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Abstract 

The effects of certain NSAIDs were determined on agonist-evoked 

responses recorded from rat neurones maintained in vitro using 

electrophysiological techniques. 

Initially, the rat isolated vagus and optic nerves were employed. 

Alphaxalone, pentobarbitone, propofol and the NSAID, mefenamic acid (MFA), 

potentiated GABA-evoked responses of the vagus nerve. Propofol (1-100|aM) 

selectively potentiated GABA and glycine-evoked responses of the rat vagus 

and optic nerves, but had little effect on nicotinic acetylcholine-, a,p-methylene-

ATP or 5-hydroxytryptamine-mediated responses. 

The interaction between MFA and ligand-gated receptors was 

investigated further using voltage-clamped rat hippocampal neurones 

maintained in culture. MFA (3-100>M) selectively, concentration-dependently 

and reversibly potentiated GABA-evoked responses, consistent with the / 

observations made using the vagus nerve. MFA (3-100|aM) however had little or 

no effect on glycine, AMPA, kainate or NMDA-receptor mediated responses. 

A final series of experiments investigated the site and molecular 

mechanism of the interaction between MFA and the GABA-gated chloride ion 

channel. The potentiating effects of MFA (and other fenamates) were not the 

result of prostaglandin synthesis inhibition, since other NSAIDs did not 

modulate the GABA A receptor (GR). The actions of MFA were not mediated via 

the benzodiazepine site of the GR, nor where they due to inhibition of GABA-

uptake or membrane perturbation. The modulatory effects of MFA were not 

use-dependent, but the potentiating effects of MFA were voltage-dependent, 

where the potentiation was 3-fold greater at -100mV than at +40mV, with no 

change in the equilibrium potential for GABA. MFA activated a current, in the 

absence of GABA. Hippocampal neurones varied in sensitivity to modulation by 

MFA and the anticonvulsant, loreclezole, which may indicate a degree of sub-

unit selectivity. 

These data are discussed in relation to the possible site and mechanism 

of action of fenamates at the GR, their similarities with other positive 

modulators of the GR and the neurophysiological implications of these findings. 



CHAPTER ONE: GENERAL INTRODUCTION 

1.1. An Overview of the Hypothesis Addressed in this Thesis 

Non-steroidal anti-inflammatory drugs (NSAIDs) are prescribed for their 

analgesic, anti-inflammatory and anti-pyretic properties (Orme, 1990). Due to 

their efficacy and relative lack of toxicity, NSAIDs are the most widely 

consumed drugs world-wide with over 100 million prescriptions per year and an 

estimated seven-fold higher consumption of non-prescription drugs in the US 

alone (Roth, 1996). Perhaps, not surprisingly, these drugs are also a common 

source of self-poisoning and although most cases of NSAID overdose do not 

result in serious cases of toxicity, there have been some cases of NSAID 

overdose resulting in severe toxicity. 

Mefenamic acid (Ponstan) is the fifth most commonly prescribed NSAID 

in the UK (McMurray et al., 1987). It is a fenamate NSAID commonly prescribed 

for the relief of mild to moderate pain including that experienced during 

dysmenorrhoea and rheumatoid arthritis. The most common side effects 

observed with mefenamic acid treatment, like other NSAIDs, generally pertain 

to gastrointestinal disturbances. However, other adverse effects observed 

include headache, visual disturbances, dizziness, drowsiness and anxiety 

(Winder et al., 1966). In cases of mefenamic acid overdose, the severity of 

these adverse drug effects is increased with symptoms of coma and seizures 

occurring in over one third of all overdose cases (Smolinske et al., 1990). 

Interestingly, another NSAID, fenbufen, has been reported to dramatically 

increase the risk of convulsions in humans when co-prescribed with 

antimicrobial fluroquinolones (Lietman, 1995). 

Almost thirty years ago, Vane (1971) demonstrated that aspirin-like 

drugs, namely NSAIDs, inhibited prostaglandin synthesis, thus reducing 

inflammation and thereby symptoms of pain. Subsequently, over 40 NSAIDs 

used in clinical practice have been found to inhibit prostaglandin synthesis 

Chapter One: General Introduction 1 



(Cronstein and Weissman, 1995). In addition to inhibition of prostaglandin 

synthesis in the periphery, NSAIDs are known to penetrate the central nervous 

system (CNS; Bannwarth et al., 1989) and have been shown to have direct 

effects on various neuronal (and non-neuronal) ion channels including non

selective cation channels (Lerma and Del Rio, 1991; Shaw er al., 1995) and 

chloride channels (White and Alywin, 1990; McCarty er a/., 1993). Indeed the 

fenamate NSAIDs, for example, flufenamic acid and niflumic acid, are routinely 

used as pharmacological tools to block Ca2 +"activated CI" channels when 

investigating Ca 2 + permeable channels in Xenopus oocytes (Leonard and 

Kelso, 1990; White and Alywin, 1990; Vernino et a/., 1992 and Seguela er al., 

1993). More recently, a number of the fenamate NSAIDs have also been shown 

to modulate rat brain y-aminobutyric acid type-A (GABA A) receptors expressed 

in Xenopus oocytes (Woodward et al., 1994). Moreover, a preliminary study by 

Halliwell et al., (1994) demonstrated a marked positive modulation of GABA-

mediated currents recorded in rat hippocampal neurones by mefenamic acid. 

Modulation of the GABA A receptor, which probably mediates the majority 

of inhibitory synaptic transmission in the mammalian brain, may have significant 

behavioural and psychological effects (for reviews see Matsumoto, 1989; 

Krogsgaard-Larsen et al., 1994). Indeed GABA A receptors have been 

implicated in the regulation of appetite via GABA A receptor modulation in 

hypothalamic satiety centres, in the mediation of analgesic effects present 

throughout the brain and spinal cord via pre- and post-synaptic mechanisms 

and in GABA A receptor-mediated decreases in heart rate and blood pressure. 

GABA may also play a role in many other physiological and behavioural 

processes such as arousal, sexual behaviour, coma, stress, anxiety, 

depression, memory, thermal regulation, muscle relaxation and sleep. Many 

anaesthetic agents have been shown to produce sedation and anaesthesia 

probably by enhancing GABA-mediated synaptic transmission (Franks and 

Leib, 1994). GABA has also been linked with a number of neurological 

disorders such as schizophrenia, epilepsy, and Alzheimer's disease (for review 

see Krogsgaard-Larsen etai, 1994). 
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It is well established that antagonists of the GABA A receptor, such as 

bicuculline and picrotoxin are proconvulsant drugs (Curtis and Johnston 1974), 

and positive allosteric modulators of the GABA A receptor such as alphaxalone, 

propofol and diazepam enhance the inhibitory actions of y-aminobutyric acid 

(GABA) and thereby reduce neuronal excitation. It is possible, therefore, that 

some of the actions of NSAIDs may be mediated through direct effects on the 

CNS. In particular, coma and/or convulsions, which result from fenamate 

overdose, suggest an interaction between these drugs and neuronal ligand-

gated ion channels. 

The experiments reported in this thesis examined the effects of selected 

NSAIDs on the major inhibitory and excitatory amino acid receptors in 

mammalian CNS neurones. The effects of these NSAIDs were compared to the 

effects of other experimental and clinically important modulators of these 

receptors, in an attempt to elucidate, in particular, the mechanism of action of 

fenamate NSAIDs within the CNS. 

1.2. Non-Steroidal Anti-inflammatory Drugs (NSAIDs) 

1.2.L Mechanism of action of NSAIDs. 

In 1971, a number of investigators demonstrated that aspirin-like drugs 

(later known as NSAIDs) inhibited prostaglandin synthesis in a variety of cells 

and tissues from different species (Vane, 1971; Smith and Willis, 1971; Ferreira 

et al., 1971). This important discovery led to the hypothesis that aspirin-like 

drugs mediated their therapeutic effects through the inhibition of prostaglandin 

synthesis (Flower and Vane, 1974). 

Prostaglandin formation occurs via a two-step process. The first step 

involves the oxygenation of arachidonic acid by cyclo-oxygenase (COX) 

enzymes to form unstable prostaglandins known as PGG 2 . Subsequently, 

these unstable PGG 2 are converted into stable prostaglandins, PGH 2 , by 

peroxidases, which are then converted into prostaglandins of the D-, E- and F-

series by individual synthases or reductases. 
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ARACHIDONIC ACID HYDROPEROXIDASE — HYDROXYACID 

(COX-l /COX-2) \ NSAIDs inhibit this step 

Cyclic Endoperoxidases 

(peroxidase) 

unstable P G G 2 

(prostacyclin synthase) 

prostacyclin (PGI 2) thromboxane A 2 

stable PGH 2 

J (synthases/reductases) 

Prostaglandins F 2 , D 2 , E 2 

Figure 1.1: Prostaglandin synthesis. The flow diagram shows the metabolic 

pathway of arachidonic acid which leads to the production of prostaglandins F2, 

D 2 and E 2. Inhibition of prostaglandin synthesis can occur by inhibiting the 

action of cyclo-oxygenase enzymes, which catalyse the conversion of 

arachidonic acid to cyclic endoperoxidases. NSAIDs inhibit prostaglandin 

synthesis by inhibiting cyclo-oxygenase enzymes, COX-1 and COX-2 (modified 

from Rang etal., 1998). 

Initially, COX was thought to be a single enzyme, producing 

inflammatory prostaglandins at the inflamed site and also homeostatic 

prostaglandins required for normal function within other tissues, such as the 

kidney and stomach (Hanes, 1990). Recently, a second COX enzyme has been 

isolated and subsequently, these enzymes have been termed COX-1 and 

COX-2. COX-1 has been described as having "constitutive activity" and is 

Chapter One: General Introduction 4 



expressed in most tissues throughout the body, including the gastrointestinal 

mucous (Kargman et al., 1996; Ristimaki et al., 1997). COX-2 has been 

described as having "inducible activity" (O'Bannion et al., 1992); it is expressed 

in low levels throughout the body, including the gastrointestinal mucosa, but its 

expression can be up-regulated at sites of inflammation by cytokines and 

bacterial lipopolysaccharides. These enzymes are encoded by different genes 

and are regulated at transcriptional and post-transcriptional levels to different 

degrees, with the "inducible" COX-2 being regulated to a much higher degree 

than COX-1 (reviewed by Jouzeau et al., 1997). It is commonly thought that the 

analgesic, anti-pyretic and anti-inflammatory properties of NSAIDs are related 

to their capacity to inhibit COX-2, whereas the anti-thrombotic and some 

adverse effects of certain NSAIDs, such as gastrointestinal toxicity, are related 

to their ability to inhibit COX-1 (Vane, 1994; Battistini era/., 1994). 

1.2.H. Classification of NSAIDs 

Most clinically useful NSAIDs are weak organic acids which vary in their 

ability to inhibit prostaglandin synthesis. Most acidic NSAIDs bind extensively to 

plasma albumin, but differ in their binding capacity to other proteins and tissues 

(for review, see McCormack, 1994). Traditionally, NSAIDs were classified in 

accordance with their chemical grouping, namely: the carboxylic acids (which 

are sub-divided into salicylates, heteroarylacetic acids, propionic acids and 

fenamates), the pyrazoles and oxicams (Weissmann, 1991; Rang et al., 1998, 

see Table 1.1). 

Recently NSAIDs have been classified according to their relative 

inhibition of cyclo-oxygenase isoenzymes 1 and 2 (Jouzeau et al., 1997; 

Frolich, 1997); this classification system may be more representative of the 

different therapeutic properties of NSAIDs. However, confusion arises from the 

diversity of biological systems used to assay COX selectivity such that their 

selectivity ratios are not directly comparable when obtained from different 

sources and under different experimental conditions (Vane et al., 1997). For 

example, Young et al., (1996) and others report that COX-1 and -2 sequence 

homology and mechanisms of inhibition (e.g. competitive, non-competitive, 
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reversible, irreversible) are strongly species-dependant, such that selectivity of 

rat enzymes did not correlate with human selectivity. Other studies, using 

assays of whole human blood have shown, for example, mefenamic acid to be 

COX-1 selective (Gierse et al., 1995; Young et al., 1996) whereas others 

indicate it is COX-2 selective (Cryer and Feldman, 1998). Indeed, Young et al., 

(1996) using purified human recombinant cell-free COX enzymes, suggest 

mefenamic acid is COX-2 selective. In fact, from the available data, the primary 

mechanism of action of mefenamic acid in humans, for example, still remains 

unclear. 
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1.2.ML Analgesic Effects of NSAIDs 

1.2.Hi. i. Peripheral antinociceptive effects of NSAIDs 

Prostaglandin production in the periphery causes vasodilation and 

increased vascular permeability resulting in inflammatory symptoms. In 

addition, prostaglandins serve to potentiate pain caused by other mediators of 

inflammation such as histamine and bradykinin (Lim et al., 1964, Handwerker, 

1976, Chahl and Iggo, 1977). Thus, NSAIDs inhibit the hyperalgesic state of 

peripheral afferent fibres caused by the concerted action of prostaglandins and 

other mediators of pain. 

An early study using an animal model of pain elicited by bradykinin (Lim 

et al., 1964) led to the development of a classification scheme for analgesic 

agents acting either centrally or peripherally. This study and others (for example 

Horton, 1964; Guzman, 1964; Juhlin and Michaelson, 1969; Crunkhorn and 

Willis, 1971 and Karim, 1971) indicated that, for analgesia, the inhibitory action 

of NSAIDs on prostaglandin synthesis is predominant in the periphery. 

However, in addition to their effects in the peripheral nervous system, it is clear 

that NSAIDs, depending on their lipophilicity, can readily cross the blood-brain-

barrier and enter the CNS (Bannwarth et al., 1989, 1990) where they can also 

inhibit prostaglandin synthesis and exert antinociceptive effects. 

1.2.Hi. ii. Central antinociceptive effects of NSAIDs 

A number of studies have clearly shown than NSAIDs exert analgesic 

effects even when placed directly into the CNS, but the mechanisms behind this 

action are currently undefined. For example, early studies by Dubas and Parker 

(1971) demonstrated that sodium salicylate, injected subcutaneously, increased 

the nociceptive threshold to electrical stimulation of the lateral hypothalamus in 

rats and concluded that this structure is involved in a primary level of integration 

of behavioural responses to pain in the CNS and that aspirin exerts actions 

centrally. Later experiments demonstrated that acetylsalicylate inhibited 

electrically stimulated nociceptive responses in monkeys when micro-injected 

into the pre-optic region of the hypothalamus (Shyu et al., 1984). 
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A number of investigators have demonstrated that NSAIDs administered 

intrathecal^ also exert antinociceptive effects. Using this method of 

administration in rats, acetylsalicylic acid, has been shown to attenuate acetic 

acid-induced writhing responses (Yaksh, 1982). Intrathecal administration of 

acetylsalicylic acid, ibuprofen and ketorolac trimethamlne have also been 

shown to inhibit pain behaviour and thermal hyperalgesia evoked by intrathecal 

injection of NMDA (N-methy-D-aspartate), AMPA (a-amino-3-hydroxy-5-methyl-

4-isoxazole propionic acid) and substance P (Malmberg and Yaksh, 1992). 

Jurna et al., (1992) demonstrated that intrathecal injection of acetylsalicylic 

acid, salicylic acid and indomethacin depressed the activity of rat thalamic and 

spinal neurones observed following electrical stimulation of afferent C-fibres in 

the sural nerve. In human studies, high doses of acetylsalicylic, administered 

orally, reduced the amplitude of brain electrical potentials evoked by electrical 

stimulation of the tooth (Chen and Chapman, 1980) and intrathecal 

administration of lysine acetylsalicylic acid, an injectable acetylsalicylic acid 

derivative, produced pain relief in cancer patients (Devoghel, 1983). 

In addition, increased prostaglandin synthesis in the brain has 

temperature-raising effects and actions of NSAIDs on brain prostaglandin levels 

may contribute to their antipyretic properties. Cooper et al., (1982) have 

suggested that the antipyretic effects of NSAIDs are mediated through inhibition 

of prostaglandin synthesis in the hypothalamus, particularly in the preoptic 

region. 

These studies suggest that spinally released prostaglandins are involved 

in the transmission of nociceptive stimuli and that NSAIDs may be effective in 

spinal antinociception. Importantly, these studies suggest that there may be a 

central component to the actions of NSAIDs. 

1.2.Hi. m. Alternative mechanisms for the analgesic effects of NSAIDs in the 

CNS 

A review in 1991 by McCormack and Brune concluded that there was 

little correlation between the analgesic effects of NSAIDs and their ability to 

inhibit prostaglandin synthesis in vitro, prompting the notion that other, or 
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mechanisms additional to prostaglandin synthesis inhibition, may contribute to 

the clinical effects of NSAIDs. Thus, NSAIDs have been shown to affect the 

synthesis and activity of other neuroactive substances involved in nociceptive 

responses in the dorsal horn. For example, an in vivo study by Durbourdieu and 

Dray (1989) reported that ketoprofen reduced substance P levels in the 

hypothalamus and spinal cord of rats. These actions may contribute to the 

effects of NSAIDs on spinal nociceptive processing (reviewed by McCormack, 

1994). In addition, NSAIDs have also been shown to exert changes in 

membrane fluidity (Weissmann, 1991) and to enhance descending serotonergic 

inhibitory nociceptive pathways (McCormack 1994). Indeed, Shyu et al., (1984), 

in an in vivo study, report a direct relationship between the analgesic effects of 

aspirin and increased central serotonergic activity in the control of dental pain in 

primates. Recently, NSAIDs have also been shown to modulate opioid peptide 

release (Herrero and Headley, 1996) and to potentiate the analgesic actions of 

H-opioid receptor agonists in the periaqueductal gray (PAG; Vaughan er al., 

1998). These additional pharmacological effects may contribute to the actions 

of NSAIDs in the CNS. 

1.2.iv. NSAIDs and neuroplasticity 

Arachidonic acid has been implicated in neuronal excitation and synaptic 

plasticity. It has been suggested that inhibition of COX enzymes by NSAIDs 

would lead to an accumulation of arachidonic acid, which may subsequently be 

diverted along lipoxygenase and epoxygenase metabolic pathways (Vaughan, 

1998). Arachidonic acid has been shown to enhance synaptic transmission in 

the hippocampus (Williams et al., 1989). It is released following glutamate 

receptor (particularly NMDA) activation (Dumuis et al., 1988,1990; Lazarewicz 

et al., 1988, 1990; Sanfeliu et al., 1990), during long term potentiation (Lynch et 

al., 1989) and has been proposed to rapidly inhibit glutamate uptake during 

long-term potentiation (Barbour et al., 1989; Volterra et al., 1992). Binding 

studies have also suggested that arachidonic acid and its metabolites may play 

a role in neuronal excitation, partly by inhibition of GABA-mediated neuronal 
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inhibition (Schwartz et al., 1988; Schwartz and Yu, 1992; Koenig and Martin, 

1992). Recently, Bezzi et al., (1998) have shown that prostaglandins stimulate 

calcium-dependent glutamate release in astrocytes and that inhibition of 

prostaglandin synthesis by NSAIDs prevents this release of glutamate; these 

authors have suggested that NSAIDs may play a role in synaptic plasticity. 

1.2.v. Novel Clinical Applications of NSAIDs 

1.2.v. i. Ischaemia and Neuroprotection 

Post-ischaemic inflammation has been implicated in playing an important 

role in the delayed progression of damage to brain tissue (Kochanek and 

Hallenbeck, 1992; Feuerstein et al., 1997). Following cerebral ischaemia, local 

expression of a cascade of inflammatory proteins is induced (for review see 

Feuerstein et al., 1997) which includes COX-2, a mediator of the cytotoxic 

effects of inflammation (Seibert et al., 1995; Smith and DeWitt, 1995). Nogawa 

et al., (1997) have demonstrated in rats that cerebral ischaemia leads to the up-

regulation of COX-2, (but not COX-1) expression, protein and reaction products 

(PGE 2) within the injured site. The selective COX-2 inhibitor, NS-398, 

attenuated the ischaemic damage, suggesting that selective COX-2 inhibitors 

may be protective during the post-ischaemic period. 

Chen et al., (1998) have recently reported that fenamate NSAIDs (and 

the NMDA receptor antagonist MK-801) protect embryonic chick retinal 

neurones against glutamate-induced damage and ischaemia-induced injury. In 

particular, fenamates were protective against NMDA- and kainate-induced 

excitotoxicity. However, in the same study, voltage-clamp experiments using 

salamander retinal neurones, demonstrated that fenamates inhibited NMDA-

evoked currents, but not kainic acid-evoked currents. The authors suggest that 

this neuroprotection by fenamates may be due to inhibition of chloride influx 

rather than AMPA/ kainate receptor blockade (Chen, op. cit.). 

These data suggest that although inhibition of prostaglandin synthesis by 

NSAIDs undoubtedly plays a role in their neuroprotective effects during post-

ischaemic inflammation, other mechanisms may contribute to these effects. The 
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neuroprotective properties of NSAIDs have also been implicated in other 

neurodegenerative disorders, such as Alzheimer's disease. 

1.2.v. a. Alzheimer's Disease 

Recent data also suggests that the neurodegeneration associated with 

Alzheimer's disease involves COX enzymes. Alzheimer's disease lesions are 

characterised not only by the presence of amyloid plaques and neurofibrillary 

tangles, but also by the accumulation of many inflammatory proteins, such as 

inflammatory cytokines, complement proteins and their regulators, which may 

promote neuronal death (McGeer et al., 1994, 1995). These pro-inflammatory 

cytokines cause a marked induction of COX-2 enzyme levels (Hampel and 

Muller, 1995; Cochran and Vitek, 1996). These data have led to the hypothesis 

that patients taking NSAIDs to control other anti-inflammatory diseases, such 

as arthritis, may also have a reduced chance of developing Alzheimer's 

disease. Although there is no direct evidence to-date, a number of 

epidemiological studies have indicated that NSAIDs (and other anti

inflammatory treatments) may indeed delay the onset and slow the progression 

of neurodegenerative disorders such as Alzheimer's disease (McGeer et al., 

1996, Breitner, 1995, 1996). In addition, Breitner era/., (1995) have reported a 

delayed onset of Alzheimer's Disease with NSAIDs and histamine H2 blocking 

drugs and suggest that the actions of these very different drugs may be linked 

to the actions of COX on the NMDA pathway to reduce NMDA-mediated 

glutamatergic excitotoxicity. 

Together, the data above strongly indicate that NSAIDs exert analgesic 

and anti-inflammatory effects, not only in the periphery, but also within the CNS. 

The mechanisms underlying these actions may involve targets additional to 

COX enzyme inhibition. 

A number of studies have demonstrated that NSAIDs modify the 

behavioural effects of chemically- and electrically-induced seizures in rodents. 

These data will now be reviewed. 
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1.2.vi. The effect of Prostaglandins on Seizure-models 

Prostaglandin presence in the CNS has been well-documented in vivo 

and in vitro (Eliasson, 1959; Samulesson, 1964; Wolfe, 1978; Galli era/., 1980). 

Prostaglandin release appears to be stimulated by increased neuronal activity, 

for example, during chemically- or electrically-induced seizures (Bosisio et al., 

1976; Berchtold-Krantz et al., 1981; Forstermann et al., 1982; Baran et al., 

1987) and decreased by certain anti-convulsant drugs such as 

benzodiazepines and barbiturates (Wolfe, 1978; Steinhauer et al., 1979). 

Interestingly, Forstermann et al., (1984) found that spontaneously convulsing 

gerbils had unusually low prostaglandin levels and suggested that prostanoid 

deficiency, either due to reduced availability of arachidonic acid, impairment of 

cyclo-oxygenase activity or increased prostanoid metabolism, could be a 

contributing factor to seizure susceptibility. 

Early studies demonstrated that administration of prostaglandins of the E 

series intracerebrally in unanaesthetized cats, intravenously in chicks (Horton, 

1964) or intraperitoneally in rats (Haubrich et al., 1973) produced sedative 

effects. Later, it was shown that intracerebral administration of these 

prostaglandins also inhibited pentylenetetrazole (PTZ)- (Bhattacharya and 

Sanyal, 1978; Rosenkranz and Killam, 1979) and also picrotoxin-, strychnine-

and isoniazid-induced seizures in rats (Rosenkranz and Killam, 1979). 

Several studies have shown that certain NSAIDs increase the 

susceptibility of experimental animals to seizures, possibly due to inhibition of 

prostaglandin synthesis. Indeed, clinical evidence shows that certain NSAIDs, 

such as mefenamic acid, administered in high doses in humans, can 

themselves be epileptogenic. However, some reports indicate an anti

convulsant effect of NSAIDs. These issues will now be discussed in detail 

below. 
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1.2.vii. NSAIDs used in seizure models 

Following a report that maternal indomethacin induced convulsions in a 

breast-fed infant (Eeg-Olofsson, 1978), Steinhauer et al., (1979) and later 

Steinhauer and Hertting, (1981), investigated the effects of NSAIDs on 

chemically-induced seizures in mice. The authors demonstrated that ibuprofen, 

indomethacin, diclofenac and flurbiprofen lowered the convulsive threshold and 

LD 5 0 of PTZ-induced seizures and, also inhibited the increase of prostaglandins 

and thromboxane B 2 normally observed following chemically- and electrically-

induced seizures in rodents. However aspirin did not affect either of these 

parameters. Moreover, the authors demonstrated that indomethacin also 

accelerated seizure onset. 

Wallenstein (1985a) demonstrated that mefenamic acid, meclofenamic 

acid and ibuprofen (and paracetamol which is not an NSAID) delayed the onset 

of PTZ-induced seizures in rats and that, in addition, mefenamic acid and 

meclofenamic acid potentiated the excitatory effects of subconvulsive and 

convulsive doses of PTZ. In a study examining the effect of NSAIDs on the 

electrocorticogram recorded in rats, Wallenstein (1985b) found that mefenamic 

acid and meclofenamic acid produced dose-dependent increases in excitation 

(including seizure) whereas the non-fenamate NSAIDs, ibuprofen and 

indomethacin (and paracetamol) produced dose-dependent increases in 

sedation. Wallenstein (1987) later examined the effects of NSAIDs on penicillin-

induced "primary generalised seizures" and "focal seizures" and demonstrated 

that ibuprofen (and paracetamol) inhibited the number and delayed the onset of 

penicillin-induced "primary generalised seizures" in rats, whereas mefenamic 

acid inhibited the incidence, but did not affect the onset of these seizures. In the 

penicillin-induced "focal seizure" model, mefenamic acid (and paracetamol) 

delayed the number and onset of seizures, whilst ibuprofen only delayed the 

onset and indomethacin only reduced the number of penicillin-induced seizures. 

Ikonomidou-Turski et al., (1988) demonstrated that a range of NSAIDs 

differentially modulated the threshold for pilocarpine-induced seizures in rats. 

Some NSAIDs, for example, sodium salicylate and phenylbutazone, were pro-

convulsant, others (e.g. indomethacin and ibuprofen) had no effect, and one in 
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particular, mefenamic acid, was anticonvulsant. Interestingly, in this study, 

mefenamic acid not only prevented pilocarpine-induced seizures, but was also 

neuroprotective against the ensuing seizure-related brain damage. Wallenstein 

(1991) using behavioural and electrocorticogram studies, later demonstrated 

that mefenamic acid, but not ibuprofen, attenuated PTZ-induced seizures in 

kindled rats without effects on latency to onset, but that high doses of 

mefenamic acid also produced excitatory effects. More recently, Baran et al., 

(1994) reported that indomethacin potentiated kainic-acid induced seizure 

activity in rats, whilst ibuprofen and the lipoxygenase inhibitor, ebselen, had no 

affect. However, the combined cyclo-oxygenase and lipoxygenase inhibitor, 

BW755C (3-amino-1-, m-(trifluoromethyl-phenyl)-2-pyrazoline) was 

neuroprotective and reduced the severity of PTZ-induced seizures. Most 

recently, Kaminski et al., (1998) demonstrated, using an electrically-induced 

seizure model in mice, that a number of NSAIDs differentially increased the 

protective effects of two antiepileptic drugs (diphenylhydantoin and valproate 

magnesium), whilst having no effect on the threshold of electrically-induced 

seizures themselves: acetylsalicylic acid, ibuprofen, indomethacin, metamizole 

and piroxicam all potentiated the protective effects of valproate magnesium, 

whilst only ibuprofen and piroxicam increased the protective effects of 

diphenylhydantoin. 

These data demonstrate that certain NSAIDs modify seizure activity. 

However, the evidence regarding their effects is conflicting, with some NSAIDs 

potentiating and others inhibiting seizure activity, depending on the seizure 

model employed. Intriguingly, mefenamic acid overdose in humans has been 

reported to result in convulsive seizures. In fact, Prescott et al., (1981) reported 

that over one third of all overdose cases of mefenamic acid resulted in grand 

mal convulsions. Typical symptoms of such overdose cases include 

generalised seizures, clonic-tonic limb movements and lack of response to 

painful stimuli (Young et al., 1979, Balali-Mood et al., 1981, Shipton and Muller, 

1985, Turnbull et al., 1988). Interestingly, Shipton and Muller (1985) describe a 

case of mefenamic acid overdose resulting in a generalised convulsion where 

the patient was remarkably resistant to diazepam treatment, but did respond to 
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etomidate. However, other clinicians have reported successful treatment of 

mefenamic acid-induced generalised convulsions with diazepam (Gossinger et 

al., 1982). In addition to seizures, other reported symptoms of mefenamic acid 

overdose include coma (Gossinger et al., 1982, Hendrikse, 1988), which in one 

case was followed by a grand mal convulsion (Gossinger et al., 1982). 

In the main, it has been proposed that NSAIDs could produce their 

complex effects on seizure threshold and latency by their concurrent inhibition 

of cyclo-oxygenase activity. However, this hypothesis does not explain the 

range of effects exhibited by different NSAIDs, all of which have the ability, 

albeit to different degrees, to inhibit cyclo-oxygenase activity. For example, 

indomethacin and ibuprofen, which have no effect on pilocarpine-induced 

seizures, are more potent inhibitors of cyclo-oxygenase activity than sodium 

salicylate and phenylbutazone, both of which exacerbate pilocarpine-induced 

seizures (Ikonomidou-Turski et al., 1988). In addition, this hypothesis does not 

explain the complex biphasic effects of mefenamic acid on chemically induced 

seizures. Recently, Wong (1993) demonstrated that relatively high doses of 

indomethacin (200-400mg/Kg), but not acetylsalicylic acid, afforded protection 

against chemically- and electrically induced seizures in mice. Wong suggested 

that this protection could be due to GABA-uptake inhibition rather than inhibition 

of cyclo-oxygenase activity and also suggested that the high dosages required 

are due to the "relative insensitivity of mice to CNS depression compared to 

humans." 

In addition to inhibition of cyclo-oxygenase activity, a number of 

alternative explanations have been proposed. Bhattacharya and Sanyal (1978), 

for example, suggest a serotonergic, but not catecholamine-mediated 

component to the convulsive effects induced by PTZ. These authors 

demonstrated that the anti-convulsant effect of PGE-1 on PTZ-induced seizures 

was inhibited by p-chlorophenylalanine (PCPA; a selective serotonin synthesis 

inhibitor), methysergide (a mixed 5-HT 1 / 2 receptor antagonist) and 5,6-

dihydroxytryptamine (DHT; an inductor of selective degeneration of 

serotonergic neurones), but not by the catecholamine synthesis inhibitor, a-

methyl-p-tyrosine (MPT), or the adrenoreceptor antagonists phenoxybenzamine 

(PBZ), propanolol or haloperidol. 
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Despite the clinical evidence, a paucity of studies investigating the 

mechanisms underlying the complex effects of NSAIDs on seizure activity has 

precluded a convincing explanation for these observations. Some 

electrophysiological studies, in a number of non-neuronal and a limited number 

of neuronal preparations, have revealed that NSAIDs may dramatically 

influence the behaviour of a variety of ion channels. These experiments, which 

may provide a valuable insight into the effects of NSAIDs on the CNS, will now 

be discussed in detail. 

1.2.viii. Physiological effects of NSAIDs on Ion Channel function 

1.2.viii. i. Non-neuronal Preparations 

A number of studies have demonstrated that NSAIDs modulate ion 

channel function in non-neuronal preparations. 

Several studies have shown that certain fenamates induce intracellular 

Ca 2 + release. McDougall, et al., (1988) demonstrated that flufenamic acid and 

mefenamic acid uncoupled oxidative phosphorylation causing an inhibition of 

calcium uptake (with an IC50s of 7 îM and 68|aM, respectively), and thereby 

increased cytosolic Ca 2 + levels in mitochondria isolated from rat liver. Later, 

Northover et al., (1990) showed that flufenamate (5^iM) induced intracellular 

Ca 2 + release in isolated myocardial cells and Poronnik et al., (1992), showed 

that flufenamic (with an EC 5 0 of lOO^iM), mefenamic and niflumic acid (in 

descending order of potency) induced intracellular Ca 2 + release in a mouse 

mandibular cell line. In addition, flufenamic acid (between 37-500|xM) and 

mefenamic acid (with less potency) have been shown to directly activate 

potassium channels in human jejunum (Farrugia et al., 1993a); similar results 

were obtained in canine jejunum (Farrugia et al., 1993b). Niflumic acid (with a 

Kd of 261 |aM), flufenamic acid and mefenamic acid (although less potently than 

flufenamic acid also potentiated calcium-activated K+ channels in plasma 

membranes vesicles from pig coronary smooth muscle (reconstituted into lipid 

bilayers) by increasing open channel probability (Ottolia and Toro, 1994). 
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Fenamates have also been shown to inhibit non-selective cation 

channels in non-neuronal preparations. For example, flufenamic, mefenamic 

(both with IC50s of 10|iM), and niflumic acid (with an IC 5 0 of 50\iM) inhibited non

selective cation channels in rat exocrine pancreas; indomethacin, ibuprofen or 

aspirin did not modulate these channels (Gogelein et al., 1990). Fenamates 

have also been shown to block non-selective cation channels in rat distal colon 

cells (Siemer and Gogelein, 1992), in murine L cells (Jung et al., 1992), rat 

capillary endothelial cells (Popp and Gogelein, 1992) and in a mouse 

mandibular cell line (Poronnik et al., 1992). 

An early study by Cousin and Motais, (1979) demonstrated that niflumic 

and meclofenamic acid (with IC50s of 0.63^M and 0.75^M, respectively), non

competitive^ inhibited anion transport in human erythrocytes. More recently, it 

has been shown that fenamates inhibit Ca2+-activated chloride channels in 

certain epithelial cell types (Chao and Mochizuki, 1992). For example, niflumic 

and flufenamic acid inhibit chloride conductance in the basolateral membrane 

lining the ascending Loop of Henle in rabbit kidney (Wangemann, et al., 1986J. 

