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Abstract 

Aspects of the life-cycle energetics of two subspecies of Dunlin 
Calidris alpina 

B Y Mansour AL-Mansour Ph.D. 2000 

Dunlin from two breeding populations, C.a.schinzii from Iceland and C.a.alpina from 
northern Scandinavia, were studied during and after migration through Teesmouth, 
north-east England, and in captivity. C.a.schinzii winters in north-west Africa and has a 
much longer migration pathway than C.a.alpina which winters in Britain and around the 
North Sea. 

Measurements of Resting metabolic Rate (RMR) were made for the two subspecies of 
Dunlin in March and November in order to establish the relationship between resting 
metabolic rate and temperature and hence energy costs of living at different 
temperatures (20 °C - 0 °C). Energy costs of living in C.a.alpina were 21% higher than 
C.a.schinzii. 

Measurements of Basal Metabolic Rate (BMR) were made for the two subspecies 
(before, during and after moult) in conjunction with measurements of body 
compositions using Total Body Electrical Conductivity (TOBEC) in order to estimate 
the costs of moult. Energy costs of moult were 1692 KJ for alpina and 1016 KJ for 
schinzii. 

Energy costs of migration were estimated by measuring the amount of fat laid down 
before departure by wild Dunlin of the two populations, with the aid of Total Body 
Electrical Conductivity (TOBEC). Energy costs of migration were estimated as 3489 KJ 
for alpina, and 5156 KJ for schinzii. 

Energy costs of egg production and incubation were estimated from other workers' 
studies of other (similar) species. Energy costs of egg production were only 220 KJ for 
the two subspecies whereas the costs of incubation were 1232 KJ and 1143 KJ in alpina 
and schinzii, respectively. 

In contrast to the suggestion by Drent and Piersma (1990), I have found that the costs of 
migration are considerably less than the costs of living. Also the total annual energy 
cost for those Dunlin wintering in colder areas i.e. C.a.alpina is much higher than for 
those wintering in tropical regions i.e. C.a.schinzii. Energy costs are not the only factors 
that affect a bird's lifetime output of young. C.a.alpina uses a different migration 
strategy to C.a.schinzii but may breed on better breeding grounds, and hence achieve 
more successful reproduction. 
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Chapter 1 
General introduction 

1.1 Background 

Geographic segregation between different migratory populations of a single 

species of bird has been recognised for almost a century. The reasons for racial 

differences in wintering grounds remain a subject for conjecture however. In 

several species, populations perform what has been called 'leap-frog' migration, 

where the more northerly breeders migrate further and pass over the other 

populations to winter beyond the more southerly breeders. Salomonsen (1955a,b) 

was the first to discuss this phenomenon in shorebirds, namely ringed plover 

Charadrius hiaticula and redshank Tringa totanus. Some of the characteristics of 

leapfrog migration also are shown by pairs of shorebird species e.g. dunlin 

Calidris alpina I curlew sandpiper C. ferruginea, common snipe Gallinago 

gallinago I great snipe G. media, curlew Numenius arquatal whimbrel Numenius 

phaeopus (Alerstam & Hogstedt, 1980). 

Salomonsen (1955b) proposed a body size hypothesis to explain this 

phenomenon: northern populations of small-sized individuals were meant to 

migrate further south than large-sized conspecifics because, large bodies have 

lower surface-to-mass (volume) ratios than small ones and are therefore 

energetically more efficient than small ones in keeping warm in cold 

environments. This hypothesis has received little support because: (i) many 

exceptions to its predictions have been reported e.g. least sandpiper C. minutilla 

and western sandpiper C. mauri in which the smaller-sized males winter on 

average further north than females (Myers, 1981), (ii) it is difficult to establish 

cause and effect in a relationship between wintering latitude and body size, since 



body size might not have evolved in response to the winter climate (Salomonsen, 

1955b) but to the climate on arrival in the breeding grounds (Hale, 1980). 

Greenberg (1980) and Bell (1996, 1997) have suggested hypotheses to explain 

leapfrog migration based on optimal time allocation. Greenberg (1980) proposed 

a trade-off between migration costs and increasing survival rates. He supposed 

that northerly breeders, which have to spend the longest time in each year away 

from their breeding sites, may minimise their total mortality by migrating to 

more southerly wintering areas where survival is higher than in mid-latitudes. 

Bell (1996, 1997) applied his model of optimal winter latitude, based on a trade­

off between latitude-dependent winter survival, and migration survival 

incorporating the critical effects of differences in timing of spring fattening, to 

the leap-frog migration systems of the Yellow Wagtail Motacilla flava (Bell, 

1996) and the Fox Sparrow Passerella iliaca (Bell, 1997). He supposed that 

northerly breeders with a late spring migration from their winter quarters can 

afford to wait for, and take advantage of, the surge of spring food at southerly 

latitudes. In contrast, for southerly breeders, this surge of spring food occurs too 

late in relation to the optimal arrival time at the breeding sites. For these 

populations, a short migration, requiring only small amounts of fat as fuel, is the 

more favourable option. 

Some authors have proposed hypotheses for the evolution of leap-frog migration 

based on competition rather than optimal time allocation (Pienkowski & Evans, 

1985). They suggested that it is more favourable for birds to winter as close as 

possible to their breeding grounds: (i) to be in a better position than longer-

distance migrants to win limited resources, such as territories (Myers, 1981a) or 

holes for nests (von Haartman, 1968) on the breeding grounds. Competition on 
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wintering grounds can occur amongst juveniles and between juveniles and adults, 

which forces some juveniles to leave the wintering areas nearest to the breeding 

grounds and may lead to lower survival (Pienkowski & Evans, 1985; see 

Pienkowski & Evans, 1984; Greenberg, 1980). (ii) By remaining during winter 

within the same climatic regime, they should be able to respond to variations in 

weather and return to breeding grounds as soon as these become favourable 

(Alerstam & Hogstedt, 1980). Drent and Piersma (1990) proposed an energetic-

based hypothesis to explain the very different migration strategies of two Bar-

tailed Godwit Limosa lapponica populations. The first of these, the "European" 

population, winters around the North and Irish sea coasts and breeds in Northern 

Europe, around the basin of White Sea. The second population, the "Afro-

Siberian", winters on the north-west coast of Africa and breeds further east and at 

higher latitudes than the "European" population, with a breeding area stretching 

from the Pechora river to the eastern Taymyr peninsula in Siberia. The "Afro-

Siberian" birds reach their breeding grounds following two or more long-distance 

flights, during which they stop-over at some of the same North sea estuaries in 

which the European birds are wintering. This over-lapping of two migration 

routes can also be described as a "leap-frog" migration system though it involves 

East/West as well as North/South movements. Drent & Piersma accept that 

displacement of populations in winter must be attributed to the avoidance of 

competition. They hypothesise that, assuming that it is more favourable for birds 

to winter as close as possible to their breeding ground, the European Godwits are 

in the optimal wintering area where space is limited, and the Siberian birds are 

forced to move on (i.e. resources cannot sustain all of them during winter). The 

Siberian birds compensate for the large costs of long flights and the need to put 
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on more fat by wintering on the coast of north-west Africa where the energetic 

costs of keeping warm are very low since the average daily winter temperature is 

18 °C, (Meteorological Office, 1983). Drent & Piersma (1990) suggest that, in 

total, the annual energy expenditure of both populations is the same, so that both 

migration patterns persist. 

1.2 Aims of study 

My study aimed to test whether Drent & Piersma's model (1990) can explain the 

migration strategies of two geographically discrete breeding populations of 

Dunlin Calidris alpina, by creating annual energy budgets for the two 

populations. 

1.3 Approach 

In order to calculate the annual energy budget of a migratory bird, it is necessary 

to measure or estimate the following quantities: 

1) Daily energy costs on the breeding grounds. 

2) Daily energy costs on the stopover sites during migration. 

3) The energy costs of moult. 

4) The energy costs of migration. 

5) Daily energy costs on the wintering grounds. 

6) The energy costs of egg production and incubation. 

Quantities 1, 2 and 5 in particular wil l be affected by ambient temperature. As 

detailed later, I estimated the energy costs of daily activity (DEE) by measuring 

the metabolic rate of captives of each race throughout each individual's annual 
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cycle, using open-flow respirometry to determine the relationship between 

Resting Metabolic Rate (RMR) and temperature, and then assuming that the DEE 

is a fixed multiple of RMR, following the analysis by Drent and Daan (1980). 

This may not be strictly true for interspecific relationships (Ricklefs et al, 1996), 

but should allow valid intraspecific comparisons. I estimated the extra energy 

needed for migration by measuring the amount of fat laid down before departure, 

with the aid of Total Body Electrical Conductivity (TOBEC) measurements, for 

both wild and captive Dunlin of the two races. I estimated the extra energy 

needed for producing new plumage (i) by looking for changes in BMR during 

moult and (ii) by measuring the mass of plumage that is produced and obtaining 

values of the energy requirements for producing feathers from other workers' 

studies of other species. The extra energy needed for egg production and 

incubation was also estimated from other worker's studies of other (similar) 

species. 

1.4 Study area 

Dunlin were studied on the Tees Estuary (54°37' N 1°12'W) in north-east 

England which supports internationally important populations of waterfowl, i.e. 

over 20000 (Waters et al, 1998). My studies concentrated particularly on Seal 

Sands, an area of 140 hectares of sand and mud which form the largest inter-tidal 

area on the estuary. Teesmouth lies about 35 t h in importance amongst British 

estuaries for its numbers of waterfowl (Cranswick et al, 1999); but in terms of 

wildfowl densities it ranks amongst the very highest. When numbers of wildfowl 

are added to those of shorebirds, it meets the criteria to be designated as a 

Ramsar site (wetland of international importance). The mudflats of Seal Sands 
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contain an invertebrate fauna restricted in species but some present in high 

densities, namely Hydrobia ulvae, Nereis diversicolor, Corophium volutator, 

small oligochaetae and polychaetes, and nematodes. This area is particularly 

important as a feeding area for shorebirds, as there is restricted access to the 

public so that, apart from birds of prey, disturbance is very limited. Seal Sands 

and the Tees in general provide significant habitats for large numbers of 

wildfowl and shorebirds such as Dunlin, Grey Plover Pluvialis squatarola, 

Curlew, Bar-tailed Godwit, Redshank Tringa totanus and Knot Calidris canutus, 

both in winter and during spring and autumn migration (Evans, 1997). The 

estuary and surrounding habitats are illustrated in Figure 1.1. 

Seal Sands (Figure. 1.2) is bordered by slag walls 6-7m high on the three sides, 

the largest wall built during extensive reclamation in the 1970's. The intertidal 

area consists of a range of sediment types. In the east is Peninsula Sands, an 

important area for high water roosting for Dunlin and other shorebirds and 

seabirds and appropriate for catching birds using cannon netting. However, this 

area is not important as a feeding site. Central Bank, separated from Scalloped 

Mud by Central Channel, is an area of firm sandy mud. In summer it is covered 

mainly by algae Enteromorpha spp. but in winter it forms the main feeding site 

for shorebirds. In the west is Greenabella Bank, which forms the other main 

feeding area. This site is exposed for only for three to four hours in each tidal 

cycle and consists of soft mud with a corner of muddy sand. To the south of this 

is Scalloped Mud, which consists of medium to soft muds. At present Seal Sands 

is exposed and available for shorebird foraging for about eight hours out of each 

tidal cycle. As a result of this, some birds cannot obtain enough food to satisfy 
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their daily requirements during the period of exposure, so they move to higher 

tidal flats on North Gare or nearby coastal beaches to feed when Seal Sands is 

covered by the incoming tide. 

1.5 The history of the Tees in brief; 

The history of the Tees Estuary shows that huge destruction took place of the 

intertidal area, to build port facilities and as industrial land-claim, throughout the 

last two centuries (Davidson et al, 1991). 

In 18 th century, the discovery of iron ore in the region led to the development of 

an iron and steel industry in the upper parts of the estuary; however, the main 

basin of the estuary was left mainly untouched. At the beginning of the 19 

century, the Tees estuary comprised about 2400 hectares of intertidal sand and 

mudflats. In late 18 th and early 19 th centuries large agricultural land-claims of 

saltmarshes took place on both sides of the estuary. However, the single largest 

land claim (900 hectares) took place between 1850 and 1881, and land was 

claimed at over 33 hectares per year, until the mid 1970s. 

The last major land claim on Seal Sands occurred between 1971 and 1974 so that 

the total intertidal area of the estuary had been reduced by this succession of land 

claims to 470 hectares by mid the 1970s, an overall reduction of 86% of the total 

intertidal area of the estuary (Davidson et al, 1991). The loss of intertidal area at 

the Tees estuary since the mid-eighteenth century is summarised in Appendix DC. 

In 1995 the remaining 140 hectares of Seal Sands was designated as a National 

Nature Reserve by English Nature under the Wildlife and Countryside Act 

(1981). 
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1.6 The study species 

The Dunlin has a holarctic breeding distribution with several distinct subspecies 

(Cramp & Simmons, 1983), of which two form the subject of this thesis. This 

species has been described as a leapfrog migrant by Alerstam and Hogstedt 1980. 

The first of these two subspecies used in this study, the "Northern European" 

Calidris a. alpina which breeds in northern Scandinavia and north-west Russia 

(east to the Kolyma river) is a common migrant wader in Europe. This 

subspecies winters mainly on the coasts of western Europe, as far north as 

Britain, Netherlands and Germany and passes through the Baltic in July and 

August (Leslie & Lessels, 1978). Some alpina stop over at Ottenby in 

southeastern Sweden during autumn migration; these include some actively 

moulting birds (Holmgren et al, 1993). 

The Wadden Sea area (Denmark, Germany, Netherlands) and the Wash 

(England) are the most important moulting grounds in western Europe for 

nominate alpina (Holmgren et al, 1993), though smaller numbers use many other 

North Sea estuaries. Adults arrive from mid-July, juveniles from mid-August, 

and adults begin moult from mid-July to early August, with the outermost 

primary feathers full-grown by early September to early October, and 

replacement of flight feathers lasting from eighty to ninety days. After moulting, 

many alpina move westwards to wintering sites around the North and Irish Sea 

coasts, or southwards to France (Pienkowski & Evans, 1984). In spring, they 

migrate from these sites back to the Arctic, probably in a single flight to eastern 

Fenno-Scandinavia, where they may refuel (Evans & Davidson, 1990). 

The second subspecies, the "Afro- Icelandic" C.a.schinzii breeds in Iceland and 

southern Greenland (Davidson et al, 1986). It is present on Icelandic breeding 
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grounds from May to August, passing through Britain in July-August (adults) 

and August-September (juveniles) and through France and Portugal in August -

September (Hardy & Minton, 1980). The majority of this subspecies winters and 

moults further south, in southern Europe and N.W Africa, especially in Morocco 

and Mauritania (Pienkowski & Dick, 1975). Birds arrive in Morocco from late 

July, stopping-over in Britain en route. Return migrations of this population pass 

chiefly along the West coasts of Britain, from mid-April to early May (Ferns, 

1981; Hardy & Minton, 1980) to re-occupy Iceland in May. 

The nominate alpina tend to be larger and have, on average, longer bills than 

schinzii. Alpina have rich chestnut mantle fringes with a large belly patch while 

schinzii tend to have yellowish-red mantle fringes with a small belly patch 

(Prater et al, 1977). 

1.7 The timing of migration through Teesmouth of adults and juveniles of 

Calidris a. alpina and C.a.schinzii 

Counts of Dunlin at Teesmouth between July 1996 and July 1997 are 

summarized in Figure 1.3. This figure shows that numbers of birds were highest 

in winter, peaking in mid-January. Juvenile Dunlin started to appear at 

Teesmouth from late July. Numbers of juveniles increased through August and 

early September to reach a peak in mid-September. From late September until 

late June it is difficult to age Dunlin in the field by observation, so birds are 

recorded as full-grown. Numbers of full-grown Dunlin decreased through 

September and October before remaining stable through November and 

December. Numbers reached a peak in mid-January before they decreased 

dramatically through February and March. 
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Ringing and recovery data from Northumbria (Evans, 1966) and the Tees Estuary 

(Norman, 1988 and Appendix VIII) show that the race C.a.alpina spends the 

winter at Teesmouth, whilst C.a.schinzii is present only during spring and 

autumn migrations. Adult alpina begin to arrive at Teesmouth in mid-September 

and most of them leave in late February or early March but some remain until 

May when they may be joined briefly by passage birds that have wintered further 

west. Adult schinzii start arriving at the Tees from early July to pass through the 

Tees by the end of August en route for wintering areas in NW Africa. Juvenile 

schinzii pass through the Tees in the second half of August and early September, 

later than adults. Juvenile alpina occur in the Tees by early November coming 

from north-west Russia via the northern and then western Norwegian coasts 

(Leslie, 1978). 
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Figure 1.1: The position of Seal Sands and other inter-tidal areas around the 
Tees estuary (Teesmouth). Shaded areas indicate intertidal land claimed since 
1750 
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Figurel.2: Seal Sands and its constituent shorebird feeding areas. Key to 
numbered areas: 1 Peninsula Sands; 2 Eastern Channel; 3, 8 and 10 Central 
Bank; 4 and 5 Scalloped Mud; 6 Greenabella Bank; 9 Enclosure; 12 Central 
Channel. 
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Chapter 2, 
Materials and Methods 

2.1 Measurement of Total Body Electrical Conductivity (TOBEC) 

Measurement of Total Body Electrical Conductivity (TOBEC) is a relatively new 

non-destructive method for estimating body composition in live animals 

(Walsberg, 1988) and is now a popular technique among ornithologists for 

estimating fat reserves in birds (Asch & Roby, 1995). This method was 

developed in the early 1970's and has recently been used widely in the 

agricultural and medical fields (Herenroede, 1989). 

TOBEC is based on the principle that when an electrical conductor (the bird in 

this case) is positioned inside a solenoidal coil producing an alternating 

electromagnetic field, the change in the electromagnetic field is proportional to 

the total electrical conductivity of the conductor (the bird's body in this case) 

(Harker, 1973). It is known that the electrical conductivity of lipids is around 4-

5% of those of an equivalent mass of body fluids, lean tissues and bone (Pethig, 

1979). Therefore, total lean mass is the basic contributor to the TOBEC measured 

value. 

In order to obtain an index of total body electrical conductivity, birds can be 

restrained using a soft plastic cylindrical jacket with Velcro fastenings before 

inserting into the measurement chamber, head first and legs close to body, until a 

maximum value (B) is obtained. TOBEC readings are taken with the chamber 
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empty (E) and then full (B), repeated four times alternately to counteract any 

drift in the baseline reading. Half-way along the measurement chamber is the 

most uniform and strongest part of the magnetic field produced by the solenoid 

(Scott et al, 1991); this produces the maximum value of B. Reference numbers 

(R) are obtained from the apparatus before and after each set of readings. The 

index of total body electrical conductivity (I) is calculated from the Equation 1 

below; 

I = [(E-B) /R] * a Equation 1 

Where a is a normalisation constant provided by the manufacturer, E is the 

average of four readings with chamber empty, B is the average of four readings 

with the bird inside the chamber and R is the average of the two reference 

numbers. The machine must be calibrated for each species to be studied (for 

details, see Appendix I). 

Predicted Total Lean Mass (PTLM) for Dunlin can be obtained using the two 

equations below 

(i) PTLM = (0.53 * I) + 21.4 grams (calibrated by Scott et al, (1991)) for wild 

Dunlin. 

(ii) PTLM = (0.42 * I) +21.7 grams (calibrated by this study) for captive Dunlin. 

Predicted Mass of Fat (PFM) is calculated by subtracting PTLM from Body 

Mass (BM); 

PFM = BM - P T L M Equation 2 
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2.1.1 Advantages of T O B E C ; 

The TOBEC method has many advantages, the most important are (i) avoidance 

of the need to kill the subject, so that changes in body composition of an 

individual can be followed through time, (ii) portable and small enough for use in 

the field, (iii) suitable for use in fluctuating temperature conditions 

(Walsberg,1988). (iv) the measurements can be obtained rapidly without 

complicated procedures. However, there are many factors that affect the TOBEC 

index so they must be taken into account when using the apparatus (see section 

2.1.2). Moreover, the SA-1 must be connected to the power at least half an hour 

before starting measurements and the battery charge must not be low when used 

in the field. 

2.1.2 Factors that affect the T O B E C index: 

The main factors are summarised below. 

a) Body geometry, has an effect in TOBEC index in complex way (Fiorotto et al, 

1987), so that birds of the same mass but different shape may have different 

indices. 

b) Body temperature; the relationship between the average TOBEC index and 

body temperature is linear but the slope of the relationship differs significantly 

between species, as determined by warming whole dead specimens, 

For Dunlin, I = 0.80 T°C +20.21 (r = 0.99, n = 6) 

For Knot, I = 3.50T°C + 102.7 (r = 0.94 , n - 6) 

Where T°C = Temperature between 15 and 40 °C 



For each 1°C change, the TOBEC index changed at 40 °C (close to the normal 

body temperature of most birds) by 1.53% (which would produce 0.7g change in 

estimated total lean mass) for Dunlin and 1.44% (1.6g) for Knot. See Scott, et al 

(1991) for more details. 

c) Presence of metal leg rings; 

TOBEC indices increased by a mean of 13% for Dunlin and 40% for Redshank 

when 7 Dunlin and 8 Redshank were measured before and after ringing (Scott et 

al 1991). The ring size for Redshank was larger than that used for Dunlin so may 

explain larger effect on TOBEC index. The composition of the metal alloy needs 

to be taken in account (Scott et al, 1991). Roby (1991) found that there was no 

significant difference in TOBEC measurement in birds with aluminium rings 

compared to birds without, but aluminium is not ferromagnetic, whereas most 

British rings are. 

d) Contamination by sea water; 

Contamination by salt water increased TOBEC indices by a mean of 30% in five 

dead Dunlin immersed briefly in sea-water. Even after 12 hours drying the 

TOBEC indices were still 10% higher than before immersion (Scott et al, 1991). 

