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Abstract

Software comprehension is one of the most expensive activities in software
maintenance and many tools have been developed to help the maintainer reduce the
time and cost of the task. Of the numerous tools and methods available, one group
has received relatively little attention: those using plausible reasoning to address the
concept assignment problem. This problem is defined as the process of assigning
descriptive terms to their implementation in source code, the terms being nominated by a user and

usually relating to computational intent. It has two major research issues:

»  Segmentation: finding the location and extent of concepts in the source code.
»  Concept Binding: determining which concepts are implemented at these

locations.

This thesis presents a new concept assignment method: Hypothesis-Based Concept
Assignment (HB-CA). A framework for the activity of software comprehension is
defined using elements of psychological theory and software tools. In this context,
HB-CA is presented as a successful concept assignment method for COBOLII,
employing a simple knowledge base (the library) to model concepts, source code
indicators, and inter-concept relationships. The library and source code are used to

generate hypotheses on which segmentation and concept binding are performed.

A two-part evaluation is presented using a prototype implementation of HB-CA.
The first part shows that HB-CA has linear computational growth in the length of
program under analysis. Other characteristics addressed include HB-CA’s
scalability, its applicability to other languages, the contribution made by different
information sources, domain independence, representational power, and guidelines
for the content of the library. The first part concludes by comparing the method
and implementation to cognitive requirements for software comprehension tools.
The second part considers applications of HB-CA in software maintenance. Five
areas for potential cost reduction are identified: business-rule ripple analysis, code

ripple analysis, module selection, software reuse, and software module

comprehension.
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Chapter 1

Introduction

1.1 Context

Software maintenance is an important part of the software lifecycle, typically
accounting for at least 50 percent of the total lifetime cost of a software system
[LIENS8Q]. Consequently, it 1s desirable to reduce the cost of software maintenance

whilst preserving the quality of the software system and maintenance process.

The state of a software maintenance process can be assessed with methods such as
the Capability Maturity Model (CMM) [PAUL93]. A reasonably mature process
(e.g. CMM Level 3 or higher) will have a number of distinct phases; the IEEE

standard for software maintenance [IEEE98] defines seven:

a) Problem/modification identification, classification, and prioritisation;
b) Analysis;

¢) Design;

d) Implementation;

e) Regression/system testing;

f) Acceptance testing;

g) Delivery.

Reducing the total cost of software maintenance requires the individual cost of one

or more of the constituent phases to be lowered.

1.2 Area of Interest

Many authors have acknowledged the central role and high cost of software
comprehension within software maintenance, either directly (e.g. [MAYR97],
[STANS84]), or indirectly, as a consequence of software complexity (e.g. [BANK93)).
Estimates of the time spent performing this activity vary. Hall claims that

understanding the documentation and logic of programs occupies 47-62 percent of




maintenance programmers’ time [HALL87a][HALL87b]. Parikh and Zvegintzov
suggest that more than half the programmer’s task is in understanding the system
[PARI83], and Standish claims that it may be the dominant cost in the entire
software lifecycle [STANS4].

Software comprehension takes place in several phases of the maintenance process
described in section 1.1, although the IEEE standard does not make this explicit
(see [IEEE98]). It is primarily undertaken during design and implementation where
modules are to be redesigned or changed. It could be argued that identifying ripple
effects during the analysis phase also requires some understanding of the software
modules. Software comprehension is an ideal starting point for reducing the overall
cost of software maintenance because of its importance, high cost, and frequent

occurrence in the maintenance process.

A common approach to reducing the cost of the maintenance process is the
provision of automated assistance to software maintainers. The task to be
performed and the expertise of a particular maintainer determine the type of tool
that is appropriate in a given situation. Novice and expert maintainers understand
code in different ways. Novices tend to take a syntactic approach to understanding
a program, organising their knowledge structures around the program syntax.
Experts organise their knowledge around algorithms and functional characteristics
within their domain of expertise[MAYR95]. The work presented in this thesis is
aimed at assisting expert maintainers with software comprehension. Consequently,
the focus is on tools that automatically identify the implementation of algorithms,
abstractions, and domain concepts in software. Tilley and Smith claim maintainers
most lack such tools [TILL95] and evidence that higher-level semantic knowledge

reduces maintenance effort [RAMA96] strengthens their case.

There are many types of software tool available to help with software
comprehension, emphasising different aspects of software systems and modules,
and usually creating new representations for them. Biggerstaff et al. differentiate
between naive and intelligent agents (tools) for providing such representations
[BIGGY3]. Naive agents generally perform deductive or algorithmic analysis of

program properties or structure, e.g. program slicers (see [TIP94]) or dominance




tree analysers (see[BURD99]). Intelligent agents attempt to assign descriptions of
computational intent to source code. Agents in the latter category meet the demand
(discussed in the previous paragraph) for tools that can identify algorithms,

abstractions, and domain concepts in software.

In [BIGG93], Biggerstaff et al. claim that research on intelligent agents can be

divided into 3 distinct approaches:

1) Highly domain specific, model driven, rule-based question answering
systems that depend on a manually populated database describing the
software system. This approach is typified by the Lassie system [DEVA91].

2) Plan driven, algorithmic program understanders or recognisers. Two
examples of this type are the Programmer’s Apprentice [RICH90], and
GRASPR [WILL92].

3) Model driven, plausible reasoning understanders. Examples of this type
include DM-TAO [BIGG93], [BIGG94], IRENE [KARA92], and the
method presented in this thesis (termed HB-CAS in Figure 1).

One exception to this categorisation is Hartman’s work [HART91a] that falls

between approaches 2 and 3.

Systems using approaches 1 and 2 are good at completely deriving concepts within
small-scale programs but cannot deal with large-scale programs due to
overwhelminé computational growth. Approach 3 systems can easily handle large-
scale programs since their computational growth appears to be linear in the length
of the program under analysis. They suffer from approximate and imprecise results

[BIGGY3].

Figure 1 1s based on the summary of the program understanding landscape in
[BIGG93]. The original has been updated to include additional work on program
understanding, with the number and colour of each oval providing a key to the
citations below. Biggerstaff et al. do not refer to publications in the original figure

but Figure 1 d4dds this information.







The method presented in this thesis is intended to operate with real-world, large-
scale programs and consequently adopts a plausible reasoning approach to its
intelligent analysis. Two systems in Figure 1 share this approach: DM-TAQ, and
IRENE. A brief description of each is given here and fuller explanations of their

approaches are presented throughout the thesis.

1.2.1 DM-TAO

DM-TAO forms the intelligent reasoning component of the DESIRE toolkit
described in [BIGG89], [BIGG93], and [BIGG94]. It aims to identify domain
concepts in C source code, using a connectionist inference engine to determine the
appropriate concept for a section of code. A rich domain model embodies a large
number of weighted relationships and concept types. Relationship weights are
updated automatically based on the actions of the maintainer using the system.

DM-TAO can operate in three modes:

1) Conceptual grep: search the source code for a user-specified concept.
2) Conceptual highlights: search the source code for any recognisable concept.

3) Identification: suggest a concept for selected code.
Modes 1 and 3 require user involvement in the concept assignment process.

The evaluation of DM-TAO described in [BIGG93] is based on three files (about
600 lines of code) containing data definitions in the domain of multi-tasking
windows systems. A manual analysis of the files was undertaken to find the most
important concepts for understanding the data. Twenty-seven concepts were found
and a domain model constructed containing twenty of them. DM-TAQ was tested
in conceptual grep mode finding twenty of the twenty-seven concepts and producing
three false positives, which were attributed to the fact that the connectionist
network was weakly trained. In identification mode DM-TAO tended to over-
generalise, finding both the appropriate super- and sub-concept for a segment of
code. This was attributed to some feature extractors not being implemented, e.g.

syntax categories.




This evaluation indicates that DM-TAO is reasonably successful at concept
recognition for data definitions. The strongest disadvantage of the approach is the
size, complexity, and computational cost of updating the domain model. The
method presented in this thesis aims to achieve concept recognition with a
considerably simpler and smaller domain model. It is intended to find operational

concepts rather than the data declarations on which DM-TAO has been evaluated.

1.2.2 IRENE

The IRENE system employs concept acquisition techniques to retrieve business
knowledge from COBOL programs[KARA92]. It embodies a top-down approach,
working from a domain-engineered model of business entities to their source code
implementations. Relationships between the entities are expressed as dependencies
and derivations. The process of concept acquisition (similar to concept assignment)
begins with user-supplied hypotheses about the correspondence of certain domain
concepts to constructs in the program. IRENE generates further hypotheses using
this information. The process is interactive, with the system user verifying concept

assignments and assisting with hypothesis generation.

IRENE has been evaluated on a small payroll application of about 500 lines, written
in COBOL 74. The internal representation (a parse tree represented as a hierarchy
of frames, see [KARA92]) was validated manually but no indication is given in

[KARA92] as to the success of the approach.

Since the available literature does not show IRENE’ concept
assignment/acquisition ability, comparative evaluation is difficult. The top-down
approach adopted is the opposite of that used by the method presented in this
thesis. In addition, IRENE’s use of a moderately rich domain model suffers similar

problems of maintenance and high initial cost that affect DM-TAO.

1.2.3 Summary
Although IRENE and DM-TAO adopt different approaches to concept
assignment, both systems use complex domain models requiring a large amount of

effort to create and maintain. Neither system has been evaluated extensively or on

particularly large programs.




1.3 Discussion of Problem

1.3.1 The Concept Assignment Problem

To meet the need for tools that identify algorithms, abstractions, and domain
concepts in programs, this thesis addresses the concept assignment problem. The term
was introduced by Biggerstaff et al. to describe the problem of assigning terms
regarding computational intent to appropriate regions of source code [BIGG93].
The emphasis of the work presented here is on automatic concept assignment with
minimal user involvement, although the activity can also be performed semi-

automatically or manually. The latter approaches are likely to incur greater cost.
Biggerstaff et al. define the concept assignment problem as:

“...a process of recognising concepts within a computer
program and building up an “understanding” of the program by
relating recognised concepts to portions of the program, its
operational context and to one other.” [BIGG93]

They refer to two distinct types of concept: programming-oriented, and human-
oriented. The former can be detected with traditional parsing technology using
formal, structure-oriented patterns of features as signatures for concepts. The term
“human-oriented” is used to refer to an informal expression of computational intent
e.g. acquire target. The signature for such concepts (also termed domain concepts
in this thesis) is less well defined and open to variation. The model of concept
recognition required for domain concepts is characterised as an opportunistic, non-
deterministic, and chaotic piecing together of evidence for a concept, until some
threshold of confidence is reached about its identity. This contrasts with the
programming-oriented model of recursive, algorithmic, deterministic, and orderly

building of abstract components from less abstract components [BIGG93].

A domain is defined as a problem area [DEBA94] but it is an overburdened term
[TILL96a] and as such, it is often difficult to define the limits and contents of any
one in particular. Using terms such as “programming-oriented” and “domain-
oriented” to differentiate types of concept may be ambiguous in some
circumstances, e.g. programming-oriented concepts are concepts in the domain of

programming and hence are domain concepts. In order to avoid this confusion,




and to define more precisely the problem addressed by this work, the concept

assignment problem can be rewritten as:

“The process of assigning descriptive terms to their
implementation in source code, the terms being nominated by a
user and usually relating to computational intent.”

This problem statement captures much of the original definition while removing
ambiguity from the supporting terms. A concept is regarded therefore as a
descriptive term nominated by the user. The rewritten problem statement is
concerned solely with the essence of concept assignment, i.e. mapping concepts to
code. Relating these concepts to the operational context of the program and to

each other is not within its scope.

1.3.2 Research Issues
Tilley et al. state that concept assignment research is at a very early stage, partly due
to the complexity of the matching process [TILL98b]. Two major research issues

can be 1dentified within the overall concept assignment problem:

*»  Segmentation: finding the location and extent of concepts in the source code.
*  Concept Binding: determining which concepts are implemented at these

locations.

Segmenting a program involves grouping pieces of conceptual information
generated from the source code. Concept binding involves analysing these groups

for the most plausible concept assignment for each.

1.3.3 Problem Boundaries

The concept assignment method presented in this thesis has been developed with

the assumption of certain problem boundaries and applications.

Globally, organisations maintain a large amount of COBOL and this provides a
strong motivation for targeting the technique at this language and its variants.
Analysis is targeted therefore at programs written in IBM COBOLIL. In view of

the aim of determining computational intent, the problem is restricted to the




procedure division of such programs and functional concepts are considered more

important than data concepts.

"The objective is to support a single maintainer in software comprehension, and
consequently solutions are not expected to support group-based comprehension. In
addition, 1t is assumed that such solutions will operate on individual modules of

code.

In summary, this thesis addresses the concept assignment problem for the
procedure division of programs written in IBM COBOL II. The problem is
restricted to analysing one module at a time, presenting the results to a single

maintainer.

1.4 Research Aims and Criteria for Success

The aims of this research, and hence the criteria for success, cover many aspects of
both the problem and solution. A framework to model the comprehension activity
for people and software tools is required to enable comparative evaluation of cost
later in the thesis. The concept assignment problem must be solved and a
prototype tool constructed to demonstrate the viability of the solution. The criteria

for success are formally stated thus:

1) The definition of a framework for the activity of software comprehension.
This should capture the essential processes and data structures involved in
software comprehension, regardless of whether the actor (i.e. the entity

undertaking the comprehension activity) is a person or a software tool.

2) The creation of a formal model of the comprehension activity framework

discussed in criterion 1 to define clearly its data structures.

3) The development of a new method to undertake automatic concept
assignment using a simple knowledge base. It should be capable of
-analysing real-world COBOL II code and successfully cope with poorly

structured and monolithic programs, in addition to well-structured




examples. The method should provide a software maintainer with

automatically recognised concepts linked to regions of source code.

4) As part of criterion 3, the development of novel approaches to address the

two main research issues in concept assignment: segmentation, and concept

binding.

5) The extension of the general formal model (see criterion 2) to the new

concept assignment method.

6) The implementation of a prototype tool to demonstrate the feasibility of the

new concept assignment solution. This should allow easy evaluation of the

method.

Chapter 10 presents a discussion of the success of this research with reference to

these criteria.

1.5 Evaluation Criteria

The primary objective of this work is to define a method to perform automatic
concept assignment using a simple domain model. It should be capable of handling
real-world programs and perform successfully, whatever the structural quality of the
code being analysed. Chapters 8 and 9 present an extensive evaluation of the
method described in this thesis. The first part (shown in Chapter 8) is based on the

following criteria:

» Representational Issues
o Spatial Cost
o Representational Power
o Library Content
®  Performance Issues
o Segmentation
o Concept Binding
o Computational Cost

o Scalability
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* General Issues
o Domain Independence
o Language Independence
o Expandability

o Cognitive Requirements

The three groups of criteria cover a wide range of characteristics. The method is
evaluated in Chapter 9 to establish where it may be applied in the software

maintenance process.

1.6 Contribution

The main contribution of this work is a new method for automatic concept
assignment: Hypothesis-Based Concept Assignment (HB-CA). It uses a simple
knowledge base and is targeted at COBOL II. The two main research issues within

the concept assignment problem are addressed:

*  Segmentation: Structural information and self-organising maps are used to
cluster related concept hypotheses. This approach allows the method to
handle well-structured, poorly-structured, and monolithic code.

*  Concept Binding: Concept clusters are analysed and scored. Ambiguity is

resolved through the application of simple rules.

The method is set in the context of a framework describing the software
comprehension activity. This captures the essential data structures and processes of
software comprehension for both people and software tools. A formal model of
the framework expresses its data structures in set theory. HB-CA is compared to
other concept assignment solutions throughout this thesis and an extensive
evaluation of the method and its use in the software maintenance process is

presented.
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1.7 Thesis Structure

This thesis is divided into ten chapters.

Chapter 1 introduces the motivation and context for the research, discusses the

problem to be solved, and sets out the research aims and criteria for success.

Chapter 2 develops a framework modelling software comprehension. Parts of this

framework are formalised using set theory.

Chapter 3 introduces Hypothesis-Based Concept Assignment. Comparisons are
drawn with the methods underlying the DM-TAO and IRENE systems. The

framework and formal model presented in Chapter 2 are extended for HB-CA.

Chapter 4 describes the first stage of HB-CA, hypothesis generation, in the context
of the comprehension activity framework and formal model. HB-CA’s hypothesis
generation method is compared with other systems’ techniques for gaining initial

information about a program.

Chapter 5 presents a method for segmenting programs based on their structure, and
using self-organising maps of concept hypotheses. This forms the second stage of
HB-CA. Appropriate comparisons are made with other systems’ methods for

segmentation.

Chapter 6 describes the final part of HB-CA: concept binding. HB-CA’s method is
compared with those used by DM-TAO and IRENE.

Chapter 7 describes a prototype implementation of HB-CA called the Hypothésis-
Based Concept Assignment System (HB-CAS). The implementation is used in the

investigations presented in Chapters 8 and 9.

Chapter 8 presents the first part of a detailed evaluation of HB-CA. The criteria

outlined in section 1.5 are used to evaluate the method.

12




Chapter 9 contains the second part of the evaluation, examining applications of HB-

CA in the software maintenance process.

Chapter 10 contains a general discussion and summary of the work accomplished.
The success of the research is considered in terms of the criteria presented in

section 1.4 and ideas for further work are suggested.

The Appendix contains data and results pertaining to the investigations carried out

in the evaluation. It is followed by a list of references.

1.8 Summary

Chapter 1 has introduced the work presented in this thesis. The motivation and
context of the research have been explained with reference to other achievements in
the field. Two major research issues have been identified within the concept
assignment problem: segmentation, and concept binding. Evaluation criteria have

been presented and the structure of the thesis explained.

Chapter 2 discusses background material and develops a framework to model the

software comprehension activity.
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Chapter 2

Background and Framework

2.1 Introduction

Chapter 1 introduced the material in this thesis, presenting the context and
motivation of the work. The research problem was defined and two key issues
identified. Criteria for evaluating both the method and the research were presented.

The structure of the thesis also was discussed.

This chapter examines the background to the method presented in this thesis. A
standard process of software maintenance is described and issues relating to its
improvement are discussed. A descriptive framework capable of modelling both
human and automated approaches to software comprehension is then introduced.
This 1s the context for the Hypothesis-Based Concept Assignment (HB-CA)
method presented in later chapters. The framework’s source and target

representations are formally defined.

2.2 Software Maintenance

The IEEE definition of software maintenance given in [IEEE98] is:

“Modification of a software product after delivery to correct
: p : Ty

faults, to improve performance or other attributes, or to adapt the

product to a modified environment.”

It 1s the largest and most expensive stage of the software lifecycle [ROBS91]

potentially consuming 70 percent of the total lifecycle costs [LIENSO].

14




2.2.1 Types of Software Maintenance

Swanson describes three types of software maintenance [SWAN76]:

* Perfective: Changing or adding to a system’s functionality, improving
maintainability, enhancing performance.
* Adaptive: Changing a system to account for environmental changes.

* Corrective: Fixing bugs in a system.

A change to a software system will usually involve elements of these types of

maintenance [SOMMO93].

2.2.2 The Software Maintenance Process

Organisations undertake the process of software maintenance in various ways
ranging from ad hoc and disorganised, to highly controlled and well managed. In
recent years, there has been great interest in the improvement of the software

maintenance process, with a view to controlling and reducing the cost of the task.

Itis possible to conduct the improvement of an organisation’s software process in a
managed way. One of the best known and most widely used examples of this is the
Capability Maturity Model (CMM) developed by the Software Engineering Institute.
The CMM defines five levels of software process maturity for an organisation
although it does not specifically prescribe how an organisation should move from

one to another. The levels are described below [PAUL93]:

» Level 1: Initial
The software process is ad hoc, occasionally chaotic. Few activities are

defined and success depends on individual effort. There is little

predictability in quality, budget, schedule, or functionality.

» Level 2: Repeatable
Basic project management processes are established to track cost, schedule,
and functionality. The necessary process discipline is in place to repeat
~earlier successes on projects with similar applications. Planning and

management of new projects is based on experience with similar projects.
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* Level 3: Defined
The software process for both management and engineering activities is
documented, standardised, and integrated into a standard software process

for an organisation. All projects use a tailored version of this standard

process.

* Level 4: Managed
Detailed measures of the software process and product quality are collected.

Both the software process and products are quantitatively understood and

controlled.

* Level 5: Optimising
Continuous process improvement is enabled by quantitative feedback from

the process and from piloting innovative ideas and technologies.

Level 1 establishes a baseline against which process improvements in the higher
levels can be compared. The activities that an organisation can undertake to

establish or improve the software process are characterised in Levels 2-5[PAUL93].

There is a current initiative to standardise the various approaches to software
process improvement and assessment. It aims to reduce the cost of assessing
process capability for organisations and their customers by defining certain criteria
that must be met by a process assessment method. The results of using differing
methods can then be compared within the framework. The initiative is called

SPICE and is documented in [EMAM98].
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Once an organisation has reached Level 3 of the CMM, the stages of the software
maintenance process are defined. The IEEE software maintenance standard

defines seven stages for the maintenance process [IEEE98]:

a) Problem/modification identification, classification, and prioritisation;
b) Analysis;

c) Design;

d) Implementation;

e) Regression/system testing;

f) Acceptance testing;

g) Delivery.

Chapter 1 identified the analysis, design, and implementation stages as having
particular relevance to the work presented here. The IEEE definition of these

stages (see [IEEE98]) is discussed in the next few sections to show where software

comprehension is required.

2.2.2.1 Analysis

Analysis is an iterative process that has at least two components: feasibility analysis,
and detailed analysis. The modification request, system and project documentation,
and repository information are used to determine the feasibility and scope of the
modification. Where documentation is inadequate and source code is the only
reliable reference for the current system, reverse engineering is recommended.
Various activities are required during analysis including the identification of
elements involved in thé modification, determination of the modification’s impact,
identification of short and long-term costs, and implementation planning. The
standard suggests that a preliminary modification list of those elements affected is
created, e.g. software, specifications, database, and documentation. This involves
some degree of software comprehension, probably at the system rather than
program level, to determine which elements may be affected. It is interesting to
note that although analysis requires the identification of the elements involved,
identifying the specific software modules affected is left until the design stage. This

could make cost estimation extremely difficult in some circumstances.
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Identifying the impact of the modification and building the preliminary modification
list may involve ripple analysis. Ripple analysis involves assessing the effect of a
change on other parts of a system and can be undertaken in various ways. The
analysis stage of the software maintenance process is likely to require ripple analysis
at the business-rule level primarily, as the identification of affected software

modules‘is not addressed until the design stage.
Business rules have been defined as:

“A requirement on the condition or manipulation of data
expressed in terms of the business enterprise or application
domain.” [SELF93]

A key idea is that the rule is stated at the level of the application domain, not of
programming. Consequently, business rules are related closely to domain models
. but reflect the desires of a particular company, not the general features of a domain
[SELF93]. Examples of business rules might be found in the formulae and
conditions that define the growth and charging structure of a financial product such
as a pension policy. These make certain requirements of manipﬁlations on the

entities involved in the management of the policy.

