
Durham E-Theses

QCD analysis of deep inelastic lepton-hadron scattering

in the region of small values of the bjorken parameter x

Sta±to, Anna

How to cite:

Sta±to, Anna (1999) QCD analysis of deep inelastic lepton-hadron scattering in the region of small values

of the bjorken parameter x, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4515/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4515/
 http://etheses.dur.ac.uk/4515/ 
htt://etheses.dur.ac.uk/policies/


Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk


QCD analysis of deep inelastic lepton-hadron 
scattering in the region of small values of the 

Bjorken parameter x 

A thesis presented for the degree of 
Doctor of Philosophy 

The copyright of this thesis rests 
with the author. No quotation 
from it should be published 
without the written consent of the 
author and information derived 
from it should be acknowledged. 

by 

Anna Stasto 

H. Niewodniczariski Institute of Nuclear Physics 
Krakow 

June 1999 

I -'A / V 

11 JAN 2000 



Abstract 

We present the new framework based on B F K L and D G L A P evolution equations in 
which the leading \n(Q2) and l n ( l / ; r ) terms are treated on equal footing. We intro­
duce a pair of coupled integro-differential equations for the quark singlet and the 
unintegrated gluon distr ibution. The observable structure functions are calculated 
using high energy factorisation approach. We also include the sub-leading l n ( l / : r ) 
effects via consistency constraint. We argue that the use of this constraint leads to 
more stable solution to the Pomeron intercept than that based on the NLO calcu­
lation of the B F K L equation alone and generates resummation to all orders of the 
major part of the subleading l n ( l / x ) effects. The global f i t to all available deep 
inelastic data is performed using a simple parametrisation of the non-perturbative 
region. We also present the results for the longitudinal structure function and the 
charm component of the F 2 structure function. 

Next, we extend this approach to the low Q2 domain. A t small distances we use 
the perturbative approach based on the unified B F K L / D G L A P equations and for 
large distances we use Vector Meson Dominance Model and, for the higher mass qq 
states, the additive quark approach. We show the results for the total cross section 
and for the ratio of the longitudinal and transverse structure functions. 

Finally, we calculate the dijet production and consider the decorrelation effects 
in the azimuthal distributions caused by the diffusion in the transverse momentum 
kx of the exchanged gluon. Using the gluon distr ibution which is fixed by the f i t 
to the DIS data we are able to make absolute predictions. We show the results for 
the dFr/dcf), the total cross section and also the distributions in Q2 as well as in 
the longitudinal momentum fraction of the gluon. Our theoretical predictions are 
confronted wi th the measurements made using ZEUS detector at H E R A . 
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Chapter 1 

Introduction 

The more the wise person thinks about the simple (that there can be 
any question of a longer preoccupation with it already shows that it is not 
so easy after all), the more difficult it becomes for him. 

- S.Kierkegaard 

Preamble 

Deep inelastic experiments allow us to probe the structure of matter. The non-
composite particle like electron when scattering off the nucleon can provide us wi th 
lot of information on the structure of hadronic matter. The four-momentum squared 
of the exchanged vector boson in this process determines the resolving power. The 
higher the momentum, the smaller wavelengths are involved and hence the smaller 
distances wi th in the nucleon can be probed. The deep inelastic experiment at SLAC 
in 1960s (see for example [1]) at large Q2 exhibited scaling in the Bjorken x vari­
able. Due to Feynman we now know how to explain scaling wi th in the parton model. 
Thus scaling behaviour was a proof of the existence of pointlike particles —> partons 
wi th in a nucleon. Further experiments showed that scaling is violated by logarith­
mic corrections. This effect could be explained wi th in a framework of Quantum 
Chromodymamics and i t was due to the emission of gluons. Thus the QCD theory 
was able to predict the existence of gluons which are important constituents of the 
nucleonic structure. 

Next phenomenon was a striking rise of the structure funct ion F2 at HERA [2], a 
collider of electrons and protons at DESY. This rise could be explained in two ways, 
first i t could be reproduced by ordinary renormalisation group equations starting 
f rom a valence-like input parton distributions at very low scale. Then by large 
scaling violations the rise of structure funct ion is generated. This approach is based 
on the Dokshitzer-Gribov-Lipatov-Altarelli evolution equations [3] for the partons 
which are just renormalisation group equations known f rom quantum field theory. 
This approach effectively resums the log(<52) terms, where Q2 is the exchanged 
vector boson four-momentum. However there is also an alternative approach which 
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Chapter 1. Introduction 4 

is based on the resummation of large terms l n ( l / x ) . This framework known as the 
Balitskij-Fadin-Kuraev-Lipatov evolution equation [4] predicts naturally the strong 
rise of the gluon distr ibution and since the quark sea is being driven by the gluon, 
also the x~x behaviour for the observable structure functions. 

o 

o> 

—I 
(5 0 

S 

BFKL 

non-perturbative Regge region 

log(1/x) 

Figure 1.1: Schematic representation of parton densities and the theoretical evolu­
tion directions in the (x,Q2) phase space. 

The region of applicability of the two evolution schemes is shown in Figure 1.1 . 
Both these approaches have distinctive regions of validity. I f one goes to asymptotic 
l im i t where x —> 0 and Q2 —• oo then the D G L A P equations determine completely 
the behaviour of the structure functions f rom the input. One then speaks about the 
D L L A where only ln(Q2) l n ( l / x ) terms are retained. I t would be however desirable 
to have a calculation which would cover the entire or at least most of the (x,Q2) 
phase space. W i t h few free parameters one would be able then to determine struc­
ture functions in the whole region of the (x, Q2) space. 
When x becomes very small, then the parton densities inside the nucleon become 
very large. One eventually hits the saturation region and the uni tar i ty bound can 
be violated. The Gribov-Levin-Ryskin (GLR) equation (see Fig. 1.1) is able to 
describe the evolution of the gluon distribution including the shadowing corrections 
which become important in this regime of phase space. 

Main aim of this thesis is to present such an approach which unifies the renor-
malisation group approach and the B F K L equation. Large l n ( Q 2 ) and ln( l /a ; ) terms 
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are resummed and treated on equal footing. Although the whole approach is done 
at leading order i t also enables to estimate the subleading ln( l /a : ) corrections and 
leads to a very stable and reliable predictions for the total cross section and the 
structure functions. 
The content of this thesis is as follows: 
First chapter containts introductory material about the deep inelastic scattering, 
D G L A P evolution equations, operator product expansion and the high energy l imi t 
of QCD which follows the B F K L equation . In the second chapter the whole frame­
work of coupled unified equations is presented together w i t h the results for the 
structure functions F2, FL and Fc- In the th i rd chapter we discuss the extension of 
these equations to the region of very low values of Q2. Finally, in chapter 4 we apply 
this formalism to dijet production in deep inelastic scattering and make the predic­
tions for the angular distributions as well as the total cross-section. We also make 
the predictions for the dijet distributions in Q2 and in the longitudinal moemntum 
fraction of the gluon. 

1.1 Deep Inelastic Scattering 

In this section we wi l l introduce useful variables and quantities needed for description 
of deep inelastic processes, see for example [1 , 5, 6, 7]. To this aim let us consider the 
scattering of a pointlike particle like a lepton off the composite nucleon, see Figure 
1.2 . 

i r 

v 

N X 

Figure 1.2: Diagrammatic representation of deep inelastic scattering. 

Here / and /' are the incoming and outgoing lepton correspondingly, V is the 
exchanged vector boson, N is the probed nucleon and X an arbitrary hadronic final 
state. We introduce the following four-momenta, 



Chapter 1. Introduction 6 

k^ = (E, 0,0, E)LAB incoming lepton 
A'" = ( £ ' , 0,0, E ' ) L A B outgoing lepton 

p M = ( M , 0 , 0 , 0 ) ^ b target nucleon 
q*1 = ( i / , 0,0, \/v2 — q2)LAB exchanged vector boson 

and the Lorentz invariants, 

Q2 = —q2 squared four-momentum of the vector boson 
s = (p + A;)2 total energy of the lepton - nucleon system 

W 2 = (p + q)2 total energy of the vector boson - nucleon system. 

I t is also convenient to introduce the following scaling variables, 

Q2 

x = Bjorken scaling variable 
2p • q 
p • q . 

y = — - inelasticity 
p • k 

We have defined the four-momenta in the laboratory frame, that is the one where 
nucleon is at rest. We also neglect the lepton masses as compared to their momenta. 
In the above process the exchanged vector boson could be a photon, Z° or W boson 
if the process involves charged current interaction. In the latter case if the incoming 
lepton is charged then we do not observe the outgoing neutrino in the detector. 
The scattering amplitude for this process (in electromagnetic case) can be expressed 
in the following way, 

M = e2u(k\\')Yu{k,\)^- < X\JE

U

M(0)\N,a > , (1.1) 

where < X\ is a hadronic final state and |iV,cr > is a nucleon state of polarisation a. 
A and A' are the polarisation of the incoming and outgoing leptons correspondingly. 
J^M(0) is the electromagnetic current. 

The total cross section can be evaluated in the standard way, 

where F denotes the flux factor and is equal to, 

F = Ap-k, (1.3) 

and the sum is performed over all possible polarisation states. One can factorise the 
cross section in the following way: 
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where a = | ^ is fine structure constant. The Le™ term entirely depends on the 
lepton vertex, and contains all the information about the hadron involved in 
the process. We consider here the electromagnetic case. The formulae for the 
weak interaction case can be derived in the similiar way although they are more 
complicated. 

Le™ can be evaluated exactly in a strightforward way and reads: 

l z = j E « L ' , ) ( * ' ) 7 ^ E « ? ) ( * M f , ( * ) 7 > i ' , ) ( * ' ) = 
Z S' 3 

= ^ T r { f Y H ) = ^ k ' ^ k ' " k u -l-Q2g^). (1.5) 

The hadronic tensor is given by the expression: 

WAP.q) = ^ ^ E ( 2 ^ i P ' - P - 9 ) < N < r \ J j r m X > < X \ J r { 0 ) \ N a > = 

= T ^ E E / c f x e i { p - ^ + q ) x < N<r\J*m(Q)\X >< X\J™{Q)\No > = 
o X 

= J M T , J ^ , V X < Na\J™(x)jr(0)\N* > = 

= l M ^ j < N*\[J™(x),jr(0)}\No- > . (1.6) 

Last line of (1.6) can be easily derived when we consider the fact that there are no 
intermediate states wi th momentum px = p — q and energy Ex = M — v < M which 
can contribute. Since the electromagnetic current is conserved we have d^J^171 = 0 
and correspondingly qliW>iV = ql/Wllv = 0. From this fact and the knowledge that 
Wpu is a second rank tensor we can perform the following decomposition in terms 
of two independent structure functions W\ and W2

 1: 

W V G M ) = - W i f o . * - qjf) + ^ ( P M - ^ T « M ) • ( P . - ^ r? . ) - (i-7) 

Using (1.7) and the explicit expression for L^v (1.5) one can derive the following 
expression for the cross-section: 

where 0 denotes the electron scattering angle in the hadron rest frame. The struc­
ture functions W\ and W2 contain all the information about the hadron involved in 

x I n the case of weak interactions we would have three instead of two independent structure 
functions. This is due to the V-A structure of the weak current and the presence of the additional 
VA (AV) interference terms in the product of two currents. We would also loose the symmetry of 
the hadronic tensor. 
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the process. In principle they depend on two variables: v and q2. What k ind of in­
formation can we get about the hadron f rom the behaviour of these functions? The 
first observation was that in the so called deep inelastic l im i t when Q2 —• oo, u —* oo 
and Q2/2Mv — x is fixed, the two functions obey the Bjorken scaling which is a 
direct consequence of the fact that nucleon consists of the pointlike components. In 
the next paragraph we w i l l derive the Bjorken scaling pattern f rom the naive parton 
model picture, see for example [6]. 

1.2 Bjorken scaling 
I f the proton consists of the components that are pointlike particles then at suf­
ficiently high energies (and thus at very small wavelengths) the scattering off the 
proton w i l l become just an incoherent scattering off these pointlike objects. By 
comparing the cross section (1.8) wi th the formula for electron-muon scattering , 

< * V - e " a 2

 r 2 0 q2 . _ 0 l c , q2 

~dmET = 4 £ W f [ C ° S 2 ~ 2 ^ S m 2 ] 8 { V + 2 ^ ( L 9 ) 

we can immediately read out the forumale for the structure functions for one parton, 

. / W f (*,<?*) = 6 ( 1 ( 1 . 1 0 ) 
Ira v 

We now observe that at sufficiently high values of the photon four-momentum Q2 

we wi l l have Bjorken scaling, i.e. the structure functions wi l l depend only on one 
variable u> = ^pp, 

mW?(v,Q2) -» F[(u) 

»WZ(v,Q2) -> Ff(u>) (1.11) 

where F\ and F2 are now dimensionless quantities. To get the results for the whole 
nucleon we should convolute (1.10) wi th the parton distributions inside the nucleon 
which tell us about the probability fi(x) of finding a parton of type i and wi th 
a longitudinal momentum xp, where p is the momentum of the nucleon. Here, 
we adopted the assumption that we are working in the frame of proton's inf ini te 
momentum. Our final prescription for the structure functions is just: 

i JO u> 

fiM = (i.i2) 

or more formally, 

F2{x) = £ e ? x / i ( x ) (1.13) 

H z ) = Y x F M ( L 1 4 ) 
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where x 2Mu w 5 L = I 
Formulae (1.13) and (1.14) summarise the Bjorken scaling phenomenon in the naive 
parton model. We have to stress the two basic assumptions which we have made in 
order to get the Bjorken scaling pattern: 

• the photon scatters incoherently off the pointlike particles inside the nucleon. 

• the transverse momentum of the interacting parton is l imi ted 

We also have to underline that the relation (1.14) is a consequence of the fact that 
the partons are spin 1/2 particles. I t is called Callan-Gross relation and implies that 
the part of the cross section which corresponds to the exchange of longitudinally po­
larized vir tual photon has to vanish in the scaling l i m i t . The parton model picture 
can also be formulated in a covariant way by means of field theoretical apparatus 
[8]. In this picture partons can acquire transverse momenta but we assume that the 
amplitude for scattering a parton on a nucleon is strongly damped as the transverse 
momentum of the parton grows to become large [8] (see also [9]). 
The Bjorken scaling is an approximation and i t is violated i n QCD by the loga­
r i thmic terms of the fo rm \n(Q2//x2), where p. is factorisation scale. W i t h i n a QCD 
theory a quark can emit a gluon and thus acquire a large transverse momentum 
which eventually leads to the scaling violations. We shall now present the theo­
retical framework which w i l l give us the factorisation of the stucture functions in 
terms of coefficient functions and the local operators. We w i l l see that the coefficient 
functions satisfy the renormalisation group equations which w i l l lead to the scaling 
violations. 

1.3 Operator product expansion 

The method we w i l l present here (following [7, 10]) is useful when one considers the 
product of the fields at the same space-time point. Such product is called a composite 
operator. The operator product expansion procedure enables us to factorise such 
composite operators into a c-numbers containing all the singularities and the regular 
local operator. To see where the singularities come f rom, we can consider a single 
example of the vacuum expectation value of the time ordered product of two scalar 
fields, see [10], 

< 0\T[$(x)$(y)]\0 >= -iA(x - y ) = - i j 
d4p e-^-v) 

(1.15) 
(2TT)4 m2 — p2 — ie 

The above expression can be calculated explicit ly and i t has the fo rm , 

A ( s - y) 
1 1 

+ less singular terms (1.16) 
47r2z (x — y)2 — i 
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and i t is obviously divergent when x —> y. To obtain a meaningful definition of such 
operator we have to perform the operator-product expansion. We w i l l consider here 
two ways of expansion depending on the character of singularity: 

• short distance expansion 

A(x)B(y) = ~ V ) 0 i { ^ - ) ; x - y - 0 (1.17) 

A, B are arbitrary local operators. The singularity at x —> y of the composite 
operator A(x)B(y) is now fu l ly contained in the functions Ci(x — y) (which 
are just c-numbers) and are called coefficient functions. The operators Oi are 
well defined regular quantities, and they have the same quantum numbers as 
A(x)B(y). 

• light-cone expansion 
I n the case of deep inelastic scattering we need however the expansion near the 
light cone x2 ~ 0, rather than near x ~ 0. In case of — q2 —> oo and wi th 
fixed, the dominant contribution to tensor (1.6) comes f r o m the region 
near the light cone: 

, ^ const . n . 
0 < x 2 < (1.18) 

-q2 

In the rest of the section we wi l l only consider light cone expansion. We w i l l now 
expand the operators Oi(x) in the Taylor series and substitute into equation (1.17). 
The expansion near the light cone can then be wri t ten as: 

i(*)i(o) = EG(*A-(f) = £ c f V ) * - . . . x ^ o j j " ^ ( i . i 9 ) 

(here we consider two currents instead of the arbitrary operators A and B). The 
operators O ^ ' " ^ are symmetric in the indices \in and they correspond to the op­
erators of spin n. We can naively count the dimensions of all the terms in the 
operator-product expansion as in (1.19) and determine the light-cone singularity of 
the coefficient funct ion Cjn\x2), 

Cln)(x2) ~ ( x 2 ) - ^ ^ (1.20) 

where dj and d^<n) are the canonical dimensions of the current j(x) and the operator 
Q(i,n) respectively. The leading term in the above expansion is determined by the 
most singular element C\n\ Its singularity is controlled by the number r = «?(,-,„) — n 
(dimension - spin) and i t is called twist of the operator O^) . The lowest value 
of twist w i l l give us the leading term in the expansion (1.19). 
We w i l l now apply this formalism to the deep inelastic scattering case and see how 
the scaling violations can be obtained wi th in the QCD theory. 
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In the case of deep inelastic lepton-hadron scattering we are concerned w i t h the 
time-ordered product of two electromagnetic currents: 

TMx)J„(x')] (1.21) 

We can write down the most general form for this expression in the following way 
[10], 

T\J^x)Jv{x')] = {d,d'v~9^d-d')dL{x,x') 

+ (g^xdpdl + gpvd& - g„xgP,d • d' - gv,dx&p)d%p(x, x') 

+ antisymmetric part (1.22) 

This f o r m 2 is very closely related (via Fourier transform) to the general expression 
for WnU, see eqns. (1.6) and (1.7). We wi l l drop the antisymmetric part because i t 
w i l l vanish when contracted wi th the symmetric tensor ( in the unpolarised case 
of deep inelastic scattering). 
We can perform now the light cone expansion for the two bilocal operators OL(X, x') 
and 62"(x, x') , 

i,n \ / 

6x/(x,x') = E ^ f f ^ ) ^ 1 ' - - ^ ^ : ^ ^ ) (1-23) 

where y = x — x'. We can construct three kinds of twist 2 operators in QCD. For 
the flavour non-singlet case we have, 

0 # s M " oc * ( i ) f 7 ' " / ) M • . . D^^ix) + permutations (1.24) 

where ta are the generators of the flavour SU(Nj) group and D^n are the covariant 
derivatives. Addit ionally we have a flavour-singlet operators: 
the quark operator, 

0w.../»„ ^ $ ( a ; ) 7 « £ ) M _ _ .D^y(x) + permutations (1.25) 

and the gluon operator, 

QiH...»n ^ T r [ F n » D m , D^-'F?"} + permutations (1.26) 

F^" is the standard gauge field strength in the Yang Mil ls theory. In the renormal-
isation group equations, the two operators OQ and OG w i l l mix beacuse they have 
identical quantum numbers. 
Having done the expansion for the operators we can now calculate the forward 

2 We have introduced here an operator OL which corresponds to the longitudinal structure 
function FL = F2 - 2xF\. 
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Compton scattering amplitude which is related to the hadronic tensor in DIS in the 
following way, 

T^(p,q) = j d4xe^x < p \ T [ J l t ( x ) J „ { Q ) } \ p > = 

= ( ^ - ? V ) E < p P L ' ; ; ! . . . , n ( o ) i p > -
i,n 

• j tfxe^x*1 ...x»nC$(x2) + 

+ (g*\qPqv + gPUq^qx - q2g^\9Pu - 9^q\qP) £ < P \ ° { ^ . P ^ ) \ P > • 
j',n 

• j dAxeiqxx^ ... x^Cjtfix2) (1.27) 

We define now Fourier transforms of the Wilson coefficient functions, 

- » c £ ? ( - 9 2 ) ( - | - J g w . . . f * » = j d 4 x e ^ x ^ . . . x ^ C i % 2 ) 

- 2 i C ^ 2 \ - q 2 ) [ ^ - \ (f 1 ...<?"" = j dAx eiqxx^ . . . x^ C{

2^}{x2){\.2%) 

Next, we express the matr ix elements of the operators 0^%'n^ i n the following way, 

< P \ O £ ; L » M \ P > = 4 % - - - p , n + . . . 

