
Durham E-Theses

Hypothesis-based concept assignment to support

software maintenance

Gold, Nicolas Edwin

How to cite:

Gold, Nicolas Edwin (2000) Hypothesis-based concept assignment to support software maintenance, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4535/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4535/
 http://etheses.dur.ac.uk/4535/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Hypothesis-Based Concept Assignment
to Support Software Maintenance

Nicolas Edwin Gold

The copyright of this thesis rests with
the author. No quotation from it should
he puhlishcd in any form, inehiding
Electronic and the Internet, without the
author's prior written consent. All
information derived from this thesis
must he acknowledged appropriately.

Ph.D. Thesis

Research Institute in Software Evolution

Department of Computer Science

University of Durham

2000

Abstract
Software comprehension is one of the most expensive activities in software

maintenance and many tools have been developed to help the maintainer reduce the

time and cost of the task. Of the numerous tools and methods available, one group

has received relatively little attention: those using plausible reasoning to address the

concept assignment problem. This problem is defined as the process of assigning

descriptive terms to their implementation in source code, the terms being nominated by a user and

usually relating to computational intent. It has two major research issues:

• Segmentation: finding the location and extent of concepts in the source code.

• Concept Binding: determining which concepts are implemented at these

locations.

This thesis presents a new concept assignment method: Hypothesis-Based Concept

Assignment (HB-CA). A framework for the activity of software comprehension is

defined using elements of psychological theory and software tools. In this context,

HB-CA is presented as a successful concept assignment method for COBOL I I ,

employing a simple knowledge base (the library) to model concepts, source code

indicators, and inter-concept relationships. The library and source code are used to

generate hypotheses on which segmentation and concept binding are performed.

A two-part evaluation is presented using a prototype implementation of HB-CA.

The first part shows that HB-CA has linear computational growth in the length of

program under analysis. Other characteristics addressed include HB-CA's

scalability, its applicability to other languages, the contribution made by different

information sources, domain independence, representational power, and guidelines

for the content of the library. The first part concludes by comparing the method

and implementation to cognitive requirements for software comprehension tools.

The second part considers applications of HB-CA in software maintenance. Five

areas for potential cost reduction are identified: business-rule ripple analysis, code

ripple analysis, module selection, software reuse, and software module

comprehension.

Acknowledgements
I would like to thank everyone who has helped me with my research. In particular,

I am very grateful to my supervisor, Professor Keith Bennett, whose advice, insight,

and encouragement have been invaluable throughout. The SABA team provided

many hours of interesting discussion and I would like to thank Dr. Magnus Ramage

for helping me to explore some of my early ideas. My thanks also go to all the other

people in the department who have discussed my work with me. I am grateful to

Computer Sciences Corporation (CSC) for providing example source code, and

would like to thank Shaun Hexter for his help in particular.

I have thoroughly enjoyed my time as a Ph.D. student and much of this is due to

the people I have shared an office with over the years. My thanks go to Antony

Hofton, Stephen Rank, Phyo Kyaw, and Claire Knight for many enjoyable

discussions, games, and adventures in musical taste(!).

I would like to thank my parents, Linda and Kenneth, and the rest of my family

who have provided encouragement, love, and support throughout. They have

listened to many explanations of my ideas and have always been happy to read my

work. I am grateful to my parents and my in-laws. Sheila, Richard, and Graeme, for

proofreading my thesis.

Finally, my greatest thanks go to my wife Helen. Without her unfailing love,

encouragement, and confidence in me, the ups and downs of research would have

been a harder ride. Life wouldn't be as much fun without her and the support she

has given me during this work has been immeasurable. This thesis is dedicated to

her with all my love.

This work was funded by EPSRC as part of the Software As a Business Asset

(SABA) project in the Systems Engineering for Business Process Change (SEBPC)

programme.

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without their prior written consent and information derived from it

should be acknowledged.

Declaration

The material presented in this thesis is the sole work of the author and has not been

previously submitted for a degree at this or any other university.

m

Contents

Chapter 1 Introduction
1.1 Context 1

1.2 Area of Interest 1
1.2.1 DM-TAO 5
1.2.2 IRENE 6
1.2.3 Summary 6

1.3 Discussion of Problem 7
1.3.1 The Concept Assignment Problem , 7
1.3.2 Research Issues 8
1.3.3 Problem Boundaries 8

1.4 Research Aims and Criteria for Success 9

1.5 Evaluation Criteria 10

1.6 Contribution 11

1.7 Thesis Structure 12

1.8 Summary 13

Chapter 2 Background and Framework
2.1 Introduction 14

2.2 Software Maintenance 14
2.2.1 Types of Software Maintenance 15
2.2.2 The Software Maintenance Process 15

2.2.2.1 Analysis 17
2.2.2.2 Design 19
2.2.2.3 Implementation 20
2.2.2.4 Svtmmary 20

2.3 Software Comprehension 21
2.3.1 A Comprehension Activity Framework 21

2.3.1.1 The Processor. ; 23
2.3.1.2 People as Processors : 24
2.3.1.3 Sofiimre Tools as Processors 26

2.3.2 Representations 28
2.3.2.1 Source Representation ; 29
2.3.2.2 Target Representation 30

2.4 Summary 32

IV

Chapter 3 Hypothesis-Based Concept
Assignment

3.1 Introduction 33

3.2 Characteristics of Concept Assignment Methods 33

3.3 The Hypothesis-Based Concept Assignment Method 34
3.3.1 Hypothesis Generation 37
3.3.2 Segmentation 37
3.3.3 Concept Binding 37

3.4 Characteristics of Concept Assignment Methods 37
3.4.1 Direction of Operation 38
3.4.2 Interactivity 39

3.5 Knowledge Base 40
3.5.1 Knowledge Representation in the Libraiy. 41

3.^.1.1 Indiattors
3.5.1.2 Concepts 42
3.3.1.3 InScator-Omcept Rdaticnship. 44
3.3.1.4 Conoept-Conoept Relationships 43

3.6 Knowledge Base Characteristics 48
3.6.1 DM-TAO Knowledge Base 48
3.6.2 IRENE Knowledge Base 49
3.6.3 Knowledge Base Complexity 49

3.7 Example 51
3.7.1 COBOL I I Fragment 52
3.7.2 Example Librar)^ Content (Semantic Network) 53

3.8 Summary 54

Chapter 4 Hypothesis Generation
4.1 Introduction 55

4.2 Hypothesis Generation 55

4.3 Indicator Recognition 57
4.3.1 Indicator Types in HB-CA 59
4.3.2 General Recognition Process 59
4.3.3 Extraction Process 60
4.3.4 Matching Rules 60

4.3.4.1 Identifier Matching. 62
4.3.4.2 Keyword Matching. 63
4.3.4.3 CcmTKntMatching. 63
4.3.4.4 Se^nentBoundary Matdmg 63

4.3.4.5 Output : 64

4.4 Characteristics of Hypothesis Generation 64

4.4.1 Discussion 65

4.5 Example of Hypothesis Generation 66

4.6 Summary 68

Chapter 5 Segmentation
5.1 Introduction 69

5.2 The Segmentation Problem 69

5.3 HB-CA Segmentation 72
5.3.1 Segment Boundar)^ Hypotheses 72
5.3.2 Clustering 73

3.3.2.1 Pre-Processing. 74
5.3.2.2 Self Organising Maps (SOMs) 76
5.3.2.3 SOMs for HB-CA 77
5.3.2.4 Post-Processing. •'• 81

5.4 Characteristics of Segmentation 84

5.4.1 Discussion 85

5.5 Example of Segmentation 85

5.6 Summary ...88

Chapter 6 Concept Binding
6.1 Introduction 89

6.2 The Concept Binding Problem 89

6.3 HB-CA Concept Binding 91
6.3.1 Semantic Network "Activation" 92

6.3.1.1 Example of Semantic Network "Actiuttion". 93
6.3.2 Concept Binding Algorithm 96

6.3.2.1 Conclusion Generation 97
6.3.2.2 Conclusion Completion and Reirfbrosment 98
6.3.2.3 Disamhi^dotion 98
6.3.2.4 Post-Disambi^ioticn Processing 99
6.3.2.5 Output ; 100
6.3.2.6 Discussion, 100

6.4 Characteristics of Concept Binding 102
6.4.1 Discussion 103

6.5 Example of Concept Binding 104

VI

6.6 Summary of Formal Model 108

6.7 Summary I l l

Chapter 7 Implementation
7.1 Introduction 112

7.2 System Implementation 112
7.2.1 Programming Environment 112
7.2.2 System Architecture 113
7.2.3 Library Structure and Management 116
7.2.4 File Formats 117
7.2.5 Indicator Recognition Modules 118
7.2.6 Concept Assignment Module 119
7.2.7 Display 120

7.3 Test Suite 120
7.3.1 Principles of Test Suite 121
7.3.2 Usage 122

7.4 Evaluation of Implementation 122
7.4.1 Design Evaluation 122

7.4.1.1 Separate Program Approach 122
7.4.1.2 Third-Party SOMbnpkmentation 123
7.4.1.3 Third-Party SynonynLists 123

7.4.2 Code Evaluation 124
7.4.2.1 System Characteristics. 124
7.4.2.2 Programming Environment and Langua^ 124

7.4.3 Test and Validation 125

7.5 Summary 125

Chapter 8 Evaluation I: HB-CA Characteristics
8.1 Introduction 126

8.2 Scalability 127
8.2.1 Investigation of Scalability Problems 130

8.2.1.1 SOM-Related Se^nentation Problems. 132
8.2.1.2 Possible Solutions -?37
8.2.1.3 Summary '.

8.2.2 Average Performance : 138
8.2.3 Summary 138

8.3 Segmentation 139

8.4 Concept Binding 142
8.4.1 Rule 1: Select Highest Scoring Conclusions 145
8.4.2 Rule 2: Remove Specialisations 146

vu

8.4.3 Rule 3: Favour Composites over Non-Composites 147
8.4.4 Rule 4: Find the Highest Action Scores 149
8.4.5 Rule 5: Common Action Component 150
8.4.6 Post-Disambiguation Processing 151
8.4.7 Levels of Ambiguity 153
8.4.8 Summary 154

8.5 Library Content 155

8.6 Computational Cost 156
8.6.1 Source Code 156

8.61.1 Source CodeLen^. : 1^6
8.61.2 Direct Effects of Source Code Length 158
8.6.1.3 Direct Effects of the Number of Sections. 162
8.6.1.4 Summary 166

8.6.2 Library 166
8.6.2.1 The Library in Hypothesis Generation 166
8.6.2.2 The Library in Segvmtatim and Concept Binding. 170
8.6.2.3 Factors in Condusion Generation Cost 171
8.6.2.4 Factors in Ccndusion Completion Cost 174
8.6.2.5 Factors in Disambiguation 174
8.6.2.6 Factors in Post-Disamhigmtion Processing 174
8.6.2.7 Summary 175

8.6.3 Summary 175

8.7 Spatial Cost 175
8.7.1 Hypothesis Generation 175
8.7.2 Segmentation 176
8.7.3 Concept Binding 176
8.7.4 Library 178

8.8 Expandability 178

8.9 Representational Power 182

8.10 Domain Independence 184

8.11 Language Independence 185
8.11.1 Imperative, Non Object-Oriented (e.g. C, Pascal) 185
8.11.2 Imperative, Object-Oriented (e.g. C++, Delphi, Java) 185
8.11.3 Non-Imperative (e.g. Haskell, Prolog) 186

8.12 Cognitive Requirements 186
8.12.1 Improve Program Comprehension 188

8.12.1.1 Enhance Bottom-Up Con^rehension 188
8.12.1.2 Enhance Top-Down Carprdmsion 189
8.12.1.3 Inte^ate Bottcm-Up and Top-Down Approadoes 189

8.12.2 Reduce the Maintainer's Cognitive Overhead 190
8.12.2.1 Facilitate Navigation 190
8.12.2.2 Provide Orientation Cues 190
8.12.2.3 Redwe Disorientation 191

8.12.3 Summary 191

8.13 Summary 191

vm

Chapter 9 Evaluation II: Applications of
HB-CA

9.1 Introduction 192

9.2 HB-CA in the Software Maintenance Process 192
9.2.1 Analysis Activities 193

9.2.1.1 Business-Rule Ripple Analysis. 193
9.2.1.2 QxkRipple Analysis 194
9 2.1.3 Module Selection 193
9.2.1.4 Code Reuse 193

9.2.2 Implementation Activities 196

9.3 Summary 200

Chapter 10 Conclusions
10.1 Introduction 201

10.2 Review of Research 201
10.2.1 The Concept Assignment Problem 201
10.2.2 Comprehension Activity Framework and Formal Model 201
10.2.3 Hypothesis-Based Concept Assignment 202
10.2.4 Hypothesis-Based Concept Assignment System (HB-CAS) 203
10.2.5 Evaluation 203

10.3 Evaluation of Research 204

10.4 Discussion 206

10.5 Further Work 209
10.5.1 SOM-Based Concept Assignment 209
10.5.2 Intelligent Reallocation Algorithms 209
10.5.3 Richer Knowledge Base 210
10.5.4 Richer Conceptual Map 210
10.5.5 Use of the Data Division 210
10.5.6 Large-Scale Evaluation 211
10.5.7 Software Evolution Study 211

10.6 Final Summary 212

Appendix Investigation Data
A.1 Introduction 213

A.2 Libraiy Content Used in Sections 8.2, 8.4, 8.8, 8.10 213

A.3 Data for Section 8.2: Scalability 216

IX

A.3.1 Data for Figure 60, Figure 62, Figure 64, and Figure 66 216
A.3.1.1 fonedjpecialisation = True 216
A.3.1.2 forcedjpecialisation = False 217

A.3.2 Data for Figure 68 217
A.3.3 Data for Figure 70 218
A.3.4 Data for Figure 72 218

A.4 Data for Section 8.4: Concept Binding 219
A.4.1 Data for Figure 90 ; 219

A.5 Data for Section 8.6: Computational Cost 220
A.5.1 Data for Figure 91, Figure 92, and Figure 112 220'
A.5.2 Data for Figure 93, Figure 95, and Figure 96 221
A.5.3 Data for Figure 98 222
A.5.4 Data for Figure 100, Figure 102, Figure 104, and Figure 106 223
A.5.5 Data for Figure 108 224
A.5.6 Data for Figure 110 224
A.5.7 Data for Figure 114, and Figure 116 225

A.3.7.1 Specialisations 225
A.3.7.2C(^sites 223

A.6 Data for Section 8.7: Spatial Cost 226
A.6.1 Data for Figure 118, and Figure 120 226

A.6.1.1 Specialisations 225
A.6.1.2 Composites 226

A.7 Data for Section 8.8: Expandability 227
A.7.1 Data for Figure 122.... 227

A.71.1 Program 1 227
A.71.2 Program 2 227

A.8 Data for Section 8.10: Domain Independence 227
A.8.1 Data for Table 30 227

A.9 Program Sets 228
A.9.1 Program Set A 228
A.9.2 Program Set B 228
A.9.3 Program SetC 228
A.9.4 Program SetD 229
A.9.5 Program Set E 229
A.9.6 Program SetF 229
A.9.7 Program Set G 229
A.9.8 Program SetH 230

References
References 231

Figures
Figure 1: The Program Understanding Landscape 4

Figure 2: Basic Framework Describing the Software Comprehension Activity 22

Figure 3: Basic Framework Revised to Describe the Comprehension Activity using a
Processor 22

Figure 4: Comprehension Activity Framework Showing Separated Source Code... 23

Figure 5: Comprehension Activity Framework for a Person 26

Figure 6: Comprehension Activity Framework with Processor Related Entities 28

Figure 7: Comprehension Activity Framework with Specific Output Representation
for Concept Assignment 29

Figure 8: Comprehension Activity Framework Showing liB-CA Processes 35

Figure 9: Comprehension Activity Framework Showing HB-CA Processes and
Internal Representations 36

Figure 10: Example of an Indicator in Semantic Network Representation 42

Figure 11: Example of a Concept in Semantic Network Representation 43

Figure 12: Example of a Semantic Network Showing the Indicates Relationship...44

Figure 13: Example of a Semantic Network Showing the Specialisation Relationship
45

Figure 14: Examples of Acceptable and Unacceptable Forms of the Specialisation
Relationship 46

Figure 15: Example of a Semantic Network Showing the Composition Relationship
47

Figure 16: Example COBOL I I Program Fragment 52

Figure 17: Example Library Content 53

Figure 18: Comprehension Activity Framework Showing the Internal Hypothesis
Representation 56

Figure 19: Indicator Recognition Process 59

Figure 20: Code Fragment Showing Tokens Classified for Extraction 66

Figure 21: Code Fragment Showing Classified Matched Tokens 67

Figure 22: Example Code Fragment Showing Separated Concepts 70

Figure 23: Example Code Fragment Showing Slightly Merged Concepts 70

Figure 24: Example Code Fragment Showing Completely Merged Concepts 70

Figure 25: Comprehension Activity Framework Showing the Position of the
Hypothesis Segment List 72

Figure 26: Example Showing Necessity of Boundar)^ Correction 73

Figure 27: Example of a Self-Organising Map 76

Figure 28: Hypothesis List before Segmentation 85

XI

Figure 29: Hypothesis List after Segment Boundary Correction 86

Figure 30: Hypothesis List before Pre-Processing 86

Figure 31: Hypothesis List after Pre-Processing 86

Figure 32: Hypothesis List after Checking Threshold 87

Figure 33: Hypothesis List after Checking Cluster Potential 87

Figure 34: Comprehension Activity Framework Showing the Position of Concept
Binding 91

Figure 35: Semantic Network before Scoring 93

Figure 36: Semantic Network after Scoring Print 94

Figure 37: Semantic Network after Scoring Read 94

Figure 38: Semantic Network after Scoring Record 95

Figure 39: Semantic Network after Scoring MasterFile 95

Figure 40: Semantic Network after Scoring Read 96

Figure 41: Hypothesis Segment List for Concept Binding 104

Figure 42: Example Source Code Highlighted to Indicate Labelled Segments 107

Figure 43: Architecture of HB-CAS, Showing the Data Flow between Modules and
FHes 113

Figure 44: HB-CAS Control Panel 115

Figure 45: Librar)^ Structure Implemented in Relational Database 116

Figure 46: HB-CAS Library Manager 117

Figure 47: Example of an I N I File Entiy 118

Figure 48: HB-CAS Display Module 120

Figure 49: Example of an Accurate Segment 127

Figure 50: Example of a Strictly Accurate Segment 128

Figure 51: Graph to show the relationship between the Accuracy of Concept
Assignment and Program Length iforcedjpecialisation = True) 129

Figure 52: Graph to show the relationship between the Accuracy of Concept
Assignment and Program Length (forced_specialisation = False) 130

Figure 53: Graph to show the relationship between the Number of SOMs Used and
Program Length 131

Figure 54: Graph to show the relationship between the Accuracy of Concept
Assignment and Number of SOMs Used 132

Figure 55: Chart to show the Accuracy of Concept Assignment for Various
Segment Sizes 133

Figure 56: Chart to show the Mean Segment Size for Various Numbers of SOMs
Used 134

Figure 57: Graph to show the relationship between the Accuracy of Concept
Assignment and the Proportion of Invalid Clusters 136

xu

Figure 58: Screenshot Showing Successful SOM-Based Segmentation 140

Figure 59: Screenshot Showing Unnecessary Segmentation 141

Figure 60: Original Routine 143

Figure 61: Extract from liB-CAS Log 144

Figure 62: Routine Modified with Random "Noise" 144

Figure 63: Extract From HB-CAS Log for the Random "Noise" Example 145

Figure 64: Routine Modified to Demonstrate Rule 2 146

Figure 65: Extract From flB-CAS Log Showing the Action of Rule 2 147

Figure 66: Routine Modified to Demonstrate Rule 3 148

Figure 67: Extract From HB-CAS Log Showing the Action of Rule 3 148

Figure 68: Routine Modified to Demonstrate Rule 4 149

Figure 69: Extract from HB-CAS Log Showing the Action of Rule 4 150

Figure 70: Routine Modified to Demonstrate Rule 5 150

Figure 71: Extract from HB-CAS Log Showing the Action of Rule 5 151

Figure 72: Routine Modified to Demonstrate Forced Specialisation 153

Figure 73: Extract From HB-CAS Log Showing the Forcing of Specialisation.... 153

Figure 74: Chart to show the Proportion of Cases in which Disambiguation Rules
are Triggered 154

Figure 75: Graph to show the relationship between the Total Execution Time and
Program Length 157

Figure 76: Graph to show the relationship between the Stage Execution Time and
Program Length 158

Figure 77: Graph to show the relationship between the Total Number of Extracted
Tokens and Program Length 159

Figure 78: Graph to show the relationship between the Total IRM Execution Time
and Program Length 160

Figure 79: Graph to show the relationship between the Individual IRM Execution
Times and Program Length 161

Figure 80: Graph to show the relationship between the Proportion of Total IRM
Execution Time and the Proportion of Total Tokens Extracted for Each IRM

162

Figure 81: Graph to show the relationship between the Segmentation Time and the
Number of Sections in the Source Code (Low Resolution Timers) 163

Figure 82: Chart to compare the Segmentation Time and the Number of SOMs
Used for Various Programs 164

Figure 83: Graph to show the relationship between the Segmentation Time and the
Number of SOMs Used 165

Figure 84: Graph to show the relationship between the Segmentation Time and the
Number of Sections in the Source Code (High Resolution Timers) 165

Xlll

Figure 85: Graph to show the relationship between the Total IRM Execution Time
and the Number of Library Indicators 168

Figure 86: Graph to show the relationship between the Total Indicator Recognition
Time and the Number of Indicates Relationships 169

Figure 87: Graph to show the relationship between the Concept Binding Time and
the Number of Segments 170

Figure 88: Graph to show the relationship between the Total Conclusion
Generation Time and the Number of Specialisations in the Librarj^ 173

Figure 89: Graph to show the relationship between the Total Conclusion
Generation Time and the Number of Composites in the Librar)^ 173

Figure 90: Graph to show the relationship between the Spatial Cost of Conclusion
Generation and the Number of Specialisations 177

Figure 91: Graph to show the relationship between the Spatial Cost of Conclusion
Generation and the Number of Composites 177

Figure 92: Chart to show the Proportion of "Total" Concept Assignment Achieved
by Indicator Recognition Modules 180

Figure 93: Cognitive Design Elements for Software Exploration Tools [STOR98]
187

Figure 94: Diagram showing HB-CA used for Business-Rule Ripple Analysis 193

Figure 95: Module Comprehension without FIB-CA 196

Figure 96: Module Comprehension Activity in the context of the Comprehension
Activity Framework. 197

Figure 97: Module Comprehension with flB-CA 198

Figure 98: Module Comprehension Activity using HB-CA, in the context of the
Comprehension Activity Framework 199

XIV

Tables
Table 1: Characteristics of Concept Assignment Methods 34

Table 2: Characteristics of Concept Assignment Methods - Direction of Operation
38

Table 3: Characteristics of Concept Assignment Methods - Interactivity 40

Table 4: Characteristics of Concept Assignment Methods - Knowledge Base 51

Table 5: Indicators for the Meaning of a Program [BR0083] 57

Table 6: Characteristics of Concept Assignment Methods - Initial Information
Sources 65

Table 7: Characteristics of Concept Assignment Methods - Segmentation 84

Table 8: Characteristics of Concept Assignment Methods - Concept Binding 103

Table 9: Characteristics of HB-CAS Programs 124

Table 10: Parameters for Investigation of Scalability 129

Table 11: Parameters for Investigation of Segment Size and Accuracy 133

Table 12: Parameters for Investigation of Accuracy and Invalid Cluster Proportions
...135

Table 13: Average Accuracy Values forHB-CA 138

Table 14: Parameters for Investigation of Disambiguation Rule Triggering 153

Table 15: Parameters for Investigation of Computational Cost 157

Table 16: Parameters for Investigation of Indicator Cost 167

Table 17: Parameters for Investigation of Indicates Cost 169

Table 18: Parameters for Investigation of Specialisation/Composition Cost 172

Table 19: Parameters for Investigation of Expandability 179

Table 20: Parameters for Investigation of Domain Independence 184

Table 21: Average Accuracies for Library Applied to a Different Domain 184

XV

Chapter 1

Introduction

1.1 Context
Software maintenance is an important part of the software lifecycle, typically-

accounting for at least 50 percent of the total lifetime cost of a software system

[LIENS 0]. Consequently, it is desirable to reduce the cost of software maintenance

whilst preserving the quality of the software system and maintenance process.

The state of a software maintenance process can be assessed with methods such as

the Capability Maturity Model (CMM) [PAUL93]. A reasonably mature process

(e.g. C M M Level 3 or higher) wil l have a number of distinct phases; the IEEE

standard for software maintenance [IEEE98] defines seven:

a) Problem/modification identification, classification, and prioritisation;

b) Analysis;

c) Design;

d) Implementation;

e) Regression/system testing;

f) Acceptance testing;

g) Delivery.

Reducing the total cost of software maintenance requires the individual cost of one

or more of the constituent phases to be lowered.

1.2 Area of Interest
Many authors have acknowledged the central role and high cost of software

comprehension within software maintenance, either directly (e.g. [MAYR97],

[STAN84]), or indirectly, as a consequence of software complexity (e.g. [BANK93]).

Estimates of the time spent performing this activity vary. Hall claims that

understanding the documentation and logic of programs occupies 47-62 percent of

maintenance programmers' time [HALL87a] [HALL87b]. Parikh and Zvegintzov

suggest that more than half the programmer's task is in understanding the system

[PARI83], and Standish claims that it may be the dominant cost in the entire

software lifecycle [STAN84].

Software comprehension takes place in several phases of the maintenance process

described in section 1.1, although the IEEE standard does not make this explicit

(see [IEEE98]). It is primarily undertaken during design and implementation where

modules are to be redesigned or changed. It could be argued that identifying ripple

effects during the analysis phase also requires some understanding of the software

modules. Software comprehension is an ideal starting point for reducing the overall

cost of software maintenance because of its importance, high cost, and frequent

occurrence in the maintenance process.

A common approach to reducing the cost of the maintenance process is the

provision of automated assistance to software maintainers. The task to be

performed and the expertise of a particular maintainer determine the type of tool

that is appropriate in a given situation. Novice and expert maintainers understand

code in different ways. Novices tend to take a syntactic approach to understanding

a program, organising their knowledge structures around the program syntax.

Experts organise their knowledge around algorithms and functional characteristics

within their domain of expertise [MAYR95]. The work presented in this thesis is

aimed at assisting expert maintainers with software comprehension. Consequently,

the focus is on tools that automatically identify the implementation of algorithms,

abstractions, and domain concepts in software. Tilley and Smith claim maintainers

most lack such tools [TILL95] and evidence that higher-level semantic knowledge

reduces maintenance effort [RAMA96] strengthens their case.

There are many types of software tool available to help with software

comprehension, emphasising different aspects of software systems and modules,

and usually creating new representations for them. Biggerstaff et al. differentiate

between naiVe and intelligent agents (tools) for providing such representations

[BIGG93]. Naive agents generally perform deductive or algorithmic analysis of

program properties or structure, e.g. program slicers (see [TIP94]) or dominance

tree analysers (see [BURD99]). Intelligent agents attempt to assign descriptions of

computational intent to source code. Agents in the latter category meet the demand

(discussed in the previous paragraph) for tools that can identify algorithms,

abstractions, and domain concepts in software.

In [BIGG93], Biggerstaff et al. claim that research on intelligent agents can be

divided into 3 distinct approaches:

1) Highly domain specific, model driven, rule-based question answering

systems that depend on a manually populated database describing the

software system. This approach is typified by the Lassie system [DEVA91].

2) Plan driven, algorithmic program understanders or recognisers. Two

examples of this type are the Programmer's Apprentice [RICH90], and

GRASPR [WILL92].

3) Model driven, plausible reasoning understanders. Examples of this type

include DM-TAO [BIGG93], [BIGG94], IRENE [KARA92], and the

method presented in this thesis (termed HB-CAS in Figure 1).

One exception to this categorisation is Hartman's work [HART91a] that falls

between approaches 2 and 3.

Systems using approaches 1 and 2 are good at completely deriving concepts within

small-scale programs but cannot deal with large-scale programs due to

overwhelming computational growth. Approach 3 systems can easily handle large-

scale programs since their computational growth appears to be linear in the length

of the program under analysis. They suffer from approximate and imprecise results

[BIGG93].

Figure 1 is based on the summary of the program understanding landscape in

[BIGG93]. The original has been updated to include additional work on program

understanding, with the number and colour of each oval providing a key to the

citations below. Biggerstaff et al. do not refer to pubhcations in the original figure

but Figure 1 adds this information.

Domain
Specificity

Specialised
Application
Domains

General
Application
Domains

Computer
Science
Knowledge

Fundamental
Knowledge

Deductive/ ^
Algorithmic
Methods

^ Plausible
Reasoning/
Heuristic
Methods

Brachman
Decompile

Bachman
Data Anal.

Prettyprmters

Formal Rigorous Semi-
Formal

Formality

Systematic

Model-
Driven
Methods

Model-Free
Methods

Ad Hoc

Key to citations

Oval Author(s) System Citation(s) Oval Author(s) System Citation(s)

Figure 1: The Program Understanding Landscape

The method presented in this thesis is intended to operate with real-world, large-

scale programs and consequently adopts a plausible reasoning approach to its

intelligent analysis. Two systems in Figure 1 share this approach: DM-TAO, and

IRENE. A brief description of each is given here and fuller explanations of their

approaches are presented throughout the thesis.

1.2.1 DM-TAO
DM-TAO forms the intell igent reasoning component of the DESIRE toolkit

described in [BIGG89], [BIGG93], and [BIGG94]. It aims to identify domain

concepts in C source code, using a connectionist inference engine to determine the

appropriate concept for a section of code. A rich domain model embodies a large

number of weighted relationships and concept types. Relationship weights are

updated automatically based on the actions of the maintainer using the system.

DM-TAO can operate in three modes:

1) Conceptual grep: search the source code for a user-specified concept.

2) Conceptual highlights: search the source code for any recognisable concept.

3) Identification: suggest a concept for selected code.

Modes 1 and 3 require user involvement in the concept assignment process.

The evaluation of DM-TAO described in [BIGG93] is based on three files (about

600 lines of code) containing data definitions in the domain of multi-tasking

windows systems. A manual analysis of the files was undertaken to find the most

important concepts for understanding the data. Twenty-seven concepts were found

and a domain model constructed containing twenty of them. DM-TAO was tested

in conceptual grep mode finding twenty of the twenty-seven concepts and producing

three false positives, which were attributed to the fact that the connectionist

network was weakly trained. In identification mode DM-TAO tended to over-

generalise, finding both the appropriate super- and sub-concept for a segment of

code. This was attributed to some feature extractors not being implemented, e.g.

syntax categories.

This evaluation indicates that DM-TAO is reasonably successful at concept

recognition for data definitions. The strongest disadvantage of the approach is the

size, complexity, and computational cost of updating the domain model. The

method presented in this thesis aims to achieve concept recognition with a

considerably simpler and smaller domain model. It is intended to find operational

concepts rather than the data declarations on which DM-TAO has been evaluated.

1.2.2 I R E N E
The IRENE system employs concept acquisition techniques to retrieve business

knowledge from COBOL programs [KARA92]. It embodies a top-down approach,

working from a domain-engineered model of business entities to their source code

implementations. Relationships between the entities are expressed as dependencies

and derivations. The process of concept acquisition (similar to concept assignment)

begins with user-supplied hypotheses about the correspondence of certain domain

concepts to constructs in the program. IRENE generates further hypotheses using

this information. The process is interactive, with the system user verifying concept

assignments and assisting with hypothesis generation.

IRENE has been evaluated on a small payroll application of about 500 lines, written

in COBOL 74. The internal representation (a parse tree represented as a hierarchy

of frames, see [KARA92]) was validated manually but no indication is given in

[KARA92] as to the success of the approach.

Since the available literature does not show IRENE'S concept

assignment/acquisition ability, comparative evaluation is difficult. The top-down

approach adopted is the opposite of that used by the method presented in this

thesis. In addition, IRENE'S use of a moderately rich domain model suffers similar

problems of maintenance and high initial cost that affect DM-TAO.

1.2.3 Summary
Although IRENE and DM-TAO adopt different approaches to concept

assignment, both systems use complex domain models requiring a large amount of

effort to create and maintain. Neither system has been evaluated extensively or on

particularly large programs.

1.3 Discussion of Problem
1.3.1 The Concept Assignment Problem
To meet the need for tools that identify algorithms, abstractions, and domain

concepts in programs, this thesis addresses the concept assignment problem. The term

was introduced by Biggerstaff et al. to describe the problem of assigning terms

regarding computational intent to appropriate regions of source code [BIGG93].

The emphasis of the work presented here is on automatic concept assignment with

minimal user involvement, although the activity can also be performed semi-

automatically or manually. The latter approaches are likely to incur greater cost.

Biggerstaff et al. define the concept assignment problem as:

"... a process of recognising concepts within a computer
program and building up an "understanding" of the program by
relating recognised concepts to portions of the program, its
operational context and to one other." [BIGG93]

They refer to two distinct types of concept: programming-oriented, and human-

oriented. The former can be detected with traditional parsing technology using

formal, structure-oriented patterns of features as signatures for concepts. The term

"human-oriented" is used to refer to an informal expression of computational intent

e.g. acquire target. The signature for such concepts (also termed domain concepts

in this thesis) is less well defined and open to variation. The model of concept

recognition required for domain concepts is characterised as an opportunistic, non-

deterministic, and chaotic piecing together of evidence for a concept, until some

threshold of confidence is reached about its identity. This contrasts with the

programming-oriented model of recursive, algorithmic, deterministic, and orderly

building of abstract components from less abstract components [BIGG93].

A domain is defined as a problem area [DEBA94] but it is an overburdened term

[TlLL96a] and as such, it is often difficult to define the limits and contents of any

one in particular. Using terms such as "programming-oriented" and "domain-

oriented" to differentiate types of concept may be ambiguous in some

circumstances, e.g. programming-oriented concepts are concepts in the domain of

programming and hence are domain concepts. In order to avoid this confusion,

and to define more precisely the problem addressed by this work, the concept

assignment problem can be rewritten as:

"The process of assigning descriptive terms to their
implementation in source code, the terms being nominated by a
user and usually relating to computational intent."

This problem statement captures much of the original definition while removing

ambiguity from the supporting terms. A concept is regarded therefore as a

descriptive term nominated by the user. The rewritten problem statement is

concerned solely with the essence of concept assignment, i.e. mapping concepts to

code. Relating these concepts to the operational context of the program and to

each other is not within its scope.

1.3.2 Research Issues
Tilley et al. state that concept assignment research is at a very early stage, partly due

to the complexity of the matching process [TILL98b]. Two major research issues

can be identified within the overall concept assignment problem:

• Segmentation: finding the location and extent of concepts in the source code.

• Concept Binding: determining which concepts are implemented at these

locations.

Segmenting a program involves grouping pieces of conceptual information

generated from the source code. Concept binding involves analysing these groups

for the most plausible concept assignment for each.

1.3.3 Problem Boundaries
The concept assignment method presented in this thesis has been developed with

the assumption of certain problem boundaries and applications.

Globally, organisations maintain a large amount of COBOL and this provides a

strong motivation for targeting the technique at this language and its variants.

Analysis is targeted therefore at programs written in IBM COBOL I I . In view of

the aim of determining computational intent, the problem is restricted to the

procedure division of such programs and functional concepts are considered more

important than data concepts.

The objective is to support a single maintainer in software comprehension, and

consequently solutions are not expected to support group-based comprehension. In

addition, it is assumed that such solutions wil l operate on individual modules of

code.

In summary, this thesis addresses the concept assignment problem for the

procedure division of programs written in IBM COBOL I I . The problem is

restricted to analysing one module at a time, presenting the results to a single

maintainer.

1.4 Research Aims and Criteria for Success
The aims of this research, and hence the criteria for success, cover many aspects of

both the problem and solution. A framework to model the comprehension activity

for people and software tools is required to enable comparative evaluation of cost

later in the thesis. The concept assignment problem must be solved and a

prototype tool constructed to demonstrate the viability of the solution. The criteria

for success are formally stated thus:

1) The definition of a framework for the activity of software comprehension.

This should capture the essential processes and data structures involved in

software comprehension, regardless of whether the actor (i.e. the entity

undertaking the comprehension activity) is a person or a software tool.

2) The creation of a formal model of the comprehension activity framework

discussed in criterion 1 to define clearly its data structures.

3) The development of a new method to undertake automatic concept

assignment using a simple knowledge base. It should be capable of

analysing real-world COBOL I I code and successfully cope with poorly

structured and monolithic programs, in addition to well-structured

examples. The method should provide a software maintainer with

automatically recognised concepts linked to regions of source code.

4) As part of criterion 3, the development of novel approaches to address the

two main research issues in concept assignment: segmentation, and concept

binding.

5) The extension of the general formal model (see criterion 2) to the new

concept assignment method.

6) The implementation of a prototype tool to demonstrate the feasibility of the

new concept assignment solution. This should allow easy evaluation of the

method.

Chapter 10 presents a discussion of the success of this research with reference to

these criteria.

1.5 Evaluation Criteria
The primary objective of this work is to define a method to perform automatic

concept assignment using a simple domain model. It should be capable of handling

real-world programs and perform successfully, whatever the structural quality of the

code being analysed. Chapters 8 and 9 present an extensive evaluation of the

method described in this thesis. The first part (shown in Chapter 8) is based on the

following criteria:

• Representational Issues

o Spatial Cost

o Representational Power

o Library Content

• Performance Issues

o Segmentation

o Concept Binding

o Computational Cost

o Scalability

10

• General Issues

o Domain Independence

o Language Independence

o Expandability

o Cognitive Requirements

The three groups of criteria cover a wide range of characteristics. The method is

evaluated in Chapter 9 to establish where it may be applied in the software

maintenance process.

1.6 Contribution
The main contribution of this work is a new method for automatic concept

assignment: Hypothesis-Based Concept Assignment (HB-CA). It uses a simple

knowledge base and is targeted at COBOL H, The two main research issues within

the concept assignment problem are addressed:

• Segmentation: Structural information and self-organising maps are used to

cluster related concept hypotheses. This approach allows the method to

handle well-structured, poorly-structured, and monolithic code.

• Concept Binding: Concept clusters are analysed and scored. Ambiguity is

resolved through the application of simple rules.

The method is set in the context of a framework describing the software

comprehension activity. This captures the essential data structures and processes of

software comprehension for both people and software tools. A formal model of

the framework expresses its data structures in set theory. HB-CA is compared to

other concept assignment solutions throughout this thesis and an extensive

evaluation of the method and its use in the software maintenance process is

presented.

11

1.7 Thesis Structure
This thesis is divided into ten chapters.

Chapter 1 introduces the motivation and context for the research, discusses the

problem to be solved, and sets out the research aims and criteria for success.

Chapter 2 develops a framework modelling software comprehension. Parts of this

framework are formalised using set theory.

Chapter 3 introduces Hypothesis-Based Concept Assignment. Comparisons are

drawn with the methods underlying the DM-TAO and IRENE systems. The

framework and formal model presented in Chapter 2 are extended for HB-CA.

Chapter 4 describes the first stage of HB-CA, hypothesis generation, in the context

of the comprehension activity framework and formal model. HB-CA's hypothesis

generation method is compared with other systems' techniques for gaining initial

information about a program.

Chapter 5 presents a method for segmenting programs based on their structure, and

using self-organising maps of concept hypotheses. This forms the second stage of

HB-CA. Appropriate comparisons are made with other systems' methods for

segmentation.

Chapter 6 describes the final part of HB-CA: concept binding. HB-CA's method is

compared with those used by DM-TAO and IRENE.

Chapter 7 describes a prototype implementation of HB-CA called the Hypothesis-

Based Concept Assignment System (HB-CAS). The implementation is used in the

investigations presented in Chapters 8 and 9.

Chapter 8 presents the first part of a detailed evaluation of HB-CA. The criteria

outlined in section 1.5 are used to evaluate the method.

12

Chapter 9 contains the second part of the evaluation, examining applications of HB-

CA in the software maintenance process.

Chapter 10 contains a general discussion and summary of the work accomplished.

The success of the research is considered in terms of the criteria presented in

section 1.4 and ideas for further work are suggested.

The Appendix contains data and results pertaining to the investigations carried out

in the evaluation. It is followed by a list of references.

1.8 Summary
Chapter 1 has introduced the work presented in this thesis. The motivation and

context of the research have been explained with reference to other achievements in

the field. Two major research issues have been identified within the concept

assignment problem: segmentation, and concept binding. Evaluation criteria have

been presented and the structure of the thesis explained.

Chapter 2 discusses background material and develops a framework to model the

software comprehension activity.

13

Chapter 2

Background and Framework

2.1 Introduction
Chapter 1 introduced the material in this thesis, presenting the context and

motivation of the work. The research problem was defined and two key issues

identified. Criteria for evaluating both the method and the research were presented.

The structure of the thesis also was discussed.

This chapter examines the background to the method presented in this thesis. A

standard process of software maintenance is described and issues relating to its

improvement are discussed. A descriptive framework capable of modelling both

human and automated approaches to software comprehension is then introduced.

This is the context for the Hypothesis-Based Concept Assignment (HB-CA)

method presented in later chapters. The framework's source and target

representations are formally defined.

2.2 Software Maintenance
The IEEE definition of software maintenance given in [IEEE98] is:

"Modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt the
product to a modified environment."

It is the largest and most expensive stage of the software lifecycle [ROBS91]

potentially consuming 70 percent of the total lifecycle costs [LIEN80].

14

2.2.1 Types of Software Maintenance
Swanson describes three types of software maintenance [SWAN76]:

• Perfective: Changing or adding to a system's functionality, improving

maintainability, enhancing performance.

• Adaptive: Changing a system to account for environmental changes.

• Corrective: Fixing bugs in a system.

A change to a software system wil l usually involve elements of these types of

maintenance [SOMM93].

2.2.2 The Software Maintenance Process
Organisations undertake the process of software maintenance in various ways

ranging from ad hoc and disorganised, to highly controlled and well managed. In

recent years, there has been great interest in the improvement of the software

maintenance process, with a view to controlling and reducing the cost of the task.

It is possible to conduct the improvement of an organisation's software process in a

managed way. One of the best known and most widely used examples of this is the

Capability Maturity Model (CMM) developed by the Software Engineering Institute.

The C M M defines five levels of software process maturity for an organisation

although it does not specifically prescribe how an organisation should move from

one to another. The levels are described below [PAUL93]:

• Level 1: Initial

The software process is ad hoc, occasionally chaotic. Few activities are

defined and success depends on individual effort. There is little

predictability in quality, budget, schedule, or functionality.