Ripple analysis in terms of business rules poses the following question: if one rule is
changed, are others also affected? Finding affected rules may require examination
of documentation and software, with the cost of undertaking such analysis likely to
be crudely proportional to the number of artefacts that need to be inspected.
Business-rule ripple analysis can be seen as an example of the higher-order impact
analysis that Tilley and Smith describe in [TILL96b]. Higher-order impact analysis
allows the software engineer to analyse proposed changes at the application-domain

level rather than the implementation-domain level [TILL96b].

The analysis phase produces a report that forms part of the input to the design

phase.
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2.2.2.2 Design

This phase uses the system and project documentation, source code, comments,
databases, and the output of the analysis stage to design the modification to the
system. The process includes identifying affected software modules, modifying
their documentation, creating and identifying test cases, and updating the
modification list. The whole phase involves software comprehension but two
activities particularly require it: code ripple analysis, and module selection. Both are

part of the process of identifying affected software modules.

Code ripple analysis answers a similar question to that posed for business rules
above. In this situation however, the ripples are examined on the basis of potential
changes to source code. This can be undertaken at a syntactic and semantic level,
e.g. using a forward program slice, see [NING94]. Alternatively, it could be
conducted conceptually in a similar manner to business-rule ripple analysis, with the
difference lying in the type of concept being considered. Code ripple analysis is
more likely to be dealing with software engineering concepts than application-

domain related concepts.

The cost of code ripple analysis is addressed extensively in the literature but usually
in terms of specific algorithms. Since the work presented in this thesis is not
concerned with particular methods for the process, the cost can be regarded as

roughly proportional to the number and size of the artefacts examined.

Module selection is the process of determining which modules are affected by a
proposed change. Itcan take place before and/or after ripple analysis and involves
searching the code repository for instances of concepts or code that are known to
require change. The cost can be seen as a function of the size of the code
repository (in terms of total lines of source code) and the search method.
Translating the behavioural description of a modification to its implemented
counterpart can be extremely difficult. Concept-based search could assist with

selecting the modules that need changing.
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2.2.2.3 Implementation

Implementation involves making the specified changes to the system. The IEEE
standard suggests that implementation should be commenced during the design
phase, particularly if the change is complex, in order to better understand the
modification. The standard defines four sub-processes: coding and unit testing,
integration, risk analysis, and test-readiness review. Software comprehension is
particularly required in coding and unit testing. Although the standard does not
elaborate further on the coding sub-process, it is possible to break it into two parts:
software module comprehension, and change implementation [GALL91]. These
parts may be iterative. Software module comprehension is the process of studying
the software module to be changed, in order to understand where and how the
change should be made. Once the module is understood, the change can be made.
Achieving such understanding is a non-trivial task accounting for a very high
proportion of the total cost of software maintenance. The work presented in this
thesis is aimed at helping to reduce understanding cost through automatic concept
assignment. The effort of understanding can be seen as proportional to the size of
the module being considered, although this relationship may not necessarily be
linear since the maintainer may change comprehension strategy for different sizes of
program (see [LITT86]). Other factors such as the program complexity, quality of
coding, and maintainer’s experience may also have an impact. Familiar modules are

likely to take less time to comprehend than those not previously addressed.

2.2.2.4 Summary

The IEEE standard presents a good model for the software maintenance process,
identifying the major stages within it. The International Standards Organisation also
defines a software maintenance process standard (see [ISO99]). This is a three-stage
process that is less comprehensive than the IEEE version. A particular problem is
that impact analysis is not undertaken until the implementation stage, potentially

causing difficulty with cost estimation.

“The stages of the IEEE standard where there is a strong requirement of software
comprehension have been discussed and cost factors identified in each. Four
particular activities have been highlighted: business-rule ripple analysis, code ripple

analysis, module selection, and software module comprehension.
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2.3 Software Comprehension

To benefit software comprehension, approaches to automatic assistance must have
the potential to lower the cost of producing representations used or required by the
software maintainer. This section presents a descriptive framework for the activity
of software comprehension. It is specialised for the concept assignment problem
and unifies automated and manual approaches. The framework is used later in this
thesis for a discussion of the cost savings that might be achieved when using

automated assistance in software comprehension.

2.3.1 A Comprehension Activity Framework
Initially, it is assumed that a single maintainer is attempting to understand a software

module for one of the reasons discussed in section 2.2.2.

Maintainers gain their understanding of how a module performs a task by using and
creating various representations of the software to emphasise different
characteristics. These representations can show things such as the control and data -
flow, or the relationship between subroutines in a module, e.g. using a call graph.
Source code captures all of these properties and is the most widely used
representation. Others are created and used to assist with understanding the source
code, and changes to a sbftware module are usually made in the source code first,

with other representations updated to reflect these modifications.
The activity of software comprehension can be characterised as the use, creation,

and modification of representations of the software by a person. This is shown in

Figure 2.
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2.3.1.2 People as Processors

There has been a large amount of work undertaken to determine how people
understand software, and how their understanding is represented in the mind. The

understanding activity is generally termed program comprebension.

Novice and expert maintainers understand code differently. Novices adopt a
syntactic orientation, organising their knowledge structures around the program
syntax, whereas experts organise their knowledge around algorithms and functional
characteristics within their domain of expertise[MAYR95]. The comprehension
model used initially depends on the maintainer’s level of domain knowledge and
code familiarity [MAYR94]. Models of program comprehension can be divided into

three groups: top-down, bottom-up, and integrated.

Top-down understanding is typically applied when the code is familiar [MAYR95]
and a good éxample of a top-down model is that defined by Soloway, Adelson, and
Ehrlich [SOLOB84],[SOLO88]. This model views the process of comprehension as
the construction of a hierarchy containing goals. These goals are decomposed into
structures called plans, which can describe a strategy for achieving a goal, a language
independent problem solution, or be a code fragment implementing such a solution.
Plans can be decomposed further into lower-level plans [MAYR95]. Brooks
presents another top-down approach using a hierarchy of hypotheses [BROO83].

Bottom-up models (typically used when the code is unfamiliar) suggest that the
maintainer starts building a mental representation from the source code and chunks
together elements into higher order structures. Chunking refers to the process of
attaching descriptive labels to knowledge structures at various levels. Chunks can
contain lower-level chunks with a description of how they interrelate [MAYR95].

Pennington’s model is an example of a bottom-up approach [PENN87].

The integrated approach subsumes the other two types by providing a framework
within which both can be used as necessary. This model was suggested by von

Mayrhauser and Vans and a number of studies have been performed to validate it

[MAYRY5] (see also [MAYR97], [MAYR98)).
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All of the comprehénsion models have aspects that appeal to the personal
experience of software maintainers. By including elements from top-down and
bottom-up methods, the integrated meta-model of von Mayrhauser and Vans
appears to be superior to the others. This intuitive assessment is confirmed further
by the empirical studies undertaken by von Mayrhauser et al., and by the typical
experience of professional maintainers. Glimpses of the meta-model can be seen in
the other theories, e.g. to explain the experiences of professional maintainers,
Brooks suggests that bottom-up understanding is a degenerate case of top-down
understanding [BROO83]. A more plausible explanation for this would seem to lie
in the meta-model approach. It is also interesting to note that since the
development of the meta-model, no new major comprehension models have been

proposed despite the relatively large number produced before its creation.

Von Mayrhauser and Vans identify three major components common to all models
of comprehension: a knowledge base, a mental model, and methods for acquiring
knowledge [MAYR95]. The knowledge base contains the maintainer’s general
knowledge of the application domain, software engineering and maintenance
knowledge, their experience and skills, and any other knowledge relevant to the task.
The mental model is the internal, working representation of the software under
consideration [MAYR95]; in other words, it contains the current state of
comprehension. The methods for acquiring knowledge (and thus updating the
knowledge base and mental model) vary from theory to theory. Littman et al.
identify two major strategies: systematic, and as-needed. The systematic approach
involves detailed line-by-line study of the program code whereas the as-needed
strategy suggests localising the section of program required for a change before

understanding it in greater depth [LITT86].

The literature on program comprehension suggests that there are three important
elements to be added to the comprehension activity framework: a knowledge base, a
mental model, and a collection of methods for acquiring and updating knowledge.

Figure 5 shows the comprehension activity framework extended for a person.
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(although the degree of formality of knowledge representation varies between
them), a representation of their current belief about the software under analysis, and
methods for updating their current belief representation and domain model
(although the model may be updated by the user rather than automatically). It is
clear that these systems have similar characteristics to the psychological phenomena
observed by researchers in human program comprehension. The domain model of
a software tool corresponds. to the knowledge base of a person. Representations of
current belief in a tool correspond to a person’s mental model and both people and

software tools have methods by which they acquire and evaluate new knowledge.

The comprehension activity framework can now be modified to include these ideas.
The three components added to the framework for people can be redefined to be

valid for both processor types. They are now:

* A knowledge base containing the processor’s knowledge about the domain,
language, and other pertinent information required to perform the
comprehension task. This knowledge base would be considerably richer and
more flexible for a person than a software tool.

*  An internal representation to store the processor’s current understanding of the
source code being analysed. This corresponds to the mental model of a
human maintainer.

= Methods by which the internal representation and knowledge base can be

updated.

These changes are shown in Figure 6.
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Each line is made up of lexemes and is numbered sequentially.

Line : ({y : Lexeme}, seqnum : Integer) )
Lexemes are the basic units used in parsing and do not need to be specified in more
detail. They are described by their start and end character positions (relative to the
first character of the source code) and are represented as a string.

Lexeme : (start : Integer, end : Integer, token : String) | start < end (3)
Definitions (1) to (3) establish a formal, lexical representation for the source code.
2.3.2.2 Target Representation

The target representation is a collection of concept names (labels) related to parts of

the source code (termed segments). This can be expressed formally.

TR : {(x : Segment, y : String)} )
A concept is any descriptive term (usually related to computational intent)
nominated by the processor to represent some important item or activity within a
software-engineering or application domain. This is defined initially as a string.

Concept : String (5)

A segment 1s a contiguous group of lines in the source code. A basic definition is

shown below.
Segment : (start : Line, end : Line)

This needs to be extended to capture the notion that star must be equal to or less

than end. A new function ¢ is defined for “occurs before”.
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¢ : (Line, Line) — Boolean

¢ (@ 8),(c,d) = b<d (6)

The basic definition of segment can now be extended to include this constraint.
Segment : (start : Line, end : Line) | start ¢ end @)

Definitions (4) to (7) establish a formal version of the target representation.

The comprehension activity can now be regarded as a function P between the

source and target representations.

P : Source - TR (8)

The processor provides the method by which the mapping under the function takes

place.

The comprehension activity framework now contains all the general components
required to model the software comprehension activity for concept assignment,
whether the processor is a person or software tool. The components are common
to both types and later chapters discuss some instances in more detail. Any
automatic concept assignment solution set in the context of the framework can be
shown to perform the same translation as a person undertaking concept assignment

manually. Consequently, the relative costs of the approaches can be compared.
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2.4 Summary

This chapter has discussed the software maintenance process and its improvement.
A descriptive framework has been presented to model the software comprehension
activity and its representations. These representations have been defined formally.

The framework and formal model provide the context for the work described in the

next few chapters of this thesis.

Chapter 3 presents an outline of the processes and data structures used in the
Hypothesis-Based Concept Assignment method, relating these to the
comprehension activity framework. It discusses the rationale for the method’s
design and examines the structure of the knowledge base used by HB-CA,
comparing it to those employed in DM-TAO and IRENE. An example source

program is presented on which the operation of HB-CA is demonstrated in later

chapters.
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Chapter 3

Hypothesis-Based
Concept Assignment

3.1 Introduction |
Chapter 2 presented a framework and formal model to describe various aspects of

the software comprehension activity and its associated representations.

This chapter outlines a new approach to solving the concept assignment problem
discussed in Chapter 1. It is termed Hypothesis-Based Concept Assignment
(HB-CA). The processes and data structures of the method are discussed in the
context of the comprehension activity framework described in Chapter 2. A
comparison is made between the general characteristics of this method and other

plausible reasoning solutions to the concept assignment problem.

A program fragment and knowledge base are presented as an example to illustrate

the method’s operation in later chapters.

3.2 Characteristics of Concept Assignment
Methods |

This section discusses general characteristics of two concept assignment methods
that address the problem using plausible reasoning. Table 1 shows a summary of
areas on which these are compared, with lengthy discussion reserved for later

chapters. Hatched boxes show where a method’s characteristic is shared with HB-

CA.
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3.3.1 Hypothesis Generation

The hypothesis generation stage takes source code as its input. Using information
contained in the knowledge base, it scans the source code for indicators of various
| concepts. When an instance is found and matched, a hypothesis for the appropriate
concept is generated. Matching is performed using a variety of flexible criteria. The

resulting collection of hypotheses is ordered by the position of the indicators in the

source code.

3.3.2 Segmentation

The segmentation stage takes the sorted hypotheses and attempts to break them
into segments. Initially, this is performed using hypotheses for primary
segmentation points (COBOL II section boundaries). Each of the initial segments
is analysed to determine whether it has the potential to contain a number of smaller
segments. If this is the case, a self-organising map is used to establish areas of
conceptual focus within the segment. These areas are analysed and smaller
segments created if necessary. The output of the stage is a collection of segments,

each containing a number of hypotheses.

3.3.3 Concept Binding

This stage analyses each segment’s hypotheses to determine which concept has the
most evidence. It exploits relationships in the knowledge base to generate
conclusions, and scores these on the basis of concept occurrence. A number of
disambiguation rules can be applied to choose between equally strong concepts.
- When a concept has been selected, the segment is labelled with the name of that
concept. After all segments have been analysed and labelled, the results form the

overall output of the method.

3.4 Characteristics of Concept Assignment
Methods

- Each of HB-CA’s stages is described in detail in the next few chapters but it is
useful to compare some of its general characteristics with those of DM-TAQ and
IRENE, which have both addressed the concept-assignment problem using

plausible reasoning.
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performs most of its understanding based on information from the source code. If
the source code is hard for a person to understand (due to a lack of meaningful
items within it), it will probably be hard for a bottom-up concept assignment
system. Top-down systems may be able to avoid this problem by performing most
of their inference using the domain model. This requires more investment in the
creation and maintenance of the knowledge base, as it is the primary understanding

mechanism.

DM-TAQO’s bottom-up mode has the same goal as HB-CA: to provide a list of all
recognised concepts to the user. The methods of understanding and presentation
differ. The DM-TAO method also forms part of the DESIRE toolset intended for
supervised use (see [BIGG89], [BIGG93], [BIGG94]) whereas HB-CA is intended

to operate unassisted.

3.4.2 Interactivity

Interactivity is the amount of user-involvement required in the concept assignment

process.

HB-CA is a non-interactive method requiring no user involvement, other than prior

creation of the knowledge base.

IRENE is highly interactive. The concept search process is initiated from user-
supplied hypotheses with the system making further suggestions. These are verified

by the user for IRENE to continue its analysis.

DM-TAO can operate with various levels of interactivity. It is user-driven in both
top-down mode (conceptual grep), and in “directed” bottom-up mode
(idéntification). In bottom-up mode (conceptual highlights), it is non-interactive,
although the expectation is that the results will be employed by the user to extend

the search further.

Table 3 summarises the level of interactivity required by the different approaches.
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It 1s anticipated that the user, or some other person responsible for knowledge base
maintenance, will construct the library, possibly using automated assistance such as
that described in [SAYY97]. This would take place before the first use of HB-CA
and the knowledge base content then could be improved as the user gained

experience. Section 9.2.2 shows a model that includes this feedback process.

3.5.1 Knowledge Representation in the Library

Knowledge in the library can be répresented as a semantic network. Semantic
networks are graph structures consisting of nodes, and labelled arcs that describe
the relationships between the nodes [KUWAO97]. The library nodes also have

attributes that are explained below.

There are two entities in the library that are represented as nodes in a semantic
network: concepts, and indicators. Concepts are the terms nominated by the user to
describe items or activities in the domain. Indicators are evidence for concepts

expressed in the implementation language, in this case IBM COBOL IL
The library encodes two types of relationship:

* Indicator-Concept

* Concept-Concept

The indicator-concept relationship maps evidence for a concept to that concept.
Concept-concept relationships map concepts to others to form composites and

specialisations.

3.5.1.1 Indicators

Indicators have a number of attributes:

= Name
= (Class
2 Data
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potentially many specialisations. If a specialised concept is required by more than
one general form, an additional concept should be added to the library to represent
the entities separately. Examples of acceptable and unacceptable structures for the
specialisation relationship are shown in Figure 14. The red lines denote the links

that would cause problems.

Unacceptable Acceptable

Figure 14: Examples of Acceptable and Unacceptable Forms
of the Specialisation Relationship

The specialisation relationship can be stated formally:
Specialisation : {((a,b,c):Concept, (d,e,/):Concept) |e = “Secondary”} (16)

Composition relationships are formed by creating composite nodes in the semantic
network to join primary action concepts to primary object concepts. This forms an
action:object structure (essentially a verb and noun construction) to convey more

information to the user (e.g. Read:File rather than merely Read).

Creating a composition of two primary concepts also produces a series of implied
composites with all specialisations of the primary object concept. These are not
stored in the semantic network but are used as required by the segmentation and
concept binding methods. Figure 15 shows an example semantic network with a

composite concept.
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The formal representations defined in expressions (9) to (15) can be combined to

give a formal definition of the knowledge base.

KB : ({x : Concept}, {i : Indicator}, {(p : Indicator, (18)
q : Concept)}, {r | 7: {(a: Concept, b : Concept)}})

The HB-CA library structure can be expressed as an instance of the general KB

type.
L:KB
L=(C1IZR)
I=domZ

For some T: Specialisation, 7' R

For some P: Composition, P € R

3.6 Knowledge Base Characteristics

This section compares various characteristics of the knowledge bases used in
IRENE, DM-TAQO, and HB-CA. The characteristics examined are the costs of
creation and maintenance, and the knowledge base complexity, as measured by the
number of inter-concept relationships and their types. A brief description of the

IRENE and DM-TAO knowledge bases is presented in sections 3.6.1 and 3.6.2.

3.6.1 DM-TAO Knowledge Base

The knowledge base and inference engine of DM-TAO are combined into one
structure. It uses a connectionist-based inference engine [BIGG93]. The
knowledge base is a domain model built as a network, in which each concept is
represented as a node and inter-concept relationships are modelled as explicit links
between the nodes. HB-CA’s library is similar to this. Each concept has associated
information regarding the features that characterise it, its relationships to other
domain concepts, and informal knowledge such as programmer terminology. The
- syntactic and conceptual context in which the concept occurs also may be stored.
The domain model captures the underlying semantics in the target domain through
a rich set of inter-concept relationships, embodying the nature and degree of

semantic assoclation between domain concepts [BIGG93]. The network is
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organised in layers of abstraction and contains many types of node. These are
connected by several types of inter-node link, which have real-valued weights
associated with them to quantify the strength of the relationship. The weights are
updated semi-automatically in response to user evaluation of the correctness of

concept assignments.

3.6.2 IRENE Knowledge Base

IRENE’s knowledge base models the domain by using concepts and two major
* relations between them: derivation, and dependency [KARA92]. Derivation
captures the notion that a concept X is derived from a concept Y if there is a
function f such that {(Y) = X. Dependency is similar but the function f is unknown.
These relations are transitive. There are two other relations used in the IRENE
knowledge base: strong and weak implication. Strong implication captures the
expectation of the existence of a concept when knowing the existence of another
concept. Weak implication expresses the plausibility that a concept exists, upon the
knowledge that its implying concept exists. The implication relations are
intransitive. The domain model also stores possible concept realisations in a
COBOL program, dividing IRENE’s knowledge into software-dependent and

software-independent categories.

3.6.3 Knowledge Base Complexity
The complexity of the knowledge bases can be compared using the number of
concept types and the number of inter-concept relationships employed to represent

knowledge.

HB-CA employs two inter-concept relationships and two types of concept. This
provides a relatively simple knowledge base capable of representing a wide range of
concepts. The HB-CA library is effectively a reflection of the maintainer’s current

domain understanding and interest.

DM-TAO has the most complex knowledge base employing a large number of
concept and relationship types. This allows the system to perform powerful
inference but at the expense of greater maintenance than the HB-CA library. The

way that DM-TAO updates its knowledge means that the knowledge base does not
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reflect the maintainer’s understanding in the same way as HB-CA, but forms its own

“understanding” of the domain.

IRENE’s knowledge base is of similar complexity to HB-CA, utilising four inter-
concept relations. The restrictions on the application of these are considerably
greater than HB-CA since they require a formal relationship to hold between the

concepts. IRENE does not differentiate between types of concept.

There are advantages to-each approéch. Simpler approaches, such as HB-CA and
IRENE, allow the knowledge base to be created and maintained easily by a user.
The more complex approach of DM-TAO makes this a difficult activity but
provides a subtler inference system. Its knowledge base is updatéd automatically
although a user is still required to assess the validity of concept assignments. The
difficulty of creating and maintaining such a knowledge base may have contributed
- to the fact that DM-TAO has not moved beyond a research prototype (see
[BIGG93], [BIGG94]). The formal relations employed by IRENE may incur a
higher initial cost than HB-CA when the domain model is created. HB-CA is

capable of concept assignment using minimal information.

The approach taken to source-code evidence can also have an impact on cost. DM-
TAO and HB-CA use feature analysers with flexibility in the recognition methods.
This reduces the need to store a large range of specific implementation evidence.
The examples of concepts shown in [KARA92] imply that IRENE requires a larger
range of code examples to match source code features. The differences between

the systems are summarised in Table 4 below, and Table 1 in section 3.2.
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3.7.1 COBOL II Fragment

GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21
GB21

*

*

*

*

CO0-READ-APS SECTION.
C00-000. ’ _
READ APS MASTER FILE

CALL 'GBAAYO0X' USING APS-RECORD-IN.

