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Abstract 

This thesis is concerned with theoretical calculations of the properties of electronic 

bound states in semiconductor heterostructures. The complex band structure empir

ical pseudopotential method (EPM) is used as the foundation of the work. Spin orbit 

coupling and strain effects (due to lattice mismatch) are included in familiar ways, 

as is the transfer matrix method, allowing the study of arbitrarily configured hetero

structures. These techniques are used to investigate the unusually deep InAs/AlSb 

conduction band well. The strong possibility of intraband transitions at electro

magnetic wavelengths around 1.55^m is predicted, with corresponding enhanced 

momentum matrix elements and joint density of states over interband transitions. 

An InAs/GaSb/AlSb asymmetric well is investigated, paying particular attention to 

the bound states in the vicinity of the InAs/GaSb band overlap. The electron-like 

states are found to cross with heavy hole and anti-cross with light hole-like states, 

as a function of heterostructure dimension or applied electrostatic field. This is 

analogous to the hybridisation of states in the in-plane band structure, except that 

for zero in-plane wave vector there can be no appreciable hybridisation of electron 

and heavy hole states. A technique is described that has been developed to extract 

envelope functions from heterostructure wavefunctions calculated using the realis

tic complex band structure EPM approach. These envelope functions conform to 

Burt's theory (M. G. Burt, J. Phys.: Condens. Matt. 4, 6651 (1992)) in that they are 

uniquely defined, continuous and smooth over all space. Comparisons with tradi

tional effective mass envelope functions are made. The extracted envelope functions 

are used to demonstrate conclusively Burt's predictions (M. G. Burt, Superlatt. Mi-

crostruct. 17, 335 (1995)) concerning the inadequacy of certain approximations for 

the calculation of interband dipole matrix elements and charge oscillation. Finally, 

the issue of k • p operator ordering is convincingly settled, in favour of 'ordered' over 

'symmetrised' Hamiltonians, by comparison to EPM calculations, and using EPM 

derived k • p parameters. 
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Chapter 1 

Introduction 

1.1 History and background 

This thesis deals with the theory of semiconductor heterostructures, i.e., structures 

consisting of more than one semiconductor material, and specifically those with all 

the material interfaces parallel. When the interfaces, or heterojunctions, between 

the different materials, are separated by distances on a scale comparable to that of 

the electron's de Broglie wavelength, resulting in 'thin' layers, the system must be 

analysed quantum mechanically. Such structures allow the tailoring of their physical 

properties in much more varied ways than are possible using bulk materials and their 

alloys. They also lead to novel effects not seen in the bulk. In particular, this work is 

concerned with heterostructures which have energy ranges in which the electrons are 

spatially confined. A common example of a heterostructure is the single quantum 

well (SQW), the basic concept of which is familiar from simple textbook calculations 

(see, for example, p275 of [1]). Such textbook analysis of SQWs was usually carried 

out either as an approximation to conduction electrons in metals or molecules, those 

bound in the atom or as a purely quantum mechanical exercise. However, the rapid 

advancement over the last 20-30 years of material growth techniques has meant 

1 
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that SQW and other heterostructure calculations now have direct applications to 

real systems. 

Heterostructures of a type similar to those discussed in this work were first con

ceived by Esaki and Tsu in 1970 [2], who suggested the growth of alternating layers 

of two different semiconductor materials, with atomically abrupt interfaces between 

them, as a way of producing further 'materials' capable of exhibiting negative dif

ferential resistance^ (NDR). Such a periodic structure is called a superlattice. At the 

time, though, growth techniques were not sufficiently developed to fully realise such 

a structure. 

In the late 1960s, two methods with the potential to grow heterostructures of the 

desired scale were developed, namely molecular beam epitaxy (MBE) [4] and metal 

organic chemical vapour deposition (MOCVD) [5]. Over the years, these methods 

have been refined to the extent that, for many material systems, the fabrication of 

heterostructures with genuinely abrupt interfaces and thin layers can be considered 

as relatively routine (see, for example, [6,7]). Such heterostructures have found, or 

are promising for, applications in many areas, including lasers, transistors, tunelHng 

diodes, photodetectors and non-linear optical devices (such as all optical switches 

and frequency convertors). 

The advances in experimental technique have encouraged much effort in the 

theoretical investigation of heterostructures. Early calculations [8,9] used essentially 

textbook Kronig-Penney models (see, for example, p286 of [1]). The continually 

increasing computational power and relative affordability of digital computers has 

allowed more sophisiticated models to be adopted. These include various tight-

binding methods [10-12], k • p and envelope function methods [13-18], and ab initio 

19] and empirical [20,21] pseudopotential methods (see [22] for a detailed review of 

^Of the bulk materials, only GaAs, InP and Ina;Gai_a:As satisfy the conditions for NDR to 
occur (see, for example, p218 of [3]). I t should be noted that NDR in heterostructures is due to a 
different mechanism from that in bulk semiconductors. 
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various theoretical methods for studying superlattices). Of these methods, the six 

or eight band k • p method and envelope function approaches have been the most 

widely used, whilst at the same time, their range of applicability and mathematical 

foundation was until recently not well understood. 

This thesis uses an empirical pseudopotential method to study the properties 

of bound electronic states in various semiconductor heterostructures, consisting of 

group I I I -V and I I - V I compounds and alloys. In addition, the properties of envelope 

functions extracted from the microscopic pseudopotential calculations are examined 

and compared to envelope functions obtained in the traditional way. In particular, 

we focus on the issues surrounding the appropriate interface boundary conditions to 

be applied in effective mass envelope function approximations. 

1.2 Thesis plan 

Chapter 2 

We first give a brief review of the concepts of pseudopotential theory, including the 

key equations, and then concentrate on how the general theory is reduced to the 

particular empirical pseudopotential method (EPM) used in this work. Next, the 

methods for including spin orbit coupling (SOC) and strain effects are introduced. 

The section on strain also discusses lattice mis-match and epitaxial growth, lat

tice mismatch being the main reason for including strain in the calculations. We 

then describe the procedures used to obtain the various parameters required by the 

EPM, followed by a discussion of the complex band structure technique, where one 

component of the electron wave vector is generalised to a complex number. This 

technique is used as the basis of the heterostructure calculations. The convergence 

of the calculated values with the number of terms in the Fourier expansion of the 
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wavefunction is briefly covered, and finally, examples of the calculation of various 

electronic properties of bulk crystals are presented. 

Chapter 3 

This chapter covers the theory and methods used in the EPM calculations of the 

electronic bound states of heterostructures considered in this thesis. After a brief 

introduction, the critical issue of the wavefunction interface boundary conditions is 

discussed, followed by a description of the transfer matrix method for wavefunction 

matching over many interfaces, as implemented in the complex band structure EPM 

scheme, and the equations used for determining the existence of bound states. The 

remainder of the chapter is devoted to the concepts and methods used for the cal

culation of various electronic properties of heterostructures, specifically, momentum 

and dipole matrix elements between bound states and the joint density of states. 

Finally, we consider the application of an electric field along the heterostructure 

growth direction. 

Chapter 4 

Chapter 4 presents the results of heterostructure calculations performed using the 

methods described in the preceding chapter. Two systems are investigated; an 

InAs/AlSb single quantum well (SQW) and an asymmetric InAs/GaSb/AlSb sys

tem. The InAs/AlSb system forms an unusually deep conduction band well, and the 

results focus on the possibilites of transitions between conduction band bound states 

(intraband transitions) at the technologically very important optical wavelength of 

1.55fj,m. The use of the EPM for these calculations also leads to an unexpected 

effect in the response of the ground state energy to the applied electric field. The 

second half of the chapter is concerned with the 'stepped' asymmetric well formed 
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by sandwiching thin layers of InAs and GaSb between AlSb barriers. This system is 

particularly interesting not just because of the asymmetric quantum well formed in 

the conduction band but also because the InAs conduction and GaSb valence bands 

overlap. 

Chapter 5 

Chapter 5 covers the development of a method for extracting spatially slowly varying 

envelope functions, for quantum well bound states, from wavefunctions calculated 

with the EPM (using the complex band structure approach described in Chapter 3). 

These envelope functions are uniquely defined and obey the same (uncontroversial) 

interface boundary conditions as the original wavefunction. Extensive checks are 

performed to demonstate the validity of the theoretical and numerical procedures 

used in the envelope function extraction process. 

Chapter 6 

This chapter takes envelope functions produced by the method described in the 

previous chapter and discusses their properties, in particular, the behaviour of their 

spatial derivative around abrupt heterojunctions. For a particular bound state, 

direct comparison is made between the EPM derived envelope function of greatest 

magnitude and the (single) envelope function produced by a simple effective mass 

model. 

Next, the dipole matrix elements between quantum well bound states are cal

culated employing the ful l EPM pseudo-wavefunction and various approximations 

to this, using the envelope function expansion with only certain terms included. 

The same approach is used to investigate interband charge oscillation, especially 

the effects of various envelope function approximations on the predicted results, as 
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compared to those predicted by the full EPM calculation. 

Finally, a comparison is made between EPM valence band quantum well band 

structure and that calculated using so-called 'symmetrised' and 'ordered' k • p Hamil-

tonians. 

Summary and conclusion 

Finally, we summarise the work presented in this thesis, recapping on the main 

conclusions, and suggesting future research areas that might lead on from this work. 



Chapter 2 

The empirical pseudopotential 

method 

2.1 Introduction 

The foundation for almost all the work presented in this thesis is the empirical 

pseudopotential method (EPM) for the calculation of the electronic structure of 

semiconductors. This is a powerful technique for the study of valence electrons and 

has been used extensively for both bulk and heterostructure calculations. Valence 

electrons are those that are in the outer shells of the atoms in the crystal.'^ At 

absolute zero, these electrons completely fi l l the valence band in a semiconductor, 

with the higher energy conduction bands empty. In contrast, electrons tightly bound 

to the atom are said to be in inner or core states. The aim of pseudopotential theory 

is to facilitate the solution of the Schrodinger equation for real materials, where one is 

interested in the valence rather than core electrons. This chapter outlines the basic 

theory and methodology, as applied to the current work, and presents results for 

bulk semiconductors which illustrate the important advantages and disadvantages 

^ First principles techniques often include lower energy electrons from closed shells but are not 
discussed here. 
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of this approach. 