Hence in the field, birds, which get salt-water contamination, should be left to 

dry, and very wet individuals should not be used for TOBEC measurements. 

e) Position of the bird within the measurement chamber; 

The horizontal position of the bird affects the TOBEC index measured by the 

SA-1 apparatus a great deal whereas vertical position is not important (Scott et 

al, 1991). The optimum position along the measurement chamber (i.e. that gives 

the maximum reading) varies slightly with the shape and size of the specimen 
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(Scott et al, 1991). However, some studies (Meijer et al, 1994; Skagen et al, 

1993; Morton et al, 1991) held each bird at the same position in the centre of the 

chamber, irrespective of size of the reading in relation to maximum value, 

f ) Hydration state of the specimen; 

The TOBEC index of lean body mass increased significantly by an average of 

15% when Walsberg (1988) dehydrated Gambels Quail {Callipepla gambelii) 

over three days. Davidson (1984) showed that Dunlins and Knots lose up tol9% 

and 23%, respectively, of their total body mass (chiefly body water) during the 

first 8 hours of captivity. Therefore birds should be measured within a few hours 

of capture. 

2.1.3 The accuracy of SA-1 equipment: 

The SA-1 has satisfactory precision for use in larger passerine birds and 

shorebirds. Walsberg (1988) and Castro et al. (1990) considered SA-1 to be 

useful for estimating body composition of subjects as small aslOg live mass but 

James et al. (1995) said that this technique provides greater accuracy for species 

weighing about 20g. Asch & Roby (1995) showed that body fat estimates for 

birds weighing 10-125g could be imprecise because in this range of masses there 

is less interaction between body water volume and the electromagnetic field. 

Small subjects produce small TOBEC values, which mean lower measurement 

precision and lower accuracy of estimation of PTLM and hence fat. Asch and 

Roby (1995) indicated that the accuracy of fat estimates in smaller subjects could 

be improved by using a smaller chamber equipped with a smaller coil. SA-1 and 

SA-2 machines are most accurate for species of about 175- 275 g, which is near 
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to the maximum size that can be inserted in the measurement chamber (Roby, 

1991). In my study there was very little variation between the four readings used 

to calculate the TOBEC index for each bird and because each bird was positioned 

to give a maximum reading there was no between-observer bias. 

2.2 Measurement of metabolic rate: general principles 

Metabolic rate refers to the energy metabolism per unit time. Schmidt-Nielsen 

(1997) listed three different ways for measuring metabolic rate; 

1) By determination of the difference between the energy value of all food eaten 

and the energy value of all excreta (primarily faeces and urine). This method 

needs to ensure that the organism has not experienced changes in body 

composition and in body mass. Hence it must be carried out over a sufficiently 

long period of observation. This method is awkward and cannot be used to 

measure Basal Metabolic Rate (see Section 2.2.1) by definition. 

2) By determination of the total heat production of the organism; 

This method ought to give complete information about energy used. Although it 

is the most accurate method, it is technically a complex procedure where every 

item such as heating of ingested food, vaporisation of water, etc. must be entered 

into the total heat budget and in addition, all external work performed by the 

organism that does not appear as heat, must be added to the account. 

3) By determination of oxygen consumption (and/or carbon dioxide production ); 

This is a relatively simple technique, and customary it is used for estimation 

metabolic rates. Oxygen can be used as an indirect measure of metabolic rate 

because the amount of heat produced for each litre of oxygen used in aerobic 
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metabolism changes by no more than 5%, irrespective of what substrate has been 

oxidised (see Table 1). The respiratory quotient RQ (C0 2 formed / 0 2 used) gives 

information about the fuel used in metabolism. RQ is usually found to lie 

between 0.7 and 1.0. An RQ of near 1.0 indicates primarily carbohydrate 

metabolism, and of near 0.7 suggests primarily fat metabolism. An intermediate 

RQ could indicate metabolism of protein, or a mixture of fat and carbohydrate, or 

a mixture of all three. 

Measurement of carbon dioxide production is less suitable than that of oxygen 

consumption for estimating metabolic rate for two reasons (i) the body contains a 

large pool of carbon dioxide which, although always present in the body, changes 

easily (e.g. in hyperventilation of the lungs). In heavy exercise, the lactic acid 

that forms in muscles will enter the blood, carbon dioxide wil l be expelled from 

the blood and released in the lung in large amounts, (ii) different foodstuffs give 

very different energy equivalents for each litre of carbon dioxide produced (up to 

20% variation, see Southwood, 1978). 

2.2.1 Conditions required for measurement of BMR 

BMR (Basal Metabolic Rate) is defined as the minimum rate of energy 

expenditure (heat production) that an individual animal requires to maintain 

normal body temperature, during the non-active phase of the day, when the 

animal is unstimulated by the digestion and assimilation of food or by low/high 

temperatures outside the thermoneutral zone, and is not involved in growth, 

moult or reproduction (Aschoff & Pohl, 1970; Speakman et al, 1994; McNab, 

1997). 
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Tablel: The energy equivalents of oxygen consumption for various values of 

RQ, due to utilisation of different proportions of foodstuff (modified from 

South wood 1978). 

19.6kJ per litre 0 2 consumed appropriate for a RQ of 0.70 

19.8kJ per litre 0 2 consumed appropriate for a RQ of 0.75 

20.1kJ per litre 0 2 consumed appropriate for a RQ of 0.80 

20.3kJ per litre 0 2 consumed appropriate for a RQ of 0.85 

20.6kJ per litre 0 2 consumed appropriate for a RQ of 0.90 

20.8kJ per litre 0 2 consumed appropriate for a RQ of 0.95 

21.1kJ per litre 0 2 consumed appropriate for a RQ of .1.00 

2.3 Materials and Methods 

2.3.1 Captive Dunlin: 

A total of 14 Dunlin C.a. alpina (n = 6 juveniles) and C.a.schinzii (n= 4 juveniles 

& 4 adults) were caught under licence from English Nature by cannon-netting at 

high tide roosts at Teesmouth, north-east England and held in captivity for 

periods ranging from 23-34 months, between September 1996 and June 1999. 

Dunlins were held in two groups according to their race in indoor aviaries of 

2.4m(l) x 1.2m(h) xl .2 (w), under temperature and simulated photoperiod 

regimes close to external conditions (Durham City). Commercial trout pellets 

(Trout Excel 23,Trouw Aquaculture, Nutreco, UK) and blow-fly larvae 

Calliphora sp. were provided as food. A mineral supplement SA-37 (Intervet, 
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UK Ltd, Cambridge) was added to the food monthly. Fresh water was constantly 

running through the aviaries and hence was available for bathing and drinking 

purposes. The aviaries were cleaned three times every week and disinfected 

before any new birds entered the aviary. 

2.3.2 Measurement of Total Body Electrical Conductivity (TOBEC) indices 

TOBEC was measured using the EM-Scan (3420 Constitution Drive, Spring­

field, Illinois 62707, USA) SA-1 Small Animal Body Composition Analyser. 

The SA-1 was used in the laboratory and also in the field when it was powered 

by a 12V battery via an Oertling PC-01 converter to provide 240V, 50 cycles AC. 

Each of the captive birds was weighed using a Pesola spring-balance to the 

nearest g and its TOBEC index calculated at least once every 2 weeks. Birds 

caught using cannon nets and mist nets at Teesmouth were sometimes slightly 

splashed with sea-water and were allowed to dry in hessian sacks or in hessian-

lined keeping cages for at least 1 hour before measuring TOBEC. Even captive 

birds were isolated from the cage for 1 h before measuring TOBEC values. Birds 

which were very wet, both wild and captive, were exempted from TOBEC 

measurement. A l l TOBEC measurements in the field were made within three 

hours to avoid the effect of any dehydration on the TOBEC index (Walsberg, 

1988). A l l factors affecting the TOBEC index (see section 2.1.2) were taken in to 

account when measuring TOBEC. 

2.3.3 Measurement of Basal Metabolic Rate: Open-flow Respirometry 
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The 14 juveniles and adult Dunlin, caught at Teesmouth in September 1996 and 

August 1997 and held in captivity thereafter, were used for studies of seasonal 

variation in BMR. 

The metabolic heat production of each bird was estimated by determination of 

rates of oxygen consumption using a paramagnetic oxygen analyser (Servomex 

pic, Crowborough, East Sussex, Model l l l lD/000) and carbon dioxide 

production using an infrared analyser (Lira 3000, Mine Safety Appliances 

Company, Pennsylvania, USA) in an open-circuit system described by Scott et al 

(1996), (see Figure 2.2). For measuring BMR, each bird was removed from the 

aviary at 09:00 GMT and kept isolated in a box for a minimum of one hour 

without food or water. Around 1100 GMT the bird was weighed using a Pesola 

spring-balance to the nearest g and then its TOBEC measurement taken. The bird 

was placed in one of the two identical metabolic chambers measuring 24.5cm 

(height) x 21cm (diameter). 

BMR measurement started at or after 13:00h, after a period of at least 2 hours of 

acclimation by birds to the metabolic chamber and 4 hours of fasting to ensure 

that the individual was post-absorptive. The chamber was in complete darkness 

and was placed in a controlled temperature cabinet (LMS, Sevenoaks, Kent) at a 

constant temperature of 25°C (within the thermoneutoral zone of Dunlin). Dry air 

was drawn through the chamber at a rate of 60 litre/hour"1. Gas analyses were 

performed on samples taken from both the inlet and outlet gases via gas mass-

flow controllers (Brooks Instruments, Netherlands, 5878 & 5850 TR series) at 

rates of 3.6L/h"' for O2 and 4.8 L/h"1 for CO2. Both inlet and outlet gases were 

dried prior to measurement by passing them over columns of dried coarse mesh 
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silica gel. A measurement of BMR on a single individual was taken over a period 

of time ranging from between 90-120 minutes to ensure that a stable 

measurement of BMR was obtained for each run. I f any periods of raised 

metabolic rate (MR) occurred during a measurement these were assumed to be 

periods of activity and the measurements were not used, although this was rare 

(Al-Mansour, pers. Obs.). Under normal circumstances, birds remained at rest 

throughout the measurements, as proven by the lack of traces on activity-

recording paper used to line the floor of the chamber. A period of 15-20 minutes 

was necessary between the first and second individual's BMR measurements 

when measurements were carried out on two birds on the same day, to enable the 

levels of O2 and CO2 to return to the pre-measurement baseline levels. To avoid 

C0 2 building up in the metabolic chamber not undergoing a BMR measurement, 

a constant flow of dry air was provided through this metabolic chamber using a 

simple diaphragm pump. Calibration was performed before each day's 

measurements, using dry, oil-free 100%N2 and then a certified mixture of 21% 

O2, 0.03% CO2 in N2 (SEP Analytical Ltd.). During each analysis, measurements 

were taken every minute over a ten-minute period in which 0 2 consumption and 

C0 2 production were appeared to be stabilised at a basal level. The means of 0 2 

and C0 2 levels over these ten-minute periods were used to calculate RQ (C0 2 

production / 0 2 consumption) and BMR expressed in W (using an energy value 

per litre 0 2 consumed appropriate for the RQ), Tablel. The levels of 0 2 and C0 2 

were recorded onto a flatbed recorder (Kipp and Zonen, Delft, Netherlands, 

Model BD 112). 

2.3.4 Measurement of Resting Metabolic Rate: Open-flow Respirometry 
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Resting metabolism can be defined as the minimum rate of energy utilisation that 

an individual animal requires to maintain body temperature, when the animal is 

resting, post-absorptive and undisturbed at particular temperature, whether inside 

or outside the thermoneutral zone (TZ). Measurements of resting metabolic rate 

RMR were made to establish the MR/temperature relationship below the TZ. 

In order to obtain RMR, procedures in section 2.3.3 were repeated. However, 

when estimating RMR, measurements were taken at three different temperatures 

in a single day, starting at the highest temperature and then decreasing by 5°C 

each time. A period of 45-60 min was taken between each measurement to allow 

the controlled temperature cabinet to stabilise at the new temperature (10-20min) 

and to allow the bird to acclimate to the new temperature 30 min. 

2.3.4.1 Technical factors that affect the accuracy of the estimates of 

basal/resting metabolic rate: 

To obtain the best results, the following points are considered to be very 

important when using open-flow respirometry. 

(i) The 0 2 /C0 2 analysers must be allowed to warm up for at least one hour before 

calibration or starting the measurements. 

(ii) The 0 2 /C0 2 analysers should be used at a temperature similar to that at which 

it was calibrated. 

(iii) The 0 2 /C0 2 analysers should be used with a sample flow rate the same as 

used for calibration. 

(iv) The metabolic chamber must be sealed firmly. 



2.3.5 Day and Night variation in BMR: 

To determine whether diurnal variation in BMR occurred in captive Dunlin, the 

value obtained during the day was compared with a subsequent value recorded at 

night, 30 hours after the day-time determination, for the same individual Dunlin. 

This was repeated for six birds, In daytime determinations, as before, birds were 

isolated at 9.00 GMT and weighed and the TOBEC measured. An individual was 

put in the chamber at 13.00 GMT after 4 hours fasting, and the measurements 

ended at 15.00 GMT. At night, individuals were isolated at 21.00 GMT and at 

22.30 GMT were weighed to the nearest g and TOBEC measurements taken. 

They were then placed in the chamber (in the cabinet) at 25 °C. Metabolic 

measurements started at 01.00 GMT, after fasting the birds for a period of 4 

hours; measurement stopped at 3.00 GMT. 
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Figure 2.2 : Schematic diagram of the apparatus used to measure the metabolic 
rate of birds during the course of this study . D= air drier, C= measurement 
chamber, pump, CTC = controlled temperature cabinet, C M = carbon dioxide 
meter, O M = oxygen meter, F = gas flow meter, FG= mass flow controller, F M 
= flow meter machine, FR = flatbed recorder, * direction of air. 
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Chapter 3, 
Energy costs of living 

3.1. Introduction 

The aim of the work presented in this chapter was to estimate the energy costs of 

daily activities for the two subspecies of Dunlin on their breeding, moulting and 

wintering grounds by measuring metabolic rate and its relationship with ambient 

temperature using open-flow respirometry. 

3.1.1 Metabolic rate: 

Animals need a supply of food to obtain chemical energy to carry out various 

functions. A l l the biochemical reactions and inter-conversions involved can be 

referred to as metabolism. Energy output can be estimated in animals by 

measuring the oxygen that they use to oxidise foodstuffs. However, metabolism 

can also occur without the use of oxygen. This kind of metabolism is called 

anaerobic. 

The amount of heat produced for each litre of oxygen used in aerobic metabolism 

varies by less than 5% according to the type of substrate oxidised, whereas the 

caloric equivalent of CO2 production is much more variable. This is why using 

oxygen is a practical measure for estimating metabolic rate (see chapter 2, 

section 2.2 for more detail). 

The total daily oxygen consumption of large animals obviously must be higher 

than of small ones. However, the rate of oxygen consumption per unit body mass 

decreases progressively with increasing body mass (Schmidt-Nielsen, 1997). 
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In general, passerine birds (finches, crows, etc.) have higher metabolic rates than 

non-passerines of the same mass by about 65% (the difference between k—1.11 

and k=0.679 from the two equations below of the form MR= K x B M X ) . The 

regression line for metabolic rate on body mass B M for 58 species of non-

passerine birds, ranging in size from a 0.003 kg hummingbird to the 100 kg 

ostrich is: MR =0.679 x B M 0 7 2 3 ; whereas for 36 species of passerine birds, 

ranging in size from 0.006 kg to 0.866 kg, it is: MR= 1.11 x B M 0 7 2 4 . The slopes 

of the regression lines of BMR against body mass are, however, the same for 

passerine and non-passerine birds (Lasiewski & Dawson, 1967). 

Shorebirds are claimed to have higher BMRs than expected allometrically, when 

compared with other bird groups (Kersten & Piersma, 1987). This conclusion, 

however, was based on measurements of birds which spend the winter in north­

western Europe and they thought that the main reason for this apparent elevation 

in BMR was to cover the high costs of thermoregulation as consequence of their 

energy demanding way of life. Klaassen et al (1990) hypothesised that the BMR 

of the same species of waders in the tropics was reduced since the maintenance 

energy requirements of captive birds in Mauritania and Guinea-Bissau were low, 

even when the high ambient temperature in the tropics was taken into account. 

Kersten et al (1998) also reported that BMR of waders wintering in coastal 

Africa is well below that of waders wintering in temperate areas but that 

breeding latitude does not correlate with BMR on the wintering grounds. As 

migrant waders have a higher BMR during autumn migration, further north, 

Kersten et al (1998) hypothesised that birds reduce BMR upon arrival in the 

tropics under hormonal control, by reducing organ sizes and probably 
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suppressing thyroid activity in response to the high ambient temperatures in the 

tropics. 

3.1.2 Temperature regulation: 

The body temperature of most animals follows ambient temperature. Higher 

vertebrates, however, raise their body temperature above ambient temperature 

and may regulate it by either behavioural or physiological means. For the body 

temperature to remain constant, the rate of heat gain plus metabolic heat 

production must equal the rate of heat loss. Heat exchange between the body and 

the environment takes place by conduction (including convection), radiation and 

evaporation. 

Animals with high surface conductance (low insulation) tend to lose heat rapidly, 

whereas animals with low conductance (high insulation) tend to lose heat 

relatively slowly. We can express: 

Rate of heat loss Q = C (Tb - Ta), where C is the conductance value, Ta is the 

ambient temperature and Tb is body temperature. 

Some birds follow the mammalian pattern of rate of heat production with 

regression lines that extrapolate to core body temperature (Figurel). Other birds, 

however, vary from this pattern (Figurel) as they may not adhere to the simple 

equation H (heat production) = C (Tb-Ta), in which C remains constant at low 

temperatures, because (i) in these birds the conductance value, C, gradually 

decreases with falling ambient temperature, Ta and (ii) some species allow body 

temperature to decrease at low temperatures. 
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Figure 1: Oxygen consumption of two bird species at different temperatures. 
The regression lines do not extrapolate to the body temperature (40°C) of the 
pigeon and of the roadrunner as they commonly do in mammals, but to a much 
higher temperature, above 50°C. Modified from Calder and Schmidt-Nielsen 
(1967). 
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There are three possible ways for birds to increase insulation (decrease 

conductance): 

(i) By raising the feathers and drawing the feet up into the feathers. 

(ii) By allowing the peripheral tissues to undergo an appreciable temperature 

drop whilst keeping the core temperature constant 

(iii) By changing posture to alter the amount of body surface area directly 

exposed to ambient conditions (at low temperatures some birds tuck their heads 

under their wings). 

Figure 2 shows that metabolism rises as ambient temperature falls below the 

lower critical temperature or rises above the upper critical temperature because, 

outside the thermoneutral zone (TZ), the animal must carry out physiological 

work to maintain its stable internal body temperature. The lower critical 
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temperature (LCT) is the point at which insulatory adjustments become 

inadequate to compensate for further falls in ambient temperature. Thus, below 

the LCT the rate of heat loss from the animal increases and must be countered by 

an increase in the rate of heat production to maintain a constant body 

temperature. This requires a rise in metabolic rate. 

The upper critical temperature (UCT) is the point above which insulation is 

minimised. Further increase in ambient temperature leads to an increase in 

metabolic rate because, as the thermal difference between animal and 

environment falls, so the metabolic heat cannot be dissipated fast enough, even 

with minimal insulation. Many birds and mammals respond by sweating, panting 

or allowing their body temperature to rise to some extent. These mechanisms 

demand an increase in metabolism. 

The thermoneutral zone is the range of temperature in which the metabolic heat 

production is unaffected by ambient temperature change. The width of the 

thermoneutral zone depends on the conductance value and whether the animal is 

Arctic or tropical, as the metabolic response in Arctic animals is less pronounced 

than in tropical mammals (Schmidt-Nielsen, 1997). 
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Figure 2: General type of relation between resting metabolic rate and ambient 

temperature for a typical bird (Calder and King 1974). 

UCT means upper critical temperature 

LCT means lower critical temperature 

TZ means thermoneutral zone 

Tb means body temperature 

BMR means basal metabolic rate 
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3.1.3 The relationship between the slope of the metabolic rate / temperature 

line and body size: 

Body size affects insulation because small birds have higher surface-to-mass 

(volume) ratios than large ones. Thus they lose heat at a greater rate per unit of 

mass for a given difference between body and ambient temperature. 

Small birds tend to increase their metabolic rate (expressed in mass-specific 

terms) more steeply below the lower critical temperature than do larger ones. 

This occurs not only because small birds have higher size-related conductance 

(per unit area) but also because larger birds tend to have thicker coats of feathers 

than smaller ones, which leads to relatively higher insulation in larger birds. 
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The relationship between insulation and body mass is not perfect because 

animals of similar size have significant interspecific differences in insulatory 

capabilities. But well-insulated (large) animals tend to have relatively larger 

ranges of thermoneutral zones than poorly-insulated (small) animals. 