IF APS-EOF = END-OF-FILE

MOVE HIGH-VALUES TO APS-RECORD-IN

GO TO C00-995S.
MOVE 'l' TO W-GBCM0133-2.

CALL 'GBCM0133' USING APS-RECORD-IN W-GBCM0133-2.

C00-999.
EXIT.
SKIP3
Cl0-WRITE-APS SECTION.
WRITE APS MASTER FILE
MOVE '2' TO W-GBCM0133-2.

CALL 'GBCM0133' USING APS-RECORD-OUT W-GBCM0133-2.
CALL 'GBAAZOX' USING APS-RECORD-OUT.

C10-999.

EXIT.

SKIP3
C20-PRINT SECTION.
C20-000.

PRINT PECULIAR RECORDS TO BE MANUALLY CHECKED

IF A-LINENO LESS THAN 25
GO TO C20-010.

ADD 1 TO A-PAGENO.
MOVE A-PAGENO TO H1-PAGE.
MOVE C-1 TO P-CC.
MOVE H1-HEADLINE TO P-LL.
PERFORM S00-PRINT.

MOVE WS-2 TO P-CC.

MOVE H1-HEADLINE TO P-LL.
PERFORM S00-PRINT.

MOVE 0 TO A-LINENO.

C20-010.
MOVE WS-2 TO P-CC.
MOVE GBAIA010 TO P1-KEY.
MOVE P1-DATALINE TO P-LL.

PERFORM S00-PRINT.

MOVE SPACES TO P-LL.

ADD 2 TO A-LINENO.
C20-999.

EXIT.

EJECT
S00-PRINT SECTION.
S00-000.

PRINTS A LINE

CALL 'PRINT' USING P-PRINTLINE.

S00-999.
EXIT.

Figure 16: Example COBOL II Program Fragment
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0193
0194
0185
0196
0197
0198
0199
0200

.0201

0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247







3.8 Summary

This chapter has described a new approach to concept assignment termed
Hypothesis-Based Concept Assignment. A general description of its data structures
and processes has been presented, with reference to the comprehension activity
framework described in Chapter 2. The formal model has been extended to capture
certain characteristics of the HB-CA method and its representations. An example

program and knowledge base have been presented for use later in the thesis.

Chapter 4 describes the first stage of HB-CA in detail, further extending the formal
model of the approach. Where appropriate, comparisons are made with the

IRENE and DM-TAO systems.
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Chapter 4
Hypothesis Generation

4.1 Introduction

Chapter 3 provided a general introduction to Hypothesis-Based Concept
Assignment and made comparisons with other approaches taken to the concept
assignment problem. The overall process of HB-CA was described and the

knowledge base was discussed in detail.

This chapter describes the first stage of HB-CA: hypothesis generation. The formal
model developed in preceding chapters is extended and a representation for
hypotheses defined. Hypothesis generation accepts source code as input and

transforms it to a hypothesis list for output.

4.2 Hypothesis Generation
The purpose of this stage is to create an initial conceptual interpretation of the

program being analysed.

Hypothesis generation uses the indicator-concept relationship in the knowledge
base. When a recognisable indicator is found, a hypothesis is created for each

concept that is related to the indicator. These are stored for later use.

The formal model presented in Chapters 2 and 3 can be extended to capture the

notion of a hypothesis:
Hypothesis : (i : Indicator, ¢ : Concept, / : Lexeme) - (19)
This representation stores the indicator and concept (essentially a single element of

the indicator-concept relationship), and the lexeme that produced the hypothesis.

This means that the hypothesis can be linked to its source code origins when

necessary.
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of their use[BROO83]. In HB-CA, these variations are ignored and all indicators

are treated with equal weight.

HB-CA ohly works with internal indicators drawn from types 2, 4, and 6 in Table 5.
The method is designed to accommodate additional indicator types without changes
to the segmentation or concept binding methods. This is facilitated by merging the
output of each type of indicator recognition. Brooks suggests that stereotypical
code fragments may be used as indicators [BROO83]. This is a good example of a
complex indicator type that would require advanced recognition routines and

representations. The indicators used by HB-CA are simple text strings.

Various authors have investigated the contribution of certain types of indicators to
the understanding process, and how software maintainers use them. Much work
has been performed suggestihg the use of code fragments as indicators (also termed
- beacons by many authors), e.g. [WIED91] and [WIEDS86]. Gellenbeck and Cook
found that meaningful procedure and variable names, typographic signalling, header
comments, and mnemonic module names assisted comprehension [GELL91a],
[GELL91b]. These findings are confirmed by Teasley’s work on naming style,
although meaningful names were found to help experts less than novices. Experts
used other information sources in the absence of good naming [TEAS94j. Miaraet
al. investigated the effect of indentation and discovered that a moderate level (2-4
spaces) could help with program comprehension [MIAR83]. The indicators used
for HB-CA were chosen partly on the basis of these investigations, and partly for

practical reasons, as textual indicators are amenable to simple extraction and analysis

by parsers.

In summary, there is evidence to support the use of a variety of indicators when
analysing a program for concept assignment. These include code fragments,
variable names, module names, procedure names, comments, indentation, and
structural information. Analysing a program for simple types of indicator can be
performed easily, e.g. using a parser to extract variable names. Complex indicators

such as code fragments may require the use of advanced recognition methods.

58







4.3.3 Extraction Process

All types of indicator are extracted using a similar process. In each case, a lexical
analyser is used to match lexemes belonging to a particular class. A full parser could
be employed for more accurate extraction. Only procedure division lexemes are
extracted; the reasons for this restriction are given in Chapter 1. It is assumed that
the input source code can be compiled and is correct with respect to the language

definition. Each lexeme is stored with line and character position information.

Segment boundaries are treated slightly differently. The source code is scanned
using a lexical analyser as for the other classes. Discovery of a secrron lexeme
generates a segment-start output with line and character position information.
Lexemes ExfT, Goeack, and stoe generate segment-end output with line and character
position information. In the absence of any secrron lexemes, the procepure prviszon

lexeme is used to generate a segment-start.

4.3.4 Matching Rules
Once the lexemes have been extracted, they are matched against the indicators in
the library to generate hypotheses. In terms of the formal model, the matching test

is made between the lexeme string and the data string of an indicator, as shown in

the function Match:

Match: (Indicator, Lexeme) — Boolean (22)
Match((n : String, ¢ : Class, d : String), (s : Integer, e : Integer,
t: String)) =dpt

u (String, String) — Boolean (23)
1 (d: String, ¢ : String) = True, if d = ¢ under conditions specified for

active options.

The way in which lexemes (also termed tokens) are matched varies, governed by a

number of options for each class.
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Options available for the classes are:

Identifier Case Sensitivity
Sub-string Matching
Synonym Matching

Keyword No Options

Comment Case Sensitivity
Synonym Matching

Segment Boundary  No Options

Case sensitivity provides greater flexibility when matching strings, particularly in

comments where mixed case type is often employed.

Sub-string matching also allows greater flexibility than direct matching because

variations of words can be found.

Synonym matching is designed to allow for different words referring to the same

concept and requires the availability of a list of common synonyms.

The options may be used in combination as described below, although the more

flexible the recognition, the greater the chance of erroneously generating

hypotheses.

When a hypothesis is generated, the following information is output:

* A concept

* An indicator

= A lexeme

» Lexeme line number

» Lexeme character position
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4.3.4.1 Identifier Matching

If the case sensitivity option is active then make all matches case sensitive, otherwise

make all matches case insensitive.

For each lexeme extracted:

)

2)

3)

attempt to match the current lexeme exactly with the tokens stored in the
data attribute of every identifier-class indicator in the library. If a match is
found, output a hypothesis for each concept in the library that is related to

the current library indicator, filling the fields appropriately.

if the sub-string matching option is active then attempt to match the current
lexeme with the tokens stored in the data attribute of every identifier-class
indicator in the library. A match is found if the extracted lexeme is a sub-
string of the library data token, or if the library data token is a sub-string of
the extracted lexeme. If a match is found, output a hypothesis for each
concept in the library that is related to the current library indicator.
Hypotheses are not output by this stage if they have already been generated

in the exact matching stage described in 1 above.

if the synonym matching option is active then attempt to match the current
lexeme with the tokens stored in the data attribute of every identifier-class
indicator in the library. To determine whether a match has been found,
look up synonyms for the current lexeme in the synonym list. For each
retrieved synonym, compare it with every library data token in the identifier
class. A match is found if the synonym and library tokens are exactly the
same, subject to the case sensitivity option. If a match is found, output a
hypothesis for each concept in the library that is related to the current
library indicator. Hypotheses should not be output by this stage if they have

already been generated in either of the two previous stages.
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4.3.4.2 Keyword Matching

For each lexeme extracted:

1)

attempt to match the current lexeme exactly with the tokens stored in the
data attribute of every keyword-class indicator in the library. If a match is
found, output a hypothesis for each concept in the library that is related to

the current library indicator.

4.3.4.3 Comment Matching

If the case sensitivity option is active then make all matches case sensitive, otherwise

make all matches case insensitive.

For each lexeme extracted:

1)

2)

attempt to match the current lexeme exactly with the tokens stored in the

data attribute of every comment-class indicator in the library. If a match is
found, output a hypothesis for each concept in the library that is related to

the current library indicator.

if the synonym matching option is active then attempt to match the current
lexeme with the tokens stored in the data attribute of every comment-class
indicator in the library. To determine whether a match has been found,
look up synonyms for the current token in the synonym list. For each
retrieved synonym, compare it with evéry library data token in the comment
class. A match is found if the synonym and library tokens are exactly the
same, subject to the case sensitivity option. If a match is found, output a
hypothesis for each concept in the library that is related to the current
library indicator. Hypotheses should not be output by the synonym

matching stage if they have already been generated in the previous stage.

4.3.4.4 Segment Boundary Matching

No flexible matching criteria are applied in segment boundary matching; each

extracted token in the class is output as a boundary hypothesis. If secrronis found,

generate a segment-start hypothesis with line and character position information. If

EXIT, GOBACK, O stop Is found, generate segment-end output with line and character
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position information. In the absence of any secrron lexemes, generate a segment-

start hypothesis from the proceoure prvisron lexeme.

4.3.4.5 Output
The output of the indicator recognition process is a hypothesis list. The hypotheses
are sorted (if required) into ascending order by line and character position of the

generating indicator. There is no specific order on multiple hypotheses from a

single indicator.

4.4 Characteristics of Hypothesis Generation
This section compares HB-CA’s hypothesis generation process with the equivalent
parts of IRENE and DM-TAO. The specific areas of comparison are the initial

information source used to begin the concept search, and the type of the initial

information.

HB-CA begins its search using source code indicators as discussed above. The

in1tial information source is therefore the source code.

IRENEs initial information is provided in the form of a user-supplied hypothesis.
The system proceeds to derive further plausible hypotheses and attempts to find

their implementation in the source code being analysed.
DM-TAO in conceptual grep mode has a user-supplied concept for which

implementations are found. The source-code features used in all cases are syntactic,

lexical, and clustering clues [BIGG94]:
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4.6 Summary

Chapter 4 has presented the first stage of the HB-CA method, hypothesis
. generation, describing the key process of indicator recognition. A comparison has
been made with the primary knowledge types and sources used by the IRENE and
DM-TAO systems. The chapter shows the results of applying hypothesis

generation to the example source code and library content given in Chapter 3.

Chapter 5 discusses the next stage of the HB-CA method: segmentation. The
problems associated with segmenting programs are presented and a solution based

on conceptual clustering is described.
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Chapter 5

Segmentation

5.1 Introduction

Chapter 4 presented the first stage of HB-CA, hypothesis generation, which
transforms source code into a hypothesis list using the knowledge base. The
comprehension aétivity framework and formal model were extended to show the

representations and context of hypothesis generation.

This chapter describes the second stage of HB-CA: segmentation. It is the first
major research problem to be addressed by the HB-CA method and involves
breaking up the hypothesis list into conceptually coherent segments. The solution
clusters concepts in the hypothesis list using segment boundary indicators and self-
organising maps (SOMs). The result of segmentation is shown in the context of the
comprehension activity framework and appropriate formal representations are
defined. Segmentation accepts a hypothesis list as input and produces a hypothesis

segment list as output.

5.2 The Segmentation Problem

Segmentation is the problem of determining the location and extent of concepts
within a piece of source code, to form segments that then can be labelled. It is a
difficult problem because the boundaries between concepts can be confused and
fuzzy to the point where two concepts may interleave. Interleaving has been
addressed in algorithmic undetstanders using data and control flow information (see
[RUGA96]). It presents a more difficult problem to plausible reasoning
understanders, such as HB-CA, where this kind of information is not used. Figure

22 shows an example fragment of source code with two clearly separated concepts.
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It is clear that segmenting even a trivial program is difficult. The problem is

considerably greater when addressing real-world heavily-maintained code.

It is possible to perform initial segmentation of a program based on the subroutine
structure of the code. This implies an assumption of one concept per subroutine
(per section in the case of COBOL II). Although this provides a good starting
point, much exoisting code is poorly structured and may have large subroutines (if
they exist at all). Flexible methods are required to detect areas of conceptual focus
within subroutines, i.e. those areas where the evidence in the code strongly indicates

a particular concept.

The input to the segmentation stage is the hypothesis list generated by the methods
described in Chapter 4. The output of the stage is a hypothesis segment list (HSL). The
HSL can be expressed formally:

HSL : {Hypothesis List A 24
yp

Segmentation can be seen as a function mapping a hypothesis list to a hypothesis

segment list.
Segmentation : Hypothesis List - HSL (25)
Segmentation is the second stage of HB-CA and Figure 25 shows its position in the

comprehension activity framework. The hypothesis segment list it produces is

indicated by the white oval.
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relevant indicators are included. Figure 26 shows a small example of this situation.
The line of code shown, when combined with a knowledge base, produces a
hypothesis list, of which a fragment is presented. If the segment boundary is used
without correction, both rrre and wrrte will be ignored since hypotheses in the list
are considered in the order in which they occur in the source code. The correction
algorithm moves the segment boundary hypothesis until it is the first hypothesis
occurring on the line being considered. Segment-end hypotheses should not need

any correction because they are unlikely to occur on the same line as another token.

FILE-WRITE SECTION.

HL = {(FILE...),(WRITE...),SEGSTART)... }

Figure 26: Example Showing Necessity of Boundary
Correction

Having established the initial segmentation, further analysis may be required to
determine whether these segments can be subdivided to give a greater level of detail
about the concepts in the program. Subdivision may be necessary to retain an
appropriate level of abstraction for the amount of code being considered. If
monolithic code or very large subroutines are being analysed, it is more useful to
assign several concepts to parts of each routine than to apply the rule of one
concept per subroutine. If a large subroutine is described by one concept, the
concept’s level of abstraction may need to be raised to accurately represent the

operations performed in the routine.

5.3.2 Clustering

HB-CA’s method for subdividing segments is based on the idea of finding
conceptual clusters within a segment’s hypotheses, in other words, to determine
areas of strong conceptual focus within the hypothesis list. Applying such a
technique to the entire hypothesis list appears attractive but during the development
of HB-CA it was found that this caused “unnatural” segmentation. Concept
clusters could be formed across subroutine boundaries such that the syntactic

structure of the program was not reflected in the concept list. This problem was the
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motivation for the initial segmentation algorithm described above, which preserves

the syntactic structure of the program.

Early versions of HB-CA attempted clustering using a horizon effect based on the
distance, in lines, to the next indicator in the source code. This had the unfortunate
effect of occasionally isolating one or two indicators at the end of a subroutine and
either ignoring, or misinterpreting the evidence they provided. Moving to a purely
hypothesis-based representation, where distances between indicators are determined

only by their relative position in the hypothesis list, has helped to eliminate this

problem.

5.3.2.1 Pre-Processing

In order to avoid unnecessary work and to derive certain parameters required to
perform further clustering if required, each segment’s hypotheses are pre-processed

according to the following method:

1) For each action-concept hypothesis in a segment, find the concept’s most
general form by recursively traversing the specialisation relationship in the
library. Store the result in a list F.

2) If the number of elements in F is greater than some user-specified
recognition threshold, rec_thresh, then continue; otherwise reject the segment
and repeat from 1 for the next segment.

3) With a user-specified minimum density for a concept cluster, min_vd,
determine the number of potential clusters in F by dividing the number of
elements of Fby min_vd. If the result > 2 then continue, otherwise store this
segment in the hypothesis segment list using its initial segment boundaries
and repeat from 1 for the next segment.

4) Determine the number of different concepts in F. If there is more than 1
then continue, otherwise store this segment in the hypothesis segment list
using 1ts initial boundaries and repeat from 1 for the next segment.

5) If this step has been reached, further clustering using self-organising map

analysis is required.

The rationale for these steps is now discussed.
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All processing at this point is undertaken on action-concept hypotheses only. This
reflects the general emphasis on discovering what a program does rather than the

objects on which it operates.

Step 1 ensures that versions of the same hypothesis do not compete with each
other. If this is not performed, it is possible that the evidence for a particular
general concept could be shared among its specialised versions, thus allowing a less
strongly indicated concept to win. By finding the most general form of all concepts,
comparisons are made at the highest level with evidence for specialisations being
used to improve the quality of information later in the process. It should be noted
that the other stages of the HB-CA method do not support specialised action-
concept hypotheses. Consequently, this step is redundant at present but is included
for completeness in the event that HB-CA is extended. Any extension should
ensure that the original, specialised hypothesis is replaced in the correct position

before concept binding begins.

Step 2 ensures that there are sufficient pieces of evidence for recognition to take

place. The user specifies the amount of evidence required.

Step 3 determines the number of potential clusters in F. This information is needed
to decide whether it is worth attempting to find clusters in the hypotheses. The
user specifies the minimum number of hypotheses for a cluster. Dividing the
number of hypotheses in F by this number gives the maximum number of clusters
that could be formed ifthe hypotheses were perfectly clustered initially, a situation
unlikely to occur in practice. If there is potential for no more than one cluster then
there is no gain from further analysis and the segment can be stored using its

current boundaries.”

Step 4 ensures that the concepts in F are not all the same. If they are all the same
then it is clear that the concept to be bound to the segment will be some version of

the concepts in F, hence there is little point in continued analysis of F.

If further analysis and clustering are required, a self-organising map (SOM) is used

to find clusters in F.
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to thousands of repetitions. When a training vector is presented, the Euclidean
distance between the training vector and every reference vector stored in the output
nodes is calculated. The output node that is closest to the training vector is declared
the winner, and its reference vector is updated to reduce its Euclidean distance to
the input. In addition, neighbouring nodes in the output layer are also moved
proportionally closer to the input. After many repetitions, this process results in the
spatial organisation of the input data in clusters of similar, neighbouring regions
[ROUS98]. Over the course of training, the size of the neighbourhood and the

amount by which Euclidean distances are updated (the learning rate) decrease to

ZEro.

SOMs have many uses including natural language engineering [HONK977, and the

organisation of document collections [KASK96].

5.3.2.3 SOMs for HB-CA |
The SOM is useful in HB-CA because of its ability to cluster similar data items
automatically. Spatial relationships in the segment’s hypotheses can be preserved
allowing nearby, similar concepts to be clustered together. Consequently, the fuzzy
boundaries between areas of conceptual focus in the hypothesis list can be
determined using the conceptual content of the list itself, rather than imposing an

arbitrary division.

Employing a self-organising map within HB-CA entails solving some additional
problems. First, the map must be automatically constructed and the data pre-
processed into a vector form. Second, the trained map must be automatically

interpreted; a task often left to the user in other SOM applications.

Section 5.3.2.1 described the pre-processing steps. These are designed to ensure
that a self-organising map will only be used if there is the potential to form clusters,

L.e. the hypothesis list is big enough with a sufficient number of different concepts.
To use the list F with a self-organising map, it must first be turned into a vector

representation. A coding scheme must be devised whereby different concepts can

be represented as vectors without implying any spatial relationship between them in
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asingle dimension. It is not possible (or sensible) to represent Read as ’1, Printas 2,
and Update as 3 in the same dimension, since the ordering relation on integers does
not hold for concepts. The solution to this problem arises from SOM work in
natural language engineering and document classification. Both [MERK97] and
[HONKO97] suggest the use of binary vector components to represent categorical
data such as the hypotheses in HB-CA. Honkela notes that with large numbers of
categories the dimensionality of the vectors would be extremely high [HONK?97].
This is not expected to be a problem for HB-CA because the knowledge base is
reasonably small. Using binary vector components the concepts Read, Print, and
Update, would be placed in different dimensions. A value of 1 in the appropriate
dimension would be used to signify the presence of a hypothesis for that concept, 0

would be used otherwise. Given the hypothesis list:

Read, Read, Print, Read, Update, Read

The vector representation would be:

Read Print Update

= O = O =
oNeoNeN NelNe)
O OO0 0O

Whilst this would be sufficient input for a self-organising map, HB-CA requires the
addition of a further dimension. The data presented above may result in clustering
of similar concepts on the SOM. However, this would be meaningless to HB-CA
since the map would simply create three clusters, one for each concept. The
additional vector component is a sequence number to preserve the order of the
hypotheses. This creates a spatial relationship between them, ensuring that clusters
will form where the bulk of local evidence for a particular concept occurs (locality is

defined in terms of sequence number).
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The final vector representation would be:

Seq. Read Print Update

N U W N -
—_ O = O
[eNeoNeoN oo
O OO0 00

The action concepts in F are processed in this manner for use with a SOM.

Having established the data encoding, the map itself must be defined. The
documentation for the SOM ToolBox (an implementation of SOM algorithms for
Matlab, provided by Kohonen’s group) suggests that the number of output neurons
should be as large as possible [SOMT00]. For smooth mapping and visual
inspection of the output this would be ideal, as clusters would be clearly visible and
the mapping could be subtle. The task of the SOM in HB-CA is to cluster
hypotheses to enable automatic inspection of the output. Consequently, the number
of output neurons should be no more than necessary. This creates a coarser
granularity in the output space than might be used for visually inspeéted maps, but
forces hypotheses into one of a few groups thus providing sufficient vector density
at each neuron for it to be recognised as a cluster. The literature on SOMs does not
indicate the widespread use or existence of an algorithmic method to determine the
optimal size or shape of a map before training; indeed research is devoted to

methods for growing the map to fit the input data during training (see[KOHO97)).