2.2 Theory 

2.2.1 Brief review of pseudopotential theory 

The term 'pseudopotential method' can be considered to cover two distinct ap

proaches to the calculation of electronic structure, both originating from the same 

underlying theory. These are the empirical pseudopotential method (EPM) and ab 

initio, or first principles, methods. The current work uses the empirical pseudo-

potential method and so ab initio methods are not discussed here (see [23] for a 

review of such methods). The first step in the development of a pseudopotential 

theory is to make the Hartree, or mean-field, approximation^ to reduce the many 

electron problem to that of solving the one-electron (time-independent) Schrodinger 

equation, 

^ ^ ( r ) = f - ^ V ^ + v] V^(r) - Ei^ir), (2.1) 

where me and E are the rest mass and energy of the electron, and V is the full 

self-consistent potential seen by the electron. The difficulty in solving (2.1) directly 

arises from this potential term. In a crystalline material, such as the group III-V and 

I I - V I semiconductors considered in this work, the potential, V, has the symmetry 

properties of the crystal lattice. Since the mean-field potential depends partly on 

the electron-ion interactions, it varies rapidly over small distances around the ionic 

centres, but between the ions is relatively weak and slowly varying (we also note 

^AS the term mean-field suggests, this approximation assumes that each electron experiences an 
identical mean potential, V. The ful l wavefunction is then a Slater determinant of the one electron 
wavefunctions, solved using this mean potential, with the Pauh exclusion principle requiring each 
electron to be in a distinct quantum state. For further general explanation see, for example, pl4 
of [3] and chapter 12 of [1]. 
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that because the potential includes a component due to the electrons themselves, a 

ful l , first principles solution to (2.1) requires a self-consistent approach). 

For any real semiconductor, the form of V is such that no analytic solution to 

(2.1) is possible, and it is necessary to make a suitable approximation or use a nu

merical method, or some combination of the two. In choosing a numerical method, 

consideration must be given to the computational demands. For example, the pe

riodicity of the crystal suggests the use of a standard Fourier series representation 

of the potential, V, and wavefunction, IP{T), as the basis of a numerical solution. 

However, due to the large and rapid variations in the potential the number of terms 

required to achieve even approximate convergence makes this approach unattractive. 

An alternative approach which is more amenable to approximation than Fourier 

or plane wave methods is the tight-binding method (see, for example, Chapter 3 

of [24]). This method approximates the crystal wavefunction by a linear combination 

of atomic orbitals (LCAO). This reproduces the valence band states satisfactorily, 

but fails to adequately represent excited states, i.e., the conduction bands, which 

are of critical importance in optical processes. 

At the other extreme of approximations is the nearly free-electron model, or 

NFE (see, for example, pl2 of [25]), to which the pseudopotential method is closely 

related. However, the NFE over-simplifies the situation, since it produces electronic 

structure that differs from the parabolic free-electron energy only in the immediate 

vicinity of the Brillouin zone boundaries. The pseudopotential approach bridges the 

gap between the LCAO and NFE pictures and has proven useful and reliable in many 

applications.^ One further approach is the k • p method. This is a perturbation 

technique, which does not provide explicit knowledge of the periodic part of the 

Bloch function, but only the slowly varying envelope. Information about the periodic 

^The pseudopotential method was derived from the orthogonahsed plane wave (OPW) method, 
as first applied to the calculation of the electronic structure of solids by Herring [26]. 
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part is included only through momentum matrix element parameters, which can be 
related to macroscopically determind effective masses. Pseudopotential theory in 
general, and the empirical pseudopotential method in particular, is discussed in 
detail by many authors in the literature (see, for example, [25,27,28]). Here we 
reproduce the key equations and highlight the important issues of the theory. 

Pseudopotential theory requires the electrons to be split into two groups; core 

and valence electrons, as discussed in Section 2.1. In this context, we group the 

nucleus and core electrons together under the term crystal ion, and treat these ions 

as forming a fixed crystal lattice. The core electrons of one atom interact little 

with those of neighbouring atoms since they are tightly bound around the atomic 

nucleus in closed shells, thus, they can be well approximated by free atom states. 

The valence electrons are those in the open outer atomic shells of the (individual) 

atoms and these form the inter-atomic bonds. In this work, it is the valence electrons 

that are of primary interest, since as well as forming the covalent bonds, they are 

involved in charge transport and can undergo optical transitions. 

The starting point in pseudopotential theory is the expression of the true wave-

function, as a linear combination of the core states, •0c, and some smooth function, 

^p, to be determined, 

V'(r) = <p(r) + J ] 6 , ^ . ( r ) . (2.2) 
c 

Here, we are only interested in valence states, so we require ij) to be orthogonal to 

the core states, i.e., 

(̂ 1̂ )̂ = 0, for all c. (2.3) 
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Imposing this condition on ip gives 

i^{x)=^{v)-Y,M^c\^)- (2-4) 
c 

On substitution into (2.1), the Schrodinger equation can be expressed in the form 

(see Appendix A) 

HP^p={-^V^ + w]ip = Eip, (2.5) 

which defines the the pseudo-Hamiltonian, H'P, and the pseudopotential, W, which 

are given in terms of the core state projection operator, P, by 

W = V + ^{E-E,)P (2.6) 
c 

= 1/ + J ] ( £ ; - ^ e ) | V ' c > < ^ c | , (2.7) 
c 

with the Ec being the energy eigenvalues of the core states. The function is called 

the pseudo-wavefunction. I t can be shown that the two terms in the expression for 

the pseudopotential almost cancel [29,30], hence, although the true potential, V, 

varies greatly and rapidly with position, the pseudopotential is a relatively weak 

and slowly varying function. Thus a comparatively small number of terms may be 

used in a series expansion of the pseudo-wavefunction, (2.9), whilst still achieving 

reasonable convergence of the solution (see Section 2.6). 

The pseudo-wavefunction still satisfies Bloch's theorem, 

</^„k(r)=e^''-^zi„k(r), (2.8) 

where the Bloch periodic functions, u„k(r), are periodic with the crystal lattice, and 

we have introduced the band index, n, and electron wave vector, k, to distinguish 
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the states. Thus, it is natural to expand the pseudo-wavefunction as a Fourier series, 

^nk(r) = e' ' '-^5]a„gke^^-, (2.9) 
g 

with Fourier coefficients a„gk, corresponding to the set of reciprocal lattice vectors 

{g}-

A number of important points can now be made. 

• The eigenvalue of is the same as that of H, i.e., the total energy of the 

electron, Enk (k is included to indicate that the energy varies parametrically 

with the electron wave vector). 

• The pseudo-Hamiltonian contains the kinetic energy operator, as before, but 

the potential term, V, has been replaced by the pseudopotential, W. 

• The second term in W, involving the core projection operator has a repulsive 

effect on the valence states in and around the core region. 

• The true wavefunction is related to the pseudo-wavefunction by 

V;k(r)= ( l - P ) (Pk(r). 

Therefore, in the regions between the atoms, where the valence electrons are 

concentrated, the pseudo-wavefunction is a good approximation to the true 

wavefunction of these states, since there is little overlap with the core states 

which are concentrated around the nuclei. 

I t is for the above reasons that the pseudopotential method is so powerful. However, 

solving (2.5) exactly is no more tractable than solving the original Schrodinger 

equation, since the core state energies and wavefunctions are required. For this 

reason empirical information is employed to further simplify the problem. 
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2.2.2 Empirical pseudopotentials 

The empirical pseudopotential method (EPM) avoids the need for explicit knowl

edge of the core states by treating the pseudopotential as a parameterised function 

and adjusting the parameters until calculated band structure and experimental in

formation on the actual band structure are in satisfactory agreement. It is clear 

that the pseudopotential, (2.7), is spatially non-local in general. I t is possible to 

include non-local effects within the EPM scheme for bulk materials [31] but this is 

not feasible for heterostructure calculations if the complex band structure method 

is used (see Section 2.5), and so W is replaced by a simple local pseudopotential, 

V^{T). This has the periodicity of the lattice and so can be expanded as a Fourier 

series using reciprocal lattice vectors, g. So, we have 

g 

where the Vg are Fourier coefficients, which may be expressed in terms of atomic 

pseudopotentials for the two atoms of the basis (in the case of diamond or zinc-

blende materials). 

We define the Bravais lattice points to be midway between the two atoms, la

belled A and B, of the primitive unit cell of the zinc-blende crystal. Therefore, A and 

B are at —r and +T with respect to the Bravais lattice point, where r = (1,1, l)a/8, 

and a is the lattice parameter. So, if V^{r) and V^{T) are the atomic pseudo-

potentials of A and B, the Fourier coefficients can be expressed as 

^ (e'^ '^ [ y^(r)e-^e'-,d3^^g-ig.r f vP{r)e-'^'dh] , (2.11) 
'0 \ Jn JQ J 

where flo and f2 are the volumes of the primitive unit cell and crystal, respectively. 

The integrals in (2.11) give the Fourier coefficients for the atomic pseudopotentials, 
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called the atomic form factors, Vj{g), where j = A ov B. The atomic form factors 
can be defined for any point q in reciprocal space by the equation 

(q) = ^ _ ^ ^ ' ' ( r ) e - ^ ^ ' - d ^ r , (2.12) 

where q is a continuous wave vector and Q,j is the 'atomic volume' of atom j in 

the crystal.'* Here the atoms form a crystal lattice and the form factors are only 

required at certain discrete values of q, 

v,{q) ^ v,{g) = ^ ^ Vf{v)e-^^-dh. (2.13) 

I t is common to assume that the atomic pseudopotentials are spherically symmetric, 

in which case i t can be shown that the Fourier coefficient depends only on the radial 

component of the wave vector, i.e., 

^ , ( q ) ^ ^ , ( | q | ) . (2.14) 

This greatly reduces the number of independent form factors that must be deter

mined and so simplifies the fitting procedure (cf. Section 2.4.1). The general form 

of uydql) is shown schematically in Figure 2.1. Finally, i t is convenient to express 

Vg in terms of symmetric and antisymmetric pseudopotential form factors, defined 

by 

^igi = liM\&\) + M\s\)) 
\ (2.15) 

^The 'atomic volume' is an ill-defined quantity that represents the volume of the primitive unit 
cell, fio, occupied by each atom. Here the standard designation of f i ^ = f^s = ^0/2 is used. 
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Figure 2.1 Schematic plot of tiie Fourier coefficient, v{\q\), for a typical atomic pseudo-
potential. 

so that (2.11) becomes 

(2.16) 

where and s" are called the symmetric and antisymmetric structure factors, and 

are given by 

Sg = c o s ( g - r ) and Sg = s i n ( g - r ) . (2.17) 

To summarise, the local E P M approximates the exact pseudopotential wi th ^^(r) , 

where 

igr (2.18) 

Substituting the local pseudopotential into (2.5), and using the pseudo-wave-
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functions, (2.9), as the basis, the pseudo-Hamiltonian has matr ix elements 

^gg' = ^ ( k + g ) V + ^ g - g ' - (2-19) 

The eigenvalues of Hgg' are the energies, Enk, w i th each corresponding eigenvector 

containing the pseudo-wavefunction Fourier coefficients, a„gk, for each reciprocal 

lattice vector. I f n reciprocal lattice vectors are used in the pseudo-wavefunction 

expansion, there w i l l be n eigensolutions, hence, to specify an energy band uniquely 

requires a band index, n. In this work, the band index is usually dropped unless its 

omission could lead to confusion. 

