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Abstract 
Software comprehension is one of the most expensive activities in software 

maintenance and many tools have been developed to help the maintainer reduce the 

time and cost of the task. Of the numerous tools and methods available, one group 

has received relatively little attention: those using plausible reasoning to address the 

concept assignment problem. This problem is defined as the process of assigning 

descriptive terms to their implementation in source code, the terms being nominated by a user and 

usually relating to computational intent. It has two major research issues: 

• Segmentation: finding the location and extent of concepts in the source code. 

• Concept Binding: determining which concepts are implemented at these 

locations. 

This thesis presents a new concept assignment method: Hypothesis-Based Concept 

Assignment (HB-CA). A framework for the activity of software comprehension is 

defined using elements of psychological theory and software tools. In this context, 

HB-CA is presented as a successful concept assignment method for COBOL I I , 

employing a simple knowledge base (the library) to model concepts, source code 

indicators, and inter-concept relationships. The library and source code are used to 

generate hypotheses on which segmentation and concept binding are performed. 

A two-part evaluation is presented using a prototype implementation of HB-CA. 

The first part shows that HB-CA has linear computational growth in the length of 

program under analysis. Other characteristics addressed include HB-CA's 

scalability, its applicability to other languages, the contribution made by different 

information sources, domain independence, representational power, and guidelines 

for the content of the library. The first part concludes by comparing the method 

and implementation to cognitive requirements for software comprehension tools. 

The second part considers applications of HB-CA in software maintenance. Five 

areas for potential cost reduction are identified: business-rule ripple analysis, code 

ripple analysis, module selection, software reuse, and software module 

comprehension. 
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Chapter 1 

Introduction 

1.1 Context 
Software maintenance is an important part of the software lifecycle, typically-

accounting for at least 50 percent of the total lifetime cost of a software system 

[LIENS 0]. Consequently, it is desirable to reduce the cost of software maintenance 

whilst preserving the quality of the software system and maintenance process. 

The state of a software maintenance process can be assessed with methods such as 

the Capability Maturity Model (CMM) [PAUL93]. A reasonably mature process 

(e.g. C M M Level 3 or higher) wil l have a number of distinct phases; the IEEE 

standard for software maintenance [IEEE98] defines seven: 

a) Problem/modification identification, classification, and prioritisation; 

b) Analysis; 

c) Design; 

d) Implementation; 

e) Regression/system testing; 

f) Acceptance testing; 

g) Delivery. 

Reducing the total cost of software maintenance requires the individual cost of one 

or more of the constituent phases to be lowered. 

1.2 Area of Interest 
Many authors have acknowledged the central role and high cost of software 

comprehension within software maintenance, either directly (e.g. [MAYR97], 

[STAN84]), or indirectly, as a consequence of software complexity (e.g. [BANK93]). 

Estimates of the time spent performing this activity vary. Hall claims that 

understanding the documentation and logic of programs occupies 47-62 percent of 



maintenance programmers' time [HALL87a] [HALL87b]. Parikh and Zvegintzov 

suggest that more than half the programmer's task is in understanding the system 

[PARI83], and Standish claims that it may be the dominant cost in the entire 

software lifecycle [STAN84]. 

Software comprehension takes place in several phases of the maintenance process 

described in section 1.1, although the IEEE standard does not make this explicit 

(see [IEEE98]). It is primarily undertaken during design and implementation where 

modules are to be redesigned or changed. It could be argued that identifying ripple 

effects during the analysis phase also requires some understanding of the software 

modules. Software comprehension is an ideal starting point for reducing the overall 

cost of software maintenance because of its importance, high cost, and frequent 

occurrence in the maintenance process. 

A common approach to reducing the cost of the maintenance process is the 

provision of automated assistance to software maintainers. The task to be 

performed and the expertise of a particular maintainer determine the type of tool 

that is appropriate in a given situation. Novice and expert maintainers understand 

code in different ways. Novices tend to take a syntactic approach to understanding 

a program, organising their knowledge structures around the program syntax. 

Experts organise their knowledge around algorithms and functional characteristics 

within their domain of expertise [MAYR95]. The work presented in this thesis is 

aimed at assisting expert maintainers with software comprehension. Consequently, 

the focus is on tools that automatically identify the implementation of algorithms, 

abstractions, and domain concepts in software. Tilley and Smith claim maintainers 

most lack such tools [TILL95] and evidence that higher-level semantic knowledge 

reduces maintenance effort [RAMA96] strengthens their case. 

There are many types of software tool available to help with software 

comprehension, emphasising different aspects of software systems and modules, 

and usually creating new representations for them. Biggerstaff et al. differentiate 

between naiVe and intelligent agents (tools) for providing such representations 

[BIGG93]. Naive agents generally perform deductive or algorithmic analysis of 

program properties or structure, e.g. program slicers (see [TIP94]) or dominance 



tree analysers (see [BURD99]). Intelligent agents attempt to assign descriptions of 

computational intent to source code. Agents in the latter category meet the demand 

(discussed in the previous paragraph) for tools that can identify algorithms, 

abstractions, and domain concepts in software. 

In [BIGG93], Biggerstaff et al. claim that research on intelligent agents can be 

divided into 3 distinct approaches: 

1) Highly domain specific, model driven, rule-based question answering 

systems that depend on a manually populated database describing the 

software system. This approach is typified by the Lassie system [DEVA91]. 

2) Plan driven, algorithmic program understanders or recognisers. Two 

examples of this type are the Programmer's Apprentice [RICH90], and 

GRASPR [WILL92]. 

3) Model driven, plausible reasoning understanders. Examples of this type 

include DM-TAO [BIGG93], [BIGG94], IRENE [KARA92], and the 

method presented in this thesis (termed HB-CAS in Figure 1). 

One exception to this categorisation is Hartman's work [HART91a] that falls 

between approaches 2 and 3. 

Systems using approaches 1 and 2 are good at completely deriving concepts within 

small-scale programs but cannot deal with large-scale programs due to 

overwhelming computational growth. Approach 3 systems can easily handle large-

scale programs since their computational growth appears to be linear in the length 

of the program under analysis. They suffer from approximate and imprecise results 

[BIGG93]. 

Figure 1 is based on the summary of the program understanding landscape in 

[BIGG93]. The original has been updated to include additional work on program 

understanding, with the number and colour of each oval providing a key to the 

citations below. Biggerstaff et al. do not refer to pubhcations in the original figure 

but Figure 1 adds this information. 
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The method presented in this thesis is intended to operate with real-world, large-

scale programs and consequently adopts a plausible reasoning approach to its 

intelligent analysis. Two systems in Figure 1 share this approach: DM-TAO, and 

IRENE. A brief description of each is given here and fuller explanations of their 

approaches are presented throughout the thesis. 

1.2.1 DM-TAO 
DM-TAO forms the intell igent reasoning component of the DESIRE toolkit 

described in [BIGG89], [BIGG93], and [BIGG94]. It aims to identify domain 

concepts in C source code, using a connectionist inference engine to determine the 

appropriate concept for a section of code. A rich domain model embodies a large 

number of weighted relationships and concept types. Relationship weights are 

updated automatically based on the actions of the maintainer using the system. 

DM-TAO can operate in three modes: 

1) Conceptual grep: search the source code for a user-specified concept. 

2) Conceptual highlights: search the source code for any recognisable concept. 

3) Identification: suggest a concept for selected code. 

Modes 1 and 3 require user involvement in the concept assignment process. 

The evaluation of DM-TAO described in [BIGG93] is based on three files (about 

600 lines of code) containing data definitions in the domain of multi-tasking 

windows systems. A manual analysis of the files was undertaken to find the most 

important concepts for understanding the data. Twenty-seven concepts were found 

and a domain model constructed containing twenty of them. DM-TAO was tested 

in conceptual grep mode finding twenty of the twenty-seven concepts and producing 

three false positives, which were attributed to the fact that the connectionist 

network was weakly trained. In identification mode DM-TAO tended to over-

generalise, finding both the appropriate super- and sub-concept for a segment of 

code. This was attributed to some feature extractors not being implemented, e.g. 

syntax categories. 



This evaluation indicates that DM-TAO is reasonably successful at concept 

recognition for data definitions. The strongest disadvantage of the approach is the 

size, complexity, and computational cost of updating the domain model. The 

method presented in this thesis aims to achieve concept recognition with a 

considerably simpler and smaller domain model. It is intended to find operational 

concepts rather than the data declarations on which DM-TAO has been evaluated. 

1.2.2 I R E N E 
The IRENE system employs concept acquisition techniques to retrieve business 

knowledge from COBOL programs [KARA92]. It embodies a top-down approach, 

working from a domain-engineered model of business entities to their source code 

implementations. Relationships between the entities are expressed as dependencies 

and derivations. The process of concept acquisition (similar to concept assignment) 

begins with user-supplied hypotheses about the correspondence of certain domain 

concepts to constructs in the program. IRENE generates further hypotheses using 

this information. The process is interactive, with the system user verifying concept 

assignments and assisting with hypothesis generation. 

IRENE has been evaluated on a small payroll application of about 500 lines, written 

in COBOL 74. The internal representation (a parse tree represented as a hierarchy 

of frames, see [KARA92]) was validated manually but no indication is given in 

[KARA92] as to the success of the approach. 

Since the available literature does not show IRENE'S concept 

assignment/acquisition ability, comparative evaluation is difficult. The top-down 

approach adopted is the opposite of that used by the method presented in this 

thesis. In addition, IRENE'S use of a moderately rich domain model suffers similar 

problems of maintenance and high initial cost that affect DM-TAO. 

1.2.3 Summary 
Although IRENE and DM-TAO adopt different approaches to concept 

assignment, both systems use complex domain models requiring a large amount of 

effort to create and maintain. Neither system has been evaluated extensively or on 

particularly large programs. 



1.3 Discussion of Problem 
1.3.1 The Concept Assignment Problem 
To meet the need for tools that identify algorithms, abstractions, and domain 

concepts in programs, this thesis addresses the concept assignment problem. The term 

was introduced by Biggerstaff et al. to describe the problem of assigning terms 

regarding computational intent to appropriate regions of source code [BIGG93]. 

The emphasis of the work presented here is on automatic concept assignment with 

minimal user involvement, although the activity can also be performed semi-

automatically or manually. The latter approaches are likely to incur greater cost. 

Biggerstaff et al. define the concept assignment problem as: 

"... a process of recognising concepts within a computer 
program and building up an "understanding" of the program by 
relating recognised concepts to portions of the program, its 
operational context and to one other." [BIGG93] 

They refer to two distinct types of concept: programming-oriented, and human-

oriented. The former can be detected with traditional parsing technology using 

formal, structure-oriented patterns of features as signatures for concepts. The term 

"human-oriented" is used to refer to an informal expression of computational intent 

e.g. acquire target. The signature for such concepts (also termed domain concepts 

in this thesis) is less well defined and open to variation. The model of concept 

recognition required for domain concepts is characterised as an opportunistic, non-

deterministic, and chaotic piecing together of evidence for a concept, until some 

threshold of confidence is reached about its identity. This contrasts with the 

programming-oriented model of recursive, algorithmic, deterministic, and orderly 

building of abstract components from less abstract components [BIGG93]. 

A domain is defined as a problem area [DEBA94] but it is an overburdened term 

[TlLL96a] and as such, it is often difficult to define the limits and contents of any 

one in particular. Using terms such as "programming-oriented" and "domain-

oriented" to differentiate types of concept may be ambiguous in some 

circumstances, e.g. programming-oriented concepts are concepts in the domain of 

programming and hence are domain concepts. In order to avoid this confusion, 



and to define more precisely the problem addressed by this work, the concept 

assignment problem can be rewritten as: 

"The process of assigning descriptive terms to their 
implementation in source code, the terms being nominated by a 
user and usually relating to computational intent." 

This problem statement captures much of the original definition while removing 

ambiguity from the supporting terms. A concept is regarded therefore as a 

descriptive term nominated by the user. The rewritten problem statement is 

concerned solely with the essence of concept assignment, i.e. mapping concepts to 

code. Relating these concepts to the operational context of the program and to 

each other is not within its scope. 

1.3.2 Research Issues 
Tilley et al. state that concept assignment research is at a very early stage, partly due 

to the complexity of the matching process [TILL98b]. Two major research issues 

can be identified within the overall concept assignment problem: 

• Segmentation: finding the location and extent of concepts in the source code. 

• Concept Binding: determining which concepts are implemented at these 

locations. 

Segmenting a program involves grouping pieces of conceptual information 

generated from the source code. Concept binding involves analysing these groups 

for the most plausible concept assignment for each. 

1.3.3 Problem Boundaries 
The concept assignment method presented in this thesis has been developed with 

the assumption of certain problem boundaries and applications. 

Globally, organisations maintain a large amount of COBOL and this provides a 

strong motivation for targeting the technique at this language and its variants. 

Analysis is targeted therefore at programs written in IBM COBOL I I . In view of 

the aim of determining computational intent, the problem is restricted to the 



procedure division of such programs and functional concepts are considered more 

important than data concepts. 

The objective is to support a single maintainer in software comprehension, and 

consequently solutions are not expected to support group-based comprehension. In 

addition, it is assumed that such solutions wil l operate on individual modules of 

code. 

In summary, this thesis addresses the concept assignment problem for the 

procedure division of programs written in IBM COBOL I I . The problem is 

restricted to analysing one module at a time, presenting the results to a single 

maintainer. 

1.4 Research Aims and Criteria for Success 
The aims of this research, and hence the criteria for success, cover many aspects of 

both the problem and solution. A framework to model the comprehension activity 

for people and software tools is required to enable comparative evaluation of cost 

later in the thesis. The concept assignment problem must be solved and a 

prototype tool constructed to demonstrate the viability of the solution. The criteria 

for success are formally stated thus: 

1) The definition of a framework for the activity of software comprehension. 

This should capture the essential processes and data structures involved in 

software comprehension, regardless of whether the actor (i.e. the entity 

undertaking the comprehension activity) is a person or a software tool. 

2) The creation of a formal model of the comprehension activity framework 

discussed in criterion 1 to define clearly its data structures. 

3) The development of a new method to undertake automatic concept 

assignment using a simple knowledge base. It should be capable of 

analysing real-world COBOL I I code and successfully cope with poorly 

structured and monolithic programs, in addition to well-structured 



examples. The method should provide a software maintainer with 

automatically recognised concepts linked to regions of source code. 

4) As part of criterion 3, the development of novel approaches to address the 

two main research issues in concept assignment: segmentation, and concept 

binding. 

5) The extension of the general formal model (see criterion 2) to the new 

concept assignment method. 

6) The implementation of a prototype tool to demonstrate the feasibility of the 

new concept assignment solution. This should allow easy evaluation of the 

method. 

Chapter 10 presents a discussion of the success of this research with reference to 

these criteria. 

1.5 Evaluation Criteria 
The primary objective of this work is to define a method to perform automatic 

concept assignment using a simple domain model. It should be capable of handling 

real-world programs and perform successfully, whatever the structural quality of the 

code being analysed. Chapters 8 and 9 present an extensive evaluation of the 

method described in this thesis. The first part (shown in Chapter 8) is based on the 

following criteria: 

• Representational Issues 

o Spatial Cost 

o Representational Power 

o Library Content 

• Performance Issues 

o Segmentation 

o Concept Binding 

o Computational Cost 

o Scalability 
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• General Issues 

o Domain Independence 

o Language Independence 

o Expandability 

o Cognitive Requirements 

The three groups of criteria cover a wide range of characteristics. The method is 

evaluated in Chapter 9 to establish where it may be applied in the software 

maintenance process. 

1.6 Contribution 
The main contribution of this work is a new method for automatic concept 

assignment: Hypothesis-Based Concept Assignment (HB-CA). It uses a simple 

knowledge base and is targeted at COBOL H, The two main research issues within 

the concept assignment problem are addressed: 

• Segmentation: Structural information and self-organising maps are used to 

cluster related concept hypotheses. This approach allows the method to 

handle well-structured, poorly-structured, and monolithic code. 

• Concept Binding: Concept clusters are analysed and scored. Ambiguity is 

resolved through the application of simple rules. 

The method is set in the context of a framework describing the software 

comprehension activity. This captures the essential data structures and processes of 

software comprehension for both people and software tools. A formal model of 

the framework expresses its data structures in set theory. HB-CA is compared to 

other concept assignment solutions throughout this thesis and an extensive 

evaluation of the method and its use in the software maintenance process is 

presented. 
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1.7 Thesis Structure 
This thesis is divided into ten chapters. 

Chapter 1 introduces the motivation and context for the research, discusses the 

problem to be solved, and sets out the research aims and criteria for success. 

Chapter 2 develops a framework modelling software comprehension. Parts of this 

framework are formalised using set theory. 

Chapter 3 introduces Hypothesis-Based Concept Assignment. Comparisons are 

drawn with the methods underlying the DM-TAO and IRENE systems. The 

framework and formal model presented in Chapter 2 are extended for HB-CA. 

Chapter 4 describes the first stage of HB-CA, hypothesis generation, in the context 

of the comprehension activity framework and formal model. HB-CA's hypothesis 

generation method is compared with other systems' techniques for gaining initial 

information about a program. 

Chapter 5 presents a method for segmenting programs based on their structure, and 

using self-organising maps of concept hypotheses. This forms the second stage of 

HB-CA. Appropriate comparisons are made with other systems' methods for 

segmentation. 

Chapter 6 describes the final part of HB-CA: concept binding. HB-CA's method is 

compared with those used by DM-TAO and IRENE. 

Chapter 7 describes a prototype implementation of HB-CA called the Hypothesis-

Based Concept Assignment System (HB-CAS). The implementation is used in the 

investigations presented in Chapters 8 and 9. 

Chapter 8 presents the first part of a detailed evaluation of HB-CA. The criteria 

outlined in section 1.5 are used to evaluate the method. 
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Chapter 9 contains the second part of the evaluation, examining applications of HB-

CA in the software maintenance process. 

Chapter 10 contains a general discussion and summary of the work accomplished. 

The success of the research is considered in terms of the criteria presented in 

section 1.4 and ideas for further work are suggested. 

The Appendix contains data and results pertaining to the investigations carried out 

in the evaluation. It is followed by a list of references. 

1.8 Summary 
Chapter 1 has introduced the work presented in this thesis. The motivation and 

context of the research have been explained with reference to other achievements in 

the field. Two major research issues have been identified within the concept 

assignment problem: segmentation, and concept binding. Evaluation criteria have 

been presented and the structure of the thesis explained. 

Chapter 2 discusses background material and develops a framework to model the 

software comprehension activity. 
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Chapter 2 

Background and Framework 

2.1 Introduction 
Chapter 1 introduced the material in this thesis, presenting the context and 

motivation of the work. The research problem was defined and two key issues 

identified. Criteria for evaluating both the method and the research were presented. 

The structure of the thesis also was discussed. 

This chapter examines the background to the method presented in this thesis. A 

standard process of software maintenance is described and issues relating to its 

improvement are discussed. A descriptive framework capable of modelling both 

human and automated approaches to software comprehension is then introduced. 

This is the context for the Hypothesis-Based Concept Assignment (HB-CA) 

method presented in later chapters. The framework's source and target 

representations are formally defined. 

2.2 Software Maintenance 
The IEEE definition of software maintenance given in [IEEE98] is: 

"Modification of a software product after delivery to correct 
faults, to improve performance or other attributes, or to adapt the 
product to a modified environment." 

It is the largest and most expensive stage of the software lifecycle [ROBS91] 

potentially consuming 70 percent of the total lifecycle costs [LIEN80]. 
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2.2.1 Types of Software Maintenance 
Swanson describes three types of software maintenance [SWAN76]: 

• Perfective: Changing or adding to a system's functionality, improving 

maintainability, enhancing performance. 

• Adaptive: Changing a system to account for environmental changes. 

• Corrective: Fixing bugs in a system. 

A change to a software system wil l usually involve elements of these types of 

maintenance [SOMM93]. 

2.2.2 The Software Maintenance Process 
Organisations undertake the process of software maintenance in various ways 

ranging from ad hoc and disorganised, to highly controlled and well managed. In 

recent years, there has been great interest in the improvement of the software 

maintenance process, with a view to controlling and reducing the cost of the task. 

It is possible to conduct the improvement of an organisation's software process in a 

managed way. One of the best known and most widely used examples of this is the 

Capability Maturity Model (CMM) developed by the Software Engineering Institute. 

The C M M defines five levels of software process maturity for an organisation 

although it does not specifically prescribe how an organisation should move from 

one to another. The levels are described below [PAUL93]: 

• Level 1: Initial 

The software process is ad hoc, occasionally chaotic. Few activities are 

defined and success depends on individual effort. There is little 

predictability in quality, budget, schedule, or functionality. 

• Level 2: Repeatable 

Basic project management processes are established to track cost, schedule, 

and functionality. The necessary process discipline is in place to repeat 

earlier successes on projects with similar applications. Planning and 

management of new projects is based on experience with similar projects. 
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• Level 3: Defined 

The software process for both management and engineering activities is 

documented, standardised, and integrated into a standard software process 

for an organisation. A l l projects use a tailored version of this standard 

process. 

• Level 4: Managed 

Detailed measures of the software process and product quality are collected. 

Both the software process and products are quantitatively understood and 

controlled. 

• Level 5: Optimising 

Continuous process improvement is enabled by quantitative feedback from 

the process and from piloting innovative ideas and technologies. 

Level 1 establishes a baseline against which process improvements in the higher 

levels can be compared. The activities that an organisation can undertake to 

establish or improve the software process are characterised in Levels 2-5 [PAUL93]. 

There is a current initiative to standardise the various approaches to software 

process improvement and assessment. It aims to reduce the cost of assessing 

process capability for organisations and their customers by defining certain criteria 

that must be met by a process assessment method. The results of using differing 

methods can then be compared within the framework. The initiative is called 

SPICE and is documented in [EMAM98]. 
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Once an organisation has reached Level 3 of the CMM, the stages of the software 

maintenance process are defined. The IEEE software maintenance standard 

defines seven stages for the maintenance process [IEEE98]: 

a) Problem/modification identification, classification, and prioritisation; 

b) Analysis; 

c) Design; 

d) Implementation; 

e) Regression/system testing; 

f) Acceptance testing; 

g) Delivery. 

Chapter 1 identified the analysis, design, and implementation stages as having 

particular relevance to the work presented here. The IEEE definition of these 

stages (see [IEEE98]) is discussed in the next few sections to show where software 

comprehension is required. 

2.2.2.1 Analysis 

Analysis is an iterative process that has at least two components: feasibility analysis, 

and detailed analysis. The modification request, system and project documentation, 

and repository information are used to determine the feasibility and scope of the 

modification. Where documentation is inadequate and source code is the only 

reliable reference for the current system, reverse engineering is recommended. 

Various activities are required during analysis including the identification of 

elements involved in the modification, determination of the modification's impact, 

identification of short and long-term costs, and implementation planning. The 

standard suggests that a preliminary modification list of those elements affected is 

created, e.g. software, specifications, database, and documentation. This involves 

some degree of software comprehension, probably at the system rather than 

program level, to determine which elements may be affected. It is interesting to 

note that although analysis requires the identification of the elements involved, 

identifying the specific software modules affected is left until the design stage. This 

could make cost estimation extremely difficult in some circumstances. 
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Identifying the impact of the modification and building the preHminary modification 

list may involve ripple analysis. Ripple analysis involves assessing the effect of a 

change on other parts of a system and can be undertaken in various ways. The 

analysis stage of the software maintenance process is likely to require ripple analysis 

at the business-rule level primarily, as the identification of affected software 

modules'is not addressed until the design stage. 

Business rules have been defined as: 

"A requirement on the condition or manipulation of data 
expressed in terms of the business enterprise or application 
domain." [SELF93] 

A key idea is that the rule is stated at the level of the application domain, not of 

programming. Consequently, business rules are related closely to domain models 

but reflect the desires of a particular company, not the general features of a domain 

[SELF93]. Examples of business rules might be found in the formulae and 

conditions that define the growth and charging structure of a financial product such 

as a pension policy. These make certain requirements of manipulations on the 

entities involved in the management of the policy. 

Ripple analysis in terms of business rules poses the following question: if one rule is 

changed, are others also affected.^ Finding affected rules may require examination 

of documentation and software, with the cost of undertaking such analysis likely to 

be crudely proportional to the number of artefacts that need to be inspected. 

Business-rule ripple analysis can be seen as an example of the higher-order impact 

analysis that Tilley and Smith describe in [TILL96b]. Higher-order impact analysis 

allows the software engineer to analyse proposed changes at the application-domain 

level rather than the implementation-domain level [TILL96b]. 

The analysis phase produces a report that forms part of the input to the design 

phase. 
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2.2.2.2 Design 

This phase uses the system and project documentation, source code, comments, 

databases, and the output of the analysis stage to design the modification to the 

system. The process includes identifying affected software modules, modifying 

their documentation, creating and identifying test cases, and updating the 

modification list. The whole phase involves software comprehension but two 

activities particularly require it: code ripple analysis, and module selection. Both are 

part of the process of identifying affected software modules. 

Code ripple analysis answers a similar question to that posed for business rules 

above. In this situation however, the ripples are examined on the basis of potential 

changes to source code. This can be undertaken at a syntactic and semantic level, 

e.g. using a forward program slice, see [NING94]. Alternatively, it could be 

conducted conceptually in a similar manner to business-rule ripple analysis, with the 

difference lying in the type of concept being considered. Code ripple analysis is 

more likely to be dealing with software engineering concepts than application-

domain related concepts. 

The cost of code ripple analysis is addressed extensively in the literature but usually 

in terms of specific algorithms. Since the work presented in this thesis is not 

concerned with particular methods for the process, the cost can be regarded as 

roughly proportional to the number and size of the artefacts examined. 

Module selection is the process of determining which modules are affected by a 

proposed change. It can take place before and/or after ripple analysis and involves 

searching the code repository for instances of concepts or code that are known to 

require change. The cost can be seen as a function of the size of the code 

repository (in terms of total lines of source code) and the search method. 

Translating the behavioural description of a modification to its implemented 

counterpart can be extremely difficult. Concept-based search could assist with 

selecting the modules that need changing. 
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2.2.2.3 Implementation 

Implementation involves making the specified changes to the system. The IEEE 

standard suggests that implementation should be commenced during the design 

phase, particularly if the change is complex, in order to better understand the 

modification. The standard defines four sub-processes: coding and unit testing, 

integration, risk analysis, and test-readiness review. Software comprehension is 

particularly required in coding and unit testing. Although the standard does not 

elaborate further on the coding sub-process, it is possible to break it into two parts: 

software module comprehension, and change implementation [GALL91]. These 

parts may be iterative. Software module comprehension is the process of studying 

the sofiiware module to be changed, in order to understand where and how the 

change should be made. Once the module is understood, the change can be made. 

Achieving such understanding is a non-trivial task accounting for a very high 

proportion of the total cost of software maintenance. The work presented in this 

thesis is aimed at helping to reduce understanding cost through automatic concept 

assignment. The effort of understanding can be seen as proportional to the size of 

the module being considered, although this relationship may not necessarily be 

linear since the maintainer may change comprehension strategy for different sizes of 

program (see [LITT86]). Other factors such as the program complexity, quality of 

coding, and maintainer's experience may also have an impact. Familiar modules are 

likely to take less time to comprehend than those not previously addressed. 

2.2.2.4 Summary 

The IEEE standard presents a good model for the software maintenance process, 

identifying the major stages within it. The International Standards Organisation also 

defines a software maintenance process standard (see [IS099]). This is a three-stage 

process that is less comprehensive than the IEEE version. A particular problem is 

that impact analysis is not undertaken until the implementation stage, potentially 

causing difficulty with cost estimation. 

The stages of the IEEE standard where there is a strong requirement of software 

comprehension have been discussed and cost factors identified in each. Four 

particular activities have been highlighted: business-rule ripple analysis, code ripple 

analysis, module selection, and software module comprehension. 
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2.3 Software Comprehension 
To benefit software comprehension, approaches to automatic assistance must have 

the potential to lower the cost of producing representations used or required by the 

software maintainer. This section presents a descriptive framework for the activity 

of software comprehension. It is specialised for the concept assignment problem 

and unifies automated and manual approaches. The framework is used later in this 

thesis for a discussion of the cost savings that might be achieved when using 

automated assistance in software comprehension. 

2.3.1 A Comprehension Activity Framework 
Initially, it is assumed that a single maintainer is attempting to understand a software 

module for one of the reasons discussed in section 2.2.2. 

Maintainers gain their understanding of how a module performs a task by using and 

creating various representations of the software to emphasise different 

characteristics. These representations can show things such as the control and data 

flow, or the relationship between subroutines in a module, e.g. using a call graph. 

Source code captures all of these properties and is the most widely used 

representation. Others are created and used to assist with understanding the source 

code, and changes to a software module are usually made in the source code first, 

with other representations updated to reflect these modifications. 

The activity of software comprehension can be characterised as the use, creation, 

and modification of representations of the software by a person. This is shown in 

Figure 2. 
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Comprehension Activity 

Software tools can be employed to create and use some representations of software, 

e.g. the object-code representation produced by a compiler. This ability can be 

captured by generalising the framework shown in Figure 2 to describe a processor 

(which can be a software tool, person, or other device) that can create, modify, and 

use representations of the software. This is represented in Figure 3. 
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Figure 3: Basic Framework Revised to Describe the 
Comprehension Activity using a Processor 

In many cases the only current, complete, and trustworthy information about a 

system is its source code; all other information must be derived from this 

[TILL98a]. Fjeldstad and Hamlen found that when making an enhancement, 

programmers studied the original program about three and a half times as long as 

they studied the documentation, and about as long as they spent implementing the 

change [FJEL79]. Since source code captures many properties of the software and 
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is usually used as the primary source of information [CORB89] from which other 

representations are derived, it can be separated justifiably from the other 

representations in the framework. The framework does not aim to capture the 

module change activity hence source code is not shown as an output representation. 

The framework in Figure 4 captures the source code separately from the other 

representations. 

Key 

Artor 

Information Store 

Information Flow 

Source Code 

Non Source-Code 

Representations 

Figure 4: Comprehension Activity Framework Showing 
Separated Source Code 

The description of a general framework for the software comprehension activity is 

now complete. Since it models the aaivity at a high level, comparison can be made 

of the relative costs of any approaches to software comprehension (manual or 

automatic) that f i t the framework. 

2.3.1.1 The Processor 

There are two primary types of processor: people, and software tools. The 

characteristics, internal representations, and methods of each type are examined to 

determine common ideas that can add detail to the framework. 

23 



2.3.1.2 People as Processors 

There has been a large amount of work undertaken to determine how people 

understand software, and how their understanding is represented in the mind. The 

understanding activity is generally termed program comprehension. 

Novice and expert maintainers understand code differently. Novices adopt a 

syntactic orientation, organising their knowledge structures around the program 

syntax, whereas experts organise their knowledge around algorithms and functional 

characteristics within their domain of expertise [MAYR95]. The comprehension 

model used initially depends on the maintainer's level of domain knowledge and 

code familiarity [MAYR94]. Models of program comprehension can be divided into 

three groups: top-down, bottom-up, and integrated. 

Top-down understanding is typically applied when the code is familiar [MAYR95] 

and a good example of a top-down model is that defined by Soloway, Adelson, and 

Ehrlich [SOL084], [SOL088]. This model views the process of comprehension as 

the construction of a hierarchy containing goals. These goals are decomposed into 

structures called plans, which can describe a strategy for achieving a goal, a language 

independent problem solution, or be a code fragment implementing such a solution. 

Plans can be decomposed further into lower-level plans [MAYR95]. Brooks 

presents another top-down approach using a hierarchy of hypotheses [BR0083]. 

Bottom-up models (typically used when the code is unfamiliar) suggest that the 

maintainer starts building a mental representation from the source code and chunks 

together elements into higher order structures. Chunking refers to the process of 

attaching descriptive labels to knowledge structures at various levels. Chunks can 

contain lower-level chunks with a description of how they interrelate [MAYR95]. 

Pennington's model is an example of a bottom-up approach [PENN87]. 

The integrated approach subsumes the other two types by providing a framework 

within which both can be used as necessary. This model was suggested by von 

Mayrhauser and Vans and a number of studies have been performed to validate it 

[MAYR95] (see also [MAYR97], [MAYR98]). 
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A l l of the comprehension models have aspects that appeal to the personal 

experience of software maintainers. By including elements from top-down and 

bottom-up methods, the integrated meta-model of von Mayrhauser and Vans 

appears to be superior to the others. This intuitive assessment is confirmed further 

by the empirical studies undertaken by von Mayrhauser et al., and by the typical 

experience of professional maintainers. Glimpses of the meta-model can be seen in 

the other theories, e.g. to explain the experiences of professional maintainers. 

Brooks suggests that bottom-up understanding is a degenerate case of top-down 

understanding [BR0083]. A more plausible explanation for this would seem to he 

in the meta-model approach. It is also interesting to note that since the 

development of the meta-model, no new major comprehension models have been 

proposed despite the relatively large number produced before its creation. 

Von Mayrhauser and Vans identify three major components common to all models 

of comprehension: a knowledge base, a mental model, and methods for acquiring 

knowledge [MAYR95]. The knowledge base contains the maintainer's general 

knowledge of the application domain, software engineering and maintenance 

knowledge, their experience and skills, and any other knowledge relevant to the task. 

The mental model is the internal, working representation of the software under 

consideration [MAYR95]; in other words, it contains the current state of 

comprehension. The methods for acquiring knowledge (and thus updating the 

knowledge base and mental model) vary from theory to theory. Littman et al. 

identify two major strategies: systematic, and as-needed. The systematic approach 

involves detailed line-by-line study of the program code whereas the as-needed 

strategy suggests localising the section of program required for a change before 

understanding it in greater depth [LITT86]. 

The literature on program comprehension suggests that there are three important 

elements to be added to the comprehension activity framework: a knowledge base, a 

mental model, and a collection of methods for acquiring and updating knowledge. 

Figure 5 shows the comprehension activity framework extended for a person. 
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Figure 5: Comprehension Activity Framework for a Person 

The framework should describe the comprehension activity regardless of whether 

the processor is a person or a software tool. To ensure the framework is capable of 

modelling both types of processor, two tools are now examined. Since this thesis is 

concerned with concept assignment by plausible reasoning, both are tools that 

address this problem using such techniques. 

2.3.1.3 Software Tools as Processors 

This section discusses the common charaaeristics of two software tools in the 

context of the comprehension activity framework. Their operational details are 

discussed in later chapters. 

The D M - T A G [BIGG94] and IRENE [KARA92] systems adopt different 

approaches to locating concepts in source code. IRENE uses an exclusively top-

down approach driven from a strong domain model and user input. DM-TAO 

works in a largely interaaive manner and forms part of a larger toolset designed to 

facilitate design recovery (the DESIRE system). Both have a domain model 
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(although the degree of formality of knowledge representation varies between 

them), a representation of their current behef about the software under analysis, and 

methods for updating their current belief representation and domain model 

(although the model may be updated by the user rather than automatically). It is 

clear that these systems have similar characteristics to the psychological phenomena 

observed by researchers in hurnan program comprehension. The domain model of 

a software tool corresponds to the knowledge base of a person. Representations of 

current belief in a tool correspond to a person's mental model and both people and 

software tools have methods by which they acquire and evaluate new knowledge. 

The comprehension activity framework can now be modified to include these ideas. 

The three components added to the framework for people can be redefined to be 

valid for both processor types. They are now: 

• A knowledge base containing the processor's knowledge about the domain, 

language, and other pertinent information required to perform the 

comprehension task. This knowledge base would be considerably richer and 

more flexible for a person than a software tool. 

• An internal representation to store the processor's current understanding of the 

source code being analysed. This corresponds to the mental model of a 

human maintainer. 

• Methods by which the internal representation and knowledge base can be 

updated. 

These changes are shown in Figure 6. 
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Figure 6: Comprehension Activity Framework with 
Processor Related Entities 

2.3.2 Representations 
Since the focus of the work in this thesis is on the concept assignment problem 

described in Chapter 1, the general framework in Figure 6 can be made more 

specific with respect to the non source-code representations. The output required 

of solutions to the concept assignment problem is a collection of domain concept 

names related to parts of the source code. This is defined as the specific target 

representation for the framework and is referred to as the source-label representation. 