HB-CA addresses the map-sizing problem during the pre-processing phase

described in section 5.3.2.1, where the maximum number of clusters is determined.
Assuming a perfectly clustered input list:
Read, Read, Read, Print, Print, Print, Update, Update, Update

and a minimum vector density per cluster of 3, the maximum number of achievable

clusters is 3. If the list is less than perfectly clustered, the number of achieved
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clusters will be 3 or less since the best case (perfect clustering on input) cannot
achieve more. Each output node in the map represents one cluster (once trained, it
will trigger for several input vectors) and therefore in this example, the output layer

would contain 3 nodes.

A problem for this method can be illustrated by examining what mlght be

considered a worst-case scenario. Assume an input list of the form:
Read, Write, Read, Write, Read, Write, Read, Write, Read, Write

This data is ambiguous since it could be described as having no dominant concept
(and hence no clustering). Alternatively, it could be split in half (two output nodes),
the first half being dominated by Read and the second by Write. With still more
subdivision possible it is hard to say how the data should be clustered, or to
determine a suitable size for the output layer using the analysis method suggested.
This seems to be an intractable problem for this type of input but since such an
even distribution of hypotheses is unlikely to occur often, the method based on

perfect clustering is considered suitable for use in all cases.

Having established the number of nodes in the output layer, its shape must also be
considered. The most common shape for SOM output layers is a rectangular grid
with either a rectangular topology (where nodes update those above, below, left, and
right) or a hexagonal topology (where nodes are regarded as having six sides and
update those surrounding them accordingly). For the purpose of HB-CA, the
output layer is defined as one-dimensional with a rectangular topology. This
ensures that the mutual attraction of like hypotheses operates in one dimension only
on the map. In theory, alarger two-dimensional map would also work well since
the combination of sequence number and concept would ensure that nearby and
similar hypotheses group at the same node. Using this type would introduce
additional problems, e.g. deciding on the length of each side of the rectangle. This
would be particularly difficult if the number of nodes could not be formatted in
rectangular fashion. It is tempting to visualise the hypotheses being clustered in
sequence from left to right along the output layer although there is no reason why

this should happen, especially with random initialisation of the SOM. It should be
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noted that in some circumstances a SOM might not be the most efficient approach
to clustering. An alternative, such as vector quantization, may be better for
situations requiring a 1x2 SOM [NEURO0], but the uniformity of approach

outweighs any potential cost saving.

The formatted SOM can now be trained on the input vectors created from F.
Training for HB-CA takes place in two stages as suggested in [ROHO96]. The first
stage orders the reference vectors in the map using a learning rate of 0.05,
neighbourhood radius of 1, and neighbourhood type of bubble. Training data is
presented 1000 times. The second stage converges the reference vectors on their
“correct” values using the same parameters but with a learning rate of 0.02. Data s

presented 10000 times.

When training is complete, the map must be interpreted. As SOMs are often
applied in data visualisation tasks, it is usual for interpretation to be performed by
the user. This is not feasible for HB-CA since the method is fully automatic. HB-
CA interprets the SOM by passing the input data through the map once more,
taking note of which output node triggers for a particular input vector. Vectorsare
grouped by the node that they trigger (thus forming a cluster) and are translated
back to a hypothesis representation. The particular node triggered by an input
vector 1s not inherently important; it is the association of this input vector with

others triggering the same output node that is significant.

The clusters must be analysed to ensure that the required minimum vector density,
min_vd, is met. Every cluster with > min_vd vectors (termed a valid cluster) is stored
in a list D. If every cluster is analysed and D remains empty or has one element
only, store this segment in the hypothesis segment list with its original boundaries
(from segment boundary hypotheses) and begin again with the next one, since zero

or one valid clusters have been found.

5.3.2.4 Post-Processing
If D has more than one element; further analysis is required. It is possible that,
although a number of valid clusters have been found, there are some hypotheses

participating in clusters that do not meet the required density. HB-CA takes the
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approach of including this information in the valid clusters rather than ignoring it
altogether. This ensures that all hypotheses being considered at the start of
segmentation are still considered at the end of it. The method used to integrate
clusters and hypotheses is naive, adopting the principle of evenly sharing these items
between their surrounding valid clusters. This is performed according to the

following steps:

1) Consider the first pair of valid clusters in D, termed A and B. If they are
adjacent, in terms of hypotheses, then begin again moving one cluster along
such that A, = B,

2) Non-adjacent valid clusters must, by definition, have intervening invalid

 clusters. Determine the number of intervening invalid clusters, z. If zis an
even number, allocate the first z/2 invalid clusters to A, and the second z/2
invalid clusters to B. Move the start and end points of A and B as necessary
to include the additional clusters. If z is odd then allocate (z-1)/2 invalid
clusters to A and B on their respective sides as for even values of z. The
remaining central cluster is divided into its constituent hypotheses. If there
is an even number of hypotheses, allocate them equally to 4 and B (as for
clusters); otherwise allocate all but the central hypothesis in this manner.
The remaining hypothesis is attached to the largest cluster (or B if the
resulting clusters are the same size).

3) Repeat from 1 until there are no more valid clusters to consider.

This method for redistributing hypotheses among areas of strong conceptual focus
ensures that no evidence from the hypothesis list is ignored. It can cause problems
by producing “loose” segmentation (where a large part of the segment is irrelevant
to the concept) and confusing the concept binding process with conflicting
evidence. This is an area identified for further work. Despite these potential
difficulties, in practice they do not affect the method’s performance to a great

extent. The clusters formed in D are the basis for new segments in the program.
It1s important to recall that all of the work undertaken so far in segmentation has

been based on action-concept hypotheses only. Before beginning the concept

binding stage, object-concept hypotheses must be reintegrated with the segments.
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This 1s trivial for those segments that have not undergone any subdivision, but for

those that have been analysed using the SOM, object-concept hypotheses must be

distributed fairly among the new segments. The approach taken is similarto that

used above for allocating invalid clusters.

1)

2)

3)

4)

Recall that D is a list of clusters returned from the SOM where invalid
clusters have been integrated.

Move the start of the first element of D to the start-boundary hypothesis for
the original segment beiﬁg considered. Move the end of the last element of
D to the end-boundary hypothesis for the original segment being
considered. This captures those object-concept hypotheses occurring
before the first, and after the last valid cluster.

Reintegrate object-concept hypotheses from the hypothesis list that fall
within the boundaries of clusters in D. This can be accomplished without
difficulty, as it is clear to which cluster the objects belong. Object-concept
hypotheses that do not fall within such boundaries are redistributed using
the method in 4.

Work pair-wise through the clusters in D, analysing object-concept
hypotheses in the hypothesis list that fall between the end of the first, and
start of the second cluster in each pair. Distribute any intervening object-
concept hypotheses evenly between their surrounding clusters in the manner
described above for redistributing invalid clusters. When an odd hypothesis
remains, attach it to the largest cluster, or the second of the pair if the

neighbouring clusters are the same size.

In similar way to integrating invalid clusters, this process ensures that no evidence is

lost during the segmentation process. The result of this analysis should be a list in

D of adjacent segments with no intervening hypotheses, beginning at the first

hypothesis of the original segment before subdivision, and ending at the last

hypothesis of that segment. The new segments in D are now stored in the

hypothesis segment list instead of the original segment. Repeat the whole process

for the remaining segments.
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5.4.1 Discussion

It is difficult to discuss the relative merits of the approaches with the small amount
of information available on IRENE and DM-TAQ. As mentioned in section 5.3.2,
the hypothesis approach adopted by HB-CA prevents isolated indicators from being
ignored, and ensures that in such situations, the segment includes all relevant lines
of source code. Using hypotheses should also reduce the cost of modifying HB-CA
for additional languages, as the largest changes would need to be made in the
simplest stage: hypothesis generation. DM-TAOQ appears to be largely aimed at
discovering clusters of data declarations and its syntactic approach lends itself
readily to this task. It is worth noting that whereas HB-CA explicitly segments
before binding concepts, the other methods do not make such a clear distinction

between the phases.

5.5 Example of Segmentation
This section demonstrates the operation of the methods described in this chapter
applied to the example presented in Chapter 3. Chapter 4 used an extract from the

example but the complete program fragment is used henceforth.

For brevity, the initial hypothesis list is shown in Figure 28 without ancillary
information such as line and character position. The letter before the concept name

represents an (A)ction or an (O)bject.

A:Read, O:APSRecord, SEGSTART, A:Read, O:APSRecord, O:Record,
O:APSRecord, O:APSRecQrd, 0:Record, O:APSRecord, 0O:Recoxd,
O:APSRecord, SEGEND, A:Write, O:APSRecord, SEGSTART, A:Write,
O:APSRecord, O:Record, O:APSRecord, O:Record, O:APSRecord,
SEGEND, A:Print, SEGSTART, A:Print, O:Heading, A:Print,
O:Heading, A:Print, A:Print, SEGEND, A:Print, SEGSTART,
A:Print, SEGEND

Figure 28: Hypothesis List before Segmentation

The first action in segmentation is to move the segment boundary hypotheses to the

correct place. The result is shown in Figure 29 with the relocated hypotheses in red.
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5.6 Summary

This chapter has presented the method by which HB-CA segments the hypothesis
list. It has been placed in the context of the comprehension activity framework and
the formal model has been extended to capture some appropriate representations.
A comparison has been made with IRENE and DM-TAQ and the relative merits of
each method discussed. The result of applying the segmentation method to the

* example source code from Chapter 3 is shown.

Chapter 6 presents the methods used for binding concepts in HB-CA. The
underlying principles are discussed and a solution based on semantic network

activation described.
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Chapter 6
Concept Binding

6.1 Introduction

Chapter 5 presented the second stage of HB-CA, which transforms the hypothesis
list (generated in the first stage) into a series of segments. The position and output
of the stage in the comprehension activity framework were shown and the formal

model extended to capture its representations.

This chapter describes the final stage of HB-CA: concept binding. This is the
second major research problem addressed by HB-CA and involves determining the
appropriate concept for a segment. HB-CA decides on a concept binding using the
weight of source-code evidence and the relationships in the library. The position of
concept binding in the comprehension activity framework is presented, and the

formal model extended and summarised.

6.2 The Concept Binding Problem

Concept binding is the problem of deciding which concept from the knowledge
base should be assigned to a particular segment, using the available evidence. This
requires a method that can rank possible concepts by the strength of evidence for
them. There are various ways that this can be performed. The simplest approach is
to count the number of hypotheses for each concept and pick the one with the
most evidence. This forms the basic idea underlying several advanced approaches

investigated during the development of HB-CA.

The basic idea suffers from being unable to exploit any of the relationships between
concepts. This makes sensible disambiguation of equally high-scoring concepts
difficult. To alleviate this problem, an early version of HB-CA used the principle of
secondary hypothesis, where the existence of one concept signified the existence of
another. The signified concept achieved an additional but lower score, and further

secondary hypotheses were generated from it. The process was repeated until a
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required “depth” had been reached. In principle, this approach seems sensible but
in practice, it was found to create confusion and the computational cost was high.
The method was extended to use a specialisation relationship like that in the current
knowledge base but this did not- improve performance significantly. Another
disadvantage of these approaches is that there is no differentiation between objects

and actions, preventing actions from being favoured over objects.

The development of the knowledge base structure described in Chapter 3, allowed

the concept binding method to be redefined to take advantage of the relationships

and concept types available.

The input to the concept binding stage is the hypothesis segment list (HSL)
generated by the method described in the previous chapter. The output of concept

binding is a set of labelled segments.
Concept Binding: HSL — {Labelled Segment} (26)

A labelled segment is defined as a segment attached to a concept label. The concept

label can be the name of a single concept, or the combined names of concepts in a

composite.
Labelled Segment: (s : Segment, 7 : String) (27)

The set of labelled segments resulting from concept binding has the same type as

the desired target representation defined in Chapter 2.

The position of concept binding within the comprehension activity framework is

shown by the white box in Figure 34.
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6.3.1 Semantic Network “Activation”
Regarding the knowledge base as a semantic network means that the process of
assessing evidence can be seen as “activating” parts of the network. The concept

with the highest “activation” is considered the winner. The network is “activated”

according to the following rules:

* Score 1 for each hypothesised concept.

* Score 1 for the appropriate side of every composite in which this concept
participates.

* Score 1 for each more general version of this concept, and the appropriate

side of any composite in which the more general version participates.

These rules are designed to bias the scoring towards certain types of concept. The
basic principle of winning by weight of evidence is captured in the first rule where
hypotheses for a concept increase its score. The second rule ensures that if
composites exist (and there is object evidence), they will win in preference to single
concepts. The principle is that a composite provides a more informative label for a
segment and should win if possible. Giving scores to more general versions of the

hypothesised concept (the third rule) has two purposes:

1) To ensure a logical approach to the evidence. If MasterFile has been
hypothesised, it is reasonable to say th{at there is evidence of a File.

2) To manage conflicting evidence. If a géneral concept has two specialised
versions, each with the same score, it is impossible to tell which should win.
Scoring the general concept in addition to its specialised versions ensures
that it will always score the same or higher than either one. If there is no
conflict then the direct evidence for MasterFile should override the indirect
evidence for File. Applying this prioritisation can be left to the user’s

discretion.

The following example illustrates the application of these rules to a simple semantic

network.
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Conclusions can be composite or non-composite in a similar way to hypotheses.
The only difference is that conclusions have an associated score, with composite

conclusions having separate action and object scores.

6.3.2.1 Conclusion Generation
The first stage of concept binding is to generate possible conclusions from the

action-concept hypotheses. This is undertaken according to the following method:

1) Let C be an empty list of conclusions.
2) For the current segment, select all action concept hypotheses and place ina
. list AH.
3) For every element of AH:
Let ac be the current element of AH.
b. Find all object concepts within the library that participate in a
composite concept with ac. Store in alist OC removing duplicates.
c. Find all specialisations of all elements of OC and add them to OC,
removing duplicates.
d. Ifanon-composite conclusion for ac exists in C, increase its score by
1, otherwise, store a non-composite conclusion for ac and set its
score to 1.
e. Generate composite conclusions in C by composing ac with every
member of OCin turn. If a particular composite conclusion already
exists, increase its action score by 1; otherwise, store the composite

conclusion with its action score set to 1, and its object score set to 0.

The result of this stage is a list C of composite and non-composite conclusions.
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6.3.2.2 Conclusion Completion and Reinforcement

Object-concept hypotheses are now employed to reinforce and complete composite

conclusions.

1) For the current segment, select all object-concept hypotheses and place in a
list OH.
2) For every element of OH:
Let oc be the current element of OH.
b. Step through Cto find the first (or next) composite conclusion, cc.
c. If the object concept assigned to cc is oc then increase the object
score for cc by 1.
d. Repeat from b until no more composites can be found in C.
e. If oc is not a primary concept, step back one level along the
specialisation relationship and repeat from b, starting with the first

element of C.

The result of this stage is the list C with the same non-composite conclusions as

before, but with some composite conclusions now having non-zero scores for both

action and object concepts.

6.3.2.3 Disambiguation

This stage applies a number of rules to determine the dominant concept in the
current segment. Before beginning to apply them, the list Cis processed to remove
incomplete conclusions. These are composite conclusions with zero object concept

score, 1.e. there was no evidence for the pairing of the particular action and object.
Having removed incomplete conclusions, let bs be the highest score achieved by any

conclusion in C. The score will be either the non-composite conclusion score or

the sum of the action and object scores for composite conclusions.
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The following steps are now undertaken:

)

2)

4)

Find the conclusions in Cthat score bs using the non-composite conclusion
scores, or the sum of the action and object scores for composite
conclustons. Store these conclusions in a list W.
If Whas more than one element, remove any conclusions from Wthat are
specialisations of other conclusions in W. This leaves only the most general
forms of composite conclusions, and all non-composite conclusions.
If W still has more than one element, favour composite conclusions over
non-composite ones. Remove non-composite conclusions from Wif there
are composite conclusions in W.
If W still has more than one element, find the highest score achieved by the
concepts of non-composite conclusions, and the action components of
composite conclusions. Remove any non-composite conclusions from W
that do not score at this level, and any composite conclusions whose action
score does not reach this level.
If W still has more than one element, determine whether the action
|
concepts of the remaining conclusions are the same. If so, then select the
non-composite concept (which may or may not be in W) corresponding to
the action concepts of the conclusions in W. Remove all elements of W
except for this non-composite conclusion. Its score should be increased by
the number of elements in the list when rule 5 was invoked. If the action

concepts in the remaining conclusions are not the same, the decision must

be arbitrary. Remove all but the first conclusion in W.

The conclusion remaining in W is declared the winner.

6.3.2.4 Post-Disambiguation Processing

The user has the option of forcing the most specialised form of the winning

concept to be selected (assuming the winner is composite). Note that

specialisations can be selected only if there is evidence for them. This is undertaken

by setting the forced_specialisation parameter to True. If this is the case, all composite

conclusions in C that have the same action and a more specialised form of the

object concept of the winning composite, are placed in a list Q. The highest score
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in Qis found and if only one conclusion gains this score, the winner is replaced by
the more specific version. If more than one conclusion gains this score, the

evidence for a specialised version is ambiguous and the original winner is not

replaced.

Finally, if the winner is composite and its combined action and object scores >
rec_thresh x 2, bind the conclusion to this segment, thus labelling it. If the winner is

not composite, bind the conclusion if its score > rec_thresh. If neither condition
holds, the current segment should be rejected. The difference in threshold between
the two types of conclusion forces the evidence required for a non-composite
conclusion to be greater than that for a composite conclusion, as the spread of

evidence in the composite is regarded as increasing a conclusion’s plausibility.

6.3.2.5 Output

The resulting concept label is attached to the current segment and then can be
displayed in an appropriate format. The extent of the segment in terms of source
code lines can be traced using the hypothesis list and the code position of the

indicators that created the first and last hypotheses in the segment.
The concept binding process is carried out for each segment.

6.3.2.6 Discussion

The rationale for the rules described in section 6.3.2.3 is explained here. Generally,
the aim is to ensure fair competition between the highest scoring conclusions, whilst

maintaining the greatest possible level of detail in the result.

The removal of incomplete conclusions is designed to ensure that only those with
evidence for all of their parts are considered. This is not a problem for non-
composite conclusions since they cannot be created in the list without evidence. By
generating all composites from them, a number of objects may be suggested for use

in conclusions without any direct evidence of their existence.
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Rule 1 ensures that only the strongest conclusions are considered by the later rules.

Rule 2 aims to ensure that a fair competition is taking place between the
conclusions. Specialised versions of a conclusion should not compete with more
general versions since they are indicating the same concept at a different level of
abstraction. The specialisation can be removed safely as it can be retrieved later if

the general concept wins.

Rule 3 reflects the bias built into the scoring algorithm itself, favouring composites
over non-composites. The assumption underlying this rule is that a composite
conclusion can provide more information than a non-composite one. If they have
scored the same, the evidence is more widely distributed for the composite (since
the sum of the object and action scores is the same as the score for the non-
composite). The larger spread of evidence should ensure a more plausible concept
assignment, as both actions and objects indicate the concept. The object evidence is

used to “validate” the action conclusion and the probable relationship between

them increases the plausibility.

Rule 4 favours actions over objects by considering the scores of non-composites
and only the action portion of composites. Thus, higher scoring actions are given

priority over lower scoring actions with strong object evidence. This reflects HB-

CA'’s bias towards actions.

Rule 5 checks whether the ‘remaining conclusions are based on the same root action
e.g. Read:File, Read:Record, Read:Disk. If this is the case, the evidence for the
objects is ambiguous (they must all have the same score to have survived the
application of rule 4) and hence the action is left on its own. Note that the single
action may no longer exist in the highest scoring conclusion list, having been
removed by rule 3. If this is the case, then it is reintroduced to replace the
ambiguous composites and is declared the winner. Its score is increased to take
account of the multiple conclusions it replaces, and to increase the chance that it

will pass the recognition threshold.

If applying all the rules fails to leave only one winner, an arbitrary decision is made.
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The disambiguation ability of these rules is discussed further in section 8.4.

6.4 Characteristics of Concept Binding
This section compares the characteristics of the concept binding methods used by
IRENE and DM-TAO with that of HB-CA. The specific criteria are: evidence

used, assessment method, and explanatory power.

HB-CA uses the evideﬁce provided by the hypothesis segment list in the form of
concept hypotheses. The evidence is assessed by scoring each possible conclusion
from the library based on the contents of the HSL. Ambiguity is resolved by the
application of various rules. The decision made by HB-CA can be explained to a
reasonable level of detail since each rule has a particular purpose, hence conclusions

can be rejected for a clear reason.

IRENE largely uses evidence from the domain model to bind concepts. A
candidate concept is selected and its correspondence to a data name established.
The parse tree is searched for possible implementations of related items based on
their position in the rule and program syntax, e.g. if tax has been related to tax in
the program and a rule is defined as “taxable_salary-net_salary derives tax”, the parse
tree might be searched for instances of susrract y From x crvine Tax. All other
rules deriving tax also would be sought. Assume the statement sustract nET FROM
cross ervine Tax was found. If considered plausible enough, the two tokens, ner,
and cross, would be bound to net_salary and taxable_salary respectively. A similar but
more detailed example is shown in [KARA92]. Plausibility is established by
summing the weights of the various rules triggered by a particular candidate concept
implementation. Lexical matching rules carry a lower weight than domain rules
owing to IRENE’s emphasis on domain knowledge [KARA92]. The system has
good explanatory power and is capable of rewriting the rule-triggering process in

English, substituting variable names where appropriate.

DM-TAOQ uses evidence direct from feature extractors. This is assessed by the
semantic connectionist network that forms the heart of the system. Extracted
features trigger nodes in the input layer of the network. The signals generated in

this layer propagate through the network triggering other types of node. This
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As there are no more action-concept hypotheses, the object-concept hypotheses are
considered to reinforce and complete the composite conclusions. The first is
APSRecord. This completes the last conclusion in the list, but since it is a

specialisation of Record, Read:Record will also be completed. The list is now:

Read 2 ‘
Read:Record 2:1
Read:APSRecord 2:1

The next hypothesis is also APSRecord leaving the list as:

Read 2
Read:Record 2:2
Read:APSRecord 2:2

This is followed by a Record hypothesis. Since this is already primary, it only

reinforces those conclusions in which it participates.