< P\0(^!X.:M\P > = A % W P * • • • + • • • (1-29) 

The dots in the above expansion denote the trace terms containing These 
terms wi l l have lower powers of p • q than the wri t ten ones and hence they can be 
safely neglected in the scaling l i m i t . To derive (1.29) we have used the assumption 
that these expressions are symmetric in the indices \x\ .. .p,n and that they should 
depend on p M . I f we now use (1.28) and (1.29) and put into (1.27) then we get the 
following results for the forward vir tual Compton scattering amplitude. 

T ^ q ) = 2J2 (9^ - ^ ) A £ j c £ 2 ( - 9 3 ) + 
q2 

/ W T Prfv + PvqA ,(n)Mn)( 2 ) 

We would like to have eventually the results for the structure functions Wx and W2. 
We recall that the hadronic tensor W^v is the absorptive part of the vi r tual forward 
Compoton scattering amplitude T M „. By absorptive part we mean here: 

A b s T M „ = ^[T^{q0 + it) - T^{q0 - it)} (1.31) 
Zi 

To get the expressions for the measured structure functions we can perform integra­
tion over the contour C shown on figure 1.3. 
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Figure 1.3: Contour of integration in u> plane for the hadronic tensor. 

J - / < ^ = 2 r ^ A b s T „ 
27̂ ^ J un J\ ujn * 

= 2 C d ^ W ^ (1.32) 
Jo 

where w — and £ = 1/w. 

Using (1.30) and the fact that 

l - J d w u m - n = 5 r o i n _! (1.33) 

we get from (1.32) and the expansion for W^, 

£ dx x»-* FL(X,Q>) = E<!ct!(<3 J) 

£ dx x«-* F2{x,Q*) = Z A I c f t i Q 2 ) (1-34) 

We should recall here that the two structure functions have the following form: 

F2 = vW2 

FL = -Wx + (1 + v2IQ2)W2 (1.35) 

where FL is the longitudinal structure function since it corresponds to the exchange 
of the longitudinally polarized virtual photon in deep inelastic scattering. We shall 
note here that now F2 and FL depend on two variables x,Q2. We have factorized 
the expression for the moments of the structure functions into two terms: 
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• C^iiQ2), Cifl(Q2) the Wilson coefficient functions which contain the informa­
tion about the short distance dynamics and can be calculated perturbatively 
within the framework of the Q C D . 

• A^j, A^i \ are related to the matrix elements of the local operators and which 
contain the long-distance part of the process. They cannot be calculated in 
the perturbative theory. 

In the practical calculations the matrix elements A^}, A^\ have to be determined 

experimentally whereas the coefficient functions C^}(Q2), C^](Q2) obey the renor-
malisation group equations. 

1.4 Renormalisation group equations 

In this subsection we will show how the coefficient functions obey the renormali­
sation group equations. Let us recall the general formula for the operator product 
expansion: 

j(x)j(0) = Y,Ci(x)di(0) (1.36) 

To get the renormalisation group equations we should rather consider matrix ele­
ments than the operators. We therefore define, 

£ j n ) = < 0 | r ( j - ( x ) ; ( 0 ) * ( x i ) . . . * ( x n ) ] | 0 > 

g\n) = < o | r [ 6 i ( o ) $ ( x 1 ) . . . $ ( x „ ) ] | o > (1.37) 

These are just the n-point Green's functions with insertions of the current product 
j (x ) j (0 ) and the local operator 0,. $(xk) is the scalar field. Taking the appropriate 
matrix element of (1.36) we have, 

Qf = Y,Ci{x)Q\n) (1.38) 

We now know from the field theory that Green functions and Q\n^ satisfy sep­
arately the renormalisation group equations, 

[V + n^{g)-21]{g)\g^) = 0 

[V + n ^ ( g ) - l x ( g ) ] g l n ) = 0 (1.39) 

where we have defined the derivative T>, 

The derivative T> is taken over the renormalisation scale /x. 7$,7j, 7, are the anoma­
lous dimensions of the field $, current j(x) and the operator 0, respectively. From 
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these equations (1.39) and the operator product expansion (1.36) we can easily de­
rive the evolution equations for the Wilson coefficient functions, 

P> + 27,(<7) - li(g)} Ci(g) = 0 (1.41) 

In deep inelastic case we have the light cone expansion of the form (1.19) with the 
local operators O^} of spin n. In this case similiar renormalisation group equation 
can be derived for the Fourier transform, (1.28) of the coefficient Ci(g), 

[D + 21}(g) - 7{%)] C\n\-q2) = 0 (1.42) 

where now 7,- (#) is the anomalous dimension of the operator O^^. We can solve 
this equation as it is usually done for the renormalisation group equations and the 
solution reads, 

C \ n \ 9 , -q2ln2) = Cln)(g(t), 1) exp [ / ' dt' [ 2 ^ ( 0 ) " 7<n)(</(*'))] (1-43) 
Jo 

where t — | In ^£ and we have the condition ^(0) = g. 

We can now apply this formalism to the deep inelastic scattering case. We 
shall concentrate ourselves on the flavour singlet operators ( the results for the non-
singlet operator can be obtained in a similiar manner). In this case we have a mixing 
between the two operators 0 £ 1 ' M n and Q^-'in

 ? s e e eqns. (1.25) and (1.26) and the 
renormalisation group equation can be recast into the 2x2 matrix form, 

Wik - 7 ? ] C[:l{-q\g^) = 0 , a = L , 2 (1.44) 

where 7^ is the two dimensional anomalous dimension matrix for the flavour singlet 
operators. Note, that we do not have the anomalous dimension 7, as in eq.(1.41) 
because of conservation of the electromagnetic current j(x). The solution to (1.44) 
is the following, 

C S ( - q 2 / f i \ g ) = £ < 7 i j ( U ( < ) ) exp [- f dt'^\g{t'))\- (1-45) 
• JO 

Using the relation between g(t) and the Beta function (3(g) we can rewrite (1.45) in 
the corresponding way, 

cSlK-qVAg) = EPiTj(U(f)) exp [ - J ' d \ (1.46) 

where /3 = dg(t)/dt. The quantities 7 ^ can be calculated in perturbative Q C D 
according to appropriate diagrams shown on Figure 1.4. We can thus write the 
following perturbative expansions for the anomalous dimensions 7 ^ ( A ) and the 
beta function /3(A), 

t S ^ A ) = 7 g l ) ° A 2 + t { T ) 1 a 4 + ••• 
/3(A) = - / ? 0 A 3 + & A 5 + . . . (1.47) 
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(a) (b) 

(c) (d) 

Figure 1.4: Diagrams corresponding to different anomalous dimensions; a ) 7 „ , b) 
7 « , C ) 7, f l, d) 

Taking only the lowest order terms we obtain the following formula for the coefficient 
function, 

, Jg Po* 

= E ^ ( l ^ ( 0 ) e x p [ l n ^ ^ - ] = 9 Yj 
(n)0 

5 /?0 

£<?13(u(0) (j (1.48) 

We can now express g in terms of </, 

f = 
1 + /? 0 ln 

(1.49) 

where we have defined the A.QCD parameter to be: A = ^iexp[— l/2(3og2]. Inserting 
(1.49) into (1.48) we get the final solution, 

CZk-q'/^g) ~ E<?S(1,0) (In 
(n) Q_ 

A 2 

(n)0 

2\ -2flT 
(1.50) 
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where now c £ j ( l , 0) are the Wilson coefficient functions in the free field theory. The 
result (1.50) completes our calculation for the coeficient functions in deep inelastic 
scattering. We can now use these results and calculate the apropriate expressions 
for the moments of the structure functions. We define Mellin moments to be, 

Min)(Q2) = f1 dxxn-2Fa(x,Q2) (1.51) 
Jo 

and get the final results for these expressions by inserting (1.50) into (1.34), 

(n).0 
— * 

M^\Q2) = £ ASC£J(1,0) [\nOPj (1.52) 

These results show that perturbative Q C D predicts weak, logarithmic violations of 
the Bjorken scaling. We have obtained these important results by means of operator 
product expansion. We have factored out the local operator which is independent of 
the external momentum q^ and the coefficient functions which obey the renormal-
isation group equations and can be calculated perturbatively. On the other hand 
the local operators cannot be obtained from perturbative Q C D because they 
contain information about the long distance part of the theory. We have used very 
formal approach of operator product expansion to obtain the formulae for the scal­
ing violations. It can be also derived within more practical perturbative calculation 
as we shall see in the next following paragraphs. 

1.5 Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evo 
lution equations 

Scaling violations can also be easily obtained in a Q C D improved parton picture, 
see for example [5, 7]. When the virtuality of the probe (i.e. photon) increases, 
the resolving power is increased too, because the resolving length goes roughly as 
~ ^qZ' Since the coupling constant does't vanish fast enough with Q2 —> oo 

there will be still some residual interactions at these virtualities and the multiple 
emission of gluons from the quarks will change the distribution in their transverse 
momenta. This will eventually lead to a breaking of scaling violations. All this can 
be nicely described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ( D G L A P ) [3] 
evolution equations and we shall see below that they are totally compatible with 
the renormalisation group equations obtained in Sec. 1.4 from the operator product 
expansion. Following [7] let us first look at Figure 1.5 : the quark i emits the 
gluon and travels further as quark j. We can introduce two quantities q(x,Q2) and 
Pqq(z). The first, q(x, Q2) describes a probability of finding a quark within a hadron 
carrying a fraction x of nucleon's momentum at the given photon virtuality Q2. It is 
the same quantity as fi(x) introduced before in eqns. (1.12). Second object, Pqq(z), 
is a perturbative quantity, called splitting function which describes a probability 

file:///nOPj
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Figure 1.5: Splitting of the quark i into gluon and quark j . 

of finding a quark with momentum x within a quark of momentum y (z = x/y). 
The D G L A P equation describes then an evolution of the parton density with the 
external scale Q2, 

Q 
2 dq(x,Q2) = oJjQ2) p dy 

dQ2 2TT Jx y " y 
(1.53) 

This equation can be easily solved by means of Mellin transform technique intro­
duced already before, see eq. (1.51), 

M\n\Q2) = j f 1 dxxnq(x,Q2) (1.54) 

(we have used here slightly different definition than before in eq. (1.51)). Using 
(1.54) equation (1.53) reads, 

2TT 
(1.55) 

where = /„ dz zn Pqq(z). We can solve (1.55) immediately, 

p(") 33-

(1.56) 

We see that the D G L A P equation is completely compatible with the renormalisation 
group equations (1.52) if we identify = —7^. Equation (1.56) describes 
only quark —• quark transition. In the flavour singlet case however we have the 
set of evolution equations as already mentioned before. They describe all possible 
transitions: quark —> gluon, gluon —> quark and gluon —> gluon transitions. The 
general structure of these evolution equations can be recast into the following 2x2 
matrix form, 

Q2 

dQ2 

M^(Q2) 
MM(Q2) 

<Xs(Q2) 
2TT 

6(n) 6(n) 
-11 -19 p(n) p(n) 

99 99 

M(")(g 2) 
M^(Q2) 

The splitting functions P,j are perturbative quantities and are currently available 
up to NNLO accuracy. We shall note one important point here: in principle these 
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equations are valid for the parton densities ^ ( x , ^ 2 ) t d(xiQ2) a n d the equation 
(1.52) for the structure functions. We cannot identify these two objects because 
the structure functions are directly observable quantities measured in experiments 
whereas the parton densities can be dependent on a additional factorisation scale \i 
and therefore they are not observables. They are however connected via so called 
collinear factorisation to the structure functions: 

Fi(x,Q2) = E T dyCaix/y.QV^q^Q2/^) (1.57) 
i J x 

where d j are coefficient functions and can be calculated in the perturbative way. 
We will come back to the problem of collinear factorisation in chapter 2. 

We shall now sketch the derivation of the D G L A P equations by following the 
method in [5, 7]. First of all we have to identify the diagrams which contain the 
mass singularities. In the case of deep inelastic scattering we will have the collinear 
singularities coming from the particles being parallel in the final state. 
Thus we will have to consider only the diagrams of the form shown on Figure 1.6.a 

\ 
7 

Figure 1.6: Left diagram (a) contains mass singularities; right diagram (b) is finite. 

but not on Figure 1.6.b because the first has the collinear singularity and the latter 
is finite. In order to calculate the contribution to the hadron structure functions 
we have to take the absorptive part of the forward Compton scattering amplitude 
shown on Figure 1.7. We shall work in the axial gauge since there are no ghosts in 
that case, 

7 / ^ = 0 (1.58) 

where rj^ is an arbitrary four-vector. The gluon propagator has then the following 
form, 

k2 + ie 
with the polarisation tensor 

(1.59) 

<W*) = ^ p - + V j j ^ s (1-60) 
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The contribution of the diagram 1.7 to the hadronic tensor is then the following, 

W m m ^ j ^ ^ m i i m i ^ + M M W * - *> 

(1.61) 
Where g is the strong coupling and CF is the colour factor, which in this case is 
equal to 4/3. We shall use now the Sudakov decomposition, that is we rewrite , 

k„ = apM + Pq'^ + kL>1 (1.62) 

where a and /? are the parameters and p^ and q' are two lightlike vectors forming 
together with k^ the basis for the Sudakov decomposition. These vectors have 
following properties, 

q — q + xp 
p 2 ~ q ' 2 ~ 0 (1.63) 

and (1.64) 

q' • p ~ q • p 

'"OTJ'OooBarO'OTTOW' 

Figure 1.7: Elastic forward Compton scattering amplitude. 

Using this decomposition (1.62) we can write the delta functions in (1.61) in the 
following way, 

J dikS((p-k)2)6((q+k)2) = 

= -H— I dad(3dk2 6(0 - - ? - ) 6(a - x + ( 1 ' X ) k 2 ) (1.65) 
ip • q J Ip • q Zp • q 

where we have used the fact that 

{ p - k f = 2p-qP{a-l) 
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(q + k)2 = 

and 

k2 = 

2p • q [a — x + /3(a — x) + 

k2

L 

k2 

2p-qi 

1 - a 

(1.66) 

(1.67) 

We shall choose for the vector r\ the four-vector q'. In that case the gluon polarisation 
tensor reads, 

(1 - a)p • 

Performing explicit calculation, i.e. contracting tensor d\s of the form (1.68) with 
the trace term in eq. (1.61) and using delta functions we get, 

-2 -dk2^ (l+x2' 
k2 l - x + v p" 

(1.69) 

We now see that by the fact that we have allowed for the gluon radiation the virtu­
ality of the parton's momentum k2 is not restricted to very low values. Additionally 
we note that the integral over k2 in eq. (1.69) is logarithmically divergent. One can 
find that the proper integration limits should be 

Q2 Ah2 

(1.70) 

where m2 ~ p2. In order to derive the full D G L A P evolution equation [3] we need 
to consider higher order diagrams. The clue observation by Gribov and Lipatov was 
that the dominant contributions come from the ladder diagrams (in axial gauge) 
with the restriction that the momenta of the exchanged partons should be strongly 
ordered, see Figure 1.8. 

p2 < kl < k 2

2 < k 2

3 ^ . . . < k 2

N < Q 2 (1.71) 

so that the momenta of the partons which are closer to the photon vertex are dom­
inated by the hard momentum scale Q2. Now we will have the set of coupled 
integrations over the transverse and longitudinal parts of the momenta. We can 
define the transverse integral as, 

rQ2 dk2 r*w dk2 dk2 

r(N) 

Q2 dtf 
2& 

g\k2) 
N 

- 1 f 1 n i & in o r ^ 
(X2 

1 

(1.72) 

where p — ^ [ l n l n Q 2 / / * 2 — In In m 2 / f i 2 ] . Here the couplings have been taken at the 
value of the momentum k f . The second integral is over longitudinal components, 

( N ) f f > s [ i - „ M . . . r f r f * 
J0 £N Jti ?2 J(.2 O 

(1.73) 
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Figure 1.8: Ladder diagram contributing to the Altarelli-Parisi equations 

Using Mellin transform we can write equation (1.73) as, 

r dx Xn-' i [ n \ x ) = [d^f 
Jo 

(1.74) 

Now we can take the moment of the structure function and sum the contributions 
from all diagrams at all N, 

1 

N 

1 ^ log m" 2ft) 
(1.75) 

We see now that the scale fi introduced previously plays a role of the factorisation 
scale. The contribution log (m 2 / f i 2 ) which contains singularity, cannot be explicitly 
calculated in the perturbative Q C D but since it factorises it can be absorbed into 
the initial parton distributions. 
We have finally obtained the D G L A P evolution equations which describe the scaling 
violations. We have showed that they result by factorising the mass singularities 
and by the summation of the leading logarithms. The D G L A P equations themselves 
do not predict the exact shape and magnitude of the measured structure functions. 
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They can only predict the evolution with the scale Q2. In practice one has to 
parametrise the initial parton distributions at some low scale QQ. For example one 
assumes the form: 

q(x,Ql) = Axa(l + cyfe + dx)(l - x)b (1.76) 

Then, these parton distributions are evolved to the values of (x, Q2) which are probed 
by the deep inelastic measurements and can be used to calculate the structure func­
tions FLJ(X,Q2). The free parameters (a, A ,c , d, b) are adjusted so that the best 
description of the data is obtained. This procedure, called global parton analysis 
gives as a result a certain set of parton distribution functions within a given renor­
malisation scheme. This kind of analysis has been performed and is being always 
updated by various groups MRS [11] , C T E Q [12] and G R V [13]. 

1.6 B F K L equation and the high energy limit 

In the previous paragraphs we have discussed D G L A P evolution equations for the 
parton distributions. It has been shown that these equations effectively resum all 
powers of (cta \og(Q2))n. This has been achieved by making the approximation of 
the strong ordering of transverse momenta in the exchanged parton ladder. Con­
sequently D G L A P equation is valid in the region where \og(Q2) terms are large. 
However in the kinematic regime accessible to H E R A accelerator at D E S Y one can 
probe very small values of Bjorken x, (x ~ 1 0 - 5 ) . This is because the center of 
mass energy at H E R A is about y/s — 300 GeV. Since the energy W2 of the virtual 
photon - nucleon system cannot exceed s, this implies that x can be as small as 
^ ~ 10"5 when Q2 ~ l G e V 2 . 

One should thus worry that there are large logarithms log(l/a:) which are not 
included in the standard renormalisation group calculation, see Fig. 1.1. The re-
summation of the leading powers of log(l/x) is accomplished by the Balitskii-Fadin-
Kuraev-Lipatov evolution equation [4]. It corresponds to the summation of the 
ladder diagrams for the emitted gluons as well as virtual corrections. As a solution 
it gives so called hard Pomeron, an object which is characterized by a very large 
magnitude of its intercept A = a(0) — 1 = 4 In 2 ^ ^ ~ 0.5. This should lead to a 
characteristic rise of the structure functions with decreasing x, (x~x). Hard pomeron 
is a perturbative object which comes from Q C D calculation. It has to be contrasted 
with the so called soft Pomeron introduced by Donnachie and Landshoff [14] which 
describes the high energy behaviour of the total cross section at soft processes of 
limited pr- It has been determined phenomenologically from the fits to the hadronic 
cross sections and the value of its intercept is around O D L ( 0 ) — 1.0 ~ 0.08. It origi­
nates from the old Regge theory which was developed before Q C D and which tried to 
exploit all information from some universal properties of the scattering amplitudes. 

The B F K L equation has been also recently calculated up to NLO [15]. The 
solution in this order is however unstable and gives rather unphysical result, that 
is, the Pomeron intercept becomes negative at quite small values of as ~ 1/6. This 



Chapter 1. Introduction 24 

suggests that some resummation procedure is needed in order to get stable and 
phenomenologically acceptable result. First attempts establishing the resummation 
have already been done and they yield quite successful results [16, 17]. We shall 
come back and disscuss this problem later in the next chapter when we introduce 
consistency constraint in the presentation of the unified evolution equations. 
The main features of the B F K L equation can be summarized in couple of points: 

• It applies to the processes which are hard processes and high energy processes 
at the same time. Hard means that there is a hard scale which guarantees 
that the perturbative calculation is justified. High energy, defines the limit in 
which this equation is to be valid. 

• It performs resummation of the powers of log(l/a;) which could be important 
when considering deep inelastic processes at small values of x. 

• The basic quantity used in this equation is the unintegrated gluon density 
/(a;, k2) which is connected to the traditional integrated gluon density (see 
previous section 1.5) via following formula, 

cQ2 dk2 

xg(x,Q2) E E J ^ f i ^ k 2 ) (1.77) 

Here k2 is the value of the gluon momentum at the end of the ladder. 

• There is no strong ordering of momenta in the ladder (in contrast to D G L A P 
evolution; see condition (1.71) ). Instead the full phase space is allowed. This 
has the direct consequence in the diffusion of the transverse momenta along 
the gluon ladder. 