• Level 2: Repeatable

Basic project management processes are established to track cost, schedule,

and functionality. The necessary process discipline is in place to repeat

earlier successes on projects with similar applications. Planning and

management of new projects is based on experience with similar projects.

15

• Level 3: Defined

The software process for both management and engineering activities is

documented, standardised, and integrated into a standard software process

for an organisation. A l l projects use a tailored version of this standard

process.

• Level 4: Managed

Detailed measures of the software process and product quality are collected.

Both the software process and products are quantitatively understood and

controlled.

• Level 5: Optimising

Continuous process improvement is enabled by quantitative feedback from

the process and from piloting innovative ideas and technologies.

Level 1 establishes a baseline against which process improvements in the higher

levels can be compared. The activities that an organisation can undertake to

establish or improve the software process are characterised in Levels 2-5 [PAUL93].

There is a current initiative to standardise the various approaches to software

process improvement and assessment. It aims to reduce the cost of assessing

process capability for organisations and their customers by defining certain criteria

that must be met by a process assessment method. The results of using differing

methods can then be compared within the framework. The initiative is called

SPICE and is documented in [EMAM98].

16

Once an organisation has reached Level 3 of the CMM, the stages of the software

maintenance process are defined. The IEEE software maintenance standard

defines seven stages for the maintenance process [IEEE98]:

a) Problem/modification identification, classification, and prioritisation;

b) Analysis;

c) Design;

d) Implementation;

e) Regression/system testing;

f) Acceptance testing;

g) Delivery.

Chapter 1 identified the analysis, design, and implementation stages as having

particular relevance to the work presented here. The IEEE definition of these

stages (see [IEEE98]) is discussed in the next few sections to show where software

comprehension is required.

2.2.2.1 Analysis

Analysis is an iterative process that has at least two components: feasibility analysis,

and detailed analysis. The modification request, system and project documentation,

and repository information are used to determine the feasibility and scope of the

modification. Where documentation is inadequate and source code is the only

reliable reference for the current system, reverse engineering is recommended.

Various activities are required during analysis including the identification of

elements involved in the modification, determination of the modification's impact,

identification of short and long-term costs, and implementation planning. The

standard suggests that a preliminary modification list of those elements affected is

created, e.g. software, specifications, database, and documentation. This involves

some degree of software comprehension, probably at the system rather than

program level, to determine which elements may be affected. It is interesting to

note that although analysis requires the identification of the elements involved,

identifying the specific software modules affected is left until the design stage. This

could make cost estimation extremely difficult in some circumstances.

17

Identifying the impact of the modification and building the preHminary modification

list may involve ripple analysis. Ripple analysis involves assessing the effect of a

change on other parts of a system and can be undertaken in various ways. The

analysis stage of the software maintenance process is likely to require ripple analysis

at the business-rule level primarily, as the identification of affected software

modules'is not addressed until the design stage.

Business rules have been defined as:

"A requirement on the condition or manipulation of data
expressed in terms of the business enterprise or application
domain." [SELF93]

A key idea is that the rule is stated at the level of the application domain, not of

programming. Consequently, business rules are related closely to domain models

but reflect the desires of a particular company, not the general features of a domain

[SELF93]. Examples of business rules might be found in the formulae and

conditions that define the growth and charging structure of a financial product such

as a pension policy. These make certain requirements of manipulations on the

entities involved in the management of the policy.

Ripple analysis in terms of business rules poses the following question: if one rule is

changed, are others also affected.^ Finding affected rules may require examination

of documentation and software, with the cost of undertaking such analysis likely to

be crudely proportional to the number of artefacts that need to be inspected.

Business-rule ripple analysis can be seen as an example of the higher-order impact

analysis that Tilley and Smith describe in [TILL96b]. Higher-order impact analysis

allows the software engineer to analyse proposed changes at the application-domain

level rather than the implementation-domain level [TILL96b].

The analysis phase produces a report that forms part of the input to the design

phase.

18

2.2.2.2 Design

This phase uses the system and project documentation, source code, comments,

databases, and the output of the analysis stage to design the modification to the

system. The process includes identifying affected software modules, modifying

their documentation, creating and identifying test cases, and updating the

modification list. The whole phase involves software comprehension but two

activities particularly require it: code ripple analysis, and module selection. Both are

part of the process of identifying affected software modules.

Code ripple analysis answers a similar question to that posed for business rules

above. In this situation however, the ripples are examined on the basis of potential

changes to source code. This can be undertaken at a syntactic and semantic level,

e.g. using a forward program slice, see [NING94]. Alternatively, it could be

conducted conceptually in a similar manner to business-rule ripple analysis, with the

difference lying in the type of concept being considered. Code ripple analysis is

more likely to be dealing with software engineering concepts than application-

domain related concepts.

The cost of code ripple analysis is addressed extensively in the literature but usually

in terms of specific algorithms. Since the work presented in this thesis is not

concerned with particular methods for the process, the cost can be regarded as

roughly proportional to the number and size of the artefacts examined.

Module selection is the process of determining which modules are affected by a

proposed change. It can take place before and/or after ripple analysis and involves

searching the code repository for instances of concepts or code that are known to

require change. The cost can be seen as a function of the size of the code

repository (in terms of total lines of source code) and the search method.

Translating the behavioural description of a modification to its implemented

counterpart can be extremely difficult. Concept-based search could assist with

selecting the modules that need changing.

19

2.2.2.3 Implementation

Implementation involves making the specified changes to the system. The IEEE

standard suggests that implementation should be commenced during the design

phase, particularly if the change is complex, in order to better understand the

modification. The standard defines four sub-processes: coding and unit testing,

integration, risk analysis, and test-readiness review. Software comprehension is

particularly required in coding and unit testing. Although the standard does not

elaborate further on the coding sub-process, it is possible to break it into two parts:

software module comprehension, and change implementation [GALL91]. These

parts may be iterative. Software module comprehension is the process of studying

the sofiiware module to be changed, in order to understand where and how the

change should be made. Once the module is understood, the change can be made.

Achieving such understanding is a non-trivial task accounting for a very high

proportion of the total cost of software maintenance. The work presented in this

thesis is aimed at helping to reduce understanding cost through automatic concept

assignment. The effort of understanding can be seen as proportional to the size of

the module being considered, although this relationship may not necessarily be

linear since the maintainer may change comprehension strategy for different sizes of

program (see [LITT86]). Other factors such as the program complexity, quality of

coding, and maintainer's experience may also have an impact. Familiar modules are

likely to take less time to comprehend than those not previously addressed.

2.2.2.4 Summary

The IEEE standard presents a good model for the software maintenance process,

identifying the major stages within it. The International Standards Organisation also

defines a software maintenance process standard (see [IS099]). This is a three-stage

process that is less comprehensive than the IEEE version. A particular problem is

that impact analysis is not undertaken until the implementation stage, potentially

causing difficulty with cost estimation.

The stages of the IEEE standard where there is a strong requirement of software

comprehension have been discussed and cost factors identified in each. Four

particular activities have been highlighted: business-rule ripple analysis, code ripple

analysis, module selection, and software module comprehension.

20

2.3 Software Comprehension
To benefit software comprehension, approaches to automatic assistance must have

the potential to lower the cost of producing representations used or required by the

software maintainer. This section presents a descriptive framework for the activity

of software comprehension. It is specialised for the concept assignment problem

and unifies automated and manual approaches. The framework is used later in this

thesis for a discussion of the cost savings that might be achieved when using

automated assistance in software comprehension.

2.3.1 A Comprehension Activity Framework
Initially, it is assumed that a single maintainer is attempting to understand a software

module for one of the reasons discussed in section 2.2.2.

Maintainers gain their understanding of how a module performs a task by using and

creating various representations of the software to emphasise different

characteristics. These representations can show things such as the control and data

flow, or the relationship between subroutines in a module, e.g. using a call graph.

Source code captures all of these properties and is the most widely used

representation. Others are created and used to assist with understanding the source

code, and changes to a software module are usually made in the source code first,

with other representations updated to reflect these modifications.

The activity of software comprehension can be characterised as the use, creation,

and modification of representations of the software by a person. This is shown in

Figure 2.

21

Key
Aaor

Information Store
Information Flow — •

Representations

Figure 2: Basic Framework Describing the Software
Comprehension Activity

Software tools can be employed to create and use some representations of software,

e.g. the object-code representation produced by a compiler. This ability can be

captured by generalising the framework shown in Figure 2 to describe a processor

(which can be a software tool, person, or other device) that can create, modify, and

use representations of the software. This is represented in Figure 3.

Key

Aaor

Information Store

Information Flow

Processor

Representations

)

Figure 3: Basic Framework Revised to Describe the
Comprehension Activity using a Processor

In many cases the only current, complete, and trustworthy information about a

system is its source code; all other information must be derived from this

[TILL98a]. Fjeldstad and Hamlen found that when making an enhancement,

programmers studied the original program about three and a half times as long as

they studied the documentation, and about as long as they spent implementing the

change [FJEL79]. Since source code captures many properties of the software and

22

is usually used as the primary source of information [CORB89] from which other

representations are derived, it can be separated justifiably from the other

representations in the framework. The framework does not aim to capture the

module change activity hence source code is not shown as an output representation.

The framework in Figure 4 captures the source code separately from the other

representations.

Key

Artor

Information Store

Information Flow

Source Code

Non Source-Code

Representations

Figure 4: Comprehension Activity Framework Showing
Separated Source Code

The description of a general framework for the software comprehension activity is

now complete. Since it models the aaivity at a high level, comparison can be made

of the relative costs of any approaches to software comprehension (manual or

automatic) that f i t the framework.

2.3.1.1 The Processor

There are two primary types of processor: people, and software tools. The

characteristics, internal representations, and methods of each type are examined to

determine common ideas that can add detail to the framework.

23

2.3.1.2 People as Processors

There has been a large amount of work undertaken to determine how people

understand software, and how their understanding is represented in the mind. The

understanding activity is generally termed program comprehension.

Novice and expert maintainers understand code differently. Novices adopt a

syntactic orientation, organising their knowledge structures around the program

syntax, whereas experts organise their knowledge around algorithms and functional

characteristics within their domain of expertise [MAYR95]. The comprehension

model used initially depends on the maintainer's level of domain knowledge and

code familiarity [MAYR94]. Models of program comprehension can be divided into

three groups: top-down, bottom-up, and integrated.

Top-down understanding is typically applied when the code is familiar [MAYR95]

and a good example of a top-down model is that defined by Soloway, Adelson, and

Ehrlich [SOL084], [SOL088]. This model views the process of comprehension as

the construction of a hierarchy containing goals. These goals are decomposed into

structures called plans, which can describe a strategy for achieving a goal, a language

independent problem solution, or be a code fragment implementing such a solution.

Plans can be decomposed further into lower-level plans [MAYR95]. Brooks

presents another top-down approach using a hierarchy of hypotheses [BR0083].

Bottom-up models (typically used when the code is unfamiliar) suggest that the

maintainer starts building a mental representation from the source code and chunks

together elements into higher order structures. Chunking refers to the process of

attaching descriptive labels to knowledge structures at various levels. Chunks can

contain lower-level chunks with a description of how they interrelate [MAYR95].

Pennington's model is an example of a bottom-up approach [PENN87].

The integrated approach subsumes the other two types by providing a framework

within which both can be used as necessary. This model was suggested by von

Mayrhauser and Vans and a number of studies have been performed to validate it

[MAYR95] (see also [MAYR97], [MAYR98]).

24

A l l of the comprehension models have aspects that appeal to the personal

experience of software maintainers. By including elements from top-down and

bottom-up methods, the integrated meta-model of von Mayrhauser and Vans

appears to be superior to the others. This intuitive assessment is confirmed further

by the empirical studies undertaken by von Mayrhauser et al., and by the typical

experience of professional maintainers. Glimpses of the meta-model can be seen in

the other theories, e.g. to explain the experiences of professional maintainers.

Brooks suggests that bottom-up understanding is a degenerate case of top-down

understanding [BR0083]. A more plausible explanation for this would seem to he

in the meta-model approach. It is also interesting to note that since the

development of the meta-model, no new major comprehension models have been

proposed despite the relatively large number produced before its creation.

Von Mayrhauser and Vans identify three major components common to all models

of comprehension: a knowledge base, a mental model, and methods for acquiring

knowledge [MAYR95]. The knowledge base contains the maintainer's general

knowledge of the application domain, software engineering and maintenance

knowledge, their experience and skills, and any other knowledge relevant to the task.

The mental model is the internal, working representation of the software under

consideration [MAYR95]; in other words, it contains the current state of

comprehension. The methods for acquiring knowledge (and thus updating the

knowledge base and mental model) vary from theory to theory. Littman et al.

identify two major strategies: systematic, and as-needed. The systematic approach

involves detailed line-by-line study of the program code whereas the as-needed

strategy suggests localising the section of program required for a change before

understanding it in greater depth [LITT86].

The literature on program comprehension suggests that there are three important

elements to be added to the comprehension activity framework: a knowledge base, a

mental model, and a collection of methods for acquiring and updating knowledge.

Figure 5 shows the comprehension activity framework extended for a person.

25

Key
Actor

Information Store
Information Flow

Source Code

Non Source-Code
Representations

Figure 5: Comprehension Activity Framework for a Person

The framework should describe the comprehension activity regardless of whether

the processor is a person or a software tool. To ensure the framework is capable of

modelling both types of processor, two tools are now examined. Since this thesis is

concerned with concept assignment by plausible reasoning, both are tools that

address this problem using such techniques.

2.3.1.3 Software Tools as Processors

This section discusses the common charaaeristics of two software tools in the

context of the comprehension activity framework. Their operational details are

discussed in later chapters.

The D M - T A G [BIGG94] and IRENE [KARA92] systems adopt different

approaches to locating concepts in source code. IRENE uses an exclusively top-

down approach driven from a strong domain model and user input. DM-TAO

works in a largely interaaive manner and forms part of a larger toolset designed to

facilitate design recovery (the DESIRE system). Both have a domain model

26

(although the degree of formality of knowledge representation varies between

them), a representation of their current behef about the software under analysis, and

methods for updating their current belief representation and domain model

(although the model may be updated by the user rather than automatically). It is

clear that these systems have similar characteristics to the psychological phenomena

observed by researchers in hurnan program comprehension. The domain model of

a software tool corresponds to the knowledge base of a person. Representations of

current belief in a tool correspond to a person's mental model and both people and

software tools have methods by which they acquire and evaluate new knowledge.

The comprehension activity framework can now be modified to include these ideas.

The three components added to the framework for people can be redefined to be

valid for both processor types. They are now:

• A knowledge base containing the processor's knowledge about the domain,

language, and other pertinent information required to perform the

comprehension task. This knowledge base would be considerably richer and

more flexible for a person than a software tool.

• An internal representation to store the processor's current understanding of the

source code being analysed. This corresponds to the mental model of a

human maintainer.

• Methods by which the internal representation and knowledge base can be

updated.

These changes are shown in Figure 6.

27

Key

Actor

Information Store

Information Flow

Source Code

Processor

Non Source-Code
Representations

Figure 6: Comprehension Activity Framework with
Processor Related Entities

2.3.2 Representations
Since the focus of the work in this thesis is on the concept assignment problem

described in Chapter 1, the general framework in Figure 6 can be made more

specific with respect to the non source-code representations. The output required

of solutions to the concept assignment problem is a collection of domain concept

names related to parts of the source code. This is defined as the specific target

representation for the framework and is referred to as the source-label representation.

A domain is defined as a problem area [DEBA94] but Tilley et al. note the over­

burdening of the term [TILL96a]. For the purpose of HB-CA, concepts can be

drawn from any problem area considered appropriate by the software maintainer. It

is likely that both general software-engineering and specific application-domain

concepts wi l l be used.

Figure 7 shows an updated framework. Note that the use of the source-label

representation by the processor is no longer shown on the framework since the

28

primary concern here is the translation from source code to source-label

representation.

Key

Actor

Information Store ^

Information Flow ^ — •

Source Code

Source-Label

Representation

Figure 7: Comprehension Activity Framework with Specific
Output Representation for Concept Assignment

These representations can be defined precisely through the definition of their

supporting terms and the use of formal notation.

2.3.2.1 Source Representation

The formal model described in this seaion captures various properties of the source

code, allowing reference to its constituent parts as required by the target

representation.

The source code can be regarded as a number of lines.

Source : {x : Line] (1)

29

Each line is made up of lexemes and is numbered sequentially.

Line : ({y : Lexeme}, seqnum : Integer) (2)

Lexemes are the basic units used in parsing and do not need to be specified in more

detail. They are described by their start and end character positions (relative to the

first character of the source code) and are represented as a string.

Lexeme : {start: Integer, end: Integer, token : String) | start < end (3)

Definitions (1) to (3) establish a formal, lexical representation for the source code.

2.3.2.2 Target Representation

The target representation is a collection of concept names (labels) related to parts of

the source code (termed segments). This can be expressed formally.

T R : { (; c : Segment, y : String)} (4)

A concept is any descriptive term (usually related to computational intent)

nominated by the processor to represent some important item or activity within a

software-engineering or application domain. This is defined initially as a string.

Concept: String (5)

A segment is a contiguous group of lines in the source code. A basic definition is

shown below.

Segment: {start: Line, end: Line)

This needs to be extended to capture the notion that start must be equal to or less

than end. A new function cp is defined for "occurs before".

30

(p : (Line, Line) Boolean

cp{{a,b),{c,d)) = b<d

The basic definition of segment can now be extended to include this constraint.

Segment: {start: Line, end : Line) | start cp end (7)

Definitions (4) to (7) establish a formal version of the target representation.

The comprehension activity can now be regarded as a function P between the

source and target representations.

P : Source ̂ T R (8)

The processor provides the method by which the mapping under the function takes

place.

The comprehension activity framework now contains all the general components

required to model the software comprehension activity for concept assignment,

whether the processor is a person or software tool. The components are common

to both types and later chapters discuss some instances in more detail. Any

automatic concept assignment solution set in the context of the framework can be

shown to perform the same translation as a person undertaking concept assignment

manually. Consequently, the relative costs of the approaches can be compared.

31

2.4 Summary
This chapter has discussed the software maintenance process and its improvement.

A descriptive framework has been presented to model the software comprehension

activity and its representations. These representations have been defined formally.

The framework and formal model provide the context for the work described in the

next few chapters of this thesis.

Chapter 3 presents an outline of the processes and data structures used in the

Hypothesis-Based Concept Assignment method, relating these to the

comprehension activity framework. It discusses the rationale for the method's

design and examines the structure of the knowledge base used by HB-CA,

comparing it to those employed in DM-TAO and IRENE. An example source

program is presented on which the operation of HB-CA is demonstrated in later

chapters.

32

Chapter 3

Hypothesis-Based
Concept Assignment

3.1 Introduction
Chapter 2 presented a framework and formal model to describe various aspects of

the software comprehension activity and its associated representations.

This chapter outlines a new approach to solving the concept assignment problem

discussed in Chapter 1, It is termed Hypothesis-Based Concept Assignment

(HB-CA). The processes and data structures of the method are discussed in the

context of the comprehension activity framework described in Chapter 2. A

comparison is made between the general characteristics of this method and other

plausible reasoning solutions to the concept assignment problem.

A program fragment and knowledge base are presented as an example to illustrate

the method's operation in later chapters.

3.2 Characteristics of Concept Assignment
Methods
This section discusses general characteristics of two concept assignment methods

that address the problem using plausible reasoning. Table 1 shows a summary of

areas on which these are compared, with lengthy discussion reserved for later

chapters. Hatched boxes show where a method's characteristic is shared with HB-

CA.

33

Direction

Interactivity
Knowledge
Base
Representation
Knowledge
Base
Complexity
(Concept
Types)
Knowledge
Base
Complexity
(Relationship
Types)
Knowledge
Base Creation
Cost
Knowledge
Base Update
Method
Knowledge
Base Update
Cost
Initial
Information
Source
Initial
Information

Clustering
Method
Clustering
Data Used
Concept
Binding
Evidence

Concept
Binding
Method

Explanatory'
Power

1 HB-CA

DM-TAO
(Conceptual

DM-TAO
(Conceptual
HighUghts)

DM-TAO
(Identification)

IRENE

I Bottom-Up Top-Down Bottom-Up Restricted
Bottom-Up Top-Down

None High None High High

1 Semantic Network Semantic/Connectionist Hybrid Network Formal
Relations

Low High

Low High
^ ^ ^ ^ ^ ^
9 y / / / / / / / / / / / A

Low High Medium

Manual Semi-Automatic

Low High Medium

1 Source Code User Source Code User

1 Textual Indicators

User-Supplied
Concept,
Syntactic,

Lexical, and
Clustering Clues

Syntaaic,
Lexical, and
Clustering

Clues

Syntactic, Lexical,
and Clustering

Clues

User-Supplied
Hypothesis

1 Self-Organising
Map Feature Extraaors Unspecified

j Hypotheses Syntactic Features Unspecified

Hypotheses Syntactic Features

Syntaaic
Features/
Domain
Model

Scored Weight of
Evidence with

Disambiguation
Rules

Conneaionist Network Triggering and Propagation

Plausibility
Measure using

Weighted
Matching

Rules

Medium Low High

Table 1: Characteristics of Concept Assignment Methods

3.3 The Hypothesis-Based Concept Assignment
Method
The Hypothesis-Based Concept Assignment method is a three-part non-interactive

process. It operates on the procedure division of IBM COBOL I I programs

(akhough a complete program is provided as input). Chapter 1 discusses the

reasons for using only the procedure division.

34

The three stages of HB-CA are:

• Hypothesis Generation

• Segmentation

• Concept Binding

In terms of the comprehension activity framework, these parts reside in the

methods oval as shown in Figure 8.

Key

Actor

Information Store

Information Flow

Source Code

Source-Label
Representation

Figure 8: Comprehension Activity Framework Showing
HB-CA Processes

35

The flow of control and data is sequential. The process begins with hypothesis

generation from source code. This is followed by segmentation of the hypotheses

to determine regions of conceptual fociis in the program. Finally, concept binding

finds the dominant concept in each segment. Figure 9 shows the sequence of

processing with the internal representations used by each stage.

Key

Aaor

Information Store

Information Flow

Process

Data Structure

Source Code

Processor

Hypothesis
Generation

Source-Label
Representation

Figure 9: Comprehension Activity Framework Showing
HB-CA Processes and Internal Representations

36

3.3.1 Hypothesis Generation
The hypothesis generation stage takes source code as its input. Using information

contained in the knowledge base, it scans the source code for indicators of various

concepts. When an instance is found and matched, a hypothesis for the appropriate

concept is generated. Matching is performed using a variety of flexible criteria. The

resulting collection of hypotheses is ordered by the position of the indicators in the

source code.

3.3.2 Segmentation
The segmentation stage takes the sorted hypotheses and attempts to break them

into segments. Initially, this is performed using hypotheses for primary

segmentation points (COBOL I I section boundaries). Each of the initial segments

is analysed to determine whether it has the potential to contain a number of smaller

segments. If this is the case, a self-organising map is used to establish areas of

conceptual focus within the segment. These areas are analysed and smaller

segments created if necessary. The output of the stage is a collection of segments,

each containing a number of hypotheses.

3.3.3 Concept Binding
This stage analyses each segment's hypotheses to determine which concept has the

most evidence. It exploits relationships in the knowledge base to generate

conclusions, and scores these on the basis of concept occurrence. A number of

disambiguation rules can be applied to choose between equally strong concepts.

When a concept has been selected, the segment is labelled with the name of that

concept. After all segments have been analysed and labelled, the results form the

overall output of the method.

3.4 Characteristics of Concept Assignment
Methods
Each of HB-CA's stages is described in detail in the next few chapters but it is

useful to compare some of its general characteristics with those of DM-TAO and

IRENE, which have both addressed the concept-assignment problem using

plausible reasoning.

37

The methods are compared using two characteristics: direction of operation, and

interactivity.

3.4.1 Direction of Operation
The direction of operation of a method describes whether it works top-down (from

the knowledge base to the code), bottom-up (from the code to the knowledge base),

or a combination of both.

HB-CA adopts a purely bottom-up approach, developing a hypothesis

representation from the source code. This is used for segmentation and concept

binding in the latter stages of the method.

IRENE is based on a top-down approach (see [KARA92]). It is driven by user-

supplied hypotheses that are analysed by the system. Derivations and dependencies

in the knowledge base are used to infer the existence of other concepts, and IRENE

attempts to find implementations of these in the source code.

DM-TAO can operate in several ways: top-down where a user specifies a concept

for search (conceptual grep), bottom-up where all instances of any concept in the

knowledge base are found (conceptual highlights), and "directed" bottom-up where

a concept assignment is proposed for user-selected source code (identification)

[BIGG94].

The different approaches to the direction of operation are summarised in Table 2.

HB-CA DM-TAO
(Conceptual

DM-TAO
(Conceptual
Highlights)

DM-TAO
(Identification)

IRENE

Bottom-
Up Top-Do wn Restricted

Bottom-Up
Top-

Down

Table 2: Characteristics of Concept Assignment Methods
Direction of Operation

The advantage of a purely bottom-up approach is that a simpler knowledge base can

be used than that required for top-down approaches. A bottom-up approach

38

performs most of its understanding based on information from the source code. If

the source code is hard for a person to understand (due to a lack of meaningful

items within it), it wi l l probably be hard for a bottom-up concept assignment

system. Top-down systems may be able to avoid this problem by performing most

of their inference using the domain model. This requires more investment in the

creation and maintenance of the knowledge base, as it is the primary understanding

mechanism.

DM-TAO's bottom-up mode has the same goal as HB-CA: to provide a list of all

recognised concepts to the user. The methods of understanding and presentation

differ. The DM-TAO method also forms part of the DESIRE toolset intended for

supervised use (see [BIGG89], [BIGG93], [BIGG94]) whereas HB-CA is intended

to operate unassisted.

3.4.2 Interactivity
Interactivity is the amount of user-involvement required in the concept assignment

process.

HB-CA is a non-interactive method requiring no user involvement, other than prior

creation of the knowledge base.

IRENE is highly interactive. The concept search process is initiated from user-

supplied hypotheses with the system making further suggestions. These are verified

by the user for IRENE to continue its analysis.

DM-TAO can operate with various levels of interactivity. It is user-driven in both

top-down mode (conceptual grep), and in "directed" bottom-up mode

(identification). In bottom-up mode (conceptual highlights), it is non-interactive,

although the expectation is that the results wi l l be employed by the user to extend

the search further.

Table 3 summarises the level of interactivity required by the different approaches.

39

HB-
CA

DM-TAO
(Conceptual

DM-TAO
(Conceptual
Highlights)

DM-TAO
(Identification)

IRENE

Interactivity High None High High 1

Table 3: Characteristics of Concept Assignment Methods -
Interactivity

The level of interactivity can have an effect on the overall cost of the method. Since

interactive methods require a user to supervise their operation and guide them in

the understanding task, they can incur a high cost. Non-interactive methods can

perform their analysis unassisted and therefore are cheaper to execute. The reduced

cost of using an unsupervised method is balanced by the potentially more accurate

analysis of an assisted approach. The latter may allow the maintainer to get relevant

information more quickly as the search space for the tool is reduced. Unassisted

approaches may produce more irrelevant information but the maintainer does not

waste time waiting for analysis to be performed.

Unassisted approaches require the solution of at least one additional problem:

finding the location and extent of a concept implementation. HB-CA's solution to

this is discussed in Chapter 5. Assisted approaches do not have to deal with this

situation to the same degree, as the user can suggest or verify the position and size

of concept implementations.

3.5 Knowledge Base
In order to discuss the constituent processes of HB-CA in detail, the structure of

the knowledge base needs to be established. The knowledge base used for HB-CA

shares a number of similarities with those used in IRENE and DM-TAO. Al l have

the notion of a concept: a descriptive term to be attached to some part of the source

code being analysed. They all store evidence for a concept expressed in the

implementation language, and they all have ways of relating concepts to other

concepts.

The knowledge base used in HB-CA is termed the library.

40

It is anticipated that the user, or some other person responsible for knowledge base

maintenance, wil l construct the library, possibly using automated assistance such as

that described in [S AYY97]. This would take place before the first use of HB-CA

and the knowledge base content then could be improved as the user gained

experience. Section 9.2.2 shows a model that includes this feedback process.

3.5.1 Knowledge Representation in the Library
Knowledge in the library can be represented as a semantic network. Semantic

networks are graph structures consisting of nodes, and labelled arcs that describe

the relationships between the nodes [KUWA97]. The library nodes also have

attributes that are explained below.

There are two entities in the library that are represented as nodes in a semantic

network: concepts, and indicators. Concepts are the terms nominated by the user to

describe items or activities in the domain. Indicators are evidence for concepts

expressed in the implementation language, in this case IBM COBOL I I .

The library encodes two types of relationship:

• Indicator-Concept

• Concept-Concept

The indicator-concept relationship maps evidence for a concept to that concept.

Concept-concept relationships map concepts to others to form composites and

specialisations.

3.5.LI Indicators

Indicators have a number of attributes:

Name

Class

Data

41

The name is a string used within the Hbrary to identify the indicator and provide an

abstraction from the actual data. The class refers to the type of feature represented

(e.g. identifier). This allows the indicator recognition process to filter indicators in

the library for those appropriate to the search method being employed. The data is

the actual evidence to be found in the source code. Alternatively, it may be a

reference to another container for the data. The latter would be appropriate for

complex indicators such as code fragments.

Indicators are represented in the semantic network diagrams throughout this thesis

as shown in Figure 10.

Name: CFUe

Class: Comment

Data: FILE

Figure 10: Example of an Indicator in Semantic Network
Representation

Formal definitions of indicator and class, in the context of the model presented in

Chapter 2, are given below.

Class: String

Vj5r:Class ,^e{7^ibji5fe'n"A^yt^

Indicator : (n : String, c: Class, d: String) (10)

3.5.1.2 Concepts

Concepts have three attributes:

• Name

• Type

• Level

The name is a string to identify the concept, i.e. the nominated descriptive term.

42

The type is either action or object. Action concepts are those that do something

(typically, the name of an action concept is a verb, e.g. Read). Object concepts are

those things on which action concepts operate (typically, the name is a noun, e.g.

File). Classifying concepts by type has improved the operation of the HB-CA

method by preventing over-produaion of hypotheses. Chapter 4 discusses this

issue in more detail. The classification also allows greater control of the concept

binding search (see Chapters 5 and 6). Additionally, in combination with the

relationships described below, it can help to reduce the size of the knowledge base

required to represent complex concepts. Concept typing is used by various

methods including DM-TAO (see [BIGG93]).

The level is dxhtrprimary or secondary. Primary concepts represent the most general

form of a particular concept; secondary concepts represent more specialised forms

of primary concepts, e.g. File might be primary, MasterFile might be secondary.

This information is required to help the method degrade its performance gracefully

in the event of conflicting evidence. It allows the search methods to select a more

general form of a concept i f the evidence for specific versions is ambiguous.

Semantic network diagrams in this thesis represent concepts as shown in Figure 11.

<Name: File
Type: Object
Level: Primary

Figure 11: Example of a Concept in Semantic Network
Representation

43

Formal representations of type, level, and concept are shown below.

Level: String

V Z : Level, X e {''PHmaryVSecondary"} (11)

Type: String

V F : Type, Ye {"ActionTObject"}

Concept: {n : String, / : Level, t: Type)

(12)

(13)

Note that definition 13 extends the original definition of concept (definition 5) to

include the additional attributes required by the knowledge base.

3.5.1.3 Indicator-Concept Relationship

The indicator-concept relationship, termed indicates, is formed by joining indicators

to the concepts for which they provide evidence. An example semantic network

showing the indicates relationship is presented in Figure 12.

Indicates

Name: File

Type: Objea

Level: Primary

Indicates

Name: CFile

Class: Comment

Data: FILE

Nanie:IFile

Class: Identifier

Data: FILE

Figure 12: Example of a Semantic Network Showing the
Indicates Relationship

Indicates can be stated formally thus:

Indicates : {(p: Indicator, q: Concept)} (14)

44

3.5.1.4 Concept-Concept Relationships

There are two concept-concept relationships in the library: composition^ and

specialisation. The formal model can capture the general form of concept-concept

relationships thus:

C C R : { r I r : {{a : Concept, b: Concept)}} (15)

Composition and specialisation form instances of the CCR relation.

Specialisation relationships are formed by linking secondary concepts (i.e.

specialisations) to primary or other secondary concepts. This is indicated on a

semantic network diagram using a dashed arrow (see Figure 13). I f X is a

specialisation of Y then the arrow wi l l point from X to Y. Although the library

structure permits secondary actions to be defined, the HB-CA method presented

here does not support their use.

<Naine:MasterFae \

Type: Object \

Level: Secondary X

Figure 13: Example of a Semantic Network Showing the
specialisation Relationship

Note the use of a dashed arrow to indicate specialisation.

It is extremely important that general forms of object concepts do not share

specialised concepts. The path from a specialised concept back to its more general

forms should always be unambiguous. This is because the concept assignment

methods have no way of handling more than one general version of a particular

specialised concept, although they can deal with multiple layers of specialisation.

The suggested structure is a tree with the most general form of a concept at its root

and specialisations extending from it . There should only be one path from a leaf

node to the root, but this does not have to be a single step. Thus, concepts can be

part of a chain of specialisation, each concept having only one general form but

45

Name: File

Type: Object
\ Level: Primary

potentially many specialisations. I f a specialised concept is required by more than

one general form, an additional concept should be added to the Hbrary to represent

the entities separately. Examples of acceptable and unacceptable struaures for the

specialisation relationship are shown in Figure 14. The red lines denote the links

that would cause problems.

Unacceptable Acceptable

Figure 14: Examples of Acceptable and Unacceptable Forms
of the Specialisation Relationship

The specialisation relationship can be stated formally:

Specialisation: {((^?,^,c):Concept, {d,eJ)-.Concept) \ e = "Secondary"} (16)

Composition relationships are formed by creating composite nodes in the semantic

network to join primary aaion concepts to primary objea concepts. This forms an

action:object structure (essentially a verb and noun construction) to convey more

information to the user (e.g. Read:File rather than merely Read).

Creating a composition of two primary concepts also produces a series of impHed

composites with all specialisations of the primary object concept. These are not

stored in the semantic network but are used as required by the segmentation and

concept binding methods. Figure 15 shows an example semantic network with a

composite concept.

46

<Name: Read

Type: Aaion

Level: Primary

Name: File

Type: Object

Levd: Primary

Key

Indicates •
Specialisation •
Composition •
Concept O
Indicator •
Composite Concept |

Name: MasterFile

Type: Object

Levek Secondary

Figure 15: Example of a Semantic Network Showing the
Composition Relationship

In Figure 15, a composite concept, Read:File, is formed from the Read and File

concepts. The implication mechanism discussed above means that an implied

composite, Read:MasterFile, also would be formed although not stored explicitly.

Composite concepts do not have their own indicators (the indicators of the two

constituents form the evidence for the composite).

Composition can be expressed formally:

Composition: {((<«,^,c):Concept, (c/,ej^:Concept) | b= "Primary",

e= "Pnmary", c= "Action",/^ "Object"]
(17)

47

The formal representations defined in expressions (9) to (15) can be combined to

give a formal definition of the knowledge base.

KB : ({% : Concept}, {i : Indicator}, {{p : Indicator, ^̂ ĝ

q : Concept)}, {r\r : {(a: Concept, b : Concept)}})

The HB-CA library structure can be expressed as an instance of the general KB

type.

L : K B

L = {C,I,Z,R)

I = dam 2

For some T: Specialisation, T e R

For some P: Composition, P e R

3.6 Knowledge Base Characteristics
This section compares various characteristics of the knowledge bases used in

IRENE, DM-TAO, and HB-CA. The characteristics examined are the costs of

creation and maintenance, and the knowledge base complexity, as measured by the

number of inter-concept relationships and their types. A brief description of the

IRENE and DM-TAO knowledge bases is presented in sections 3.6.1 and 3.6.2.

3.6.1 DM-TAO Knowledge Base
The knowledge base and inference engine of DM-TAO are combined into one

structure. It uses a connectionist-based inference engine [BIGG93]. The

knowledge base is a domain model built as a network, in which each concept is

represented as a node and inter-concept relationships are modelled as explicit links

between the nodes. HB-CA's library is similar to this. Each concept has associated

information regarding the features that characterise it, its relationships to other

domain concepts, and informal knowledge such as programmer terminology. The

syntactic and conceptual context in which the concept occurs also may be stored.

The domain model captures the underlying semantics in the target domain through

a rich set of inter-concept relationships, embodying the nature and degree of

semantic association between domain concepts [BIGG93]. The network is

48

organised in layers of abstraction and contains many types of node. These are

connected by several types of inter-node link, which have real-valued weights

associated with them to quantify the strength of the relationship. The weights are

updated semi-automatically in response to user evaluation of the correctness of

concept assignments.

3.6.2 IRENE Knowledge Base
IRENE'S knowledge base models the domain by using concepts and two major

relations between them: derivation, and dependency [KARA92]. Derivation

captures the notion that a concept X is derived from a concept Y if there is a

function f such that f(Y) = X. Dependency is similar but the function f is unknown.

These relations are transitive. There are two other relations used in the IRENE

knowledge base: strong and weak implication. Strong implication captures the

expectation of the existence of a concept when knowing the existence of another

concept. Weak implication expresses the plausibility that a concept exists, upon the

knowledge that its implying concept exists. The implication relations are

intransitive. The domain model also stores possible concept realisations in a

COBOL program, dividing IRENE's knowledge into software-dependent and

software-independent categories.

3.6.3 Knowledge Base Complexity
The complexity of the knowledge bases can be compared using the number of

concept types and the number of inter-concept relationships employed to represent

knowledge.

HB-CA employs two inter-concept relationships and two types of concept. This

provides a relatively simple knowledge base capable of representing a wide range of

concepts. The HB-CA library is effectively a reflection of the maintainer's current

domain understanding and interest.

DM-TAO has the most complex knowledge base employing a large number of

concept and relationship types. This allows the system to perform powerful

inference but at the expense of greater maintenance than the HB-CA library. The

way that DM-TAO updates its knowledge means that the knowledge base does not

49

reflect the maintainer's understanding in the same way as HB-CA, but forms its own

"understanding" of the domain.

IRENE'S knowledge base is of similar complexity to HB-CA, utilising four inter-

concept relations. The restrictions on the application of these are considerably

greater than HB-CA since they require a formal relationship to hold between the

concepts. IRENE does not differentiate between types of concept.

There are advantages to each approach. Simpler approaches, such as HB-CA and

IRENE, allow the knowledge base to be created and maintained easily by a user.

The more complex approach of DM-TAO makes this a difficult activity but

provides a subtler inference system. Its knowledge base is updated automatically

although a user is still required to assess the validity of concept assignments. The

difficulty of creating and maintaining such a knowledge base may have contributed

to the fact that DM-TAO has not . moved beyond a research prototype (see

[BIGG93], [BIGG94]). The formal relations employed by IRENE may incur a

higher initial cost than HB-CA when the domain model is created. HB-CA is

capable of concept assignment using minimal information.

The approach taken to source-code evidence can also have an impact on cost. DM-

T A O and HB-CA use feature analysers with flexibility in the recognition methods.

This reduces the need to store a large range of specific implementation evidence.

The examples of concepts shown in [KARA92] imply that IRENE requires a larger

range of code examples to match source code features. The differences between

the systems are summarised in Table 4 below, and Table 1 in section 3.2.

50

HB-CA DM-TAO
(Conceptual

D M - T A O D M - T A O
(Conceptual (Identification)
Highlights)

IRENE

Knowledge Base
Repieseutation

Semantic
Network Semantic/C onnectionist Hybrid Network Formal

Relations
Knowledge Base
Complexity
(Concept Types)

Low High

Knowledge Base
Complexity
(Relationship
Types)

Low High Low
-

Knowledge Base
Creation Cost Low High Medium

Knowledge Base
Update Method Manual Semi-Automatic Mai^af^

Knowledge Base
Update Cost Low High Medium

Table 4: Characteristics of Concept Assignment Methods
Knowledge Base

3.7 Example
This section shows a fragment of real-world COBOL I I (Figure 16), and an example

knowledge base expressed as a semantic network (Figure 17). These are used in the

next three chapters to illustrate the operation and data structures of the constituent

parts of HB-CA.

51

3.7.1 COBOL II Fragment
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
G B 2 1
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21

COO-READ-APS SECTION.
COO-000.

READ APS,MASTER F I L E
CALL 'GBAAYOX' USING APS-RECORD-IN.
I F APS-EOF = END-OF-FILE

MOVE HIGH-VALUES TO APS-RECORD-
GO TO COO-999.

'1' TO W-GBCM0133-2.
•GBCM0133' USING APS-RECORD-IN W-GBCM0133-2.

-IN

COO

C I O

MOVE
CALL
-999.
EXIT.
SKIP3
-WRITE- APS SECTION.
WRITE APS MASTER F I L E

'2' TO W-GBCM0133-2 .
'GBCM0133' USING APS-RECORD-OUT W-GBCM0133-2
'GBAAZOX' USING APS-RECORD-OUT.

SECTION.

MOVE
CALL

. CALL
ClO-999.

EXIT.
SKIP3

C2 0-PRINT
C20-000.

* PRINT PECULIAR RECORDS TO BE MANUALLY CHECKED
I F A-LINENO LESS THAN 25

GO TO C20-010.

ADD 1 TO A-PAGENO.
MOVE A-PAGENO TO HI-PAGE.
MOVE C-1 TO P-CC.
MOVE HI-HEADLINE TO P-LL.
PERFORM SOO-PRINT.

MOVE WS-2 TO P-CC.
MOVE HI-HEADLINE TO P-LL.
PERFORM SOO-PRINT.
MOVE 0 TO A-LINENO.

C20-010.
MOVE WS-2 TO P-CC.
MOVE GBAIAOlO TO PI-KEY.
MOVE Pl-DATALINE TO P-LL.

PERFORM SOO-PRINT.
MOVE SPACES TO P-LL.
ADD 2 TO A-LINENO.

C20-999.
EXIT.
EJECT

SOO-PRINT SECTION.
SOO-000.

PRINTS A LINE

CALL
SOO-999.

EXIT.

'PRINT' USING P-PRINTLINE.

