _ 1 ) 
' a a 

(4.40a) 

(4.40b) 

throughout the core of the string. Applying this to the energy-momentum tensor for the 

vortex (4.32a)-(4.32c), gives 

\ X 2 P 2 1 2 _ L 0-2(-,+<i>-<l>) i X2 + P_pj 

~ e ( 4 ' + ; t e ) * £ 0 ( a ) 

T< + f P ~ ei4+2a^{£0{a)-VoR(ia)} . 

In. these coordinates the equations of motion (:4.30a)-(4.30e) become 

(4.41a) 

(4.41b) 

(4.41c) 

a A • ^ [ i M 2 ^ 2 + e#* 2?>* (£ 0 (a ) - P0«.((x)) (4.42a) 

icc^i), ' - - / ^ j r i M 2 ^ - e - ^ l ^ l - eeWa}*-{VoR{a)+VoV{d)j\ (4.42b) 

7,u' = ~ <P2

t- a 
(4.42c) 
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M2cp+-e-2°F2 

{<*<!>,i),i = V 3 ! ? 

_ e e ( 4 + 2 a ) * Q { p o R ( a ) + < p w [ a ) ] + ( 1 + a ) £ 0 ( f f ) ) 

0 -

(4.42d) 

(4.42e) 

(where i = p. ( , and the summation convention applies). Hence we see that the source 

terms in the Einstein equations consist of terms which are functions of the original spherical 

/•-coordinate, and the vortex function, a. 

To zeroth order we have the background solutions (4.27a)-(4.27c) and using [78] as a 

guide, we guess that the perturbed solution takes the form: 

a = a 0 1 + e , 2 ( « T I ) < Z > 0 b(a)) 

ib = 

7 = 

<t> = 

Au = 

7 o - e - ( u - 1 ; O B 5 ( a ) 

f / , 0 + e 2 ( ^ . ) o o / ( f j ) 

- 4 0 , ( 1 + e - ( l I - l " J \ ( a ; 

(4.43a) 

(4.43b) 

(4.43c) 

(4.43d) 

(4.43e) 

Inpu t t ing these into the equation of motion gives, after some algebra, and to order 

0 ( £ - ' ) : 

Oh' 

(4.44a) 

(4.44b) 

(4.44c) 

(4.44d) 

(4.44e) 

(4.44f) 

where the subscripts M and E indicate the magnetic and electric corrections respectively. 

Note that these equations are valid only in the vicini ty of the eo re, and only to 0(E~2). 

outside the core, where the terms no longer involve the vortex core, and are typically of 

order E2/r4, the equations differ depending on whether the d i la ton is massive or massless, 

and whether the black hole is electrically or magnetically charged. 

a, , W O - i 
a 

= -e[£0 - V o R ] 

d 
d" + -

o 

9" 

f" + f-
a 

= M2f + (a + l)e£0-

= 2a2 [b' + 2f -2d') 

a 
= 0 
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These equations are readily integrated to obtain for the leading order correction 

a 

d = ^D{a)+d0 

g = D{a)+g0 

A(a) + D{a) 

(4.45a) 

(4.45b) 

(4.45c) 

(4.45d) / = / » + /o = A / = O -\D{o) + fQ + (a + 1) f 
L JO 

qM = b + 2{f-d)+q0M + \ T [B(a) + 2a(a + l)(A(a) + D(a))} (4.45e) 
o- Jo 

qE = qoE (4.45f) 

where the integration constants are fixed in part by the desired boundary conditions, and 

in part by the equations of motion outside the core. 

Focusing on the str ing threading the black hole, and transforming back to spherically 

symmetric coordinates (4.4). we see that for the black hole w i t h a massless dilaton the 

solution outside the vortex core becomes 

d s 1 = 1 + 
- (a -M) 

1 - ¥ I C 

-r r £ ) ^ + ( i - e / i ( i - £ dip' 

- £ ) h ™ f - § ; ^ , , 

(4.46a) 

(4.46b) 

A„ = j dut electric. 
Q ( l - cos0)[ l - ( A x + D x - 4e(a - f l)np. l n ( r s i n ^ ) ) ] magnetic 

(4.46c) 

where the two roots in (4.46b) correspond to electric and magnetic black holes respectively. 

This allows us to quant i fy precisely the l imits of validity of our approximation. I f a ^ — 1. 

then it is easy to see that at very large distances, the strong effect of the vortex on the 

di laton means that our simple form of the perturbation is no longer valid. Across the 

horizon there is an addit ional dilaton flux switched on, and we see that in spite of the fact 

that the th in vortex solution works for an extremal magnetic black hole, the back reaction 

for a > —1 is badly behaved at the horizon. 