• We are generally working in the multi-regge kinematics, see Figure 1.9, where: 

s > Sij > U ~ -q?T (1.78) 

where s,j = 2 A:,- • kj is the Mandelstam invariant for the subamplitude with 
partons i and j. Additionally we have strong ordering of rapidities of the 
produced outgoing partons, 

y 0 » 2 / i > . . . > 2 / n + i (1.79) 

The general form of the B F K L equation in the leading order is the following, 

Nra,, „ fldz r dk'2 \ f ( x / z , k ' 2 ) - f { x / z , k 2 ) 
\k'2-k2\ + 

(1.80) 

f(x,k2) = / ( o ) ( , , , 2 ) + ^ / i T / _ _ 

f ( x / z , k 2 ) 
+ \/4ifc'4 + k4 
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Figure 1.9: Multi-regge kinematics 

where the inhomogenous term f(°\x,k2) will be discussed later. The solution to 
this equation for the case of fixed strong coupling constant cts has the form , 

( 1 2 fc2 \ 

-'sSw) (L8I) 

where A = 4log2-^ 9 L l ~ 0.5 is the hard Pomeron intercept. The term (k2)1^2 comes 
from the solution to the anomalous dimension which in case of B F K L is equal to 1/2. 
The exponential term describes the diffusion in the transverse momenta in the gluon 
ladder. One can see that the lower the value of x the stronger the diffusion is going 
to be. This diffusion effect can have large impact on the final state configurations 
in different processes. In particular it can be the source of the decorellation of the 
produced dijets in deep inelastic scattering. Normally the dijets would be strongly 
corellated in the back to back configuration. However the B F K L dynamics together 
with the diffusion term can cause the decorellation of the two jets. This increases 
the value of the cross section (as compared to standard calculation without B F K L ) 
for the configurations with smaller angles between the two produced jets. This can 
be treated as a signature of the underlying B F K L dynamics. We will come back to 
this point when considering the dijet production in chapter 4. 

The traditional way to compute the B F K L equation is to consider the discon­
tinuity of the forward elastic scattering amplitude. The many particle production 
amplitudes are then evaluated in the multi-regge kinematics. The terms with real 
emissions of gluons gather to give an effective gauge invariant Lipatov vertex and 
the virtual terms correspond to the reggeisation of the exchanged gluon. The result­
ing integral equation is of the form (1.80) in which the infrared divergencies cancel 
between real and virtual emission terms. 
Following [18, 19] we shall present here an alternative way to derive this equation, 
namely the simpler heavy onium-onium scattering in the light-cone perturbation 
theory. We consider the simple model of the hadron as a heavy quark-antiquark 



Chapter 1. Introduction 26 

system ( o n i u m ) . The single transverse momentum scale here is given by the in­
verse radius of the onium state. In the large 7VC limit the heavy onium wavefunction 
can be viewed as a collection of simple dipoles. Then the total cross-section for the 
scattering of two onia can be expressed as the product of the dipole number densi­
ties which constitute the two onia times the elementary dipole-dipole cross section 
which is independent of the initial energies of the two onia. 
We shall start at first with the onium wavefunction, which only contains two heavy 
quarks but no soft gluons. Consider the dipole on Figure 1.10, where XQ,X\ are 
the transverse coordinates (impact parameters) and (1 — Z\),zx are the longitudinal 
momentum fractions of the quark and anti-quark. The coordinate and momentum 
wavefunctions are related by the Fourier transform, 

* ( 0 W , * i ) = / ^ « r t l - l D , * ( 0 ) ( * i ^ 0 I 1- 8 2) 

where XQI = X\ — XQ . The advantage of using the impact parameter space is that 

Figure 1.10: Diagrammatic representation of the qq dipole. 

the soft gluons factorize more easily in that picture. This wavefunction is normalised 
so that: 

J d2x J dz &°\x,z) = 1 (1.83) 

where we have defined the square of the wavefunction: 

9W{x,z) = £ |*S(x,*)|2 (1.84) 

We define a and /? as the spin indices of the quark and antiquark spinors re­
spectively. The lowest order cross section for the scattering between two onia is the 
following, 

<7<°> = Jd2xQ1 fQdzx $ ( ° > ( W i ) jd2x'm j y z [ ^ ° \ x ' 0 1 , z [ ) a d d ( x o u x ' 0 1 ) 

(1.85) 
Here is the elementary dipole-dipole scattering cross-section. This cross-section 
can be easily evaluated because the time of the interaction between the two systems 
is very short compared to the time scales in the onium wavefunctions. From (1.85) 
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we see that the rise of the total cross-section will be connected with the increasing 
density of dipoles in the two onia. 
When the onium consisting of two heavy quarks emits the gluon, it becomes the 
two-dipole state. There will be one dipole consisting of the quark and the antiquark 
part of the gluon and the second will be consisting of the quark part of the gluon 
and the remaining original antiquark of the parent dipole. This is shown on Figure 
1.11. We assume that z2 <C z\, (1 — zx) which defines the gluon as a soft. We choose 
the light cone gauge where the polarisation of the gluon is, 

(1.86) 

In the soft gluon approximation k+ is large and therefore we only have to consider 
= ^-j^ We can now calculate the wavefunction which corresponds to the onium 

with one additional soft gluon, 

¥ l \ k u k 2 - z x , z 2 ) = 2gTa 

k+ 

where Ta is the SU(3) colour matrix. 

* ( 0 ) ( * i + * a ^ i ) - * ( 0 ) ( * i , * i ) ] (1-87) 

In derivation of (1.87) we have used the 

Figure 1.11: Diagrammatic representation of dipoles with additional soft gluon emis­

sion. 

eikonal prescription for the coupling of the soft gluon. 
The corresponding wavefunction in the transverse coordinate space will be: 

d2kxd2k2 

~W>A 

We find that using (1.87) and (1.88) we get, 

¥ ^ ( x 0 2 l x 2 l ; z u z 2 ) = j e » " * » ^ \ k u k 2 ] z u z 2 ) (1.88) 

* ( 1 W * M ; * i , * 2 ) = — ¥ ° \ x u z x ) fe-^j (1.89) 
7T \ \ X 2 1 X 2 0 , 

We can calculate the square of the onium wavefunction in the transverse coor­
dinate space using (1.89), 

«>(*,,*) = /**, I" ^ ^ *<») ( ,„ 2 l ) (1.90) 
J Jz0 Z2 7T X2QX2^ 
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Next, we shall generalise our equation to include n soft gluons k2, k3,..., &n+i which 
are ordered according to z2 ^> z3 ^> 24 . . . ^> zn+\. The hardest of the soft gluons is 
emitted first then the next of the hardest, and in the end the softest gluon is emitted. 
We shall adopt here a planar approximation which greatly simplifies the calculation 
because it reduces the number of diagrams. One neglects the non-planar diargams 
since they will be supressed by powers l / N c relatively to the planar graphs. The 
planar limit corresponds to taking g —• 0, Nc —> 00 while keeping g2Nc fixed. The 
non-planar diagrams will behave like l / N 2 so the planar approximation is expected 
to be valid at roughly 10% level in the real Nc = 3 case. It is useful to introduce 
a generating functional Z(X\,XQ,ZI,U) of the light-cone wavefunction of the onium. 
We define Z by the following relation: 

8 8 8 
T7^ \ TT \ • • • FT= V z(xu*o, zuu)\u=o $(0)(xi, zi) = 
bu(x2jz2) bu{x3,z3) bu(xn+1, z n + 1 ) 

= $ ( n ) ( i 1 , x 2 , . . . , x n + 1 ; 2 1 , 2 2 , - - - , 2 „ + i ) (1.91) 

$( n ) here is the square of the wavefunction for the heavy quark-antiquark pair along 
with n soft gluons which have transverse coordinates x2, x3,..., xn+\ and longitudi­
nal momentum fractions z2, 2 3 , . . . , zn+i- Then the functional Z obeys the following 
integral equation: 

- ^ 1 1 a ' C p f ji- XQI r d z 2 

Z(xuxo;zuu) = 1 + — dx.-^-j- / — 
IK J Jb 20^ 21 2 0 2 

u(x2,z2) Z(x2,x1;z2,u)Z(x2,x0;z2,u) (1.92) 

However the above equation for the generating functional Z is not complete because 
it doesn't give the probability conservation constraint, 

J d2xx y"dziZ(x 1 ,So,zi ,u) | t l = 1 *(°>(xi ,3 1 ) = 1 (1.93) 

The above requirement can be achieved by including additionally the virtual emis­
sions of the soft gluons. Normally constraint (1.93) is enforced order by order in 
perturbation theory. Here we adopt simpler approach where we introduce a cutoff p 
and define the region R(x02, £oi) by requiring that x02 > p and X01 > p. We take the 
ultraviolet cutoff p to be a small quantity when compared with the average onium 
radius. Virtual emissions can be calculated by integrating the single gluon emission 
over the phase space with the cutoff R: 

^ £ ( Y

d y f d ^ L = i ^ K l n ^ ( 1 . 9 4 ) 

IT2 Jo JR XQ2X{2 7T p 

providing that we can assume xQ\ 3> P- When we induce the virtual emissions then 
the formula for the Z generating functional is the following; 

Z(x,Xo; z\,u) = exp[ In In — ] u(x0i) + 
7T p ZQ 

asCF [z> dz2 f 2 _ x2

0l iasCF , xm , zx + —5— / — d x2 exp In — I n — 
ir1 Jz0 2 2 JR XQ2X{2 7r p z 2 

Z(x2, xi]z2, u) Z(x2, x0] 2 2 , u) (1.95) 
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Now, if we take u = 1 we see that i t must be Z = 1. We can easily check this, i f we 
take Z = 1 on the right hand side of (1.95) and using (1.94) we w i l l get then: 

•7t- - M r 4a ,CF Inaio , Z ^ z o ; z i , u ) | u = i = exp[ Y\ + 
7T /? 

+ » - / <fy / 2 2 exp In ( F - y ) J = 
TT1 JO JR X Q 2 X [ 2 K P 

4O:XCF In Xoi . 
exp[ Y\ • 

TT p 
aSCF f d2xW01 e x p [ ^ l n a i r ] - 1 . 

' l + 7T 2 JR X \ 2 X \ 2 l s u p : i n a L y J 

1 (1.96) 

This is fortunate because the vi r tual emissions cannot change the inclusive prob­
abili ty of having a dipole which consists of two heavy quarks. We shall now calculate 
the dipole density in the onium wavefunction and we w i l l show that this leads to 
the B F K L kernel like in [4]. 
We define density n(xw,x,Y) such that : 

N(x,Y) = j d2x01Jo dzl&°\x0i ,zi)n(x0i,x,Y) (1-97) 

The quantity N(x,Y) is the number density of the dipoles at the transverse size x 
and the rapidity interval Y. The function n(x0-i,x, Y) obeys the dipole version of 
the B F K L equation and it describes the density of dipoles w i th separation x in the 
onium wi th transverse size Zoi- The equation for the dipole density is as follows, 

n(x0\,x,Y) = x 8(x — XQI) exp[— ̂ a " ^ ' F } 0 g — Y] + 
TT p 

a3CF f x^d2^ f Y

 r 4asCF

 x o i w ^ 
+ — — / 2 2 / e x p y - 2 / ) l o g — } n ( x u , x } Y ) 

TT JR X { 2 X Q 2 JO TV p 

(1.98) 

and it has been derived f r o m the generating functional Z (1.95) : 

n(x0l,z,Y) = x2Jd^)SZiZ^U)lu=l ( L 9 9 ) 

and d<f)(x) means that we integrate over possible orientations of the dipole direction 
x. Equation (1.98) can be illustrated on the Figure 1.12. One can solve this equation 
by going to the Mel l in space. Define: 

h(xl2,x,u>) - j dye~wyn(xl2,x,y) (1.100) 
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F 
Figure 1.12: Diagrammatic representation of the dipole version of the B F K L equa­
tion 

Then the equation (1.98) reads, 

. / v n{0)(x0i,x,uj) asCF ( <Px2x\x [™ _wY 

ir p 

[Y 
/ dy 
Jo 

<±asCF. x0i . 
exp[ log — ( Y - y)\ n[x12, x, y) 

7T p 
(PX2XQI h^(x01,x,uj) OLSCF 1 

7T 0 7T O p 

One can introduce notation for the kernel in this equation, 

/
Ct X2XQ1 „ . 
—2—2—n(xi2,a;,u;) 

x12J-02 

(1.101) 

^(•^12,2:01) = 7T- / ^ 0 2 J a c -
Z7T J o X 

2 „2 
12X02 

(1.102) 

where we have made a change of the integration variables, dx02dxi2 Jac = cPa^-
Using this notation (1.102) we get f r o m (1.101), 

n{x0i,x,u))[uj H ln J = n l ' (zoi , a:, w) 
7T /) 

+ 4 " s g F / ^ 1 2 K ( x i 2 , a : o i ) n ( x 1 2 , . ' c , w ) 

(1.103) 

and finally , 

h(x0i,x,u) = 

+ 

n ( 0 ) ( ^ i o , £ ] , w ) + 

7ra; 
/ ^ ^ [ / ^ ( I ^ ^ T O I ) - In — 6(x0i - xi2)]n(xu,x,u) 

J p 
(1.104) 

The kernel 
K(xX2,xQl) = K(xu,xoi) ~ In — 6(xol - x12) 

P 
(1.105) 
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is equivalent to the B F K L kernel when the ultraviolet cutoff p —• 0. I t has exactly 
the same eigenvalues, 

j dx12 K(xu,x0i)x*2 = x ( A ) a 4 (1.106) 

where the eigenvalue of the kernel is, 

X(A) = ¥ ( 1 ) - ^ ( 1 - A/2) - + A/2) (1.107) 

Where *& is the Euler Digamma function. Using this result for the kernel eigen­
value (1.107) we can solve the dipole equation (1.104) by making one more Mell in 
transform, this t ime in variables xoi/x. This enables us to unfold the convolution 
in the impact parameter variables. We take, 

M * o i , * ) = / )* (1-108) Jc Ziri x 

Now we use this in (1.104) and our dipole equation is, 

ni = + ^ X ( X ) n i (1.109) 
7T 

So the solution to the Mel l in transform of the dipole density is, 

" - ^ X ( A ) 
(1.110) 

One can immediately see that the behaviour of the solution wi l l be controlled by 
the pole wo = 4 o ^ C f x (A) . We can thus easily perform the integration over w and 
our result for the density of dipoles n(xoi,x,Y) is as follows, 

n ( x 0 U x , Y ) = / ^ n ( ° ) e x p [ ^ X ( A ) y ] ( ^ i ) A (1.111) 
Jc 2ni 7r x 

We can evaluate this integral because the function x(A) has a saddle point at A = 0. 
I t has min imum as —1/2 < A < 1/2 and a maximum as we move along the imaginary 
axis. 

Let us take A = iv and evaluate the integral (1.111), 

n ( x 0 U x , Y ) = C — ( — ) exp[ x(ii/) Y] 
J— oo i/K X 7T 
x0i [°° du Aa3CF XQI 2asCF 2 

= C— / — exp x (0 )K + 2zi/ln v x (0)K = 
X J-oo Z7T 7T X 7T 

„xo\ 1 AasCF / n . v , r * In 2 *f , 
= C- , = exp x (0 )K e x P - ^ — T , — , , , ^ , \ 

2* ^2asCFX"(0)Y P L TT J F L 2 a s C F X " W ] 

(1.112) 
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where C is some constant determined f r o m n^ 0 ' . The last line of (1.112) is the solu­
tion to the density of dipoles in the onium which is controlled by the zero momentum 
transfer B F K L hard pomeron A p . The first term wi th exponent describes the rapid 
growth of dipole desity as rapidity Y becomes large. This growth is controlled by 
the intercept A P = * 2Jp :x(0) = In 2 ~ 0.5. Second term wi th exponent de­
scribes the diffusion in transverse variable x. Even when we start w i th very small 
perturbative dipoles , we w i l l eventually hi t , at large Y , a non-perturbative region 
where dipoles can get quite large size x. This type of behaviour is typical for the 
B F K L equation (1.80) and its solution (1.81) . I n the tradtional momentum space 
this means that the difffusion is likely to bring us to the region where the trans­
verse momenta are quite small. Therefore the infrared behaviour of the unintegrated 
gluon density w i l l play very important role. 
The picture of colour dipoles has been already used to describe different processes 
like: v i r tua l photon collisions wi th exchange of the B F K L pomeron [21] and diffrac-
tive processes [22]. Finally fits to deep inelastic data have been made [23]. 

1.7 Unitarization and saturation at large rapidi­
ties 

When otsY is much less than 1, then the cross section for scattering between two 
onia is small. But when ctsY becomes large then the cross section grows rapidly 
and the unitar i ty bound can be violated, see eq. (1.112). In the dipole picture 
i t is quite easy to understand this fact because the onium-onium scattering cross 
section is proportional to the product of the dipole densities in both onia. I t is 
then obvious that the uni tar i ty is violated when the dipole densities are large. The 
two onia become essentially black on scattering. However, when there are many 
dipoles the mult iple interactions can occur and they w i l l actually have to be taken 
into account in order to get the correct result which w i l l not violate the unitarity. 
The mult iple scatterings are dependent on the distr ibution of the dipoles in two 
onia. In the normal transverse momentum picture the mult iple scaterings of dipoles 
correspond to the mult iple t-channel pomeron exchange diagrams. The detailed 
numerical calculations including mult iple scattering have been performed in [20] and 
yield unitarized cross section. The idea was to simulate the small x dipole branching 
producing random dipole configurations. Then the interaction between the pairs of 
these random configurations were determined. Finally an average over all possible 
configurations has been taken. The results in [20] indicate an interesting fact that the 
shadowing corrections have more profound impact on elastic cross section than on 
the total cross section. This is probably due to the fact that the leading dependence 
of the amplitude is 1/r2 (where r is the impact parameter). Then because the elastic 
cross section is proportional to the integral of the amplitude squared then i t wi l l 
be more sensitive to the small values of impact parameters that is the space where 
unitari ty corrections are quite large. The total cross section is proportional to the 
amplitude therefore due to diffusion in the B F K L w i l l probe much larger space of 
impact parameters and the shadowing corrections w i l l switch on much later. 



Chapter 2 

Towards the unified B F K L and 
D G L A P description 

So in addition to what is asked about, an inquiry has that which is 
interrogated. In investigative questions - that is in questions which are 
specifically theoretical - what is asked about is determined and conceptu­
alized. Furthermore, in what is asked about there lies also that which is 
to be found out by the asking; this is what is really intended: with this 
the inquiry reaches its goal. 

- M. Heidegger 

2.1 Introduction 

In the sections 1.5 and 1.6 we have introduced and discussed two types of evolu­
tion equations which can be used to evaluate the parton distributions at different 
scales. In principle both approaches are designed to work well i n two different 
kinematic regimes, see Figure 1.1. The renormalisation group approach is basically 
summing up the logarithms of the hard scale Q2 and does not care about possible 
novel low x effects. On the other hand the B F K L equation does indeed sum the 
powers l n ( l / x ) in LO and NLO approximation, however i t is valid in the region 
where Q2 scales are moderate. The strong rise of F2 at H E R A wi th decreasing x 
would suggest the presence of the B F K L pomeron. However, i t could be equally 
well described wi th D G L A P equations by choosing the appropriate input for the 
distr ibution functions and the sufficiently low value for the in i t i a l scale Q\ (see eq. 
(1.76) and the disscusion there). Several descriptions based on global data analysis 
and renormalisation group equations are available at present: MRS [11], CTEQ [12], 
GRV [13]. Further studies [24] based on LO B F K L have shown that i t generates 
too steep rise and therefore is likely to be excluded by the data. This approach 
however involved parametrisation of the unintegrated gluon distr ibution function 
in the strictly non-perturbative region and i t is well known that B F K L predictions 
can be very sensitive on the fo rm of this parametrisation. We w i l l not t ry to judge 

33 
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which one of these two approaches is correct but rather concentrate ourselves on 
the unification of these two. Since B F K L and D G L A P resum different contribu­
tions at certain approximation they are both incomplete and their unification would 
exhaust most of our knowledge about the perturbative phenomena whilst minimis­
ing the parametrisation for the non-perturbative part. We shall first start w i th the 
demonstration that at the leading twist level the B F K L kr factorization approach 
can be reduced to the conventional collinear factorization of the renormalisation 
group in which the anomalous dimensions and coefficient functions are extended to 
include the f u l l resummation of leading ln( l /a ; ) terms [25, 26, 27]. This w i l l enable 
us to gain more detailed insight which contributions are included in the evolution 
equations and what are the common parts of both D G L A P and B F K L approaches. 
I t w i l l prevent us f rom possible double counting when building up the framework of 
unified evolution equations. 