A domain is defined as a problem area [DEBA94] but Tilley et al. note the over­

burdening of the term [TILL96a]. For the purpose of HB-CA, concepts can be 

drawn from any problem area considered appropriate by the software maintainer. It 

is likely that both general software-engineering and specific application-domain 

concepts wi l l be used. 

Figure 7 shows an updated framework. Note that the use of the source-label 

representation by the processor is no longer shown on the framework since the 
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primary concern here is the translation from source code to source-label 

representation. 

Key 

Actor 

Information Store ^ 

Information Flow ^ — • 

Source Code 

Source-Label 

Representation 

Figure 7: Comprehension Activity Framework with Specific 
Output Representation for Concept Assignment 

These representations can be defined precisely through the definition of their 

supporting terms and the use of formal notation. 

2.3.2.1 Source Representation 

The formal model described in this seaion captures various properties of the source 

code, allowing reference to its constituent parts as required by the target 

representation. 

The source code can be regarded as a number of lines. 

Source : {x : Line] (1) 
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Each line is made up of lexemes and is numbered sequentially. 

Line : ({y : Lexeme}, seqnum : Integer) (2) 

Lexemes are the basic units used in parsing and do not need to be specified in more 

detail. They are described by their start and end character positions (relative to the 

first character of the source code) and are represented as a string. 

Lexeme : {start: Integer, end: Integer, token : String) | start < end (3) 

Definitions (1) to (3) establish a formal, lexical representation for the source code. 

2.3.2.2 Target Representation 

The target representation is a collection of concept names (labels) related to parts of 

the source code (termed segments). This can be expressed formally. 

T R : { ( ; c : Segment, y : String)} (4) 

A concept is any descriptive term (usually related to computational intent) 

nominated by the processor to represent some important item or activity within a 

software-engineering or application domain. This is defined initially as a string. 

Concept: String (5) 

A segment is a contiguous group of lines in the source code. A basic definition is 

shown below. 

Segment: {start: Line, end: Line) 

This needs to be extended to capture the notion that start must be equal to or less 

than end. A new function cp is defined for "occurs before". 
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(p : (Line, Line) Boolean 

cp{{a,b),{c,d)) = b<d 

The basic definition of segment can now be extended to include this constraint. 

Segment: {start: Line, end : Line) | start cp end (7) 

Definitions (4) to (7) establish a formal version of the target representation. 

The comprehension activity can now be regarded as a function P between the 

source and target representations. 

P : Source ̂  T R (8) 

The processor provides the method by which the mapping under the function takes 

place. 

The comprehension activity framework now contains all the general components 

required to model the software comprehension activity for concept assignment, 

whether the processor is a person or software tool. The components are common 

to both types and later chapters discuss some instances in more detail. Any 

automatic concept assignment solution set in the context of the framework can be 

shown to perform the same translation as a person undertaking concept assignment 

manually. Consequently, the relative costs of the approaches can be compared. 
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2.4 Summary 
This chapter has discussed the software maintenance process and its improvement. 

A descriptive framework has been presented to model the software comprehension 

activity and its representations. These representations have been defined formally. 

The framework and formal model provide the context for the work described in the 

next few chapters of this thesis. 

Chapter 3 presents an outline of the processes and data structures used in the 

Hypothesis-Based Concept Assignment method, relating these to the 

comprehension activity framework. It discusses the rationale for the method's 

design and examines the structure of the knowledge base used by HB-CA, 

comparing it to those employed in DM-TAO and IRENE. An example source 

program is presented on which the operation of HB-CA is demonstrated in later 

chapters. 
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Chapter 3 

Hypothesis-Based 
Concept Assignment 

3.1 Introduction 
Chapter 2 presented a framework and formal model to describe various aspects of 

the software comprehension activity and its associated representations. 

This chapter outlines a new approach to solving the concept assignment problem 

discussed in Chapter 1, It is termed Hypothesis-Based Concept Assignment 

(HB-CA). The processes and data structures of the method are discussed in the 

context of the comprehension activity framework described in Chapter 2. A 

comparison is made between the general characteristics of this method and other 

plausible reasoning solutions to the concept assignment problem. 

A program fragment and knowledge base are presented as an example to illustrate 

the method's operation in later chapters. 

3.2 Characteristics of Concept Assignment 
Methods 
This section discusses general characteristics of two concept assignment methods 

that address the problem using plausible reasoning. Table 1 shows a summary of 

areas on which these are compared, with lengthy discussion reserved for later 

chapters. Hatched boxes show where a method's characteristic is shared with HB-

CA. 
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Direction 

Interactivity 
Knowledge 
Base 
Representation 
Knowledge 
Base 
Complexity 
(Concept 
Types) 
Knowledge 
Base 
Complexity 
(Relationship 
Types) 
Knowledge 
Base Creation 
Cost 
Knowledge 
Base Update 
Method 
Knowledge 
Base Update 
Cost 
Initial 
Information 
Source 
Initial 
Information 

Clustering 
Method 
Clustering 
Data Used 
Concept 
Binding 
Evidence 

Concept 
Binding 
Method 

Explanatory' 
Power 

1 HB-CA 

DM-TAO 
(Conceptual 

DM-TAO 
(Conceptual 
HighUghts) 

DM-TAO 
(Identification) 

IRENE 

I Bottom-Up Top-Down Bottom-Up Restricted 
Bottom-Up Top-Down 

None High None High High 

1 Semantic Network Semantic/Connectionist Hybrid Network Formal 
Relations 

Low High 

Low High 
^ ^ ^ ^ ^ ^ 
9 y / / / / / / / / / / / A 

Low High Medium 

Manual Semi-Automatic 

Low High Medium 

1 Source Code User Source Code User 

1 Textual Indicators 

User-Supplied 
Concept, 
Syntactic, 

Lexical, and 
Clustering Clues 

Syntaaic, 
Lexical, and 
Clustering 

Clues 

Syntactic, Lexical, 
and Clustering 

Clues 

User-Supplied 
Hypothesis 

1 Self-Organising 
Map Feature Extraaors Unspecified 

j Hypotheses Syntactic Features Unspecified 

Hypotheses Syntactic Features 

Syntaaic 
Features/ 
Domain 
Model 

Scored Weight of 
Evidence with 

Disambiguation 
Rules 

Conneaionist Network Triggering and Propagation 

Plausibility 
Measure using 

Weighted 
Matching 

Rules 

Medium Low High 

Table 1: Characteristics of Concept Assignment Methods 

3.3 The Hypothesis-Based Concept Assignment 
Method 
The Hypothesis-Based Concept Assignment method is a three-part non-interactive 

process. It operates on the procedure division of IBM COBOL I I programs 

(akhough a complete program is provided as input). Chapter 1 discusses the 

reasons for using only the procedure division. 
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The three stages of HB-CA are: 

• Hypothesis Generation 

• Segmentation 

• Concept Binding 

In terms of the comprehension activity framework, these parts reside in the 

methods oval as shown in Figure 8. 

Key 

Actor 

Information Store 

Information Flow 

Source Code 

Source-Label 
Representation 

Figure 8: Comprehension Activity Framework Showing 
HB-CA Processes 
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The flow of control and data is sequential. The process begins with hypothesis 

generation from source code. This is followed by segmentation of the hypotheses 

to determine regions of conceptual fociis in the program. Finally, concept binding 

finds the dominant concept in each segment. Figure 9 shows the sequence of 

processing with the internal representations used by each stage. 

Key 

Aaor 

Information Store 

Information Flow 

Process 

Data Structure 

Source Code 

Processor 

Hypothesis 
Generation 

Source-Label 
Representation 

Figure 9: Comprehension Activity Framework Showing 
HB-CA Processes and Internal Representations 
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3.3.1 Hypothesis Generation 
The hypothesis generation stage takes source code as its input. Using information 

contained in the knowledge base, it scans the source code for indicators of various 

concepts. When an instance is found and matched, a hypothesis for the appropriate 

concept is generated. Matching is performed using a variety of flexible criteria. The 

resulting collection of hypotheses is ordered by the position of the indicators in the 

source code. 

3.3.2 Segmentation 
The segmentation stage takes the sorted hypotheses and attempts to break them 

into segments. Initially, this is performed using hypotheses for primary 

segmentation points (COBOL I I section boundaries). Each of the initial segments 

is analysed to determine whether it has the potential to contain a number of smaller 

segments. If this is the case, a self-organising map is used to establish areas of 

conceptual focus within the segment. These areas are analysed and smaller 

segments created if necessary. The output of the stage is a collection of segments, 

each containing a number of hypotheses. 

3.3.3 Concept Binding 
This stage analyses each segment's hypotheses to determine which concept has the 

most evidence. It exploits relationships in the knowledge base to generate 

conclusions, and scores these on the basis of concept occurrence. A number of 

disambiguation rules can be applied to choose between equally strong concepts. 

When a concept has been selected, the segment is labelled with the name of that 

concept. After all segments have been analysed and labelled, the results form the 

overall output of the method. 

3.4 Characteristics of Concept Assignment 
Methods 
Each of HB-CA's stages is described in detail in the next few chapters but it is 

useful to compare some of its general characteristics with those of DM-TAO and 

IRENE, which have both addressed the concept-assignment problem using 

plausible reasoning. 
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The methods are compared using two characteristics: direction of operation, and 

interactivity. 

3.4.1 Direction of Operation 
The direction of operation of a method describes whether it works top-down (from 

the knowledge base to the code), bottom-up (from the code to the knowledge base), 

or a combination of both. 

HB-CA adopts a purely bottom-up approach, developing a hypothesis 

representation from the source code. This is used for segmentation and concept 

binding in the latter stages of the method. 

IRENE is based on a top-down approach (see [KARA92]). It is driven by user-

supplied hypotheses that are analysed by the system. Derivations and dependencies 

in the knowledge base are used to infer the existence of other concepts, and IRENE 

attempts to find implementations of these in the source code. 

DM-TAO can operate in several ways: top-down where a user specifies a concept 

for search (conceptual grep), bottom-up where all instances of any concept in the 

knowledge base are found (conceptual highlights), and "directed" bottom-up where 

a concept assignment is proposed for user-selected source code (identification) 

[BIGG94]. 

The different approaches to the direction of operation are summarised in Table 2. 

HB-CA DM-TAO 
(Conceptual 

DM-TAO 
(Conceptual 
Highlights) 

DM-TAO 
(Identification) 

IRENE 

Bottom-
Up Top-Do wn Restricted 

Bottom-Up 
Top-

Down 

Table 2: Characteristics of Concept Assignment Methods 
Direction of Operation 

The advantage of a purely bottom-up approach is that a simpler knowledge base can 

be used than that required for top-down approaches. A bottom-up approach 
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performs most of its understanding based on information from the source code. If 

the source code is hard for a person to understand (due to a lack of meaningful 

items within it), it wi l l probably be hard for a bottom-up concept assignment 

system. Top-down systems may be able to avoid this problem by performing most 

of their inference using the domain model. This requires more investment in the 

creation and maintenance of the knowledge base, as it is the primary understanding 

mechanism. 

DM-TAO's bottom-up mode has the same goal as HB-CA: to provide a list of all 

recognised concepts to the user. The methods of understanding and presentation 

differ. The DM-TAO method also forms part of the DESIRE toolset intended for 

supervised use (see [BIGG89], [BIGG93], [BIGG94]) whereas HB-CA is intended 

to operate unassisted. 

3.4.2 Interactivity 
Interactivity is the amount of user-involvement required in the concept assignment 

process. 

HB-CA is a non-interactive method requiring no user involvement, other than prior 

creation of the knowledge base. 

IRENE is highly interactive. The concept search process is initiated from user-

supplied hypotheses with the system making further suggestions. These are verified 

by the user for IRENE to continue its analysis. 

DM-TAO can operate with various levels of interactivity. It is user-driven in both 

top-down mode (conceptual grep), and in "directed" bottom-up mode 

(identification). In bottom-up mode (conceptual highlights), it is non-interactive, 

although the expectation is that the results wi l l be employed by the user to extend 

the search further. 

Table 3 summarises the level of interactivity required by the different approaches. 
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HB-
CA 

DM-TAO 
(Conceptual 

DM-TAO 
(Conceptual 
Highlights) 

DM-TAO 
(Identification) 

IRENE 

Interactivity High None High High 1 

Table 3: Characteristics of Concept Assignment Methods -
Interactivity 

The level of interactivity can have an effect on the overall cost of the method. Since 

interactive methods require a user to supervise their operation and guide them in 

the understanding task, they can incur a high cost. Non-interactive methods can 

perform their analysis unassisted and therefore are cheaper to execute. The reduced 

cost of using an unsupervised method is balanced by the potentially more accurate 

analysis of an assisted approach. The latter may allow the maintainer to get relevant 

information more quickly as the search space for the tool is reduced. Unassisted 

approaches may produce more irrelevant information but the maintainer does not 

waste time waiting for analysis to be performed. 

Unassisted approaches require the solution of at least one additional problem: 

finding the location and extent of a concept implementation. HB-CA's solution to 

this is discussed in Chapter 5. Assisted approaches do not have to deal with this 

situation to the same degree, as the user can suggest or verify the position and size 

of concept implementations. 

3.5 Knowledge Base 
In order to discuss the constituent processes of HB-CA in detail, the structure of 

the knowledge base needs to be established. The knowledge base used for HB-CA 

shares a number of similarities with those used in IRENE and DM-TAO. Al l have 

the notion of a concept: a descriptive term to be attached to some part of the source 

code being analysed. They all store evidence for a concept expressed in the 

implementation language, and they all have ways of relating concepts to other 

concepts. 

The knowledge base used in HB-CA is termed the library. 
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It is anticipated that the user, or some other person responsible for knowledge base 

maintenance, wil l construct the library, possibly using automated assistance such as 

that described in [S AYY97]. This would take place before the first use of HB-CA 

and the knowledge base content then could be improved as the user gained 

experience. Section 9.2.2 shows a model that includes this feedback process. 

3.5.1 Knowledge Representation in the Library 
Knowledge in the library can be represented as a semantic network. Semantic 

networks are graph structures consisting of nodes, and labelled arcs that describe 

the relationships between the nodes [KUWA97]. The library nodes also have 

attributes that are explained below. 

There are two entities in the library that are represented as nodes in a semantic 

network: concepts, and indicators. Concepts are the terms nominated by the user to 

describe items or activities in the domain. Indicators are evidence for concepts 

expressed in the implementation language, in this case IBM COBOL I I . 

The library encodes two types of relationship: 

• Indicator-Concept 

• Concept-Concept 

The indicator-concept relationship maps evidence for a concept to that concept. 

Concept-concept relationships map concepts to others to form composites and 

specialisations. 

3.5.LI Indicators 

Indicators have a number of attributes: 

Name 

Class 

Data 
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The name is a string used within the Hbrary to identify the indicator and provide an 

abstraction from the actual data. The class refers to the type of feature represented 

(e.g. identifier). This allows the indicator recognition process to filter indicators in 

the library for those appropriate to the search method being employed. The data is 

the actual evidence to be found in the source code. Alternatively, it may be a 

reference to another container for the data. The latter would be appropriate for 

complex indicators such as code fragments. 

Indicators are represented in the semantic network diagrams throughout this thesis 

as shown in Figure 10. 

Name: CFUe 

Class: Comment 

Data: FILE 

Figure 10: Example of an Indicator in Semantic Network 
Representation 

Formal definitions of indicator and class, in the context of the model presented in 

Chapter 2, are given below. 

Class: String 

Vj5r:Class ,^e{7^ibji5fe'n"A^yt^ 

Indicator : (n : String, c: Class, d: String) (10) 

3.5.1.2 Concepts 

Concepts have three attributes: 

• Name 

• Type 

• Level 

The name is a string to identify the concept, i.e. the nominated descriptive term. 
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The type is either action or object. Action concepts are those that do something 

(typically, the name of an action concept is a verb, e.g. Read). Object concepts are 

those things on which action concepts operate (typically, the name is a noun, e.g. 

File). Classifying concepts by type has improved the operation of the HB-CA 

method by preventing over-produaion of hypotheses. Chapter 4 discusses this 

issue in more detail. The classification also allows greater control of the concept 

binding search (see Chapters 5 and 6). Additionally, in combination with the 

relationships described below, it can help to reduce the size of the knowledge base 

required to represent complex concepts. Concept typing is used by various 

methods including DM-TAO (see [BIGG93]). 

The level is dxhtrprimary or secondary. Primary concepts represent the most general 

form of a particular concept; secondary concepts represent more specialised forms 

of primary concepts, e.g. File might be primary, MasterFile might be secondary. 

This information is required to help the method degrade its performance gracefully 

in the event of conflicting evidence. It allows the search methods to select a more 

general form of a concept i f the evidence for specific versions is ambiguous. 

Semantic network diagrams in this thesis represent concepts as shown in Figure 11. 

<Name: File 
Type: Object 
Level: Primary 

Figure 11: Example of a Concept in Semantic Network 
Representation 
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Formal representations of type, level, and concept are shown below. 

Level: String 

V Z : Level, X e {''PHmaryVSecondary"} (11) 

Type: String 

V F : Type, Ye {"ActionTObject"} 

Concept: {n : String, / : Level, t: Type) 

(12) 

(13) 

Note that definition 13 extends the original definition of concept (definition 5) to 

include the additional attributes required by the knowledge base. 

3.5.1.3 Indicator-Concept Relationship 

The indicator-concept relationship, termed indicates, is formed by joining indicators 

to the concepts for which they provide evidence. An example semantic network 

showing the indicates relationship is presented in Figure 12. 

Indicates 

Name: File 

Type: Objea 

Level: Primary 

Indicates 

Name: CFile 

Class: Comment 

Data: FILE 

Nanie:IFile 

Class: Identifier 

Data: FILE 

Figure 12: Example of a Semantic Network Showing the 
Indicates Relationship 

Indicates can be stated formally thus: 

Indicates : {(p: Indicator, q: Concept)} (14) 
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3.5.1.4 Concept-Concept Relationships 

There are two concept-concept relationships in the library: composition^ and 

specialisation. The formal model can capture the general form of concept-concept 

relationships thus: 

C C R : { r I r : {{a : Concept, b: Concept)}} (15) 

Composition and specialisation form instances of the CCR relation. 

Specialisation relationships are formed by linking secondary concepts (i.e. 

specialisations) to primary or other secondary concepts. This is indicated on a 

semantic network diagram using a dashed arrow (see Figure 13). I f X is a 

specialisation of Y then the arrow wi l l point from X to Y. Although the library 

structure permits secondary actions to be defined, the HB-CA method presented 

here does not support their use. 

<Naine:MasterFae \ 

Type: Object \ 

Level: Secondary X 

Figure 13: Example of a Semantic Network Showing the 
specialisation Relationship 

Note the use of a dashed arrow to indicate specialisation. 

It is extremely important that general forms of object concepts do not share 

specialised concepts. The path from a specialised concept back to its more general 

forms should always be unambiguous. This is because the concept assignment 

methods have no way of handling more than one general version of a particular 

specialised concept, although they can deal with multiple layers of specialisation. 

The suggested structure is a tree with the most general form of a concept at its root 

and specialisations extending from it . There should only be one path from a leaf 

node to the root, but this does not have to be a single step. Thus, concepts can be 

part of a chain of specialisation, each concept having only one general form but 
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potentially many specialisations. I f a specialised concept is required by more than 

one general form, an additional concept should be added to the Hbrary to represent 

the entities separately. Examples of acceptable and unacceptable struaures for the 

specialisation relationship are shown in Figure 14. The red lines denote the links 

that would cause problems. 

Unacceptable Acceptable 

Figure 14: Examples of Acceptable and Unacceptable Forms 
of the Specialisation Relationship 

The specialisation relationship can be stated formally: 

Specialisation: {((^?,^,c):Concept, {d,eJ)-.Concept) \ e = "Secondary"} (16) 

Composition relationships are formed by creating composite nodes in the semantic 

network to join primary aaion concepts to primary objea concepts. This forms an 

action:object structure (essentially a verb and noun construction) to convey more 

information to the user (e.g. Read:File rather than merely Read). 

Creating a composition of two primary concepts also produces a series of impHed 

composites with all specialisations of the primary object concept. These are not 

stored in the semantic network but are used as required by the segmentation and 

concept binding methods. Figure 15 shows an example semantic network with a 

composite concept. 
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<Name: Read 

Type: Aaion 

Level: Primary 

Name: File 

Type: Object 

Levd: Primary 

Key 

Indicates • 
Specialisation • 
Composition • 
Concept O 
Indicator • 
Composite Concept | 

Name: MasterFile 

Type: Object 

Levek Secondary 

Figure 15: Example of a Semantic Network Showing the 
Composition Relationship 

In Figure 15, a composite concept, Read:File, is formed from the Read and File 

concepts. The implication mechanism discussed above means that an implied 

composite, Read:MasterFile, also would be formed although not stored explicitly. 

Composite concepts do not have their own indicators (the indicators of the two 

constituents form the evidence for the composite). 

Composition can be expressed formally: 

Composition: {((<«,^,c):Concept, (c/,ej^:Concept) | b= "Primary", 

e= "Pnmary", c= "Action",/^ "Object"] 
(17) 
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The formal representations defined in expressions (9) to (15) can be combined to 

give a formal definition of the knowledge base. 

KB : ({% : Concept}, {i : Indicator}, {{p : Indicator, ^̂ ĝ  

q : Concept)}, {r\r : {(a: Concept, b : Concept)}}) 

The HB-CA library structure can be expressed as an instance of the general KB 

type. 

L : K B 

L = {C,I,Z,R) 

I = dam 2 

For some T: Specialisation, T e R 

For some P: Composition, P e R 

3.6 Knowledge Base Characteristics 
This section compares various characteristics of the knowledge bases used in 

IRENE, DM-TAO, and HB-CA. The characteristics examined are the costs of 

creation and maintenance, and the knowledge base complexity, as measured by the 

number of inter-concept relationships and their types. A brief description of the 

IRENE and DM-TAO knowledge bases is presented in sections 3.6.1 and 3.6.2. 

3.6.1 DM-TAO Knowledge Base 
The knowledge base and inference engine of DM-TAO are combined into one 

structure. It uses a connectionist-based inference engine [BIGG93]. The 

knowledge base is a domain model built as a network, in which each concept is 

represented as a node and inter-concept relationships are modelled as explicit links 

between the nodes. HB-CA's library is similar to this. Each concept has associated 

information regarding the features that characterise it, its relationships to other 

domain concepts, and informal knowledge such as programmer terminology. The 

syntactic and conceptual context in which the concept occurs also may be stored. 

The domain model captures the underlying semantics in the target domain through 

a rich set of inter-concept relationships, embodying the nature and degree of 

semantic association between domain concepts [BIGG93]. The network is 
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organised in layers of abstraction and contains many types of node. These are 

connected by several types of inter-node link, which have real-valued weights 

associated with them to quantify the strength of the relationship. The weights are 

updated semi-automatically in response to user evaluation of the correctness of 

concept assignments. 

3.6.2 IRENE Knowledge Base 
IRENE'S knowledge base models the domain by using concepts and two major 

relations between them: derivation, and dependency [KARA92]. Derivation 

captures the notion that a concept X is derived from a concept Y if there is a 

function f such that f(Y) = X. Dependency is similar but the function f is unknown. 

These relations are transitive. There are two other relations used in the IRENE 

knowledge base: strong and weak implication. Strong implication captures the 

expectation of the existence of a concept when knowing the existence of another 

concept. Weak implication expresses the plausibility that a concept exists, upon the 

knowledge that its implying concept exists. The implication relations are 

intransitive. The domain model also stores possible concept realisations in a 

COBOL program, dividing IRENE's knowledge into software-dependent and 

software-independent categories. 

3.6.3 Knowledge Base Complexity 
The complexity of the knowledge bases can be compared using the number of 

concept types and the number of inter-concept relationships employed to represent 

knowledge. 

HB-CA employs two inter-concept relationships and two types of concept. This 

provides a relatively simple knowledge base capable of representing a wide range of 

concepts. The HB-CA library is effectively a reflection of the maintainer's current 

domain understanding and interest. 

DM-TAO has the most complex knowledge base employing a large number of 

concept and relationship types. This allows the system to perform powerful 

inference but at the expense of greater maintenance than the HB-CA library. The 

way that DM-TAO updates its knowledge means that the knowledge base does not 
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reflect the maintainer's understanding in the same way as HB-CA, but forms its own 

"understanding" of the domain. 

IRENE'S knowledge base is of similar complexity to HB-CA, utilising four inter-

concept relations. The restrictions on the application of these are considerably 

greater than HB-CA since they require a formal relationship to hold between the 

concepts. IRENE does not differentiate between types of concept. 

There are advantages to each approach. Simpler approaches, such as HB-CA and 

IRENE, allow the knowledge base to be created and maintained easily by a user. 

The more complex approach of DM-TAO makes this a difficult activity but 

provides a subtler inference system. Its knowledge base is updated automatically 

although a user is still required to assess the validity of concept assignments. The 

difficulty of creating and maintaining such a knowledge base may have contributed 

to the fact that DM-TAO has not . moved beyond a research prototype (see 

[BIGG93], [BIGG94]). The formal relations employed by IRENE may incur a 

higher initial cost than HB-CA when the domain model is created. HB-CA is 

capable of concept assignment using minimal information. 

The approach taken to source-code evidence can also have an impact on cost. DM-

T A O and HB-CA use feature analysers with flexibility in the recognition methods. 

This reduces the need to store a large range of specific implementation evidence. 

The examples of concepts shown in [KARA92] imply that IRENE requires a larger 

range of code examples to match source code features. The differences between 

the systems are summarised in Table 4 below, and Table 1 in section 3.2. 
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HB-CA DM-TAO 
(Conceptual 

D M - T A O D M - T A O 
(Conceptual (Identification) 
Highlights) 

IRENE 

Knowledge Base 
Repieseutation 

Semantic 
Network Semantic/C onnectionist Hybrid Network Formal 

Relations 
Knowledge Base 
Complexity 
(Concept Types) 

Low High 

Knowledge Base 
Complexity 
(Relationship 
Types) 

Low High Low 
-

Knowledge Base 
Creation Cost Low High Medium 

Knowledge Base 
Update Method Manual Semi-Automatic Mai^af^ 

Knowledge Base 
Update Cost Low High Medium 

Table 4: Characteristics of Concept Assignment Methods 
Knowledge Base 

3.7 Example 
This section shows a fragment of real-world COBOL I I (Figure 16), and an example 

knowledge base expressed as a semantic network (Figure 17). These are used in the 

next three chapters to illustrate the operation and data structures of the constituent 

parts of HB-CA. 
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3.7.1 COBOL II Fragment 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
G B 2 1 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 

COO-READ-APS SECTION. 
COO-000. 

READ APS,MASTER F I L E 
CALL 'GBAAYOX' USING APS-RECORD-IN. 
I F APS-EOF = END-OF-FILE 

MOVE HIGH-VALUES TO APS-RECORD-
GO TO COO-999. 

'1' TO W-GBCM0133-2. 
•GBCM0133' USING APS-RECORD-IN W-GBCM0133-2. 

-IN 

COO 

C I O 

MOVE 
CALL 
-999. 
EXIT. 
SKIP3 
-WRITE- APS SECTION. 
WRITE APS MASTER F I L E 

'2' TO W-GBCM0133-2 . 
'GBCM0133' USING APS-RECORD-OUT W-GBCM0133-2 
'GBAAZOX' USING APS-RECORD-OUT. 

SECTION. 

MOVE 
CALL 

. CALL 
ClO-999. 

EXIT. 
SKIP3 

C2 0-PRINT 
C20-000. 

* PRINT PECULIAR RECORDS TO BE MANUALLY CHECKED 
I F A-LINENO LESS THAN 25 

GO TO C20-010. 

ADD 1 TO A-PAGENO. 
MOVE A-PAGENO TO HI-PAGE. 
MOVE C-1 TO P-CC. 
MOVE HI-HEADLINE TO P-LL. 
PERFORM SOO-PRINT. 

MOVE WS-2 TO P-CC. 
MOVE HI-HEADLINE TO P-LL. 
PERFORM SOO-PRINT. 
MOVE 0 TO A-LINENO. 

C20-010. 
MOVE WS-2 TO P-CC. 
MOVE GBAIAOlO TO PI-KEY. 
MOVE Pl-DATALINE TO P-LL. 

PERFORM SOO-PRINT. 
MOVE SPACES TO P-LL. 
ADD 2 TO A-LINENO. 

C20-999. 
EXIT. 
EJECT 

SOO-PRINT SECTION. 
SOO-000. 

PRINTS A LINE 

CALL 
SOO-999. 

EXIT. 

'PRINT' USING P-PRINTLINE. 

0193 
0194 
0195 
0196 
0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
0244 
0245 
0246 
0247 

Figure 16: Example C O B O L II Program Fragment 
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3.7.2 Example Library Content (Semantic Network) 

Name: CWrite 

Class: Comment 

Data: Write 

Name: KEndWrite 

Class: Idemifier 

Data: END-WRITE 

Name: NRead 

Class: Idemifier 

Data: READ 

Name: KRead 

Class: Keyword 

Data: READ 

Name: CRead 

Class: Commem 

Data: Read 

Name: CPrint 

Class: Commem 

Data: Print 

Name: NPrint 

Class: Identifier 

Data: PRINT 

Name: NWrite 

Class: Identifier 

Data: WRITE 

Name: KWrite 

Class: Keyword 

Data: WRITE 

Write Record 

Name: Write 

Type: Aaion 

Level: Primary 

Name: Read 

Type: Action 

Level: Primary 

Read Record 

Print Record 

Name: Print 

Type: Aaion 

Level: Primary 

Key 

Indicates • 
Specialisation • 
Composition = • 
Concept O 
Indicator • 
Composite Concept 

Name: NHeading 

Class: Identifier 

Data: HEADING 

Name: CHeading 

Class: Comment 

Data: Heading 

Name: APSRecoid 

Type: Objea 

Level: Secondary 

Name: Record 

Type: Objea 

Level: Primary 

Heading 

Name: Heading 

Type: Objea 

Level: Primary 

Name: CAPS 

Class: Comment 

Data: APS 

Name: NAPS 

Class: Identifier 

Data: APS 

Name: NA.P.S. 

Class: Identifier 

Data: A.P.S. 

Name: CRecord 

Class: Comment 

Data: Record 

Name: NRecord 

Class: Identifier 

Data: RECORD 

Name: KRecord 

Class: Keyword 

Data: RECORD 

Name: KRecords 

Class: Keyword 

Data: RECORDS 

Name: CHead 

Class: Comment 

Data: Head 

Name: NHead 

Class: Identifier 

Data: HEAD 

Figure 17: Example Library Content 
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3.8 Summary 
This chapter has described a new approach to concept assignment termed 

Fiypothesis-Based Concept Assignment. A general description of its data structures 

and processes has been presented, with reference to the comprehension activity 

framework described in Chapter 2. The formal model has been extended to capture 

certain characteristics of the FiB-CA method and its representations. An example 

program and knowledge base have been presented for use later in the thesis. 

Chapter 4 describes the first stage of FiB-CA in detail, further extending the formal 

model of the approach. Where appropriate, comparisons are made with the 

IRENE and DM-TAO systems. 
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Chapter 4 

Hypothesis Generation 

4.1 Introduction 
Chapter 3 provided a general introduction to Fiypothesis-Based Concept 

Assignment and made comparisons with other approaches taken to the concept 

assignment problem. The overall process of FiB-CA was described and the 

knowledge base was discussed in detail. 

This chapter describes the first stage of FIB-CA: hypothesis generation. The formal 

model developed in preceding chapters is extended and a representation for 

hypotheses defined. Fiypothesis generation accepts source code as input and 

transforms it to a hypothesis list for output. 

4.2 Hypothesis Generation 
The purpose of this stage is to create an initial conceptual interpretation of the 

program being analysed. 

Hypothesis generation uses the indicator-concept relationship in the knowledge 

base. When a recognisable indicator is found, a hypothesis is created for each 

concept that is related to the indicator. These are stored for later use. 

The formal model presented in Chapters 2 and 3 can be extended to capture the 

notion of a hypothesis: 

Hypothesis : {i: Indicator, c : Concept, / : Lexeme) (19) 

This representation stores the indicator and concept (essentially a single element of 

the indicator-concept relationship), and the lexeme that produced the hypothesis. 

This means that the hypothesis can be linked to its source code origins when 

necessary. 
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The white oval in Figure 18 shows where the internal representation produced by 

hypothesis generation fits in the comprehension activity framework. 

Key 

Actor 

Information Store 

Information Flow 

Process 

Data Struaure 

Source Code 

Processor 

Hypothesis 

Segmentation 

Source-Label 
Representation 

Figure 18: Comprehension Activity Framework Showing the 
Internal Hypothesis Representation 

This representation is termed the hypothesis list and is expressed formally as: 

Hypothesis List: {h : Hypothesis] (20) 
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The process of hypothesis generation can be regarded as a function, mapping the 

source code to a hypothesis Hst. 

H G : Source Hypothesis List (21) 

Strictly, the knowledge base should be passed as an additional argument to the 

function. However, since its internal representations are not used elsewhere within 

the formal model, it is omitted from these definitions. 

4.3 Indicator Recognition 
This is the key activity of the hypothesis generation stage. Indicators were 

introduced in section 3.5.1.1 and can take many forms. Table 5 shows Brooks' 

suggestions for indicators, used in his theory of top-down program comprehension 

[BR0083]. 

1 Prologue comments, including data and variable dictionaries 

2 Variable, structure, procedure and label names 

3 Declarations or data divisions 

4 Interline comments 

5 Indentation or pretty-printing 

5 Subroutine or module structure 

7 1/O formats, head, and device or channel assignments 

External 

i Users' manuals 

2 Program logic manuals 

3 Flowcharts 

4 Cross-reference listing 

5 Published descriptions of algorithms or techniques 

Table 5: Indicators for the Meaning of a Program 
[BR0083] 

Brooks claims that the particular indicators used wil l vary from maintainer to 

maintainer, and their relative importance will be different depending on the context 
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of their use [BR0083]. In HB-CA, these variations are ignored and all indicators 

are treated with equal weight. 

HB-CA only works with internal indicators drawn from types 2,4, and 6 in Table 5. 

The method is designed to accommodate additional indicator types without changes 

to the segmentation or concept binding methods. This is facilitated by merging the 

output of each type of indicator recognition. Brooks suggests that stereotypical 

code fragments may be used as indicators [BR0083]. This is a good example of a 

complex indicator type that would require advanced recognition routines and 

representations. The indicators used by HB-CA are simple text strings. 

Various authors have investigated the contribution of certain types of indicators to 

the understanding process, and how software maintainers use them. Much work 

has been performed suggesting the use of code fragments as indicators (also termed 

beacons by many authors), e.g. [WIED91] and [WIED86]. Gellenbeck and Cook 

found that meaningful procedure and variable names, typographic signalling, header 

comments, and mnemonic module names assisted comprehension [GELL91a], 

[GELL91b]. These findings are confirmed by Teasley's work on naming style, 

although meaningful names were found to help experts less than novices. Experts 

used other information sources in the absence of good naming [TEAS94]. Miara et 

al. investigated the effect of indentation and discovered that a moderate level (2-4 

spaces) could help with program comprehension [MIAR83]. The indicators used 

for HB-CA were chosen partly on the basis of these investigations, and partly for 

practical reasons, as textual indicators are amenable to simple extraction and analysis 

by parsers. 

In summary, there is evidence to support the use of a variety of indicators when 

analysing a program for concept assignment. These include code fragments, 

variable names, module names, procedure names, comments, indentation, and 

structural information. Analysing a program for simple types of indicator can be 

performed easily, e.g. using a parser to extract variable names. Complex indicators 

such as code fragments may require the use of advanced recognition methods. 
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4.3.1 Indicator Types in HB-CA 
There are four indicator types defined in HB-CA: 

• Identifiers 

• Keywords (programming language reserved words) 

• Comments (single words only, no composite phrases) 

• Segment Boundaries (denoted by particular keywords) 

4.3.2 General Recognition Process 
The input to the indicator recognition process is COBOL I I source code. 

A l l indicator recognition methods have the same general structure regardless of the 

class of indicator that they recognise. There are differences in the matching 

algorithms for each class to deal with the different types of indicator. 

The general struaure of indicator recognition is shown in Figure 19. 