For a = — 1, none of these problems arise, and we simply have a gentle shif t in the value 

of the di la ton generated by the radial stresses of the vortex, d>(oo) -> </>(oo) - ^eP(oo), 

which can be either positive, negative or zero depending on whether (3 is greater than, 
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less than, or equal to unity. Note that this shif t has the same sign for bo th magnetic and 

electric black holes, so that i f the dilaton is increased in magnitude for an electric black 

hole, i t is decreased in magnitude for the magnetic one, and vice versa. For (5 = 1, the 

only fields affected by the vortex are the component of the metric, and the magnetic 

potential. 

4.5 Conclusions. 

To summarise, we have provided analytic arguments to show that a vortex can sit on a 

black hole horizon in dilatonic gravity, much the same as in Einstein gravity, the crucial 

difference being that for near extremal electrically charged black holes, the th in vortex 

approximation ceases to hold, and the flux starts to expel, however, this can be viewed as 

a consequence of the vanishing area of the horizon. For the case of massive dilatonic black 

holes, the thin vortex approximation holds in a range of cases, the only exception being 

near extremal electrically charged black holes for a small d i la ton mass. We should also 

point out that these arguments can be used to paint a global vortex onto the dilatonic 

black hole, since a global vortex is obtained by setting P = 1. (3 —> cc. However, in this 

case, we might expect the gravitational back reaction to be problematic, given the nature 

of the Einstein global str ing metric, which is not only non-asyniptotically locally Hat. but 

also time dependent [42]. 

The gravitat ional back reaction of the vortex was found assuming the validity of th in 

vortex approximation. The spacetime was found to be approximately conical to leading 

order, however, i f the di laton is massless. and if a ^ - 1 , there are long range effects on 

the geometry, which is not precisely conical. 



Chapter 5 

Conclusions 

In this final chapter, we aim to summarise the main results of the other chapters. 

The cosmic strings which have attracted the most at tent ion are those produced at 

G U T scales. Such strings generate large angle cosmic microwave background anisotropics 

of roughly the observed order of magnitude. Their gravitat ional effects are weak and 

their static spacetimes are non-singular. I t is also possible that cosmic strings appear 

at other thermal phase transitions. In chapter 2 we showed that in particular when the 

order of magnitude of the cri t ical temperature is above the Planck mass, any such static 

spacetimes must be singular, while for scales below the Planck mass static cosmic strings 

are non-singular for a cri t ical Higgs coupling. For other Higgs couplings, due to the lack of 

analytical methods a f u l l numerical study would be required. Al though , as shown in that 

chapter, one suspects that for Higgs masses below the boson vector mass static strings are 

non-singular when formed at scales below the Planck mass, and are singular when formed 

at scales above that mass. 

In chapter 3 we showed that in the presence of a di la ton the gravitat ional field of 

cosmic strings is surprisingly close to that of an Einstein cosmic str ing on cosmological 

distance scales. For a massless dilaton we showed that there are long range dilatonic 

effects on the very large scale and the spacetime is not asymptotical ly locally flat in the 

Einstein and s t r ing frames. On scales of cosmological interest, however, the metric is 

conical in the Einstein frame, and conformally conical in the str ing frame. Meanwhile 

for a massive d i la ton and apart f rom distances of order the compton wavelength of the 

dilaton, the long-range structure of the string is as for Einstein gravity, and so the metric 

asymptotes a conical metric, in both string and Einstein frames. The main exception to 

87 



Chapter 5: Conclusions 88 

these results is for the special value where the coupling of the d i la ton to the vortex fields is 

canonical (a = - 1 ) for which there are no long range effects (other than the deficit angle) 

and the di la ton merely shifts the value of the di la ton between the core and inf in i ty by a 

constant. For a cr i t ical Higgs coupling this constant vanishes and there is no effect at all 

on the di laton. The dilatonic str ing is then the same as the Einstein one. The Bogomolnyi 

bounds for the dilatonic str ing were also considered and i t was shown that again a = - 1 

is a special value for which the Bogomolnyi bounds are saturated. 

Finally the effects of these strings on test particles were also explored. For a massive 

dilaton and in the s t r ing frame geodesies are essentially the same as for the Einstein self 

gravitat ing string, i.e.. all non-static trajectories escape to inf in i ty . The same conclusions 

hold for a = — 1 . For a massless dilaton and a ^ - 1 photons escape to inf ini ty and 

are infini tely redshifted (a > —1) or blueshifted (a < —1) while for massive particles 

trajectories are bound for a > —I or escape to inf in i ty for a < - 1 . In the Einstein frame 

photon trajectories are identical to that of the string frame while all massive particle 

trajectories are bound. Al though cosmic strings are predicted by many unified theories of 

fundamental forces there is no f i r m indication that cosmic strings of any type do actually 

exist, but equally they are far f rom being ruled out and in some contexts they provide a 

very natural explanation for the observations [27]. 