In addition, flufenamic and niflumic acid have been shown to inhibit Ca 2 +-

activated chloride conductance in Xenopus oocytes (White and Aylwin, 1990, 

Seguela er al., 1993; Woodward et al., 1994). McCarty et al., (1993) report that 

flufenamic acid (200(iM) inhibits the cystic fibrosis transmembrane conductance 

regulator chloride channel expressed in Xenopus oocytes by a voltage-

dependent mechanism, suggesting open-channel blockade. 

1.2.viii. H. Neuronal Preparations. 

There have been few studies investigating the actions of NSAIDs on ion 

channel function in neuronal preparations. However, early studies 

demonstrated that salicylic acid, albeit at millimolar (1-30mM) concentrations, 

inhibited chloride ion permeability and increased potassium ion permeability in 

buccal ganglion neurones of the marine mollusc, Navanax inermis (Barker and 

Levitan, 1971). Neto (1980) later demonstrated that salicylic acid (2-5mM) 

reduced the spike amplitude, and at higher concentrations (10-20mM), blocked 
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conduction of the compound action potentials recorded extracellularly in rabbit 

vagus and frog sciatic nerves. 

Interestingly, Shaw et al., (1995) demonstrate non-selective cation 

channel block with flufenamic acid (300-500|j.M), but not mefenamic acid in 

molluscan neurones, and also showed that at these concentrations flufenamic, 

but not mefenamic acid, also induced intracellular Ca 2 + release in these 

molluscan neurones. Lerma and Martin del Rio, (1991) reported that niflumic 

and flufenamic inhibited NMDA-gated cation channel in mouse spinal cord 

neurones, with IC 5 0 values of * 350>iM. More recently, Chen et al., (1998) report 

an inhibition of NMDA, but not kainate-mediated responses, by mefenamic acid, 

meclofenamic acid and flufenamic acid (all at 1mM), recorded in salamander 

retinal ganglion neurones. 

The studies reviewed above clearly reveal that NSAIDs influence the 

behaviour of a variety of ion channels. However of particular interest are three 

studies which demonstrate that fenamates modulate neuronal GABAA 

receptors. A radio-ligand binding study by Evonuik and Skolnick (1988) 

demonstrated that niflumic acid inhibited Cl-modulated [35s]-t-

butylbicyclophosphorothionate (TBPS) binding to rat neuronal GABAA receptors 

and suggested that niflumic acid acts at or near a binding site within the GABA-

gated CI" channel. More recently, Woodward et al., (1994) demonstrated that 

fenamates modulated rat cortical GABAA receptors expressed in Xenopus 

oocytes. Furthermore, a preliminary study by Halliwell et al., (1994) 

demonstrated that mefenamic acid was a potent modulator of native GABAA 

receptors in rat hippocampal neurones; these studies will be discussed in detail 

below. 

In light of the observations reviewed above, the effects of NSAIDs upon 

neuronal ligand-gated ion channels have been investigated, with particular 

focus on the GABAA receptor. For this reason, the general properties of ligand-

gated ion channels and, in particular, the GABAA receptor, will now be 

discussed. 
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1.3. Liqand-Gated Ion Channels-genera/ characteristics 

Ligand-gated ion channels probably mediate the majority of fast 

inhibitory and excitatory synaptic transmission in the mammalian CNS. These 

channels comprise a multi-subunit assembly forming a central ion selective 

channel and associated ligand binding sites. Neuronal excitation is usually 

associated with the opening of cation channels and subsequent membrane 

depolarisation. Neuronal inhibition, by contrast, is often associated with an 

increase in anion/chloride ion permeability and subsequent membrane 

hyperpolarisation. The GABAA receptor, like the nicotinic acetylcholine (nACh), 

strychnine-sensitive glycine, 5-hydroxytryptamine3 (5-HT3), ionotropic 

glutamate and recently, the purinoceptor P2X receptor, is part of the ligand-

gated ion channel super-family (Unwin et al., 1993; Schofield et al., 1987). The 

structure of the nACh receptor is the best characterised of this receptor super-

family. However, since the GABAA receptor is a major focus of this thesis, the 

properties of GABAA receptors will be reviewed in detail below. 

1.4. The v-Aminobutvric Acid Type A (GABAA) Receptor 

1.4.L y-Aminobutyric Acid (GABA) 

GABA has been known to act as a neurotransmitter in mammals for over 

thirty years. Early studies demonstrated that GABA had marked depressant 

effects on mammalian cerebral cortical neurones (Hayashi, 1956), and that 

GABA could inhibit chemically-induced seizure activity in the motor cortex of the 

dog (Hayashi , 1959). Later, seminal electrophysiological studies performed by 

Krnjevic and Schwartz, (1966, 1967) compared the properties of inhibitory 

postsynaptic potentials (IPSPs) and GABA-induced membrane 

hyperpolarization in cat neocortical neurones and found that in both cases 

these events were chloride-dependent and had similar reversal potentials. 

GABA is now thought to be the major inhibitory amino acid neurotransmitter in 

the vertebrate CNS with between 20 to 50% of all central synapses using 
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GABA as their neurotransmitter, depending on brain region (Bloom and Iverson, 

1971; Bormann, 1988; Young & Chu, 1990). GABA is found predominantly 

within the CNS with only small amounts being located in the periphery. It is a 

neutral amino acid which is synthesised in GABAergic nerve terminals by the 

action of the decarboxylating enzyme, glutamic acid decarboxylase (GAD) on L-

glutamic acid (Roberts And Frankel, 1950). It is released from nerve terminals 

in response to a stimulus in a calcium-dependent manner (Bradford, 1970) and 

following release; it is removed from the synaptic cleft by high affinity sodium-

dependent uptake systems (Iverson and Neal, 1968). GABA is the endogenous 

ligand for a diversity of GABA receptors. 

1.4.H. GABA Receptor Classification 

Three different receptor classes for GABA have been defined in terms of 

physiology and pharmacology namely, GABAA, GABAB and GABAC receptors. 

Of these the GABAA receptor has been the most extensively characterised. 

The first GABA receptor subtype to be described was later defined as 

the GABAA receptor. GABAA receptors have been shown to be directly 

associated with a CI- channel (Bormann, 1988; Silvilotti and Nistri, 1991) and 

are located pre- and post-synaptically throughout the CNS. GABA influences 

neuronal excitability and affects glial cells at GABAA receptors by increasing 

permeability to chloride ions (Curtis et al., 1968; Krnjevic, 1974; Olsen, 1982) 

usually causing membrane hyperpolarization in neurones and depolarisation in 

glial cells. GABAA receptors are activated by GABA, muscimol and isoguvacine, 

inhibited competitively by bicuculline and, non-competitively, by picrotoxin, and 

are subject to allosteric modulation by a number of chemically diverse allosteric 

modulators which will be discussed in detail below. 

G A B A B receptors have been shown to be coupled to Ca 2 + or K+ 

ionophores via G-proteins (Bormann 1988; Bowery 1993); they are located pre-

and post-synaptically throughout the CNS and are composed of heterogeneous 

subtypes (Bonnanno et al., 1993). Recently, Kaupmann et al., (1997) have 
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cloned a G A B A B receptor, which is a 7-transmembrane domain protein, bearing 

similarities to metabotropic glutamate receptors. G A B A B receptors are 

bicuculline-insensitive, stimulated by G A B A and baclofen (Bowery et al., 1980; 

Hill and Bowery, 1981) and inhibited by phaclofen (Kerr et al., 1987) and CGP 

54626 ([S-(R*,R*)]-[3-[[1-(3,4-dichlorophenyl) ethyl] amino-2-hydroxypropyl] 

(cyclohexylmethyl) phosphinic acid; Froestl etai, 1996). 

GABAC receptors (Drew et al., 1984; Cutting et al., 1991; Polenzani et 

al., 1991) may represent a simpler homo-oligomeric type of ligand-gated ion 

channel, having simpler pharmacology than GABAA receptors. They are 

stimulated by GABA, muscimol, cis-4-aminocrotonic acid (CACA; a 

conformationally restricted analogue of GABA) and its trans-isomer (trans-4-

aminocrotonic acid; TACA) (Sivilotti and Nistri, 1989, 1991; Feigenspan et al., 

1993; Lukasiewicz et al., 1994; Dong et al., 1994), but are insensitive to 

baclofen and bicuculline (Quian and Dowling, 1993; Feigenspan et al., 1993; 

Dong et al., 1994). Unlike GABAA receptors, GABAC receptors are not 

modulated by benzodiazepines, barbiturates (Sivilotti and Nistri, 1991; Bormann 

and Feigenspan, 1995) or neurosteroids (Feigenspan et al., 1993). GABAC 

receptors have recently been localised to sub-populations of vertebrate retinal 

neurones ("Cutting et al., 1991, Feigenspan et al., 1993; Quian and Dowling, 

1993; Lukasiewicz et al., 1994; Dong et al., 1994) and are thought to contain 

the recently discovered p-subunit (Cutting era/., 1991,1992). 

Thus, a diversity of receptor classes exists for which GABA is the 

endogenous ligand. This diversity is further increased by the existence of a 

number of subtypes of the GABA receptor which differ in terms of physiology 

and pharmacology. 

Chapter One: General Introduction 22 



1.4.HL Structure of the GABAA receptor 

Determination of the molecular structure of the GABA receptor was 

aided by the discovery that the receptor protein could be photo-affinity labelled 

by [3H]-flunitrazepam (Mohler et al., 1980). A single polypeptide was labelled in 

crude brain homogenates with a molecular weight of 51 kD. Subsequently, the 

existence of additional benzodiazepine binding polypeptides was demonstrated 

(Sieghart and Drexler, 1983). On the basis of these and similar biochemical 

studies (e.g. Sigel et al., 1983), the GABAA receptor was proposed to form a 

hetero-oligomeric complex of about 200-300kD composed of 2 or more different 

polypeptides (a and p). Later, five different GABAA receptor subunit subtypes 

(each between 48-56kDa.) were identified on the basis of sequence analysis 

(Schofield et al., 1987; Olsen and Tobin, 1990; Levitan et al., 1988; Pritchett et 

al., 1989; Burt & Kamatchi 1991). Electron microscope and image analysis 

studies have revealed that the GABAA receptor probably comprises a 

pentameric subunit organisation surrounding a central pore (Nayeem et al., 

1994). Hydropathy analysis of the sequences of GABAA receptor subunits 

predicts an extracellular N-terminal of about 200 amino acids containing three 

glycosylation sites, and four putative a-helical hydrophobic transmembrane 

(TM) spanning regions (TM1-4; Schofield era/., 1987; Olsen and Tobin, 1990; 

Burt and Kamatchi, 1991; Wisden and Seeburg, 1992). A large intracellular 

loop exists between TM3 and TM4, which contains phosphorylation sites 

thought to be responsible for receptor assembly and regulation (for review see 

Moss and Smart, 1996). The N-terminus is thought to be involved in ligand 

recognition. As in the nicotinic acetylcholine (nACh) receptor (Leonard et al., 

1988; Sakmann, 1992; Lester, 1992; Akabas, 1992, 1994; Unwin, 1993), the 

TM2 region of the GABAA receptor is thought to be involved in the formation of 

the channel wall (Xu and Akabas, 1993,1996). 
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Figure 1.2: Schematic representation of the GABAA receptor: showing a 

pentameric subunit organisation surrounding a central pore. Known binding sites 

on specific subunits for G A B A and some positive allosteric modulators of the 

GABAA receptor are shown (see key), a- and y- subunits are shown adjacent to 

each other comprising the benzodiazepine binding site. The (3-subunit, carrying 

binding sites for loreclezole (etomidate) and propofol is shown between two 

other unknown subunits, which may also be involved in ligand binding. Binding 

sites for barbiturates and steroids may be present on all subunits. (Schematic 

modified from McKernan and Whiting, 1996 ). 
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1.4.1'v. Biophysical Properties of the GABAA receptor 

The GABAA receptor is an anion-selective channel. Electrophysiological 

studies by Bormann et al., (1987) using cultured mouse spinal neurones 

revealed the following permeability sequence (relative to chloride ions) for the 

GABAA receptor: SCN- > I- > NCy > Br- > N0 2- > CI- > HC0 3- and an ionic 

conductance sequence which was reversed in order. These authors estimated 

an effective pore diameter of 5.6nm for the G A B A A receptor. In mammalian 

neurones a gradient of chloride ions exists across the membrane. Activation of 

G A B A A receptors results in movement of chloride ions in or out of cells, 

depending on the electrochemical driving force present. 

Development of the single-channel recording technique (Hamill et al., 

1981) has enabled the characterisation of GABAA receptors at the single-

channel level. Using this technique, Bormann et al., (1987) described multiple 

conductance levels of the G A B A A receptor in outside-out patches of cultured 

mouse spinal neurones and found a predominant conducting state of 3QpS with 

three less frequently occurring states of 44, 19 and 12 pS. Similar experiments 

conducted by Macdonald et al., (1989a), again in cultured mouse spinal 

neurones, also revealed main conductance states of 27-30pS and two less 

frequently occurring states of 17-19pS and 11-12pS for G A B A A receptors. 

The single-channel gating properties of the main conductance level of 

G A B A A receptors in cultured mouse spinal neurones has been well 

characterised (Sakmann et al., 1983; Macdonald et al., 1989a; Twyman era/., 

1990; Twyman and Macdonald, 1992). These investigators have shown that the 

G A B A A receptor has three different open states. For example, low 

concentrations (0.5|j,M) of G A B A open channels with a mean open duration of 

0.5ms whereas higher concentrations (up to 5|uM) open channels with mean 

durations of 2.6 and 7.6ms (Macdonald et al., 1989a; Macdonald and Olsen, 

1994). Multiple closed states, with different mean closed durations, also exist 

for the G A B A A receptor, namely two brief closed states with mean durations of 

0.2 and 1.4ms states with time constants which are concentration independent, 

and at least three longer closed states with time constants which decrease with 

increasing agonist concentration. Perhaps, not surprisingly, several 

investigators have shown that the gating properties of recombinant G A B A A 
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receptor single channels vary according to subunit subtype (reviewed by 

Macdonald & Olsen, 1994). 

1.4.v. Subunit Heterogeneity & Stoichiometry of GABA Receptors 

The GABAA receptor is formed by the assembly of five subunits to 

produce a ligand-gated ion channel complex (Macdonald & Olsen, 1994; 

Nayeem et al., 1994). To date, molecular cloning and expression studies have 

revealed the presence of at least nineteen different, but structurally similar, 

gene products encoding for G A B A A receptor subunit isoforms. Subsequently, 

six distinct glycoprotein classes have been identified on the basis of predicted 

amino acid sequences. These contain the following isoforms: a1-a6, pi-p4, y1-

y3, 8, s (Davies era/., 1997a; Whiting et al., 1997) and n (Heblom and Kirkness, 

1997) . These polypeptides are all approximately 50 kD in size, with four 

putative transmembrane spanning regions. In addition, some of the GABAA 

receptor genes undergo alternative splicing and splice variants exist for the 

genes encoding a6, p2, p4 and for y2- subunits. For example, the rat cerebellar 

a6 splice variant has a short sequence of amino acids missing from the N-

terminus which renders the receptor non-functional when in combination with 

other subunits (Korpi et al., 1994). In the chick, two splice variants have been 

identified for p2 and p4 subunits (Bateson et al., 1991; Harvey et al., 1994). In 

addition, two splice variants have been identified for y2- subunits, y 2 S and y 2 L, in 

human, rat and bovine tissue, with the y 2 L splice variants containing an 8-amino 

acid insert with a consensus substrate sequence for phosphorylation (Whiting 

et al., 1990; Kofuji et al., 1991). In the CNS, GABAA receptors comprise 

combinations of a- and p- subunits, together with one or more of the y-, 8- or e-

subunits (McKernan and Whiting, 1996; Davies et al., 1997a; Barnard et al., 

1998) . To date, in humans, the u-subunit has been located mostly in peripheral 

tissues, particularly in the uterus, but it has also been identified in small 

amounts in the hippocampus and temporal cortex (Heblom and Kirkness, 

1997). In addition, p-subunits have been found to make up GABAA receptors 

only in the retina (Cutting era/., 1991, 1992 and Ogurusu and Shingai, 1996). 
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The amino acid sequence homology between subunit classes is about 

30-40%, but within a subunit class, it is 60-80%. A separate gene encodes for 

each subunit and these genes have been shown to cluster together on different 

chromosomes. For example, in the human genome, genes encoding a1, a6, p2 

and y2 subunits are clustered onto chromosome 5 (Wilcox et al., 1992; Hicks et 

al., 1994; Buckle et al., 1989), genes encoding a2, p1 and y1 are clustered 

onto chromosome 4 (Wilcox et al., 1992; Buckle et al., 1989) and genes 

encoding a5, p3 and y3 are clustered onto chromosome 15 (Wagstaff et al., 

1991; Knoll et al., 1993; Gregeref al., 1995). 

Immunoprecipitation and in situ hybridization studies have revealed the 

existence of a large diversity of GABAA receptor isoforms in native cells which 

differ in terms of their subunit combination. These different receptor isoforms 

are known to predominate in different brain regions (Wisden et al., 1992; 

Rabow et al., 1995). In fact, in situ hybridisation studies have indicated that an 

overlapping regional distribution of the various subunits exists throughout the 

brain. In a comprehensive in situ hybridization study, Wisden et al., (1992) 

mapped the mRNA distribution of 13 GABAA receptor subunit-encoding genes 

in adult rat brain and demonstrated that the mRNAs of the rat GABAA receptor 

subunits were present in a complex, overlapping pattern. For example the 

mRNA distribution of the a1 subunit was ubiquitous throughout the brain, 

whereas the mRNA of the a6 subunit was confined to cerebellar granule cells 

(Wisden et al., 1992, Laurie et al., 1992). A number of studies have shown that 

most GABAA receptor subunits are expressed in the hippocampus (reviewed by 

McKernan and Whiting, 1996). Wisden et al., (1992) demonstrated that in the 

hippocampus, a1-5 mRNA were expressed throughout, with the a2-subunit 

mRNA being the most prevalent, particularly in dentate gyrus cell layers and in 

the CA1 and CA3 regions. oc3 mRNA expression was highest in the dentate 

granule cells, but was also present, to a lesser degree, in pyramidal cells. a5 

mRNA expression levels, virtually absent from all other areas of the brain in this 

study, was highest in CA1 and CA3 regions, but was also present in the 

dentate gyrus (see also Thompson et al., 1992). p i , p2 and p3 mRNAs were 
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found throughout the hippocampus with pi and p3 being predominant and pi 

being rarely expressed elsewhere in rat brain. All y-subunit mRNAs were 

expressed in the hippocampus, with the y2-subunit being the most common and 

y3 being relatively uncommon. Finally, the 5-subunit mRNA distribution was 

found to be confined to dentate granule cells. 

Although the number of possible combinations of these native isoforms 

is vast, only twelve to twenty-four combinations are thought to exist in the native 

form (e.g. Smith and Olsen, 1995). Studies involving the expression of G A B A A 

receptor subunits in Xenopus oocytes and mammalian cells suggest the 

occurrence of an ordered assembly of GABAA receptor subunits into a 

preferred complex of functional GABAA receptors, rather than a random 

assembly of subunits (Macdonald & Olsen, 1994). 

A number of possible subunit stoichiometries has been shown to exist in 

mammalian brain. For example, immunoprecipitation studies (Khan et al., 

1994,1996; Pollard et al., 1995) have indicated that two different oc-subunits, a1 

and a6, can co-occur in cerebellar receptors. In similar studies, other 

investigators have demonstrated the co-occurrence of different p- subunits and 

that this co-occurrence varies with brain region. For example, Li and De Bias, 

(1997) have indicated that 33% of rat cerebral cortex GABAA receptors contain 

both p1 and p2 subunits and that 19% contain both pi and p3 subunits; also p 

subunit co-occurrence was seen predominantly in the hippocampus with the 

least occurring in the cerebellum. Additionally, using immunoprecipitation 

techniques in whole rat brain, Benke et al., (1996) demonstrated that y2 and y3 

subunits co-assembled in native GABAA receptors. Immunoprecipitation studies 

in a6-containing cerebellar granule cells indicated that 10%, 51% or 21% of 

these cells contained homogeneous pi , p2 or p3 subunits, respectively and that 

two different p-subunits were present in 18% of these cells (Jechlinger et al., 

1998). 

Kirsch et al., (1995), for example, have demonstrated that any ternary 

combination of a, p and y subunits expressed recombinantly in oocytes or 

cultured cells can form functional membrane-bound receptors. In fact, the triple 

combination of ocip2y2 has been suggested to constitute the majority of GABAA 
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receptor mRNAs in many neurone populations in the brain (McKernan et al., 

1991; McKernan and Whiting, 1996). In the case of the native receptor, 

however, it has been suggested that the combination of specific subunit 

subtypes may be genetically predetermined for given cell populations 

(McKernan and Whiting, 1996). 

It is now increasingly recognised that the precise subunit composition of 

the receptor confers distinct pharmacological and physiological properties to 

G A B A A receptors (Mihic et al., 1995; McKernan and Whiting, 1996). These 

properties will be discussed in detail where appropriate. 

Additionally, GABAA receptor function may be modified by agents that 

increase protein phosphorylation. Phosphorylation is a process whereby 

receptor structure is covalently modified and it is catalysed by enzymes known 

as protein kinases, for example, cyclic adenosine monophosphate-dependent 

protein kinase (PKA), protein kinase C (PKC) and protein kinase G (PKG) 

calmodulin dependent protein-kinase II and tyrosine kinases. In vitro 

recombinant studies (reviewed by Moss and Smart, 1996) suggest that the p 

and y2 subunits are the primary sites of GABAA receptor phosphorylation. 

Phosphorylation of GABAA receptors in different neuronal preparations 

may cause enhancement or inhibition of GABAA receptor function. For example, 

in mouse spinal neurones, phosphorylation by PKA decreases GABAA receptor 

activation (Porter et al., 1990), whereas in rat retinal cells PKA phosphorylation 

may increase receptor function (Veruki and Yeh, 1992, 1994) and may also be 

involved in receptor assembly (Angelotti et al., 1993). PKC-mediated 

phosphorylation usually results in inhibition of GABAA receptor function. For 

example, early studies using rat or chick brain mRNA injected into Xenopus 

oocytes, demonstrated, for the first time, that activation of PKC by phorbol 

esters caused inhibition of GABA-evoked whole-cell currents (Sigel and Baur, 

1988; Moran and Dascal, 1989). Several other investigators have also 

demonstrated inhibition of GABAA receptor function by PKC-mediated 

phosphorylation (for review see Moss and Smart, 1996). In contrast, tyrosine 

phosphorylation has been reported to enhance GABAA receptor function in 
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superior cervical ganglion neurones by increasing mean open time and open 

channel probability (Moss et al., 1995). 

1.5. GABA^Receptor Pharmacology: Agonists and Antagonists 

The GABAA receptor possesses binding sites for many chemically 

diverse compounds. Included amongst these are sites for agonists, partial 

agonists, competitive-antagonists and positive and negative allosteric 

modulators. A description of some of the important agonist and antagonists 

which have contributed to the characterisation of the GABAA receptor is 

presented below, followed by a description of the allosteric modulators of the 

GABAA receptor which are central to this thesis. 

1.5.i. Agonists 

GABA is the primary endogenous ligand for the GABAA receptor. It is a 

flexible molecule which can adopt a number of low energy conformations 

allowing it to interact with different GABA receptors, enzymes and transporters 

(Johnston et al., 1978). Another GABAA agonist, which is more potent than 

GABA itself is muscimol, the naturally occurring isoxazole analogue obtained 

from the hallucinogenic mushroom Amanita muscaria. Curtis et al., (1971) 

demonstrated that GABA (0.5M) and imidazole acetic (0.5M) acid were 

approximately equipotent as depressants of cat spinal interneurones when 

applied ionotophoretically , whereas muscimol (0.5M) was much more potent. 

The potency ratio was reflected by the currents required to produce equal 

diminution of neuronal firing (20nA for GABA compared to 1nA for muscimol in 

one cell; firing (2nA for GABA compared to 3nA for imidazole acetic in a second 

cell). Similar experiments by Krogsgaard-Larsen et al., (1977) have shown that 

THIP (4,5,6,7-tetrahydroisoxazolo-[4,5-c]pyridin-3-ol), a conformational^ 

restricted, bicyclic synthetic analogue of muscimol, is more selective for GABAA 

receptors than muscimol or GABA, but is equipotent with GABA and less potent 

than muscimol in terms of its ability to inhibit neuronal activity in the cat spinal 

cord, in vivo (Krogsgaard-Larsen et al., 1977). Isoguvacine (1,2,3,6-
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tetrahydropyridine-4-carboxylic acid), a compound where the isoxazole of THIP 

has been substituted by a carboxyl group, however, is equipotent with 

muscimol in its ability to inhibit neuronal activity in the cat spinal cord, in vivo 

(Krogsgaard-Larsen et al., 1977) and demonstrates some selectivity for p 

subunits (Bureau and Olsen, 1990). Studies in rat cerebral cortex slices 

demonstrate that neither THIP nor isoguvacine (0.5-1 mM) affect G A B A 

transaminase activity or G A B A uptake (Krogsgaard-Larsen et al., 1977). ZAPA 

(Z-3-[(aminoiminomethyl)thio]prop-2-enoic acid) is a conformationally restricted 

isothiouronium analogue of G A B A and it is selective for low affinity G A B A A 

receptors, which are modulated by benzodiazepines. ZAPA facilitates the 

binding of diazepam (EC50 0.1%M for ZAPA and 0.46faM for G A B A ; Alian et 

al., 1986) and displaces the low affinity binding of G A B A to rat brain 

membranes (IC50 in washed synaptosomal membranes for inhibition of [3H] 

G A B A binding - G A B A 70^M and ZAPA 46pM; Allan et al., 1991). (+)-TACP 

((+)-trans-(1S,3S)-3-aminocyclopentane-1-carboxylic acid) is a stereoisomer of 

a cyclopentane analogue of G A B A (Allan et al., 1979). (+)-TACP is a potent 

G A B A A agonist, which does not interact with G A B A enzymes or transport 

systems. 

1.5.U. Partial Agonists 

A number of partial agonists also exist, for example, 4-PIOL (5-(4-

piperidyl) isoxazol-3-ol), thio-THIP, (Krogsgaard-Larsen era/., 1994), piperidine-

4-sulphonic acid and other related compounds (Falch et al., 1985). 4-PIOL is a 

"non-fused" THIP analogue which is approximately 200 times less potent than 

isoguvacine as an agonist, with an EC50 of 91 ̂ iM in whole-cell voltage-

clamped hippocampal neurones, and 30 times less potent than bicuculline 

methochloride as an antagonist (Kristiansen et al., 1991). Thio-THIP appears 

to be a low-efficacy partial agonist in human brain recombinant receptors 

expressed in oocytes (Krogsgaard-Larsen et al., 1994), but a full agonist in cat 

spinal dorsal horn intemeurones where it has half the potency of THIP or GABA 

when these agonists are applied electrophoretically at concentrations of 0.2M 

(Krogsgaard-Larsen era/., 1983). 
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Figure 1.3: Shows the GABAA receptor agonists , GABA, muscimol, THIP , 

isoguvacine, (+)-TACP and ZAPA. 
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7.5.///. Competitive Antagonists 

Competitive antagonists of the G A B A A receptor are thought to act at 

G A B A recognition sites. In 1970, bicuculline, a convulsant compound from the 

plant Dicentra cucullaria, was found to antagonise the inhibitory actions of 

G A B A in cat spinal Renshaw cells, whereby bicuculline (10mM) was found to 

considerably reduce the depressant action of electrophoretically-applied GABA 

on neuronal excitability (Curtis et al., 1970). Bicuculline is a phthalide 

isoquinoline alkaloid and is structurally similar to the G A B A A receptor agonist, 

muscimol (Andrews and Johnston, 1979). In addition, other convulsant 

isoquinoline alkaloids, such as (+) hydrastine and corlumine have been 

associated with GABA antagonism (Curtis and Johnston, 1974). Securinine, 

from the plant Secuhnega suffructicosa, is a convulsant indolizidine alkaloid 

which is a selective GABA A receptor antagonist. Securinine induced tonic 

seizures in mice with a C D 5 0 dose four times less potent than that of bicuculline 

(28±3mg/kg versus 8±4mg/kg), but was approximately 7 times less potent than 

bicuculline in inhibiting [3H]GABA binding to rat brain membranes (Beutler et al., 

1985). In the same study, electrophysiological experiments conducted in cat 

spinal cord neurones revealed that securinine blocked the inhibitory action of 

GABA, but not glycine. Electrophysiological studies conducted in the cat spinal 

cord in vivo revealed that SR95531 (5mM), ("gabazine" or 2-(3-carboxypropyl)-

3-amino-6-p-methoxyphenylpiridazinium bromide), was a selective GABAA 

receptor antagonist (Gynther and Curtis, 1986). In addition, Michaud et al., 

(1986) demonstrated in a microiontophoretic in vivo study that SR95531 (5mM) 

and bicuculline methochloride (5mM), with equal potency, inhibited GABA-

elicited responses recorded extracellularly in the rat cuneate nucleus in a dose-

dependent, competitive and reversible manner for ejection currents up to 

100nA. 

RU5135 (3-a-hydroxy-16-imino-5p-17-aza-androstan-11-one) is an 

aminidine steroidal compound which is the most potent G A B A A receptor 

antagonist known, being about 214 times more potent than bicuculline in the rat 

cuneate nucleus slice with a pA 2 value of 8.31(Simmonds and Turner, 1985). 

RU5135, however, also acts as a glycine antagonist in the rat optic nerve (pA 2 
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= 7.67; Simmonds and Turner, 1985) and in the cat spinal cord in vivo (Curtis 

and Malik, 1985). 

Pitrazepin (3-(piperazinyl-1)-9H-dibenz(c,t)triazolo(4,5-a)azepine) (and a 

number of other N-aryl piperazines) is known to be a potent, but not selective, 

GABA A receptor antagonist. In binding studies, pitrazepin reversed the 

inhibitory effect of 1|LIM GABA on 35S-TBPS binding with an EC50 OF 0.36^iM 

and was found to be 4 to 5 times more potent than bicuculline (Squires and 

Saederup, 1987). In electrophysiological studies in the cat spinal cord in vivo, 

pitrazepin hydrochloride (5mM) blocked GABA- and glycine- mediated neuronal 

inhibition (Curtis and Gynther, 1986). Other competitive GABAA receptor 

antagonists include (+)-tubocurarine (5mM), which apart from being an 

acetylcholine nicotinic antagonist, also weakly antagonised cortical GABA A and 

glycine receptors (Hill et al., 1972) and cuneate nucleus glycine receptors (Hill et 

al., 1973). 
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Figure 1.4: Showing chemical structures of competitive antagonists of the 

GABA A receptor in order of potency : RU5135> pitrazepine> SR95531 « 

(+) hydrastine > bicuculline > securinine. 
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1.5.iv. Non-competitive antagonists 

Picrotoxin, obtained from the poisonous plant Anamirta cocculus, is an 

equimolar mixture of a potent convulsant, picrotoxinin, and a less potent 

convulsant, picrotin (Curtis and Johnston, 1974). Picrotoxin is a non-competitive 

antagonist of the GABA A receptor, which is thought to directly block the chloride 

channel, rather than binding to the GABA recognition site. In contrast to 

bicuculline (IO^IM), picrotoxin (10>M) can act as an antagonist whether applied 

intra- or extracellulary to voltage-clamped bullfrog dorsal root ganglion cells 

(Akaike et al., 1985). Also, in the rat cuneate nucleus, synergistic antagonism of 

GABA-evoked currents by a combination of picrotoxin and bicuculline 

suggested different sites of action for these compounds (Simmonds, 1980). 

Indeed, picrotoxinin binding sites, identified with [ 3 5S]-TBPS, are known to be 

closely associated with the chloride channel of the GABA A receptor. Apart from 

antagonising GABA-mediated responses, at higher concentrations, picrotoxin 

has also been reported to antagonise the neuronal effects of glycine in 

neurones (Davidoff and Aprison, 1969) and in spinal neurones (Curtis et al., 

1969). In addition, iontophoretic application of picrotoxin, albeit at higher 

concentrations (a saturated solution) than those required for GABA 

antagonism, antagonized the inhibitory effect of 5-HT on visual cortex neurones 

of the rat in vivo (Mayer and Straughan, 1981). 

Furosemide is a chloride transport blocker which has been shown to 

antagonise the action of GABA in a number of preparations, for example in rat 

cuneate nucleus slices (Simmonds, 1982), guinea pig ileum (Taniyama et al., 

1988) and frog sensory neurones (Inomata et al., 1988). Simmonds, (1982) 

demonstrated that furosemide (0.1 -1mM) antagonised muscimol-evoked 

responses in rat cuneate nucleus slices in a non-competitive manner. In 

addition, furosemide antagonises recombinant GABA A receptors expressed in 

oocytes in a subunit-selective manner. Electrophysiological experiments by 

Korpi er al., (1995) have shown that furosemide potently antagonizes a6p2y2s-

(IC50«10|Jv1), but not aip2y2s-containing receptors (IC50>3mM). Binding 

studies by the same authors also indicated that furosemide was selective for 
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p2/3y2-containing receptors and was ineffective at ot1/6piy2s-containing 

receptors. 

Z n 2 + (50-300(aM) has also been shown to inhibit GABA-evoked 

responses in rat neurones (Smart and Constanti, 1990; Smart, 1992). Patch-

clamp studies of embryonic and adult sympathetic neurones performed by 

Smart, (1992) revealed that antagonism of GABA-evoked currents by Z n 2 + was 

subject to a developmental influence, whereby embryonic neurones were much 

more sensitive to inhibition than adult neurones. This study demonstrated that 

Z n 2 + did not affect the main single-channel conductance and mean open and 

shut times, but rather reduced the opening frequency of the GABA-gated CI 

channel. Moreover, recombinant studies have shown that only hetero-

oligomeric recombinant GABA A receptors, devoid of a y-subunit are sensitive to 

Z n 2 + inhibition (Draguhn era/., 1990; Smart et al., 1991). 

Penicillin is approximately 100 times less potent than bicuculline (Curtis 

and Johnston, 1974). Penicillin (100-5000jiM) has been shown to 

concentration-dependently antagonise GABA A receptor-mediated events 

recorded in voltage-clamped mouse spinal cord neurones by shortening the 

duration of channel openings and producing simple open channel blockade of 

the GABA A receptor (Twyman et al., 1992). 

Other non-competitive GABA A receptor antagonists or more correctly, 

negative allosteric modulators (for review see Johnston, 1996), include 

convulsant p-carbolines and quinolone antibiotics together with NSAIDs, these 

will be discussed below. 

1.6. Positive Allosteric Modulators of the G A B A A Receptor 

A variety of compounds do not interact directly with the G A B A binding 

site but, instead, bind to additional allosteric modulatory sites present on 

G A B A A receptors. This allosteric binding elicits a conformational change in the 

G A B A A receptor which subsequently influences the properties of other binding 

sites present on the receptor, thus modulating GABA-induced chloride ion flux. 
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Johnston (1996) has reviewed over 100 compounds which act at the 

G A B A A receptor. An overview of the clinical effects, electrophysiology and 

pharmacology of the major classes of positive allosteric modulators of the 

G A B A A receptor, together with a review of the recent evidence of novel 

modulators including fenamates will be presented below. These data form the 

background to the experimental work described later in this thesis. 