Since the pseudopotential is weak and varies smoothly, its Fourier expansion 

may be truncated after only a small number of terms. In fact, only coefficients wi th 

g| < VTi{27T/a) are included, i.e., those for the reciprocal lattice vectors of type 

(000), {111}, {200}, {220} and {311} [32]. As the term wi th g = (000) merely 

contributes a spatially constant potential, VQ, i t can be set to zero, or any other 

convenient value. As a result of this simplification, and the requirement that the 

structure factors be non-zero, the expansion includes only six parameters. 

(2.20) 

where we have used the more compact notation 

s,a _ s,a 
^|g| - ^|gp-

(2.21) 

The fitting of these to experiment is discussed in Section 2.4.1. 
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2.2.3 Spin orbit coupling 

To include spin orbit coupling (SOC) effects, one modifies the pseudo-Hamiltonian 

by adding a term derived f rom an approximation of the Dirac equation (see, for 

example, p78 of [33]). This has been incorporated into the pseudopotential scheme 

by other workers [34-36], and here we use the simplest form of the correction, which 

has plane wave matr ix elements given by 

iXSg-g, (7 • (k -h g) A (k - f g') (2.22) 

where 

A^g-g' = [ -zAsCos ( (g-g') - r ) + A a S i n ( ( g - g ' ) - r ) (2.23) 

and cr is the Pauli spin matr ix w i th Cartesian elements 

^0 1^ 
(2.24) 

The parameters A^ and Aa are determined f rom experiment (5g is the usual structure 

factor) and are usually expressed in terms of two further parameters. 

A, 
S^{S^ + 1) 

A . = 
S,{S^ - 1) (2.25) 

determines the strength of the spin orbit coupling and ^Q, characterises the dif

ference in strength of the spin orbit coupling in each atom of the primitive unit 

cell. 
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Thus, the pseudo-Hamiltonian now has matrix elements 

^ + [ - t X s cos((g - g') • r ) + A„s in( (g - g') • r ) ] (2-26) 

X <r,,, • (k + g) A(k + g') , 

where s and s' label the elements of the spin matrix. The eigenvectors of (2.5) are 

now spinors and the pseudo-wavefunction of (2.9) can be represented as 

j \ 
Qgkt e^(k+g)r (2.27) 

As wi th the potential form factors, the spin parameter is adjusted to provide the 

best fit between the calculated and experimental results (see Section 2.4.2). 

2.3 Inclusion of strain effects 

2.3.1 Lattice mismatch in heterostructures 

Strain effects are present in some of the heterostructures considered in this thesis 

because they consist of materials whose equilibrium lattice parameters are not equal. 

The lattice mismatch is illustrated schematically in Figure 2.2(a), where an epilayer, 

/, is to be grown on a substrate, s, whose lattice parameter is considered to be fixed 

at a^. 

Under such circumstances, the atoms of material / may align themselves wi th 

those of s in the plane of the interface. Thus, / forms a strained layer where there is 

biaxial stress in the plane of the interface. To compensate for the in-plane strain, I 

relaxes in the direction perpendicular to the interface, as shown in Figure 2.2(b). The 
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substrate growth layer 

© • 

Q 

Q 

(a) 

substrate growth layer 

o 

o 

o 

o 

(b) 

Figure 2.2 Schematic illustration of substrate and epilayer bulk lattice mismatch and 
strained layer growth, (a) The bulk equilibrium lattice parameters are not equal — in 
this example, the epilayer has the larger atomic spacing, ai > a .̂ (b) Dislocation free 
growth of the epilayer on the substrate. The epilayer relaxes in the growth direction, so 
that aj_ > ai > as. 
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cubic symmetry of the unit cells in / becomes tetragonal wi th two lattice parameters, 

a|| = as and a±. This situation, called the strained layer regime, is energetically 

favourable i f the layer of / has a thickness less than the 'critical layer thickness'. 

For thicker layers we enter the relaxed regime and the appearance of dislocations is 

favoured. Here we consider only the strained layer regime, wi th perfect alignment of 

the atoms in the plane of all interfaces. First, the critical layer thickness is discussed 

in a l i t t le more detail. 

C r i t i c a l layer thickness 

The critical layer thickness has been discussed in more detail by other workers 

elsewhere (see, for example, [37]). Here we present a brief review of the topic, wi th 

reference to the strained materials considered in this thesis. 

Unfortunately, there is s t i l l not complete agreement on the way that the critical 

layer thickness, he, depends on the material properties and the in-plane strain. One 

prediction is [38 

hc=(,\,T.)be\^'iHhc/b) + e), (2.28) 

where v is Poisson's ratio (typically | ) , 6 is the dislocation Burger vector (ft; 4.4), 

e\i is the in-plane strain and 9 ^ 1 . The magnitudes of the in-plane strains for 

InAs and AlSb matched to GaSb are both approximately 0.65%, which gives he ~ 

158A, or e\\hc ~ 100A%. Experimental investigations of IniGai_3 ;As layers on GaAs 

have resulted in ey/ic values of less than 100A% [39] and more recently 200A% [40], 

suggesting that (2.28) is not unreasonable. However, one should note that he also 

depends on the growth temperature and rate [41,42 . 
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2.3.2 Elastic theory and heterostructures 

The electronic energy band structure of a semiconductor may be significantly altered 

i f i t is stressed. The stress causes the material to be strained, i.e., the atoms of the 

crystal lattice structure are displaced wi th respect to their equilibrium positions. 

Hydrostatic stress does not affect the crystal symmetry but merely changes the 

lattice parameter. However, any other type of stress w i l l lower the cubic symmetry 

of the (zinc-blende) crystal and therefore lower the symmetry of the energy bands 

in reciprocal space. 

The distortion of the stressed material is given by the strain tensor, etj. For 

sufficiently small stress the elastic response is linear and the strain tensor is then 

related to the stress tensor by 

= $ ^ % w f ^ / f c i , ( 2 -29 ) 
ki 

where Sijki is a fourth-rank tensor called the elastic compliance constant. I t can be 

shown (if there is no net torque) that both the stress and strain tensors are symmet

ric, in which case i t is convenient to adopt a matrix notation (see, for example, [ 4 3 ] ) . 

This expresses the stress and strain tensors as column matrices, ai and ê , containing 

the six independent elements of their respective tensors. The fourth-rank compli

ance tensor can then be represented by a square symmetric matrix, S, of order six, 

w i t h elements Sij, i.e.. 

J 2 s ^ J ^ r ( 2 -30) 

The elements Sij are referred to as the compliance constants. In cubic crystals 

(including diamond and zinc-blende), symmetry considerations show that there are 

in fact only three independent compliance constants, labelled S n , S i 2 and S44, wi th 
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the remaining non-zero elements given by [43 

511 = S22 = S33 

512 = S l3 = S23 
( 2 . 3 1 ) 

( = 5 2 1 = 531 = S32) 

S44 = S55 = See-

The inverse of the matr ix S contains the elastic moduli (or stiffness constants), Qj , 

i.e., 

a^ = c^Jej, ( 2 . 3 2 ) 

whose three independent elements are related to the compliance constants by [43 

S l l + 5 i 2 S12 
C l l = 7- — T 7 - . N C12 = 

( S l l - 5 i 2 ) ( S i i + 2Si2) ( S i l - S i 2 ) ( S i i +2S12) 33) 

C44 = . 
S44 

The compliance constants and elastic moduli are macroscopic properties of each 

bulk material, and experimentally determined values are readily available [44 . 

Three distinct types of stress (and hence strain) are considered — hydrostatic, 

uniaxial and biaxial. The hydrostatic and uniaxial stresses are used in the fitting 

procedure (see Sections 2 .3 .3 and 2 . 4 . 3 ) , whilst the biaxial stress is the type actually 

present in the lattice mismatched heterostructures to be modelled. These stresses 

are further l imited to be acting along the crystal axes, i.e., perpendicular to the 

faces of the fee conventional unit cell. In all three cases, the shear strain elements, 

€4 , 65 and are zero, which has the consequence that the faces of the conventional 

unit cell remain mutually perpendicular ^. This is not necessary for the application 

^In fact, the critical restriction on the stress is that there are stresses acting along the con-
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of the E P M used here, but is helpful since the components of the reciprocal lattice 
vectors after stress is applied, g^, are simply related to the unstressed case, g^, by 

g! = 9 A ^ = ^>2/:^= (2 -34 ) 

where and a" are the strained and unstrained lattice parameters in the z"' direc

t ion. Since the heterostructures under consideration in this work are all grown in 

the (lOO)-type direction this restriction on the stresses does not pose a problem. 

Hydros ta t i c stress 

For the hydrostatic case, aij = o5ij and so 

{sii 
< 

+ 2SI2)G 2 = 1 , 2 , 3 

0 otherwise. 

( 2 . 3 5 ) 

U n i a x i a l ( 1 0 0 ) stress 

For uniaxial stress along the x-axis, the only non-zero stress tensor element is on 

a, and so 

S\\o i = 1 

e. = < s,2a z = 2 , 3 ( 2 . 3 6 ) 

0 otherwise. 

ventional unit cell axis only. This allows a general triaxial stress, where an ^ CT22 7̂  (^33, to be 
considered in the same way. 
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Uniaxial stress is used to define Poisson's ratio, which is minus the ratio of the 

strains perpendicular and parallel to the stress axis. 

u = —-
Cl2 ^2,3 Si2 

ei 5 i i C i i - I - Ci2 
(2.37) 

where v is a. property of the bulk crystal and can be determined experimentally for 

each material. 

B i a x i a l stress 

Since we are interested in biaxial stresses for heterostructure modelling, i t is assumed 

that the stresses in both in-plane directions are equal, in which case the stress tensor 

takes the simple form 

a 0 0 

0 (7 0 

0 0 0 

i f the biaxial stress is in the xy-plane. In the matr ix notation, 

a i = l , 2 

0 otherwise 

Thus, the strain is given by 

(2.38) 

(2.39) 

( S i i + Si2)o- z = l , 2 

2si2cr i = 3 

0 otherwise. 

(2.40) 
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So, in the notation used for the heterostructure description (see Section 2 . 3 . 1 ) , the 
strains parallel and perpendicular to the growth plane are 

( 2 . 4 1 ) 

e_L = 2si2(J. 