Damour and Vi lenk in [60] have explored the impact of a massive dilaton on string 

networks. They conclude that a TeV mass di laton was incompatible w i t h a G U T string 

network. Al though one should renormalise their calculations by factors of (a + 1) which 

means that their conclusion is only valid if a is not close to — 1 . I f the strings couple to the 

dilaton directly (a = - 1 ) . then such constraints are identical to those derived in Einstein 

gravity. However, i f the str ing couples wi th a different f rom - 1 . then the constraints 

of Damour and Vi l enk in [60] apply, and a 'Haw''(i.e. close to electroweak) mass for the 

dilaton rules out the cosmic str ing scenario of galaxy format ion. This scenario is also 

ruled out by current observations of the cosmic microwave background anisotropics and 

galaxy clustering as shown by Pen et. al. [85]. I n part icular they showed that those 

observations do not favor models wi th global strings. I n fact there is a serious conflict 

between standard scaling defect models and the current observational data [86]. This 

conflict can be expressed in terms of the ;'6Loo problem''', where 6100 is the bias on scales of 

1 0 0 / i - 1 Mpc ( w i t h 0 < h < 0.5). Current theoretical and experimental results indicate that 
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the actual value of 6100 is close to uni ty but the standard defect models require 6100 ~ 5 

to reconcile the predictions for the density field fluctuations w i t h the observed galaxy 

dis t r ibut ion. This problem is likely to have a significant impact on the understanding of 

the origin of cosmic structure. The defect models are examples of models of structure 

formation seeded by perturbations of homogeneous universes via causal processes in the 

standard big bang (SBB). W i t h the demise of the standard defect models, the question 

arises whether any plausible sbb causal model exists and i f i t doesn't then this is a very 

strong evidence for an inflat ionary origin of cosmic structure [86]. 

In the presence of an axion we showed in chapter 3 that the si tuat ion is quite different 

f rom the dilatonic strings and the gravitational field of axionic-dilatonic strings is nor, close 

to that of an Einstein cosmic string but instead asymptotically approaches the dilatonic 

Melvin magnetic universe in the presence of an axion. The long range effects of the 

dilaton and of the axion exclude the existence of local str ing solutions. The axion is 

strongly damped to zero while the dilaton has very strong asymptotic effects similar to 

those for the dilatonic str ing for massless di laton. 

Finally as inf in i te ly extended objects strings can provide hairs tor black holes being 

another example of physical systems where due to inclusion of matter fields in the horizon 

the non-hair theorem is not verified. In particular, in reference [11]. it was shown that an 

Abelian Higgs vortex can act as an hair for the Schwarzschild black hole. Then Chamblin 

et al [77] generalised the analysis of that reference. [11]. to the Reissner-Nordstrom black 

hole in Einstein-Maxwell theory. They found expulsion of the vortex f rom the extremal 

black hole even for t h i n vortices. However the work of Bonjour et al [13,78] shows that 

a flux expulsion only occurs for black holes of size comparable to the str ing core. The 

th in Abelian Higgs vortex is also an hair for non-extreme electrically charged black holes 

w i t h a massless d i la ton in low energy string theory as first shown in reference [12]. Finally 

in reference [84] i t is also shown the flux expulsion of the Abelian Higgs vortex from 

extremal electrically charged black holes w i t h a massless di laton. Therefore in chapter 4 

we extend the work of reference [11] to strings and black holes in dilatonic gravity. Using 

analytic arguments we showed that the Nielsen-Olesen is hair for non-extreme charged 

black holes in the presence of a di laton that can be either massless or massive. Near 

extremal electrically charged black holes, the th in vortex approximation ceases to hold, 

and the flux starts to expel. The gravitational back reaction of the vortex was found and 
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the spacetime was found to be conical except when the di la ton is massless and a ^ — 1. 

I t was also shown that the effect of the dilaton on the horizon is to generate an aditional 

charge. For a = — 1, the vortex can be used to smooth out the conical singularities of the 

dilatonic C- metrics as proven in [79]. 

The transi t ion f r o m penetration to expulsion can be viewed as a phase transition on 

the horizon of the black hole. The order parameter is the value of the Higgs field on the 

horizon and the phase transit ion takes place when we vary the inverse size of the horizon 

(jr) [78]. I t might be interesting to study this phase transit ion, e.g.. study the critical 

exponents near the transit ion point, such as X ~ \E - Ec\b (and see. e.g.. how b varies, or 

not. at different points on the horizon). 

Another interesting question to be explored is the study of the geodesies and of the 

interactions between the black hole and the dilatonic cosmic string. 
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