1.6.L Benzodiazepine Modulation of the GABAA Receptor 

The first benzodiazepines were introduced into the clinic in the early 

1960s, but it was not until some years later that it was recognised that 

benzodiazepines exerted their therapeutic effects by facilitating GABA-

mediated neurotransmission. For example, experiments by Costa et al., (1975) 

revealed the extraordinary potency (<1|iM) with which diazepam antagonised 

convulsions elicited by blockade of GABA synthesis in mice. Subsequently, 

benzodiazepines have become amongst the most widely used drugs, employed 

for their anticonvulsant, sedative-hypnotic, anxiolytic and muscle relaxant 

properties. 

On the basis upon early radio-ligand binding studies using rat brain 

membranes, it was thought there was a single class of benzodiazepine 

receptors. These studies first revealed the existence of benzodiazepine-specific 

high-affinity binding sites, in close association with GABA A receptors (Braestrup 

and Squires, 1977; Mohler and Okada, 1977). Initially, benzodiazepine 

receptors were classified according to their regional distribution, i.e. "central" 

and "peripheral" type benzodiazepine receptors, which appeared to be 

pharmacologically distinct (Braestrup and Squires, 1977). Peripheral 

benzodiazepine receptors have since been shown to be largely associated with 

the outer mitochondrial membrane (Verma and Synder, 1989) and to be 

involved in controlling steroidogenesis. However, these receptor types have 

also been identified within the CNS and thus benzodiazepine receptor subtypes 

may be re-defined as a "neuronal and non-neuronal benzodiazepine receptors" 

(Gardner et al., 1992). 
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"Central" or "neuronal" benzodiazepine receptors associated with GABA A 

receptors have subsequently been classified into subtypes according to their 

pharmacology. Benzodiazepines, such as diazepam or flu nitrazepam, increase 

the potency of GABAergic ligands at GABA A receptors (Study and Barker, 

1981), whereas, other benzodiazepines, for example, methyl 6,7-dimethoxy-4-

ethyl-p-carboline-3-carboxylate (DMCM), decrease the potency of GABAergic 

ligands. Both of these effects are blocked by benzodiazepine antagonists, such 

as flumazenil (Nutt et al., 1982; Pole et al., 1982). The availability of 

compounds such as the triazolopyridazine, CL 218872, the imiadazopyridine, 

Zolpidem and certain p-carbolines, such as DMCM have indicated the existence 

of other classes of benzodiazepine receptors (Braestrup et al., 1982; Braestrup 

et al., 1984). These compounds displaced [3H]-benzodiazepine binding in a 

biphasic manner and had different affinities for benzodiazepine receptors in the 

cerebellum, compared to other brain regions (e.g. Seighart, 1989; Arbilla and 

Langer, 1986). 

Subsequently, these benzodiazepine subtypes have been termed BDZ 1 

types, BDZ 2 types and BDZ 3 types. BDZA type receptors have greater affinity for 

the C1 218,872, Zolpidem and certain p-carbolines than BDZ 2 type receptors. 

BDZ 2 type receptors, in contrast, have low affinity for these compounds, but 

high affinity for fiunitrazepam. BDZ 3 type receptors are selective for the 

negative allosteric modulator, Ro15-4513, and insensitive to diazepam. 

Recombinant studies have shown that benzodiazepine modulation has 

been shown to be absolutely dependent upon the presence of the y-subunit in 

recombinant GABA A receptors, with ct-subunits modulating benzodiazepine 

sensitivity. Electrophysiological studies by Pritchett era/., (1989) demonstrated 

that co-expression of the human y2 subunit, together with a1 and p i in HEK 293 

cells, mediated GABA A receptor responses which were potentiated by 

fiunitrazepam and that this potentiation was abolished by the benzodiazepine 

antagonist, Ro15-1788. To date, recombinant BDZ1, BDZ2 and BDZ3 type 

receptors may be distinguished not only by their pharmacology but also by the 

presence of different a-subunits. The pharmacological and electrophysiological 

properties of BDZ-i type receptors appear to depend on the presence of the a 1 
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together with another p and the y2 subunit. BDZi type receptors constitute the 

predominant GABA A receptor subtype throughout the CNS. Autoradiographic 

studies of human brain by Faull et al., (1987) and Fault and Villinger, (1988) 

demonstrated that BDZ^ receptors were concentrated in the cerebellum but 

were scarce in the hippocampus, whereas BDZ 2 type receptors were 

concentrated in the hippocampus, striatum and spinal cord. BDZ 2 type receptor 

pharmacological and electrophysiological properties appear to depend on the 

presence of the cc2, 3 or 5 together with another p and the y2 subunit. The BDZ 3 

type receptor is the least common subtype, being restricted to cerebellar 

granule cells (Luddens et al., 1990) which contain the a 6 subunit together with 

p2 and y subunits. 

Electrophysiological studies in a variety of neuronal preparations have 

indicated that benzodiazepines enhance the actions of GABA at the GABA A 

receptor but are unable to directly activate the GABA A receptor in the absence 

of GABA (e.g. Study and Barker, 1981). Fluctuation analysis studies on mouse 

spinal neurones demonstrated that diazepam increased GABA A receptor open 

channel frequency, without effects on channel conductance or open time (Study 

and Barker, 1981). Subsequently, single channel studies have shown that this 

increase in opening frequency is due to increased occurrence of bursting 

activity, rather than increases in burst duration or single-channel events 

(Macdonald and Twyman, 1992; Macdonald and Olsen, 1994). 

1.6.H. Steroidal Modulation of the GABAA Receptor 

Almost 60 years ago, Hans Selye (1941) described the potent sedative-

anaesthetic properties of the ring A-reduced metabolites of progesterone and 

deoxycorticosterone. Subsequently, these "neuroactive steroids" have been 

shown to rapidly alter CNS excitability and also give rise to rapid behavioural 

changes via non-genomic mechanisms. Binding studies using synaptosomal 

membrane preparations from rat forebrain demonstrated that certain synthetic 

and endogenous steroids at physiologically relevant concentrations, were 
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potent allosteric modulators of the GABA A receptor (Harrison and Simmonds, 

1984, Majewska etal., 1986). 

To date, the 3a-hydroxy ring A-reduced pregnane steroids are the most 

widely studied "neuroactive steroids." Allopregnanolone (5ot-pregnan-3a-ol-one; 

3a-OH-DHP) and allotetrahydrodeoxycorticosterone (5oc-pregnan-3a,21-diol-

20-one; 5aTHDOC), at physiologically relevant concentrations, have been 

shown to be amongst the most potent of the known ligands for the GABA A 

receptor (Callachan et al., 1987; Peters et al., 1988). It has been suggested that 

these steroids may be endogenous GABA A receptor ligands, producing 

sedative and/or anxiolytic effects. Early electrophysiological studies conducted 

in voltage-clamped bovine chromaffin cells and rat hippocampal neurones 

demonstrated that alphaxalone (Cottrell et al., 1987) and 5p-pregnan-3a-ol-20-

one and 5p-pregnan-3,20-dione (Callachan et al., 1987; Harrison et al., 1987) 

reversibly and dose-dependently potentiated GABA-evoked chloride currents in 

these cells. Conversely, steroids such as RU5135, pregnenolone sulphate and 

dehydroepiandrosterone sulphate (DHEAS; for review see Lambert et al, 1995) 

have been shown to antagonise GABA A mediated chloride currents. 

Like a number of other positive allosteric modulators of the GABA A 

receptor, steroids have been shown, at concentrations higher than those 

required for potentiation of the GABA response, to directly activate the GABA A 

receptor in the absence of GABA. For example, using voltage-clamped bovine 

chromaffin cells, Cottrell et al., (1987) demonstrated that alphaxalone (>1jaM) 

and Callachan etal., (1987) demonstrated that 5(5-pregnan-3a-ol-20-one and 

5p-pregnan-3,20-dione, directly elicited a membrane current in the absence of 

GABA, which was potentiated by diazepam and phenobarbitone and inhibited 

by bicuculline and also had a reversal potential similar to currents elicited by 

GABA. 

Although a number of studies have shown that GABA A receptor subunit 

composition may exert some influence the action of steroids at this receptor 
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site, generally steroidal effects at the G A B A A receptor are considered to be 

relatively subunit-independent (Lambert et al., 1995). For example, two-point 

voltage-clamp studies conducted by Belelli et al., (1996), using human (a , . 

3P1Y2L.) recombinant G A B A A receptors expressed in Xenopus oocytes, 

demonstrated that the maximal potentiation of GABA-evoked responses by 

pregnanediols was not influenced by a-subtype. However, this study also 

demonstrated that in a2-containing receptors such pregnanediols were less 

potent than in a 1 - or a3-containing receptors. 

Due to the relative potency and selectivity of action of steroids it is 

thought that they interact at a specific binding site on the GABA A receptor. The 

notion that these steroids, which are highly lipophilic, could exert their short-

term effects by perturbation of cell membranes has been questioned by the fact 

that intracellular^ applied steroids are inert on GABA A receptors (Lambert et al., 

1990). Single-channel studies conducted in voltage-clamped mouse spinal 

neurones and bovine chromaffin cells have revealed that steroids, like 

barbiturates, increase average channel open time duration by increasing the 

probability of the channel being in long duration open states and, like 

benzodiazepines, increase the frequency of single channel openings 

(Callachan et al., 1987; Lambert et al., 1987; Barker er al., 1987; Twyman and 

Macdonald, 1992). 

1.6. Hi. Barbiturate Modulation of the GABAA Receptor 

Barbiturates have been long been used since as sedative-hypnotics, 

anticonvulsants and anaesthetics and have been shown to potentiate GABA A-

mediated inhibition in a manner distinct to benzodiazepines. 

The potentiating effects of barbiturates do not appear to be subunit 

dependent; recombinant studies have shown that GABA- induced chloride flux 

in homomeric channels consisting of either a - , p-, y2 or 8 subunits could be 

stimulated by barbiturates, indicating that a barbiturate binding site could be 
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present on each of these subunits, in either homo- or hetero-oligomeric 

formations (Seighart, 1995). However, Thompson et al., (1996) have 

demonstrated in Xenopus oocytes expressing human recombinant GABA A 

receptors that the degree of maximum potentiation evoked by barbiturates on 

submaximal GABA-evoked responses is dependent on the presence of the oc-

subunit, cc6 conferring the greatest and a1 conferring the lowest maximal 

potentiation. 

In contrast, high concentrations of barbiturates have been shown to 

directly activate GABA A receptors in the absence of GABA (Macdonald and 

Barker, 1979; Bormann, 1988). Recombinant studies indicate that different 

domains on the p subunits may be required for channel activation by 

barbiturates (Amin and Weiss, 1993), in particular the pi subunit (Pritchett et 

al., 1989; Mohler et al., 1990; Sanna et al., 1994) and also the p3 subunit 

(Cestari et al., 1994) have been implicated. Murine pi homomeric channels 

expressed in Xenopus oocytes are activated by pentobarbitone, but not by 

GABA, muscimol or isoguvacine (Krishek et al., 1995) thus, reinforcing the 

notion that the dual action of barbiturates indicates at least two distinct sites of 

interaction for barbiturates on the GABA A receptor: one for direct activation and 

another for potentiation. However, it has been reported in Xenopus oocytes 

expressing recombinant GABA A receptors that the degree of direct activation of 

the GABA A receptor by pentobarbitone was also influenced by the presence of 

the a-subunit. a6-containing receptors expressed in Xenopus oocytes mediated 

a maximal response to pentobarbitone which was larger than that obtainable 

with a maximal concentration of GABA (Thompson et al., 1996). These authors 

also report that in a6-containing receptors, the type of p-subunit present did not 

markedly influence the direct action of pentobarbitone, whereas in a 1 -

containing receptors, pentobarbitone was more potent and efficacious in p3-

containing receptors, compared to p2- and pi-containing receptors. Wafford et 

al., (1996) report that pentobarbitone potentiated, but did not directly activate 

a4p iy2 subunits expressed in Xenopus oocytes. 
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In addition, binding studies conducted in rat cerebral cortex membrane 

preparations revealed that barbiturates increased the rate of GABA A receptor 

desensitisation (Cash and Subbarao, 1988). Thus, additional barbiturate 

binding sites on the GABA A receptor may contribute to the modulation of 

GABA A receptor desensitisation. 

A number of single channel studies in voltage-clamped mouse spinal 

neurones have revealed that barbiturates enhance GABA A-receptor mediated 

events by increasing mean channel open duration time, but have no effect on 

opening frequency or receptor conductance (Study and Barker, 1981, 

Macdonald and Twyman, 1992; Macdonald and Olsen, 1994). 

1.6.iv. Modulation of the GABAA Receptor & Other Neuronal Ligand-

gated Ion Channels by propofol. 

Propofol (2,6 di-isopropylphenol) is a chemically novel, intravenous 

general anaesthetic agent (James & Glen, 1980, Smith et al, 1994) which has 

also been reported to have mood-altering properties (Zacny et al., 1992), anti

emetic effects (Borgeat et al., 1992, Borgeat et al, 1994a, Scher et al., 1992) 

and neuroprotective effects during neurological insults (Kochs et al., 1992; Weir 

et al., 1989; Hans et al., 1994). Propofol has also been used successfully in the 

treatment of status epilepticus (Wood et al., 1988, MacKenzie et al, 1990, 

Borgeat et al., 1994b). Although there have been no reports of propofol causing 

epileptiform activity in non-epileptic patients to date (Mahla et al., 1991), the 

effects of propofol on the electroencephalogram (EEG) activity of epileptic 

patients appears to be variable, with some patients experiencing increased and 

others reduced neuronal excitation (Samra etai, 1993). 

Pharmacological evidence suggests that the sedative, hypnotic and 

anaesthetic actions of propofol might be, in part, explained by their action at the 

GABA A receptor-gated chloride channel. Initial electrophysiological studies 

reported that propofol enhanced synaptic inhibition in the cat spinal cord (Lodge 
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and Anis, 1984). Whole-cell voltage-clamp studies later demonstrated that 

propofol concentration-dependently potentiated GABA-evoked membrane 

currents, which desensitised with high concentrations of propofol, and directly 

activated GABA A receptors in bovine adrenomedullary chromaffin cells, native 

rodent cortical neurones and in murine hypothalamic GT1-7 neurones (Hales 

and Lambert, 1991; Hara et al., 1994; Orser et al., 1994; Adodra and Hales, 

1995). These experiments revealed that propofol caused an increase in the 

probability of the GABA A-gated chloride channel being in the conducting state, 

without a significant effect on the single channel conductance (Hales and 

Lambert, 1991; Orser et al., 1994) or on the reversal potential of GABA (Hales 

and Lambert, 1991; Hara et al., 1993). In addition, propofol increased the 

frequency, but not duration of GABA-activated single channel events (Orser er 

al., 1994). Electrophysiological studies (Hales and Lambert, 1991; Hara et al., 

1993) and radio-ligand binding studies (Concas et al., 1991 and 1994) have 

indicated the existence of separate binding sites for propofol, steroids and 

barbiturates. 

At clinically relevant concentrations (up to 22jaM in plasma; Vyuck et al., 

1992), in the absence of GABA, propofol has also been shown to directly 

activate the GABA A receptor, in a bicuculline-sensitive manner (Hales and 

Lambert, 1991; Hara et al, 1993). Recently, studies using different human 

brain GABA A receptor subunit isoforms and mRNAs from mouse brain 

expressed in Xenopus oocytes have demonstrated that this direct activation 

requires the presence of the p subunit (e.g. Sanna et al., 1995ab; Hill-Venning 

et al., 1997). In Xenopus oocytes expressing human recombinant GABA A 

receptors, the presence of the p2-subunit conferred a slightly greater sensitivity 

for direct activation than p^subunit (Hill-Venning et al., 1997). 

Potentiation of GABA-evoked responses was thought to be subunit-

independent (Sanna era/., 1995b; Davies et al., 1997b). However, more recent 

studies demonstrate that expression of a and y2L-subunits influences the direct 

and modulatory effects of propofol on the GABA A receptor. Lam and Reynolds, 

(1998) have shown using human recombinant GABA A receptors in Xenopus 
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oocytes, that the efficacy of propofol potentiation was greater in a 1 p 2 than in 

a$2y2L receptor isoforms and that potentiation of the a 2 p 2 y 2 L receptor isoform by 

propofol occurred with higher affinity and lower efficacy than in the a 1 p 2 y 2 L 

receptor isoform. These authors also demonstrated that the presence of the y 2 L 

subunit decreased the sensitivity of the a$2 receptor isoform to the direct 

effects of propofol and that replacement of the a r with the a 2-sububit subtype 

increased the receptor sensitivity to the direct effects of propofol. Additionally, 

human recombinant GABA A receptors in Xenopus oocytes containing <x4-

subunit subtypes were subject to allosteric modulation, but not direct activation 

by propofol (Wafford et al., 1996). Kradowski et al., (1998) have reported that a 

point-mutation in the TM3 region of the pi-subunit (M286W) of human 

recombinant GABA A receptors expressed in HEK cells, abolished the 

potentiation of GABA by propofol without affecting the ability of propofol to 

directly activate the GABA A receptor. Conversely, a mutation in the TM2 region 

of the p1 subunit a2p1(S265l) did not greatly affect potentiation, but reduced 

direct activation by propofol. Kradowski et al., (1997) have also demonstrated 

that the efficacy of propofol for modulation, but not its potency, was influenced 

by the presence of the ct-subunit: presence of a1 enabled a greater maximal 

potentiation than a6; in contrast, the direct activation evoked by propofol was 

greater in a6- than in a1-containing receptors. In addition, Jones et al., (1995) 

and Kradowski et al., (1997) have reported that modulation by propofol is 

independent of the y -subunit. 

A number of behavioural studies have attributed the CNS excitation 

observed following propofol-mediated general anaesthesia in mice to glycine 

antagonism (Al Muhandis etal., 1991; Dolin et a/., 1992; Bansinath etal., 1995). 

However, voltage-clamp studies have shown that propofol potentiated native 

strychnine-sensitive glycine receptor-mediated currents in murine spinal 

neurones (Hales and Lambert 1991), but neither potentiated nor directly 

activated these receptors in hippocampal neurones (Hara etal., 1994). 
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Barann et al., (1993) initially reported that propofol non-competitively 

inhibited the 5-HT-induced influx of 1 4C-guanidinium through 5-HT 3 receptors of 

N1E-115 neuroblastoma cells and concluded that the 5-HT 3 receptor could be a 

target for general anaesthetic agents like propofol. However, a later binding 

study by Appadu and Lambert, (1996) using the same preparation, concluded 

that propofol exerts little direct effects on 5-HT 3 receptors at clinically relevant 

concentrations (<22jaM in plasma, Vyuck et al., 1992). Voltage-clamp studies 

performed in homomeric 5-HT 3 receptors expressed in Xenopus oocytes by 

Machu and Harris (1994) examined the effects of propofol on 5-HT 3 receptors 

expressed in Xenopus laevis oocytes and found that over the therapeutic 

concentration range (1-22nM, Vuyk et al., 1992), propofol did not enhance or 

inhibit 5-HT 3 receptor-mediated responses. 

A number of electrophysiological investigations have examined the 

effects of propofol on nicotinic acetylcholine receptors (nAChR). Voltage-clamp 

studies on clonal BC3H-1 cell (an embryonic muscle type nAChR with a subunit 

stoichiometry of a2py8) by Watchtel and Wegrzynowicz (1992) and Dilger et al., 

(1994) have demonstrated, that propofol (81 \iM; Watchtel and Wegrzynowicz, 

1992 and 25-250JJ.M; Dilger et al., 1994) decreased channel open time. Dilger 

et al., (1994) observed that propofol decreased the channel open time, but did 

not cause flickering or decreased amplitude of the channel. The authors 

suggest that the anaesthetic effects of propofol on nAChRs may be in part the 

result of propofol binding to the nAChR, though not necessarily in the channel 

pore, and an ensuing "interruption of the flow of ions through the pore of the 

channel" (Dilger et al., 1994, 1995). 

Early studies revealed that propofol inhibits NMDA-receptor mediated 

polysynaptic reflexes in cat spinal cord (Lodge & Amis, 1984). Yamakura et al., 

(1995) in a voltage-clamp study, demonstrated that propofol (50-1000nM) only 

slightly inhibited current responses to AMPA-, kainate- and NMDA-selective 

glutamate receptor channels expressed in Xenopus oocytes and concluded that 

NMDA receptor activity is only slightly suppressed throughout propofol-
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maintained anaesthesia. Voltage-clamp studies in cultured mouse hippocampal 

neurones have also demonstrated that propofol, at concentrations outside the 

therapeutic range, inhibited the NMDA receptor subtype of the glutamate 

receptor family with an IC 5 0 of 160|aM (Orser et al., (1995). These authors 

suggest that this inhibition occurs through an allosteric modulation of the 

channel rather than a blocking action on the ion channel. 

1.6.v. Loreclezole & its Action at the GABAA Receptor 

The triazole derivative loreclezole (Z)-1-[2-chloro-2-(2,4-dichlorophenyl) 

ethenyl]-1,2,4-triazole or R 72 063) is a broad-spectrum antiepileptic agent 

which reduces seizure activity and increases seizure threshold in animal 

models based on chemical or electrical stimulation (Waqueier et al., 1990; 

Ashton et al., 1992, Green et al., 1996) but, unlike many other anticonvulsants, 

does not induce sedative-hypnotic effects (Waqueier et al., 1990, Ashton et al., 

1992). These effects are thought to be, at least in part, due to positive allosteric 

modulation of the GABA A receptor. 

A number of electrophysiological studies have demonstrated the 

potentiating effects of loreclezole at human recombinant GABA A receptors 

expressed in Xenopus oocytes. Convincing data from recombinant studies has 

demonstrated that loreclezole acts at a novel allosteric site located on p2- or p3 

GABA A receptor subtypes (Wafford et al., 1994). Point-mutation analysis has 

identified a single amino acid in the TM2 region of p2 (asparagine 289) and p3 

(asparagine 290) subunits which confers sensitivity to loreclezole-induced 

channel modulation; this sensitivity was some 300-fold higher in p2- or p3-

containing receptors than pi-containing receptors where the amino acid at this 

corresponding position is serine (Wafford et al., 1994; Wingrove et al., 1994; 

Donnelly and Macdonald, 1996). 

Recently, Kapur and Macdonald (1996) have demonstrated that only 

50% of whole-cell voltage-clamped dentate granule cells were sensitive to 

modulation by loreclezole and suggested that these were not pi-containing 
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receptors. Additionally, Xue etal., (1996) in a binding study, have demonstrated 

a greater potency of loreclezole and a higher GABA sensitivity in the 

cerebellum and thalamus where there is a relatively higher expression of p2 

and p3 subunits compared to other areas of the CNS. Stevenson et al., (1995) 

have shown that potentiation of GABA-evoked currents by methyl-6,7-

dimethyoxy-4-ethyl-p-carboline (DMCM) is dependent on the presence of the 

same amino acid residue which confers loreclezole sensitivity in p2 or p3 

subunits, providing evidence that the low affinity site for p-carboline potentiation 

is indeed the loreclezole site. Further evidence supporting the importance of the 

p-subunit in loreclezole-induced modulation of the GABA A receptor was given 

by Whittemore et al., (1996) who report that loreclezole induced a strong 

modulation of p2y2L receptors expressed in Xenopus oocytes, but that there 

was little difference between modulation of aip2y2L and a4p2y2L receptors, 

suggesting that the modulation induced by loreclezole is not greatly influenced 

by the presence of the a-subunit. Interestingly, Donnelly and Macdonald (1996) 

have described a second, subunit independent, voltage-independent and non

competitive inhibitory action of loreclezole on GABA A receptors. These 

investigators have shown that loreclezole enhances the degree and rate of 

desensitisation of GABA-mediated currents recorded from recombinant GABA A 

receptor containing a1, a.5, or a6 together with y 2 L and p1, 2 or 3 subunits, 

expressed in fibroblasts, and also in native GABA A receptors from mouse 

cortex. 

Several binding studies (Vaught and Waquier, 1991, Van Rijn and 

Willems van Bree, 1993, Xue et al., 1996; Sanna et al., 1995; Ghiani et al., 

1996; Green et al., 1996) have demonstrated that the actions of loreclezole at 

the GABA A receptor do not appear to be mediated through the benzodiazepine, 

barbiturate, steroid or propofol site. However, Green et al., (1996) also report, 

using rat cerebral cortex membrane preparation, that although loreclezole 

interacts specifically with an allosteric site on the p-subunit of the GABA A 

receptor, it also alters the binding characteristics of other modulatory sites for 

chlormethiazole and pentobarbitone. 
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In addition, several binding studies (Sanna et al., 1995c; Ghiani et al., 

1996; Sanna et al., 1996) and electrophysiological studies (Sanna et al., 1996) 

have indicated that loreclezole (at concentrations higher than those required for 

potentiation), like propofol, can directly activate the GABA A receptor in the 

absence of GABA. To date, however no study has determined the effects of 

loreclezole at the single channel level. 

1.6.vi. Negative Allosteric Modulators of the GABAA Receptor 

A number of negative allosteric modulators also exist for the GABA A 

receptor (reviewed by Johnston, 1996) including the p-carboline, DMCM, 

diazepam-binding inhibitor (DBI) and the p-substituted y-butyrolactone, p-ethyl-

P-ethyl-y-butyrolactone (P-EMGBL). A novel negative allosteric modulation 

occurring at the GABA A receptor involves an interaction between certain 

quinolone antimicrobial agents and NSAIDs. 

1.6.vii. NSAIDs, Quinolones & the GABAA Receptor 

Quinolones are widely prescribed as antimicrobial agents with a 

relatively low incidence of side effects, such as headaches, insomnia and 

convulsive seizures. However, certain quinolones when taken in combination 

with the NSAID, fenbufen, cause a marked increase in the incidence and/or 

severity of these adverse side effects which can lead to convulsive seizures in 

humans (Simpson and Brodie, 1985; Anastasio et al., 1988) and in animals 

(Murayama era/., 1987; Akahane etal., 1989; Hirai et al., 1989). 

Subsequently, it has been shown that certain quinolones act as 

antagonists at the GABA A receptor (Akaike et al., 1991; Halliwell et al., 1991; 

Shirasaki et al., 1991) and that this antagonism is greatly increased in the 
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presence of biphenyl acetic acid (BPAA), the active metabolite of the NSAID, 

fenbufen (Akaike etal., 1991; Halliwell etal., 1991; 1995; Shirasaki era/., 1991; 

Green and Halliwell 1997). In agreement with these electrophysiological 

studies, several binding experiments have demonstrated the inhibition of 

[3H]muscimol and [3H]GABA binding and modulation of [ 3 5S]-TBPS binding by 

certain quinolones and BPAA at neuronal GABA A receptors (Hori et al., 1987; 

Yamamoto et al., 1988; Akahane et al., 1989; Squires and Saederup, 1993; 

Domagala, 1994). Moreover, Akahane etal., (1989) have demonstrated a close 

correlation between the epileptogenic activity of quinolones and BPAA and their 

inhibitory potencies for [3H] muscimol binding to GABA A receptors. Recently, it 

has been shown that a hybrid molecule of norfloxacin and BPAA is also a 

potent antagonist at native GABA A receptors (Imanish et al., 1996; Ito et al., 

1996). 

The antagonism induced by quinolones and BPAA has been shown to 

be selective for the GABA A receptor since this combination of drugs have little 

or no effect at neuronal 5-HT3, P 2 x and nACh receptors of the vagus nerve 

(Green and Halliwell, 1997), ionotropic glutamate receptors in hippocampal 

neurones (Akaike et al., 1991; Halliwell et al., 1995) or recombinant glutamate 

and 5-HT 3 receptors expressed in Xenopus oocytes (Kawakami ef al., 1997). In 

addition, Green and Halliwell, (1997) have shown a marked decrease in the 

synergy of antagonism evoked by the action of certain quinolones and BPAA 

on GABA A receptors of the optic nerve suggesting that regional differences 

exist across the CNS to quinolones and NSAIDs, perhaps reflecting differences 

in GABA A receptor subunit composition. 

1.7. Fenamate Modulation of GABAA-gated-chloride channels 

Woodward et al., (1994) were the first to demonstrate that fenamate 

NSAIDs both potentiated and inhibited GABA-activated currents recorded from 

rat brain GABA A receptors, expressed in Xenopus oocytes. In descending order 

of potency, flufenamic, meclofenamic, mefenamic and niflumic acid, (10(iM) 

Chapter One: General Introduction 51 



reversibly potentiated currents evoked by low concentrations of GABA. In 

contrast, currents evoked by high concentrations of GABA were non-

competitively inhibited by these fenamates, with a reverse order of potency. 

Woodward et al., (1994) also reported that MFA had the highest efficacy in 

terms of its facilitatory effects, but was the weakest inhibitor, and that the 

opposite was the case for niflumic acid. The agonist concentration was shown 

to be the critical determinant between facilitatory and inhibitory effects of 

fenamates. 

In rat cortex GABA A receptors expressed in Xenopus oocytes, the only 

other (non-fenamate) NSAIDs which produced facilitatory effects at similar 

concentrations were sulindac (an acetic acid with effects similar to niflumic acid) 

and diflusinal (salicylic acid with effects similar to flufenamic and meclofenamic 

acid). At ten-fold higher concentrations, fenoprofen, indomethacin, ibuprofen, 

naproxen and piroxicam evoked modest potentiations (<120%), whereas 

flurbiprofen and phenylbutazone caused modest inhibitions in GABA-evoked 

currents (Woodward et al., 1994). As a positive modulator of GABA-evoked 

responses, MFA was shown to be 10 000 times more potent than ethanol, 

equipotent with a- and 8-hexachlorohexane, twice as potent as pentobaribitone 

and 100 times less potent than allopregnanolone. In this study it was also 

shown that the modulatory effects of MFA, together with pentobarbitone or 5-

hexachlorohexane, were additive (Woodward era/., 1994). 

The potentiating effects of mefenamic acid on rat brain GABA A receptors 

expressed in Xenopus oocytes were insensitive to the benzodiazepine 

antagonist, flumazenil. In the presence of the weak steroid antagonist, 5p-

pregnan-3pol-20-one (3P-OH-DHP) the MFA-potentiated GABA response 

amplitude was not appreciably decreased, but instead, a synergistic increase 

on response decay rate was observed (Woodward et al., 1994). In addition, 

Woodward et al., (1994) have demonstrated that only extracellular application 

of mefenamic acid resulted in appreciable modulation of GABA-mediated 

responses, arguing strongly for a membrane-bound recognition site for 

fenamates, rather than a non-specific membrane perturbation effect. 
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A preliminary study by Halliwell et al., (1994) demonstrated that 

mefenamic acid concentration-dependently potentiated submaximal GABA-

evoked currents in voltage-clamped rat hippocampal neurones in terms of 

amplitude and duration. In contrast, Shirasaki et al., (1991) demonstrated a 

suppression of GABA-evoked (EC 6 0 . 7 0 ) responses by mefenamic acid recorded 

in dissociated rat hippocampal neurones. 

The data reviewed above suggest that fenamates may modulate 

neuronal GABA A receptor function. However, no study to date has investigated 

this interaction on neuronal (or recombinant) GABA A receptors . 

1.8. Aims of This Study 

The main focus of this study was to investigate the actions of fenamate 

NSAIDs on a series of neuronal ligand-gated ion channels. The initial studies 

examined the action of a range of allosteric modulators, and the NSAID, 

mefenamic acid, on GABA A receptor-mediated responses recorded from the rat 

vagus nerve employing a grease-gap recording technique (Marsh, 1989). The 

grease-gap recording technique is a relatively simple, but robust recording 

system which allows long-term and stable recordings to be made from a variety 

of neuronal preparations, including the rat vagus and optic nerves. The rat 

vagus nerves express a number of extra-synaptic receptors, such as the 

GABA A , 5-HT3-, nicotinic acetylcholine, P 2 x receptors and the optic nerve 

expresses strychnine-sensitive glycine receptors and GABA A receptors, which 

allow the collection of quantitative pharmacological data on a number of drug-

receptor interactions to be obtained (e.g. Marsh, 1989; Ireland and Tyres, 1987; 

Trezise et al., 1993). Thus, the effects of mefenamic acid were compared with 

other allosteric modulators of the GABA A receptor, and in particular, propofol. 

Additional experiments investigated the action of propofol on 5-HT3-, nicotinic 

acetylcholine- and P 2 x receptor-mediated responses of the rat vagus nerve and 

strychnine-sensitive glycine receptor-mediated responses of the rat optic nerve. 
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To further elucidate the mechanism of action and selectivity of 

fenamates on neuronal ligand-gated ion channels, investigations were carried 

out using the patch-clamp technique (Hamill er al., 1981) to make recordings 

from cultured single hippocampal neurones . This technique allows the 

experimenter to control the internal and external ionic environments of the 

membrane in order to make high fidelity recordings of agonist-gated channel 

activity. Primary cultures of hippocampal neurones possess morphological and 

neurophysiological characteristics similar to those found in vivo and are easily 

accessible under patch-clamp recording conditions. These cells also express a 

number of ligand-gated ion channels, again with characteristics similar to those 

seen in vivo. Further experiments also investigated the actions of other 

fenamates at the GABA A receptor in order to gain some insight into the 

structure activity relationship of fenamates. 
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CHAPTER TWO: GENERAL METHODS 

2.1. Extracellular Recording Methods 

Electrophysiological recordings were made from freshly excised rat 

vagus and optic nerves. Agonist-evoked changes in membrane potential were 

recorded across a high resistance grease-gap using extracellular electrodes. 

The method employed is an adaptation of that described by Marsh (1989). A 

description of this method together with the dissection procedures employed is 

described below. 

2.1.i. Vagus Nerve Dissection 
Male Sprague-Dawley rats (100-250g) were killed by a rising 

concentration of C 0 2 (a Schedule 1 method of euthanasia). The skin overlying 

the throat area was removed to expose the thyroid gland, the sternomastoideus, 

posterior digastricus and sternohyoideous muscles; these were carefully 

removed (see figure 2.1). Using a binocular dissecting microscope (Nikon SMZ-

2B) the vagus nerves could then be seen adjacent to the common carotid 

arteries (which run bilateral to the trachea). The vagus nerves were carefully 

separated from the carotid arteries and cut away at the point at which they 

entered the thorax. The freed vagus nerves (15-25mm) were then transferred to 

a 35mm dish of cold, oxygenated, physiologically balanced salt solution (PBS) 

and the connective tissue sheaths surrounding the nerves were removed using 

watchmakers forceps. The removal of the sheath was essential to facilitate drug 

penetration. 