3.1.4 The relationship between Basal Metabolic Rate and Daily Energy 

Expenditure 

Basal metabolic rate (BMR) was defined (section 2.2.1) as the minimum level of 

energy expenditure that an individual animal requires to maintain normal core 

body temperature, during the non-active phases of the day, when the animal is 

unstimulated by the digestion and assimilation of food or by low/high 

temperatures outside the thermoneutral zone, and is not involved in growth, 

moult or reproduction (Aschoff & Pohl, 1970; Speakman et al, 1994; McNab, 

1997). Daily energy expenditure (DEE) generally refers to the rate of energy 

metabolism per 24 hours of an active animal. The relationship between BMR and 

DEE has been the subject of several hypotheses. King (1974) was the first to 

state that DEE of free-living adult birds parallels BMR, whereas the first attempt 

to quantify this relationship was carried out by Drent et al (1978). They found in 

Charadriiform birds (mostly gulls and auks) and waterfowl species with body 

weights between 100 and lOOOg, that DEE averages about 2.6 BMR, whereas 

cage existence metabolism at 10°C amounts to approximately 2 BMR. Drent and 

Daan (1980) later suggested the existence of a 'maximum sustained working 

level' (DEE) of parent birds feeding their young of approximately four times 

BMR. Bryant and Tatner (1991), however, reported that 4 times BMR is not a 

universal upper limit to the sustained work rate of small birds as the upper limits 
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tend to be higher in species with energy-expensive foraging habits. Kersten and 

Piersma (1987) measured BMR, existence metabolism (EM) and costs of 

thermoregulation in three captive shorebirds species and also hypothesised that 

there is constant proportionality between BMR and DEE. Moreover, Daan et al 

(1990) using data for 26 species of bird and Daan et al (1991) using data for two 

more species of birds and 15 species of mammal, found significant correlations 

between the residuals for each species of the deviations from the overall 

DEE/body size regression and the overall BMR/body size regression. Koteja 

(1991) applied a similar analysis but found only a weak correlation between 

BMR and DEE among birds engaged in reproduction (r = 0.23, n=23). There was 

however, a strong correlation among mammals (r = 0.83, n= 18). Ricklefs et al 

(1996) confirmed Koteja's results and found no significant relationship between 

DEE and BMR in birds but a strong relationship (r = 0.86) in mammals. 

Contrary to these findings, however, Dutenhoffer and Swanson (1996) reported a 

significant positive correlation between BMR and summit (maximum) 

metabolism (r= 0.861) in 10 species of passerine. Metabolic rates in Dutenhoffer 

and Swanson's (1996) studies were measured using open-circuit respirometery 

throughout, to avoid any complications that may arise from combining data using 

different experimental techniques (see Daan et al, 1990). The data analysed by 

Ricklefs et al (1996), were collected from a wide range of studies, using a wide 

range of experimental techniques. 

3.1.5 The effects of captivity on Basal Metabolic Rate 

A few reports in the literature compare the values of BMR obtained from freshly 

caught birds and those of birds held in captivity for extended periods. These 
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reports disagree on the effects of captivity on BMR. Weathers et al (1983) 

compared the BMR's of four Apapanes Himatione sanguinea held in captivity 

for one year with those of four freshly caught ones. They found no significant 

difference (see also Dawson & Carey, 1976; Wasser, 1986). However, Warkentin 

and West (1990) reported that Merlins Falco columbarius, held in captivity for 

periods ranging from 7 months to 3 years had significantly higher BMRs and 

body temperatures than freshly caught birds. In their study, none of the captive 

birds were able to fly, due to wing fractures, and data from only 4 captive birds 

out of six (and different ages) were compared with those from 9 wild 

conspecifics. Piersma (1994) and Piersma et al (1996) found that long-term 

captive Knot had lower BMRs than those of wild birds. This was claimed to be 

due primarily to a decrease in mass of the digestive organs i.e. intestines and 

stomach. 

In my study, I was concerned with the comparison of the DEE's of the two 

subspecies of Dunlin, so that even i f the general level of BMR decreases or 

increases in captive birds, the validity of the comparison wil l not be affected as 

long as the decreases or increases occur to an equal extent in both subspecies, 

which seems highly probable. 

3.2 Methods 

3.2.1 Day and night variation in BMR 

To determine whether diurnal variation in Basal Metabolic Rate (BMR) occurred 

in captive Dunlin, the value obtained during the day was compared with a 

subsequent value recorded at night (see chapter 2 section 2.3.6 for more details) 
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3.2.2 Resting metabolic Rate in the two subspecies of Dunlin 

6 juvenile C.a.alpina and 4 juvenile and 4 adult C.a.schinzii were caught on 

24/9/96 and 6/8/97 respectively under licence from English Nature, using 

cannon-netting on Teesmouth. They were held in captivity for 23-34 months 

under the conditions described in Chapter 2 section 2.3.1. In order to estimate the 

energy costs of living, measurements of basal metabolic rate (BMR) every month 

and resting metabolic rate (RMR) in March and November were made using the 

protocols described in Chapter 2 sections2 .3.3 and 2.3.4. I assumed that DEE 

was a fixed multiple of BMR or RMR, following the analysis by Drent et al, 

(1978). This may not be strictly true for the interspecific relationship (Ricklefs et. 

al 1996), but should allow valid comparisons between two races of a single 

species. Using average temperatures on their breeding, wintering, moulting and 

refuelling sites (Meteorological Office, 1982). Drent et al, (1978) assumed that 

DEE is 2.6 BMR. However, I assumed that DEE is 2RMR to allow for 

thermoregulation. I estimated the RMR and energy costs of living from the 

RMR/temperature graphs (Figures 5 and 6). 
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3.3 Results and discussion 

3.3.1 Day and night variation in BMR 

The mean level of BMR of the six birds was slightly lower during the night. 

However, paired t-tests indicated that this reduction was not statistically 

significant (t. = 1.116, P > 0.05) and did not occur in all individuals (Table 1). 

Scott (1991) and Selman (1998) have also found no significant change in BMR 

of individual shorebirds measured during a day and the next night. There is no 

reason that increases BMR in waders at night as their feeding in the wild likely to 

be governed by the tide and not by the light intensity (see Kersten & Visser, 

1996). 

Table 1: Day and night BMR and Mass-Specific BMR in six Dunlin 

Individual 
Dunlin 

MR(Watts) 
during day 

BMR(Watts) 
during night 

Mass-specific 
BMR (Watts/kg) 

during day 

Mass-specific 
BMR (Watts/kg) 

during night 
DG 0.736 0.733 14.7 14.9 
OR 0.74 0.74 15.4 15.4 
L G 0.87 0.82 15.9 15.5 
B L 0.75 0.71 17.9 17.28 

Y E L 0.73 0.76 13.5 14.00 
R E 0.55 0.53 12.78 12.27 

Mean 0.729 0.716 
SE= 0.01238, For the differences between pairs: t. = 1.116, P > 0.05 

3.3.2 The relationship between Resting Metabolic Rate and temperature in 
the two subspecies of Dunlin 

Measurements of resting metabolic rate were made for the two subspecies of 

Dunlin in March and November in order to establish the relationship between 

resting metabolic rate and temperature and hence energy costs of living at 

different temperatures. Measurements were taken twice, in different seasons, in 
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order to check the stability of this relationship. Figures 3a, 3b, 4a and 4b 

summarise the results for C.a.alpina (Figure 3) and C.a.schinzii (Figure 4) in the 

two months. No significant differences in the slope or in the intercept were found 

between measurements taken in March and in November for each of the two 

subspecies of Dunlin (slopes: paired t-test=1.7, intercept paired t-test = 1.64 in 

alpina and slopes: paired t-test =1.5, intercept: paired t-test = 0.92 for schinzii). 

Therefore, I combined the two sets of measurements (March and November) in 

order to establish the relationship between RMR and temperature for each 

subspecies (see Appendix V). The difference between the two slopes of the two 

subspecies is 0.00052, which is less than the S.E. of either of the two slopes. That 

means that the two regression line of the two subspecies do not differ 

significantly at the P = 0.05 level (Figure 4c). 

Figure 3a: The relationship between Resting Metabolic rate (RMR) and 
temperature measured in March for six C.a.alpina. Bars indicate SE. 
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Figure 3b: The relationship between Resting Metabolic rate (RMR) and 
temperature measured in November for six C.a.alpina. Bars indicate SE. 
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Figure 4a: The relationship between Resting Metabolic rate (RMR) and 
temperature measured in March for eight C.a. schinzii. Bars indicate SE. 
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Figure 4b: The relationship between Resting Metabolic rate (RMR) and 
temperature measured in November for five C. a. schinzii. Bars indicate SE. 
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Figure 4c: Regression lines of RMR against temperature for the two subspecies 
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3.3.3 Energy costs of Hying in C.a.alpina and C.a.schinzii 

The nominate subspecies of Dunlin C.a.alpina breeds in north Scandinavia and 

Russia east to the Taimyr Peninsula (Hale, 1980; Gromadzka, 1989), but the 

majority are found only as far east as the Yamal peninsula (Wennerberg ei al, 
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1999; Wenink et al, 1996). This subspecies breeds mainly from early May until 

late July. Energy costs of living while on breeding grounds are summarised in 

Table 1.1. This subspecies moults mainly on the Wadden Sea and the Wash in 

East England (Holmgren et al, 1993) and winters in western Europe, mainly in 

Britain, Ireland and France (Pienkowski & Pienkowski, 1983; Gromadzka, 

1989). The energy costs of living on their moulting and wintering grounds are 

summarised in Table 1.2 and 1.3 respectively. Energy costs of living while 

fattening in Schleswig-Holstein (Germany) and in the (Turku-Pori) region of 

Finland are summarised in table 1.4 and 1.5 (see ringing and recoveries maps in 

appendix V I I I for evidence of use of these sites as fattening areas). 

The other subspecies of Dunlin I studied, C.a.schinzii, breeds mainly in Iceland 

and moults and winters in Morocco and Mauritania. The energy costs of living in 

these areas are summarised in table 2.1, 2.2 and 2.3. This subspecies probably 

uses three staging posts during their spring and autumn migrations (see ringing 

and recoveries maps appendix VIII) . The energy costs of living while fattening at 

the probable staging posts are summarised in table 2.4 and 2.5. 

Table 3.1 shows the total energy costs of living, throughout their annual cycle, 

for the two subspecies of dunlin. It can be seen that the total energy costs of 

living are highest in 'winter' because this season is the longest and temperatures 

are the lowest. Also it can be seen that the energy costs of living in 'winter' in 

C.a.alpina are much higher than in C.a.schinzii as they former winter further 

north where the temperatures are lower. This difference constitutes almost half 

of the (21%) higher total costs of living increased by the race C.a.alpina. 

Although energy costs of living on the breeding grounds are nearly the same for 

the two subspecies of Dunlin, energy costs of living on the moulting grounds are 
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interestingly much higher in alpina than in schinzii, that might be attributed to 

the fact that alpina moult in areas with lower temperatures (on the Wadden Sea 

and the Wash) than do schinzii (Morocco and Mauritania); also moult itself in 

alpina takes longer than in schinzii (three months as opposed to two). However, 

energy costs of living on the fattening grounds in schinzii are higher than in 

alpina because schinzii spend longer on migration. It can also be seen from table 

3.1 that the energy costs of living on moulting and wintering grounds constitute 

almost all of the (21%) higher total costs of living increased by the race 

C.a.alpina. 

Table 1.1: Estimation of energy costs of living on breeding grounds in north 
Scandinavia and Russia east to Vaigach Island for C.a.alpina. 

May 
(31 days) 

June 
(30 days) 

July 
(20 days) 

Average maximum 
temperature °C 8.5 14 18 

Average minimum 
temperature °C 0.5 6 9.5 
Average daily 
temperature °C 4.5 10 14 

RMR 
(Watt) 1.135 1.020 0.935 

Daily EE 
(KJ) 196 176 162 

Monthly EE 
(KJ) 6076 5280 3240 

Total Energy costs of living on breeding grounds for C.a.alpina is approximately 
=14596KJ 

Notes: Daily Energy Expenditure estimated as 2 x RMR 
RMR / temperature relationship shown in Figure 5. 
E E : means Energy Expenditure 
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Table 1.2: Estimation of energy costs of living on moulting grounds in the 
Wadden Sea and the Wash in England for C.a.alpina. 

August 
(20 days) 

September 
(30 days) 

October 
(31 days) 

Average maximum 
temperature °C 20 18 13 

Average minimum 
temperature °C 13 11 7.5 
Average daily 
temperature °C 16.5 14.5 10 

RMR 
(Watt) 0.875 0.920 1.020 

Daily EE 
(KJ) 151 159 176 

Monthly EE 
(KJ) 3020 4770 5456 

Total Energy costs of living on moulting grounds for C.a.alpina is approximately 
=13246 KJ 

Note: See Table 1.1. 

Table 1.3: Estimation of energy costs of living for C.a.alpina on their wintering 
grounds in W Europe mainly in Britain, France and Ireland. 

November 
(30 days) 

December 
(31 days) 

January 
(31 days) 

February 
(28 days) 

March 
(31 days) 

Average maximum 
temperature °C 10 7.5 6.5 7 9.5 

Average minimum 
temperature °C 5 3 1.5 1.5 3 
Average daily 
temperature °C 7.5 5 4 4 6 

RMR 
(Watt) 1.07 1.12 1.15 1.15 1.1 

Daily EE 
(KJ) 185 194 199 199 190 

Monthly EE 
(KJ) 5550 6014 6169 5572 5890 

Total Energy costs of living on wintering grounds for C.a.alpina is 
approximately =29195 KJ 

Note: See Table 1.1 
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Table 1.4: Estimation of energy costs of living on stopover grounds during 
autumn migration for C.a.alpina. 

Schleswig-Holstein Turku-Pori 
Germany Finland 

August 
(10 days) 

July 
(todays) 

Average maximum 
temperature °C 19 21 

Average minimum 
temperature °C 15 11 
Average daily 
temperature °C 17 16 

RMR 
(Watt) 0.865 0.885 

Daily EE 
(KJ) 149 153 

(10 days) EE 
(KJ) 1490 1530 

Total Energy costs of living on stopover grounds in autumn migration for 
C.a.alpina is approximately = 3020 KJ 

Notes: See Table 1.1 

Table 1.5: Estimation of energy costs of living on stopover grounds during 
spring migration for C.a.alpina 

Schleswig-Holstein Turku-Pori 
Germany Finland 

April 
(20 days) 

April 
(10 days) 

Average maximum 
temperature °C 8 6 

Average minimum 
temperature °C 4 -3 
Average daily 
temperature °C 6 1.5 

RMR 
(Watt) 1.100 1.205 

Daily EE 
(KJ) 190 208 

Total EE 
(KJ) 3800 2080 

Total Energy costs of living on stopover grounds in spring migration for 
C.a.alpina is approximately = 5880 KJ 

Notes: See Table 1.1 
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Figure 5: The relationship between Resting Metabolic Rate (RMR) and ambient 
temperatures. RMRs presented here are the average of those measured in March 
and November for six C.c^alpina^ 
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Table 2.1: Estimation of energy costs of living on breeding grounds in Iceland 
for C.a.schinzii. 

May 
(15 days) 

June 
(30 days) 

July 
(30 days) 

Average maximum 
temperature °C 8.2 11.2 12.7 

Average minimum 
temperature °C 3 5.8 7.7 
Average daily 
temperature °C 5.5 8.5 10 

RMR 
(Watt) 1.08 1.02 0.98 

Daily EE 
(KJ) 187 176 169 

Total EE 
(KJ) 2805 5280 5070 

Total Energy costs of living on breeding grounds for C.a.alpina is approximately 
=13155 KJ 

Notes: Daily Energy Expenditure estimated as 2 x RMR 
RMR / temperature relationship shown in Figure 6. 
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Table 2.2: Estimation of energy costs of living on moulting grounds in Morocco 
and Mauritania for C.a.schinzii. 

September 
(30 days) 

October 
(31 days) 

Average maximum 
temperature °C 27 26 

Average minimum 
temperature °C 18.5 16 
Average daily 
temperature °C 23 21 

RMR 
(Watt) 0.7 0.75 

Daily EE 
(KJ) 121 130 

Monthly EE 
(KJ) 3630 4030 

Total Energy costs of living on moulting grounds for C.a.alpina is approximately 
=7660 KJ 

Notes: See Table 2.1. 

Table 2.3: Estimation of energy costs of living on wintering grounds in Morocco 
and Mauritania for C.a.schinzii. 

November 
(30 days) 

December 
(31 days) 

January 
(31 days) 

February 
(28 days) 

March 
(31 days) 

Average maximum 
temperature °C 23 20 19 20.5 22 

Average minimum 
temperature °C 14 11 10 10.5 12 
Average daily 
temperature °C 18.5 15.5 14.5 15.5 17 

RMR 
(Watt) 0.80 0.87 0.89 0.87 0.83 

Daily EE 
(KJ) 138 150 154 150 143 

Monthly EE 
(KJ) 4140 4650 4774 4200 4433 

Total Energy costs of living on wintering grounds for C.a.schinzii is 
approximately =22197 KJ 

Notes: See Table 2.1. 
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Table 2.4: Estimation of energy costs of living on stopover grounds during 
autumn migration for C.a.schinzii. 

Teesmouth NE SW 
England France Morocco 

August 
(10 days) 

August 
(10 days) 

August 
(10 days) 

Average maximum 
temperature °C 19 22.5 27.6 

Average minimum 
temperature °C 11 14.5 18.5 
Average daily 

temperature °C 15 18.5 23 
RMR 
(Watt) 0.875 0.80 0.70 

Daily EE 
(KJ) 151 138 121 

(10 days) EE 
(KJ) 1510 1380 1210 

Total Energy costs of living on moulting grounds for C.a.alpina is approximately 
= 4100 KJ 

Notes: See Table 2.1. 

Table 2.5: Estimation of energy costs of living on stopover grounds during 
spring migration for C.a.schinzii. 

SW Teesmouth NE 
Morocco France England 

April 
(15 days) 

April 
(15 days) 

May 
(15 days) 

Average maximum 
temperature °C 21.7 14.5 14 

Average minimum 
temperature °C 12 8 6 
Average daily 
temperature °C 17 11 10 

RMR 
(Watt) 0.830 0.965 0.985 

Daily EE 
(KJ) 143 167 170 

(15 days) EE 
(KJ) 2145 2505 2550 

Total Energy costs of living on moulting grounds for C.a.alpina is approximately 
= 7200 KJ 

Notes: See Table 2.1. 
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Figure 6: The relationship between average Resting Metabolic Rate (RMR) and 
temperatures. RMRs presented here are the average of those measured for 
C.a.schinzii in March (n=8) and November (n=5) 
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Table 3.1: Total energy costs of living at different sites for the two subspecies of 
dunlin 

Total energy costs 
of living on each 

site (KJ) 

Annual 
costs of 

living (KJ) 

C.a.alpina 

On breeding grounds 14596 

65937 
C.a.alpina 

On moulting grounds 13246 65937 
C.a.alpina 

On wintering grounds 29195 

65937 
C.a.alpina 

On fattening grounds 8900 

65937 

C.a.schinzii 

On breeding grounds 13155 

54312 
C.a.schinzii 

On moulting grounds 7660 54312 
C.a.schinzii 

On wintering grounds 22197 

54312 
C.a.schinzii 

On fattening grounds 11300 

54312 
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Chapter 4, 
Energy costs of moult 

4.1 General introduction 

The most obvious feature of birds, which distinguishes them from all other living 

animals, is their plumage, the collective name for the outer covering of feathers. 

Feathers are probably the most complex derivatives of the integument to be found in 

any vertebrate. Five main structural categories of feathers can be recognised in a bird: 

contour (body and flight) feathers, semiplumes, down feathers, bristles and filoplumes 

(Stettenheim, 1972). 

The functions of body and flight feathers are as follows. The former are distributed 

over the general body surface of the bird providing protection against the environment 

and also streamlining the body and wing surface during flight, as the feathers point 

backwards towards the tail and each feather is overlaid by the one in front to form a 

barrier to wind and rain. They are also very important in helping to regulate the bird's 

body temperature by insulating it from the environment by a layer of air trapped 

around the body. In addition body feathers play vital roles in the incubation of eggs, 

protection of the young, camouflage and sexual communication (Stettenheim, 1976 in 

Murphy, 1996). In waterbirds, body feathers have an additional important function by 

forming a water-repellent layer, and their body plumage is more compact and more 

oily than in other birds (Ginn & Melville, 1983). 

Feathers of the wings and tail are adapted for their crucial roles in flight, stability and 

manoeuvrability as they are relatively large, rigid and mostly pennaceous (Amadon, 

1966). 



Although feathers are strong and regularly cared for by preening, they are subjected to 

progressive wear and tear, which reduce their structural integrity, and hence they have 

to be replaced by new ones. 

The repeated replacement of all or parts of the plumage by new feathers is known as 

moult and is an important event in the annual cycle of a bird. This replacement of 

feathers is needed to (i) aid in regulating body temperature, (ii) maintain a high level 

of flight performance (iii) maintain feathers waterproofed (iv) allow seasonal changes 

in appearance for courtship and mating (Campbell & Lack, 1985). Most species 

undergo at least one full moult in the year and many do so twice. In a few species 

moult can occur three times a year. Most birds moult the wing feathers symmetrically 

in pairs from either side. Moult requires an increased rate of energy expenditure (e.g. 

Dietz et al, 1992; Murphy & King, 1992; Lindstrom et al, 1993) see section 4.3.2 in 

this chapter. Flight performance may be reduced during the moult of the wing feathers 

(Pennycuick, 1975; Swaddle & Witter, 1997) and therefore birds are exposed to 

increased risk from predators. These factors may explain why moult in most bird 

species, especially in temperate regions, is separated from migration and reproduction. 

Some species do however overlap breeding and moult to some extent, in species in 

which feather replacement extends over a long period of the year so that the extra 

energetic demands are well spread, and in those living in hot tropical areas where 

thermoregulatory energy demands should not be increased by moult (Campbell & 

Lack, 1985). In some species moult continues even when nutrients are very limited 

(Murphy, 1996). Timing and duration of moult differ between species and even 

between populations of the same species. In migrant species some start to moult near 

their breeding grounds but suspend moult during migration, others complete moult in 
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their wintering quarters or at special moult sites part of the way along their migration 

route. 