Key 

Information Store 

Information Flow 

Process 

Data Structure 

Source Code 

Extraction 

Extracted Tokens 

Knowledge Base 
Matching 

Hypothesis List 

Figure 19: Indicator Recognition Process 

59 



4.3.3 Extraction Process 
A l l types of indicator are extracted using a similar process. In each case, a lexical 

analyser is used to match lexemes belonging to a particular class. A full parser could 

be employed for more accurate extraction. Only procedure division lexemes are 

extracted; the reasons for this restriction are given in Chapter 1. It is assumed that 

the input source code can be compiled and is correct with respect to the language 

definition. Each lexeme is stored with line and character position information. 

Segment boundaries are treated slightly differently. The source code is scanned 

using a lexical analyser as for the other classes. Discovery of a SECTION lexeme 

generates a segment-start output with line and character position information. 

Lexemes EXIT, GOBACK, and STOP generate segment-end output with line and character 

position information. In the absence of any SECTION lexemes, the PROCEDURE DIVISION 

lexeme is used to generate a segment-start. 

4.3.4 Matching Rules 
Once the lexemes have been extracted, they are matched against the indicators in 

the library to generate hypotheses. In terms of the formal model, the matching test 

is made between the lexeme string and the data string of an indicator, as shown in 

the function Match: 

Match: (indicator, Lexeme) -> Boolean (22) 

Match((^2 : String, c : Class, d : String), (5: Integer, e : Integer, 

t: String)) = d\xt 

\x, (String, String) Boolean (23) 

|Li {d: String, t: String) = True, ]{d= t under conditions specified for 

active options. 

The way in which lexemes (also termed tokens) are matched varies, governed by a 

number of options for each class. 
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Options available for the classes are: 

Identifier Case Sensitivity 

Sub-string Matching 

Synonym Matching 

Keyword No Options 

Comment Case Sensitivity 

Synonym Matching 

Segment Boundary No Options 

Case sensitivity provides greater flexibility when matching strings, particularly in 

comments where mixed case type is often employed. 

Sub-string matching also allows greater flexibility than direct matching because 

variations of words can be found. 

Synonym matching is designed to allow for different words referring to the same 

concept and requires the availability of a list of common synonyms. 

The options may be used in combination as described below, although the more 

flexible the recognition, the greater the chance of erroneously generating 

hypotheses. 

When a hypothesis is generated, the following information is output: 

A concept 

An indicator 

A lexeme 

Lexeme line number 

Lexeme character position 

61 



4.3.4.1 Identifier Matching 

If the case sensitivity option is active then make all matches case sensitive, otherwise 

make all matches case insensitive. 

For each lexeme extracted: 

1) attempt to match the current lexeme exactly with the tokens stored in the 

data attribute of every identifier-class indicator in the library. If a match is 

found, output a hypothesis for each concept in the library that is related to 

the current library indicator, filling the fields appropriately. 

2) if the sub-string matching option is active then attempt to match the current 

lexeme with the tokens stored in the data attribute of every identifier-class 

indicator in the library. A match is found if the extracted lexeme is a sub­

string of the library data token, or if the library data token is a sub-string of 

the extracted lexeme. If a match is found, output a hypothesis for each 

concept in the library that is related to the current library indicator. 

Hypotheses are not output by this stage if they have already been generated 

in the exact matching stage described in 1 above. 

3) if the synonym matching option is active then attempt to match the current 

lexeme with the tokens stored in the data attribute of every identifier-class 

indicator in the library. To determine whether a match has been found, 

look up synonyms for the current lexeme in the synonym list. For each 

retrieved synonym, compare it with every library data token in the identifier 

class. A match is found if the synonym and library tokens are exactly the 

same, subject to the case sensitivity option. If a match is found, output a 

hypothesis for each concept in the library that is related to the current 

library indicator. Hypotheses should not be output by this stage if they have 

already been generated in either of the two previous stages. 
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4.3.4.2 Keyword Matching 

For each lexeme extracted: 

1) attempt to match the current lexeme exactly with the tokens stored in the 

data attribute of every keyword-class indicator in the library. If a match is 

found, output a hypothesis for each concept in the library that is related to 

the current library indicator. 

4.3.4.3 Comment Matching 

If the case sensitivity option is active then make all matches case sensitive, otherwise 

make all matches case insensitive. 

For each lexeme extracted: 

1) attempt to match the current lexeme exactly with the tokens stored in the 

data attribute of every comment-class indicator in the library. If a match is 

found, output a hypothesis for each concept in the library that is related to 

the current library indicator. 

2) if the synonym matching option is active then attempt to match the current 

lexeme with the tokens stored in the data attribute of every comment-class 

indicator in the library. To determine whether a match has been found, 

look up synonyms for the current token in the synonym list. For each 

retrieved synonym, compare it with every library data token in the comment 

class. A match is found if the synonym and library tokens are exactly the 

same, subject to the case sensitivity option. If a match is found, output a 

hypothesis for each concept in the library that is related to the current 

library indicator. Hypotheses should not be output by the synonym 

matching stage if they have already been generated in the previous stage. 

4.3.4.4 Segment Boundary Matching 

No flexible matching criteria are applied in segment boundary matching; each 

extracted token in the class is output as a boundary hypothesis. If SECTION is found, 

generate a segment-start hypothesis with line and character position information. If 

EXIT, GOBACK, or STOP is found, generate segment-end output with line and character 
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position information. In the absence of any SECTION lexemes, generate a segment-

start hypothesis from the PROCEDURE DIVISION lexeme. 

4.3.4.5 Output 

The output of the indicator recognition process is a hypothesis Hst. The hypotheses 

are sorted (if required) into ascending order by line and character position of the 

generating indicator. There is no specific order on multiple hypotheses from a 

single indicator. 

4.4 Characteristics of Hypothesis Generation 
This section compares HB-CA's hypothesis generation process with the equivalent 

parts of IRENE and DM-TAO. The specific areas of comparison are the initial 

information source used to begin the concept search, and the type of the initial 

information. 

HB-CA begins its search using source code indicators as discussed above. The 

initial information source is therefore the source code. 

IRENE'S initial information is provided in the form of a user-supplied hypothesis. 

The system proceeds to derive further plausible hypotheses and attempts to find 

their implementation in the source code being analysed. 

DM-TAO in conceptual grep mode has a user-supplied concept for which 

implementations are found. The source-code features used in all cases are syntactic, 

lexical, and clustering clues [BIGG94]: 
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Table 6 summarises these differences. 

HB-CA DM-TAO 
(Conceptual 

DM-TAO 
(Conceptual 
Highlights) 

DM-TAO 
(Identification) 

I R E N E 

Initial 
Information 
Source 

Source 
Code User Source Code 

- ^ ^ ^ ^ ^ ^ 

Source Code 
^ ^ ^ ^ ^ ^ ^ 

User 

Initial 
Information 

Textual 
Indicators 

User-Supplied 
Concept, 
Syntactic, 

Lexical, and 
Clustering 

Clues 

Syntactic, 
Lexical, and 
Clustering 

Clues 

Syntactic, 
Lexical, and 

Clustering Clues 

User-
Supplied 

Hypothesis 

Table 6: Characteristics of Concept Assignment Methods -
Initial Information Sources 

4.4.1 Discussion 
The advantages of using source code as the primary information source are that it 

requires no user involvement, and that it causes the search to be focussed on those 

areas of the knowledge base that are relevant. The disadvantage is that some 

inferences between concepts may be more difficult to make, and indicators missing 

from the knowledge base can have a large effect on recognition performance. 

Chapter 3 referred to the overproduction of hypotheses during this stage. The 

problem was discovered during development of the HB-CA method. The 

technique in question used a knowledge base structure where conceptually similar 

concepts reinforced each other. This approach was termed secondary hypothesis. 

Whilst in principle this appeared to be a useful idea, it was not successful because 

hypotheses that should have reinforced each other (e.g. specialised versions of 

particular hypotheses) actually competed. This was one factor that led to the design 

of the knowledge base and disambiguation rules. 

65 



4.5 Example of Hypothesis Generation 
This section demonstrates the appHcation of the hypothesis generation method to 

the example source code and library content presented in Chapter 3. 

For brevity, the entire fragment has not been included here but representative 

samples are used. Figure 20 shows part of the example code fragment with 

indicators in the four classes highlighted. 

GB21 COO-READ-APS SECTION. 0193 
GB21 COO-000. 0194 
GB21 * READ APS MASTER FILE 0195 
GB21 CALL 'GBAAYOX' USING APS-RECORD-IN. 0196 
GB21 I F APS-EOF = END-OF-FILE 0197 
GB21 MOVE HIGH-VALUES TO APS-RECORD-IN 0198 
GB21 GO TO COO-999. 0199 
GB21 MOVE '1' TO W-GBCM0133-2. 0200 
GB21 CALL 'GBCMOISS' USING APS-RECORD-IN W-GBCM0133-2. 0201 
GB21 COO-999. 
GB21 EXIT. 
GB21 SKIPS 
GB21 ClO-WRITE-APS SECTION. 0205 
GB21 * WRITE APS MASTER FILE 0206 
GB21 MOVE '2' TO W-GBCM0133-2. 0207 
GB21 CALL -GBCMOISS' USING APS-RECORD-OUT W-GBCM0133-2. 0208 
GB21 CALL 'GBAAZOX' USING APS-RECORD-OUT. 0209 
GB21 ClO-999. 0210 
GB21 EXIT. 
GB21 SKIP3 

0202 
0203 
0204 

0211 
0212 

Key: XXX - Id e n t i f i e r , XXX - Keyword, XXX - Comment, XXX - Segment Boundary 

Figure 20: Code Fragment Showing Tokens Classified for 
Extraction 

A l l of these lexemes would be found by the various indicator extraaion methods. 

Once extracted, matching takes place gainst the library and Figure 21 shows those 

indicators that would be found in the example. Active options are: case insensitivity 

on all modules that support i t , and sub-string matching for identifiers. 
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0197 
0198 
0199 
0200 

0202 
0203 
0204 

0206 
0207 
0208 
0209 
0210 
0211 
0212 

GB21 COO-READ-APS SECTION. 0193 
GB21 COO-000. 0194 
GB21 * READ APS MASTER FILE 0195 
GB21 CALL • GBAAYOX' USING APS-RECORD-IN. 0196 
GB21 I F APS-EOF = END-OF-FILE 
GB21 MOVE HIGH-VALUES TO APS-RECORD-IN 
GB21 GO TO COO-999. 
GB21 MOVE -1' TO W-GBCM0133-2. 
GB21 CALL 'GBCM0133' USING APS-RECORD-IN W-GBCM0133-2. 0201 
GB21 COO-999. 
GB21 EXIT. 
GB21 SKIP3 
GB21 ClO-WRITE-APS SECTION. 0205 
GB21 * WRITE APS MASTER FILE 
•GB21 MOVE '2' TO W-GBCM0133-2. 
GB21 CALL 'GBCM0133' USING APS-RECORD-OUT W-GBCM0133-2. 
GB21 CALL •GBAAZOX' USING APS-RECORD-OUT. 
GB21 ClO-999. 
GB21 EXIT. 
GB21 SKIP3 

Key: XXX - I d e n t i f i e r , XXX - Keyword, XXX - Comment, xxx - Segment Break 

Figure 21: Code Fragment Showing Classified Matched 
Tokens 

The matched indicators produce hypotheses by the methods described above. The 

first matching token (COO-READ-APS) indicates two concepts: Read and APSRecord. 

The matching process creates hypotheses for these and stores them in the 

hypothesis list. 

The output can be expressed in terms of the formal model (character positions are 

representative only) and an extract is shown below: 

HL : Hypothesis List 

HL= { ((NRead, Identifier, READ), (Read, Aaion, Primary), (8025, 

8037, coo-READ-APs)), ((NAPS, Identifier, APS), (APSRecord, Object, 

Secondary), (8025, 8037, COO-READ-APS))...]' 
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4.6 Summary 
Chapter 4 has presented the first stage of the HB-CA method, hypothesis 

, generation, describing the key process of indicator recognition. A comparison has 

been made with the primary knowledge types and sources used by the IRENE and 

DM-TAO systems. The chapter shows the results of applying hypothesis 

generation to the example source code and library content given in Chapter 3. 

Chapter 5 discusses the next stage of the HB-CA method: segmentation. The 

problems associated with segmenting programs are presented and a solution based 

on conceptual clustering is described. 
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Chapter 5 

Segmentation 

5.1 Introduction 
Chapter 4 presented the first stage of HB-CA, hypothesis generation, which 

transforms source code into a hypothesis list using the knowledge base. The 

comprehension activity framework and formal model were extended to show the 

representations and context of hypothesis generation. 

This chapter describes the second stage of HB-CA: segmentation. It is the first 

major research problem to be addressed by the HB-CA method and involves 

breaking up the hypothesis list into conceptually coherent segments. The solution 

clusters concepts in the hypothesis list using segment boundary indicators and self-

organising maps (SOMs). The result of segmentation is shown in the context of the 

comprehension activity framework and appropriate formal representations are 

defined. Segmentation accepts a hypothesis list as input and produces a hypothesis 

segment list as output. 

5.2 The Segmentation Problem 
Segmentation is the problem of determining the location and extent of concepts 

within a piece of source code, to form segments that then can be labelled. It is a 

difficult problem because the boundaries between concepts can be confused and 

fuzzy to the point where two concepts may interleave. Interleaving has been 

addressed in algorithmic understanders using data and control flow information (see 

[RUGA96]). It presents a more difficult problem to plausible reasoning 

understanders, such as HB-CA, where this kind of information is not used. Figure 

22 shows an example fragment of source code with two clearly separated concepts. 

69 



MOVE 'EXAMPLE' TO PRINT-LL. 
MOVE «13' TO PRIBTT-CC. 
CALL 'PRINT' USING P-PRINTLINE. 
MOVE POLICY-NUM TO OUT-PNUM. 
MOVE SCHEME-REF TO OUT-SREF. 
CALL 'WRITE' USING OUT-REC. 

Figure 22: Example Code Fragment Showing Separated 
Concepts 

The first three lines indicate a Print concept; the last three indicate Write. In this 

situation, it is clear where the boundary between concepts falls. Figure 23 shows 

the same code but with the boundaries slightly blurred. 

MOVE 'EXAMPLE' TO PRINT-LL. 
MOVE '13' TO PRINT-CC. 
MOVE POLICY-NUM TO OUT-PNUM. 
CALL 'PRINT' USING P-PRINTLINE. 
MOVE SCHEME-REF TO OUT-SREF. 
CALL 'WRITE' USING OUT-REC. 

Figure 23: Example Code Fragment Showing Slightly 
Merged Concepts 

There are still two distinct areas of conceptual focus although the boundary 

between them is now fuzzy. The final version of this example, shown in Figure 24, 

demonstrates the concepts when completely merged. 

MOVE 'EXAMPLE' TO PRINT-LL. 
MOVE POLICY-NUM TO OUT-PNUM. 
MOVE '13' TO PRINT-CC. 
MOVE SCHEME-REF TO OUT-SREF. 
CALL 'PRINT' USING P-PRINTLINE. 
CALL 'WRITE' USING OUT-REC. 

Figure 24: Example Code Fragment Showing Completely 
Merged Concepts 

I t is now impossible to tell where one concept ends and the other begins. This is 

confusing in itself, but the confusion is compounded by the faa that there is now a 

third concept emerging; it could be argued that the last two lines now indicate Call. 
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It is clear that segmenting even a trivial program is difficult. The problem is 

considerably greater when addressing real-world heavily-maintained code. 

It is possible to perform initial segmentation of a program based on the subroutine 

structure of the code. This implies an assumption of one concept per subroutine 

(per section in the case of COBOL II). Although this provides a good starting 
0 

point, much existing code is poorly structured and may have large subroutines (if 

they exist at all). Flexible methods are required to detect areas of conceptual focus 

within subroutines, i.e. those areas where the evidence in the code strongly indicates 

a particular concept. 

The input to the segmentation stage is the hypothesis list generated by the methods 

described in Chapter 4. The output of the stage is a hypothesis segment list (HSL). The 

HSL can be expressed formally: 

HSL : {Hypothesis List} (24) 

Segmentation can be seen as a function mapping a hypothesis list to a hypothesis 

segment list. 

Segmentation : Hypothesis List HSL (25) 

Segmentation is the second stage of HB-CA and Figure 25 shows its position in the 

comprehension activity framework. The hypothesis segment list it produces is 

indicated by the white oval. 
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Figure 25: Comprehension Activity Framework Showing the 
Position of the Hypothesis Segment List 

5.3 HB-CA Segmentation 

HB-CA adopts a two-stage approach to segmenting the hypothesis list. 

5.3.1 Segment Boundary Hypotheses 

The first stage assumes that at least one concept should be assigned to every 

COBOL n section, providing an initial segmentation of the hypothesis Ust using the 

segment boundary hypotheses described in Chapter 4. Note that some correction 

of a segment boundary's position in the list may be required to ensure that all 
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relevant indicators are included. Figure 26 shows a small example of this situation. 

The line of code shown, when combined with a knowledge base, produces a 

hypothesis list, of which a fragment is presented. If the segment boundary is used 

without correction, both F I L E and WRITE wil l be ignored since hypotheses in the list 

are considered in the order in which they occur in the source code. The correction 

algorithm moves the segment boundary hypothesis until it is the first hypothesis 

occurring on the line being considered. Segment-end hypotheses should not need 

any correction because they are unlikely to occur on the same line as another token. 

FILE-WRITE SECTION. 

H L = {(FILE...),(WRITE...),(SEGSTART)...} 

Figure 26: Example Showing Necessity of Boundary 
Correction 

Having established the initial segmentation, further analysis may be required to 

determine whether these segments can be subdivided to give a greater level of detail 

about the concepts in the program. Subdivision may be necessary to retain an 

appropriate level of abstraction for the amount of code being considered. If 

monolithic code or very large subroutines are being analysed, it is more useful to 

assign several concepts to parts of each routine than to apply the rule of one 

concept per subroutine. If a large subroutine is described by one concept, the 

concept's level of abstraction may need to be raised to accurately represent the 

operations performed in the routine. 

5,3.2 Clustering 
HB-CA's method for subdividing segments is based on the idea of finding 

conceptual clusters within a segment's hypotheses, in other words, to determine 

areas of strong conceptual focus within the hypothesis list. Applying such a 

technique to the entire hypothesis list appears attractive but during the development 

of HB-CA it was found that this caused "unnatural" segmentation. Concept 

clusters could be formed across subroutine boundaries such that the syntactic 

structure of the program was not reflected in the concept list. This problem was the 
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motivation for the initial segmentation algorithm described above, which preserves 

the syntactic structure of the program. 

Early versions of HB-CA attempted clustering using a horizon effect based on the 

distance, in lines, to the next indicator in the source code. This had the unfortunate 

effect of occasionally isolating one or two indicators at the end of a subroutine and 

either ignoring, or misinterpreting the evidence they provided. Moving to a purely 

hypothesis-based representation, where distances between indicators are determined 

only by their relative position in the hypothesis list, has helped to eliminate this 

problem. 

5.3.2.1 Pre-processing 

In order to avoid unnecessary work and to derive certain parameters required to 

perform further clustering if required, each segment's hypotheses are pre-processed 

according to the following method: 

1) For each action-concept hypothesis in a segment, find the concept's most 

general form by recursively traversing the speciahsation relationship in the 

library. Store the result in a list F. 

2) If the number of elements in F is greater than some user-specified 

recognition threshold, rec_thresh^ then continue; otherwise reject the segment 

and repeat from 1 for the next segment. 

3) With a user-specified minimum density for a concept cluster, minjvd, 

determine the number of potential clusters in i^by dividing the number of 

elements of i^by minjud. If the result > 2 then continue, otherwise store this 

segment in the hypothesis segment list using its initial segment boundaries 

and repeat from 1 for the next segment. 

4) Determine the number of different concepts in F. If there is more than 1 

then continue, otherwise store this segment in the hypothesis segment list 

using its initial boundaries and repeat from 1 for the next segment. 

5) If this step has been reached, further clustering using self-organising map 

analysis is required. 

The rationale for these steps is now discussed. 
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A l l processing at this point is undertaken on action-concept hypotheses only. This 

reflects the general emphasis on discovering what a program does rather than the 

objects on which it operates. 

Step 1 ensures that versions of the same hypothesis do not compete with each 

other. If this is not performed, it is possible that the evidence for a particular 

general concept could be shared among its specialised versions, thus allowing a less 

strongly indicated concept to win. By finding the most general form of all concepts, 

comparisons are made at the highest level with evidence for specialisations being 

used to improve the quality of information later in the process. It should be noted 

that the other stages of the HB-CA method do not support specialised action-

concept hypotheses. Consequently, this step is redundant at present but is included 

for completeness in the event that HB-CA is extended. Any extension should 

ensure that the original, specialised hypothesis is replaced in the correct position 

before concept binding begins. 

Step 2 ensures that there are sufficient pieces of evidence for recognition to take 

place. The user specifies the amount of evidence required. 

Step 3 determines the number of potential clusters in F. This information is needed 

to decide whether it is worth attempting to find clusters in the hypotheses. The 

user specifies the minimum number of hypotheses for a cluster. Dividing the 

number of hypotheses mFhj this number gives the maximum number of clusters 

that could be formed ift\iQ hypotheses were perfectly clustered initially, a situation 

unlikely to occur in practice. If there is potential for no more than one cluster then 

there is no gain from further analysis and the segment can be stored using its 

current boundaries. 

Step 4 ensures that the concepts in are not all the same. If they are all the same 

then it is clear that the concept to be bound to the segment wil l be some version of 

the concepts in f , hence there is little point in continued analysis of F. 

If further analysis and clustering are required, a self-organising map (SOM) is used 

to find clusters in F. 
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5.3.2.2 Self-Organising Maps (SOMs) 

The Self-Organising Map (SOM) (also called a Kohonen network) is an artificial 

neural network algorithm. It employs unsupervised, competitive learning to 

perform a topological mapping of high-dimensional input data to a low-dimensional 

output space. A detailed presentation of the mathematical foimdations, variations 

on the basic algorithm, and an extensive literature survey can be found in 

[KOH097] . This section introduces the concepts underlying the SOM and 

describes the basic algorithm used by HB-CA. 

The SOM algorithm performs a vector quantization process, allowing the network 

to store data whilst maintaining spatial or topological relationships in the training 

data set, and representing them in a meaningful way [BEAL92]. This is performed 

by iteratively presenting a set of training veaors to the network and modifying a set 

of reference vectors to represent those training vectors as accurately as possible. 

Figure 27 shows the topology of a self-organising map. 

Kohonen Layer 

Input Layer 

Figure 27: Example of a Self-Organising Map 

SOMs have a two layer topology with an input layer the same size as the number of 

components in the input veaors, and an output layer usually in the shape of a two 

dimensional grid. Each output node has the same nimiber of veaor components as 

input nodes [ROUS98]. Every input node is conneaed to every output node. The 

output node vectors are initialised with random numbers. Learning takes place 

through the repeated presentation of training data vectors. There may be hundreds 
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to thousands of repetitions. When a training vector is presented, the Euclidean 

distance between the training vector and every reference vector stored in the output 

nodes is calculated. The output node that is closest to the training vector is declared 

the winner, and its reference vector is updated to reduce its Euclidean distance to 

the input. In addition, neighbouring nodes in the output layer are also moved 

proportionally closer to the input. After many repetitions, this process results in the 

spatial organisation of the input data in clusters of similar, neighbouring regions 

[ROUS98]. Over the course of training, the size of the neighbourhood and the 

amount by which Euclidean distances are updated (the learning rate) decrease to 

zero. 

SOMs have many uses including natural language engineering [HONK97], and the 

organisation of document collections [KASK96]. 

5.3.2.3 SOMs for HB-CA 

The SOM is useful in HB-CA because of its ability to cluster similar data items 

automatically. Spatial relationships in the segment's hypotheses can be preserved 

allowing nearby, similar concepts to be clustered together. Consequently, the fuzzy 

boundaries between areas of conceptual focus in the hypothesis list can be 

determined using the conceptual content of the list itself, rather than imposing an 

arbitrary division. 

Employing a self-organising map within HB-CA entails solving some additional 

problems. First, the map must be automatically constructed and the data pre-

processed into a vector form. Second, the trained map must be automatically 

interpreted; a task often left to the user in other SOM applications. 

Section 5.3.2.1 described the pre-processing steps. These are designed to ensure 

that a self-organising map wil l only be used if there is the potential to form clusters, 

i.e. the hypothesis list is big enough with a sufficient number of different concepts. 

To use the list F with a self-organising map, it must first be turned into a vector 

representation. A coding scheme must be devised whereby different concepts can 

be represented as vectors without implying any spatial relationship between them in 
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a single dimension. It is not possible (or sensible) to represent Read as 1, Print as 2, 

and Update as 3 in the same dimension, since the ordering relation on integers does 

not hold for concepts. The solution to this problem arises from SOM work in 

natural language engineering and document classification. Both [MERK97] and 

[HONK97] suggest the use of binary vector components to represent categorical 

data such as the hypotheses in HB-CA. Honkela notes that with large numbers of 

categories the dimensionality of the vectors would be extremely high [HONK97]. 

This is not expected to be a problem for HB-CA because the knowledge base is 

reasonably small. Using binary vector components the concepts Read, Print, and 

Update, would be placed in different dimensions. A value of 1 in the appropriate 

dimension would be used to signify the presence of a hypothesis for that concept, 0 

would be used otherwise. Given the hypothesis list: 

Read, Read, Print, Read, Update, Read 

The vector representation would be: 

Read Print Update 

1 0 0 
1 0 0 
0 1 0 
1 0 0 
0 0 1 
1 0 0 

Whilst this would be sufficient input for a self-organising map, HB-CA requires the 

addition of a further dimension. The data presented above may result in clustering 

of similar concepts on the SOM. However, this would be meaningless to HB-CA 

since the map would simply create three clusters, one for each concept. The 

additional vector component is a sequence number to preserve the order of the 

hypotheses. This creates a spatial relationship between them, ensuring that clusters 

wil l form where the bulk of local evidence for a particular concept occurs (locality is 

defined in terms of sequence number). 
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The final vector representation would be: 

Seq. Read Print Update 

1 1 0 0 
2 1 0 0 
3 0 ^1 0 
4 1 0 0 
5 0 0 1 
6 1 0 0 

The action concepts in F are processed in this manner for use with a SOM. 

Having established the data encoding, the map itself must be defined. The 

documentation for the SOM ToolBox (an implementation of SOM algorithms for 

Matlab, provided by Kohonen's group) suggests that the number of output neurons 

should be as large as possible [SOMTOO]. For smooth mapping and visual 

inspection of the output this would be ideal, as clusters would be clearly visible and 

the mapping could be subtle. The task of the SOM in HB-CA is to cluster 

hypotheses to enable automatic inspection of the output. Consequently, the number 

of output neurons should be no more than necessary. This creates a coarser 

granularity in the output space than might be used for visually inspected maps, but 

forces hypotheses into one of a few groups thus providing sufficient vector density 

at each neuron for it to be recognised as a cluster. The literature on SOMs does not 

indicate the widespread use or existence of an algorithmic method to determine the 

optimal size or shape of a map before training; indeed research is devoted to 

methods for growing the map to fit the input data during training (see [KOH097]). 

HB-CA addresses the map-sizing problem during the pre-processing phase 

described in section 5.3.2.1, where the maximum number of clusters is determined. 

Assuming a perfectly clustered input list: 

Read, Read, Read, Print, Print, Print, Update, Update, Update 

and a minimum vector density per cluster of 3, the maximum number of achievable 

clusters is 3. If the list is less than perfectly clustered, the number of achieved 
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clusters wi l l be 3 or less since the best case (perfect clustering on input) cannot 

achieve more. Each output node in the map represents one cluster (once trained, it 

wil l trigger for several input vectors) and therefore in this example, the output layer 

would contain 3 nodes. 

A problem for this method can be illustrated by examining what might be 

considered a worst-case scenario. Assume an input list of the form: 

Read, Write, Read, Write, Read, Write, Read, Write, Read, Write 

This data is ambiguous since it could be described as having no dominant concept 

(and hence no clustering). Alternatively, it could be split in half (two output nodes), 

the first half being dominated by Read and the second by Write. With still more 

subdivision possible it is hard to say how the data should be clustered, or to 

determine a suitable size for the output layer using the analysis method suggested. 

This seems to be an intractable problem for this type of input but since such an 

even distribution of hypotheses is unlikely to occur often, the method based on 

perfect clustering is considered suitable for use in all cases. 

Having established the number of nodes in the output layer, its shape must also be 

considered. The most common shape for SOM output layers is a rectangular grid 

with either a rectangular topology (where nodes update those above, below, left, and 

right) or a hexagonal topology (where nodes are regarded as having six sides and 

update those surrounding them accordingly). For the purpose of HB-CA, the 

output layer is defined as one-dimensional with a rectangular topology. This 

ensures that the mutual attraction of like hypotheses operates in one dimension only 

on the map. In theory, a larger two-dimensional map would also work well since 

the combination of sequence number and concept would ensure that nearby and 

similar hypotheses group at the same node. Using this type would introduce 

additional problems, e.g. deciding on the length of each side of the rectangle. This 

would be particularly difficult if the number of nodes could not be formatted in 

rectangular fashion. It is tempting to visualise the hypotheses being clustered in 

sequence from left to right along the output layer although there is no reason why 

this should happen, especially with random initialisation of the SOM. It should be 
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noted that in some circumstances a SOM might not be the most efficient approach 

to clustering. An akernative, such as vector quantization, may be better for 

situations requiring a 1x2 SOM [NEUROO], but the uniformity of approach 

outweighs any potential cost saving. 

The formatted SOM can now be trained on the input vectors created from F. 

Training for HB-CA takes place in two stages as suggested in [KOH096]. The first 

stage orders the reference vectors in the map using a learning rate of 0.05, 

neighbourhood radius of 1, and neighbourhood type of bubble. Training data is 

presented 1000 times. The second stage converges the reference vectors on their 

"correct" values using the same parameters but with a learning rate of 0.02. Data is 

presented 10000 times. 

When training is complete, the map must be interpreted. As SOMs are often 

applied in data visualisation tasks, it is usual for interpretation to be performed by 

the user. This is not feasible for HB-CA since the method is fully automatic. HB-

CA interprets the SOM by passing the input data through the map once more, 

taking note of which output node triggers for a particular input vector. Vectors are 

grouped by the node that they trigger (thus forming a cluster) and are translated 

back to a hypothesis representation. The particular node triggered by an input 

vector is not inherently important; it is the association of this input vector with 

others triggering the same output node that is significant. 

The clusters must be analysed to ensure that the required minimum vector density, 

min_vd, is met. Every cluster with > minjvd vectors (termed a valid cluster) is stored 

in a list D. I f every cluster is analysed and D remains empty or has one element 

only, store this segment in the hypothesis segment list with its original boundaries 

(from segment boundary hypotheses) and begin again with the next one, since zero 

or one valid clusters have been found. 

5.3.2.4 Post-Processing 

If D has more than one element, further analysis is required. It is possible that, 

although a number of valid clusters have been found, there are some hypotheses 

participating in clusters that do not meet the required density. HB-CA takes the 
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approach of including this information in the vaHd clusters rather than ignoring it 

altogether. This ensures that all hypotheses being considered at the start of 

segmentation are still considered at the end of it. The method used to integrate 

clusters and hypotheses is naive, adopting the principle of evenly sharing these items 

between their surrounding valid clusters. This is performed according to the 

following steps: 

1) Consider the first pair of valid clusters in D, termed A and B. If they are 

adjacent, in terms of hypotheses, then begin again moving one cluster along 

such that.4„,^ = 

2) Non-adjacent valid clusters must, by definition, have intervening invalid 

clusters. Determine the number of intervening invalid clusters, z. If z is an 

even number, allocate the first z/2 invalid clusters to A, and the second 2/2 

invalid clusters to B. Move the start and end points of ̂  and B as necessary 

to include the additional clusters. If z is odd then allocate {z-l)/2 invalid 

clusters to A and B on their respective sides as for even values of z. The 

remaining central cluster is divided into its constituent hypotheses. If there 

is an even number of hypotheses, allocate them equally to A and B (as for 

clusters); otherwise allocate all but the central hypothesis in this manner. 

The remaining hypothesis is attached to the largest cluster (or B if the 

resulting clusters are the same size). 

3) Repeat from 1 until there are no more valid clusters to consider. 

This method for redistributing hypotheses among areas of strong conceptual focus 

ensures that no evidence from the hypothesis list is ignored. It can cause problems 

by producing "loose" segmentation (where a large part of the segment is irrelevant 

to the concept) and confusing the concept binding process with conflicting 

evidence. This is an area identified for further work. Despite these potential 

difficulties, in practice they do not affect the method's performance to a great 

extent. The clusters formed in D are the basis for new segments in the program. 

It is important to recall that all of the work undertaken so far in segmentation has 

been based on action-concept hypotheses only. Before beginning the concept 

binding stage, object-concept hypotheses must be reintegrated with the segments. 
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This is trivial for those segments that have not undergone any subdivision, but for 

those that have been analysed using the SOM, object-concept hypotheses must be 

distributed fairly among the new segments. The approach taken is similar to that 

used above for allocating invalid clusters. 

1) Recall that D is a list of clusters returned from the SOM where invalid 

clusters have been integrated. 

2) Move the start of the first element of D to the start-boundary hypothesis for 

the original segment being considered. Move the end of the last element of 

D to the end-boundary hypothesis for the original segment being 

considered. This captures those object-concept hypotheses occurring 

before the first, and after the last valid cluster. 

3) Reintegrate object-concept hypotheses from the hypothesis list that fall 

within the boundaries of clusters in D. This can be accomplished without 

difficulty, as it is clear to which cluster the objects belong. Object-concept 

hypotheses that do not fall within such boundaries are redistributed using 

the method in 4. 

4) Work pair-wise through the clusters in Z), analysing object-concept 

hypotheses in the hypothesis list that fall between the end of the first, and 

start of the second cluster in each pair. Distribute any intervening object-

concept hypotheses evenly between their surrounding clusters in the manner 

described above for redistributing invalid clusters. When an odd hypothesis 

remains, attach it to the largest cluster, or the second of the pair if the 

neighbouring clusters are the same size. 

In similar way to integrating invalid clusters, this process ensures that no evidence is 

lost during the segmentation process. The result of this analysis should be a list in 

D of adjacent segments with no intervening hypotheses, beginning at the first 

hypothesis of the original segment before subdivision, and ending at the last 

hypothesis of that segment. The new segments in D are now stored in the 

hypothesis segment list instead of the original segment. Repeat the whole process 

for the remaining segments. 
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The result of this process is the hypothesis segment list; a list containing all of the 

hypotheses from the original hypothesis list, divided into segments. 

5.4 Characteristics of Segmentation 
This section compares the characteristics of the segmentation methods used by 

IRENE and DM-TAO with that used in HB-CA. The specific comparison criteria 

are the clustering method, and the data used. 

HB-CA's clustering method uses structural information and self-organising maps to 

find areas of strong conceptual focus. The data for this is the hypothesis 

representation generated by the first stage, with clustering taking place using 

concepts. 

IRENE does not perform clustering in the same sense as HB-CA. This is because 

it finds domain concepts with very specific properties using the relationships stored 

in the knowledge base. As there is no discussion of clustering techniques in 

[KARA92], further comparison cannot be made. 

The literature on DM-TAO is vague when discussing its clustering methods but it 

appears to use syntactic features in the program to derive clusters based on feature 

similarity [BIGG93], [BIGG94]. 

Table 7 summarises these differences: 

HB-CA DM-TAO DM-TAO DM-TAO 
(Conceptual (Conceptual (Identification) 

grep) Highlights) 

I R E N E 

Chistering 
Method 

Self-
Organising 

Map 
Feature Extractors Unspecified 

Clustering 
Data 
Used 

Hypotheses Syntactic Features Unspecified 

Table 7: Characteristics of Concept Assignment Methods 
Segmentation 
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5.4.1 Discussion 
It is difficult to discuss the relative merits of the approaches with the small amount 

of information available on IRENE and DM-TAO. As mentioned in section 5.3.2, 

the hypothesis approach adopted by HB-CA prevents isolated indicators from being 

ignored, and ensures that in such situations, the segment includes all relevant lines 

of source code. Using hypotheses should also reduce the cost of modifying HB-CA 

for additional languages, as the largest changes would need to be made in the 

simplest stage: hypothesis generation. DM-TAO appears to be largely aimed at 

discovering clusters of data declarations and its syntactic approach lends itself 

readily to this task. It is worth noting that whereas HB-CA explicitly segments 

before binding concepts, the other methods do not make such a clear distinction 

between the phases. 