2.1.ii. Optic Nerve Dissection 
Male Sprague-Dawley rats (100-250g) were killed by a rising 

concentration of C 0 2 (a Schedule 1 method of euthanasia) and were then 

decapitated. Skin overlying the back of the neck to the snout area was removed 

to expose the skull. The dorsal surface of the skull was bisected using bone 

scissors and the bone was gently broken away using artery forceps to reveal the 

frontal cortex. The bone of the orbits above the zygomatic arch was also broken 

away. The ocularmotor muscles were teased away using watchmaker's forceps 
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to expose the^optic-nerves. The bra^ 

skull using a spatula and the optic nerves were severed at the optic chiasma. 

The optic nerves were removed from the back of the eyeballs using small 

dissecting scissors. The freed optic nerves were then transferred to a 35mm 

dish of cold, oxygenated PBS. 
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Figure 2.1 : shows a schematic of the rat thorax showing the position of the 

vagus nerve (highlighted in yellow) in relation to major blood vessels and 

muscles. This schematic was modified from Marsh (1989). 
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2.2. Extracellular Recording From The Excised Rat Vagus and Optic 

Nerves 

A thin seam of grease, (approximately 2mm deep x 2mm wide) (BDH 

High Vacuum Silicone Grease) was placed midway across the width of a 

microscope slide. A piece of nappy liner (Boots one-way nappy liner) was 

placed on each side of the grease seam, as shown in figure 2.2. The nappy 

liner served to facilitate superfusion of recording PBS and drugs onto and off 

the nerve. The vagus or optic nerve was placed on top of the microscope slide 

and onto the nappy liner, so that half of it lay on either side of the grease barrier. 

A second layer of grease was then placed on top of the first layer, thus, forming 

a high resistance seal around the nerve trunk. The grease seam also served to 

hold the nerve in position on the slide. The slide was secured onto a Perspex 

frame and housed inside a Faraday cage. 

Silver-silver chloride electrodes (RC1 electrodes, Clark Electromedical) 

were positioned on either side of the grease seam, adjacent to the free ends of 

the nerves; these electrodes were held in position by brackets clamped onto the 

Perspex frame. 

Agonist-evoked changes in DC-potential across the silver-silver chloride 

electrodes were relayed through miniature coaxial cable to a Neurolog Amplifier 

(Digitimer, NL106) and a Neurolog Filter (Digitimer, NL125). Signals were low-

pass filtered at DC-50Hz. and the recordings were displayed on a Kipp-Zonen 

flatbed pen chart recorder. Agonist-evoked changes in DC-potential were 

recorded between 0.03mV and 5mV, under these conditions. Baseline noise 

levels were approximately £0.02mV in amplitude and were mainly attributable to 

perfusion drip; improvement in these baseline noise levels could often be 

achieved by re-positioning the electrodes and/or the perfusion pipes. 
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Figure 2.2: A simple schematic of the grease-gap technique. A vagus or 

optic nerve was placed across a grease-gap barrier onto a microscope slide, 

which was mounted onto a perspex holder and housed inside a Faraday cage 

(not shown). The nerve was perfused with a physiologically balanced solution 

(PBS). Agonist-evoked responses were recorded, extracellularly, amplified, 

filtered and displayed on a flatbed pen chart recorder. Drugs were dissolved in 

PBS and delivered to the nerve via the perfusion system. 

2.2.1 Drugs and Solutions 

PBS was made up in ultra pure water (Milli-QPLUS) with the following 

salts (all B.D.H. Ltd., Poole, U.K. except where stated otherwise; concentrations 

in mM): NaCI (118.0), K H 2 P 0 4 (1.18), KCI (4.7), MgS0 4 (1.18), CaCI 2 (2.5), 

Glucose (11.0), HEPES (Sigma;10.0). The PBS was then titrated to pH 7.2 

using concentrated (2.5M) hydrochloric acid. 

ramino butyric acid (GABA) and glycine (both Sigma, Poole, U.K.) were 

dissolved in PBS as 10mM stock solutions and serially diluted in PBS as 

required. a,p methylene adenosine tri-phosphate (a,p-MeATP), 5-

hydroxytryptamine (5-HT) and dimethyl-phenylpiperazinium (DMPP; all from 

Sigma) were dissolved in PBS as 1mM stock solutions and serially diluted as 

required in PBS. Sodium pentobarbitone (Sigma) and alphaxalone (a gift from 

Dr. David Gemmel, Akzo Nobel, Organon Laboratories, Newhouse, Scotland) 

were also made up as 1 mM stock solutions in PBS. Propofol (also a gift from 

Dr. David Gemmel) was dissolved in absolute ethanol as a 10mM stock solution 
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and then serially diluted in PBS. The maximal concentration of ethanol used 

was 20(aM. In selectivity studies, the final concentration of ethanol was 2JIM. 

Picrotoxin (Sigma), suramin (R.B.I., Minnesota, U.S.A.), hexamethonium and 

strychnine (both Sigma) were all made up as 1mM stocks in PBS and diluted in 

PBS as required. MDL72222 (1aH,3a,5aH-tropan-3-yl-3,5-di-chlorobenzoate; 

R.B.I.) was dissolved in 50% ethanol, as a 1mM stock, and diluted as required 

in PBS. All solutions and drugs were made up as fresh stocks at the beginning 

of each experiment. 

2.2.H. Experimental Protocol 

All experiments were conducted at room temperature. PBS and drugs 

were dripped onto the free ends of the nerves at a rate of 2ml/min using a 

variable speed peristaltic pump (Gilson Minipuls3), via 21G hypodermic needles 

connected to flexible polythene tubing (internal diameter=0.76mm, Portex, 

U.K.). Concentration-response curves to each agonist were determined by 

perfusing different concentrations of agonist, in a quasi random order, onto one 

end of the preparation only. Pilot experiments indicated that an agonist contact 

time of approximately 1.5-2 minutes was sufficient to evoke a response in which 

an equilibrium peak was clearly discernible. Thus, in all experiments, agonists 

were perfused onto the nerves for 1.5-2 minutes. Application of agonist to the 

preparation once every 10±1 minutes for GABA and once every 15±1 minutes 

for 5-HT, a.pMeATP and DMPP was sufficient to minimise any 

sensitisation/desensitisation of the preparation to the agonist. 

In experiments investigating drug effects, three control sub-maximal 

agonist-evoked responses were obtained, followed by three agonist-evoked 

responses in the presence of each modulator or antagonist concentration. Pilot 

experiments demonstrated that all compounds produced their maximal effect 

after 15 minutes pre-incubation; thus, in most cases (except where specified), a 

15-20 minute drug pre-incubation period was employed. At the end of such a 
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protocol the preparation was washed with PBS and control agonist-evoked 

responses re-established to determine the reversibility of the drug action. 

2.2.IU. Data analysis 

Agonist-evoked responses were measured at their peak amplitude and 

are expressed as the arithmetic mean (±s.e.mean of n experiments) of the 

responses before addition of any drugs. Agonist-evoked responses in the 

presence of drugs are expressed as the percentage of the response in their 

absence (control). Data were pooled and mean log [agonisfj-response plots and 

log[modulator] response plots were fitted with a sigmoidal function using a four-

parameter logistic equation (sigmoidal concentration-response curve with a 

variable slope; Graphpad Prism™ v2.0) to determine E C 2 0 and ECgo (±95% 

confidence intervals; C.I.) values. Control concentration-response curves to 

agonists were normalised by expressing all responses relative to the 

concentration that evoked a maximum response for each agonist. The equation 

used to fit the concentration-response relationship was: 

Y=Bottom + (Top-Bottom)/(1+10((>-ogEC50-x)Hiiisiope)) 

where X is the logarithm of concentration of drug. Y is the response, which 

starts at Bottom and goes to Top with a sigmoid shape. "Pseudo" Hill slopes 

were calculated from the curve. Care must be taken in interpreting these data 

since the final concentration of agonist which reaches the receptor may differ 

from the concentration exogenously applied. For example, the degree of agonist 

uptake/degradation within the nerve is unknown and may reduce agonist 

concentrations at receptor sites. 

2.3. WHOLE-CELL VOLTAGE-CLAMP RECORDING METHODS 

HlDDOcamoal Cell Culture 

In agreement with Bottenstein (1986), neuronal survival in serum-

supplemented media has been found to be variable and varied with different 

batches of serum. Thus, a variety of experimental procedures and culture media 
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conditions were employed to improve neuronal viability. All cell culture solutions 

and media types were filter sterile (0.22^m G S filters, Millipore). 

2.3.L Hfppocampal Dissection 

Embryonic (E17-19 days gestation) rat hippocampal neurones were 

isolated and cultured using the method described by Halliwell et al., (1989). 

Time-mated Wistar rats were killed by cervical dislocation and the embryos 

(usually around 10-12) were removed and placed into a beaker containing 

chilled Hanks' balanced salt solution (HBSS; GIBCO). Embryonic brains were 

removed rapidly and aseptically, using small dissection scissors and a scapula, 

and placed into petri dish of chilled HBSS. Hippocampi were dissected out 

under a dissecting microscope (Nikon SMZ-2B) into a 35mm dish containing 

HBSS as follows: following excision of the embryonic brain, the cerebellum was 

removed using a small scalpel and discarded. The cerebral hemispheres were 

separated along the midline fissure, using the blunt edge of the scalpel, and the 

underlying midbrain was removed. Hippocampi were dissected free from each 

cerebral hemisphere along the length of the blood vessel as indicated in figure 

2.3 and subsequently then chopped into small fragments (2mm3). 

The tissue was incubated at 37°C, for 60 minutes, in 10mls of filtered 

enzyme solution (0.22^m G S filters, Millipore) containing the following (all BDH, 

except where indicated; in mM): NaCI (116.0), KCI (5.4), NaHC0 3 (26.0), 

NaH2P04 (1.0), CaCl2 (1.5), MgS0 4 (1.0), EDTA (Sigma; 0.5), glucose (25.0), 

DL cysteine (Sigma; 1.0) and papain (Sigma; 20units/ml). Dissociation of the 

tissue was facilitated by gently shaking the flask periodically. The tissue 

fragments were then washed in 5mls of filtered HBSS containing bovine serum 

albumin (BSA) and ovomucoid (both Sigma, at 1mg/ml each) and were 

transferred to another sterile test tube containing 3-4mls of the same solution. 

The tissue was dissociated mechanically by gentle trituration using a fire 

polished Pasteur pipette. The upper layer of dissociated cells was layered onto 

5mls of HBSS containing BSA and ovomucoid (at 10mg/ml each); this process 

was repeated until all of the tissue was dissociated. The cell suspension was 

centrifuged at 100g for 10 minutes. After discarding the supernatant, the cells 

were re-suspended in 4mls of media 1 or media 2 (described later). Cells were 
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plated out at a density of approximately 1-2 x 10 5/35mm Primaria culture dishes 

(Falcon, Becton Dickinson) and incubated in 1.5mls of culture media 1 or 2, at 

37°C, 95% air/ 5%/ CO2 and 100% relative humidity. Subsequently, every 5-7 

days, approximately two-thirds of the media was replaced with fresh media. 
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Figure 2.3: photograph (x3 magnification) shows the left 
hemisphere of an embryonic rat brain (19 days gestation) with a 
scalpel blade underlying the hippocampus. The arrows indicate 
marker blood vessels around boundaries of hippocampus. 
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2.3.11. Methods for cell culture maintenance 
Four different methods were employed for the maintenance of rat 

hippocampal neuronal primary cultures. These are now described below. 

Method 1: Hippocampal neurones were plated into culture media 1, containing 

88% (v/v) minimal essential medium, 5% (v/v) heat-inactivated fetal calf serum, 

5% (v/v) heat-inactivated horse serum, penicillin/streptomycin (5000i.u./ml-

5000ug/ml), glutamine (2mM) (all supplied by GIBCO) and glucose (20mM). 

When background glial cells reached confluence (usually within 5-7 days), the 

media was replaced with fresh media containing the mitotic inhibitor cytosine 

furano-arabinoside (1(VM; Sigma) for 48 hours. This method was employed for 

a period of two years from the commencement of this study until Summer 1996, 

when the serum batch was identified as a critical factor for neuronal survival. 

Until this time neuronal cell cultures were reliably maintained for up to 40 days 

(figure 2.4-main image). After Summer 1996, neuronal viability deteriorated 

after a period of 5 days in culture, critically depending on serum batch, (figure 

2.4-insert). 

Figure 2.4: Main image: shows a phase-contrast photomicrograph (x500 
magnification) of a primary culture of embryonic rat hippocampal neurones 20 days in 
culture maintained using method 1, bottom right : insert shows a phase-contrast 
photomicrograph (using a green filter) of a primary culture of embryonic rat 
hippocampal neurones 20 days in culture (x 500 magnification) using a different batch 
of serum. Both primary cultures were derived from the same embryos. 



Method 2: cells were grown in a serum-free media (media 2) containing 97.5% 
(v/v) "Neurobasal" media supplemented with 1 % B-27 supplement (v/v), 1 % 
penicillin-streptomycin (v/v) and 0.5% glutamax (v/v) (all GIBCO). Neurobasal 
media does not support rapid glial development, subsequently neurones 
survived in clusters or clumps and were unevenly distributed in the culture 
dishes, (see figure 2.5). This method maintained phase-bright, pyramidal-
shaped hippocampal neurones which survived in culture for up to 35 days. 
Many of these neurones grew larger («25nm in diameter) when compared to 
those maintained in serum-based media (15(j.m in diameter). Neuronal survival 
was best in areas of the culture dish where cell density was low, thus plating 
density was lowered using this method. Following difficulty experienced in 
whole-cell patch-clamp recording from cells grown in serum-free media 2 and 
the observation that hippocampal neurones appeared unusually large in size 
compared to those grown in serum-based media 1, the osmolarity of media 2 
was measured and found to be hypo-osmotic at 199±1 mosmol (n=3) relative to 
the recording solution (264±2, n=3). Thus, to optimise recording conditions, the 
osmolarity of media 2 was adjusted from 199 mosmol to 265 mosmol by the 
addition of glucose. This markedly improved recording success with some cells 
allowing stable recordings which lasted up to 2.5 hours. 

i 
Figure 2.S: shows a phase-contrast photomicrograph (x500 magnification) of a primary 
culture of embryonic rat hippocampal neurones 7 days in culture, maintained using 
method 2. Using this method, large neurones (c.f. method 1), which had a "clumped" 
distribution, were frequently observed and glial development was reduced. 
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Method 3: cells were grown in the serum-supplemented media 1 for between 3-

4 days and then transferred Into glucose-supplemented media 2, as previously 

described. Undefined media supplements, such as serum, contribute variable 

amounts of hormones, growth factors, vitamins, substratum modifying proteins, 

and glycoproteins (for example, fibronectin) which may promote rapid glial and 

neuronal development (Bottenstein, 1986). Initial plating in serum-

supplemented media facilitated the development of a confluent glial layer for 

neuronal attachment. This method sustained phase-bright, pyramidal-shaped 

hippocampal neurones in culture for up to 30 days. Although cells were 

dispersed evenly without obvious clumping using this method, cell death was 

considerably higher in these cultures, see figure 2.6 (top left). Those surviving 

cells, however, did enable stable recordings, which lasted over 2 hours in 

duration. 

c • 

: 

Figure 2.6: shows a phase-contrast photomicrograph (x500 magnification) of a 

primary culture of embryonic rat hippocampal neurones 21 days in culture (x 500 

magnification) maintained using method 3. Figure shows evenly distributed neurones 

on bed of glial cells. Bottom left arrow indicates granulated cells which are 

undergoing cell death, top right hand arrow indicates phase-bright cells. 
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METHOD 4: cells were over-layered onto a previous culture (at least 7 days old 

in serum-based media) and grown in media 2 or in the serum-supplemented 

media 1 for 3-4 days and then transferred into media 2. Both of these methods 

sustained phase-bright, pyramidal-shaped hippocampal neurones in culture for 

up to 30 days, (see figure 2.7). Again, these cells enabled stable recordings, 

some of which lasted over 2 hours in duration. 

• i 

Figure 2.7: shows a phase-contrast photomicrograph (x500 magnification) of a 

primary culture of embryonic rat hippocampal neurones 21 days in culture maintained 

in culture using method 4. Phase-bright cells are evenly distributed on glial feeder 

layer. 
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2.4. Whole-Cell Voltage Clamp Recording 

Whole-cell currents were recorded from voltage-clamped hippocampal 

neurones using the patch clamp technique (Hamill et al., 1981). Agonists were 

pressure applied at 1.4kPa and between 0.02-0.033Hz. Cells were supervised 

with a physiologically balanced solution (PBS) containing 0.3u.M tetrodotoxin 

(TTX, except where stated) at a rate of approximately 2ml/min. All drugs were 

dissolved in PBS containing 0.3u.M TTX. All experiments were carried out at 

ambient room temperature (20-23°C). All responses were measured at their 

peak amplitude. Responses in the presence of drugs are expressed as the 

mean± s.e.m of control. 

Whole-cell voltage-clamp recordings were made from hippocampal 

neurones maintained in culture between 10 to 35 days. The culture media for 

hippocampal neurones was replaced by the external recording solution (batti 

solution, see below) containing tetrodotoxin (TTX; 0.3uM) and cells were viewed 

under a phase-contrast inverted microscope (Nikon TMS) at a magnification of 

x200. The microscope and micromanipulators used to position the 

microelectrodes were mounted on a vibration-free air table (Wentworth, U.K.) 

and housed in a copper Faraday cage (built in house). 

Thin glass pipettes (Kimble, soda-lime non-heparinized microhaematocrit 

tubes) of approximate tip diameter 1-5^m and tip resistance of between 1-3MQ 

were manufactured using a Narishige PB-7 (Tokyo, Japan) two-stage electrode 

puller. These pipettes were coated at the tip with Sylgard (Dow Corning, 

Belgium) and fire-polished just prior to use using a fire-polisher built in-house. 

The pipettes were filled with a conducting salt solution (internal solution; 

detailed below) containing 2mM Mg-ATP which served to maintain intracellular 

ATP stores and thus reduce rundown of GABA currents as previously described 

by Stelzer et al., (1988). A silver chloride coated silver wire, together with the 

electrolyte-containing pipette formed the recording electrode which was 

connected to a low-noise, high gain current amplifier (Axopatch 200A, 

California, U.S.A.). Another silver/silver-chloride RC1-type bath electrode (Clark 

Electromedical, U.K.) was connected to the virtual ground of the amplifier's 

headstage. 
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Once a suitable cell was selected on the basis of cell morphology 

(phase-bright, pyramidal shaped neurons), the pipette electrode was advanced 

towards the cell using a piezo-driven micromanipulator (Burleigh Patch Clamp 

Driver, PCS-250, New York, U.S.A.) and, simultaneously, a low voltage square 

wave pulse (0.2-0.6mV, 4.5ms duration, 5Hz, Grass S48 Stimulator, Warwick, 

U.S.A.) was delivered to the pipette electrode tip to enable the monitoring of 

seal resistance using the Axon 200A amplifier. As the pipette electrode tip 

touched the cell, the current recorded was reduced, thus indicating an increase 

in seal resistance. Application of negative pressure (via a 5ml syringe attached 

to the amplifier headstage with Naigene tubing) then allowed the formation of a 

"gigaseal"; this was indicated by a sharp increase in seal resistance with almost 

zero current recorded. Once a "gigaseal" was obtained (>20GQ), capacitance 

transients due to the patch pipette and cell membrane were electronically 

cancelled and the cell was voltage clamped at -60mV unless otherwise stated. 

Further application of negative pressure caused the patch of membrane below 

the pipette tip to rupture, allowing the internal milieu of the cell to be accessed 

and subsequently dialysed with internal solution. At this point the whole cell 

membrane capacitance and series resistance transient currents were 

electronically and iteratively cancelled using the amplifier's whole-cell 

capacitance and series resistance circuitry. Currents were recorded and low 

pass filtered at 2kHz with an eight-pole Bessel filter before digitisation, storage 

and display. 

Agonists were applied to cells under voltage-clamp by pressure ejection 

(0.02-0.03Hz, 1.4kPa, 10-100ms duration) from the tip of a "spritzer" 

microelectrode (tip diameter <2(Vm) using a picospritzer device (General Valve 

Corporation, New Jersey, U.S.A.). The spritzer pipette was positioned in close 

proximity to the neurone (80-1 OO^m laterally from cell and »50um above cell) 

using a Narishige Joystick micromanipulator (Narishige, Tokyo, Japan). Drugs 

were perfused onto cells from the tip of a plastic cannula (tip diameter, 2mm) 

positioned in close proximity to the cell (~300^m laterally from cell and~200um 

above cell) using a Prior micromanipulator. This directional, gravity-feed 

perfusion system was manufactured in-house by the experimenter. 
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Where drugs were applied to the cell interior, the time constant for the 

diffusional exchange of the drug between the recording pipette and the cell 

interior was calculated according to methods described by Pusch and Neher 

(1988). The diffusional exchange rate between the patch pipette solution and 

the cell depends on a number of factors: the molecular weight of the drug, the 

cell-pipette access resistance and the cell volume (which may be estimated 

from the cell capacitance, assuming a specific membrane capacitance of 

1uF/cm 2; Pusch and Neher, 1988). Under the present recording conditions, 

(using the equation x =(0.6±0.17).Ra.M1/3 and a correction factor for 

hippocampal cells; Pusch and Neher, 1988) the time constant (x) for diffusional 

exchange of mefenamic acid between the pipette recording solution and the cell 

interior was calculated to be approximately 71 sees. Drugs were allowed to 

dialyse the cell interior for a duration four times in excess of the calculated time 

constant. Whole-cell currents were monitored on a storage oscilloscope 

(Tectronix 2212, Holland) and recorded onto a two-channel chart recorder 

(Lectromed, Jersey, U.K.) and on a Digital Audio Tape Recorder (DAT; Biologic 

DTR-1202, France). The DAT recorder single was sampled at a frequency of 

48KHz and was low-pass filtered using "Digital Comb and FIR filters." 

2.4.1. Drugs and Solutions 

Bath solution was made up in ultra pure water (Milli-QPLUS) with the 

following salts (all BDH, except where stated; concentrations in mM): NaCI 

(140.0), KCI (2.8), MgCl2 (2.0), CaCfc (1.0), H E P E S (Sigma; 10.0). Tetrodotoxin 

(Sigma, 0.3nM) was also added to the bath solution to block spontaneous 

voltage-dependent sodium channel activity. NMDA-evoked currents were 

recorded in the nominal absence of Mg 2 + and in the presence of glycine (1uM). 

Internal solution was made up in ultra pure water (Milli-QPLUS) with the following 

salts (all BDH; concentrations in mM): KCI (140.0) or CaCI 2 (140.0), MgCI2 (2.0), 

CaCI 2 (0.1), EGTA (Sigma; 1.1), HEPES (Sigma; 10.0) MgATP (Sigma; 2). These 

solutions were then titrated to pH 7.2 using concentrated hydrochloric acid and 

were filtered before use (0.22um GV filters, Millipore, U.K.). 
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GABA, glycine, sodium pentobarbitone and strychnine (Sigma) were 

dissolved in bath solution as 10mM and 1mM stock solutions, respectively. 

AMPA, kainate and NMDA (Sigma) were dissolved in O.INaOH as 1mM stocks. 

D(-)-2-amino-5-phosphonopentanoic acid (D-AP5), and 6-cyano-7-

nitroquinoxaline-2,3-dione disodium (CNQX; both Tocris-Cookson, Bristol, U.K.) 

were dissolved in water as 1mM stocks. Propofol, alphaxalone (both gifts from 

Dr. David Gemmel, Akzo Nobel, Organon Laboratories, Newhouse, Scotland), 

diazepam and flumazenil (SIGMA) were dissolved in absolute ethanol as a 

1 mM stock solutions (the final concentration of ethanol used was always less 

than 0.1%). Bicuculline was dissolved in 0.1ml of hydrochloric acid (1M) and 

further diluted with water to form to a 10mM stock. The fenamate NSAIDs: 

mefenamic acid, flufenamic acid, meclofenamic acid, tolfenamic acid and 

niflumic acid, were made up as 10mM stock solutions in 0.1 M NaOH. The 

NSAIDs, indomethacin, ibuprofen, diflusinal and biphenylacetic acid (BPAA; all 

Sigma) were made up as 10mM stock solutions in ethanol. Loreclezole 

(Janssen Research Foundation) was made up as a 1mM stock in DMSO. All 

drugs were serially diluted in bath solution as required. 

2,4.11 Experimental Protocol. 

GABA (10uM) and other agonists were delivered to the cell via pressure 

ejection as previously described until a series of submaximal control agonist-

evoked responses, consistent in amplitude and duration, were obtained prior to 

drug application using the directional perfusion system. Drugs were washed off 

once a clear asymptotic drug effect was observed. Control responses were re

established before further drug applications. 

2.4.//V. Data Analysis 

Submaximal agonist-evoked responses were measured at their peak 

amplitude, and in some cases duration of charge, and are expressed as the 
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arithmetic mean (±s.e.mean of n experiments) of the response before addition 

of any drugs. Such experiments from different neurones were pooled and 

log[modulator]-response plots were constructed. Log[modulator]-response plots 

were fitted to a sigmoidal function as described above (page 56) to determine 

E C 5 0 (±95% C.I.) values. The equation used to fit the concentration-response 

relationship was: 

Y=Bottom + (Top-Bottom)/(1+10(C-°flEc50-x)Hiiisiope)) 

where X is the logarithm of concentration, Y is the response which starts at 

Bottom and goes to Top with a sigmoid shape. Log[inhibitor]-response plots 

were fitted point to point and IC5o (±95% C.I.) values were interpolated. 

"Pseudo" Hill slopes (see page 58) are calculated from the curve. 
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CHAPTER THREE: R E S U L T S 

Section 3.1: Modulation of agonist-evoked responses of the rat vagus by 

mefenamic acid 

1. Introduction 

Woodward etal., (1994) have reported thatfenamate NSAIDs modulated 

rat brain GABA A receptors expressed in Xenopus oocytes and a preliminary 

study by Halliwell et al., (1994) reported modulation of GABA-evoked currents 

in voltage-clamped rat hippocampal neurones by mefenamic acid. It was of 

interest, therefore, to further examine the effects of mefenamic acid on 

neuronal GABA A receptors and other ligand-gated ion channels. 

The rat isolated vagus and optic nerves have proved useful preparations 

to examine the mechanism, site and selectivity of compounds acting on 

neuronal receptors, since a number of ligand-gated ion channels are present on 

these nerves (e.g. Marsh, 1989). In the first instance, experiments were 

undertaken to establish the action of known modulators of the GABA A receptor 

and other ligand-gated ion channels present on the vagus and optic nerves, in 

order to ascertain the integrity of these preparations. 

2. Procedures 

Superfusion of submaximal concentrations of agonist onto either side of 

the vagus or optic nerves evoked a change in membrane polarisation in most 

preparations. Agonist contact time was standardised at 2±0.5min, a time which 

produced a clearly discernible peak agonist-evoked response. Since response 

amplitude varied between different sides of the nerve, most experiments were 

carried out on the side of the nerve which produced the largest agonist-evoked 

response. Agonists were applied to the nerve at regular intervals. To avoid 

receptor desensitisation, the intervals between agonist application were 

10±0.5min, 15±0.5min, 15±0.5min and 15±0.5min for GABA-, 5-HT-, a,(3-

MeATP- and DMPP- evoked responses, respectively. Control agonist-evoked 

responses were found to remain stable for up to 14 hours. Whenever possible, 

Chapter Three: Results, section 1, 75 



vagus nerves were obtained from small rats (~150g) since such nerves 

produced larger responses to known concentrations of GABA than those from 

larger rats. However, optic nerves (12-15mm in length) were generally 

obtained from larger rats (~250g) since in smaller rats, dissection only produced 

very short lengths of optic nerve (~10mm) and these were more difficult to set 

up for extracellular recording. 

The experimental protocol and data analysis were carried out as 

described in Methods. 

3. Pharmacological characterisation of agonist-evoked responses in the 

vagus and optic nerves 

The experiments reported here have investigated the pharmacology of 

GABA-, 5-HT-, a,p-MeATP- and DMPP- evoked responses of the vagus nerve 

and GABA- and glycine-evoked responses of the optic nerve. Further studies 

examined the action of certain known allosteric modulators of the GABA A 

receptor. Sodium pentobarbitone, alphaxalone and the intravenous anaesthetic 

agent, propofol, were the compounds investigated since their modulation of the 

GABA A receptor in other neuronal preparations has been well characterised (for 

review see: Seighart, 1995; Johnston, 1996). 

4. Results 

4.i. Pharmacological characterisation of agonist-evoked responses in the 

rat isolated vagus nerve. 

Using the extracellular recording technique, concentration response 

curves to GABA (3-3000uM), 5-HT (100nM-10uM), a.p-MeATP (3-500uM) and 

DMPP (3-1000jiM) were determined in the isolated vagus nerve. The EC 5 0 

values (geometric mean and 95% confidence intervals) for GABA, 5-HT, a,p-

MeATP and DMPP-evoked responses were found to be 34|aM (25-43(j.M, n=5), 

0.8uM (0.6-1.OuM, n=4), 48^M (34-62uM, n=5) and 33uM (6-61 uM, n=12), 

respectively. From these data, concentrations approximating these EC50 
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values of 50u.M, 0.5u.M, 30uM and 30uM for GABA, 5-HT, a,p-MeATP and 

DMPP, respectively, were employed in further experiments. The EC20 value for 

GABA-evoked responses was found to be 13u.M, however, for convenience a 

value of 10u.M was employed in further experiments. The mean amplitude of 

responses evoked by 10uJvl GABA was found to be 0.1±0.01mV (n=101). The 

mean amplitude of responses evoked by 5-HT (0.5u.M), a,p-MeATP (30u.M) and 

DMPP (30uM) were found to be 0.36±0.03mV (n=41), 0.62±0.06mV (n=41) and 

1.98±0.55mV (n=16) respectively. In experiments where the modulatory effects 

of drugs were investigated against control agonist-evoked responses, the drug-

induced effect on the agonist-evoked response is represented as a percentage 

change of the control agonist-evoked response. The results of these 

experiments are summarised in figures 3.1 and 3.2. 

In the isolated rat vagus nerve, concentrations approximating EC50 

concentrations of agonist-evoked responses, were recorded in the presence of 

their respective antagonists. Submaximal (50>M) GABA-evoked responses 

were inhibited by 1u.M picrotoxin to 55±8% (n=5, p<0.02) of control. 

Submaximal (0.5jiM) 5-HT-evoked responses were inhibited by 0.1 \iM MDL-

72222 (3-tropanyl-3,5-dichlorobenzoate) to 17±5% (n=7, p<0.0001) of control. 

Submaximal (30uM) a,p-MeATP-evoked responses were inhibited by 30u.M 

suramin to 37±4% (n=5, p<0.0003) of control and submaximal (30uM) DMPP-

evoked responses were inhibited by hexamethonium (300uM) to 29±13 (n=6, 

p<0.003) of control. These data are consistent with the activation of neuronal 

GABA A, 5-HT3, P 2 x and nicotinic ACh receptors, respectively. All drug effects 

were reversible upon wash. The results of these experiments are summarised 

in a histogram (figure 3.4); chart recorder traces of these results are shown in 

figure 3.3. 

4.ii. Pharmacological characterisation of agonist-evoked responses in the 

rat isolated optic nerve. 

Using the extracellular recording technique the concentration response 

relationships for GABA and glycine (both 0.1-10mM) were determined in the rat 
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Figure 3.1: GABA, 5-HT, a,p-MeATP and DMPP evoked concentration-
dependent responses in the rat isolated vagus nerve. The figure shows 
chart recorder traces of GABA-, 5-HT-, a.p-MeATP- and DMPP- evoked 
responses. The agonist applied is indicated to the left of the appropriate traces. 
The concentration of agonist applied to the nerve is shown below the 
corresponding response and the agonist contact time is represented by the 
solid bar beneath each trace. 
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Figure 3.2: GABA, 5-HT, a,B-MeATP and DMPP evoke concentration-
dependent agonist-evoked responses in the rat isolated vagus nerve. 
The figure shows mean log concentration-response curves for GABA-, 5-HT-, 
ot,p-MeATP- and DMPP- evoked responses. The log 1 0 of the agonist 
concentration is shown on the abscissa and the response amplitude is shown 
on the ordinate. Each agonist-evoked response has been normalized to its 
respective maximum response. Each data point is the mean ± s.e.m 
(represented by vertical lines) of 5, 6, 2-5 and 3-12 experiments for GABA, 
5-HT, a,p-MeATP and DMPP, respectively. The "pseudo Hill slopes" 
calculated for GABA, 5-HT, a.p-MeATP and DMPP, were 0.3, 1.3, 0.4 and 
0.6, respectively. 
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Figure 3.3: GABA-, 5-HT-, a.pMeATP- and DMPP-evoked responses of the rat 
isolated vagus nerve are inhibited by drugs acting at the G A B A A receptor, 5-HT 3 , 
Pat and nACh receptors, respectively. The figure shows actual chart recorder traces 
of submaximal (EC 5 0): GABA-evoked responses in the absence and presence of 
picrotoxin (1|*M); 5-HT-evoked responses in the absence and presence of MDL-72222 
(0.1 |xM); a.pMeATP-evoked responses in the absence and presence of suramin 
(30uM) and DMPP-evoked responses in the absence and presence of hexamethonium 
(300|aM). The agonist concentration applied to the nerve is indicated below its 
corresponding response and agonist contact time is represented by the solid bar 
beneath each response. 
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isolated optic nerve. The E C 5 0 values (geometric mean and 95% confidence 

intervals) for GABA and glycine-evoked responses were found to be 1.6mM 

(0.9-2.5mM, n=9) and 2.6mM (2.0-3.5mM, n=8), respectively. From these data 

concentrations approximating the E C 2 0 values of 0.3mM and 1mM for GABA 

and glycine, respectively, were interpolated and used in further experiments. 

The mean amplitude of responses evoked by 300fxM GABA and 1mM glycine 

were found to be 0.22±0.02mV (n=15) and 0.27±0.03mV (n=20), respectively. 

In experiments where the modulatory effects of drugs were investigated against 

control agonist-evoked responses, the drug-induced effect on the agonist-

evoked response is represented as a percentage change of the control agonist-

evoked response. These data are summarised in figure 3.5. 

In the rat isolated optic nerve, submaximal GABA-evoked responses 

(0.3mM) were inhibited by 3nM picrotoxin to 50+9 % (n=3, p<0.02) of control. 

Submaximal glycine-evoked responses (1mM) were abolished by 1jaM 

strychnine and inhibited by 0.5nM strychnine to 41 ±12% (n=4, p<0.02) of 

control. These data are consistent with activation of neuronal GABA and 

strychnine-sensitive glycine receptors, respectively. These data are 

summarised in a histogram (figure 3.6). 

4.iii. Allosteric modulation of the GABA-mediated response in the rat 

isolated vagus nerve. 