0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247

Figure 16: Example C O B O L II Program Fragment

52

3.7.2 Example Library Content (Semantic Network)

Name: CWrite

Class: Comment

Data: Write

Name: KEndWrite

Class: Idemifier

Data: END-WRITE

Name: NRead

Class: Idemifier

Data: READ

Name: KRead

Class: Keyword

Data: READ

Name: CRead

Class: Commem

Data: Read

Name: CPrint

Class: Commem

Data: Print

Name: NPrint

Class: Identifier

Data: PRINT

Name: NWrite

Class: Identifier

Data: WRITE

Name: KWrite

Class: Keyword

Data: WRITE

Write Record

Name: Write

Type: Aaion

Level: Primary

Name: Read

Type: Action

Level: Primary

Read Record

Print Record

Name: Print

Type: Aaion

Level: Primary

Key

Indicates •
Specialisation •
Composition = •
Concept O
Indicator •
Composite Concept

Name: NHeading

Class: Identifier

Data: HEADING

Name: CHeading

Class: Comment

Data: Heading

Name: APSRecoid

Type: Objea

Level: Secondary

Name: Record

Type: Objea

Level: Primary

Heading

Name: Heading

Type: Objea

Level: Primary

Name: CAPS

Class: Comment

Data: APS

Name: NAPS

Class: Identifier

Data: APS

Name: NA.P.S.

Class: Identifier

Data: A.P.S.

Name: CRecord

Class: Comment

Data: Record

Name: NRecord

Class: Identifier

Data: RECORD

Name: KRecord

Class: Keyword

Data: RECORD

Name: KRecords

Class: Keyword

Data: RECORDS

Name: CHead

Class: Comment

Data: Head

Name: NHead

Class: Identifier

Data: HEAD

Figure 17: Example Library Content

53

3.8 Summary
This chapter has described a new approach to concept assignment termed

Fiypothesis-Based Concept Assignment. A general description of its data structures

and processes has been presented, with reference to the comprehension activity

framework described in Chapter 2. The formal model has been extended to capture

certain characteristics of the FiB-CA method and its representations. An example

program and knowledge base have been presented for use later in the thesis.

Chapter 4 describes the first stage of FiB-CA in detail, further extending the formal

model of the approach. Where appropriate, comparisons are made with the

IRENE and DM-TAO systems.

54

Chapter 4

Hypothesis Generation

4.1 Introduction
Chapter 3 provided a general introduction to Fiypothesis-Based Concept

Assignment and made comparisons with other approaches taken to the concept

assignment problem. The overall process of FiB-CA was described and the

knowledge base was discussed in detail.

This chapter describes the first stage of FIB-CA: hypothesis generation. The formal

model developed in preceding chapters is extended and a representation for

hypotheses defined. Fiypothesis generation accepts source code as input and

transforms it to a hypothesis list for output.

4.2 Hypothesis Generation
The purpose of this stage is to create an initial conceptual interpretation of the

program being analysed.

Hypothesis generation uses the indicator-concept relationship in the knowledge

base. When a recognisable indicator is found, a hypothesis is created for each

concept that is related to the indicator. These are stored for later use.

The formal model presented in Chapters 2 and 3 can be extended to capture the

notion of a hypothesis:

Hypothesis : {i: Indicator, c : Concept, / : Lexeme) (19)

This representation stores the indicator and concept (essentially a single element of

the indicator-concept relationship), and the lexeme that produced the hypothesis.

This means that the hypothesis can be linked to its source code origins when

necessary.

55

The white oval in Figure 18 shows where the internal representation produced by

hypothesis generation fits in the comprehension activity framework.

Key

Actor

Information Store

Information Flow

Process

Data Struaure

Source Code

Processor

Hypothesis

Segmentation

Source-Label
Representation

Figure 18: Comprehension Activity Framework Showing the
Internal Hypothesis Representation

This representation is termed the hypothesis list and is expressed formally as:

Hypothesis List: {h : Hypothesis] (20)

56

The process of hypothesis generation can be regarded as a function, mapping the

source code to a hypothesis Hst.

H G : Source Hypothesis List (21)

Strictly, the knowledge base should be passed as an additional argument to the

function. However, since its internal representations are not used elsewhere within

the formal model, it is omitted from these definitions.

4.3 Indicator Recognition
This is the key activity of the hypothesis generation stage. Indicators were

introduced in section 3.5.1.1 and can take many forms. Table 5 shows Brooks'

suggestions for indicators, used in his theory of top-down program comprehension

[BR0083].

1 Prologue comments, including data and variable dictionaries

2 Variable, structure, procedure and label names

3 Declarations or data divisions

4 Interline comments

5 Indentation or pretty-printing

5 Subroutine or module structure

7 1/O formats, head, and device or channel assignments

External

i Users' manuals

2 Program logic manuals

3 Flowcharts

4 Cross-reference listing

5 Published descriptions of algorithms or techniques

Table 5: Indicators for the Meaning of a Program
[BR0083]

Brooks claims that the particular indicators used wil l vary from maintainer to

maintainer, and their relative importance will be different depending on the context

57

of their use [BR0083]. In HB-CA, these variations are ignored and all indicators

are treated with equal weight.

HB-CA only works with internal indicators drawn from types 2,4, and 6 in Table 5.

The method is designed to accommodate additional indicator types without changes

to the segmentation or concept binding methods. This is facilitated by merging the

output of each type of indicator recognition. Brooks suggests that stereotypical

code fragments may be used as indicators [BR0083]. This is a good example of a

complex indicator type that would require advanced recognition routines and

representations. The indicators used by HB-CA are simple text strings.

Various authors have investigated the contribution of certain types of indicators to

the understanding process, and how software maintainers use them. Much work

has been performed suggesting the use of code fragments as indicators (also termed

beacons by many authors), e.g. [WIED91] and [WIED86]. Gellenbeck and Cook

found that meaningful procedure and variable names, typographic signalling, header

comments, and mnemonic module names assisted comprehension [GELL91a],

[GELL91b]. These findings are confirmed by Teasley's work on naming style,

although meaningful names were found to help experts less than novices. Experts

used other information sources in the absence of good naming [TEAS94]. Miara et

al. investigated the effect of indentation and discovered that a moderate level (2-4

spaces) could help with program comprehension [MIAR83]. The indicators used

for HB-CA were chosen partly on the basis of these investigations, and partly for

practical reasons, as textual indicators are amenable to simple extraction and analysis

by parsers.

In summary, there is evidence to support the use of a variety of indicators when

analysing a program for concept assignment. These include code fragments,

variable names, module names, procedure names, comments, indentation, and

structural information. Analysing a program for simple types of indicator can be

performed easily, e.g. using a parser to extract variable names. Complex indicators

such as code fragments may require the use of advanced recognition methods.

58

4.3.1 Indicator Types in HB-CA
There are four indicator types defined in HB-CA:

• Identifiers

• Keywords (programming language reserved words)

• Comments (single words only, no composite phrases)

• Segment Boundaries (denoted by particular keywords)

4.3.2 General Recognition Process
The input to the indicator recognition process is COBOL I I source code.

A l l indicator recognition methods have the same general structure regardless of the

class of indicator that they recognise. There are differences in the matching

algorithms for each class to deal with the different types of indicator.

The general struaure of indicator recognition is shown in Figure 19.

Key

Information Store

Information Flow

Process

Data Structure

Source Code

Extraction

Extracted Tokens

Knowledge Base
Matching

Hypothesis List

Figure 19: Indicator Recognition Process

59

4.3.3 Extraction Process
A l l types of indicator are extracted using a similar process. In each case, a lexical

analyser is used to match lexemes belonging to a particular class. A full parser could

be employed for more accurate extraction. Only procedure division lexemes are

extracted; the reasons for this restriction are given in Chapter 1. It is assumed that

the input source code can be compiled and is correct with respect to the language

definition. Each lexeme is stored with line and character position information.

Segment boundaries are treated slightly differently. The source code is scanned

using a lexical analyser as for the other classes. Discovery of a SECTION lexeme

generates a segment-start output with line and character position information.

Lexemes EXIT, GOBACK, and STOP generate segment-end output with line and character

position information. In the absence of any SECTION lexemes, the PROCEDURE DIVISION

lexeme is used to generate a segment-start.

4.3.4 Matching Rules
Once the lexemes have been extracted, they are matched against the indicators in

the library to generate hypotheses. In terms of the formal model, the matching test

is made between the lexeme string and the data string of an indicator, as shown in

the function Match:

Match: (indicator, Lexeme) -> Boolean (22)

Match((^2 : String, c : Class, d : String), (5: Integer, e : Integer,

t: String)) = d\xt

\x, (String, String) Boolean (23)

|Li {d: String, t: String) = True,]{d= t under conditions specified for

active options.

The way in which lexemes (also termed tokens) are matched varies, governed by a

number of options for each class.

60

Options available for the classes are:

Identifier Case Sensitivity

Sub-string Matching

Synonym Matching

Keyword No Options

Comment Case Sensitivity

Synonym Matching

Segment Boundary No Options

Case sensitivity provides greater flexibility when matching strings, particularly in

comments where mixed case type is often employed.

Sub-string matching also allows greater flexibility than direct matching because

variations of words can be found.

Synonym matching is designed to allow for different words referring to the same

concept and requires the availability of a list of common synonyms.

The options may be used in combination as described below, although the more

flexible the recognition, the greater the chance of erroneously generating

hypotheses.

When a hypothesis is generated, the following information is output:

A concept

An indicator

A lexeme

Lexeme line number

Lexeme character position

61

4.3.4.1 Identifier Matching

If the case sensitivity option is active then make all matches case sensitive, otherwise

make all matches case insensitive.

For each lexeme extracted:

1) attempt to match the current lexeme exactly with the tokens stored in the

data attribute of every identifier-class indicator in the library. If a match is

found, output a hypothesis for each concept in the library that is related to

the current library indicator, filling the fields appropriately.

2) if the sub-string matching option is active then attempt to match the current

lexeme with the tokens stored in the data attribute of every identifier-class

indicator in the library. A match is found if the extracted lexeme is a sub­

string of the library data token, or if the library data token is a sub-string of

the extracted lexeme. If a match is found, output a hypothesis for each

concept in the library that is related to the current library indicator.

Hypotheses are not output by this stage if they have already been generated

in the exact matching stage described in 1 above.

3) if the synonym matching option is active then attempt to match the current

lexeme with the tokens stored in the data attribute of every identifier-class

indicator in the library. To determine whether a match has been found,

look up synonyms for the current lexeme in the synonym list. For each

retrieved synonym, compare it with every library data token in the identifier

class. A match is found if the synonym and library tokens are exactly the

same, subject to the case sensitivity option. If a match is found, output a

hypothesis for each concept in the library that is related to the current

library indicator. Hypotheses should not be output by this stage if they have

already been generated in either of the two previous stages.

62

4.3.4.2 Keyword Matching

For each lexeme extracted:

1) attempt to match the current lexeme exactly with the tokens stored in the

data attribute of every keyword-class indicator in the library. If a match is

found, output a hypothesis for each concept in the library that is related to

the current library indicator.

4.3.4.3 Comment Matching

If the case sensitivity option is active then make all matches case sensitive, otherwise

make all matches case insensitive.

For each lexeme extracted:

1) attempt to match the current lexeme exactly with the tokens stored in the

data attribute of every comment-class indicator in the library. If a match is

found, output a hypothesis for each concept in the library that is related to

the current library indicator.

2) if the synonym matching option is active then attempt to match the current

lexeme with the tokens stored in the data attribute of every comment-class

indicator in the library. To determine whether a match has been found,

look up synonyms for the current token in the synonym list. For each

retrieved synonym, compare it with every library data token in the comment

class. A match is found if the synonym and library tokens are exactly the

same, subject to the case sensitivity option. If a match is found, output a

hypothesis for each concept in the library that is related to the current

library indicator. Hypotheses should not be output by the synonym

matching stage if they have already been generated in the previous stage.

4.3.4.4 Segment Boundary Matching

No flexible matching criteria are applied in segment boundary matching; each

extracted token in the class is output as a boundary hypothesis. If SECTION is found,

generate a segment-start hypothesis with line and character position information. If

EXIT, GOBACK, or STOP is found, generate segment-end output with line and character

63

position information. In the absence of any SECTION lexemes, generate a segment-

start hypothesis from the PROCEDURE DIVISION lexeme.

4.3.4.5 Output

The output of the indicator recognition process is a hypothesis Hst. The hypotheses

are sorted (if required) into ascending order by line and character position of the

generating indicator. There is no specific order on multiple hypotheses from a

single indicator.

4.4 Characteristics of Hypothesis Generation
This section compares HB-CA's hypothesis generation process with the equivalent

parts of IRENE and DM-TAO. The specific areas of comparison are the initial

information source used to begin the concept search, and the type of the initial

information.

HB-CA begins its search using source code indicators as discussed above. The

initial information source is therefore the source code.

IRENE'S initial information is provided in the form of a user-supplied hypothesis.

The system proceeds to derive further plausible hypotheses and attempts to find

their implementation in the source code being analysed.

DM-TAO in conceptual grep mode has a user-supplied concept for which

implementations are found. The source-code features used in all cases are syntactic,

lexical, and clustering clues [BIGG94]:

64

Table 6 summarises these differences.

HB-CA DM-TAO
(Conceptual

DM-TAO
(Conceptual
Highlights)

DM-TAO
(Identification)

I R E N E

Initial
Information
Source

Source
Code User Source Code

- ^ ^ ^ ^ ^ ^

Source Code
^ ^ ^ ^ ^ ^ ^

User

Initial
Information

Textual
Indicators

User-Supplied
Concept,
Syntactic,

Lexical, and
Clustering

Clues

Syntactic,
Lexical, and
Clustering

Clues

Syntactic,
Lexical, and

Clustering Clues

User-
Supplied

Hypothesis

Table 6: Characteristics of Concept Assignment Methods -
Initial Information Sources

4.4.1 Discussion
The advantages of using source code as the primary information source are that it

requires no user involvement, and that it causes the search to be focussed on those

areas of the knowledge base that are relevant. The disadvantage is that some

inferences between concepts may be more difficult to make, and indicators missing

from the knowledge base can have a large effect on recognition performance.

Chapter 3 referred to the overproduction of hypotheses during this stage. The

problem was discovered during development of the HB-CA method. The

technique in question used a knowledge base structure where conceptually similar

concepts reinforced each other. This approach was termed secondary hypothesis.

Whilst in principle this appeared to be a useful idea, it was not successful because

hypotheses that should have reinforced each other (e.g. specialised versions of

particular hypotheses) actually competed. This was one factor that led to the design

of the knowledge base and disambiguation rules.

65

4.5 Example of Hypothesis Generation
This section demonstrates the appHcation of the hypothesis generation method to

the example source code and library content presented in Chapter 3.

For brevity, the entire fragment has not been included here but representative

samples are used. Figure 20 shows part of the example code fragment with

indicators in the four classes highlighted.

GB21 COO-READ-APS SECTION. 0193
GB21 COO-000. 0194
GB21 * READ APS MASTER FILE 0195
GB21 CALL 'GBAAYOX' USING APS-RECORD-IN. 0196
GB21 I F APS-EOF = END-OF-FILE 0197
GB21 MOVE HIGH-VALUES TO APS-RECORD-IN 0198
GB21 GO TO COO-999. 0199
GB21 MOVE '1' TO W-GBCM0133-2. 0200
GB21 CALL 'GBCMOISS' USING APS-RECORD-IN W-GBCM0133-2. 0201
GB21 COO-999.
GB21 EXIT.
GB21 SKIPS
GB21 ClO-WRITE-APS SECTION. 0205
GB21 * WRITE APS MASTER FILE 0206
GB21 MOVE '2' TO W-GBCM0133-2. 0207
GB21 CALL -GBCMOISS' USING APS-RECORD-OUT W-GBCM0133-2. 0208
GB21 CALL 'GBAAZOX' USING APS-RECORD-OUT. 0209
GB21 ClO-999. 0210
GB21 EXIT.
GB21 SKIP3

0202
0203
0204

0211
0212

Key: XXX - Id e n t i f i e r , XXX - Keyword, XXX - Comment, XXX - Segment Boundary

Figure 20: Code Fragment Showing Tokens Classified for
Extraction

A l l of these lexemes would be found by the various indicator extraaion methods.

Once extracted, matching takes place gainst the library and Figure 21 shows those

indicators that would be found in the example. Active options are: case insensitivity

on all modules that support i t , and sub-string matching for identifiers.

66

0197
0198
0199
0200

0202
0203
0204

0206
0207
0208
0209
0210
0211
0212

GB21 COO-READ-APS SECTION. 0193
GB21 COO-000. 0194
GB21 * READ APS MASTER FILE 0195
GB21 CALL • GBAAYOX' USING APS-RECORD-IN. 0196
GB21 I F APS-EOF = END-OF-FILE
GB21 MOVE HIGH-VALUES TO APS-RECORD-IN
GB21 GO TO COO-999.
GB21 MOVE -1' TO W-GBCM0133-2.
GB21 CALL 'GBCM0133' USING APS-RECORD-IN W-GBCM0133-2. 0201
GB21 COO-999.
GB21 EXIT.
GB21 SKIP3
GB21 ClO-WRITE-APS SECTION. 0205
GB21 * WRITE APS MASTER FILE
•GB21 MOVE '2' TO W-GBCM0133-2.
GB21 CALL 'GBCM0133' USING APS-RECORD-OUT W-GBCM0133-2.
GB21 CALL •GBAAZOX' USING APS-RECORD-OUT.
GB21 ClO-999.
GB21 EXIT.
GB21 SKIP3

Key: XXX - I d e n t i f i e r , XXX - Keyword, XXX - Comment, xxx - Segment Break

Figure 21: Code Fragment Showing Classified Matched
Tokens

The matched indicators produce hypotheses by the methods described above. The

first matching token (COO-READ-APS) indicates two concepts: Read and APSRecord.

The matching process creates hypotheses for these and stores them in the

hypothesis list.

The output can be expressed in terms of the formal model (character positions are

representative only) and an extract is shown below:

HL : Hypothesis List

HL= { ((NRead, Identifier, READ), (Read, Aaion, Primary), (8025,

8037, coo-READ-APs)), ((NAPS, Identifier, APS), (APSRecord, Object,

Secondary), (8025, 8037, COO-READ-APS))...]'

67

4.6 Summary
Chapter 4 has presented the first stage of the HB-CA method, hypothesis

, generation, describing the key process of indicator recognition. A comparison has

been made with the primary knowledge types and sources used by the IRENE and

DM-TAO systems. The chapter shows the results of applying hypothesis

generation to the example source code and library content given in Chapter 3.

Chapter 5 discusses the next stage of the HB-CA method: segmentation. The

problems associated with segmenting programs are presented and a solution based

on conceptual clustering is described.

68

Chapter 5

Segmentation

5.1 Introduction
Chapter 4 presented the first stage of HB-CA, hypothesis generation, which

transforms source code into a hypothesis list using the knowledge base. The

comprehension activity framework and formal model were extended to show the

representations and context of hypothesis generation.

This chapter describes the second stage of HB-CA: segmentation. It is the first

major research problem to be addressed by the HB-CA method and involves

breaking up the hypothesis list into conceptually coherent segments. The solution

clusters concepts in the hypothesis list using segment boundary indicators and self-

organising maps (SOMs). The result of segmentation is shown in the context of the

comprehension activity framework and appropriate formal representations are

defined. Segmentation accepts a hypothesis list as input and produces a hypothesis

segment list as output.

5.2 The Segmentation Problem
Segmentation is the problem of determining the location and extent of concepts

within a piece of source code, to form segments that then can be labelled. It is a

difficult problem because the boundaries between concepts can be confused and

fuzzy to the point where two concepts may interleave. Interleaving has been

addressed in algorithmic understanders using data and control flow information (see

[RUGA96]). It presents a more difficult problem to plausible reasoning

understanders, such as HB-CA, where this kind of information is not used. Figure

22 shows an example fragment of source code with two clearly separated concepts.

69

MOVE 'EXAMPLE' TO PRINT-LL.
MOVE «13' TO PRIBTT-CC.
CALL 'PRINT' USING P-PRINTLINE.
MOVE POLICY-NUM TO OUT-PNUM.
MOVE SCHEME-REF TO OUT-SREF.
CALL 'WRITE' USING OUT-REC.

Figure 22: Example Code Fragment Showing Separated
Concepts

The first three lines indicate a Print concept; the last three indicate Write. In this

situation, it is clear where the boundary between concepts falls. Figure 23 shows

the same code but with the boundaries slightly blurred.

MOVE 'EXAMPLE' TO PRINT-LL.
MOVE '13' TO PRINT-CC.
MOVE POLICY-NUM TO OUT-PNUM.
CALL 'PRINT' USING P-PRINTLINE.
MOVE SCHEME-REF TO OUT-SREF.
CALL 'WRITE' USING OUT-REC.

Figure 23: Example Code Fragment Showing Slightly
Merged Concepts

There are still two distinct areas of conceptual focus although the boundary

between them is now fuzzy. The final version of this example, shown in Figure 24,

demonstrates the concepts when completely merged.

MOVE 'EXAMPLE' TO PRINT-LL.
MOVE POLICY-NUM TO OUT-PNUM.
MOVE '13' TO PRINT-CC.
MOVE SCHEME-REF TO OUT-SREF.
CALL 'PRINT' USING P-PRINTLINE.
CALL 'WRITE' USING OUT-REC.

Figure 24: Example Code Fragment Showing Completely
Merged Concepts

I t is now impossible to tell where one concept ends and the other begins. This is

confusing in itself, but the confusion is compounded by the faa that there is now a

third concept emerging; it could be argued that the last two lines now indicate Call.

70

It is clear that segmenting even a trivial program is difficult. The problem is

considerably greater when addressing real-world heavily-maintained code.

It is possible to perform initial segmentation of a program based on the subroutine

structure of the code. This implies an assumption of one concept per subroutine

(per section in the case of COBOL II). Although this provides a good starting
0

point, much existing code is poorly structured and may have large subroutines (if

they exist at all). Flexible methods are required to detect areas of conceptual focus

within subroutines, i.e. those areas where the evidence in the code strongly indicates

a particular concept.

The input to the segmentation stage is the hypothesis list generated by the methods

described in Chapter 4. The output of the stage is a hypothesis segment list (HSL). The

HSL can be expressed formally:

HSL : {Hypothesis List} (24)

Segmentation can be seen as a function mapping a hypothesis list to a hypothesis

segment list.

Segmentation : Hypothesis List HSL (25)

Segmentation is the second stage of HB-CA and Figure 25 shows its position in the

comprehension activity framework. The hypothesis segment list it produces is

indicated by the white oval.

71

Key

Actor

Information Store

Information Flow

Process

Data Structure

Source Code

Processor

Hypothesis
Generation

Segmentation

Hypothesis
Segment

List
Concept Binding

r
Source-Label

Representation

Figure 25: Comprehension Activity Framework Showing the
Position of the Hypothesis Segment List

5.3 HB-CA Segmentation

HB-CA adopts a two-stage approach to segmenting the hypothesis list.

5.3.1 Segment Boundary Hypotheses

The first stage assumes that at least one concept should be assigned to every

COBOL n section, providing an initial segmentation of the hypothesis Ust using the

segment boundary hypotheses described in Chapter 4. Note that some correction

of a segment boundary's position in the list may be required to ensure that all

72

relevant indicators are included. Figure 26 shows a small example of this situation.

The line of code shown, when combined with a knowledge base, produces a

hypothesis list, of which a fragment is presented. If the segment boundary is used

without correction, both F I L E and WRITE wil l be ignored since hypotheses in the list

are considered in the order in which they occur in the source code. The correction

algorithm moves the segment boundary hypothesis until it is the first hypothesis

occurring on the line being considered. Segment-end hypotheses should not need

any correction because they are unlikely to occur on the same line as another token.

FILE-WRITE SECTION.

H L = {(FILE...),(WRITE...),(SEGSTART)...}

Figure 26: Example Showing Necessity of Boundary
Correction

Having established the initial segmentation, further analysis may be required to

determine whether these segments can be subdivided to give a greater level of detail

about the concepts in the program. Subdivision may be necessary to retain an

appropriate level of abstraction for the amount of code being considered. If

monolithic code or very large subroutines are being analysed, it is more useful to

assign several concepts to parts of each routine than to apply the rule of one

concept per subroutine. If a large subroutine is described by one concept, the

concept's level of abstraction may need to be raised to accurately represent the

operations performed in the routine.

5,3.2 Clustering
HB-CA's method for subdividing segments is based on the idea of finding

conceptual clusters within a segment's hypotheses, in other words, to determine

areas of strong conceptual focus within the hypothesis list. Applying such a

technique to the entire hypothesis list appears attractive but during the development

of HB-CA it was found that this caused "unnatural" segmentation. Concept

clusters could be formed across subroutine boundaries such that the syntactic

structure of the program was not reflected in the concept list. This problem was the

73

motivation for the initial segmentation algorithm described above, which preserves

the syntactic structure of the program.

Early versions of HB-CA attempted clustering using a horizon effect based on the

distance, in lines, to the next indicator in the source code. This had the unfortunate

effect of occasionally isolating one or two indicators at the end of a subroutine and

either ignoring, or misinterpreting the evidence they provided. Moving to a purely

hypothesis-based representation, where distances between indicators are determined

only by their relative position in the hypothesis list, has helped to eliminate this

problem.

5.3.2.1 Pre-processing

In order to avoid unnecessary work and to derive certain parameters required to

perform further clustering if required, each segment's hypotheses are pre-processed

according to the following method:

1) For each action-concept hypothesis in a segment, find the concept's most

general form by recursively traversing the speciahsation relationship in the

library. Store the result in a list F.

2) If the number of elements in F is greater than some user-specified

recognition threshold, rec_thresh^ then continue; otherwise reject the segment

and repeat from 1 for the next segment.

3) With a user-specified minimum density for a concept cluster, minjvd,

determine the number of potential clusters in i^by dividing the number of

elements of i^by minjud. If the result > 2 then continue, otherwise store this

segment in the hypothesis segment list using its initial segment boundaries

and repeat from 1 for the next segment.

4) Determine the number of different concepts in F. If there is more than 1

then continue, otherwise store this segment in the hypothesis segment list

using its initial boundaries and repeat from 1 for the next segment.

5) If this step has been reached, further clustering using self-organising map

analysis is required.

The rationale for these steps is now discussed.

74

A l l processing at this point is undertaken on action-concept hypotheses only. This

reflects the general emphasis on discovering what a program does rather than the

objects on which it operates.

Step 1 ensures that versions of the same hypothesis do not compete with each

other. If this is not performed, it is possible that the evidence for a particular

general concept could be shared among its specialised versions, thus allowing a less

strongly indicated concept to win. By finding the most general form of all concepts,

comparisons are made at the highest level with evidence for specialisations being

used to improve the quality of information later in the process. It should be noted

that the other stages of the HB-CA method do not support specialised action-

concept hypotheses. Consequently, this step is redundant at present but is included

for completeness in the event that HB-CA is extended. Any extension should

ensure that the original, specialised hypothesis is replaced in the correct position

before concept binding begins.

Step 2 ensures that there are sufficient pieces of evidence for recognition to take

place. The user specifies the amount of evidence required.

Step 3 determines the number of potential clusters in F. This information is needed

to decide whether it is worth attempting to find clusters in the hypotheses. The

user specifies the minimum number of hypotheses for a cluster. Dividing the

number of hypotheses mFhj this number gives the maximum number of clusters

that could be formed ift\iQ hypotheses were perfectly clustered initially, a situation

unlikely to occur in practice. If there is potential for no more than one cluster then

there is no gain from further analysis and the segment can be stored using its

current boundaries.

Step 4 ensures that the concepts in are not all the same. If they are all the same

then it is clear that the concept to be bound to the segment wil l be some version of

the concepts in f , hence there is little point in continued analysis of F.

If further analysis and clustering are required, a self-organising map (SOM) is used

to find clusters in F.

75

5.3.2.2 Self-Organising Maps (SOMs)

The Self-Organising Map (SOM) (also called a Kohonen network) is an artificial

neural network algorithm. It employs unsupervised, competitive learning to

perform a topological mapping of high-dimensional input data to a low-dimensional

output space. A detailed presentation of the mathematical foimdations, variations

on the basic algorithm, and an extensive literature survey can be found in

[KOH097] . This section introduces the concepts underlying the SOM and

describes the basic algorithm used by HB-CA.

The SOM algorithm performs a vector quantization process, allowing the network

to store data whilst maintaining spatial or topological relationships in the training

data set, and representing them in a meaningful way [BEAL92]. This is performed

by iteratively presenting a set of training veaors to the network and modifying a set

of reference vectors to represent those training vectors as accurately as possible.

Figure 27 shows the topology of a self-organising map.

Kohonen Layer

Input Layer

Figure 27: Example of a Self-Organising Map

SOMs have a two layer topology with an input layer the same size as the number of

components in the input veaors, and an output layer usually in the shape of a two

dimensional grid. Each output node has the same nimiber of veaor components as

input nodes [ROUS98]. Every input node is conneaed to every output node. The

output node vectors are initialised with random numbers. Learning takes place

through the repeated presentation of training data vectors. There may be hundreds

76

to thousands of repetitions. When a training vector is presented, the Euclidean

distance between the training vector and every reference vector stored in the output

nodes is calculated. The output node that is closest to the training vector is declared

the winner, and its reference vector is updated to reduce its Euclidean distance to

the input. In addition, neighbouring nodes in the output layer are also moved

proportionally closer to the input. After many repetitions, this process results in the

spatial organisation of the input data in clusters of similar, neighbouring regions

[ROUS98]. Over the course of training, the size of the neighbourhood and the

amount by which Euclidean distances are updated (the learning rate) decrease to

zero.

SOMs have many uses including natural language engineering [HONK97], and the

organisation of document collections [KASK96].

5.3.2.3 SOMs for HB-CA

The SOM is useful in HB-CA because of its ability to cluster similar data items

automatically. Spatial relationships in the segment's hypotheses can be preserved

allowing nearby, similar concepts to be clustered together. Consequently, the fuzzy

boundaries between areas of conceptual focus in the hypothesis list can be

determined using the conceptual content of the list itself, rather than imposing an

arbitrary division.

Employing a self-organising map within HB-CA entails solving some additional

problems. First, the map must be automatically constructed and the data pre-

processed into a vector form. Second, the trained map must be automatically

interpreted; a task often left to the user in other SOM applications.

Section 5.3.2.1 described the pre-processing steps. These are designed to ensure

that a self-organising map wil l only be used if there is the potential to form clusters,

i.e. the hypothesis list is big enough with a sufficient number of different concepts.

To use the list F with a self-organising map, it must first be turned into a vector

representation. A coding scheme must be devised whereby different concepts can

be represented as vectors without implying any spatial relationship between them in

77

a single dimension. It is not possible (or sensible) to represent Read as 1, Print as 2,

and Update as 3 in the same dimension, since the ordering relation on integers does

not hold for concepts. The solution to this problem arises from SOM work in

natural language engineering and document classification. Both [MERK97] and

[HONK97] suggest the use of binary vector components to represent categorical

data such as the hypotheses in HB-CA. Honkela notes that with large numbers of

categories the dimensionality of the vectors would be extremely high [HONK97].

This is not expected to be a problem for HB-CA because the knowledge base is

reasonably small. Using binary vector components the concepts Read, Print, and

Update, would be placed in different dimensions. A value of 1 in the appropriate

dimension would be used to signify the presence of a hypothesis for that concept, 0

would be used otherwise. Given the hypothesis list:

Read, Read, Print, Read, Update, Read

The vector representation would be:

Read Print Update

1 0 0
1 0 0
0 1 0
1 0 0
0 0 1
1 0 0

Whilst this would be sufficient input for a self-organising map, HB-CA requires the

addition of a further dimension. The data presented above may result in clustering

of similar concepts on the SOM. However, this would be meaningless to HB-CA

since the map would simply create three clusters, one for each concept. The

additional vector component is a sequence number to preserve the order of the

hypotheses. This creates a spatial relationship between them, ensuring that clusters

wil l form where the bulk of local evidence for a particular concept occurs (locality is

defined in terms of sequence number).

78

The final vector representation would be:

Seq. Read Print Update

1 1 0 0
2 1 0 0
3 0 ^1 0
4 1 0 0
5 0 0 1
6 1 0 0

The action concepts in F are processed in this manner for use with a SOM.

Having established the data encoding, the map itself must be defined. The

documentation for the SOM ToolBox (an implementation of SOM algorithms for

Matlab, provided by Kohonen's group) suggests that the number of output neurons

should be as large as possible [SOMTOO]. For smooth mapping and visual

inspection of the output this would be ideal, as clusters would be clearly visible and

the mapping could be subtle. The task of the SOM in HB-CA is to cluster

hypotheses to enable automatic inspection of the output. Consequently, the number

of output neurons should be no more than necessary. This creates a coarser

granularity in the output space than might be used for visually inspected maps, but

forces hypotheses into one of a few groups thus providing sufficient vector density

at each neuron for it to be recognised as a cluster. The literature on SOMs does not

indicate the widespread use or existence of an algorithmic method to determine the

optimal size or shape of a map before training; indeed research is devoted to

methods for growing the map to fit the input data during training (see [KOH097]).

HB-CA addresses the map-sizing problem during the pre-processing phase

described in section 5.3.2.1, where the maximum number of clusters is determined.

Assuming a perfectly clustered input list:

Read, Read, Read, Print, Print, Print, Update, Update, Update

and a minimum vector density per cluster of 3, the maximum number of achievable

clusters is 3. If the list is less than perfectly clustered, the number of achieved

79

clusters wi l l be 3 or less since the best case (perfect clustering on input) cannot

achieve more. Each output node in the map represents one cluster (once trained, it

wil l trigger for several input vectors) and therefore in this example, the output layer

would contain 3 nodes.

A problem for this method can be illustrated by examining what might be

considered a worst-case scenario. Assume an input list of the form:

Read, Write, Read, Write, Read, Write, Read, Write, Read, Write

This data is ambiguous since it could be described as having no dominant concept

(and hence no clustering). Alternatively, it could be split in half (two output nodes),

the first half being dominated by Read and the second by Write. With still more

subdivision possible it is hard to say how the data should be clustered, or to

determine a suitable size for the output layer using the analysis method suggested.

This seems to be an intractable problem for this type of input but since such an

even distribution of hypotheses is unlikely to occur often, the method based on

perfect clustering is considered suitable for use in all cases.

Having established the number of nodes in the output layer, its shape must also be

considered. The most common shape for SOM output layers is a rectangular grid

with either a rectangular topology (where nodes update those above, below, left, and

right) or a hexagonal topology (where nodes are regarded as having six sides and

update those surrounding them accordingly). For the purpose of HB-CA, the

output layer is defined as one-dimensional with a rectangular topology. This

ensures that the mutual attraction of like hypotheses operates in one dimension only

on the map. In theory, a larger two-dimensional map would also work well since

the combination of sequence number and concept would ensure that nearby and

similar hypotheses group at the same node. Using this type would introduce

additional problems, e.g. deciding on the length of each side of the rectangle. This

would be particularly difficult if the number of nodes could not be formatted in

rectangular fashion. It is tempting to visualise the hypotheses being clustered in

sequence from left to right along the output layer although there is no reason why

this should happen, especially with random initialisation of the SOM. It should be

80

noted that in some circumstances a SOM might not be the most efficient approach

to clustering. An akernative, such as vector quantization, may be better for

situations requiring a 1x2 SOM [NEUROO], but the uniformity of approach

outweighs any potential cost saving.

The formatted SOM can now be trained on the input vectors created from F.

Training for HB-CA takes place in two stages as suggested in [KOH096]. The first

stage orders the reference vectors in the map using a learning rate of 0.05,

neighbourhood radius of 1, and neighbourhood type of bubble. Training data is

presented 1000 times. The second stage converges the reference vectors on their

"correct" values using the same parameters but with a learning rate of 0.02. Data is

presented 10000 times.

When training is complete, the map must be interpreted. As SOMs are often

applied in data visualisation tasks, it is usual for interpretation to be performed by

the user. This is not feasible for HB-CA since the method is fully automatic. HB-

CA interprets the SOM by passing the input data through the map once more,

taking note of which output node triggers for a particular input vector. Vectors are

grouped by the node that they trigger (thus forming a cluster) and are translated

back to a hypothesis representation. The particular node triggered by an input

vector is not inherently important; it is the association of this input vector with

others triggering the same output node that is significant.

The clusters must be analysed to ensure that the required minimum vector density,

min_vd, is met. Every cluster with > minjvd vectors (termed a valid cluster) is stored

in a list D. I f every cluster is analysed and D remains empty or has one element

only, store this segment in the hypothesis segment list with its original boundaries

(from segment boundary hypotheses) and begin again with the next one, since zero

or one valid clusters have been found.

5.3.2.4 Post-Processing

If D has more than one element, further analysis is required. It is possible that,

although a number of valid clusters have been found, there are some hypotheses

participating in clusters that do not meet the required density. HB-CA takes the

81

approach of including this information in the vaHd clusters rather than ignoring it

altogether. This ensures that all hypotheses being considered at the start of

segmentation are still considered at the end of it. The method used to integrate

clusters and hypotheses is naive, adopting the principle of evenly sharing these items

between their surrounding valid clusters. This is performed according to the

following steps:

1) Consider the first pair of valid clusters in D, termed A and B. If they are

adjacent, in terms of hypotheses, then begin again moving one cluster along

such that.4„,^ =

2) Non-adjacent valid clusters must, by definition, have intervening invalid

clusters. Determine the number of intervening invalid clusters, z. If z is an

even number, allocate the first z/2 invalid clusters to A, and the second 2/2

invalid clusters to B. Move the start and end points of ̂ and B as necessary

to include the additional clusters. If z is odd then allocate {z-l)/2 invalid

clusters to A and B on their respective sides as for even values of z. The

remaining central cluster is divided into its constituent hypotheses. If there

is an even number of hypotheses, allocate them equally to A and B (as for

clusters); otherwise allocate all but the central hypothesis in this manner.

The remaining hypothesis is attached to the largest cluster (or B if the

resulting clusters are the same size).

3) Repeat from 1 until there are no more valid clusters to consider.

This method for redistributing hypotheses among areas of strong conceptual focus

ensures that no evidence from the hypothesis list is ignored. It can cause problems

by producing "loose" segmentation (where a large part of the segment is irrelevant

to the concept) and confusing the concept binding process with conflicting

evidence. This is an area identified for further work. Despite these potential

difficulties, in practice they do not affect the method's performance to a great

extent. The clusters formed in D are the basis for new segments in the program.

It is important to recall that all of the work undertaken so far in segmentation has

been based on action-concept hypotheses only. Before beginning the concept

binding stage, object-concept hypotheses must be reintegrated with the segments.

82

This is trivial for those segments that have not undergone any subdivision, but for

those that have been analysed using the SOM, object-concept hypotheses must be

distributed fairly among the new segments. The approach taken is similar to that

used above for allocating invalid clusters.

1) Recall that D is a list of clusters returned from the SOM where invalid

clusters have been integrated.

2) Move the start of the first element of D to the start-boundary hypothesis for

the original segment being considered. Move the end of the last element of

D to the end-boundary hypothesis for the original segment being

considered. This captures those object-concept hypotheses occurring

before the first, and after the last valid cluster.

3) Reintegrate object-concept hypotheses from the hypothesis list that fall

within the boundaries of clusters in D. This can be accomplished without

difficulty, as it is clear to which cluster the objects belong. Object-concept

hypotheses that do not fall within such boundaries are redistributed using

the method in 4.

4) Work pair-wise through the clusters in Z), analysing object-concept

hypotheses in the hypothesis list that fall between the end of the first, and

start of the second cluster in each pair. Distribute any intervening object-

concept hypotheses evenly between their surrounding clusters in the manner

described above for redistributing invalid clusters. When an odd hypothesis

remains, attach it to the largest cluster, or the second of the pair if the

neighbouring clusters are the same size.

In similar way to integrating invalid clusters, this process ensures that no evidence is

lost during the segmentation process. The result of this analysis should be a list in

D of adjacent segments with no intervening hypotheses, beginning at the first

hypothesis of the original segment before subdivision, and ending at the last

hypothesis of that segment. The new segments in D are now stored in the

hypothesis segment list instead of the original segment. Repeat the whole process

for the remaining segments.

83

The result of this process is the hypothesis segment list; a list containing all of the

hypotheses from the original hypothesis list, divided into segments.

5.4 Characteristics of Segmentation
This section compares the characteristics of the segmentation methods used by

IRENE and DM-TAO with that used in HB-CA. The specific comparison criteria

are the clustering method, and the data used.

HB-CA's clustering method uses structural information and self-organising maps to

find areas of strong conceptual focus. The data for this is the hypothesis

representation generated by the first stage, with clustering taking place using

concepts.

IRENE does not perform clustering in the same sense as HB-CA. This is because

it finds domain concepts with very specific properties using the relationships stored

in the knowledge base. As there is no discussion of clustering techniques in

[KARA92], further comparison cannot be made.

The literature on DM-TAO is vague when discussing its clustering methods but it

appears to use syntactic features in the program to derive clusters based on feature

similarity [BIGG93], [BIGG94].

Table 7 summarises these differences:

HB-CA DM-TAO DM-TAO DM-TAO
(Conceptual (Conceptual (Identification)

grep) Highlights)

I R E N E

Chistering
Method

Self-
Organising

Map
Feature Extractors Unspecified

Clustering
Data
Used

Hypotheses Syntactic Features Unspecified

Table 7: Characteristics of Concept Assignment Methods
Segmentation

84

5.4.1 Discussion
It is difficult to discuss the relative merits of the approaches with the small amount

of information available on IRENE and DM-TAO. As mentioned in section 5.3.2,

the hypothesis approach adopted by HB-CA prevents isolated indicators from being

ignored, and ensures that in such situations, the segment includes all relevant lines

of source code. Using hypotheses should also reduce the cost of modifying HB-CA

for additional languages, as the largest changes would need to be made in the

simplest stage: hypothesis generation. DM-TAO appears to be largely aimed at

discovering clusters of data declarations and its syntactic approach lends itself

readily to this task. It is worth noting that whereas HB-CA explicitly segments

before binding concepts, the other methods do not make such a clear distinction

between the phases.

5,5 Example of Segmentation
This section demonstrates the operation of the methods described in this chapter

applied to the example presented in Chapter 3. Chapter 4 used an extract from the

example but the complete program fragment is used henceforth.

For brevity, the initial hypothesis list is shown in Figure 28 without ancillary-

information such as line and character position. The letter before the concept name

represents an (A)ction or an (O)bject.

A:Read, 0:APSRecord, SEGSTART, A:Read, 0:APSRecord, 0:Record,
0:APSRecord, 0:APSRecqrd, 0:Record, 0:APSRecord, 0:Record,
0:APSRecord, SEGEND, A:Write, O:APSRecord, SEGSTART, A:Write,
0:APSRecord, 0:Record, 0:APSRecord, 0:Record, 0:APSRecord,
SEGEND, A : P r i n t , SEGSTART, A : P r i n t , 0:Heading, A : P r i n t ,
O:Heading, A : P r i n t , A : P r i n t , SEGEND, A : P r i n t , SEGSTART,
A : P r i n t , SEGEND

Figure 28: Hypothesis List before Segmentation

The first action in segmentation is to move the segment boundary hypotheses to the

correct place. The result is shown in Figure 29 with the relocated hypotheses in red.