Read 2
Read:Record 2:3
Read:APSRecord 2:2

The remaining object-concept hypotheses are processed, leaving the list in its final

state of:

Read 2
Read:Record 2:9
Read:APSRecord 2:4

There are no incomplete conclusions to remove so the disambiguation stage
commences. The highest scoring conclusion is Read:Record and since it is the only

one to score 11 in total, it is declared the winner without the need to invoke further

disambiguation rules. .
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If the user requires the most specific version of conclusions to be found,

Read:Record would be replaced by Read:APSRecord.

Assuming rec_thresh to be the same as in Chapter 5 (i.e. equal to 1), either conclusion

would be acceptable for concept binding.

Repeating this process for each segment in the HSL yields the following results

(assuming the most specific versions are required):

Segment 1: Read:APSRecord
Segment 2: Write:APSRecord
Segment 3: Print:Heading
Segment 4: Print

These results appear to be correct with respect to the original source code (see

Figure 42).
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6.6 Summary of Formal Model
A formal model describing the various representations used by HB-CA has been
developed throughout this thesis. This section collects all the definitions to

summarise the model in a coherent manner.

Chapter 2 introduced the formal model, characterising HB-CA as a way of mapping

a source representation to a target representation (definition 8).

Source : {x : Line} (1)
Line : ({y : Lexeme}, seqnum : Integér) )

Lexeme : (start : Integer, end : Integer, token : String) | start < end (3)

TR : {(x : Segment, y : String) } (4)
Concept : String (5)
¢ : (Line, Line) —> Boolean

o (08 () = bd ©
Segment : (start : Line, end : Line) | start ¢ end 7)
P : Source > TR : (8)

Chapter 3 extended the model by introducing definitions of the knowledge base

(definition 18) and its constituent parts.

Class : String

9

VX : Class, Xe { Wentifier”, "Keyword”,Comment”, "Segment Boundary”} ©)
Indicator : (» : String, c : Class, d : String) (10)
Level : String

: (11)
VX :Level, X € {“Przmmy”, ”Secondmy”}
Type : String

. . (12)
VY': Type, Y € {“Action”,”Object}
Concept : (7 : String, / : Level, ¢ : Type) (13)
Indicates : {(p : Indicator, ¢ : Concept)} (14)
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' CCR: {r| - {(a: Concept, b : Concept)}} (15)
Specialisation : {((4,5,c):Concept, (d,e,/):Concept) |e = “Secondary”} (16)
Compositi.on:{((a,b,c):Concept, (d.e,f):Concept) | b="Primary”,
e="Primary”, c="Action”, f="Object”} )
KB : ({x : Concept}, {i/: Indicator}, {(p : Indicator, ¢ : (1g)
Concept)}, {r|7: {(«: Concept, b : Concept)}})

Recall that definition 13 extends definition 5.

With the key representations defined, Chapter 4 presented the first stage of the HB-
CA process: hypothesis generation. This was defined as a function, mapping source

to a list of hypotheses (definition 21).

Hypothesis : (i : Indicator, ¢ : Concept, / : Lexeme) (19)
Hypothesis List : {4 : Hypothesis} (20)
HG : Source — Hypothesis List 21)

Recall that the knowledge base has been deliberately omitted from the function

definitions here.

Hypotheses are generated using various matching rules.

Match: (Indicator, Lexeme) — Boolean (22)
Match((n : String, c : Class, d : String), (s : Integer, e : Integer, ¢ :

String)) = d ¢

u (String, String) — Boolean (23)
W (d: String, ¢ : String) = True, if d = t under conditions specified for

active options.
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Chapter 5 described the next stage of HB-CA: segmentation. This maps the output
of hypothesis generation to a hypothesis segment list by breaking the hypothesis list

into groups (definition 25). The formal representation of this is:

HSL : {Hypothesis List} (24)
Segmentation : Hypothesis List - HSL (25)

The final stage of HB-CA, concept binding, was presented in this chapter. It maps

the output of segmentation to a collection of labelled segments.

Concept Binding: HSL — {Labelled Segment} (26)
Labelled Segment: (s : Segment, 7 : String) (27)

This concludes the summary of existing definitions. By comparing definitions 26
and 4, it can be seen that the output of concept binding has the same type as the

required target representation.

Definition 8 characterised the original problem in terms of a mapping between
source and the required target representation. By creating a composition of the
functions that represent each part of HB-CA, it can be shown that HB-CA provides

a solution to the original problem.

P : Source > TR (8)
HB-CA : Source — {Labelled Segment} (28)
HB-CA : Concept Binding o Segmentation o HG (29)
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6.7 Summary

This chapter has presented the final stage of HB-CA: concept binding. It has been
placed in the context of the comprehension activity framework and formal model.
Comparisons have been made with the concept binding methods of IRENE and
DM-TAO, and the merits of each discussed. Applying the concept-binding
algorithm to the hypothesis segment list shown in Chapter 5 has completed the
worked example initiated in Chapter 3. The formal model has been summarised
and the HB-CA process characterised as the composition of three functions, each

representing a stage of HB-CA.

Chapter 7 describes an implementation of HB-CA called the Hypothesis-Based
Concept Assignment System (HB-CAS). Various issues relating to the design and

implementation are discussed.
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Chapter 7

Implementation

7.1 Introduction

Chapter 6 presented the final stage of HB-CA: concept binding. This completed
the description of the HB-CA method by showing the way a hypothesis segment list
is transformed into the target representation defined in Chapter 2. The position of
concept binding in the comprehension activity framework was shown and the
formal model extended and summarised. Concept binding was applied to the

worked example initiated in Chapter 3.

This chapter discusses the implementation of HB-CA in the Hypothesis-Based
Concept Assignment System (HB-CAS). The design of HB-CAS is presented and
various technical issues discussed. A short evaluation of the implementation is

presented.

7.2 System Implementation
The methods presented in the preceding chapters are embodied in the HB-CAS
system. HB-CAS runs on the Microsoft Windows 95/98 operating system.

7.2.1 Programming Environment

Development was undertaken using Borland Delphi 4.0. This language was chosen

for several reasons:

* It supports rapid prototyping of graphical user interfaces.

* The underlying source language (Object Pascal) is stable and well defined.
* Database connectivity is very well supported.

* The development environment supports easy testing and debugging.
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The architecture reflects the design of the HB-CA method. The sort and indicator
recognition modules encapsulate the hypothesis generation stage, and the concept
assignment module performs segmentation and concept binding. The design of

HB-CAS has been influenced by a number of considerations:

* The need to control the system easily. This has been met by using a
control panel to monitor and manage system execution. The control panel
validates files, sets library information, changes module options, and allows
access to intermediate data files during execution. The control panel
provides the user with a single interface to all parts of HB-CAS. It is
intended for the expert user or system developer and would need
modification if the product were to be used in other situations. It is unlikely
that an average software maintainer would need or desire the level of
information that can be gained from the control panel, but would be more
interested in the results of the process. The control panel also permits easy
expansion of the indicator recognition part of the system. Indicator
recognition modules can be added and removed without the need to inform
the control panel explicitly since it detects their presence dynamically. The
control panel also enables each module to be executed individually and the
combination of modules can be changed. This allows different sets of a
module’s options to be used without re-executing modules preceding the

one being tested. Figure 44 shows the control panel.
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Line=25

Pos=15

IClass=1
Token=C10-INITIALISE

Figure 47: Example of an INI File Entry

Although obsolete in Windows 95/ 98, having been replaced by the registry, the INT
file is still supported in the Win32 APIL Delphi provides a class wrapper for the INI
file in its own libraries. This provides the programmer with pre-defined routines for
storing and retrieving information in the files using random access. The advantage
of this approach is that no parsing code needs to be written to read the contents of
the files, and the structure is clear enough for the developer to read the contents

without translation.

INI files are limited to 64Kb in size. Although most parts of HB-CAS do not
create files that come near the limit, the combined data from indicator recognition
was found to reach this point occasionally. Delphi’s INI file implementation allows
a memory-based version to be used without any size limit. This has the additional

advantage of significantly increasing the performance of the module using it.

7.2.5 Indicator Recognition Modules

Each indicator recognition module extracts indicators in one of the classes
discussed in Chapter 4. The modules operate in two stages: extraction, and
matching. The extraction modules are written in C and are simple lexers. The basis
for each lexer is a commercial lex/ yacc package written for COBOL 85. This has
been extended for IBM COBOLII. The lexers extract all procedure division tokens
falling into the appropriate indicator class, with the exception of the comment
recognition module. During the development of HB-CA, comments occurring
before the procedure division were required and the module was designed to extract
them. As the segmentation method shown in Chapter 5 ignores any hypotheses
generated from this part of a COBOL II progrém, no modifications have been
made to the module. These tokens can still cause hypothesis generation but the
hypotheses are not considered in segmentation and concept binding. The result of

extraction is matched against the database of indicators.
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The matching stage is written in Delphi and each module uses a file of options to
determine its behaviour. Case sensitivity in search is available within the Delphi
database components so no custom implementation is required. Sub-string
matching requires a bi-directional comparison of the database string with the token
extracted from the source code. Synonym matching was implemented using
Automation links to Microsoft Word. Word exports functions in its type library to

access the thesaurus and these were used to generate synonyms.

The separate outputs of the indicator recognition modules are combined to produce

afile of all the hypotheses made. This file is sorted in order of indicator occurrence.

7.2.6 Concept Assignment Module

The concept assignment module implements the segmentation and concept binding
algorithms described in Chapters 5 and 6. The major point of interest in this
module is the implementation of the self-organising map. Kohonen’s research
group provides a self-organising map implementation for MS-DOS called
SOM_PAK. Itisavailable on the web [SOMPOQ] and provides a suite of programs
for creating, training, and interpreting SOMs. Rather than implement a native
Delphi version of the SOM algorithm, it was decided to use the SOM_PAK and
‘harness it to the Delphi program through an MS-DOS batch file interface. This is
less efficient than a native version but has the advantage of using a proven
implementation. SOM:s can be initialised in a number of ways, the most efficient
being based on eigenvectors[KOHOO0]. The method used in HB-CAS is random
initialisation, as described in the SOM_PAK documentation [KOHO96].

It is important to establish the reliability of a third-party implementation.
Establishing confidence in the SOM_PAK was achieved by experimenting with
simple maps to successfully produce predicted results. In addition, the SOM_PAK
has been used in a variety of research projects with no reported problems (see

[LAGU96], [HAME9%6], [VESA97], [DES]00)).
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7.3.1 Principles of Test Suite

The test suite allowed the concept assignment system to be executed on large
numbers of source files with varying parameters. The results of each execution
were recorded and compared with predefined “correct” answers. This allowed
automatic measurement of the system’s success at concept assignment. A log file
stored the input and output of every stage of the recognition process for later
analysis. The size of this file (typically between 22Mb and 50Mb) required the

development of several perl scripts to create summaries of the information

contained within it.

To ensure fair testing, the suite controls HB-CAS using the control panel “execute”
method. Its only direct intervention in the process is to set module options in the
relevant initialisation files. Once this has been completed, control is passed to the

control panel as if a person was using the system.

Creating the “correct” answers required the use of a mark-up tool to designate parts
of the source code as indicators and concepts. The marked-up code was stored in
files and automatically compared to the output of the concept assignment system
using various criteria for correctness. Performance was measured in terms of
information retrieval, using precision (number correct/number found) and recall
(number found/number potential). The best set of indicator recognition options
was determined by comparing the precision and recall values for each combination.
These investigations also guided the development of the concept assignment

methods.

As the concept assignment methods became more sophisticated, the marked-up
representation of the source code became incompatible with the output of HB-
CAS. Since later versions of HB-CAS had fewer parameters to control the concept
assignment process, the effort required to upgrade the test suite was not deemed
worthwhile. Consequently, the evaluation of HB-CA described in the next two

chapters is based on the manual application of correctness measures.
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7.3.2 Usage

Although the test suite was orilginally intended for use as an automated test and
evaluation tool, it could be adapted easily to provide batch-processing facilities.
This would allow large amounts of source code to be analysed in one step, either for
future software comprehension use (storing the results in a repository), or for more
specialised applications such as searching for instances of a particular concept in a
large body of source code. This could fulfil the functions of the wrapper, discussed

in section 9.2.1, for ripple analysis, module selection, and code reuse.

7.4 Evaluation of Implementation

This section discusses some of the issues arising from the implementation of

HB-CA in HB-CAS. The method itself is evaluated in the next two chapters.

7.4.1 Design Evaluation
7.4.1.1 Separate Program Approach

The basic design has proved effective and the architecture has not been changed for
any version of HB-CA. Using separate programs to implement each part of the
system made modification and testing easy. The control par{el ’s ability to scan the
directory structure for additional indicator recognition modules also helped to

expand the system with minimal effort.

There were some disadvantages, in particular, the problem of synchronisation
between the control panel and the other programs. This was handled using the
presence of a file to act as a “process complete” flag. This somewhat inelegant
solution could be replaced with the Win32 process control AP, but the effort
required to understand and employ these functions was judged greater than the
potential benefit. The API method offers better performance and greater elegance,

but the file-based method works satisfactorily.

The individual modules run in “batch” mode rather than in the traditional
- interactive manner of Windows applications, ensuring that the control panel does
not require additional user input once the run button is selected. Adopting this

approach places responsibility on the programmer to ensure that the application
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window is updated and operating system messages are processed. This problem

would be overcome by implementing HB-CAS as a single program.

7.4.1.2 Third-Party SOM Implementation

There were good reasons for using the SOM implementation provided by
Kohonen’s group, the most important being that the code can be trusted as correct
(see section 7.2.6 for research citing use of the SOM_PAK). In addition, a

substantial amount of time was saved by not re-implementing the algorithms.

When SOM-based methods were first employed, the techniques of file-based
synchronisation were well understood and a Delphi library was built to interface
with the SOM_PAK. Using a separate library to abstract SOM functionality

provides an easy way to substitute a native implementation should the need arise.

The main disadvantage of using the SOM PAK is poor performance. The
programs compile to a DOS executable and consequently require a command shell
to be launched before execution. In addition, different programs within the
package handle the stages of initialisation, training, and interpretation separately.
This leads to a new shell being launched for each. Despite this high run-time
overhead, performance on real data is acceptable, although a native 32-bit

implementation would almost certainly show significant performance gains.

7.4.1.3 Third-Party Synonym Lists

Synonym-based indicator matching is not used in the examples in this thesis as it
significantly degraded indicator recognition performance and computational cost.
The idea of using synonyms to give flexibility to indicator recognition is considered

sound, although better methods are required to perform the matching process.

Microsoft Word was chosen to provide the synonym list since it has wide availability
on the Windows platform and a standard library with which other programs may
access its functionality. Word list quality was not considered in this research but if

synonym matching is desired then list quality should be addressed.
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7.4.3 Test and Validation

Each program was tested individually before being included in the system. The
separate program approach and high visibility of input and output data meant that
very few problems were found during integration. Individual programs were mostly
checked by hand to ensure that the output generated was as expected, e.g. the

extraction and match program results were compared to a manually performed

analysis.

The concept assignment module was more complex and required the use of
Delphi’s debugging tools. These allowed the internal state of various data structures
to be displayed at appropriate points during the execution of the module. Single-
step tracing of the routines was used to ensure correct implementation of the

algorithms.

Due to its nature, the specific behaviour of the SOM cannot be accurately predicted,
but experiments during the development of HB-CA gave an indication of typical

results. These were used, in conjunction with test data, to verify that the SOM was

working as expected.

Despite thorough testing before evaluation, the investigations undertaken for
Chapter 8 highlighted a few remaining bugs when the more complex library content
(shown in the Appendix) was used. These were rectified without significant effort,

and the affected investigations repeated with negligible difference in their results.

7.5 Summary

This chapter has presented the HB-CAS implementation of the HB-CA method.
Various technical issues relating to the system’s design have been discussed and its
automated test suite described. The implementation has been evaluated with

respect to major design and code characteristics.

Chapter 8 presents the first part of an extensive evaluation of the HB-CA method.

This examines many characteristics of HB-CA, beginning with its scalability.
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Chapter 8
Evaluation I: HB-CA Characteristics

8.1 Introduction
Chapter 7 described an implementation of the HB-CA method called HB-CAS and

discussed its architecture and design rationale.

Having shown the operation of each stage of HB-CA in Chapters 4, 5, and 6, this
chapter presents the first part of an extensive evaluation of the method, relating to

characteristics of HB-CA itself.

The evaluation begins with one of the most important properties of HB-CA:
scalability. HB-CA is intended to work with real-world code and hence it is
important that it operates accurately on any length of program. The chapter then
discusses issues relating to segmentation, concept binding, and the library. Finally,
some general characteristics of HB-CA are examined: computational and spatial
cost, expandability, representational power, domain independence, and achievement

of cognitive requirements.

The results of a number of practical investigations are reported, each introduced by
a table summarising its parameters and data. Investigations were carried out using
HB-CAS and a number of real-world COBOL II programs. Program sets, results,
and other parameters for all the investigations can be found in the Appendix. All
program lengths are quoted in lines including white space and comments, since
these can contain valid indicators. Although HB-CA is designed to work solely on
the procedure division of COBOL II programs, it is not reasonable to expect a
maintainer to remove the data division before commencing analysis. Consequently,
program lengths include the data division, and all investigations use complete

programs.
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Accurate concept binding relies on a good quality segment, i.e. aset of hypotheses
that clearly indicate one concept. It follows that the lower a segment’s quality, the
less likely the concept binding method is to accurately assign a concept. The

following hypothesis is made to explain the drop in accuracy with larger programs:

Hypothesis 1: Segmenting larger programs requires greater use of SOMs,

which reduces the accuracy of concept assignment.

The first question to be addressed is whether larger programs use more SOMs. To
test this, comparisons are made between the length of programs and the number of
SOMs used to analyse them. Results are taken from the investigation summarised
in Table 10. Figure 53 shows that SOM usage increases when larger programs are

analysed.
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Figure 53: Graph to show the relationship between the
Number of SOMs Used and Program Length

Since larger programs do require greater use of SOMs, it is likely that the latter is the
cause of lower accuracy. Further confirmation is gained by comparing SOM usage

and accuracy directly, as shown in Figure 54.
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8.2.1.2 Possible Solutions

The reallocation algorithms would benefit from further research. One approach
might be to use conceptual information from the hypotheses of invalid clusters, to
bind them to conceptually similar neighbours. This might require some preliminary
concept binding. Alternatively, the principle of preserving all of the original
hypotheses could be rejected and invalid clusters ignored. Another idea might be to
limit the number of hypotheses that can be added to a valid cluster, or limit the

cluster size itself.

Another approach to improving the quality of segmentation might be to change the
controlling parameters, rec_threshand min_vd, which for the investigations performed
in this chapter are set to 1 and 3 respectively. Increasing rec_thresh would cause a
reduction in the number of initial segments and hence concept assignments made
(since more evidence would be required). Those segments that pass the threshold
would be larger, having a reasonable amount of evidence. Smaller values of
rec_thresh would allow more initial segments to be considered and increase the
number of concept assignments. Given that smaller segments have been observed
to produce more accurate concept assignment, smaller values of rec_thresh should
produce more accurate results overall. The disadvantage of having smaller segments
is that each hypothesis carries more weight (by representing a larger proportion of
the body of evidence) than in larger segments. Consequently, a misleading indicator
can cause greater problems. Individual hypotheses in larger segments have less
influence on the overall concept assignment, so increasing réc_thresh may ensure that

a reasonable body of evidence is considered, rather than just a few hypotheses.

Increasing min_vd would increase the number of invalid clusters by forcing valid
clusters to contain more evidence. This could cause poorer segmentation for the
reasons discussed in section 8.2.1.1. Decreasing min_vd may improve the quality of
segmentation, but the resulting segments could be so small (since only one or two
hypotheses for a concept would be required) that concept assignment would
become pointless. There would no longer be a significant body of evidence to
consider (see the discussion of rec_thresh above). A balance must be struck when

setting the parameters, to make best use of the library on the source code being

studied.
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recognition performance when strict accuracy is considered, although non-strict

accuracy does not indicate this to the same extent.

Investigation of the cause of SOM-related segmentation problems revealed that the
hypothesis reallocation algorithms are largely to blame for poor performance. This

1s not surprising given their naive nature and several strategies have been identified

to address the problem.

8.3 Segmentation
In view of some of the issues raised about HB-CA’s segmentation in the previous

section, a discussion of the abilities of the segmentation method is now presented.

HB-CA is designed to operate on real-world code and consequently cannot rely on
being applied to well-structured programs. When poorly structured code is
presented, SOMs are used to create segments based on conceptual association
rather than syntactic boundaries. Section 8.2 discussed some of the problems that
arise when SOMs are employed in this role. These appear to be linked mostly to

the algorithms that analyse the results produced by the maps.

A small investigation of the SOM’s ability to replicate éyntax-based segmentation
has been performed. Pairs of segment boundary hypotheses were removed
successively from the hypothesis list. In the programs tested, the SOM failed to
preserve the syntactic clustering exactly, although the resulting concept assignment
was still correct. The cross-subroutine segmentation that can occur in these cases

was the motivation for the use of segment boundary hypotheses.

In some cases SOM-based segmentation can be extremely successful, an example

being shown in the second and third concepts of Figure 58 (specialisation was not

forced).
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The SOM appears to learn both similarity and difference. This is essentially a
problem of over-representation in the output space but since the method for
calcﬁlating the size of the output s;;ace 1s well justified theoretically, there is little
incentive for modifying it. An alternative explanation is that the initial values in the
map cause coﬁcepts that should be associated to be pulled away from their correct
cluster. The map training parameters should prevent this from happening in most

cases.

A simple solution to the problem of unnecessary segmentation would be to add a

rule to gather adjacent, identical concepts, and make one assignment for the

collection.

In summary, SOM-based segmentation is a successful method for handling

monolithic code and large subroutines, although it can over-segment on occasion.

8.4 Concept Binding

Section 8.2 raised the problem of poor concept assignment caused by hypotheses in
a segment that are not related to the correct concept. This section examines the
issue in more depth, evaluating the effectiveness of the disambiguation rules in
allowing graceftﬂ degradation of the system’s performance. The rules were

presented in section 6.3.2.3.

Recall that concept binding operates by creating conclusions for every hypothesised
action concept in a segment, and every possible composite containing that action
concept. A composite is a concept made up of an action and an object. Object
concepts are then scored to complete and strengthen conclusions. The highest
scoring concept is designated the winner but if there are several with the same high

score then disambiguation rules are applied to determine which should be ultimately

successful.