5,5 Example of Segmentation 
This section demonstrates the operation of the methods described in this chapter 

applied to the example presented in Chapter 3. Chapter 4 used an extract from the 

example but the complete program fragment is used henceforth. 

For brevity, the initial hypothesis list is shown in Figure 28 without ancillary-

information such as line and character position. The letter before the concept name 

represents an (A)ction or an (O)bject. 

A:Read, 0:APSRecord, SEGSTART, A:Read, 0:APSRecord, 0:Record, 
0:APSRecord, 0:APSRecqrd, 0:Record, 0:APSRecord, 0:Record, 
0:APSRecord, SEGEND, A:Write, O:APSRecord, SEGSTART, A:Write, 
0:APSRecord, 0:Record, 0:APSRecord, 0:Record, 0:APSRecord, 
SEGEND, A : P r i n t , SEGSTART, A : P r i n t , 0:Heading, A : P r i n t , 
O:Heading, A : P r i n t , A : P r i n t , SEGEND, A : P r i n t , SEGSTART, 
A : P r i n t , SEGEND 

Figure 28: Hypothesis List before Segmentation 

The first action in segmentation is to move the segment boundary hypotheses to the 

correct place. The result is shown in Figure 29 with the relocated hypotheses in red. 

85 



SEGSTART, A:Read, O:APSRecord, A:Read, O:APSRecord, 0:Record, 
0:APSRecord, O:APSRecord, O:Record, O:APSRecord, O:Record, 
0:APSRecord, SEGEND, SEGSTART, A:Write, 0:APSRecord, A:Write, 
O:APSRecord, O:Record, 0:APSRecord, O:Record, 0:APSRecord, 
SEGEND, SEGSTART, A:Print, A: Print, O:Heading, A: Print, 
O:Heading, A:Print, A:Print, SEGEND, SEGSTART, A: Print, 
A:Print, SEGEND 

Figure 29: Hypothesis list after Segment Boundary 
Correction 

The next stage is pre-processing, described in section 5.3.2.1. Since this section 

operates only on action concepts, the object concepts are hidden to improve the 

overall clarity (see Figure 30). 

SEGSTART, A:Read, A:Read, SEGEND, SEGSTART, A:Write, A:Write, 
SEGEND, SEGSTART, A:Print, A:Print, A: Print, A:Print, A:Print, 
SEGEND, SEGSTART, A:Print, A:Print, SEGEND 

Figure 30: Hypothesis List before Pre-Processing 

The steps of pre-processing are undertaken and the results are summarised below. 

Normally each segment would be treated individually but for brevity they are 

considered together in this example. 

1) For each action concept hypothesis in the segment, find the concept's most 

general form by recursively traversing the specialisation relationship in the 

library. Store the resulting concept in a list F. 

In this case, all concepts are already in their general form so the list is unaffected 

(see Figure 31). 

SEGSTART, A:Read, A:Read, SEGEND, SEGSTART, A:Write, A:Write, 
SEGEND, SEGSTART, A:Print, A:Print, A:Print, A:Print, A:Print, 
SEGEND, SEGSTART, A:Print, A:Print, SEGEND 

Figure 31: Hypothesis List after Pre-Processing 
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2) I f the number of elements in F is greater than some user-specified 

recognition threshold, recjhresh^ then continue; otherwise rejea the s^ment 

and repeat from 1 for the next segment. 

Let rec_thresh = 1. Every segment in the above list has more than one aaion 

concept and hence none are rejected. The list is unchanged (see Figure 32). 

SEGSTART, A:Read, A:Read, SEGEND, SEGSTART, A:Write, A:Write, 
SEGEND, SEGSTART, A:Print, A:Print, A:Print, A:Print, A:Print, 
SEGEND, SEGSTART, A:Print, A:Print, SEGEND 

Figure 32: Hypothesis list after Checking Threshold 

3) With a user-specified minimum density for a concept cluster, minjvd, 

determine the number of potential clusters in Fhy dividing the number of 

elements of i^by minjud. If the result > 2 then continue, otherwise store this 

segment in the hypothesis segment list using its initial segment boundaries 

and repeat from 1 for the next segment. 

Let minjud = 3. None of the segments has six or more action concepts and so all 

are stored using their boundary hypotheses. The final pre-processing step is not 

relevant to this example. Examples of programs segmented by a SOM may be 

found in Chapter 8. 

The resulting segment list is unchanged from the step before pre-processing, and 

can be used for concept binding. The list is shown in Figure 33. 

SEGSTART, A:Read, 0:APSRecord, A:Read, 0:APSRecord, O:Record, 
0:APSRecord, 0:APSRecord, O:Record, 0:APSRecord, O:Record, 
0:APSRecord, SEGEND, SK3START, A:Write, OrAPSRecord, A:Write, 
0:APSRecord, O: Record, 0:APSRecord, O: Record, 0:,APSRecord, 
SEGEND, SEGSTART, A:Print, A:Print, O:Heading, A:Print, 
O:Heading, A:Print, A:Print, SEGEND, SEGSTART, A:Print, 
A:Print, SEGEND 

Figure 33: Hypothesis List after Checking Cluster Potential 
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5.6 Summary 
This chapter has presented the method by which HB-CA segments the hypothesis 

list. It has been placed in the context of the comprehension activity framework and 

the formal model has been extended to capture some appropriate representations. 

A comparison has been made with IRENE and DM-TAO and the relative merits of 

each method discussed. The result of applying the segmentation method to the 

example source code from Chapter 3 is shown. 

Chapter 6 presents the methods used for binding concepts in HB-CA. The 

underlying principles are discussed and a solution based on semantic network 

activation described. 



Chapter 6 

Concept Binding 

6.1 Introduction 
Chapter 5 presented the second stage of HB-CA, which transforms the hypothesis 

list (generated in the first stage) into a series of segments. The position and output 

of the stage in the comprehension activity framework were shown and the formal 

model extended to capture its representations. 

This chapter describes the final stage of HB-CA: concept binding. This is the 

second major research problem addressed by HB-CA and involves determining the 

appropriate concept for a segment. HB-CA decides on a concept binding using the 

weight of source-code evidence and the relationships in the library. The position of 

concept binding in the comprehension activity framework is presented, and the 

formal model extended and summarised. 

6.2 The Concept Binding Problem 
Concept binding is the problem of deciding which concept from the knowledge 

base should be assigned to a particular segment, using the available evidence. This 

requires a method that can rank possible concepts by the strength of evidence for 

them. There are various ways that this can be performed. The simplest approach is 

to count the number of hypotheses for each concept and pick the one with the 

most evidence. This forms the basic idea underlying several advanced approaches 

investigated during the development of HB-CA. 

The basic idea suffers from being unable to exploit any of the relationships between 

concepts. This makes sensible disambiguation of equally high-scoring concepts 

difficult. To alleviate this problem, an early version of HB-CA used the principle of 

secondary hypothesis, where the existence of one concept signified the existence of 

another. The signified concept achieved an additional but lower score, and further 

secondary hypotheses were generated from it. The process was repeated until a 



required "depth" had been reached. In principle, this approach seems sensible but 

in practice, it was found to create confusion and the computational cost was high. 

The method was extended to use a specialisation relationship like that in the current 

knowledge base but this did not improve performance significantly. Another 

disadvantage of these approaches is that there is no differentiation between objects 

and actions, preventing actions from being favoured over objects. 

The development of the knowledge base structure described in Chapter 3, allowed 

the concept binding method to be redefined to take advantage of the relationships 

and concept types available. 

The input to the concept binding stage is the hypothesis segment list (HSL) 

generated by the method described in the previous chapter. The output of concept 

binding is a set of labelled segments. 

Concept Binding: HSL {Labelled Segment} (26) 

A labelled segment is defined as a segment attached to a concept label. The concept 

label can be the name of a single concept, or the combined names of concepts in a 

composite. 

Labelled Segment: (5 : Segment, n : String) (27) 

The set of labelled segments resulting from concept binding has the same type as 

the desired target representation defined in Chapter 2. 

The position of concept binding within the comprehension activity framework is 

shown by the white box in Figure 34. 
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Figure 34: Comprehension Activity Framework Showing the 
Position of Concept Binding 

6.3 HB-CA Concept Binding 
PIB-CA's concept binding approach uses the basic scoring method described in the 

previous section as its foundation. It exploits knowledge base relationships and 

employs a number of disambiguation rules for equally high-scoring concepts. 

HB-CA concept binding takes the output of the segmentation stage (the hypothesis 

segment list), scores it, and disambiguates the results to produce a set of labelled 

segments. The scoring method is introduced in section 6.3.1 in terms of a semantic 

network. It is then presented again in algorithmic form, with the disambiguation 

rules shown in seaion 6.3.2. 
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6.3.1 Semantic Network "Activation" 
Regarding the knowledge base as a semantic network means that the process of 

assessing evidence can be seen as "activating" parts of the network. The concept 

with the highest "activation" is considered the winner. The network is "activated" 

according to the following rules: 

• Score 1 for each hypothesised concept. 

• Score 1 for the appropriate side of every composite in which this concept 

participates. 

• Score 1 for each more general version of this concept, and the appropriate 

side of any composite in which the more general version participates. 

These rules are designed to bias the scoring towards certain types of concept. The 

basic principle of winning by weight of evidence is captured in the first rule where 

hypotheses for a concept increase its score. The second rule ensures that if 

composites exist (and there is object evidence), they wil l win in preference to single 

concepts. The principle is that a composite provides a more informative label for a 

segment and should win if possible. Giving scores to more general versions of the 

hypothesised concept (the third rule) has two purposes: 

1) To ensure a logical approach to the evidence. If MasterFile has been 

hypothesised, it is reasonable to say that there is evidence of a File. 

2) To manage conflicting evidence. If a general concept has two specialised 

versions, each with the same score, it is impossible to tell which should win. 

Scoring the general concept in addition to its specialised versions ensures 

that it wi l l always score the same or higher than either one. If there is no 

conflict then the direct evidence for MasterFile should override the indirect 

evidence for File. Applying this prioritisation can be left to the user's 

discretion. 

The following example illustrates the application of these rules to a simple semantic 

network. 
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6.3.1.1 Example of Semantic Network "Activation" 

Consider the following hypothesis list: 

Print, Read, Record, MasterFile, Read 

and the semantic network shown in Figure 35 (indicators are not included). 

Key 

Indicates 

Specialisation • 
Composition 

Concept O 
Indicator • 
Composite Concept 

Print 

Read ^ = 

Pom Record 

Read FUe 

^^MasterFile 

Figure 35: Semantic Network before Scoring 

The following series of figures demonstrates the scoring process and the effea this 

has on the semantic network. Higher scores are indicated by a larger 3D effect on a 

particular node. Scores for composite nodes are the sum of the action and objea 

concept scores. Figure 36 shows the effect of scoring the first hypothesis. 
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Pnnt 1 Record 
Record"^^ 

<;;^ Read ^ ^ j j l ir^Urn ^ ^ F^e 

^^MasterFile 

Figure 36: Semantic Network after Scoring Print 

The Print node and the composite in which it participates both gain one point. This 

is repeated for Read in Figure 37. 

Print Record Print I Record 

^^MasterFile 

Figure 37: Semantic N ^ o r k after Scoring Read 

Figure 38 shows the network after scoring the Record concept. 
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Print • Print Recoid Record 

Read ^ Read ^ 4 y 

<;;^MasterFile 

Figure 38: Semantic Network after Scoring Record 

Scoring the MasterFile concept has a more significant impact on the network. It is a 

specialised version of the File concept and consequently this gains a point for being 

a more general form of the hypothesised concept. Since File now has a point, the 

composite in which it participates also requires one. This is depiaed in Figure 39. 

Print s ^ i P r i n t Record Record 

Read ^ Read FUe ^ 

MasterFile 

Figure 39: Semantic Network after Scoring MasterFile 

The final Read concept is now scored as shown in Figure 40. 
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Print I Record 

Read i File ^ 

Record 

FUe 

MasterFile 

Figure 40: Semantic Network after Scoring Read 

The resulting activation levels show a clear winner in Read:File. 

6.3.2 Concept Binding Algorithm 

The semantic network scoring rules provide a useful way of understanding the 

general principles of the scoring process. Despite including reasonable bias in the 

scoring model, they do not address situations where several equally high scoring 

winners exist; neither do they provide a systematic process. These weaknesses are 

addressed in this section and the exact algorithm used for concept binding in 

HB-CA is presented. 

Conclusions play a central role in the algorithmic presentation of HB-CA concept 

binding. The method generates possible conclusions from the current segment's 

action-concept hypotheses and the library. These conclusions are then reinforced 

by the segment's object-concept hypotheses, and various rules are applied to selea a 

winner from the result. Action concepts are considered before objects, to reflect 

the emphasis on determining what is taking place in the program, rather than which 

objects are involved in the action. Action conclusions can exist without a 

composite object but the reverse is not true because of HB-CA's aim of 

determining computational intent. 
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Conclusions can be composite or non-composite in a similar way to hypotheses. 

The only difference is that conclusions have an associated score, with composite 

conclusions having separate action and object scores. 

6.3.2.1 Conclusion Generation 

The first stage of concept binding is to generate possible conclusions from the 

action-concept hypotheses. This is undertaken according to the following method: 

1) Let C be an empty list of conclusions. 

2) For the current segment, select all action concept hypotheses and place in a 

. list AH. 

3) For every element of AH: 

a. Let ac be the current element of AH 

b. Find all object concepts within the library that participate in a 

composite concept with ac. Store in a list OC removing duplicates. 

c. Find all specialisations of all elements of OC and add them to OQ 

removing duplicates. 

d. If a non-composite conclusion for ac exists in C, increase its score by 

1, otherwise, store a non-composite conclusion for ac and set its 

score to 1. 

e. Generate composite conclusions in C by composing ac with every 

member of OCin turn. If a particular composite conclusion already 

exists, increase its action score by 1; otherwise, store the composite 

conclusion with its action score set to 1, and its object score set to 0. 

The result of this stage is a list C of composite and non-composite conclusions. 
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6.3.2.2 Conclusion Completion and Reinforcement 

Object-concept hypotheses are now employed to reinforce and complete composite 

conclusions. 

1) For the current segment, select all object-concept hypotheses and place in a 

list OH. 

2) For every element of OH: 

a. Let oc be the current element of OH. 

b. Step through Cto find the first (or next) composite conclusion, cc. 

c. If the object concept assigned to cc is oc then increase the object 

score for cc by 1. 

d. Repeat from b until no more composites can be found in C. 

e. If oc is not a primary concept, step back one level along the 

specialisation relationship and repeat from b, starting with the first 

element of C. 

The result of this stage is the list C with the same non-composite conclusions as 

before, but with some composite conclusions now having non-zero scores for both 

action and object concepts. 

6.3.2.3 Disambiguation 

This stage applies a number of rules to determine the dominant concept in the 

current segment. Before beginning to apply them, the list C is processed to remove 

incomplete conclusions. These are composite conclusions with zero object concept 

score, i.e. there was no evidence for the pairing of the particular action and object. 

Having removed incomplete conclusions, let hs be the highest score achieved by any 

conclusion in C. The score wi l l be either the non-composite conclusion score or 

the sum of the action and object scores for composite conclusions. 
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The following steps are now undertaken: 

1) Find the conclusions in C that score hs using the non-composite conclusion 

scores, or the sum of the action and object scores for composite 

conclusions. Store these conclusions in a list W. 

2) If U^has more than one element, remove any conclusions from l^^that are 

specialisations of other conclusions in W. This leaves only the most general* 

forms of composite conclusions, and all non-composite conclusions. 

3) If still has more than one element, favour composite conclusions over 

non-composite ones. Remove non-composite conclusions from U^if there 

are composite conclusions in W. 

4) If IFstill has more than one element, find the highest score achieved by the 

concepts of non-composite conclusions, and the action components of 

composite conclusions. Remove any non-composite conclusions from W 

that do not score at this level, and any composite conclusions whose action 

score does not reach this level. 

5) If W still has more than one element, determine whether the action 

concepts of the remaining conclusions are the same. If so, then select the 

non-composite concept (which may or may not be in W) corresponding to 

the action concepts of the conclusions in W. Remove all elements of W 

except for this non-composite conclusion. Its score should be increased by 

the number of elements in the list when rule 5 was invoked. If the action 

concepts in the remaining conclusions are not the same, the decision must 

be arbitrary. Remove all but the first conclusion in W. 

The conclusion remaining in Wis declared the winner. 

6.3.2.4 Post-Disambiguation Processing 

The user has the option of forcing the most specialised form of the winning 

concept to be selected (assuming the winner is composite). Note that 

specialisations can be selected only if there is evidence for them. This is undertaken 

by setting the forcedjpecialisation parameter to True. If this is the case, all composite 

conclusions in C that have the same action and a more specialised form of the 

object concept of the winning composite, are placed in a list Q. The highest score 
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in Q is found and if only one conclusion gains this score, the winner is replaced by 

the more specific version. If more than one conclusion gains this score, the 

evidence for a specialised version is ambiguous and the original winner is not 

replaced. 

Finally, i f the winner is composite and its combined action and object scores > 

rec_thresh x 2, bind the conclusion to this segment, thus labelling it. If the winner is 

not composite, bind the conclusion if its score > rec_thresh. If neither condition 

holds, the current segment should be rejected. The difference in threshold between 

the two types of conclusion forces the evidence required for a non-composite 

conclusion to be greater than that for a composite conclusion, as the spread of 

evidence in the composite is regarded as increasing a conclusion's plausibility. 

6.3.2.5 Output 

The resulting concept label is attached to the current segment and then can be 

displayed in an appropriate format. The extent of the segment in terms of source 

code lines can be traced using the hypothesis list and the code position of the 

indicators that created the first and last hypotheses in the segment. 

The concept binding process is carried out for each segment. 

6.3.2.6 Discussion 

The rationale for the rules described in section 6.3.2.3 is explained here. Generally, 

the aim is to ensure fair competition between the highest scoring conclusions, whilst 

maintaining the greatest possible level of detail in the result. 

The removal of incomplete conclusions is designed to ensure that only those with 

evidence for all of their parts are considered. This is not a problem for non-

composite conclusions since they cannot be created in the list without evidence. By 

generating all composites from them, a number of objects may be suggested for use 

in conclusions without any direct evidence of their existence. 
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Rule 1 ensures that only the strongest conclusions are considered by the later rules. 

Rule 2 aims to ensure that a fair competition is taking place between the 

conclusions. Specialised versions of a conclusion should not compete with more 

general versions since they are indicating the same concept at a different level of 

abstraction. The specialisation can be removed safely as it can be retrieved later if 

the general concept wins. 

Rule 3 reflects the bias built into the scoring algorithm itself, favouring composites 

over non-composites. The assumption underlying this rule is that a composite 

conclusion can provide more information than a non-composite one. If they have 

scored the same, the evidence is more widely distributed for the composite (since 

the sum of the object and action scores is the same as the score for the non-

composite). The larger spread of evidence should ensure a more plausible concept 

assignment, as both actions and objects indicate the concept. The object evidence is 

used to "validate" the action conclusion and the probable relationship between 

them increases the plausibility. 

Rule 4 favours actions over objects by considering the scores of non-composites 

and only the action portion of composites. Thus, higher scoring actions are given 

priority over lower scoring actions with strong object evidence. This reflects HB-

CA's bias towards actions. 

Rule 5 checks whether the remaining conclusions are based on the same root action 

e.g. Read:File, Read:Record, Read:Disk. If this is the case, the evidence for the 

objects is ambiguous (they must all have the same score to have survived the 

application of rule 4) and hence the action is left on its own. Note that the single 

action may no longer exist in the highest scoring conclusion list, having been 

removed by rule 3. If this is the case, then it is reintroduced to replace the 

ambiguous composites and is declared the winner. Its score is increased to take 

account of the multiple conclusions it replaces, and to increase the chance that it 

wi l l pass the recognition threshold. 

If applying all the rules fails to leave only one winner, an arbitrary decision is made. 
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The disambiguation ability of these rules is discussed further in section 8.4. 

6.4 Characteristics of Concept Binding 
This section compares the characteristics of the concept binding methods used by 

IRENE and DM-TAO with that of HB-CA. The specific criteria are: evidence 

used, assessment method, and explanatory power. 

HB-CA uses the evidence provided by the hypothesis segment list in the form of 

concept hypotheses. The evidence is assessed by scoring each possible conclusion 

from the library based on the contents of the HSL. Ambiguity is resolved by the 

application of various rules. The decision made by HB-CA can be explained to a 

reasonable level of detail since each rule has a particular purpose, hence conclusions 

can be rejected for a clear reason. 

IRENE largely uses evidence from the domain model to bind concepts. A 

candidate concept is selected and its correspondence to a data name established. 

The parse tree is searched for possible implementations of related items based on 

their position in the rule and program syntax, e.g. if tax has been related to TAX in 

the program and a rule is .defined as "taxablejalary - netjalary derives tax'\ the parse 

tree might be searched for instances of SUBTRACT y FROM X GIVING TAX . A l l other 

rules deriving tax also would be sought. Assume the statement SUBTRACT NET FROM 

GROSS G I V I N G TAX was found. If considered plausible enough, the two tokens, NET, 

and GROSS, would be bound to netjalary and taxablejalary respectively. A similar but 

more detailed example is shown in [KARA92]. Plausibility is established by 

summing the weights of the various rules triggered by a particular candidate concept 

implementation. Lexical matching rules carry a lower weight than domain rules 

owing to IRENE'S emphasis on domain knowledge [KARA92]. The system has 

good explanatory power and is capable of rewriting the rule-triggering process in 

English, substituting variable names where appropriate. 

DM-TAO uses evidence direct from feature extractors. This is assessed by the 

semantic connectionist network that forms the heart of the system. Extracted 

features trigger nodes in the input layer of the network. The signals generated in 

this layer propagate through the network triggering other types of node. This 
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continues until concept nodes are triggered and their output level is higher than a 

given threshold. The nature of this type of network means that DM-TAO cannot 

easily explain the reasons behind its concept binding. 

The approaches to concept binding are summarised in Table 8. 

HB-CA D M - T A O D M - T A O D M - T A O IRENE 
(Conceptual (Conceptual (Identification) 

grep) Highlights) 
Concept 
Binding 
Evidence Hypotheses Syntactic Features 

Syntactic 
Features/ 
Domain 
Model 

Concept 
Binding 
Method 

Scored Weight 
of Evidence 

with 
Disambiguation 

Rules 

Connectionist Network Trig ̂ ering and 

Plausibility 
Measure 

using 

Scored Weight 
of Evidence 

with 
Disambiguation 

Rules 

Propagation Weighted 
Matching 

Rules 
Explanatory 
Power Medium Low High 

Table 8: Characteristics of Concept Assignment Methods 
Concept Binding 

6.4.1 Discussion 
The concept binding methods discussed here are linked strongly to those used for 

segmentation. This is not surprising since these two stages of concept assignment 

are crucial to the success of any particular approach and must work well together. 

The systems that use rules in their inference (HB-CA and IRENE) are better at 

explaining their actions. This is balanced by the fact that DM-TAO has a finer-

grained inference mechanism that is capable of being updated automatically. The 

evidence used by the systems for concept binding is largely the same as that used 

throughout each one for other purposes. The exception is IRENE, which uses 

syntactic features to a greater extent in concept binding than in other parts of its 

operation. 
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6.5 Example of Concept Binding 
This section presents the algorithms described in this chapter, applied to the 

example code and semantic network shown in Chapter 3. The hypothesis segment 

list produced in Chapter 5 is used as the input to this stage. This is shown s^ain in 

Figure 41. 

SEGSTART, A:Read, 0:APSRecord, A:Read, 0:APSRecord, 0:Record, 
0:APSRecord, O:APSRecord, O:Record, O:APSRecord, 0:Record, 
0:APSRecord, SEGEND, SEGSTART, A:Write, O:APSRecord, A:Write, 
0:APSRecord, O:Record, 0:APSRecord, O:Record, 0: APSRecord, 
SEGEND, SEGSTART, A:Print, A: Print, O:Heading, A: Print, 
O:Heading, A:Print, A:Print, SEGEND, SEGSTART, A: Print, 
A:Print, SEGEND 

Figure 41: Hypothesis Segment List for Concept Binding 

The list shows four segments for concept binding and the first contains the 

following hypotheses: 

SEGSTART, A:Read, 0:APSRecord, A:Read, O:APSRecord, O:Record, 
O:APSRecord, O:APSRecord, 0:Record, O:APSRecord, 0:Record, 
O:APSRecord, SEGEND 

These hypotheses are used in the worked example below. 

Concept binding begins with conclusion generation. Action-concept hypotheses are 

considered first, beginning with Read. This gains a score of 1 for its direa evidence. 

Composite conclusions based on Read are now generated. In this case there are 

two: Read:Record, and Read:APSRecord. These gain an action score of 1. The 

conclusion list after scoring the first action-concept hypothesis is: 

Readl 
Read:Record 1:0 
Read:APSRecord 1:0 

The remaining action-concept hypotheses are now addressed in the same way (m 

this case there is only one, another Read hypothesis). The conclusion list is now: 

Read 2 
Read:Record 2:0 
Read:APSRecord 2:0 
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As there are no more action-concept hypotheses, the object-concept hypotheses are 

considered to reinforce and complete the composite conclusions. The first is 

APSRecord. This completes the last conclusion in the list, but since it is a 

specialisation of Record, ReadiRecord wil l also be completed. The list is now: 

Read 2 
Read:Record 2:1 
Read:APSRecord 2:1 

The next hypothesis is also APSRecord leaving the list as: 

Read 2 

Read:Record 2:2 
Read:APSRecord 2:2 

This is followed by a Record hypothesis. Since this is already primary, it only 

reinforces those conclusions in which it participates. 

Read 2 
Read:Record 2:3 
Read:APSRecord 2:2 

The remaining object-concept hypotheses are processed, leaving the list in its final 

state of: 

Read 2 
Read:Record 2:9 
Read:APSRecord 2:4 

There are no incomplete conclusions to remove so the disambiguation stage 

commences. The highest scoring conclusion is Read:Record and since it is the only 

one to score 11 in total, it is declared the winner without the need to invoke further 

disambiguation rules. 
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If the user requires the most specific version of conclusions to be found, 

ReadrRecord would be replaced by Read:APSRecord. 

Assuming recjthresh to be the same as in Chapter 5 (i.e. equal to 1), either conclusion 

would be acceptable for concept binding. 

Repeating this process for each segment in the HSL yields the following results 

(assuming the most specific versions are required): 

Segment 1: Read:APSRecord 
Segment 2: Write:APSRecord 
Segment 3: Print:Heading 
Segment 4: Print 

These results appear to be correct with respect to the original source code (see 

Figure 42). 
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GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 
GB21 

COO-READ-APS SECTION. 
COO-000. 
* READ APS MASTER FILE 

CALL 'GBAAYOX' USING APS-RECORD-IN. 
I F APS-EOF = END-OF-FILE 

MOVE HIGH-VALUES TO APS-RECORD-IN 
GO TO COO-999. 

MOVE ' l ' TO W-GBCM0133-2. 
CALL 'GBCMOISS' USING APS-RECORD-IN W-GBCM0133-2, 

COO-999. 
EXIT. 
SKIP3 

ClO-WRITE-APS SECTION. 
" WRITE APS MASTER FILE 

2' TO W-GBCM0133-2. 
'GBCM0133' USING APS-RECORD-OUT W-GBCM0133-
GBAAZOX' USING APS-RECORD-OUT. 

SECTION. 

MOVE 
CALL 
CALL 

ClO-999. 
EXIT. 
SKIP3 

C20-PRINT 
C20-000. 
* PRINT PECULIAR RECORDS TO 

IF A-LINENO LESS THAN 25 
GO TO C20-010. 

ADD 1 TO A-PAGENO. 
MOVE A-PAGENO TO HI-PAGE. 
MOVE C-1 TO P-CC. 
MOVE HI-HEADLINE TO P-LL. 
PERFORM SO0-PRINT. 

MOVE WS-2 TO P-CC. 
MOVE HI-HEADLINE TO P-LL. 
PERFORM SOO-PRINT. 
MOVE 0 TO A-LINENO. 

C20-010. 
MOVE WS-2 TO P-CC. 
MOVE GBAIAOlO TO PI-KEY. 
MOVE Pl-DATALINE TO P-LL. 

PERFORM SOO-PRINT. 
MOVE SPACES TO P-LL. 
ADD 2 TO A-LINENO. 

C20-999. 
EXIT. 
EJECT 

SOO-PRINT SECTION. 
SOO-000. 
* PRINTS A LINE 

BE MANUALLY CHECKED 

CALL 
SOO-999. 

EXIT. 

Read:APSRecord 

PRINT' USING P-PRINTLINE. 

Write:APSRecord Print:Heading 

0193 
0194 
0195 
0196 
0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
0244 
0245 
0246 
0247 

Print 

Figure 42: Example Source Code Highlighted to Indicate 
Labelled Segments 
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6.6 Summary of Formal Model 
A formal model describing the various representations used by HB-CA has been 

developed throughout this thesis. This section collects all the definitions to 

summarise the model in a coherent manner. 

Chapter 2 introduced the formal model, characterising HB-CA as a way of mapping 

a source representation to a target representation (definition 8). 

Source : {x : Line} (1) 

Line : ({y : Lexeme}, seqnum : Integer) (2) 

Lexeme : (start: Integer, end: Integer, token : String) | start < end (3) 

T R : {(x : Segment, y : String)} (4) 

Concept: String (5) 

cp : (Line, Line) Boolean 
(6) 

i^{{a,b),{c,d)) = b<d 

Segment: (start: Line, end : Line) | start (p end (7) 

P : Source ^ T R (8) 

Chapter 3 extended the model by introducing definitions of the knowledge base 

(definition 18) and its constituent parts. 

Class : String 
(9) 

\fX: Class,XG { "Identifier" "Keyword", "Comment" "SegmentBoundary"} 

Indicator : (n : String, c : Class, d : String) (10) 

Level: String 

V X : Level, X e {"Primary","Secondary"} 

Type : String 

yy-.TypcYe {"Action","Object"} 

Concept: (n : String, / : Level, t: Type) (13) 

Indicates : {(p : Indicator, q : Concept)} (14) 
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C C R :{r\r:{(a: Concept, b : Concept)}} (15) 

Specialisation: {((^,^,c):Concept, (d,eJ):Concept) | e = "Secondary"} (16) 

Composition:{((<^,^,c):Concept, (d,eJ)'.Concept) \ b= "Primary", 
(17) 

e= "Primary", c= "Action", f= "Object"} 

KB : ({x : Concept}, {i : Indicator}, {(p : Indicator, q : ^̂ ĝ  

Concept)}, {r\r : {(a : Concept, b : Concept)}}) 

Recall that definition 13 extends definition 5. 

With the key representations defined, Chapter 4 presented the first stage of the HB-

CA process: hypothesis generation. This was defined as a function, mapping source 

to a list of hypotheses (definition 21). 

Hypothesis : (i: Indicator, c : Concept, / : Lexeme) (19) 

Hypothesis List: {h : Hypothesis} (20) 

H G : Source Hypothesis List (21) 

Recall that the knowledge base has been deliberately omitted from the function 

definitions here. 

Hypotheses are generated using various matching rules. 

Match: (indicator. Lexeme) Boolean (22) 

Match((« : String, c : Class, d: String), (5 : Integer, e : Integer, t: 

String)) = d\it 

\i (String, String) Boolean (23) 

| i (d: String, t: String) = True, iid= t under conditions specified for 

active options. 
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Chapter 5 described the next stage of HB-CA: segmentation. This maps the output 

of hypothesis generation to a hypothesis segment list by breaking the hypothesis list 

into groups (definition 25). The formal representation of this is: 

H S L : {Hypothesis List} (24) 

Segmentation : Hypothesis List HSL (25) 

The final stage of HB-CA, concept binding, was presented in this chapter. It maps 

the output of segmentation to a collection of labelled segments. 

Concept Binding: HSL -> {Labelled Segment} (26) 

Labelled Segment: (s: Segment, n : String) (27) 

This concludes the summary of existing definitions. By comparing definitions 26 

and 4, it can be seen that the output of concept binding has the same type as the 

required target representation. 

Definition 8 characterised the original problem in terms of a mapping between 

source and the required target representation. By creating a composition of the 

functions that represent each part of HB-CA, it can be shown that HB-CA provides 

a solution to the original problem. 

P : Source->TR (8) 

HB-CA : Source {Labelled Segment} (28) 

HB-CA : Concept Binding o Segmentation o H G (29) 
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6.7 Summary 
This chapter has presented the final stage of HB-CA: concept binding. It has been 

placed in the context of the comprehension activity framework and formal model. 

Comparisons have been made with the concept binding methods of IRENE and 

DM-TAO, and the merits of each discussed. Applying the concept-binding 

algorithm to the hypothesis segment list shown in Chapter 5 has completed the 

worked example initiated in Chapter 3. The formal model has been summarised 

and the HB-CA process characterised as the composition of three functions, each 

representing a stage of HB-CA. 

Chapter 7 describes an implementation of HB-CA called the Hypothesis-Based 

Concept Assignment System (HB-CAS). Various issues relating to the design and 

implementation are discussed. 
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Chapter 7 

Implementation 

7.1 Introduction 
Chapter 6 presented the final stage of HB-CA: concept binding. This completed 

the description of the HB-CA method by showing the way a hypothesis segment list 

is transformed into the target representation defined in Chapter 2. The position of 

concept binding in the comprehension activity framework was shown and the 

formal model extended and summarised. Concept binding was applied to the 

worked example initiated in Chapter 3. 

This chapter discusses the implementation of HB-CA in the Hypothesis-Based 

Concept Assignment System (HB-CAS). The design of HB-CAS is presented and 

various technical issues discussed. A short evaluation of the implementation is 

presented. 

72 System Implementation 
The methods presented in the preceding chapters are embodied in the HB-CAS 

system. HB-CAS runs on the Microsoft Windows 95/98 operating system. 

7.2.1 Programming Environment 
Development was undertaken using Borland Delphi 4.0. This language was chosen 

for several reasons: 

• It supports rapid prototyping of graphical user interfaces. 

• The underlying source language (Object Pascal) is stable and well defined. 

• Database connectivity is very well supported. 

• The development environment supports easy testing and debugging. 

112 



7.2.2 System Architecture 
Figure 43 shows the architecture of PiB-CAS in terms of its modules and files. The 

diagram shows the data flow within the system but omits the options files that some 

modules possess. 
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Figure 43: Architecture of HB-CAS, Showing the Data Flow 
between Modules and Files 
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The architecture reflects the design of the HB-CA method. The sort and indicator 

recognition modules encapsulate the hypothesis generation stage, and the concept 

assignment module performs segmentation and concept binding. The design of 

HB-CAS has been influenced by a number of considerations: 

• The need to control the system easily. This has been met by using a 

control panel to monitor and manage system execution. The control panel 

validates files, sets library information, changes module options, and allows 

access to intermediate data files during execution. The control panel 

provides the user with a single interface to all parts of HB-CAS. It is 

intended for the expert user or system developer and would need 

modification if the product were to be used in other situations. It is unlikely 

that an average software maintainer would need or desire the level of 

information that can be gained from the control panel, but would be more 

interested in the results of the process. The control panel also permits easy 

expansion of the indicator recognition part of the system. Indicator 

recognition modules can be added and removed without the need to inform 

the control panel exphcitly since it detects their presence dynamically. The 

control panel also enables each module to be executed individually and the 

combination of modules can be changed. This allows different sets of a 

module's options to be used without re-executing modules preceding the 

one being tested. Figure 44 shows the control panel. 
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Figure 44: HB-CAS Control Panel 

• The need to permit swift modification of system modules. As the 

techniques within HB-CA were improved, various parts of the system 

required modification at different times. This led to a system design 

composed of a large number of stand-alone programs linked by the control 

panel. Each program takes a number of command line options and in some 

cases reads an options file. Adopting this approach meant that when a 

module was changed, it was the only program requiring recompilation, the 

rest of the system remaining unaffected. 

• The need to access intermediate representations during development 

One of the consequences of employing a separate module approach is that 

files need to be used as an intermediate data struaure. This provides the 

user with easy access to the data available between module executions. 