Therefore, since in a heterostructure ey is known, one can calculate ej. directly from 

the ratio between the two strains. So, f rom ( 2 . 4 1 ) and ( 2 . 3 7 ) , one obtains 

ex = ( 2 . 4 2 ) 

For the materials considered, Poisson's ratio typically has a value of about | , so 

that ex ^ —ey. 

2.3.3 Strain within the E P M 

The effects of strain are introduced into the E P M chiefly via alterations to the 

pseudopotential term, l ^^ ( r ) , since this contains the information about the crystal 

structure. The kinetic energy and spin orbit coupling terms are only altered through 

the dependence of the wave and reciprocal lattice vectors on the strained lattice 

dimensions. From ( 2 . 1 1 ) one can see that the strain alters the pseudopotential terms 

in two ways. Firstly, Vg depends inversely on the primitive unit cell volume, which 

w i l l in general be changed by the strain. Secondly, the components of the reciprocal 

lattice vectors are modified due to the change in the direct lattice vectors. Note 

that although both r and g are altered, their scalar product g • r is constant [45 . 

The pseudopotentials and of ( 2 . 1 1 ) are those of isolated atoms, so they are 

not affected by the introduction of strain and have a continuous representation in 

reciprocal space, as indicated in Figure 2 .1 and by ( 2 . 1 2 ) . Therefore, i f the values of 

g are changed by straining the lattice, we merely require Vj{\q\) at different discrete 
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values of |q | . The new values for the form factors are then scaled according to the 
change in the primit ive unit cell volume, = 2Q,A,B-

I n practice, the symmetric and antisymmetric form factors are adjusted directl)', 

since they can be thought of as values of continuous functions at certain points in 

Fourier space for an isolated pair of atoms, A and B. By convention, A and B are 

the cation and anion, respectively. So, for example, InP is modelled wi th indium as 

atom A and phosphorus as atom B. W i t h this convention, the continuous symmetric 

and antisymmetric fo rm factors have the form depicted in Figure 2.3. Note that at 

q | = 0, the symmetric form factor can be given, in rydbergs, by [27 

v^{0)^-^EF = -'^kl, (2.43) 

where 

* . = l ^ ) ' , (2.44) 

w i t h Z being the average valency per atom, i.e., 4 for this work, and QQ the prim

itive unit cell volume, a^/8, in atomic units. So, to obtain the new form factor 

values for a given strain, we must merely determine the new values of the reciprocal 

lattice vectors at which and v"- are required (remembering to scale the resultant 

fo rm factor values according to the change in the unit cell volume). Unfortunately, 

this simplicity is spoiled by the fact that the crystal form factors are treated as ad

justable parameters and we have no analytic expression for the continuous Fourier 

coeflficients. 

One way around this problem is to fit analytic curves that pass through each 

set of fo rm factors [46-48]. This is appealing since the general form of the curves 

is known and i t is straightforward to decide whether a fit is physically reasonable. 
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^ - - < ( | q | ) 
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Figure 2.3 Schematic plot of typical symmetric and antisymmetric pseudopotential 
Fourier coefficients. The positions of each |g| are indicated, in units of 27r/a. See text for 
details. 

I t also allows any amount of strain to be modelled, since the fitted curves wi l l have 

values over all |q|-space. However, whilst i t might be possible to find satisfactory 

looking curves that pass through the values of v^^^ and v^^^, this does not guarantee 

the energy band structure w i l l vary correctly wi th strain. For this reason, a second 

method is used where the form factor curves are assumed to be linear in the region of 

each reciprocal lattice vector [45,49]. The strain induces a change in the magnitude 

of each reciprocal lattice vector, A|g | , and so the form factors after straining are 

given by 

fin s,a , / s.a , s.a A I _ ^ u 

|̂g| ^ (^ |g |+^ |g |^ |g | ) fv ' 
(2.45) 

where g^^^^ is the gradient of the Fourier coefficient passing through •Uy, and OQ and 

fig are the primit ive unit cell volumes before and after straining. 

The gradients of these linear sections are adjusted so that the calculated band 
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structure strain dependence is in agreement wi th experiment, although extra condi
tions are applied so that the gradients are in line wi th the known form of the curves 
(see Section 2.4.3). This can only be a good approximation i f the magnitudes of the 
reciprocal lattice vectors after straining are close to those of the unstrained crystal, 
i.e., i f the strain is small^, however, the systems studied in the present work are 
either equilibrium lattice matched or have only small strains (typically 1% or less), 
hence the linear approximation is expected to be reasonable. 

2.4 Parameter fitting 

Having discussed the theory behind the EPM, we turn to the procedures involved in 

fitting the various parameters. For all semiconductors, the energy band structure is 

dependent on temperature, the most important effect being the appreciable decrease 

in the band gap w i t h increasing temperature (see, for example, [50]). Therefore i t 

is necessary to decide at which temperature we wish to model the materials, and 

fit to the appropriate experimental data. Since much of the present work is aimed 

at heterostructures wi th possible device applications, all the materials considered 

are modelled at room temperature ( ~ 300K). The parameters that require fitting' 

to experimental data are summarised in Table 2.1. 

2.4.1 Form factors 

The first parameters to be fitted are the pseudopotential form factors, which deter

mine the energy band structure in the absence of spin orbit coupling. We wish to find 

values for the form factors that produce band structure that is in agreement with 

^Strictly speaking, this is not necessarily the case. For example, a large uniaxial stress will lead 
to a large strain along the stress axis, but also strains of the opposite sign in the plane perpendicular 
to that axis, hence the magnitude of the reciprocal lattice vectors will not be greatly altered. It 
is only when the crystal is not allowed to relax elastically, such as when hydrostatic pressure is 
apphed, that large strains lead to large changes in |g|. 
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Form factors ^3> V4, 

Spin parameter 

Form factor gradients ^ 3 ' ^8! ^11' 9l, 

Table 2.1 Adjustable parameters used for the EPM. The form factors determine the 
energy band structure without spin, the spin parameter specifies the strength of the spin 
orbit coupling, and the form factor gradients determine the behaviour of the band structure 
under strain. 

experiment. I n principle, one could compare the calculated and experimental results 

for a number of types of experimental data (such as density of states, reflectivity 

curves, etc), but in this work we have confined the comparison to energy transitions 

at points in the Bri l louin zone of high symmetry. This is because the fitting is car

ried out without the inclusion of spin orbit coupling (SOC) in order to decrease the 

computational effort required. I t is a straightforward task to 'spin-average' experi

mental transition energies at specific points in the Bri l louin zone but not quantities 

that involve summations over states in the zone. Spin-averaging determines what 

the energies between bands would be in the absence of SOC. For example, in the 

absence of SOC, the top of the valence band (at P) is t r ip ly degenerate, wi th each 

energy band being doubly spin degenerate. I f the SOC is finite the degeneracy is 

split into the light and heavy hole doublet and the spin split off (SSO) band (each 

of which is s t i l l doubly spin degenerate at P). This spli t t ing is called the spin split 

off energy, or A Q . The light and heavy hole bands are higher in energy than the 

SSO band, and move up by Ao/3 whilst the SSO drops by 2Ao/3 (see, for example, 

p l 5 of [50]). Hence, to spin-average the direct energy gap, the experimentally de

termined gap is increased by Ao/3 . A t other positions in the Bri l louin zone, such as 

the L and X points, the degeneracies are different and so the spin-averaging involves 

adding a different fraction of the degeneracy spli t t ing at these points. 

The fitting procedure uses a Monte Carlo technique, since the transition energies 

depend in some unknown way on the six form factors. This is described below, and 
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presented diagramatically in Figure 2.4. 

First, the form factors are initialised and the transition energies at the required 

A;-points are calculated. These are compared to the desired (spin-averaged) experi

mental energies and the magnitude of the errors is summed wi th a weighting for each 

transition. The weighting is used because i t is generally not possible to reproduce 

all the transition energies accurately using a local E P M [31,51]. Those transitions 

that are considered more important than others, typically those involving the direct 

and indirect energy gaps, are given a higher weighting. Next, one of the six form 

factors is both selected and altered at random unt i l the new set of form factors sat

isfy certain criteria (see below), then the transition energies are recalculated. The 

new tota l weighted error is determined and i f i t is less than the previous one, the 

new set of form factors is retained. This process is repeated unt i l satisfactory results 

are obtained. 

C r i t e r i a for val id form factors 

The general form in reciprocal space of the pseudopotentials is known, see Figure 

2.3, hence certain conditions can be imposed on the form factors. The value of 

^3 must be negative, w i t h a larger magnitude than the other two symmetric form 

factors, since the potential decays wi th distance f rom the atom. For the group I V 

elemental crystals, the two atoms of the primitive unit cell are identical and hence the 

antisymmetric fo rm factors are zero. For polar materials, w i th the atoms arranged 

as described in Section 2.3.3, must be positive wi th the remaining v°- smaller in 

magnitude, again due to the decay of the atomic pseudopotentials. In principle, 

and v^-^ could be negative wi th the latter even having the larger magnitude of the 

two, however, to reduce the size of the form factor phase space, we further restrict 
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Initialise the {vg} 

Select a Vg 
at random 

Store the chosen 
Vg (Vg Vstore) 

Alter Vg at 
random 

Are the {vg} 
set valid? 

Calculate the 

Restore Vg 
(Vstore Wg) 

Is the total 
weighted error 

reduced? 

Keep the new 

Figure 2.4 The empirical pseudopotential form factor fi t t ing procedure. The set of six 
form factors is represented by {vg}. The process is repeated until the transition energies, 
Eli, are in satisfactory agreement with experiment. See text for details. 
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these antisymmetric form factors to obey the commonly applied condition 

vl > < > v^^ > 0. (2.46) 

2.4.2 Spin parameter 

Having obtained satisfactory agreement wi th the spin-averaged experimental data, 

the spin orbit coupling is introduced. This is a straight forward procedure, as the 

spin split off energy, A Q , varies smoothly and monotonically wi th the spin parameter 

Sfj,. Therefore, 5^ is adjusted so that the calculated and experimental values of AQ 

are in agreement. When this has been done, the transition energies, in particular 

the direct gap, should have the correct size. In practice, the + A o / 3 and - 2 A o / 3 

shif t ing of the light/heavy and SSO bands is not exact, so the spin-averaged energies 

used in the fitting may need to be adjusted slightly so that both the direct gap and 

the spin split off energy are correct. 

2.4.3 Form factor gradients 

The final fitting procedure is that of the form factor gradients. The linear approx

imat ion (see Section 2.3.3) means that there is one gradient per form factor, i.e., 

we have six further parameters (for polar materials). These are adjusted in the 

same way as the fo rm factors themselves, except the fits are to experimental de

formation potentials rather than transition energies, and spin is included explicitly 

in the fitting procedure. As wi th the form factor fitting, certain constraints can be 

applied to the gradients. Clearly, given the condition (2.46), the gradients for the 

antisymmetric form factors must satisfy 

gl < gl < gu < 0- (2-47) 
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Also, gl must be positive. However, w| and v^^ are near a turning point, so their 

gradients may be positive, negative or even zero. 