Hypotheses that are unrelated to the correct concept in a segment can be viewed as
falling on a scale from random “noise” to a coherent “interfering signal”. If there is
no conceptual correlation between these unrelated hypotheses, they simply create

“noise” and are eliminated by the scoring algorithms. As the unrelated hypotheses
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move along the scale to form a coherent “interfering signal”, HB-CA must apply
more rules to retain the correct concept. Eventually, the evidence for the
interfering concept may outweigh that of the original and so assignment will be
made to the new concept. This is not intrinsically bad since HB-CA was created to

use the weight of available evidence to make concept assignments.

An example program was used to investigate the method’s performance in this area,
with the library content presented in the Appendix. Min_vd was set high to prevent
a SOM being used. One routine with an obvious interpretation was chosen within

the program, and varying types of unrelated indicator added.

The original routine is shown in Figure 60. The concept assigned by HB-CA (using

forced_specialisation = True) was Read:PaymentFile. This is clearly correct.

GD25 S10-READ-PAYMENT SECTION.
GD25 * READ THE PAYMENT FILE
GD25 S10-000.

GD25 CALL 'GBFDAMAO' USING PAYMENT-FILE.
GD25 S10-999.
GD25 EXIT.

Figure 60: Original Routine

The original routine contains only one unrelated indicator, cac, and the scoring
algorithms ignore this. rrre creates hypotheses for a number of different types of
file in addition to the correct one, resulting in the bulk of evidence pointing to
Read:File. When specialisation is forced, the hypotheses produced by eavment
indicate the result to be Read:PaymentFile. This can be seen in the extract from the

HB-CAS log shown in Figure 61.
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CB: Printing final conclusion list for this segment:

CB: Read 2

CB: Read:File 2:7

CB: Read:CAF 2:1

CB: Read:PaymentFile 2:4
CB: Call 1

CB: *DA* Finding highest scoring conclusions. (DAR 1)

CB: 1 high scoring conclusions.

CB: High scoring conclusion is Read:File, score 9

CB: *DA* Removing specialisations. (DAR 2)
CB: Found clear winner.

Winning conclusion for this segment currently Read:File

CB: ** Post-Disambiguation Processing **
CB: *PDAP* Specialisation Required.

CB: Found specialisation

CB: Found specialisation

Winning conclusion for this segment currently Read:PaymentFile

CB: *PDAP* Checking Thresholds.
Storing current winning conclusion

Figure 61: Extract from HB-CAS Log

The level of random “noise” in the original routine is moderately low. To test the

ability of HB-CA to cope with greater “noise”, the routine was modified to have

more “noisy” indicators than indicators for Read:PaymentFile. This is shown in

Figure 62.

GD25 S10-READ-PAYMENT SECTION.
GD25 * READ THE PAYMENT FILE
NOISE * PRINT A REPORT

NOISE * UPDATE A DATABASE
GD25 S10-000.

GD25 CALL 'GBFDAMAO' USING PAYMENT-FILE.
NOISE CALL 'PRINT' USING P-APS.

NOISE MOVE SPACES TO DB-PARMS.

NOISE * OUTPUT COMPLETE

GD25 S10-999.

GD25 EXIT.

Figure 62: Routine Modified with Random “Noise”

Despite the fact that there are only 7 indicators related to Read:PaymentFile and at

least 9 unrelated, the system still makes the correct concept assignment. This is due

to the scoring algorithm considering both the amount and the coherence of

available evidence, using the composition and specialisation relationships. Figure 63

shows a considerable increase in the number of potential conclusions, resulting

from the range of indicators that have been added to the routine.
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CB: Printing final conclusion list for this segment:
CB: Read 2

CB: Read:File 2:8

CB: Read:Database 2:2

CB: Read:Record 2:1

CB: Read:APSMasterFile 2:1

CB: Read:CAF 2:1

CB: Read:PaymentFile 2:
CB: Read:APSRecord 2:1
CB: Print 1

CB: Print:Report 1:1
CB: Print:Record 1:1
CB: Print:APSRecord 1:1
CB: Update 1

CB: Update:File 1:8
CB: Update:Database 1:2
CB: Update:Record 1:1
CB: Update:APSMasterFile 1:1

CB: Update:CAF 1:1

CB: Update:PaymentFile 1:4

CB: Update:APSRecord 1:1

CB: Call 2

CB: Output 1

CB: Output:File 1:8

CB: Output:Report 1:1

CB: Output:Database 1:2

CB: Output:Record 1:1

CB: Output:APSMasterFile 1:1

CB: Output:CAF 1:1

CB: Output:PaymentFile 1:4

CB: Output:APSRecord 1:1

CB: *DA* Finding highest scoring conclusions. (DAR 1)

CB: 1 high scoring conclusions.

CB: High scoring conclusion is Read:File, score 10

CB: *DA* Removing specialisations. (DAR 2)

CB: Found clear winner.

Winning conclusion for this segment currently Read:File

CB: ** Post-Disambiguation Processing **

CB: *PDAP* Specialisation Required.

CB: Found specialisation

CB: Found specialisation

CB: Found specialisation

Winning conclusion for this segment currently Read:PaymentFile
CB: *PDAP* Checking Thresholds.

Storing current winning conclusion

4

Figure 63: Extract From HB-CAS Log for the Random
“Noise” Example

It has been established that the scoring algorithm can cope with situations where the
majority of evidence is incoherent and unrelated to the correct concept. The
disambiguation rules’ ability to deal with unrelated but coherent indicators is now

examined. Each rule is considered and justified in the context of the example

routine.
8.4.1 Rule 1: Select Highest Scoring Conclusions

The effect of this rule can be seen in Figure 61 and Figure 63 where the Read:File

concept scores higher than any other, and is selected for further processing. This
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rule requires little justification since it is the basis of discriminating between

conclusions.

8.4.2 Rule 2: Remove Specialisations

This rule aims to prevent various specialisations of an object concept competing
with each other when they should be competing against a fundamentally different
concept. In most cases, it has no effect because the scoring algorithm allocates
points to the general forms of a specialised concept. These are in addition to points
gained from the general concepts’ own indicators. The general versions thus gain a
greater score and are picked by rule 1 in preference to their specialisations. Should a

general form win, forcing specialisation can retrieve the specialised version.

The rule is useful in situations where there is no direct evidence of the general
concept, with the result that the general and specialised concept scores are identical.
In this case, rule 2 ensures that if an arbitrary decision is ultimately required, the
general form is not picked in favour of the specialisation. The arbitrary decision is
made between the most general forms of competing concepts rather than versions

of the same one. Figure 64 shows the original routine modified to trigger rule 2.

GD25 S10-READ SECTION.
. NOISE * PRINT A REPORT

NOISE * READ

GD25 S10-000.

GD25 CALL 'GBFDAMAO' USING PAYMENT.
NOISE CALL 'PRINT' USING P-PRINT.
GD25  S10-999.

GD25 EXIT.

Figure 64: Routine Modified to Demonstrate Rule 2

There is no direct evidence for the File concept so all of its score will come from its
specialisation: PaymentFile. A fragment of the resulting assignment log is shown in

Figure 65.
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8.4.4 Rule 4: Find the Highest Action Scores
Although non-composite actions have been removed from the list by this point,
action concepts are still favoured over objects as the aim is to determine the

computational intent. Rule 4 examines the action scores of composites. Those with

the highest scores win.

The example routine was modified to trigger rule 4, as shown in Figure 68.

GD25 S10-READ-PAYMENT SECTION.

NOISE * PRINT A PAYMENT REPORT

GD25 S10-000.

GD25 CALL 'GBFDAMAQO' USING PAYMENT.
NOISE MOVE REPORT TO P-PRINT.

GD25 S10-999.

GD25 EXIT.

Figure 68: Routine Modified to Demonstrate Rule 4

In this case it could be argued that the routine is becoming extremely ambiguous
with either Read:PaymentFile or Print:Report being correct. This is an example of a
coherent “interfering signal”. AsFigure 69 shows, Print:Report is selected because

of the higher score of its action component.
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winning concept scores above the required threshold. The latter issue is trivial and

is not discussed further. Forced specialisation merits greater examination.

In general, forcing specialisation is a successful way of retrieving the most
specialised form of a conéept when its general version has won. The method by
which this is performed selects all forms of the winning concept for which there is
evidence and picks the one that scores highest. If more than one achieves the high
score then the result is regarded as ambiguous and the general form is left as the

winner.

The main problem with this ambiguity rule is its assumption that specialisation will
occur in only one level (e.g. File to MasterFile, File to APSMasterFile). Additional
methods would need to be defined to handle intermediate specialisations (e.g. File
to MasterFile to APSMasterFile) because if an intermediate and most specialised
form of a concept scored the same, the result would be regarded as ambiguous. In
such situations, the intermediate should be picked (being a more general version of
the specialised form) but the rule will actually choose the common general version
of both (File in this example). Consequently, the rule will not produce incorrect
results but some precision may be lost. This happens because both the intermediate
and most specialised forms are regarded as being at the same level (the list used by
the rule is a flattened form of the library’s structured representation). If there is no
ambiguity, the situation does not arise and the intermediate and most specialised

form will compete normally.

Figure 72 and Figure 73 show the example routineanda log extract demonstrating a
situation where forced specialisation cannot be performed due to a conflict between
two specialised versions of a general concept. There are no intermediate concepts
in the library shown in the Appendix so the ambiguity problem discussed above will

not arise.
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8.5 Library Content

In view of HB-CA'’s sensitivity to the library, this section briefly discusses some
1ssues to be considered when creating its content. These are drawn from theoretical
aspects of its structure and experience gained from undertaking the investigations in

this chapter. The representational power of the library is discussed in section 8.9.

Although it is impossible to suggest what should be the optimal content of the
library in a particular instance, some general principles have emerged from using
HB-CAS for the investigations in this chapter. Indicators ideally need to be unique
to a particular concept. There are exceptions to this (e.g. most files will need a file
indicator, regardless of their specific nature) but unique indicators improve the
quality of hypothesis generation and consequently cause less confusion in concept
binding. It is suggested that secondary concepts should be allocated the indicators
for their more general versions, in addition to their own specific and differentiating
indicators. This provides for successful recognition when there is no direct

evidence of the general concept.

The representational power of the method is discussed in section 8.9, but at this
point, it is worth noting the different ways in which evidence for a concept can be
assembled. The set of indicators for a concept of low-level abstraction is likely to
be similar to the concept name, e.g. MasterFile will have indicators such as “File”
and “Master” in various classes. As the level of abstraction rises, a different
approach may be required as routines that implement more functionality are likely
to call on lower-level subroutines to do the work. Consequently, the indicators for a
high-level concept will be the subroutine names as found in the calling statements.
When creating high-level concepts in the library the indicators therefore should be
related to the constituent parts of the solution rather than the name of the solution

itself, as the evidence in the code will be diverse rather than coherent.

This section has briefly discussed some practical considerations for creating library

content. These include the uniqueness of indicators and the body of evidence for a

concept.
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8.6 Computational Cost

This section identifies several factors that have a significant impact on the
computational cost of HB-CA. Biggerstaff et al. claim that plausible reasoning
systems (like HB-CA) appear to have linear computational growth with the length
of program under analysis [BIGG93]. It is expected that HB-CA will exhibit this

cost characteristic.

A large proportion of the HB-CA process involves comparing source code to the
library, and these entities have the biggest impact on its computational cost. The

discussion in this section focuses on structural attributes of both.

8.6.1 Source Code

It is important to consider the impact of the source code being analysed because it
is likely to change more frequently than any other entity involved in HB-CA. The
two characteristics that have the greatest effect on HB-CA’s computational cost are
the source code length, and the number of sections. HB-CA should have linear

computational growth with the length of source code under analysis.

8.6.1.1 Source Code Length

The source code is an essentially linear structure (when treated as a body of text by
HB-CA) and as such, it is reasonable to expect that the computational cost of HB-
CA should increase linearly with the length of source code being analysed. This

assumes that the library being used remains constant.

To verify this relationship an investigation has been undertaken. The execution
time of a module or part-module is regarded as directly proportional to the
computational cost of the method it implements. Consequently, the discussion in
this section uses cost and execution time synonymously. The modules of HB-CAS

supply these timings, accurate to within 1 second.
The source programs were selected semi-randomly from a set of 150. The selection

criteria were to include the shortest and longest available programs, space the

program lengths by approximately 50 lines, and ensure that programs were drawn
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sorting is not addressed here. Hypothesis generation cost is regarded therefore as

directly proportional to indicator recognition cost.

Assuming an even density of tokens per line, the number of tokens extracted from
the source code should be approximately proportional to the length of the program

(measured in lines). Figure 77 shows the results of the investigation outlined in

Table 15, verifying this relationship.
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Figure 77: Graph to show the relationship between the Total
Number of Extracted Tokens and Program Length

Since the number of extracted tokens is linearly related to the program length, and
the next stage of hypothesis generation (matching) involves comparing extracted
tokens with stored indicators, it is reasonable to expect the computational cost of
matching also to be related linearly to the program length. This is because the
matching algorithm compares each token to every indicator in the library. The use
of flexible matching options proportionally increases the cost since every option
used incurs an additional test on each library indicator. The exception is case
sensitivity, which is employed in the first test if necessary. Synonym matching
incurs the additional test and multiplies the comparison cost by the number of
synonyms found for a particular token. The size of the synonym list is static and
consequently there is a fixed upper limit on this cost for any particular token. This
means that there should be no fundamental effect on the linear relationship between
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the computational cost of the indicator matching process and the length of the

source code.

The only options used for the investigations in this chapter were case insensitivity
and sub-string matching for modules that implement them. Experiments carried
out during the development of HB-CA showed this set of options to be the most
successful for indicator recognition. Synonym matching was found to reduce
indicator recognition accuracy significantly, in addition to substantially increasing

the cost of execution.

Further results from the investigation described in Table 15 are shown in Figure 78,
 appearing to confirm linear computational growth with source code length for

indicator recognition.
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Figure 78: Graph to show the relationship between the Total
IRM Execution Time and Program Length

It is also interesting to compare the execution times of the individual indicator
recognition modules to determine whether there is any significant difference
between them. The level of matching varies widely between the modules, with
keyword recognition matching indicators in only two of the twenty programs,

despite extracting more tokens than any other module.
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boundaries compared to the other token types in a program that the cost of
matching them in hypothesis generation is negligible. The number of sections also
has no direct effect on concept binding since the intervening segmentation stage
may subdivide the original sections. A direct relationship therefore cannot be

shown.

Segmentation is affected by the number of sections, as it is performed initially using
the subroutine boundaries in the COBOL II program being analysed. The
computational cost of processing a single section is incurred for each.
Consequently, it is reasonable to expect the computational cost of executing the
segmentation algorithms to vary linearly with the number of sections in the source
code. Figure 81 shows more data from the investigation described in Table 15,

presenting the relationship between the segmentation time and the number of

sections.
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Figure 81: Graph to show the relationship between the
Segmentation Time and the Number of Sections in the
Source Code (Low Resolution Timers)

This graph does not demonstrate a clear linear relationship. Nonetheless, cost

differences are apparent and further analysis must be undertaken to explain them.

Large changes in cost could be explained by the use of SOMs in the segmentation

process. SOMs would normally be required in large programs with few sections,
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8.6.1.4 Summary

Section 8.6.1 has established the characteristics of the source code that have a major
impact on the computational cost of HB-CA. Section 8.6.1.1 established that the
overall computational cost of HB-CA is related linearly to the length of program
being analysed. Section 8.6.1.2 demonstrated a linear relationship between the
length of the source code and the hypothesis generation cost. Section 8.6.1.3
showed that the cost of segmentation is related linearly to the number of sections in

the source code (when SOM-related costs are ignored).

8.6.2 Library

Since the library is used in most stages of HB-CA, it is important to consider its
impact on the computational cost of the process. The library is a non-linear
structure and consequently it is not reasonable to expect the computational cost of

HB-CA to vary linearly with changes in its content and size.

To investigate the library’s impact on the computational cost, it is examined with

reference to some of its constituent entities and relationships.

8.6.2.1 The Library in Hypothesis Generation
This section discusses the relationship between the computational cost of

hypothesis generation and the number of indicators and indicates relationships.

The parts of the library used in hypothesis generation are indicators, concepts, and
the indicates relationship. Section 8.6.1.2 demonstrated that hypothesis generation
has linear computational cost variation in relation to the length of source code being
analysed. Modifying the library should not cause a change in this relationship

although additional content will necessarily cost more to use.

Indicator matching involves comparing each extracted token with every indicator in
the library (effectively comparing two lists). An increase in the number of indicators
should result in a linear increase in the execution time, signifying a similar variation
in the computational cost of the method. This linear increase must also be
considered with reference to the number of concepts to which an indicator is

linked. The cost of matching a single indicator is multiplied by the cost of
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IRM Execution Time and the Number of Library Indicators

These timers make the results more sensitive to fluctuations in the operating system,

but the approximately linear characteristic of the relationship is quite clear.

In summary, the computational cost of hypothesis generation varies linearly with

the number of indicators in the library.

The effect of modifying the indicates relationship should be similar to that of
modifying the number of indicators in the library. Hypothesis generation cost is
dependent on the number of matched indicators and the number of concepts to
which each is linked. Increasing the number of links (.. instances of the indicates
relationship) should increase the time taken to produce hypotheses in a linear

manner.

An investigation was undertaken using the library content presented in Chapter 3
and the largest source program from Set E. It begins with 23 instances of the
indicates relationship, and each successive execution of the system adds an
additional instance to approximately one third of the indicators. This results in
confusing and incorrect concept assignment but the concern here is the change in

cost, not the accuracy of the result. Investigation parameters are shown in Table 17.
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In summary, the computational cost of hypothesis generation varies linearly with

- the number of instances of the indicates relationship.

8.6.2.2 The Library in Segmentation and Concept Binding
The library has minimal effect on segmentation as the process operates on the

hypothesis list only.

The library is used directly in concept binding and consequently has an effect on the
computational cost of this stage of HB-CA. The two salient relationships are

composition and specialisation. Indicates is not used in concept binding.

The cost of concept binding should vary linearly with the number of segments since
the same section of processing must be performed once for each. Using the
investigation shown in Table 15 (with the lower resolution timers), Figure 87 shows

some validation of this relationship. The results are shown in section A.5.1.
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Figure 87: Graph to show the relationship between the
Concept Binding Time and the Number of Segments

There are four activities within concept binding and these are described in Chapter

6. Factors in the cost of each activity are now considered.
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8.6.2.3 Factors in Conclusion Generation Cost

The first concept binding activity, conclusion generation, involves generating all
possible conclusions from the action concepts in a segment. Both composition and
specialisation are used in this. Each action concept generates conclusions based on
its composites. Conclusions are also generated for every specialisation of a
composite object. Changes in the number of segments, the number of
compositions, or the number of specialisations, may all have an effect on the cost of

conclusion generation. These are all different types of change and are considered

separately.

Conclusion generation has a linear relationship with the number of action concepts
in the current segment because each concept generates one set of conclusions. This
holds as long as each set of conclusions is regarded as a single unit of cost.
However, once the composition and specialisation relationships are considered, the

cost relationship is not so clearly defined.

In a library with no specialisations, adding composites will vary the conclusion
ry P ) P ry
generation cost linearly, since each additional composite will generate a single

additional conclusion for a particular action concept.

In alibrary with a fixed number of composites, adding specialisations will cause a
linear variation in cost, if every action concept is composite with the primary object
being specialised. This is because one additional conclusion will be generated for
each action concept. Those action concepts that are not composite with the
primary object being specialised will remain unaffected by the change. Cost
variation is linear for further additional specialisations of a particular primary object,
but if another object is specialised, the overall characteristic may be non-linear. This
can be illustrated by the following example: assume that Read is composite with
File and Record, and Write is composite with Record. This would produce 5
conclusions (Read, Read:File, Read:Record, Write, Write:Record). By specialising
File to MasterFile, the number of conclusions would increase to 6 because the Read
concept has a composite relationship with File. Specialising File again to
PaymentFile would result in 7 conclusions. If Record were then specialised, the

number of conclusions would increase to 9 because both action concepts are
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The effect of adding composites was measured by adding additional object concepts
to the library and creating each as a composite. Compositions were made with two
action concepts and, although the results are not as clear as those for specialisation,
there is a change in gradient where the action concept being used was changed (see

Figure 89, with results in section A.5.7.2).

Total Conclusion Generation Time (s)
S

0 T T
0 5 10 15 20

Number of Composites

T 1

Figure 89: Graph to show the relationship between the Total
Conclusion Generation Time and the Number of
Composites in the Library
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In summary, the cost of conclusion generation can be related linearly to various
aspects of the library, but the overall relationship is determined by a combination of

these factors.

8.6.2.4 Factors in Conclusion Completion Cost

The second stage of concept binding is conclusion completion. This involves using
the object concepts in the current segment to validate composite conclusions in the
list. The only library relationship used is specialisation, to determine the more
general forms of a particular specialised object concept. Changes in the
specialisation relationship could have, at worst, a linear effect on the cost of this
process. This is because one additional instance of the relationship may need to be
examined for every additional specialisation added. The worst case would arise if
every conclusion contained a form of the specialisation, and the most specialised
form was hypothesised in every case. Every hypothesis would then add score to
every conclusion. This is unlikely to happen in practice and hence changes to the
specialisation relationship should not have a major impact on the cost of conclusion

completion.

8.6.2.5 Factors in Disambiguation

The third part of concept binding, disambiguation, also uses specialisation in a
- similar way to conclusion completion. The relationship is used to find general
forms of concepts where the evidence for specialised forms is ambiguous. The
addition of a specialisation to the library may have therefore a similar effect to that
in conclusion completion.‘ In the worst case, where every situation requires the
examination of all forms of a concept, the change in computational cost would be

linear, but in practice, it should be better than this because it is unlikely that every

case will require this processing.

8.6.2.6 Factors in Post-Disambiguation Processing

The final stage of concept biﬁding involves specialising a general concept if
forced_specialisation is True. Inthe worst case, this will require examination of every
specialisation of that concept and consequently, the addition of a new specialisation

to the library could cause a linear change in the cost. This change would be
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observed if the new specialisation was the most specialised form of the general
concept, and there was evidence for it. In practice, it is unlikely that this would

occur 1n every segment analysed.