Using files can have an adverse effect on performance although this has not 

been particularly apparent during development and evaluation. 
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7.2.3 Library Structure and Management 
The library is stored as a Paradox 7.0 relational database constructed using the 

Database Desktop utility of Delphi 4.0. The structure of the database reflects the 

library structure described in Chapter 3. This is depicted in Figure 45. 
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Figure 45: Library Structure Implemented in Relational 
Database 

The database is managed by a small module called the Library Manager. This 

permits the addition, deletion, and modification of concepts, indicators, and the 

relationships between them. Although some validation is performed within the 

module, users often have access to the raw database tables underlying the front-end. 

If the system was released for large-scale use this would need to be rectified, 

however the current situation is acceptable for a research prototype. The Library 

Manager module is shown in Figure 46. 
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Figure 46: HB-CAS Library Manager 

The Library Manager permits concepts to be assigned to more than one "Hbrary". 

The control panel requires one "Hbrary" to be selected as active for a particular 

execution. This allows a good degree of flexibihty for the user since separate sets of 

library content for different applications can be developed from a common core of 

concepts. 

7.2.4 File Formats 
Due to the nature of the data passed between modules in the system, the file format 

requires a well-defined structure. This needs to be capable of storing multiple 

attributes about each data item, whether a hypothesis, indicator, or conclusion. The 

Microsoft Windows I N I file lends itself well to this application. Data items are 

referenced by a string enclosed in square brackets, and a series of name and value 

pairs contain the item's attributes. An example of an I N I file entry is shown in 

Figure 47. 
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[0] 
Line=25 
Pos=15 
I C l a s s = l 
Token=C10-INITIALISE 

Figure 47: Example of an INI File Entry 

Although obsolete in Windows 95/98, having been replaced by the registry, the I N I 

file is still supported in the Win32 API. Delphi provides a class wrapper for the I N I 

file in its own libraries. This provides the programmer with pre-defined routines for 

storing and retrieving information in the files using random access. The advantage 

of this approach is that no parsing code needs to be written to read the contents of 

the files, and the structure is clear enough for the developer to read the contents 

without translation. 

I N I files are limited to 64Kb in size. Although most parts of HB-CAS do not 

create files that come near the limit, the combined data from indicator recognition 

was found to reach this point occasionally. Delphi's I N I file implementation allows 

a memory-based version to be used without any size limit. This has the additional 

advantage of significantly increasing the performance of the module using it. 

7.2.5 Indicator Recognition Modules 
Each indicator recognition module extracts indicators in one of the classes 

discussed in Chapter 4. The modules operate in two stages: extraction, and 

matching. The extraction modules are written in C and are simple lexers. The basis 

for each lexer is a commercial lex/yacc package written for COBOL 85. This has 

been extended for IBM COBOL I I . The lexers extract all procedure division tokens 

falling into the appropriate indicator class, with the exception of the comment 

recognition module. During the development of HB-CA, comments occurring 

before the procedure division were required and the module was designed to extract 

them. As the segmentation method shown in Chapter 5 ignores any hypotheses 

generated from this part of a COBOL I I program, no modifications have been 

made to the module. These tokens can still cause hypothesis generation but the 

hypotheses are not considered in segmentation and concept binding. The result of 

extraction is matched against the database of indicators. 
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The matching stage is written in Delphi and each module uses a file of options to 

determine its behaviour. Case sensitivity in search is available within the Delphi 

database components so no custom implementation is required. Sub-string 

matching requires a bi-directional comparison of the database string with the token 

extracted from the source code. Synonym matching was implemented using 

Automation links to Microsoft Word. Word exports functions in its type library to 

access the thesaurus and these were used to generate synonyms. 

The separate outputs of the indicator recognition modules are combined to produce 

a file of all the hypotheses made. This file is sorted in order of indicator occurrence. 

7.2.6 Concept Assignment Module 
The concept assignment module implements the segmentation and concept binding 

algorithms described in Chapters 5 and 6. The major point of interest in this 

module is the implementation of the self-organising map. Kohonen's research 

group provides a self-organising map implementation for MS-DOS called 

SOM_PAK. It is available on the web [SOMPOO] and provides a suite of programs 

for creating, training, and interpreting SOMs. Rather than implement a native 

Delphi version of the SOM algorithm, it was decided to use the SOM_PAK and 

harness it to the Delphi program through an MS-DOS batch file interface. This is 

less efficient than a native version but has the advantage of using a proven 

implementation. SOMs can be initialised in a number of ways, the most efficient 

being based on eigenvectors [KOHOOO]. The method used in HB-CAS is random 

initialisation, as described in the SOM_PAK documentation [KOH096]. 

It is important to establish the reliability of a third-party implementation. 

Establishing confidence in the SOM_PAK was achieved by experimenting with 

simple maps to successfully produce predicted results. In addition, the SOM_PAK 

has been used in a variety of research projects with no reported problems (see 

[LAGU96], [HAME96], [VESA97], [DESJOO]). 
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7.2.7 Display 
The display module provides the user with a hypertext-style view of the source code 

and concepts. Concepts are coloured and these correspond to segments of the 

same colour in the source code. Clicking on a concept name scrolls the code to 

display its implementation. The display system only provides browsing of the 

source code, as it is expected that the search methods contained in the system 

would be integrated into a ful l development environment for real-world release. 

Figure 48 shows the display module. 
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Figure 48: HB-CAS Display Module 

7.3 Test Suite 
A test suite was constructed to interface with HB-CAS. It allows a wide range of 

parameters to be tested in a controlled manner and was employed during the 

development of HB-CA to examine the relative performance of the various 

approaches. 
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7.3.1 Principles of Test Suite 
The test suite allowed the concept assignment system to be executed on large 

numbers of source files with varying parameters. The results of each execution 

were recorded and compared with predefined "correct" answers. This allowed 

automatic measurement of the system's success at concept assignment. A log file 

stored the input and output of every stage of the recognition process for later 

analysis. The size of this file (typically between 22Mb and 50Mb) required the 

development of several perl scripts to create summaries of the information 

contained within it. 

To ensure fair testing, the suite controls HB-CAS using the control panel "execute" 

method. Its only direct intervention in the process is to set module options in the 

relevant initialisation files. Once this has been completed, control is passed to the 

control panel as if a person was using the system. 

Creating the "correct" answers required the use of a mark-up tool to designate parts 

of the source code as indicators and concepts. The marked-up code was stored in 

files and automatically compared to the output of the concept assignment system 

using various criteria for correctness. Performance was measured in terms of 

information retrieval, using precision (number correct/number found) and recall 

(number found/number potential). The best set of indicator recognition options 

was determined by comparing the precision and recall values for each combination. 

These investigations also guided the development of the concept assignment 

methods. 

As the concept assignment methods became more sophisticated, the marked-up 

representation of the source code became incompatible with the output of HB-

CAS. Since later versions of HB-CAS had fewer parameters to control the concept 

assignment process, the effort required to upgrade the test suite was not deemed 

worthwhile. Consequently, the evaluation of HB-CA described in the next two 

chapters is based on the manual application of correctness measures. 
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7.3.2 Usage 
Although the test suite was originally intended for use as an automated test and 

evaluation tool, it could be adapted easily to provide batch-processing facilities. 

This would allow large amounts of source code to be analysed in one step, either for 

future software comprehension use (storing the results in a repository), or for more 

specialised applications such as searching for instances of a particular concept in a 

large body of source code. This could fulfi l the functions of the wrapper, discussed 

in section 9.2.1, for ripple analysis, module selection, and code reuse. 

7.4 Evaluation of Implementation 
This section discusses some of the issues arising from the implementation of 

HB-CA in HB-CAS. The method itself is evaluated in the next two chapters. 

7.4.1 Design Evaluation 
7.4.1.1 Separate Program Approach 

The basic design has proved effective and the architecture has not been changed for 

any version of HB-CA. Using separate programs to implement each part of the 

system made modification and testing easy. The control panel's ability to scan the 

directory structure for additional indicator recognition modules also helped to 

expand the system with minimal effort. 

There were some disadvantages, in particular, the problem of synchronisation 

between the control panel and the other programs. This was handled using the 

presence of a file to act as a "process complete" flag. This somewhat inelegant 

solution could be replaced with the Win32 process control API, but the effort 

required to understand and employ these functions was judged greater than the 

potential benefit. The API method offers better performance and greater elegance, 

but the file-based method works satisfactorily. 

The individual modules run in "batch" mode rather than in the traditional 

interactive manner of Windows applications, ensuring that the control panel does 

not require additional user input once the run button is selected. Adopting this 

approach places responsibility on the programmer to ensure that the application 
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window is updated and operating system messages are processed. This problem 

would be overcome by implementing HB-CAS as a single program. 

7.4.1.2 Third-Party SOM Implementation 

There were good reasons for using the SOM implementation provided by 

Kohonen's group, the most important being that the code can be trusted as correct 

(see section 7.2.6 for research citing use of the SOM_PAK). In addition, a 

substantial amount of time was saved by not re-implementing the algorithms. 

When SOM-based methods were first employed, the techniques of file-based 

synchronisation were well understood and a Delphi library was built to interface 

with the SOM_PAK. Using a separate library to abstract SOM functionality 

provides an easy way to substitute a native implementation should the need arise. 

The main disadvantage of using the SOM_PAK is poor performance. The 

programs compile to a DOS executable and consequently require a command shell 

to be launched before execution. In addition, different programs within the 

package handle the stages of initialisation, training, and interpretation separately. 

This leads to a new shell being launched for each. Despite this high run-time 

overhead, performance on real data is acceptable, although a native 32-bit 

implementation would almost certainly show significant performance gains. 

7.4.1.3 Third-Party Synonym Lists 

Synonym-based indicator matching is not used in the examples in this thesis as it 

significantly degraded indicator recognition performance and computational cost. 

The idea of using synonyms to give flexibility to indicator recognition is considered 

sound, although better methods are required to perform the matching process. 

Microsoft Word was chosen to provide the synonym Hst since it has wide availability 

on the Windows platform and a standard library with which other programs may 

access its functionality. Word list quality was not considered in this research but if 

synonym matching is desired then list quality should be addressed. 
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7.4.2 Code Evaluation 
7.4.2.1 System Characteristics 

Table 9 presents some general characteristics of the HB-CAS implementation. 

Compiled sizes are given to the nearest kilobyte for the debug version of modules. 

This version has been used throughout the implementation and evaluation. 

Program 
Source Length 

(lines of code) 
Compiled Size (Kb) Source Language 

Identifier Extraction 1687 67 C 

Identifier Matching 301 507 Delphi 4 

Keyw^ord Extraction 1694 68 C 

Keyword Matching 176 513 Delphi 4 

Comment Extraction 136 25 C 

Comment Matching 265 529 Delphi 4 

Segment Boundary-

Extraction 
1718 68 C 

Segment Boundary 

Matching 
167 517 Delphi 4 

Control Panel 1289 1205 Delphi 4 

Library Manager 776 689 Delphi 4 

Merge-Sort 230 313 Delphi 4 

Concept Assignment 1633 562 Delphi 4 

Display 410 367 Delphi 4 

Total 1 10482 5430 

Table 9: Characteristics of HB-CAS Programs 

7.4.2.2 Programming Environment and Language 

Delphi has proved to be an excellent language and environment within which to 

work. Its rapid prototyping capabilities removed much of the effort of user 

interface design and management, and a good debug environment helped with 

testing. An almost perfect balance is struck between abstraction from the Windows 

API and providing flexibility in library routines. In addition, it has excellent 

database connectivity that made accessing the library extremely easy. 
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7.4.3 Test and Validation 
Each program was tested individually before being included in the system. The 

separate program approach and high visibility of input and output data meant that 

very few problems were found during integration. Individual programs were mostly 

checked by hand to ensure that the output generated was as expected, e.g. the 

extraction and match program results were compared to a manually performed 

analysis. 

The concept assignment module was more complex and required the use of 

Delphi's debugging tools. These allowed the internal state of various data structures 

to be displayed at appropriate points during the execution of the module. Single-

step tracing of the routines was used to ensure correct implementation of the 

algorithms. 

Due to its nature, the specific behaviour of the SOM cannot be accurately predicted, 

but experiments during the development of HB-CA gave an indication of typical 

results. These were used, in conjunction with test data, to verify that the SOM was 

working as expected. 

Despite thorough testing before evaluation, the investigations undertaken for 

Chapter 8 highlighted a few remaining bugs when the more complex library content 

(shown in the Appendix) was used. These were rectified without significant effort, 

and the affected investigations repeated with negligible difference in their results. 

7.5 Summary 
This chapter has presented the HB-CAS implementation of the HB-CA method. 

Various technical issues relating to the system's design have been discussed and its 

automated test suite described. The implementation has been evaluated with 

respect to major design and code characteristics. 

Chapter 8 presents the first part of an extensive evaluation of the HB-CA method. 

This examines many characteristics of HB-CA, beginning with its scalability. 
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Chapter 8 

Evaluation I: HB-CA Characteristics 

8.1 Introduction 
Chapter 7 described an implementation of the HB-CA method called HB-CAS and 

discussed its architecture and design rationale. 

Having shown the operation of each stage of HB-CA in Chapters 4, 5, and 6, this 

chapter presents the first part of an extensive evaluation of the method, relating to 

characteristics of HB-CA itself. 

The evaluation begins with one of the most important properties of HB-CA: 

scalability. HB-CA is intended to work with real-world code and hence it is 

important that it operates accurately on any length of program. The chapter then 

discusses issues relating to segmentation, concept binding, and the library. Finally, 

some general characteristics of HB-CA are examined: computational and spatial 

cost, expandability, representational power, domain independence, and achievement 

of cognitive requirements. 

The results of a number of practical investigations are reported, each introduced by 

a table summarising its parameters and data. Investigations were carried out using 

HB-CAS and a number of real-world COBOL I I programs. Program sets, results, 

and other parameters for all the investigations can be found in the Appendix. Al l 

program lengths are quoted in lines including white space and comments, since 

these can contain vaHd indicators. Although HB-CA is designed to work solely on 

the procedure division of COBOL I I programs, it is not reasonable to expect a 

maintainer to remove the data division before commencing analysis. Consequently, 

program lengths include the data division, and all investigations use complete 

programs. 
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8.2 Scalability 
Accurate concept assignment is important since mistakes could confuse the 

software maintainer, thus increasing, rather than decreasing, the cost of software 

comprehension. 

HB-CA should maintain its accuracy regardless of the length of program to which it 

is applied. In principle, i f HB-CA can be accurate on a single segment, there is no 

reason why it should be inaccurate when there are several segments, as each is 

analysed separately. 

Concept assignment is regarded as accurate if a segment implements the concept 

specified. Figure 49 shows an example. 
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Figure 49: Example of an Accurate Segment 

In this case, the segment is assigned the concept Call starting at line 628 (shown in 

beige). This is classed as accurate because a call is made from this seaion of code 

although the remainder of the segment is concerned with other processing. 
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Concept assignment is regarded as strictly accurate if the concept is dommant in the 

segment (i.e. the segment is mostly concerned with implementing the concept 

specified). Figure 49 is not strictly accurate as it is concemed with program control 

rather than with calling. An example of strict accuracy is shown in Figure 50. 
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Figure 50: Example of a Strictly Accurate Segment 

It can be seen clearly that the blue segment, which is assigned the Output concept 

starting at line 804, is implementing only this concept. It is therefore dominant in 

the segment and strictly accurate. 

Recall that recjthresh is used to ensure a certain level of evidence in each segment 

(see seaion 5.3.2.1), and to determine the lowest score with which a concept may be 

bound during concept binding (see section 6.3.2.4). The minimum veaor density 

required for a cluster in the SOM to be classed as valid (see section 5.3.2.3) is 

defined by minjvd. This parameter is used also to determine the number of 

potential clusters in a segment during clustering pre-processing (see seaion 5.3.2.1). 

Forcedjpecialisation determines whether post-disambiguation processing (see seaion 
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6.3.2.4) should attempt to find the most specific version of the winning concept for 

which there is evidence. 

To verify the scalability of HB-CA, an investigation was undertaken using HB-CAS. 

The parameters are shown in Table 10. 

Set A 

Appendix, Section A.2 

1 

3 

True/False 

Appendix, Section A.3.1 

Table 10: Parameters for Investigation of Scalability 

The results of the investigation are shown in Figure 51 and Figure 52. 
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Figure 51: Graph to show the relationship between the 
Accuracy of Concept Assignment and Program Length 

{forced specialisation = True) 
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Figure 52: Graph to show the relationship between the 
Accuracy of Concept Assignment and Program Length 

(forcedspecialisation = False) 

Each point on the graph represents the accuracy (or strict accuracy) for a particular 

length of program. The set of programs used is shown in section A.9.1. Both 

accuracy and strict accuracy are plotted on the same set of axes for easy comparison. 

Although both graphs show a wide variation in their resiilts, the general trend does 

not confirm the theoretical claim that accuracy should remain the same regardless of 

program length. Forcing specialisation produces slightly less accurate results 

although those concepts that are correct should provide more information to the 

user. Accuracy drops significantly at a program length of about 1000 lines, strict 

accuracy following a similar trend. 

8.2.1 Investigation of Scalability Problems 
Recall that the segmentation stage of HB-CA creates segments initially using 

segment boundary hypotheses. Each segment is then analysed to determine the 

potential for forming clusters of action-concept hypotheses within it . I f such 

potential exists, a SOM is used to cluster similar hypotheses. Those clusters that 

have sufficient veaor density are termed valid, and those that do not are termed 

invalid. Invalid clusters are equally divided and merged with their nearest valid 

neighbours. Each cluster is then created as a segment in its own right and the 

object concepts that fall within and around its boundaries are included. 
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Accurate concept binding relies on a good quality segment, i.e. a set of hypotheses 

that clearly indicate one concept. It follows that the lower a segment's quality, the 

less likely the concept binding method is to accurately assign a concept. The 

following hypothesis is made to explain the drop in accuracy with larger programs: 

Hypothesis 1: Segmenting larger programs requires greater use of SOMs, 

which reduces the accuracy of concept assignment. 

The first question to be addressed is whether larger programs use more SOMs. To 

test this, comparisons are made between the length of programs and the number of 

SOMs used to analyse them. Results are taken from the investigation summarised 

in Table 10. Figure 53 shows that SOM usage increases when larger programs are 

analysed. 
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Figure 53: Graph to show the relationship between the 
Number of SOMs Used and Program Length 

Since larger programs do require greater use of SOMs, it is likely that the latter is the 

cause of lower accuracy. Further confirmation is gained by comparing SOM usage 

and accuracy directly, as shown in Figure 54. 
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Figure 54: Graph to show the relationship between the 
Accuracy of Concept Assignment and Number of SOMs 

Used 

The data indicates that the greater SOM usage arising from analysing larger 

programs correlates with a reduction in the accuracy of concept assignment. 

Hypothesis 1 would appear to be confirmed. 

Recall that low concept assignment accuracy can be caused by poor quality 

segments. A further hypothesis is made to explain why greater SOM usage causes 

lower accuracy: 

Hypothesis 2: SOM usage causes lower quality segments. 

I f the hypothesis were correct, it would explain the fall in accuracy with greater 

SOM usage. Hypothesis 2 is investigated in the next section. 

8.2.1.1 SOM-Related Segmentation Problems 

This investigation begins by discussing the relationship between accuracy and 

segment size. 

Observation of the code segments that were assigned concepts indicated that the 

most accurate assignments were made when the segment size was small. Smaller 
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segments tended to occur in smaller programs. Since lower accuracy is linked to 

large programs, it could be that SOM usage causes a rise in segment size. This 

could explain the fall in accuracy when more SOMs are used. Smaller segments are 

likely to contain fewer hypotheses and consequently there is less potential for 

confusion. The segment quality therefore is higher and accurate concept binding 

more likely to result. 

In an attempt to verify these observations, and perhaps find the optimal size of a 

segment, several programs were examined for the size of their segments and the 

accuracy of the concepts bound to them. The investigation parameters are shown 

in Table 11 and the results are shown in Figure 55. 
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Table 11: Parameters for Investigation of Segment Size and 
Accuracy 
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Figure 55: Chart to show the Accuracy of Concept 
Assignment for Various Segment Sizes 
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Accuracy peaks with segment sizes of 31-60 lines. The presence of similar accuracy 

levels elsewhere on the chart means that drawing a f i rm conclusion that this is the 

ideal segment size would be unwise. Stria accuracy is clearer, with the best results 

definitely coming from the smallest segment sizes. This confirms the observations 

reported at the start of this seaion. 

Figure 56 shows further results from the investigation in an attempt to determine a 

relationship between SOM usage and mean segment size. The numeric results are 

shown in section A.3.3. 
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Figure 56: Chart to show the Mean Segment Size for Various 
Numbers of SOMs Used 

It is clear from Figure 56 that there is no correlation between greater SOM usage 

and greater mean segment size. Consequently, the explanation for the fall in 

accuracy with larger programs must be attributed primarily to a reason other than 

larger segment sizes. 
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Two further explanations for the link between greater SOM usage and lower quality 

segments are: 

1) The SOM is associating concepts that should not be clustered. 

2) The algorithms that reallocate action-concept hypotheses from invalid 

clusters (see section 5.3.2.4) are introducing enough unrelated concepts to 

valid clusters to cause poor segment quality. 

The most likely explanation can be determined by studying the balance between 

valid and invalid clusters at varying accuracies. If a low proportion of invalid 

clusters correlates with low accuracy, this would suggest that the SOM is causing the 

problem because the reallocation algorithms are not being used to a great extent. If 

there were a link between a high proportion of invalid clusters and low accuracy, 

this would indicate that the reallocation algorithms are at fault because they are 

being used often. 

An investigation was undertaken on various programs that require SOM analysis. 

Sections that were subdivided by a SOM were examined to determine the number 

of valid and invalid clusters produced, and the accuracy of concept assignment for 

each resulting segment. The reintegration of object concepts is of less concern 

since they can only confirm and complete conclusions, not generate them initially. . 

Confusion in object-concept hypotheses has less impact on the correctness of the 

result owing to the disambiguation rules. The investigation parameters are shown in 

Table 12. 
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Table 12: Parameters for Investigation of Accuracy and 
Invalid Cluster Proportions 
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Figure 57 indicates that higher proportions of invalid clusters lead to lower stria 

accuracy, although this is not refleaed to the same extent in non-stria accuracy. 
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Figure 57: Graph to show the relationship between the 
Accuracy of Concept Assignment and the Proportion of 

Invalid Clusters 

Since non-stria accuracy relies only on the presence of a concept within a segment, 

good results can be achieved with poorer segmentation. The requirements of stria 

accuracy mean that "loose" segmentation (where a large part of the segment is 

irrelevant to the concept) is more evident in the results. The conclusion that can be 

drawn is that the problems lie in the reallocation algorithms. This is not surprising 

since the "equal-division" method of assigning invalid clusters and hypotheses to 

their surrounding valid clusters is naive. It causes "loose" segmentation by 

including hypotheses in segments to which they may have no conceptual affOiation, 

and adding entire invalid clusters to their neighbours without considering the 

content of either. When considering the problems the latter may cause, it is worth 

recalling that the SOM has associated the hypotheses in an invaHd cluster, and 

consequently the neighbouring vaUd cluster gains a conceptually coherent group of 

hypotheses. Concept binding then could be hampered by both the general "noise" 

of unrelated individual hypotheses, or worse, it could be led in a completely 

different direaion by conceptually coherent, but unrelated, groups of hypotheses. 
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8.2,1.2 Possible Solutions 

The reallocation algorithms would benefit from further research. One approach 

might be to use conceptual information from the hypotheses of invalid clusters, to 

bind them to conceptually similar neighbours. This might require some preliminary 

concept binding. Alternatively, the principle of preserving all of the original 

hypotheses could be rejected and invalid clusters ignored. Another idea might be to 

limit the number of hypotheses that can be added to a valid cluster, or limit the 

cluster size itself 

Another approach to improving the quality of segmentation might be to change the 

controlling parameters, recjhresh and minjvd, which for the investigations performed 

in this chapter are set to 1 and 3 respectively. Increasing recjthresh would cause a 

reduction in the number of initial segments and hence concept assignments made 

(since more evidence would be required). Those segments that pass the threshold 

would be larger, having a reasonable amount of evidence. Smaller values of 

rec_thresh would allow more initial segments to be considered and increase the 

number of concept assignments. Given that smaller segments have been observed 

to produce more accurate concept assignment, smaller values of recjthresh should 

produce more accurate results overall. The disadvantage of having smaller segments 

is that each hypothesis carries more weight (by representing a larger proportion of 

the body of evidence) than in larger segments. Consequently, a misleading indicator 

can cause greater problems. Individual hypotheses in larger segments have less 

influence on the overall concept assignment, so increasing recjhresh may ensure that 

a reasonable body of evidence is considered, rather than just a few hypotheses. 

Increasing min_vd would increase the number of invalid clusters by forcing valid 

clusters to contain more evidence. This could cause poorer segmentation for the 

reasons discussed in section 8.2.1.1. Decreasing minjvd may improve the quality of 

segmentation, but the resulting segments could be so small (since only one or two 

hypotheses for a concept would be required) that concept assignment would 

become pointless. There would no longer be a significant body of evidence to 

consider (see the discussion of recjhresh above). A balance must be struck when 

setting the parameters, to make best use of the library on the source code being 

studied. 
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8.2.1.3 Summary 

There is a clear link between SOM usage and poor segment qualit)^. Hypothesis 2 

has thus been confirmed. Poor quality segments result from the application of the 

naive reallocation algorithms. Greater SOM usage results in a greater chance of 

these algorithms being employed. This explains the fall in concept assignment 

accuracy when more SOMs are used. 

It should be noted that in some cases, SOM-based segmentation is very successful 

and further discussion is presented in section 8.3 

8.2.2 Average Performance 
The overall performance of HB-CA is promising, achieving high mean and median 

accuracies as shown in Table 13. 

forced specialisation = True forced specialisation = False 

Mean Accuracy 84%, a = 14 88%, a = 11 

Mean Strict Accuracy 56%, a = 19 56%, a = 21 

Median Accuracy 89% 89% 

Median Strict Accuracy 50% 56% 

Table 13: Average Accuracy Values for HB-CA 

It is interesting to note that using general versions of concepts (when 

forcedjpecialisation is False) does not increase the accuracy significantly. This 

suggests that the concept binding algorithm is capable of successfully differentiating 

specialised concepts, or that the library has little specialisation. 

8.2.3 Summary 
Despite theoretical claims that accuracy should not decrease with longer programs, 

investigations indicate that such programs cause a wider variation in accuracy and a 

general drop in concept assignment performance. This is attributed to the greater 

use of SOMs when analysing larger programs, and the poorer quality of 

segmentation that can result. Small segment sizes appear to provide the best 
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recognition performance when strict accuracy is considered, although non-strict 

accuracy does not indicate this to the same extent. 

Investigation of the cause of SOM-related segmentation problems revealed that the 

hypothesis reallocation algorithms are largely to blame for poor performance. This 

is not surprising given their naive nature and several strategies have been identified 

to address the problem. 

8.3 Segmentation 
In view of some of the issues raised about HB-CA's segmentation in the previous 

section, a discussion of the abilities of the segmentation method is now presented. 

HB-CA is designed to operate on real-world code and consequently cannot rely on 

being applied to well-structured programs. When poorly structured code is 

presented, SOMs are used to create segments based on conceptual association 

rather than syntactic boundaries. Section 8.2 discussed some of the problems that 

arise when SOMs are employed in this role. These appear to be linked mostly to 

the algorithms that analyse the results produced by the maps. 

A small investigation of the SOM's ability to replicate syntax-based segmentation 

has been performed. Pairs of segment boundary hypotheses were removed 

successively from the hypothesis list. In the programs tested, the SOM failed to 

preserve the syntactic clustering exactly, although the resulting concept assignment 

was still correct. The cross-subroutine segmentation that can occur in these cases 

was the motivation for the use of segment boundary hypotheses. 

In some cases SOM-based segmentation can be extremely successful, an example 

being shown in the second and third concepts of Figure 58 (specialisation was not 

forced). 
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Figure 58: Screenshot Showing Successful SOM-Based 
Segmentation 

In this example the segments are reasonably well focussed around the concepts they 

represent and there is good separation between them. This is how the operation of 

SOM-based segmentation was originally envisaged. On some occasions the SOM 

produces strange results. A common fault is that adjacent segments are created 

within a seaion, but all performing the same task (an example is shown in Figure 

59). 
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Figure 59: Screenshot Showing Unnecessary Segmentation 

In this case, all of the concepts are correct but three are adjacent and identical. As 

they all perform the same task, there seems Uttle point in regarding them as separate 

segments. The causes of this problem became apparent during the development of 

HB-CA and are related to the nature of the SOM itself. One explanation is that 

rather than associating all of the hypotheses to the same output node and quantizing 

the few unrelated hypotheses, the SOM learns to differentiate between regions of 

conceptual similarity and regions of conceptual difference. Consider a list of 

concepts: 

Print, Print, Print, Read, Read, Read, Read, Print, Print, Print 

When analysed by a 5x1 SOM, the result should be three triggered output nodes, 

each containing three or four of the same concept as appropriate. In praaice, it has 

been observed that the SOM may group the concepts in pairs thus: 

Print, Print Print, Read Read, Read Read, Print Print, Print 
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The SOM appears to learn both similarity and difference. This is essentially a 

problem of over-representation in the output space but since the method for 

calculating the size of the output space is well justified theoretically, there is little 

incentive for modifying it. An alternative explanation is that the initial values in the 

map cause concepts that should be associated to be pulled away from their correct 

cluster. The map training parameters should prevent this from happening in most 

cases. 

A simple solution to the problem of unnecessary segmentation would be to add a 

rule to gather adjacent, identical concepts, and make one assignment for the 

collection. 

In summary, SOM-based segmentation is a successful method for handling 

monolithic code and large subroutines, although it can over-segment on occasion. 

8.4 Concept Binding 
Section 8.2 raised the problem of poor concept assignment caused by hypotheses in 

a segment that are not related to the correct concept. This section examines the 

issue in more depth, evaluating the effectiveness of the disambiguation rules in 

allowing graceful degradation of the system's performance. The rules were 

presented in section 6.3.2.3. 

Recall that concept binding operates by creating conclusions for every hypothesised 

action concept in a segment, and every possible composite containing that action 

concept. A composite is a concept made up of an action and an object. Object 

concepts are then scored to complete and strengthen conclusions. The highest 

scoring concept is designated the winner but if there are several with the same high 

score then disambiguation rules are applied to determine which should be ultimately 

successful. 

Hypotheses that are unrelated to the correct concept in a segment can be viewed as 

falling on a scale from random "noise" to a coherent "interfering signal". If there is 

no conceptual correlation between these unrelated hypotheses, they simply create 

"noise" and are eliminated by the scoring algorithms. As the unrelated hypotheses 
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move along the scale to form a coherent "interfering signal", HB-CA must apply 

more rules to retain the correct concept. Eventually, the evidence for the 

interfering concept may outweigh that of the original and so assignment wil l be 

made to the new concept. This is not intrinsically bad since HB-CA was created to 

use the weight of available evidence to make concept assignments. 

An example program was used to investigate the method's performance in this area, 

with the library content presented in the Appendix. Min_vdwzs set high to prevent 

a SOM being used. One routine with an obvious interpretation was chosen within 

the program, and varying types of unrelated indicator added. 

The original routine is shown in Figure 60. The concept assigned by HB-CA (using 

forcedjpecialisation = True) was Read:PaymentFile. This is clearly correct. 

GD25 SI0-READ-PAYMENT SECTION. 
GD25 * READ THE PAYMENT F I L E 
GD25 SlO-000. 
GD25 CALL 'GBFDAMAO' USING PAYMENT-FILE. 
GD25 SlO-999. 
GD25 EXIT. 

Figure 60: Original Routine 

The original routine contains only one unrelated indicator, CALL , and the scoring 

algorithms ignore this, F I L E creates hypotheses for a number of different types of 

file in addition to the correct one, resulting in the bulk of evidence pointing to 

Read-File. When specialisation is forced, the hypotheses produced by PAYMENT 

indicate the result to be Read:PaymentFile. This can be seen in the extract from the 

HB-CAS log shown in Figure 61. 
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CB: P r i n t i n g f i n a l c o n c l u s i o n l i s t f o r t h i s segment: 
CB: Read 2 
CB: R e a d : F i l e 2:7 
CB: Read:CAF 2:1 
CB: Read: PaymentFile 2:4 
CB: C a l l 1 
CB: *DA* F i n d i n g h i g h e s t s c o r i n g c o n c l u s i o n s . (DAR 1) 
CB: 1 h i g h s c o r i n g c o n c l u s i o n s . 
CB: High s c o r i n g c o n c l u s i o n i s R e a d : F i l e , s c o r e 9 
CB: *DA* Removing s p e c i a l i s a t i o n s . (DAR 2) 
CB: Found c l e a r winner. 
Winning c o n c l u s i o n f o r t h i s segment c u r r e n t l y R e a d : F i l e 
CB: ** Post-Disambiguation P r o c e s s i n g ** 
CB: *PDAP* S p e c i a l i s a t i o n Required. 
CB: Found s p e c i a l i s a t i o n 
CB: Found s p e c i a l i s a t i o n 
Winning c o n c l u s i o n f o r t h i s segment c u r r e n t l y Read:PaymentFile 
CB: *PDAP* Checking T h r e s h o l d s . 
S t o r i n g c u r r e n t winning c o n c l u s i o n 

Figure 61: Extract from HB-CAS Log 

The level of random "noise" in the original routine is moderately low. To test the 

ability of HB-CA to cope with greater "noise", the routine was modified to have 

more "noisy" indicators than indicators for Read:PaymentFile. This is shown in 

Figure 62. 

GD25 SIO-READ-PAYMENT SECTION. 
GD25 * READ THE PAYMENT F I L E 
NOISE * PRINT A REPORT 
NOISE * UPDATE A DATABASE 
GD25 SlO-000. 
GD25 CALL 'GBFDAMAO' USING PAYMENT-FILE. 
NOISE CALL 'PRINT' USING P-APS. 
NOISE MOVE SPACES TO DB-PARMS. 
NOISE * OUTPUT COMPLETE 
GD25 SlO-999. 
GD25 EXIT. 

Figure 62: Routine Modified with Random "Noise" 

Despite the fact that there are only 7 indicators related to Read:PaymentFile and at 

least 9 unrelated, the system still makes the correct concept assignment. This is due 

to the scoring algorithm considering both the amount and the coherence of 

available evidence, using the composition and specialisation relationships. Figure 63 

shows a considerable increase in the number of potential conclusions, resulting 

from the range of indicators that have been added to the routine. 
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CB: P r i n t i n g f i n a l c o n c l u s i o n l i s t f o r t h i s segment: 
CB: Read 2 
CB: R e a d : F i l e 2:8 
CB: Read:Database 2:2 
CB: Read:Record 2:1 
CB: Read:APSMasterFile 2:1 
CB: Read:CAP 2:1 
CB: Read:PaymentFile 2:4 
CB: Read:APSRecord 2:1 
CB: P r i n t 1 
CB: P r i n t : R e p o r t 1:1 
CB: P r i n t : R e c o r d 1:1 
CB: Print:APSRecord 1:1 
CB: Update 1 
CB: U p d a t e : F i l e 1:8 
CB: Update:Database 1:2 
CB: Update:Record 1:1 
CB: Update:APSMasterFile 1:1 
CB: Update:CAF 1:1 
CB: Update:PaymentFile 1:4 
CB: Update:APSRecord 1:1 
CB: C a l l 2 
CB: Output 1 
CB: O u t p u t : F i l e 1:8 
CB: Output:Report 1:1 
CB: Output:Database 1:2 
CB: Output:Record 1:1 
CB: Output:APSMasterFile 1:1 
CB: Output:CAF 1:1 ' 
CB: Output:PaymentFile 1:4 
CB: Output:APSRecord 1:1 
CB: *DA* F i n d i n g h i g h e s t s c o r i n g c o n c l u s i o n s . (DAR 1) 
CB: 1 high s c o r i n g c o n c l u s i o n s . 
CB: High s c o r i n g c o n c l u s i o n i s R e a d : F i l e , s c o r e 10 
CB: *DA* Removing s p e c i a l i s a t i o n s . (DAR 2) 
CB: Found c l e a r winner. 
Winning c o n c l u s i o n f o r t h i s segment c u r r e n t l y R e a d : F i l e 
CB: ** Post-Disambiguation P r o c e s s i n g ** 
CB: *PDAP* S p e c i a l i s a t i o n Required. 
CB: Found s p e c i a l i s a t i o n 
CB: Found s p e c i a l i s a t i o n 
CB: Found s p e c i a l i s a t i o n 
Winning c o n c l u s i o n f o r t h i s segment c u r r e n t l y Read:PaymentFile 
CB: *PDAP* Checking T h r e s h o l d s . 
S t o r i n g c u r r e n t winning c o n c l u s i o n 

Figure 63: Extract From HB-CAS Log for the Random 
"Noise" Example 

It has been estabhshed that the scoring algorithm can cope with situations where the 

majority of evidence is incoherent and unrelated to the correct concept. The 

disambiguation rules' ability to deal with unrelated but coherent indicators is now 

examined. Each rule is considered and justified in the context of the example 

routine. 