2.5 Complex band structure 

When calculating band structure, i t is usual to seek all the allowed energies, Enk, for 

a given real electron wave vector, k. However, one may also pick a (real) energy and 

find all the allowed wave vectors, which w i l l in general have complex components. 

The resulting band structure is said to be complex because the energy is now a 

funct ion of complex wave vector.'^ The heterostructure calculations presented in 

this thesis have been carried out using the complex band structure approach. These 

complex bands are not allowed in bulk materials, where the application of Born-von 

Karman (i.e., periodic) boundary conditions require the wave vector to be real (see, 

for example, p l35 of [52]). 

However, we may st i l l write the wavefunction in the Bloch form, 

Vk(r) = e'''-^Uk(r), (2.48) 

where Uk{r) has the same periodicity as the lattice and k is in general complex.^ 

I f k is real, the probability density is |uk(r)p! which is clearly also periodic wi th 

the lattice, i.e., the exponential acts merely as a phase factor. However, suppose k 

has a non-zero imaginary z-component, k = kr + iki, then the probability density 

is e~^'^'^|'Uk(r)p, which diverges for kiZ < 0, thus violating the quantum mechan

ical boundary condition requiring the probability density to remain finite over all 

"̂ In general, the eigenstates of the pseudo-Hamiltonian will be complex, even if the wave vector 
is real. Hence, when a state is refered to as being complex, we mean that its wave vector has at 
least one non-real component. 

^Alternatively, a heterostructure wavefunction can always be expressed as a linear combination 
of Bloch states with real k (see Chapter 5). 
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space. However, i f a single interface is present the probability may decay away from 
this in either direction, so that complex-/^ states are valid. I f there is more than 
one interface, decaying and growing states are valid wi th in the region between the 
interfaces. 

In this thesis, we are interested in 'two dimensional' heterostructures, i.e., those 

that confine the electrons in one direction. We consider structures grown along the 

(001) direction, so that only a single component of the wave vector may be complex. 

The growth direction is termed perpendicular ( ± ) , because i t is perpendicular to 

the growth layers. The growth plane is called the in-plane or parallel (||) direction. 

So, the wave vector can be expressed as 

k = kii - I - A;e_L 
(2.49) 

= k|| + {kr + iki)eji, 

where e_L is a unit vector in the growth direction. Since only bound states are 

investigated, the electron energy, Ei^, is restricted to real values, while the bulk 

nature of the in-plane direction requires that the wave vector components in the 

plane are real. Thus, we have 

keC and k | | , E k e R , (2.50) 

and rather than t ry ing to find real energies for complex k and real k||, i t is more 

efficient to solve for those k that correspond to a given real ky and energy. To achieve 

this, the matr ix elements of the Schrodinger equation, (2.26), are rearranged into 

terms which are independent of k and those dependent on k and k'^. This can then 

be rewritten as a matr ix polynomial in k, 

{-H^') -kH^'^)cp = e ^ , (2.51) 
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where 

< L = ( ( k + g ) ^ -
2meE\ 2me ^ 

2me 
iXSg-g, CTss' • (k|| + g ) A (k|| + g ' ) (2.52) 

«A5g_g' a-ss' • e j . A ( g ' - g ) 

This can then be expressed as an eigenvalue equation, w i th the complex wave vector, 

k, as the eigenvalue [21,53], 

0 I 

_ / / ( 0 ) ^ ( 1 ) 
\k(fi j \kip j 

(2.53) 

where I is the identity matr ix and we have made use of the t r iv ia l expression 

(2.54) 

to fo rm the top row of the matrix. 

Any numerical calculations require the Fourier expansion of the pseudo-wave-

function, (2 .9) , to have a finite number of terms, therefore, the number of k eigen

values in (2.53) w i l l also be finite. W i t h spin included, the order of the matrix in 

the eigenequation is four times the number of reciprocal lattice vectors used in the 

Fourier expansion, (which is 89 for all cases in this work). Thus, there wi l l be 

4 X rig eigenvalues for k. However, some of these represent equivalent solutions, 

i.e., there are values of k separated by a reciprocal lattice vector. In fact, the 

number of independent solutions is given by 4 x ng||, where is the number of 

different in-plane components, gy, of the reciprocal lattice vectors, and spin is 

included [54,55 . 
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2.6 Convergence 

I t was stated in Section 2.2.1 that the pseudo-wavefunction requires only a 'small' 

number of terms in its Fourier expansion for convergence. In this section, we discuss 

suitable values for this 'small' number. 

The number of calculations necessary to solve the Hamiltonian matrix eigenequa-

t ion, (2.19), and therefore the time taken by the digital computer to do so, is propor

tional to n^, where n is the order of the matrix, i.e., the number of reciprocal lattice 

vectors, g , used in the Fourier expansion of the pseudo-wavefunction, (2.9). Thus, 

using 137 rather than 89 g's results in calculations that take about ~ 3.6 times 

longer. Since complex band structure calculations require the solution of eigenvalue 

equations of order four times the number of g's, i t is clearly highly desirable to use 

as few g's as possible, whilst s t i l l achieving convergence adequate for the present 

purposes. 

The variation in energy of the first conduction band wi th the number of plane 

waves used in the pseudo-wavefunction expansion, (2.9), is plotted in Figure 2.5. 

The energies are those at high symmetry points in the first Bri l louin zone measured 

f rom the top of the valence band. Symmetry considerations require that the energies 

at U and K , ( l | | ) ^ and ( f f O ) ^ , respectively, should be equal. However, Figure 

2.5(b) shows that i f less than 65 plane waves are used, not only have the U and K 

energies not converged but they are quite different f rom each other. Even when 89 

plane waves are used, the second conduction band displays noticeable dissagreement 

between the calculated U and K energies, as can be seen in Figure 2.6. However, 

due to the cubic dependence of the calculation time on the number of g's, a figure 

of 89 is considered to provide adequate convergence for this work. 
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15 27 51 59 65 89 

Number of plane waves 

(a) 

15 27 51 59 65 89 
Number of plane waves 

(b) 

113 

Figure 2.5 Convergence of the first conduction band energy with increasing number of 
plane waves. 
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2.7 Examples of bulk calculations 

This section contains results for various properties of indium phosphide (which forms 

the barriers for one of the quantum wells discussed in Chapter 6), calculated using 

the E P M as described in this chapter. The aim of this section is to demonstrate 

the accuracy of the local E P M . The calculations are for room temperature (which 

affects the sizes of the fundamental band gap and lattice parameter), using 89 plane 

waves (per spin component) in the wavefunction expansion, and are based on the 

parameters listed in Appendix D. 

Real band structure 

Figure 2.6 shows the electronic energy band structure for real wave vectors along lines 

of high symmetry in the first Bri l louin zone. The band structure exhibits features 

typical of the zinc-blende materials, wi th energy band gaps between the lowest 

valence and the spin split off bands as well as between the valence and conduction 

bands. The top of the valence band is always at the zone centre, P. The lowest 

point of the conduction band may be either at P {direct gap material), as in this 

case, or some other point in the Bri l louin zone {indirect gap material), as wi th AlSb, 

for example. 

Density of states 

The electron density of states per primitive unit cell at energy E can be expressed 

as (see, for example, p l43 of [52]) 

g{E) = Y.gn{E) = Y , j ' En^l (2-55) 
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where the sum is over all energy bands^, n, and the integral is over a single Brillouin 

zone. The density of states for indium phosphide is plotted in Figure 2.7, wi th the 

van Hove singularities [56] at turning points in the band structure clearly shown. 

Charge density 

The (pseudo) charge density for the n*'' band is 

p „ ( r ) = e j ] | y . „ k ( r ) | % (2.56) 
k 

where e is the electronic charge and the summation is over all states in a single 

Br i l lou in zone. By summing over the individual valence bands one obtains the 

valence charge density, illustrated in Figure 2.8. This shows both the covalent 

nature of the bonds, w i th the electrons most concentrated between the ions, and the 

polar nature of the InP crystal, wi th most of the valence charge around the higher 

valence group V (phosphorus) ion. 

Dielectric function 

The imaginary part of the dielectric function, per unit volume, is given by (see for 

example p31 of [25]) 

^ ^ H = ; £ ^ E / b » M I ^ ( g 3 ^ ( A ^ J . (2.57) 

where co = Eh~^, AE^ = (^'k — E) and Pij{k) is the momentum matrix element 

between states in bands i and j at wave vector k. The summation is such that only 

electrons excited f rom the valence to conduction bands {v c) are included, and 

the integration is over a single Bri l louin zone. 

^The sum is assumed to explicitly include the spin degeneracy of the bands. I f this is not the 
case, a factor of two is required in the expression for g{E). 
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P X 
wave vector, k 

Figure 2.6 Electronic energy band structure of bulk indium phosphide, as calculated by 
the EPM. The material is modelled at room temperature using 89 plane waves per spin 
component. 
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Figure 2.7 Electron density of states of indium phosphide, as calculated by the EPM. 
The material is modelled at room temperature using 89 plane waves per spin component. 
J7o is the primitive unit cell volume. 
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Figure 2.8 Tota l valence charge density for InP. The charge density contours are in 
units of electrons per uni t cell volume. The (110) plane coincides w i t h the covalent bond 
betwwen the two atoms shown, i.e., the origin of the plot lies at the bond midpoint . The 
posi t ion of the i n d i u m and phosphorus crystal ions are each indicated by x . 
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Figure 2.9 Imaginary part of the dielectric function for indium phosphide. The material 
is modelled at room temperature using 89 plane waves per spin component. 

Figure 2.9 shows 62 for indium phosphide. Using the Kramers-Kronig relation 

i t is possible to obtain the real part of the dielectric function f rom the imaginary 

part, and hence the reflectivity. This allows the comparison of calculated data wi th 

a directly measurable quantity. The relevant equations are given in Appendix B. 

Ideally, one would use the reflectivity in the fitting process, i.e., adjust the form 

factors so that the calculated and experimental data is in agreement, since the 

experimentally determined transition energies used in the fitting are deduced from 

such data anyway. However, f u l l analysis and comparison wi th experimental data 

of either the reflectivity (or, equivalently, e2{uj)) is extremely time consuming, since 

there are often many different transitions of varying strengths occurring in the same 

energy ranges. More important ly for the present work, the local pseudopotential 

method is known to be not as accurate in general as non-local methods [25] and, 

worse s t i l l , may introduce spurious structure in the data [51]. For these reasons the 

simpler approach of fitting to specific transitions is employed. The calculation of 

the dielectric function is used here to confirm that the bulk material parameters 
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Figure 2.10 Complex band structure for indium phosphide at k|| = (0,0). The complex 
component, k, has real and imaginary parts kr and ki, respectively. The energy bands are 
labelled as follows: (a) purely real k, (b) purely imaginary k, (c) complex k, (d) complex 
k wi th real part at X. The material is modelled at room temperature using 89 plane waves 
per spin component. 

produced by the fitting procedures generate reasonable energy band structure and 

wavefunctions throughout the zone, i.e., that 62(w) has the expected form and is in 

reasonable agreement wi th experimentally derived results. 