4.1.1 Moult in Dunlin C.a.alpina and C.a.schinzii 

The timing and duration of moult in Dunlin differs between populations and even 

between sexes. Nominate Ca.alpina leave breeding grounds in Russia and 

Scandinavia (Lessels, 1974; Leslie & Lessels, 1978) to moult at a few large estuaries 

or intertidal areas, for example in the Wadden Sea areas of Denmark, Germany and 

Netherlands (Boere, 1976). Along the east coast of Great Britain (e.g. at the Wash, 

Hale, 1980) they start moulting between early July and early August and finish 

between early September and early October, a period of 80-90 days. Late starting 

birds moult more quickly than early starters and females moult more quickly than 

males (Ginn and Melville, 1983). Nominate schinzii also moult after migrating from 

their breeding grounds (in Iceland and south-east Greenland) to Morocco and 

Mauritania where they renew their primaries in 60-70 days between early September 

and late November (Pienkowski & Dick 1975; Pienkowski et al, 1976; Boere, 1976; 

Nieboer, 1972). 

4.2 The Energetic Costs of the whole moult process 

4.2.1 Methods of measuring the energy costs of moult 

The costs of feather production differ a great deal between bird species. The energy 

costs of feather synthesis can be measured or estimated by four methods (i) as 

metabolised energy during moult, (ii) by summing caloric equivalents of overnight 

changes in body mass during moult, (iii) by estimation of the energy intake required 
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to supply the sulfur-containing amino acids (SAA) needed for plumage synthesis, (iv) 

by measuring oxygen consumption during moult. 

The first method, involving measuring the metabolised energy (ME) of birds 

throughout their moults, provides a summation of their daily energy expenditures 

(DEE). This method has potential errors associated with diurnal variation in rates of 

feather production and associated processes (Murphy, 1996). This attribute of the ME 

method, however, limits its usefulness for estimating the costs of individual 

components of an animal's energy budget, such as plumage production, because 

adjustments in components of the energy budget can mask one another (Murphy, 

1996). Moulting birds usually reduce, for example, their level of activity (e.g. 

Newton, 1966; Morton & Morton, 1990; but see also Dow, 1973) and the saving in 

energy needed for activity can be almost equivalent to the energetic costs of moult 

(Lindstrom, 1993). This method provide estimates of energy costs of moult that are in 

agreement with estimates derived from measures of oxygen consumption when 

measures of ME are made before, during and after moult (Murphy & King 1984b; 

Dietz et al, 1992), but some estimates may be significantly higher (e.g. in Chaffinch 

Fringilla coelebs, Dolink & Gavrilov, 1979). 

The second method of measuring energy costs of moult is to obtain the caloric 

equivalents of overnight changes in body mass. This method assumes that energy 

costs for moult are constant through each hour of the 24-hour cycle and it also include 

the unlikely assumption that the proportions of fat, carbohydrate, protein, and water 

lost overnight remain unchanged through the course of moult (Murphy, 1996). This 

method was used extensively by Dolnik (1965,1967) and assumes a caloric equivalent 

of mass loss equal to 13.8KJ g"1, based on the total energy costs for moult in 15 
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species of Palaearctic passerines. Dolnik's method based on mass loss appears to 

produce higher estimates for the total energy costs of moult than measures of oxygen 

consumption or metabolised energy (Murphy, 1996). 

The third method for estimating the energy costs of moult was suggested by Gavrilov 

and Dolnik (1974) and later termed the 'aminostatic hypothesis 'by Murphy and King 

(1984b). The main assumption of this method is that the energy costs of moult (KJ 

ME) can be estimated by comparing the cystine content of the bird's diet and the 

cystine needed for plumage synthesis. They assumed that the apparent difference 

between the energy cost of the whole moult process and the energy deposited in new 

plumage can be accounted for by the energy demanding conversion (oxidation) of 

large amounts of food to extract the essential amino acid cystine necessary for feather 

synthesis. This method involves five questionable assumptions and is fundamentally 

flawed (for more details see Murphy & King, 1984b; Murphy & King, 1987). 

The fourth method relies on measurement of oxygen consumption, usually made 

during the bird's normal resting period in each 24 hour. This method assumes that the 

rate of plumage production and accompanying metabolic processes are constant 

through the 24-hour cycle. The increase in resting metabolism in moulting birds is 

assumed to result from processes associated with feather regeneration. Feather 

production may proceed at the same rate both by day and night (Wood, 1950; Newton, 

1966; Murphy & King, 1986b) but also may not (e.g. Lillie & Wang, 1940). 

The most useful of these methods are those that can provide an energy expenditure per 

mass of plumage produced, assuming that the intensities of the processes occurring 

within moult are proportional to the intensity of plumage production. Patterns of 

energy expenditure during moult more or less support this hypothesis (e.g. Murphy & 
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Kingl984b; Lindstrom et al, 1993; Murphy, 1996), perhaps with the exception of 

changes in thermoregulation costs (Blackmore, 1969). 

4.2.2 The effect of moult on the metabolic rate and thermoregulation 

A general rise in resting energy metabolism during moult has been reported for 

several species. This increase above non-moulting levels ranged widely from 9-111% 

in different species (King, 1981; Lindstrom et al. 1993). Some of the causes of this 

variation between species wil l be discussed later in this section. In moulting birds both 

body temperature and metabolic rate suggest that moult involves increased energy 

requirements. This increase in energy metabolism in moulting birds occurs when wild 

birds are often unusually inactive, indicating that moult itself is responsible for the 

increase in metabolism (Payne, 1972). When birds moult, their insulation also 

decreases. Therefore, they require more energy to maintain the same core body 

temperature. But in many species core body temperature rises because the heat 

produced by the intensified metabolism of moulting birds more than offsets the 

decrease in insulation (Gavrilov, 1974 in Murphy, 1996), and heat dissipation may 

provide a thermoregulatory challenge for moulting birds causing elevated body 

temperatures (e.g. Newton, 1968b; but see also Chilgren, 1977). Also moulting birds 

must produce new feathers which require increased (i) protein (amino acids especially 

the essential amino acids such as cystine, lysine, arginine and tyrosine) to supply 

substrates, (ii) energy, (iii) iron for erythrocyte production for an increased blood 

volume (Murphy & King, 1992). Many birds moult at times of year with relatively 

warm ambient temperatures, which minimise the thermostatic costs during moult. 
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4.2.3 The possible causes of interspecific variation in costs of moult 

The cost of moult differs substantially between species. It has been argued whether 

differences in body mass, basal metabolic rate, diet, or the latitude of moult could 

explain these interspecific variations. The increase in metabolic rate during moult not 

only reflects the cost of formation of keratin alone, but may also include energy spent 

on production and maintenance of tissues needed for feather synthesis (King, 1981; 

Murphy & King, 1984,1991a; Dietz et al, 1992) as the energetic efficiency of feather 

production (5%-20%) is much lower than the 40%-50% efficiency found in the 

synthesis of other protein (Reeds 1991). Murphy and King (1990,1991a) suggested 

that the differences in cost of feather replacement between species might be related to 

day length during the moult period. They argued that much energy is lost when birds 

store protein during the day for use in feather synthesis during non-feeding periods in 

the 24-hour cycle, for example at night. The more protein that has to be stored and 

transformed, the greater this loss would be. Thus, feather production costs would be 

proportional to night length and therefore to the latitude at which the birds normally 

moult. Murphy and King (1984b) also suggested that the differences in costs of 

feather production between small seed-eaters and raptors might be related to their 

diets. Lindstrom et al (1993) studied the cost of moult in bluethroat, Luscinia s. 

svecica (an insectivorous songbird) and in common redpoll, Carduelis f . flammea (a 

seed-eater). They found that both bluethroats and redpolls had higher moult costs than 

most values reported earlier (Murphy & King, 1991; Dietz et al, 1992), even though 

they moulted in almost continuous daylight. They also found that feather production 

costs in the seed-eating redpoll were not significantly higher than in the insectivorous 

bluethroat, whereas a difference would have been expected (redpolls higher) i f the diet 
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hypothesis were correct. They concluded that the cost of feather production was 

significantly correlated with both body mass and mass-specific BMR, and that neither 

diet nor latitude alone could explain the differences between species. During peak 

moult intensity, the average metabolic rate was 111 % higher than the premoult value 

for bluethroats and 106% higher for redpolls. The postmoult metabolic rate was 15% 

higher than the premoult values for bluethroats whereas it was 18% lower than the 

premoult values in redpolls. Body mass and fat score increased during the first half 

and after the completion of moult. During the second half of the moult period, total 

body mass decreased whereas fat scores stayed stable (Lindstrom et al, 1993). The 

changes in total mass during moult are mainly due to changes in water mass, which is 

correlated with feather growth (e.g. Newton, 1968b; Evans, 1969; Chilgren, 1977). 

The energy costs of production of a given amount of feather mass have only rarely 

been measured. Lindstrom et al, (1993) produced relationships between the energy 

cost of moult, body mass and mass-specific BMR, from the few published studies 

which have been made of the energy costs of feather production, and from their own 

study. They found that the cost per gram of feather growth (Cf), in the seven species 

which have been studied by indirect calorimetry, correlated significantly with mass (m 

kg) according to the equation 

log C f = 1.984-0.382 logm (1) (r2 = 0.67) 

Since the costs of moult involve several metabolic processes in addition to keratin 

synthesis (King, 1981) and since these require energy in proportion to mass, moult 

costs should be related to the mass-specific BMR (MSBMR) according to equation (2) 

(Dietz et al, 1992). This explains more of the observed variance in energy costs of 

feather synthesis (r2 = 0.82) than equation 1. 
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log C f = 2.459+0.843 log MSBMR (2) 

Costs of feather production per gram for a species with known mass-specific BMR 

can be estimated roughly from the equation Cf= 270 MSBMR (3) (Lindstrom 

etal, 1993). 

According to equations (2) and (3), the energy costs of moult per gram feather mass 

(but not the total costs) increase with decreasing body mass because MSBMR 

increases also. 

4.3 Energy costs of moult in Dunlin 

Two methods were used to estimate the energy costs of moult in my study: 

1) Measurement of the mass of plumage produced by Dunlin of the two races and 

their body mass and hence calculation of values for the energy requirements from 

equation (1) of Lindstrom et al, (1993). 

2) Measurement of changes in BMR during moult. Any significant variation in basal 

metabolic rate with stage of moult would allow estimation of the cost of feather 

production (KJ. [g dry feathers]"1 ,since costs of activity are eliminated. 

4.4 Methods 

(1) In order to measure the mass of Dunlin plumage, 26 adults Dunlin that had died on 

the Severn (south-west England) and Tees (north-east England) estuaries were used. 

A l l feathers were plucked and flight feathers (primaries, secondaries, greater coverts 

and tail) and body feathers (the rest of the feathers) dried (using vacuum oven at 40 

°C) and weighed on a torsion balance to the nearest 10 mg, separately. 
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(2) Metabolic Measurements: were made by Open-flow Respirometry (see section 

2.3.3) 

Metabolic heat production was estimated by determination of rates of oxygen 

consumption using protocols described in Chapter 2 (section 2.3.3). BMR was taken 

before birds started to moult and then every two weeks during moult and for a period 

of 14 days after moult completion. 

(3) Body composition was monitored during moult at least once every two weeks 

using the TOBEC technique. The protocols of this technique were described in 

Chapter 2 (see section 2.3.2). 

(4) Moult scoring 

Moult score was taken every week, according to the methods described by Ginn & 

Melville (1983). Old feathers scored 0, growing feathers scored 1-4 depending on 

their length, a new feather fully developed with no trace of waxy sheath remaining at 

base was scored as 5. Wing feather scores refer to the left wing. In order to assess the 

general progress of moult, a primary score was calculated for each moult-scoring date 

by adding the score for the ten large primaries. Therefore, the score will be 0 when 

moult has not started and 50 when all primaries are new. Duration of moult was 

calculated as the time between the dropping of the first primary and the day when 

waxy sheaths were no longer present on any of the primary feathers. 

4.5 Calculation 

4.5.1 Calculation of the energy costs of moult in C.cualpina 
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The average body mass of C.a.alpina was 52.9g (SE = ±1.28, n=43) and the average 

mass of feathers of an adult alpina Dunlin is approximately 3.16 g (Table 1.1). 

Therefore, the energy cost per gram of feathers produced (Cf), derived from: 

log Cf = 1.984-0.382 log m (body mass kg) is: 

logCf = 1.984-0.382 * log 0.0529 

logCf=2.47 

That means the energy cost of moult is approximately 296 kJ/g dry feathers. 

Since the average mass of feathers of an adult Dunlin is 3.16g, the total energy costs 

of producing new feathers in last summer is approximately 3.16*296 = 935.4 kJ. The 

average mass of body feathers of an adult alpina is 2.44g, so the energy costs of body 

moult alone in spring are approximately 2.44*296 = 722.2 kJ. The total energy cost of 

moult therefore is approximately 1657 kJ for the whole annual cycle, therefore since 

birds moult only body feathers before breeding but undergo complete moult after 

breeding. 
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Table 1.1: Masses of body, flight and total feathers (g) of 16 adult C.a.alpina which 
died in winter on Severn (south-west England) 

Body Feathers 
(g) 

Flight Feathers 
(g) 

Total Feathers 
(g) 

2.224 0.652 2.876 
2.468 0.617 3.085 
2.271 0.645 2.916 
2.542 0.542 3.084 
2.769 0.624 3.393 
2.690 0.860 3.550 
2.560 0.645 3.205 
2.896 0.889 3.785 
2.430 0.941 3.371 
2.722 0.608 3.330 
2.429 0.895 3.324 
2.324 0.813 3.137 
2.101 0.724 2.825 
2.357 0.674 3.031 

2.100 0.676 2.776 
2.172 0.675 2.847 

Mean 2.441 0.718 3.156 

SE = 0.61 SE = 0.03 SE = 0.07 

4.5.2 Calculation of the energy costs of moult in C.tuschinzii 

The average body mass of C.a.schinzii is 47.6 g (SE = ± 0.39, n=232) and the average 

mass of feathers of an adult is approximately 2.70 g (Table 1.2). Therefore, the energy 

cost per gram of feathers produced (Cf), derived from log Cf = 1.984-0.382 log m 

(body mass kg), is 

62 



LogCf = 1.984-0.382 * log 0.0476 

LogCf = 2.489 

That means the energy cost of moult is approximately 308 kJ/g dry feathers. 

Since the average mass of body and flight feathers of an adult schinzii is 2.70 g, the 

total energy costs of producing new feathers in last summer is approximately 

2.70*308 = 831.6kJ. The average mass of body feathers of an adult schinzii is 2.02 g, 

so the energy costs of body moult alone in spring, are approximately 2.02*308 = 622 

kJ. The total energy cost of moult is therefore 1454 kJ the sum of the costs of late 

summer and spring moults. 

Table 1.2: Masses of body, flight and total feathers (g) of 10 adult C.a.schinzii which 
died in spring and autumn at Teesmouth 

Body Feathers Flight Feathers Total Feathers 
(g) (g) (g) 

2.100 0.799 2.899 
1.930 0.596 2.526 
1.990 0.798 2.788 
1.944 0.683 2.627 
2.180 0.683 2.863 
1.970 0.653 2.623 
2.110 0.750 2.860 
1.980 0.629 2.609 
2.130 0.653 2.783 
1.870 0.560 2.430 

Mean 2.020 0.680 2.700 

SE=0.03 SE=0.02 SE=0.05 
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4.6 Results of studies on captive birds 

4.6.1 Timing and duration of moult 

Captive alpina started to moult on average on July 16 (Range late June to mid 

August) and completed primary moult on average on October 16. Replacement of 

flight feathers required on average 91days (SE= ± 2.0) (see Table 1.2). This is similar 

to their moult in the wild, as they start moult between early July and early August and 

complete primary moult in September or early October, replacement of flight feathers 

lasting 80-90 days (Cramp & Simmons, 1983). 

In schinzii, only three of the seven captives exhibited complete (flight and body 

feather) moult. Two adults exhibited only flight feather moult. These five individuals 

started to moult on average on August 27 (range mid August to mid September) and 

completed primary moult on average on October 26, around 61 days later (SE = 

±1.69) (see Table 1.3). Again this is similar to wild schinzii, which moult between 

early September and late November, for 60-70 days (e.g. Boere, 1976; Pienkowski et 

al, 1976). 

Table 1.2 Timing and duration of primary moult of six captive C.a.alpina 

Individual Start Finish Duration 
(days) 

DG 26/06/98 21/09/98 87 
LG 12/08/98 10/11/98 90 
OR 04/07/98 06/10/98 94 

YEL 29/07/98 04/11/98 98 
RE 12/08/98 04/11/98 84 

BLU 21/06/98 21/09/98 92 

Average duration = 90.8, SE= 2.04 
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Table 1.3. Timing and duration of primary moult of five captive C.a.schinzii 

Individual Start Finish Duration 
(days) 

LLG* 14/09/98 09/11/98 56 
WOR 28/08/98 01/11/98 65 
WDG 17/08/98 12/10/98 61 

LYEL* 17/08/98 16/10/98 60 
WBLU 28/08/98 01/11/98 65 

Average duration = 61.4, SE= 1.69 
* did not moult body feathers 

4.6.2 Body composition during moult 

In captive alpina, total body mass decreased slightly just before birds started to moult 

(Figure 1.1), with a concomitant decrease in lean mass. The lowest body and lean 

masses occurred at the beginning of primary moult, but then recovered towards the 

end of moult, though fat levels declined until a marked short-lived increase just prior 

to wing-feather growth completion. After completion of moult, body and fat masses 

started to decrease again (Figure 1.1 and 1.2). 

These changes in body and lean mass during moult may result partly from (i) protein 

turnover, which is defined as the overall rate at which protein is synthesised and 

degraded in the body (ii) increases in body water content associated with expansion 

of the circulation needed for sustaining the growing feather and pulp (Murphy, 1996). 

Decreases in body mass occur in most birds species just before and at the beginning of 

moult which often coincides with the late stages of breeding, or shortly afterwards. As 

this time body masses are at, or near, their lowest for the year (e.g., Barnett, 1970; 

Carey et al, 1978; Coulson et al, 1983). Maintaining low body mass during the period 

of moult may minimise maintenance costs (Ankney, 1979). The peak of fat seen at 
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the end of moult coincides with a time when many alpina Dunlin move a few hundred 

kilometres from moulting grounds to wintering areas (Pienkowski & Evans, 1984). 

In captive schinzii, (Figure 1.3a) body masses were at their lowest just before moult, 

and increased slightly afterwards. As in alpina, they reached their peak just before 

completion of moult, decreasing again in three birds after the completion of moult. 

Two individuals (WOR and LYEL) put on much larger amounts of fat (Figurel.3 b), 

which they retained even after the completion of primary moult. Some schinzii 

migrate whilst in the last stages of active wing moult (Ginn & Melville, 1983) and the 

levels of fat deposited by WOR and LYEL are similar to those seen in wild schinzii 

before long distance migration. 

Figure 1.1: Mean predicted lean mass (PTLM) and predicted fat mass (PFM) before, 
during and after moult for six captive alpina (predicted using TOBEC). 
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Figure 1.2: Average body masses (bars indicate SE) of six alpina, before, during, and 
after moult 
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Figure 1.3a: Mean predicted lean mass (PTLM) and predicted fat mass (PFM) before, 
during and after moult for three captive schinzii 
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Figure 1.3b: Mean predicted lean mass (PTLM) and predicted fat mass (PFM) before, 
during and after moult for two captive schinzii (WOR, LYEL) 
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4.6.3 Metabolic rate 

In the following discussion I have used the average of the non-moulting BMRs 

(premoult and postmoult) as a baseline value. In six C.a.alpina, nonmoulting BMR 

was on average 0.69 watt. During the middle of moult, the average BMR increased to 

0.93 watt, 36% higher than non-moulting values (Figure 1.4). In five schinzii, 

however, nonmoulting BMR was on average 0.66 watt, whereas during the middle of 

moult, the average BMR increased to 0.87 watt, 32% higher than nonmoulting values 

(Figure 1.5). The increase in average BMR during the middle of moult in the six 

alpina was slightly higher than in the five schinzii. This might be expected as alpina 

is slightly larger than schinzii which means that alpina is producing more feathers and 

more energy may be required to maintain the same core body temperature. 
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The increase in BMR during the middle of moult in the two subspecies of Dunlin may 

due both to poorer insulation in this stage of moult and to the increased rate of 

producing new feather material which requires both an intensification of amino acid 

metabolism (Murphy, 1996) and an acceleration of whole body protein turnover 

(Murphy & Taruscio, 1995; Taruscio & Murphy, 1995). Even though BMR increases 

during moult in captive birds of many species (summarised by Lindstrom et al, 1993 

and Murphy, 1996), many species of wild birds become less active during this period 

(e.g. Newton 1966; Owen and Ogilvie 1979; Bailey 1985; Morton and Morton 1990; 

but see also Dow 1973), so that total daily expenditure may remain unchanged i f 

savings in activity completely offset the energy costs of moult (e.g. Davis 1955; 

Lindstrom et al, 1993). 

Although there is a small difference in the percentage increase in BMR during moult 

between alpina and schinzii, this difference is not of major importance in relation to 

differences in total energy costs of the annual cycle in the two subspecies of Dunlin. 