2.1.1 kr versus collinear factorisation and the anomalous 
dimension of the gluon 

In the section 1.6 of the previous chapter we have disscussed the B F K L equation 
for the unintegrated gluon distr ibution function f ( x , k2) (1.80). But we didn' t spec­
ify how to calculate the observable structure functions f r o m this type of parton 
distr ibution. The connection between the unintegrated gluon distr ibution and the 
observable structure functions Fi is given in terms of the so called k j factorisation 
or high energy factorisation formula [25], see Figure 2.1, 

Here, f ( x , k2) is the solution of the B F K L equation (1.80) and F^ox are the partonic 
cross sections for the process gV —> qq, where the gluon g is off-shell. A t lowest 
order they are determined by the quark box (a) (and crossed box (b) ) contribu­
tions, Figure 2.2. In order to see the connection between the k j factorisation and 
the collinear approach (1.57), we w i l l use the Mel l in transform technique well known 
already f rom previous sections. For simplicity we assume that the coupling as is 
fixed and that the quarks are massless. This of course is only an approximation, 
however i t w i l l give us reasonable qualitative results. Af ter making these assump­
tions the functions _P i

b o x are only functions of the ratio Q2/k2. In terms of moments 
in z the kr factorisation formula (2.1) wi l l give, 

We may again factorise this equation by taking Mell in moments in k2 variable. We 

(2.1) 

dk 
i{u,Q2) = j ^ F ) 0 \ u , Q 2 l k 2 ) J { u , k 2 ) (2.2) 

f ind , 
1 pc+ioo 

F>(",Q2) = 7T- / ^ b o X ( ^ , 7 ) / ( ^ , 7 ) ( Q 2 ) 7 (2.3) 
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0 0 0 W 0 0 0 0 0 

Figure 2.1: Diagrammatic representation of the high energy factorisation, 

wi th c = 1/2. We remind that the double moments F and / are defined here as, 

/ (« , 7 ) = / <f*J (t2)-'"1 7(U, tJ) (2.4) 

The representation defined by formulae (2.2), (2.3), (2.4) indicates that if we know 
the analytic properties of the solution / and the cross section F^ox in the complex 
plane of Mel l in variable 7 then we wi l l be able to determine the behaviour wi th Q2 

of the structure funct ion Fi(uj,Q2). 

The function /(a; , 7) satisfies the B F K L equation and hence i t is given by the 
solution of the similar fo rm as that one found previously for the dipole density 
(1.110) 

/ ( W | 7 ) = n a m - (2.5) 

where we have denned as = N c

i v

a ' . Here /^(u>,7) is the double Mel l in transform of 
the inhomogenious term of the B F K L equation. I t can be shown that the kernel can 
have an expansion in terms of series in 7 of the following fo rm, (for example using 
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Figure 2.2: Diagrams contributing to the partonic cross section Vg —• qq. 

expansions for digamma functions f r o m [28]) 

1 0 0 

X ( 7 ) = 2*(1) - * ( 7 ) - * ( 1 - 7) = - [1 + E 2 C ( 2 n + l ) 7

a B + 1 ] (2.6) 
7 n 

where £ is the Riemann zeta function. The dominant pole of equation (2.5) arises 
f rom the zero in the denominator, 

1 _ -yR 

! - T f x ( 7 ) 7 - 7 

As solution for 7 and R we get, using (2.6) 

7 = ^ + 2 C ( 3 ) ( ^ ) 4 + 2 C ( 5 ) ( ^ ) 6 + . . 
U U> Ul 

R = (l V 1 

(2.7) 

u> d j 
17=7 (2.8) 

We interpret 7 as a leading twist anomalous dimension of the gluon density. We 
can insert now (2.8) into the formula for the structure function (2.3) and close the 
contour in the left half plane. In that way we obtain the leading behaviour at high 
values of Q2, 

~ ' " ^ " (2-9) F,(u,,Q2) = ^ b o x ( u ; , 7 ) 7 ^ ( - ) / ( 0 ) ^ , 7 ) ( ^ 2 r 
u> 

I f we define: 

C?i (w,7) = i F r ( u ^ ) R ( a s / u ) 

(2.10) 
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then we have apparently reduced the kr factorisation into the collinear fo rm, see 
(1.57): 

F ^ Q 2 ) = Ci(Un)g(utQ2) (2.11) 

Where Ci(u>,^) are the perturbative coefficient functions which happen to be con­
nected to the Mel l in moments of the partonic cross-section for gV —• qq and func­
tion g(uj,Q2) is the integrated gluon density which evolves w i t h Q2 according to the 
leading anomalous dimension 7. This factorisation formula is correct when we are 
considering longitudinal structure funct ion FL,. F^°X is constant at large values of 
Q2/k2 and therefore Fl°*(u>,*f) ~ I /7 . This singularity is cancelled by 7 in the 
numerator of formula (2.7). But on the other hand the F 2

b o x —• \og(Q2/k2) and thus 
we get F2

box ~ I / 7 2 and together wi th (2.7) this gives the pole I /7 for the structure 
function Fi. This additional pole at 7 = 0 gives the contribution to structure func­
tion F2 which is independent of Q2 and therefore i t is a scaling part. I n order to be 
able to study the behaviour of the perturbative part arising f r o m the pole at 7 = 7 
we have to consider the derivative of F2, 

= a* E < P ^ l ) 9 ( ^ Q 2 ) (2-12) 

where we can identify the moment of the Pqg spli t t ing function to be 

^ P q g ( u , a s ) = i2(as,u)F*°*(u,7(as,u)) (2.13) 

in the so-called Ql regularization and DIS scheme [25] which we impl ic i t ly adopt 
here. 

In the leading l n ( l / x ) approximation we have 

^ P „ ( u t a s ) = ( 7 ) 2 F 2

b ° x ( " = 0,7) • (2-14) 

The leading logarithmic expansion for the anomalous dimension 7 has the fo rm 
calculated previously (2.8), 

a s \ ^ f a s 

71=1 
7 - = E M - ( 2 - 1 5 ) 

which in turn gives for the spli t t ing function Pt 99 

zPgg(z,as) = 22 °n-—(n _ ^ | > ( 2 - !6) 

whereas representation (2.14) generates the following expansion of the spl i t t ing func­
tion Pqg(z,as) at small z 

zPqg(z, as) = zPg\z) + as £ b ^ S ^ f ~ \ (2.17) 
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The first term on the right hand side vanishes at z — 0. I t should be noted that the 
spli t t ing function Pqg is formally non-leading at small z when compared wi th the 
spli t t ing funct ion Pgg because i t has additional power of as. For moderately small 
values of z however, when the first few terms in the expansions (2.16) and (2.17) 
dominate, the B F K L effects can be much more important in Pqg than in Pgg. This 
comes f rom the fact that all coefficients bn in (2.17) are different f rom zero, and 
relatively large, while i n (2.16) we have c2 = C3 = 0 [29]. The small x resummation 
effects wi th in the conventional QCD evolution formalism have been discussed in 
refs. [30, 31, 32, 33, 34]. These studies already emphasize this point, namely that at 
the moderately small values of x which are relevant for the H E R A measurements, 
the ln( l /a ; ) resummation effects in the spli t t ing function Pqg have a much stronger 
impact on F2 than do those in the spli t t ing funct ion Pgg. In particular we should 
also recall that the B F K L effects in the spli t t ing function Pqg can significantly affect 
the extraction of the gluon distribution f rom the experimental data on the slope of 
the structure funct ion F2 

Q 2 a j ^ P = j : i z P M Q ^ g . ( , 1 8 ) 

Different Pqg calculated wi th in various perturbative frameworks w i l l result in a dif­
ferent gluon distr ibution functions. This is a direct consequence of the factorisation 
prescription and shows again that the parton densities are not directly observable 
quantities. We shall come back to the point of the resummation in Pgg and Pqg in 
the section w i t h numerical results. 

Here we also include the subleading ln( l /a ;) terms which would come f rom the 
subleading terms in 7 S 3 etc. Keeping the exact kr factorisation (and not just its 
large Q2 l i m i t ) we also include the non-leading twist contributions to F2. They 
would formally be generated by the contributions given by the anomalous dimen­
sions at non-leading twist . 

We should also note that the expansion of the type (2.16) is well behavied in 
the sense that the potential big terms ( l n l / z ) n which would occur at small z are 
regularised by the factorial term in the denominator of the expansion (2.16). 

In this paragraph we have therefore shown that the kr factorisation formula can 
be recast into the collinear f o r m familiar f rom the renormalisation group equations. 
In this case the leading logarithmic effects ln( l /a ; ) have been resummed in the per­
turbative coefficient functions C, and the anomalous dimensions 7^ which are just 
Mel l in transforms of the spli t t ing functions In order to build the unified picture 
of B F K L and D G L A P equations we need to resum also the remaining D G L A P terms 
in the Pgg spl i t t ing funct ion. 
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2.2 Unified B F K L and D G L A P equation for the 
gluon 

We recall here for the convenience the standard fo rm of the LO B F K L (1.80) equation 
for the unintegrated gluon distribution, 

f ( x , k 2 ) = f ( 0 ) ( x , k 2 ) 

(2.19) 

, f ( x / z , k ' 2 ) - f ( x / z , P ) f(x/z,k>) 
W I - / — < ^ - ^ + 

Jx Z J K \ 

where as = Nccts/Tr and k = kj^k' = k'T denote the transverse momenta of the 
exchanged gluons. 

In order to make the B F K L equation for the gluon more realistic and to extend 
its validity to cover the f u l l range of x we make the following modifications: 

• F i r s t : we allow for the running coupling which is already a pure N L O correc­
t ion to LO B F K L equation. The way to make the a3 run in the LO B F K L 
is of course arbitrary, we choose here to leave as outside the integration over 
momentum k2. 

Second: to incorporate leading order D G L A P evolution, we add on to the 
right-hand side of (2.19) the following term, 

rl fa 

(2.20) 

where we have used the formula connecting the integrated wi th the uninte­
grated gluon distr ibution function (1-77). We have to subtract - 1 in (2.20), 
because this leading term as/z is already included in the B F K L part. The 
inclusion of the additional term (2.20) gives contributions to the gluon anoma­
lous dimension 7 f f s which are subleading in as ln( l /a ; ) but leading in as. These 
standard leading order D G L A P contributions have an impact on the overall 
normalisation of the unintegrated gluon distribution. They do also lower the 
value of the hard pomeron intercept (see subsection 2.2.1). Note, that we have 
introduced here a non-perturbative input xg(x, k$). We shall choose some sim­
ple parametrisation for this term and tune the free parameters in order to be 
able to f i t the data. 

• T h i r d : we impose the consistency constraint on the B F K L equation which 
mimics the resummation of the subleading corrections in ln ( l / a : ) . The above 
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x, k T 

q T 

x / z , k ' T 

Figure 2.3: Kinematic variables used to derive the consistency constraint. 

B F K L equation is given in the leading logarithmic approximation which as 
we have seen already earlier, yields quite a significant rise of the structure 
function at small x. The ln( l /a ; ) resummation has recently been carried out 
[15] at next-to-leading order (NLO) . I t is found to give a very large 0(as) 
correction to the hard pomeron intercept A, 

which implies that the NLO approximation only, is unreliable for realistic 
values of as- Rather we must use a formalism which contains an estimate of 
an all-order resummation. Clearly i t would be desirable to identify physical 
effects which could be resummed to all orders and which at the same time yield 
a N L O value of A that is comparable to (2.21). As i t happens the imposition 
of the consistency constraint [35, 36] 

on the real gluon emission term gives just such an effect. The variables are 
shown on Fig. 2.3. The origin of this constraint is the requirement that the 
vir tual i ty of the exchanged gluon is dominated by its transverse momentum 
\k'2\ ~ k'%. In the derivation of the B F K L equation one assumes the mul t i -
Regge kinematics. This configuration forces the longitudinal components of 
the exchanged particles in the t-channel to be small and therefore only trans­
verse components can dominate the overall particle's momentum. We sketch 
the derivation of the consistency constraint following [35]. 

We use here the light cone decomposition of the momenta, 

A ~ a s 4 In 2(1 - 6o7 s), (2.21) 

k'2 < k2/z (2.22) 

P = 

k2 = 

(k+,k~,kT) 

ft. ft. — A/'y (2.23) 
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Because k2 ~ we immediately have \k^\ > \k+k |. From figure 2.3 we see 
that, 

k- = k'~ - q~ ~ -q~ (2.24) 

Because the emitted gluon is on-shell we have the following relation, 
2 „2 

, V =qT=>q-=<tL = (2.25) 
q+ k'+ - k+ 

Using (2.24) and (2.25) we get, 

where we have used the fact that k+ = xp and k'+ = x/zp. 

So we immediately get the constraint, 

k2 > (2.27) 
1 — 2 

In our calculation we have however used different fo rm of the constraint k\ > 
zkj which follows f r o m (2.27) when z is small and because high values of 
momentum q\ imply also high values of k'^ at the same time. Thus we have 
that k'r ~ q\. 

I f condition (2.22) is imposed on the B F K L equation (2.19) i t can be st i l l 
solved analytically. The result is an all-order effect, which at N L O gives the 
large modification 

A ~ c7s 4 In 2(1 - 4 .2a s ) (2.28) 

of the LO value. However i t is found that the all-order correction is a much 
milder modification, although st i l l significant. A related result can be found in 
ref. [16]. We can therefore make the B F K L equation (2.19) for the gluon much 
more realistic by imposing the consistency condition (2.22). We wi l l show this 
effect in the next subsection when we study the solution of the unifed equation 
for the gluon in the anomalous dimension space. 

Fourth: we notice that the integration region over k'2 in (2.19) extends down 
to k'2 = 0 where we expect that non-perturbative effects w i l l affect the be­
haviour of f ( x , k'2). We are only going to solve equation (2.19) in the pertur-
bative region, defined by k2 > so we only have to worry about the infrared 
contribution due to the real emission term f rom the interval 0 < k'2 < k%. We 
may rewrite this infrared contribution in the form 

The parameter k% ~ 1 GeV 2 denotes the border between the perturbative and 
non-perturbative regions. Its magnitude wi l l be taken to be around l G e V 2 . 
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This procedure seems to work better than the one proposed in [24] since we 
avoid the parametrisation of f ( x , k2) below the scale k2 < k$. B F K L equation 
( as noted before in the introduction) can get quite a lot of contribution f rom 
the infrared region and the evolution can be affected very dramatically as we 
change this input. 

• F i f t h : f inally we must of course add to the right-hand side of (2.19) the term 
which allows the quarks to contribute to the evolution of the gluon, that is 

*s{k2) 
2TT 

JX dzPBq(z)z(^,k*} (2.30) 

where £ is the singlet quark momentum distribution. This term is numeri­
cally small as compared to the rest but has to be included in order that our 
constructed unifed equations w i l l be compatible w i th D G L A P in the strong 
ordering configuration of k-r. To be explicit, we define as singlet: 

£ ( x , & 2 ) = X(<1 + ?) + x(c + c) 
q=u,d,s 

(2.31) 

= V{x,k2) + Sud3{x,k2) + Sc(x,k2) 

where V, Suds and Sc denote the valence, the light sea quark and the charm 
quark sea contributions respectively. We discuss the evolution equation for 
S(x, k2) in section 2.3 . 

Gathering together all the above modifications, equation (2.19) for the gluon 
becomes 

f ( x , k 2 ) = P \ x , k 2 ) + 

/ i 2 M 2 f 1 d z f d k ' 2 

\k»-k*\ + [4k'4 + k ^ 

(2.32) 

where now the driving term has the form 

f(°\x,k2) = f(°\x,k2) + ?*yp- £dzP„(z)lg ( ^ , k 2 ) . (2.33) 

In (2.32) we include the cutoff k'2 > k% on the vi r tual , as well as the real, con­
tributions in order to avoid spurious singularities at k2 = k%. I n the perturbative 
region, k2 > we may safely neglect the genuinely non-perturbative contribution 



Chapter 2. Towards the unified BFKL and DGLAP description 43 

k2) which is expected to decrease strongly wi th increasing k2. I t is important 
to note once more that we have avoided the necessity to parametrize f ( x , k 2 ) in the 
non-perturbative region. Equation (2.32) only involves / ( x , k2) in the perturbative 
domain, k2 > k^. The input (2.33) is provided by the conventional integrated gluon 
xg(x,k2) at the scale k^. That is the input to our 'unified B F K L + D G L A P ' equa­
tion is determined by the same distribution as in conventional D G L A P evolution. 
Surprisingly, we f ind that we can achieve an excellent description of all deep inelastic 
data using the most economical parametrization of the input gluon 

xg(x,k2

0) = N i l - x f . 

In particular the observed growth in F2(x, Q2) w i th decreasing x is generated entirely 
by perturbative ( l n ( l / x ) and l n ( J 2 ) dynamics. 

I t is easy to see how eq. (2.32) reduces to the conventional D G L A P evolution 
equation for the gluon in the leading InQ2 (or rather ln fc 2 ) approximation. The 
leading \nk2 terms arise f rom the strongly ordered configuration, k^ <C k'2 <C k2, for 
the real emission contributions. In the leading In k2 approximation we also neglect 
the vir tual contributions. Then (2.32) becomes 

+ 
(2.34) 

where we have taken into account (2.33) and the remarks concerning the omission 
of f(°\ Using the integrated gluon distr ibution we see that (2.34) becomes 

^ a ^ a = s m ^ ^ y ) + w ( | , ^ ] , ( , 3 5 ) 

which is simply the conventional D G L A P evolution equation for the gluon. 

2.2.1 Solution of the generalised B F K L - D G L A P equation 
for the gluon 

We w i l l study now the properties of the equation (2.32) in u> and 7 space using 
techniques presented in subsection 2.1.1. In the case of fixed as and without the 
contribution f r o m the quarks (which is numerically small anyway) we rewrite the 
equation (2.32) in the moment space u>, 
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/ ( w , k") [9(*a - k'2) + (k'/k'T Q(k'2 ~ k2)} - k2) 7( W ) 

1 l ^ ' 2 - * 2 I (4/fc'4 + k4)^ 
fk2 ( I k ' 2 -

+ as(k2)P(u)j^ j j - t t ^ k ' 2 ) (2.36) 

where P(UJ) is the moment funct ion of the gluon spli t t ing funct ion (zPgg(z)/() — 1) 
w i th subtraction of the leading term in 1/z. The term in square brackets in (2.36) 
is due to the kinematic constraint. Without this constraint we would have 1 instead 
of {k2Ik'2)", and the two 0 functions would simply sum to unity. For large k2 the 
moment funct ion behaves as 

(L 2 \ 7 9 9 ( w , a s ) 

¥ J ( 2 - 3 7 ) 

where, for i l lustration, we take fixed as- The quantity jgg is as before the anoma­
lous dimension of the gluon but this t ime calculated f r o m the generalised evolution 
equation 'corrected' wi th D G L A P term and the consistency constraint (2.22) . I f 
we now go to 7 space and perform yet another Mel l in transform as before we get 
the following impl ic i t equation for f g g 

l - ^ ( 7 r t ) W ) - ^ P ( U ) = 0 (2.38) 

where K, the double moment of the kernel in (2.38), is given by 

W Jo 9 I \P-A [V + 1]M 

which happens to be equal to 

K{i,u) = 2*(1) - $(7) - * ( l - 7 + w) (2.40) 

Of course when we take u = 0 then the kernel K(-y, u>) w i l l reduce to the ordinary 
LO B F K L kernel x{l)i s e e (2.6). I t is clear that 7 s f l , which satisfies (2.38), is of the 
form 

7 s s ( u ; , a s ) = 7 B F K L {^fj + ets P(u) + higher order terms, (2.41) 

where 7

B F K L satisfies the usual LO equation 

1 _ ^ W 7 B F K L j W = 0 ) = 0 ( 2 4 2 ) 

and we have 
K ( T B F K L , U , = 0) = x( 7 ) . (2.43) 

where x(l) ' s a s before eigenvalue of the LO kernel (2.6). The higher order terms in­
clude contributions which are subleading in 0 5 / 0 ; as well as i n as- This is illustrated 
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Figure 2.4: Schematic representation of the anomalous dimension plane. Resumma-
tion of leading ln ( l /x ) effects is performed along path 1 and the leading a effects 
along path 2. Points at the crossing of the dashed lines correspond to the unknown 
subleading effects. 

in Figure 2.4 where the a3/u> terms are being resummed along the path labeled 1 
and the D G L A P ones are summed along path 2. One should note that there is a 
common point as/uj and therefore we had put -1 in the D G L A P parts in order to 
avoid double counting. The subleading corrections correspond to the points in the 
middle region of the plane shown in Figure 2.4. Let us first see what is the effect of 
D G L A P terms on the evolution. That is we consider the equation: 

1 - - ~P(") = 0 (2.44) 
w 7 

where our modifed splitting function P(tj) has the following form of, 

p ( " » = - ^ T T + ^ T 2 - ^ T 3 - ^ + 2 ) - ^ + H - ^ ( 2 4 5 ) 

Singularity defined by equation (2.44) is a pinch singiriarity therefore we require 
that also the derivative of this expression should be equal to zero, 

as d a. 
— T - X 7 + -u a~f 7 X ( 7 ) + 7 ? P M - 0. (2.46) 
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We can rewrite these two equations, (2.44), (2.46), in the following form, 

d^' P(u) = 7

2 ^ - x ( 7 ) 

w = a.[x(7) + 7^X(7)1 (2-47) 

This set of equations will give us the solutions for 7 and u as functions of the 
coupling constant cts. In Figures 2.5 and 2.6 we illustrate the results (marked as 
dashed lines) for the intercept u> and the anomalous dimension 7. We see that the 
intercept is lowered as compared to the pure L O B F K L LOQ = 4 log 2a,, which is 
marked as a dotted-dashed line. This confirms previous results found in [37]. It also 
has the effect on the anomalous dimension 7 and makes it lower as compared to the 
leading value 70 = 1/2. 