Complex band structure 

Although complex band structure is not relevant to the description of bulk materials 

(see Section 2.5), i t is information that can be employed when a material forms 

a layer in a heterostructure, and so i t makes sense to illustrate the nature of the 

complex band structure here. Figure 2.10 shows a plot of the complex band structure 

for indium phosphide. The data is for ky — (0,0) and there is no strain present. 

The details of complex band structure have been discussed by other workers 
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54,57-61], here we point out the most important features for the present purposes. 
The most obvious feature of the complex band structure is the existence of states 
in the fundamental energy band gap. In particular, there is a loop in the imaginary 
plane jo in ing the light hole and first conduction band, whilst the heavy hole and spin 
split off bands l ink up wi th the next conduction bands. In fact, the complex band 
structure links all turning points that have resulted f rom band anti-crossing, such as 
between the first and second conduction bands (at ^ 0.3X and X for InP), in which 
case the loop has complex wave vector values, rather than the purely imaginary ones 
that loop over the band gap. I t should also be pointed out that the energy bands may 
neither terminate nor coalesce [54], hence the number of complex-A; solutions wi th 
real energy is constant, whatever the energy. When using a finite Fourier expansion 
of the wavefunction this can be used to check that the complex-A; solutions have 
been correctly identified. 



Chapter 3 

Heterostructures — theory 

3.1 Introduction 

Chapter 2 outlined the particular form of the empirical pseudopotential method 

(EPM) that is used throughout this thesis. We now turn our attention to the 

application of the E P M to the analysis of heterostructures. 

A heterostructure consists of one or more interfaces between two or more materi

als. The simplest heterostructure consists of a single interface between two different 

materials, the interface being called a heterojunction. By introducing further hetero-

junctions i t is possible to create more complicated structures, such as quantum wells 

and potential barriers. In this work, all the interfaces that form heterojunctions are 

parallel (i.e., quantum wires and dots are not considered). 

When a heteroj unction is formed there is in general an offset between the valence 

and conduction band edges of each material (see [62,63] for reviews of this topic). 

This is illustrated in Figure 3.1, which shows the three types of band offset, or line 

up, considered in this work^ We assume that the interface is atomically abrupt and 

neglect band bending effects. This is done so that 'bulk' complex band structure 

^Type I I I offsets, which are those between a semiconductor and semimetal, are not considered. 

45 
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Figure 3.1 Schematic of the three types of heterojunction considered in this work. Ec 
and Ey label the conduction and valence band edges, respectively, (a) Type I (b) Type I I 
— staggered (c) Type I I — broken gap. 

can be used in each material. We also assume that the materials are strained, when 

necessary, to form perfect, dislocation free interfaces, as discussed in Section 2.3.1. 

The band line up of a heterostructure consisting of two interfaces is shown in Figure 

3.2. In this case, only two different materials are used, with a type I heteroj unction 

Ec 

Ey 

Figure 3.2 Schematic of a type I single quantum well (SQW). Ec and Ey label the 
conduction and valence band edges,respectively. 

forming at the interface between them. Since the band gap of the central material 

is smaller than that of the material on either side, potential wells are formed in the 

conduction and valence bands. These are called quantum wells because the central 

layer width can be of the order of the electron de Broglie wave length and hence the 

system must be considered quantum mechanically.^ 

An electron in the conduction band well (or hole in the valence band well) with 

^The layer width is also less than the mean free path of the electron. 
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energy below the conduction band edge of the barrier material is contained within the 

well. However, in the plane of the well, i.e., parallel to the interfaces, the periodicity 

of the bulk material is retained, hence the electron (hole) is free to move in this 

plane. Thus, the electron behaves in a quasi-two dimensional manner. Due to the 

electron's wave-like properties, only certain energies satisfy the quantum mechanical 

boundary conditions, hence the allowed energies are discrete, or quantised. 

We are particularly, interested in bound states in non-periodic heterostructures, 

i.e., those whose extreme left and right materials extend (theoretically) to ^oo. The 

definition of a bound state requires that the electron probability density tends to 

zero at infinity (see, for example, p29 of [64]), and we also have the usual condition 

that the probability density must remain finite at all spatial positions. These issues 

are discussed in more detail where applicable. 

3.2 Interface boundary conditions 

When calculating electron wavefunctions in heterostructures, it is vital to appreciate 

the correct boundary conditions that must be obeyed by the wavefunctions at the 

material interfaces (heterojunctions). The method used in this work for finding 

heterostructure states involves the joining at each interface of 'bulk' complex band 

structure states, calculated separately for each layer, in which case the boundary 

conditions are imposed to determine initially unknown expansion coefficients (see 

Section 3.3). I t is important to realise that the boundary conditions are derived 

from the form of the (in this case, pseudo) Hamiltonian. 

First, recall the form of the (pseudo) Schrodinger equation from (2.5), using the 

local EPM pseudopotential, (2.18), 

HM^) = ( - ^ ^ ' + ^ ' W ) '^W = ^ ^ W . (3-1) 
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or. 

2m, 
\ / M r ) = {E-V^{v))^iv). (3.2) 

Now, the right hand side of (3.2) is always finite, although in the present method 

used to model heteroj unctions there is a discontinuity in the potential term at the 

interface due to the abrupt change in materials. Therefore, the left hand side must 

also be finite. However, the left hand side is the second spatial derivative of the 

wavefunction and for it to remain finite, the first derivative must be continuous. 

Requiring the first derivative to be continuous imposes continuity (and smoothness) 

on the wavefunction itself. To summarise, 

• The wavefunction must be continuous over all space. 

• The wavefunction gradient must be continuous over all space, i.e., the wave-

function must also be smooth over all space. 

3.3 The transfer matrix method 

The most general form of the electron wavefunction at energy E and in-plane wave 

vector k|| is a sum over all 'bulk' complex band structure states at that E and k|| 

54,60], i.e., a sum over all the corresponding perpendicular wave vector components, 

k, 

*£;,k|,(r) = J]C,,i5,k||V'fc,i?,k||(r), (3.3) 
k 

where the ipk,E,k\\i^) ^̂ "6 wavefunctions, as in (2.51), and Ck,E,k^^ are expansion co

efficients to be determined. Certain values for the expansion coefficients allow the 

interface boundary conditions (see Section 3.2) to be satisfied, i.e., the boundary 
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Figure 3.3 Schematic indicating N interfaces in a general heterostructure. The material 
layers are lablled L, 1, . . . , j - 1, j , . . . , - 1 and i?, where L and R are the left and 
right barriers, respectively. 

conditions determine the expansion coefficients. For notational compactness, the 

implicit dependences on the energy and in-plane wave vector will not be indicated, 

unless their omission might cause confusion. 

Now, consider a general heterojunction, labelled at position Zj, which joins 

layer j — 1 to its left with layer j to its right, as in Figure 3.3. The boundary 

conditions require that 

d 
dz dz 

(3.4a) 

(3.4b) 

where the superscripts in parenthesis are used to denote the material layers. So, 

first matching the wavefunctions, using (2.27), we have 

i ( k | | + g | | ) - r | | 

^{k'+9')zi^i{^\+?,\{}•H^ (3.5) 
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with the complex k from the appropriate layers being used on each side of the equa

tion, i.e., k = k^^~^^ and k = k^^^ on the left and right hand sides, respectively. Since 

there is a common periodicity in the plane of the interface, momentum conservation 

requires ky = k||. Next, we multiply by e"*̂ !! '"̂ " and integrate over a unit cell face in 

the plane of the interface to obtain 

^0) 
e'^'^'^'^S.^, (3.6) 

which equates the coefficients of each two dimensional (2D) projection of the wave-

functions onto the interface [21 . 

This can be further simplified if Zj is an integer number of monolayers^ [45]. The 

zinc-blende crystal has an underlying face centred cubic Bravais lattice and hence a 

body centred cubic reciprocal lattice and therefore the components of the reciprocal 

lattice vectors, g, are either all even or all odd (in units of 27r/a). I t follows that the 

Kronecker delta functions in (3.6) ensure that both g and g' will have the same parity 

as the components of g ,̂ i.e., g — m27r/a and g' — m'27r/a, where mod (m, 2) = 

mod (m', 2) and m, m' G Z. So, restricting Zj to an integer number of monolayers, 

Zj = na/2 with n € Z, gives 

— 1 mn odd 

+1 mn even, 
(3.7) 

monolayer is defined as half a lattice parameter, i.e., two atomic layers. This constraint on 
the layer widths is relaxed slightly in Chapters 5 and 6 
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and 

r,t9 Zj _ iirm n 
-1 m'n odd 

+1 m ' n even. 
(3.8) 

Therefore, since m and m' are both odd or both even, e'̂ Ĵ and ê '̂̂ J will always 

cancel, and (3.6) becomes [21 

0-1) n(j-hr) sr^ Mi) p{hi) (3.9) 

where 

ihr) 
g||'= E 

g i i g i r 

(3.10a) 

(3.10b) 

P'^^^ gives the g|| projection of the wavefunction with complex wave vector k in 

layer j onto the interface to its right, i.e., the ( j + 1)*^ interface at Zj+i. P'^^^ gives 

the g|| projection of the wavefunction with complex wave vector k in layer j onto 

the interface to its left, i.e., the j^^ interface at Zj. 

The same procedure is followed for matching the gradient of the wavefunction 

at the interface, leading to 

(3,11) 
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where 

<'? = E('=+9') 
g' 

<i' = E(*+»') g l lg l l ' 

(3.12a) 

(3.12b) 

We now combine (3.9) and (3.11) in the form 

0 
(3.13) 

where 

( pW) 

P 

(ll)4-':i 

V 

p 
{00)tki ^ (OO)tA: 

P (i,0 
(ll)tfci (ll)t*:2 

p(i,0 p(i,0 
-̂ (00)4.fci -̂ (00)4.A;2 

I 

0) 
A:2 

V • J 

(3.14) 

with pO-i''-), QO>0 and C^^"^) being defined in analogous fashion. Now, 

it was pointed out in Section 2.5 that the number of non-equivalent complex-A; 

solutions is four times the number of 2D reciprocal lattice vectors, g||, if spin is 

included. Suppose there are M g)|'s, then the matrices of the type P^-''') will be of 

dimension 2 M x 4 M with C^^) being AM x 1, and so those in (3.13) will be AM x 4M, 



3. H E T E R O S T R U C T U R E S — T H E O R Y 53 

thus we may write 

pU-l,r) 

U-l,r) 
(3.15) 

or, 

CO) = T^j)c^j-^) (3.16) 

which defines the widely used transfer matrix (see, for example, [48]), T^. ') , relating 

the wavefunctions on either side of the j^'^ interface. The advantage of defining a 

transfer matrix becomes clear when there are many layers in the heterostructure. 