69 



Figure 1.4: Average BMR, before, during and after moult for six C.a.alpina. Bars 
indicate 2x SE 
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Figure 1.5: Average BMR, before, during and after moult for five C.a.schinzii. Bars 
indicate 2x SE 

m 0.75 

PRE 7-12 25-35 45-50 

M oult stage 

POST 

70 



4.7 Final conclusion 

Energy costs of moult, above the daily costs of living, were calculated from Figures 

1.4 and 1.5 as follow: 

I f daily energy costs during moult increased steadily over a period of x days to a 

maximum near the middle of the period of wing moult, then total increase in energy 

required to maintain constant body temperature between start and the time of most 

intense moult =Vz X days * change in MR (KJ/day) (1) 

And the total increase in energy required between the time of most intense moult and 

end of moult (a period of y days): 

= Vz y days * change in MR (KJ/day) (2) 

.'. Total 'cost' of moult (additional to normal living costs): 

= Equation (1) + Equation (2) 

For C.a.alpina: 

Total increase in energy required between start and middle of moult: 

= Vi 41.8 * 21.6 = 451.4 KJ (see Table 1.3). 

Total increase in energy required between middle and end of moult: 

= Vi 49 * 20.56 - 503.7 KJ (see Table 1.3). 

.-. Total 'cost' of moult = 451.4 + 503.7 = 955 KJ 

This means that the total energy costs of moult (late summer moult), which include 

body and flight feathers is 955 KJ. Since body temperature and the insulation of 

moulting bird in the spring moult (body feathers) in late summer moult is nearly the 
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same, since the energy costs of producing 3.16g (body and flight feathers) = 955 KJ 

(in late summer moult). 

The energy costs of producing body feathers of 2.44 g: 

= 955 * 0.772 

= 737KJ 

.*. The total energy costs of moult = 955 + 737 

= 1692 KJ 

This estimation of energy costs of moult (1692 KJ) is very close to the calculation 

made in section 4.6.1 (1657 KJ) using the formula made by Lindstrom et al 1993. 

For C.a.schinzii: 

The same approach was made for this subspecies: 

Total increase in energy required between start and the time of most intense moult is 

= Vi 31.2 * 19.44 = 303.3 KJ (see Table 1.4). 

Total increase in energy required between middle and end of moult: 

= Vi 30.2* 18.4= 277.8 KJ (see Table 1.4). 

.-. Total 'cost' of moult = 303.3 + 277.8 = 581 KJ 

This means that the total energy costs of moult (late summer moult), which include 

body and flight feathers is 581 KJ. Since body temperature and the insulation of 

moulting bird in the spring moult (body feathers) and in late summer moult is nearly 

the same, since the energy costs of producing 2.70g (body and flight feathers) = 581 

KJ (in late summer moult). 

.". The energy costs of producing body feathers of 2.02 g: 

= 581 * 0.748 = 435 KJ 
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The total energy costs of moult = 581+435 = 1016KJ 

This estimation of energy costs of moult (1016 KJ) is about two third of the 

calculation made in section 4.6.2 to estimate the energy costs of moult (1454 KJ) 

using the formula made by Lindstrom et al, 1993. 

Table 1.3 
Individual Days between start 

and middle of moult 
Days between middle 

and end of moult 
DG 33 54 
LG 55 35 
OR 39 55 

YEL 39 59 
RE 55 29 

BLU 30 62 
Average 
duration 41.8 49 

Table 1.4 
Individual Days between start 

and middle of moult 
Days between middle 

and end of moult 
LLG 22 34 
WOR 39 26 
WDG 28 33 
LYEL 28 32 
WBLU 39 26 

Average 
duration 31.2 30.2 
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Chapter, 5 

Energy costs of migration 

5.1 General Introduction 

Many birds perform migrations twice each year between their breeding and non-

breeding areas, thereby optimizing the use of seasonal environments (Alerstam & 

Hogstedt, 1982). Discoveries during recent decades, using ringing, systematic 

field observations and radar, have created more opportunities to appreciate the 

magnitude and complexity of bird migration. Bird species vary in the extent of 

their migrations, some moving only short distances but others many thousands of 

kilometers. Several species e.g. Ringed plover Charadrius hiaticula, Redshank 

Tringa totanus (Salomonson 1955a,b) and Dunlin Calidris alpina (Alerstam & 

Hogstedt 1980, 1985; Pienkowski et al, 1985), perform what has been termed as 

leap-frog migration where the more northerly breeding populations migrate over 

the other populations to winter beyond even the most southerly breeding races. 

The reasons for this leapfrog pattern remain a subject of speculation (see Chapter 

1). Long distance flights over inhospitable environments require the storage of 

sufficient nutrient reserves to supply the birds with energy throughout their travel 

periods without the need to refuel. Energy reserves for these movements ( i f 

performed by flapping flight) are stored mainly as lipid in the form of 

triglycerides (Blem, 1976). Flapping flight, the predominant mode of avian 

locomotion in smaller birds, is thought to be the most expensive mode of 

locomotion per unit time in animals using this sort of flight (Saunders & Klemm, 

1994). 
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Because of the high energy-costs of flight, birds choose light and high-energy 

content materials for energy storage, namely fat. The energetic yield by oxidation 

of one gram of fat is up to 40KJ, which is about eight times higher than the yield 

from wet protein (5 kJ) (Piersma, 1990). For long-distance migrants, energy 

reserves (mainly fat but to a much lesser extent protein) are stored prior to 

migration and also at intermediate staging sites along the migration route. These 

reserves are stored primarily in discrete depots subcutaneously and associated 

with the mesenteries, and also intercellularly in skeletal muscle and the liver (for 

more immediate use). The deposition of fat is achieved by an increase in 

adipocyte volume without an increase in adipocyte cell number (Odum, 1960; 

Blem, 1976). Several strategies may be adopted by migrant birds to aid fat 

deposition which is achieved mainly by hyperphagia (increased food intake) ( 

e.g. Odum, 1960; Blem, 1976, 1980). On the Banc d'Arguin in West Africa, 

waders (e.g. Dunlin Calidris alpina) increase total feeding time in each 24 hours 

by continuing to feed at night and during neap tides, to achieve extra daily food 

intake during the spring fattening period (Ens et al, 1990). Some birds such as 

Turnstone Arenaria interpres, however, prepare for migration by increasing 

feeding rates, by reducing time spent on vigilance (Metcalfe & Furness, 1984). 

Other strategies include a reduction in locomotor activity with a concomitant 

reduction in daily energy expenditure (Stokkan et al, 1986; Cherel et al, 1987; 

Lindgard a/, 1992). 

The amount of fat that birds store before and during migration depends upon the 

species, migratory distance and the general circumstances of the migratory path 

(Biebach, 1996). Birds have to decide their optimal fuel load prior to migration 
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taking into account the advantages and disadvantages of carrying extra fuel (see 

later in this section). Long-distance migrants consume their fat reserves during 

flight throughout the night as well as by day and then stop for several days on the 

refueling sites. Rates of fat deposition during these stopovers can be relatively 

high. The median rate can reach 1.3% of lean body mass per day in waders (n = 

27 species) and 2.4% in passerines (n = 31) the range for both groups lying 

between 1% and 7% (Alerstam & Lindstrom, 1990). Data on maximal deposition 

rates indicate that shorebirds with a body mass of 20-100 g deposit fat equivalent 

to 2.6-4.3% of lean body mass per day and passerines with a body mass of 10-20 

g deposit 4.3-5.4% (Lindstrom, 1991). Waders and passerines accumulate fat 

before migration to between 50% and 90% (n= 17 species) and 40% to 70% 

(n=17) of total lean body mass, respectively (Alerstam & Lindstrom, 1990). 

Autumn pre-migratory fat reserves can be larger than spring pre-migratory 

fattening in some waders but not in all. McNeil (1969) suggests that this may be 

due to the greater non-stop flight distances of the autumn migration. A similar 

pattern is seen in some European passerines (e.g. Merkel, 1966). However, pre-

migratory fattening can be larger and more rapid in spring than in autumn as in 

the North American passerine, Zonotrichia leucophrys gambelli. This was 

suggested to be related to the slower pace of the autumn migration rather than to 

distance differences (King & Farner, 1965). And finally, pre-migratory fattening 

rate is about the same in spring and autumn in Fringilla montifringilla (Dolnik & 

Blymental, 1964), and in Locustella fasciolata (Nakamura, 1969). 

Historically it was assumed that only fat was stored prior to migration in 

passerines (Odum et al, 1964), but it is now known that protein (lean mass) also 

increases during periods of fat deposition in some passerines (Evans, 1969; Fry 
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et al, 1970; March, 1984), geese (Newton, 1977; McLandress & Ravelling, 1981, 

Dubowy, 1985) and shorebirds (Davidson et al, 1986; Klassen et al, 1997; 

Selman, 1998). At least four possible functions of protein reserves have been 

reviewed by Evans et al. (1992a). The pectoral muscles are known to increase in 

mass some species of wader before migration (Davidson, 1981a; Davidson & 

Evans, 1988; Evans, 1992). This hypertrophy of the flight muscles will increase 

their maximum power output, which wil l enable a migrating bird to carry 

additional mass of fat reserves (Evans, 1969; March, 1983, 1984; Davidson & 

Evans, 1988). However, the increase in protein reserves is not due solely to flight 

muscle hypertrophy (McLandress & Raveling, 1981; Evans, 1992). Red Knots at 

a Norwegian stop-over site during spring migration increased in body mass by an 

average of 64 grams in two weeks, of which 49g was fat and 15g was wet lean 

tissue. The pectoral muscles contributed only 3g (Evans, 1992; see also 

Lindstrom & Piersma, 1993). Furthermore, the decrease in pectoral muscle mass 

with the decrease in fat load during flight in the Knot is far less than expected 

from theoretical flight mechanics (Pennycuick, 1978; Davidson & Evans, 1988). 

Other possible reasons for increases in lean mass before migration may be that 

protein stores are needed for maintaining protein turnover and muscle repair, 

during flight (Piersma, 1990) or during periods of low protein intake in the 

wintering area (McLandress & Raveling, 1981), or to provide glucogenic 

precursors to maintain glucose homoeostasis during flight (Jenni & Jenni-

Eiermann, 1991). These last two hypotheses are supported by the finding that 

during long-distance flight, birds have not only high fat metabolism but also high 

breakdown of protein (Piersma & Jukema, 1990; Jenni & Jenni-Eiermann, 1992). 

Protein stores might also aid rapid egg formation at the breeding grounds. 

77 



However, Evans et al, (1992) found no differences in the mass of the protein 

stores between sexes of the waders they studied. About 90% of the energy 

needed for migration comes in the form of fat, even when just 50% of the 

deposited mass is fat (Piersma, 1990). 

Although energetic constraints play a vital part in bird migration, water-balance 

may be important too, and these two factors could interact with each other to 

determine several aspects of migration behavior, such as stop-over duration, 

mode of flight and particularly altitude of flight (Klaassen, 1996). Some dead 

migrants were found to have reached critical values of dehydration even though 

they still had large amounts of fat reserves. However, exhausted or dying small 

passerines collected during migration through the Sahara had consumed all their 

fat reserves, whereas their water content was still normal (Haas & Beck, 1979 in 

Klassen, 1996; Biebach, 1991). Eurasian Reed-Warblers accumulated fat to 

migrate across the Sahara, whereas their water content before departure was at a 

level usually interpreted as dehydrated (Fogden, 1972). Time constraints can be 

an important factor as favorable seasons are of limited duration (Klaassen, 1996) 

and early arrivals might be rewarded with a higher competitiveness for limiting 

resources (von Haartman, 1968). 

The benefits of fat storage in birds have been widely studied, in relation to 

quantity, morphological distribution, composition etc. (see e.g. Blem, 1976, 

1990). However, the costs of depositing the fat reserves have received far less 

attention. Increases in fuel stores will lead, for instance, to a rapid increase in 

energy costs of flight per unit distance (Pennycuick, 1975, 1989). Witter and 

Cuthill (1993) reviewed the costs of carrying fat, such as: 
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<(1) Increases in the risks; of predation due. to reduced take-off ability and 

decreases in manoeuvrability 1 

(2) Injury, due'to: collision dunng flight and landing as the accuracy vof pre-. 

landing manoeuvres wil l be more difficult. • v ^ ^ ' - . • • a = - ' ' v ; 1 

(3) Pathological costs, as increases in body mass may place extra stress-on the 

muscular and _skeletal system especially during flighty which may ̂ lead to failure 

of the flight skeleton or damage to the flight musculature, (but this risk can be 

minimised by adaptation such as remodelling the bone during periods of 

enhanced loading (see Lanyon et dl. 1982)). 

(4) A decrease in foraging efficiency, especially arboreal foraging and feeding on 

the wing. 

Therefore, the total amount of fuel stores is probably a trade-off between the 

effects of fuel stores on the energetics, duration and risk of migration. 

Many authors (e.g; Gwinner 1981, 1986.) suggest that migratory fattening in 

certain passerines is controlled by an endogenous, circannual clock. The annual 

photoeycle is the most significant external (environmental) variable for 

synchronising these clocks to the environment and for temporal control of 

migratory fattening. (Gwinner 1977, 1986). Among waders, Redshank have the 

ability to regulate their total body mass, independently of food supply. Scott et al 

(1994) found that Redshank in captivity maintained hody masses comparable to 

those of the same species in the wild throughout winter and spring; 

Although^fqrjjggiveft body mass flying is a far less expensive way to move,than 

is running, it is more expensive than swimming (Schmidt-Nielsen,'• 1984) and 

requires a high rate o f energy expenditure -pef-uriit-time. The-energy'.costs of 
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flight in birds have been estimated by different techniques. Norberg (1996) listed 

three. First, the doubly labelled water technique (DLW), which depends on 

oxygen in respired carbon dioxide being in isotopic equilibrium with the oxygen 

in body water via the action of carbonic anhydrase in the blood (Lifson et al, 

1949). The carbon dioxide produced during activity is proportional to the 

difference between the oxygen turnover in body water and the hydrogen 

turnover, and provides an estimate of metabolic rate. The CO2 production is 

obtained from the equation C 0 2 = (N/2.08)(Ko-KD)-0.015KDN Where Ko and K D 

are the fractional turnover rates of 1 8 0 and D, respectively, and N is the mean 

body water content. For more details see Lifson and McClintock (1966) and 

Nagy (1980, 1989). The second technique is wind tunnel respirometry (WTR), 

which is based on direct measurements of O2 consumption and CO2 production 

(see Norberg (1996) for more details). The third method is measurements of 

mass loss (ML) over a long flight, which can be calculated from the equation; 

Mass loss =111002 - m o 2 + irif+ + m W | 

where 

mC02 = mass loss by C 0 2 produced 

m02 = mass gain by O2 consumption 

mf = mass loss by fuel consumption 

ma = mass loss due to defecation 

m W | = mass loss of water 

Norberg (1996) produced a list of metabolic costs of flight in birds from different 

studies based on the doubly labeled water technique (DLW), wind tunnel 

respirometry (WTR), and mass loss over long flights (ML). When the metabolic 
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costs (watt) of flight for 12 bird species based on W T R are plotted against body 

mass, the least squares regression for is 

P = 60.5M° 7 3 5 , 1^=0.93 (1) 

Using the DLW technique on 8 species, the regression of power required against 

body mass based on time- energy budget data is 

P= 49 .4M 0 8 5 1 , r 2 = 0.84 (2) 

and using mass loss (ML) technique on 17 species, the regression is 

P= 55.9M 0 8 1 9,1^=0.83 (3) 

Overall, the metabolic power required for flight derived from the combination of 

the three data sets of 33 species becomes 

P= 57.3M 0 8 1 3 , r*= 0.86 (4) 

5.1.1 Migration route of the two subspecies of Dunlin C.cualpina and 

Ccuschinzii 

The nominate subspecies of Dunlin C.a.alpina, is a common migrant wader in 

Europe (e.g. Cramp & Simmons, 1983). This subspecies breeds in north 

Scandinavia and Russia east to the Taimyr Peninsula (Hale, 1980; Gromadzka, 

1989; also see Wennerberg et al, 1999), and winters in western Europe, mainly in 

Britain, Ireland and France (Pienkowski & Pienkowski, 1983; Gromadzka, 

1989). Ringing and recoveries suggest that some juveniles pass through 

Varangerfjord, NE Norway, during August and then migrate south-westerly 

along the west coast of Norway, whilst adults migrate during July, taking a more 

southerly route using the Gulf of Bothnia and the Baltic coast (Leslie & Lessells, 
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1978). This subspecies moults mainly on the Wadden Sea (Denmark, Germany, 

Netherlands) and the Wash in England (Holmgren et al, 1993). The subspecies 

C.a.schinzii breeds chiefly in Iceland and moults and winters further south, in 

southern Europe and N.W Africa, especially in Morocco and Mauritania 

(Pienkowski & Dick, 1975). 

5.2 Estimation of costs of migration for the two populations of Dunlin 

Energy costs of migration have been estimated in two ways: by estimating the 

energy stored as fat for the flights (see sections 5.3) and by calculation (see 

below). 

Flight energy costs have been calculated for C.a.alpina and C.a.schinzii by 

multiplying the estimated power requirements for flight obtained from equation 4 

(Figure 1) by the relevant times needed to complete the migration. These times 

were calculated by dividing the total migration distances by Dunlin flight speed, 

an average of about 47 km/h, obtained from radar measurements in light winds or 

still air (Rayner, in Brooke & Birkhead, 1991). Table 1 shows these calculation 

which have been made for the two subspecies of Dunlin and for the two sexes 

because these differ in body mass. 
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Tablel: Total energy costs of the migratory flights for the two sexes of the two 

subspecies of Dunlin derived from the equation P = 57.3 * M 

Body 
mass 
(kg) 

Energy 
cost of 

flight KJ/h 

Flight 
distance 

(km) 

Flight 
time 
(h) 

Total energy 
costs of 

flight (KJ) 

Total energy 
costs of 

return flight 
(KJ) 

Male 
C.a.alpina 0.0506 18.2 

4000 85 
1547 3094 

Female 
C.a.alpina 0.055 19.5 

4000 85 

1658 3316 

Male 
C.a.schinzii 0.0442 16.3 

6000 127.6 
2080 4160 

Female 
C.a.schinzii 0.0496 17.9 

6000 127.6 

2284 4568 

Figure 1: The relationship between energy cost of flight and body mass for 
* ft R1 "X 

Dunlin derived from P = 57.3 * M , the best relationship established so far for 

33 species of birds by Norberg (1996) 
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5.3 Methods of estimation of fat stored for migration 

A total of 1,119 juveniles and adults Dunlin were caught by cannon-net and mist-

net at Teesmouth between autumn 1996 and spring 1999. Measurements of 

biometrics (bill length and wing length (maximum chord)), body mass and 

TOBEC of 477 were taken (see chapter 2 section 2.3.2) just before migratory 

departures and just after arrival in order to estimate the extent of fat deposition 

and hence the maximum energy costs of the final stage of their migration. Then, 

by knowing their migratory routes and stop-over sites from ringing recoveries, 

we can estimate the maximum energy costs of migration by assuming that every 

gram fat reserves could yield 40 KJ and that all fat is used during each flight 

stage of the migration. Age was determined from plumage characteristics (Prater 

et al, 1977) with birds being identified as less than 1 year old (i.e. first years, 

Euring codes 3 and 5) and greater than 1 year old (i.e. adults, Euring codes 4 and 

6). In spring, birds were assigned to race from their plumage (Prater et al, 1977): 

yellowish-red mantle fringes as schinzii, and rich chestnut mantle fringes as 

alpina. 
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5.4 Results and discussion 

5.4.1 Fat stores during spring migration in adult and juveniles C.a. schinzii 

at Teesmouth 

A total of 135 adult schinzii were caught during spring migration at Teesmouth 

in order to measure TOBEC and hence estimate fat reserves. These birds leave 

NW Africa and pass through southern Europe, using Teesmouth as a refuelling 

site on their route to breed in Iceland. Figure 2 summarises lipid indexes ((fat 

mass/total body mass)* 100) of adult schinzii caught in May, some just after 

arrival and some just before migratory departure. The average departure L I is 

taken as 25% (Figure 2). 

v Fat mass / (predicted lean mass + fat mass) = 0.25 

.". Absolute fat mass = 0.33 predicted absolute lean mass 

Table 1 shows the average estimated energy store at departure for Iceland adult 

male and female schinzii at Teesmouth during spring migration. 

I assumed that birds with very little fat reserved, that they had just arrived. 

Those with large fat reserves suggested that they were more or less ready to 

resume their migration. 

Tablel: Average PTLM, hence energy stores of adult schinzii at Teesmouth 
before migrating to Iceland in spring, assuming 1 gram fat yields 40 KJ, and 
maximum fat mass = 0.33 predicted lean mass 

Average 
PTLM Male 

(g) 

Average 
maximum fat 

load Male 

Average 
energy store 
Male (KJ) 

Average 
PTLM Female 

(g) 

Average 
maximum 

fat load 
Female (g) 

Average 
energy store 
Female (KJ) 

42.4 

(n=29) 14 560 

45.6 

(n=43) 15 600 
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Figure 2: Lipid indexes ((fat mass/total body mass)* 100) for 135 adult schinzii 

caught in spring at Teesmouth 
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Only 5 one-year old schinzii were caught, with LI : between 1-15%, but these are 

insufficient for reliable calculations. 

5.4.2 Fat stores during spring migration in adult and juveniles Co. alpina at 

Teesmouth 

A total of 14 adult and 6 juvenile alpina were caught in order to take TOBEC 

measurements and hence estimate fat stores; of birds before leaving their 

wintering grounds at Teesmouth to breed in northern Scandinavia and Russia 

east to the Taimyr Peninsula (Hale, 1980; Gromadzka, 1989). The average 

maximum L I is taken as 27% and 25% for adult and juveniles respectively 

(Figure 3). 

For adults; 
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v Fat mass / (predicted lean mass + fat mass) = 0.27 

.'. Absolute fat mass = 0.37 predicted absolute lean mass 

For juveniles: 

v Fat mass / (predicted lean mass + fat mass) = 0.25 

.'.Fat mass = 0.33 predicted lean mass 

The average estimated energy stores at Teesmouth for adult and juveniles of this 

subspecies of Dunlin are shown in Tables 2 and 3. 