8.4.1 Rule 1; Select Highest Scoring Conclusions 
The effect of this rule can be seen in Figure 61 and Figure 63 where the Read:File 

concept scores higher than any other, and is selected for further processing. This 
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rule requires little justification since it is the basis of discriminating between 

conclusions. 

8.4.2 Rule 2: Remove Specialisations 
This rule aims to prevent various specialisations of an object concept competing 

with each other when they should be competing against a fundamentally different 

concept. In most cases, it has no effect because the scoring algorithm allocates 

points to the general forms of a specialised concept. These are in addition to points 

gained from the general concepts' own indicators. The general versions thus gain a 

greater score and are picked by rule 1 in preference to their specialisations. Should a 

general form win, forcing specialisation can retrieve the specialised version. 

The rule is useful in situations where there is no direct evidence of the general 

concept, with the result that the general and specialised concept scores are identical. 

In this case, rule 2 ensures that if an arbitrary decision is ultimately required, the 

general form is not picked in favour of the specialisation. The arbitrary decision is 

made between the most general forms of competing concepts rather than versions 

of the same one. Figure 64 shows the original routine modified to trigger rule 2. 

GD25 SIO-READ SECTION. 
NOISE * PRINT A REPORT 
NOISE * READ 
GD25 SlO-000. 
GD25 CALL 'GBFDAMAO' USING PAYMENT. 
NOISE CALL 'PRINT' USING P-PRINT. 
GD25 SlO-999. 
GD25 EXIT. 

Figure 64: Routine Modified to Demonstrate Rule 2 

There is no direct evidence for the File concept so all of its score wil l come from its 

specialisation: PaymentFile. A fragment of the resulting assignment log is shown in 

Figure 65. 
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CB: Printing f i n a l conclusion l i s t for t h i s segment: 
CB: Read 2 
CB: Read:File 2:1 
CB: Read:PaymentFile 2:1 
CB: Print 2 
CB: Print:Report 2 :1 
CB: C a l l 2 
CB: *DA* Finding highest scoring conclusions. (DAR 1) 
CB: 3 high scoring conclusions. 
CB: High scoring conclusion i s Read:File, score 3 
CB: High scoring conclusion i s Read:PaymentFile, score 3 
CB: High scoring conclusion i s Print:Report, score 3 
CB: *DA* Removing speci a l i s a t i o n s . (DAR 2) 

: Attempting to generalise: 84 
: 1 generalisation fo\ind: 15 
: Atten^jting to generalise: 15 
: Error: 0 generalisations found, skipping... 
: Attenpting to generalise: 84 
: 1 generalisation found: 15 
: Atten^)ting to generalise: 15 
: Error: 0 generalisations found, skipping... 

CB: Removing Read:PaymentFile 
CB: *DA* Applying DAR 3. 
CB: No clear winner, favouring conposites over singles... 
CB: *DA* Applying DAR 4. 
CB: S t i l l no clear winner, using highest action score... 
CB: *DA* Applying DAR 5. 
CB: Checking for same action i n a l l composites... 
CB: No further disambiguation possible, picking f i r s t conclusion 
as winner. 
Winning conclusion for thi s segment currently Read:File 
CB: ** Post-Disambiguation Processing ** 
CB: *PDAP* Specialisation Required. 
CB: Found s p e c i a l i s a t i o n 
Winning conclusion for t h i s segment currently Read:PaymentFile 
CB: *PDAP* Checking Thresholds. 
Storing current winning conclusion 

Figure 65: Extract From HB-CAS Log Showing the Action 
of Rule 2 

Given three equally high scoring conclusions, the specialised ReadrPaymentPile 

concept is removed to allow ReadrFile and PrintrReport to compete. An arbitrary 

decision was ultimately required and had the specialisation still been in contention, it 

may have lost to its general version. Removing and then re-introducing it later 

preserves the maximum amount of information. 

This rule also may be required if the only winning concepts are the general version 

and specialisation. Rule 2 protects the information content of the specialisation by 

allowing the general form to win, without the need for an arbitrary choice between 

the two that the specialisation may lose. 

8.4.3 Rule 3: Favour Composites over Non-Composites 
This rule ensures that maximal information is provided to the user. When two 

equally high scoring concepts are winning, by favouring the composite over the 
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non-composite, information about an action and object is retained. Consider the 

example in Figure 66. 

GD25 SIO-READ-PAYMENT SECTION. 
GD25 SlO-000. 
GD25 CALL 'GBFDAMAO' USING PAYMENT-FILE. 
NOISE CALL 'GBFDAMAO' USING DUMMY. 
NOISE CALL 'GBFDAMAO' USING DUMMY. 
NOISE CALL •GBFDAMAO' USING DUMMY. 
GD25 SlO-999. 
GD25 EXIT. 

Figure 66: Routine Modified to Demonstrate Rule 3 

In this case, a possible conclusion would be Call since there are a large number of 

calls in the routine. This does not convey as much information about the 

computational intent of the routine as the actual winnen ReadrPaymentFile. The 

log extract shown in Figure 67 demonstrates the action of rule 3. 

CB: Printing f i n a l conclusion l i s t for t h i s segment: 
CB: Read 1 
CB: Read:File 1:3 
CB: Read:PaymentFile 1:2 
CB: C a l l 4 
CB: *DA* Finding highest scoring conclusions. (DAR 1) 
CB: 2 high scoring conclusions. 
CB: High scoring conclusion i s Read:File, score 4 
CB: High scoring conclusion i s Call,score 4 
CB: *DA* Removing spe c i a l i s a t i o n s . (DAR 2) 
CB: *DA* Applying DAR 3. 
CB: No clear winner, favouring con?)osites over singles... 
CB: Rejecting C a l l 
CB: Single composite favoured over actions, selecting as winner. 
Winning conclusion for t h i s segment currently Read:File 
CB: ** Post-Disambiguation Processing ** 
CB: *PDAP* Specialisation Required. 
CB: Found s p e c i a l i s a t i o n 
Winning conclusion for t h i s segment currently Read:PaymentFile 
CB: *PDAP* Checking Thresholds. 
Storing current winning conclusion 

Figure 67: Extract From HB-CAS Log Showing the Action 
of Rule 3 

In this example, rule 3 has allowed higher quality information to be preserved. The 

rule also can be justified on the basis that composites contain a greater spread of 

evidence than non-composites. This implies greater coherence in the evidence since 

there is a probable relationship between the action and the object, in addition to the 

two entities existing independently. 
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8.4.4 Rule 4: Find the Highest Action Scores 
Although non-composite actions have been removed from the list by this point, 

action concepts are still favoured over objects as the aim is to determine the 

computational intent. Rule 4 examines the action scores of composites. Those with 

the highest scores win. 

The example routine was modified to trigger rule 4, as shown in Figure 68. 

GD25 SIO-READ-PAYMENT SECTION. 
NOISE * PRINT A PAYMENT REPORT 
GD25 SlO-000. 
GD25 CALL 'GBFDAMAO' USING PAYMENT. 
NOISE MOVE REPORT TO P-PRINT. 
GD25 SlO-999. 
GD25 EXIT. 

Figure 68: Routine Modified to Demonstrate Rule 4 

In this case it could be argued that the routine is becoming extremely ambiguous 

with either Read:PaymentFile or Print:Report being correct. This is an example of a 

coherent "interfering signal". As Figure 69 shows, Print.-Report is selected because 

of the higher score of its action component. 
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CB: Printing f i n a l conclusion l i s t for t h i s segment: 
CB: Read 1 
CB: Read:File 1:3 
CB: Read:PaymentFile 1:3 
CB: Print 2 
CB: Print:Report 2:2 
CB: C a l l 1 
CB: *DA* Finding highest scoring conclusions. (DAR 1) 
CB: 3 high scoring conclusions. 
CB: High scoring conclusion i s Read:File, score 4 
CB: High scoring conclusion i s Read:PaymentFile, score 4 
CB: High scoring conclusion i s Print:Report, score 4 
CB: *DA* Removing spe c i a l i s a t i o n s . (DAR 2) 

: Attenpting to generalise: 84 
: 1 generalisation found: 15 
: Atteitpting to generalise: 15 
: Error: 0 generalisations foimd, skipping... 
: Attempting to generalise: 84 
: 1 generalisation fovind: 15 
: Attempting to generalise: 15 
: Error: 0 generalisations found, skipping... 

CB: Removing Read:PaymentFile 
CB: *DA* implying DAR 3. 
CB: No cle a r winner, favouring con^osites over singles... 
CB: *DA* Applying DAR 4. 
CB: S t i l l no cle a r winner, using highest action score... 
CB: Rejecting Read 
CB: Single highest action score found, selecting as winner. 
Winning conclusion for t h i s segment currently Print:Report 
CB: ** Post-Disambiguation Processing ** 
CB: *PDAP* Specialisation Required. 
Winning conclusion for t h i s segment currently Print:Report 
CB: *PDAP* Checking Thresholds. 
Storing current winning conclusion 

Figure 69: Extract from HB-CAS Log Showing the Action of 
Rule 4 

8.4.5 Rule 5: Common Action Component 
In the event that there are still multiple winners, rule 5 allows conflicts between 

general forms of object concepts in composites to be handled gracefully. It 

achieves this by removing the objects from the composites to leave the action 

concept common to all of them. Figure 70 shows the original routine modified to 

include indicators for reading a database, in addition to those for reading the file. 

GD25 SIO-READ-PAYMENT SECTION. 
NOISE * CIF ACCESS MADE 
GD25 SlO-000. 
GD25 CALL 'GBFDAMAO' USING PAYMENT. 
NOISE MOVE SPACES TO CIF-PARMS. 
GD25 SlO-999. 
GD25 EXIT. 

Figure 70: Routine Modified to Demonstrate Rule 5 
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The resulting log is shown in Figure 71. 

CB: Printing f i n a l conclusion l i s t for t h i s segment: 
CB: Read 1 
CB: Read:File 1:2 
CB: Read:Database 1:2 
CB: Read:PaymentFile 1:2 
CB: Read:CMS 1:2 
CB: C a l l 1 
CB: *DA* Finding highest scoring conclusions. (DAR 1) 
CB: 4 high scoring conclusions. 
CB: High scoring conclusion i s Read:File, score 3 
CB: High scoring conclusion i s Read:DatcUsase, score 3 
CB: High scoring conclusion i s Read:PaymentFile, score 3 
CB: High scoring conclusion i s Read:CMS, score 3 
CB: *DA* Removing spe c i a l i s a t i o n s . (DAR 2) 

CB: *DA* Applying DAR 3. 
CB: No cle a r winner, favouring conposites over singles... 
CB: *DA* Applying DAR 4. 
CB: S t i l l no cle a r winner, using highest action score... 
CB: *DA* Implying DAR 5. 
CB: Checking for same action i n a l l composites... 
CB: Same action found, selecting as winner. 
Winning conclusion for t h i s segment currently Read 
CB: ** Post-Disambiguation Processing ** 
CB: *PDAP* Specialisation Required. 
Winning conclusion for t h i s segment currently Read 
CB: *PDAP* Checking Thresholds, 
Storing current winning conclusion 

Figure 71: Extract from HB-CAS Log Showing the Action of 
Rules 

Read is selected as the winning conclusion because the object evidence is 

contradictory. Note that despite forcedjpecialisation being set to True, HB-CA 

cannot specialise in situations like this where the object evidence is ambiguous. 

This is because no objects exist in the ultimate winner, it is a single action concept. 

In the event that the rules fail to solve the confUct between conclusions, an arbitrary 

decision is made and the first in the list is picked. This has the imintentional side 

effect of potentially improving concept assignment performance, as the first 

conclusion is likely to be derived from the subroutine name. This would not apply 

to SOM-created segments. 

8.4.6 Post-Disambiguation Processing 
This stage (presented in section 6.3.2.4) involves forcing the selection of the most 

specialised form of a concept for which there is evidence, and checking that the 
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winning concept scores above the required threshold. The latter issue is trivial and 

is not discussed further. Forced specialisation merits greater examination. 

In general, forcing specialisation is a successful way of retrieving the most 

specialised form of a concept when its general version has won. The method by 

which this is performed selects all forms of the winning concept for which there is 

evidence and picks the one that scores highest. If more than one achieves the high 

score then the result is regarded as ambiguous and the general form is left as the 

winner. 

The main problem with this ambiguity rule is its assumption that specialisation will 

occur in only one level (e.g. File to MasterFile, File to APSMasterFile). Additional 

methods would need to be defined to handle intermediate specialisations (e.g. File 

to MasterFile to APSMasterFile) because if an intermediate and most specialised 

form of a concept scored the same, the result would be regarded as ambiguous. In 

such situations, the intermediate should be picked (being a more general version of 

the specialised form) but the rule wil l actually choose the common general version 

of both (File in this example). Consequently, the rule wil l not produce incorrect 

results but some precision may be lost. This happens because both the intermediate 

and most specialised forms are regarded as being at the same level (the list used by 

the rule is a flattened form of the library's structured representation). If there is no 

ambiguity, the situation does not arise and the intermediate and most specialised 

form wi l l compete normally. 

Figure 72 and Figure 73 show the example routine and a log extract demonstrating a 

situation where forced specialisation cannot be performed due to a conflict between 

two specialised versions of a general concept. There are no intermediate concepts 

in the library shown in the Appendix so the ambiguity problem discussed above will 

not arise. 
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GD25 SIO-READ-PAYMENT SECTION. 
NOISE * CAE ACCESS MADE 
GD25 SlO-000. 
GD25 CALL 'GBFDAMAO' USING PAYMENT. 
NOISE MOVE SPACES TO CAF-PARMS. 
GD25 SlO-999. 
GD25 EXIT. 

Figure 72: Routine Modified to Demonstrate Forced 
Specialisation 

CB: Printing f i n a l conclusion l i s t for t h i s segment: 
CB: Read 1 
CB: Read:File 1:4 
CB: Read:CAF 1:2 
CB: Read:PaymentFile 1:2 
CB: C a l l 1 
CB: *DA* Finding highest scoring conclusions. (DAR 1) 
CB: 1 high scoring conclusions. 
CB: High scoring conclusion i s Read:File, score 5 
CB: *DA* Removing specialisations. (DAR 2) 
CB: Found cl e a r winner. 
Winning conclusion for t h i s segment currently Read:File 
CB: ** Post-Disambiguation Processing ** 
CB: *PDAP* Specialisation Required. 
CB: Foimd s p e c i a l i s a t i o n 
CB: Fo\md s p e c i a l i s a t i o n 
Winning conclusion for t h i s segment currently Read:File 
CB: *PDAP* Checking Thresholds. 
Storing current winning conclusion 

Figure 73: Extract From HB-CAS Log Showing the Forcing 
of Specialisation 

8.4.7 Levels of Ambiguity 
This section presents the results of an investigation into the frequency with which 

HB-C A's disambiguation rules are appHed. The parameters for the investigation are 

shown in Table 14. In each case, the HB-CAS log was examined to determine how 

often the various rules had been invoked. 

SetD 

Appendix, Section A.2 

1 

3 

True 

Appendix, Seaion A.4.1 

Table 14: Parameters for Investigation of Disambiguation 
Rule Triggering 
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Figure 74 shows the relative proportions of rule triggering. 
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Figure 74: Chart to show the Proportion of Cases in which 
Disambiguation Rules are Triggered 

As might be expected, rules 1 and 2 are triggered in every case since they are 

required for basic discrimination. It is interesting to note that none of the cases 

tested showed rule 4 disambiguating more successfully than rule 5. The low 

percentage of arbitrarily decided cases confirms the effectiveness of the rules. 

8.4.8 Summary 
This section has discussed the ability of HB-CA to deal with ambiguity in the 

evidence presented. The properties of the scoring algorithm and disambiguation 

rules have been considered with reference to an example code fragment from a real 

program. This was modified to demonstrate situations where the rules apply. 

There is reasonable justification for the rules used, given the general aims and 

priorities of the HB-CA method. Should these aims change, the disambiguation 

criteria may also require modification. HB-CA has proved to be capable of 

gracefully degrading its concept assignment performance, with relatively few cases 

decided arbitrarily. 
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8.5 Library Content 
In view of HB-CA's sensitivity to the library, this section briefly discusses some 

issues to be considered when creating its content. These are drawn from theoretical 

aspects of its structure and experience gained from undertaking the investigations in 

this chapter. The representational power of the library is discussed in section 8.9. 

Although it is impossible to suggest what should be the optimal content of the 

library in a particular instance, some general principles have emerged from using 

HB-CAS for the investigations in this chapter. Indicators ideally need to be unique 

to a particular concept. There are exceptions to this (e.g. most files will need a file 

indicator, regardless of their specific nature) but unique indicators improve the 

quality of hypothesis generation and consequently cause less confusion in concept 

binding. It is suggested that secondary concepts should be allocated the indicators 

for their more general versions, in addition to their own specific and differentiating 

indicators. This provides for successful recognition when there is no direct 

evidence of the general concept. 

The representational power of the method is discussed in section 8.9, but at this 

point, it is worth noting the different ways in which evidence for a concept can be 

assembled. The set of indicators for a concept of low-level abstraction is likely to 

be similar to the concept name, e.g. MasterFile wil l have indicators such as "File" 

and "Master" in various classes. As the level of abstraction rises, a different 

approach may be required as routines that implement more functionality are likely 

to call on lower-level subroutines to do the work. Consequently, the indicators for a 

high-level concept wi l l be the subroutine names as found in the calling statements. 

When creating high-level concepts in the library the indicators therefore should be 

related to the constituent parts of the solution rather than the name of the solution 

itself, as the evidence in the code wi l l be diverse rather than coherent. 

This section has briefly discussed some practical considerations for creating library 

content. These include the uniqueness of indicators and the body of evidence for a 

concept. 
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8.6 Computational Cost 
This section identifies several factors that have a significant impact on the 

computational cost of HB-CA. Biggerstaff et al. claim that plausible reasoning 

systems (like HB-CA) appear to have linear computational growth with the length 

of program under analysis [BIGG93]. It is expected that HB-CA wil l exhibit this 

cost characteristic. 

A large proportion of the HB-CA process involves comparing source code to the 

library, and these entities have the biggest impact on its computational cost. The 

discussion in this section focuses on structural attributes of both. 

8.6.1 Source Code 
It is important to consider the impact of the source code being analysed because it 

is likely to change more frequently than any other entity involved in HB-CA. The 

two characteristics that have the greatest effect on HB-CA's computational cost are 

the source code length, and the number of sections. HB-CA should have linear 

computational growth with the length of source code under analysis. 

8.6.1.1 Source Code Length 

The source code is an essentially linear structure (when treated as a body of text by 

HB-CA) and as such, it is reasonable to expect that the computational cost of HB-

CA should increase linearly with the length of source code being analysed. This 

assumes that the library being used remains constant. 

To verify this relationship an investigation has been undertaken. The execution 

time of a module or part-module is regarded as directly proportional to the 

computational cost of the method it implements. Consequently, the discussion in 

this section uses cost and execution time synonymously. The modules of HB-CAS 

supply these timings, accurate to within 1 second. 

The source programs were selected semi-randomly from a set of 150. The selection 

criteria were to include the shortest and longest available programs, space the 

program lengths by approximately 50 lines, and ensure that programs were drawn 
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from the same system. HB-CA's performance on files from a different system is 

discussed in section 8.10. 

The parameters for the investigation are shown in Table 15. 

Set E 

Chapter 3, Section 3.7.2 

1 

3 

True 

Appendix, Seaions A.5.1, A.5.2, A.5.3, A.5.4 

Table 15: Parameters for Investigation of Computational 
Cost 

Using the results shown in seaion A.5.1, the relationship between the program 

length and the computational cost of HB-CA is presented in Figure 75. 
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Figure 75: Graph to show the relationship between the Total 
Execution Time and Program Length 

As expected, there is a clear linear relationship between the properties. It is 

interesting to investigate what proportion of the total cost is provided by each stage 

of HB-CA. This is shown in Figure 76. 
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Execution Time and Program Length 

It is clear that all three costs rise in an approximately linear manner with increasing 

program length. Segmentation and concept binding do not show this relationship 

as clearly as hypothesis generation, but any variation in their individual costs will not 

be evident clearly in the total as hypothesis generation dominates the overall cost. If 

less indicator classes are used, these variations might be more apparent as the total 

cost would be more sensitive to the segmentation and concept binding stages. 

This section has established the expected linear relationship between HB-CA's 

overall computational cost and the length of the program being analysed. The next 

section investigates the effea of source code length on those stages of HB-CA that 

use it directly. 

8.6.1.2 Direct Effects of Source Code Length 

The hypothesis generation stage of HB-CA transforms the source code into a 

hypothesis list, by comparing the indicators in the library with tokens extraaed 

from the source code. This process is termed indicator recognition and is presented 

in section 4.3. I t has two parts: extraction, and matching. The second process that 

may be involved in hypothesis generation is sorting. The necessity of a sort 

algorithm is implementation-dependent since indicator recognition could be 

implemented to store the hypotheses in order initially. Consequently, the cost of 

158 



sorting is not addressed here. Hypothesis generation cost is regarded therefore as 

directly proportional to indicator recognition cost. 

Assuming an even density of tokens per line, the number of tokens extracted from 

the source code should be approximately proportional to the length of the program 

(measured in lines). Figure 77 shows the results of the investigation outlined in 

Table 15, verifying this relationship. 
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Figure 77: Graph to show the relationship between the Total 
Number of Extracted Tokens and Program Length 

Since the number of extracted tokens is linearly related to the program length, and 

the next stage of hypothesis generation (matching) involves comparing extracted 

tokens with stored indicators, it is reasonable to expect the computational cost of 

matching also to be related linearly to the program length. This is because the 

matching algorithm compares each token to every indicator in the hbrary. The use 

of flexible matching options proportionally increases the cost since every option 

used incurs an additional test on each library indicator. The exception is case 

sensitivity, which is employed in the first test if necessary. Synonym matching 

incurs the additional test and multiplies the comparison cost by the number of 

synonyms found for a particular token. The size of the synonym list is static and 

consequently there is a fixed upper Umit on this cost for any particular token. This 

means that there should be no fundamental effect on the linear relationship between 
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the computational cost of the indicator matching process and the length of the 

source code. 

The only options used for the investigations in this chapter were case insensitivity 

and sub-string matching for modules that implement them. Experiments carried 

out during the development of HB-CA showed this set of options to be the most 

successful for indicator recognition. Synonym matching was found to reduce 

indicator recognition accuracy significantly, in addition to substantially increasing 

the cost of execution. 

Further results from the investigation described in Table 15 are shown in Figure 78, 

appearing to confirm linear computational growth with source code length for 

indicator recognition. 
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Figure 78: Graph to show the relationship between the Total 
IRM Execution Time and Program Length 

It is also interesting to compare the execution times of the individual indicator 

recognition modules to determine whether there is any significant difference 

between them. The level of matching varies widely between the modules, with 

keyword recognition matching indicators in only two of the twenty programs, 

despite extracting more tokens than any other module. 
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Figure 79 shows the individual execution times for the modules. Results are drawn 

from the investigation described in Table 15. Segment boimdary matching is not 

shown, as its execution times were negligible. 
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Figure 79: Graph to show the relationship between the 
Individual I R M Execution Times and Program Length 

When separated, the execution times are not as clearly linear as their sum and the 

respective gradients of the cost-increase for each module differ slightly. This could 

be interpreted to mean that the individual modules respond differently given 

different program lengths, or simply that the proportion of each type of token 

differs between programs in the data set. The latter would require the modules to 

do different amounts of work. This can be determined by comparing the 

proportion of the total time taken by each module with the proportion of tokens it 

extracts in each case. This is shown in Figure 80 using data from the investigation 

described in Table 15. 
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Since the relationship between the proportions is clearly linear, the slight 

discrepancies shown in Figure 79 can be attributed to the characteristics of the 

source code under analysis rather than differences in the recognition modules and 

the methods underlying them. 

In summary, theoretical analysis of the algorithms in indicator recognition indicates 

that the computational cost should grow linearly with the length of the source code 

given a fixed library. Applying HB-C AS to a number of programs indicates that this 

is the case and hence the hypothesis generation cost also varies linearly with the 

length of the source code. 

The source code is not used by any other part of HB-CA and consequently should 

not have a direct length-related effect on the computational cost of segmentation or 

concept binding. Longer programs are likely to contain more information and thus 

increase the cost of these stages, but there is no direct link with program size. 

Another source code characteristic that can influence the computational cost of 

HB-CA is the number of sections. 

8.6.1.3 Direct Effects of the Number of Sections 

The number of seaions has a minimal impact on hypothesis generation since it only 

affects the production of segment boundary hypotheses. There are so few segment 
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boundaries compared to the other token types in a program that the cost of 

matching them in hypothesis generation is negligible. The number of sections also 

has no direct effect on concept binding since the intervening segmentation stage 

may subdivide the original sections. A direct relationship therefore cannot be 

shown. 

Segmentation is affected by the number of seaions, as it is performed initially using 

the subroutine boundaries in the COBOL 11 program being analysed. The 

computational cost of processing a single section is incurred for each. 

Consequently, it is reasonable to expea the computational cost of executing the 

segmentation algorithms to vary linearly with the number of seaions in the source 

code. Figure 81 shows more data from the investigation described in Table 15, 

presenting the relationship between the segmentation time and the number of 

sections. 
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Figure 81: Graph to show the relationship between the 
Segmentation Time and the Number of Sections in the 

Source Code (Low Resolution Timers) 

This graph does not demonstrate a clear linear relationship. Nonetheless, cost 

differences are apparent and further analysis must be undertaken to explain them. 

Large changes in cost could be explained by the use of SOMs in the segmentation 

process. SOMs would normally be required in large programs with few sections. 
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assuming an even distribution of indicators in the program population. 

Consequently, the computational cost of segmentation could be affected if a SOM 

is required for clustering. Using a SOM would increase the segmentation cost by a 

fixed amount, plus a variable amoimt linearly related to the number of hypotheses in 

the segment being considered. Figure 82 shows the correlation between the time 

taken for segmentation, and the number of SOMs used during the process (data is 

drawn from the investigation described in Table 15). 

12 -r 

6i 

I Segmentation Tme 

I Number of SOMs 
Used 

i I I i " i I I 1 
1 I I I I 

12 

10 I 

6 S 
4 j 
2 I 

Prograins 

Figure 82: Chart to compare the S^mentation Time and the 
Number of SOMs Used for Various Programs 

As expected, there is a "step" increase in the cost for every use of a SOM during 

segmentation. This increase can be illustrated more clearly by plotting the two data 

series against each other as shown in Figure 83. 
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Figure 83: Graph to show the relationship between the 
Segmentation Time and the Number of SOMs Used 

The original, low-resolution timers built into HB-CAS cannot detect the smaller 

changes in cost that are linked to the number of sections, but only the large changes 

caused by SOM usage. The system was modified to include timers capable of 

milHsecond resolution and the investigation repeated. The expected, approximately 

linear relationship between the segmentation time and the nimiber of seaions now 

can be seen, particularly i f the results are separated by the number of SOMs used. 

This is shown in Figure 84. 
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8.6.1.4 Summary 

Section 8.6.1 has established the characteristics of the source code that have a major 

impact on the computational cost of HB-CA. Section 8.6.1.1 established that the 

overall computational cost of HB-CA is related linearly to the length of program 

being analysed. Section 8.6.1.2 demonstrated a linear relationship between the 

length of the source code and the hypothesis generation cost. Section 8.6.1.3 

showed that the cost of segmentation is related linearly to the number of sections in 

the source code (when SOM-related costs are ignored). 

8.6.2 Library 
Since the library is used in most stages of HB-CA, it is important to consider its 

impact on the computational cost of the process. The library is a non-linear 

structure and consequently it is not reasonable to expect the computational cost of 

HB-CA to vary linearly with changes in its content and size. 

To investigate the library's impact on the computational cost, it is examined with 

reference to some of its constituent entities and relationships. 

8.6.2.1 The Library in Hypothesis Generation 

This section discusses the relationship between the computational cost of 

hypothesis generation and the number of indicators and indicates relationships. 

The parts of the library used in hypothesis generation are indicators, concepts, and 

the indicates relationship. Section 8.6.1.2 demonstrated that hypothesis generation 

has linear computational cost variation in relation to the length of source code being 

analysed. Modifying the library should not cause a change in this relationship 

although additional content wi l l necessarily cost more to use. 

Indicator matching involves comparing each extracted token with every indicator in 

the library (effectively comparing two lists). An increase in the number of indicators 

should result in a linear increase in the execution time, signifying a similar variation 

in the computational cost of the method. This linear increase must also be 

considered with reference to the number of concepts to which an indicator is 

linked. The cost of matching a single indicator is multiplied by the cost of 
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producing hypotheses for its concepts. Doubling the number of indicators in the 

library should double the cost of recognition. Doubling instances of the indicates 

relationship for the original set of indicators should have a similar effect. Either 

change alone should have a linear effect on the cost of hypothesis generation, but if 

made together they may produce a different characteristic. 

An investigation has been undertaken to gain some validation of these claims. The 

largest source file from Set E was used to ensure any differences in the results were 

as clear as possible. The library content presented in Chapter 3 was used for the 

first execution. Subsequently, one indicator was removed from the library for each 

execution, until none remained. Indicator removal was distributed evenly among 

the concepts, where possible in the order: keyword, comment, identifier. 

Investigation parameters are shown in Table 16. 

Program Set SetF 

Library Content Chapter 3, Section 3.7.2 

recjhresh 1 

min vd 3 

forcedjpecialhation True 

Results Appendix, Section A.5.5 

Table 16: Parameters for Investigation of Indicator Cost 

Initial investigations revealed that the variable proportion of the execution time, i.e. 

that which is dependent on the size of the library, was negligible in comparison to 

the fixed cost of execution. Consequently, no clear relationship was apparent with 

low-resolution timers. The high-resolution timers produced the results shown in 

Figure 85. 
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Figure 85: Graph to show the relationship between the Total 
I R M Execution Time and the Number of Library Indicators 

These timers make the results more sensitive to fluctuations in the operating system, 

but the approximately Hnear characteristic of the relationship is quite clear. 

In summary, the computational cost of hypothesis generation varies linearly with 

the number of indicators in the library. 

The effect of modifying the indicates relationship should be similar to that of 

modifying the number of indicators in the library. Hypothesis generation cost is 

dependent on the number of matched indicators and the number of concepts to 

which each is linked. Increasing the number of links (i.e. instances of the indicates 

relationship) should increase the time taken to produce hypotheses in a linear 

manner. 

An investigation was undertaken using the library content presented in Chapter 3 

and the largest source program from Set E. It begins with 23 instances of the 

indicates relationship, and each successive execution of the system adds an 

additional instance to approximately one third of the indicators. This results in 

confusing and incorrect concept assignment but the concern here is the change in 

cost, not the accuracy of the result. Investigation parameters are shown in Table 17. 
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SetF 

Chapter 3, Section 3.7.2 

1 

3 

True 

Appendix, Section A5.6 

Table 17: Parameters for Investigation of Indicates Cost 

The relationship between total indicator recognition time and instances of indicates 

is shown in Figure 86. 
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Figure 86: Graph to show the relationship between the Total 
Indicator Recognition Time and the Number of Indicates 

Relationships 

The expected linear relationship is evident. 

Adding instances of indicates to existing concepts and indicators, has the same 

effect on indicator recognition costs as adding new concepts to the library and 

linking indicators to them. It has a similar structural effect (i.e. more instances of 

indicates). 
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In summary, the computational cost of hypothesis generation varies linearly with 

the number of instances of the indicates relationship. 

8.6.2.2 The Library in Segmentation and Concept Binding 

The library has minimal effect on segmentation as the process operates on the 

hypothesis list only. 

The library is used directly in concept binding and consequently has an effect on the 

computational cost of this stage of HB-CA. The two salient relationships are 

composition and specialisation. Indicates is not used in concept binding. 

The cost of concept binding should vary linearly with the niunber of segments since 

the same seaion of processing must be performed once for each. Using the 

investigation shown in Table 15 (with the lower resolution timers), Figin-e 87 shows 

some validation of this relationship. The results are shown in section A.5.1. 
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Figure 87: Graph to show the relationship between the 
Concept Binding Time and the Number of Segments 

There are four activities within concept binding and these are described in Chapter 

6. Factors in the cost of each activity are now considered. 
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8.6.2.3 Factors in Conclusion Generation Cost 

The first concept binding activity, conclusion generation, involves generating all 

possible conclusions from the action concepts in a segment. Both composition and 

specialisation are used in this. Each action concept generates conclusions based on 

its composites. Conclusions are also generated for every specialisation of a 

composite object. Changes in the number of segments, the number of 

compositions, or the number of specialisations, may all have an effect on the cost of 

conclusion generation. These are all different types of change and are considered 

separately. 

Conclusion generation has a linear relationship with the number of action concepts 

in the current segment because each concept generates one set of conclusions. This 

holds as long as each set of conclusions is regarded as a single unit of cost. 

However, once the composition and specialisation relationships are considered, the 

cost relationship is not so clearly defined. 

In a library with no specialisations, adding composites wi l l vary the conclusion 

generation cost linearly, since each additional composite wil l generate a single 

additional conclusion for a particular action concept. 

In a library with a fixed number of composites, adding specialisations wil l cause a 

linear variation in cost, if every action concept is composite with the primary object 

being specialised. This is because one additional conclusion wil l be generated for 

each action concept. Those action concepts that are not composite with the 

primary object being specialised wil l remain unaffected by the change. Cost 

variation is linear for further additional specialisations of a particular primary object, 

but if another object is specialised, the overall characteristic may be non-linear. This 

can be illustrated by the following example: assume that Read is composite with 

File and Record, and Write is composite with Record. This would produce 5 

conclusions (Read, Read:File, Read:Record, Write, Write:Record). By specialising 

File to MasterFile, the number of conclusions would increase to 6 because the Read 

concept has a composite relationship with File. Specialising File again to 

PaymentFile would result in 7 conclusions. If Record were then specialised, the 

number of conclusions would increase to 9 because both action concepts are 
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affected. The cost characteristic is therefore linear within a single group of 

specialisations (e.g. specialisations of File), but non-linear in general. 

Non-linear variation also may be seen if a new composite is created in a Hbrary with 

specialisations. In this case, the new composite will increase the cost in proportion 

to the number of specialisations attached to its object concept. 

A small investigation to verify some of these arguments was carried out using the 

largest program from Set E, and gradually extending the Hbrary content presented in 

Chapter 3. Cost variation was measured in terms of the execution time of the 

conclusion generation subroutine in the concept assignment module of HB-C AS. 

Times for all segments in a program were accumulated to give the total shown in 

the results. The library was extended by adding concepts with no indicators, thus 

ensuring that only the composition and specialisation relationships were analysed. 

For the first part of the investigation, sets of specialisations were added to each of 

the two primary objects in the library. There are 4 composites in the library and 

these were not modified. The investigation parameters are shown in Table 18. 

Program Set Set F 

Library Content Chapter 3, Section 3.7.2 

rec thresh 1 

minvd 3 

forcedjpeciaUsation True 

Results Appendix, Sections A.5.7, A.6 

Table 18: Parameters for Investigation of 
Specialisation/Composition Cost 

Figure 88 shows the change in cost being linear for each set of specialisations 

shown. The change in gradient indicates when the object concept, to which 

specialisations were added, was changed. This shows that the cost change is linear 

within a particular group of specialisations, i.e. specialisations of one object concept. 