Since (3.16) is quite general (apart from the exceptions explained below), we may 

also write 

C(i+i) = T(^+^)C(^) = Tij+i)T^U)cU-i)^ etc, (3.17) 

and so the wavefunctions from any two layers, j and j + N, may be related by 

QU + N) ^ r^{j+N)rj^{j+N-l) . . . 'p(j+2)rpO + l)Q(j) [ 3 . 1 8 ) 

I t should be noted that this analysis is only valid for interfaces between material 

layers of finite width, since it requires that all the complex-Zc solutions are included 

in the matching^. The two semi-infinite barrier layers are treated separately (see 

Section 3.4). 

*Strictly, we require 4 times the number of gy's that are used in the matching. 
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3.4 Bound states 

We now apply the transfer matrix method to calculating heterostructure bound 

states, i.e., those states that are essentially localised in some finite range of coor

dinate z. For this to be the case, we require that the integral of the probability 

density over all space is finite, 

/ |^'(r)pd^r:^ finite. (3.19) 
^ a l l r 

Hence, (3.19) must be modified accordingly to read 

/ " Z = + 0 0 /• 

/ / |*(r)pc^^r = finite, (3.20) 
J z=—oo •/f!|| 

where i t is assumed that the interfaces are in the xy-plane and the xy-component 

of the wavefunction is normalised over some suitable in-plane area VL\\, normally the 

conventional unit cell face. 

The general expression for the wavefunction in any layer is given by (3.3), but 

from (3.20) it is clear that bound states must be decaying in the left and right 

barriers and therefore all the 'bulk' states, if)^ in the sum (3.3) must have a non-zero 

imaginary wave vector component in the perpendicular direction. In the left (right) 

barrier the wavefunction must decay with decreasing (increasing) distance, so, since 

•0 oc e^^'^, we have the following conditions for complex wave vector component, 

k ~\~ iki^ 

Left barrier: lim (ê Ĉ +̂̂ ^̂ O-) = [e-^^'e^''^') = 0, if h < 0, (3.21a) 

Right barrier: lim (ê Ĉ +̂̂ ^O-) = U-'^i^e'''^') = 0, if k, > 0. (3.21b) 

So, not only is the energy range in which bound states can exist limited by the 
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requirement that all the complex wave vectors in the left and right barriers have 

non-zero imaginary parts, but in these layers, exactly half the 'bulk' states are not 

allowed in the expression for the total wavefunction, (3.3). 

The boundary conditions applied at the first and last interfaces, 1 and A ,̂ are as 

for a general interface, i.e., those in (3.4). So, at the first interface, the wavefunctions 

from the left barrier, L, and the first finite width layer, layer 1, are matched by 

E t̂ I"E 
k=k(-) g 

^i ( f c+g )2 i i ( k | | + g | | ) r | | 

= E CIPJ: 
k'=kW g ' 

/ 
"g'A't 

(1) 

gz(fc'+9')^igi{ki|+gl|)--|l^ (3.22) 

where k'^~^ indicates a complex wave vector with a negative imaginary part. Simi

larly, at the final interface the wavefunctions are matched with 

E c f ' E 
fc=fc(+) 

g i ( f c+s )2Ar g i ( k | | + g | | ) - r | | 

= E c^r"E 
/ 

i ( f c ' + 5 ' ) ^ i V g ' ( k l | + g ; | ) - r | | ^ (3 23) 

where indicates a complex wave vector with a positive imaginary part. The 

expressions for the matched wavefunction gradients follow in a natural way, cf. 

(3.11) and (3.12), giving the following equations for each 2D reciprocal lattice vector 
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projection 

r^L) p{L) _ ^ ( 1 ) p(i,o 

:=/:(-) k'=kW 

fc=fc(-) k'=kW 

^ ( i J ) p ( i l ) _ p ( i V - l , r ) 

k=k(+) k'=k(N-i) 

Sr^ ^(R) p(R) _ p ( i V - l , r ) 
Z ^ '^k -^g||/c - Z ^ '^/c' ^s\\k' • 

k=ki+) fc'=/c('^-i) 

(3.24a) 

(3.24b) 

(3.24c) 

(3.24d) 

We now use the transfer matrix method to couple the wavefunction in the final finite 

width layer. A*" - 1, to that in the first, i.e., from (3.16), 

Q { N - 1 ) ^ r [ . ( iV- l ) r [ , ( iV-2) . . . 'p(3) 'p(2 )Q ( l ) ^ TC^^^ (3.25) 

which defines the 'total' transfer matrix, T, for the entire heterostructure. Now, 

exactly half of the AM complex-A; solutions are excluded from the left hand side of 

(3.24), so the four equations in (3.24) can be combined into two matrix equations, 

using (3.25), 

pW 0 

0 p(^) 

Q(^) 0 

i 0 Q(^'y 

^ p(i,0 ^ 

p ( i V - l , r ) r p 

J 

Q ( i V - l , r ) T ^ 

c(i) (3.26) 

(3.27) 

or, in more compact notation 

^ { L R ) Q { L R ) ^ p ( l : i V - l ) ( - , ( l ) (3.28a) 

(3.28b) 
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Since P '̂̂ )̂, Q(i^^-i), p{i^^-i) and Q(i^^-i) are square matrices (of order AM), the 
equations (3.28) may be combined into a single eigenequation, with eigenvalue 1 and 
eigenvector C^^^ [21], 

(Q(l:iV-l)J-lQ(LR)(p(LR)J-lp(l:yV-l)(-,(l) ^ ^{l)c(^) ^ Q^l) _ (3.29) 

So, bound states of the heterostructure exist for those combinations of energy and 

in-plane wave vector resulting in complex-A; at which (3.29) is satisfied, i.e., when 

one of the eigenvalues of M^^^ is unity. The corresponding eigenvector then gives 

the expansion coefficients for the total wavefunction in layer 1, from which all the 

remaining coefficients may be calculated, using (3.16) for the other finite width 

layers and (3.28) for the left and right barriers. 

Equivalently, non-trivial solutions to (3.29) exist only when the determinant of 

]V[(i) _ I vanishes, where I is the identity matrix, since 

( M ( 1 ) - I ) C W = 0, (3.30) 

and therefore bound states exist when 

M ( I ) - I | = 0 . (3.31) 

So, for a given in-plane wave vector, we scan through the appropriate energy range 

calculating the complex band structure and Fourier coefficients for each layer at each 

energy step, testing to see if condition (3.29) and/or (3.31) holds, in which case the 

energy of a bound state has been found. 
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3.5 Momentum matrix elements 

From Fermi's Golden Rule, the transition rate between two electronic states induced 

by electromagnetic (EM) radiation is dependent on the size of the squared magnitude 

of the momentum matrix elements between the states (see, for example, section 

13.6 of [1]). The relevant equations for calculating momentum matrix elements in a 

heterostructure using the EPM is outlined below. 

The momentum matrix element in the direction parallel to the unit vector e, 

between two states i and j, is given by 

= ( ^ « | e - p | ^ ( ^ ) ) , (3.32) 

where p = -iKV is the quantum mechanical momentum operator. For bound states 

in heterostructures, (3.32) becomes 

/ > 2 = + 0 0 p 

p,,= / / {¥^ye-p¥^^d\ (3.33) 

giving the momentum matrix element per unit cell area. In practice, the contribution 

to Pij from each layer of the heterostructure is calculated separately, then summed 

to get the final value. So, for a heterostructure made up of A'' — 1 layers of finite 

width, we use 
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with the contribution from the l^^ layer given by 

L kg 

( 
(0 

fc'g' 

"fc'g't 

« f c g t - i ( k * + g ) . r 

, - i ( k ' + g ' ) T 

^^11 E E (̂ 'T î'̂ (4t)*a.'g'.' e • (k'+g') 5gg< .̂ 
fcfc'gg' ss' 

X 

(3.35) 

(3.36) 

where 

/(O 
'max 

(0 
min 

(3.37) 

This integral can be calculated with the following results, depending on the layer 

type, 

1^) 

- m a x ^ n i i n a = 0 

(3.38) 

(3.39) 

(3.40) 

where a = (k' - k* + g' - g) and w indicates a general layer of finite width between 

the extreme left and right barriers (L and R), with barrier interfaces at zt and ZR 

(labelled zi and z^ in Figure 3.3). 
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3.6 Dipole matrix elements 

A basic principle of electromagnetic (EM) theory is that the vector and scalar po

tentials are not uniquely defined for given electric and magnetic fields. Thus it 

is possible to alter the potentials in certain ways, so-called gauge transformations, 

without affecting the fields (see, for example, pl32 of [65] or p536 of [66]). This is 

called gauge invariance. When including the interaction between a charged particle 

and an electromagnetic field, as in Fermi's Golden Rule, gauge transformations do 

affect the form of the Hamiltonian and, hence, the wavefunction of the particle, 

whilst gauge invariance ensures that all observables are unchanged. 

In Section 3.5 we stated that electron transitions induced by electromagnetic 

radiation take place at a rate dependent on the squared magnitude of the momentum 

matrix element between the states. This is correct, but we implicitly assumed that 

the term in the Hamiltonian describing the electron-field interaction was of the 

form A • p, where A is the vector potential of the electromagnetic field. However, 

due to gauge invariance, this is just one form of the Hamiltonian, specifically that 

assuming the Coulomb gauge, which defines V • A = 0. By making the appropriate 

gauge transformation, we arrive at an alternative Hamiltonian, where the term that 

includes the interaction between the particle and the EM field is of the form E • r, 

where E is the electric field component of the EM radiation (see, for example, 

p551 of [66]). In this gauge, transition rates are characterised by the so-called 

dipole matrix elements between the states involved. Thus, to obtain transition 

rate information, one may calculate either momentum or dipole matrix elements, 

according to preference and convenience. 