Table 2: Average PTLM, hence energy stores of adult alpina at Teesmouth 
before migrating to northern Scandinavia and Russia in spring, assuming 1 gram 
fat yields 40 KJ, and maximum fat mass = 0.37 predicted lean mass 

Average Average Average Average Average fat Average 
PTLM fat load energy store PTLM load Female energy store 

Male(g) Male(g) Male(KJ) Female (g) (g) Female (KJ) 

42.9 15.9 635 48.3 17.9 716 

(n=6) (n=5) 
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Figure 3: Lipid indexes ((fat mass/total body mass)* 100) for 14 adult and 6 
juveniles (circles) alpina caught in spring at Teesmouth 
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Table3: Average PTLM, hence energy stores of juveniles alpina at Teesmouth 
before migrating to northern Scandinavia and Russia in spring, assuming lgram 
fat yields 40 KJ, and maximum fat mass = 0.33 predicted lean mass 

Average PTLM 
(g) 

Average fat load 
(g) 

Average energy store 
(KJ) 

46.7 (n=6) 15.4 616 

From Tables 2 and 3 it can be seen that the average energy store for the two 

sexes of alpina was 635KJ (males), 716 KJ (females) and 616 KJ (juveniles). 

This amount of energy is presumably sufficient to enable them to reach northern 

Scandinavia or a refuelling site in southern Finland, suggested by ringing 
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recoveries (Appendix VIII), on the way to their breeding ground in northern 

Russia. 

5.4.3 Fat stores during autumn migration in adult and juvenile C.a. schinzii 

at Teesmouth 

In order to estimate energy stores during autumn migration, a total of 109 adult 

schinzii were caught at Teesmouth in July and August and TOBEC 

measurements taken. The average maximum LI for adult schinzii in autumn was 

taken to be 24% (Figure 4). 

v Fat mass / (predicted lean mass + fat mass) = 0.24 

.".Absolute fat mass = 0.32 predicted absolute lean mass 

For juveniles the average maximum LI was taken as 20% (Figure 5). 

v Fat mass / (predicted lean mass + fat mass) = 0.20 

Absolute fat mass = 0.25 predicted absolute lean mass 

It can be seen from Figure 4 that the majority of adult schinzii leave the Tees 

during the middle of August on their way to winter in NW Africa. This 

subspecies of Dunlin uses southwestern of France as the next refuelling site 

(ringing recoveries in appendix VIII). Therefore the amount of energy stored (see 

Table 4) is presumably the maximum needed to reach southwestern France to 

refuel again before migrating to their final destination in NW Africa to winter 

there. 
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Table4: Average PTLM, hence energy stores of adult and juvenile schinzii at 
Teesmouth before migrating to western Europe and NW Africa in autumn 
assuming 1 gram fat yields 40 KJ. Plumage usually abrade in autumn which 
make it difficult to sex the birds 

Average 

PTLM adult 

(g) 

Average fat 

load adult 

(g) 

Average 

energy store 

adult (KJ) 

Average 

PTLM 

juvenile (g) 

Average fat 

load juvenile 

(g) 

Average 

energy store 

juvenile (KJ) 

42.2 

(n=109) 13.5 540 

40.7 

(n=84) 10.2 408 

Figure 4: Lipid indexes ((fat mass/total body mass)* 100) for 109 adult schinzii 
caught in autumn at Teesmouth 
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Figure 5: Lipid indexes ((fat mass/total body mass)* 100) for 84 juvenile schinzii 
caught in autumn at Teesmouth 
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5.4.4 Total energy costs of migration in Ceuschinzii 

To estimate the total energy costs of migration for C.a.schinzii I have used' the 

estimated mean fat load in spring at departure from Teesmouth (14g for males 

and 15g for females) to estimate the total; energy costs of migration in still air for 

this subspecies in the following way: 

Distance between Teesmouth and Iceland - 1350 km 

Fat loads carried by males before departure in spring from Teesmouth to Iceland 

- 14g which would yield 560KJ at maximum. This amount of fat must be enough 

to reach Iceland since no refuelling: site is known in the north-west Scotland (see 

also flight ranges formula by Summers & Waltner 1979; Greenewalt 1975; 

Pennycuick, 1975); 
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Mean fat loads before departure in autumn from Teesmouth are close to those in 

spring (13.5g for birds of unknown sex because breeding plumage is abraded by 

this time). 

This suggests a flight of similar distance to the Teesmouth / Iceland journey and 

points to a staging post in south-west France (also used in spring). The final 

destination is the Banc d'Arguin in Mauritania, about 5800 km from Iceland. It is 

likely that a further staging post is located in Morocco, about 1500 km from 

Southwest France. 

If a flight of about 1350 km requires 560 KJ and. the whole migration is covered 

in four almost equal steps, the total energy costs of migration for male (one way) 

= 6000 / 1350 x 560 = 2489 KJ at maximum. 

The same calculation was made for female schinzii (see table 5) 

Table 5: Total energy costs of migration for male and female C.a.schinzii 

Distance from 
Teesmouth to 

Iceland 
(km) 

Costs of 
migration from 
Teesmouth to 
Iceland (KJ) 

Total 
distance 

migration 
(km) 

Total costs 
of 

migration 
(KJ) 

Total costs of 
both return 
migrations 

KJ 

Female 
1350 

600 
6000 

2667 5334 

Male 

1350 

560 

6000 

2489 4978 

These estimations of energy costs of migration (on average 5156 KJ) are a little 

higher than the estimates of the energy costs of flight (on average 4364KJ) which 

were derived from P = 57.3 * M 0 8 1 3 (see Table 1). The figures in Table 5 are 

based on the assumption that birds arriving in Iceland have used all the fat 
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carried at departure from Teesmouth. This is unlikely to be true, but no figures 

are available for fat loads of incoming migrants in Iceland. 

5.4.5 Total energy costs of migration in C.a.alpina 

To estimate the total energy costs of migration for C.a.alpina I have also used 

their mean fat loads in spring at departure from Teesmouth (15.9g for male and 

17.9g for female) to estimate the total energy costs of migration in still air for 

this subspecies. 

The distance between Teesmouth and south-west Finland (the nearest staging site 

shown from ringing and recoveries) = 1550 km 

Fat loads carried by males before departure in spring from Teesmouth to SW 

Finland = 15.9g which would yield 636 KJ at maximum. This amount of fat must 

be enough to reach SW Finland (see also flight ranges formula by Summers and 

Waltner 1979; Greenewalt 1975; Pennycuick 1975). The total migration distance 

to Russia breeding areas is probably a maximum of 4000 km (to Vaigach Island). 

The total energy costs of migration for males = 4000 / 1550 x 636 = 1641 KJ 

It is not known whether this subspecies uses another stopover site between SW 

Finland and the breeding areas. These calculations have been made to estimate 

the energy costs of migration in still-air. Again it should be borne in mind that it 

is not necessary for the bird to use all the fat it stores, as most waders arrive after 

migratory flights with some fat reserves remaining. However, the two subspecies 

of Dunlin arrived at Teesmouth with less than one gram of fat reserve as has 

been shown earlier. 

The same calculation was made for female alpina (see table 6) 
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Table 6: Total energy costs of migration for male arid female C.a.alpina 

Distance from 
Teesmouth to 

southern Finland! 
(km) j 

Costs of 
migration from 

j Teesmouth to 
southern Finland; 

: (KJ) 

Total 
distance 

, migration 
I (km) 

Total costs 
of 

migration 
(KJ) 

Total costs of 
return 

migration 
(KJ) 

Female 
1550 

716 
i 4000 

1848 3696 

Male 

1550 

636 

i 4000 

1641 3282 

These estimated energy costs of migration (on average 3489 KJ) are quite close 

to the estimates of the energy costs of flight (on average 3205KJ) which have 

been derived from P = 57.3 * M ° 8 1 3 (see Table 1). 
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Chapter, 6 

Energy costs of egg production and incubation 

6.1 General introduction 

Just as body size varies widely between bird species, from a few grams to more 

than 100 kg, so also there is interspecific variation in egg size in birds. Rahn et 

al, (1975) produced a relationship between egg mass and female body mass 

derived from data for 809 species in 17 orders of birds; 

W=0.277B077 (1) 

Where W= egg mass (g) and B = female body mass (g) 

Egg size can also vary within a species in relation to factors such as geographical 

location, laying time within a season, clutch size and individual female (see 

Carey, 1996 for more details). 

The egg of a bird contains a rich supply of food for the developing embryo. 

Birds assist their developing eggs by process by which they apply/dissipate heat 

to/from their eggs. This process is called incubation. Birds use various incubation 

strategies. In about 50 % of the species within birds families, both sexes incubate 

(Van Tyne & Berger, 1976) by alternating incubation duties, and sharing any 

energetic demands associated with keeping eggs warm (Drent et al, 1985). This 

pattern is found in all families of seabirds and in some passeriformes (Carey, 

1996). In some birds, however, only one parent incubates. 

The core body temperature of birds is relatively high, typically 39-42 °C. Heat 

production by the incubator increases proportionately with reduction in egg 

temperature during the absence of the parent from the nest. Most species 

incubate their eggs at average temperatures between 32 and 35 °C, irrespective of 

environment, incubation strategy or body size (Drent, 1975: Burger & Williams 
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1979; Haftorn, 1988). However, egg temperature averages between 33.7 and 

39.5 °C for species nesting in hot environments. In such environments, however, 

birds protect their eggs from overheating by covering eggs continuously during 

the hottest time of the day. Some species of Charadriiformes soak their ventral 

feathers in water to keep eggs cool while incubating (Grant, 1979 in Williams 

1996). Eggs that are exposed to relatively high or low temperatures may require 

longer incubation periods or even to fail to hatch. When ambient temperatures 

are low, birds protect their eggs by modulation of their metabolic rate while 

covering the eggs and by variation in the amount of time that body heat is 

applied to eggs. Birds have less time for foraging when incubating (Walsberg, 

1983) and most incubate in spring when both ambient temperature and food 

resources are relatively low (Drent et al, 1985; Williams, 1987). Incubating birds 

increase their daily energy expenditure, which can cause an elevation in the 

lower critical temperatures (Weathers, 1985). 

6.1.1 Energy costs of egg production in birds 

Walsberg (1983) produced an equation to show the direct relationship between 

the energy content of the fully-grown ovary plus oviduct and the body mass of 

the female: 

InEo = In 0.6555 + 0.938 M B (2) 

Where Eo is energy content of the ovary and oviduct (KJ) and M B is body mass 

(g). Costs of the growth of ovary and oviduct may increase to no more than 2-9% 

of the daily basal metabolic rate of the female i f costs of growth are spread 

equally over the period of growth (Walsberg, 1983). Many methods have been 

used to estimate the energy cost of egg production. Measuring the caloric content 
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of the egg (King, 1973) is the simplest method but it does not quantify many 

factors such as maintenance of the ovary during clutch formation, cost of 

transport of egg contents into the egg and cost of shell synthesis. The cost of egg 

production can be estimated fairly well i f the average caloric content and egg 

mass of a certain bird family or genus are known. Rahn et al (1985) formulated 

an equation for calculation of the energy cost of egg production in passerines: 

E= 1.3x4.23 x W (3) 

Where E is the energy cost of egg production (kJ), 1.3 is the inverse of 0.77, the 

net efficiency of egg production (kJ " kJ"1), 4.23 is the average energy content of 

passerine eggs (kJ" g"1 egg) and W is egg mass (g). I f the theoretical cost of egg 

production is spread over the days needed to make the egg, daily costs will vary 

from 82-128% of the BMR in shorebirds, 13-41% in passerines and even to over 

200% in waterfowl (see Robbins, 1993). 

6.1.2 Energy costs of incubation in seabirds 

Metabolic rate has been estimated during incubation for 32 species of seabirds in 

relation to body mass (ranging from 37g to 13.4 kg). Williams (1996) has 

produced an equation for the relationship between body mass and incubation 

metabolic rate (IMR) using data from 30 various studies: 

Log IMR (KJ/d) = 0.521 + 0.712 log body mass (g) r 2 = 0.95 (4) 

Three methods were used to determined this relationship; (i) measurement of 

body mass loss to estimate IMR, (ii) respiratory gas analysis, where metabolic 

rate is measured while seabirds are incubating within a metabolic chamber or 

with a mask placed over their face, (iii) doubly labelled water (DLW) method to 

estimate C0 2 production from the decline of isotopes of hydrogen and oxygen in 
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the body water pool (Nagy, 1980). Validation studies on a variety of species 

indicate that metabolic rates measured by DLW method are within ±8% of direct 

measures of energy expenditure (Williams & Nagy 1984). The amount of energy 

required from birds to maintain their eggs at appropriate temperatures for 

embryological development is significantly influenced by ambient temperature, 

body size of the incubator, clutch size and type of incubation pattern (Williams, 

1996). Incubating passerines with a clutch size of four or more eggs have higher 

incubation metabolic rates than non-incubating individuals by 19-50% when 

temperatures are below their lower critical temperature (Weathers, 1985; Haftorn 

and Reinertsen, 1985). 

6.1.3 Breeding and incubation in the two subspecies of Dunlin C.alpina 

Incubation in the two subspecies of dunlin is shared by both sexes. Females tend 

to incubate the eggs during night and males during day. Incubation lasts about 

22 days (n=23) (Soikkeli, 1967 in Cramp & Simmons, 1983). After hatching, 

chicks become independent at or just before fledging, after a period of 19-21 

days (Heldt 1966 in Cramp & Simmons, 1983). 

Most eggs of the two subspecies of Dunlin C.a.alpina and C.a.schinzii are laid in 

May. The clutch size of this bird on average is four eggs, as in most waders. 

There is no significant geographical or racial variation in the clutch size. Four 

eggs were found in 83% of 295 clutches in Germany (Heldt, 1966) and 88% of 

203 clutches in southern Finland (Soikkeli 1970b in Cramp & Simmons, 1983). 

Replacements may be laid after egg loss but rarely after early loss of young. 

Replacement and late clutches tend to contain fewer eggs. 
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6.2 Energy costs of egg production and incubation for C.cualpina and 

C.a.schinzii 

I have estimated the energy cost of egg production for the two subspecies of 

Dunlin using equation (3), although this equation (i) was developed for 

passerines (ii) may underestimate the real cost of egg production as this equation 

ignores the costs associated previously listed (section 6.1.2). However, the 

energy cost of producing eggs is relatively small, and should not affect the 

annual energy costs of the two subspecies. Since the clutch size is four eggs on 

average and since there is no significant geographical or racial variation in the 

clutch size of the two subspecies, the energy costs of producing eggs for the two 

subspecies should be the same from equation (3): 

Energy cost of producing eggs = 1.3 x 4.23 x 40 = 220 KJ 

I have calculated the energy costs of incubation using equation (4) to produce 

results shown in Table 1.1. Since the average daily temperatures on the breeding 

grounds for the two subspecies of dunlin is nearly the same in May (see Tables 

1.1 and 2.1 in Chapter 3), since they have the same clutch size and since the 

equation involves the body mass of the incubator, using equation (4) is more or 

less reliable for estimating the energy cost of incubation for the two subspecies. 
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Tablel.l Energy costs of incubation for the two subspecies of Dunlin using the 
equation: Log IMR (KJ/d) = 0.521 + 0.712 log body mass (g) 

Average body 
mass for both 

sexes (g) 

Incubation period 
(days) 

Total Incubation 
Metabolic Rate 

(KJ) 

C.a.alpina 52.9 
22 

1232 

C.a.sehinzii 47.6 

22 

1143 
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Chapter 7 
General discussion 

7.1 Total annual energy costs for the two subspecies of Dunlin C.cualpina 

and C.a.schinzii 

It can be seen from Table 1 that the total annual energy costs of C.a.alpina are 

estimated to be about 17% higher than those of C.a.schinzii. This is obviously 

due to the large difference in the energy costs of living between the two 

subspecies (Table 1). I f we look at these in more detail (Table 2) we notice that 

nearly all of the 21 % higher costs of living in alpina are due to the costs on 

wintering plus moulting grounds. Table 1 also shows that although the costs of 

migration are much less than the costs of living, they are higher than the sum of 

the costs of moult, egg production and incubation. As expected, the energy costs 

of migration in schinzii (5156 KJ) are higher than those in alpina (3489 KJ) as 

schinzii migrates longer distances; but these extra costs are small by comparison 

with the differences between the subspecies in the costs of living (energy costs of 

living in alpina are higher than those in schinzii by 11625 KJ). 

7.2 Can Drent and Piersma's hypothesis explain the two distinct strategies of 

migration of the two subspecies of Dunlin? 

Drent and Piersma (1990) hypothesised that there is a trade-off in energy costs 

between migration and wintering, with short-distance migrants requiring less 

energy for migration, but spending more energy in colder winter areas than the 

long-distance migrants which migrate to more tropical regions in winter. They 

suggested that, in total, the annual energy expenditure of both populations is the 
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same. However, I have proved that the cost of migration is considerably less 

than the costs of living. Also I showed that the total annual energy cost for those 

wintering in colder areas i.e. C.a.alpina is much higher than those wintering in 

tropical regions i.e. C.a.schinzii. Since the total annual energy costs of alpina are 

higher than schinzii, that could mean that the annual mortality rate of C.a.alpina 

will be higher. I f that is the case, why did these two subspecies evolve these two 

migratory strategies and why are they maintained? 

(i) The answer to this question may lie in a comparison of survival rates on 

wintering plus moulting grounds on the one hand and migration on the other 

hand. Alpina appears to have lower energy costs during migration (costs of 

migration plus costs of living on fattening grounds) than schinzii because they 

migrate shorter distances, which also involves less time. This may lead to higher 

survival of alpina during migration even though their survival rate in autumn and 

winter may be lower, because the daily and total energy costs of living on 

wintering and moulting grounds are higher. Adult Dunlin breeding in western 

Scotland have higher mortality on their wintering grounds plus migration (13%) 

than on their breeding grounds (4%) (Jackson 1988 in Evans 1991), even though 

they winter (alongside schinzii Dunlin from Iceland) in north-west Africa. 

(ii) The success of any animal's life depends (in evolutionary terms) on success 

in: 

(i) Reproduction (number of young/year which survive to breed) 

(ii) Length of reproductive life, related to survival rate 

Energy costs, which could affect survival rate, are not the only factors that affect 

a bird's lifetime output of young. Although alpina uses a different migration 
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strategy to schinzii, it may use better breeding grounds, and hence achieve more 

successful reproduction. Moreover, feeding condition in the wintering grounds 

may determine breeding success (Pienkowski and Evans, 1984). I f we look to the 

condition of the main wintering grounds of schinzii in Morocco and Mauritania 

we will notice that these grounds are unexpectedly poor, as food resources 

potentially available to waders are very small compared to the resources in more 

northern temperate areas (Altenburg et al, 1982). Also because of the low prey 

biomass and high wader densities combined with high feeding percentages (e.g. 

foraging percentages of small waders is more than 95% during low tide), the 

competition between and within species is thought to be high (Altenburg et al, 

1982; Moser, 1980). Therefore body condition at start of migration may not be so 

good and also on arrival in Iceland, so that may affect breeding success of 

schinzii. It is known that it is more favourable for birds to winter as close as 

possible to their breeding grounds to be in better position to win limited 

resources and to be able to respond to variations in weather and return to 

breeding grounds as soon as these become favourable (Alerstam & Hogstedt, 

1980), so why schinzii do not do so? 

The answer may be simply that in winter many invertebrates burrow deeper in 

the substrate, this changes in prey behaviour in winter lead to increased 

difficulties for shorebirds feeding upon them (see Evans, 1979a) and because 

schinzii have shorter bill length, that may force them to winter in more tropical 

regions even i f the resources are poor. 
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To conclude, the two factors that determine life reproductive success in the two 

subspecies could be the same for the two subspecies, i f C.a.alpina produces more 

young per year, even i f its mortality is higher than that of C.a.schinzii. 

Table 1: Annual energy costs for the two subspecies of Dunlin 

Energy costs 
KJ/Year 

Total annual 
energy cost (KJ) 

Costs of living 65937 

Costs of migration 3489 
72550 

C.a.alpina 
Costs of moult 1692 

Costs of egg 
production and 

incubation 
1432 

Costs of living 54312 

Costs of migration 5156 
61827 

C.a.schinzti ! 
Costs of moult 1016 

Costs of egg 
production and 

incubation 
1343 
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Table 2: Energy costs of living at different sites for the two subspecies of dunlin 

Total energy 
costs of living 

on each site (KJ) 

Annual costs of 
living (KJ) 

On breeding grounds 14596 

On moulting grounds 13246 42441 65937 
C.a.alpina 

On wintering grounds 29195 

42441 

On fattening grounds 8900 

On breeding grounds 13155 

On moulting grounds 7660 
29857 

54312 
C.a.schinzii 

On wintering grounds 22197 

29857 

On fattening grounds 11300 

7.3 The accuracy of the estimation 

It can be seen from table 1 that energy costs of living consist of more than 87% 

of the total annual energy costs of the two subspecies. That means that costs of 

living is the most sensitive factor in estimating the annual energy costs. It can 

also be seen from table 1 that the energy costs of living of alpina is 21% higher 

than those of schinzii assuming that daily energy expenditure (DEE) equal 

2RMR. Even when DEE equal 2.5RMR, energy costs of living of alpina still 

21% higher than those of schinzii (Table3). Therefore my estimation wil l be 

valid for comparative porpoises which I am looking for rather than absolute 

estimation. Had time permitted it would have been instructive to calculate 

confidence intervals at each stage and use this range as input to subsequent stage 

of the model in addition to regression sensitivity analysis, by changing parameter 

estimate within reasonable biological limits, may have been instructive. 