Submaximal GABA-evoked responses of the vagus nerve were 

concentration-dependently and reversibly potentiated by three chemically 

diverse drugs acting at the GABA A receptor: submaximal (10|iM) GABA-evoked 

responses were potentiated by sodium pentobarbitone (10-100|AM), 

alphaxalone (1-1 O^M) and propofol (1-3(VM). The maximum potentiation 

evoked by sodium pentobarbitone (1CVM), alphaxalone (10|AM) and propofol 

(1<VM) was found to be to 170% (n=2), 312±18% (n=4, p<0.002) and 361+47% 

(n=15, p<0.0001) and of control, respectively. The results of these experiments 

are summarised in figure 3.7. 

Chapter Three: Results, section 1, 78 



OJ 

z 3 >-< -i 
o o 

.2 

o O 
o 00 —r— 

5 o 
CM 

- I 
o 

(wnuiixeui oj pazjieuuou) 
esuodsaj )siuo6v 

15 

s 

5 

> 
E 
CM 

to 

(D —. 

c 5 ^ 

3 5 

< CO 
CD © 

8 i 
0 E >.co 
O o 

* 5 $ 

O <D C 

Si** 
S o ~ if 

O C 
a> a> 
(0 (0 

a) 
a) c 
_c o s 

CO ° 

< ro n o 

~ ' C TO 

a> 

o o -
(0 QQ 

C CO 0>< 
3 « «0 L . 

ffliS 

a> +i si c 
** o 
c a. ° 2 5 to 

l i 
.<2 Hi >. 

i 8 8 
(0 c. C 



> 
E 
CM 

(0 
c 
E 10 

C 
c 

So 
2 

u co 

(|OJ)UO3 jo % se) 
asuodsaj aupA|9 

c 
o 

(|OJ}uo3 jo % se) 
esuodsej VQVO 

6 E c» 
® « f ? 
—• >> c 

I *< 
| I | s 
« « - o a> o * 
e g « « 
TO © t> C 
C O £ E 
0 ~ © c 1 si s 
•S i ; 
<B a> — c £ £ a) w ^ £ co 
O t -n v 

I l l s 
I I P 

i l l s 
•° 2 < -o 
is CD d) 

s i l l 
<D £ c J 
. c c o 

sff I 
5 ? i 5 
S S 2 E 

o . < o <» 
£ CD o . £ 

1 °> 3. 0) 



3 

o 

(0 

CO . g 
(0 <D 

2 ra 

o 
8 

o 
9 

"T" 
O 

3 
-i— o o 
CN 

O 
O 

(lojjuoo % se) 
asuodsay VGV9 •8 TO 

i 
O 

7 

- I 
o <• 

Q, Q. to o CO 

CL 

•a 

o o 

Q) 

(0 
<D (0 

D> CL 
u. 75 

I I I 
"O C C 
8 8 8 

O < CD 
•g CD 0) 

™ (5 < c 
S a. CD o 



These modulatory effects of propofol, alphaxalone and pentobarbitone 

are consistent with those of other investigators (e.g. electrophysiological studies 

by Peters et a/., 1988 and Hales and Lambert, 1991) and taken together are 

indicative of activation of a neuronal GABA A receptor. Collectively, the above 

data validated the use of the vagus and optic nerves as suitable preparations to 

examine modulation of neuronal GABA A, 5-HT3, nACh, receptors and the 

strychnine-sensitive glycine receptors. 

However, also noteworthy in these studies, was the marked and 

consistent modulation of the GABA-evoked response in the rat vagus nerve by 

propofol. Since the selectivity of this agent was unknown, the vagus and optic 

nerves were employed to determine the action of propofol at the 5-HT3, nicotinic 

acetylcholinergic (nACh) and receptors of the rat isolated vagus nerve and 

at the GABA A and the strychnine-sensitive glycine receptor of the rat isolated 

optic nerve. 

4.iv. Selectivity of action of propofol on vagus and optic nerves. 

The effects of propofol (1-100|iM) were examined on neuronal GABA A, 5-

HT3, P 2 x and nACh receptors on the rat isolated vagus nerve. Propofol 

concentration-dependently potentiated submaximal (IO41M) GABA-evoked 

responses to a maximum of 360±45% (n=15; p<0.0001) of control in the 

presence of IO41M propofol. In contrast, 5-HT (0.5(iM), a.p-MeATP (30|j.M) and 

DMPP (30jj.M)-evoked responses were little or unaffected by propofol (I-IO41M). 

In the presence of 10|aM propofol, the 5-HT, a,p-MeATP and DMPP-evoked 

responses were reduced to 86±7% (n=6, p<0.1), 88±5% (n=5, p<0.07) and 

85±7% (n=5, p<0.1) of control, respectively. In the presence of lOO^M propofol 

the 5-HT, a,p-MeATP and DMPP-evoked responses were reduced to 60±8% 

(n=6), 40±9% (n=5) and 57±16% (n=5) of control, respectively. lOO^M propofol 

only transiently potentiated the GABA response, therefore, its effects are 

presented at t=15 mins. The results of these experiments are summarised in 

figures 3.8 and 3.9. 
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Figure 3.8: Propofol potentiates submaximal GABA-evoked responses, 
but has little or no effect on 5-HT-, a , p Me ATP- and DMPP-evoked 
responses in the rat isolated vagus nerve. Chart recorder traces of agonist-
evoked responses (all approximating their EC50, except for GABA which * EC 2o) 
in the absence and presence of propofol (10n,M) are shown. Top calibration bars 
apply to traces a and b. The agonist concentration applied to the nerve is 
indicated below the response and the agonist contact time is represented by the 
solid bar beneath each response. Agonist-evoked responses are taken from 
different nerves. 
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Figure 3.9: Propofol potentiates submaximal GABA-evoked responses, 
but has little or no effect on 5-HT-, a.pMeATP- or DMPP-evoked 
responses in the rat isolated vagus nerve. Mean log concentration-effect 
curves for agonist-evoked responses (all ECso, except GABA which * EC20) 
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shown on the abscissa and the response, as a percentage of the control 
agonist response, is shown on the ordinate. Each data point represents the 
mean±s.e.m (represented by the vertical bars) of 5-15 experiments. 



The effect of propofol (10nM) on submaximal GABA- and glycine -

evoked responses of the optic nerve was examined. Propofol (1(VM) 

potentiated submaximal (EC 2 0 ) GABA (0.3mM) and glycine (ImM)-evoked 

responses to 307±12% (n=3, p<0.009) and 124±6 % (n=7, p<0.03) of control, 

respectively. These data are summarised in figure 3.10. 

Thus, having validated the vagus nerve as a simple 

neuropharmacological assay, the effects of mefenamic acid on GABA-evoked 

responses of the vagus nerve were determined. 

4. v. Mefenamic acid potentiates the GABA-mediated response in the rat 

isolated vagus nerve. 

Submaximal (10|xM) GABA-evoked responses of the vagus nerve were 

concentration-dependently and reversibly potentiated by mefenamic acid (10-

100nM). The maximum potentiation evoked mefenamic acid (10nM) was found 

to be to 164 ± 14% (n=3, p<0.02) of control. The results of these experiments 

are summarised in figure 3.11. 

5. Discussion 
5.i. Characterisation of agonist-evoked responses in the vagus and optic 
nerves 

GABA, 5-HT, a,p-MeATP and DMPP evoked concentration-dependent 

depolarisation's of the rat isolated vagus nerve. The E C 5 0 calculated for GABA-

evoked responses was found to be 34^M; this is consistent with the E C 5 0 

values of 28|aM and 69|xM for GABA-evoked depolarisation's of the rat vagus 

nerve reported by Ireland and Tyers (1987) and Green and Halliwell (1997), 

respectively. The E C 5 0 calculated for the 5-HT-evoked responses was found to 

be 0.8|xM; this is in agreement with the work of Trezise (1993) who found that 

5-HT evoked concentration-dependent depolarisation's of the vagus nerve with 

an E C 5 0 of 0.48|j.M and Green and Halliwell (1997), who report a value of 

0.8[j.M. Ireland and Tyres (1987) and Green and Halliwell (1997) also report 
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DMPP-evoked depolarisations of the vagus nerve with E C 5 0 values of 35(j.M 

and 13fJv1, respectively; an E C 5 0 value of 33^M was determined in this study. 

Trezise et al., (1993) and Green and Halliwell (1997) have reported that a,p-

MeATP concentration-dependently depolarises the rat vagus nerve with E C 5 0 

values of 25^M and 26|iM, respectively; these data are in accordance with the 

E C 5 0 value of 48(iM reported in this study. 

GABA and glycine evoked concentration-dependent depolarisation's of 

the rat optic nerve with E C 5 0 values of 1.6mM and 2.6mM, for GABA and 

glycine, respectively. These data are in agreement with those of Green and 

Halliwell, (1997) who report E C 5 0 values of 1.1 mM and 1.7mM, for GABA and 

glycine, respectively. Also, Simmonds (1983) reports concentration-dependent 

depolarizations of the isolated optic nerve by the GABA analogue, muscimol, 

and glycine with interpolated E C 5 0 values of «10>iM and » 1.4mM, respectively. 

Agonist-evoked responses had characteristic profiles: 5-HT-evoked 

responses were observed to develop relatively slowly when compared to 

GABA-evoked responses and, occasionally, a small "after-hyperpolarising" 

response was observed on washout of higher concentrations of 5-HT; similar 

observations have been reported by Azami and colleagues, (1985). 

Responses evoked by a,p-MeATP typically reached peak more rapidly 

than GABA-evoked responses and an after-hyperpolarising response was 

frequently observed, especially on washout of higher concentrations (>100(j.M) 

of a,p-MeATP. In addition, a,p-MeATP-evoked responses were observed to 

fade rapidly, particularly with higher concentrations and in the continued 

presence of the drug; this phenomena has been previously reported to occur in 

other preparations such as guinea-pig bladder (Kasakov and Burnstock, 1983). 

These observations are also in good agreement with those outlined by Trezise 

era/., (1993). 

DMPP-evoked responses were also slower in onset than GABA-evoked 

responses and no after-hyperpolarising responses were observed. In addition, 

higher concentrations of DMPP evoked the largest depolarization's of the vagus 

nerve, (up to 5mV in some cases). The concentration of DMPP which evoked a 

maximal response appeared to be variable (10-100(VM); for this reason, 
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DMPP-evoked responses were normalised to the response evoked by 300|iM 

DMPP. A possible explanation for this phenomenon could be that at 

concentrations of DMPP greater than 300|xM other receptor types may be 

recruited (e.g. DMPP may promote the pre-synaptic release of acetylcholine 

from post-ganglionic nerve terminals, Wingard et al., 1991). Other investigators 

have also limited their DMPP concentration range to 3-300|j.M for nicotinic 

receptor activation of the vagus nerve (e.g. Green and Halliwell, 1997). 

GABA-, 5-HT-, a,p-MeATP- and DMPP-evoked responses were inhibited 

by picrotoxin, MDL 72222, suramin and hexamethonium, respectively. It is well 

established that picrotoxin non-competitively inhibits GABAA-mediated 

responses (Akaike, 1985). In this study, GABA-evoked responses were 

inhibited to 55% of control by picrotoxin (1^M); Green and Halliwell (1997) 

report similar inhibition by picrotoxin in the vagus nerve with an IC 5 0 value of 

3.6^M. Bowery and Brown (1974) demonstrated antagonism of extracellularly 

recorded GABA-evoked responses recorded in the rat superior cervical 

ganglion by somewhat higher concentrations of picrotoxin; in this study the IC 5 0 

for picrotoxin was 37|^M. 

MDL 72222 has been shown to act as a potent and selective antagonist 

of 5-HT-mediated depolarisation's of nodose and superior cervical ganglion 

cells (Azami et al., 1985 ) and has also been shown to lack affinity for 5-HT^ 

and 5-HT2 recognition sites in rat brain membranes (Fozard, 1984). In this study 

MDL 72222 (O.VM) virtually abolished 5-HT3-mediated responses of the vagus 

nerve. Similar observations were made in the vagus nerve by Green and 

Halliwell (1997) and Azami et al., (1985) in rabbit nodose ganglia and superior 

cervical ganglia. 

Suramin has been reported to antagonise ATP-activated channels 

(Nakazawa et al., 1990; Evans et al., 1992). However, it lacks selectivity for P 2 x 

subtypes (Evans, 1992). Consistent with data published by Trezise et al., 

(1993), suramin inhibited a.p-MeATP-evoked depolarizations of the rat vagus 

nerve supporting the proposal that these responses are predominantly 

mediated through P 2 x receptors. 
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In this study, DMPP-evoked responses of the rat vagus nerve were 

inhibited to 71% of control by hexamethonium (300|iM). Ireland and Tyres 

(1987) and Green and Halliwell (1997) also report similar levels of inhibition of 

DMPP-evoked responses of the rat vagus by hexamethonium. These 

pharmacological data are in accordance with nACh receptor activation. 

In the optic nerve, GABA and glycine-evoked responses were inhibited 

by picrotoxin and strychnine, respectively. These data are consistent with those 

previously reported by Green and Halliwell (1997) who report antagonism of 

glycine-evoked responses in the optic nerve by strychnine (3fxM) and 

Simmonds (1983) who reported antagonism by strychnine between 0.1 and 

10|iM in the optic nerve. 

5.ii. Allosteric modulation of the GABA-mediated response in the rat 

isolated vagus nerve. 

The positive allosteric modulation of the GABA A receptor by several 

CNS-depressant drugs, such as sodium pentobarbitone, alphaxalone and 

propofol, is well documented (for review see Seighart, 1995). In the vagus 

nerve, propofol was the most potent of the modulators examined and the 

relative order of potency, in descending order, was as follows propofol> 

alphaxalone> sodium pentobarbitone. These effects of propofol, alphaxalone 

and pentobarbitone are consistent with those of other investigators using single 

cell preparations (e.g. Peter et ai, 1988 and Hales and Lambert, 1991) and 

taken together, are consistent with activation of a neuronal GABA A receptor. In 

binding studies (e.g. Concas et at., 1990), alphaxalone is usually reported to be 

a more potent modulator of the GABA A receptor than propofol. However in the 

vagus nerve, propofol is almost equipotent with alphaxalone. 

The pharmacology of the GABA, 5-HT, a,p-MeATP and DMPP-evoked 

responses in the rat isolated vagus nerve is consistent with the activation of 

GABA A , 5-HT3, P 2 x and nACh receptors, respectively. Similarly, the 

pharmacology of the GABA and glycine-evoked responses in the rat isolated 

optic nerve is consistent with the activation of GABA A and strychnine-sensitive 
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glycine receptors, respectively. These data, therefore, support the use of the 

vagus and optic nerves as appropriate preparations with which to examine 

modulation of neuronal ligand-gated ion channel function. 

5.Mi. Selectivity of action of propofol on vagus and optic nerves 

The vehicle for experiments investigating the action of propofol was 

ethanol. A number of studies have demonstrated that millimolar concentrations 

of ethanol interact with ligand-gated ion channels such as the GABA A, 5-HT3, 

nACh, P^and strychnine-sensitive glycine receptors. 

For example, Aguayo and Pancetti (1994) have demonstrated that 

ethanol (0.5-850mM) potentiated GABA-evoked responses in ethanol-sensitive 

voltage-clamped mouse hippocampal neurones between 110 and 430% of 

control, respectively (EC50=502mM). These authors have also demonstrated 

that ethanol (1-425mM) concentration-dependently potentiated ethanol-

sensitive voltage-clamped mouse hippocampal neurones; a potentiation of 

150% of control being achieved with 100mM ethanol. In voltage-clamped 

mouse spinal neurones, ethanol (1-400mM) potentiated glycine-evoked 

currents between approximately 102 and 190% of control, respectively. 

Additionally, Machu and Harris (1994) have demonstrated using 5-HT3 

receptors expressed in voltage-clamped Xenopus oocytes that ethanol (25-

200mM) potentiated 5-HT evoked currents (EC50=100mM) where the maximal 

potentiation obtainable was 50% of control. 

More recently, Li, et ai, (1998) have demonstrated using ATP-evoked 

currents recorded from voltage-clamped bull frog dorsal root ganglion cells that 

ethanol (50-1 OOmM) inhibited neuronal P 2 x purinoceptors by shifting the ATP-

evoked dose-response curve to the right, possibly via an allosteric mechanism 

rather than competitive inhibition. Cardoso era/., (1999) have also shown using 

human nicotinic acetylcholine receptor subunits expressed in Xenopus oocytes 

that ethanol (75mM) potentiated acetylcholine-induced currents in a2p4, a4p4, 

a 2 p 2 and a 4 p 2 receptor constructs, where the potentiation was due to an 

increase in E m a x ) rather than a change in E C 5 0 or the Hill coefficient. The same 
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study also demonstrated that a 3 p 2 and a 3 p 4 receptor constructs were insensitive 

to modulation by ethanol, whereas homomeric a7 receptors were significantly 

inhibited by lower concentrations (25-50mM) of ethanol. Another recent patch-

clamp study (Aistrup et al., 1999) using cultured rodent cortical neurones has 

demonstrated that ethanol (3-300mM) reversibly enhanced high affinity 

neuronal acetylcholine-induced currents which were insensitive to a-

bungarotoxin (the potentiation ranging from 7.7±5% to 192±52%), whereas 

ethanol (10-300mM) weakly inhibited low affinity neuronal acetylcholine-

induced currents which were sensitive to a-bungarotoxin, (the inhibition ranging 

from 5±5±4% to 29±6%). 

In selectivity studies the final concentration of ethanol was 2\iM and 

therefore less than the concentrations of ethanol required to produce 

modulation of neuronal GABA A, 5-HT3, nACh, P 2 x or strychnine-sensitive glycine 

receptors. 

Propofol concentration-dependently and reversibly potentiated GABAA 

receptor-mediated responses in the rat isolated vagus nerve. The mean 

maximal potentiation of GABA-evoked responses was 360% and was achieved 

with 10|iM propofol and the E C 5 0 for this potentiating effect was 1.5^M. These 

data are in good agreement those of Hara et al., (1994) who report a 

concentration-dependent potentiation of submaximal GABA-evoked currents in 

rat hippocampal neurones by propofol with an E C 5 0 of 1(iM (interpolated) and a 

3-fold potentiation of the GABA-evoked current by 10|xM propofol. 

Hales and Lambert (1991) have reported a concentration-dependent, 

reversible potentiation of GABA-evoked currents by propofol (1.7-16.6|iM) with 

a maximal potentiation of >850% of control with 8.4^M propofol in both voltage-

clamped bovine chromaffin cells and rat cortical neurones. Additionally, 

propofol potentiated GABA-evoked currents in clonal murine hypothalamic 

GT1-7 neurones with an E C 5 0 of 5|j.M and levels of potentiation with 10|aM 

propofol were « 700% of control (Adodra and Hales, 1995). In contrast, Orser et 

al., (1994) report potentiation of submaximal GABA-evoked currents in voltage-

clamped murine hippocampal neurones with higher concentrations of propofol 

(2-100fiM) and, for example, a potentiation of 269% of control with 50\xM 
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propofol. The variation in potency and efficacy of propofol may be due to the 

use of different preparations and/or different vehicles and also due to different 

concentrations of GABA employed. For example, Hara et al., (1994) 

demonstrated that propofol ( V M ) produced a 3-fold potentiation of currents 

elicited by V M GABA, but only a 1.1 fold potentiation of currents elicited by 

100u.M GABA. 

The concentration-dependent potentiation of GABA-evoked responses in 

the vagus nerve resulted in a bell-shaped curve where potentiations evoked 

with higher concentrations of propofol (> IO41M) were reduced in magnitude. 

These data are in agreement with Hara et al., (1994) and Hales and Lambert 

(1991) who also report that higher concentrations of propofol («10^iM) caused a 

reduction in the level of potentiation. Similar observations were made by Orser 

et al., (1994) with higher propofol concentrations (50>M). This reduced level of 

potentiation may be due to desensitization, since propofol, at these high 

concentrations can also directly activate the GABA A receptor (Hara et al., 1993, 

Orser et al., 1994; Adodra and Hales, 1995). 

Low concentrations of propofol (1-10jxM) had little effect on 5-HT-evoked 

responses of the vagus nerve, but higher concentrations (>30>M) inhibited 

these responses. These data are in good agreement with the work of Machu 

and Harris (1994) who report that propofol (1.1-22(j.M) did not modulate the 

function of homomeric murine 5-HT3 receptors expressed in Xenopus oocytes. 

Barann et al., (1993) have reported a non-competitive inhibition of maximal 5-

HT-induced 1 4 C-guanidinium flux in N1E-115 mouse neuroblastoma cells by 

propofol (1-30fiM). In a more recent voltage-clamp study using N1E-115 cells, 

Barann ef al., (1998) have reported that propofol inhibited maximally-evoked 5-

HT currents with an IC 5 0 of 56j^M; these data are in agreement with the 

inhibitory effect observed on 5-HT-evoked responses of the vagus nerve with 

higher concentrations of propofol. 

Propofol (1-10jj.M) had little effect on a,p-meATP-evoked responses of 

the vagus nerve, but higher (>30|xM) concentrations of propofol inhibited these 
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responses. In contrast, a recent voltage-clamp study by Furuya et al., (1999) 

has demonstrated that propofol (3O-IOO41M) did not affect ATP-evoked 

responses on neuronal P 2 x purinoceptors in a rat pheochromocytoma cell line. 

No other study has investigated the action of propofol on P 2 X receptors in native 

neurones. 

Propofol (1-10|aM) had little effect on DMPP-evoked responses of the 

vagus nerve, but higher (>30|aM) concentrations of propofol inhibited these 

responses. Watchtel and Wegrzynowicz (1992) and Dilger et al., (1994) have 

demonstrated, using voltage-clamped muscle-like clonal BC3H-1 cells 

expressing nACh receptors, that propofol (81|xM and 25-250(j.M, respectively) 

inhibited these receptors by decreasing channel open time. In agreement, a 

recent voltage-clamp study by Furuya et ai, (1999) also demonstrated that 

higher concentrations of propofol (30-100(j.M) inhibited neuronal nACh-receptor 

mediated responses recorded in a rat pheochromoctoma cell line (PC12). The 

data presented in this study, therefore, are in agreement with the data of 

Watchtel and Wegrzynowicz (1992), Dilger et ai, (1994) and Furuya et al., 

(1999) who also report inhibition neuronal nACh-receptor mediated responses 

by propofol (>30|aM). 

However, two recent voltage-clamp studies of a4|32-containing neuronal 

nicotinic acetylcholine receptors expressed in Xenopus oocytes revealed a 

concentration-dependent inhibition of acetylcholine-evoked currents by propofol 

with IC 5 0 values of 4.5nM (Violet et al., 1997) and 19^M, (Flood et al., 1997). 

Moreover, Flood et al., (1997) also report that this propofol-induced inhibition 

did not occur in homomeric a7-containing nicotinic acetylcholine receptors, 

suggesting that the inhibitory effect of propofol is subunit-dependent. The 

higher potency of propofol reported by Violet et al., (1997) and Flood et al., 

(1997) may be attributed to the use of recombinant neuronal nicotinic 

acetylcholine receptors expressed in Xenopus oocytes compared to native 

neuronal receptors, as in this study, and cell line preparations containing 

muscle type nicotinic acetylcholine receptors (Watchtel and Wegrzynowicz, 

1992; Dilger et al., 1994) or neuronal nicotinic acetylcholine receptors (Furuya 
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et al., 1 9 9 9 ) . Additionally, the higher potency of propofol (Violet et al., 1 9 9 7 and 

Flood et al., 1 9 9 7 ) and may also be due to the reported subunit dependency of 

propofol (Flood era/., 1 9 9 7 ) . 

Concentrations of propofol (10|aM) which caused a maximal potentiation 

of GABA-evoked responses of the vagus nerve, evoked a marked potentiation 

of GABA-mediated responses (to 3 0 7 % of control) and a modest potentiation 

(to 1 2 4 % of control) of glycine-mediated responses of the optic nerve. Hales 

and Lambert ( 1 9 9 1 ) also report a modest potentiation of glycine-evoked 

responses in cultured murine spinal neurones by propofol (8 .4 -16 .8 | iM) . 

However, in contrast Hara et al., ( 1 9 9 4 ) report that propofol (1-5JJ.M) had no 

effect on glycine-mediated responses of voltage-clamped, cultured 

hippocampal neurones. A possible explanation for this discrepancy may be 

attributed to the lower concentration of propofol employed by Hara et al., ( 1 9 9 4 ) 

and/or the different preparations employed. 

5.iv. Mefenamic acid potentiates the GABA-mediated response in the rat 

isolated vagus nerve. 

The NSAID, mefenamic acid, also concentration-dependently 

potentiated submaximal GABA-evoked responses of the vagus nerve. These 

data are in agreement with Woodward et al., ( 1 9 9 4 ) and Halliwell et al., ( 1 9 9 4 ) 

who demonstrated that mefenamic acid concentration-dependently potentiated 

submaximal GABA-evoked currents in Xenopus oocytes and expressing rat 

brain mRNA and in voltage-clamped rat hippocampal neurones, respectively. 

However, both Woodward et al., ( 1 9 9 4 ) and Halliwell et al., ( 1 9 9 4 ) have 

reported higher levels of potentiation by mefenamic acid than those observed in 

the vagus nerve. Such differences in the potency and efficacy of mefenamic 

acid may be attributed to the use of different preparations. To further 

investigate the actions of mefenamic acid on native GABA A receptors its effects 

were determined on rat hippocampal neurones, using the whole-cell patch-

clamp technique to record from single neurones maintained in culture. 

Chapter Three: Results, section 1, 8 8 



CHAPTER T H R E E : R E S U L T S 

Section 3.2 

Electrophysiological and neuropharmacoloojcal properties of cultured rat 

embryonic rat hippocampal neurones 

1. Introduction 

The vagus and optic nerves have proved to be useful preparations for 

determining drug action at certain neuronal ligand-gated ion channels. 

However, in order to determine the precise mechanism/s of drug action at these 

receptor sites, the patch-clamp technique (Hamill et al., 1981) was employed. 

This technique allows the experimenter to make high fidelity recordings of 

agonist-evoked ion channel activity, whilst maintaining precise control over the 

neuronal membrane potential and the internal and external ionic environments 

of the cell. A directional perfusion system, used in conjunction with this 

technique, enables the experimenter to rapidly perfuse known concentrations of 

drugs in close proximity to the cell under investigation. Thus, further 

experiments investigating the action of fenamate NSAIDs on neuronal ligand-

gated ion channels were performed utilising cultured rat hippocampal neurones, 

maintained under voltage-clamp conditions. This chapter details the 

physiological and pharmacological properties of whole-cell voltage-clamped 

hippocampal neurones maintained in culture (see methods). 

2. Electrophysiological Characteristics of Hippocampal Neurones 

Hippocampal neurones, maintained in culture and initially identified by 

their morphological characteristics, exhibited spontaneous synaptic activity 

when held under voltage- or current-clamp in normal bathing solution. This 

spontaneous activity was more pronounced when cells were bathed in Mg 2 + -

free bathing solution (see figure 4.1a). In addition, cells grown in Neurobasal 

media alone often exhibited marked spontaneous activity compared to cells 
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maintained in serum based media, perhaps due to the clumped distribution of 

neurones observed when using Neurobasal media (see Methods: figure 2.5). 

Routine addition of tetrodotoxin (TTX; 0.3|aM) to the bathing solution either 

diminished or abolished this activity (figure 4.1a,b). Thus all recordings, unless 

otherwise stated, were made in the presence of TTX. From a random sample 

of hippocampal neurones investigated, the average resting membrane potential 

(Em) was found to be -59.5± 4mV (n=25). The average hippocampal cell 

membrane capacitance, series resistance, electrode resistance and membrane 

resistances, under the recording conditions described in Methods, were 

calculated from a random sample of 24 hippocampal neurones voltage-clamped 

at -60mV and are presented in the table below (table 4.1). An example of mean 

action current amplitude and duration from one cell is also given in this table 

whereby the amplitude and duration of 20 fast events were measured and 

averaged. 

Mean cell capacitance (pF) 26.7±5.6 

Mean access resistance (MQ) 10.5+0.6 

Mean electrode resistance (MQ) 2.110.06 

Mean membrane resistance (MQ) 8.410.54 

Mean action current amplitude (pA) 3185 

Mean action current rise time (ms) 0.024 

Table 4.1: table shows mean cell membrane capacitance, series resistance, 

electrode resistance and membrane resistances calculated from a random 

sample of 24 cells. Mean action current amplitude and rise time from 20 fast 

events recorded from one cell is also given. 

3. Procedures 

Hippocampal neurones held under voltage-clamp at -60mV, unless 

otherwise stated, displayed rapid inward currents in response to pressure-
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applied (10-100 millisecond pulses) GABA, glycine, NMDA (N-methyl-D-

aspartate), AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) and 

kainic acid. Agonist-evoked responses increased in amplitude with longer 

duration pulses of agonist exposure. At the beginning of each experiment, an 

agonist pulse duration was selected which was at most 10% of the maximum 

response obtainable. All drug effects were determined against submaximal 

agonist-evoked control responses and were perfused onto the cell until a 

maximal inhibitory or potentiating effect was observed. Upon removal of the 

drug, a series of control responses were obtained before further drug 

applications. The experimental protocol and data analysis were carried out as 

previously described (see Methods). 

4. Results - Ligand-gated Anion Channels 

4.L Physiological and pharmacological properties of GABA-evoked 

currents 

(a) l-V Relationship 

GABA (10^iM) pressure-applied (1.4kPa, at a rate of 0.02-0.03Hz and 

between 20-100ms in duration) to voltage-clamped hippocampal neurones 

(Vh=-60mV) evoked rapidly activating currents of 150-2400pA in amplitude in 

all cells tested (n=302 neurones; e.g. cell 2.16). The GABA whole-cell current-

voltage relationship (l-V) for hippocampal neurones voltage-clamped between -

100mV and +60mV was determined (using a CsCI-based internal and a normal 

external bathing solution as described in Methods). The GABA l-V (all 

responses were normalised to a holding potential of -60mV) showed outward 

rectification and reversed at 1.5 mV (n=4-20) (interpolated from the intercept of 

the curve on the x-axis using Graph Pad Prism Version 2.0a™); this value is 

consistent with the E ( Ci) predicted from the Nernst equation of OmV with equal 

chloride across the membrane (figure 4.2). 

(b) Pharmacology of the GABAA receptor 

Bicuculline (0.1-3^iM), a competitive GABA A receptor antagonist (e.g. 

Simmonds, 1982) concentration-dependently and reversibly inhibited 
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Figure 4.2: The GABA-evoked whole-cell current-voltage relationship 
for voltage-clamped hippocampal neurones. Left: shows actual chart 
recorder traces of single GABA (10 uM)-evoked currents recorded over a 
range of holding potentials given to the right of the currents (cell 3.75). 
Right: the graph shows the GABA-evoked current amplitude (normalized 
to a holding potential of -60mV; I, on the ordinate, in pA) plotted against 
the holding potential (Vh, on the abscissa, in mV). The GABA current 
reversed direction at 1.5 mV and displayed outward rectification. Each 
data point represents the mean±s.e.m (represented by the vertical bars) 
of 4-20 experiments. 



submaximal GABA (10|aM)-evoked whole-cell currents. From a series of 

concentration-effect studies, an IC 5 0 of 0.5^M was determined for bicuculline. 

(figure 4.3). 

Alphaxalone (0.1-3|^M), propofol (1-10|xM), loreclezole (3-30^iM), 

diazepam (0.1-1|aM), and sodium pentobarbitone (10-300>M) concentration-

dependently potentiated submaximal GABA (10|^M)-evoked currents with EC 5 0 

values of 4^M (2^M-7^M, n=2-4), 6faM (3nM-12|aM, n=6-10), 4[iM (1^iM-

16nM, n=4-11), 0.6^M (0.3^M-1.2|aM, n=2-7) and 64^M (33^M-121^M, n=3-

14), respectively (see figure 4.5). 

The potency sequence for the these modulators, in descending order is 

as follows: diazepam> alphaxalone = loreclezole > propofol > sodium 

pentobarbitone. Mean maximal potentiations + s.e.m evoked by alphaxalone 

(IO41M), propofol (10(j.M), loreclezole (10[xM), diazepam (1|xM), and sodium 

pentobarbitone (300^M) were 975% (n=2), 421+35% (n=10), 204±11% (n=6), 

231±25% (n=11) and 393±30% (n=3), respectively. Additionally, alphaxalone 

(>1^M), propofol (>VM) , loreclezole (>10JIM) and sodium pentobarbitone 

(>10nM), but not diazepam, activated an inward transmembrane current (see 

figure 4.4). 

These data are in agreement with those of other investigators, although 

alphaxalone is usually reported to be more potent than determined here (e.g. 

Peters et al., 1988). Collectively these data are consistent with activation of a 

neuronal GABA A receptor gated chloride ion channel. 

4.H. Physiological and pharmacological properties of glycine-evoked 

currents 

Glycine (100^iM) pressure-applied (1.4kPa, at a rate of 0.02-0.03Hz and 

between 20-130ms in duration) to voltage-clamped hippocampal neurones 

(Vh=-60mV) evoked rapidly activating currents of 100-1800pA in amplitude in 

all cells tested (n=14 neurones; e.g. cell 2.92). 
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Figure 4.4: Positive allosteric modulation of GABA-evoked whole-cell 
currents in voltage-clamped rat hippocampal neurones. Chart recorder 
traces of submaximal GABA-evoked responses (Vh=-60mV) potentiated by 
alphaxalone (1uM), diazepam (0.1 uM), propofol (1|nM), loreclezole (10u.M) 
and sodium pentobarbitone (30uM). All of the modulators shown, except 
diazepam, evoke a small transmembrane current. Drug contact time is 
represented by the solid line above each trace. Each chart recorder trace is 
recorded from a different neuron. 
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(a) Pharmacology of the glycine receptor 

Strychnine (0.1 and 0.3^M), a potent glycine receptor antagonist (e.g. 

Simmonds, 1983) concentration-dependently and reversibly inhibited 

submaximal glycine-evoked (100|aM) whole-cell currents. Strychnine (0.1 p-M) 

reversibly inhibited submaximal glycine-evoked (100|iM) whole-cell currents to 

17±5% (n=4). Strychnine (0.3|xM) reversibly inhibited submaximal glycine-

evoked (100(aM) whole-cell currents to 5±4% (n=3) of control, (figure 4.6). 

5. Results- Ligand-gated Cation Channels 

lonotropic Glutamate Receptors 

5.i. Physiological and pharmacological properties of NMDA-evoked 

currents 

(a) l-V Relationship 

NMDA (100^M) pressure-applied (1.4kPa, at a rate of 0.02-0.03Hz and 

between 15-120ms in duration) to voltage-clamped hippocampal neurones 

(Vh=-60mV) evoked rapidly activating currents of 180-1280pA in amplitude in 

all cells tested (n=21 neurones; e.g. cell 9.2). The whole-cell NMDA current-

voltage relationship for hippocampal neurones voltage-clamped between -

100mV and +40mV was determined in the absence (n=6) and presence (n=4) 

of M g 2 + (2mM). In the absence of Mg 2 + , NMDA-evoked currents varied in an 

approximately linear fashion over a range of holding potentials. M g 2 + blocked 

the NMDA-gated channel in a voltage-dependent manner with current flow 

being reduced at negative holding potentials, and a region of negative slope 

conductance occurring between -40 and -80mV (figure 4.7). 