Next, we include the consistency constraint and study the full equation (2.38). 
We consider two coupled equations for u and 7. 

1 = % , W ) + ^ P ( w ) 
LO 7 

d 
= 7 2 — K ( f , u ) (2.48) 

07 

where K(I,UJ) is the kernel of the form (2.40) with the consistency constraint im­
posed. 

The results for 7 ( a s ) and u(aa) are shown on Figures 2.5 and 2.6 as solid lines. 
We see that the imposition of the consistency constraint has the effect of lowering the 
value of the intercept u, even lower as compared to D G L A P terms, yet it is a stable 
solution. Namely, it does not give unphysical negative value of the intercept as it 
happens when one considers only the NLO corrections. This is the consequence of the 
fact that the consistency constraint together with additional D G L A P terms generate 
resummation of the major part of the subleading lnl /a; terms. The anomalous 
dimension in that case is bigger than 1/2 which results in the faster (as compared 
to L O solution) evolution in transverse momentum k2 of the unintegrated gluon 
distribution function. It generates in turn stronger scaling violations of the low x 
observables, like the F2 etc. 
We can identify the N L L terms which come from consistency constraint and the 
D G L A P part. Let us rewrite the equation (2.38) in the following way, 

1 - — t f f r . w ) = 0 (2.49) 
u> 

where the full kernel is now: 

K(j,u) = 2 * ( l ) - * ( 7 ) - * ( l - 7 + w) + - P ( w ) (2.50) 
7 

We can now perform formal expansion of the kernel like in [16]: 

#(7 ,w) = 5>?X*(7) ( 2 - 5 1 ) 
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Figure 2.5: The solution for the intercept of the hard pomeron. Dashed-dotted line: 
L O solution; dashed line: L O + D G L A P terms; dotted: L O + consitency constraint; 
solid: full solution L O + consistency constraint + D G L A P terms added. 

Differentiating the kernel (2.50) we find : 

Xo(7) = x(l) 

Xih) : - * ' ( l - 7 ) X o ( 7 ) + 0 ) Xo (7) 
7 

(2.52) 

(2.53) 

This kernel reproduces the most divergent part of the full N L L B F K L kernel namely 
(compare [16]): 

P{u = 0) 
7 

7 

0 

1 

Xi -* -

Xi -

r 
i 

+ . . 

( l - 7 ) = + (2.54) 

(2.55) 

Thus we see that the addition of the non-leading D G L A P terms P{OJ) affects the 
behaviour near the 7 = 0 pole of the kernel, whereas the consistency constraint 
modifies the 7 —* 1 behaviour i.e. the reversed D G L A P configuration. 

In this subsection we have analysed the general properties of our equation for the 
gluon density f(x,k2). Although we have simplifed our consideration by omitting 
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Figure 2.6: The solution for the anomalous dimension of the gluon distribution 
function. Dashed-dotted line: L O solution, 7 = 1/2; dashed line: L O + D G L A P 
terms; dotted: L O + consitency constraint; solid: full solution L O + consistency 
constraint + D G L A P terms added. 

the masses of quarks and fixing as the overall qualitative features of the solution 
are well reproduced by this formalism. However in addition to our gluon equation 
we still need an equation for the singlet quark distribution. 

At small x the gluon drives the sea quark (momentum) distribution S via the g —• qq 
transition, see Figure 2.1. We evaluate the effect using the factorization theorem. 
To be precise we use the kx factorization prescription to calculate observables (such 
as F2) directly from the unintegrated gluon distribution f(x, fc£). For F2 we interpret 
the result in terms of the sea quark distributions, implicity assuming the DIS scheme. 
The total sea is the sum of the individual quark contributions 

2.3 The equation for the quark distribution 

S(x,Q2) = TSq(x,Q2) (2.56) 

At small x the kj factorization theorem gives 

dk i dz 
k2 

(2.57) 
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where Sbox describes the quark box (and crossed box) contributions shown in Figure 
2.2. S'box implicitly includes an integration over the transverse momentum, «, of the 
exchanged quark. Indeed, evaluating the box contributions we find 

D D 2q 

+ K + 

where «/ = « — (! — ft)k and 

Dig = K2 + / 3 ( 1 - / ? ) Q 2 + 

(2.58) 

D2q = ( K - k ) 2 + P(l-/3)Q2 + m 

z = 
K12 + m\ fc*_ 

+ (3{l-P)Q2 + Q2 
(2.59) 

where 0 is the Sudakov variable, k is the transverse momentum of the off-shell gluon 
and K is the transverse momentum of the exchaned quark. In these definitions (2.58) 
and (2.59) we have omitted subscripts T for K and k. The argument of as is taken as 
(k2 + Kl2)+rn2. We set the quark masses to be mu = mj, = m s = 0 and mc = 1.4 GeV. 

2.3.1 The light quark component of the sea 

We first discuss the calculation of the contribution of the "massless" u, d, s quarks 
to the total sea distribution S. It is necessary to consider three different regions of 
the A; and n' integrations of (2.57). 

(a) The contribution from the purely non-perturbative region k2, K'2 < k% is eval­
uated phenomenologically assuming that it is dominated by "soft" Pomeron 
exchange [14]. The contribution is parametrized in the form 

S{a) = + Sf + S f (2.60) 

where 
S f = sf = 2Sf = C P x~Qm (1 - x f . (2.61) 

The coefficient Cp is independent of Q2 (in the large Q2 region) since the 
contribution arises from the region in which the struck quarks have limited 
transverse momentum, K2 < k%. 
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(b) In the region k2 < k% < K'2 we apply the strongly-ordered approximation at 
the quark-gluon vertex, that is we neglect k2 as compared to Q2 and K2 and 
take [38] 

Sbox - S £ L ( * , * a = 0 l Q 2 ) . (2-62) 
We then only leave terms which are proportional to k2 and neglect the higher 
order terms. Then the contribution to (2.57) from this domain becomes 

(2.63) 
i dz 

Jx Z Z \ Z J 

where the summation over u, d, s is implicitly assumed. The potential collinear 
singularities in the on-shell structure function Shox a r e regulated by the cut-off 
kl. Recall that K2 ~ K'2 > k%. 

(c) In the remaining region, k2 > k%, eq. (2.57) is left unchanged. To be precise 
we use the perturbative expression for Sq(x,Q2), see (2.58). 

2.3.2 The charm component 

We assume that the charm component of S is generated dynamically and entirely 
perturbatively, i.e. there is no contribution for the charm quark. To evaluate 
Sq=c we divide the integration over k2 into the regions k2 < k% and k2 > k%. For 
k2 < kl, which we denote region (b), we use the on-shell approximation to evaluate 
Sbox- That is we calculate 5box(^,^2 = 0 , Q 2 ; m 2 ) , which is finite due to m c / 0. 
Sbo*{z,k2 — 0,<5 2'.m?) is given in Appendix A. Then (2.57) gives 

Si%(x, Q2) = [ y Sb«(* , k2 = 0, Q2; ml) ^ / ( f , k2) (2.64) 

where a = (1 + 4 m ^ / Q 2 ) - 1 and it comes from the threshold on the production 
of the massive charm quark. For k2 > k%, which we call region (c), we use the full 
perturbative formula. Thus adding the two contributions (b) and (c) we have 

Sq=c(x,Q2) = r - S b o x ( z , k 2 = 0,Q2;m2

c)-g(-,k2) 
Jx Z Z \Z / 

+ j H y / 2 ^ 5 b o x ( 2 , f c 2 , Q 2 ; m ^ ) / ( ^ 2 ) , (2.65) 

where we have used (2.29) which enables Sq=c is to be specified in terms of the 
conventional gluon input distribution. 

In this description we do not consider b quark contribution because in the region 
of Q2 of about 10 — 100 G e V 2 it is expected to have a very small value. Moreover, 
because it has a charge —1/3 its contribution to F2 is further suppressed (F2 = 
S<? e"qSq)-
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2.3.3 The equation for the quark singlet distribution 

Besides S, the singlet momentum distribution S also contains a valence quark con­
tribution V, which is taken from a known set of partons [13]. Thus in summary the 
singlet distribution is 

£ = (£(»> + + S^c))uds + ( 5 ( 6 ) + S { c ) ) q = c + V, (2.66) 

where is phenomenologically parametrized in terms of "soft" Pomeron exchange 
and the terms are determined perturbatively except for the (non-perturbative) 
input gluon distribution at the scale k%. The terms are defined entirely in terms 
of the unintegrated gluon distribution / in the perturbative region k2 > k%. Finally, 
V = x(uvai + dvai) is the valence quark contribution. 

In order to see the connection with the D G L A P evolution of the (light) quark 
sea we first note that 

Sq(x, Q2) = Sq(x,k2

0) + j f f dSf^pdQ>\ (2.67) 

where here S denotes the sum over just the u, d and s quarks. We next recall that 
the leading twist part of the kj factorization formula (2.57), written in the form 

n,dSq{x,Q2) ti dz f dk2 dSLx(z,k2,Q2) 
w dq1 ~ Jx z J p OQ2 

can be reduced to the collinear form [27] 

2dSq(x,Q2) as{Q2) /-1 , p . ( n 2 ^ x ( x

 n 2 \ (0cQ^ 
Q

 dQ* = ~2T L d*Pq,{z,as(Q))-g[-,Q) (2.69) 

which incorporates leading In \/x resummation effects in both the splitting function 
Pqg and in the integrated gluon distribution g see subsection 2.1.1. Thus (2.67) may 
be written in the form 

(2.70) 

'pqg(z,as(Q'2))-zg(-z,Q'2) + P„(z,as(<F))Sq(ltQ*)]t 

where for consistency we have included the S —• S contribution to the evolution. 
This additional term is needed to ensure the correct D G L A P structure. Of course, 
at small x we expect S to be dominantly driven by the gluon. Equation (2.70) is 
simply the integral form of the D G L A P evolution equation for the light sea quark 
distribution, 5\ 

Guided by the D G L A P structure, it is clear that we should also add the S —> S 
contribution to the complete equation (2.66) based on kx factorization. Then (2.66) 

(2.68) 



Chapter 2. Towards the unified BFKL and DGLAP description 52 

becomes 

£ ( x , * 2 ) = + ^ f - ^ f c ^ O ^ V S - J - , ^ + 
q Jx Z Z \Z J 

(2.71) 

where is given by (2.60) and where the uds subscript indicates that the addi­
tional S —> S term is only included for the light quarks. 
This equation for the singlet quark distribution E , together with eq. (2.32) for the 
gluon, form the pair of coupled equations which we will solve. In this way we can 
specify the structure function F2 in terms of the parameters of the input distribu­
tions, and hence determine the values of the parameters by fitting to the data for F2 
structure function. We are then going to determine the gluon distribution function 
and compare its integrated form with the other parametrisations which are available 
at present. 

2.4 Numerical analysis and the description of F2 

We now have a closed system of two coupled integral equations for two unknowns. 
Namely equation (2.32) for the unintegrated gluon distribution f(x, k2) and equation 
(2.71) for the integrated quark singlet distribution S(x, k2). The effect of the gluon 
in the perturbative region, k2 > is of special interest. It is the 'dynamo' which 
drives small x physics. 

The advantage of this formulation of the unified B F K L / D G L A P equation is that 
the input is well-controlled. We emphasized already previously that the equation 
for / (x , k2) required only the specification of an input form for the integrated gluon, 

xg(x,k2

0) = N ( l - x f . (2.72) 

Moreover, the equation for the singlet E ( x , A;2) requires as input only the non-
perturbative sea contribution whose form we assume is given by the "soft" Pomeron 

S{a) = C P x - 0 0 8 ( l - x ) 8 (2.73) 

and the contributions of (2.63) and (2.64) which depend on xg(x, k^) of (2.72). 
The choice of the exponent -0.08 is motivated by the Regge pomeron intercept found 
in the analysis of total cross section data [14]. We choose the exponent of (1 — x) 
to be 8, typical of the behaviour of the sea distribution. In our small x analysis any 
similar choice (for example 10) would be equally good and would not change the 
quality of the description. 
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The valence quark contribution V(x,k2) in (2.71), which is determined mainly 
by fixed target deep inelastic data at large values of Bjorken x, is taken from the 
leading order G R V set of partons [13]. We are therefore able to self-consistently de­
termine f ( x , k2) and E ( x , k2) as functions of a small number of physically motivated 
parameters. In fact, we have only the two free parameters for our fit, namely N and 
0 determining the input gluon distribution (2.72). The momentum sum rule fixes 
the value of Cp, which determines the input sea, (2.73), 

1 = P dx(xg{x,k2) + Cpx-oos(l - x f + V(x,Q2 = 1)) (2.74) 
Jo 

The presence of B F K L - like terms means that the momentum sum rule is not ex­
actly conserved. It would be conserved if we were only using the D G L A P terms as it 
is done in global parton analysis, for example [11], [12], [13]. However the violation 
is quite small. For example, after evolution to Q2 = 50 G e V 2 we find that the 
sum of the momentum fractions carried by the gluon and the light quarks is only 
increased from 1 to 1.007, so the effect is below 1%. We neglect this small violation 
of momentum conservation. 

2.4.1 The optimum description of the F2 data at small x 

We determine the values of the input parameters by fitting to the H E R A measure­
ments of the proton structure function F2 using 

F2 = £ e2

q(Sq + Vq), (2.75) 

which holds in the DIS scheme. We thus have to calculate Sq(x,Q2) in terms of the 
input gluon parameters and /3. To do this we solve the pair of equations (2.32) 
and (2.71) for f ( x , k2) and Z(x, k2) using an extension of the method proposed in 
[39]. We performed an interpolation of f(x,k2) and S(x, /c 2 ) in the two variables x 
and k2 using orthogonal polynomials. The details of the method of solving these 
equations is given in Appendix B. In this way we can express F2(x,Q2) in terms of 

and /?. We then determine the optimum values of these parameters by fitting to 
the H E R A [2] and fixed-target [40] data for ^(a; , Q2) that are available in the small 
x domain, x < 0.1. We also take a running coupling which satisfies a s ( M § ) = 0.12. 
We actually show the results of two fits. The first is the 'realistic' fit with the 
kinematic constraint imposed (which requires the virtuality of the exchanged gluons 
along the ladder to satisfy \k'2\ ~ k j . Then for comparison we repeat the analysis 
without imposing the kinematic constraint, that is we omit 0 function in (2.32). 
The quality of the fits are shown in Figs. 2.7 and 2.8, and the parameters given in 
Table 2.1. To be precise, Figs. 2.7 and 2.8 respectively show the description of the 
HI and Z E U S data [2] together with those fixed-target data that occur at the same 
values of Q2. 

The fit with the kinematic constraint included (continuous curves) is significantly 
better, see the \ 2 m Table 2.1, than that in which it is omitted (shown by the dashed 
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curves). Without the constraint the predicted rise of F2 is a little too steep at the 
smallest values of x and Q2. In the remaining part of x, Q2 domain the fit (fit 2) 
gives a good description of F2. It is far better, for example, than that shown in ref. 
[24]. 

The kinematic constraint, which corresponds to subleading l n ( l / x ) corrections, 
lowers the 'hard' pomeron intercept and improves the description of the data, par­
ticularly at the smaller values of x. In fact the resulting description of F2(x, Q2) 
with just two free parameters (./V and /?) is excellent, and is comparable, even a little 
better than, to that achieved in the global parton analyses, see again the x 2 listed in 
Table 2.1. Moreover, the overall behaviour of the gluon is much more realistic than 
that of the fit without the kinematic constraint. It gives an acceptable description 
of the WA70 prompt photon data [41], which directly sample the gluon at x ~ 0.4. 
These data were not used to constrain the gluon. For fit 1 the prediction is some 
30% above WA70 data, which is within the Q C D scale uncertainties, whereas the 
gluon of fit 2 gives a prediction which is a factor of about 2.5 above the data. It 
is not surprising that the gluons are so different in the two fits since they are both 
contrived to give satisfatory description of the measurements of F2 at small x, de­
spite the fact that the kinematic constraint significantly reduces the gluon intercept 
U>Q. It is encouraging that it is the description with the kinematic constraint that 
gives the acceptable large x behaviour of the gluon. For completeness we use our 
determination of the unintegrated gluon to compute the conventional gluon distri­
bution xg(x,Q2) and compare the result with the gluons of recent sets of partons 
obtained in DGLAP-based global analyses of deep inelastic and related data. To be 
specific the continuous curves in Fig. 2.9 compare the integrated gluon distribution 
obtained from / ( x , k\) of the fit 1 with the gluon distributions of the MRS(R2) [11] 
and G R V [13] set of partons in DIS scheme (shown by the dashed and dotted curves 
respectively). We see that the behaviour of the integrated gluon is very similar to 
that of MRS(R2) . This may be expected since the MRS analysis used to the same 
H E R A data as those fitted in the present work, whereas these data were not available 
at the time of the G R V analysis. However, we emphasize the different underlying 
structure of the present analysis and the pure DGLAP-based descriptions. We shall 
see below that in the unified B F K L / D G L A P approach the rise of F2 is generated 
essentially by ln( l /x ) effects in the off-shell gluon structure, F^0* of Fig. 2.1. 
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Figure 2.7: The two-parameter fit to the i?2 data at small x using eq. (2.32) for f(x,k2) 
with (continuous curves) and without (dashed curves) the kinematic constraint. The 
optimum values of the parameters N and /?, which describe the input form of the gluon, 
are given in Table 2.1. The figure shows the HI data [2] together with the E665 and NMC 
measurements [40] which occur at the same values of Q2. 
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Figure 2.8: As for Fig. 2.7, but for the ZEUS measurements [2] of F2, together with the 
E665, NMC and BCDMS data [40] which occur at the same values of Q2. 
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Figure 2.9: The continuous curves show the behaviour of the conventional gluon distri­
bution xg(x,Q2) corresponding to fit 1, and calculated using eq. (2.32). For comparison 
we also show the gluon distributions of the MRS (R2) [11] (dashed curve) and GRV [13] 
(dotted curve) sets of partons. 
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Kinematic xg = N ( l - x f X 2/datapoint 
constant N c P [393 points] 

Fit 1 yes 1.57 2.5 0.269 1.07 
Fit 2 no 0.85 0.9 0.269 1.8 
MRS(R2) 1.12 

Table 2.1 : The parameters N and /? determined in the optimum fit to the available data 
[2, 40] for F2 with x < 0.05 and Q2 > 1.5GeV2, without and with the inclusion of the 
kinematic constraint along the gluon ladder. The value of Cp of (2.73) is also shown, 
although this is fixed in terms of N and (3 by the momentum sum rule. For comparison we 
also show the x2 f ° r the same set of HERA and fixed-target data obtained in a next-to-
leading order DGLAP global parton analysis [11]. For both fit 1 and 2 the gluon carries 
45% of the proton's momentum at the input scale = lGeV 2 . 

2.4.2 The effect of the ln(l/a:) resummation on the gluon 

In subsection 2.2.1 we were analysing in Mellin space the solution to the gluon 
equation (2.32). We are now going to confront these results with the direct numerical 
solution in x space. 