Changing the root of the group (i.e. the object concept) causes a change in the 

gradient but the cost still has a linear relationship with the size of the group being 

considered. 
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The effect of adding composites was measined by adding additional object concepts 

to the library and creating each as a composite. Compositions were made with two 

action concepts and, although the results are not as clear as those for speciaHsation, 

there is a change in gradient where the action concept being used was changed (see 

Figure 89, with results in seaion A.5.7.2). 
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In summary, the cost of conclusion generation can be related linearly to various 

aspects of the library, but the overall relationship is determined by a combination of 

these factors. 

8.6.2.4 Factors in Conclusion Completion Cost 

The second stage of concept binding is conclusion completion. This involves using 

the object concepts in the current segment to validate composite conclusions in the 

list. The only library relationship used is specialisation, to determine the more 

general forms of a particular specialised object concept. Changes in the 

specialisation relationship could have, at worst, a linear effect on the cost of this 

process. This is because one additional instance of the relationship may need to be 

examined for every additional specialisation added. The worst case would arise if 

every conclusion contained a form of the specialisation, and the most specialised 

form was hypothesised in every case. Every hypothesis would then add score to 

every conclusion. This is unlikely to happen in practice and hence changes to the 

specialisation relationship should not have a major impact on the cost of conclusion 

completion. 

8.6.2.5 Factors in Disambiguation 

The third part of concept binding, disambiguation, also uses specialisation in a 

similar way to conclusion completion. The relationship is used to find general 

forms of concepts where the evidence for specialised forms is ambiguous. The 

addition of a specialisation to the library may have therefore a similar effect to that 

in conclusion completion. In the worst case, where every situation requires the 

examination of all forms of a concept, the change in computational cost would be 

linear, but in practice, it should be better than this because it is unlikely that every 

case wi l l require this processing. 

8.6.2.6 Factors in Post-Disambiguation Processing 

The final stage of concept binding involves specialising a general concept if 

forced_specialisation is True. In the worst case, this will require examination of every 

specialisation of that concept and consequently, the addition of a new specialisation 

to the library could cause a linear change in the cost. This change would be 
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observed if the new specialisation was the most specialised form of the general 

concept, and there was evidence for it. In practice, it is unlikely that this would 

occur in every segment analysed. 

8.6.2.7 Summary 

In summary, the major factors in the computational cost of concept binding are the 

numbers of composition and specialisation relationships in the library. Independent 

changes in these relationships are not expected to cause anything worse than linear 

change in the computational cost. When changes are made to both relationships 

simultaneously, or when a single change effectively results in this, e.g. adding a 

composite with specialised objects as discussed above, the change in computational 

cost may not be linear. 

8.6.3 Summary 
The effect of various properties of the source code and library on HB-CA's 

computational cost has been considered. HB-CA possesses a key characteristic of 

plausible reasoning systems: linear growth in computational cost with the length of 

the source code being analysed. Cost factors other than source code length have 

been identified, and their impact on the computational cost of individual parts of 

HB-CA considered. 

8.7 Spatial Cost 
This section considers the spatial cost of HB-CA. 

HB-CA's spatial cost is closely linked to its computational cost. The linear 

relationship between source code length and computational cost is reflected in the 

size of data structures created by the various stages of HB-CA. 

8.7.1 Hypothesis Generation 
Recall that the number of tokens extracted rises linearly with the length of source 

code (see Figure 77), The spatial cost of extraction increases at the same rate 

because each token is one element of the data structure produced by the extraction 

stage. 
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In the matching stage, the number of hypotheses represents the spatial cost. The 

number of hypotheses generated wil l be, at most, the number of tokens multiplied 

by the number of indicators in the library, multiplied by the number of indicates 

relationships in the library. This is the worst-case situation that would occur if every 

token was matched, and every indicator was linked to every concept. In practice, 

this is highly unlikely since the resulting hypothesis list almost certainly would be 

useless for concept assignment. Section 8.6.2.1 demonstrated a linear relationship 

between the computational cost and the numbers of indicators and indicates 

relationships in the library. A similar relationship holds for the spatial cost of 

hypothesis generation, due to the calculation shown above. If the number of 

indicators or indicates relationships is increased, the worst-case situation would 

result in a linear increase in the space required for the hypothesis list. 

8.7.2 Segmentation 
The segmentation spatial cost is mainly proportional to the size of the hypothesis 

list generated in the first stage, as it is the primary data structure used by this 

process. Additional costs may be incurred if a SOM is required, the worst-case 

spatial cost of this being related to the size of the largest segment in the hypothesis 

list. If there is only one segment (i.e. no subroutines in the source), the SOM can be 

no larger than the entire hypothesis list. 

8.7.3 Concept Binding 
The spatial cost of concept binding has similar dependencies to its computational 

cost. Changes in the library content, in terms of composition and specialisation, 

may cause, in the worst case, linear changes in the spatial cost. This is demonstrated 

for conclusion generation in Figure 90 and Figure 91 where the spatial cost (in 

terms of conclusions) is shown in relation to the numbers of specialisation and 

composition relationships in the library. The results are from the investigation 

described in Table 18 and show the total number of conclusions generated for the 

program in each case. Further details of the investigation can be found in section 

8.6.2.3. 
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Spatial Cost of Conclusion Generation and the Number of 

Composites 

The change in gradient on both graphs results from the relationships being applied 

to different concepts. The results show a linear change for additions to each 

concept individually. It is interesting to note that the shapes of these graphs are 

similar to those shown in Figure 88 and Figure 89. This indicates that the number 
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of conclusions generated has a direct relationship with the computational cost of 

conclusion generation. 

8.7.4 Library 

The spatial cost of the library is, at worst, linear with the number of concepts or 

indicators represented. Adding either entity causes a linear change in the space 

required. This cost characteristic can be improved for concepts, using the 

composition and specialisation relationships. Adding an instance of either 

relationship causes a linear cost increase but, since there are implied compositions 

with the specialisations of a primary concept, the amount of information 

represented can be increased by more than one item. If every concept is atomic 

then the increase is linear, but if composition and specialisation are used it can be 

better than linear. This is one advantage of using a semantic network rather than a 

list to represent concepts. 

8.8 Expandability 
This section discusses the ability of HB-CA to incorporate different information 

sources for concept assignment. 

A particular strength of HB-CA is its use of a source-code independent 

representation. By transforming the source code into a hypothesis list very early in 

the process, the latter two stages of HB-CA can use information of any type. This 

assumes that the information relates to the source code at the token or line level and 

is transformable into a hypothesis. The ability to use multiple information sources 

can be seen by considering the hypothesis generation stage of HB-CA. Each 

indicator recognition process generates a Hst of hypotheses that are merged to form 

a single, ordered list. Clearly, if an additional Hst is included, the extra information 

can be merged without difficulty. 

The major issue to be considered when adding an additional source of information 

is whether the potential information gain is worth the cost of extraction. 

HB-CA defines four classes of indicator (see Chapter 4). An investigation has been 

undertaken to determine their relative effectiveness. Indicator recognition modules 
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were executed separately, and in various combinations, to determine their effect on 

concept assignment. The investigation was simplified by selecting programs that do 

not require SOM analysis to ensure that each segment was processed using a subset 

of the same total indicator collection. The distribution of indicators among 

concepts in the library is reasonably even so there should be no particular bias 

towards one indicator class. The investigation parameters are shown in Table 19. 

Set G 

Appendix, Section A.2 

1 

3 

True 

Appendix, Section A.7 

Table 19: Parameters for Investigation of Expandability 

The relative computational costs of indicator recognition are discussed in section 

8.6.1.2. 

Segment boundary indicators are treated differently to the other types. Although 

they are similar to the other classes and could be treated in a similar way, HB-CAS 

relies on the presence of at least one pair in the hypothesis list rather than using a 

SOM when none are available. Segment boundary recognition is executed therefore 

in all parts of the investigation. 

Figure 92 shows the relative proportions of the "total" concept assignment achieved 

by each module or combination (all concepts were non-strictly accurate). 
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Assignment Achieved by Indicator Recognition Modules 

Note that the "total" concept assignment is regarded as that achieved by all three 

modules in combination, shown in the rightmost bars on the chart (category 

I+K+C) . 

It is clear that the identifier and comment classes contribute the majority of the 

information and are capable of providing enough for concept assignment in the 

absence of any other modules. Although keywords do not appear to contribute 

enough hypotheses for concept assignment when considered alone, it is interesting 

to note that in both cases shown above, keywords in combination with other 

modules produce better assignment than those modules individually. 

The performance of individual modules is dependent on the proportion of 

appropriate tokens in the source. Comments do not appear to contribute as much 

as might be expected but this can be attributed to a lack of comments in the short 

test programs. In all cases, identifiers seem the most useful source of information 

with conunents taking second place. In the examples shown, keywords play a small 

but important role in augmenting the main sources of information. 

The results of this investigation suggest that for the classes of indicator defined, the 

potential gains outweigh the relatively low cost of extraction. This may not be the 

case if, for example, program plans were used as indicators because the cost of 

searching for them can be extremely high. This would also apply to natiual 
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language recognition of comment phrases rather than single words. The greater 

accuracy provided by such indicators may be beneficial but the relatively low cost of 

a plausible reasoning concept assignment system could be compromised. 

It is not surprising that comments and identifiers contribute most of the 

information for concept assignment as they have greater domain semantics than 

keywords. Since the object of concept assignment is to label the source code with 

domain concepts, indicators with strong domain semantics wil l be more helpful 

than those without. Strong program semantics (such as those provided by 

keywords) are more helpful with structural information and consequently, are used 

best in areas such as segment boundary recognition. 

It should be noted that, in addition to requiring indicator classes with strong domain 

semantics, such information also needs to be available within the source code. 

These are effectively two sides of the same problem. A maintainer's understanding 

of source code without meaningful identifiers or comments, is restricted largely to 

program-level semantics. Using solely the keyword indicator recognition module 

restricts HB-CA's view in a similar way. If source code with meaningless identifiers 

is analysed then indicator matching wil l be unsuccessful, or the results will be 

confusing. In this respect, HB-CA suffers similar confusion to a maintainer 

attempting to understand poorly written code. 

The sequential list model employed for hypotheses has many strengths, in particular, 

the ability to integrate multiple knowledge sources as discussed earlier in this 

section. There are also some disadvantages to the approach, e.g. the problem of 

representing structure-based indicators. This is discussed in more depth in section 

8.9. 
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8.9 Representational Power 
This section discusses the ability of HB-CA to represent different types of indicator 

and concept. 

The library was originally designed to represent indicators as textual tokens and 

would require significant modification to represent other types of information. It 

might be possible to use the tokens to refer to a file or other container capable of 

storing more complex indicators such as program plans. These require a 

representation capable of modelling data and control flow constraints. Plans such 

as compute-hash could be stored as a name but there would be difficulty in reliably 

recognising them without the complex indicators. 

The problem of representing information about relationships and constraints is 

illustrated further by extending the airline-booking example suggested in [BIGG93]. 

Although the concept "reserve airline seat" could be modelled using diverse 

evidence for the constituent parts of the process, expressing a constraint such as 

"only one person can reserve one seat" is much more difficult. The domain-specific 

relationships between objects in the program cannot be modelled in the Hbrary as it 

only allows composition and specialisation. Consequently, there is no easy way of 

describing the evidence for the concept. The library's ability to model business 

rules is clearly affected by this, since the definition of a business rule (see Chapter 2) 

specifies that it is a requirement on the condition or manipulation of data. Rules 

can be modelled in terms of the features involved in the manipulation of the data 

such as likely variable names and computational keywords. This does not guarantee 

to find the business rule in its precise form but if the rule's implementation is 

coherent in the source code, the concept name describing it may be assigned 

correctly. 

The assumption underlying the library's representation of concepts is that of spatial 

co-occurrence. If several pieces of evidence for a concept occur in close proximity. 

to each other then that concept can be determined. It would not be impossible to 

assemble evidence for constraints in the library, but reliably achieving accurate 

concept assignment for them seems unlikely. 
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Much of the abstracting power of HB-CA's representation is derived from the 

ability to store any concept name desired by the user. Very high-level abstractions 

may not be found successfully if they correspond to larger sections of program than 

those to which the method aims to assign concepts. 

In addition to the limited representation of indicators as simple tokens, HB-CA 

could be hampered by its ordered hypothesis list. This would cause particular 

problems for those indicators relying on spatial relationships between parts of the 

code, e.g. a delocalised program plan. Although the plan might be found within a 

section, it would be difficult to decide where to place its hypothesis in the list since 

it participates at several disjoint points in the code. One solution would be to create 

a hypothesis for every line of the plan but this may upset the balance of evidence in 

the appropriate segment. The problem would be less severe for natural language 

phrase indicators as they are likely to occur on a single line. 

Another problem with the ordered hypothesis representation is that no account can 

be taken of an indicator's type or other syntactic properties. In performing the 

investigations for this chapter, it has been observed that concept assignments are 

made occasionally to sections of source code that have been commented out. This 

is because the comments have not been recognised as such by the segmentation or 

concept binding stages. The issue could be addressed by examining the type of the 

indicators within a segment and rejecting that segment if no executable code is 

found. Taking account of other syntactic properties could improve the general 

performance of HB-CA, e.g. if a particular token was known to be a section name, 

it could be given greater weight than the other indicators in the segment and 

provide a context for their examination. The risk with this approach is that more 

reliance is placed on a single token than on the general body of evidence. This risk 

was deemed unacceptable in HB-CA, leading to the "naive" token model in use. 
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8.10 Domain Independence 
Although HB-CA's algorithms are not tailored to a particular domain, its reliance on 

a domain model means that a library developed for one domain may not transfer to 

others without significantly impairing concept assignment performance. To 

investigate this, the library content presented in the Appendix was applied to several 

programs from a different system to that providing the other examples in this 

chapter. Whilst not from a significantly different domain, these programs serve to 

illustrate some of the issues associated with domain independence. The 

investigation parameters are shown in Table 20. 
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Table 20: Parameters for Investigation of Domain 
Independence 

Results from both domains are shown in Table 21 (see Table 13 for other results 

from the old domain). Programs from the new domain show markedly lower 

average accuracies. 

New Domain Old Domain 

Mean Accuracy 44%, a = 29 84%, a = 14 

Mean Strict Accuracy 30%, a = 26 56%, a = 19 

Median Accuracy 53% 89% 

Median Strict Accuracy 26% 50% 

Table 21: Average Accuracies for Library Applied to a 
Different Domain 

The concepts found in the alternative system are more general than those from the 

original, and make less use of speciaHsations in the library. 
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8.11 Language Independence 
HB-CA was designed to work with the COBOL I I language. 

The use of hypotheses as the primary reasoning component of HB-CA gives it the 

potential to be applied to other languages. The following sections discuss potential 

issues that may arise from such applications. 

8.11.1 Imperative, Non Object-Oriented (e.g. C, Pascal) 
This kind of language is similar to COBOL I I and could be readily analysed by 

HB-CA. Assuming appropriate lexers are used for extracting tokens in the indicator 

classes, the matching stage of hypothesis generation would not require modification. 

Since the remainder of the method relies on hypotheses rather than source 

dependent information, no changes should be required to these stages either. The 

knowledge base would need to be equipped with indicators appropriate to the new 

language, particularly in the keyword class. Minor modifications could be made to 

exploit the scope of variables in block-structured languages, but in principle, this 

should not be a major issue. 

8.11.2 Imperative, Object-Oriented (e.g. C++, Delphi, Java) 
Applying HB-CA to object-oriented languages may not be as successful as applying 

it to those described in the previous category. HB-CA adopts a linear view of 

source code in a file, regarding the file as containing one program made up of a 

number of subroutines. Superficially, the class definition of an object-oriented 

language could be seen in a similar fashion, with methods regarded as subroutines. 

There are important differences, e.g. not all of the information required to assign a 

concept to a method may be in the file as much of it may be inherited from super­

classes. Analysing this additional information would require substantial 

modification of HB-CA to enable it to handle a collection of files. In addition, the 

nature of object-oriented programming means that related functions and data 

structures tend to be grouped within a single class. Methods may be smaller than 

their equivalent procedures in another language (due to encapsulation and scoping), 

which may lead to easier comprehension. The functional grouping and smaller 

method size make it less likely that concept assignment would be of great benefit. 
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In summary, HB-CA could be applied to an object-oriented language with minor 

modification but the benefit of applying this type of tool may not be worth the 

effort required. 

8.11.3 Non-Imperative (e.g. Haskell, Prolog) 
These languages challenge many of the assumptions on which HB-CA rests, e.g. the 

notion of sequence between program statements, subroutines to provide basic 

segmentation, and the availability of a reasonably large body of evidence within the 

code to indicate functionality. 

Programs written in functional languages such as Haskell do contain a certain 

amount of informal information, and concept assignment might be attempted. The 

generally limited size of such programs and the style of programming adopted make 

this an exercise of dubious merit. 

There is a large amount of literature on the psychology of understanding programs 

written in imperative languages but very little on functional or logic languages. 

Some examples of work on the latter type are [ROME99], and [HAZA93]. The 

general lack of research in this area could be due to the lesser financial imperative of 

maintaining systems written in these languages. Since such work rightly forms the 

basis for the design of program understanding tools and methods, there is a need 

for more investigation to establish the requirements and feasibility of tool support 

for logic and functional languages. 

8.12 Cognitive Requirements 
This section evaluates HB-CA (as implemented in HB-CAS) against the cognitive 

design element framework described in [STOR97] and [STOR98]. The version used 

here is drawn from [STOR98] in which two of the elements from [STOR97] appear 

to have been combined. The framework (shown in Figure 93) is designed to guide 

the development and evaluation of software exploration and comprehension tools. 

Where possible, the criteria are discussed with reference to the HB-CA method but 

those that are clearly implementation-specific refer to HB-CAS. 
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Figure 93: Cognitive Design Elements for Software 
Exploration Tools [STOR98] 

There are fourteen elements divided into two main branches. The first aims to 

capture the essential processes of various comprehension strategies, and the second 

addresses the cognitive overhead experienced by a maintainer exploring software 
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[STOR98]. A description of the various comprehension strategies can be found in 

Chapter 2. 

8.12.1 Improve Program Comprehension 
8.12.1.1 Enhance Bottom-Up Comprehension 

E l : Indicate syntactic and semantic relations between software objects. 

• Immediate and visible access to low-level program units (such as source 

code) should be provided. The syntactic and semantic relations of these 

units should be clearly visible [STOR98]. 

• HB-CA only analyses one unit of source code at a time. Relationships 

between units are not supported. 

E2: Reduce the effect of delocalised plans. 

• A delocalised plan results from the fragmentation of source code related 

to a particular algorithm or plan. Understanding this can be disorienting 

or cumbersome without tool assistance [STOR98]. 

• HB-CA does not undertake plan analysis of a program. Some plan-type 

groups may be detected by the concept assignment methods but only 

through the informal evidence available. Delocalised plans are liable to 

be detected as either one large segment containing a high proportion of 

unrelated code, or as a series of smaller segments within the delocalised 

plan. HB-CAS has no facility for hiding unrelated parts within the plan. 

E3: Provide abstraction mechanisms. 

• Storey claims that maintainers may benefit from creating their own 

abstractions and labelling them to reflect their understanding. This 

might help them to better comprehend the software than if they use 

prefabricated views provided by a tool [STOR98]. 

• HB-CAS reflects the maintainer's current understanding of the domain 

(represented in the knowledge base) rather than a specific program. 

Naming of domain concepts can be performed in accordance with the 

maintainer's requirements. The purpose of HB-CA is to alleviate the 

effort of applying these to the source code. 

188 



8.12.1.2 Enhance Top-Down Comprehension 

E4: Support goal-directed, hypothesis-driven comprehension. 

• This requires the maintainer to possess prior application-domain 

knowledge, previous exposure to the program, or access to its 

documentation. Understanding is performed depth-first through 

hypothesis formulation and verification [STOR98]. 

• HB-CA supports hypothesis-driven comprehension in a limited way. If 

a maintainer formulates hypotheses about the functionality of a 

program, these can be swiftly verified with the concept list provided by 

HB-CAS. In addition, formulating the knowledge base wil l require 

exploration of domain knowledge by the maintainer. 

E5: Provide an adequate overview of the system architecture at various levels of 

abstraction. 

• HB-CA works on single modules of code and does not aim to support 

system-level analysis. 

8.12.1.3 Integrate Bottom-Up and Top-Down Approaches 

E6: Support the construction of multiple mental models (domain, situation, 

program). 

• The variety of models that may be used by a maintainer during 

comprehension have been unified in a meta-model (see [MAYR95]). 

Ideally, software tools should support any model required by the 

maintainer through multiple views [STOR98]. 

• HB-CA supports multiple models by identifying concepts. These can be 

used in a bottom-up context for abstraction, or top-down for hypothesis 

verification. Although support for the situation and domain models is 

reasonably good, HB-CA does not assist greatly with building the 

program model. 

E7: Cross-reference mental models. 

• HB-CAS does not support cross-referencing between views of a system 

because of its single module approach. 
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8.12.2 Reduce the Maintainer's Cognitive Overhead 
8.12.2.1 Facilitate Navigation 

E8: Provide directional navigation. 

• Directional navigation refers to reading source code and documentation 

sequentially, browsing the source code using data and control flow 

relationships, traversing software structure in hierarchical abstractions, 

and following user-defined program or application dependent links 

[STOR98]. 

• HB-CAS supports this by providing hypertext links between the concept 

list and source code browser. 

E9: Support arbitrary navigation. 

• Arbitrary navigation is supported when a maintainer navigates to 

locations not necessarily reachable by defined links [STOR98]. 

• Although HB-CAS provides hypertext linkage between concepts and 

display, it does not support this kind of arbitrary navigation. 

8.12.2.2 Provide Orientation Cues 

ElO: Indicate the maintainer's current focus. 

• This refers to the process of showing the maintainer's object of interest 

and its context. Textual views of source code implicitly show the focus, 

although related areas of code may not be visible [STOR98]. 

• HB-CAS supports a textual view but does not aim to provide contextual 

information of the type discussed above. 

E l l : Display the path that led to the current focus. 

• Recording why a maintainer is interested in a particular object is very 

important [STOR98]. 

• HB-CA does not aim to capture this information. 

E12: Indicate options for further exploration. 

• This refers to the way in which a user is made aware of facilities for 

further exploration [STOR98]. 

• HB-CAS does not provide more than one way of exploring code. 
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8.12.2.3 Reduce Disorientation 

E13: Reduce additional effort for user-interface adjustment. 

• Poorly designed interfaces induce an additional overhead and available 

functionality should not impede the program understanding task 

[STOR98]. 

• HB-CAS was designed as a research prototype. Consequently, greater 

emphasis is placed on intermediate data structures and process 

monitoring than would be required for a real-world system. The source 

code browser clearly shows the results of the method although there is 

substantial scope to improve it. 

E14: Provide effective presentation styles. 

• In this criterion, Storey discusses graph layout almost exclusively. This 

has no relevance to HB-CA. 

8.12.3 Summary 
This section has used Storey's cognitive design element framework to evaluate 

HB-CA and HB-CAS. In most of the areas, either HB-CA or HB-CAS adequately 

meets the criteria specified, failing only those that are beyond the original scope and 

objectives of the work. 

8.13 Summary 
This chapter has presented the first part of an extensive evaluation of HB-CA. 

Beginning with an investigation of the scalability properties of the method, the 

discussion has covered research and design characteristics, highlighting the 

successes and failures of HB-CA's approach to concept assignment. 

Chapter 9 contains the second part of the evaluation, looking at the applicability of 

HB-CA in the software maintenance process. Several applications are identified and 

their associated cost issues discussed. 
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Chapter 9 

Evaluation II: Applications of HB-CA 

9.1 Introduction 
Chapter 8 presented an extensive evaluation of many characteristics of HB-CA. It 

discussed properties such as scalability, computational cost, and representational 

power. Strengths and weaknesses of the techniques employed for segmentation and 

concept binding were highlighted. Suggestions were made for solving some of the 

remaining problems in the HB-CA method. 

This chapter concludes the evaluation by examining applications of HB-CA in the 

software maintenance process. It is shown to have potential benefit for several 

activities. 

9.2 HB-CA in the Software Maintenance Process 
The discussion of the software maintenance process in Chapter 2 was based on the 

IEEE standard [IEEE98] and identified several areas where software 

comprehension was required. These were parts of the analysis, design, and 

implementation stages of the standard process, and are now revisited to explore the 

potential benefit of HB-CA. 

The activities can be divided broadly into two categories: those that assist with 

analysing a change, and those concerned with making the change. The first category 

consists of business-rule ripple analysis, code ripple analysis, and module selection. 

The second consists of software module comprehension only. The way in which 

HB-CA could help to reduce the cost of these activities is discussed in the next few 

sections, making the assumption that HB-CA is accurate, and that the library is 

complete with respect to the concepts required. Any cost savings achieved through 

the use of HB-CA would be offset by less than perfect accuracy or an incomplete 

library. 

192 



9.2.1 Analysis Activities 
9.2.1.1 Business-Rule Ripple Analysis 

Ripple analysis occurs in the analysis phase of the IEEE standard. Business-rule 

ripple analysis involves determining the potential effect of changing a business rule 

on other parts of the system (an example of higher-order impact analysis, see 

[TILL96b]). Using HB-CA to assist with ripple analysis would require some 

additions to the method or its implementation to enable it to analyse multiple 

source files. This would be a wrapper supplying each candidate file to HB-CA and 

analysing the result of concept assignment. Business rules would be modelled in the 

library, and the modified method would be supplied with the rule being proposed 

for change. Section 8.9 discusses issues relating to business-rule modelling. The 

library would need to be populated entirely with business rule concepts to avoid 

confusion with the programming domain. Concepts found in programs that 

implement the "proposed change" rule would be presented as candidates for side 

effeas of the change. The maintainer could then examine them and accept or reject 

these suggestions for further analysis. The process is shown in Figure 94. 

Source Files in Code Repository 
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.Cl^ge" Concepi 

Mamtamer 
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Figure 94: Diagram showing HB-CA used for 
Business-Rule Ripple Analysis 

Chapter 2 stated that the cost of business-rule ripple analysis is crudely proportional 

to the number of artefacts inspected. One advantage of using HB-CA in this 
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activity would be that many programs could be scanned quickly for potential side 

effects in the business rules, reducing the number that the maintainer is required to 

examine by hand. This application of HB-CA may have limited success given the 

difficulty of representing constraint information in the library (see section 8.9). 

HB-CA could not totally replace the maintainer because it cannot determine 

dependencies between rules beyond that of co-occurrence in the same program. In 

this sense, it does not undertake traditional ripple analysis as it does not predict the 

effect of a change, but only makes suggestions for potential side effects. If it is 

likely that related rules do co-occur, HB-CA could substantially reduce the size of 

the task by limiting the number of code items that require inspection. 

9.2.1.2 Code Ripple Analysis 

This is similar to business-rule ripple analysis but is more likely to occur in the 

design phase of the maintenance standard as part of identifying affected software 

modules. Code ripple analysis is used to determine the effect of changes to the 

source code. There are various methods to perform this using syntactic and 

semantic techniques (e.g. forward program slicing, see [NING94]), but HB-CA 

could perform it on a conceptual level. There is little difference between code 

ripple analysis and business-rule ripple analysis, except in the type of concept being 

considered. Business rules are closer to the application domain than the type of 

concepts that usually would be used for code ripple analysis. These would probably 

be nearer to the implementation domain. The process of using HB-CA for this 

activity would be much the same as that shown in Figure 94, although the library 

would probably contain lower-level concepts in addition to those modelling 

business rules. 

Chapter 2 stated that the cost of code ripple analysis is crudely proportional to the 

number and size of the artefacts examined. Potential cost savings could result from 

the reduced size of the code repository requiring manual inspection, on the principle 

that co-occurrence of concepts indicates some dependency. As discussed in section 

9.2.1.1, relying solely on this relationship prevents HB-CA from fulfilling the 

requirements of traditional ripple analysis. 
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9.2.1.3 Module Selection 

HB-CA can assist with this activity to a greater extent than it can with ripple 

analysis. Module selection can take place before and/or after ripple analysis, 

primarily occurring in the design phase of the standard process as part of identifying 

affected software modules. Once the concepts to be changed are known, the task 

of finding instances of them in the code base can be extremely time consuming. 

Using a similar wrapper to that described in section 9.2.1.1, the concept required 

can be supplied to HB-CA (as the only concept in the library) and programs that 

implement it can be found. These would be the modules requiring change. 

Chapter 2 described the cost of module selection as a function of the size of the 

code repository and the search method. The cost savings from this application of 

HB-CA could be quite considerable since the maintainer does not need to 

participate in the selection activity if the wrapper is used. If HB-CA is employed in 

its current form (i.e. analysing one module at a time), reduced cost could still be 

achieved because the maintainer would not need to read every program entirely. 

The concept list would show whether the concept to be changed exists in the code. 

Concept-based search could perform better than some other automated methods of 

examining source code (e.g. plan recognition) because it has linear computational 

growth with the length of source code being analysed. 

9.2.1.4 Code Reuse 

Although not explicitly placed in the standard process, code reuse can substantially 

reduce the cost of software maintenance. Using HB-CA in a similar manner to 

module selection could facilitate this activity. It might be particularly helpful with 

languages such as COBOL I I that do not lend themselves to populating reuse 

libraries. The code repository could be searched for instances of a particular 

concept required for implementation in another program. HB-CA could be 

particularly helpful since SOM-based segmentation may be able to identify parts of 

subroutines that implement the required concept, even if the whole routine is not 

relevant. 
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9.2.2 Implementation Activities 
One of the steps in the implementation stage of the standard process is coding and 

unit-testing. Coding can be further subdivided into two stages: module 

comprehension, and change implementation (see [GALL91]). These may be 

iterative. Module (or program) comprehension is required in all of the above stages 

to some extent, but a greater depth of understanding is likely to be required for 

implementation. Recall that the comprehension activity is regarded as the 

translation of source code to another representation. In the case of concept 

assignment, the other representation is concept names labelling parts of the source 

code. 

Figure 95 shows the module comprehension activity without HB-CA. 
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Figure 95: Module Comprehension without HB-CA 

Figure 95 can be placed in the context of the comprehension activity framework for 

concept assignment described in Chapter 2 (Figure 7). This is shown in Figure 96. 
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Figure 96: Module Comprehension Activity in the context of 
the Comprehension Activity Framework 

The maintainer must undertake the work of summarising and abstraaing the 

module to a mental or physical representation such as the concept list shown. 

If HB-CA is used (see Figure 97) then much of the effort could be alleviated by 

providing the maintainer with the concept list automatically. Note that the library is 

shown as a file although strictly this is an implementation characteristic. 

197 



Key 

Process 

File/Database 

Information Flow 

Source 

Maintainer 

Source Code 
with 

Concept List 

Figure 97: Module Comprehension with HB-CA 

Note the feedback loop between the maintainer, library, and concept assignment 

process. By continually improving the domain model as HB-CA is used, the 

maintainer can increase the quality of results produced, thus further reducing 

comprehension time with every iteration. To compare the relative costs of the 

automated and manual approaches to concept assignment, the process in Figure 97 

can be placed in the context of the comprehension activity framework. This is 

shown in Figure 98. 
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Figure 98: Module Comprehension Activity using HB-CA, 
in the context of the Comprehension Activity Framework 

Using HB-CA saves the maintainer from performing the translation process, 

enabling them to begin their understanding using more than one knowledge source. 

Since HB-CA fulfils the requirements of the comprehension activity framework, the 

relative costs of the automated and manual approaches can be compared. 

Performing concept assignment using automatic plausible reasoning should be less 

expensive than undertaking the task manually, and consequently using HB-CA 

should reduce the overall cost of software module comprehension. Providing 

automatic concept assignment also allows experienced maintainers to pass on their 
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domain understanding (via the domain model), helping less experienced maintainers 

to become familiar quickly with the system being maintained. 

9.3 Summary 
This chapter has discussed applications of HB-CA in the software maintenance 

process. These have been related to the activities identified in Chapter 2 as part of 

the IEEE software maintenance standard. Five maintenance activities could be 

assisted to varying degrees. Finding co-occurring concepts for further investigation 

might reduce the cost of business-rule ripple analysis and code ripple analysis. 

Module selection could be performed automatically with conceptual searching, and 

code reuse could be facilitated easily. HB-CA could assist in module 

comprehension by automatically providing a concept list related to the source code, 

thus relieving some of the comprehension burden from the maintainer. The 

reduction in cost when using HB-CA for software module comprehension has been 

discussed in the context of the comprehension activity framework defined in 

Chapter 2. If HB-CA reduces the cost of any of the activities described, it should 

achieve a reduction in the overall cost of software maintenance. 

Chapter 10 concludes this thesis by summarising aspects of the concept assignment 

problem and the solution presented here. The success of HB-CA is discussed and 

ideas for further research are suggested. 
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Chapter 10 

Conclusions 

10.1 Introduction 
chapter 9 presented the second part of the evaluation, considering applications of 

HB-CA in the software maintenance process. Five areas were identified for 

potential cost reduction using HB-CA. 

This chapter reviews the research presented in this thesis. The work accomplished 

is compared to the criteria for success defined in Chapter 1, some general issues are 

discussed, and directions for further work identified. 

10.2 Review of Research 
10.2.1 The Concept Assignment Problem 
The concept assignment problem was defined in Chapter 1 as: 

"The process of assigning descriptive terms to their 
implementation in source code, the terms being nominated by a 
user and usually relating to computational intent." 

Segmentation and concept binding were identified as the major research issues 

within this. Segmentation involves finding the location and extent of concepts, and 

concept binding determines which concepts are implemented at these locations. 

10.2.2 Comprehension Activity Framework and Formal Model 
Chapter 2 explored a number of aspects of software comprehension to create a 

framework that describes the activity in terms of translating one representation of 

software to another. This was based on factors common to psychological theories 

of program comprehension and common elements of software tools. The general 

framework was specialised for the concept assignment problem with specific source 

and target representations defined. 
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In conjunction with the specialised comprehension activity framework, a formal 

model (in set theory) was developed to define the representations more precisely. 

As each part of HB-CA was presented, its position in the framework was shown. 

The formal model was extended to capture the intermediate representations 

between stages. Chapter 6 summarised the formal model by drawing together all of 

the definitions in a single section. 

10.2.3 Hypothesis-Based Concept Assignment 
The solution to the concept assignment problem presented in this thesis is termed 

Hypothesis-Based Concept Assignment. It is a three-stage method addressing the 

two major research issues reviewed in section 10.2.1. A simple knowledge base is 

used to model pertinent aspects of the domain. This was described in Chapter 3. 

HB-CA begins with hypothesis generation (presented in Chapter 4), comparing 

indicators stored in the knowledge base to tokens of various classes extracted from 

the source code under analysis. When an indicator matches a token, hypotheses are 

generated for every concept to which it is linked. The individual lists of hypotheses 

from the various classes are combined in order of occurrence and passed to the next 

part of the process: segmentation. 

The segmentation stage (presented in Chapter 5) groups related hypotheses to form 

segments in the combined list. This is undertaken initially using hypotheses 

generated from subroutine boundaries, to ensure that the original program's 

structure is reflected in the resulting hypothesis segment list. Each segment is 

analysed further to determine whether enough hypotheses exist to potentially form 

two or more clusters within it. If this is the case, a self-organising map is employed 

to associate nearby, similar hypotheses. The resulting clusters are checked to ensure 

that sufficient evidence for concept binding is available within each. Any that have 

insufficient evidence are combined with neighbouring clusters that do, and are 

converted to segments. 

The final stage of HB-CA (presented in Chapter 6) is concept binding. Each 

segment created in the previous stage is analysed to determine which concept has 

the most evidence. This is performed by generating initial conclusions from the 
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hypotheses in a segment and extending the conclusion list by exploiting knowledge­

base relationships. The conclusions are scored using the available evidence and the 

highest scoring conclusion is declared the winner. In cases where more than one 

highest-scoring conclusion exists, a number of rules are applied to disambiguate the 

result. If these fail, the first conclusion is picked. 

When all segments have been considered and their concepts bound, the process is 

complete and the source code can be labelled with the concept names. 

The chapters describing the HB-CA method extended the formal model to capture 

data structures relevant to the stage of the process being presented. Each chapter 

compared HB-CA's approach to those adopted by two other plausible reasoning 

concept assignment systems: DM-TAO, and IRENE. A summary of this 

comparison is shown in Chapter 3. 