85

SEGSTART, A:Read, O:APSRecord, A:Read, O:APSRecord, 0:Record,
0:APSRecord, O:APSRecord, O:Record, O:APSRecord, O:Record,
0:APSRecord, SEGEND, SEGSTART, A:Write, 0:APSRecord, A:Write,
O:APSRecord, O:Record, 0:APSRecord, O:Record, 0:APSRecord,
SEGEND, SEGSTART, A:Print, A: Print, O:Heading, A: Print,
O:Heading, A:Print, A:Print, SEGEND, SEGSTART, A: Print,
A:Print, SEGEND

Figure 29: Hypothesis list after Segment Boundary
Correction

The next stage is pre-processing, described in section 5.3.2.1. Since this section

operates only on action concepts, the object concepts are hidden to improve the

overall clarity (see Figure 30).

SEGSTART, A:Read, A:Read, SEGEND, SEGSTART, A:Write, A:Write,
SEGEND, SEGSTART, A:Print, A:Print, A: Print, A:Print, A:Print,
SEGEND, SEGSTART, A:Print, A:Print, SEGEND

Figure 30: Hypothesis List before Pre-Processing

The steps of pre-processing are undertaken and the results are summarised below.

Normally each segment would be treated individually but for brevity they are

considered together in this example.

1) For each action concept hypothesis in the segment, find the concept's most

general form by recursively traversing the specialisation relationship in the

library. Store the resulting concept in a list F.

In this case, all concepts are already in their general form so the list is unaffected

(see Figure 31).

SEGSTART, A:Read, A:Read, SEGEND, SEGSTART, A:Write, A:Write,
SEGEND, SEGSTART, A:Print, A:Print, A:Print, A:Print, A:Print,
SEGEND, SEGSTART, A:Print, A:Print, SEGEND

Figure 31: Hypothesis List after Pre-Processing

86

2) I f the number of elements in F is greater than some user-specified

recognition threshold, recjhresh^ then continue; otherwise rejea the s^ment

and repeat from 1 for the next segment.

Let rec_thresh = 1. Every segment in the above list has more than one aaion

concept and hence none are rejected. The list is unchanged (see Figure 32).

SEGSTART, A:Read, A:Read, SEGEND, SEGSTART, A:Write, A:Write,
SEGEND, SEGSTART, A:Print, A:Print, A:Print, A:Print, A:Print,
SEGEND, SEGSTART, A:Print, A:Print, SEGEND

Figure 32: Hypothesis list after Checking Threshold

3) With a user-specified minimum density for a concept cluster, minjvd,

determine the number of potential clusters in Fhy dividing the number of

elements of i^by minjud. If the result > 2 then continue, otherwise store this

segment in the hypothesis segment list using its initial segment boundaries

and repeat from 1 for the next segment.

Let minjud = 3. None of the segments has six or more action concepts and so all

are stored using their boundary hypotheses. The final pre-processing step is not

relevant to this example. Examples of programs segmented by a SOM may be

found in Chapter 8.

The resulting segment list is unchanged from the step before pre-processing, and

can be used for concept binding. The list is shown in Figure 33.

SEGSTART, A:Read, 0:APSRecord, A:Read, 0:APSRecord, O:Record,
0:APSRecord, 0:APSRecord, O:Record, 0:APSRecord, O:Record,
0:APSRecord, SEGEND, SK3START, A:Write, OrAPSRecord, A:Write,
0:APSRecord, O: Record, 0:APSRecord, O: Record, 0:,APSRecord,
SEGEND, SEGSTART, A:Print, A:Print, O:Heading, A:Print,
O:Heading, A:Print, A:Print, SEGEND, SEGSTART, A:Print,
A:Print, SEGEND

Figure 33: Hypothesis List after Checking Cluster Potential

87

5.6 Summary
This chapter has presented the method by which HB-CA segments the hypothesis

list. It has been placed in the context of the comprehension activity framework and

the formal model has been extended to capture some appropriate representations.

A comparison has been made with IRENE and DM-TAO and the relative merits of

each method discussed. The result of applying the segmentation method to the

example source code from Chapter 3 is shown.

Chapter 6 presents the methods used for binding concepts in HB-CA. The

underlying principles are discussed and a solution based on semantic network

activation described.

Chapter 6

Concept Binding

6.1 Introduction
Chapter 5 presented the second stage of HB-CA, which transforms the hypothesis

list (generated in the first stage) into a series of segments. The position and output

of the stage in the comprehension activity framework were shown and the formal

model extended to capture its representations.

This chapter describes the final stage of HB-CA: concept binding. This is the

second major research problem addressed by HB-CA and involves determining the

appropriate concept for a segment. HB-CA decides on a concept binding using the

weight of source-code evidence and the relationships in the library. The position of

concept binding in the comprehension activity framework is presented, and the

formal model extended and summarised.

6.2 The Concept Binding Problem
Concept binding is the problem of deciding which concept from the knowledge

base should be assigned to a particular segment, using the available evidence. This

requires a method that can rank possible concepts by the strength of evidence for

them. There are various ways that this can be performed. The simplest approach is

to count the number of hypotheses for each concept and pick the one with the

most evidence. This forms the basic idea underlying several advanced approaches

investigated during the development of HB-CA.

The basic idea suffers from being unable to exploit any of the relationships between

concepts. This makes sensible disambiguation of equally high-scoring concepts

difficult. To alleviate this problem, an early version of HB-CA used the principle of

secondary hypothesis, where the existence of one concept signified the existence of

another. The signified concept achieved an additional but lower score, and further

secondary hypotheses were generated from it. The process was repeated until a

required "depth" had been reached. In principle, this approach seems sensible but

in practice, it was found to create confusion and the computational cost was high.

The method was extended to use a specialisation relationship like that in the current

knowledge base but this did not improve performance significantly. Another

disadvantage of these approaches is that there is no differentiation between objects

and actions, preventing actions from being favoured over objects.

The development of the knowledge base structure described in Chapter 3, allowed

the concept binding method to be redefined to take advantage of the relationships

and concept types available.

The input to the concept binding stage is the hypothesis segment list (HSL)

generated by the method described in the previous chapter. The output of concept

binding is a set of labelled segments.

Concept Binding: HSL {Labelled Segment} (26)

A labelled segment is defined as a segment attached to a concept label. The concept

label can be the name of a single concept, or the combined names of concepts in a

composite.

Labelled Segment: (5 : Segment, n : String) (27)

The set of labelled segments resulting from concept binding has the same type as

the desired target representation defined in Chapter 2.

The position of concept binding within the comprehension activity framework is

shown by the white box in Figure 34.

90

Key

Aaor

Information Store

Information Flow

Process

Data Structure

Source Code

Processor

Know!

Concept Binding

Source-Label
Representation

Figure 34: Comprehension Activity Framework Showing the
Position of Concept Binding

6.3 HB-CA Concept Binding
PIB-CA's concept binding approach uses the basic scoring method described in the

previous section as its foundation. It exploits knowledge base relationships and

employs a number of disambiguation rules for equally high-scoring concepts.

HB-CA concept binding takes the output of the segmentation stage (the hypothesis

segment list), scores it, and disambiguates the results to produce a set of labelled

segments. The scoring method is introduced in section 6.3.1 in terms of a semantic

network. It is then presented again in algorithmic form, with the disambiguation

rules shown in seaion 6.3.2.

91

6.3.1 Semantic Network "Activation"
Regarding the knowledge base as a semantic network means that the process of

assessing evidence can be seen as "activating" parts of the network. The concept

with the highest "activation" is considered the winner. The network is "activated"

according to the following rules:

• Score 1 for each hypothesised concept.

• Score 1 for the appropriate side of every composite in which this concept

participates.

• Score 1 for each more general version of this concept, and the appropriate

side of any composite in which the more general version participates.

These rules are designed to bias the scoring towards certain types of concept. The

basic principle of winning by weight of evidence is captured in the first rule where

hypotheses for a concept increase its score. The second rule ensures that if

composites exist (and there is object evidence), they wil l win in preference to single

concepts. The principle is that a composite provides a more informative label for a

segment and should win if possible. Giving scores to more general versions of the

hypothesised concept (the third rule) has two purposes:

1) To ensure a logical approach to the evidence. If MasterFile has been

hypothesised, it is reasonable to say that there is evidence of a File.

2) To manage conflicting evidence. If a general concept has two specialised

versions, each with the same score, it is impossible to tell which should win.

Scoring the general concept in addition to its specialised versions ensures

that it wi l l always score the same or higher than either one. If there is no

conflict then the direct evidence for MasterFile should override the indirect

evidence for File. Applying this prioritisation can be left to the user's

discretion.

The following example illustrates the application of these rules to a simple semantic

network.

92

6.3.1.1 Example of Semantic Network "Activation"

Consider the following hypothesis list:

Print, Read, Record, MasterFile, Read

and the semantic network shown in Figure 35 (indicators are not included).

Key

Indicates

Specialisation •
Composition

Concept O
Indicator •
Composite Concept

Print

Read ^ =

Pom Record

Read FUe

^^MasterFile

Figure 35: Semantic Network before Scoring

The following series of figures demonstrates the scoring process and the effea this

has on the semantic network. Higher scores are indicated by a larger 3D effect on a

particular node. Scores for composite nodes are the sum of the action and objea

concept scores. Figure 36 shows the effect of scoring the first hypothesis.

93

Pnnt 1 Record
Record"^^

<;;^ Read ^ ^ j j l ir^Urn ^ ^ F^e

^^MasterFile

Figure 36: Semantic Network after Scoring Print

The Print node and the composite in which it participates both gain one point. This

is repeated for Read in Figure 37.

Print Record Print I Record

^^MasterFile

Figure 37: Semantic N ^ o r k after Scoring Read

Figure 38 shows the network after scoring the Record concept.

94

Print • Print Recoid Record

Read ^ Read ^ 4 y

<;;^MasterFile

Figure 38: Semantic Network after Scoring Record

Scoring the MasterFile concept has a more significant impact on the network. It is a

specialised version of the File concept and consequently this gains a point for being

a more general form of the hypothesised concept. Since File now has a point, the

composite in which it participates also requires one. This is depiaed in Figure 39.

Print s ^ i P r i n t Record Record

Read ^ Read FUe ^

MasterFile

Figure 39: Semantic Network after Scoring MasterFile

The final Read concept is now scored as shown in Figure 40.

95

Print I Record

Read i File ^

Record

FUe

MasterFile

Figure 40: Semantic Network after Scoring Read

The resulting activation levels show a clear winner in Read:File.

6.3.2 Concept Binding Algorithm

The semantic network scoring rules provide a useful way of understanding the

general principles of the scoring process. Despite including reasonable bias in the

scoring model, they do not address situations where several equally high scoring

winners exist; neither do they provide a systematic process. These weaknesses are

addressed in this section and the exact algorithm used for concept binding in

HB-CA is presented.

Conclusions play a central role in the algorithmic presentation of HB-CA concept

binding. The method generates possible conclusions from the current segment's

action-concept hypotheses and the library. These conclusions are then reinforced

by the segment's object-concept hypotheses, and various rules are applied to selea a

winner from the result. Action concepts are considered before objects, to reflect

the emphasis on determining what is taking place in the program, rather than which

objects are involved in the action. Action conclusions can exist without a

composite object but the reverse is not true because of HB-CA's aim of

determining computational intent.

96

Conclusions can be composite or non-composite in a similar way to hypotheses.

The only difference is that conclusions have an associated score, with composite

conclusions having separate action and object scores.

6.3.2.1 Conclusion Generation

The first stage of concept binding is to generate possible conclusions from the

action-concept hypotheses. This is undertaken according to the following method:

1) Let C be an empty list of conclusions.

2) For the current segment, select all action concept hypotheses and place in a

. list AH.

3) For every element of AH:

a. Let ac be the current element of AH

b. Find all object concepts within the library that participate in a

composite concept with ac. Store in a list OC removing duplicates.

c. Find all specialisations of all elements of OC and add them to OQ

removing duplicates.

d. If a non-composite conclusion for ac exists in C, increase its score by

1, otherwise, store a non-composite conclusion for ac and set its

score to 1.

e. Generate composite conclusions in C by composing ac with every

member of OCin turn. If a particular composite conclusion already

exists, increase its action score by 1; otherwise, store the composite

conclusion with its action score set to 1, and its object score set to 0.

The result of this stage is a list C of composite and non-composite conclusions.

97

6.3.2.2 Conclusion Completion and Reinforcement

Object-concept hypotheses are now employed to reinforce and complete composite

conclusions.

1) For the current segment, select all object-concept hypotheses and place in a

list OH.

2) For every element of OH:

a. Let oc be the current element of OH.

b. Step through Cto find the first (or next) composite conclusion, cc.

c. If the object concept assigned to cc is oc then increase the object

score for cc by 1.

d. Repeat from b until no more composites can be found in C.

e. If oc is not a primary concept, step back one level along the

specialisation relationship and repeat from b, starting with the first

element of C.

The result of this stage is the list C with the same non-composite conclusions as

before, but with some composite conclusions now having non-zero scores for both

action and object concepts.

6.3.2.3 Disambiguation

This stage applies a number of rules to determine the dominant concept in the

current segment. Before beginning to apply them, the list C is processed to remove

incomplete conclusions. These are composite conclusions with zero object concept

score, i.e. there was no evidence for the pairing of the particular action and object.

Having removed incomplete conclusions, let hs be the highest score achieved by any

conclusion in C. The score wi l l be either the non-composite conclusion score or

the sum of the action and object scores for composite conclusions.

98

The following steps are now undertaken:

1) Find the conclusions in C that score hs using the non-composite conclusion

scores, or the sum of the action and object scores for composite

conclusions. Store these conclusions in a list W.

2) If U^has more than one element, remove any conclusions from l^^that are

specialisations of other conclusions in W. This leaves only the most general*

forms of composite conclusions, and all non-composite conclusions.

3) If still has more than one element, favour composite conclusions over

non-composite ones. Remove non-composite conclusions from U^if there

are composite conclusions in W.

4) If IFstill has more than one element, find the highest score achieved by the

concepts of non-composite conclusions, and the action components of

composite conclusions. Remove any non-composite conclusions from W

that do not score at this level, and any composite conclusions whose action

score does not reach this level.

5) If W still has more than one element, determine whether the action

concepts of the remaining conclusions are the same. If so, then select the

non-composite concept (which may or may not be in W) corresponding to

the action concepts of the conclusions in W. Remove all elements of W

except for this non-composite conclusion. Its score should be increased by

the number of elements in the list when rule 5 was invoked. If the action

concepts in the remaining conclusions are not the same, the decision must

be arbitrary. Remove all but the first conclusion in W.

The conclusion remaining in Wis declared the winner.

6.3.2.4 Post-Disambiguation Processing

The user has the option of forcing the most specialised form of the winning

concept to be selected (assuming the winner is composite). Note that

specialisations can be selected only if there is evidence for them. This is undertaken

by setting the forcedjpecialisation parameter to True. If this is the case, all composite

conclusions in C that have the same action and a more specialised form of the

object concept of the winning composite, are placed in a list Q. The highest score

99

in Q is found and if only one conclusion gains this score, the winner is replaced by

the more specific version. If more than one conclusion gains this score, the

evidence for a specialised version is ambiguous and the original winner is not

replaced.

Finally, i f the winner is composite and its combined action and object scores >

rec_thresh x 2, bind the conclusion to this segment, thus labelling it. If the winner is

not composite, bind the conclusion if its score > rec_thresh. If neither condition

holds, the current segment should be rejected. The difference in threshold between

the two types of conclusion forces the evidence required for a non-composite

conclusion to be greater than that for a composite conclusion, as the spread of

evidence in the composite is regarded as increasing a conclusion's plausibility.

6.3.2.5 Output

The resulting concept label is attached to the current segment and then can be

displayed in an appropriate format. The extent of the segment in terms of source

code lines can be traced using the hypothesis list and the code position of the

indicators that created the first and last hypotheses in the segment.

The concept binding process is carried out for each segment.

6.3.2.6 Discussion

The rationale for the rules described in section 6.3.2.3 is explained here. Generally,

the aim is to ensure fair competition between the highest scoring conclusions, whilst

maintaining the greatest possible level of detail in the result.

The removal of incomplete conclusions is designed to ensure that only those with

evidence for all of their parts are considered. This is not a problem for non-

composite conclusions since they cannot be created in the list without evidence. By

generating all composites from them, a number of objects may be suggested for use

in conclusions without any direct evidence of their existence.

100

Rule 1 ensures that only the strongest conclusions are considered by the later rules.

Rule 2 aims to ensure that a fair competition is taking place between the

conclusions. Specialised versions of a conclusion should not compete with more

general versions since they are indicating the same concept at a different level of

abstraction. The specialisation can be removed safely as it can be retrieved later if

the general concept wins.

Rule 3 reflects the bias built into the scoring algorithm itself, favouring composites

over non-composites. The assumption underlying this rule is that a composite

conclusion can provide more information than a non-composite one. If they have

scored the same, the evidence is more widely distributed for the composite (since

the sum of the object and action scores is the same as the score for the non-

composite). The larger spread of evidence should ensure a more plausible concept

assignment, as both actions and objects indicate the concept. The object evidence is

used to "validate" the action conclusion and the probable relationship between

them increases the plausibility.

Rule 4 favours actions over objects by considering the scores of non-composites

and only the action portion of composites. Thus, higher scoring actions are given

priority over lower scoring actions with strong object evidence. This reflects HB-

CA's bias towards actions.

Rule 5 checks whether the remaining conclusions are based on the same root action

e.g. Read:File, Read:Record, Read:Disk. If this is the case, the evidence for the

objects is ambiguous (they must all have the same score to have survived the

application of rule 4) and hence the action is left on its own. Note that the single

action may no longer exist in the highest scoring conclusion list, having been

removed by rule 3. If this is the case, then it is reintroduced to replace the

ambiguous composites and is declared the winner. Its score is increased to take

account of the multiple conclusions it replaces, and to increase the chance that it

wi l l pass the recognition threshold.

If applying all the rules fails to leave only one winner, an arbitrary decision is made.

101

The disambiguation ability of these rules is discussed further in section 8.4.

6.4 Characteristics of Concept Binding
This section compares the characteristics of the concept binding methods used by

IRENE and DM-TAO with that of HB-CA. The specific criteria are: evidence

used, assessment method, and explanatory power.

HB-CA uses the evidence provided by the hypothesis segment list in the form of

concept hypotheses. The evidence is assessed by scoring each possible conclusion

from the library based on the contents of the HSL. Ambiguity is resolved by the

application of various rules. The decision made by HB-CA can be explained to a

reasonable level of detail since each rule has a particular purpose, hence conclusions

can be rejected for a clear reason.

IRENE largely uses evidence from the domain model to bind concepts. A

candidate concept is selected and its correspondence to a data name established.

The parse tree is searched for possible implementations of related items based on

their position in the rule and program syntax, e.g. if tax has been related to TAX in

the program and a rule is .defined as "taxablejalary - netjalary derives tax'\ the parse

tree might be searched for instances of SUBTRACT y FROM X GIVING TAX . A l l other

rules deriving tax also would be sought. Assume the statement SUBTRACT NET FROM

GROSS G I V I N G TAX was found. If considered plausible enough, the two tokens, NET,

and GROSS, would be bound to netjalary and taxablejalary respectively. A similar but

more detailed example is shown in [KARA92]. Plausibility is established by

summing the weights of the various rules triggered by a particular candidate concept

implementation. Lexical matching rules carry a lower weight than domain rules

owing to IRENE'S emphasis on domain knowledge [KARA92]. The system has

good explanatory power and is capable of rewriting the rule-triggering process in

English, substituting variable names where appropriate.

DM-TAO uses evidence direct from feature extractors. This is assessed by the

semantic connectionist network that forms the heart of the system. Extracted

features trigger nodes in the input layer of the network. The signals generated in

this layer propagate through the network triggering other types of node. This

102

continues until concept nodes are triggered and their output level is higher than a

given threshold. The nature of this type of network means that DM-TAO cannot

easily explain the reasons behind its concept binding.

The approaches to concept binding are summarised in Table 8.

HB-CA D M - T A O D M - T A O D M - T A O IRENE
(Conceptual (Conceptual (Identification)

grep) Highlights)
Concept
Binding
Evidence Hypotheses Syntactic Features

Syntactic
Features/
Domain
Model

Concept
Binding
Method

Scored Weight
of Evidence

with
Disambiguation

Rules

Connectionist Network Trig ̂ ering and

Plausibility
Measure

using

Scored Weight
of Evidence

with
Disambiguation

Rules

Propagation Weighted
Matching

Rules
Explanatory
Power Medium Low High

Table 8: Characteristics of Concept Assignment Methods
Concept Binding

6.4.1 Discussion
The concept binding methods discussed here are linked strongly to those used for

segmentation. This is not surprising since these two stages of concept assignment

are crucial to the success of any particular approach and must work well together.

The systems that use rules in their inference (HB-CA and IRENE) are better at

explaining their actions. This is balanced by the fact that DM-TAO has a finer-

grained inference mechanism that is capable of being updated automatically. The

evidence used by the systems for concept binding is largely the same as that used

throughout each one for other purposes. The exception is IRENE, which uses

syntactic features to a greater extent in concept binding than in other parts of its

operation.

103

6.5 Example of Concept Binding
This section presents the algorithms described in this chapter, applied to the

example code and semantic network shown in Chapter 3. The hypothesis segment

list produced in Chapter 5 is used as the input to this stage. This is shown s^ain in

Figure 41.

SEGSTART, A:Read, 0:APSRecord, A:Read, 0:APSRecord, 0:Record,
0:APSRecord, O:APSRecord, O:Record, O:APSRecord, 0:Record,
0:APSRecord, SEGEND, SEGSTART, A:Write, O:APSRecord, A:Write,
0:APSRecord, O:Record, 0:APSRecord, O:Record, 0: APSRecord,
SEGEND, SEGSTART, A:Print, A: Print, O:Heading, A: Print,
O:Heading, A:Print, A:Print, SEGEND, SEGSTART, A: Print,
A:Print, SEGEND

Figure 41: Hypothesis Segment List for Concept Binding

The list shows four segments for concept binding and the first contains the

following hypotheses:

SEGSTART, A:Read, 0:APSRecord, A:Read, O:APSRecord, O:Record,
O:APSRecord, O:APSRecord, 0:Record, O:APSRecord, 0:Record,
O:APSRecord, SEGEND

These hypotheses are used in the worked example below.

Concept binding begins with conclusion generation. Action-concept hypotheses are

considered first, beginning with Read. This gains a score of 1 for its direa evidence.

Composite conclusions based on Read are now generated. In this case there are

two: Read:Record, and Read:APSRecord. These gain an action score of 1. The

conclusion list after scoring the first action-concept hypothesis is:

Readl
Read:Record 1:0
Read:APSRecord 1:0

The remaining action-concept hypotheses are now addressed in the same way (m

this case there is only one, another Read hypothesis). The conclusion list is now:

Read 2
Read:Record 2:0
Read:APSRecord 2:0

104

As there are no more action-concept hypotheses, the object-concept hypotheses are

considered to reinforce and complete the composite conclusions. The first is

APSRecord. This completes the last conclusion in the list, but since it is a

specialisation of Record, ReadiRecord wil l also be completed. The list is now:

Read 2
Read:Record 2:1
Read:APSRecord 2:1

The next hypothesis is also APSRecord leaving the list as:

Read 2

Read:Record 2:2
Read:APSRecord 2:2

This is followed by a Record hypothesis. Since this is already primary, it only

reinforces those conclusions in which it participates.

Read 2
Read:Record 2:3
Read:APSRecord 2:2

The remaining object-concept hypotheses are processed, leaving the list in its final

state of:

Read 2
Read:Record 2:9
Read:APSRecord 2:4

There are no incomplete conclusions to remove so the disambiguation stage

commences. The highest scoring conclusion is Read:Record and since it is the only

one to score 11 in total, it is declared the winner without the need to invoke further

disambiguation rules.

105

If the user requires the most specific version of conclusions to be found,

ReadrRecord would be replaced by Read:APSRecord.

Assuming recjthresh to be the same as in Chapter 5 (i.e. equal to 1), either conclusion

would be acceptable for concept binding.

Repeating this process for each segment in the HSL yields the following results

(assuming the most specific versions are required):

Segment 1: Read:APSRecord
Segment 2: Write:APSRecord
Segment 3: Print:Heading
Segment 4: Print

These results appear to be correct with respect to the original source code (see

Figure 42).

106

GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21

COO-READ-APS SECTION.
COO-000.
* READ APS MASTER FILE

CALL 'GBAAYOX' USING APS-RECORD-IN.
I F APS-EOF = END-OF-FILE

MOVE HIGH-VALUES TO APS-RECORD-IN
GO TO COO-999.

MOVE ' l ' TO W-GBCM0133-2.
CALL 'GBCMOISS' USING APS-RECORD-IN W-GBCM0133-2,

COO-999.
EXIT.
SKIP3

ClO-WRITE-APS SECTION.
" WRITE APS MASTER FILE

2' TO W-GBCM0133-2.
'GBCM0133' USING APS-RECORD-OUT W-GBCM0133-
GBAAZOX' USING APS-RECORD-OUT.

SECTION.

MOVE
CALL
CALL

ClO-999.
EXIT.
SKIP3

C20-PRINT
C20-000.
* PRINT PECULIAR RECORDS TO

IF A-LINENO LESS THAN 25
GO TO C20-010.

ADD 1 TO A-PAGENO.
MOVE A-PAGENO TO HI-PAGE.
MOVE C-1 TO P-CC.
MOVE HI-HEADLINE TO P-LL.
PERFORM SO0-PRINT.

MOVE WS-2 TO P-CC.
MOVE HI-HEADLINE TO P-LL.
PERFORM SOO-PRINT.
MOVE 0 TO A-LINENO.

C20-010.
MOVE WS-2 TO P-CC.
MOVE GBAIAOlO TO PI-KEY.
MOVE Pl-DATALINE TO P-LL.

PERFORM SOO-PRINT.
MOVE SPACES TO P-LL.
ADD 2 TO A-LINENO.

C20-999.
EXIT.
EJECT

SOO-PRINT SECTION.
SOO-000.
* PRINTS A LINE

BE MANUALLY CHECKED

CALL
SOO-999.

EXIT.

Read:APSRecord

PRINT' USING P-PRINTLINE.

Write:APSRecord Print:Heading

0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247

Print

Figure 42: Example Source Code Highlighted to Indicate
Labelled Segments

107

6.6 Summary of Formal Model
A formal model describing the various representations used by HB-CA has been

developed throughout this thesis. This section collects all the definitions to

summarise the model in a coherent manner.

Chapter 2 introduced the formal model, characterising HB-CA as a way of mapping

a source representation to a target representation (definition 8).

Source : {x : Line} (1)

Line : ({y : Lexeme}, seqnum : Integer) (2)

Lexeme : (start: Integer, end: Integer, token : String) | start < end (3)

T R : {(x : Segment, y : String)} (4)

Concept: String (5)

cp : (Line, Line) Boolean
(6)

i^{{a,b),{c,d)) = b<d

Segment: (start: Line, end : Line) | start (p end (7)

P : Source ^ T R (8)

Chapter 3 extended the model by introducing definitions of the knowledge base

(definition 18) and its constituent parts.

Class : String
(9)

\fX: Class,XG { "Identifier" "Keyword", "Comment" "SegmentBoundary"}

Indicator : (n : String, c : Class, d : String) (10)

Level: String

V X : Level, X e {"Primary","Secondary"}

Type : String

yy-.TypcYe {"Action","Object"}

Concept: (n : String, / : Level, t: Type) (13)

Indicates : {(p : Indicator, q : Concept)} (14)

108

C C R :{r\r:{(a: Concept, b : Concept)}} (15)

Specialisation: {((^,^,c):Concept, (d,eJ):Concept) | e = "Secondary"} (16)

Composition:{((<^,^,c):Concept, (d,eJ)'.Concept) \ b= "Primary",
(17)

e= "Primary", c= "Action", f= "Object"}

KB : ({x : Concept}, {i : Indicator}, {(p : Indicator, q : ^̂ ĝ

Concept)}, {r\r : {(a : Concept, b : Concept)}})

Recall that definition 13 extends definition 5.

With the key representations defined, Chapter 4 presented the first stage of the HB-

CA process: hypothesis generation. This was defined as a function, mapping source

to a list of hypotheses (definition 21).

Hypothesis : (i: Indicator, c : Concept, / : Lexeme) (19)

Hypothesis List: {h : Hypothesis} (20)

H G : Source Hypothesis List (21)

Recall that the knowledge base has been deliberately omitted from the function

definitions here.

Hypotheses are generated using various matching rules.

Match: (indicator. Lexeme) Boolean (22)

Match((« : String, c : Class, d: String), (5 : Integer, e : Integer, t:

String)) = d\it

\i (String, String) Boolean (23)

| i (d: String, t: String) = True, iid= t under conditions specified for

active options.

109

Chapter 5 described the next stage of HB-CA: segmentation. This maps the output

of hypothesis generation to a hypothesis segment list by breaking the hypothesis list

into groups (definition 25). The formal representation of this is:

H S L : {Hypothesis List} (24)

Segmentation : Hypothesis List HSL (25)

The final stage of HB-CA, concept binding, was presented in this chapter. It maps

the output of segmentation to a collection of labelled segments.

Concept Binding: HSL -> {Labelled Segment} (26)

Labelled Segment: (s: Segment, n : String) (27)

This concludes the summary of existing definitions. By comparing definitions 26

and 4, it can be seen that the output of concept binding has the same type as the

required target representation.

Definition 8 characterised the original problem in terms of a mapping between

source and the required target representation. By creating a composition of the

functions that represent each part of HB-CA, it can be shown that HB-CA provides

a solution to the original problem.

P : Source->TR (8)

HB-CA : Source {Labelled Segment} (28)

HB-CA : Concept Binding o Segmentation o H G (29)

110

6.7 Summary
This chapter has presented the final stage of HB-CA: concept binding. It has been

placed in the context of the comprehension activity framework and formal model.

Comparisons have been made with the concept binding methods of IRENE and

DM-TAO, and the merits of each discussed. Applying the concept-binding

algorithm to the hypothesis segment list shown in Chapter 5 has completed the

worked example initiated in Chapter 3. The formal model has been summarised

and the HB-CA process characterised as the composition of three functions, each

representing a stage of HB-CA.

Chapter 7 describes an implementation of HB-CA called the Hypothesis-Based

Concept Assignment System (HB-CAS). Various issues relating to the design and

implementation are discussed.

I l l

Chapter 7

Implementation

7.1 Introduction
Chapter 6 presented the final stage of HB-CA: concept binding. This completed

the description of the HB-CA method by showing the way a hypothesis segment list

is transformed into the target representation defined in Chapter 2. The position of

concept binding in the comprehension activity framework was shown and the

formal model extended and summarised. Concept binding was applied to the

worked example initiated in Chapter 3.

This chapter discusses the implementation of HB-CA in the Hypothesis-Based

Concept Assignment System (HB-CAS). The design of HB-CAS is presented and

various technical issues discussed. A short evaluation of the implementation is

presented.

72 System Implementation
The methods presented in the preceding chapters are embodied in the HB-CAS

system. HB-CAS runs on the Microsoft Windows 95/98 operating system.

7.2.1 Programming Environment
Development was undertaken using Borland Delphi 4.0. This language was chosen

for several reasons:

• It supports rapid prototyping of graphical user interfaces.

• The underlying source language (Object Pascal) is stable and well defined.

• Database connectivity is very well supported.

• The development environment supports easy testing and debugging.

112

7.2.2 System Architecture
Figure 43 shows the architecture of PiB-CAS in terms of its modules and files. The

diagram shows the data flow within the system but omits the options files that some

modules possess.

Indicator
Reb^enition Module
(Segmbot Boundary)

Indicator
RecognitioiVModule

(KeyWr

Library

Manager
Merge-Sort

Concept
Assignment

i

T
Labelled Segments

Key

Module • 1
Process

File/Database B
Data Flow

Display

Figure 43: Architecture of HB-CAS, Showing the Data Flow
between Modules and Files

113

The architecture reflects the design of the HB-CA method. The sort and indicator

recognition modules encapsulate the hypothesis generation stage, and the concept

assignment module performs segmentation and concept binding. The design of

HB-CAS has been influenced by a number of considerations:

• The need to control the system easily. This has been met by using a

control panel to monitor and manage system execution. The control panel

validates files, sets library information, changes module options, and allows

access to intermediate data files during execution. The control panel

provides the user with a single interface to all parts of HB-CAS. It is

intended for the expert user or system developer and would need

modification if the product were to be used in other situations. It is unlikely

that an average software maintainer would need or desire the level of

information that can be gained from the control panel, but would be more

interested in the results of the process. The control panel also permits easy

expansion of the indicator recognition part of the system. Indicator

recognition modules can be added and removed without the need to inform

the control panel exphcitly since it detects their presence dynamically. The

control panel also enables each module to be executed individually and the

combination of modules can be changed. This allows different sets of a

module's options to be used without re-executing modules preceding the

one being tested. Figure 44 shows the control panel.

114

A HB CAS: Control Panel

£ile Libt«v Help

SouceFle

\SourceSPhD\

Se(Fte. . I View

IBM V.](ierma

Status; |Analys)s Dc

Gtobal System Stah^

System Status:
iFinished

IBM 2: Kevnad

r Optiofwi Execute I

Status: lAvalable

IRM 3: Comment
1̂ Qpttorel Execute!

S'«*ie-' jReadyToExec

IRM 4: Segment Bie^s
r Optkm] Ei<ecUe|

S>«h«- |Availat)le

IRM 5
r I I

Active Ubraiy

^ThesisEx

ijb(«y Man«^... |

Status: jUnavailable

IRMG
r I

Status: junavaiabte

IRM 7
r I

status Unavailable

J

Exit Select None Select Rm Selected

MwQe-Sfflt
P Options I Execute I

Status: |Ready to Exec

J
Concept Assignment
r Optiore I

Status; jAvaiiable

Displav
r

Status; jAvalable

Figure 44: HB-CAS Control Panel

• The need to permit swift modification of system modules. As the

techniques within HB-CA were improved, various parts of the system

required modification at different times. This led to a system design

composed of a large number of stand-alone programs linked by the control

panel. Each program takes a number of command line options and in some

cases reads an options file. Adopting this approach meant that when a

module was changed, it was the only program requiring recompilation, the

rest of the system remaining unaffected.

• The need to access intermediate representations during development

One of the consequences of employing a separate module approach is that

files need to be used as an intermediate data struaure. This provides the

user with easy access to the data available between module executions.

Using files can have an adverse effect on performance although this has not

been particularly apparent during development and evaluation.

115

7.2.3 Library Structure and Management
The library is stored as a Paradox 7.0 relational database constructed using the

Database Desktop utility of Delphi 4.0. The structure of the database reflects the

library structure described in Chapter 3. This is depicted in Figure 45.

Adkn Conccf*

ueiiBral Corcapl
Spcxxised OxKCft

Ccnceot Warns
De««:-(prrori

Ltrory Nunber
I itir M-t rr-

Librafy C«e5crpton

Concept tkmiwa
IretcahrNuiiier

Indcatof Hsme
Data

DesCTiphon

Figure 45: Library Structure Implemented in Relational
Database

The database is managed by a small module called the Library Manager. This

permits the addition, deletion, and modification of concepts, indicators, and the

relationships between them. Although some validation is performed within the

module, users often have access to the raw database tables underlying the front-end.

If the system was released for large-scale use this would need to be rectified,

however the current situation is acceptable for a research prototype. The Library

Manager module is shown in Figure 46.

116

/I iLibraiy Manager V;^ (10

l̂ oncept: ipiit 1 N w t C o n c ^ j Delete Concept j

A ^ o n : Ouput
Conpo^es

Level: Primary
Spectalbaticra Incfcalors

KDisplay
KEncWrile
KWnte
KIO
KOutput
COutput

)elete

Libraries
Generic
SS.P Specific
Development

New..

E d t U b r ^ Export Ex«

Figure 46: HB-CAS Library Manager

The Library Manager permits concepts to be assigned to more than one "Hbrary".

The control panel requires one "Hbrary" to be selected as active for a particular

execution. This allows a good degree of flexibihty for the user since separate sets of

library content for different applications can be developed from a common core of

concepts.

7.2.4 File Formats
Due to the nature of the data passed between modules in the system, the file format

requires a well-defined structure. This needs to be capable of storing multiple

attributes about each data item, whether a hypothesis, indicator, or conclusion. The

Microsoft Windows I N I file lends itself well to this application. Data items are

referenced by a string enclosed in square brackets, and a series of name and value

pairs contain the item's attributes. An example of an I N I file entry is shown in

Figure 47.

117

[0]
Line=25
Pos=15
I C l a s s = l
Token=C10-INITIALISE

Figure 47: Example of an INI File Entry

Although obsolete in Windows 95/98, having been replaced by the registry, the I N I

file is still supported in the Win32 API. Delphi provides a class wrapper for the I N I

file in its own libraries. This provides the programmer with pre-defined routines for

storing and retrieving information in the files using random access. The advantage

of this approach is that no parsing code needs to be written to read the contents of

the files, and the structure is clear enough for the developer to read the contents

without translation.

I N I files are limited to 64Kb in size. Although most parts of HB-CAS do not

create files that come near the limit, the combined data from indicator recognition

was found to reach this point occasionally. Delphi's I N I file implementation allows

a memory-based version to be used without any size limit. This has the additional

advantage of significantly increasing the performance of the module using it.

7.2.5 Indicator Recognition Modules
Each indicator recognition module extracts indicators in one of the classes

discussed in Chapter 4. The modules operate in two stages: extraction, and

matching. The extraction modules are written in C and are simple lexers. The basis

for each lexer is a commercial lex/yacc package written for COBOL 85. This has

been extended for IBM COBOL I I . The lexers extract all procedure division tokens

falling into the appropriate indicator class, with the exception of the comment

recognition module. During the development of HB-CA, comments occurring

before the procedure division were required and the module was designed to extract

them. As the segmentation method shown in Chapter 5 ignores any hypotheses

generated from this part of a COBOL I I program, no modifications have been

made to the module. These tokens can still cause hypothesis generation but the

hypotheses are not considered in segmentation and concept binding. The result of

extraction is matched against the database of indicators.

118

The matching stage is written in Delphi and each module uses a file of options to

determine its behaviour. Case sensitivity in search is available within the Delphi

database components so no custom implementation is required. Sub-string

matching requires a bi-directional comparison of the database string with the token

extracted from the source code. Synonym matching was implemented using

Automation links to Microsoft Word. Word exports functions in its type library to

access the thesaurus and these were used to generate synonyms.

The separate outputs of the indicator recognition modules are combined to produce

a file of all the hypotheses made. This file is sorted in order of indicator occurrence.

7.2.6 Concept Assignment Module
The concept assignment module implements the segmentation and concept binding

algorithms described in Chapters 5 and 6. The major point of interest in this

module is the implementation of the self-organising map. Kohonen's research

group provides a self-organising map implementation for MS-DOS called

SOM_PAK. It is available on the web [SOMPOO] and provides a suite of programs

for creating, training, and interpreting SOMs. Rather than implement a native

Delphi version of the SOM algorithm, it was decided to use the SOM_PAK and

harness it to the Delphi program through an MS-DOS batch file interface. This is

less efficient than a native version but has the advantage of using a proven

implementation. SOMs can be initialised in a number of ways, the most efficient

being based on eigenvectors [KOHOOO]. The method used in HB-CAS is random

initialisation, as described in the SOM_PAK documentation [KOH096].

It is important to establish the reliability of a third-party implementation.

Establishing confidence in the SOM_PAK was achieved by experimenting with

simple maps to successfully produce predicted results. In addition, the SOM_PAK

has been used in a variety of research projects with no reported problems (see

[LAGU96], [HAME96], [VESA97], [DESJOO]).

119

7.2.7 Display
The display module provides the user with a hypertext-style view of the source code

and concepts. Concepts are coloured and these correspond to segments of the

same colour in the source code. Clicking on a concept name scrolls the code to

display its implementation. The display system only provides browsing of the

source code, as it is expected that the search methods contained in the system

would be integrated into a ful l development environment for real-world release.

Figure 48 shows the display module.

E
£te Help

HB CAS Concept Display C.\Souice\PhD\BRSTes~n0a(a\6b21(M)01

CB21
GB21
GSZl
CS21
CSZl
GBZl
GB21
CB21
\

GBZl
GBZl
GBZl
»Z1

GB21
GBZl
GBZl
CBZl
GBZl
GBZl
GBZl
GBZl
GBZl
GBZl
GBZl
GB21
GBZl
GBZl
GBZl
GSZl
GBZl

COO-RIAC-APS SICTIOH.
COO-000.
* RIJU> APS lUSTKB tilt

CA.LI 'CBAAYOX' OSIHC XPS-RICOKD-IB.
i r APS-BOr • •HD-OF-riLI

HOVl HIOI-VALUIS TO APS-RICORD-IM
GO TO COO-999.

HOVI •!• TO W-CBCH0133-2.
CALL 'CBCHOiaS' OSIHC APS-RICOBD-IH W-C8CH0133-2.

COO-999.
HXIT.
SKIP3

" T j StartLrw Concept

1241

Read: APSRecor'd
Read.'APSFecotd
Hcite:4P3Record
Pr in t :Head ing
F e i n t

HOVl -Z" TO ll-(»CH0133-2.
CALL •GBaSOl33- VStUO APS-RICOBD-OtTT »-(»CH0l33-2.
CALL 'CBAAZOX- JJSTBG APS-RICOBP-OUT.

ClO-999.
EXIT.
SKIPS

C20-PRINT SHCTIOH.
CZO-000.
* PRINT PICtTLIAS RICORDS TO BI HAHUALLT CHKCRO

i r A-LINEirO LESS THAN 25
CO TO C20-010-

ADD 1 TO A-PACEirO.
HOVB A-PACEHO TO Hl-PACS.
HOVE C-i TO P-CC.
HOVE Hl-HEADLINE TO P-LL.
PKRFORH soo-PRnrr.

HOVB VS-2 TO P-CC.
HOVE Hl-HEADLINE TO P-LL.

Figure 48: HB-CAS Display Module

7.3 Test Suite
A test suite was constructed to interface with HB-CAS. It allows a wide range of

parameters to be tested in a controlled manner and was employed during the

development of HB-CA to examine the relative performance of the various

approaches.