Fig. 2.10 shows the behaviour of the unintegrated gluon distribution f(x,k2) as 
a function of k2 for x — 1 0 - 3 and 1 0 - 4 . Three different determinations are shown, 
each of which start from the same input 

xg(x,k%) = 1.57(1 - x)2-5 

of fit 1 of Table 2.1. This is because we want to show certain dynamical effects in 
different scenarios of B F K L and D G L A P evolution which are not dependent on the 
form of initial input. The continuous and dashed curves correspond, respectively, 
to the behaviour of f(x, k2) with and without the kinematic constraint. The dotted 
curve is obtained from a D G L A P determination in which the B F K L kernel in (2.32) 
is replaced by the leading order Pgg function. That is (2.32) is replaced by 

/<*,*') = ^[/,w>M?*°) 

where Pgg has the usual form 

z . z 11„ . 
- ^ ( l - z ) . (2.77) 
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The comparison of the dashed and dotted curves shows that the differences between 
the B F K L and D G L A P approaches are not very big, even for the values of a; as low 
as 10~3. The differences become more prominent when one considers smaller values 
of x, around 1 0 - 4 . Even then the discrepancies are only visible at lower values of 
k2. This effect could at first be quite surprising because we are generally considering 
two different evolution scenarios. However, this phenomenon can be explained in 
terms of power series expansion in as/u> of the gluon anomalous dimension 

see (2.8) and also Figure 2.4, where c 2 = c 3 = c 5 = 0. The first term of the 
expansion, which is common to B F K L and D G L A P , is clearly dominant for the 
smaller values of cts(k2). The rest of the terms are not that big since many of 
the coefficients cy are equal to zero and the remaining ones are not numerically 
big. Thus we confirm the well known result that, in the region of moderately small 
values of x relevant for the H E R A measurements, ln ( l /x ) resummation has little 
effect on the gluon distribution. If the gluon input were adjusted to correspond to 
the optimum fit with the kinematic constraint imposed, then the continuous curve 
would be comparable to the other two. However, a common input is used to show the 
impact of the kinematic constraint. First of all we see that the overall normalisation 
of the gluon with kinematical constraint is much smaller than without it. We also see 
that the gluon is growing slower with x which confirms the results for the intercept 
see Figure 2.5. We also see that the evolution with the momentum k2 is faster in 
the case of gluon with kinematical constraint than without it. It should be noted 
that the very flat behaviour of f(x,k2) at x = 1 0 - 3 is because it is proportional 
to a3(k2). This is consistent with our previous result for the anomalous dimension, 
which is bigger in the case of B F K L + kinematical constraint, see Fig. 2.6. All 
these features ensure us that the subleading corrections to the ln(l/a;) resummation 
are extremely important and that the proper treatment of these terms is essential 
to get physical and reliable results for the description of high energy deep inelastic 
phenomena. 

r 
B F K L a s as 

+ CA + 
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Figure 2.10: The unintegrated gluon distribution f(x, k2) as a function of k2 for x = 1 0 - 4 

and 1 0 - 3 obtained by solving the simultaneous equations for f(x,k2) and £ ( i , f c 2 ) . The 
continuous and dashed curves are obtained by using the unified B F K L / G L A P equation 
(2.32) for f(x,k2) with and without the kinematic constraint respectively. The dotted 
curve corresponds to using GLAP evolution for / , eq. (2.76). In each case the input 
xg(x,ko) = 1.57(1 - x)2 5 is used, where k^ = lGeV 2 . 
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2.4.3 E f f e c t o f l n ( l / x ) r e s u m m a t i o n o n t h e s t r u c t u r e f u n c ­
t i o n F2 

To investigate the various effects of the ln( l /a ; ) terms in the Pqg function we compute 
F 2 ( z , Q 2 ) using four different procedures but w i th a common input , 

x g ( x X ) = 1-57(1 - x ) 2 ' 5 , 

correspoding to f i t 1. In this calculation we have only included the light quarks 
u,d,s (which we treat as massless), since we want to avoid any dependence on the 
choice of scale for the heavy quarks. Such a dependence would spoil the clarity 
of the explanation of some effects which we want to emphasize. The four different 
determinations are shown in Fig. 2.11 and correspond to 

(i) The f u l l unified B F K L + D G L A P calculation w i t h the kinematic constraint 
included, eqs.(2.32) and (2.71), shown as a continuous curve. 

( i i ) Analogous to ( i) but without the kinematic constraint (dashed curve). 

( i i i ) Replace (2.32) by the pure D G L A P equation in the gluon sector, eq. (2.76), 
but keep the f u l l kr factorization for the quarks (dotted curve). 

(iv) Pure D G L A P evolution for both the gluons and the quarks (dot-dashed curve). 
That is instead of (2.71) we use 

E(x , k2) = S^a\x) + SV>\x, k2) + V{x, k2) + 

£ dzP„{z) / * ' ^ / k'2) W \ k2) (2-78) 

where £(k'2,k2) is the evolution length and is defined by, 

i{k'\k2)= rj^asW2). (2.79) 
J k (J 

One can again see f rom Fig. 2.11 that the differences between LO B F K L wi th running 
coupling (without kinematical constraint) and D G L A P evolution in the gluon sector 
are not very big. The calculations start to differ only at x ~ 1 0 - 4 ( dashed and 
dotted lines). On the other hand when we compare the pure D G L A P evolution 
(wi th the Pqg spl i t t ing function) wi th the equations where the entire phase space 
has been taken into account then the differences are much bigger. This implies that 
the leading order terms in as In \ /x present in the gluon off-shell structure funct ion 
F | o a ; are much more important than the terms in the gluon anomalous dimension 
resulting f rom the B F K L equation. This also shows that one cannot determine 
the gluon distr ibution functions unambiguosly. I t w i l l depend on the choice of the 
factorisation scheme and i t is not a directly observable quantity. The effect of the 
kinematic constraint is again evident. I t leads to the change f r o m the dashed to the 
continuous curves. Fig. 2.11 also enables us to see the x values at which the effect 
of the ln( l /a : ) resummation effects become important . 
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Figure 2.11: The light quark contribution to F2(x,Q2) for various Q2 values obtained from 
solving different sets of coupled equations for the gluon / and the quark singlet E with, in 
each case, the input xg(x, k^) - 1.57(1 - a;) 2 , 5 where = lGeV 2 . The continuous and 
dashed curves come from solving (2.32, 2.71) with and without the kinematic constraint. 
The dotted curve is obtained using DGLAP in the gluon sector, that is (2.76,2.71), whereas 
the dot-dashed curve corresponds to pure DGLAP evolution, (2.76,2.78). 
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2.4.4 P r e d i c t i o n s f o r F 2

C a n d FL 

Once we have determined the parton distributions we can predict the values of other 
hard scattering observables. A t small x we see, via the kj factorization theorem, 
that the observables are 'driven' by the unintegrated gluon distr ibution f(x,k2). 
Here we calculate F£ and FL. 

The charm component F 2

C of F2 is given by 

F^(x,Q2) = e2

cSq=c(x,Q2) 

where the charm calculated f rom (2.65) in terms of the unintegrated gluon 
/ ( x , k2). I t is the second term on the right-hand side of (2.65) which drives the small 
x behaviour. The predictions are compared wi th the H I measurements [42] of F2

C in 
Fig. 2.12. The percentage of charm in the deep inelastic structure funct ion is shown 
in Fig. 2.13. A t small x we see that F£ is an appreciable fract ion of F2. Recall that 
in the massless charm l i m i t the fraction would be 0.4, provided that we are below 
the bot tom quark threshold. We should stress that this is a prediction, not a f i t 
the to data. Only the total F2 has been f i t t ed and the resulting charm component 
compared wi th F2

C data. The predictions of the longitudinal structure funct ion FL 
are shown in Fig. 2.14. For FL the kx factorization formula can be wri t ten in the 
form [38, 43] 

FL(X,Q2) 
4 rl d y ( x \ 
3JX y \ y ) 

(Q2) 4 /1 dy s 

7T 

1 1 
/ ( J , k 2 ) , (2.80) 2 / d K as + D D 2q 

where the quark box variables D{q and K' are defined in (2.59). The behaviour of 
Fi is driven by the gluon through the last term. The argument as is taken to be 
k2 + K'2 + m2 as before. 
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Figure 2.12: The predictions: for F | , compared with H I charm data, obtained from the 
optimum f i t (fit 1). 
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Figure 2.13: Ratio Fj/F-i for different values of Q2 obtained from f i t 1. 
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Figure 2.14: The prediction for the structure function Fi as a function of x for different 
values of Q2 using the parameters of f i t 1. 
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2.5 Summary 

We have obtained a well grounded, consistent formalism of the unifed B F K L - D G L A P 
equations for the quarks and gluons. Let us remind the basic features of this for­
malism: 

1. We use the natural framework of the unintegrated gluon distr ibution function 
f(x,k2) which is dependent on x, the fraction of proton's momentum and k2 

the momentum of the gluon at the end of the ladder. 

2. To calculate the quark distribution and consequently the structure functions 
we use the high energy factorisation prescription. 

3. The gluon f(x,k2) is calculated f rom the unifed B F K L - D G L A P system of 
equations which treats the leading powers of ln( l /a ; ) and ln(Q2) on an equal 
footing. This equation embodies also very important subleading corrections 
in ln ( l /a ; ) via consistency constraint. 

4. The equation is only solved in the large k2 region for k2 > k%. We showed that 
the contribution f rom the non-perturbative region of low k2 can be described in 
terms of the (integrated) gluon and sea quark distributions at the scale k$. The 
structure of the input is therefore the same as in the case of the pure D G L A P 
framework. We showed that one can obtain excellent f i t using very economical 
and physically motivated parametrisation of these input distributions. 

5. The unifed equation for the unintegrated gluon and the second equation for 
the singlet quark distr ibution involving the kr factorisation prescription fo rm 
the set of unifed equations which we solve. 

6. The few free parameters of the non-perturbative input are adjusted so that 
the best description of the Fi data is obtained. 

We have therefore obtained a universal unintegrated gluon distr ibution which can 
be used to calculate several different quantities in different processes. We have for 
example calculated the Fj_, and the charm component of the structure function Fi. 
In chapter 4 we w i l l show further applications of this formalism. 

We shall add to this that the approach presented here is not the only one which 
has the idea of unification of the B F K L - D G L A P approaches. There exist at least 
three such attempts. First one was Catani-Ciafaloni-Fiorani-Marchesini equation 
( C C F M equation) [44, 45, 46] which was the evolution equation for the gluon dis­
t r ibut ion functions based on the angular ordering constraint. Numerical studies 
gave quite an interesting results [45]. The second approach has been developed by 
Thorne [47] using the collinear factorisation. He also proposed the equal treatment 
of leading l n ( l / x ) and l n ( Q 2 ) powers. However there are certain l imitations of this 
approach namely the reduction only to the leading twist part when going f r o m kr 
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factorisation to collinear one. Also in the high energy factorisation there is an easy 
way to incorporate the running a3. Last thing we note is that by using the un-
integrated gluon distr ibution function we can clearly control the non-perturbative 
input. T h i r d approach has been recently proposed by Ciafaloni and collaborators 
[17] in the context of the resummation of the subleading corrections to B F K L . He 
has found that by including D G L A P terms into the resummed kernel one gets stable 
result. This approach is very promising and attracts a lot of attention. I t has not 
however been implemented phenomenologically yet. 

The approach which has been presented here although based on the leading 
order B F K L also performs the resummation of the major part of the subleading 
corrections in ln( l /a ; ) via consistency constraint. I t is also very easy to apply to 
p henomenology. 

I t has however some drawbacks. I t is valid only in the perturbative domain, that 
is for values of Q2 > kfi ~ 1 GeV 2 . We are going therefore to extend this formalism 
to be able to describe the low Q2 deep inelastic data as well as the photoproduction 
total cross section. This is the topic of the next chapter. 



Chapter 3 

The description of at low Q 

3.1 Short and long distance contributions and the 
description of F2 at low Q2 

In the previous chapter we have set up the unifed description of the F<i data over very 
wide range of parameter space x,Q2, namely for x > 1 0 - 5 , Q2 > l G e V 2 . However 
we now know that there exist quite a lot of high precision deep inelastic data for F2 
also at very low values of Q2 [2], as well as measurements of the photoproduction 
cross section [48, 49]. These results show very interesting features namely the total 
cross section rises as Q2 becomes smaller (at fixed values of the energy W) and then 
f r o m about Q2 ~ 0.2 GeV 2 i t flattens and reaches nearly a constant value down to 
photoproduction point. This transition seems to occur at the border between the 
perturbative and non-perturbative regimes. This fact highlights the importance of 
obtaining a complete description which would be valid in the whole region of the 
kinematical phase space. The framework of unifed equations which we have set up 
in the previous chapter works very well in the perturbative domain therefore we are 
tempted to modify i t and extend in such a way that i t can be used for the description 
of both perturbative and non-perturbative regions. In order to do this we follow the 
idea formulated in ref. [50] that is we make a clear separation between short and 
long distance configurations. 
Let a(s,Q2) be the total cross section for the process j*p —• X where Q2 is the 
v i r tua l i ty of the photon and y/s is the j*P centre-of-mass energy. I t is related to the 
forward 7*7? elastic amplitude A by the optical theorem, I m A = sa. We may write 
a double dispersion relation [51] for A and obtain for fixed s 

" M ' } = £ / J t q J j j j ^ / ^ . A O j t a w ^ . * - ) (3-D 

where M and M' are the invariant masses of the incoming and outgoing qq pair 
and p(M2, M'2) is the double spectral function which is defined by the coupling of 
the incoming and outgoing qq pair to the vir tual photon. The relation is shown 
schematically in Fig. 3.1 . 

69 
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Figure 3.1: The schematic representation of the double dispersion (3.1) for the 7*p to­
tal cross section a(s,Q2) at fixed c m . energy y/s. The cut variables, M and M ' , are 
the invariant masses of the incoming and outgoing qq states in the quasi-elastic forward 
amplitude, Aqq+P. 

I f we assume that forward qq + p scattering does not change the momenta of the 
quarks then Aqq+P is proportional to S(M2 — M'2), and (3.1) becomes 

r°° dM2 

* ( * , G a ) = Ejf ( M 2 + g 2 ) 2 P ( M 2 ) * q q + p ( s , M 2 ) (3.2) 

where the spectral funct ion p{M2) is the density of qq states in the photon 7* and 
<Jqq-\.p is the total cross section for the interaction between qq pairs and the proton. 

The original idea by Badelek and Kwiecinski [50] was to divide the integral in 
(3.2) into two parts by introducing a certain cutoff QQ. In the region of low masses 
M2 < Ql i t was assumed to be well described by the Vector Meson Dominance Model 
in which the photon is supposed to form a vector meson rather than a well separated 
qq pair [52, 53]. The region of high masses M2 > Ql was described by the pertur-
bative QCD. The model worked very well in the region Q2 > l G e V 2 but overshoot 
the data in the region of low Q2 and the photoproduction points. Nevertheless this 
idea of separation between perturbative and non-perturbative contributions seems 
to be very attractive. We are going to exploit i t further, and we wi l l achieve a better 
separation between long and short distance contributions. To do this we take a two-
dimensional integral over the longitudinal and transverse momentum components of 
the quark z and KT see Fig. 3.1, rather than simply over the mass M of the qq pair. 
The contribution coming f r o m the small mass region is pure V D M and is given by 
the following prescription, 

(3.3) 
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where My is the mass of vector meson V and where the sum is over the vector 
mesons which fal l in the region Mv < Q$. The vector meson-proton cross sections 
ay{s) can be determined f r o m the 7rp and Kp total cross sections using the additive 
quark model and 7^ f r o m the leptonic width of the vector meson V. 

The behaviour of the cross section at large M2 is a more delicate question. The 
part which comes f r o m large K,T of the quark can be calculated by perturbative QCD 
in terms of the known parton distributions, in this case we wi l l use the framework 
of unifed D G L A P / B F K L equations presented in the previous chapter. For small 
KT we wi l l use the additive quark model and the impulse approximation. That is 
we wi l l assume that only one quark interacts w i th the target and the quark-proton 
cross section is well approximated by one th i rd of the proton-proton cross section. 

3.2 The 7*p cross section 
Let us use here the light-cone perturbation theory. We shall choose the photon 
polarisation vectors to be: 

eT = e± = -j= (0, 0, 1, ± i ) , 

eL = (q+/Q, Q/q+, 0, 0). (3.4) 

We have basically used here the original notation proposed in [54] which was 
later used also in work [55]. The spectral function p occurring in (3.1) may be 
expressed in terms of the 7* — > qq matr ix element M. We have p oc | A ^ | 2 which, 
for transversely polarised photons becomes [55], 

Jz(l - z) 
MT = - = 5 — ux(i-e±)ux, 

(e± • KT)[(1 - 2z)A =F 1] Sx,-y + A m 9 6AA< 
(3-5) 

Q + 4 

and A, A' = ± 1 corresponding to q,q helicities of ± | . Also we introduce 

Q2 = z ( l - z ) Q 2 + m2. (3.6) 

where z and KT are the quark momentum variables shown on Figure 3.1. They 
correspond to the fraction of momentum q+ and the transverse momentum of the 
quark. In terms of these variables equations (3.1) and (3.2) become 

0"T = I > F i r E j dzd2KT{MTMT)Nc-\mAq-q+v 

(3.7) 

? 4 / 
2 [ z 2 + ( l - z ) 2 ] K 2

T + rn2

 Af 

dz dnT —2 — H- Nc aqq-+P{KT) 
(Q + 4 ) 2 
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where the number of colours Nc = 3, and eq is the charge of the quark in units of e. 
We shall give the corresponding cross section 07, for longitudinal polarised photons 
in section 3.2.1. 

The dispersion relation (3.2) in M2 has become, in (3.7), a two dimensional 
integral over z and Kj. The relation between the variables is the following, 

M> = J±^ ( 3 , ) 

where mq is the mass of the quark. For massless quarks z = | ( 1 + cos0), where 9 
is the angle of the outgoing quark wi th respect to the photon i n the qq rest frame. 
The dz integration is impl ic i t in (3.2) as the integration over the quark angular 
distribution in the spectral funct ion p. 

To determine F2(x,Q2) at low Q2 we have to evaluate the contributions to 
coming f rom the various kinematic domains. First the contribution f r o m the pertur-
bative domain wi th M2 > Ql and large KT, and second f rom the non-perturbative 
or long-distance domains. 

K 

K 

f(xM) 

Figure 3.2: The quark-proton interaction via two gluon exchange. The spectator 
(anti)quark is shown by the dashed line. f(x,kT) is the unintegrated gluon distribution 
of the proton. 

3.2.1 T h e j*p i n t h e p e r t u r b a t i v e d o m a i n 

We have already used the perturbative expression for the cross section in chapter 2, 
see eqs. (2.58), (2.59). Expression (2.58) is wr i t ten as the square of the amplitude 
for quark-antiquark production, where we integrate over the quark momentum /cix 
(KIT = KTi K2T = k — K) in the inelastic intermediate state, see Fig. 3.2. The first 
term, proportional to l/D\q, corresponds to the amplitude where the gluon couples 
to the antiquark K 2 , while in the second term, proportional to l/D2q, the gluon 
couples to the quark « i . Of course form (2.58) can also be used to calculate the 
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cross section for high KT dijet production (7*p —• qqp), where K\T and K2T refer to 
the transverse momenta of the outgoing quark jets. 

To separate the perturbative and non-perturbative contributions to the cross 
section (3.7) for our inclusive process we have to introduce a cut on the quark 
transverse momentum (as well as on the qq invariant mass M). A t first sight i t 
might appear that in order to obtain the perturbative contribution we simply require 
« i r > to- However this implementation of the cut-off would not be correct. For 
instance i f , as in Fig. 3.2, the two exchanged gluons couple to the K\ line, then 
K-2T = fcy — KIT may be small and in the l i m i t mq —* 0 and small Q2 we would 
have an unphysical infrared singularity in the region of large K\T and but small 
«2r , coming f rom the 1/D2 t e rm in (2.58). To see better the origin of the infrared 
singularities we perform the square and write the expression f rom (2.58) in the fo rm 

[(1 - z ) 2 + Z2]K\T + m2 [(1 - z ) 2 + z2}(kT - K i T ) 2 + m2 

D\ + D\ 

(3.9) 

[(1 - z f + Z 2 ] K I T • (fcr ~ W I T ) - rn\ 
+ DlD2 

The potential danger comes f r o m the second term, which corresponds to Fig. 2, 
whereas the last te rm, which describes interference, is infrared stable, as we w i l l 
show later. Our aim is to separate off all the infrared contributions into the non-
perturbative part. Therefore to evaluate the perturbative contribution coming f r o m 
the second term we have to use the cut-off — KIT\ > Ko- This is equivalent to 
changing the variable of integration for the second term f r o m KIT to fcr — KIT, a n d 
so its contribution is exactly equal to that of the first term. 

a 
a 

0 a a 

i 0 

a 

BBCBSBS 

kT 

K IT 

Figure 3.3: A "non-diagonal" qq — proton interaction. 

An alternative way to introduce the same cut-off is to separate off the incoming 
qq configurations w i t h KT < «o so that (3.7) becomes 

OT = ^ J^ d2KTdzd2k,T 
/ ( x , fcfn) 

a s ( k T ) 
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(3.10) 

f [ ( l - z ) 2 + z 2 ] 4 + mg

2 _ [ ( l - Z ) H ^ W - ( « r - t r ) + m j | 
X I (Q2 + 4 ) 2 (Q2 + K2

t)(Q2 + ( K t - k T ) 2 ) J • 

Note that the transverse momentum Kx of the incoming quark is equal to K\x when 
the gluon couples to the antiquark (first term in (3.9)) and is equal to K\x — kx 
when the gluon couples to the quark (second term in (3.9)). Working in terms of the 
variable Kx corresponding to the dispersion cut shown in Fig. 3.1 has the advantage 
that i t is then easy to introduce cut-offs w i th respect to the invariant qq masses 
M and M', which we need to impose in order to separate off the non-perturbative 
V D M contr ibut ion 1 . 