105 



However, the very large change in DEE modeled here indicates that the main 

conclusion wil l remain unchanged. 

Table 3: Energy costs of living when DEE = 2.5RMR 

Total energy 
costs of living 

on each site (kJ) 

Annual costs of 
living (kJ) 

C.a.alpina 

On breeding grounds 18235 

82387 
C.a.alpina 

On moulting grounds 16570 82387 
C.a.alpina 

On wintering grounds 36442 

82387 
C.a.alpina 

On fattening grounds 11140 

82387 

C.a.schinzii 

On breeding grounds 16455 

67815 
C.a.schinzii 

On moulting grounds 9552 67815 
C.a.schinzii 

On wintering grounds 27783 

67815 
C.a.schinzii 

On fattening grounds 14025 

67815 
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Appendix I 

Calibration the use of Total Body Electrical Conductivity 
(TOBEC) for estimating total lean mass in live 

Dunlin 

Introduction 

Many species of birds are known to vary in body composition seasonally, 

influenced by phases of the avian life cycle such as reproduction and migration 

(Blem and Shelor, 1990). The ability to measure and follow changes in body 

composition (lean mass, lipid mass) between and within individual birds is 

important for ecological and physiological understanding. 

There are many ways in which fat mass and lean mass can be determined in 

shorebirds. The four most popular are (i) using solvents to extract stored lipids 

from dried carcasses (e.g. Evans and Smith 1975; Davidson, 1981a; Dobush et al 

1985). This destructive method has many limitations: lipid extraction is 

expensive and time consuming and requires the killing of samples. Ethically, big 

samples are unacceptable but inconclusive results may come from small sample 

sizes. Moreover, the need to ki l l the samples does not allow changes in body 

compositions to be followed. 

(ii) The most widely used technique for quantifying the amount of stored fat in 

live birds is "fat-scoring" of visible subcutaneous deposits (e.g. Helms & Drury, 

1960; Kaiser, 1993;Conway et al, 1994). Fat levels have been divided into from 

four to nine classes (Fry et al. 1970), based on the amount of fat that can be seen 

either in the furcular region, the abdominal fat depots, or both. This method does 
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not require the death of the bird, is quick and gives an estimate of average fat 

levels carried by groups or populations. However, its accuracy is not enough to 

monitor the change in fat-level in an individual (Scott et al, 1995) and it may also 

be highly inaccurate in some species (Krementz and Pendleton, 1990). 

(iii) Formulae based on various morphological features (e.g. wing-length, tarsus-

length) can be used to predict the total lean mass (TLM) and hence, by 

subtraction from total mass, lipid content (e.g. Davidson, 1981a). This method 

provides a single lean mass value for a given body size and does not take into 

account any seasonal changes in total lean mass within an individual (Mitchell, 

1996). Castro & Myers (1989) found that the application of a formula they 

derived to predict fat mass in Sanderling Calidris alba, had to be restricted to the 

population from which the measurements were taken. 

(iv) Total lean mass (TLM), and hence fat mass (FM), may be estimated from 

measurements of Total Body Electrical Conductivity (TOBEC) (e.g. Walsberg, 

1988;Witter & Goldsmith, 1997). This method is based on the principle that a 

restrained bird within a solenoidal coil acts as a conductor of electricity and 

alters the electromagnetic field predictably. The electrical conductivity of lipids 

is only around 4-5% of the rest of the body on a unit mass basis (Pethig, 1979). 

Therefore, total lean mass is the main contributor to and highly correlated with 

the TOBEC index (Walsberg, 1988;Castro et al, 1990; Roby, 1991; Scott, et al 

1991; Skagen et al 1993; Scott et al 1996). The predicted total fat mass (PFM) of 

an individual is obtained by subtracting the predicted total lean mass (PTLM), 

derived from the TOBEC index from the total body mass. There is a need to 

calibrate the TOBEC indices against the actual TLMs derived from sacrificing a 

small sample of individuals of a given species immediately after measurement of 
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their TOBECs. Later their TLMs are obtained by destructive carcass analysis. 

Scott et al (1991) found that predictive models derived from single species give 

better estimates of TLM than those obtained from interspecific equations. The 

same error is attached to predicted fat mass (PFM) as to predicted total lean mass 

PTLM, but it usually represents a greater proportion of the actual lipid mass 

since T L M is generally greater than fat mass (Morton, et al, 199.1) except at 

migration times. Many recent studies employing TOBEC to estimate lipid mass 

have predicted this directly from multiple regressions with TOBEC as an 

independent variable alongside body size measures, see section 2.1 for more 

details. 

Table 1: Abbreviations and their definition used in this Appendix 

Abbreviation Definition 

TOBEC Total body electrical conductivity 

BM Total body mass 

I ' j TOBEC index 

T'LM ; Total lean mass, obtained from carcass analysis 

'FM Fat mass, obtained from BM-TLM by carcass analysis 

TDBM Total dry body mass 

T L D M Total lean dry mass 

PTLM! Predicted total lean mass, derived from the linear 

regression equation of TLM with I (Equation 1) 

;PFM Predicted fat mass derived from B M - PTLM 

ID Bird identification number 
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Methods 

In order to obtain a regression that allows prediction of TLM from TOBEC, the 

actual measurements of TLM obtained from carcass analysis must be regressed 

against TOBEC indices. Predictive equations were obtained using a sample of 11 

adult Dunlin (see Table 2), held in captivity for a periods ranging between 23-34 

months under conditions described in chapter 2, section 2.3.1. Individuals were 

weighed to the nearest gram on a pesola balance, then TOBEC measurements 

(model SA-1, EM-SCAN) taken and birds killed humanely. Birds were then 

sealed in polythene bags and frozen. On a later day, birds were defrosted, 

feathers plucked and the birds dissected. The left pectoral muscle block 

(pectoralis major and supracoracoideus), stomach, liver, intestine and heart were 

dissected out. The birds were then sexed by gonadal inspection, and the 

measurements of intestines and four skeletal measurements taken to the nearest 

0.1mm using vernier callipers. The purpose of the dissection was to compare 

organ masses of captive birds with those of a sample of wild birds. The organs 

and dissected carcass were weighed to the nearest mg on a torsion balance. The 

carcass and organs were then dried to constant mass in a vacuum oven at 40°C 

and their masses summed to give a total dry body mass (TDBM). Once dry, the 

carcass and the organs underwent lipid extraction separately using a Soxhlet 

apparatus with petroleum ether as a solvent. Petroleum ether was chosen because 

it tends to remove fewer polar lipids than other solvents such as chloroform 

(Dobush et al, 1985; Conway et al, 1994). After all lipid had been extracted, the 

carcasses and the organs were dried once again to a constant mass in a vacuum 

oven at 40°C. Then the sum of all the organs and the carcass was calculated to 

obtain the total lean dry mass (TLDM). TLDM was subtracted from TDBM to 
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obtain the actual fat mass (FM). Fat mass was subtracted from B M to give total 

lean mass (TLM). See Table 1 for a summary of abbreviations used. 

Linear regression and second-order polynomial models were fitted to plots of 

TLM against the TOBEC index (I) in order to obtain a predicted total lean mass 

(PTLM) and an estimate of fat mass (PFM). 

Results and discussion 

The equation produced by regressing TLM on TOBEC Index for the 11 captive 

Dunlin (Figure 1) whose body compositions are detailed in Table 2 is shown 

below: 

PTLM = (0.42*1)+ 21.7 (^ = 0.87) 

Whereas the equation produced by Scott et al (1991) for 11 wild Dunlin was 

PTLM= (0.53*1+21.4) 

Which means that the formula produced by Scott et al (1991) would overestimate 

the PTLM i f it was applied to captive birds. 

Many studies support the idea that the body composition of wild and captive 

birds of the same skeletal (or biometric) size differs. Mitchell (1996), Selman 

(1998) and this study (Appendix II) show that there is a reduction in the mass of 

digestive organs in captive birds when compered to wild conspecifics. That may 

lead to differences in the body shape of wild and captive conspecifics. Since the 

bird's body in the chamber acts as a conductor that alters the electromagnetic 

inductance of the solenoid coil, differences in the TOBEC indices between wild 

and captive birds of the same size may have occurred because of the differences 

in their shape. 
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Figure 1: The relationship between Total Lean Mass (TLM) and TOBEC Index 
for 11 captive Dunlin 
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Table2: The actual values of total lean mass (TLM), total fat mass (FM), % of 
water and TOBEC index for 11 captive Dunlin 

ID BM % T L M (g) FM T O B E C 
(S) Water (g) index 

LG(F) 57 65.7 41.9 15.1 42.6 
DG(F) 45 64.6 37.1 7.9 37.2 
Y E L ( F ) 48 66.5 39.7 8.3 42.6 
BL(M) 39 67 36.1 2.9 33.0 
OR(M) 55 65.2 38.1 16.9 39.9 
RE(M) 43 69.7 37.8 5.2 40.7 
L R E ( F ) 39 67.3 36.5 2.5 32.2 
L Y E L ( M ) 39 66.6 35.1 3.9 32.6 
WBL(M) 35 64.3 31.6 3.4 23.3 
WOR(F) 47 65.6 38.4 8.6 41.5 
WDG(M) 39 65.9 34.2 4.8 31.8 

MEAN 44.2 66.2 37.0 7.2 
SD 7.1 1.49 2.77 4.86 
SE 2.1 0.45 0.84 1.46 
% Water = (Total water content / T L M ) * 100 
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Appendix II 

Comparison of body composition of wild and captive Dunlin 

Introduction 

Many wild species of shorebirds such as Dunlin Calidris alpina, Redshank 

Tringa totanus and Knot Calidris canutus show seasonal fluctuations in body 

mass, caused by variation in both lean and fat mass components (see Pienkowski 

et al, 1979; Davidson, 1981; Scott et al, 1994; Mitchell, 1996). 

Many studies have also shown these changes in body composition in captive 

shorebirds (e.g. Scott et al, 1994; Mitchell, 1996; Selman 1998; this study). Scott 

et al (1994) and Mitchell (1996), showed that there was no difference in the size 

of the seasonal body mass changes between wild Redshank wintering on 

Teesmouth and in captive Redshank taken from that estuary. However, there was 

a reduction in the digestive organ mass in captive Redshank when compared with 

wild conspecifics. The reduction in lean mass in captive shorebirds has been well 

documented in Knot (Piersma et al 1995; Selman 1998) and in Redshank 

(Mitchell 1996). These studies compared the masses of various organs (liver, 

kidney, gut, and stomach) in wild and captive conspecifics. These organs have 

been given the term the 'digestive organs' (Piersma 1994). 

Methods 

A total of 22 wild and captive Dunlin were killed humanely under licence and 

dissected in order to do carcass analysis. The captive birds were held for periods 

ranging from 23-34 months between September 1996 and June 1999 under 

conditions described in chapter 2 section 2.3.1 (C. a. alpina n=6 birds & C.a. 
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schinzii n=5). They were sacrificed, 20 hours after measurement of BMR to 

offset any dehydration experienced during a measurement of BMR. The 11 wild 

Dunlin were collected after they had been killed accidentally during cannon-

netting at Teesmouth, north-east England on (26/7/95 (n=2), 11/11/97 (n=2), 

8/5/98 (n=l) and on 8/8/98 (n=4) and on the Severn estuary (22/2/81 n=2). Al l 

were sealed in plastic bags and frozen at -20°C until carcass analysis was carried 

out at later date. 

The heart, liver, stomachs, intestines and pectoral muscle blocks (left pectoralis 

major and left supra-coracoideus) were dissected out. A l l organs were dried to 

constant dry mass at 40°C in a vacuum oven and then weighed to the nearest mg 

on a torsion balance. The bird was sexed by gonadal inspection, the gut length 

measured and four skeletal measurements were taken to the nearest 0.1mm using 

vernier callipers, following the methods of Piersma et al. (1984), in order to 

calculate a standard muscle volume SMV (Evans & Smith, 1975). The mass of 

one lean dry pectoral muscle block was then expressed as a proportion of the 

SMV to produce an index of muscle size, independent of total body (skeletal) 

size, known as SMI or standard muscle index. Stored lipids (triglycerides) were 

extracted from the carcass and the dissected organs using a Soxhlet extractor 

with petroleum ether as a solvent. The carcass and organs were subsequently 

dried once again using constant mass at 40°C in a vacuum oven and the fat-free 

masses were then obtained. 
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Results and discussion 

Table 1 summarise differences between wild and captive Dunlins of the same 

overall size, as judged by bill-length. The mean liver mass was 35% lower in 

captive birds, and the mean gut mass (stomach + intestine), had decreased by 

over 60%. The mean length of the intestine had also decreased by 40% in captive 

birds when compered to wild conspecifics. However, the mean values of pectoral 

muscle indices in captive birds were slightly higher than those wild conspecifics. 

Piersma (1994), Mitchell (1996) and Selman (1998) showed that captive 

shorebirds reduce the sizes of some of their organs, especially digestive organs. 

This reduction could be due to disuse atrophy (see Piersma et al 1993). 

Table: Comparisons of dry lean organ mass, gut length and bill length between 
wild and captive Dunlin. Values are means with standard errors in parentheses. 

% 
Organ Wild Captive Reduction 

Bill length 30.2 (0.55) 31.02(1.14) 
(mm) n = l l n= 11 
Liver 0.51 (0.04) 0.33 (0.02) 

(g) n = l l n= 11 35 
Gut mass (g) = 0.74 (0.07) 0.29 (0.014) 

(Stomach + intestine mass) n = l l n= 11 61 
Heart 0.24 (0.02) 0.17(0.007) 

(g) n = l l n = l l 29 
Intestine length 31.1 (1.2) 22.2 (0.76) 

(cm) n= 11 n = l l 29 
Standard muscle index 0.00023 (6.7) 0.0003(1.14) Captive increase by 

(SMI)* n= 11 n = l l 30% 

SMI: Mass of left lean dry pectoral muscle mass/ standard muscle volume 
(Evans and Smith, 1975) 

% Reduction: indicates the difference between mean organ mass of captive and 
wild Dunlin, as % of wild Dunlin mass 
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Appendix I I I 

Body composition throughout captivity for Ctualpina (individuals DG, B L U , 
L G , Y E L , R E and OR) and for C.a.schinzii (individuals W B L , L Y E L , 

WDG, L R E , WOR, L B L , W L G and WRE) 
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Table 1: Caualpina 

Colour marks Date of capture 1 

i 
Age at capture , Sex* 

DG 24/9/1996 Juvenile Male 

L G ; == \ Female 

OR Male 

BLU: — 1 Male 

Y E L = = 1 Female 

RE = Male 

* Determined by dissection at the end of experiment 

Table2: C.a.schinzii 

Colour marks Date of capture Age at capture Sex* 

WBL~ 30/9/97 Juvenile | Male 

WOR = Juvenile ! Female 

L R E Juvenile Female 

j L L G = Adult ; Female 

: WRE — Juvenile Male 

L B L = Adult Male 

L Y E L —; Adult Male 

WDG Juvenile Male 

WLG Adult Female 

* Determined by dissection at the end of experiment 



Appendix IV 

Measurements of Basal Metabolic Rate (BMR), Predicted Total Lean Mass 
(PTLM) and Predicted Fat Mass (PFM) for C.a.alpina (individuals DG, 

BLU, L G , Y E L , RE and OR) and for Ceuschinzii (individuals WBL, L Y E L , 
WDG, L R E , WOR, LBL, WLG and WRE) throughout their periods of 

captivity 

OR Juvenile 

Mass PTLM PFM BMR 
(g) (g) (g) (watts) 

29/10/96 55 38.82 16.18 0.749 
30/11/96 48 41.65 6.35 0.739 
25/12/96 48 40.75 7.25 0.739 
21/01/97 48 42.04 5.96 0.736 
21/02/97 43 39.93 3.07 0.578 
21/03/97 46 41.26 4.74 0.67 
25/04/97 45 41.13 3.87 0.73 
14/05/97 45 41.54 3.46 0.686 
17/06/97 45 41.56 3.44 0.609 
10/07/97 45 42.08 2.92 0.64 
12/08/97 43 42.06 0.94 0.63 
11/09/97 42 41.55 0.45 0.67 
22/10/97 44 41.6 2.40 0.636 
25/11/97 48 42.3 5.7 0.73 
15/01/98 47 41.64 5.36 0.83 
10/03/98 46 42.7 3.3 0.73 
29/04/98 46 38.08 7.92 0.689 
28/05/98 46 40.6 5.40 0.77 
10/06/98 48 41.32 6.68 0.92 
30/06/98 44 40.07 3.93 0.67 
04/07/98 44 39.87 4.13 0.768 
12/08/98 46 41.85 4.15 0.939 
21/09/98 49 43.05 5.95 0.754 
21/10/98 46 41.53 4.47 0.71 
04/11/98 47 41.44 5.55 0.71 
06/01/99 45 41.15 3.84 0.74 
08/02/99 46 39.95 6.05 0.674 
12/04/99 46 42.07 3.93 0.698 
14/05/99 48 41.75 6.25 0.729 
20/05/99 54 43.98 10.02 0.91 
26/05/99 59 43.87 15.13 0.93 
31/05/99 66 44.25 21.75 0.96 
05/06/99 60 44.47 15.53 0.98 
08/06/99 58 42.70 15.30 1.09 
23/06/99 55 39.40 15.59 0.829 

Note: PTLM was estimated from the TOBEC index (I) using the calibration 
graph for captive birds PTLM = (0.42 * I) + 21.7 
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DG Juvenile 

Mass 
(g) 

PTLM 
(g) 

PFM 
(g) 

BMR 
(watts) 

29/10/96 48 37.1 10.9 0.796 
30/11/96 50 38.73 11.27 0.736 
25/12/96 49 39.61 9.39 0.688 
21/01/97 48 39.88 8.12 0.876 
21/02/97 47 38.36 8.64 0.761 
21/03/97 45 40.54 4.46 0.596 
25/04/97 45 40.94 4.06 0.54 
14/05/97 44 40.73 3.27 0.689 
17/06/97 46 41.11 4.89 0.635 
10/07/97 44 42.32 1.68 0.56 
12/08/97 44 40.35 3.65 0.78 
05/09/97 44 41.91 2.09 0.74 
22/10/97 46 42 4 0.69 
25/11/97 49 41.9 7.1 0.6 
01/01/98 48 40.59 7.41 0.666 
10/03/98 46 41.8 4.2 0.639 
29/04/98 46 42.16 3.84 0.647 
28/05/98 54 43.72 10.28 0.801 
02/06/98 57 44.09 12.91 0.899 
06/06/98 62 44.4 17.6 0.934 
10/06/98 53 43.84 9.16 0.955 
13/06/98 48 42.07 5.93 0.82 
21/06/98 46 42.02 3.98 0.672 
04/07/98 45 40.92 4.08 0.781 
29/07/98 46 42.04 3.96 0.93 
06/09/98 51 44.32 6.68 0.709 
06/10/98 48 42.67 5.33 0.697 
04/11/98 47 42.85 4.15 0.71 
06/01/99 47 38.46 8.54 0.73 
08/02/99 46 40.5 5.5 0.706 
12/04/99 46 41.5 4.5 0.698 
14/05/99 47 41.8 5.2 0.8 
20/05/99 47 40.83 6.17 0.88 
26/05/99 51 42.03 8.97 0.655 
31/05/99 57 42.99 14.01 0.982 
03/06/99 57 41.19 15.81 0.95 
07/06/99 52 39.7 12.3 0.83 
23/06/99 47 38.59 8.41 0.7 



L G Juvenile 

Mass PTLM PFM BMR 
(g) (g) (g) (watts) 

29/10/96 64 41.6 22.4 0.732 
30/11/96 55 42.2 12.8 0.874 
25/12/96 56 44.09 11.91 0.724 
21/01/97 55 42.04 12.96 0.759 
21/02/97 54 40.52 13.48 0.564 
21/03/97 50 41.05 8.95 0.61 
25/04/97 50 40.44 9.56 0.55 
14/05/97 50 41.5 8.5 0.655 
17/06/97 50 41.31 8.69 0.653 
10/07/97 49 43.29 5.71 0.67 
12/08/97 47 42.68 4.32 0.74 
05/09/97 48 41.7 6.3 0.83 
22/10/97 49 42.2 6.8 0.737 
25/10/97 48 41.7 6.3 0.72 
01/01/98 49 42.36 6.64 0.82 
10/03/98 50 42.5 7.5 0.68 
29/04/98 50 40.6 9.4 0.754 
28/05/98 54 42.71 11.29 0.687 
01/06/98 62 44.22 17.78 0.812 
04/06/98 66 45.33 20.67 0.87 
08/06/98 63 44.79 18.21 0.924 
29/07/98 47 39.77 7.23 0.69 
12/08/98 48 40.82 7.18 0.808 
21/09/98 52 45.51 6.49 0.93 
29/10/98 50 44.45 5.55 0.76 
06/11/98 47 42.76 4.24 0.72 
06/01/99 45 38.63 6.37 0.68 
08/02/99 45 39.04 5.96 0.704 
12/04/99 48 42.1 5.9 0.74 
14/05/99 49 41.45 7.55 0.77 
20/05/99 48 41.37 6.63 0.83 
26/05/99 53 41.78 11.22 1.008 
30/05/99 57 42.99 14.01 0.98 
03/06/99 57 44.02 12.98 0.95 
07/06/99 60 42.72 17.28 1.02 
11/06/99 63 43.03 19.97 1.03 
14/06/99 63 41.51 21.49 0.96 
17/06/99 63 42.01 20.99 0.93 
23/06/99 58 40.42 17.58 1.122 



BLU Juvenile 

Mass PTLM PFM BMR 
(g) (g) (g) (watts) 