10.2.4 Hypothesis-Based Concept Assignment System (HB-CAS) 
In accordance with the research aims, the HB-CA method was embodied in a 

prototype software tool termed the Hypothesis-Based Concept Assignment System 

(HB-CAS). The architecture reflects the stages of HB-CA, employing separate 

programs to implement various parts of the process. The system was described and 

evaluated briefly in Chapter 7. 

10.2.5 Evaluation 
Chapters 8 and 9 presented an extensive and detailed evaluation of the HB-CA 

method using the criteria outlined in Chapter 1. The first part of the evaluation 

(contained in Chapter 8) dealt with characteristics and properties of the method, 

beginning with its scalability. Despite theoretical expectations of accuracy at all 

lengths of source code, practical investigations undertaken with HB-CAS indicated 

that lower accuracy occurred with larger programs. This was attributed to the 

algorithms that reallocate hypotheses from invalid clusters. Further issues arising 

from this investigation were discussed with particular reference to segmentation, 

concept binding, and library content. Various aspects of the computational and 

spatial cost were examined and HB-CA was found to have a linear computational 

growth in the length of the source code being analysed. Individual indicator classes 
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have different effects on concept assignment performance and these were discussed 

in the context of HB-CA's ability to use multiple information sources. 

Representational power and domain independence also were examined. HB-CA is 

intended to operate on COBOL I I but could be applied to other languages. This 

issue was discussed with reference to several different classes of programming 

language. The first part of the evaluation was concluded by considering to what 

extent HB-CA and HB-CAS fulf i l cognitive requirements for program 

understanding tools. 

The second part of the evaluation in Chapter 9 discussed various possibilities for 

using HB-CA in the software maintenance process, and five applications were 

identified. HB-CA could potentially reduce the cost of business-rule ripple analysis 

and code ripple analysis, although both these cases require an assumption that co­

occurrence of concepts signifies dependency. Module selection and code reuse 

could derive greater benefit from the use of HB-CA. Finally, the potential was 

shown for a reduction in the cost of software module comprehension and Chapter 

9 described the way in which HB-CA could be used for this purpose. The relative 

costs of concept assignment using automatic and manual approaches were discussed 

with reference to the comprehension activity framework. 

10.3 Evaluation of Research 
An evaluation of the research reported in this thesis is now presented in the context 

of the criteria for success and research aims given in Chapter 1. These are repeated 

here-with a discussion of each. 

1) The definition of aframeworkfor the activity of software comprehension. This should 

capture the essential processes and data structures involved in software comprehension, 

regardless ofwhether the actor (ie. the entity undertaking the comprehension activity) is a 

person or a software tool. 

Chapter 2 defines a comprehension activity framework based on elements common 

to software tools and psychological theories. The framework expresses the 

comprehension activity as a process of translation from one software representation 

to another by means of a processor (which could be a person or software tool). 
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The framework is specialised to the representations required for the concept 

assignment problem. 

2) The creation of aformal model ofthe comprehension activityframework discussed in 

criterion 1 to define clearly its data structures. 

Definition of this model commences in Chapter 2, specifying the source and target 

representations of the concept assignment problem. The comprehension activity is 

expressed as a function mapping one representation to another. 

3) The development of a new method to undertake automatic concept assignment usinga 

simple knowledge base. It should be capable ofanalysingreal-world COBOL IIcode and 

successfully cope with poorly structured and monolithic programs, in addition to well-

structured examples. The method should provide a software maintainer with 

automatically recognised concepts linked to regions of source code. 

A new method, termed Hypothesis-Based Concept Assignment, has been developed 

to perform concept assignment automatically on COBOL I I programs. The 

HB-CA method is presented in Chapters 3 to 6. It has been evaluated using real-

world code and achieves high recognition accuracy, although performance can fall 

when larger programs are analysed. This problem has been investigated and the 

cause linked to specific naive algorithms within the method. HB-CA can cope 

successfully with poor structure in programs, using a self-organising map to 

establish regions of conceptual focus when structural information is insufficient. 

4) As part of criterion 3, the development ofnovel approaches to address the two main 

research issues in concept assignment: segmentation, and concept binding 

Chapters 5 and 6 describe the methods used to address segmentation and concept 

binding. The application of SOMs to the segmentation task provides HB-CA with 

its ability to cope with monolithic and unstructured code, basing decisions about 

segments on the conceptual structure of the program rather than its syntax. The 

concept binding method assesses concept evidence using a combination of semantic 

network activation and disambiguation rules. 
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5j The extension ofthegeneralformal model (see criterion 2) to the new concept assignment 

method. 

Throughout Chapters 3 to 6, the formal model is extended to capture the individual 

parts of HB-CA. The structure of the knowledge base is formally described and all 

intermediate representations are defined. Chapter 6 summarises the model by 

collating all the definitions. The model adequately describes all that is required of it 

and, although some definitions could be augmented, there would be little benefit 

from the exercise. 

6) The implementation ofaprototype tool to demonstrate theftasihility of the new concept 

assignment solution. This should allow easy evaluation of the method. 

Chapter 7 describes and evaluates the HB-CAS implementation of HB-CA. The 

prototype successfully undertakes concept assignment on COBOL 11 source code 

and was used for the practical parts of the evaluation presented in Chapters 8 and 9. 

It has been demonstrated that the work presented in this thesis meets the criteria for 

success and research aims defined in Chapter 1. Section 10.4 discusses these 

accomplishments, and section 10.5 identifies areas for continuing the work and 

improving the capabilities of the method. 

10.4 Discussion 
A reflective discussion of the work accomplished in this thesis is now presented. 

In general, HB-CA is a success. It meets the requirements shown in Chapter 1 and 

has exceeded expectations in its recognition accuracy. 

Synonym matching was slightly disappointing as it caused significant difficulties in 

implementation and showed poor performance. If it were to be included in other 

concept assignment systems, pilot studies would need to be undertaken to 

determine the cost-benefit of the idea. In the absence of synonym matching, 

indicator recognition has been very successful, demonstrating the value of 

meaningful identifiers and comments. The potential for confusion when comments 
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are not relevant to the code with which they are associated has not proved to be a 

problem with the examples tested. 

One of the major successes of HB-CA has been the SOM-based segmentation 

algorithm. Although the reallocation methods have been identified for further 

work, the success of the SOM method has vindicated the underlying principle of 

creating a conceptual map of a program. The idea of a conceptual map formed the 

basis for solving the difficult problem of determining conceptual segmentation 

without performing concept binding first. Various attempts were made to map the 

"conceptual landscape" of a program and this was achieved with relative ease. 

Creating a decision rule to determine which "peaks" were valid and which were not, 

proved more difficult to attain. The SOM emerged as a fine-grained approach to 

associating similar concepts whilst allowing a simple vector density criterion to be 

used for decisions. It has proved to be a successful technique and some 

developments are suggested in section 10.5. The reallocation algorithms require 

additional work but more success may be achieved by eliminating the principle that 

every hypothesis should be preserved. This was originally included to ensure that 

enough evidence was available for concept binding. Experience has shown that in 

many cases there would be enough hypotheses to make bindings, even if invalid 

clusters were ignored. 

Given the success of the SOM technique, and the ability to label output nodes with 

the concept that triggers them most frequently, it is interesting to consider whether 

the entire concept assignment problem might be translated to the SOM. Early work 

with SOMs in HB-CA attempted this task with very limited success but these 

experiences should not rule out further efforts in this direction. Modifications to 

HB-CA would be required because no intelligent exploitation can be made of the 

relationships in the knowledge base. Once hypotheses are passed to the map, they 

must all compete. The solution to this may entail the generation of composite and 

specialised hypotheses, as these would need to compete with the single forms of 

concepts. Creating a map for the entire program also entails considering the 

characteristics of the input space; syntactic boundaries would need to be encoded as 

discontinuities in the sequence, to prevent the cross-subroutine associations 

observed in early efforts. 
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Concept binding based on semantic network activation has proved to be a good 

idea. This is not particularly surprising since it can be seen as a coarse-grained 

connectionist approach with some similarity to that employed by DM-TAO. The 

algorithmic version encodes the more holistic view of the semantic-network scoring 

approach that was devised first. The disambiguation rules were derived by 

considering the principles and goals of HB-CA and they exhibit the desired 

characteristic of graceful performance degradation with conflicting hypotheses. 

There is ample scope to refine and improve them, particularly those that manage 

ambiguity when forcing specialisation. 

The knowledge base has proved effective despite its simplicity. Most of the 

concepts used have been of moderately low levels of abstraction and it would be 

interesting to investigate further ways of encoding higher-level and business-rule 

concepts. One significant issue with the knowledge base is its inability to natively 

encode constraints. This was discussed briefly in section 8.9. It would be possible 

to overcome this limitation with the file-based indicator approach outlined in 

section 8.9, in combination with an indicator recognition module capable of 

detecting the type of constraint required. This type of concept could be arguably 

beyond the scope of concept assignment systems since it does not express 

computational intent, but computational restriction. Nonetheless, the information 

provided by such constraints is very useful in software comprehension. The danger 

of using any type of complex indicator is that the cost advantage obtained when 

using plausible reasoning concept assignment techniques (such as HB-CA) might be 

negated. 

Comparing HB-CA to the systems DM-TAO and IRENE has proved an interesting 

exercise. HB-CA is similar to DM-TAO in the type of concept it seeks and the way 

in which it performs concept binding. However, it shares some features with 

IRENE such as a reasonably simple knowledge base and the ability to explain 

concept assignment decisions. It is unique in clearly separating the stages of 

segmentation and concept binding. The simpler knowledge base used by HB-CA 

offers potentially easier domain modelling than either of the other systems, but lacks 

the dependency modelling ability of IRENE and the wide variety of concept types 
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of DM-TAO. Despite these drawbacks, concept assignment can be performed 

successfully. 

Overall, HB-CA has proved to be a successful concept assignment solution and has 

demonstrated the potential for conceptual mapping of programs. 

10.5 Further Work 
The work presented in this thesis could be extended in many ways and some ideas 

are discussed in this section. 

10.5.1 SOM-Based Concept Assignment 
Section 10.4 suggested the possibility of using the SOM to perform both 

segmentation and concept assignment functions. This would be an interesting 

variation on the existing method and might reduce its cost. Concept assignment 

could be performed by labelling each output node in the map with the name of the 

concept that triggers it most often. Vector density measures would still be required 

to provide a recognition threshold but other concept binding parameters should be 

unnecessary. There are implications for hypothesis generation in that every 

plausible hypothesis (composite and specialised) for an indicator would need to be 

generated. This would be similar to conclusion generation but with the whole 

program regarded as a single segment. Under these conditions, sensible conclusion 

generation would be difficult to achieve. A method would be required to resolve 

the tension between the need for a predefined segment for conclusion generation, 

and the attempt to execute both segmentation and concept binding in one step. 

These issues would be subjects for research. 

10.5.2 Intelligent Reallocation Algorithms 
The problems with naive reallocation of hypotheses were highlighted in Chapter 8. 

Two approaches now are suggested to solve this problem. The first is to ignore any 

invalid clusters. The risk associated with this method is that occasional mis-

association on the SOM could result in valuable information being lost. The 

alternative approach is to improve the way in which hypotheses are reallocated, by 

using their conceptual content as a guide rather than simply dividing clusters equally 

into their surroundings. Various heuristics could be derived to implement this, e.g. 
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a hypothesis could be compared to its nearest vaUd cluster; if the hypothesis does 

not already appear in the cluster then it should not be attached. Such heuristics may 

require experimental investigation to determine their effectiveness. Other non-

conceptual characteristics could be used, e.g. the distance in lines between the 

indicators for the two hypotheses could guide the selection of an appropriate 

cluster. These changes could improve the quality of segmentation. 

10.5.3 Richer Knowledge Base 
Although one of the aims of this work was to perform concept assignment with a 

simple knowledge base, increasing its complexity could be a fruitful line of research. 

Incorporating more inter-concept relations (e.g. secondary hypotheses or multiple 

composites) could increase the representational power and concept assignment 

abilities of the method. It is important to realise that such changes may cause the 

creation and maintenance costs of the library to rise and any potential benefit 

should be weighed against this. 

10.5.4 Richer Conceptual Map 
The idea of a conceptual map was discussed in section 10.4. It would be interesting 

to extend this notion to build a more informative map by using syntactic and 

semantic characteristics pf the source code. This map could be used as the basis for 

a visualisation system, or to improve the concept assignment ability of HB-CA. 

Knowing that a particular identifier is a subroutine name could provide a context 

for the evaluation of other information within the subroutine. The risks of applying 

this type of maxim are noted in section 8.9. Placing greater weight on the 

information provided by a particular identifier could improve the accuracy of 

concept assignment. However, if the identifier is misleading then there is a greater 

chance of incorrect assignment than when a uniform weighting model is used. The 

depth of information could be increased by using a "level of confidence" measure 

of the accuracy of indicator matching. Those indicators matched using sub-strings 

or synonyms would gain a lower confidence level than those matched directly. 

10.5.5 Use of the Data Division 
The current form of HB-CA is concerned solely with the procedure division of 

COBOL I I programs. The data division contains much useful information and 
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could augment HB-CA's object concept acquisition. The identity of data structures 

could be determined by rigorous analysis, or through HB-CA's concept assignment 

routines. Either could help to reduce the number of possible objects for later 

consideration. HB-CA would require modification because it relies on subroutine 

boundaries for its segmentation and has no awareness of the structure of data 

declarations. Preliminary research in this area should establish whether the potential 

benefits in accuracy outweigh the effort of additional analysis. 

10.5.6 Large-Scale Evaluation 
The evaluation in Chapter 8 provides much useful information about the nature of 

HB-CA. Section 8.12 demonstrated that HB-CA and HB-CAS fulf i l many of the 

cognitive requirements for program understanding tools. These properties could be 

investigated further by undertaking a large-scale study to determine the effectiveness 

of the tool when used in real maintenance situations. This could guide the 

development of further research on the method and tool, in addition to providing 

information about the effectiveness of this type of comprehension assistance. 

Other forms of large-scale evaluation could involve testing HB-CA with 

considerably more complex library content, and larger source programs from 

different domains. 

10.5.7 Software Evolution Study 
Although HB-CA was intended as a software maintenance support method, it could 

be used as a research tool in its own right. It would be interesting to examine many 

versions of the same program and to study changes in concept assignment through 

the program's maintenance history. This may provide insight into the way concepts 

break down and move within the program, leading to more effective strategies for 

maintenance. Research in this area may need to establish the viability of concept 

assignment as a measure of comprehensibility before undertaking the study itself. 
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10.6 Final Summary 
A review of the work accomplished has been presented in this chapter. The overall 

success of the research has been considered in terms of the criteria shown in 

Chapter 1, and several directions for further work have been established. 

This thesis has examined the context, motivation, and definition of concept 

assignment, leading to the development of a framework to describe software 

comprehension, and a formal model of important representations. A new, 

automated solution to the concept assignment problem has been presented: 

Hypothesis-Based Concept Assignment. The stages of HB-CA have been described 

and compared to similar systems. An extensive evaluation has demonstrated 

various characteristics of the method including linear computational growth in the 

length of program being analysed, high accuracy, and the ability to operate on real-

world programs of varying quality. The potential for HB-CA to be applied in 

several parts of the software maintenance process has been shown, and possible 

cost savings have been identified. Ideas for further work have been suggested. 

Hypothesis-Based Concept Assignment is a novel and successful solution to the 

concept assignment problem. 
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Appendix 

Investigation Data 

A. l Introduction 
The appendix contains source data for the graphs shown in the evaluation, program 

sets, and the library content referred to by some investigations. Library content for 

the remaining investigations can be found in Chapter 3. 

Most results are rounded to the nearest integer. High-resolution timings are given 

to two decimal places and low-resolution timings are truncated to the nearest 

integer. The truncation is performed internally in Delphi and is beyond the control 

of the programmer. Program lengths are given in lines including white space and 

comments. 

A.2 Library Content Used in Sections 8.2, 8.4, 8.8, 
8.10 

L i b r a r y Output: EvalObs2 

Primary A c t i o n Concept: Output 

I n d i c a t o r s : K D i s p l a y KEndWrite KWrite KIO KOutput COutput 
Composites: F i l e Report Database Record 
S p e c i a l i s a t i o n s : NONE 

Primary A c t i o n Concept: Read 

I n d i c a t o r s : NRead KRead CRead 
Composites: F i l e Database Record 
S p e c i a l i s a t i o n s : NONE 

Primary A c t i o n Concept: Write 

I n d i c a t o r s : KEndWrite KWrite NWrite CWrite 
Composites: F i l e Database Record 
S p e c i a l i s a t i o n s : NONE 

Primary Object Concept: F i l e 

I n d i c a t o r s : N F i l e K F i l e K F i l e C o n t r o l C F i l e 
Composites: NONE 
S p e c i a l i s a t i o n s : A P S M a s t e r F i l e CAF PaymentFile 
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Primary O b j e c t Concept: Report 

I n d i c a t o r s : NReport KReport KReporting KReports CReport 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 

Primary O b j e c t Concept: Database 

I n d i c a t o r s : NDatabase NDB CDatabase CDB 
Composites: NONE 
S p e c i a l i s a t i o n s : CMS 

Primary Object Concept: Record 

I n d i c a t o r s : NRecord KRecord KRecords CRecord 
Composites: NONE 
S p e c i a l i s a t i o n s : APSRecord 

Primary A c t i o n Concept: C a l l 

I n d i c a t o r s : N C a l l K C a l l C C a l l 
Composites: DATEPRESModule 
S p e c i a l i s a t i o n s : NONE 

Primary A c t i o n Concept: Update 

I n d i c a t o r s : NUpdate CUpdate 
Composites: F i l e Database Record P o l i c y 
S p e c i a l i s a t i o n s : NONE 

Primary A c t i o n Concept: Input 

I n d i c a t o r s : KIO NInput KInput CInput 
Composites: F i l e Database Record 
S p e c i a l i s a t i o n s : NONE 

Primary O b j e c t Concept: DATEPRESModule 

I n d i c a t o r s : NDatePres CDatePres 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 

Primary Object Concept: P o l i c y 

I n d i c a t o r s : N P o l i c y C P o l i c y 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 

Secondary Object Concept: APSRecord 

I n d i c a t o r s : NRecord KRecord CRecord NAPS NA.P.S CAPS 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 

Primary O b j e c t Concept: I n t e r e s t 

I n d i c a t o r s : N I n t e r e s t C I n t e r e s t 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 

Secondary O b j e c t Concept: APSMasterFile 

I n d i c a t o r s : NAPS NA.P.S CAPS NMaster CMaster 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 

Secondary O b j e c t Concept: CMS 

I n d i c a t o r s : NCIF CCIF 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 

Primary A c t i o n Concept: I n i t i a l i s a t i o n 

I n d i c a t o r s : N I n i t i a l i s a t i o n C I n i t i a l i s a t i o n 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 
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Primary A c t i o n Concept: P r i n t 

I n d i c a t o r s : N P r i n t C P r i n t 
Composites: Report Record Cheque Heading 
S p e c i a l i s a t i o n s : NONE 

Secondary O b j e c t Concept: CAF 

I n d i c a t o r s : C F i l e NCAF NC.A.F CCAF C C e n t r a l CAnnuity 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 

Primary Object Concept: Cheque 

I n d i c a t o r s : NCheque CCheque 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 

Primary Object Concept: Heading 

I n d i c a t o r s : NHead CHead NHeading CHeading 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 

Primary A c t i o n Concept: C a l c u l a t e 

I n d i c a t o r s : KAdd KCompute KDivide KEndCompute KEndDivide KEndMultiply 
KEndSubstract KEndAdd KGiving K M u l t i p l y KPlus KSubtract C C a l c u l a t e 
Composites: I n t e r e s t 
S p e c i a l i s a t i o n s : NONE 

Secondary O b j e c t Concept: PaymentFile 

I n d i c a t o r s : N F i l e K F i l e C F i l e NPayment CPayment 
Composites: NONE 
S p e c i a l i s a t i o n s : NONE 
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A.3 Data for Section 8.2: Scalability 
A.3.1 Data for Figure 51, Figure 52, Figure 53, and Figure 54 
Investigation Parameters: Table 10 

K3A.\ forced specialisation - True 

Strictly Percentage 

Total Accurate Accurate Number of Percentage Strict 

Program Length (lines^ Concepts Concepts Concepts SOMs Used Acciu'acv Accuracy 

gd95 89 3 3 2 100 67 

gb92/6 190 1 1 0 1 100 0 

gd25 238 6 6 4 0 100 67 

gdl2 285 8 7 4 2 88 50 

gd30 337 6 5 2 2 83 33 

gd60 387 10 10 7 2 100 70 

gd91 441 9 8 6 3 89 67 

gd96 491 12 12 11 1 100 92 

gd83 547 15 11 7 5 73 4̂  

gb64 596 14 13 7 3 93 50 

gd26 650 14 7 6 3 50 43 

gd81 701 6 4 3 2 67 50 

gb73 728 21 20 12 4 95 57 

gd28 807 16 15 7 4 94 44 

gd67 879 15 11 8 5 73 53 

gbOl 1013 13 8 3 4 62 23 

gd82 1105 26 16 8 7 62 31 

gd02 1117 7 6 3 1 86 43 

gb07 1162 35 28 19 6 80 54 

gb03 1237 35 25 15 9 71 43 

gbcm0133 1310 42 40 35 6 95 83 

gb08 1374 37 33 21 5 89 57 

Median Accuracy 89 Mean Accuracy Standard Deviation (a)^QB 
Median Strict Accuracy 50 Mean Strict Accuracy 56 Standard Deviation (a)H^H 
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A.2f A.l forced specialisation = False 

Length (lines) 

Total 

Concepts 

Accurate 

Concepts 

Strictly 

Accurate 

Concepts 

Number of Percentage 

Accuracy 

Percentage 

Strict 
Acciuacy 

gd95 89 3 3 2 0 100 67 

gb92/6 190 1 1 0 1 100 : 
gd25 238 6 6 4 0 100 67 

gdl2 285 8 7 4 2 88 50 

gd30 337 6 5 4 2 83 67 

gd60 387 10 10 7 2 100 7C 

gd91 441 9 8 7 3 89 78 

gd96 491 12 12 12 1 100 100 

gd83 547 15 15 10 5 100 67 

gb64 596 14 13 7 3 93 50 

gd26 650 14 11 7 3 79 50 

gdSl 701 6 4 3 2 67 50 

gb73 728 21 20 14 4 95 67 

gd28 807 16 15 7 4 94 44 

gd67 879 15 13 9 5 87 60 

gbOl 1013 13 9 3 4 69 23 

gd82 1105 26 18 8 7 69 31 

gd02 1117 7 6 3 1 86 43 

gb07 1162 35 26 19 6 74 54 

gb03 1237 35 30 19 9 86 54 

gbcm0133 1310 42 40 35 6 95 83 

gbOS 1374 37 33 21 5 89 57 

Median Accuracy 89 Mean Accuracy 88 Standard Deviation (cr] 11 

Median Strict Accuracy 56 Mean Strict Accuracy Standard Deviation {(j j 21 

A.3.2 Data for Figure 55 
Investigation Parameters: Table 11 

Segment Total Accurate Strictly Accurate Percentage Percentage Strict 

Size (lines) Segments Segments Segments Accuracy Accuracy 

0-10 39 35 26 90 67 

11-20 28 25 14 89 50 

21-30 15 10 2 67 13 

31-40 3 3 0 100 3 

41-50 8 8 1 100 13 

51-60 2 2 0 100 0 

61-70 2 1 0 50 0 

70+ 8 7 2 88 25 
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A.3.3 Data for Figure 56 
Investigation Parameters: Table 11 

SOMs Used 

Mean Segment Size (lines) 

0 1 2 4 5 SOMs Used 

Mean Segment Size (lines) 12 70 11 4 5 

A.3.4 Data for Figure 57 
Investigation Parameters: Table 12 

Section 

Program Numbei 

Total 

Concepts 

Accurate 

Concepts 

Strictly 

Accurate 

Concepts 

Valid Invalid Total Percentage 

ClustersCIustci"sClusters Accuracy 

Percentag« 

Strict 

Percentage 

Invalid 

Clusters 

gb73 1 4 4 1 4 2 100 25 33 

2 5 4 2 5 1 6 80 40 17 

gd82 1 5 5 2 5 1 6 100 40 17 

2 5 2 0 6 2 8 40 0 25 

3 8 5 2 8 6 14 63 25 43 

5 3 1 0 3 1 4 33 0 25 

gb03 1 2 1 0 2 1 3 50 0 33 

2 2 1 0 2 1 3 50 0 33 

4 12 9 4 12 2 14 75 33 14 

7 4 4 2 4 0 4 100 50 0 

12 3 3 3 3 0 3 100 100 0 

15 3 3 2 3 2 5 100 67 40 

gd67 2 3 1 1 3 2 5 33 33 4C 

3 3 3 1 3 1 4 100 33 25 

4 4 4 0 4 7 11 100 0 64 

gd96 1 8 8 7 8 4 12 100 88 33 

gd26 1 6 2 1 6 2 8 33 17 25 

3 4 3 3 4 2 6 75 75 33 

gd30 2 3 2 0 3 1 4 67 C 25 
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A.4 Data for Section 8.4: Concept Binding 
AAA Data for Figure 74 
Investigation Parameters: Table 14 

Total Cases 101 

Rule 

Triggered 

Instances 

Percentage 

Triggered 

DAR 1 101 100 

DAR2 101 100 

DAR 3 18 18 

DAR 4 16 16 

DAR 5 16 16 

Arbitrary 10 10 
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A.5 Data for Section 8.6: Computational Cost 
A.5.1 Data for Figure 75, Figure 76, and Figure 87 
Investigation Parameters: Table 15 

IRM 1: Identifier 
IRM 2: Keyword 
IRM 3: Comment 
IRM 4: Segment Boundary 

Length Number of 

Program (lines) Segments 

Low 

Resolution 

Hypothesis 

Generation 

(IRM) 

Time (s) 

Low 

Resolution Low Resolution Low Resolution 

Segmentation Concept Binding Total Execution 

Tune (s) Time (s) Time (s) 

gd95 1 3 0 1 4 

gb92/6 190 1 9 0 0 10 

gd25 238 5 12 0 3 16 

gdl2 285 3 17 3 3 24 

gd30 337 1 22 0 1 23 

gd60 387 4 25 0 2 28 

gd91 441 4 29 0 6 36 

gd96 491 10 36 4 10 51 

gd83 547 10 37 4 7 48 

gb64 596 7 38 1 7 47 

gd26 650 9 40 4 10 54 

gd81 701 4 49 0 3 52 

gb73 728 11 44 7 11 63 
gd28 807 6 61 4 4 69 

gd67 879 9 70 10 5 86 

gbOl 1013 6 79 0 3 83 

gd82 1105 10 92 10 10 113 

gb07 1162 8 95 4 11 111 

gb03 1237 17 100 5 18 124 

gb08 1374 . 10 111 4 11 126 
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A.5.2 Data for Figure 77, Figure 78, and Figure 79 
Investigation Parameters: Table 15 

Low Resolution Execution Time (s) 

Program 

LengtJi 

(lines) 

IRM 

1 

IRM IRM IRM 

Total 1 
gd95 89 1 3 32 71 59 i : 

gb92/6 190 1 3 5 0 9 43 128 189 5 365 

gd25 238 3 6 3 0 12 105 233 117 15 470 

gdl2 285 4 10 3 0 17 127 398 125 11 661 

gd30 337 5 7 10 0 22 165 290 359 11 825 

gd60 387 8 15 2 0 25 258 580 72 19 929 

gd91 441 9 19 1 0 29 252 721 63 13 1049 

gd96 491 16 17 3 0 36 473 634 101 23 1231 

gd83 547 12 19 6 0 37 369 720 207 25 1321 

gb64 596 10 17 11 0 38 289 634 399 31 1353 

gd26 650 13 19 8 0 40 373 704 298 22 1397 

gdSl 701 17 24 8 0 49 493 862 289 23 1667 

gb73 728 12 18 14 0 44 352 686 477 30 1545 

gd28 807 18 32 11 0 61 519 1144 379 17 2059 

gd67 879 22 39 9 0 70 611 1358 306 23 2298 

gbOl 1013 24 36 19 0 79 704 1257 627 23 2611 

gd82 1105 29 41 22 0 92 832 1395 720 27 2974 

gb07 1162 32 48 15 0 95 892 1592 522 21 3027 

gb03 1237 30 50 20 0 100 845 1654 669 33 3201 

gb08 1374 26 37 48 0 111 739 1287 1444 35 3505 

221 



A.5.3 Data for Figure 80 
Investigation Parameters: Table 15 

Percentage of Total Low Resolution IRM Time Percei itage of Total Extracted lokens 

1 Program 
IRM 1 IRM 2 TRM 3 IRM 4 IRM 1 IRM 2 IRM 3 IRM 4 

gd95 33 33 33 0 18 41 34 6 

gb92/6 11 33 56 0 12 35 52 1 

gd25 25 50 25 0 22 50 25 3 

gdl2 24 59 18 0 19 60 19 2 

gd30 23 32 45 0 20 35 44 1 

gd60 32 60 8 0 28 62 8 2 

gd91 31 66 3 0 24 69 6 1 

gd96 44 47 8 0 38 52 8 2 

gd83 32 51 16 0 28 55 16 2 

gb64 26 45 29 0 21 47 29 2 

gd26 33 48 20 0 27 50 21 2 

gd81 35 49 16 0 30 52 17 1 

gb73 27 41 32 0 23 44 31 2 

gd28 30 52 18 0 25 56 IS 

gd67 31 56 13 0 27 59 13 

gbOl 30 46 24 0 27 48 24 

gd82 32 45 24 0 28 47 24 

gb07 34 51 16 0 29 53 17 

gb03 30 50 20 0 26 52 21 

Gb08 23 33 43 0 21 37 41 
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A.5.4 Data for Figure 81, Figure 82, Figure 83, and Figure 84 
Investigation Parameters: Table 15 

Y - Low Resolution High Resolution 

Number of SOMs Segmentation Time Segmentation Time 

Nimiber of Sections Used (s) (s) 
5 0 0 0.16 

gb92/6 2 0 0 0.06 

gd25 7 0 0 0.44 

gdl2 5 1 3 3.46 

gd30 5 0 0 0.17 

gd60 9 0 0 0.5 

gd91 6 0 0 0.77 

gd96 11 1 4 4.89 

gd83 12 1 4 4.06 

gb64 15 0 1 1.21 

gd26 10 1 4 4.33 

gd81 10 0 0 0.61 

gb73 15 2 7 7.58 

gd28 8 1 4 4.07 

gd67 10 3 10 10.77 

gbOl 11 0 0 0.66 

gd82 13 3 10 10.76 

gb07 10 1 4 4.29 

gb03 16 1 5 5 

gb08 17 1 4 4.45 
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A.5.5 Data for Figure 85 
Investigation Parameters: Table 16 

Number of Total High 

Librar) Resolution IRM 

Indicators Time (s) 

20 89.83 

19 89.36 

18 89.3 

17 89.26 

16 89.2 

15 88.93 

14 89.02 

13 89.69 

12 89.03 

11 88.48 

10 88.1 

9 87.71 

8 87.67 

7 87.43 

6 87.5 

5 87.11 

4 87.73 

3 87.4 

2 86.29 

1 86.73 

0 85.74 

A.5.6 Data for Figure 86 
Investigation Parameters: Table 17 

Number of Indicates Relationships 

High Resolution 

Total IRM Time (s) 

23 97.22 

29 97.71 

35 97.72 

41 97.98 

47 98.58 

53 98.53 

59 98.86 

65 100.25 

71 100.07 

77 100.51 
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A.5.7 Data for Figure 88, and Figure 89 
Investigation Parameters: Table 18 

A.5.7.1 Specialisations 

Number of Specialisations 

High Resolution 

Conclusion Generation Time (s) 

1 4.77 

2 5.53 

3 6.42 

4 7.42 

5 8.29 

6 9.35 

7 10.12 

8 10.53 

9 11.04 

10 11.42 

11 11.87 

12 12.4 

13 12.79 

A.5.7.2 Composites 

Number of Compcsites 

High Resohuion 

Conclusion Generation Time (s) 

4 4.73 

5 4.92 

6 5 

7 5.22 

8 5.38 

9 5.38 

10 5.88 

11 5.93 

12 6 

13 6.31 

14 6.58 

15 6.92 

16 7.04 
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A.6 Data for Section 8.7: Spatial Cost 
Investigation Parameters: Table 18 

A.6.1 Data for Figure 90, and Figure 91 
A . 6.1.1 Specialisations 

Number of Specialisations Nujnbeir of Conchisiom 

1 55 

2 71 

3 87 

4 103 

5 119 

6 135 

7 151 

8 158 

9 165 

10 172 

11 179 

12 186 

13 193 

A.6.1.2 Composites 

Number of Composites Number of Conclusions 

4 55 

5 58 

6 61 

7 64 

8 67 

9 70 

10 73 

11 76 

12 79 

13 85 

14 91 

15 97 

16 103 
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A.7 Data for Section 8.8: Expandability 
Investigation Parameters: Table 19 

A.7.1 Data for Figure 92 
A.7.1.1 Program 1 

• • • 1 Identifier + 

Identifier + Identifier + Kej^Aord + Keyword + 

Identifier Keyword ( "onunent Keyword Comment Connnent CoDunent 

Concepts 

Foimd 
5 0 1 6 2 6 

Percentage of 

Total 83 0 17 100 100 33 100 

Concepts 

A . 7.1.2 Program 2 

Identifier + 

tifier + Identifier + Keyword + KejTvord + 

yword Conmient Conmient Conmient 

Concepts 

Found 
1 0 0 3 1 0 3 

Percentage of 

Total 33 0 0 100 33 0 100 

Concepts 

A.8 Data for Section 8.10: Domain Independence 
Investigation Parameters: Table 20 

A.8.1 Data for Table 21 

Program 

^̂ ^̂1 Hi Strictly 

Accmate Number of 

SOMs Used 

Percentage 

Acciu'acv' 

Percentage 

Strict 

Accuracy 

Strictly 

Accmate 

pn29 205 6 5 5 1 83 83 

pn28 209 1 0 0 0 0 0 

pk35/6 360 2 0 0 1 0 0 

pn23 551 9 6 4 1 67 44 

pi43 709 14 9 7 3 64 50 

pi49 1104 18 6 5 4 33 28 

pi41 4805 30 14 4 8 47 13 

pk352prc 8076 20 12 5 4 60 25 

Median Accuracy 54 Mean Accuracy 44 29 

Median Strict Accuracy 27 Mean Strict Accuracy 30 26 
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A.9 Program Sets 
A.9.1 Program Set A 

Program Length (lines) Program Length (lines) Program Length (lines) 

gd95 89 gd83 547 gd82 1105 

gb92/6 190 gb64 596 gd02 1117 

gd25 238 gd26 650 gb07 1162 

gdl2 285 gd81 701 gb03 1237 

gd30 337 gb73 728 gbcm0133 1310 

gd60 387 gd28 807 gb08 1374 

gd91 441 gd67 879 

gd96 491 gbOl 1013 

A.9.2 Program Set B 

A.9.3 Program Set C 

1 Program 
Length (luies) 

gd95 89 

gd25 238 

gdl2 285 

gd83 547 

gd28 807 

gbOl 1013 

gd02 1117 

gb08 1374 

Program Length (lines) 

gd30 337 

gd96 491 

gd26 650 

gb73 728 

gd67 879 

gd82 1105 

gb03 1237 
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A.9.4 Program Set D 

Program Length (hnes) 

gdl2 285 

gd96 491 

gd83 547 

gd26 650 

gb73 728 

gd28 807 

gd67 879 

A.9.5 Program Set E 

Program length (lines) Program Length (luies) Program Length (lines) 

gd95 89 gd96 491 gd67 879 

gb92/6 190 gd83 547 gbOl 1013 

gd25 238 gb64 596 gd82 1105 

gdl2 285 gd26 650 gb07 1162 

gd30 337 gd81 701 gb03 1237 

gd60 387 gb73 728 gb08 1374 

gd91 441 gd28 807 

A.9.6 Program Set F 

A.9.7 Program Set G 

Program Length (Hues) 

gb08 1374 

Program Length (luies) 

gd95 89 

gd25 238 
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A.9.8 Program Set H 

Program Length (lines) 

pn29 205 

pn28 209 

pk35/6 360 

pn23 551 

pi43 709 

pi49 1104 

pi41 4805 

pk352prc 8076 
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