Another argument in the favour of the cut wri t ten in terms of in i t ia l quark 
momenta KX comes f r o m the impact parameter representation. Instead of KX we 
may use the transverse coordinate b and write the cross section (3.10) in the form 

ox oc J dzd2b\yy(b)\2f{x,b)as{b) (3.11) 

where the gluon distr ibution 

Iw-J^-^V- (312) 

The photon "wave funct ion" is given by [56] 

|vM*)| 2 = £ a e 2 [ * 2 + (1 - z)2}Q2K2(Qb), (3.13) 

where for simplicity we have set mq = 0. The photon wave function is simply the 
Fourier transform of the matr ix element M given by (3.10). I t is most natural to 
take the infrared cut-off in coordinate space, say b < i>0- The variable which is the 
Fourier conjugate of b is the incoming quark momentum KT of Fig. 3.1 (rather than 
the intermediate transverse momentum K\x of Fig. 3.2). This is further justif ication 
for imposing the infrared cut in the form Kx > Ko-

Now let us consider the interference contribution, that is the last term in (3.9). 
I t is infrared stable since in the l im i t m2 —> 0 and Q2 —> 0 i t takes the fo rm 

r (PKXKT • {KT - fcr) ^ / d(\nT - k T \ ) 

J KT(K.T — k x ) 2 J KT 

when \Kx — kx\ is small. The asymmetric prescription (3.10) has one more advantage 
over the symmetric one. Namely i t allows for inclusion of the non-diagonal terms of 

l Of course the use of the Feynman rules would yield the same result, but the time-ordered 
or light cone approach with the incoming q and q on-shell is more convenient when we come to 
separate off the non-perturbative component in terms of KT < KQ and M, M1 < Qo-
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different masses M,M'. To see this let us write the symmetric fo rm, see. (2.58) and 
include the cuts on the invariant masses of the qq pairs: 

^Q(M2-Q2

0) + i h L ^ l l Q ( M ' 2 - Q 2 ) + 2^l^lMe{M2-Q2

0)Q(M'2-Ql) 

(3.15) 
In this case we only include high mass states for ingoing and outgoing quarks. On 
the other hand , using asymmetric form of (3.10) we get, 

^0(M> - Ql) + ( k T -D*T?®(M° - Ql) 

Here we have single 0 functions accompanying the interference terms and hence 
we also include the non-diagonal contributions where one mass is large and the 
other small. There is no double counting because the V D M and A Q M contributions 
contain only diagonal contributions. We w i l l see later when studying numerical 
results that this interference between qq states of different mass has an impact on 
the overall f i t to the data. 
So far we have only calculated <TJ. In the same way we may calculate the cross section 
for longitudinally polarised incident photons. I n this case the relation analogous to 
(3.7) reads 

*L = 22 idr d z d K r — ^ = 2 — T T ; — v-ri+pM, (3-17) 

which on evaluating a q q + p explicitly using mat r ix element w i t h longitudinally polar­
ized vi r tual photon 7, gives 

c 1, = J2—Q2/ cPKTdzd2kr a s (4)42 2 ( l - z)2 X 

(3.18) 

I (Q2 + 4 ) 2 (Q2 + 4 ) ( 0 2 + (KT - fcr)2) J ' 

We have now ready formulae for the perturbative part. We use them, eq.(3.10) and 
(3.18) only in strictly perturbative domain that is when M2 > Ql and 4 > 4- We 
also introduce the cutoff on the transverse momentum of the gluon kT as before, see 
(2.29). We are only going to solve this equation in the perturbative domain of the 
gluon transeverse momenta. 

3.2.2 T h e 7*7? cross sec t ion i n t h e n o n - p e r t u r b a t i v e d o m a i n 

There are two different non-perturbative contributions. First for M2 < Q% we use the 
conventional vector meson dominance formula (3.3) for F2(x,Q2). We also should 
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include the longitudinal structure function FL(X, Q2). FL is given by a formula just 
like (3.3) but w i t h the introduction of an extra factor £Q2/MV on the right-hand 
side. £(Q2) is a phenomenological function which should decrease wi th increasing 
Q2. The data for p production indicate that £(m2) < 0.7 [53], whereas at large Q2 

the usual properties of deep inelastic scattering predict that 

^ ~ ^ i < ^ (319) 
FT Q2 ~ Q2' 1 J 

So throughout the whole Q2 region the contribution of Fi is less than that of FT. 
In order to calculate Fi ( V D M ) we insert the factor (Q2/MV in (3.3) and use an 
interpolating formula for £: 

w i t h £o = 0.7, which accommodates both the p meson results and the deep inelastic 
expectations of (3.19). However the recent p electroproduction, j*p —> measure­
ments [57] indicate that (JI,{P)IVT{P) may tend to a constant value for large Q2. We 
therefore also show the effect of calculating Fi ( V D M ) f rom (3.3) using 

{=6 (wh) • (3-21) 

see Fig. 3.9 in the section wi th disscusion. 

The second non-perturbative contribution covers the low /cj part of the M2 > QQ 
domain, that is the region wi th nT < KQ. Here we use the additive quark model and 
the impulse approximation to evaluate the crqq+p cross sections in formulas (3.7) and 
(3.17). 

3.3 Final formulae 

For completeness we list below the formulae that we use for the non-pQCD contri­
butions coming f rom the KT < K 0 domain. When M < Q0, w i t h QQ ~ 1 — 1.5GeV 2, 
we use the vector meson dominance model. We have 

wi th £o = 0.7, see (3.20). For the vector meson-proton cross sections, we take 

o-p = (Tw = \ [o-(ir+p) + <r{ir~p)] 

<r0 = a(K+p) + a(K-p)-\[cr{K+p) + a(Tr-p)}. (3.24) 
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Finally for M > QQ (and K? < Ho) we use the additive quark model and impulse 
approximation 

*T(AQM) = « £ f I dzd4 [ z 2 + % ~ / / \ i + m 2 q W*) (3-25) 

e2 r 4 0 2 z 2(1 - z)2 

vL(AQM) = a £ ^ / dzd^ * j ^ J 7VC aqq+p (W>) (3.26) 

where for <7qq+p we take, for the light quarks, 

< W ^ 2 ) = ^ P P ( ^ = | ^ 2 ) - (3-27) 

The "photon" wave function contains propagators like 1/(Q 2 + K ^ ) and in impact 
parameter br space it receives contributions from the whole of the &x plane extending 
out to infinity. On the other hand confinement restricts the quarks to have limited 

— 2 

separation, say br = | & I T — & 2 T | ^ 1 fm. To allow for this effect we have replaced Q 
by Q2 = Q* + // 2 in (3.25) and (3.26), where fi is typically the inverse pion radius. 
We therefore take fi2 = O.lGeV2. This change has no effect for Q2 >• fi2 but for 
Q2 < fi2 it gives some suppression of the AQM contribution. 

3.4 The quark mass 
In the perturbative QCD domain we use the (small) current quark mass m C U I T , while 
for the long distance contributions it is more natural to use the constituent quark 
mass Mo. To provide a smooth transition between these values (in both the AQM 
and perturbative QCD domains) we take the running mass obtained from a QCD-
motivated model of the spontaneous chiral symmetry breaking in the instanton 
vacuum [58] 

6 + m L - < 3 - 2 8 ) 

The parameter A = 6 1/ 3//) = 1.09 GeV, where p — 1/(0.6 GeV) is the typical size 
of the instanton. rj is the natural scale of the problem, that is T / 2 — z{\ — z)Q2 + 
or r]2 = z ( l — z)Q2 + (kr — KT)2 as appropriate. For constituent and current 
quark masses we take MQ = 0.35 GeV and mCUIT = 0 for the u and d quarks, and 
MQ = 0.5 GeV and m c u r r = 0.15 GeV for the s quarks. 

In summary, the q2 dependence of m2 is obtained from the instanton vacuum 
model, while the normalisation is fixed by MQ. It is interesting to note that this 
approach gives a value for the quark condensate which is in reasonable agreement 
with the QCD sum rules originally proposed by Shifman et al.[59]. We will see from 
Fig. 3.10 that two very different assumptions for the q2 dependence of the quark 
mass do not have a large effect on the behaviour of F2. Indeed we tried several 
other forms for the q2 dependence of m 2 ; all gave similar results to the continuous 
curves shown in Fig. 3.10. 

M, m 
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Table 3.1: The values of the gluon parameters of eq. (3.29). 

K2 

(GeV 2) 
N A /? x 2/datapoint 

[423 points] 
Fit A 0.2 
Fit B 0.5 

0.97 0.16 3.6 1.09 
0.42 0.32 3.7 1.70 

3.5 The description of the data for F2 at low Q2 

We have now set up a new framework which is suitable to be used for description 
of the data at low values of Q2. We have few free parameters in our f i t , /c2,, Q% 
and the parameters of the input gluon distribution xg(x, k$). Let us remind that 
specifes the boundary between the perturbative and non-perturbative components 
of QCD whereas QQ is the boundary between the V D M description and the partonic 
description. The results exhibit very little dependence on the parameter Ql but 
they seem to be very dependent on the boundary between perturbative and non-
perturbative region, KQ. We therefore choose Ql — 1.5 GeV 2 which corresponds 
to the inclusion of p, u and <j> resonances in the VDM contribution. Because of 
very time-consuming calculation we present here the results for two choices of K 2 , = 
0.2,0.5 GeV 2. 

We also need to specify the input gluon distribution xg(x, k%) in order to perform 
the analogous fi t as in chapter 2. However because of the cut off KQ we have chosen 
slightly different form of input as compared to the previous one, (2.72) namely: 

xg(x,k2) = N x - \ l - x ) p (3.29) 

Note that we have included here one more parameter A which generates a pomeron 
like behaviour of the structure functions. This is because when introducing a cut-off 
for the transverse momentum of the quarks KJ one automatically cuts off part of 
evolution in x in the unintegrated gluon distribution. Therefore this lack has to 
be compensated in the initial gluon distribution xg{x,k'o). As before in chapter 
2, the region where kj <C «r &nd kj < &o is described using the strong ordering 
approximation. That is we take formulae (3.10) and (3.18) and expand in k\ keeping 
only linear terms. As will be shown later the vanishing of these contributions as Q2 

goes to zero is crucial in obtaining good description of the data. Exact formulae are 
given in Appendix A. 

We determine the parameters N, A and /? by fitting to the available data for 
F2 with x < 0.05 and the values of Q2 extending down to Q2 = 0.1 GeV2. We 
present two fits corresponding to a larger perturbative QCD contribution (Fit A 
with K2 = 0.2 GeV 2) and a smaller pQCD component (Fit B with K2 = 0.5 GeV 2). 
The values of the gluon parameters are given in Table 3.1 and the quality of the 
description of the F2 data is shown in Fig.3.4. Only a selection of the data fitted are 
shown in Fig. 3.4. Both descriptions are in general satisfactory, but Fit A is superior 
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mainly due to Fit B lying below the data for Q2 ~ 1 GeV 2. This difference is better 
seen in Fig. 3.5 which shows the fi t as a function of Q2 for various fixed values of 
W energy. We see that Fit A, with the larger perturbative component is more able 
to accommodate the charge in slope going from high to low Q2. It is informative to 
show the components of the cross section. The breakdown is shown in Figs. 3.6 and 
3.7 for Fits A and B respectively for the maximum energy W = 245 GeV for which 
data are available. It appears that the low Q2 behaviour of the pQCD component 
with low k j plays the vital role. 

The description of the F 2 data by Fit A is better than that obtained by Badelek 
and Kwiecinski [50], which is to be expected since we perform a fit to the data, albeit 
with a very economical parametrization. Fig. 3.5 also shows the HERA photopro-
duction measurements at W = 170 and 210 GeV. These data were not included in 
the f i t . We see that our description overshoots the published H I [48] and ZEUS [49] 
measurements, although by a smaller margin than that of ref. [50]. On the other 
hand our extrapolation is in excellent agreement with a subsequent analysis of ZEUS 
data performed in ref. [60]. We will return to the comparison with photoproduction 
data when we study the effects of a different choice of the quark mass. 

3.6 Discussion 

We have made what appears to be in principle a prediction of F2, or rather of <r7.p, 
over the entire Q2 range which relies only on the form of the initial gluon distribution, 
see (3.29) and the parameter values of Table 3.1. However a comparison of the results 
of Fits A and B show that in practice the results are dependent on the choice of the 
boundary between the perturbative and non-perturbative contributions, 
where -tKr are the transverse momenta of the incoming q and q which result from 
the 7* —• qq transition. 

There are compelling reasons to select Fit A with «Q = 0.2 GeV 2, which has the 
larger perturbative QCD contribution. Fit A is not only preferred by the data, but it 
also yields an input gluon with a more reasonable small x behaviour. In fact for Fit 
A (/CQ = 0.2 GeV 2) the AQM contribution is almost negligible and the fit produces 
a reasonable A, namely A = 0.16. On the other hand Fit B (with K„ = 0.5 GeV 2) 
requires a larger A, A = 0.32, in order to compensate for the much more flat x~° 0 8 

behaviour of the rather large AQM component. Further support for Fit A comes 
from the predictions for the longitudinal structure function, FL. Fig. 3.8 shows that 
the prediction from Fit B is much larger than that of Fit A due mainly to the large 
AQM contribution. Fig. 3.8 also shows the expectations for FL, from the analysis of 
ref. [43] and from the MRST par tons [61] of the most recent global parton analysis. 
We see these independent determinations of FL, favour the prediction of Fit A. 

For completeness we show by the dashed curve in Fig. 3.9 the predictions of 
CL/VT versus Q2 obtained from Fit A. This figure also shows the effect of replacing 
(3.20) by (3.21) in the formula for the VDM contribution to FL. Recall that (3.21) 
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Q =0.35 GeV 
Q: =0.85 GeV Q =0.65 GeV 
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Fit A 
(Kj=0.2 GeV') 

F i t B 
(K'=0.5 GeV') 

1 
A H I Q =90 GeV Q =60 GeV 
oZEUS 

mill n u n I I I I III ' ' I M i l l l_U I I I M i l l I I I M i l l nun LJJ 
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Figure 3.4: The description of the F2 data obtained in Fits A and B. Only a subset of 
the data fitted is shown. 
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Figure 3.5: The curves are the values of the virtual photon-proton cross section <77»p of 
(3.7) as a function of Q2 for various values of the energy W — s/s corresponding to Fits 
A and B (multiplied by the factor shown in brackets). The data [2] are assigned to the 
value of W which is closest to the experimental W bin. The upper, lower photoproduction 
(solid triangular) data points correspond to W = 210, 170 GeV and are from the H I [48] 
and ZEUS [49] collaborations respectively. The open triangular points are obtained from 
an analysis of ZEUS photoproduction data reported in a thesis by Mainusch [60]. 

was motivated by the possibility that the ratio aL(p)j'CTT(P) for p meson electro-
production tends to a constant value A as Q2 —> oo. We see from Fig. 3.9 that 
this change to the VDM contribution affects FL, and hence CTL/CTT, mainly in the 
interval 0.2 < Q2 < 10 GeV 2. It is straightforward to deduce from Fig. 3.9 the effect 
of changing the value of the parameter (o of (3.21) to match the constant limit A 
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Figure 3.6: The various components of <r7*p (as defined in Section 2.3) shown as a function 
of Q2 at W = 245 GeV for Fit A (with «g = 0.2 GeV2). The bold curve shows their sum, 
<T7«p, compared to the HERA measurements. 

observed for the p ratio. 
A remarkable feature of the recent measurements [2] of cr(7*p) = (4ir2a/Q2)F2(x, Q2) 

at fixed W, is the transition from a flat behaviour in the low Q2 domain to the steep 
~ Q~2 fall off characteristic of perturbative QCD, see Fig. 3.5. The transition 
appears to occur at Q2 ~ 0.2GeV2. Such a break with decreasing Q2 may reflect 
either the saturation due to the onset of absorption corrections or the fact that we 
are entering the confinement domain. The observed features of the data favour the 
last possibility, which we allow for through the parameter \x which we introduce 
below (3.25) and (3.26). 

First there is no similar break in the behaviour of F2 as a function of x at low 
x which would be expected if absorptive corrections were important. A related 
observation is that the break, as a function of Q 2 , appears to occur at the same 
value Q2 ~ 0.2GeV2 for those W values for which data are available. Moreover 
we directly estimated the effect of the absorptive corrections in the perturbative 
QCD component2 using the eikonal rescattering model and found that they give a 

2 I n our approach the main effect of screening is hidden by the fact that we effectively take an 
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Figure 3.7: The same as Fig. 3.6 but for Fit B (with K 2 , = 0.5 GeV2). The poorer 
description of the data in the region Q2 ~ 1 GeV2, as compared to Fit A, is clearly 
apparent and can be attributed to the smaller perturbative QCD component at low gluon 

negligibly small effect on the Q2 behaviour of the cross section and of F 2 . On the 
other hand, if the break is due to confinement then it is expected to occur at a value 
of Q which corresponds to the distances of the order of 1 fm, that is 

z ( l - z) Q2 ~ <22/5 ~ (0.2GeV)2 (3.30) 

which gives Q2 ~ 0.2GeV2 where the break is observed. 

In our calculations we have used a running quark mass which links the current 
( m c u r r ) to the constituent (Mo) mass. The growth of ra, in the transition region from 
perturbative QCD to the large distance domain is an important non-perturbative 
effect, which we find is required by the F2 data. From the theoretical point of 
view such a behaviour of m , may be generated by the spontaneous breakdown 
of chiral symmetry in the instanton QCD vacuum [58]. The qualitative features 
are that m , ~ Mo if the virtuality q2 of the quark is less or of the order of the 

x - 0 0 8 behaviour of the "soft" ( V D M + AQM) contribution. 
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Figure 3.8: The predictions for FL versus Q2 at W = 210 GeV from Fits A, B (with isg = 
0.2 and 0.5 GeV2 respectively), together with the values obtained by Badelek, Kwiecinski 
and Stasto [43] and from the MRST set of partons [61]. 

square of the inverse of the instanton size, but that ra, decreases quickly as q2 

increases. In our analysis we have used a simplified power approximation for m 9 , 
see (3.28). I t is interesting to explore the effect of a different choice of quark mass. 
The dashed curves in Fig. 3.10 show the effect of using the constituent (fixed) mass 
M0 of the quarks in all the contributions to F2 or a(j*p). As expected in the 
large Q2 MQ perturbative domain the change has little effect. For small Q2 it 
reduces the predictions. The reason why the two predictions are so different is that 
even for low values of Q2 the scale r/2 which enters the formula (3.28), can be still 
large (note that we require > KI). Therefore we get quite a small value for mq 

as compared to the constituent quark mass MQ. The photoproduction estimates 
for W ~ 200 GeV are reduced by more than 10% and would bring our analysis 
more into line with the published H I and ZEUS photoproduction measurements. 
However our running quark mass predictions (continuous curves) are more physically 
motivated and should be more reliable. It will be interesting to see if their agreement 
with the experimental values extracted in ref. [60] is maintained when the new 
photoproduction measurements are available from the HERA experiments. 

A noteworthy point of our description of the F2 data is the importance of the 
non-diagonal (M / M') perturbative QCD contribution to the double dispersion 
relation (3.1). The contribution, which comes from the interference terms in (3.10) 
(and (3.18)), corresponds to the diagram shown in Fig. 3.3. It clearly has a negative 
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Figure 3.9: The dashed curve is the prediction for OLI°T versus Q2 at W = 210 GeV from 
Fit A. For comparison the continuous curve is the prediction obtained using a different 
choice of the VDM contribution to namely using (3.21) in the place of (3.20). 

sign, and moreover 

z{l-z) J 

After the integration over the azimuthal angle in (3.10), the interference term exactly 
cancels the diagonal first term for any kx < K J in the limit of Q2 —> 0 and mq = 
0. As a result the perturbative component of the cross section coming from the 
region of small kr essentially vanishes3 as Q2 —> 0. This property, seen in the 
kj < k0 components shown in Figs. 3.6 and 3.7, helps to reproduce the very flat Q2 

behaviour of <r(7*p) observed at low Q2, Q2 < 0.2GeV2. In fact we cannot achieve 
a satisfactory description of the F2 data in the transition region and below without 
this cancellation. Thus the fact that the low fcj gluon contribution becomes very 
small as Q2 decreases (and in fact vanishes for kr < « T in the Q2 —> 0 limit) may 
be considered as a justification of the perturbative QCD contribution to F2 for low 
Q2. The V D M cross section (and other diagonal contributions as well) decrease 
as l/(My + Q2)2 so we require just such a component which increases with Q2 in 
order to compensate the decrease of the diagonal terms. The compensation is well 
illustrated by Figs. 3.6 and 3.7 which show the behaviour of the various components 

3 O f course there is also a non-negligible contribution coming from the domain > KT which 
does not vanish as Q2 —» 0. 

F i t Ai^UM^m+Q2)) 

F i t A ^ = L , ( M 2 / ( M 2 + Q 1 ) Z 

W=210 GeV 

J I 1-1 1-1 
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Figure 3.10: The dotted curves show the effect of using a (fixed) constituent mass, Mo, 
in all contributions. The running mass fit (continuous curves) and the data are those of 
Fig. 3.5 

as a function of Q2. Of course the compensation (that is the effect of the vanishing 
of the low k\ contribution as Q2 —> 0) is more manifest in the Fit A where a larger 
part of the phase space is described in terms of perturbative QCD. 

It is interesting to note that in this approach we have included two different 
types of interference effect. First we have the dominant interference between the 
large M and M1 states which gives rise to the decrease of the pure perturbative 
small kr component of the cross section as Q2 —> 0, and which is responsible for 
the good description of the low Q2 data. Then there is the interference between the 



Chapter 3. The description of F2 at low Q2 87 

perturbative and non-perturbative amplitudes which we have modelled using the 
perturbative formula in the region of small M' and/or small \KT — kj\- We have 
noted that this contribution is small due to the infrared stability of the integral, as 
was shown in (3.14). 