(b) Pharmacology of the NMDA-gated receptor 

In agreement with Johnston and Ascher (1987), NMDA-evoked currents 

were potentiated by glycine (1|J.M) to 228±20% of control (n=8). Glycine is 

thought to act as a co-agonist for the NMDA receptor, thus glycine (1|xM) was 

routinely added to the external bathing solution when recording NMDA-evoked 

currents (see Methods). The competitive NMDA receptor antagonist D-APV 
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Figure 4.6: Strychnine inhibits glycine-evoked responses in 
voltage-clamped hippocampal neurones. Top: shows chart recorder 
traces of glycine (100uM)-evoked whole-cell currents (Vh=-60mV) before 
(left), in the presence of (middle) and following removal of (right) strychnine 
(0.1 uM). Bottom: histogram summarising the inhibitory effect of strychnine 
(0.1, 0.3|uM) on submaximal (100uJv1) glycine-evoked responses. Each data 
point represents the mean ± s.e.m of 3-4 experiments (represented by the 
vertical lines). 



M g 2 + free M g 2 + containing 

+40mV 

+20mV 

l(pA) 
2+ ± +Mg OmV 750 

2+ • Ma"* free 
600 

20mV 
450 

300 

40mV 
150-

Vh (mV) 
i 20 40 60 80 

60mV 
150-

•300 

-450-

-600-
80mV 

-750 J 

|200pA 

30s 

Figure 4.7: The NMDA-evoked whole-cell current-voltage relationship for 
voltage-clamped hippocampal neurones. Left: shows actual chart recorder 
traces of single NMDA (100|uM)-evoked currents recorded over a range of 
holding potentials (given to the right of the currents) in the absence and 
presence of M g 2 + (2mM). Right: the graph shows the NMDA-evoked current 
amplitude (I; on the ordinate, in pA), in the absence ( • ) and presence ( • ) of 
Mg 2 +(2mM), plotted against the holding potential (Vh; on the abscissa, in mV). 
Each data point represents the mean ± s.e.m (represented by the vertical bars) 
of 4-6 experiments. 



(0.1-10uJv1), (Evans et al., 1982) concentration-dependently and reversibly 

inhibited submaximal NMDA -evoked (100(xM) whole-cell currents. 

From a series of concentration-effect studies, D-APV (0.1-10>M) 

reversibly inhibited submaximal NMDA-evoked (100|aM) currents with an IC 5 0 of 

0.15\iM (figure 4.8). 

5.ii Physiological and pharmacological properties of AMPA-evoked 

currents 

(a) l-V Relationship 

AMPA (lOO^M), pressure-applied (1.4kPa, at a rate of 0.02-0.03Hz and 

between 15-85ms in duration) to voltage-clamped hippocampal neurones 

(Vh=-60mV) evoked rapidly activating currents of 220-860pA in amplitude all 

cells tested (n=4 neurones; e.g. cell 3.31). The AMPA current-voltage 

relationship for hippocampal neurones whole-cell voltage-clamped between 

-100mV and +100mV revealed an approximately linear relationship (figure 4.9). 

(b) Pharmacology of the AMPA -gated receptor 

The competitive AMPA/kainate receptor antagonist CNQX (3 and lOjaM), 

(Stein et al., 1992) concentration-dependently and reversibly inhibited 

submaximal AMPA -evoked (lOO^M) whole-cell currents to 31 ±3% (n=5) and 

6±3% (n=5) of control, respectively (figure 4.10). 

5.iii. Physiological and pharmacological properties of kainic acid-evoked 

currents 

(a) l-V Relationship 

Kainate (lOO^M), pressure-applied (1.4kPa, at a rate of 0.02-0.03Hz and 

between 20-150ms in duration) to voltage-clamped hippocampal neurones 

(Vh=-60mV) evoked rapidly activating currents of 180-960pA in amplitude all 

cells tested (n=9 neurones; e.g. cell 2.130). The kainate current-voltage 
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Figure 4.8: (D)-APV antagonises NMDA-evoked responses in 
voltage-clamped hippocampal neurones. Top: shows actual chart 
recorder traces of single NMDA (100 nM)-evoked whole-cell currents (Vh= 
-60mV) before (left), in the presence of (middle) and following removal of 
(right) (D)-APV (1 ^M). Bottom: the graph shows the l o g 1 0 concentration 
of (D)-APV (on the abscissa) plotted against the NMDA-evoked current, as 
percent of control on the ordinate. Each data point represents the mean ± 
s.e.m of 3-4 experiments (represented by the vertical lines). 
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Figure 4.9: The AMPA-evoked whole-cell current-voltage relationship 
for voltage-clamped hippocampal neurones. Left: shows actual chart 
recorder traces of AMPA (100^M)-evoked currents recorded over a 
range of holding potentials (given to the right of the currents). Right: 
Graph shows the AMPA-evoked current amplitude (normalized to a 
holding potential of -60mV; I, on the ordinate, in pA) plotted against 
holding potential (Vh, on the abscissa, in mV). The AMPA current 
reversed direction at 0.75 mV and was approximately linear between 
-100mV and +100mV. Each data point represents the mean of 2 
experiments. 
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Figure 4.10: CNQX inhibits AMPA-evoked responses in whole-cell 
voltage-clamped hippocampal neurones. Top: shows actual chart 
recorder traces of AMPA (100|JVI)-evoked whole-cell currents (Vh= 
-60mV) before (left), in the presence of (middle) and following removal of 
(right) CNQX (3uM). Bottom: histogram summarising the inhibitory effect 
of CNQX (3,10uM) on submaximal (lOOpM) AMPA-evoked responses. 
Each data point represents the mean ± s.e.m of 4-5 experiments 
(represented by the vertical lines). 



relationship for hippocampal neurones whole-cell voltage-clamped between 

-100mV and +60mV revealed an approximately linear relationship (figure 4.11). 

(b) Pharmacology of the kainate-gated receptor 

The competitive AMPA/kainate receptor antagonist CNQX ( l - IO^M), 

(Stein et al., 1992) concentration-dependently and reversibly inhibited 

submaximal kainic acid-evoked (100|xM) whole-cell currents. From a series of 

concentration-effect studies CNQX (1-10|aM) reversibly inhibited submaximal 

kainic acid-evoked (100^M) whole-cell currents. CNQX (1fiM) inhibited kainic 

acid-evoked currents to 47% (n=1). CNQX (3^M) inhibited kainic acid-evoked 

currents to 33% (n=2) and CNQX (10>iM) inhibited kainic acid-evoked currents 

to 9% (n=2) of control, respectively (figure 4.12). 

6. Discussion 

Those rat hippocampal neurones which were successfully maintained in 

culture were viewed under phase-contrast microscopy and visualized as phase-

bright cells with pyramidal shaped cell-bodies. These cells were spontaneously 

active, in the absence of any external chemical or electrical stimuli, and 

responded to extracellularly applied agonists. These morphological and 

physiological characteristics are similar to those described by other 

investigators (Segal, 1983; Segal and Barker, 1984; Ozawa and Yuzaki, 1984; 

Valeyev era/., 1993, 1995). 

GABA-evoked whole-cell responses from voltage-clamped rat 

hippocampal neurones were pharmacologically and physiologically consistent 

with the activation of a neuronal GABA A receptor. For example, the GABA-

evoked current was antagonized by bicuculline and potentiated by known 

positive allosteric modulators of the GABA A receptor, such as pentobarbitone, 

alphaxalone, propofol and loreclezole. Similar observations have been made by 

other investigators recording GABA-evoked currents in voltage-clamped rat 

hippocampal neurones (e.g. Segal and Barker, 1984; Hara etal., 1994 ;Valeyev 

et al., 1995) and in other whole-cell voltage-clamp studies using neuronal 
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Figure 4.11: The kainic acid-evoked whole-ceil current-voltage 
relationship for voltage-clamped hippocampal neurones. Left: shows 
actual chart recorder traces of single kainic acid (100joM)-evoked 
currents recorded over a range of holding potentials, shown to the right of 
each current. Right: the graph shows the kainic acid-evoked current 
amplitude (normalized to a holding potential of -60mV; I, on the ordinate, 
in pA) plotted against holding potential (Vh, on the abscissa, in mV). The 
kainic acid current reversed direction at -6.2 mV and was approximately 
linear between -100mV and +i00mV. Each data point represents 1 
experiment. 
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Figure 4.12: CNQX antagonises kainic acid-evoked responses in 
whole-cell voltage-clamped hippocampal neurones. Top: shows actual 
chart recorder traces of kainic acid (100^iM)-evoked whole-cell currents 
(Vh= -60mV) before (left), in the presence of (middle) and following removal 
of (right) CNQX (1joM). Bottom: the graph shows the log 1 0 concentration of 
CNQX (on the abscissa) plotted against the kainic acid-evoked current, as 
percent of control, on the ordinate. Each data point represents the mean of 
1-2 experiments. 



preparations (e.g. Peters et al., 1988; Wafford et al., 1994). The potency 

sequence in descending order of potency for these modulators was: diazepam 

> alphaxalone > loreclezole » propofol > pentobarbitone. These data are in 

good agreement with the observations made in the rat vagus nerve. 

Additionally, the GABA-evoked current reversed direction at 2.3mV ; this 

value is consistent with the reversal potential of OmV for the chloride ion, when 

chloride is equally distributed across the cell membrane. These data are in 

agreement with those of Segal and Barker, 1984; Ozawa and Yuzaki, 1984 and 

Valeyev et al., 1993. 

Glycine-evoked whole-cell responses from voltage-clamped rat 

hippocampal neurones were pharmacologically and physiologically consistent 

with activation of a neuronal strychnine-sensitive glycine-gated chloride ion 

channel. For example, the glycine-evoked current was antagonized by 

strychnine. Similar observations have been made by other investigators 

recording glycine-evoked currents in voltage-clamped rat hippocampal 

neurones (e.g. Segal and Barker, 1984; Ito and Cherubini, 1991, Hara et al., 

1994). 

NMDA-evoked whole-cell responses from voltage-clamped rat 

hippocampal neurones were pharmacologically and physiologically consistent 

with activation of a neuronal ionotropic glutamate receptor. The NMDA-evoked 

current was antagonized by (D)-APV and potentiated by glycine in agreement 

with Evans et al., (1982) and Johnston and Ascher, (1987), respectively. The 

NMDA-IV plot was essentially linear between the holding potentials of -100mV 

and +40mV, but in the presence of Mg 2 + , a voltage-dependent inhibition of the 

NMDA-evoked current was observed at holding potentials more negative than 

-20 mV . These data are consistent with those of Nowak et al., (1984) and 

Mayer and Westbrook, (1985). 

AMPA-evoked whole-cell responses from voltage-clamped rat 

hippocampal neurones were pharmacologically and physiologically consistent 

with activation of a neuronal ionotropic glutamate receptor. The AMPA-evoked 

current was antagonized by CNQX and produced an approximately linear l-V 

plot. These data are commensurate with the work of Stein et al., (1992) and 

Jonas et al., (1992). 

Chapter Three: Results: section 2, 96 



Kainic acid-evoked whole-cell responses from voltage-clamped rat 

hippocampal neurones were pharmacologically and physiologically consistent 

with activation of a neuronal ionotropic glutamate receptor. In agreement with 

Stein et al., (1992) and Jonas et al., (1992), respectively, the kainic acid-

evoked current was antagonized by CNQX and produced an approximately 

linear l-V plot. 

These data support the use of hippocampal neurones and the whole-cell 

voltage-clamp recording technique for examining the mechanism and selectivity 

of action of drugs on neuronal ligand-gated ion channels. 
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CHAPTER THREE: R E S U L T S 

Section 3.3: Determination on the effect site and molecular mechanism of 

action of fenamates at neuronal G A B A A receptors 

1. Introduction 

Woodward et al., (1994) have reported a bi-directional modulation of 

GABA-evoked responses recorded from Xenopus oocytes injected with rat 

brain mRNA. Moreover, preliminary studies in native neurones, outlined in the 

previous chapter, revealed that mefenamic acid evoked a modest potentiation 

of GABA-evoked responses recorded from rat vagus nerves. In order to further 

investigate the site and mechanism underlying the effect of mefenamic acid on 

neuronal GABA A receptors, experiments were conducted using whole-cell 

voltage-clamped hippocampal neurones. 

2. Procedures 

All hippocampal neurones in these experiments were voltage-clamped at 

-60mV, unless otherwise stated. Brief pressure application (20-100ms) of 

GABA to cells resulted in rapidly activating inward currents in all hippocampal 

neurones, with the amplitude increasing with longer pulses of GABA. All drug 

effects were determined against submaximal GABA-evoked responses and all 

responses were measured at their peak. All recordings were made in the 

presence of TTX (see Methods). Drugs were directionally perfused onto the cell 

until a maximal effect was observed. Upon removal of the drug, a further series 

of control responses were obtained before additional drug applications. The 

experimental protocol and data analysis were carried out as previously 

described (see Methods). 
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3. Results 

3.i. Mefenamic acid potentiates GABA-evoked whole cell currents 

recorded in voltage-clamped hippocampal neurones 

Mefenamic acid, sodium pentobarbitone and propofol (sodium 

pentobarbitone and propofol are shown for comparison) positively modulated 

GABA-evoked whole cell currents recorded from voltage-clamped hippocampal 

neurones. Mefenamic acid (3-100^M) concentration-dependently potentiated 

GABA-evoked response amplitude and duration. Similar observations were 

made for pentobarbitone (10-300jaM) and propofol (1-10 îM), although 

mefenamic acid was a more potent modulator than sodium pentobarbitone. The 

increase in response duration in the presence of mefenamic acid, sodium 

pentobarbitone and propofol was reflected in the percentage increase in the 

total charge passed during GABA-evoked responses. Mefenamic acid (3-

IOO41M), sodium pentobarbitone (10-300|aM) and propofol (1-10fiM) also 

evoked a concentration-dependent transmembrane current. High 

concentrations of these drugs caused a rapid desensitisation of GABA-evoked 

currents, such that the response amplitude was often diminished in the 

continued presence of the drug (see figure 5.1). 

Mefenamic acid (3-100|aM) concentration-dependently and reversibly 

potentiated submaximal GABA-evoked whole-cell current amplitude with E C 5 0 

value of 9|xM (5-15jxM, n=7-25) and a mean maximal potentiation of 337±44%, 

(n=19) with 30|iM mefenamic acid. In contrast to experiments conducted in the 

vagus nerve, mefenamic acid was more potent than the general anaesthetic 

pentobarbitone (EC5o=64[AM), but consistent with the vagus nerve data, was 

less potent than the general anaesthetic propofol (EC50=6[iM). However, also 

consistent with experiments conducted in the vagus nerve, pentobarbitone 

(300|aM) evoked a higher mean maximal potentiation of GABA-activated 

currents (393+30 %, n=3) than mefenamic acid, (see figure 5.2). 

These data demonstrate that mefenamic acid, with greater potency than 

pentobarbitone, concentration-dependently potentiated submaximal GABA-

evoked responses in hippocampal neurones. The characteristics of this 

potentiation were similar to those observed for sodium pentobarbitone and 
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Figure 5.1: Concentration-dependent potentiation of GABA-evoked responses by 
mefenamic acid. Chart recorder traces of submaximal GABA-evoked whole-cell 
currents concentration-dependently and reversibly potentiated by mefenamic acid (3-
100(aM), the effects of propofol (IO41M) and sodium pentobarbitone (100>M) are shown 
for comparison, a and b: Low concentrations of mefenamic acid (3-10^M) evoked a 
marked and well maintained potentiation of submaximal GABA-evoked current 
amplitude and duration, c peak potentiations of GABA-evoked currents were achieved 
with 30|iM mefenamic acid, d: higher concentrations of mefenamic acid (>100^M) 
evoked a biphasic effect on submaximal GABA-evoked currents with a transient 
potentiation, followed by a reduction of the GABA response amplitude with the duration 
of the response remaining prolonged; this is reversible upon continued wash, a-d: 
Mefenamic acid (3-1 OO îM) evoked a concentration-dependent transmembrane current 
amplitude, e. and f: propofol (IO41M) and sodium pentobarbitone (IOO41M) also 
potentiated the GABA-eVoked current amplitude and duration and evoked a 
transmembrane current. All cells were voltage-clamped at -60mV. Drug contact time is 
represented by the solid line above each trace. Recordings are taken from different 
cells. 
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Figure 5.2: Concentration-dependent potentiation of GABA-evoked responses 
by mefenamic acid, sodium pentobarbitone and propofol. Mean log 
concentration-effect curves for potentiation of GABA-evoked whole-cell current 
amplitude (a: filled symbols) and charge movement (b: open symbols) by mefenamic 
acid (3-100|iM), sodium pentobarbitone (10-300jiM) and propofol (1-1 OnM). The log 1 0 

concentration of modulator is plotted on the abscissa and the response, as a 
percentage of the control GABA response, is plotted on the ordinate. Each data point 
represents the meants.e.m (indicated by the vertical lines) of 7-25, 3-14 and 6-10, 
experiments for mefenamic acid, sodium pentobarbitone and propofol, respectively. 



propofol. Experiments were therefore conducted to further investigate the site 

and mechanism of action of mefenamic acid on the GABA A receptor. 

3.ii. Determination of the effects of non-fenamate NSAIDs on GABA-gated 

chloride channels in voltage-clamped hippocampal neurones. 

Since mefenamic acid modulated GABA-evoked responses in voltage-

clamped hippocampal neurones, the effects of other, non-fenamate, NSAIDs on 

these responses were determined to investigate the hypothesis that this 

modulation was a common property of all NSAIDs, perhaps related to their 

ability to inhibit cyclo-oxygenase activity and prostaglandin synthesis in the cell. 

Submaximal GABA-evoked responses in the presence of the non-

fenamate NSAIDs, ibuprofen (100|iM) and BPAA (100^iM) were 103±5% (n=3) 

and 92±6% (n=5) of control, respectively. However, indomethacin (lOO^M), 

also a non-fenamate NSAID, did evoke a modest potentiation of GABA-

mediated responses to 124±15% (n=3) of control (see figure 5.3). 

3.iii. Modulation of GABA-evoked whole cell currents recorded in voltage-

clamped hippocampal neurones by fenamate NSAIDs 

Since mefenamic acid caused a significant modulation of GABA-evoked 

responses in voltage-clamped hippocampal neurones, the effects of other 

fenamate NSAIDs on these responses were determined to investigate the 

possibility that this modulation was a common property of fenamates. 

The fenamate NSAIDs, mefenamic acid, (3-100|aM), flufenamic (3-

1000|aM), meclofenamic (3-100[iM) and tolfenamic (3-100nM), concentration-

dependently potentiated submaximal GABA-evoked currents with EC50 values 

of 9|^M (6-15nM, n=7-25), ^^2^lM (90 - 220 ^iM, n=1-5), 8|nM (2 -2VM, n=1-3) 

and 14|aM (5-38^M, n=2-3), respectively. In addition, mefenamic acid, 

flufenamic, meclofenamic and tolfenamic (all at >3|iM) were associated with a 

concurrent baseline shift (20-720pA) similar to that observed for mefenamic 
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Figure 5.3:The effect of 3 non-fenamate NSAIDs on GABA-evoked whole-cell 
currents. Top: shows chart recorder traces of submaximal (10uM) GABA-evoked 
responses in the absence (left), presence (middle) and following wash (right) of a: 
ibuprofen (IBUP; lOO îM), b: indomethacin (INDO;100nM) and c: BPAA (100)oM). 
Bottom: the histogram shows control (10nM) GABA-evoked responses in absence 
and then presence of indomethacin (100jiM), ibuprofen (100uM) and BPAA (lOOpM). 
Each data point is the mean±s.e.m, (represented by the vertical bars) of 3, 3 and 5 
experiments for ibuprofen, indomethacin and BPAA, respectively. 



acid. Mean maximal potentiations induced by mefenamic acid (30(iM), 

flufenamic (1000[iM), meclofenamic (30^M) and tolfenamic (100|j,M) were 337 

+44o/0 ( n = i 9 ) i 829±119% (n=2), 321 ±83% (n=2), and 524±153% (n=2), of 

control, respectively. In contrast, niflumic acid (10-100nM), concentration-

dependently inhibited GABA-evoked currents with an IC 5 0 of 16(j.M and was not 

associated with a baseline holding current shift (see figures 5.4 and 5.5). 

The above experiments determined the effects of a series of NSAIDs on 

GABA-evoked responses of voltage-clamped hippocampal neurones and 

demonstrated that modulation of GABA-evoked responses is not a general 

property of NSAIDs, but is particular to fenamate NSAIDs. Thus, the following 

series of experiments were conducted to determine the site and molecular 

mechanism of action of one fenamate NSAID in particular, mefenamic acid. The 

inhibitory effects of niflumic acid were also investigated and will be discussed 

later. 

3.iv. The potentiating effects of mefenamic acid are not mediated via the 

benzodiazepine site of the G A B A A receptor. 

Potentiation of the GABA-evoked response by mefenamic acid may be 

mediated through the benzodiazepine site of the GABA A receptor. To address 

this hypothesis, the potentiating effects of mefenamic acid and diazepam were 

determined in the presence of the benzodiazepine antagonist, flumazenil. 

Flumazenil alone (1^M) was without effect on the GABA-evoked current 

(106% of control, n=1), but reversed the potentiation of GABA-evoked currents 

by diazepam (1fiM) from 208.5±8.5% (n=2) to 100% (n=2) of control. In 

contrast, the presence of flumazenil (1|aM) did not inhibit the potentiating effects 

of mefenamic acid (10(iM, n=2), but rather increased the potentiation evoked by 

mefenamic acid (lO^M) from 173±2% (n=2) to 236.5±96.5% (n=2) of control 

(see figure 5.6). All drug effects were reversible upon wash. 

These data may indicate that the potentiation of GABA-evoked 

responses by mefenamic acid is probably not mediated via the benzodiazepine 

site of the GABA A receptor. However, given the variable sensitivity of 
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Figure 5.6: Mefenamic acid-induced potentiation of GABA-evoked currents 
is not reversed by the benzodiazepine antagonist, flumazenii. Top: Chart 
recorder traces of submaximal GABA-evoked whole-cell currents (voltage clamped 
at, Vh=-60mV) potentiated by mefenamic acid (1 OpM) are shown in the absence 
(left half) and presence of flumazenii (1mM; right half); traces are from the same 
cell. Bottom: histogram shows control GABA (10|iM)-evoked whole-cell currents 
potentiated by diazepam (1|iM) and mefenamic acid (10(iM) are shown in the 
absence (control) and presence of flumazenii (1|aM) as indicated in the key. Each 
data point represents the mean ± s.e.m (represented by the vertical lines) of 3 
experiments for mefenamic acid, and the mean of 2 experiments for diazepam. 



hippocampal neurones to the potentiating effects of mefenamic acid, these data 

do not disprove an involvement of the benzodiazepine site over the potentiating 

effects of mefenamic acid on the GABA A receptor. 

3.v. The potentiating effects of mefenamic acid are not due to GABA 

uptake inhibition 

GABA-uptake inhibitors have been shown to have anti-convulsant 

properties (e.g. Suzdak et al., 1992). They are thought to exert these effects by 

prolonging the duration of inhibitory post-synaptic potentials in neurones by 

elevating GABA levels at nerve terminals. In order to determine if the 

potentiating effects of mefenamic acid on GABA-evoked currents were due to 

inhibition of GABA uptake by mefenamic acid, the effects of two GABA uptake 

inhibitors, namely nipecotic acid and NNC-711, were examined on GABA-

evoked currents. NNC-711, is a lipophilic derivative of nipecotic acid which is a 

selective and potent inhibitor of the GAT-1 transporter (Borden et al., 1994). 

The classical GABA-uptake inhibitor, nipecotic acid, is a hydrophilic compound 

which is less potent and less selective than NNC-711 (nipecotic acid can 

interact with L-proline and pipecolic acid, Krogsgaard-Larsen et al., 1975) and 

in addition, can act as substrate for the GABA-transporter potentially 

complicating the interpretation of pharmacological data (Krogsgaard-Larsen et 

al., 1994). 

Application of nipecotic acid (100^M) or NNC-7111 (3nM), at 

concentrations 3 fold greater than their IC 5 0 values in binding experiments 

(33|j.M and 1.2(xM, respectively, Suzdak et al., 1992), did not mimic the 

potentiating effects of mefenamic acid on GABA-evoked responses. In the 

presence of nipecotic acid and NNC-711, GABA currents were 111% (n=2) and 

105% (n=2) of control, respectively. However, both compounds did produce a 

small background current (both between 30-40pA, n=2) and a concurrent 

increase in baseline noise levels (see figure 5.7). All drug effects were 

reversible upon wash. 

These data suggest that the potentiating effects of mefenamic acid are 

not due to inhibition of GABA uptake. 
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3.vi. The potentiating effects of mefenamic acid are not due to membrane 

perturbation 

Potentiation of the GABA-evoked response by mefenamic acid may be 

due to general membrane perturbation (i.e. changes in membrane fluidity), a 

hypothesis investigated for the action of neuroactive steroids of the GABA A 

receptor (Lambert, 1990). To address this hypothesis, a high concentration of 

mefenamic acid (1mM) was applied, via the patch electrode, to the inside of the 

cell membrane. Thus, mefenamic acid at (1mM) was added to the internal 

solution (see Methods) and the pH of this solution was adjusted to 7.2 by 

addition of concentrated hydrochloric acid. The effects of intracellular^ applied 

mefenamic acid were investigated on the GABA-activated current after the 

whole-cell configuration of the voltage-clamp had been obtained for a period of 

71 seconds, when diffusional exchange between the recording pipette solution 

and the cell interior had occurred (see Methods). 

The intracellular application of mefenamic acid (1mM) did not inhibit 

activation of a GABA-evoked response; this response was characteristic of a 

control GABA-evoked response in the absence of intracellular^ applied 

mefenamic acid. For example, in cells containing mefenamic acid, 30ms pulses 

of GABA produced whole-cell currents of 400pA in amplitude (n=2), 

comparable with those GABA-evoked responses observed under normal 

recording conditions (see Results, section 2, page 88). Moreover, application 

of mefenamic acid (10|xM) to the external membrane surface of these cells 

evoked potentiations of GABA currents to 203% (n=2) of control, (see figure 

5.8). The enhancement of the GABA-evoked response was in keeping with 

those previously observed when mefenamic acid (10jxM) was applied only 

externally (225±18%, of control, n=25). 

The finding that mefenamic acid applied intracellular^ had little or no 

effect on the GABA-activated current, or its_ability to enhance GABA responses 

when applied extracellulary, may be indicative of the existence of an 

extracellular recognition site existing for mefenamic acid. However, since 

mefenamic acid is lipid soluble, the final concentration of mefenamic acid 

acheived intracellularly may be considerably less than 1mM, if mefenamic acid 
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Figure 5.8: The potentiating effects of mefenamic acid are not due to 
membrane perturbation. Top: shows an actual chart recorder trace of 
GABA-evoked currents in the presence of mefenamic acid (1mM) applied 
intracellulariy. Control GABA-evoked currents were obtained for a period of 
time, EQ (EQ=263 seconds), which was approximately 4 times in excess of 
the calculated period for diffusional exchange to occur (71 seconds, 
see Methods). Subsequent extracellular application of mefenamic acid (10joM; 
indicated by the middle arrow above the trace) potentiated the GABA-evoked 
response. Bot tom: Histogram shows the relative potentiations of the GABA 
response evoked by mefenamic acid (10|.tM) in the presence (n=2) and 
absence (n=25) of intracellular mefenamic acid (1mM). 



escapes across the cell membrane down its concentration gradient. These 

experiments cannot therefore convincingly discount a mefenamic acid-mediated 

membrane perturbation effect. 

3.vii. The modulatory effects of niflumic acid and mefenamic acid are not 

use-dependent 

A number of drugs which modulate neuronal ligand-gated ion channels 

are use-dependent. Such drugs require an agonist-evoked activation of the 

receptor-gated channel to occur before these drugs can exert their effects. For 

example, at the GABA A receptor, GABA must bind to its site on the receptor to 

open the ion channel before picrotoxin can bind and produce its blocking 

effects (Akaike et al., 1985). Similarly, for the most part, the NMDA-gated 

ionotropic glutamate receptor channel must be activated by NMDA before for 

MK-801 can produce its channel-blocking effects, although a small component 

of NMDA receptor blockade by MK-801 is by a non-use-dependent mechanism 

(Halliwell et al., 1989). It is generally thought that such "use-dependent" drugs 

may have their binding sites located within the ion channel itself. 

Thus, the following experiments were conducted in order to investigate 

the hypothesis that mefenamic acid and niflumic acid may be exerting their 

modulatory effects at the GABA A receptor-gated chloride channel via a use-

dependent mechanism. 

3.vii. i. Procedures 

Repeated pressure application of GABA (at a rate of 0.03Hz and pulse 

duration of 10-100ms) was suspended during niflumic acid or mefenamic acid 

perfusion onto the cell, held under voltage-clamp (Vh=-60mV) for a pre

determined period of time. This time was determined by the time taken for the 

same or another fenamate drug (control), to achieved its maximum effect in the 

same cell. GABA application was then recommenced after this interval, whilst in 

the continued presence of the drug. 
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3.vii. ii. Results 

Niflumic acid (10-100|j.M) concentration-dependently inhibited the GABA-

evoked current. At higher concentrations (100M.M) niflumic acid caused 

immediate inhibition of the GABA-evoked response, when GABA application 

was resumed (see figure 5.9). 

Mefenamic acid concentration-dependently (3-10>M) potentiated the 

GABA-evoked responses. The potentiation of the GABA-evoked current by 

mefenamic acid occurred at the same time point as a previous application of 

mefenamic acid had produced a maximal potentiation. The potentiation of 

GABA-evoked responses from voltage-clamped rat hippocampal neurones was, 

therefore, not use-dependent (see figure 5.10). 

3.viii. The potentiating effects of mefenamic acid are voltage-dependent 

Mefenamic acid may exert its modulatory effects upon the GABA A 

receptor by a number of mechanisms, one of which could be to open other ion 

channels which may add to, or take away from, the GABA-evoked current. 

However, in these experiments, currents were measured only from the baseline 

and were therefore, GABA-evoked currents. Another mechanism for the 

potentiating effects of mefenamic acid, if they are mediated at a binding site 

within the chloride channel, is that mefenamic acid could change the membrane 

electric field and, thereby, change the GABA A receptor chloride channel 

permeability. If mefenamic acid does act at a site within the channel, it may 

exhibit some voltage-sensitivity or may change the CI" reversal potential. 

3.viii. i. Procedures 

Experiments were conducted to determine if the potentiating effects of 

mefenamic acid and propofol (for comparative purposes) on GABA-evoked 

currents altered the reversal potential of the GABA-evoked current and/or were 

voltage-sensitive. GABA-evoked whole-cell currents were recorded over a 
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range of holding potentials (-100 to +40mV) in the absence and presence of 

mefenamic acid (3|xM) and propofol (1(j.M). 

3.viii. ii. Results 

Mefenamic acid potentiated the GABA-evoked currents throughout the 

range of holding potentials (-100 to +40mV) investigated. The E c, was not 

significantly different in the presence of mefenamic acid when compared to 

control. However, the potentiating effects of mefenamic acid did exhibit voltage-

sensitivity, with those GABA responses recorded at more negative holding 

potentials being potentiated to a larger degree than those recorded at more 

positive holding potentials (see figure 5.11 and 5.12). 

3.ix. Mefenamic acid directly activates the G A B A A receptor 

In studies investigating the potentiating effects of mefenamic acid on 

GABA-evoked currents, perfusion of mefenamic acid (3-300^M) also resulted in 

the development of an inward current associated with application of the drug 

and also proportional to its concentration. 

Previous studies have shown that the positive allosteric modulators of 

the GABA A receptor, including pentobarbitone, propofol, alphaxalone and 

loreclezole are also able to directly activate the GABA A receptor in the absence 

of GABA. The hypothesis that mefenamic acid also directly activated the 

GABA A receptor in voltage-clamped rat hippocampal neurones was therefore 

addressed. 

3.ix. i. Procedures 

Mefenamic acid (100^iM), in the absence of GABA, was spritzer-applied 

to the cell at a duration of 20ms, once per minute. Higher concentrations of 

mefenamic acid (1mM), applied at this rate and duration, evoked currents which 

diminished in amplitude over time. The concentration of mefenamic acid and 
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Figure 5.12: Potentiation of the GABA response by mefenamic acid, but 
not propofol, shows voltage-sensitivity. Histograms show the potentiation of 
submaximal GABA(10uM)-evoked responses by propofol (1(.iM; top) and 
mefenamic acid (3pM; bottom). Responses in the presence of drugs are 
expressed as the percentage of the control GABA-evoked response, 
normalized to a holding potential of -60mV, Each data point represents the 
mean±s.e.m (represented by the vertical lines) of 2-4 and 2-3 experiments for 
propofol and mefenamic acid, respectively. 



rate of application were, therefore, predetermined to mininize this current 

"rundown". The current-voltage relationship for mefenamic acid-activated 

whole-cell currents in hippocampal neurones, voltage-clamped between -

100mV and +40mV was determined (using a CsCI-based internal and a normal 

external bathing solution as described in Methods). 

3.ix. ii. Results - Mefenamic acid alone activates an inward current 

Repeated pressure application of mefenamic acid (1mM), in the absence 

of exogenously applied GABA, evoked inward currents which "ran down" over 

time. Repeated pressure application of mefenamic acid (100>M), in the 

absence of exogenously applied GABA, evoked inward currents which were 

stable over time. These currents were inhibited by bicuculline (3nM, n=1) to 

12% of control and potentiated by sodium pentobarbitone at 30>M to 210+8% 

(n=3). Mefenamic acid-induced currents were also potentiated by propofol (10|j. 

M) to 200% of control (n=2), by loreclezole (10|aM) to 196% of control (n=2), by 

diazepam (1|xM) to 160% of control (n=1), and by alphaxalone (0.3^iM) to 225% 

of control (n=1) (figure 5.13). All drug effects on mefenamic acid-induced 

currents were reversible upon wash. 