120

7.3.1 Principles of Test Suite
The test suite allowed the concept assignment system to be executed on large

numbers of source files with varying parameters. The results of each execution

were recorded and compared with predefined "correct" answers. This allowed

automatic measurement of the system's success at concept assignment. A log file

stored the input and output of every stage of the recognition process for later

analysis. The size of this file (typically between 22Mb and 50Mb) required the

development of several perl scripts to create summaries of the information

contained within it.

To ensure fair testing, the suite controls HB-CAS using the control panel "execute"

method. Its only direct intervention in the process is to set module options in the

relevant initialisation files. Once this has been completed, control is passed to the

control panel as if a person was using the system.

Creating the "correct" answers required the use of a mark-up tool to designate parts

of the source code as indicators and concepts. The marked-up code was stored in

files and automatically compared to the output of the concept assignment system

using various criteria for correctness. Performance was measured in terms of

information retrieval, using precision (number correct/number found) and recall

(number found/number potential). The best set of indicator recognition options

was determined by comparing the precision and recall values for each combination.

These investigations also guided the development of the concept assignment

methods.

As the concept assignment methods became more sophisticated, the marked-up

representation of the source code became incompatible with the output of HB-

CAS. Since later versions of HB-CAS had fewer parameters to control the concept

assignment process, the effort required to upgrade the test suite was not deemed

worthwhile. Consequently, the evaluation of HB-CA described in the next two

chapters is based on the manual application of correctness measures.

121

7.3.2 Usage
Although the test suite was originally intended for use as an automated test and

evaluation tool, it could be adapted easily to provide batch-processing facilities.

This would allow large amounts of source code to be analysed in one step, either for

future software comprehension use (storing the results in a repository), or for more

specialised applications such as searching for instances of a particular concept in a

large body of source code. This could fulfi l the functions of the wrapper, discussed

in section 9.2.1, for ripple analysis, module selection, and code reuse.

7.4 Evaluation of Implementation
This section discusses some of the issues arising from the implementation of

HB-CA in HB-CAS. The method itself is evaluated in the next two chapters.

7.4.1 Design Evaluation
7.4.1.1 Separate Program Approach

The basic design has proved effective and the architecture has not been changed for

any version of HB-CA. Using separate programs to implement each part of the

system made modification and testing easy. The control panel's ability to scan the

directory structure for additional indicator recognition modules also helped to

expand the system with minimal effort.

There were some disadvantages, in particular, the problem of synchronisation

between the control panel and the other programs. This was handled using the

presence of a file to act as a "process complete" flag. This somewhat inelegant

solution could be replaced with the Win32 process control API, but the effort

required to understand and employ these functions was judged greater than the

potential benefit. The API method offers better performance and greater elegance,

but the file-based method works satisfactorily.

The individual modules run in "batch" mode rather than in the traditional

interactive manner of Windows applications, ensuring that the control panel does

not require additional user input once the run button is selected. Adopting this

approach places responsibility on the programmer to ensure that the application

122

window is updated and operating system messages are processed. This problem

would be overcome by implementing HB-CAS as a single program.

7.4.1.2 Third-Party SOM Implementation

There were good reasons for using the SOM implementation provided by

Kohonen's group, the most important being that the code can be trusted as correct

(see section 7.2.6 for research citing use of the SOM_PAK). In addition, a

substantial amount of time was saved by not re-implementing the algorithms.

When SOM-based methods were first employed, the techniques of file-based

synchronisation were well understood and a Delphi library was built to interface

with the SOM_PAK. Using a separate library to abstract SOM functionality

provides an easy way to substitute a native implementation should the need arise.

The main disadvantage of using the SOM_PAK is poor performance. The

programs compile to a DOS executable and consequently require a command shell

to be launched before execution. In addition, different programs within the

package handle the stages of initialisation, training, and interpretation separately.

This leads to a new shell being launched for each. Despite this high run-time

overhead, performance on real data is acceptable, although a native 32-bit

implementation would almost certainly show significant performance gains.

7.4.1.3 Third-Party Synonym Lists

Synonym-based indicator matching is not used in the examples in this thesis as it

significantly degraded indicator recognition performance and computational cost.

The idea of using synonyms to give flexibility to indicator recognition is considered

sound, although better methods are required to perform the matching process.

Microsoft Word was chosen to provide the synonym Hst since it has wide availability

on the Windows platform and a standard library with which other programs may

access its functionality. Word list quality was not considered in this research but if

synonym matching is desired then list quality should be addressed.

123

7.4.2 Code Evaluation
7.4.2.1 System Characteristics

Table 9 presents some general characteristics of the HB-CAS implementation.

Compiled sizes are given to the nearest kilobyte for the debug version of modules.

This version has been used throughout the implementation and evaluation.

Program
Source Length

(lines of code)
Compiled Size (Kb) Source Language

Identifier Extraction 1687 67 C

Identifier Matching 301 507 Delphi 4

Keyw^ord Extraction 1694 68 C

Keyword Matching 176 513 Delphi 4

Comment Extraction 136 25 C

Comment Matching 265 529 Delphi 4

Segment Boundary-

Extraction
1718 68 C

Segment Boundary

Matching
167 517 Delphi 4

Control Panel 1289 1205 Delphi 4

Library Manager 776 689 Delphi 4

Merge-Sort 230 313 Delphi 4

Concept Assignment 1633 562 Delphi 4

Display 410 367 Delphi 4

Total 1 10482 5430

Table 9: Characteristics of HB-CAS Programs

7.4.2.2 Programming Environment and Language

Delphi has proved to be an excellent language and environment within which to

work. Its rapid prototyping capabilities removed much of the effort of user

interface design and management, and a good debug environment helped with

testing. An almost perfect balance is struck between abstraction from the Windows

API and providing flexibility in library routines. In addition, it has excellent

database connectivity that made accessing the library extremely easy.

124

7.4.3 Test and Validation
Each program was tested individually before being included in the system. The

separate program approach and high visibility of input and output data meant that

very few problems were found during integration. Individual programs were mostly

checked by hand to ensure that the output generated was as expected, e.g. the

extraction and match program results were compared to a manually performed

analysis.

The concept assignment module was more complex and required the use of

Delphi's debugging tools. These allowed the internal state of various data structures

to be displayed at appropriate points during the execution of the module. Single-

step tracing of the routines was used to ensure correct implementation of the

algorithms.

Due to its nature, the specific behaviour of the SOM cannot be accurately predicted,

but experiments during the development of HB-CA gave an indication of typical

results. These were used, in conjunction with test data, to verify that the SOM was

working as expected.

Despite thorough testing before evaluation, the investigations undertaken for

Chapter 8 highlighted a few remaining bugs when the more complex library content

(shown in the Appendix) was used. These were rectified without significant effort,

and the affected investigations repeated with negligible difference in their results.

7.5 Summary
This chapter has presented the HB-CAS implementation of the HB-CA method.

Various technical issues relating to the system's design have been discussed and its

automated test suite described. The implementation has been evaluated with

respect to major design and code characteristics.

Chapter 8 presents the first part of an extensive evaluation of the HB-CA method.

This examines many characteristics of HB-CA, beginning with its scalability.

125

Chapter 8

Evaluation I: HB-CA Characteristics

8.1 Introduction
Chapter 7 described an implementation of the HB-CA method called HB-CAS and

discussed its architecture and design rationale.

Having shown the operation of each stage of HB-CA in Chapters 4, 5, and 6, this

chapter presents the first part of an extensive evaluation of the method, relating to

characteristics of HB-CA itself.

The evaluation begins with one of the most important properties of HB-CA:

scalability. HB-CA is intended to work with real-world code and hence it is

important that it operates accurately on any length of program. The chapter then

discusses issues relating to segmentation, concept binding, and the library. Finally,

some general characteristics of HB-CA are examined: computational and spatial

cost, expandability, representational power, domain independence, and achievement

of cognitive requirements.

The results of a number of practical investigations are reported, each introduced by

a table summarising its parameters and data. Investigations were carried out using

HB-CAS and a number of real-world COBOL I I programs. Program sets, results,

and other parameters for all the investigations can be found in the Appendix. Al l

program lengths are quoted in lines including white space and comments, since

these can contain vaHd indicators. Although HB-CA is designed to work solely on

the procedure division of COBOL I I programs, it is not reasonable to expect a

maintainer to remove the data division before commencing analysis. Consequently,

program lengths include the data division, and all investigations use complete

programs.

126

8.2 Scalability
Accurate concept assignment is important since mistakes could confuse the

software maintainer, thus increasing, rather than decreasing, the cost of software

comprehension.

HB-CA should maintain its accuracy regardless of the length of program to which it

is applied. In principle, i f HB-CA can be accurate on a single segment, there is no

reason why it should be inaccurate when there are several segments, as each is

analysed separately.

Concept assignment is regarded as accurate if a segment implements the concept

specified. Figure 49 shows an example.

Fie Help
HB CAS Concept Display C \Souice\PhD\BRSTej-nDala\gb080001

j
j

CB08

008
GS08

G808

GBQ8

CB08

I P STID-PABB-DATI > STAD-Ctni-OATI
HOVI 'PSOCRAH CB08 - CJLRD DATI I S 3 BSMTtCB Z> m

•BUHDATt' TO HISS-2
CO TO COO-010.

I P DC-STAPT HOT B D H I R I C
CO TO COO-OiO.

I P D C - U D HOT BOH I R I C
CO TO COO - O I O .

I P 0C-8TART CWUTIP TB&H '31'
CO TO COO-010.

I P D C - H B) C U A T I K T H M I -zi'
CO TO COO-OiO.

I P DC-STAAT CKXATIR THUI DC-DD
CO TO COO-010.

I P HO-TAX - S P A C I S
CALL •USTAXBAT- U S O I C TAX-DATI TAX-PATI
HOVl TAX-SATI TO V-TAX
CO TO C0O-3O0.

I P DC-TAX HOT HOHtPIC
CO TO COO-200.

HOVI DC-TAX TO »-TAX.
CO TO COO-300.

CQOI-OIO.

_ J ±1

Start Line Cofcept

ReadrAPSHascetFile

Calculate
CalcTilate

| 526 B r i c e i n i e
| 5 7 4 Call:DATEPRESHodule

|683 Ca lcu la te
Output

|775 Output
•804 Output ,

C a l l
O r i t e : A P S I a s t e r n i e

j CalCTilate
|896 Ca l cu l a t e : I n t e r e s t

1 Calcu la te ; Intecesc
CalcxUate: I n t e r e s t
Calculate

1 Calci i late
I n p u t : F i l e
Outinat: CAr

| l 052 Output
| l072 Output :Paymentr i le
1104 Ori te:APSHasterFi1e

0 c i t c : F i l e
1137 C a l l
1167 C a l l

Output:CHS
1224 C a l l

Pclnt :Headln9
P r in t :Head ing

Figure 49: Example of an Accurate Segment

In this case, the segment is assigned the concept Call starting at line 628 (shown in

beige). This is classed as accurate because a call is made from this seaion of code

although the remainder of the segment is concerned with other processing.

127

Concept assignment is regarded as strictly accurate if the concept is dommant in the

segment (i.e. the segment is mostly concerned with implementing the concept

specified). Figure 49 is not strictly accurate as it is concemed with program control

rather than with calling. An example of strict accuracy is shown in Figure 50.

HB CAS Concept Display C \Souice \PhD\8RSTei -nDa»d \gb080001 •JxJ

EWl 'IS" TO DC-
C 4 1 2 S 7
C412S7
C4JIZS7
C412S7*
C41Z57
JC4i2S7»
IC412S7
;C412S7
C412S7
C4X2S7
C412S7
C412S7

C412S7
C412S7*
C4i;5'^ con
C412S7*

OT08 •
GEOS

CB08
(303
GB08 * '
QSFZ

GB08

IGB08
GB08
S22S3S

IS22S3S
2 S 3 S

HOVE ' l e - TO DC-START
HOVB 'SI- TO DC-IND.

MOVK TAX-RATl TO DC-TAX.

DISPLAY • '.
DISPLAY USING THI RUB DATI SHOHB BILON :-
DISPLAY CCYY-DATI
DISPLAY THI PARAHITIR CARD WAS IXPICTID TO B l
DISPLAY DATS-CARD.
DISPLAY ' '

CALL -URCAHCIL' USIHC SUSPICT-H3G.

400.

HOVI Y' TO CARD-IHD.
PRIHT CARD AHYWAY
novx WS-1 TO P-CC.
HOVI DATI-CARD TO P-LL.
PKRyORH S20-CALL-PRIHT.

•*» PRIHT IRROR PACK HKADIHCS

PXRPORH KSO-HXADISCS.
HOVB DC-HOBTH TO HUH-HOHTH.
ADD 0 TO HH-HH.

PKRFORH S30-WRITB-PAYHBHT.
HOVE LOH-VALUIS TO (XPYAOOS.
HOVE DC-CIHTORY TO PDR-CBHTURY.
HOVE DC-YEAR TO PDR-YBAR.

Start Lrw Concept

Read:APSHastetrile
|429 Input:CAF
1492 Calculate
Isoe Calculate
I526 lcite:me
J ' CallrDATEPRESHodule
1628 C a l l
lea?; Calculate
l767 Output

Output
l804 Output
|ao8 C a l l

1 Hr i t e : APSHaste t F i l e
Calcu la te
C a l c u l a t e : I n t e r e s t
c a l c u l a t e : I n c e r e s t

|917 C a l c u l a t e : I n t e r e s t
1943 Calculate
|949 Calculate
1960 I i ^ t : F i l e
| l029 Output: CAF
1052 Output
I1072 Output: Pa jBen tF i l e
1104 erite:APSRastecFile

I1II3 f t t t e : n i e
11137 C a l l
1167 C a l l

Output: CBS
1224 C a l l
1240 Pcint:Beading
0277 Print:Heading

Figure 50: Example of a Strictly Accurate Segment

It can be seen clearly that the blue segment, which is assigned the Output concept

starting at line 804, is implementing only this concept. It is therefore dominant in

the segment and strictly accurate.

Recall that recjthresh is used to ensure a certain level of evidence in each segment

(see seaion 5.3.2.1), and to determine the lowest score with which a concept may be

bound during concept binding (see section 6.3.2.4). The minimum veaor density

required for a cluster in the SOM to be classed as valid (see section 5.3.2.3) is

defined by minjvd. This parameter is used also to determine the number of

potential clusters in a segment during clustering pre-processing (see seaion 5.3.2.1).

Forcedjpecialisation determines whether post-disambiguation processing (see seaion

128

6.3.2.4) should attempt to find the most specific version of the winning concept for

which there is evidence.

To verify the scalability of HB-CA, an investigation was undertaken using HB-CAS.

The parameters are shown in Table 10.

Set A

Appendix, Section A.2

1

3

True/False

Appendix, Section A.3.1

Table 10: Parameters for Investigation of Scalability

The results of the investigation are shown in Figure 51 and Figure 52.

100
90
80
70

a 60
I 50
I 40
°- 30

20
10
0

• •
•

• - • • •

• • •
^Accuracy
• Strict Accuracy

0 500 1000 1500

Program Length (lines)

Figure 51: Graph to show the relationship between the
Accuracy of Concept Assignment and Program Length

{forced specialisation = True)

129

100
90
80
70

& 60
50
40
30
20
10
0

• • • •

m m * m m
Accuracy
•Strict Accuracy

0 500 1000 1500

Program Length (lines)

Figure 52: Graph to show the relationship between the
Accuracy of Concept Assignment and Program Length

(forcedspecialisation = False)

Each point on the graph represents the accuracy (or strict accuracy) for a particular

length of program. The set of programs used is shown in section A.9.1. Both

accuracy and strict accuracy are plotted on the same set of axes for easy comparison.

Although both graphs show a wide variation in their resiilts, the general trend does

not confirm the theoretical claim that accuracy should remain the same regardless of

program length. Forcing specialisation produces slightly less accurate results

although those concepts that are correct should provide more information to the

user. Accuracy drops significantly at a program length of about 1000 lines, strict

accuracy following a similar trend.

8.2.1 Investigation of Scalability Problems
Recall that the segmentation stage of HB-CA creates segments initially using

segment boundary hypotheses. Each segment is then analysed to determine the

potential for forming clusters of action-concept hypotheses within it . I f such

potential exists, a SOM is used to cluster similar hypotheses. Those clusters that

have sufficient veaor density are termed valid, and those that do not are termed

invalid. Invalid clusters are equally divided and merged with their nearest valid

neighbours. Each cluster is then created as a segment in its own right and the

object concepts that fall within and around its boundaries are included.

130

Accurate concept binding relies on a good quality segment, i.e. a set of hypotheses

that clearly indicate one concept. It follows that the lower a segment's quality, the

less likely the concept binding method is to accurately assign a concept. The

following hypothesis is made to explain the drop in accuracy with larger programs:

Hypothesis 1: Segmenting larger programs requires greater use of SOMs,

which reduces the accuracy of concept assignment.

The first question to be addressed is whether larger programs use more SOMs. To

test this, comparisons are made between the length of programs and the number of

SOMs used to analyse them. Results are taken from the investigation summarised

in Table 10. Figure 53 shows that SOM usage increases when larger programs are

analysed.

(0 3
I
O
(0

10

9

8

7

6

5

4

3 4

2

1

0 +
0

• •
• • •

• • •
• • • •

• •

• —
500 1000

Program Length (lines)
1500

Figure 53: Graph to show the relationship between the
Number of SOMs Used and Program Length

Since larger programs do require greater use of SOMs, it is likely that the latter is the

cause of lower accuracy. Further confirmation is gained by comparing SOM usage

and accuracy directly, as shown in Figure 54.

131

0) O)
5 c
a>
Q.

100

90

80

70

60

50

40

30 -

20 .

10 -

0

A > •
. • • I

i A i X •

A *
AM w ^ X A «

4 Accuracy,
forced_specialisation =
True

• Accuracy,
forced_specialisation =
False

^ Strict Accuracy,
forced_specialisation =
True

X Strict Accuracy,
forced_specialisation =
False

10

Number of SOMs Used

Figure 54: Graph to show the relationship between the
Accuracy of Concept Assignment and Number of SOMs

Used

The data indicates that the greater SOM usage arising from analysing larger

programs correlates with a reduction in the accuracy of concept assignment.

Hypothesis 1 would appear to be confirmed.

Recall that low concept assignment accuracy can be caused by poor quality

segments. A further hypothesis is made to explain why greater SOM usage causes

lower accuracy:

Hypothesis 2: SOM usage causes lower quality segments.

I f the hypothesis were correct, it would explain the fall in accuracy with greater

SOM usage. Hypothesis 2 is investigated in the next section.

8.2.1.1 SOM-Related Segmentation Problems

This investigation begins by discussing the relationship between accuracy and

segment size.

Observation of the code segments that were assigned concepts indicated that the

most accurate assignments were made when the segment size was small. Smaller

132

segments tended to occur in smaller programs. Since lower accuracy is linked to

large programs, it could be that SOM usage causes a rise in segment size. This

could explain the fall in accuracy when more SOMs are used. Smaller segments are

likely to contain fewer hypotheses and consequently there is less potential for

confusion. The segment quality therefore is higher and accurate concept binding

more likely to result.

In an attempt to verify these observations, and perhaps find the optimal size of a

segment, several programs were examined for the size of their segments and the

accuracy of the concepts bound to them. The investigation parameters are shown

in Table 11 and the results are shown in Figure 55.

SetB

Appendix, Section A.2

1

3

True

Appendix, Seaion A,3.2, A.3.3

Table 11: Parameters for Investigation of Segment Size and
Accuracy

• Accuracy
• Strict Accuracy

0- 11- 21- 31- 41- 51- 61- 70+
10 20 30 40 50 60 70

Segment Size (lines)

Figure 55: Chart to show the Accuracy of Concept
Assignment for Various Segment Sizes

133

Accuracy peaks with segment sizes of 31-60 lines. The presence of similar accuracy

levels elsewhere on the chart means that drawing a f i rm conclusion that this is the

ideal segment size would be unwise. Stria accuracy is clearer, with the best results

definitely coming from the smallest segment sizes. This confirms the observations

reported at the start of this seaion.

Figure 56 shows further results from the investigation in an attempt to determine a

relationship between SOM usage and mean segment size. The numeric results are

shown in section A.3.3.

80

70

§ 60

S 50

^ 40 o

i 20
i

10

1 2 4

Number of SOMs Used

Figure 56: Chart to show the Mean Segment Size for Various
Numbers of SOMs Used

It is clear from Figure 56 that there is no correlation between greater SOM usage

and greater mean segment size. Consequently, the explanation for the fall in

accuracy with larger programs must be attributed primarily to a reason other than

larger segment sizes.

134

Two further explanations for the link between greater SOM usage and lower quality

segments are:

1) The SOM is associating concepts that should not be clustered.

2) The algorithms that reallocate action-concept hypotheses from invalid

clusters (see section 5.3.2.4) are introducing enough unrelated concepts to

valid clusters to cause poor segment quality.

The most likely explanation can be determined by studying the balance between

valid and invalid clusters at varying accuracies. If a low proportion of invalid

clusters correlates with low accuracy, this would suggest that the SOM is causing the

problem because the reallocation algorithms are not being used to a great extent. If

there were a link between a high proportion of invalid clusters and low accuracy,

this would indicate that the reallocation algorithms are at fault because they are

being used often.

An investigation was undertaken on various programs that require SOM analysis.

Sections that were subdivided by a SOM were examined to determine the number

of valid and invalid clusters produced, and the accuracy of concept assignment for

each resulting segment. The reintegration of object concepts is of less concern

since they can only confirm and complete conclusions, not generate them initially. .

Confusion in object-concept hypotheses has less impact on the correctness of the

result owing to the disambiguation rules. The investigation parameters are shown in

Table 12.

SetC

Appendix, Section A.2

1

3

True

Appendix, Section A.3.4

Table 12: Parameters for Investigation of Accuracy and
Invalid Cluster Proportions

135

Figure 57 indicates that higher proportions of invalid clusters lead to lower stria

accuracy, although this is not refleaed to the same extent in non-stria accuracy.

100
90
80
70
60
50
40
30
20
10
0

• •

/ •

•
Accuracy
•Strict Accuracy

50 100

Percentage of Total Clusters that
are invalid

Figure 57: Graph to show the relationship between the
Accuracy of Concept Assignment and the Proportion of

Invalid Clusters

Since non-stria accuracy relies only on the presence of a concept within a segment,

good results can be achieved with poorer segmentation. The requirements of stria

accuracy mean that "loose" segmentation (where a large part of the segment is

irrelevant to the concept) is more evident in the results. The conclusion that can be

drawn is that the problems lie in the reallocation algorithms. This is not surprising

since the "equal-division" method of assigning invalid clusters and hypotheses to

their surrounding valid clusters is naive. It causes "loose" segmentation by

including hypotheses in segments to which they may have no conceptual affOiation,

and adding entire invalid clusters to their neighbours without considering the

content of either. When considering the problems the latter may cause, it is worth

recalling that the SOM has associated the hypotheses in an invaHd cluster, and

consequently the neighbouring vaUd cluster gains a conceptually coherent group of

hypotheses. Concept binding then could be hampered by both the general "noise"

of unrelated individual hypotheses, or worse, it could be led in a completely

different direaion by conceptually coherent, but unrelated, groups of hypotheses.

136

8.2,1.2 Possible Solutions

The reallocation algorithms would benefit from further research. One approach

might be to use conceptual information from the hypotheses of invalid clusters, to

bind them to conceptually similar neighbours. This might require some preliminary

concept binding. Alternatively, the principle of preserving all of the original

hypotheses could be rejected and invalid clusters ignored. Another idea might be to

limit the number of hypotheses that can be added to a valid cluster, or limit the

cluster size itself

Another approach to improving the quality of segmentation might be to change the

controlling parameters, recjhresh and minjvd, which for the investigations performed

in this chapter are set to 1 and 3 respectively. Increasing recjthresh would cause a

reduction in the number of initial segments and hence concept assignments made

(since more evidence would be required). Those segments that pass the threshold

would be larger, having a reasonable amount of evidence. Smaller values of

rec_thresh would allow more initial segments to be considered and increase the

number of concept assignments. Given that smaller segments have been observed

to produce more accurate concept assignment, smaller values of recjthresh should

produce more accurate results overall. The disadvantage of having smaller segments

is that each hypothesis carries more weight (by representing a larger proportion of

the body of evidence) than in larger segments. Consequently, a misleading indicator

can cause greater problems. Individual hypotheses in larger segments have less

influence on the overall concept assignment, so increasing recjhresh may ensure that

a reasonable body of evidence is considered, rather than just a few hypotheses.

Increasing min_vd would increase the number of invalid clusters by forcing valid

clusters to contain more evidence. This could cause poorer segmentation for the

reasons discussed in section 8.2.1.1. Decreasing minjvd may improve the quality of

segmentation, but the resulting segments could be so small (since only one or two

hypotheses for a concept would be required) that concept assignment would

become pointless. There would no longer be a significant body of evidence to

consider (see the discussion of recjhresh above). A balance must be struck when

setting the parameters, to make best use of the library on the source code being

studied.

137

8.2.1.3 Summary

There is a clear link between SOM usage and poor segment qualit)^. Hypothesis 2

has thus been confirmed. Poor quality segments result from the application of the

naive reallocation algorithms. Greater SOM usage results in a greater chance of

these algorithms being employed. This explains the fall in concept assignment

accuracy when more SOMs are used.

It should be noted that in some cases, SOM-based segmentation is very successful

and further discussion is presented in section 8.3

8.2.2 Average Performance
The overall performance of HB-CA is promising, achieving high mean and median

accuracies as shown in Table 13.

forced specialisation = True forced specialisation = False

Mean Accuracy 84%, a = 14 88%, a = 11

Mean Strict Accuracy 56%, a = 19 56%, a = 21

Median Accuracy 89% 89%

Median Strict Accuracy 50% 56%

Table 13: Average Accuracy Values for HB-CA

It is interesting to note that using general versions of concepts (when

forcedjpecialisation is False) does not increase the accuracy significantly. This

suggests that the concept binding algorithm is capable of successfully differentiating

specialised concepts, or that the library has little specialisation.

8.2.3 Summary
Despite theoretical claims that accuracy should not decrease with longer programs,

investigations indicate that such programs cause a wider variation in accuracy and a

general drop in concept assignment performance. This is attributed to the greater

use of SOMs when analysing larger programs, and the poorer quality of

segmentation that can result. Small segment sizes appear to provide the best

138

recognition performance when strict accuracy is considered, although non-strict

accuracy does not indicate this to the same extent.

Investigation of the cause of SOM-related segmentation problems revealed that the

hypothesis reallocation algorithms are largely to blame for poor performance. This

is not surprising given their naive nature and several strategies have been identified

to address the problem.

8.3 Segmentation
In view of some of the issues raised about HB-CA's segmentation in the previous

section, a discussion of the abilities of the segmentation method is now presented.

HB-CA is designed to operate on real-world code and consequently cannot rely on

being applied to well-structured programs. When poorly structured code is

presented, SOMs are used to create segments based on conceptual association

rather than syntactic boundaries. Section 8.2 discussed some of the problems that

arise when SOMs are employed in this role. These appear to be linked mostly to

the algorithms that analyse the results produced by the maps.

A small investigation of the SOM's ability to replicate syntax-based segmentation

has been performed. Pairs of segment boundary hypotheses were removed

successively from the hypothesis list. In the programs tested, the SOM failed to

preserve the syntactic clustering exactly, although the resulting concept assignment

was still correct. The cross-subroutine segmentation that can occur in these cases

was the motivation for the use of segment boundary hypotheses.

In some cases SOM-based segmentation can be extremely successful, an example

being shown in the second and third concepts of Figure 58 (specialisation was not

forced).

139

I ^ H B CAS Concep

CD 6 7

0067

CD67

<a>67
10)67

I
\ta>€7
Gt,61
(3)67
Gi>61
GD67
GD67
CD67

7t>67

3)67
I>67

GD67

ARI PRIMTID ON AN IRftOR M » O R T .
VALID RICORDS A M R l L t A S I D TO THl SORT.

BOO-OiO.
•* PRINT HEAE'IHCS fOR AN IRROR RIPORT **

HOVl C-1 TO P-CC.
PIRFORH SOO-PRINT.
ADD +1 TO A-PACICODNT.
ROVI A-PACICOONT TO Hl - P A C I .
MOVI HI-HIAD TO P-DATA.
BOVl WS-2 TO P-CC.
PIRPORJI SOO-PRINT.
HOVl 'INVALID RICORDS' TO H2-TITL1.
HOVI HZ-HIAD TO P-DATA.
HOVl NS-2 TO P-CC.
PIBfOBH SOO-PRIHT.

+6 TO A-LIHBCOUNT.

BOO-OZO.
MAD AN CfPDATB RICOBD

CALL 'UNSSAOX' USING M-IHD.
I F RA-IOr « HIGH-VALUIS

CO TO BOO-999.
I F (BA-HIAD-CODl • "Ol')

AND <P4-IRR0RS NOT • SPACES)
HOVl NS-2 TO P-CC
HOVl RA-EHD TO P 4 - I M 0 R S
HOVI 'INVALID P M C I D I N C 00 MCORD'
HOVl P4-1RR0RS TO P-DATA
PIMOBH SOO-PRIHT
CO TO BO0-02O.
t„g»ACW TO P 4 - M M M .

J7y Ii^tut: Record
Calculate:Intecest
Read:nie

517 Ii«>ut: F i l e
537
557 FtintzHndtog
614 Print:Heading
671 P r i n t
699 V r i t e r F i l e
"64 Print:Record
81S Print:Heading

Read: m e
Write:File

Figure 58: Screenshot Showing Successful SOM-Based
Segmentation

In this example the segments are reasonably well focussed around the concepts they

represent and there is good separation between them. This is how the operation of

SOM-based segmentation was originally envisaged. On some occasions the SOM

produces strange results. A common fault is that adjacent segments are created

within a seaion, but all performing the same task (an example is shown in Figure

59).

140

^ HB CAS Concept Displaii CASouice\PhD\BRSTe»-1\Da«d\gb070001
£ie He*)

E X I T .
EJECT
-HEAI'IHCS SECTION.

"Tj Start Line Concept

HOVE H I A S - l TO P-LL.
PIRFORH SOO-CALL-PRIHT,
I F TOTALS-OHLY-RBQD

CO TO 110-999.
HOVE ¥S-1 TO P-CC.
MOVE HEAD-2 TO P - I L .
PIRTOBH SOO-CAI.L-PAINT.
nan vs-z TO P - C C .
HOVE HUU>-3 TO P - l l .
PIRFORH SOO-CJLLL-PRIHT.
HOVE TiTS-l TO P-CC.
HOVE HKAD-4 TO P-LL.
PERFORH SOO-CALL-PRUTT,
HOVE WS-2 TO P-CC.
HOVE HIAD-S TO P-LL.
PIRFORH SOO-CALL-PRIHT.

BlO-999.
E X I T .

Caltnilate
Pcint:AFSRecotd
CalliDATEFRESHodule
C a l l

- CtUl
CaU
Input
Call:DATZPRESHodule
Calculate

915 Pciat: Beading
925 C a l l
939 Pr i n t
963 Input: CAP
1004 C a l l
1010 Calculate
1048 g a U
1051 P r i n t

P r i n t
1070 Print

C a l l
1089 C a l l
1106 Print:Heading
1121 Print:Heading
1126 Print: Beading
1131 Print:Heading

C a l l
1151 C a l l

Figure 59: Screenshot Showing Unnecessary Segmentation

In this case, all of the concepts are correct but three are adjacent and identical. As

they all perform the same task, there seems Uttle point in regarding them as separate

segments. The causes of this problem became apparent during the development of

HB-CA and are related to the nature of the SOM itself. One explanation is that

rather than associating all of the hypotheses to the same output node and quantizing

the few unrelated hypotheses, the SOM learns to differentiate between regions of

conceptual similarity and regions of conceptual difference. Consider a list of

concepts:

Print, Print, Print, Read, Read, Read, Read, Print, Print, Print

When analysed by a 5x1 SOM, the result should be three triggered output nodes,

each containing three or four of the same concept as appropriate. In praaice, it has

been observed that the SOM may group the concepts in pairs thus:

Print, Print Print, Read Read, Read Read, Print Print, Print

141

The SOM appears to learn both similarity and difference. This is essentially a

problem of over-representation in the output space but since the method for

calculating the size of the output space is well justified theoretically, there is little

incentive for modifying it. An alternative explanation is that the initial values in the

map cause concepts that should be associated to be pulled away from their correct

cluster. The map training parameters should prevent this from happening in most

cases.

A simple solution to the problem of unnecessary segmentation would be to add a

rule to gather adjacent, identical concepts, and make one assignment for the

collection.

In summary, SOM-based segmentation is a successful method for handling

monolithic code and large subroutines, although it can over-segment on occasion.

8.4 Concept Binding
Section 8.2 raised the problem of poor concept assignment caused by hypotheses in

a segment that are not related to the correct concept. This section examines the

issue in more depth, evaluating the effectiveness of the disambiguation rules in

allowing graceful degradation of the system's performance. The rules were

presented in section 6.3.2.3.

Recall that concept binding operates by creating conclusions for every hypothesised

action concept in a segment, and every possible composite containing that action

concept. A composite is a concept made up of an action and an object. Object

concepts are then scored to complete and strengthen conclusions. The highest

scoring concept is designated the winner but if there are several with the same high

score then disambiguation rules are applied to determine which should be ultimately

successful.

Hypotheses that are unrelated to the correct concept in a segment can be viewed as

falling on a scale from random "noise" to a coherent "interfering signal". If there is

no conceptual correlation between these unrelated hypotheses, they simply create

"noise" and are eliminated by the scoring algorithms. As the unrelated hypotheses

142

move along the scale to form a coherent "interfering signal", HB-CA must apply

more rules to retain the correct concept. Eventually, the evidence for the

interfering concept may outweigh that of the original and so assignment wil l be

made to the new concept. This is not intrinsically bad since HB-CA was created to

use the weight of available evidence to make concept assignments.

An example program was used to investigate the method's performance in this area,

with the library content presented in the Appendix. Min_vdwzs set high to prevent

a SOM being used. One routine with an obvious interpretation was chosen within

the program, and varying types of unrelated indicator added.

The original routine is shown in Figure 60. The concept assigned by HB-CA (using

forcedjpecialisation = True) was Read:PaymentFile. This is clearly correct.

GD25 SI0-READ-PAYMENT SECTION.
GD25 * READ THE PAYMENT F I L E
GD25 SlO-000.
GD25 CALL 'GBFDAMAO' USING PAYMENT-FILE.
GD25 SlO-999.
GD25 EXIT.

Figure 60: Original Routine

The original routine contains only one unrelated indicator, CALL , and the scoring

algorithms ignore this, F I L E creates hypotheses for a number of different types of

file in addition to the correct one, resulting in the bulk of evidence pointing to

Read-File. When specialisation is forced, the hypotheses produced by PAYMENT

indicate the result to be Read:PaymentFile. This can be seen in the extract from the

HB-CAS log shown in Figure 61.

143

CB: P r i n t i n g f i n a l c o n c l u s i o n l i s t f o r t h i s segment:
CB: Read 2
CB: R e a d : F i l e 2:7
CB: Read:CAF 2:1
CB: Read: PaymentFile 2:4
CB: C a l l 1
CB: *DA* F i n d i n g h i g h e s t s c o r i n g c o n c l u s i o n s . (DAR 1)
CB: 1 h i g h s c o r i n g c o n c l u s i o n s .
CB: High s c o r i n g c o n c l u s i o n i s R e a d : F i l e , s c o r e 9
CB: *DA* Removing s p e c i a l i s a t i o n s . (DAR 2)
CB: Found c l e a r winner.
Winning c o n c l u s i o n f o r t h i s segment c u r r e n t l y R e a d : F i l e
CB: ** Post-Disambiguation P r o c e s s i n g **
CB: *PDAP* S p e c i a l i s a t i o n Required.
CB: Found s p e c i a l i s a t i o n
CB: Found s p e c i a l i s a t i o n
Winning c o n c l u s i o n f o r t h i s segment c u r r e n t l y Read:PaymentFile
CB: *PDAP* Checking T h r e s h o l d s .
S t o r i n g c u r r e n t winning c o n c l u s i o n

Figure 61: Extract from HB-CAS Log

The level of random "noise" in the original routine is moderately low. To test the

ability of HB-CA to cope with greater "noise", the routine was modified to have

more "noisy" indicators than indicators for Read:PaymentFile. This is shown in

Figure 62.

GD25 SIO-READ-PAYMENT SECTION.
GD25 * READ THE PAYMENT F I L E
NOISE * PRINT A REPORT
NOISE * UPDATE A DATABASE
GD25 SlO-000.
GD25 CALL 'GBFDAMAO' USING PAYMENT-FILE.
NOISE CALL 'PRINT' USING P-APS.
NOISE MOVE SPACES TO DB-PARMS.
NOISE * OUTPUT COMPLETE
GD25 SlO-999.
GD25 EXIT.

Figure 62: Routine Modified with Random "Noise"

Despite the fact that there are only 7 indicators related to Read:PaymentFile and at

least 9 unrelated, the system still makes the correct concept assignment. This is due

to the scoring algorithm considering both the amount and the coherence of

available evidence, using the composition and specialisation relationships. Figure 63

shows a considerable increase in the number of potential conclusions, resulting

from the range of indicators that have been added to the routine.

144

CB: P r i n t i n g f i n a l c o n c l u s i o n l i s t f o r t h i s segment:
CB: Read 2
CB: R e a d : F i l e 2:8
CB: Read:Database 2:2
CB: Read:Record 2:1
CB: Read:APSMasterFile 2:1
CB: Read:CAP 2:1
CB: Read:PaymentFile 2:4
CB: Read:APSRecord 2:1
CB: P r i n t 1
CB: P r i n t : R e p o r t 1:1
CB: P r i n t : R e c o r d 1:1
CB: Print:APSRecord 1:1
CB: Update 1
CB: U p d a t e : F i l e 1:8
CB: Update:Database 1:2
CB: Update:Record 1:1
CB: Update:APSMasterFile 1:1
CB: Update:CAF 1:1
CB: Update:PaymentFile 1:4
CB: Update:APSRecord 1:1
CB: C a l l 2
CB: Output 1
CB: O u t p u t : F i l e 1:8
CB: Output:Report 1:1
CB: Output:Database 1:2
CB: Output:Record 1:1
CB: Output:APSMasterFile 1:1
CB: Output:CAF 1:1 '
CB: Output:PaymentFile 1:4
CB: Output:APSRecord 1:1
CB: *DA* F i n d i n g h i g h e s t s c o r i n g c o n c l u s i o n s . (DAR 1)
CB: 1 high s c o r i n g c o n c l u s i o n s .
CB: High s c o r i n g c o n c l u s i o n i s R e a d : F i l e , s c o r e 10
CB: *DA* Removing s p e c i a l i s a t i o n s . (DAR 2)
CB: Found c l e a r winner.
Winning c o n c l u s i o n f o r t h i s segment c u r r e n t l y R e a d : F i l e
CB: ** Post-Disambiguation P r o c e s s i n g **
CB: *PDAP* S p e c i a l i s a t i o n Required.
CB: Found s p e c i a l i s a t i o n
CB: Found s p e c i a l i s a t i o n
CB: Found s p e c i a l i s a t i o n
Winning c o n c l u s i o n f o r t h i s segment c u r r e n t l y Read:PaymentFile
CB: *PDAP* Checking T h r e s h o l d s .
S t o r i n g c u r r e n t winning c o n c l u s i o n

Figure 63: Extract From HB-CAS Log for the Random
"Noise" Example

It has been estabhshed that the scoring algorithm can cope with situations where the

majority of evidence is incoherent and unrelated to the correct concept. The

disambiguation rules' ability to deal with unrelated but coherent indicators is now

examined. Each rule is considered and justified in the context of the example

routine.

8.4.1 Rule 1; Select Highest Scoring Conclusions
The effect of this rule can be seen in Figure 61 and Figure 63 where the Read:File

concept scores higher than any other, and is selected for further processing. This

145

rule requires little justification since it is the basis of discriminating between

conclusions.

8.4.2 Rule 2: Remove Specialisations
This rule aims to prevent various specialisations of an object concept competing

with each other when they should be competing against a fundamentally different

concept. In most cases, it has no effect because the scoring algorithm allocates

points to the general forms of a specialised concept. These are in addition to points

gained from the general concepts' own indicators. The general versions thus gain a

greater score and are picked by rule 1 in preference to their specialisations. Should a

general form win, forcing specialisation can retrieve the specialised version.

The rule is useful in situations where there is no direct evidence of the general

concept, with the result that the general and specialised concept scores are identical.

In this case, rule 2 ensures that if an arbitrary decision is ultimately required, the

general form is not picked in favour of the specialisation. The arbitrary decision is

made between the most general forms of competing concepts rather than versions

of the same one. Figure 64 shows the original routine modified to trigger rule 2.

GD25 SIO-READ SECTION.
NOISE * PRINT A REPORT
NOISE * READ
GD25 SlO-000.
GD25 CALL 'GBFDAMAO' USING PAYMENT.
NOISE CALL 'PRINT' USING P-PRINT.
GD25 SlO-999.
GD25 EXIT.

Figure 64: Routine Modified to Demonstrate Rule 2

There is no direct evidence for the File concept so all of its score wil l come from its

specialisation: PaymentFile. A fragment of the resulting assignment log is shown in

Figure 65.

146

CB: Printing f i n a l conclusion l i s t for t h i s segment:
CB: Read 2
CB: Read:File 2:1
CB: Read:PaymentFile 2:1
CB: Print 2
CB: Print:Report 2 :1
CB: C a l l 2
CB: *DA* Finding highest scoring conclusions. (DAR 1)
CB: 3 high scoring conclusions.
CB: High scoring conclusion i s Read:File, score 3
CB: High scoring conclusion i s Read:PaymentFile, score 3
CB: High scoring conclusion i s Print:Report, score 3
CB: *DA* Removing speci a l i s a t i o n s . (DAR 2)

: Attempting to generalise: 84
: 1 generalisation fo\ind: 15
: Atten^jting to generalise: 15
: Error: 0 generalisations found, skipping...
: Attenpting to generalise: 84
: 1 generalisation found: 15
: Atten^)ting to generalise: 15
: Error: 0 generalisations found, skipping...