8.6.2.7 Summary

In summary, the major factors in the computational cost of concept binding are the
numbers of composition and specialisation relationships in the library. Independent
changes in these relationships are not expected to cause anything worse than linear
change in the computational cost. When changes are made to both relationships
simultaneously, or when a single change effectively results in this, e.g. adding a
composite with specialised objects as discussed above, the change in computational

cost may not be linear.

8.6.3 Summary
The effect of various properties of the source code and library on HB-CA’s

computational cost has been considered. HB-CA possesses a key characteristic of
plausible reasoning systems: linear growth in computational cost with the length of
the source code being analysed. Cost factors other than source code length have
been identified, and their impact on the computational cost of individual parts of

HB-CA considered.

8.7 Spatial Cost

This section considers the spatial cost of HB-CA.

HB-CA’s spatial cost is closely linked to its computational cost. The linear
relationship between source code length and computational cost is reflected in the

size of data structures created by the various stages of HB-CA.

8.7.1 Hypothesis Generation
Recall that the number of tokens extracted rises linearly with the length of source
code (see Figure 77). The spatial cost of extraction increases at the same rate

because each token is one element of the data structure produced by the extraction

stage.
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In the matching stage, the number of hypotheses represents the spatial cost. The
number of hypotheses generated will be, at most, the number of tokens multiplied
by the number of indicators in the library, multiplied by the number of indicates
relationships in the library. This is the worst-case situation that would occur if every
token was matched, and every indicator was linked to every concept. In practice,
this is highly unlikely since the resulting hypothesis list almost certainly would be
useless for concept assignment. Section 8.6.2.1 demonstrated a linear relationship
between the computational cost and the numbers of indicators and indicates
relationships in the library. A similar relationship holds for the spatial cost of
hypothesis generation, due to the calculation shown above. If the number of
indicators or indicates relationships is increased, the worst-case situation would

result in a linear increase in the space required for the hypothesis list.

8.7.2 Segmentation

The segmentation spatial cost is mainly proportional to the size of the hypothesis
list generated in the first stage, as it is the primary data structure used by this
process. Additional costs may be incurred if a SOM is required, the worst-case
spatial cost of this being related to the size of the largest segment in the hypothesis
list. If there is only one segment (i.e. no subroutines in the source), the SOM can be

no larger than the entire hypothesis list.

8.7.3 Concept Binding

The spatial cost of concept binding has similar dependencies to its computational
cost. Changes in the library content, in terms of composition and specialisation,
may cause, in the worst case, linear changes in the spatial cost. This is demonstrated
for conclusion generation in Figure 90 and Figure 91 where the spatial cost (in
terms of conclusions) is shown in relation to the numbers of specialisation and
composition relationships in the library. The results are from the investigation
described in Table 18 and show the total number of conclusions generated for the

program in each case. Further details of the investigation can be found in section

8.6.2.3.
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The change in gradient on both graphs results from the relationships being applied
to different concepts. The results show a linear change for additions to each
concept individually. It is interesting to note that the shapes of these graphs are

similar to those shown in Figure 88 and Figure 89. This indicates that the number
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of conclusions generated has a direct relationship with the computational cost of

conclusion generation.

8.7.4 Library

The spatial cost of the library is, at worst, linear with the number of concepts or
indicators represented. Adding either entity causes a linear change in the space
required. This cost characteristic can be improved for concepts, using the
composition and specialisation relationships. Adding an instance of either
relationship causes a linear cost increase but, since there are implied compositions
with the specialisations of a primary concept, the amount of information
represented can be increased by more than one item. If every concept is atomic
then the increase is linear, but if composition and specialisation are used it can be
better than linear. This is one advantage of using a semantic network rather than a

list to represent concepts.

8.8 Expandability
This section discusses the ability of HB-CA to incorporate different information

sources for concept assignment.

A particular strength of HB-CA is its use of a source-code independent
representation. By transforming the source code into a hypothesis list very early in
the process, the latter two stages of HB-CA can use information of any type. This
assumes that the information relates to the source code at the token or line level and
is transformable into a hypothesis. The ability to use multiple information sources
can be seen by considering the hypothesis generation stage of HB-CA. Each
indicator recognition process generates a list of hypotheses that are merged to form
asingle, ordered list. Clearly, if an additional list is included, the extra information

can be merged without difficulty.

The major issue to be considered when adding an additional source of information

is whether the potential information gain is worth the cost of extraction.

HB-CA defines four classes of indicator (see Chapter 4). An investigation has been

undertaken to determine their relative effectiveness. Indicator recognition modules
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language recognition of comment phrases rather than single words. The greater
accuracy provided by such indicators may be beneficial but the relatively low cost of

a plausible reasoning concept assignment system could be compromised.

It is not surprising that comments and identifiers contribute most of the
information for concept assignment as they have greater domain semantics than
keywords. Since the object of concept assignment is to label the source code with
domain concepts, indicators with strong domain semantics will be more helpful
than those without. Strong program semantics (such as those provided by
keywords) are more helpful with structural information and consequently, are used

best in areas such as segment boundary recognition.

It should be noted that, in addition to requiring indicator classes with strong domain
semantics, such information also needs to be available within the source code.
These are effectively two sides of the same problem. A maintainer’s understanding
of source code without meaningful identifiers or comments, is restricted largely to
program-level semantics. Using solely the keyword indicator recognition module
restricts HB-CA’s view in a similar way. If source code with meaningless identifiers
is analysed then indicator matching will be unsuccessful, or the results will be
confusing. In this respect, HB-CA suffers similar confusion to a maintainer

attempting to understand poorly written code.

The sequential list model employed for hypotheses has many strengths, in particular,
the ability to integrate multiple knowledge sources as discussed earlier in this
section. There are also some disadvantages to the approach, e.g. the problem of
representing structure-based indicators. This is discussed in more depth in section

8.9.
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8.9 Representational Power
This section discusses the ability of HB-CA to represent different types of indicator

and concept.

The library was originally designed to represent indicators as textual tokens and
would require significant modification to represent other types of information. It
might be possible to use the tokens to refer to a file or other container capable of
storing more complex indicators such as program plans. These require a
representation capable of modelling data and control flow constraints. Plans such
as compute-hash could be stored as a name but there would be difficulty in reliably

recognising them without the complex indicators.

The problem of representing information about relationships and constraints is
illustrated further by extending the airline-booking example suggested in [BIGG93].
Although the concept “reserve airline seat” could be modelled using diverse
evidence for the constituent parts of the process, expressing a constraint such as
“only one person can reserve one seat” is much more difficult. The domain-specific
relationships between objects in the program cannot be modelled in the library as it
only allows composition and specialisation. Consequently, there is no easy way of
describing the evidence for the concept. The library’s ability to model business
rules is clearly affected by this, since the definition of a business rule (see Chapter 2)
specifies that it is a requirement on the condition or manipulation of data. Rules
can be modelled in terms of the features involved in the manipulation of the data
such as likely variable names and computational keywords. This does not guarantee
to find the business rule in its precise form but if the rule’s implementation is
coherent in the source code, the concept name describing it may be assigned

correctly.

The assumption underlying the library’s representation of concepts is that of spatial
co-occurrence. If several pieces of evidence for a concept occur in close proximity .
to each other then that concept can be determined. It would not be impossible to
assemble evidence for constraints in the library, but reliably achieving accurate

concept assignment for them seems unlikely.
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Much of the abstracting power of HB-CA’s representation is derived from the
ability to store any concept name desired by the user. Very high-level abstractions
may not be found successtully if they correspond to larger sections of program than

those to which the method aims to assign concepts.

In addition to the limited representation of indicators as simple tokens, HB-CA
could be hampered by its ordered hypothesis list. This would cause particular
problems for those indicators relying on spatial relationships between parts of the
code, e.g. a delocalised program plan. Although the plan might be found within a
section, it would be difficult to decide where to place its hypothesis in the list since
it participates at several disjoint points in the code. One solution would be to create
a hypothesis for every line of the plan but this may upset the balance of evidence in
the appropriate segment. The problem would be less severe for natural language

phrase indicators as they are likely to occur on a single line.

Another problem with the ordered hypothesis representation is that no account can
be taken of an indicator’s type or other syntactic properties. In performing the
investigations for this chapter, it has been observed that concept assignments are
made occasionally to sections of source code that have been commented out. This
is because the comments have not been recognised as such by the segmentation or
concept binding stages. The issue could be addressed by examining the type of the
indicators within a segment and rejecting that segment if no executable code is
found. Taking account of other syntactic properties could improve the general
performance of HB-CA, e.g. if a particular token was known to be a section name,
it could be given greater weight than the other indicators in the segment and
provide a context for their examination. The risk with this approach is that more
reliance is placed on a single token than on the general body of evidence. This risk

was deemed unacceptable in HB-CA, leading to the “naive” token model in use.
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8.11 Language Independence
HB-CA was designed to work with the COBOL II language.

The use of hypotheses as the primary reasoning component of HB-CA gives it the
potential to be applied to other languages. The following sections discuss potential

issues that may arise from such applications.

8.11.1 Imperative, Non Object-Oriented (e.g. C, Pascal)

This kind of language is similar to COBOL II and could be readily analysed by
HB-CA. Assuming appropriate lexers are used for extracting tokens in the indicator
classes, the matching stage of hypothesis generation would not require modification.
Since the remainder of the method relies on hypotheses rather than source
dependent information, no changes should be required to these stages either. The
knowledge base would need to be equipped with indicators appropriate to the new
language, particularly in the keyword class. Minor modifications could be made to
exploit the scope of variables in block-structured languages, but in principle, this

should not be a major issue.

8.11.2 Imperative, Object-Oriented (e.g. C+ +, Delphi, Java)

Applying HB-CA to object-oriented languages may not be as successful as applying
it to those described in the previous category. HB-CA adopts a linear view of
source code in a file, regarding the file as containing one program made up of a
number of subroutines. Superficially, the class definition of an object-oriented
language could be seen in a similar fashion, with methods regarded as subroutines.
There are important differences, e.g. not all of the information required to assign a
concept to a method may be in the file as much of it may be inherited from super-
classes.  Analysing this additional information would require substantial
modification of HB-CA to enable it to handle a collection of files. In addition, the
nature of object-oriented programming means that related functions and data
structures tend to be grouped within a single class. Methods may be smaller than
their equivalent procedures in another language (due to encapsulation and scoping),
which may lead to easier comprehension. The functional grouping and smaller

method size make it less likely that concept assignment would be of great benefit.
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In summary, HB-CA could be applied to an object-oriented language with minor
modification but the benefit of applying this type of tool may not be worth the

effort required.

8.11.3 Non-Imperative (e.g. Haskell, Prolog)

These languages challenge rhany of the assumptions on which HB-CA rests, e.g. the
notion of sequence between program statements, subroutines to provide basic
segmentation, and the availability of a reasonably large body of evidence within the

code to indicate functionality.

Programs written in functional languages such as Haskell do contain a certain
amount of informal information, and concept assignment might be attempted. The
generally limited size of such programs and the style of programming adopted make

this an exercise of dubious merit.

There is a large amount of literature on the psychology of understanding programs
written in imperative languages but very little on functional or logic languages.
Some examples of work on the latter type are[ROME99], and [HAZA93]. The
general lack of research in this area could be due to the lesser financial imperative of
maintaining systems written in these languages. Since such work rightly forms the
basis for the design of program understanding tools and methods, there is a need
for more investigation to establish the requirements and feasibility of tool support

for logic and functional languages.

8.12 Cognitive Requirements

This section evaluates HB-CA (as implemented in HB-CAS) against the cognitive
design element framework described in [STOR97]and [STOR98]. The version used
here is drawn from [STOR98] in which two of the elements from [STOR97] appear
to have been combined. The framework (shown in Figure 93) is designed to guide
the development and evaluation of software exploration and comprehension tools.
Where possible, the criteria are discussed with reference to the HB-CA method but

those that are clearly implementation-specific refer to HB-CAS.
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Figure 93: Cognitive Design Elements for Software
Exploration Tools [STOR98]

There are fourteen elements divided into two main branches. The first aims to
capture the essential processes of various comprehension strategies, and the second

addresses the cognitive overhead experienced by a maintainer exploring software
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[STOR98]. A description of the various comprehension strategies can be found in

Chapter 2.

8.12.1 Improve Program Comprehension
8.12.1.1 Enhance Bottom-Up Comprehension
E1: Indicate syntactic and semantic relations between software objects.

* Immediate and visible access to low-level program units (such as source
code) should be provided. The syntactic and semantic relations of these
units should be clearly visible [STOR98].

» HB-CA only analyses one unit of source code at a time. Relationships

between units are not supported.

E2: Reduce the effect of delocalised plans.

* A delocalised plan results from the fragmentation of source code related
to a particular algorithm or plan. Understanding this can be disorienting
or cumbersome without tool assistance [STOR9S].

* HB-CA does not undertake plan analysis of a program. Some plan-type
groups may be detected by the concept assignment methods but only
through the informal evidence available. Delocalised plans are liable to
be detected as either one large segment containing a high proportion of
unrelated code, or as a series of smaller segments within the delocalised

plan. HB-CAS has no facility for hiding unrelated parts within the plan.

E3: Provide abstraction mechanisms.

» Storey claims that maintainers may benefit from creating their own
abstractions and labelling them to reflect their understanding. This
might help them to better comprehend the software than if they use
prefabricated views provided by a tool [STOR98].

»  HB-CAS reflects the maintainer’s current understanding of the domain
(represented in the knowledge base) rather than a specific program.
Naming of domain concepts can be performed in accordance with the
maintainer’s requirements. The purpose of HB-CA is to alleviate the

effort of applying these to the source code.
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8.12.1.2 Enhance Top-Down Comprehension
E4: Support goal-directed, hypothesis-driven comprehension.

» This requires the maintainer to possess prior application-domain
knowledge, previous exposure to the program, or access to its
documentation. Understanding is performed depth-first through
hypothesis formulation and verification [STOR98].

» HB-CA supports hypothesis-driven comprehension in a limited way. If
a maintainer formulates hypotheses about the functionality of a
program, these can be swiftly verified with the concept list provided by
HB-CAS. In addition, formulating the knowledge base will require

exploration of domain knowledge by the maintainer.

E5: Provide an adequate overview of the system architecture at various levels of
abstraction.
» HB-CA works on single modules of code and does not aim to support

system-level analysis.

8.12.1.3 Integrate Bottom-Up and Top-Down Approaches
E6: Support the construction of multiple mental models (domain, situation,
program).

* The variety of models that may be used by a maintainer during
comprehension have been unified in a meta-model (see [MAYR95]).
Ideally, software tools should support any model required by the
maintainer through multiple views [STOR98].

* HB-CA supports multiple models by identifying concepts. These can be
used in a bottom-up context for abstraction, or top-down for hypothesis
verification. Although support for the situation and domain models is
reasonably good, HB-CA does not assist greatly with building the

program model.
E7: Cross-reference mental models.

=  HB-CAS does not support cross-referencing between views of a system

because of its single module approach.
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8.12.2 Reduce the Maintainer’s Cognitive Overhead
8.12.2.1 Facilitate Navigation
E8: Provide directional navigation.

* Directional navigation refers to reading source code and documentation
sequentially, browsing the source code using data and control flow
relationships, traversing software structure in hierarchical abstractions,
and following user-defined program or application dependent links
[STOR98].

»  HB-CAS supports this by providing hypertext links between the concept

list and source code browser.

E9: Support arbitrary navigation.
= Arbitrary na‘vigation is supported when a maintainer navigates to
locations not necessarily reachable by defined links [STOR98].
» Although HB-CAS provides hypertext linkage between concepts and

display, it does not support this kind of arbitrary navigation.

8.12.2.2 Provide Orientation Cues
E10: Indicate the maintainer’s current focus.

» This refers to the process of showing the maintainer’s object of interest
and its context. Textual views of source code implicitly show the focus,
although related areas of code may not be visible [STOR98].

»  HB-CAS supports a textual view but does not aim to provide contextual

information of the type discussed above.

E11: Display the path that led to the current focus.
* Recording why a maintainer is interested in a particular object is very
important [STOR98].

» HB-CA does not aim to capture this information.

E12: Indicate options for further exploration.
* This refers to the way in which a user is made aware of facilities for
further exploration [STOR98].

»  HB-CAS does not provide more than one way of exploring code.
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8.12.2.3 Reduce Disorientation
E13: Reduce additional effort for user-interface adjustment.

* Poorly designed interfaces induce an additional overhead and available
functionality should not impede the program understanding task
[STOR9S].

»  HB-CAS was designed as a research prototype. Consequently, greater
emphasis is placed on intermediate data structures and process
monitoring than would be required for a real-world system. The source
code browser clearly shows the results of the method although there is

substantial scope to improve it.

E14: Provide effective presentation styles.
» In this criterion, Storey discusses graph layout almost exclusively. This

has no relevance to HB-CA.

8.12.3 Summary

This section has used Storey’s cognitive design element framework to evaluate
HB-CA and HB-CAS. In most of the areas, either HB-CA or HB-CAS adequately
meets the criteria specified, failing only those that are beyond the original scope and

objectives of the work.

8.13 Summary

This chapter has presented the first part of an extensive evaluation of HB-CA.
Beginning with an investigation of the scalability properties of the method, the
discussion has covered research and design characteristics, highlighting the

successes and failures of HB-CA’s approach to concept assignment.
Chapter 9 contains the second part of the evaluation, looking at the applicability of

HB-CA in the software maintenance process. Several applications are identified and

their associated cost 1ssues discussed.
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Chapter 9
Evaluation II: Applications of HB-CA

9.1 Introduction

Chapter 8 presented an extensive evaluation of many characteristics of HB-CA. It
discussed properties such as scalability, computational cost, and representational
power. Strengths and weaknesses of the techniques employed for segmentation and
concépt binding were highlighted. Suggestions were made for solving some of the

~ remaining problems in the HB-CA method.

This chapter concludes the evaluation by examining applications of HB-CA in the
software maintenance process. It is shown to have potential benefit for several

activities.

9.2 HB-CA in the Software Maintenance Process

The discussion of the software maintenance process in Chapter 2 was based on the
IEEE standard [IEEE98] and identified several areas where software
comprehension was required. These were parts of the analysis, design, and
implementation stages of the standard process, and are now revisited to explore the

potential benefit of HB-CA.

The activities can be divided broadly into two categories: those that assist with
analysing a change, and those concerned with making the change. The first category
consists of business-rule ripple analysis, code ripple analysis, and module selection.
The second consists of software module comprehension only. The way in which
HB-CA could help to reduce the cost of these activities is discussed in the next few
sections, making the assumption that HB-CA is accurate, and that the library is
complete with respect to the concepts required. Any cost savings achieved through

the use of HB-CA would be offset by less than perfect accuracy or an incomplete

library.
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activity would be that many programs could be scanned quickly for potential side
effects in the business rules, reducing the number that the maintainer is required to
examine by hand. This application of HB-CA may have limited success given the
difficulty of representing constraint information in the library (see section 8.9).
HB-CA could not totally replace the maintainer because it cannot determine
dependencies between rules beyond that of co-occurrence in the same program. In
this sense, it does not undertake traditional ripple analysis as it does not predict the
effect of a change, but only makes suggestions for potential side effects. If it is
likely that related rules do co-occur, HB-CA could substantially reduce the size of

the task by limiting the number of code items that require inspection.

9.2.1.2 Code Ripple Analysis

This is similar to business-rule ripple analysis but is more likely to occur in the
design phase of the maintenance standard as part of identifying affected software
modules. Code ripple analysis is used to determine the effect of changes to the
source code. There are various methods to perform this using syntactic and
semantic techniques (e.g. forward program slicing, see [NING94]), but HB-CA
could perform it on a conceptual level. There is little difference between code
ripple analysis and business-rule ripple analysis, except in the type of concept being
considered. Business rules are closer to the application domain than the type of
concepts that usually would be used for code ripple analysis. These would probably
be nearer to the implementation domain. The process of using HB-CA for this
activity would be much the same as that shown in Figure 94, although the library

would probably contain lower-level concepts in addition to those modelling

business rules.

Chapter 2 stated that the cost of code ripple analysis is crudely proportional to the
number and size of the artefacts examined. Potential cost savings could result from
the reduced size of the code repository requiring manual inspection, on the principle
that co-occurrence of concepts indicates some dependency. As discussed in section
9.2.1.1, relying solely on this relationshipl prevents HB-CA from fulfilling the

requirements of traditional ripple analysis.
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9.2.1.3 Module Selection

HB-CA can assist with this activity to a greater extent than it can with ripple
analysis. Module selection can take place before and/or after ripple analysis,
primarily occurring in the design phase of the standard process as part of identifying
affected software modules. Once the concepts to be changed are known, the task
of finding instances of them in the code base can be extremely time consuming.
Using a similar wrapper to that described in section 9.2.1.1, the concept required
can be supplied to HB-CA (as the only concept in the library) and programs that

implement it can be found. These would be the modules requiring change.

Chapter 2 described the cost of module selection as a function of the size of the
code repository and the search method. The cost savings from this application of
HB-CA could be quite considerable since the maintainer does not need to
participate in the selection activity if the wrapper is used. If HB-CA is employed in
its current form (i.e. analysing one module at a time), reduced cost could still be
achieved because the maintainer would not need to read every program entirely.
The concept list would show whether the concept to be changed exists in the code.
Concept-based search could perform better than some other automated methods of
examining source code (e.g. plan recognition) because it has linear computational

growth with the length of source code being analysed.

9.2.1.4 Code Reuse

Although not explicitly placed in the standard process, code reuse can substantially
reduce the cost of software maintenance. Using HB-CA in a similar manner to
module selection could facilitate this activity. It might be particularly helpful with
languages such as COBOL II that do not lend themselves to populating reuse
libraries. The code repository could be searched for instances of a particular
concept required for implementation in another program. HB-CA could be
particularly helpful since SOM-based segmentation may be able to identify parts of

subroutines that implement the required concept, even if the whole routine is not

relevant.
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domain understanding (via the domain model), helping less experienced maintainers

to become familiar quickly with the system being maintained.