3.ix. iii. Current-voltage relationship of mefenamic acid-activated currents 

Mefenamic acid (100|iM) activated a whole-cell current in hippocampal 

neurones voltage-clamped between -100 to +40mV. Mefenamic acid-induced 

currents had a reversal potential of 1.9mV (interpolated from the intercept of the 

curve on the x-axis). This value which was similar to the reversal potential 

calculated for GABA (2.3mV) with equal chloride across the membrane. The l-V 

plot for mefenamic acid exhibited outward rectification, also similar to that 

observed for GABA (see figure 5.14). 
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Figure 5.14: The mefenamic acid-evoked whole-cel l current for 
voltage-clamped heppocampal neurones. Left: chart recorder traces of 
mefenamic acid (100 MM)-evoked currents recorded over a range of holding 
potentials (given to the right of the current). Right: graph shows the 
mefenamic acid-evoked current (I in pA, on the ordinate), plotted against the 
holding potential (Vh, in mV on the abscissa). The mefenamic acid-evoked 
current reversed at +1.9mV and showed outward rectification. Data points 
represent the mean of 2 experiments. 



3.x. Sensitivity to the modulatory effects of mefenamic acid varies across 

hippocampal neurones. 

Neuronal sensitivity to mefenamic acid (30JAM) varied with peak 

potentiations ranging between 125% and 909%; these data may indicate a 

subunit selective property of mefenamic acid, which would be concomitant with 

the observations of Halliwell et al., (in press). Loreclezole has been also been 

reported to be subunit selective, (Wafford et al., 1994). 

In addition, a small number of all cells tested were relatively insensitive 

to potentiation by mefenamic acid and loreclezole (n=2) but were potentiated, 

for example, by diazepam ( V M ) to 194 % of control (n=1) or sodium 

pentobarbitone (30fxM) to 238% of control (n=1). Mefenamic acid and 

loreclezole, therefore, have similar characteristic modulatory effects on GABA-

evoked responses in hippocampal neurones (see figure 5.15). 

3.xi. Mefenamic acid acts at or shares a recognition site with loreclezole 

The similarities between the modulatory effects of mefenamic acid and 

loreclezole in hippocampal neurones may suggest that these drugs are acting 

at a single or shared recognition site on the GABA A receptor. To address this 

hypothesis, the following series of experiments were carried out. 

Concentrations of mefenamic acid and loreclezole which evoked 

maximal potentiations of (submaximal) GABA-evoked responses were 

previously determined in each cell. The peak potentiations evoked by 

mefenamic acid (lO^M), followed by loreclezole (10>M) were thus determined 

individually and when co-applied. Peak potentiations evoked by mefenamic acid 

(10|xM) and loreclezole (lO^M) were determined individually and found to be 

205% (n=2) and 277% (n=2) of control, respectively. When co applied, the peak 

potentiation evoked by both mefenamic acid and loreclezole, was 237% of 

control (n=2). 

In addition, the peak potentiations evoked by mefenamic acid (10uM), 

followed by propofol (10(xM) were determined individually and when co-applied. 

Peak potentiations evoked by mefenamic acid (10nM) and propofol (10nM) 
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were determined individually and found to be 312% (n=1) and 420% (n=1) of 

control, respectively. When co applied, the peak potentiation evoked by both 

mefenamic acid and propofol, was 375% of control (n=1). 

Similarly, the peak potentiations evoked by mefenamic acid (10(iM), 

followed by sodium pentobarbitone (lOO^M) were determined individually and 

when co-applied. Peak potentiations evoked by mefenamic acid (10>M) and 

sodium pentobarbitone (100(j.M) were determined individually and found to be 

259% (n=2) and 387% (n=2) of control, respectively. When co applied, the peak 

potentiation evoked by both mefenamic acid and sodium pentobarbitone, was 

277% of control (n=2). (see figure 5.16) 

The potentiating effects of mefenamic acid together with loreclezole, at 

concentrations which evoked maximal potentiations, were not additive when 

applied together. Under similar recording conditions, the potentiations evoked 

by mefenamic acid together with propofol or pentobarbitone, at concentrations 

which evoked maximal potentiations, were also not additive when co-applied. 

Although all drug effects were determined against submaximal GABA-evoked 

responses in hippocampal neurones, these data suggest that the non-additive 

potentiations of loreclezole, propofol and pentobarbitone together with 

mefenamic acid, are most likely reaching the ceiling of the available potentiation 

of the GABA-evoked responses in this recording system. 

4. Summary - modulation of GABA-evoked responses in hippocampal 

neurones by mefenamic acid. 

Mefenamic acid evoked a complex change in the characteristics of the 

GABA-evoked response recorded from rat hippocampal neurones. Submaximal 

GABA-evoked responses were concentration-dependently and reversibly 

potentiated in both amplitude and duration by mefenamic acid. The maximal 

potentiations evoked by mefenamic acid (30|aM) and loreclezole (10|nM) ranged 

from 125% to 909% and 149 to 349 % of control, respectively. 

In addition to its potentiating effects, at concentrations >10|xM, 

mefenamic acid evoked a concentration-dependent inward transmembrane 
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current. The mefenamic acid-activated current, evoked in the absence of 

GABA, showed a similar current-voltage relationship and reversed at a value 

similar to that of GABA. 

The effects of mefenamic acid were not mimicked by other non-fenamate 

NSAIDs, such as BPAA, indomethacin or ibuprofen, although indomethacin 

(100|^M) did evoke a small potentiation of the GABA-evoked response. 

GABA-evoked responses recorded from hippocampal neurones were 

modulated not only by mefenamic acid, but also by other fenamates. In 

descending order of potency, mefenamic> meclofenamic> flufenamic and 

tolfenamic acid, concentration-dependently and reversibly potentiated 

submaximal GABA-evoked currents. The potentiation of GABA-evoked 

responses recorded from rat hippocampal neurones by mefenamic acid was not 

delayed by the interruption of GABA application, suggesting that the 

potentiating effects of mefenamic acid are not use-dependent. 

In contrast, niflumic acid concentration-dependently inhibited 

submaximal GABA-evoked responses. This inhibition could not be surmounted 

by increasing agonist exposure. Inhibition of the GABA-evoked responses by 

niflumic acid (100>iM) was not delayed by the interruption of GABA application, 

suggesting that the inhibitory effects of niflumic acid are not use-dependent. 

The potentiating effects of mefenamic acid were insensitive to the 

benzodiazepine antagonist, flumazenil. 

The potentiating effects of mefenamic acid, loreclezole, propofol and 

pentobarbitone, at concentrations which evoked maximal potentiations, were 

not additive when co-applied. 

The GABA-uptake inhibitors, nipecotic acid and NNC-711 did not mimic 

the effects of mefenamic acid either qualitatively or quantitatively. 

Intracellular application of mefenamic acid did not cause modulation of 

GABA-evoked responses recorded from voltage-clamped rat hippocampal 

neurones. 

Mefenamic acid potentiated GABA-evoked responses recorded from rat 

hippocampal neurones in a voltage-sensitive manner without altering the 

reversal potential of the GABA-evoked current. 
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CHAPTER 4: 

Determination of the effects of mefenamic acid on other neuronal ligand-

qated ion channels 

1. Introduction 

NSAIDs exert a diverse range of effects within the CNS which include 

analgesic effects, anti-inflammatory effects, pro- and anti-convulsant effects 

and neuroprotective effects. It would therefore appear unlikely that such diverse 

effects are mediated entirely via inhibition of prostaglandin synthesis. Although 

many studies have examined the effects fenamates on a variety of non-

neuronal preparations (see introduction), there is a paucity of data describing 

the effects of such drugs in neuronal preparations. Recently, Lerma and Del Rio 

(1992) report inhibition of NMDA-mediated currents in mouse spinal neurones 

and Chen ef al., (1998) report neuroprotective effects of fenamates against the 

neurotoxic effects of glutamate and ischaemia. 

In light of these observations and, furthermore, having determined that 

fenamates positively modulated GABA-mediated responses recorded from 

voltage-clamped rat hippocampal neurones, the action of mefenamic acid on a 

number of other neuronal ligand-gated ion channels was determined. Thus, the 

effects of mefenamic acid were investigated at another inhibitory ligand-gated 

ion channel, the strychnine-sensitive glycine receptor and also at the excitatory 

ligand-gated ion channels gated by NMDA, AMPA and kainic acid. 

Additionally, the effects of propofol were also determined on glycine-

evoked response in hippocampal neurones given the conflicting reports in the 

literature (Lambert et al., 1991; Hara era/., 1993; results chapter 1). 

2. Methods 

Hippocampal neurones held under voltage-clamp at -60mV, produced 

rapid inward currents in response to pressure-applied (10-100 millisecond 

pulses) agonists, namely, glycine, NMDA (N-methyl-D-aspartate), AMPA (a-
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amino-3-hydroxy-5-methyl-4-isoxazolepropionate) and kainic acid. Agonist-

evoked responses increased in amplitude with increased duration of agonist 

exposure. Glycine-, NMDA-, AMPA- and kainic acid-evoked responses were 

antagonised by their respective antagonists, strychnine, (D)-AP5, CNQX and 

CNQX (see Results chapter 2). All drug effects were determined against 

submaximal agonist-evoked control responses. All responses were measured 

at their peak. 

3. Results 

3.i. Glycine 

In voltage-clamped rat hippocampal neurones, mefenamic acid (10-30^ 

M), had little effect on submaximal glycine-evoked responses (105±6%, n=3 

and 101 ±10 %, n=3 of control, respectively). However, at these concentrations, 

mefenamic acid did evoke a large transmembrane current (80-1600pA). A 

higher concentration of mefenamic acid (100^M) evoked a large 

transmembrane current and inhibited the glycine-evoked current to 7 1 % of 

control (n=1; see figures 6.1 and 6.2). Additionally, propofol (3,10|aM), also had 

little effect on submaximal glycine-evoked responses (105±6%, n=3 and 

101 ±10 %, n=3 of control, respectively). Propofol (3-1 OnM) also evoked a 

transmembrane current ranging between 160-960pA (see figure 6.3). 

3.H. NMDA 

In voltage-clamped rat hippocampal neurones, mefenamic acid (30, 100 

and 300p.M) had little effect on submaximal NMDA-evoked responses (101 ±7%, 

n=4, 101 ±4 %, n=4 and 98±5 %, n=3 of control, respectively). However, at 

these concentrations, mefenamic acid did evoke a transmembrane current. 

Mefenamic acid (1000|aM) inhibited the NMDA-evoked response to 26±2% of 

control, (n=3). The activation of the mefenamic acid-evoked transmembrane 

current could be inhibited by the competitive GABA A receptor antagonist, 

bicuculline (3-20^iM). In some instances the mefenamic acid-evoked current 
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Figure 6.2: The effect of mefenamic acid1 on glycine-evoked whole-cell 
currents recorded in voltage-clamped hippocampal neurones. Graph 
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response, as percentage of control agonist-evoked response, is plotted on 
the ordinate. Each data point represents the mean ± s.e.m (represented by 
the vertical bars) of 1-3 experiments. 
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could not be inhibited by low concentrations of bicuculline (3fiM), in these cases 

higher concentrations of bicuculline (10-20nM) were employed to block/inhibit 

the mefenamic acid-evoked transmembrane current. In the presence of 

bicuculline (3-20>M) , mefenamic acid (100nM) inhibited the NMDA-evoked 

response to 82±19% of control (n=3), compared to 101+4 (n=4), in the absence 

of bicuculline. In the presence of bicuculline (3-20^M) , mefenamic acid 

(300(xM) inhibited the NMDA-evoked response to 43+11% of control (n=3), 

compared to 98±5 (n=3), in the absence of bicuculline. The NMDA-evoked 

current was also inhibited by bicuculline (20|LIM) alone to 49% of control (n=1). 

(Figures 6.4 and 6.5). 

3.iii. AMPA 

In voltage-clamped rat hippocampal neurones, mefenamic acid (10-30JJ. 

M) had little effect on submaximal (100|xM) AMPA -evoked responses although 

at these concentrations (84+5%, n=4, and 90±15%, n=3 of control, 

respectively). However, at these concentrations mefenamic acid did evoke a 

transmembrane current (200 to 1800pA). Higher concentrations of mefenamic 

acid (100, 300 and 1000|aM) evoked large transmembrane currents. At these 

concentrations, mefenamic acid caused an inhibition of these AMPA-evoked 

responses to 66±5%, n=4; 75%, n=2 and 57±3%, n=3 of control, respectively 

(figures 6.6 and 6.7). 

3.iv. Kainate 

In voltage-clamped rat hippocampal neurones, mefenamic acid (10, 

30|xM) had little effect on submaximal kainic acid-evoked responses (93%, n=2 

and 75±15%, n=4 of control, respectively). At lOO^M mefenamic acid inhibited 

the kainic acid-evoked response to 21±10% of control, n=3. However, 

mefenamic acid (10-IOO^iM) did evoke a transmembrane current (190pA-

3487pA) This transmembrane current could be inhibited by the competitive 

GABA A receptor antagonist, bicuculline (3-10|xM). In the presence of bicuculline 
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Figure 6.5: The effect of mefenamic acid: on NMDA-evoked whole-cell currents 
recorded in voltage-clamped hippocampal neurones. Graph shows: mean log 
concentration-effect curves for action of mefenamic acid (30-1000|jM) on NMDA 
(1(M)uM)-evoked whole-cell currents in the absence ( • ) and presence of bicuculline 
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the ordinate, Each data point represents the mean ± s.e.m. (represented by the 
vertical lines) of 2-4 experiments. 
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recorded in voltage-clamped hippocampal neurones. Graph shows: mean log 
concentration-effect curves for action of mefenamic acid (10-1000uM) on AMPA 
(100uM)-«voked whole-cell! currents. The log 1 0 concentration of mefenamic acid is 
plotted on the abscissa and the response, as percentage of control agonist-evoked 
response, is plotted on the ordinate. Each data point represents the mean ± s.e.m. 
(represented by the vertical lines) of 2-4 experiments. 



and mefenamic acid (30uM), the kainic acid-evoked current was 101 % (n=2). 

In the presence of bicuculline and mefenamic acid (100u.M), the kainic acid-

evoked current was 78% (n=2) (Figures 6.8 and 6.9). 

4. Summary- Specificity of action of mefenamic acid 

No previous study has examined the selectivity of action of mefenamic 

acid on the major inhibitory and excitatory neuronal ligand gated ion channels. 

In this study, concentrations of mefenamic acid which evoked maximal 

potentiations of GABA-evoked currents had little or no effect on glycine-, 

NMDA-, AMPA- or kainic acid -evoked currents in voltage-clamped rat 

hippocampal neurones. 

However, higher concentrations of mefenamic acid (>100-1000u.M) 

evoked a large transmembrane current and concentration-dependent inhibition 

of all these receptor-mediated response. Co-application of bicuculline (3-10u.M), 

with higher concentrations of mefenamic acid, reduced or abolished this 

transmembrane current. In the presence of concentrations of bicuculline which 

blocked the mefenamic acid-induced transmembrane current, kainic acid-

evoked currents were not inhibited by mefenamic acid. In contrast, in the 

presence of bicuculline, inhibition of the NMDA-evoked currents by mefenamic 

acid was greater. 
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Figure 6.9: The effect of mefenamic acid on kainic acid-evoked whole-cel l 
currents recorded in voltage-clamped hippocampal neurones. Graph shows: 
mean log concentration-effect curves for action of mefenamic acid (10-100^M) on 
kainic acid (100nM)-evoked whole-ceil currents, in the absence (A) and presence of 
bicuculline (3-1 OpM, • ) . The log m concentration of mefenamic acid is plotted on the 
abscissa and the response, as percentage of control agonist-evoked! response, is 
plotted on the ordinate. Each data point represents the mean ± s.e.m. (represented 
by the vertical lines) of 2-4 experiments for mefenamic acid alone and the mean of 2 
experiments for mefenamic acid in the presence of bicuculline. 



General Discussion 

The exper iments described in this thesis set out to investigate the 

hypothesis that NSAIDs could affect neuronal function by directly modulat ing 

l igand-gated ion channel function. The rationale behind this hypothesis was 

based upon a number of observations. Briefly these were, firstly, that NSAIDs 

can produce analgesic effects even when administered directly into the CNS of 

rodents. Secondly, in humans, NSAIDs induce complex behavioral effects 

especial ly when taken in overdose and this appeared to be particularly true for 

the fenamate NSAID, mefenamic acid. Thirdly, two studies had demonstrated 

that the fenamate, mefenamic acid could modulate the funct ion of G A B A A 

receptors. 

Initial investigations were therefore undertaken using a simple 

extracellular recording technique to record agonist-evoked responses f rom rat 

isolated vagus and optic nerves. To validate the use of the vagus nerve as a 

suitable preparat ion to investigate the possible effects of NSAIDs, the 

modulatory effects of several well characterized drugs were first invest igated. 

Propofol, in particular, produced a marked potentiation of GABA-evoked 

responses of the vagus nerve. Since the selectivity of propofol on neuronal 

l igand-gated ion channels was unknown at the t ime of this study, it was 

investigated using the vagus and optic nerves. 

1. The selectivity of action of propofol 

The data presented in this thesis indicate that, at clinically relevant 

concentrat ions, propofol markedly potentiates GABA A -med ia ted responses, and 

in contrast, has little or no effect on 5-HT 3-, nACh- or -mediated responses 

of the rat vagus nerve. At these concentrat ions, propofol also produced marked 

potentiat ions of GABA A -media ted responses and modest potentiat ions of 

glycine-mediated responses of the rat optic nerve. However, higher 

concentrat ions of propofol (up to 100(^M) inhibited 5-HT 3- , nACh- or P 2 x -

mediated responses of the rat vagus nerve. 
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These data suggest that, at low concentrat ions, the actions of propofol in 

the vagus and optic nerves are most likely to be mediated at the G A B A A 

receptor. If propofol is able to potentiate GABA-mediated responses in human 

brain at these low concentrat ions (which are probably close to those achieved 

during the induction and maintenance of anaesthesia), then the act ions of 

propofol at human G A B A A receptors in the CNS might be a signif icant 

contributing factor for the sedative and anaesthetic properties of propofol. 

Al though inhibition of the 5-HT 3 and nACh receptor channel may 

contr ibute towards the anaesthetic properties of propofol, the concentrat ions of 

propofol which have inhibitory effects at these receptors in native neurones are 

probably outside the therapeutic dose range (Machu and Harris, 1994; Barann 

era / . , 1993, 1998; Watchtel and Wegrzynowicz, 1992; Dilger era / . , 1994, 1995 

and Furuya et al., 1999). Nonetheless, the small inhibitory actions of propofol 

(at higher concentrat ions) at 5-HT 3 and nACh receptors cannot be dismissed 

and may contribute to the anaesthetic actions and/or side effects observed with 

propofol- induced anaesthesia. Notably, Violet et al., (1997) have recently 

reported using Xenopus oocytes, that propofol inhibits neuronal- type 

recombinant nicotinic acetylcholine receptors with a greater potency than it 

does muscle-type recombinant nicotinic acetylcholine receptors. Further studies 

investigating the inhibitory actions of propofol on neuronal-type nicotinic 

acetylchol ine receptors may elucidate contribution of these receptors to 

propofol- induced sedation or anaesthesia. 

Administrat ion of 5-HT 3 receptor antagonists do not produce drowsiness, 

motor impairment or cognit ive deficits (Costall et al., 1990). Addit ional ly, a 

scarcity of 5-HT 3 receptors in higher brain structures (Tyers, 1991 ; Tecott et al., 

1993) has also been reported. These observations, together with the lack of 

modulat ion of homomer ic murine 5-HT 3 receptors expressed in Xenopus 

oocytes by propofol, led Machu and Harris (1994) to the conclusion that the 5-

HT 3 receptor does not play a major role in anesthesia. Antagonists of the 5-HT 3 

receptor, such as ondansetron, are however known to produce anti-emetic 

effects (Leeser and Lip, 1991). The anti-emetic propert ies of propofol reported 
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by Borgeat et al., (1992, 1994a) might be attributed to inhibition of 5-HT 3 

receptors, al though other investigators have suggested that this is not the case 

since the inhibitory effects of propofol on 5-HT 3 receptors occurs at 

concentrat ions outside the therapeutic range (Appadu and Lambert, 1996). At 

present, the clinical relevance of the inhibitory effects of propofol at neuronal 5-

HT 3 receptors remains unclear. 

Similarly, concentrat ions of propofol which inhibit receptor-mediated 

responses of the vagus nerve are also outside the therapeutic range. Furuya et 

al., (1999) have demonstrated that propofol, even at concentrat ions outside the 

therapeut ic range, did not affect ATP-evoked responses on neuronal P 2 x 

purinoceptors in a rat pheochromocytoma cell line. 

Propofol produced a marked potentiation of GABA-evoked responses 

and a modest potentiat ion of glycine-evoked responses in the rat optic nerve. 

At the t ime of this study there were 2 conflicting electrophysiological reports in 

the literature. Hales and Lambert, (1991) demonstrated that propofol produced 

a modest potentiation of glycine currents in murine spinal neurones. In contrast, 

Hara et al., (1994) demonstrated that propofol did not modulate glycine-evoked 

currents in primary dissociated hippocampal neurones. The actions of propofol 

were therefore examined on single cultured rat h ippocampal neurones, 

maintained in culture, using the patch-clamp recording technique. 

Notably, al though propofol has been shown to potentiate glycine-evoked 

responses in murine spinal neurones (Hales and Lambert, 1991), in the present 

study propofol activated a t ransmembrane current, but did not modulate the 

glycine-evoked response in voltage-clamped rat h ippocampal neurones 

maintained in culture. Similar observat ions were made by Hara et al., (1994) 

also using vol tage-clamped acutely dissociated rat h ippocampal neurones. The 

lack of potentiation of native glycine receptors in h ippocampal neurons 

compared to the modest potentiations observed in native murine spinal 

neurones (Hales and Lambert, 1991), suggests that di f ferences may exist 
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between central and spinal glycine receptors. Consistent with this observat ion, 

the a and p subunits comprising glycine receptors exhibit distinctive expression 

patterns within the central nervous system (Malosio et al., 1991). Addit ional ly, 

and similar to the G A B A A receptor, a number of receptor isoforms for the 

glycine receptor have been identified (a1-4) and shown to impart dif ferent 

biophysical and pharmacological properties upon the receptor (for review see 

Kuhse era/ . , 1995). 

Notwithstanding, recent electrophysiological studies using recombinant 

glycine receptors expressed in Xenopus oocytes have shown that glycine 

receptor subunit composit ion had little effect on the modulatory effects of 

propofol (Pistis et al., 1997). In this study propofol potentiated homomer ic 

glycine receptors composed of human a1 subunits with an E C 5 0 of 16^iM and 

also potentiated hetero-ol igomeric glycine receptors composed of human a1 

and rat (3 subunits with an E C 5 0 of 27 | iM. Similar studies by Mascia et al., 

(1996a,b) have demonstrated that propofol potentiated human homomer ic a 1 , 

a 2 and mutant a (A52S; mutation that alters the ability of glycine to activate the 

receptor) receptors expressed in Xenopus oocytes to an equal extent. 

Behavioural evidence for the action of propofol at the strychnine-

sensit ive glycine receptor is confl icting. Some studies have demonstrated 

anticonvulsant effects of propofol (Al-Muhandis et al., 1991) and others have 

demonstrated pro-convulsant effects (Dolin et al., 1992, Bansinath e ra / . , 1995) 

in mice chal lenged with i.v. strychnine. 

The modulatory effects of propofol on glycine receptors in spinal 

preparat ions and on recombinant glycine receptors are modest compared to its 

effects at the native and recombinant G A B A A receptor receptors (Hales and 

Lambert, 1991 ; Mascia era / . , 1996ab; Pistis era / . , 1997). Nonetheless, a role 

for the strychnine-sensit ive glycine receptor in the anaesthet ic/ant iconvulsant 

actions of propofol cannot be discounted and warrants further investigation in 

native neurones. Future electrophysiological studies examining the modulatory 

effects of propofol on glycine-evoked responses in spinal neuronal preparat ions 
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versus brain neurone preparat ions might indicate the relative importance of the 

effects of propofol on native glycine receptors within the CNS. 

Similar to, though less potent than propofol, the NSAID, mefenamic acid 

also induced a modest and concentrat ion-dependent potentiat ion of GABA-

evoked responses of the rat vagus nerve. However, this modulat ion was less 

than that reported by Woodward et al., (1994) using Xenopus oocytes and 

Halliwell et al., (1994) recording from cultured rat h ippocampal neurones. In 

order to investigate the site and molecular mechanism of the interaction 

between mefenamic acid and the G A B A A receptor, further investigations were 

therefore carried out on single cultured rat h ippocampal neurones using the 

more powerful patch-clamp recording technique. 

2. Mefenamic acid potentiates GABA-evoked responses in voltage-

clamped rat hippocampal neurones 

Mefenamic acid potentiated GABA-evoked responses in vol tage-

c lamped rat h ippocampal neurones in a complex manner. The degree of 

potentiat ion observed in this study was similar to the levels of potentiat ion 

reported by Halliwell et al., (1994; 2 1 8 % with 10| iM mefenamic acid) and 

Woodward et al., (1994; « 3 0 0 % with 30|xM mefenamic acid). More recent 

patch-clamp studies using human recombinant a i p 2 y 2 s G A B A A receptors 

expressed in Xenopus oocytes report potentiations of 355% with 3 0 ^ M 

mefenamic acid (Halliwell et al., in press) and 3 5 0 % with 3^M mefenamic acid 

(Whit temore era/ . , 1996). 

Moreover, the data presented in this thesis demonstrates several 

characteristic features of the modulatory effects of mefenamic acid. These are: 

1. Mefenamic acid potentiated GABA-evoked responses in both ampl i tude and 

durat ion. 

2. Mefenamic acid evoked a t ransmembrane current in addit ion to its 

potentiating effects on GABA-evoked responses. 
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3. The modulatory effects of mefenamic acid were biphasic with low 

concentrat ions potentiating GABA-evoked responses, and higher 

concentrat ions, evoking a transient potentiat ion, fol lowed by an inhibit ion of 

the GABA-evoked response. 

4. The modulatory effects of high concentrat ions of mefenamic acid on GABA-

evoked responses required long periods of washing to return to control. 

5. Hippocampal neurones varied in their sensitivity to the potentiating effects of 

mefenamic acid. 

In this study, mefenamic acid (and propofol and sodium pentobarbi tone) 

potentiated GABA-evoked responses in both ampl i tude and durat ion. Single-

channel studies have revealed that propofol (Hales and Lambert, 1991 ; Orser 

et al., 1994) potentiated GABA-evoked responses by increasing the probabil i ty 

of the channel being in the open state, whereas pentobarbi tone increased the 

duration of the mean open channel state (Study and Barker, 1981). The 

similarities between the GABA response characteristics for the potentiating 

effects of propofol , pentobarbitone and mefenamic acid suggest a similar 

mechanism of action for these drugs. Future single channel studies will al low 

this hypothesis to be tested. 

The observat ion that high concentrat ions of mefenamic acid required 

long periods of washing may be attributed to a number of factors. It is possible 

that the prolonged effect of mefenamic acid may be due to slow removal of the 

drug by the perfusion system. However, the rapid reversal of the modulatory 

effects of high concentrat ions of other drugs, such as d iazepam or bicucull ine, 

suggest that this is not the case. Another possibility is that mefenamic acid is 

highly lipophilic and having dissolved in the cell membrane, dissociates into 

aqueous solutions relatively slowly. Alternatively, mefenamic acid may bind to a 

site on the G A B A A receptor, for example within the ionophore, f rom which its 

subsequent removal is difficult. These hypotheses will be addressed later. 
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3. Inhibition of GABA-evoked responses by niflumic acid in hippocampal 

neurones 

Submaximal GABA-evoked responses recorded f rom vol tage-clamped 

rat h ippocampal neurones were concentrat ion-dependently inhibited by nif lumic 

acid. High concentrat ions of niflumic acid (100^iM) caused inhibition of the 

GABA-evoked response which could not be reversed even with extended 

washout of the drug (up to 4 t imes normal washout period) and could not be 

surmounted by increasing the agonist exposure t ime. Interestingly, in a binding 

study using whole rat brain homogenates, Evonuik & Skolnick, (1988) 

demonstrated that nif lumate inhibited anion-enhanced [35 S ]TPBS binding ( IC 5 0 

« 100(aM for 100mM CI ) , but not GABA-modulated radio-l igand binding to 

benzodiazepine receptors, and suggested that nif lumate binds within or close to 

an anion binding site within the channel pore of neuronal G A B A A receptors. 

In contrast to the data presented here, Woodward et al., (1994) 

demonstrated that niflumic acid evoked a modest potentiat ion of submaximal 

GABA-evoked responses recorded from Xenopus oocytes injected with rat 

poly + A RNA. Al though the effects of fenamates on maximal GABA-evoked 

responses were not determined in this study, Woodward et al., (1994) 

demonstrated that, in descending order of potency, niflumic acid (with an I C 5 0 

value of 7[iM), meclofenamic acid, f lufenamic acid and mefenamic acid 

( IC 5 0 =33nM) acid all caused a non-competit ive inhibition of maximal GABA-

evoked responses. Shirasaki ef al, (1991) have also reported that mefenamic 

acid (100(j.M) inhibited E C 6 0 / 7 0 GABA-evoked responses in acutely dissociated 

rat h ippocampal neurones by ~ 40%. Most recently, Halliwell et al., (in press) 

report that mefenamic acid (100| jM) inhibited submaximal GABA-evoked 

currents in human receptor constructs, expressed in Xenopus oocytes and 

in HEK-293 cells. Woodward and col leagues (1994) suggest that in Xenopus 

oocytes injected with rat po ly + A RNA, agonist concentrat ion determines the 

development of a potentiating or inhibitory effect by fenamates, whereby low 

concentrat ions of GABA (10-100|aM; EC 1 0 -EC 5 0 ) are potentiated by mefenamic 

acid (0.3-30| iM) and higher concentrat ions of GABA (>100-3000|uM; 

approximating E C 5 0 - E C 1 0 0 ) are inhibited by higher concentrat ions of mefenamic 
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acid (>30|aM). The data of Woodward et al., (1994) are therefore consistent with 

those of Shirasaki et al, (1991). 

In the present study, high concentrat ions (100^M) of mefenamic acid 

evoked a transient potentiat ion, fol lowed by an inhibition of the GABA-evoked 

current. One explanat ion for this observation may be attributed to the 

directional perfusion system employed in these exper iments. Given the vo lume 

of solution in the culture dish («2mls), the initial concentrat ion of mefenamic 

acid which bathes the cell will be lower than lOO^iM, which may explain the 

transient potentiat ion of the GABA-evoked response. With cont inued perfusion, 

the concentrat ion of mefenamic acid which surrounds the cell approaches 

IOO41M, and at this point the inhibitory effects of mefenamic acid are observed. 

The biphasic modulatory effects of mefenamic acid are similar to those reported 

for high concentrat ions of pentobarbitone (e.g. Akaike et al., 1987, Peters et 

al., 1988). 

In this study, the reduction in the GABA response ampl i tude observed 

with higher concentrat ions of mefenamic acid may be attributed to receptor 

desensit izat ion (partly mediated by the direct activation of the G A B A A receptor 

by mefenamic acid) and/or via the inhibitory site for mefenamic acid on the p r 

subunit reported by Halliwell et al., (in press). Experiments investigating the 

effects of mefenamic acid (and other fenamates) on maximal ly-evoked G A B A 

currents in vol tage-clamped hippocampal neurones may further characterize 

the inhibitory effects of high concentrat ions of mefenamic acid observed in 

native neurones. 

4. Fenamate Structure-activity relationships at native G A B A A receptors 

The data in this study show that GABA-evoked currents recorded f rom 

hippocampal neurones were modulated by a range of fenamates. Similar 

observat ions were made by Woodward er al., (1994) who examined the effects 

of fenamates on GABA-evoked responses in Xenopus oocytes. In the present 

study, the descending order of potency for the potentiating effects of fenamates 

was: mefenamic acid> meclofenamic acid t o l f e n a m i c acid > f lufenamic acid. 
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Woodward ef al., (1994) report a similar potency sequence for potentiat ion of 

GABA-evoked responses in Xenopus oocytes: mefenamic acid> meclofenamic 

acid > f lufenamic acid>nif lumic acid. 

Fenamates, most commonly mefenamic acid, f lufenamic acid, 

meclofenamic acid, tol fenamic acid and niflumic acid all belong to a group of 

compounds derived f rom the synthetic compound N-phenylanthranil ic acid 

(PPA). Crystal lographic and theoretical studies performed by Dhanaraj and 

Vi jayan, (1988) demonstrated that fenamates are comprised of two, 6-

membered rings which are linked by an imino bridge. For most fenamates, the 

A-ring (see Introduction, f igure 1.1) carboxyl group is coplanar with the imino 

bridge and is stabil ized by an internal hydrogen bond. Rotation of the B-ring is 

possible, but is limited by the steric hindrance occurring between the A-r ing 

hydrogen ortho to the imino l inkage and the substituted R1 and R2 groups on 

the B-ring, such that the 2 rings have non-planar orientat ions. This appears to 

be especial ly true for mefenamic acid (R1 and R2=CH 3 ) and meclofenamic acid 

( R 1 = C I ' ; R2= CH 3 ) which have relatively bulky R1 and R2 groups compared to 

f lufenamic acid (R1=H; R2=CF 3 ) . In the case of niflumic acid, replacement of a 

carbon atom with a nitrogen on the B-ring, results in a loss of steric hindrance 

enabl ing the molecule to adopt an almost planar conformat ion. This di f ference 

in structural conformation might account for the dif ference in activity of nif lumic 

acid, compared to the other fenamates examined in this thesis. 

The ability of fenamates to potentiate or inhibit GABA-media ted 

responses being dependent upon the conformation of the molecule was also 

suggested by Woodward ef al., (1994). Planar conformations, such as nif lumic 

acid, were effective inhibitors and non-planar conformations, such as 

mefenamic acid, meclofenamic acid, f lufenamic acid and tol fenamic acid, were 

found to be effective modulators; the degree of this modulat ion depended on 

phenyl-r ing substitut ions at the R2 group on the B-ring. 

These data suggest that modulat ion of GABA-evoked responses is a 

feature common to fenamate NSAIDs. Moreover, the dif ferences in potency and 

eff icacy of the fenamates examined in this study, which may be governed by 

the phenyl-r ing substitut ions at the R2 group, are also commensurate with the 

existence of a specif ic binding site for fenamates on native G A B A A receptors. 
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These data may also provide a template for the design and development of 

new subunit selective modulators of the G A B A A receptor . 

5. Possible sites and molecular mechanism(s) of action of mefenamic acid 

at native GABA A receptors 

5.i. The role of the "Benzodiazepine site" for the modulation of GABA currents 

by mefenamic acid. 

In native G A B A A receptors, the potentiating effects of MFA were 

insensitive to the benzodiazepine antagonist, f lumazeni l . The potentiat ion of 

GABA responses by mefenamic acid recorded in Xenopus oocytes expressing 

rat cortex mRNA was also not affected by f lumazeni l (Woodward et al., 1994). 

Addit ionally, mefenamic acid evoked similar levels of potentiat ion in human 

recombinant receptors expressing either a i p 2 (benzodiazepine insensit ive) or 

a i p 2 y 2 s subunit combinat ions in Xenopus oocytes (Halliwell et al., in press). 