29/10/96 45 38.3 6.7 0.699 
30/11/96 44 39.3 4.7 0.967 
25/12/96 43 39.01 3.99 0.876 
21/01/97 42 38.35 3.65 0.75 
21/02/97 41 37.22 3.78 0.579 
21/03/97 42 37.7 4.3 0.765 
25/04/97 41 36.07 4.93 0.68 
14/05/97 43 39.54 3.46 0.67 
17/06/97 43 38.63 4.37 0.66 
10/07/97 42 38.76 3.24 0.69 
12/08/97 42 40.49 1.51 0.77 
11/09/97 40 38.51 1.49 0.75 
22/10/97 42 39 3 0.652 
05/12/97 44 39 5 0.81 
01/01/98 43 38.86 4.14 0.66 
10/03/98 44 40 4 0.719 
29/04/98 43 39.34 3.66 0.662 
28/05/98 48 39.46 8.54 0.756 
02/06/98 56 42.68 13.32 0.867 
06/06/98 59 44.19 14.81 0.884 
10/06/98 54 42.64 11.36 0.914 
13/06/98 48 39.03 8.97 0.687 
30/06/98 43 38.86 4.14 0.725 
21/07/98 43 39.04 3.96 0.89 
06/09/98 45 37.89 7.11 0.701 
12/10/98 44 39.8 4.2 0.66 
10/11/98 43 39.24 3.76 0.658 
06/01/99 42 33.98 8.02 0.687 
08/02/99 41 37.08 3.92 0.674 
12/04/99 43 38.63 4.37 0.66 
14/05/99 43 38.62 4.38 0.648 
19/05/99 45 39.04 5.96 0.82 
26/05/99 50 40.16 9.84 0.91 
30/05/99 54 39.94 14.06 0.968 
04/06/99 50 40.92 9.08 1.08 
08/06/99 43 37.1 5.9 0.66 
23/06/99 40 36.78 3.22 0.63 



RE Juvenile 

Mass PTLM PFM BMR 
(g) (g) (g) (watts) 

29/10/96 49 38.76 10.24 0.774 
30/11/96 46 39.99 6.01 0.8 
25/12/96 48 40.56 7.44 0.722 
21/01/97 47 40.13 6.87 0.796 
21/02/97 45 38.95 6.05 0.581 
21/03/97 43 37.95 5.05 0.549 
25/04/97 45 39.95 5.05 0.515 
14/05/97 45 40.54 4.46 0.66 
17/06/97 45 39.34 5.66 0.56 
10/07/97 44 39.67 4.33 0.58 
12/08/97 44 40.08 3.92 0.67 
11/09/97 47 40.74 6.26 0.8 
22/10/97 44 40.43 3.57 0.658 
05/12/97 47 41.76 5.24 0.76 
01/01/98 44 39.4 4.6 0.667 
10/03/98 45 40.8 4.2 0.657 
29/04/98 46 42 4 0.66 
28/05/98 49 42.5 6.5 0.83 
01/06/98 55 43.71 11.29 0.836 
04/06/98 61 44.72 16.28 0.91 
08/06/98 58 43.79 14.21 0.935 
21/07/98 43 38.83 4.17 0.693 
12/08/98 44 38.56 5.44 0.725 
21/09/98 46 41.7 4.3 0.937 
12/10/98 46 41.58 4.42 0.73 
10/11/98 46 41.22 4.78 0.68 
06/01/99 44 39.9646 4.0354 0.672 
08/02/98 44 39.39 4.61 0.683 
12/04/99 44 39.84 4.16 0.699 
14/05/99 45 41.1 3.9 0.72 
19/05/99 45 40.93 4.07 0.74 
26/05/99 45 41.14 3.86 0.66 
31/05/99 48 42.24 5.76 0.88 
04/06/99 48 42.32 5.68 0.83 
08/06/99 54 42.29 11.71 0.84 
11/06/99 50 41.64 8.36 0.73 
14/06/99 53 41.3 11.7 0.77 
17/06/99 53 41.2 11.8 0.965 
23/06/99 45 40.41 4.59 0.67 



Y E L Juvenile 

Mass PTLM PFM BMR 
(g) (g) (g) (watts) 

29/10/96 56 40.59 15.41 0.82 
30/11/96 54 41.27 12.73 0.727 
25/12/96 51 41.09 9.91 0.681 
21/01/97 53 41.45 11.55 0.71 
21/02/97 49 39.77 9.23 0.556 
21/03/97 48 38.96 9.04 0.509 
25/04/97 50 41.03 8.97 0.63 
14/05/97 51 38.71 12.29 0.67 
17/06/97 55 41.02 13.98 0.657 
10/07/97 52 39.74 12.26 0.82 
12/08/97 51 39.11 11.89 0.65 
04/09/97 48 39.84 8.16 0.738 
22/10/97 46 42.6 3.4 0.711 
25/11/97 48 40.8 7.2 0.747 
01/01/98 47 40.76 6.24 0.648 
10/03/98 49 42.6 6.4 0.63 
29/04/98 51 41 10 0.71 
28/05/98 54 43.31 10.69 0.82 
01/06/98 58 44.22 13.78 0.85 
04/06/98 63 46.1 16.9 0.961 
08/06/98 55 42.7 12.3 0.982 
21/07/98 47 41.9 5.1 0.667 
29/07/98 47 40.59 6.41 0.77 
06/09/98 49 41.43 7.57 0.95 
29/10/98 51 43.9 7.1 0.707 
21/11/98 46 41.61 4.39 0.687 
06/01/99 46 40.956 5.0443 0.695 
08/02/98 46 41.45 4.55 0.709 
12/04/99 45 39.83 5.17 0.69 
14/05/99 51 43.39 7.61 0.91 
19/05/99 54 42.55 11.45 0.866 
26/05/99 51 41.14 9.86 0.81 
31/05/99 48 38.76 9.24 0.726 
05/06/99 47 39.23 7.77 0.8 
11/06/99 47 38.85 8.15 0.78 



WBL Juvenile 

MASS PFM FAT BMR 
(g) (g) (g) (watts) 

12/11/97 44 36.11 7.89 0.677 
02/01/98 40 35.1 4.9 0.75 
02/02/98 43 31.72 11.28 0.57 
24/03/98 38 35.31 2.69 0.68 
22/04/98 38 34.03 3.97 0.66 
29/07/98 39 36.17 2.83 0.619 
17/08/98 40 34.75 5.25 0.644 
28/08/98 40 35.6 4.4 0.701 
06/10/98 41 36.69 4.31 0.889 
01/11/98 44 36.64 7.36 0.679 
12/11/98 43 36.92 6.08 0.655 
06/01/99 40 36.14 3.86 0.59 
26/02/99 38 33.2 4.8 0.621 
13/04/99 38 34.18 3.82 0.65 
13/05/99 40 36.02 3.98 0.63 
17/05/99 43 36.21 6.79 0.72 
25/05/99 52 39.3 12.7 0.94 
30/05/99 50 37.33 12.67 1.022 
04/06/99 42 35.5 6.5 0.66 
24/06/99 35 31.11 3.89 0.54 



L Y E L Adult 

MASS PTLM FAT BMR 
(g) (g) (g) (watts) 

12/11/97 47 35.32 11.68 0.69 
02/01/98 46 35.89 10.11 0.83 
02/02/98 48 33.48 14.52 0.74 
24/03/98 48 38.5 9.5 0.697 
22/04/98 47 37.06 9.94 0.82 
12/06/98 46 37.72 8.28 0.77 
21/07/98 41 35.5 5.5 0.668 
17/08/98 43 37.2 5.8 0.757 
14/09/98 48 35.81 12.19 0.875 
06/10/98 52 36.29 15.71 0.774 
20/10/98 59 35.54 23.46 0.723 
28/10/98 58 35.03 22.97 0.831907 
04/11/98 63 34.89 28.11 0.88423 
09/11/98 60 36.27 23.73 0.914152 
12/11/98 52 34.54 17.46 0.805 
20/11/98 49 35.92 13.08 0.805 
06/01/99 46 35.54 10.46 0.58 
26/02/99 47 37 10 0.61 
13/04/99 41 36.97 4.03 0.633 
13/05/99 48 36.06 11.94 0.72 
17/05/99 54 37.68 16.32 0.94 
25/05/99 60 39.69 20.31 0.81 
30/05/99 58 39.85 18.15 0.993 
03/06/99 52 37.67 14.33 0.802 
07/06/99 47 36.52 10.48 0.7 
24/06/99 40 35.94 4.06 0.63 



WDG JUV. 

MASS PTLM FAT BMR 
(g) (g) (g) (watts) 

12/11/97 54 35.91 18.09 0.64 
02/01/98 43 34.9 8.1 0.78 
02/02/98 39 32.31 6.69 0.547 
22/04/98 39 37.51 1.49 0.71 
12/06/98 41 35.1 5.9 0.69 
05/08/98 38 36.6 1.4 0.632 
17/08/98 40 37.41 2.59 0.738 
14/09/98 41 36.81 4.19 0.876 
06/10/98 48 36.28 11.72 0.685 
17/10/98 48 35.44 12.56 0.608 
20/10/98 48 33.62 14.38 0.65732 
29/10/98 54 33.81 20.19 0.72806 
01/11/98 53 33.85 19.15 0.6977 
05/11/98 52 34.45 17.55 0.6977 
09/11/98 52 34.48 17.52 0.6977 
12/11/98 52 34.73 17.27 0.708 
06/01/99 40 35.34 4.66 0.642 
26/02/99 38 34.21 3.79 0.56 
13/04/99 40 35.96 4.04 0.59 
13/05/99 44 33.39 10.61 0.71 
17/05/99 46 34.85 11.15 0.798 
25/05/99 53 36.85 16.15 0.836 
30/05/99 53 37.86 15.14 0.9 
04/06/99 47 34.68 12.32 0.724 
24/06/99 39 35.49 3.51 0.6 



WRED Juvenile 

MASS 
(g) 

PTLM 
(g) 

FAT 
(g) 

BMR 
(watts) 

12/11/97 42 36.3 5.7 0.64 
02/01/98 39 36.28 2.72 0.75 
02/02/98 39 36.5 2.5 0.61 

WLG Adult 

MASS 
(g) 

PTLM 
(g) 

FAT 
(g) 

BMR 
(watts) 

12/11/97 54 34.13 19.87 0.72 
02/01/98 40 34.9 5.1 0.78 
02/02/98 39 33.15 5.85 0.57 
24/03/98 38 35.24 2.76 0.69 

LRED Juvenile 

MASS 
(g) 

PTLM 
(g) 

FAT 
(g) 

BMR 
(watts) 

12/11/97 44 35.12 8.88 0.69 
02/01/98 45 36.68 8.32 0.79 
02/02/98 47 33.98 13.02 0.66 
24/02/98 46 32.49 13.51 0.7 
22/04/98 47 36.25 10.75 0.78 
25/05/98 44 40.33 3.67 0.675 
29/07/98 45 36.06 8.94 0.711 
28/08/98 46 35.9 10.1 0.7 
20/10/98 46 35.97 10.03 0.645 
23/12/98 47 37.11 9.89 0.77 
15/02/99 47 34.79 12.21 0.669 
13/03/99 48 38.47 9.53 0.654 
13/04/99 45 36.5 8.5 0.72 



L L G Adult 

MASS PTLM PFAT BMR 
(g) (g) (g) (watts) 

12/11/97 46 35.9 10.1 0.75 
02/01/98 41 36.09 4.91 0.75 
02/02/98 44 33.97 10.03 0.668 
24/03/98 44 32.86 11.14 0.72 
22/04/98 42 38.7 3.3 0.71 
12/06/98 39 35.3 3.7 0.64 
17/08/98 40 36.39 3.61 0.625 
14/09/98 42 36.61 5.39 0.674 
06/10/98 40 36.09 3.91 0.84 
29/10/98 47 39.02 7.98 0.752 
10/12/98 42 36.62 5.38 0.61 
06/01/99 41 36.63 4.37 0.678 
26/02/99 41 35.41 5.59 0.642 
13/04/99 39 36.1 2.9 0.67 

LBL Adult 

MASS PTLM PFAT BMR 
(g) (g) (g) (watts) 

12/11/97 47 38.27 8.73 0.72 
02/01/98 46 37.47 8.53 0.84 
02/02/98 45 35.71 9.29 0.7 
24/03/98 48 40.89 7.11 0.72 
22/04/98 44 36.21 7.79 0.78 
29/07/98 44 34.84 9.16 0.739 
28/08/98 43 35.8 7.2 0.75 
23/12/98 47 35.75 11.25 0.7 
15/02/99 46 36.62 9.38 0.656 
13/04/99 39 33.7 5.3 0.683 



WOR Juvenile 

MASS PTLM PFAT BMR 
(g) (g) (g) (watts) 

12/11/97 64 44.75 19.25 0.73 
02/01/98 49 43.1 5.9 0.735 
02/02/98 51 42.31 8.69 0.61 
24/03/98 47 42.77 4.23 0.69 
22/04/98 47 43.09 3.91 0.77 
12/06/98 46 37.32 8.68 0.73 
05/08/98 48 44.77 3.23 0.69 
28/08/98 49 42.79 6.21 0.779 
12/10/98 54 43.97 10.03 0.9 
20/10/98 65 44.24 20.76 0.68 
28/10/98 63 44.87 18.13 0.723 
01/11/98 60 44.51 15.49 0.89 
05/11/98 63 44.87 18.13 0.868 
09/11/98 60 44.51 15.49 0.824 
12/11/98 55 43.89 11.11 0.806 
20/11/98 51 44.3 6.7 0.806 
06/01/99 49 44.5 4.5 0.694 
26/02/99 47 43.01 3.99 0.678 
13/04/99 46 43.15 2.85 0.69 
13/05/99 51 43.9 7.1 0.74 
17/05/99 59 47.21 11.79 1.08 
25/05/99 63 45.43 17.57 0.96 
30/05/99 55 41.9 13.1 0.941 
03/06/99 50 41.94 8.06 0.72 
07/06/99 46 41.15 4.85 0.67 
24/06/99 49 39.96 9.04 0.78 



WOR Juvenile 

MASS PTLM PFAT BMR 
(g) (g) (g) (watts) 

12/11/97 64 44.75 19.25 0.73 
02/01/98 49 43.1 5.9 0.735 
02/02/98 51 42.31 8.69 0.61 
24/03/98 47 42.77 4.23 0.69 
22/04/98 47 43.09 3.91 0.77 
12/06/98 46 37.32 8.68 0.73 
05/08/98 48 44.77 3.23 0.69 
28/08/98 49 42.79 6.21 0.779 
12/10/98 54 43.97 10.03 0.9 
20/10/98 65 44.24 20.76 0.68 
28/10/98 63 44.87 18.13 0.723 
01/11/98 60 44.51 15.49 0.89 
05/11/98 63 44.87 18.13 0.868 
09/11/98 60 44.51 15.49 0.824 
12/11/98 55 43.89 11.11 0.806 
20/11/98 51 44.3 6.7 0.806 
06/01/99 49 44.5 4.5 0.694 
26/02/99 47 43.01 3.99 0.678 
13/04/99 46 43.15 2.85 0.69 
13/05/99 51 43.9 7.1 0.74 
17/05/99 59 47.21 11.79 1.08 
25/05/99 63 45.43 17.57 0.96 
30/05/99 55 41.9 13.1 0.941 
03/06/99 50 41.94 8.06 0.72 
07/06/99 46 41.15 4.85 0.67 
24/06/99 49 39.96 9.04 0.78 



Appendix V 

The relationship between Resting Metabolic Rate and Temperature in individual 
C.a.alpina and in C.a.schinzii 

Individuals DG, BLU, LG, Y E L , RE and OR are captive C.a.alpina and 

individuals WBL, L Y E L , WDG, WOR and L L G are C.a.schinzii 
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Table I : Slopes (watts per °C) and intercept values at 0 °C (watts) of the relationship 
between RMR and temperature taken in March and November for six C.a.alpina 

individual 

March November 

individual Slope Intercept Slope Intercept 

DG ; 00221 1.195 0.0213 1.2021 

Y E L 0.0200 1.1334 0.0203 1.1397 

LG \ 0.0229 1.3306 0.0224 1.2824 ! 

BLU | 0.0203 1.2524 0.0204 1.1807 

OR 0.0241 1.272 0.0212 1.2694 

RE 0.0243 1.3068 I 0.0233 1.2864 
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Table 2: Slopes (watts per °C) and intercept values at 0 °C (watts) of the relationship 
between RMR and temperature taken in March and November for five C.a.schinzii 

March November 

Individual Slope Intercept Slope Intercept 

WBL 0.0203 1.1258 0.0221 1.1716 

L Y E L 0.0195 1.1696 0.0205 1.157 

WDG 0.0198 1.1292 0.0213 1.1822 

WOR 0.0229 1.231 0.0237 1.248 

L L G 0.0223 1.2908 0.0212 1.18 

166 



Appendix VI 

Feeding duration in wild Dunlin 

I attempted to estimate daily feeding durations for individual Dunlin in winter 

and during spring and autumn migration in order to extrapolate it to energy 

intake. However, it was very difficult to obtain enough reliable information. I 

should have made feeding observation many times every season, taking into 

account many factors that affect feeding duration such as temperatures, air speed 

and other weather conditions. Also some observations had to be cancelled 

because of disturbance (e.g. birds of prey), weather conditions or simply because 

Dunlin did not come to feed on that day for some reasons. I have presented the 

observations I was able to make in graphs in this Appendix. 

Methods 

Daily feeding durations for Dunlin were estimated at Seal Sands, Teesmouth by 

observing birds with a 22-60x 80mm (Optolyth T.B.G. 80) telescope and a pair 

of binoculars 10x40B(ZEISS, Dialyt) from a vehicle which served as a mobile 

'hide', or from a permanent hide. Feeding measurements were made during 

spring tides (i.e. those with low water levels less than 1.3m OD) and neap tides 

(i.e. those with low water levels greater than 1.3 m OD) in winter, spring and 

autumn of 1997and 1998. Observations started 2-4 hours before high water 

(before Dunlin start roosting) and continued until they flew to roost, and again 

when they left the roost and began feeding again. Observations were made every 

15 minutes. The duration of non-feeding (roosting) was subtracted from the time 
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between successive high waters (12.5h) to give an estimate of the total time spent 

foraging. 

Feeding duration graphs 

11/12/97 Spring tide 
N=97 

-3 -2.5 -2 -4.5 4 

h/before high tide 

-0.5 0 0.5 
High tide 

• % feeding 

» » 0 » * — 1 0 0 
• 

O A 

_ _ ^ • - - - ; 6 

• 
- - — A 

• » 0 V 

• 

I f ) 

• 

r—— ~i - - -i — 1 r • i * •* % i > • • » l 1 1 

1 1.5 2 
h/after high tide 

20/5/98 Neep tide 
N=79 • % feeding 

9 9 9 9 — f00— 

• on 

1 •- 9 - -—9 

# 80 • 

Aft ' 

- - - - - - - - v. 

— j 

• 

• - u 

— r —i 1 —T— i • ft < » • • 1 T 1 1 

-2.5 -2 -4.5 -4 
h/before high tide 

-0.5 0 0.5 
High tide 

1 1.5 2 
h/after high tide 

168 



7/5/98 Neep tide 
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3/8/98 Neep tide 
N=146 %feeding 
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30/12/98 Spring tide 
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Appendix VIII 
Ringing and Recoveries Maps 

For Dunlin ringed in Cleveland 

a G B C V refers to the place code of Cleveland in Great Britain 

• Numbers refer to months (1= January, 2= February, etc.) 

a Number inside symbols indicates number of recoveries, symbols without 

number mean one recovery. 

MAP 1: Adult Dunlin ringed in GBCV in 4, 5 and 6 and recovered outside Great 
Britain in 4, 5 and 6. 



M A P 2: Adult Dunlin ringed in GBCV in 4, 5 and 6 and recovered outside Great 
Britain in 7 and 8. 
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MAP 3: Adult Dunlin ringed in GBCV in 7 and 8 and recovered outside Great 
Britain in 8,9,10,11,12 and 1. 
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M A P 4: Adult Dunlin ringed in GBCV in 7 and 8 and recovered outside Great 
Britain in 2, 3, 4, 5 and 6. 
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MAP 5: Adult Dunlin ringed in GBCV in 9, 10,11, 12, 1, 2 and 3 and recovered 
outside Great Britain in 4, 5 and 6. 
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MAP 6: Adult Dunlin ringed in GBCV in 9, 10,11, 12, 1, 2 and 3 and recovered 
outside Great Britain in 7, 8 and 9. 



MAP 7: Juveniles Dunlin ringed in GBCV in 7 and 8 and recovered outside Great 
Britain (in same year as ringed) in 9, 10, 11 and 12 
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MAP 8: Juveniles Dunlin ringed in GBCV in 9 and 10 and recovered outside Great 
Britain (in same year as ringed) in 9,10, 11 and 12 
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Appendix IX 
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Figure: 1 The progressive land-claim in the Tees Estuary. Dates within each 
block are those when the land-claim is known to have been completed. 
Redrawn from Davidson et al, 1991. 
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Fat stores during autumn migration in adult C.a.alpina at Teesmputh 

The subspecies alpina leaves the breeding grounds in northern Scandinavia and 

Russia (east to the Taimyr Peninsula) and winters in western Europe (Pienkowski & 

Pienkowski, 1983; Gromadzka, 1989). 

Figure 2 shows LI for adults and juveniles alpina. It can be seen that juveniles have 

higher LI than adults, which suggests that adults may spend their winter at the Tees 

or nearby whereas juveniles with high L I may migrate further south to winter in the 

Wash (eastern England) or France, or west to winter in Ireland. 

Figure 2: Lipid indices ((fat mass/total body mass)* 100) for 9 adults (bold squares) 
and 40 juveniles (triangles) alpina caught in late autumn at Teesmouth 
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