9.3 Summary

This chapter has discussed applications of HB-CA in the software maintenance
process. These have been related to the activities identified in Chapter 2 as part of
the IEEE software maintenance standard. Five maintenance activities could be
assisted to varying degrees. Finding co-occurring concepts for further investigation
might reduce the cost of business-rule ripple analysis and code ripple analysis.
Module selection could be performed automatically with conceptual searching, and
code reuse could be facilitated easily. HB-CA could assist in module
comprehension by automatically providing a concept list related to the source code,
thus relieving some of the comprehension burden from the maintainer. The
reduction in cost when using HB-CA for software module cofnprehension has been
discussed in the context of the comprehension activity framework defined in
Chapter 2. If HB-CA reduces the cost of any of the activities described, it should

achieve a reduction in the overall cost of software maintenance.
Chapter 10 concludes this thesis by summarising aspects of the concept assignment

problem and the solution presented here. The success of HB-CA is discussed and

ideas for further research are suggested.
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Chapter 10

Conclusions

10.1 Introduction
Chapter 9 presented the second part of the evaluation, considering applications of
HB-CA in the software maintenance process. Five areas were identified for

potential cost reduction using HB-CA.

This chapter reviews the research presented in this thesis. The work accomplished
is compared to the criteria for success defined in Chapter 1, some general issues are

discussed, and directions for further work identified.

10.2 Review of Research
10.2.1 The Concept Assignment Problem

The concept assignment problem was defined in Chapter 1 as:

“The process of assigning descriptive terms to their
implementation in source code, the terms being nominated by a
user and usually relating to computational intent.”

Segmentation and concept binding were identified as the major research issues
within this. Segmentation involves finding the location and extent of concepts, and

concept binding determines which concepts are implemented at these locations.

10.2.2 Comprehension Activity Framework and Formal Model

Chapter 2 explored a number of aspects of software comprehension to create a
framework that describes the activity in terms of translating one representation of
software to another. This was based on factors common to psychological theories
of program comprehension and common elements of software tools. The general
framework was specialised for the concept assignment problem with specific source

and target representations defined.
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In conjunction with the specialised comprehension activity framework, a formal
model (in set theory) was developed to define the representations more precisely.
As each part of HB-CA was presented, its position in the framework was shown.
The formal model was extended to capture the intermediate representations

between stages. Chapter 6 summarised the formal model by drawing together all of

the definitions in a single section.

10.2.3 Hypothesis-Based Concept Assignment

The solution to the concept assignment pfoblem presented in this thesis is termed
Hypothesis-Based Concept Assignment. It is a three-stage method addressing the
two major research issues reviewed in section 10.2.1. A simple knowledge base is

used to model pertinent aspects of the domain. This was described in Chapter 3.

HB-CA begins with hypothesis generation (presented in Chapter 4), comparing
indicators stored in the knowledge base to tokens of various classes extracted from
the source code under analysis. When an indicator matches a token, hypotheses are
generated for every concept to which it is linked. The individual lists of hypotheses

from the various classes are combined in order of occurrence and passed to the next

part of the process: segmentation.

The segmentation stage (presented in Chapter 5) groups related hypotheses to form
segments in the combined list. This is undertaken initially using hypotheses
generated from subroutine boundaries, to ensure that the original program’s
structure is reflected in the resulting hypothesis segment list. Each segment is
analysed further to determine whether enough hypotheses exist to potentially form
two or more clusters within it. If this is the case, a self-organising map is employed
to associate nearby, similar hypotheses. The resulting clusters are checked to ensure
that sufficient evidence for concept binding is available within each. Any that have
insufficient evidence are combined with neighbouring clusters that do, and are

_converted to segments.
The final stage of HB-CA (presented in Chapter 6) is concept binding. Each

segment created in the previous stage is analysed to determine which concept has

the most evidence. This is performed by generating initial conclusions from the
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hypotheses in a segment and extending the conclusion list by exploiting knowledge-
base relationships. The conclusions are scored using the available evidence and the
highest scoring conclusion is declared the winner. In cases where more than one
highest-scoring conclusion exists, a number of rules are applied to disambiguate the

result. If these fail, the first conclusion is picked.

When all segments have been considered and their concepts bound, the process is

complete and the source code can be labelled with the concept names.

The chapters describing the HB-CA method extended the formal model to capture
data structures relevant to the stage of the process being presented. Each chapter
compared HB-CA’s approach to those adopted by two other plausible reasoning
concept assignment systems: DM-TAO, and IRENE. A summary of this

comparison is shown in Chapter 3.

10.2.4 Hypothesis-Based Concept Assignment System (HB-CAS)
In accordance with the research aims, the HB-CA method was embodied in a
prototype software tool termed the Hypothesis-Based Concept Assignment System

(HB-CAS). The architecture reflects the stages of HB-CA, employing separate |

programs to implement various parts of the process. The system was described and

evaluated briefly in Chapter 7.

10.2.5 Evaluation
Chapters 8 and 9 presented an extensive and detailed evaluation of the HB-CA

method using the criteria outlined in Chapter 1. The first part of the evaluation
(contained in Chapter 8) dealt with characteristics and properties of the method,
beginning with its scalability. Despite theoretical expectations of accuracy at all
lengths of source code, practical investigations undertaken with HB-CAS indicated
that lower accuracy occurred with larger programs. This was attributed to the
algorithms that reallocate hypotheses from invalid clusters. Further issues arising
from this investigation were discussed with particular reference to segmentation,
concept binding, and library content. Various aspects of the computational and
spatial cost were examined and HB-CA was found to have a linear computational

growth in the length of the source code being analysed. Individual indicator classes
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have different effects on concept assignment performance and these were discussed
in the context of HB-CA’s ability to use multiple information sources.
Representational power and domain independence also were examined. HB-CA is
intended to operate on COBOL II but could be applied to other languages. This
issue was discussed with reference to several different classes of programming
language. The first part of the evaluation was concluded by considering to what
extent HB-CA and HB-CAS fulfil cognitive requirements for program

understanding tools.

The second part of the evaluation in Chapter 9 discussed various possibilities for
using HB-CA in the software maintenance process, and five applications were
identified. HB-CA could potentially reduce the cost of business-rule ripple analysis
and code ripple analysis, although both these cases require an assumption that co-
occurrence of concepts signifies dependency. Module selection and code reuse
could derive greater benefit from the use of HB-CA. Finally, the potential was
shown for a reduction in the cost of software module comprehension and Chapter
9 described the way in which HB-CA could be used for this purpose. The relative
costs of concept assignment using automatic and manual approaches were discussed

with reference to the comprehension activity framework.

10.3 Evaluation of Research
An evaluation of the research reported in this thesis is now presented in the context
of the criteria for success and research aims given in Chapter 1. These are repeated

here with a discussion of each.

1) Thedefinition-of a framework for the activity of software comprebension. This should
capture the essential processes and data structures involved in software comprebension,
regardless of whether the actor (i.e. the entity undertaking the comprebension activity) isa

person or a software tool.

Chapter 2 defines a comprehension activity framework based on elements common
to software tools and psychological theories. The framework expresses the
comprehension activity as a process of translation from one software representation

to another by means of a processor (which could be a person or software tool).
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The framework is specialised to the representations required for the concept

assignment problem.

2) Thecreation of aformal model of the comprebension activity framework discussed in

criterion 1 to define clearly its data structures.

Definition of this model commences in Chapter 2, specifying the source and target
representations of the concept assignment problem. The comprehension activity is

expressed as a function mapping one representation to another.

3) Thedevelopment of a new method to undertake antomatic concept assignment using a
simple knowledge base. It should be capable of analysing real-world COBOL Il codeand
successfully cope with poorly structured and monolithic programs, in addition to well-
structured examples. The method should provide a software maintainer with

automatically recognised concepts linked to regions of source code.

A new method, termed Hypothesis-Based Concept Assignment, has been developed
to perform concept assignment automatically on COBOL II programs. The
HB-CA method is presented in Chapters 3 to 6. It has been evaluated using real-
world code and achieves high recognition accuracy, although performance can fall
when larger programs are analysed. This problem has been investigated and the
cause linked to specific naive algorithms within the method. HB-CA can cope
successfully with poor structure in programs, using a self-organising map to

establish regions of conceptual focus when structural information is insufficient.

4) Aspart of criterion 3, the development of novel approaches to address the two main

research issues in concept assignment: segmentation, and concept binding.

Chapters 5 and 6 describe the methods used to address segmentation and concept
binding. The application of SOM:s to the segmentation task provides HB-CA with
its ability to cope with monolithic and unstructured code, basing decisions about
segments on the conceptual structure of the program rather than its syntax. The
concept binding method assesses concept evidence using a combination of semantic

network activation and disambiguation rules.
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5)  Theextension of the general formal model (see criterion 2)to the new concept assignment

method.

Throughout Chapters 3 to 6, the formal model is extended to capture the individual
parts of HB-CA. The structure of the knowledge base is formally described and all
intermediate representations are defined. Chapter 6 summarises the model by
collating all the definitions. The model adequately describes all that is required of it

and, although some definitions could be augmented, there would be little benefit

from the exercise.

6) Theimplementation of aprototype tool to demonstrate the feasibility of the new concept

assignment solution. This should allow easy evaluation of the method.

Chapter 7 describes and evaluates the HB-CAS implementation of HB-CA. The
prototype successfully undertakes concept assignment on COBOL II source code

and was used for the practical parts of the evaluation presented in Chapters 8 and 9.

It has been demonstrated that the work presented in this thesis meets the criteria for
success and research aims defined in Chapter 1. Section 10.4 discusses these
‘accomplishments, and section 10.5 identifies areas for continuing the work and

improving the capabilities of the method.

10.4 Discussion

A reflective discussion of the work accomplished in this thesis is now presented.

In general, HB-CA is a success. It meets the requirements shown in Chapter 1 and

has exceeded expectations in its recognition accuracy.

Synonym matching was slightly disappointing as it caused significant difficulties in
implementation and showed poor performance. If it were to be included in other
concept assignment systems, pilot studies would need to be undertaken to
determine the cost-benefit of the idea. In the absence of synonym matching,
indicator recognition has been very successful, demonstrating the value of

meaningful identifiers and comments. The potential for confusion when comments
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are not relevant to the code with which they are associated has not proved to be a

problem with the examples tested.

One of the major successes of HB-CA has been the SOM-based segmentation
algorithm. Although the reallocation methods have been identified for further
work, the success of the SOM method has vindicated the underlying principle of
creating a conceptual map of a program. The idea of a conceptual map formed the
basis for solving the difficult problem of determining conceptual segmentation
without performing concept binding first. Various attempts were made to map the
“conceptual landscape” of a program and this was achieved with relative ease.
Creating a decision rule to determine which “peaks” were valid and which were not,
proved more difficult to attain. The SOM emerged as a fine-grained approach to
associating similar concepts whilst allowing a simple vector density criterion to be
used for decisions. It has proved to be a successful technique and some
developments are suggested in section 10.5. The reallocation algorithms require
additional work but more success may be achieved by eliminating the principle that
every hypothésis should be preserved. This was originally included to ensure that
enough evidence was available for concept binding. Experience has shown that in
many cases there would be enough hypotheses to make bindings, even if invalid

clusters were ignored.

Given the success of the SOM technique, and the ability to label output nodes with
the concept that triggers them most frequently, it is interesting to consider whether
the entire concept assignment problem might be translated to the SOM. Early work
with SOMs in HB-CA attempted this task with very limited success but these
experiences should not rule out further efforts in this direction. Modifications to
HB-CA would be required because no intelligent exploitation can be made of the
relationships in the knowledge base. Once hypotheses are passed to the map, they
must all compete. The solution to this may entail the generation of composite and
specialised hypotheses, as these would need to compete with the single forms of
concepts. Creating a map for the entire program also entails considering the
characteristics of the input space; syntactic boundaries would need to be encoded as
discontinuities in the sequence, to prevent the cross-subroutine associations

observed in early efforts.
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Conéept binding based on semantic network activation has proved to be a good
idea. This is not particularly surprising since it can be seen as a coarse-grained
connectionist approach with some similarity to that employed by DM-TAQ. The
algorithmic version encodes the more holistic view of the semantic-network scoring
approach that was devised first. The disambiguation rules were derived by
considering the principles and goals of HB-CA and they exhibit the desired
characteristic of graceful performance degradation with conflicting hypotheses.
There is ample scope to refine and improve them, particularly those that manage

ambiguity when forcing specialisation.

The knowledge base has proved effective despite its simplicity. Most of the
concepts used have been of moderately low levels of abstraction and it would be
interesting to investigate further ways of encoding higher-level and business-rule
concepts. One significant issue with the knowledge base is its inability to natively
encode constraints. This was discussed briefly in section 8.9. It would be possible
to overcome this limitation with the file-based indicator approach outlined in
section 8.9, in combination with an indicator recognition module capable of
detecting the type of constraint required. This type of concept could be arguably
beyond the scope of concept assignment systems since it does not express
computational intent, but computational restriction. Nonetheless, the information
provided by such constraints is very useful in software comprehension. The danger
of using any type of complex indicator is that the cost advantage obtained when

using plausible reasoning concept assignment techniques (such as HB-CA) might be

negated.

Comparing HB-CA to the systems DM-TAQ and IRENE has proved an interesting
exercise. HB-CA is similar to DM-TAO in the type of concept it seeks and the way
in which it performs concept binding. However, it shares some features with
IRENE such as a reasonably simple knowledge base and the ability to explain
concept assignment decisions. It is unique in clearly separating the stages of
segmentation and concept binding. The simpler knowledge base used by HB-CA
offers potentially easier domain modelling than either of the other systems, but lacks

the dependency modelling ability of IRENE and the wide variety of concept types
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of DM-TAO. Despite these drawbacks, concept assignment can be performed

successfully.

Overall, HB-CA has proved to be a successful concept assignment solution and has

demonstrated the potential for conceptual mapping of programs.

10.5 Further Work
The work presented in this thesis could be extended in many ways and some ideas

are discussed in this section.

10.5.1 SOM-Based Concept Assignment

Section 10.4 suggested the possibility of using the SOM to perform both
segmentation and concept assignment functions. This would be an interesting
variation on the existing method and might reduce its cost. Concept assignment
could be performed by labelling each output node in the map with the name of the
concept that triggers it most often. Vector density measures would still be required
to provide a recognition threshold but other concept binding parameters should be
unnecessary. There are implications for hypothesis generation in that every
plausible hypothesis (composite and specialised) for an indicator would need to be
generated. This would be similar to conclusion generation but with the whole
program regarded as a single segment. Under these conditions, sensible conclusion
generation would be difficult to achieve. A method would be required to resolve
the tension between the need for a predefined segment for conclusion generation,
and the attempt to execute both segmentation and concept binding in one step.

These issues would be subjects for research.

10.5.2 Intelligent Reallocation Algorithms

The problems with naive reallocation of hypotheses were highlighted in Chapter 8.
Two approaches now are suggested to solve this problem. The first is to ignore any
invalid clusters. The risk associated with this method is that occasional mis-
association on the SOM could result in valuable information being lost. The
alternative approach isto improve the way in which hypotheses are reallocated, by
using their conceptual content as a guide rather than simply dividing clusters equally

into their surroundings. Various heuristics could be derived to implement this, e.g.
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a hypothesis could be compared to its nearest valid cluster; if the hypothesis does
not already appear in the cluster then it should not be attached. Such heuristics may
require experimental investigation to determine their effectiveness. Other non-
conceptual characteristics could be used, e.g. the distance in lines between the
indicators for the two hypotheses could guide the selection of an appropriate

cluster. These changes could improve the quality of segmentation.

10.5.3 Richer Knowledge Base

Although one of the aims of this work was to perform concept assignment with a
simple knowledge base, increasing its complexity could be a fruitful line of research.
Incorporating more inter-concept relations (e.g. secondary hypotheses or multiple
composites) could increase the representational power and concept assignment
abilities of the method. It is important to realise that such changes may cause the
creation and maintenance costs of the library to rise and any potential benefit

should be weighed against this.

10.5.4 Richer Conceptual Map

The idea of a conceptual map was discussed in section 10.4. It would be interesting
to extend this notion to build a more informative map by using syntactic and
semantic characteristics of the source code. This map could be used as the basis for
a visualisation system, or to improve the concept assignment ability of HB-CA.
Knowing that a particular identifier is a subroutine name could provide a context
for the evaluation of other information within the subroutine. The risks of applying
this type of maxim are noted in section 8.9. Placing greater weight on the
information provided by a particular identifier could improve the accuracy of
concept assignment. However, if the identifier is misleading then there is a greater
chance of incorrect assignment than when a uniform weighting model is used. The
depth of information could be increased by using a “level of confidence” measure
of the accuracy of indicator matching. Those indicators matched using sub-strings

or synonyms would gain a lower confidence level than those matched directly.

10.5.5 Use of the Data Division
The current form of HB-CA is concerned solely with the procedure division of

COBOL II programs. The data division contains much useful information and
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could augment HB-CA’s object concept acquisition. The identity of data structures
could be determined by rigorous analysis, or through HB-CA'’s concept assignment
routines. Either ¢ould help to reduce the number of possible objects for later
consideration. HB-CA would require modification because it relies on subroutine
boundaries for its segmentation and has no awareness of the structure of data
declarations. Preliminary research in this area should establish whether the potential

benefits in accuracy outweigh the effort of additional analysis.

10.5.6 Large-Scale Evaluation

The evaluation in Chapter 8 provides much useful information about the nature of
HB-CA. Section 8.12 demonstrated that HB-CA and HB-CAS fulfil many of the
cognitive requirements for program understanding tools. These properties could be
investigated further by undertaking a large-scale study to determine the effectiveness
of the tool when used in real maintenance situations. This could guide the
development of further research on the method and tool, in addition to providing

information about the effectiveness of this type of comprehension assistance.

Other forms of large-scale evaluation could involve testing HB-CA with
considerably more complex library content, and larger source programs from

different domains.

10.5.7 Software Evolution Study

Although HB-CA was intended as a software maintenance support method, it could
be used as a research tool in its own right. It would be interesting to examine many
versions of the same program and to study changes in concept assignment through
the program’s maintenance history. This may provide insight into the way concepts
break down and move within the program, leading to more effective strategies for
maintenance. Research in this area may need to establish the viability of concept

assignment as a measure of comprehensibility before undertaking the study itself.
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10.6 Final Summary
A review of the work accomplished has been presented in this chapter. The overall
success of the research has been considered in terms of the criteria shown in

Chapter 1, and several directions for further work have been established.

This thesis has examined the context, motivation, and definition of concept
assignment, leading to the development of a framework to describe software
comprehension, and a formal model of important representations. A new,
automated solution to the concept assignment problem has been presented:
Hypothesis-Based Concept Assignment. The stages of HB-CA have been described
and compared to similar systems. An extensive evaluation has demonstrated
various characteristics of the method including linear computational growth in the
length of program being analysed, high accuracy, and the ability to operate on real-
world programs of varying quality. The potential for HB-CA to be applied in
several parts of the software maintenance process has been shown, and possible

cost savings have been identified. Ideas for further work have been suggested.

Hypothesis-Based Concept Assignment is a novel and successful solution to the

concept assignment problem.
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Appendix

Investigation Data

A.1 Introduction

The appendix contains source data for the graphs shown in the evaluation, program
sets, and the library content referred to by some investigations. Library content for

the remaining investigations can be found in Chapter 3. -

Most results are rounded to the nearest integer. High-resolution timings are given
to two decimal places and low-resolution timings are truncated to the nearest
integer. The truncation is performed internally in Delphi and is beyond the control
of the programmer. Program lengths are given in lines including white space and

comments.

A.2 Library Content Used in Sections 8.2, 8.4, 8.8,
8.10

Library Output: EvalObs2

Indicators: KDisplay KEndWrite KWrite KIO KOutput COutput
Composites: File Report Database Record
Specialisations: NONE

Primary Action Concept: Read

Indicators: NRead KRead CRead
Composites: File Database Record
Specialisations: NONE

Primary Action Concept: Write

Indicators: KEndWrite KWrite NWrite CWrite
Composites: File Database Record
Specialisations: NONE

Primary Object Concept: File

Indicators: NFile KFile KFileControl CFile
Composites: NONE
Specialisations: APSMasterFile CAF PaymentFile
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Primary Object Concept: Report

Indicators: NReport KReport KReporting KReports CReport
Composites: NONE
Specialisations: NONE

Primary Object Concépt: Database
Indicators: NDatabase NDB CDatabase CDB
Composites: NONE

Specialisations: CMS

Primary Object Concept: Record

Indicators: NRecord KRecord KRecords CRecord
Composites: NONE
Specialisations: APSRecord

Primary Action Concept: Call

Indicators: NCall KCall CCall
Composites: DATEPRESModule
Specialisations: NONE

Primary Action Concept: Update
Indicators: NUpdate CUpdate

Composites: File Database Record Policy
Specialisations: NONE

Primary Action Concept: Input

Indicators: KIO NInput KInput CInput
Composites: File Database Record
Specialisations: NONE

Primary Object Concept: DATEPRESModule

Indicators: NDatePres CDatePres
Composites: NONE
Specialisations: NONE

Primary Object Concept: Policy

Indicators: NPolicy CPolicy
Composites: NONE
Specialisations: NONE

Secondary Object Concept: APSRecord

Indicators: NRecord KRecord CRecord NAPS NA.P.S CAPS
Composites: NONE
Specialisations: NONE

Primary Object Concept: Interest

Indicators: NInterest CInterest
Composites: NONE
Specialisations: NONE

Secondary Object Concept: APSMasterFile

Indicators: NAPS NA.P.S CAPS NMaster CMaster
Composites: NONE
Specialisations: NONE

Secondary Object Concept: CMS

Indicators: NCIF CCIF
Composites: NONE
Specialisations: NONE

Primary Action Concept: Initialisation

Indicators: NInitialisation CInitialisation
Composites: NONE
Specialisations: NONE
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Primary Action Concept: Print
Indicators: NPrint CPrint

Composites: Report Record Cheque Heading
Specialisations: NONE

Secondary Object Concept: CAF

Indicators: CFile NCAF NC.A.F CCAF CCentral CAnnuity
Composites: NONE
Specialisations: NONE

Indicators: NCheque CCheque
Composites: NONE
Specialisations: NONE

Primary Object Concept: Heading

Indicators: NHead CHead NHeading CHeading
Composites: NONE
Specialisations: NONE

Primary Action Concept: Calculate

Indicators: KAdd  KCompute KDivide  KEndCompute KEndDivide
KEndSubstract KEndAdd KGiving KMultiply KPlus KSubtract CCalculate
Composites: Interest

Specialisations: NONE

Secondary Object Concept: PaymentFile

Indicators: NFile KFile CFile NPayment CPayment
Composites: NONE
Specialisations: NONE
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