These data therefore suggest that fenamates do not exert their primary 

effect through benzodiazepine binding sites al though, an involvement of this 

site cannot be completely discounted since mefenamic acid induced-

potentiat ions in native neurones was greater in the presence of f lumazeni l . 

Consistent with this possibil ity, maximal enhancement of G A B A responses by 

mefenamic acid in a 1 p 2 receptors expressed in Xenopus oocytes was greater 

than the enhancement recorded from a 1 p 2 y 2 receptors in oocytes (Halliwell et 

al., in press). Similar to mefenamic acid, a number of allosteric modulators of 

the G A B A A receptor such as propofol, sodium pentobarbi tone, a lphaxalone, 

loreclezole and etomidate have also been shown to mediate their GABA-

potentiating effects at sites distinct f rom the benzodiazepine site (e.g. Hales 

and Lambert, 1991 ; Prince and Simmonds, 1992; Cottrell er al., 1987; 

Wafford er al., 1994; Uchida er al., 1995). 
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5.H. Possible mechanisms of action of mefenamic acid on neuronal GABAA 

receptors 

There are a number of possible mechanism by which the potentiat ing 

effects of mefenamic acid (and by inference, the other fenamates which 

produce potentiating effects) at the G A B A A receptor could be mediated. For 

example, increased availability of GABA either due to a decrease in GABA 

uptake or an increase in GABA release f rom cells in and around the neuron 

under vol tage-clamp: an enhancement of GABA receptor funct ion mediated at 

the chloride channel : an allosteric modulatory site or possibly via changes in 

receptor phosphorylat ion. Other mechanisms also include the possibil ity that 

mefenamic acid may exert its effects by disrupting neuronal membranes or 

through mechanisms related to prostaglandin synthesis inhibition. 

5.//'/'. Potentiation of GABA currents by fenamates and GABA-re-uptake 

inhibition. 

GABA uptake inhibitors are thought to prolong the duration of inhibitory 

post-synaptic potentials in neurones by elevating GABA levels at nerve 

terminals (Krogsgaard-Larsen et al., 1984). The GABA-uptake inhibitors, 

nipecotic acid and NNC-711 did not mimic the effects of mefenamic acid either 

qualitatively or quantitatively. These data suggest that mefenamic acid does not 

mediate its GABA-potent iat ing effects by altering GABA-uptake mechanisms in 

this system. Similar to mefenamic acid, the potentiating act ions of propofol , 

a lphaxalone and sodium pentobarbitone are not due to inhibition of GABA-

uptake (Lambert et al., 1991 ; Cottrell era/ . , 1987; Jessel and Richards, 1977). 

5.v. Mefenamic acid-induced modulation of GABA currents and inhibition of 

prostaglandin synthesis. 

Even at high concentrat ions (relative to those of mefenamic acid for 

modulat ion of the GABA current), the non-fenamate NSAIDs, ibuprofen and 

BPAA did not modulate GABA-evoked responses in vol tage-clamped rat 

h ippocampal neurones, al though, indomethacin did produce a small 
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potentiat ion of the GABA-evoked response. Shirasaki et al., (1991) also 

examined the actions of different classes of NSAIDs (up to 100(j,M) on GABA-

evoked responses in vol tage-clamped acutely dissociated rat h ippocampal 

neurones and found that only mefenamic acid inhibited the GABA-evoked 

response. In contrast, Halliwell et al., (1994) reported that mefenamic acid 

potent iated GABA-evoked responses in vol tage-clamped hippocampal 

neurones in culture, and that another NSAID, BPAA, did not mimic the effects 

of mefenamic acid. Most recently, Halliwell et al., (in press) have also shown 

that indomethacin (100}j.M) and ibuprofen ( lOO^M) had little effect on GABA-

evoked responses recorded from Xenopus oocytes expressing human a 1(3 2y 2 s 

subunits. 

Inhibition of prostaglandin synthesis is thought to be a property of all 

NSAIDs, but there appears to be no direct relationship between the GABA-

potentiat ing effects of the NSAIDs examined here and their ability to inhibit 

prostaglandin synthesis. For example, indomethacin is a more potent 

prostaglandin synthesis inhibitor than mefenamic acid, but has only modest 

GABA-potent iat ing ability in rat h ippocampal neurones. Moreover, the other 

prostaglandin synthesis inhibitors tested, i.e. BPAA and ibuprofen, did not 

potentiate that GABA-evoked response at all. Nonetheless, the modest 

potentiat ion of GABA currents by indomethacin observed in this study and the 

similar modest potentiations of GABA responses by dif lusinal, indomethacin, 

ibuprofen, naproxen and piroxicam in Xenopus oocytes (Woodward et al., 

1994) suggest that NSAIDs might indirectly modulate GABA-media ted 

responses by a number of other mechanisms which do not involve inhibit ion of 

prostaglandin synthesis. These are discussed below. 

5. v. Modulation of GABA currents by membrane perturbation 

In this study, only extracellular application of mefenamic acid resulted in 

modulat ion of GABA-mediated responses. Intracellular appl icat ion, via the 

patch electrode, had no appreciable effects on the GABA currents or on their 

potentiat ion by extracellular application of mefenamic acid. Since only 
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extracellular application of fenamates causes any appreciable potentiat ion of 

GABA-evoked responses, it is probable that such an action is not due to 

changes in membrane fluidity, but rather that a membrane-bound recognit ion 

site exists for mefenamic acid (and, by inference, other fenamates) on the 

G A B A A receptor. Furthermore, the short latency of action and rapid reversibility 

of action upon washout of mefenamic acid (3-30nM) are consistent with a 

specif ic interaction at a recognition site. Consistent with the data presented in 

this thesis, Woodward et al., (1994) reported that intracellular appl icat ion of 

mefenamic acid in Xenopus oocytes did not modulate GABA currents. 

5.w. Modulation of GABA currents by changes in receptor protein 

phosphorylation 

G A B A A receptor subunits are known to contain several potential sites for 

protein phosphorylat ion by protein kinases and compounds which increase 

protein phosphorylat ion can modulate G A B A A receptor function (for review see 

Moss and Smart, 1996). Tyrosine kinases are of particular interest here since 

tyrosine phosphorylat ion is known to increase G A B A A receptor funct ion in 

native neurones by increasing the probability of channel opening and mean 

channel open t ime (Moss et al., 1995). A recent study has demonstrated that 

native G A B A A receptors of cultured spinal dorsal horn neurones are 

phosphorylated and modulated in situ by endogenous protein tyrosine kinase 

(PTK; W a n et al., 1997). These authors also report that in these cells, 

exogenously appl ied PTK increased control GABA currents by almost 2-fold, 

but that the t ime course for this was 10 minutes. In HEK cells expressing 

combinat ions of rat <xip2y2 G A B A A receptor subunits, the presence of the (52 

subunit imparted sensitivity of functional G A B A A receptors to phosphorylat ion 

(Wan et al., 1997). The importance of the p-subunit for phosphorylat ion is 

intriguing given the p-dependence for modulatory effects by mefenamic acid. 

However, the slow latency of action of PTK for potentiating GABA, compared to 

the rapid potentiating effects of mefenamic acid applied extracellulary and, 

moreover, the lack of modulation by intracellular application of mefenamic acid, 
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suggests that the potentiating effects of mefenamic acid are not mediated by 

changes in phosphorylat ion of the G A B A A receptor. Similar conclusions were 

made by Woodward et al., (1994) using Xenopus oocytes expressing rat 

G A B A A receptors. 

The effects of mefenamic acid are therefore similar to those of certain 

posit ive allosteric modulators of the G A B A A receptor, such as propofol , 

a lphaxalone and etomidate, which are also only effective when appl ied 

extracellulary (Hales and Lambert, 1991 ; Lambert et al., 1990, Belleli et al., 

1997). 

5.vii. Use- and Voltage-dependence of the effects of mefenamic acid and 

niflumic acid on GABAA receptors. 

The effects of niflumic acid were examined and it was found that at 

100>iM, niflumic acid caused rapid inhibition of the GABA-evoked response 

which could not be reversed even with extended washout of the drug and could 

not be surmounted by increasing agonist exposure t ime. The inhibitory effects 

of niflumic acid were, therefore, not use-dependent but were consistent with 

nif lumic acid producing a non-competi t ive inhibition of GABA-media ted 

responses. The non-competit ive inhibition of the GABA-mediated current might 

occur, possibly via a channel-blocking mechanism. Consistent with these data, 

Evonuik & Skolnick, (1988) have suggested that nif lumate binds with high 

affinity at or near an anion binding site within the channel pore of neuronal 

G A B A A receptors. 

There are no known positive modulators of the G A B A A receptor which 

exhibit use-dependent potentiation. The potentiation of GABA-evoked 

responses recorded from rat hippocampal neurones by mefenamic acid was not 

use-dependent. 

It is general ly thought that "use-dependent" drugs, such as picrotoxin 

(Akaike et al., 1985) and MK-801 (Halliwell et al., 1989), have their binding sites 

located within the ion channel itself. The lack of use-dependency of niflumic 
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acid and mefenamic acid, therefore, provide no support of a fenamate binding 

site located within the chloride channel of the GABA A receptor. 

Mefenamic acid potentiated GABA-evoked responses recorded from rat 

hippocampal neurones in a voltage-sensitive manner without altering the 

reversal potential of the GABA -evoked current. The relative potentiation 

at -100mV was approximately three-fold greater than at +20 mV. Consistent 

with these data, Halliwell et al., (in press) revealed a marked voltage-

dependence of the potentiating effects of mefenamic acid on GABA currents, 

with no associated change in reversal potential, in a$2- containing GABA A 

receptors expressed in Xenopus oocytes and in a$3y2s and a 1p 3-containing 

GABA A receptors expressed in HEK-293 cells; a similar degree of voltage-

sensitivity was also observed for loreclezole in HEK-293 cells in this study. 

Woodward et al., (1994) showed the potentiating effects of mefenamic acid 

were voltage-independent in rat brain GABA A receptors expressed in Xenopus 

oocytes, with no changes in the GABA reversal potential. Additionally, although 

Woodward et al., (1994) report that there was no change in the levels of 

rectification, close inspection of Woodward's data reveals that potentiations 

evoked by mefenamic acid (5^M) were 1.4 fold greater at -120mV («233%) 

than at+10mV («167%). 

For comparative purposes, the potentiating effects of propofol were 

investigated and found to be voltage-independent and there was no change in 

GABA reversal potential. These findings are in agreement with Hales and 

Lambert, (1991) using bovine chromaffin cells, Hara et al., (1994) using rat 

hippocampal neurones and Orser et al., (1994) utilizing murine hippocampal 

neurones. 

Peters ef al., (1988) and Cottrell et al., (1987) have reported voltage-

independent potentiation of GABA currents by sodium pentobarbitone and 

alphaxalone, respectively. Inspection of these data also reveals that 

potentiation of the GABA current by sodium pentobarbitone and alphaxalone 

was not associated with a change in reversal potential. However, the magnitude 

of those potentiations evoked by sodium pentobarbitone (Peters er al., 1988), 

but not alphaxalone (Cottrell et al., 1987), at hyperpolarising potentials is 
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approximately 1.7 times greater than that induced at depolarising potentials. 

Recently, Leidenheimer et al., (1998), using Xenopus oocytes expressing 

human a$2y2L GABA A receptor subunit cDNAs, have demonstrated that 

potentiation of GABA-evoked responses by diazepam, pentobarbital and 

THDOC is not associated with a change in reversal potential, but is at least 2 

fold greater at negative holding potentials compared to positive holding 

potentials. Notably, potentiation of the GABA response by THDOC was ~ 5 

times greater at a holding potential of -60mV compared to +60mV. In 

conclusion, with the possible exceptions of propofol and alphaxalone, 

potentiation of GABA-mediated responses by a number of chemically diverse 

compounds, including mefenamic acid, may be dependent on membrane 

holding potential. 

One possible explanation may be attributed to the outward rectification of 

the GABA current at positive holding potentials (Leidenheimer et al., 1998). At 

negative holding potentials, there is a greater scope for potentiation of the 

GABA-evoked current which may explain the larger mefenamic acid-induced 

potentiations at negative versus positive holding potentials. However, in the 

present study the concentrations of GABA, mefenamic acid (and propofol) were 

submaximal and the voltage-dependence of mefenamic acid may not be 

explained by this hypothesis. Moreover, this hypothesis does not explain the 

different degrees of voltage-sensitivity between different modulators or the 

absence of voltage-sensitivity observed in this study for propofol, and in other 

studies for alphaxalone (Peters et al., 1989). 

Additionally, the differences in hydrophobicity between propofol, 

alphaxalone, sodium pentobarbitone, loreclezole and mefenamic acid might 

contribute to their different voltage-sensitivities. However at pH 7.2, there is little 

correlation between the relative hydrophobicity of these compounds and the 

level of voltage-sensitivity For example, at pH 7.2, mefenamic acid is 99.94% in 

anionic form and loreclezole is uncharged (Halliwell et al., in press), sodium 

pentobarbitone is 25% in anionic form (Robertson et al., 1989) and diazepam 

(pKa=3.4; Merck Index, 1998) is 99.99% in anionic form (calculated using the 

Henderson-Hasselbalch equation). However, propofol differs from the other 
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modulators in that it is a liquid compound with high lipophilicity (the 

octane/water partition coefficient is 5000, Merck Index, 1998). This lack of 

voltage-sensitivity of propofol may be attributed to its marked hydrophobicity. 

Mefenamic acid, loreclezole and etomidate exhibit p2/3-subunit 

dependency for potentiation which is dependent upon the presence of the N290 

residue. This residue resides in the TM2 region of the p2/3 subunit, which forms 

part of channel wall and it is conceivable that this site may contribute to the 

binding site and/or transductional mechanism, including the voltage-dependent 

potentiating effects of these drugs (Halliwell et al., in press; Wafford et al., 

1994; Belleli et al., 1997). On the basis of crystallographic and theoretical 

studies, Dhanaraj and Vijayan (1988) hypothesise that a potential binding site 

for fenamates may contain hydrophobic and hydrophilic regions. This molecular 

structure might be consistent with a binding site located in a channel ionophore. 

Although, it is presently unknown if N290 in the p2/3 subunit of the GABA A 

receptor is luminal facing, Xu and Akabas, (1996) have demonstrated that an 

equivalent N290 residue in a1 subunits of the GABA A receptor is not luminal 

facing. 

With regard to propofol, Krasowski et al., (1998) have reported that a 

point-mutation in the TM3 region of the pi-subunit (M286W) of human 

recombinant GABA A receptors expressed in HEK cells together with a1 and 

a1y2s subunits, abolished the potentiation of GABA responses by propofol, 

without affecting the ability of propofol to directly activate the GABA A receptor. 

Conversely, a mutation in the TM2 region of the p i subunit (S265I) produced 

normal potentiation, but reduced direct activation by propofol. Birnir et al., 

(1997) have also reported the existence of a residue in TM2 in the p i subunit 

which determines GABA-modulatory effects and GABA-mimetic effects of 

sodium pentobarbitone. The p-subunit is therefore critically important for the 

modulatory and GABA-mimetic effects of a range of modulators. The p i subunit 

is important for the modulation and direct activation of the GABA A receptor by 

propofol, whereas the p2/3 subunit mediate the potentiating and direct 

activation effects of mefenamic acid, loreclezole and etomidate. However, since 

diazepam, a drug which is not p-subunit dependent, also exhibits a degree of 
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voltage-sensitivity (Leidenheimer et al., 1998), the importance of the p-subunit 

in mediating the voltage-sensitivity of these modulators remains unclear. 

Potentiation of GABA currents by mefenamic acid might arise from 

changes in the chloride channel gating characteristics, such as increases in 

single channel conductance, probability of channel opening or increases in 

mean channel open time. An investigation of the modulation of GABA single 

channel properties by mefenamic acid would further elucidate the mechanism 

of action of mefenamic acid. 

5.viii. Neuronal sensitivity to mefenamic acid varies across cultured 

hippocampal neurones - similarities to loreclezole? 

In native neurones, a small number of cells were insensitive to 

modulation by mefenamic acid and loreclezole, but were modulated by other 

allosteric modulators such as diazepam, or sodium pentobarbitone. 

Additionally, the maximal potentiations evoked by mefenamic acid (30>M) and 

loreclezole (10|aM) ranged from 125% to 909% and 149 to 349 % of control, 

respectively. This variation in sensitivity may reflect some degree of subunit 

selectivity. 

In support of this suggestion, mefenamic acid differentially modulated 

human recombinant GABA A receptors expressed in Xenopus oocytes and HEK 

cells, depending on the presence of specific p-subunits (Halliwell et al., in 

press). Similar observations have been made for loreclezole in Xenopus 

oocytes expressing recombinant GABA A receptors (Wafford et al., 1994). 

Mefenamic acid potentiated GABA-evoked currents and directly activated 

GABA A receptors composed of c ^ p ^ s receptor constructs, but did not 

potentiate or directly activate a 1 p 1 y 2 s receptor constructs. Moreover, inhibition of 

GABA-currents by mefenamic acid was observed for receptor constructs 

(Halliwell, op. c\t). Mutation studies also showed that the modulatory effects of 

mefenamic acid were dependent on the asparagine residue (N290) in the 

predicted second transmembrane domain of p2 or p3 subunits (Halliwell et al., 
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in press); similar observations have been made for loreclezole (Wingrove et al., 

1994) and etomidate (Belleli etal., 1997). 

Additionally, Whittemore et al., (1996) have demonstrated that 

mefenamic acid (and loreclezole) induced a strong modulation of p 2y 2 L receptors 

expressed in Xenopus oocytes, but that there was little difference between 

modulation of a i p 2 y 2 L and a 4 p 2 y 2 L receptors, indicating that the presence of the 

a-subunit was not critical for mefenamic acid-induced potentiation of GABA-

evoked currents in these receptors. 

In light of these observations, the overall potentiating effects of 

mefenamic acid on native GABA A receptors of rat hippocampal neurones 

suggests that these receptors were predominantly p2 / 3-containing receptors. 

Interestingly, Zwart et al., (1995) have reported an inhibition of 

acetylcholine-evoked currents on a 3 p 2 nicotinic receptor constructs, but a 

potentiation with a 3 p 4 receptor constructs by mefenamic acid. However, little 

sequence homology exists between nicotinic acetylcholine p 2 and p 4 receptor 

subunits compared to GABA A p! and p ^ receptor subunits, suggesting that 

mefenamic acid-evoked effects at nicotinic receptor constructs probably occur 

by different mechanisms or site(s) to those at GABA A receptor constructs 

(Halliwell ef al., in press). 

No other study has demonstrated the effects of mefenamic acid on 

GABA A receptors in native neurones, although similar observations have been 

made for loreclezole. Indeed, Kapur and Macdonald (1996) have demonstrated 

that only 50% of whole-cell voltage-clamped dentate granule cells (acutely 

dissociated from neonatal rats) were insensitive to modulation by loreclezole 

and suggested that these were p rcontaining receptors. In agreement, Xue ef 

al., (1996) in a binding study have demonstrated a greater potency of 

loreclezole and a higher GABA sensitivity in the cerebellum and thalamus, 

where there is a relatively higher expression of p 2 and p 3 subunits compared to 

other areas of the CNS. 

The variation in sensitivity of native neuronal GABA A receptors to 

modulation by mefenamic acid and loreclezole might be, in part, explained by 
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the reported p-subunit dependency for mefenamic acid and loreclezole 

observed in recombinant GABA A receptors (Halliwell et al., in press; Wafford et 

al., 1994). Similar to loreclezole (Kapur and Macdonald, 1996), the ability of 

mefenamic acid to discriminate between p i and p2/3 containing GABA A 

receptors might be exploited to identify the presence of specific p-subunits in 

native receptors. 

In conclusion, the p^-subunit-dependency for potentiation of the GABA A 

receptor is a common feature of mefenamic acid, loreclezole and etomidate 

which distinguishes the actions of these modulators from those of propofol, 

pentobarbitone and alphaxalone. These observations also lend credence to the 

hypothesis that a distinct site exists for these modulators on the GABA A 

receptor. 

5.ix. Overlapping sites and/or transduction mechanisms for mefenamic acid and 

loreclezole? 

The potentiating effects of mefenamic acid and loreclezole, at 

concentrations which evoked maximal potentiations, were not additive when 

applied together. Maximal potentiations of mefenamic acid together with 

loreclezole were also recently found to be non-additive in HEK cells expressing 

a1p3y2s GABA A receptor subunits (Halliwell et al., in press). These authors 

suggest that mefenamic acid and loreclezole, may act at the same or partly 

overlapping sites, or share the same allosteric mechanism for potentiation. 

However, experiments reported in this thesis showed that the 

potentiating effects of mefenamic acid together with propofol or pentobarbitone, 

at concentrations which evoked maximal potentiations, were also not additive 

when applied together. Although all drug effects were determined against 

submaximal GABA-evoked responses in hippocampal neurones, these data 

suggest that the non-additive potentiations with loreclezole, propofol and 

pentobarbitone together with mefenamic acid, are simply a ceiling effect in this 

recording system. Further experiments are therefore required to determine if 
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mefenamic acid shares a binding site with other known modulators on the 

GABA A receptor. 

Woodward et al., (1994) have demonstrated that the modulatory effects 

of mefenamic acid together with pentobarbitone or 5-hexachlorohexane on 

GABA responses in oocytes expressing rat cortex mRNA, were additive, 

suggesting different sites of action for these drugs. Similarly, Wafford et al., 

(1994) demonstrated that loreclezole-induced potentiation of GABA responses 

was additive to sodium pentobarbitone- and 3a-OH-DHP-induced potentiation, 

again suggesting different sites of action for these drugs. 

Woodward et al., (1994) reported that the steroid antagonist, 5p-

pregnan-3p-ol-20-one (3P-OH-DHP) accelerated the response decay rate of the 

GABA current in the presence of mefenamic acid, but had little effect on the 

response amplitude. No study to-date has demonstrated a synergistic effect of 

fenamates and steroids on GABA response decay rate in native neurones. 

Woodward et al., (1994) have suggested that the modulatory effects of 

fenamates on GABA A receptor may be further modulated by endogenous 

steroids in vivo. 

Further combination experiments with mefenamic acid and other 

modulators using a "fast step" perfusion system, would allow a range of 

agonists and modulator concentrations to be applied to the same cell. The 

results of such experiments may provide additional information regarding the 

site and mechanism of action of mefenamic acid. 

5.x. Evidence for direct activation of the GABAA receptor by mefenamic acid. 

Mefenamic acid, like pentobarbitone, alphaxalone and propofol, evoked 

a transmembrane current, at concentrations higher than those required for 

potentiation of GABA-evoked responses. The mefenamic acid current was 

modulated by propofol, pentobarbitone, alphaxalone, diazepam and loreclezole 

and was inhibited by bicuculline, suggesting that the current was mediated by 

activation of the GABA A receptor-gated chloride channel. Additionally, the l-V 

characteristics of the mefenamic acid-induced current were similar to those 
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observed for GABA in voltage-clamped rat hippocampal neurones. These data 

indicate that mefenamic acid, in common with other positive allosteric 

modulators of the GABA A receptor, can directly activate the GABA A chloride 

channel and are consistent with the observations of Halliwell et al., (1994 and in 

press, 1999). 

Recently, Halliwell and colleagues (in press) demonstrated that 

spontaneously gated chloride channels formed by homomeric p 3 or B,, 

receptors expressed in HEK cells, were directly activated or inhibited by MFA, 

respectively. The authors suggest that the binding sites for the direct activation 

and inhibition effects must be largely contained within the B3 and subunits, 

respectively. In addition, in the p 3 homomers, pentobarbitone (ImM)-induced 

currents were inhibited by mefenamic acid (100>M), suggesting that these 

drugs may share an overlapping site or the same allosteric mechanism for 

direct activation or alternatively, that binding of one drug to its site hinders 

access of the other drug to its respective binding site (Halliwell et al., op. cit.). 

These data are however consistent with direct activation/ modulation of the 

GABA-gated chloride channel by mefenamic acid. 

6. Effects of mefenamic acid on other ligand-gated ion channels. 

No previous study has examined the selectivity of action of mefenamic 

acid on the major inhibitory and excitatory neuronal ligand gated ion channels. 

In this study, lower concentrations (<100|AM) of mefenamic acid, which evoked 

maximal potentiations of GABA-evoked currents, had little effect on glycine-, 

NMDA-, AMPA- or kainic acid-evoked responses in voltage-clamped rat 

hippocampal neurones. 

Higher concentrations of mefenamic acid (>100-1000|o.M), however, 

evoked a large transmembrane current and concentration-dependent inhibition 

of all the ligand-gated ion channels examined in this thesis. 

In the presence of concentrations of bicuculline which blocked the 

mefenamic acid-induced transmembrane current, kainic acid-evoked currents 

were not greatly inhibited by mefenamic acid. These data suggest that the 
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inhibitory effects of mefenamic acid at kainate receptors, at least, may be 

mediated through changes in chloride permeability. In contrast, the 

experiments reported in this thesis indicate that the inhibition of NMDA-evoked 

currents in hippocampal neurones by mefenamic acid greater in the presence 

of bicuculline. 

Recently, Chen et al., (1998) have reported inhibition of NMDA-gated 

ionotropic glutamate receptors of salamander retinal neurones with high 

concentrations mefenamic acid (1mM). In contrast to the data presented here, 

however, Chen et al., (1998) do not observe inhibition of kainate-mediated 

responses by mefenamic acid and do not report activation of a transmembrane 

current by mefenamic acid. The absence of the development of a 

transmembrane current may be due to the use of the salamander retinal 

ganglion since retinal GABA A receptor have distinct pharmacology governed by 

the presence of p-subunits. In light of the observations made in this study that 

the inhibition of kainic acid-evoked currents by mefenamic acid is reduced when 

the mefenamic acid-evoked transmembrane current is abolished or reduced, 

the absence of a mefenamic acid-evoked transmembrane current in 

salamander retinal neurones may explain the lack of inhibition of kainate-

mediated currents in this preparation. However, the inhibition of NMDA-gated 

currents by mefenamic acid in salamander retinal neurones suggests that a 

distinct mechanism exists for inhibition of NMDA-mediated currents. 

Lerma and Del Rio (1991) also report inhibition of NMDA-gated currents 

in rat spinal cord neurones by flufenamic acid with IC 5 0 values of «350>M. In 

contrast to this study, but in agreement with Chen et al., (1998), these authors 

report that flufenamic acid and niflumic acid (1mM) had no effect on baseline 

holding currents. Notably, chloride ion substitution experiments by Lerma and 

Del Rio (1991) indicated that the antagonism of the NMDA-currents was not 

mediated via an interaction with chloride permeation or a change of the chloride 

equilibrium potential. Moreover, these authors report that spermine was not 

required for inhibition of the NMDA-evoked current and suggest that flufenamic 

acid and niflumic acid act as inverse agonists at the polyamine site of the 

NMDA receptors. 
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The data reported in this thesis also support different mechanisms of 

inhibition for kainic acid and NMDA-evoked currents by mefenamic acid. 

However, further experiments are required to characterise the inhibitory effects 

of mefenamic acid on NMDA-gated glutamate receptors. The effects of 

blockade of the mefenamic acid-induced transmembrane currents by 

bicuculline on the inhibition of glycine- or AMPA-evoked currents evoked by 

mefenamic acid was not determined. These experiments would indicate if the 

inhibitory effects of mefenamic acid at strychnine-sensitive glycine receptors, 

and AMPA- and NMDA-gated ionotropic glutamate receptors is attributable to 

changes in chloride permeation or due to a direct effect of mefenamic acid at 

these receptor sites. Additionally, the absence of direct effects on fenamates on 

spinal neurones and salamander ganglion neurones warrants further 

investigation given the large transmembrane currents observed in voltage-

clamped rat hippocampal neurones with such high concentrations of mefenamic 

acid. 

7. Pharmacological Implications-a mefenamic acid binding site exists on 

the G A B A A receptor? 

The experiments described in this thesis add to the understanding of the 

pharmacology of native GABA A receptors and to the understanding of NSAID 

pharmacology. They are supportive of a central role of action for NSAIDs, in 

particular fenamates and more specifically, the experiments reported in this 

thesis support a selective allosteric interaction of mefenamic acid with native 

GABA A receptors, which is not related to cyclo-oxygenase inhibition. 

Additionally, these data indicate that the interaction of mefenamic acid with the 

GABA A receptor is not unlike that observed for a number of other positive 

allosteric modulators of the GABA A receptor. 
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8. Neurophysiological and Clinical relevance of the action of mefenamic 

acid at the G A B A A receptor. 

Although it is clear from the data reported in this thesis that mefenamic 

acid selectively modulates the GABA A receptor, other mechanisms may 

contribute to the clinically observed effects of mefenamic acid overdose. These 

will be addressed first. 

NSAID inhibition of prostaglandin synthesis may lead to accumulation of 

arachidonic acid, which in turn induces a prolonged inhibition of glutamate 

uptake in glial cells (Barbour et al., 1989; Volterra et al., 1992) which may 

subsequently lead to neuronal excitation. This may be a mechanism by which 

mefenamic acid and other NSAIDs produce excitatory effects, however it does 

not explain CNS depression (e.g. coma) also observed with mefenamic acid 

overdose. 

Leukotrienes and their metabolites may also accumulate following 

NSAID inhibition of prostaglandin synthesis. Leukotrienes are thought to be 

involved in the function of leukocytes and endothelial cells (Cronstein and 

Weismann, 1995). Although, Baran et al., (1994) have reported that a 

lipoxygenase inhibitor, ebselen, had no effect on kainic acid-induced seizures in 

rats, at present there is no data reported on the effects of leukotrienes on 

GABA A receptor function. Voltage-clamp studies investigating the action of 

leukotrienes on GABA-evoked responses (and other agonist-evoked 

responses) in rat hippocampal neurones would determine if leukotrienes can 

modulate neuronal ion channels function. 

A direct relationship between the analgesic effects of certain NSAIDs 

and central serotonergic pathways has been reported (e.g. Shyu et al., 1984), 

with NSAIDs reducing brain stem levels of serotonin and 5-hydroxyindoleacetic 

acid (5-HIAA) (reviewed by Cashman, 1996). However, no study to-date has 

reported the effects of mefenamic acid on 5-HT turnover. Since decreased 

levels of 5-HT are associated with convulsant effects (e.g. Dailey et al., 1994), it 

is conceivable that the convulsant effects of mefenamic acid in overdose might, 

in part, be attributed to reduced serotonin levels. Although this mechanism may 

contribute to the pro-convulsant properties of mefenamic acid in overdose, it 
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does not explain the complex behavioral effects of mefenamic acid overdose 

observed in humans or the anti-convulsant effects of mefenamic acid in 

rodents. 

Interestingly, a study by Dailey et al., (1994) who demonstrated that 

loreclezole, like certain other anticonvulsant drugs, caused elevations in 

serotonin release in CNS. Loreclezole has, however, been proposed to mediate 

its anti-convulsant effects by potentiating the inhibitory actions of GABA in the 

CNS (Wafford et al., 1994). Given the pharmacological similarities reported in 

this thesis and by Halliwell et al., (in press) of mefenamic acid and loreclezole, it 

will be of interest to investigate the effects of mefenamic acid on serotonergic 

function in the CNS to further characterise the mechanism of action of 

mefenamic acid in the CNS. 

At therapeutic doses of mefenamic acid, peak plasma concentrations 

have been reported to be within the range of 4-40|xM, with 50% bound to 

plasma proteins (Flower, 1974; Glazco, 1966; Court and Volans, 1984). Such 

concentrations of mefenamic acid are sufficient to modulate GABA A receptor 

function in periphery. However, no study to date has determined the 

concentrations of mefenamic acid which can access the CNS. Indeed, given the 

ability of mefenamic acid to modulate GABA A receptors at lower concentrations 

than those reported in overdose, it would be of interest to determine the 

concentrations of mefenamic acid capable of penetrating the blood -brain-

barrier. In light of this information, it would be of further interest to examine the 

behavioral effects of mefenamic acid at concentrations within the therapeutic 

range, since it conceivable that at such concentrations, mefenamic acid may 

modulate synaptic inhibition to produce anxiolytic and/or sedative effects. 

The complex modulation of GABA-gated chloride channels by 

mefenamic acid observed in rat neurones and in human recombinant GABA A 

receptors (Halliwell et al., in press) might contribute to the complex behavioral 

effects seen in humans following mefenamic acid overdose. Mefenamic acid 

overdose is associated with a high incidence of seizures and coma. Several 

studies investigating the actions of fenamates on chemically- and electrically-

induced seizures in rodents support a bi-directional mechanism of action of 
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fenamates which is distinct from other NSAIDs whereby low doses of 

fenamates had anticonvulsant effects and high doses had pro-convulsant 

effects (Wallenstein,1985ab, 1987, 1991; Ikonomidou-Turski era/., 1988). 

In the main, reported cases of mefenamic acid overdose in humans are 

associated with convulsive seizures (Shipton and Muller, 1985, Young et al., 

1979, Balali-Mood et al., 1981, Gossinger et al., 1982; Turnbull et al., 1988). 

For example, Balali-Mood et al., (1981) studied 54 patients who had overdosed 

on mefenamic acid and reported a concentration-dependent relationship 

between plasma concentrations of mefenamic acid and CNS toxicity. Fewer 

cases of sedation or coma have been reported. However, in some studies, 

symptoms of coma or depressed levels of consciousness have also been 

reported with mefenamic acid plasma concentrations ranging from 21mg/L 

(Gossinger et al., 1982) to 46mg/L (Turnbull et al., 1988) to 462mg/L 

(Hendrikse, 1988). Intriguingly, Gossinger et al., (1982) report one case of 

coma followed by a grand mal convulsion with a mefenamic acid plasma 

concentration as low as 21mg/L. 

NSAIDs, including fenamates have been shown to lower the incidence 

and delay the onset of Alzheimer's disease (McGeer et al., 1996) and to be 

neuroprotective against ischaemia (Chen et al., 1998). These effects have 

previously been attributed to inhibition of prostaglandin synthesis (McGreer et 

al., 1996; Nogawa et al., 1997). The interactions of mefenamic acid and other 

fenamates at the GABA A receptor may shed new light on the neuroprotective 

effects of these drugs. Speculatively, the chemical structure of fenamates may 

serve as a template for the design of novel anti-epileptic and/or neuroprotective 

drugs 

Several studies have shown a lack of correlation between the analgesic 

properties of NSAIDs and their ability to inhibit prostaglandin synthesis (e.g. 

McCormack, 1994). The action of fenamates of neuronal GABA A receptors is 

supportive of a central role of action for NSAIDs, in addition to their ability to 

inhibit COX-enzymes. In light of these data, investigation of the actions of 

NSAIDs on other neuronal ligand and perhaps voltage-gated ion channels may 

further elucidate the central analgesia actions of NSAIDs. 
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