CB: Removing Read:PaymentFile
CB: *DA* Applying DAR 3.
CB: No clear winner, favouring conposites over singles...
CB: *DA* Applying DAR 4.
CB: S t i l l no clear winner, using highest action score...
CB: *DA* Applying DAR 5.
CB: Checking for same action i n a l l composites...
CB: No further disambiguation possible, picking f i r s t conclusion
as winner.
Winning conclusion for thi s segment currently Read:File
CB: ** Post-Disambiguation Processing **
CB: *PDAP* Specialisation Required.
CB: Found s p e c i a l i s a t i o n
Winning conclusion for t h i s segment currently Read:PaymentFile
CB: *PDAP* Checking Thresholds.
Storing current winning conclusion

Figure 65: Extract From HB-CAS Log Showing the Action
of Rule 2

Given three equally high scoring conclusions, the specialised ReadrPaymentPile

concept is removed to allow ReadrFile and PrintrReport to compete. An arbitrary

decision was ultimately required and had the specialisation still been in contention, it

may have lost to its general version. Removing and then re-introducing it later

preserves the maximum amount of information.

This rule also may be required if the only winning concepts are the general version

and specialisation. Rule 2 protects the information content of the specialisation by

allowing the general form to win, without the need for an arbitrary choice between

the two that the specialisation may lose.

8.4.3 Rule 3: Favour Composites over Non-Composites
This rule ensures that maximal information is provided to the user. When two

equally high scoring concepts are winning, by favouring the composite over the

147

non-composite, information about an action and object is retained. Consider the

example in Figure 66.

GD25 SIO-READ-PAYMENT SECTION.
GD25 SlO-000.
GD25 CALL 'GBFDAMAO' USING PAYMENT-FILE.
NOISE CALL 'GBFDAMAO' USING DUMMY.
NOISE CALL 'GBFDAMAO' USING DUMMY.
NOISE CALL •GBFDAMAO' USING DUMMY.
GD25 SlO-999.
GD25 EXIT.

Figure 66: Routine Modified to Demonstrate Rule 3

In this case, a possible conclusion would be Call since there are a large number of

calls in the routine. This does not convey as much information about the

computational intent of the routine as the actual winnen ReadrPaymentFile. The

log extract shown in Figure 67 demonstrates the action of rule 3.

CB: Printing f i n a l conclusion l i s t for t h i s segment:
CB: Read 1
CB: Read:File 1:3
CB: Read:PaymentFile 1:2
CB: C a l l 4
CB: *DA* Finding highest scoring conclusions. (DAR 1)
CB: 2 high scoring conclusions.
CB: High scoring conclusion i s Read:File, score 4
CB: High scoring conclusion i s Call,score 4
CB: *DA* Removing spe c i a l i s a t i o n s . (DAR 2)
CB: *DA* Applying DAR 3.
CB: No clear winner, favouring con?)osites over singles...
CB: Rejecting C a l l
CB: Single composite favoured over actions, selecting as winner.
Winning conclusion for t h i s segment currently Read:File
CB: ** Post-Disambiguation Processing **
CB: *PDAP* Specialisation Required.
CB: Found s p e c i a l i s a t i o n
Winning conclusion for t h i s segment currently Read:PaymentFile
CB: *PDAP* Checking Thresholds.
Storing current winning conclusion

Figure 67: Extract From HB-CAS Log Showing the Action
of Rule 3

In this example, rule 3 has allowed higher quality information to be preserved. The

rule also can be justified on the basis that composites contain a greater spread of

evidence than non-composites. This implies greater coherence in the evidence since

there is a probable relationship between the action and the object, in addition to the

two entities existing independently.

148

8.4.4 Rule 4: Find the Highest Action Scores
Although non-composite actions have been removed from the list by this point,

action concepts are still favoured over objects as the aim is to determine the

computational intent. Rule 4 examines the action scores of composites. Those with

the highest scores win.

The example routine was modified to trigger rule 4, as shown in Figure 68.

GD25 SIO-READ-PAYMENT SECTION.
NOISE * PRINT A PAYMENT REPORT
GD25 SlO-000.
GD25 CALL 'GBFDAMAO' USING PAYMENT.
NOISE MOVE REPORT TO P-PRINT.
GD25 SlO-999.
GD25 EXIT.

Figure 68: Routine Modified to Demonstrate Rule 4

In this case it could be argued that the routine is becoming extremely ambiguous

with either Read:PaymentFile or Print:Report being correct. This is an example of a

coherent "interfering signal". As Figure 69 shows, Print.-Report is selected because

of the higher score of its action component.

149

CB: Printing f i n a l conclusion l i s t for t h i s segment:
CB: Read 1
CB: Read:File 1:3
CB: Read:PaymentFile 1:3
CB: Print 2
CB: Print:Report 2:2
CB: C a l l 1
CB: *DA* Finding highest scoring conclusions. (DAR 1)
CB: 3 high scoring conclusions.
CB: High scoring conclusion i s Read:File, score 4
CB: High scoring conclusion i s Read:PaymentFile, score 4
CB: High scoring conclusion i s Print:Report, score 4
CB: *DA* Removing spe c i a l i s a t i o n s . (DAR 2)

: Attenpting to generalise: 84
: 1 generalisation found: 15
: Atteitpting to generalise: 15
: Error: 0 generalisations foimd, skipping...
: Attempting to generalise: 84
: 1 generalisation fovind: 15
: Attempting to generalise: 15
: Error: 0 generalisations found, skipping...

CB: Removing Read:PaymentFile
CB: *DA* implying DAR 3.
CB: No cle a r winner, favouring con^osites over singles...
CB: *DA* Applying DAR 4.
CB: S t i l l no cle a r winner, using highest action score...
CB: Rejecting Read
CB: Single highest action score found, selecting as winner.
Winning conclusion for t h i s segment currently Print:Report
CB: ** Post-Disambiguation Processing **
CB: *PDAP* Specialisation Required.
Winning conclusion for t h i s segment currently Print:Report
CB: *PDAP* Checking Thresholds.
Storing current winning conclusion

Figure 69: Extract from HB-CAS Log Showing the Action of
Rule 4

8.4.5 Rule 5: Common Action Component
In the event that there are still multiple winners, rule 5 allows conflicts between

general forms of object concepts in composites to be handled gracefully. It

achieves this by removing the objects from the composites to leave the action

concept common to all of them. Figure 70 shows the original routine modified to

include indicators for reading a database, in addition to those for reading the file.

GD25 SIO-READ-PAYMENT SECTION.
NOISE * CIF ACCESS MADE
GD25 SlO-000.
GD25 CALL 'GBFDAMAO' USING PAYMENT.
NOISE MOVE SPACES TO CIF-PARMS.
GD25 SlO-999.
GD25 EXIT.

Figure 70: Routine Modified to Demonstrate Rule 5

150

The resulting log is shown in Figure 71.

CB: Printing f i n a l conclusion l i s t for t h i s segment:
CB: Read 1
CB: Read:File 1:2
CB: Read:Database 1:2
CB: Read:PaymentFile 1:2
CB: Read:CMS 1:2
CB: C a l l 1
CB: *DA* Finding highest scoring conclusions. (DAR 1)
CB: 4 high scoring conclusions.
CB: High scoring conclusion i s Read:File, score 3
CB: High scoring conclusion i s Read:DatcUsase, score 3
CB: High scoring conclusion i s Read:PaymentFile, score 3
CB: High scoring conclusion i s Read:CMS, score 3
CB: *DA* Removing spe c i a l i s a t i o n s . (DAR 2)

CB: *DA* Applying DAR 3.
CB: No cle a r winner, favouring conposites over singles...
CB: *DA* Applying DAR 4.
CB: S t i l l no cle a r winner, using highest action score...
CB: *DA* Implying DAR 5.
CB: Checking for same action i n a l l composites...
CB: Same action found, selecting as winner.
Winning conclusion for t h i s segment currently Read
CB: ** Post-Disambiguation Processing **
CB: *PDAP* Specialisation Required.
Winning conclusion for t h i s segment currently Read
CB: *PDAP* Checking Thresholds,
Storing current winning conclusion

Figure 71: Extract from HB-CAS Log Showing the Action of
Rules

Read is selected as the winning conclusion because the object evidence is

contradictory. Note that despite forcedjpecialisation being set to True, HB-CA

cannot specialise in situations like this where the object evidence is ambiguous.

This is because no objects exist in the ultimate winner, it is a single action concept.

In the event that the rules fail to solve the confUct between conclusions, an arbitrary

decision is made and the first in the list is picked. This has the imintentional side

effect of potentially improving concept assignment performance, as the first

conclusion is likely to be derived from the subroutine name. This would not apply

to SOM-created segments.

8.4.6 Post-Disambiguation Processing
This stage (presented in section 6.3.2.4) involves forcing the selection of the most

specialised form of a concept for which there is evidence, and checking that the

151

winning concept scores above the required threshold. The latter issue is trivial and

is not discussed further. Forced specialisation merits greater examination.

In general, forcing specialisation is a successful way of retrieving the most

specialised form of a concept when its general version has won. The method by

which this is performed selects all forms of the winning concept for which there is

evidence and picks the one that scores highest. If more than one achieves the high

score then the result is regarded as ambiguous and the general form is left as the

winner.

The main problem with this ambiguity rule is its assumption that specialisation will

occur in only one level (e.g. File to MasterFile, File to APSMasterFile). Additional

methods would need to be defined to handle intermediate specialisations (e.g. File

to MasterFile to APSMasterFile) because if an intermediate and most specialised

form of a concept scored the same, the result would be regarded as ambiguous. In

such situations, the intermediate should be picked (being a more general version of

the specialised form) but the rule wil l actually choose the common general version

of both (File in this example). Consequently, the rule wil l not produce incorrect

results but some precision may be lost. This happens because both the intermediate

and most specialised forms are regarded as being at the same level (the list used by

the rule is a flattened form of the library's structured representation). If there is no

ambiguity, the situation does not arise and the intermediate and most specialised

form wi l l compete normally.

Figure 72 and Figure 73 show the example routine and a log extract demonstrating a

situation where forced specialisation cannot be performed due to a conflict between

two specialised versions of a general concept. There are no intermediate concepts

in the library shown in the Appendix so the ambiguity problem discussed above will

not arise.

152

GD25 SIO-READ-PAYMENT SECTION.
NOISE * CAE ACCESS MADE
GD25 SlO-000.
GD25 CALL 'GBFDAMAO' USING PAYMENT.
NOISE MOVE SPACES TO CAF-PARMS.
GD25 SlO-999.
GD25 EXIT.

Figure 72: Routine Modified to Demonstrate Forced
Specialisation

CB: Printing f i n a l conclusion l i s t for t h i s segment:
CB: Read 1
CB: Read:File 1:4
CB: Read:CAF 1:2
CB: Read:PaymentFile 1:2
CB: C a l l 1
CB: *DA* Finding highest scoring conclusions. (DAR 1)
CB: 1 high scoring conclusions.
CB: High scoring conclusion i s Read:File, score 5
CB: *DA* Removing specialisations. (DAR 2)
CB: Found cl e a r winner.
Winning conclusion for t h i s segment currently Read:File
CB: ** Post-Disambiguation Processing **
CB: *PDAP* Specialisation Required.
CB: Foimd s p e c i a l i s a t i o n
CB: Fo\md s p e c i a l i s a t i o n
Winning conclusion for t h i s segment currently Read:File
CB: *PDAP* Checking Thresholds.
Storing current winning conclusion

Figure 73: Extract From HB-CAS Log Showing the Forcing
of Specialisation

8.4.7 Levels of Ambiguity
This section presents the results of an investigation into the frequency with which

HB-C A's disambiguation rules are appHed. The parameters for the investigation are

shown in Table 14. In each case, the HB-CAS log was examined to determine how

often the various rules had been invoked.

SetD

Appendix, Section A.2

1

3

True

Appendix, Seaion A.4.1

Table 14: Parameters for Investigation of Disambiguation
Rule Triggering

153

Figure 74 shows the relative proportions of rule triggering.

100,
90
80 I 70

0 60^

S 50

1 40
? 30

20
10
0

2 I
Disambiguation Rule (DAR) Used

Figure 74: Chart to show the Proportion of Cases in which
Disambiguation Rules are Triggered

As might be expected, rules 1 and 2 are triggered in every case since they are

required for basic discrimination. It is interesting to note that none of the cases

tested showed rule 4 disambiguating more successfully than rule 5. The low

percentage of arbitrarily decided cases confirms the effectiveness of the rules.

8.4.8 Summary
This section has discussed the ability of HB-CA to deal with ambiguity in the

evidence presented. The properties of the scoring algorithm and disambiguation

rules have been considered with reference to an example code fragment from a real

program. This was modified to demonstrate situations where the rules apply.

There is reasonable justification for the rules used, given the general aims and

priorities of the HB-CA method. Should these aims change, the disambiguation

criteria may also require modification. HB-CA has proved to be capable of

gracefully degrading its concept assignment performance, with relatively few cases

decided arbitrarily.

154

8.5 Library Content
In view of HB-CA's sensitivity to the library, this section briefly discusses some

issues to be considered when creating its content. These are drawn from theoretical

aspects of its structure and experience gained from undertaking the investigations in

this chapter. The representational power of the library is discussed in section 8.9.

Although it is impossible to suggest what should be the optimal content of the

library in a particular instance, some general principles have emerged from using

HB-CAS for the investigations in this chapter. Indicators ideally need to be unique

to a particular concept. There are exceptions to this (e.g. most files will need a file

indicator, regardless of their specific nature) but unique indicators improve the

quality of hypothesis generation and consequently cause less confusion in concept

binding. It is suggested that secondary concepts should be allocated the indicators

for their more general versions, in addition to their own specific and differentiating

indicators. This provides for successful recognition when there is no direct

evidence of the general concept.

The representational power of the method is discussed in section 8.9, but at this

point, it is worth noting the different ways in which evidence for a concept can be

assembled. The set of indicators for a concept of low-level abstraction is likely to

be similar to the concept name, e.g. MasterFile wil l have indicators such as "File"

and "Master" in various classes. As the level of abstraction rises, a different

approach may be required as routines that implement more functionality are likely

to call on lower-level subroutines to do the work. Consequently, the indicators for a

high-level concept wi l l be the subroutine names as found in the calling statements.

When creating high-level concepts in the library the indicators therefore should be

related to the constituent parts of the solution rather than the name of the solution

itself, as the evidence in the code wi l l be diverse rather than coherent.

This section has briefly discussed some practical considerations for creating library

content. These include the uniqueness of indicators and the body of evidence for a

concept.

155

8.6 Computational Cost
This section identifies several factors that have a significant impact on the

computational cost of HB-CA. Biggerstaff et al. claim that plausible reasoning

systems (like HB-CA) appear to have linear computational growth with the length

of program under analysis [BIGG93]. It is expected that HB-CA wil l exhibit this

cost characteristic.

A large proportion of the HB-CA process involves comparing source code to the

library, and these entities have the biggest impact on its computational cost. The

discussion in this section focuses on structural attributes of both.

8.6.1 Source Code
It is important to consider the impact of the source code being analysed because it

is likely to change more frequently than any other entity involved in HB-CA. The

two characteristics that have the greatest effect on HB-CA's computational cost are

the source code length, and the number of sections. HB-CA should have linear

computational growth with the length of source code under analysis.

8.6.1.1 Source Code Length

The source code is an essentially linear structure (when treated as a body of text by

HB-CA) and as such, it is reasonable to expect that the computational cost of HB-

CA should increase linearly with the length of source code being analysed. This

assumes that the library being used remains constant.

To verify this relationship an investigation has been undertaken. The execution

time of a module or part-module is regarded as directly proportional to the

computational cost of the method it implements. Consequently, the discussion in

this section uses cost and execution time synonymously. The modules of HB-CAS

supply these timings, accurate to within 1 second.

The source programs were selected semi-randomly from a set of 150. The selection

criteria were to include the shortest and longest available programs, space the

program lengths by approximately 50 lines, and ensure that programs were drawn

156

from the same system. HB-CA's performance on files from a different system is

discussed in section 8.10.

The parameters for the investigation are shown in Table 15.

Set E

Chapter 3, Section 3.7.2

1

3

True

Appendix, Seaions A.5.1, A.5.2, A.5.3, A.5.4

Table 15: Parameters for Investigation of Computational
Cost

Using the results shown in seaion A.5.1, the relationship between the program

length and the computational cost of HB-CA is presented in Figure 75.

140 ,

120

100

80 ^

60

40 - I

20

0

• •

0 500 1000
Program Length (lines)

1500

Figure 75: Graph to show the relationship between the Total
Execution Time and Program Length

As expected, there is a clear linear relationship between the properties. It is

interesting to investigate what proportion of the total cost is provided by each stage

of HB-CA. This is shown in Figure 76.

157

120

S 100

i
i= 80
c

I 60-1

UJ 40

I 20^

•Hypothesis Generation
•Segmentation
A Concept Binding

0 500 1000 1500

Program Length (lines)

Figure 76: Graph to show the relationship between the Stage
Execution Time and Program Length

It is clear that all three costs rise in an approximately linear manner with increasing

program length. Segmentation and concept binding do not show this relationship

as clearly as hypothesis generation, but any variation in their individual costs will not

be evident clearly in the total as hypothesis generation dominates the overall cost. If

less indicator classes are used, these variations might be more apparent as the total

cost would be more sensitive to the segmentation and concept binding stages.

This section has established the expected linear relationship between HB-CA's

overall computational cost and the length of the program being analysed. The next

section investigates the effea of source code length on those stages of HB-CA that

use it directly.

8.6.1.2 Direct Effects of Source Code Length

The hypothesis generation stage of HB-CA transforms the source code into a

hypothesis list, by comparing the indicators in the library with tokens extraaed

from the source code. This process is termed indicator recognition and is presented

in section 4.3. I t has two parts: extraction, and matching. The second process that

may be involved in hypothesis generation is sorting. The necessity of a sort

algorithm is implementation-dependent since indicator recognition could be

implemented to store the hypotheses in order initially. Consequently, the cost of

158

sorting is not addressed here. Hypothesis generation cost is regarded therefore as

directly proportional to indicator recognition cost.

Assuming an even density of tokens per line, the number of tokens extracted from

the source code should be approximately proportional to the length of the program

(measured in lines). Figure 77 shows the results of the investigation outlined in

Table 15, verifying this relationship.

I l l

4000

3500 -

3000 -

2500

2000

1500

1000 -J

500

0
500 1000 1500

Program Length (lines)

Figure 77: Graph to show the relationship between the Total
Number of Extracted Tokens and Program Length

Since the number of extracted tokens is linearly related to the program length, and

the next stage of hypothesis generation (matching) involves comparing extracted

tokens with stored indicators, it is reasonable to expect the computational cost of

matching also to be related linearly to the program length. This is because the

matching algorithm compares each token to every indicator in the hbrary. The use

of flexible matching options proportionally increases the cost since every option

used incurs an additional test on each library indicator. The exception is case

sensitivity, which is employed in the first test if necessary. Synonym matching

incurs the additional test and multiplies the comparison cost by the number of

synonyms found for a particular token. The size of the synonym list is static and

consequently there is a fixed upper Umit on this cost for any particular token. This

means that there should be no fundamental effect on the linear relationship between

159

the computational cost of the indicator matching process and the length of the

source code.

The only options used for the investigations in this chapter were case insensitivity

and sub-string matching for modules that implement them. Experiments carried

out during the development of HB-CA showed this set of options to be the most

successful for indicator recognition. Synonym matching was found to reduce

indicator recognition accuracy significantly, in addition to substantially increasing

the cost of execution.

Further results from the investigation described in Table 15 are shown in Figure 78,

appearing to confirm linear computational growth with source code length for

indicator recognition.

120

(0

p 80
c o

I 60
.2
I 40

20

0

• • • •

•
•

500 1000
Program Length (lines)

1500

Figure 78: Graph to show the relationship between the Total
IRM Execution Time and Program Length

It is also interesting to compare the execution times of the individual indicator

recognition modules to determine whether there is any significant difference

between them. The level of matching varies widely between the modules, with

keyword recognition matching indicators in only two of the twenty programs,

despite extracting more tokens than any other module.

160

Figure 79 shows the individual execution times for the modules. Results are drawn

from the investigation described in Table 15. Segment boimdary matching is not

shown, as its execution times were negligible.

60

^ 50

I 40
1=

I 30

I 20 A A

^Identifier
•Keyword
A Comment

500 1000
Program Length (lines)

1500

Figure 79: Graph to show the relationship between the
Individual I R M Execution Times and Program Length

When separated, the execution times are not as clearly linear as their sum and the

respective gradients of the cost-increase for each module differ slightly. This could

be interpreted to mean that the individual modules respond differently given

different program lengths, or simply that the proportion of each type of token

differs between programs in the data set. The latter would require the modules to

do different amounts of work. This can be determined by comparing the

proportion of the total time taken by each module with the proportion of tokens it

extracts in each case. This is shown in Figure 80 using data from the investigation

described in Table 15.

161

I 60

I 50

I S 40

I
30

20

10

0

i
0 20 40 60

Percentage of Total Tokens Extracted
80

«Identifier
• Keyword
A Comment

Figure 80: Graph to show the relationship between the
Proportion of Total I R M Execution Time and the

Proportion of Total Tokens Extracted for Each IRM

Since the relationship between the proportions is clearly linear, the slight

discrepancies shown in Figure 79 can be attributed to the characteristics of the

source code under analysis rather than differences in the recognition modules and

the methods underlying them.

In summary, theoretical analysis of the algorithms in indicator recognition indicates

that the computational cost should grow linearly with the length of the source code

given a fixed library. Applying HB-C AS to a number of programs indicates that this

is the case and hence the hypothesis generation cost also varies linearly with the

length of the source code.

The source code is not used by any other part of HB-CA and consequently should

not have a direct length-related effect on the computational cost of segmentation or

concept binding. Longer programs are likely to contain more information and thus

increase the cost of these stages, but there is no direct link with program size.

Another source code characteristic that can influence the computational cost of

HB-CA is the number of sections.

8.6.1.3 Direct Effects of the Number of Sections

The number of seaions has a minimal impact on hypothesis generation since it only

affects the production of segment boundary hypotheses. There are so few segment

162

boundaries compared to the other token types in a program that the cost of

matching them in hypothesis generation is negligible. The number of sections also

has no direct effect on concept binding since the intervening segmentation stage

may subdivide the original sections. A direct relationship therefore cannot be

shown.

Segmentation is affected by the number of seaions, as it is performed initially using

the subroutine boundaries in the COBOL 11 program being analysed. The

computational cost of processing a single section is incurred for each.

Consequently, it is reasonable to expea the computational cost of executing the

segmentation algorithms to vary linearly with the number of seaions in the source

code. Figure 81 shows more data from the investigation described in Table 15,

presenting the relationship between the segmentation time and the number of

sections.

I
I -

12

10 J

8 J

6 4

CO

2 J

• • • •

r -

5 10 15
Number of Sections

20

Figure 81: Graph to show the relationship between the
Segmentation Time and the Number of Sections in the

Source Code (Low Resolution Timers)

This graph does not demonstrate a clear linear relationship. Nonetheless, cost

differences are apparent and further analysis must be undertaken to explain them.

Large changes in cost could be explained by the use of SOMs in the segmentation

process. SOMs would normally be required in large programs with few sections.

163

assuming an even distribution of indicators in the program population.

Consequently, the computational cost of segmentation could be affected if a SOM

is required for clustering. Using a SOM would increase the segmentation cost by a

fixed amount, plus a variable amoimt linearly related to the number of hypotheses in

the segment being considered. Figure 82 shows the correlation between the time

taken for segmentation, and the number of SOMs used during the process (data is

drawn from the investigation described in Table 15).

12 -r

6i

I Segmentation Tme

I Number of SOMs
Used

i I I i " i I I 1
1 I I I I

12

10 I

6 S
4 j
2 I

Prograins

Figure 82: Chart to compare the S^mentation Time and the
Number of SOMs Used for Various Programs

As expected, there is a "step" increase in the cost for every use of a SOM during

segmentation. This increase can be illustrated more clearly by plotting the two data

series against each other as shown in Figure 83.

164

11

10

9

8

7

6

5

4

3

2

1 I
1 2 3

Number of SOMs Used

Figure 83: Graph to show the relationship between the
Segmentation Time and the Number of SOMs Used

The original, low-resolution timers built into HB-CAS cannot detect the smaller

changes in cost that are linked to the number of sections, but only the large changes

caused by SOM usage. The system was modified to include timers capable of

milHsecond resolution and the investigation repeated. The expected, approximately

linear relationship between the segmentation time and the nimiber of seaions now

can be seen, particularly i f the results are separated by the number of SOMs used.

This is shown in Figure 84.

6 ,

5

i 4

I 34

• •

5 10 15

Number of Sections

#1 SOM Used
• 2 SOMs Used

20

Figure 84: Graph to show the relationship between the
Segmentation Time and the Number of Sections in the

Source Code (High Resolution Timers)

165

8.6.1.4 Summary

Section 8.6.1 has established the characteristics of the source code that have a major

impact on the computational cost of HB-CA. Section 8.6.1.1 established that the

overall computational cost of HB-CA is related linearly to the length of program

being analysed. Section 8.6.1.2 demonstrated a linear relationship between the

length of the source code and the hypothesis generation cost. Section 8.6.1.3

showed that the cost of segmentation is related linearly to the number of sections in

the source code (when SOM-related costs are ignored).

8.6.2 Library
Since the library is used in most stages of HB-CA, it is important to consider its

impact on the computational cost of the process. The library is a non-linear

structure and consequently it is not reasonable to expect the computational cost of

HB-CA to vary linearly with changes in its content and size.

To investigate the library's impact on the computational cost, it is examined with

reference to some of its constituent entities and relationships.

8.6.2.1 The Library in Hypothesis Generation

This section discusses the relationship between the computational cost of

hypothesis generation and the number of indicators and indicates relationships.

The parts of the library used in hypothesis generation are indicators, concepts, and

the indicates relationship. Section 8.6.1.2 demonstrated that hypothesis generation

has linear computational cost variation in relation to the length of source code being

analysed. Modifying the library should not cause a change in this relationship

although additional content wi l l necessarily cost more to use.

Indicator matching involves comparing each extracted token with every indicator in

the library (effectively comparing two lists). An increase in the number of indicators

should result in a linear increase in the execution time, signifying a similar variation

in the computational cost of the method. This linear increase must also be

considered with reference to the number of concepts to which an indicator is

linked. The cost of matching a single indicator is multiplied by the cost of

166

producing hypotheses for its concepts. Doubling the number of indicators in the

library should double the cost of recognition. Doubling instances of the indicates

relationship for the original set of indicators should have a similar effect. Either

change alone should have a linear effect on the cost of hypothesis generation, but if

made together they may produce a different characteristic.

An investigation has been undertaken to gain some validation of these claims. The

largest source file from Set E was used to ensure any differences in the results were

as clear as possible. The library content presented in Chapter 3 was used for the

first execution. Subsequently, one indicator was removed from the library for each

execution, until none remained. Indicator removal was distributed evenly among

the concepts, where possible in the order: keyword, comment, identifier.

Investigation parameters are shown in Table 16.

Program Set SetF

Library Content Chapter 3, Section 3.7.2

recjhresh 1

min vd 3

forcedjpecialhation True

Results Appendix, Section A.5.5

Table 16: Parameters for Investigation of Indicator Cost

Initial investigations revealed that the variable proportion of the execution time, i.e.

that which is dependent on the size of the library, was negligible in comparison to

the fixed cost of execution. Consequently, no clear relationship was apparent with

low-resolution timers. The high-resolution timers produced the results shown in

Figure 85.

167

89.5

89

88.5

88

87.5

87

86.5

86

85.5

• • • •

• • •
•

5 10 15 20

Number of Indicators

Figure 85: Graph to show the relationship between the Total
I R M Execution Time and the Number of Library Indicators

These timers make the results more sensitive to fluctuations in the operating system,

but the approximately Hnear characteristic of the relationship is quite clear.

In summary, the computational cost of hypothesis generation varies linearly with

the number of indicators in the library.

The effect of modifying the indicates relationship should be similar to that of

modifying the number of indicators in the library. Hypothesis generation cost is

dependent on the number of matched indicators and the number of concepts to

which each is linked. Increasing the number of links (i.e. instances of the indicates

relationship) should increase the time taken to produce hypotheses in a linear

manner.

An investigation was undertaken using the library content presented in Chapter 3

and the largest source program from Set E. It begins with 23 instances of the

indicates relationship, and each successive execution of the system adds an

additional instance to approximately one third of the indicators. This results in

confusing and incorrect concept assignment but the concern here is the change in

cost, not the accuracy of the result. Investigation parameters are shown in Table 17.

168

SetF

Chapter 3, Section 3.7.2

1

3

True

Appendix, Section A5.6

Table 17: Parameters for Investigation of Indicates Cost

The relationship between total indicator recognition time and instances of indicates

is shown in Figure 86.

100.5

o
E

§
C

a.
p 98.5

O 97.5
• •

0 20 40 60 80 100

Number of Indicates Relationships

Figure 86: Graph to show the relationship between the Total
Indicator Recognition Time and the Number of Indicates

Relationships

The expected linear relationship is evident.

Adding instances of indicates to existing concepts and indicators, has the same

effect on indicator recognition costs as adding new concepts to the library and

linking indicators to them. It has a similar structural effect (i.e. more instances of

indicates).

169

In summary, the computational cost of hypothesis generation varies linearly with

the number of instances of the indicates relationship.

8.6.2.2 The Library in Segmentation and Concept Binding

The library has minimal effect on segmentation as the process operates on the

hypothesis list only.

The library is used directly in concept binding and consequently has an effect on the

computational cost of this stage of HB-CA. The two salient relationships are

composition and specialisation. Indicates is not used in concept binding.

The cost of concept binding should vary linearly with the niunber of segments since

the same seaion of processing must be performed once for each. Using the

investigation shown in Table 15 (with the lower resolution timers), Figin-e 87 shows

some validation of this relationship. The results are shown in section A.5.1.

•a 10

ffi
o u c o o

•

•
• • • •

•

i 10 15

Number of Segments

Figure 87: Graph to show the relationship between the
Concept Binding Time and the Number of Segments

There are four activities within concept binding and these are described in Chapter

6. Factors in the cost of each activity are now considered.

170

8.6.2.3 Factors in Conclusion Generation Cost

The first concept binding activity, conclusion generation, involves generating all

possible conclusions from the action concepts in a segment. Both composition and

specialisation are used in this. Each action concept generates conclusions based on

its composites. Conclusions are also generated for every specialisation of a

composite object. Changes in the number of segments, the number of

compositions, or the number of specialisations, may all have an effect on the cost of

conclusion generation. These are all different types of change and are considered

separately.

Conclusion generation has a linear relationship with the number of action concepts

in the current segment because each concept generates one set of conclusions. This

holds as long as each set of conclusions is regarded as a single unit of cost.

However, once the composition and specialisation relationships are considered, the

cost relationship is not so clearly defined.

In a library with no specialisations, adding composites wi l l vary the conclusion

generation cost linearly, since each additional composite wil l generate a single

additional conclusion for a particular action concept.

In a library with a fixed number of composites, adding specialisations wil l cause a

linear variation in cost, if every action concept is composite with the primary object

being specialised. This is because one additional conclusion wil l be generated for

each action concept. Those action concepts that are not composite with the

primary object being specialised wil l remain unaffected by the change. Cost

variation is linear for further additional specialisations of a particular primary object,

but if another object is specialised, the overall characteristic may be non-linear. This

can be illustrated by the following example: assume that Read is composite with

File and Record, and Write is composite with Record. This would produce 5

conclusions (Read, Read:File, Read:Record, Write, Write:Record). By specialising

File to MasterFile, the number of conclusions would increase to 6 because the Read

concept has a composite relationship with File. Specialising File again to

PaymentFile would result in 7 conclusions. If Record were then specialised, the

number of conclusions would increase to 9 because both action concepts are

171

affected. The cost characteristic is therefore linear within a single group of

specialisations (e.g. specialisations of File), but non-linear in general.

Non-linear variation also may be seen if a new composite is created in a Hbrary with

specialisations. In this case, the new composite will increase the cost in proportion

to the number of specialisations attached to its object concept.

A small investigation to verify some of these arguments was carried out using the

largest program from Set E, and gradually extending the Hbrary content presented in

Chapter 3. Cost variation was measured in terms of the execution time of the

conclusion generation subroutine in the concept assignment module of HB-C AS.

Times for all segments in a program were accumulated to give the total shown in

the results. The library was extended by adding concepts with no indicators, thus

ensuring that only the composition and specialisation relationships were analysed.

For the first part of the investigation, sets of specialisations were added to each of

the two primary objects in the library. There are 4 composites in the library and

these were not modified. The investigation parameters are shown in Table 18.

Program Set Set F

Library Content Chapter 3, Section 3.7.2

rec thresh 1

minvd 3

forcedjpeciaUsation True

Results Appendix, Sections A.5.7, A.6

Table 18: Parameters for Investigation of
Specialisation/Composition Cost

Figure 88 shows the change in cost being linear for each set of specialisations

shown. The change in gradient indicates when the object concept, to which

specialisations were added, was changed. This shows that the cost change is linear

within a particular group of specialisations, i.e. specialisations of one object concept.

Changing the root of the group (i.e. the object concept) causes a change in the

gradient but the cost still has a linear relationship with the size of the group being

considered.

172

14 .

12

10

8

6

4

2

0 5 10 15
Number of Specialisations

Figure 88: Graph to show the relationship between the Total
Conclusion Generation Time and the Number of

Specialisations in the Library

The effect of adding composites was measined by adding additional object concepts

to the library and creating each as a composite. Compositions were made with two

action concepts and, although the results are not as clear as those for speciaHsation,

there is a change in gradient where the action concept being used was changed (see

Figure 89, with results in seaion A.5.7.2).

c o

e
O
§

7 J

s 3

1 J

5 10 15
Number of Composites

20

Figure 89: Graph to show the relationship between the Total
Conclusion Generation Time and the Number of

Composites in the Library

173

In summary, the cost of conclusion generation can be related linearly to various

aspects of the library, but the overall relationship is determined by a combination of

these factors.

8.6.2.4 Factors in Conclusion Completion Cost

The second stage of concept binding is conclusion completion. This involves using

the object concepts in the current segment to validate composite conclusions in the

list. The only library relationship used is specialisation, to determine the more

general forms of a particular specialised object concept. Changes in the

specialisation relationship could have, at worst, a linear effect on the cost of this

process. This is because one additional instance of the relationship may need to be

examined for every additional specialisation added. The worst case would arise if

every conclusion contained a form of the specialisation, and the most specialised

form was hypothesised in every case. Every hypothesis would then add score to

every conclusion. This is unlikely to happen in practice and hence changes to the

specialisation relationship should not have a major impact on the cost of conclusion

completion.

8.6.2.5 Factors in Disambiguation

The third part of concept binding, disambiguation, also uses specialisation in a

similar way to conclusion completion. The relationship is used to find general

forms of concepts where the evidence for specialised forms is ambiguous. The

addition of a specialisation to the library may have therefore a similar effect to that

in conclusion completion. In the worst case, where every situation requires the

examination of all forms of a concept, the change in computational cost would be

linear, but in practice, it should be better than this because it is unlikely that every

case wi l l require this processing.

8.6.2.6 Factors in Post-Disambiguation Processing

The final stage of concept binding involves specialising a general concept if

forced_specialisation is True. In the worst case, this will require examination of every

specialisation of that concept and consequently, the addition of a new specialisation

to the library could cause a linear change in the cost. This change would be

174

observed if the new specialisation was the most specialised form of the general

concept, and there was evidence for it. In practice, it is unlikely that this would

occur in every segment analysed.

8.6.2.7 Summary

In summary, the major factors in the computational cost of concept binding are the

numbers of composition and specialisation relationships in the library. Independent

changes in these relationships are not expected to cause anything worse than linear

change in the computational cost. When changes are made to both relationships

simultaneously, or when a single change effectively results in this, e.g. adding a

composite with specialised objects as discussed above, the change in computational

cost may not be linear.

8.6.3 Summary
The effect of various properties of the source code and library on HB-CA's

computational cost has been considered. HB-CA possesses a key characteristic of

plausible reasoning systems: linear growth in computational cost with the length of

the source code being analysed. Cost factors other than source code length have

been identified, and their impact on the computational cost of individual parts of

HB-CA considered.

8.7 Spatial Cost
This section considers the spatial cost of HB-CA.

HB-CA's spatial cost is closely linked to its computational cost. The linear

relationship between source code length and computational cost is reflected in the

size of data structures created by the various stages of HB-CA.

8.7.1 Hypothesis Generation
Recall that the number of tokens extracted rises linearly with the length of source

code (see Figure 77), The spatial cost of extraction increases at the same rate

because each token is one element of the data structure produced by the extraction

stage.

175

In the matching stage, the number of hypotheses represents the spatial cost. The

number of hypotheses generated wil l be, at most, the number of tokens multiplied

by the number of indicators in the library, multiplied by the number of indicates

relationships in the library. This is the worst-case situation that would occur if every

token was matched, and every indicator was linked to every concept. In practice,

this is highly unlikely since the resulting hypothesis list almost certainly would be

useless for concept assignment. Section 8.6.2.1 demonstrated a linear relationship

between the computational cost and the numbers of indicators and indicates

relationships in the library. A similar relationship holds for the spatial cost of

hypothesis generation, due to the calculation shown above. If the number of

indicators or indicates relationships is increased, the worst-case situation would

result in a linear increase in the space required for the hypothesis list.

8.7.2 Segmentation
The segmentation spatial cost is mainly proportional to the size of the hypothesis

list generated in the first stage, as it is the primary data structure used by this

process. Additional costs may be incurred if a SOM is required, the worst-case

spatial cost of this being related to the size of the largest segment in the hypothesis

list. If there is only one segment (i.e. no subroutines in the source), the SOM can be

no larger than the entire hypothesis list.

8.7.3 Concept Binding
The spatial cost of concept binding has similar dependencies to its computational

cost. Changes in the library content, in terms of composition and specialisation,

may cause, in the worst case, linear changes in the spatial cost. This is demonstrated

for conclusion generation in Figure 90 and Figure 91 where the spatial cost (in

terms of conclusions) is shown in relation to the numbers of specialisation and

composition relationships in the library. The results are from the investigation

described in Table 18 and show the total number of conclusions generated for the

program in each case. Further details of the investigation can be found in section

8.6.2.3.

176

250 ,

o
(0
3
U c o o

s

200

150

100

50

5 10
Number of Specialisations

15

Figure 90: Graph to show the relationship between the
Spatial Cost of Conclusion Generation and the Number of

Specialisations

120

^ 100
I
I u c o o
•S 60

•K 80

o

40

P 20

5 10 15
Number of Composites

20

Figure 91: Graph to show the relationship between the
Spatial Cost of Conclusion Generation and the Number of

Composites

The change in gradient on both graphs results from the relationships being applied

to different concepts. The results show a linear change for additions to each

concept individually. It is interesting to note that the shapes of these graphs are

similar to those shown in Figure 88 and Figure 89. This indicates that the number

177

of conclusions generated has a direct relationship with the computational cost of

conclusion generation.

8.7.4 Library

The spatial cost of the library is, at worst, linear with the number of concepts or

indicators represented. Adding either entity causes a linear change in the space

required. This cost characteristic can be improved for concepts, using the

composition and specialisation relationships. Adding an instance of either

relationship causes a linear cost increase but, since there are implied compositions

with the specialisations of a primary concept, the amount of information

represented can be increased by more than one item. If every concept is atomic

then the increase is linear, but if composition and specialisation are used it can be

better than linear. This is one advantage of using a semantic network rather than a

list to represent concepts.

8.8 Expandability
This section discusses the ability of HB-CA to incorporate different information

sources for concept assignment.

A particular strength of HB-CA is its use of a source-code independent

representation. By transforming the source code into a hypothesis list very early in

the process, the latter two stages of HB-CA can use information of any type. This

assumes that the information relates to the source code at the token or line level and

is transformable into a hypothesis. The ability to use multiple information sources

can be seen by considering the hypothesis generation stage of HB-CA. Each

indicator recognition process generates a Hst of hypotheses that are merged to form

a single, ordered list. Clearly, if an additional Hst is included, the extra information

can be merged without difficulty.

The major issue to be considered when adding an additional source of information

is whether the potential information gain is worth the cost of extraction.

HB-CA defines four classes of indicator (see Chapter 4). An investigation has been

undertaken to determine their relative effectiveness. Indicator recognition modules

178

were executed separately, and in various combinations, to determine their effect on

concept assignment. The investigation was simplified by selecting programs that do

not require SOM analysis to ensure that each segment was processed using a subset

of the same total indicator collection. The distribution of indicators among

concepts in the library is reasonably even so there should be no particular bias

towards one indicator class. The investigation parameters are shown in Table 19.

Set G

Appendix, Section A.2

1

3

True

Appendix, Section A.7

Table 19: Parameters for Investigation of Expandability

The relative computational costs of indicator recognition are discussed in section

8.6.1.2.

Segment boundary indicators are treated differently to the other types. Although

they are similar to the other classes and could be treated in a similar way, HB-CAS

relies on the presence of at least one pair in the hypothesis list rather than using a

SOM when none are available. Segment boundary recognition is executed therefore

in all parts of the investigation.

Figure 92 shows the relative proportions of the "total" concept assignment achieved

by each module or combination (all concepts were non-strictly accurate).

179

100 ^
8 90 .
o o 80 -
=- « 70 -
i 1 60 -

^ 1 50 -
40 -
30 -

1 20 -
S 10 -
& 0 -

Module or Combination of IModules

• Program 1
• Program 2

Figure 92: Chart to show the Proportion of "Total" Concept
Assignment Achieved by Indicator Recognition Modules

Note that the "total" concept assignment is regarded as that achieved by all three

modules in combination, shown in the rightmost bars on the chart (category

I+K+C) .

It is clear that the identifier and comment classes contribute the majority of the

information and are capable of providing enough for concept assignment in the

absence of any other modules. Although keywords do not appear to contribute

enough hypotheses for concept assignment when considered alone, it is interesting

to note that in both cases shown above, keywords in combination with other

modules produce better assignment than those modules individually.

The performance of individual modules is dependent on the proportion of

appropriate tokens in the source. Comments do not appear to contribute as much

as might be expected but this can be attributed to a lack of comments in the short

test programs. In all cases, identifiers seem the most useful source of information

with conunents taking second place. In the examples shown, keywords play a small

but important role in augmenting the main sources of information.

The results of this investigation suggest that for the classes of indicator defined, the

potential gains outweigh the relatively low cost of extraction. This may not be the

case if, for example, program plans were used as indicators because the cost of

searching for them can be extremely high. This would also apply to natiual

180

language recognition of comment phrases rather than single words. The greater

accuracy provided by such indicators may be beneficial but the relatively low cost of

a plausible reasoning concept assignment system could be compromised.