In summary we obtain an excellent description of F 2 , o r rather of cr7.p, over the 
entire Q2 range (from very low to high values of Q2) in terms of physically motivated 
perturbative and non-perturbative contributions.We list some distinctive features of 
our approach below. 

1. Our treatment of the perturbative region is state-of-the-art. We repeat, and 
extend, the entire numerical analysis of the previous chapter. In this way 
we are able to work directly in terms of the unintegrated gluon distribution, 
which is determined by solving coupled integro-differential equations that em­
body both DGLAP and BFKL evolution. These unified equations are appli­
cable over the entire perturbative region. This is a distinct advantage over 
other treatments. Remarkably few parameters are required to fully specify 
the perturbative component. 

2. We make a careful treatment of the non-perturbative regime. We use the VDM 
where it is well-established and for higher masses we use reliable input. No 
free parameters are introduced. However the results are sensitive to the value 
of «Q which separates the perturbative from the non-perturbative domain. 

3. We emphasize the importance of the perturbative contribution in the non-
perturbative domain. In particular we find that non-diagonal ( M ^ M') 
perturbative QCD contributions play an important role. They cancel the 
diagonal contributions for kx < K T as Q2 tends to zero. This novel and 
interesting effect turns out to be required to describe the behaviour of F2 

at low Q2. Indeed in our physically constrained approach, with very few 
parameters, we are unable to describe the data in the transition region (and 
below) without this cancellation. 

4. The choice of the boundary between the perturbative and non-perturbative 
domains which gives an excellent f i t to the data, is also found to yield a phys­
ically sensible gluon distribution and reasonable predictions for FL. 

It is important to note that there are already many attempts to describe the low Q2 

region. The HERA data initiated many theoretical analysis of this region: [62, 63, 
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 27, 75, 76, 77, 78] (for a review see [79]). These 
analysis concentrate on the region of small x, there are also other approaches which 
describe succesfully the region of large values of x [80]. 



Chapter 4 

Dijet production as a probe of 
B F K L dynamics 

In chapters 2 and 3 we have developed a system of unifed BFKL/DGLAP evolution 
equations. Using the resulting unintegrated gluon distribution f ( x , k2) which is fixed 
by the fit to the F2 data we are going to make a predictions for the produced dijet 
rate. In this way we are testing the universality of approach presented in chapter 2. 

Dijet production in high energy deep inelastic electron-proton scattering can ex­
pose properties of small x behaviour in QCD, as can be seen from Fig. 4.1. In 
the dominant j*g —> qq —• dijet subprocess, the incoming gluon can have size­
able transverse momentum accumulated from diffusion in kx along the gluon chain 
[81, 82]. The value of the transverse momentum, and hence the azimuthal decorre-
lation between the jets, increases with decreasing x. That is the jets are no longer 
back-to-back since they must balance the appreciable transverse momentum kj of 
the incoming virtual gluon. The azimuthal decorrelation from the back-to-back 
configuration </> = 7r is therefore a measure of k-r and may be expected to be an in­
dicator of the diffusion along the BFKL chain. Clearly to obtain a reliable measure 
we must avoid the infrared region kj — 0 (that is <f> ~ ir). However, as will be seen, 
we are able to make an essentially parameter-free prediction of the integrated dijet 
production rate (at the parton level). 

The description of dijet production is based on the unfolded kj factorization for­
mula for structure functions [25], which exposes the unintegrated gluon distribution 
f ( x g , k j ) more locally than the structure functions themselves. The calculation goes 
beyond the conventional (fixed order) QCD-improved parton model, which is known 
to underestimate the dijet rate [83]. 

The differential cross section for producing two jets of transverse momenta p u 
and P2T in deep inelastic scattering is 

da Ana2 

dxdQ2d<j>dp\Tdp\r xQ2 

dFT dFL 

+ ( 1 - 3 / ) d<f>dp2

Tdp2T dcfidp^rpdp2^ 
(4.1) 
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Figure 4.1: Diagrammatic representation of dijet production in deep inelastic scatter­
ing via the photon-gluon subprocess. It defines the kinematics and dynamical quantities 
entering the kj- factorization formula (4.4). 

The differential structure functions are obtained from the kr factorization prescrip­
tion by unfolding the integrations over P\X^PIT

 a n < ^ the azimuthal angle </> between 
the q and q jets. 

It is convenient to use a Sudakov decomposition of the jet four momenta 

Pi = (1 - /?)?' + « iP + PIT 

(4.2) 

Vl = Pi' + «2P + P2T 

where q' = q + xp and p are the basic lightlike momenta. Since the jets are on-mass-
shell 

( PIT + m \ \ (Pvr + ™j\ 

^ = { ( T ^ w ) ^ * = x ( 4 - 3 ) 

where mq is the mass of the quark. We use again the hy factorisation formula , see 
(2.1) but this time for the differential structure functions, 

&§&p\y&pyY 
= E j f d / 3 ^ ( M T y 2 T ^ , Q 2 ) ^ ^ - (4.4) 
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with i = T,L. The variables xg and kx are as before the longitudinal momentum 
fraction and the transverse momentum, relative to the proton, carried by the gluon 
which couples to the qq jet pair. They are given by 

xg = x + at + ct2 ( > [1 + 4p 2

T /Q 2 ]x ) 
(4.5) 

kT = p\T + plT + 2plTp2T cos </>, 

see Fig. 4.1. 

The functions Ti have been already used before in eqns. (2.58) and (2.80). For 
convenience we shall recall their form in jet variables p\x and p2x-

p2 + (i-py PIT , P2T 
D\ + Dl + 

2piTP2T COS <f) 
D~J)2 , 

1 
+ rn — - — 

1 
D2 

n = «; ( ^ - ^ ) 

where the denominators 

A = P 2

T + mj + / ? ( 1 - W 2 . (4.8) 

As we have already pointed out the gluon f ( x , k2) is taken directly from the fit to F2 

data performed in chapter 2. Formally the integration limits for /? in (4.4) are 0 and 
1, but they are constrained by the condition xg < 1. Moreover the lower limit on kx 
in the determination of the unintegrated gluon means that we cannot predict the 
azimuthal decorrelation between the jets in the near back-to-back domain <j> ~ 7r. 
Our decorrelation predictions are limited to the region 

1 + cos<f> > kl/2p2 (4.9) 

where po is the minimal value of the transverse momentum of an outgoing jet in the 
dijet system. 

Predictions for the azimuthal decorrelation are shown in Fig. 4.2. They are 
compared with the measurements made using the ZEUS detector which so far have 
been presented in the thesis of Przybycien [83]. We use the parton level data ob­
tained with the kx jet-finding algorithm. The predictions use the same cuts as the 
data; that is Q2 > 8 GeV 2, outgoing electron energy < 10 GeV, pr(jet) < 4 GeV, 
—2 < ?/(lab) < 2.2 and 7y(HCM) > 0, where the pseudorapidities rj refer to the 
HERA and hadron centre-of-mass frames respectively. In each x bin the data for 
the $ distribution are normalized to unity, and the predictions are normalized to the 
data point centred at <j) — 2.55 radians (<f> = 146°). We see that there is satisfactory 
agreement between the predictions and the shape of the observed <j> distributions. 
It should, however, be noted that, due to the cuts, eq. (4.5) implies that xg > 9x. 
Thus the observed x bins do not fully expose the small xg domain. 
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Figure 4.2: Theoretical predictions for the distribution with respect to the azimuthal 
angle (j> between the q and q jets, compared to the data of ref. [83], for three different 
intervals of Bjorken x. The data are at the parton level and were obtained using the 
kf jet-finding algorithm. The predictions are normalised to the data point at (j> — 2.55 
radians. 

Hence the broadening of the azimuthal decorrelation, although visible in the 
predictions, is quantitatively marginal. The xg distribution of the data is compared 
with the predictions in Fig. 4.3. We see these data sample the gluon in the region 
xg ~ 10 - 2 . Not surprisingly, in this xg domain the <f> distribution does not give 
a definitive test of the underlying dynamics. Indeed Monte Carlos, which do not 
embody BFKL effects, can also describe the <f> distribution reasonably well [83]. 

We emphasize that the calculation of dijet production is essentially parameter 
free. Moreover it applies to the full kinematic domain since it is based on an uninte­
grated gluon which is obtained from a unified BFKL/DGLAP approach. In this way 
we are able to test the predictive power of the unifed description. The parameters 
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Figure 4.3: Theoretical predictions for (a) the xg dependence,of the dijet production cross 
section compared to the parton-level data of ref. [83]. 

which enter the determination of the unintegrated gluon are completely specified 
by the fit to the F2 structure function data, see Chapter 2. Thus we can make an 
absolute comparison with the measured cross section for dijet production. Fig. 4.4 
shows the comparison as a function of Q2. At large Q2 there is excellent agreement. 
However as Q2 decreases the prediction, with its weaker Q2 dependence, falls be­
low the data. The reason is that for Q2 <C 4p 2

T the denominators D, of (4.9) are 
dominated by p2

iT and hence the calculated cross section depends only weakly on 
Q2. There is a natural explanation of the discrepancy in Fig. 4.4. Dijets may also 
be produced in the photon hemisphere from the higher order contribution in which 
one of the jets is a gluon emitted from the quark box, that is jg —> gq(q) or gq(q) 
with a spectator q or q of small pj\ We expect a more rapid Q2 fall-off from such a 
contribution. 

In order to calculate the xg and Q2 distributions of Fig. 4.3 and Fig. 4.4 we 
integrate over the entire k\ range of the gluon. The infrared contribution from kT < 
k"l is estimated using the strong-ordering approximation k\ <C pT and expressing 
the corresponding integrals (2.58,2.59) in terms of the integrated gluon distribution 
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Figure 4.4: Theoretical predictions for and (b) the Q2 dependence, of the dijet production 
cross section compared to the parton-level data of ref. [83]. 

In Table 4.1 we make the comparison of the data and the predictions of the 
dijet cross section for different values of the minimal px of the jets. The calculation 
reproduces 70-80% of the observed rate. To put this comparison in context, we note 
that the Mepjet Monte Carlo predicts a dijet cross section for p j ( je t ) > 4 GeV of 
2.81 or 2.6 nb according to whether GRV [13] or MRSA [11] partons were used [83]. 
The latter set of partons have an integrated gluon more compatible with that used 
for our analysis. Thus the inclusion of small x contributions are seen to enhance the 
cross section, although the prediction of 3.2 nb is still below the measured value of 
3.9 nb. 

In principle dijet production appears to offer an opportunity to study the kr 
diffusion property of the BFKL gluon f(xg,k^). In practice the cuts, necessary on 
the transverse momentum of the jets, curtail the small xg "reach" of HERA, see 

'This number corresponds to Mepjet 2.0 with Q as the scale. If p? is taken to be the scale the 
cross section drops to 2.4 nb [83]. 
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PT cr (expt) cr (theory) 
in GeV in nb in nb 

4 3.9 3.2 
5 2.6 1.8 
6 1.6 1.1 
7 1.0 0.7 
8 0.6 0.5 

Table 4.1: The comparison of the measured [83] and theoretical integrated dijet produc­
tion cross sections at the parton level for different pr cuts on the jet transverse momenta 
in the hadronic centre-of-mass frame. 

(4.5). Fortunately our unified BFKL/DGLAP approach is not restricted to small 
xg, and gives a satisfactory description of the azimuthal decorrelations of the jets. 
Not surprisingly, the description is not unique and several standard Monte Carlos 
are known to also be able to accommodate the decorrelation data. The <f> distribu­
tion, in the presently accessible kinematic domain, cannot therefore be regarded as 
a discriminator of the underlying small x dynamics. However our BFKL/DGLAP 
framework (with subleading ln(l/a:) contributions) does give an enhancement of 
the dijet rate, although the prediction still falls short of the observed cross section. 
Moreover by comparing the predicted Q2 dependence of the cross section with the 
data we are able to reveal the potential source of the remaining discrepancy. 



Chapter 5 

Summary and outlook 

The finitude of philosophy consists not in the fact that it comes up 
against limits and cannot proceed further. It rather consists in this: in the 
singleness and simplicity of its central problematic, philosophy conceals 
a richness that again and again demands a renewed awakening. 

- M. Heidegger 

In this thesis we have presented a general method of unifying BFKL and DGLAP 
descriptions of deep inelastic scattering processes. Each of these approaches has dif­
ferent regions of applicability and is only a certain approximation. In this work we 
wanted to construct formalism which exhausts most of our knowledge of perturbative 
QCD and which yields phenomenologically acceptable results. By using BFKL and 
DGLAP equations for the gluon distribution we have been able to accomodate for 
LO terms in powers of l n ( l / x ) and \n(Q2) simultaneously. The subleading ln(l/a;) 
terms have been partially resummed by imposition of consistency constraint. Al­
though this constraint does not reproduce the ful l NLL corrections it resums their 
major part and is quite easy to implement in the calculation. The observable struc­
ture functions are calculated using high energy factorisation formula which enables 
us to resum the l n ( l / x ) terms in the Pqg splitting function. The non-perturbative 
component is well controlled and parametrised in terms of very few parameters. We 
have made a fit to the available Fi data and obtained predictions for the charm 
component of F2 as well as the longitudinal structure function FL-

This formalism has also been extended to describe the low Q2 data. We have 
made clear separation of the long and short-distance contributions. For low qq states 
we used V D M model. For high qq states but low quark momenta we used additive 
quark model and the impulse approximation. We have found that the non-diagonal 
contribution of the perturbative component plays an important role in getting the 
correct description of the data. The interference term between low and high masses 
exactly cancels the diagonal contribution for kx < KJ (where kj is gluon momentum 
and KT is the quark momentum) as the photon virtuality Q2 tends to zero. The 
vanishing of this part of the perturbative contribution helps to reproduce a rapid 
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flattening of the total cr7*p cross section with decreasing Q2. We have presented the 
fit to the low Q2 data for Fi as well as the photoproduction cross section. We have 
also made separate predictions for the longitudinal structure function and the ratio 
R = ^ . 

Of 

Using the resulting gluon distribution we have made the prediction for the cross 
section for produced dijets in deep inelastic scattering. We have compared our cal­
culations with the existing preliminary data for the azimuthal distributions of the 
outgoing jets and also the distributions in Q2 and in the longitudinal momentum of 
the gluon. The predictions are in a quite good agreement with the available data. 

The framework presented here can also be used to calculate other oservables, for 
example the J fty production. It has already been used to calculate the cross section 
for the ultrahigh energy neutrino interaction [84]. 

The future of such calculation lies in construction of such an equation which 
would include the fu l l NLL kernel and the renormalisation group terms at the same 
time. The biggest uncertainty is to find the proper resummation scheme for the 
l n ( l / x ) terms which would lead to the stable result for the pomeron intercept. First 
attempts of such calculations have already been made, see [85] and they are quite 
successfull. They provide bounds on the pomeron intercept and are renormalisation 
scheme independent. The way to the complete description together with phenomeno-
logical applications is still far but we hope that this should be the right direction to 
follow. 



Appendix A 

Formulae for the strong ordering 
approximation 

In this appendix we give the exact formulae for the perturbative contributions to 
the structure functions in strong ordering approximation. 

First we provide with the formula for the charm quark distribution in the on-
shell approximation used in chapter 2. This formula has been taken directly from 
[13]. We define following variables: 

x 
xy = -

y 

(3 •• 

The coefficient function in the case of the massive charm quark reads: 

Sb

c°x = l o g ( \ ^ ) ( x y 2 + (I - xy)2 + xy(l - 3 x y ) ^ - x y 2 ^ ) + 

+ P{-l + 8xy(l-xy)-xy(l-xy)4m2

c/Q2) (A.2) 

The final formula for the quark sea reads: 

Sc(x,Q2) = as I' dy-g(y,Q2)S*°*(Q2,mlxy) (A.3) 
Jax y 

where a = 1 + ^ L is a threshold factor. 

In chapter 3 we used strong ordering approximation to evaluate the contributions 
when kr <C «t- The formula for aj reads as follows: 

°T = i *4 dz xg(x, k2)as(K2

T) f {[z2 + (1 - Z)2]K2

T + m2} 

(A.4) 
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and the formula for the longitudinal cross section: 

2ae2 r Q2 

*i. - E "-Q2 /' d4 dz xfj{x,k2)as{4)m (A.5) 

where Q2 = Q2z{\ - z) + rn2. 



Appendix B 

Method of solution to the unifed 
system 

We would like to present here in more detail the method which incorporates a 
projection of the unifed integral equations presented in chapter 2 onto a set of 
linear algebraical equations. We have chosen to use the Tchebyshev orthogonal 
polynomials: 

Tn(x) = cos(n arccos a:) (B. l ) 

Each polynomial Tn(x) has n zeros at points, 

xk = c o s ^ " ^ k = l , 2 , . . . , n (B.2) 
n 

We interpolate the two unknown functions f(x,k2) and E,(x,k2) see eqns. (2.32) 
and (2.71), using the following prescription: 

f(x,k2) = £ f(xhk2

m)Cl(x)cm(k2) (B.3) 
m , / = l 

where 

cm{k2) = ^J2vtTUki)T,-r(k2) 

2 N 

C ' ( X ) = T t E ^ - i ^ ' ) ^ - ! ^ ) (B.4) 
^ i=l 

with coefficients v\ = | , t>,- = 1 for i > 1. N is the number of interpolating 
polynomials. Of course we have to transform the variables x and k2 into the variables 
which can be used as arguments of the Tchebyshev polynomials. We choose: 

u — 
_ l n f r - l ( l n g f + l n g ) 

M l n f f - l n ^ ) 
(B.5) 
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If k2 G [k2,Q2

F] thenu; G [-1,1]. 

l n ± - M n - 5 -
V> = \ , , X m , n (B.6) 

^ m rr— 
& 2-min 

Here x 6 [x m m 5 1] and 0 (E [—1,1]. Therefore instead of (B.3) and (B.4) we should 
write, 

K M = £ K ^ M M H (B.7) 
m,/=l 

and 

2 N 

c m (w) = — ^u,Ti_i(o;m)r,-_i(a;) 
^ i=i 

C ' M = ^ E v , T

3 - ^ i ) T 3 - i M (B.8) 

Using this we are now ready to rewrite our integral equations for f ( x , k2) and E(x, fc2) 
into the algebraic equations for the vectors / ( ^ w ; ) and E(-0fc,u;/). Let us consider 
equation for / ( x , A;2) (2.32), we have then: 

K*,Q2) = / ( 0 ) ( ^ Q 2 ) + jdk2 J d z A ( x , Q 2

] Z , k 2 ) f ( ^ k 2 ) + jdzB(x,Q2;z)Z(-z,Q 
(B.9) 

Functions A and jB are easily deduced from equations (2.32) and (2.71). We have 
also included in them the information about the limits of integrations over x and 
k2. Using the decomposition (B.7) and (B.9), and changing the variables (B.5) and 
(B.6) we get, 

f f N 

m,n=1 

r N 

+ i] I # £ B ( ^ , ^ ; V W m , ^ ) c m 0 / > ) (B.10) 

rj and £ are two Jacobi determinants which come from variable transformation (B.5) 
and (B.6). We can now define the following matrices and vectors, 

fu = K^k^l) 

Hkl,mn = J dip j d0J A(ll>k,Ul\ll>,u)Cm(.ll>)Cn{w) 

Kki,m = V J dip B(fpk,^r,^)cm(ip) ( B . l l ) 

Using these definitions we get the following equation: 

N N 
(B.12) 

m,n~~[ m,n=l 
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Similiar equation we get for the quarks, from eq. (2.71), 

N N 
(B.13) 

m,n=l m,n=l 

Equations (B.12) and (B.13) form a set of algebraic linear equations for two 
vectors fki and E^. We can rewrite it in a symbolic way as a matrix equation: 

/ 
E 

/(o) 
+ 

H K 
p ( l ) p ( 2 ) 

/ 
E 

The dimension of this system is equal to 2N2 x 2N2 therefore a choice of TV must 
be a compromise between accuracy and time of calculation. We have chosen to use 
N = 15. 
In fact we simplify our calculations by taking out two summations outside the inte­
grations over i/> and u>. That is, 

kl,mn f/f J dxf> J dw A(lf)k,Ui; V ' , ^ ) c m ( V , ) C n ( ^ ) 

f f N 2 N 2 
Tit J drp J dw A{i>k,u)i\i},u)^2— v,r,_ 1(i/'m)r,_ 1(?/')5I Jjv3Tj-l(un)Tj-l{u) 

N 4 f f 
J2 jjjViVjTi-i(il>m)Tj-i(un) r)Z J dij> J dwA{^k^i\^^)Ti-\{^)Tj.x{u) 

i,j=l 
N 

(B.14) 

where 
Gu,,j = rtjd^jdw AtykMMTi-iWTj-^u) (B.15) 

We therefore first perform integration over ?/> and u> and get matrix Gki,ij and then 
do summation over indices i and j to get final matrix Hki,mn- Of course the same 
procdure we utilise for matrices K,P^ and P^2\ 
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