It is not surprising that comments and identifiers contribute most of the

information for concept assignment as they have greater domain semantics than

keywords. Since the object of concept assignment is to label the source code with

domain concepts, indicators with strong domain semantics wil l be more helpful

than those without. Strong program semantics (such as those provided by

keywords) are more helpful with structural information and consequently, are used

best in areas such as segment boundary recognition.

It should be noted that, in addition to requiring indicator classes with strong domain

semantics, such information also needs to be available within the source code.

These are effectively two sides of the same problem. A maintainer's understanding

of source code without meaningful identifiers or comments, is restricted largely to

program-level semantics. Using solely the keyword indicator recognition module

restricts HB-CA's view in a similar way. If source code with meaningless identifiers

is analysed then indicator matching wil l be unsuccessful, or the results will be

confusing. In this respect, HB-CA suffers similar confusion to a maintainer

attempting to understand poorly written code.

The sequential list model employed for hypotheses has many strengths, in particular,

the ability to integrate multiple knowledge sources as discussed earlier in this

section. There are also some disadvantages to the approach, e.g. the problem of

representing structure-based indicators. This is discussed in more depth in section

8.9.

181

8.9 Representational Power
This section discusses the ability of HB-CA to represent different types of indicator

and concept.

The library was originally designed to represent indicators as textual tokens and

would require significant modification to represent other types of information. It

might be possible to use the tokens to refer to a file or other container capable of

storing more complex indicators such as program plans. These require a

representation capable of modelling data and control flow constraints. Plans such

as compute-hash could be stored as a name but there would be difficulty in reliably

recognising them without the complex indicators.

The problem of representing information about relationships and constraints is

illustrated further by extending the airline-booking example suggested in [BIGG93].

Although the concept "reserve airline seat" could be modelled using diverse

evidence for the constituent parts of the process, expressing a constraint such as

"only one person can reserve one seat" is much more difficult. The domain-specific

relationships between objects in the program cannot be modelled in the Hbrary as it

only allows composition and specialisation. Consequently, there is no easy way of

describing the evidence for the concept. The library's ability to model business

rules is clearly affected by this, since the definition of a business rule (see Chapter 2)

specifies that it is a requirement on the condition or manipulation of data. Rules

can be modelled in terms of the features involved in the manipulation of the data

such as likely variable names and computational keywords. This does not guarantee

to find the business rule in its precise form but if the rule's implementation is

coherent in the source code, the concept name describing it may be assigned

correctly.

The assumption underlying the library's representation of concepts is that of spatial

co-occurrence. If several pieces of evidence for a concept occur in close proximity.

to each other then that concept can be determined. It would not be impossible to

assemble evidence for constraints in the library, but reliably achieving accurate

concept assignment for them seems unlikely.

182

Much of the abstracting power of HB-CA's representation is derived from the

ability to store any concept name desired by the user. Very high-level abstractions

may not be found successfully if they correspond to larger sections of program than

those to which the method aims to assign concepts.

In addition to the limited representation of indicators as simple tokens, HB-CA

could be hampered by its ordered hypothesis list. This would cause particular

problems for those indicators relying on spatial relationships between parts of the

code, e.g. a delocalised program plan. Although the plan might be found within a

section, it would be difficult to decide where to place its hypothesis in the list since

it participates at several disjoint points in the code. One solution would be to create

a hypothesis for every line of the plan but this may upset the balance of evidence in

the appropriate segment. The problem would be less severe for natural language

phrase indicators as they are likely to occur on a single line.

Another problem with the ordered hypothesis representation is that no account can

be taken of an indicator's type or other syntactic properties. In performing the

investigations for this chapter, it has been observed that concept assignments are

made occasionally to sections of source code that have been commented out. This

is because the comments have not been recognised as such by the segmentation or

concept binding stages. The issue could be addressed by examining the type of the

indicators within a segment and rejecting that segment if no executable code is

found. Taking account of other syntactic properties could improve the general

performance of HB-CA, e.g. if a particular token was known to be a section name,

it could be given greater weight than the other indicators in the segment and

provide a context for their examination. The risk with this approach is that more

reliance is placed on a single token than on the general body of evidence. This risk

was deemed unacceptable in HB-CA, leading to the "naive" token model in use.

183

8.10 Domain Independence
Although HB-CA's algorithms are not tailored to a particular domain, its reliance on

a domain model means that a library developed for one domain may not transfer to

others without significantly impairing concept assignment performance. To

investigate this, the library content presented in the Appendix was applied to several

programs from a different system to that providing the other examples in this

chapter. Whilst not from a significantly different domain, these programs serve to

illustrate some of the issues associated with domain independence. The

investigation parameters are shown in Table 20.

SetH

Appendix, Section A.2

1

3

True
I

,
Appendix, Seaion A.8

Table 20: Parameters for Investigation of Domain
Independence

Results from both domains are shown in Table 21 (see Table 13 for other results

from the old domain). Programs from the new domain show markedly lower

average accuracies.

New Domain Old Domain

Mean Accuracy 44%, a = 29 84%, a = 14

Mean Strict Accuracy 30%, a = 26 56%, a = 19

Median Accuracy 53% 89%

Median Strict Accuracy 26% 50%

Table 21: Average Accuracies for Library Applied to a
Different Domain

The concepts found in the alternative system are more general than those from the

original, and make less use of speciaHsations in the library.

184

8.11 Language Independence
HB-CA was designed to work with the COBOL I I language.

The use of hypotheses as the primary reasoning component of HB-CA gives it the

potential to be applied to other languages. The following sections discuss potential

issues that may arise from such applications.

8.11.1 Imperative, Non Object-Oriented (e.g. C, Pascal)
This kind of language is similar to COBOL I I and could be readily analysed by

HB-CA. Assuming appropriate lexers are used for extracting tokens in the indicator

classes, the matching stage of hypothesis generation would not require modification.

Since the remainder of the method relies on hypotheses rather than source

dependent information, no changes should be required to these stages either. The

knowledge base would need to be equipped with indicators appropriate to the new

language, particularly in the keyword class. Minor modifications could be made to

exploit the scope of variables in block-structured languages, but in principle, this

should not be a major issue.

8.11.2 Imperative, Object-Oriented (e.g. C++, Delphi, Java)
Applying HB-CA to object-oriented languages may not be as successful as applying

it to those described in the previous category. HB-CA adopts a linear view of

source code in a file, regarding the file as containing one program made up of a

number of subroutines. Superficially, the class definition of an object-oriented

language could be seen in a similar fashion, with methods regarded as subroutines.

There are important differences, e.g. not all of the information required to assign a

concept to a method may be in the file as much of it may be inherited from super­

classes. Analysing this additional information would require substantial

modification of HB-CA to enable it to handle a collection of files. In addition, the

nature of object-oriented programming means that related functions and data

structures tend to be grouped within a single class. Methods may be smaller than

their equivalent procedures in another language (due to encapsulation and scoping),

which may lead to easier comprehension. The functional grouping and smaller

method size make it less likely that concept assignment would be of great benefit.

185

In summary, HB-CA could be applied to an object-oriented language with minor

modification but the benefit of applying this type of tool may not be worth the

effort required.

8.11.3 Non-Imperative (e.g. Haskell, Prolog)
These languages challenge many of the assumptions on which HB-CA rests, e.g. the

notion of sequence between program statements, subroutines to provide basic

segmentation, and the availability of a reasonably large body of evidence within the

code to indicate functionality.

Programs written in functional languages such as Haskell do contain a certain

amount of informal information, and concept assignment might be attempted. The

generally limited size of such programs and the style of programming adopted make

this an exercise of dubious merit.

There is a large amount of literature on the psychology of understanding programs

written in imperative languages but very little on functional or logic languages.

Some examples of work on the latter type are [ROME99], and [HAZA93]. The

general lack of research in this area could be due to the lesser financial imperative of

maintaining systems written in these languages. Since such work rightly forms the

basis for the design of program understanding tools and methods, there is a need

for more investigation to establish the requirements and feasibility of tool support

for logic and functional languages.

8.12 Cognitive Requirements
This section evaluates HB-CA (as implemented in HB-CAS) against the cognitive

design element framework described in [STOR97] and [STOR98]. The version used

here is drawn from [STOR98] in which two of the elements from [STOR97] appear

to have been combined. The framework (shown in Figure 93) is designed to guide

the development and evaluation of software exploration and comprehension tools.

Where possible, the criteria are discussed with reference to the HB-CA method but

those that are clearly implementation-specific refer to HB-CAS.

186

Improve program
comprehension

Cognitive Design
Elements to
support the
construction of a
mental model to
facilitate program
understanding

Enhance bottom-up
comprehension

Enhance top-down
comprehension

Integrate bottom-up
and top-down
approaches

Facilitate navigation

Indicate syntactic
and semantic
relations between
software objeas

E l

Reduce the effea of £ 2
delocalised plans

Provide abstraction £ 3
mechanisms

Suppon goal-
directed, hypothesis- £ 4
driven
comprehension

Provide an adequate £ 5
overview of the
system architecture
at various levels of
abstraaion

Suppon the
construaion of
multiple mental
models (domain,
situation, program)

Cross-reference
mental models

Provide direaional
navigation

E6

E7

E8

Support arbitrary £ 9
navigation

Reduce the
maintainer's
cognitive overhead

Provide orientation
cues

Indicate the £-[Q
maintainer's current
focus

Display the path that £ | l
led to the current
focus

Indicate options for £ | 2
further exploration

Reduce
disorientation

Reduce additional
effort for user-
interface adjustment

E13

Provide effective £ 1 4
presentation styles

Figure 93: Cognitive Design Elements for Software
Exploration Tools [STOR98]

There are fourteen elements divided into two main branches. The first aims to

capture the essential processes of various comprehension strategies, and the second

addresses the cognitive overhead experienced by a maintainer exploring software

187

[STOR98]. A description of the various comprehension strategies can be found in

Chapter 2.

8.12.1 Improve Program Comprehension
8.12.1.1 Enhance Bottom-Up Comprehension

E l : Indicate syntactic and semantic relations between software objects.

• Immediate and visible access to low-level program units (such as source

code) should be provided. The syntactic and semantic relations of these

units should be clearly visible [STOR98].

• HB-CA only analyses one unit of source code at a time. Relationships

between units are not supported.

E2: Reduce the effect of delocalised plans.

• A delocalised plan results from the fragmentation of source code related

to a particular algorithm or plan. Understanding this can be disorienting

or cumbersome without tool assistance [STOR98].

• HB-CA does not undertake plan analysis of a program. Some plan-type

groups may be detected by the concept assignment methods but only

through the informal evidence available. Delocalised plans are liable to

be detected as either one large segment containing a high proportion of

unrelated code, or as a series of smaller segments within the delocalised

plan. HB-CAS has no facility for hiding unrelated parts within the plan.

E3: Provide abstraction mechanisms.

• Storey claims that maintainers may benefit from creating their own

abstractions and labelling them to reflect their understanding. This

might help them to better comprehend the software than if they use

prefabricated views provided by a tool [STOR98].

• HB-CAS reflects the maintainer's current understanding of the domain

(represented in the knowledge base) rather than a specific program.

Naming of domain concepts can be performed in accordance with the

maintainer's requirements. The purpose of HB-CA is to alleviate the

effort of applying these to the source code.

188

8.12.1.2 Enhance Top-Down Comprehension

E4: Support goal-directed, hypothesis-driven comprehension.

• This requires the maintainer to possess prior application-domain

knowledge, previous exposure to the program, or access to its

documentation. Understanding is performed depth-first through

hypothesis formulation and verification [STOR98].

• HB-CA supports hypothesis-driven comprehension in a limited way. If

a maintainer formulates hypotheses about the functionality of a

program, these can be swiftly verified with the concept list provided by

HB-CAS. In addition, formulating the knowledge base wil l require

exploration of domain knowledge by the maintainer.

E5: Provide an adequate overview of the system architecture at various levels of

abstraction.

• HB-CA works on single modules of code and does not aim to support

system-level analysis.

8.12.1.3 Integrate Bottom-Up and Top-Down Approaches

E6: Support the construction of multiple mental models (domain, situation,

program).

• The variety of models that may be used by a maintainer during

comprehension have been unified in a meta-model (see [MAYR95]).

Ideally, software tools should support any model required by the

maintainer through multiple views [STOR98].

• HB-CA supports multiple models by identifying concepts. These can be

used in a bottom-up context for abstraction, or top-down for hypothesis

verification. Although support for the situation and domain models is

reasonably good, HB-CA does not assist greatly with building the

program model.

E7: Cross-reference mental models.

• HB-CAS does not support cross-referencing between views of a system

because of its single module approach.

189

8.12.2 Reduce the Maintainer's Cognitive Overhead
8.12.2.1 Facilitate Navigation

E8: Provide directional navigation.

• Directional navigation refers to reading source code and documentation

sequentially, browsing the source code using data and control flow

relationships, traversing software structure in hierarchical abstractions,

and following user-defined program or application dependent links

[STOR98].

• HB-CAS supports this by providing hypertext links between the concept

list and source code browser.

E9: Support arbitrary navigation.

• Arbitrary navigation is supported when a maintainer navigates to

locations not necessarily reachable by defined links [STOR98].

• Although HB-CAS provides hypertext linkage between concepts and

display, it does not support this kind of arbitrary navigation.

8.12.2.2 Provide Orientation Cues

ElO: Indicate the maintainer's current focus.

• This refers to the process of showing the maintainer's object of interest

and its context. Textual views of source code implicitly show the focus,

although related areas of code may not be visible [STOR98].

• HB-CAS supports a textual view but does not aim to provide contextual

information of the type discussed above.

E l l : Display the path that led to the current focus.

• Recording why a maintainer is interested in a particular object is very

important [STOR98].

• HB-CA does not aim to capture this information.

E12: Indicate options for further exploration.

• This refers to the way in which a user is made aware of facilities for

further exploration [STOR98].

• HB-CAS does not provide more than one way of exploring code.

190

8.12.2.3 Reduce Disorientation

E13: Reduce additional effort for user-interface adjustment.

• Poorly designed interfaces induce an additional overhead and available

functionality should not impede the program understanding task

[STOR98].

• HB-CAS was designed as a research prototype. Consequently, greater

emphasis is placed on intermediate data structures and process

monitoring than would be required for a real-world system. The source

code browser clearly shows the results of the method although there is

substantial scope to improve it.

E14: Provide effective presentation styles.

• In this criterion, Storey discusses graph layout almost exclusively. This

has no relevance to HB-CA.

8.12.3 Summary
This section has used Storey's cognitive design element framework to evaluate

HB-CA and HB-CAS. In most of the areas, either HB-CA or HB-CAS adequately

meets the criteria specified, failing only those that are beyond the original scope and

objectives of the work.

8.13 Summary
This chapter has presented the first part of an extensive evaluation of HB-CA.

Beginning with an investigation of the scalability properties of the method, the

discussion has covered research and design characteristics, highlighting the

successes and failures of HB-CA's approach to concept assignment.

Chapter 9 contains the second part of the evaluation, looking at the applicability of

HB-CA in the software maintenance process. Several applications are identified and

their associated cost issues discussed.

191

Chapter 9

Evaluation II: Applications of HB-CA

9.1 Introduction
Chapter 8 presented an extensive evaluation of many characteristics of HB-CA. It

discussed properties such as scalability, computational cost, and representational

power. Strengths and weaknesses of the techniques employed for segmentation and

concept binding were highlighted. Suggestions were made for solving some of the

remaining problems in the HB-CA method.

This chapter concludes the evaluation by examining applications of HB-CA in the

software maintenance process. It is shown to have potential benefit for several

activities.

9.2 HB-CA in the Software Maintenance Process
The discussion of the software maintenance process in Chapter 2 was based on the

IEEE standard [IEEE98] and identified several areas where software

comprehension was required. These were parts of the analysis, design, and

implementation stages of the standard process, and are now revisited to explore the

potential benefit of HB-CA.

The activities can be divided broadly into two categories: those that assist with

analysing a change, and those concerned with making the change. The first category

consists of business-rule ripple analysis, code ripple analysis, and module selection.

The second consists of software module comprehension only. The way in which

HB-CA could help to reduce the cost of these activities is discussed in the next few

sections, making the assumption that HB-CA is accurate, and that the library is

complete with respect to the concepts required. Any cost savings achieved through

the use of HB-CA would be offset by less than perfect accuracy or an incomplete

library.

192

9.2.1 Analysis Activities
9.2.1.1 Business-Rule Ripple Analysis

Ripple analysis occurs in the analysis phase of the IEEE standard. Business-rule

ripple analysis involves determining the potential effect of changing a business rule

on other parts of the system (an example of higher-order impact analysis, see

[TILL96b]). Using HB-CA to assist with ripple analysis would require some

additions to the method or its implementation to enable it to analyse multiple

source files. This would be a wrapper supplying each candidate file to HB-CA and

analysing the result of concept assignment. Business rules would be modelled in the

library, and the modified method would be supplied with the rule being proposed

for change. Section 8.9 discusses issues relating to business-rule modelling. The

library would need to be populated entirely with business rule concepts to avoid

confusion with the programming domain. Concepts found in programs that

implement the "proposed change" rule would be presented as candidates for side

effeas of the change. The maintainer could then examine them and accept or reject

these suggestions for further analysis. The process is shown in Figure 94.

Source Files in Code Repository

Key

Document

Process

File/Database B
Information Flow \^r.ippcr Source FUe

Business Rule Concepts

"Proposed
.Cl^ge" Concepi

Mamtamer

Potemial Side Effeas
Concept Analysis

Figure 94: Diagram showing HB-CA used for
Business-Rule Ripple Analysis

Chapter 2 stated that the cost of business-rule ripple analysis is crudely proportional

to the number of artefacts inspected. One advantage of using HB-CA in this

193

activity would be that many programs could be scanned quickly for potential side

effects in the business rules, reducing the number that the maintainer is required to

examine by hand. This application of HB-CA may have limited success given the

difficulty of representing constraint information in the library (see section 8.9).

HB-CA could not totally replace the maintainer because it cannot determine

dependencies between rules beyond that of co-occurrence in the same program. In

this sense, it does not undertake traditional ripple analysis as it does not predict the

effect of a change, but only makes suggestions for potential side effects. If it is

likely that related rules do co-occur, HB-CA could substantially reduce the size of

the task by limiting the number of code items that require inspection.

9.2.1.2 Code Ripple Analysis

This is similar to business-rule ripple analysis but is more likely to occur in the

design phase of the maintenance standard as part of identifying affected software

modules. Code ripple analysis is used to determine the effect of changes to the

source code. There are various methods to perform this using syntactic and

semantic techniques (e.g. forward program slicing, see [NING94]), but HB-CA

could perform it on a conceptual level. There is little difference between code

ripple analysis and business-rule ripple analysis, except in the type of concept being

considered. Business rules are closer to the application domain than the type of

concepts that usually would be used for code ripple analysis. These would probably

be nearer to the implementation domain. The process of using HB-CA for this

activity would be much the same as that shown in Figure 94, although the library

would probably contain lower-level concepts in addition to those modelling

business rules.

Chapter 2 stated that the cost of code ripple analysis is crudely proportional to the

number and size of the artefacts examined. Potential cost savings could result from

the reduced size of the code repository requiring manual inspection, on the principle

that co-occurrence of concepts indicates some dependency. As discussed in section

9.2.1.1, relying solely on this relationship prevents HB-CA from fulfilling the

requirements of traditional ripple analysis.

194

9.2.1.3 Module Selection

HB-CA can assist with this activity to a greater extent than it can with ripple

analysis. Module selection can take place before and/or after ripple analysis,

primarily occurring in the design phase of the standard process as part of identifying

affected software modules. Once the concepts to be changed are known, the task

of finding instances of them in the code base can be extremely time consuming.

Using a similar wrapper to that described in section 9.2.1.1, the concept required

can be supplied to HB-CA (as the only concept in the library) and programs that

implement it can be found. These would be the modules requiring change.

Chapter 2 described the cost of module selection as a function of the size of the

code repository and the search method. The cost savings from this application of

HB-CA could be quite considerable since the maintainer does not need to

participate in the selection activity if the wrapper is used. If HB-CA is employed in

its current form (i.e. analysing one module at a time), reduced cost could still be

achieved because the maintainer would not need to read every program entirely.

The concept list would show whether the concept to be changed exists in the code.

Concept-based search could perform better than some other automated methods of

examining source code (e.g. plan recognition) because it has linear computational

growth with the length of source code being analysed.

9.2.1.4 Code Reuse

Although not explicitly placed in the standard process, code reuse can substantially

reduce the cost of software maintenance. Using HB-CA in a similar manner to

module selection could facilitate this activity. It might be particularly helpful with

languages such as COBOL I I that do not lend themselves to populating reuse

libraries. The code repository could be searched for instances of a particular

concept required for implementation in another program. HB-CA could be

particularly helpful since SOM-based segmentation may be able to identify parts of

subroutines that implement the required concept, even if the whole routine is not

relevant.

195

9.2.2 Implementation Activities
One of the steps in the implementation stage of the standard process is coding and

unit-testing. Coding can be further subdivided into two stages: module

comprehension, and change implementation (see [GALL91]). These may be

iterative. Module (or program) comprehension is required in all of the above stages

to some extent, but a greater depth of understanding is likely to be required for

implementation. Recall that the comprehension activity is regarded as the

translation of source code to another representation. In the case of concept

assignment, the other representation is concept names labelling parts of the source

code.

Figure 95 shows the module comprehension activity without HB-CA.

Key

File/Database

Information Flo

Source File

Maintainer

Source Code
with

Concept List

Figure 95: Module Comprehension without HB-CA

Figure 95 can be placed in the context of the comprehension activity framework for

concept assignment described in Chapter 2 (Figure 7). This is shown in Figure 96.

196

Key

Actor

Information Store

Information Flow 4 •

File/Database •

Source Code

Source File

Maintainer

Source-Label

Representation m
Source Code

with
Concept List

Figure 96: Module Comprehension Activity in the context of
the Comprehension Activity Framework

The maintainer must undertake the work of summarising and abstraaing the

module to a mental or physical representation such as the concept list shown.

If HB-CA is used (see Figure 97) then much of the effort could be alleviated by

providing the maintainer with the concept list automatically. Note that the library is

shown as a file although strictly this is an implementation characteristic.

197

Key

Process

File/Database

Information Flow

Source

Maintainer

Source Code
with

Concept List

Figure 97: Module Comprehension with HB-CA

Note the feedback loop between the maintainer, library, and concept assignment

process. By continually improving the domain model as HB-CA is used, the

maintainer can increase the quality of results produced, thus further reducing

comprehension time with every iteration. To compare the relative costs of the

automated and manual approaches to concept assignment, the process in Figure 97

can be placed in the context of the comprehension activity framework. This is

shown in Figure 98.

198

Key
Actor cm Information Store

Information Flow < •
File/Database

Process

Source Code

Source-Label

Representation

Source File

Maintainer

Source Code
with

Concept List

Figure 98: Module Comprehension Activity using HB-CA,
in the context of the Comprehension Activity Framework

Using HB-CA saves the maintainer from performing the translation process,

enabling them to begin their understanding using more than one knowledge source.

Since HB-CA fulfils the requirements of the comprehension activity framework, the

relative costs of the automated and manual approaches can be compared.

Performing concept assignment using automatic plausible reasoning should be less

expensive than undertaking the task manually, and consequently using HB-CA

should reduce the overall cost of software module comprehension. Providing

automatic concept assignment also allows experienced maintainers to pass on their

199

domain understanding (via the domain model), helping less experienced maintainers

to become familiar quickly with the system being maintained.

9.3 Summary
This chapter has discussed applications of HB-CA in the software maintenance

process. These have been related to the activities identified in Chapter 2 as part of

the IEEE software maintenance standard. Five maintenance activities could be

assisted to varying degrees. Finding co-occurring concepts for further investigation

might reduce the cost of business-rule ripple analysis and code ripple analysis.

Module selection could be performed automatically with conceptual searching, and

code reuse could be facilitated easily. HB-CA could assist in module

comprehension by automatically providing a concept list related to the source code,

thus relieving some of the comprehension burden from the maintainer. The

reduction in cost when using HB-CA for software module comprehension has been

discussed in the context of the comprehension activity framework defined in

Chapter 2. If HB-CA reduces the cost of any of the activities described, it should

achieve a reduction in the overall cost of software maintenance.

Chapter 10 concludes this thesis by summarising aspects of the concept assignment

problem and the solution presented here. The success of HB-CA is discussed and

ideas for further research are suggested.

200

Chapter 10

Conclusions

10.1 Introduction
chapter 9 presented the second part of the evaluation, considering applications of

HB-CA in the software maintenance process. Five areas were identified for

potential cost reduction using HB-CA.

This chapter reviews the research presented in this thesis. The work accomplished

is compared to the criteria for success defined in Chapter 1, some general issues are

discussed, and directions for further work identified.

10.2 Review of Research
10.2.1 The Concept Assignment Problem
The concept assignment problem was defined in Chapter 1 as:

"The process of assigning descriptive terms to their
implementation in source code, the terms being nominated by a
user and usually relating to computational intent."

Segmentation and concept binding were identified as the major research issues

within this. Segmentation involves finding the location and extent of concepts, and

concept binding determines which concepts are implemented at these locations.

10.2.2 Comprehension Activity Framework and Formal Model
Chapter 2 explored a number of aspects of software comprehension to create a

framework that describes the activity in terms of translating one representation of

software to another. This was based on factors common to psychological theories

of program comprehension and common elements of software tools. The general

framework was specialised for the concept assignment problem with specific source

and target representations defined.

201

In conjunction with the specialised comprehension activity framework, a formal

model (in set theory) was developed to define the representations more precisely.

As each part of HB-CA was presented, its position in the framework was shown.

The formal model was extended to capture the intermediate representations

between stages. Chapter 6 summarised the formal model by drawing together all of

the definitions in a single section.

10.2.3 Hypothesis-Based Concept Assignment
The solution to the concept assignment problem presented in this thesis is termed

Hypothesis-Based Concept Assignment. It is a three-stage method addressing the

two major research issues reviewed in section 10.2.1. A simple knowledge base is

used to model pertinent aspects of the domain. This was described in Chapter 3.

HB-CA begins with hypothesis generation (presented in Chapter 4), comparing

indicators stored in the knowledge base to tokens of various classes extracted from

the source code under analysis. When an indicator matches a token, hypotheses are

generated for every concept to which it is linked. The individual lists of hypotheses

from the various classes are combined in order of occurrence and passed to the next

part of the process: segmentation.

The segmentation stage (presented in Chapter 5) groups related hypotheses to form

segments in the combined list. This is undertaken initially using hypotheses

generated from subroutine boundaries, to ensure that the original program's

structure is reflected in the resulting hypothesis segment list. Each segment is

analysed further to determine whether enough hypotheses exist to potentially form

two or more clusters within it. If this is the case, a self-organising map is employed

to associate nearby, similar hypotheses. The resulting clusters are checked to ensure

that sufficient evidence for concept binding is available within each. Any that have

insufficient evidence are combined with neighbouring clusters that do, and are

converted to segments.

The final stage of HB-CA (presented in Chapter 6) is concept binding. Each

segment created in the previous stage is analysed to determine which concept has

the most evidence. This is performed by generating initial conclusions from the

202

hypotheses in a segment and extending the conclusion list by exploiting knowledge­

base relationships. The conclusions are scored using the available evidence and the

highest scoring conclusion is declared the winner. In cases where more than one

highest-scoring conclusion exists, a number of rules are applied to disambiguate the

result. If these fail, the first conclusion is picked.

When all segments have been considered and their concepts bound, the process is

complete and the source code can be labelled with the concept names.

The chapters describing the HB-CA method extended the formal model to capture

data structures relevant to the stage of the process being presented. Each chapter

compared HB-CA's approach to those adopted by two other plausible reasoning

concept assignment systems: DM-TAO, and IRENE. A summary of this

comparison is shown in Chapter 3.

10.2.4 Hypothesis-Based Concept Assignment System (HB-CAS)
In accordance with the research aims, the HB-CA method was embodied in a

prototype software tool termed the Hypothesis-Based Concept Assignment System

(HB-CAS). The architecture reflects the stages of HB-CA, employing separate

programs to implement various parts of the process. The system was described and

evaluated briefly in Chapter 7.

10.2.5 Evaluation
Chapters 8 and 9 presented an extensive and detailed evaluation of the HB-CA

method using the criteria outlined in Chapter 1. The first part of the evaluation

(contained in Chapter 8) dealt with characteristics and properties of the method,

beginning with its scalability. Despite theoretical expectations of accuracy at all

lengths of source code, practical investigations undertaken with HB-CAS indicated

that lower accuracy occurred with larger programs. This was attributed to the

algorithms that reallocate hypotheses from invalid clusters. Further issues arising

from this investigation were discussed with particular reference to segmentation,

concept binding, and library content. Various aspects of the computational and

spatial cost were examined and HB-CA was found to have a linear computational

growth in the length of the source code being analysed. Individual indicator classes

203

have different effects on concept assignment performance and these were discussed

in the context of HB-CA's ability to use multiple information sources.

Representational power and domain independence also were examined. HB-CA is

intended to operate on COBOL I I but could be applied to other languages. This

issue was discussed with reference to several different classes of programming

language. The first part of the evaluation was concluded by considering to what

extent HB-CA and HB-CAS fulf i l cognitive requirements for program

understanding tools.

The second part of the evaluation in Chapter 9 discussed various possibilities for

using HB-CA in the software maintenance process, and five applications were

identified. HB-CA could potentially reduce the cost of business-rule ripple analysis

and code ripple analysis, although both these cases require an assumption that co­

occurrence of concepts signifies dependency. Module selection and code reuse

could derive greater benefit from the use of HB-CA. Finally, the potential was

shown for a reduction in the cost of software module comprehension and Chapter

9 described the way in which HB-CA could be used for this purpose. The relative

costs of concept assignment using automatic and manual approaches were discussed

with reference to the comprehension activity framework.

10.3 Evaluation of Research
An evaluation of the research reported in this thesis is now presented in the context

of the criteria for success and research aims given in Chapter 1. These are repeated

here-with a discussion of each.

1) The definition of aframeworkfor the activity of software comprehension. This should

capture the essential processes and data structures involved in software comprehension,

regardless ofwhether the actor (ie. the entity undertaking the comprehension activity) is a

person or a software tool.

Chapter 2 defines a comprehension activity framework based on elements common

to software tools and psychological theories. The framework expresses the

comprehension activity as a process of translation from one software representation

to another by means of a processor (which could be a person or software tool).

204

The framework is specialised to the representations required for the concept

assignment problem.

2) The creation of aformal model ofthe comprehension activityframework discussed in

criterion 1 to define clearly its data structures.

Definition of this model commences in Chapter 2, specifying the source and target

representations of the concept assignment problem. The comprehension activity is

expressed as a function mapping one representation to another.

3) The development of a new method to undertake automatic concept assignment usinga

simple knowledge base. It should be capable ofanalysingreal-world COBOL IIcode and

successfully cope with poorly structured and monolithic programs, in addition to well-

structured examples. The method should provide a software maintainer with

automatically recognised concepts linked to regions of source code.

A new method, termed Hypothesis-Based Concept Assignment, has been developed

to perform concept assignment automatically on COBOL I I programs. The

HB-CA method is presented in Chapters 3 to 6. It has been evaluated using real-

world code and achieves high recognition accuracy, although performance can fall

when larger programs are analysed. This problem has been investigated and the

cause linked to specific naive algorithms within the method. HB-CA can cope

successfully with poor structure in programs, using a self-organising map to

establish regions of conceptual focus when structural information is insufficient.

4) As part of criterion 3, the development ofnovel approaches to address the two main

research issues in concept assignment: segmentation, and concept binding

Chapters 5 and 6 describe the methods used to address segmentation and concept

binding. The application of SOMs to the segmentation task provides HB-CA with

its ability to cope with monolithic and unstructured code, basing decisions about

segments on the conceptual structure of the program rather than its syntax. The

concept binding method assesses concept evidence using a combination of semantic

network activation and disambiguation rules.

205

5j The extension ofthegeneralformal model (see criterion 2) to the new concept assignment

method.

Throughout Chapters 3 to 6, the formal model is extended to capture the individual

parts of HB-CA. The structure of the knowledge base is formally described and all

intermediate representations are defined. Chapter 6 summarises the model by

collating all the definitions. The model adequately describes all that is required of it

and, although some definitions could be augmented, there would be little benefit

from the exercise.

6) The implementation ofaprototype tool to demonstrate theftasihility of the new concept

assignment solution. This should allow easy evaluation of the method.

Chapter 7 describes and evaluates the HB-CAS implementation of HB-CA. The

prototype successfully undertakes concept assignment on COBOL 11 source code

and was used for the practical parts of the evaluation presented in Chapters 8 and 9.

It has been demonstrated that the work presented in this thesis meets the criteria for

success and research aims defined in Chapter 1. Section 10.4 discusses these

accomplishments, and section 10.5 identifies areas for continuing the work and

improving the capabilities of the method.

10.4 Discussion
A reflective discussion of the work accomplished in this thesis is now presented.

In general, HB-CA is a success. It meets the requirements shown in Chapter 1 and

has exceeded expectations in its recognition accuracy.

Synonym matching was slightly disappointing as it caused significant difficulties in

implementation and showed poor performance. If it were to be included in other

concept assignment systems, pilot studies would need to be undertaken to

determine the cost-benefit of the idea. In the absence of synonym matching,

indicator recognition has been very successful, demonstrating the value of

meaningful identifiers and comments. The potential for confusion when comments

206

are not relevant to the code with which they are associated has not proved to be a

problem with the examples tested.

One of the major successes of HB-CA has been the SOM-based segmentation

algorithm. Although the reallocation methods have been identified for further

work, the success of the SOM method has vindicated the underlying principle of

creating a conceptual map of a program. The idea of a conceptual map formed the

basis for solving the difficult problem of determining conceptual segmentation

without performing concept binding first. Various attempts were made to map the

"conceptual landscape" of a program and this was achieved with relative ease.

Creating a decision rule to determine which "peaks" were valid and which were not,

proved more difficult to attain. The SOM emerged as a fine-grained approach to

associating similar concepts whilst allowing a simple vector density criterion to be

used for decisions. It has proved to be a successful technique and some

developments are suggested in section 10.5. The reallocation algorithms require

additional work but more success may be achieved by eliminating the principle that

every hypothesis should be preserved. This was originally included to ensure that

enough evidence was available for concept binding. Experience has shown that in

many cases there would be enough hypotheses to make bindings, even if invalid

clusters were ignored.

Given the success of the SOM technique, and the ability to label output nodes with

the concept that triggers them most frequently, it is interesting to consider whether

the entire concept assignment problem might be translated to the SOM. Early work

with SOMs in HB-CA attempted this task with very limited success but these

experiences should not rule out further efforts in this direction. Modifications to

HB-CA would be required because no intelligent exploitation can be made of the

relationships in the knowledge base. Once hypotheses are passed to the map, they

must all compete. The solution to this may entail the generation of composite and

specialised hypotheses, as these would need to compete with the single forms of

concepts. Creating a map for the entire program also entails considering the

characteristics of the input space; syntactic boundaries would need to be encoded as

discontinuities in the sequence, to prevent the cross-subroutine associations

observed in early efforts.

207

Concept binding based on semantic network activation has proved to be a good

idea. This is not particularly surprising since it can be seen as a coarse-grained

connectionist approach with some similarity to that employed by DM-TAO. The

algorithmic version encodes the more holistic view of the semantic-network scoring

approach that was devised first. The disambiguation rules were derived by

considering the principles and goals of HB-CA and they exhibit the desired

characteristic of graceful performance degradation with conflicting hypotheses.

There is ample scope to refine and improve them, particularly those that manage

ambiguity when forcing specialisation.

The knowledge base has proved effective despite its simplicity. Most of the

concepts used have been of moderately low levels of abstraction and it would be

interesting to investigate further ways of encoding higher-level and business-rule

concepts. One significant issue with the knowledge base is its inability to natively

encode constraints. This was discussed briefly in section 8.9. It would be possible

to overcome this limitation with the file-based indicator approach outlined in

section 8.9, in combination with an indicator recognition module capable of

detecting the type of constraint required. This type of concept could be arguably

beyond the scope of concept assignment systems since it does not express

computational intent, but computational restriction. Nonetheless, the information

provided by such constraints is very useful in software comprehension. The danger

of using any type of complex indicator is that the cost advantage obtained when

using plausible reasoning concept assignment techniques (such as HB-CA) might be

negated.

Comparing HB-CA to the systems DM-TAO and IRENE has proved an interesting

exercise. HB-CA is similar to DM-TAO in the type of concept it seeks and the way

in which it performs concept binding. However, it shares some features with

IRENE such as a reasonably simple knowledge base and the ability to explain

concept assignment decisions. It is unique in clearly separating the stages of

segmentation and concept binding. The simpler knowledge base used by HB-CA

offers potentially easier domain modelling than either of the other systems, but lacks

the dependency modelling ability of IRENE and the wide variety of concept types

208

of DM-TAO. Despite these drawbacks, concept assignment can be performed

successfully.

Overall, HB-CA has proved to be a successful concept assignment solution and has

demonstrated the potential for conceptual mapping of programs.

10.5 Further Work
The work presented in this thesis could be extended in many ways and some ideas

are discussed in this section.

10.5.1 SOM-Based Concept Assignment
Section 10.4 suggested the possibility of using the SOM to perform both

segmentation and concept assignment functions. This would be an interesting

variation on the existing method and might reduce its cost. Concept assignment

could be performed by labelling each output node in the map with the name of the

concept that triggers it most often. Vector density measures would still be required

to provide a recognition threshold but other concept binding parameters should be

unnecessary. There are implications for hypothesis generation in that every

plausible hypothesis (composite and specialised) for an indicator would need to be

generated. This would be similar to conclusion generation but with the whole

program regarded as a single segment. Under these conditions, sensible conclusion

generation would be difficult to achieve. A method would be required to resolve

the tension between the need for a predefined segment for conclusion generation,

and the attempt to execute both segmentation and concept binding in one step.

These issues would be subjects for research.

10.5.2 Intelligent Reallocation Algorithms
The problems with naive reallocation of hypotheses were highlighted in Chapter 8.

Two approaches now are suggested to solve this problem. The first is to ignore any

invalid clusters. The risk associated with this method is that occasional mis-

association on the SOM could result in valuable information being lost. The

alternative approach is to improve the way in which hypotheses are reallocated, by

using their conceptual content as a guide rather than simply dividing clusters equally

into their surroundings. Various heuristics could be derived to implement this, e.g.

209

a hypothesis could be compared to its nearest vaUd cluster; if the hypothesis does

not already appear in the cluster then it should not be attached. Such heuristics may

require experimental investigation to determine their effectiveness. Other non-

conceptual characteristics could be used, e.g. the distance in lines between the

indicators for the two hypotheses could guide the selection of an appropriate

cluster. These changes could improve the quality of segmentation.

10.5.3 Richer Knowledge Base
Although one of the aims of this work was to perform concept assignment with a

simple knowledge base, increasing its complexity could be a fruitful line of research.

Incorporating more inter-concept relations (e.g. secondary hypotheses or multiple

composites) could increase the representational power and concept assignment

abilities of the method. It is important to realise that such changes may cause the

creation and maintenance costs of the library to rise and any potential benefit

should be weighed against this.

10.5.4 Richer Conceptual Map
The idea of a conceptual map was discussed in section 10.4. It would be interesting

to extend this notion to build a more informative map by using syntactic and

semantic characteristics pf the source code. This map could be used as the basis for

a visualisation system, or to improve the concept assignment ability of HB-CA.

Knowing that a particular identifier is a subroutine name could provide a context

for the evaluation of other information within the subroutine. The risks of applying

this type of maxim are noted in section 8.9. Placing greater weight on the

information provided by a particular identifier could improve the accuracy of

concept assignment. However, if the identifier is misleading then there is a greater

chance of incorrect assignment than when a uniform weighting model is used. The

depth of information could be increased by using a "level of confidence" measure

of the accuracy of indicator matching. Those indicators matched using sub-strings

or synonyms would gain a lower confidence level than those matched directly.

10.5.5 Use of the Data Division
The current form of HB-CA is concerned solely with the procedure division of

COBOL I I programs. The data division contains much useful information and

210

could augment HB-CA's object concept acquisition. The identity of data structures

could be determined by rigorous analysis, or through HB-CA's concept assignment

routines. Either could help to reduce the number of possible objects for later

consideration. HB-CA would require modification because it relies on subroutine

boundaries for its segmentation and has no awareness of the structure of data

declarations. Preliminary research in this area should establish whether the potential

benefits in accuracy outweigh the effort of additional analysis.

10.5.6 Large-Scale Evaluation
The evaluation in Chapter 8 provides much useful information about the nature of

HB-CA. Section 8.12 demonstrated that HB-CA and HB-CAS fulf i l many of the

cognitive requirements for program understanding tools. These properties could be

investigated further by undertaking a large-scale study to determine the effectiveness

of the tool when used in real maintenance situations. This could guide the

development of further research on the method and tool, in addition to providing

information about the effectiveness of this type of comprehension assistance.

Other forms of large-scale evaluation could involve testing HB-CA with

considerably more complex library content, and larger source programs from

different domains.

10.5.7 Software Evolution Study
Although HB-CA was intended as a software maintenance support method, it could

be used as a research tool in its own right. It would be interesting to examine many

versions of the same program and to study changes in concept assignment through

the program's maintenance history. This may provide insight into the way concepts

break down and move within the program, leading to more effective strategies for

maintenance. Research in this area may need to establish the viability of concept

assignment as a measure of comprehensibility before undertaking the study itself.

211

10.6 Final Summary
A review of the work accomplished has been presented in this chapter. The overall

success of the research has been considered in terms of the criteria shown in

Chapter 1, and several directions for further work have been established.

This thesis has examined the context, motivation, and definition of concept

assignment, leading to the development of a framework to describe software

comprehension, and a formal model of important representations. A new,

automated solution to the concept assignment problem has been presented:

Hypothesis-Based Concept Assignment. The stages of HB-CA have been described

and compared to similar systems. An extensive evaluation has demonstrated

various characteristics of the method including linear computational growth in the

length of program being analysed, high accuracy, and the ability to operate on real-

world programs of varying quality. The potential for HB-CA to be applied in

several parts of the software maintenance process has been shown, and possible

cost savings have been identified. Ideas for further work have been suggested.

Hypothesis-Based Concept Assignment is a novel and successful solution to the

concept assignment problem.

212

Appendix

Investigation Data

A. l Introduction
The appendix contains source data for the graphs shown in the evaluation, program

sets, and the library content referred to by some investigations. Library content for

the remaining investigations can be found in Chapter 3.

Most results are rounded to the nearest integer. High-resolution timings are given

to two decimal places and low-resolution timings are truncated to the nearest

integer. The truncation is performed internally in Delphi and is beyond the control

of the programmer. Program lengths are given in lines including white space and

comments.

A.2 Library Content Used in Sections 8.2, 8.4, 8.8,
8.10

L i b r a r y Output: EvalObs2

Primary A c t i o n Concept: Output

I n d i c a t o r s : K D i s p l a y KEndWrite KWrite KIO KOutput COutput
Composites: F i l e Report Database Record
S p e c i a l i s a t i o n s : NONE

Primary A c t i o n Concept: Read

I n d i c a t o r s : NRead KRead CRead
Composites: F i l e Database Record
S p e c i a l i s a t i o n s : NONE

Primary A c t i o n Concept: Write

I n d i c a t o r s : KEndWrite KWrite NWrite CWrite
Composites: F i l e Database Record
S p e c i a l i s a t i o n s : NONE

Primary Object Concept: F i l e

I n d i c a t o r s : N F i l e K F i l e K F i l e C o n t r o l C F i l e
Composites: NONE
S p e c i a l i s a t i o n s : A P S M a s t e r F i l e CAF PaymentFile

213

Primary O b j e c t Concept: Report

I n d i c a t o r s : NReport KReport KReporting KReports CReport
Composites: NONE
S p e c i a l i s a t i o n s : NONE

Primary O b j e c t Concept: Database

I n d i c a t o r s : NDatabase NDB CDatabase CDB
Composites: NONE
S p e c i a l i s a t i o n s : CMS

Primary Object Concept: Record

I n d i c a t o r s : NRecord KRecord KRecords CRecord
Composites: NONE
S p e c i a l i s a t i o n s : APSRecord

Primary A c t i o n Concept: C a l l

I n d i c a t o r s : N C a l l K C a l l C C a l l
Composites: DATEPRESModule
S p e c i a l i s a t i o n s : NONE

Primary A c t i o n Concept: Update

I n d i c a t o r s : NUpdate CUpdate
Composites: F i l e Database Record P o l i c y
S p e c i a l i s a t i o n s : NONE

Primary A c t i o n Concept: Input

I n d i c a t o r s : KIO NInput KInput CInput
Composites: F i l e Database Record
S p e c i a l i s a t i o n s : NONE

Primary O b j e c t Concept: DATEPRESModule

I n d i c a t o r s : NDatePres CDatePres
Composites: NONE
S p e c i a l i s a t i o n s : NONE

Primary Object Concept: P o l i c y

I n d i c a t o r s : N P o l i c y C P o l i c y
Composites: NONE
S p e c i a l i s a t i o n s : NONE

Secondary Object Concept: APSRecord

I n d i c a t o r s : NRecord KRecord CRecord NAPS NA.P.S CAPS
Composites: NONE
S p e c i a l i s a t i o n s : NONE

Primary O b j e c t Concept: I n t e r e s t

I n d i c a t o r s : N I n t e r e s t C I n t e r e s t
Composites: NONE
S p e c i a l i s a t i o n s : NONE

Secondary O b j e c t Concept: APSMasterFile

I n d i c a t o r s : NAPS NA.P.S CAPS NMaster CMaster
Composites: NONE
S p e c i a l i s a t i o n s : NONE

Secondary O b j e c t Concept: CMS

I n d i c a t o r s : NCIF CCIF
Composites: NONE
S p e c i a l i s a t i o n s : NONE

Primary A c t i o n Concept: I n i t i a l i s a t i o n

I n d i c a t o r s : N I n i t i a l i s a t i o n C I n i t i a l i s a t i o n
Composites: NONE
S p e c i a l i s a t i o n s : NONE

214

Primary A c t i o n Concept: P r i n t

I n d i c a t o r s : N P r i n t C P r i n t
Composites: Report Record Cheque Heading
S p e c i a l i s a t i o n s : NONE

Secondary O b j e c t Concept: CAF

I n d i c a t o r s : C F i l e NCAF NC.A.F CCAF C C e n t r a l CAnnuity
Composites: NONE
S p e c i a l i s a t i o n s : NONE

Primary Object Concept: Cheque

I n d i c a t o r s : NCheque CCheque
Composites: NONE
S p e c i a l i s a t i o n s : NONE

Primary Object Concept: Heading

I n d i c a t o r s : NHead CHead NHeading CHeading
Composites: NONE
S p e c i a l i s a t i o n s : NONE

Primary A c t i o n Concept: C a l c u l a t e

I n d i c a t o r s : KAdd KCompute KDivide KEndCompute KEndDivide KEndMultiply
KEndSubstract KEndAdd KGiving K M u l t i p l y KPlus KSubtract C C a l c u l a t e
Composites: I n t e r e s t
S p e c i a l i s a t i o n s : NONE

Secondary O b j e c t Concept: PaymentFile

I n d i c a t o r s : N F i l e K F i l e C F i l e NPayment CPayment
Composites: NONE
S p e c i a l i s a t i o n s : NONE

215

A.3 Data for Section 8.2: Scalability
A.3.1 Data for Figure 51, Figure 52, Figure 53, and Figure 54
Investigation Parameters: Table 10

K3A.\ forced specialisation - True

Strictly Percentage

Total Accurate Accurate Number of Percentage Strict

Program Length (lines^ Concepts Concepts Concepts SOMs Used Acciu'acv Accuracy

gd95 89 3 3 2 100 67

gb92/6 190 1 1 0 1 100 0

gd25 238 6 6 4 0 100 67

gdl2 285 8 7 4 2 88 50

gd30 337 6 5 2 2 83 33

gd60 387 10 10 7 2 100 70

gd91 441 9 8 6 3 89 67

gd96 491 12 12 11 1 100 92

gd83 547 15 11 7 5 73 4̂

gb64 596 14 13 7 3 93 50

gd26 650 14 7 6 3 50 43

gd81 701 6 4 3 2 67 50

gb73 728 21 20 12 4 95 57

gd28 807 16 15 7 4 94 44

gd67 879 15 11 8 5 73 53

gbOl 1013 13 8 3 4 62 23

gd82 1105 26 16 8 7 62 31

gd02 1117 7 6 3 1 86 43

gb07 1162 35 28 19 6 80 54

gb03 1237 35 25 15 9 71 43

gbcm0133 1310 42 40 35 6 95 83

gb08 1374 37 33 21 5 89 57

Median Accuracy 89 Mean Accuracy Standard Deviation (a)^QB
Median Strict Accuracy 50 Mean Strict Accuracy 56 Standard Deviation (a)H^H

216

A.2f A.l forced specialisation = False

Length (lines)

Total

Concepts

Accurate

Concepts

Strictly

Accurate

Concepts

Number of Percentage

Accuracy

Percentage

Strict
Acciuacy

gd95 89 3 3 2 0 100 67

gb92/6 190 1 1 0 1 100 :
gd25 238 6 6 4 0 100 67

gdl2 285 8 7 4 2 88 50

gd30 337 6 5 4 2 83 67

gd60 387 10 10 7 2 100 7C

gd91 441 9 8 7 3 89 78

gd96 491 12 12 12 1 100 100

gd83 547 15 15 10 5 100 67

gb64 596 14 13 7 3 93 50

gd26 650 14 11 7 3 79 50

gdSl 701 6 4 3 2 67 50

gb73 728 21 20 14 4 95 67

gd28 807 16 15 7 4 94 44

gd67 879 15 13 9 5 87 60

gbOl 1013 13 9 3 4 69 23

gd82 1105 26 18 8 7 69 31

gd02 1117 7 6 3 1 86 43

gb07 1162 35 26 19 6 74 54

gb03 1237 35 30 19 9 86 54

gbcm0133 1310 42 40 35 6 95 83

gbOS 1374 37 33 21 5 89 57

Median Accuracy 89 Mean Accuracy 88 Standard Deviation (cr] 11

Median Strict Accuracy 56 Mean Strict Accuracy Standard Deviation {(j j 21

A.3.2 Data for Figure 55
Investigation Parameters: Table 11

Segment Total Accurate Strictly Accurate Percentage Percentage Strict

Size (lines) Segments Segments Segments Accuracy Accuracy

0-10 39 35 26 90 67

11-20 28 25 14 89 50

21-30 15 10 2 67 13

31-40 3 3 0 100 3

41-50 8 8 1 100 13

51-60 2 2 0 100 0

61-70 2 1 0 50 0

70+ 8 7 2 88 25

217

A.3.3 Data for Figure 56
Investigation Parameters: Table 11

SOMs Used

Mean Segment Size (lines)

0 1 2 4 5 SOMs Used

Mean Segment Size (lines) 12 70 11 4 5

A.3.4 Data for Figure 57
Investigation Parameters: Table 12

Section

Program Numbei

Total

Concepts

Accurate

Concepts

Strictly

Accurate

Concepts

Valid Invalid Total Percentage

ClustersCIustci"sClusters Accuracy

Percentag«

Strict

Percentage

Invalid

Clusters

gb73 1 4 4 1 4 2 100 25 33

2 5 4 2 5 1 6 80 40 17

gd82 1 5 5 2 5 1 6 100 40 17

2 5 2 0 6 2 8 40 0 25

3 8 5 2 8 6 14 63 25 43

5 3 1 0 3 1 4 33 0 25

gb03 1 2 1 0 2 1 3 50 0 33

2 2 1 0 2 1 3 50 0 33

4 12 9 4 12 2 14 75 33 14

7 4 4 2 4 0 4 100 50 0

12 3 3 3 3 0 3 100 100 0

15 3 3 2 3 2 5 100 67 40

gd67 2 3 1 1 3 2 5 33 33 4C

3 3 3 1 3 1 4 100 33 25

4 4 4 0 4 7 11 100 0 64

gd96 1 8 8 7 8 4 12 100 88 33

gd26 1 6 2 1 6 2 8 33 17 25

3 4 3 3 4 2 6 75 75 33

gd30 2 3 2 0 3 1 4 67 C 25

218

A.4 Data for Section 8.4: Concept Binding
AAA Data for Figure 74
Investigation Parameters: Table 14

Total Cases 101

Rule

Triggered

Instances

Percentage

Triggered

DAR 1 101 100

DAR2 101 100

DAR 3 18 18

DAR 4 16 16

DAR 5 16 16

Arbitrary 10 10

219

A.5 Data for Section 8.6: Computational Cost
A.5.1 Data for Figure 75, Figure 76, and Figure 87
Investigation Parameters: Table 15

IRM 1: Identifier
IRM 2: Keyword
IRM 3: Comment
IRM 4: Segment Boundary

Length Number of

Program (lines) Segments

Low

Resolution

Hypothesis

Generation

(IRM)

Time (s)

Low

Resolution Low Resolution Low Resolution

Segmentation Concept Binding Total Execution

Tune (s) Time (s) Time (s)

gd95 1 3 0 1 4

gb92/6 190 1 9 0 0 10

gd25 238 5 12 0 3 16

gdl2 285 3 17 3 3 24

gd30 337 1 22 0 1 23

gd60 387 4 25 0 2 28

gd91 441 4 29 0 6 36

gd96 491 10 36 4 10 51

gd83 547 10 37 4 7 48

gb64 596 7 38 1 7 47

gd26 650 9 40 4 10 54

gd81 701 4 49 0 3 52

gb73 728 11 44 7 11 63
gd28 807 6 61 4 4 69

gd67 879 9 70 10 5 86

gbOl 1013 6 79 0 3 83

gd82 1105 10 92 10 10 113

gb07 1162 8 95 4 11 111

gb03 1237 17 100 5 18 124

gb08 1374 . 10 111 4 11 126

220

A.5.2 Data for Figure 77, Figure 78, and Figure 79
Investigation Parameters: Table 15

Low Resolution Execution Time (s)

Program

LengtJi

(lines)

IRM

1

IRM IRM IRM

Total 1
gd95 89 1 3 32 71 59 i :

gb92/6 190 1 3 5 0 9 43 128 189 5 365

gd25 238 3 6 3 0 12 105 233 117 15 470

gdl2 285 4 10 3 0 17 127 398 125 11 661

gd30 337 5 7 10 0 22 165 290 359 11 825

gd60 387 8 15 2 0 25 258 580 72 19 929

gd91 441 9 19 1 0 29 252 721 63 13 1049

gd96 491 16 17 3 0 36 473 634 101 23 1231

gd83 547 12 19 6 0 37 369 720 207 25 1321

gb64 596 10 17 11 0 38 289 634 399 31 1353

gd26 650 13 19 8 0 40 373 704 298 22 1397

gdSl 701 17 24 8 0 49 493 862 289 23 1667

gb73 728 12 18 14 0 44 352 686 477 30 1545

gd28 807 18 32 11 0 61 519 1144 379 17 2059

gd67 879 22 39 9 0 70 611 1358 306 23 2298

gbOl 1013 24 36 19 0 79 704 1257 627 23 2611

gd82 1105 29 41 22 0 92 832 1395 720 27 2974

gb07 1162 32 48 15 0 95 892 1592 522 21 3027

gb03 1237 30 50 20 0 100 845 1654 669 33 3201

gb08 1374 26 37 48 0 111 739 1287 1444 35 3505

221

A.5.3 Data for Figure 80
Investigation Parameters: Table 15

Percentage of Total Low Resolution IRM Time Percei itage of Total Extracted lokens

1 Program
IRM 1 IRM 2 TRM 3 IRM 4 IRM 1 IRM 2 IRM 3 IRM 4

gd95 33 33 33 0 18 41 34 6

gb92/6 11 33 56 0 12 35 52 1

gd25 25 50 25 0 22 50 25 3

gdl2 24 59 18 0 19 60 19 2

gd30 23 32 45 0 20 35 44 1

gd60 32 60 8 0 28 62 8 2

gd91 31 66 3 0 24 69 6 1

gd96 44 47 8 0 38 52 8 2

gd83 32 51 16 0 28 55 16 2

gb64 26 45 29 0 21 47 29 2

gd26 33 48 20 0 27 50 21 2

gd81 35 49 16 0 30 52 17 1

gb73 27 41 32 0 23 44 31 2

gd28 30 52 18 0 25 56 IS

gd67 31 56 13 0 27 59 13

gbOl 30 46 24 0 27 48 24

gd82 32 45 24 0 28 47 24

gb07 34 51 16 0 29 53 17

gb03 30 50 20 0 26 52 21

Gb08 23 33 43 0 21 37 41

222

A.5.4 Data for Figure 81, Figure 82, Figure 83, and Figure 84
Investigation Parameters: Table 15

Y - Low Resolution High Resolution

Number of SOMs Segmentation Time Segmentation Time

Nimiber of Sections Used (s) (s)
5 0 0 0.16

gb92/6 2 0 0 0.06

gd25 7 0 0 0.44

gdl2 5 1 3 3.46

gd30 5 0 0 0.17

gd60 9 0 0 0.5

gd91 6 0 0 0.77

gd96 11 1 4 4.89

gd83 12 1 4 4.06

gb64 15 0 1 1.21

gd26 10 1 4 4.33

gd81 10 0 0 0.61

gb73 15 2 7 7.58

gd28 8 1 4 4.07

gd67 10 3 10 10.77

gbOl 11 0 0 0.66

gd82 13 3 10 10.76

gb07 10 1 4 4.29

gb03 16 1 5 5

gb08 17 1 4 4.45

223

A.5.5 Data for Figure 85
Investigation Parameters: Table 16

Number of Total High

Librar) Resolution IRM

Indicators Time (s)

20 89.83

19 89.36

18 89.3

17 89.26

16 89.2

15 88.93

14 89.02

13 89.69

12 89.03

11 88.48

10 88.1

9 87.71

8 87.67

7 87.43

6 87.5

5 87.11

4 87.73

3 87.4

2 86.29

1 86.73

0 85.74

A.5.6 Data for Figure 86
Investigation Parameters: Table 17

Number of Indicates Relationships

High Resolution

Total IRM Time (s)

23 97.22

29 97.71

35 97.72

41 97.98

47 98.58

53 98.53

59 98.86

65 100.25

71 100.07

77 100.51

224

A.5.7 Data for Figure 88, and Figure 89
Investigation Parameters: Table 18

A.5.7.1 Specialisations

Number of Specialisations

High Resolution

Conclusion Generation Time (s)

1 4.77

2 5.53

3 6.42

4 7.42

5 8.29

6 9.35

7 10.12

8 10.53

9 11.04

10 11.42

11 11.87

12 12.4

13 12.79

A.5.7.2 Composites

Number of Compcsites

High Resohuion

Conclusion Generation Time (s)

4 4.73

5 4.92

6 5

7 5.22

8 5.38

9 5.38

10 5.88

11 5.93

12 6

13 6.31

14 6.58

15 6.92

16 7.04

225

A.6 Data for Section 8.7: Spatial Cost
Investigation Parameters: Table 18

A.6.1 Data for Figure 90, and Figure 91
A . 6.1.1 Specialisations

Number of Specialisations Nujnbeir of Conchisiom

1 55

2 71

3 87

4 103

5 119

6 135

7 151

8 158

9 165

10 172

11 179

12 186

13 193

A.6.1.2 Composites

Number of Composites Number of Conclusions

4 55

5 58

6 61

7 64

8 67

9 70

10 73

11 76

12 79

13 85

14 91

15 97

16 103

226

A.7 Data for Section 8.8: Expandability
Investigation Parameters: Table 19

A.7.1 Data for Figure 92
A.7.1.1 Program 1

• • • 1 Identifier +

Identifier + Identifier + Kej^Aord + Keyword +

Identifier Keyword ("onunent Keyword Comment Connnent CoDunent

Concepts

Foimd
5 0 1 6 2 6

Percentage of

Total 83 0 17 100 100 33 100

Concepts

A . 7.1.2 Program 2

Identifier +

tifier + Identifier + Keyword + KejTvord +

yword Conmient Conmient Conmient

Concepts

Found
1 0 0 3 1 0 3

Percentage of

Total 33 0 0 100 33 0 100

Concepts

A.8 Data for Section 8.10: Domain Independence
Investigation Parameters: Table 20

A.8.1 Data for Table 21

Program

^̂ ^̂1 Hi Strictly

Accmate Number of

SOMs Used

Percentage

Acciu'acv'

Percentage

Strict

Accuracy

Strictly

Accmate

pn29 205 6 5 5 1 83 83

pn28 209 1 0 0 0 0 0

pk35/6 360 2 0 0 1 0 0

pn23 551 9 6 4 1 67 44

pi43 709 14 9 7 3 64 50

pi49 1104 18 6 5 4 33 28

pi41 4805 30 14 4 8 47 13

pk352prc 8076 20 12 5 4 60 25

Median Accuracy 54 Mean Accuracy 44 29

Median Strict Accuracy 27 Mean Strict Accuracy 30 26

227

A.9 Program Sets
A.9.1 Program Set A

Program Length (lines) Program Length (lines) Program Length (lines)

gd95 89 gd83 547 gd82 1105

gb92/6 190 gb64 596 gd02 1117

gd25 238 gd26 650 gb07 1162

gdl2 285 gd81 701 gb03 1237

gd30 337 gb73 728 gbcm0133 1310

gd60 387 gd28 807 gb08 1374

gd91 441 gd67 879

gd96 491 gbOl 1013

A.9.2 Program Set B

A.9.3 Program Set C

1 Program
Length (luies)

gd95 89

gd25 238

gdl2 285

gd83 547

gd28 807

gbOl 1013

gd02 1117

gb08 1374

Program Length (lines)

gd30 337

gd96 491

gd26 650

gb73 728

gd67 879

gd82 1105

gb03 1237

228

A.9.4 Program Set D

Program Length (hnes)

gdl2 285

gd96 491

gd83 547

gd26 650

gb73 728

gd28 807

gd67 879

A.9.5 Program Set E

Program length (lines) Program Length (luies) Program Length (lines)

gd95 89 gd96 491 gd67 879

gb92/6 190 gd83 547 gbOl 1013

gd25 238 gb64 596 gd82 1105

gdl2 285 gd26 650 gb07 1162

gd30 337 gd81 701 gb03 1237

gd60 387 gb73 728 gb08 1374

gd91 441 gd28 807

A.9.6 Program Set F

A.9.7 Program Set G

Program Length (Hues)

gb08 1374

Program Length (luies)

gd95 89

gd25 238

229

A.9.8 Program Set H

Program Length (lines)

pn29 205

pn28 209

pk35/6 360

pn23 551

pi43 709

pi49 1104

pi41 4805

pk352prc 8076

230

References

[B A N K 9 3] R .D. Banker, S.M. Datar, C.F. Kemerer, D . Zweig, "Software

Complexity and Maintenance Costs", Communications of the ACM,

V o l . 36, N o . 11, November 1993, pp. 81-94.

[BEAL92] R. Beale, T. Jackson, Neural Computing: An Introduction, lOP

Publishing Ltd . , 1992, ISBN 0852742622.

[BIGG89] T.J. Biggerstaff, "Design Recovery for Maintenance and Reuse",

IEEE Computer, V o l . 22, N o . 7, July 1989, pp. 36-49.

[BIGG93] T.J. Biggerstaff, B. Mitbander, D . Webster, "The Concept

Assignment Problem in Program Understanding", ProceeJmgs of the

Fifteenth International Conference on Software Engineering, Baltimore,

Maryland, May 17-21,1993, IEEE Computer Society Press, 1993, pp.

482-498.

[BIGG94] T.J. Biggerstaff, B.C. Mitbander, D.E. Webster, "Program

Understanding and the Concept Assignment Problem",

Communications of the ACM, Vo l . 37, N o . 5, May 1994, pp. 72-82.

[B R 0 0 8 3] R. Brooks, "Towards a Theory of the Comprehension of Computer

Programs", InternationalJourml of Man-Machine Studies, Yoi. 18,1983,

pp. 543-554.

[BURD99] E. Burd, M . Munro, "Evaluating the Use of Dominance Trees for C

and COBOL" , Proceedings of the International Conference on Software

Maintenance, Oxford, England, August 30-September 3,1999, IEEE

Computer Society Press, 1999, ISBN 0769500161, pp. 401-410.

231

[C H I N 9 5] D . N . Chin, A . Qui l ic i , "DECODE: A Cooperative Program

Underst2U[i(^ngEnvironment'\ Journal of Software Maintemtnce, Vol. 8,

N o . 1, 1996, pp. 3-34.

[CORB89] T. A . Corbi, "Program Understanding: Challenge for the 1990s", IBM

Systems Journal, V o l . 28, N o . 2, 1989, pp. 294-306.

[DEBA94] J-M. Debaud, B. Moopen, S. Rugaber, "Domain Analysis and

Reverse Engineering", Proceedings of the International Conference on

Software Maintenance, Victoria, BC, Canada, September 19-23,1994,

IEEE Computer Society Press, 1994, pp. 326-335.

[DESJOO] M . desjardins, P. Rheingans, "Visualisation of High-Dimensional

Model Characteristics", Proceedings of New Paradigms in Information

Visualisation, Eighth A CM International Conference on Information and

Knowledge Management, Kansas City, MO, USA, November 1999, A C M

Press, 2000, pp. 6-9.

[DEVA91] P. Devanbu, R.J. Brachman, P.O. Selfridge, B.W. Ballard, "LaSSIE:

A Knowledge-Based Software Information System", Communications

of the ACM, V o l . 34, N o . 5, May 1991, pp. 35-49.

[E M A M 9 8] K.E. Emam, J-N. Drouin, W. Melo, SPICE: The Theory andPraaice of

Software Process Improvement and Capability Determination, IEEE

Computer Society, 1998, ISBN 0818677988.

[FJEL79] R.K. Fjeldstad, W . T . Hamlen, "Application Program Maintenance

Study - Report to Our Respondents", in [PARI83], 1979, pp. 13-27.

[GALL91] K.B. Gallagher, J.R. Lyle, "Using Program SHcing In Software

Maintenance", IEEE Transactions on Software Engineering, Vol. 17, No.

8, August 1991, pp. 751-761.

232

[GELL91a] E . M . Gellenbeck, C.R. Cook, "An Investigation of Procedure and

Variable Names as Beacons during Program Comprehension", in

Empirical Studies ofProgrammers: Fourth Workshop, New Brunswick, Nf,

December 7-9, 1991, J. Koenemann-Belliveau, T.G. Moher, S.P.

Robertson (editors), Ablex Publishing Corporation, Norwood, New

Jersey, 1991, ISBN 0893918571, pp. 65-81.

[GELL91b] E . M . Gellenbeck, C.R. Cook, "Does SignalHng Help Professional

Programmers Read A n d Understand Computer Programs?", in

Empirical Studies of Programmers: Fourth Workshop, New Brunswick, N],

December 7-9, 1991, J. Koenemann-Belliveau, T .G. Moher, S.P.

Robertson (editors), Ablex Publishing Corporation, Norwood, New

Jersey, 1991, ISBN 0893918571,-1991, pp. 82-98.

[HALL87a] R.P. Hal l , "Seven Ways to Cut Software Maintenance Costs

(Digest)", in Techniques of Program & System Maintenance, Indedition, G.

Parikh, Q E D Information Sciences Inc., 1988, pp. 358-360.

[H A L L 8 7 b] R.P. Ha l l , "Seven Ways to Cut Software Maintenance Costs",

Datamation, V o l . 33, July 15, 1987, pp. 81-84.

[H A M E 9 6] L.G.C. Hamey, J.C.-H. Yeh, "Segmentation of Bake Images by a

Self-Organising Map", Image Segmentation Workshop, Australian

Pattern Recognition Society, 1996, pp. 65-68.

[H A R A 9 0] M . T . Harandi, J.Q. Ning , "Knowledge-Based Program Analysis",

IEEE Software, V o l . 7, N o . 1, January 1990, pp. 74-81.

[HART91a] J. Hartman, "Automatic Control Understanding for Natural

Programs", Ph.D. Thesis, University of Texas at Austin, May 1991.

233

[H A R T 9 1 b] J. Hartman, "Understanding Natural Programs using Proper

Decomposition", Proceeding of the Thirteenth International Conference on

Software Engineering, Austin, Texas, May 13-17,1991, IEEE Computer

Socie ty /ACM Press, 1991, pp. 62-73.

[H A R T 9 2] J. Hartman, "Pragmatic, Empirical Program Understanding",

Workshop Notes, First Workshop on ArtifKial Intelligence & Automatic

Program Understanding Tenth National Conference on Artificial Intelligence,

San Jose, California, July 12-16, 1992.

[H A Z A 9 3] J.E. Hazan, S.A. Jarvis, R.G. Morgan, R. Garighano, "Understanding

Lolita: Program Comprehension in Functional Languages",

Proceedings of the Second IEEE Workshop on Program Comprehension,

Capri, Italy, July 1993, IEEE Computer Society Press, 1993, pp. 26-

34.

[H O N K 9 7] T. Honkela, "Self-Organising Maps in Natural Language

Processing", Ph.D. Thesis, Helsinki University of Technology, 1997.

[IEEE98] IEEE Computer Society, IEEE Standard for Software Maintenance

(IEEE Std 1219-1998), Institute of Electrical and Electronics

Engineers, 1998, ISBN 0738103365, in IEEE Standards, Software

Engineering Volume 2 Process Standards, 1999 Edition, Institute of

Electrical and Electronics Engineers, 1999, ISBN 0738115606.

[IS099] International Standards Organisation, International Standard:

Information Technology - Software Maintenance (ISO/IEC 14764:1999),

International Standards Organisation, 15̂ ^ November 1999.

I JOHN85] W . L . Johnson, E. Soloway, "PROUST: Knowledge-Based Program

Understanding", Transactions on Software Engineering Vol . SE-

11, N o . 3, March 1985, pp. 267-275.

234

Q O H N 8 6] W.L. Johnson, Intention-Based Diagnosis of Novice ProgrammingErrors,

Morgan Kaufmann Publishers L td , 1986, ISBN 0273087681.

[K A R A 9 2] V . Karakostas, "Intelligent Search and Acquisition of Business

Knowledge f r o m Programs", Software Maintenance: Research and

Practice, V o l . 4, 1992, pp. 1-17.

[KASK96] S. Kaski, T. Honkela, K. Lagus, T. Kohonen, "Creating an Order in

Digital Libraries w i t h Self-Organising Maps", Proceedings of

WCNN'96, World Congress on Neural Networks, San Diego, California,

September 15-18,1996, Lawrence Erlbaum and INNS Press, Mahwah,

NJ , 1996, pp. 814-817.

[K O H 0 9 6] T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, "SOM_PAK:

The Self-Organizing Map Program Package", Technical Report A31,

Laboratory of Computer & Information Science, Helsinki University of

Technology, ISBN 9512229471, January 1996.

[K O H 0 9 7] T. Kohonen, Self-Organizing Maps, Second Edition, Springer, 1997,

ISBN 3540620176.

[KOHOOO] T. Kohonen, The Self-Organizing Map (SOM),

ht tp : / /www.c is .hu t . f i / projects/somtoolbox/ somintro/som.html,

2000.

[K O Z A94] W. Kozaczynski, J.Q. Ning, "Automated Program Understanding By

ConceTpxKeco%mxion'\AutorrmtedSoftwareEngineeringVoX. l , N o . 1,

March 1994, pp. 61-78.

[K U W A 9 7] Y . Kuwata, M . Yatsu, "Managing Knowledge Using A Semantic

Network", Proceeding ofAAAI Spring Symposium on Artificial Intelligence

in Knowledge Management, Stanford University, March 24-46,1997, B.R.

Gaines, R. Uthurusamy (co-chairs). Technical Report SS-97-01,

A A A I Press, 1997, ISBN 1577350243, pp. 94-98.

235

[L A G U 9 6] K. Lagus, T. Honkela, S. Kaski, T. Kohonen, "Self-Organizing Maps

of Document Collections: A New Approach to Interactive

Exploration", Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining E. Simoudis, J. Han, U . Fayyad

(editors), A A A I Press, Menlo Park, California, 1996, pp. 238-243.

[LIEN80] B.P. Lientz, E.B. Swanson, Software Maintenance Management, Addison-

Wesley Publishing Company, 1980, ISBN 0201042053.

[LITT86] D.C. Littman, J. Pinto, S. Letovsky, E. Soloway, "Mental Models and

Software Maintenance", in Empirical Studies of Programmers: First

Workshop, June 5-6,1986, Washington, DC, E. Soloway, S. Iyengar

(editors), Ablex Publishing Corporation, Norwood , New Jersey,

1987 (second printing), ISBN 0893914630, pp. 80-98.

[M A Y R 9 4] A . von Mayrhauser, A . M . Vans, "Comprehension Processes During

Large Scale Maintenance", Proceedings of the Sixteenth International

Conference on Software Engineering Sorrento, Italy, May 16-21,1994, IEEE

Computer Socie ty /ACM Press, 1994, pp. 39-48.

[M A Y R 9 5] A . von Mayrhauser, A . M . Vans, "Program Comprehension During

Software Maintenance and Evolution", IEEE Computer, Vol . 28, No.

8, August 1995, pp. 44-55.

[M A Y R 9 7] A . von Mayrhauser, A . M . Vans, A .E . Howe, "Program

Understanding Behaviour Dur ing Enhancement of Large-scale

Software", Software Maintenance: Research and Practice, Vol . 9, No. 5,

1997, pp. 299-327.

[M A Y R 9 8] A . von Mayrhauser, A . M . Vans, "Program Understanding During

Software Adaptation Tasks", Proceedings of the International Conference on

Software Maintenance, Bethesda,MaryLnd, November 16-19,1998, IEEE

Computer Society Press, 1998, pp. 316-325.

236

[MERK97] D . Merk l , "Lessons Learned in Text Document Classification",

Workshop on Self-OrganizingMaps (WSOM'97), Helsinki, Finland, June 4-

6, 1997, pp. 316-321.

[MIAR83] R. J. Miara, J.A. Musselman, J.A. Navarro, B. Shneiderman,

"Program Indentation and Comprehensibility", Communications of the

ACM, V o l . 26, N o . 11, November 1983, pp. 861-867.

[NEUROO] The Neural Network FA Q, Part 1 of 7,

f tp: / / f tp.sas.com/pub/neural /FAQ.html.

[N I N G 9 4] J.Q. Ning , A . Engberts, W. Kozaczynski, "Automated Support For

Legacy Code Understanding", Communications of the ACM, Vol. 37,

N o . 5, May 1994, pp. 50-57.

[PARI83] G. Parikh, N . Zvegintzov (editors). Tutorial on Software Maintenance,

IEEE Computer Society, 1983, ISBN 0818600020.

[PAUL93] M . C . Paulk, B. Curtis, M.B . Chrissis, C.V. Weber, "Capability

Matur i ty Model for Software, Version 1.1", Technical Report

CMU/SEI-93-TR-024, ESC-TR-93-177, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania

15213, February 1993.

[PENN87] N . Pennington, "Stimulus Structures and Mental Representations in

Expert Comprehension of Computer Programs", Cognitive Psychology,

V o l . 19, N o . 2, February 1987, pp. 295-341.

[Q U I L 9 6] A . Quilici , S. Woods, "Toward a Constraint-Satisfaction Framework

for Evaluating Program-Understanding Algorithms", Proceedings of the

Fourth International Workshop on Program Comprehension, Berlin, Germany,

March 29-31,1996, IEEE Computer Society Press, March 1996, pp.

55-64.

237

[Q U I L 9 7] A . Qui l ic i , S. Woods, Y . Zhang, "New Experiments wi th a

Constraint-Based Approach to Program Plan Matching", Proceedings

oftheFourth Working Conference on Reverse Engineering Amsterdam, The

Netherlands, October 6-8, 1997, I . Baxter, A . Qui l ic i , C. Verhoef

(editors), IEEE Computer Society Press, 1997, pp. 114-123.

[Q U I L 9 8] A . Qui l ic i , Q. Yang, S. Woods, "Applying Plan Recognition

Algorithms To Program Understanding", Automated Software

Engineering, V o l . 5, N o . 3, July 1998, pp. 1-26.

[R A M A 9 6] S. Ramanujan, " A n Experimental Investigation of the Impact of

Individual, Program and Organisational Characteristics on Software

Maintenance Effort", Proceedings ofthe Second Americas Conference on

Information Systems, Phoenix, Arizona,]M. Carey (editor), August 16-

18, 1996, Association for Information Systems,

http://hsb. baylor.edu/ramsower/ais.ac.96/papers/ramanujan.htm.

[RICH88] C. Rich, R.C. Waters, "The Programmer's Apprentice: A Research

Overview", IEEE Computer, Vo l . 21, N o . 11, November 1988, pp.

10-25.

[RICH90] C. Rich, R.C. Waters, The Programmer's Apprentice, A C M Press

(Frontier Series), 1990, ISBN 0201524252.

[RICH92] C. Rich, R.C. Waters, "Knowledge Intensive Software Engineering

Tools", IEEE Transactions on Knowledge and Data Engneering Vol. 4,

N o . 5, October 1992, pp. 424-430.

[RICH93] C. Rich, R.C. Waters, "Approaches to Automatic Programming",

Advances in Computers, V o l . 37, 1993, pp. 1-57.

[ROBS91] D.J. Robson, K . H . Bennett, B.J. Cornelius, M . Munro, "Approaches

to Program Comprehension", Journal of Systems and Software, Vol. 14,

February 1991, pp. 79-84.

238

[ROME99] P. Romero, "Focal Structures in Prolog", Proceedings of the Psychology of

Programming Interest Group (PPIGJ, Eleventh Workshop, University of

Leeds, UK, January 5-7, 1999.

ht tp : / / www.ppig.org/papers/1 lth-romero.pdf

[ROUS98] D . Roussinov, H . Chen, "A Scalable Self-Organising Map Algorithm

for Textual Classification: A Neural Ne twork Approach to

Thesaurus Generation", Communication and Cognition • Artificial

Intelligence, V o l . 15, N o . 1-2, 1998, pp. 81-112.

[RUGA96] S. Rugaber, K. Stirewalt, L . M . Wills , "Understanding Interleaved

Code", Automated Software Engineering Vol . 3, No. 1/2, July 1996, pp.

47-76.

[SAYY97] J. Sayyad-Shirabad, T.C. Lethbridge, S. Lyon, "A Little Knowledge

Can Go A Long Way Towards Program Understanding", Procee^/mgj

ofthe Fifth International Workshop on Program Comprehension, Dearborn,

Michigan, May 28-30,1997, IEEE Computer Society Press, pp. H i ­

l l / .

[SELF93] P.G. Selfridge, R.C. Waters, E.J. Chikofsky, "Challenges to the Field

of Reverse Engineering", Proceedings of the Working Conference onReverse

Engineering Baltimore, Maryland, May 21-23,1993, IEEE Computer

Society Press, 1993, pp. 144-150.

[SOL084] E. Soloway, K. Ehrlich, "Empirical Studies of Programming

Knowledge", IEEE Transaction on Software Engineering Vol . SE-10,

N o . 5, September 1984, pp. 595-609.

[SOL088] E. Soloway, B. Adelson, K. EhrHch, "Knowledge and Processes in

the Comprehension of Computer Programs", in The Nature Of

Expertise, M . T . H . Chi , R. Glaser, M.J. Farr (editors), Lawrence

Erlbaum Associates, 1988, ISBN 0805804048, pp. 129-152.

239

[S O M M 9 3] I . Sommerville, Software Engineering Addison-Wesley Publishers Ltd,

USA, 1993, ISBN 0201565293.

[SOMPOO] SOM_PAK: The Self-Organizing Map Program Package,

ht tp: / / www.cis.hut.fi/research/som-research/nnrc-programs.shtml

[SOMTOO] SOM Toolbox for Matlab,

h t t p : / / www.cis.hut.fi/projects/somtoolbox/somalg.shtml.

[STAN84] T .A. Standish, "An Essay on Software Reuse", IEEE Transactions on

Software Engineering Vol . SE-10, No . 5, September 1984, pp. 494-497.

[STOR97] M - A . D . Storey, F .D. Fracchia, H . A . Mii l ler , "Cognitive Design

Elements to Support the Construction of a Mental Model during

Software Visualization", Proceeding ofthe Fifth International Workshop on

Program Comprehension, Dearborn, Michigan, May 28-30,1997, IEEE

Computer Society Press, 1997, pp. 17-28.

[STOR98] M - A . D . Storey, "A Cognitive Framework for Describing and

Evaluating Software Exploration Tools", Ph.D. Thesis, Simon Eraser

University, December 1998.

[SWAN76] E.B. Swanson, "The Dimensions of Maintenance", Proceedings of the

Second International Conference on Software Engineering San Francisco,

October 13-15, 1976, pp. 492-297.

[TEAS94] B.E. Teasley, "The Effects of Naming Style and Expertise on

Program Comprehension", InternationalJournal of Human Computer

Studies, V o l . 40, 1994, pp. 757-770.

[TILL95] S. Til ley, D.B. Smith, Perspectives on Legacy System Reengineering,

ht tp: / / www.sei.cmu.edu/reengineering/ pubs/lsysree/lsysree.html.

240

[TILL96a] S.R. Tilley, S. Paul, D.B. Smith, "Towards a Framework for Program

Understanding", Proceedings of the Fourth International Workshop on

Program Comprehension, Berlin, Germany, March 29-31,1996, IEEE

Computer Society Press, March 1996.

[TILL96b] S.R. Tilley, "Coming Attractions in Program Understanding",

Technical Report CMU/SEI-96-TR-019, ESC-TR-96-019, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania 15213, December 1996.

[TILL98a] S.R. Tilley, "Coming Attractions in Program Understanding I I :

Highlights of 1997 and Opportunities in 1998", Technical Report

CMU/SEI-98-TR-OOl, ESC-TR-98-001, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania

15213, February 1998.

[TlLL98b] S.R. Tilley, "A Reverse-Engineering Environment Framework",

Technical Report CMU/SEI-98-TR-005, ESC-TR-98-005, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania 15213, Apri l 1998.

[TIP94] F. Tip, "A Survey of Program Slicing Techniques", Technical Report

CS-R9438, Centrum voor Wiskunde en Informatica, Amsterdam,

1994.

[VESA97] J. Vesanto, "Using the SOM and Local Models in Time-Series

Prediction", Proceedings of Workshop on Self-Organizing Maps

(WSOM97), Helsinki, Finland, June 4-6, 1997.

[WATE79] R.C. Waters, "A Method for Analyzing Loop Programs", IEEE

Transactions on Software Engineering, Vol. SE-5, No. 3, May 1979, pp.

237-250.

241

[WATE82] R.C. Waters, "The Programmer's Apprentice: Knowledge Based

Program Editing", Transactions on Software Engineering, Vol. SE-

8, No. 1, January 1982, pp. 1-12.

[WIED86] S. Wiedenbeck, "Beacons In Computer Program Comprehension",

International Journal of Man-Machine Studies, Vol. 25,1986, pp. 697-709.

[WIED91] S. Wiedenbeck, "The Initial Stage of Program Comprehension",

International Journal of Man-Machine Studies, Vol. 35,1991, pp. 517-540.

[WILL90] L .M. Wills, "Automated Program Recognition: A Feasibility

DemonstrsLtion", Artificial Intelligence, Vol. 45, No. 1-2, September

1990, pp. 113-172.

[WILL92] L .M. Wills, "Automated Program Recognition by Graph Parsing",

PhD Thesis, A I Lab, Massachusetts Institute of Technology, July

1992.

[WILL93] L.M. Wills, "Flexible Control for Program Recognition", Proceedings of

the Working Conference on Reverse Engineering Baltirnore,Marylarid, May

21-23, 1993, IEEE Computer Society Press, 1993, pp. 134-143.

[WOOD96a] S. Woods, A. Quilici, "Some Experiments Toward Understanding

How Program Plan Recognition Algorithms Scale", Proceedings of the

Third Working Conference on Reverse Engineering Monterey, California,

November 8-10, 1996, L. Wills, I . Baxter, E. Chikofsky (editors),

IEEE Computer Society Press, 1996, pp. 21-30.

[WOOD96b] S. Woods, Q. Yang, "The Program Understanding Problem:

Analysis and a Heuristic Approach", Proceedings of the Eighteenth

International Conference on Software Engineering Berlin, Germany, March 25-

30, 1996, IEEE Computer Society Press, 1996, pp. 6-15.

242

[WOOD98a] S. Woods, Q. Yang, "Program Understanding as Constraint

Satisfaction: Representation and Reasoning Techniques", Automated

Software Engineering, Vol. 5, No. 2, April 1998, pp. 147-181.

[WOOD98b] S.G. Woods, A.E. Quilici, Q. Yang, Constraint-Based Design Recovery for

Software Reengineering: Theory and Experiments, Kluwer Academic

Publishers, 1998, ISBN 0792380673.

[2HAN97] Y. Zhang, "Scalability Experiments in Applying Constraint-Based

Program Understanding Algorithms to Real-World Programs", M5'c.

Thesis, University of Hawaii, May 1997.

243