The dipole matrix element between states i and j, along the direction of the unit 
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vector e, is given by 

(3.41) 

where e is the charge on the electron. For bound states in heterostructures, (3.41) 

becomes 

z=+oo 

= - 0 0 

(3.42) 

giving the dipole matrix element per unit cell area. In this thesis, we are interested 

in dipole matrix elements, Zij, along the growth direction, z. The contribution to 

Zij from each layer of the heterostructure is calculated separately, then summed to 

get the final value. So, for a heterostructure made up of — 1 layers of finite width, 

we use 

(3.43) 

The contribution from the l^'^ layer is given by 

(0 xzJ^C^ 
k's' 

L kg 

^k'g't 

(0 

(0 

V «^gi / 

- z ( k * + g ) T 

- i ( k ' + g ' ) T 

= e^| EE( '̂V '̂'(4l)*- '̂g'̂ "^gg'̂ ^ 
fcfc'gg' s s ' 

(3.44) 

x / ( ' ) , (3.45) 
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where 

•2 m ax 

^ / ze'^''-''^^-^>dz. (3.46) 

This integral can be solved on integration by parts to yield 

/(^) = (l-za^L)e^"^^Q;-2 (3.47) 

[(1 - ^a^^l)e-^— - (1 - z a ^ t « ^ 0 
/("'^ = <̂  (3.48) 

( . ^ 1 ' - 4tV2 « = 0 
i f ) = - ( 1 - iazR)e^'^^«a-' (3.49) 

where the symbols have the same meanings as in the momentum matrix elements 

calculation, Section 3.5. 

3.7 Joint density of states 

The transition rate caused by EM radiation at a certain frequency or corresponding 

photon energy depends not just on the matrix elements between the states involved, 

but also on the number of both initial and final states, i.e., the joint density of 

states (JDOS) in energy. We label the JDOS at energy E, between bands i and j, 

by gij{E). The ful l JDOS at energy E is then given by summing the contributions 

from all the gij{E), i.e., from all transitions^ of energy E. 

Since the heterostructures under consideration are quasi-2D systems, the under

lying form of QijiE) is step-like (see, for example, section 8.8 of [1]). The ideal 

textbook form assumes parabolic in-plane energy bands, E^ oc ky, which is an in

creasingly inaccurate approximation as the in-plane wave vector, ky, moves away 

^Requiring the initial band to be occupied prevents the sum from including a theoretically 
infinite number of band-to-band transitions in the conduction band. 



3. H E T E R O S T R U C T U R E S — T H E O R Y 63 

from the 2D Brillouin zone (BZ||) centre, ky = (0,0). Hence, an explicit calculation 
of gij{E) is necessary.̂  

The two dimensional joint density of states may be expressed as 

9^AE) = 7 ^ J T ^ 4 - > (3.50) 

where £{E) is the line in ky-space within BZ|| with energy E, di is an infinitessimal 

distance along this line, and E^ — E^^ - E'^^^ is the energy separation of the two 

bands. An exact evaluation of this expression requires full knowledge of the in-plane 

band structure of the two states so that E-^^^ and then iVkn-EkiJ may be obtained. 

Calculation of the in-plane band structure is extremely time consuming when using 

the empirical pseudopotential method. Therefore, an exact evaluation of (3.50) 

is not feasible. Fortunately, if the in-plane band structure is close to isotropic in 

k||-space^ we may make the approximation E\^^^ ^ E\H\ ~ obtain 

V k | | £ ; k „ | ^ | V , , | E , J . (3.51) 

This means that the path i{E) is approximated by a circle, so that 

[ M^2'Kk\\{E), (3.52) 
Jl{E) 

with [E) being the value of k\\ at energy E (if there is more than one k\\ with energy 

E, i.e., there is more than a single (.{E), we must sum over each case). Substituting 

(3.51) and (3.52) into (3.50) leads to the expression actually used to calculate the 

®In any case, some subbands may not be even approximately parabolic. 
''This is the case for the InAs/AlSb conduction band states considered in Chapter 4. 
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JDOS in this work [67], 

g.AE) = (3.53) 

This approximation has the advantage that we need only calculate the in-plane band 

structure along a single line in ky-space in order to obtain the data necessary for 

determining the JDOS^. 

3.8 Applied electric field 

Many device applications of heterostructures require an electric field normal to the 

well plane (parallel to the z-axis in this work). The application of an electric field 

modifies the energy band structure of the system, since the associated potential 

energy is a perturbation to the Hamiltonian in the absence of the field. 

In the present work, we restrict the analysis to cases involving uniform fields, 

such as those resulting from applying a bias across the different layers of a hetero-

structure. From basic electrostatic theory (see, for example, p4 of [68]), the electric 

field, E{z), and potential, V{z), are related by 

E(^) = - 5 n £ ) . (3.54) 

Hence, for a bias of 14 across a heterostructure of length L, the applied electric field 

9 
is 

E, = (3.55) 

^In practice, is calculated for a number of values of fcy, and a cubic spline fit is used to 
approximate the full curve [67]. 

^Assuming the same dielectric constant for each material in the region over which the field is 
apphed. 
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or, alternatively, = —Es,L. Therefore, the electric potential within the hetero-
structure is given by 

V,{z) = -E,z. (3.56) 

The Hamiltonian of the perturbed system, H\ is obtained by adding the electron 

energy due to the applied field to the unperturbed Hamiltonian, H, 

H'= H + {-\e\)V,{z) (3.57) 

= H+\e\E^z. (3.58) 

From (3.58), one can see that the effect of a uniform positive field is a linear increase 

in the electron's energy with increasing z, i.e., the electronic energy bands are no 

longer 'flat'. This can be approximated by a series of small flat steps, as shown in 

Figure 3.4. Within the region of each step the Schrodinger equation consists of the 

original Hamiltonian plus a constant potential energy term. Thus, a heterostructure 

in an applied electric field can be treated as before, but with each material layer 

being sub-divided into smaller layers, which have their band edges offset against 

each other in the same way as different materials, but according to the stepped 

values of Va{z). 

Clearly, the steps should be as narrow as possible to maximise the accuracy of 

the approximation. However, since the EPM includes the atoms explicitly, there is 

a lower limit on this width, namely the width of a monolayer. A monolayer consists 

of two atomic layers of each atom in the zinc-blende material, i.e., a layer of each of 

the atoms in the primitive unit cell. 

Also, in these calculations, we make the additional approximation that the elec

tric field is applied only over the heterostructure's 'well' region, i.e., the extreme left 
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Er 

E 

1 W 

Figure 3.4 Schematic illustrating the piece-wise flat approximation used in the calculation 
of heterostructure bound states in an appHed electric field. In the present work, the electric 
field is not applied to the extreme left and right barriers, allowing for genuinely bound 
states. The figure shows the effect of the electric field on the electron energy band edges, 
hence, since electrons carry negative charge, this particular figure corresponds to a negative 
apphed electric field. 
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and right barriers both remain completely fiat, with the right barrier being offset 
by — kl^a relative to the left barrier. The monolayers of the materials in between 
the barriers, the 'well' region, then have their bands offset accordingly. Thus, the 
l^^ monolayer is band offset (relative to its original offset, if any) by 

Vi = -\e\V,{zi), (3.59) 

where zi is the position of the middle of the monolayer, with respect to the left 

barrier. Since bound electrons tend to concentrate in the well region, the effect of 

the fiat barriers is minimal, at least for small fields. 



Chapter 4 

Heterostructures — results 

4.1 Introduction 

The purpose of this chapter is to demonstrate the power of the chosen EPM complex 

band structure method for performing heterostructure calculations, whilst investi

gating two types of heterostructure based on the InAs/GaSb/AlSb materials system. 

The heterostructures studied are far more demanding of the techniques used in the 

analysis than the more common GaAs/AlGaAs systems. Because of this, these 

materials result in heterostructures that are also physically more interesting than 

typical systems, and although they have received a fair amount of attention from 

other workers (see later references), these particular material systems are still quite 

new and hence have been investigated on a much smaller scale than more established 

materials. 

In Section 4.2 we investigate the electronic properties of the InAs conduction 

band well formed between AlSb barriers. This forms a deep type I I well, and 

so attention is naturally focused on transitions within the conduction band, al

though the system has other applications which do not involve excited states, such 

as InAs/AlSb superlattice Schottky diodes [69]. Other workers have investigated 

68 
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some aspects of this system using alternative theoretical approaches, specifically 
tight-binding [10], k - p [70,71] and ab initio pseudopotential [19] methods, as well 
as experimentally [6,69,71]. Here, we use the empirical pseudopotential method to 
investigate the possibilities of transitions corresponding to the technologically im
portant 1.55/im electromagnetic wavelength. Since the AlSb barriers are indirect 
gap materials, with the conduction band X-valley considerably lower in energy than 
the F-valley, a realistic description of the conduction band throughout the Brillouin 
zone is important. This favours the use of EPM based methods for calculating 
properties associated with intraband transitions. 

Section 4.3 investigates the asymmetric, 'stepped' well formed by layers of GaSb 

and InAs sandwiched between AlSb barriers. Heterostructures consisting of these 

three materials are arousing increasing interest, chiefiy because of their unusual 

energy band line-ups and the wide flexibilty in device design they ofi'er. Indeed, 

in their brief review paper, Prospects for the future of narrow bandgap materials 

72], McGill and Collins describe ten different electron or hole tunneling devices 

achievable purely by adjusting the growth sequence of InAs, GaSb and AlSb. 

One aspect of this system that is of particular interest is the 'band overlap' of 

InAs and GaSb, where the InAs conduction band minimum lies below the GaSb va

lence band maximum [73]. This has led other workers [69,74-76] to investigate the 

possibilities of resonant interband tunneling (KIT) diodes with large negative differ

ential resistance (NDR). Another application of this material system is the ability to 

design and fabricate normal incidence infrared electroabsorption modulators [77-79], 

where the absorption is via miraband transitions in the L-satellite valleys. Other 

applications discussed in the literature include infrared lasers based on intersubband 

transitions [80], large non-linear responses with third harmonic generation [81] and 

lasers/detectors employing a combination of intersubband transitions and both intra 

and interband tunneling [82 . 
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Material Tc 

AlSb -0.189 2.128 1.425 2.008 
InAs -0.299 0.000 1.793 1.096 

Table 4.1 The important energy band line-ups of the In As/AlSb system, as calculated 
by the EPM discussed in the text. The materials are in-plane stressed to lattice match 
GaSb. AH the energies are with respect to the InAs conduction band minimum, and are 
in eV. References are given in Appendix D. 

In this work, we analyse how the stepped well bound state energies are eff'ected 

by variations in the InAs layer width and by the application of an external static 

electric field. 

4.2 Single quantum wells — InAs/AlSb 

We first turn our attention to the analysis of a single InAs/AlSb quantum well. 

These materials form a type I I staggered heterojunction, with the InAs valence band 

maximum below that of the AlSb. Thus, due to the small band gap of InAs and 

the relatively large gap of AlSb, an unusually deep well is formed in the conduction 

band, see Table 4.1 and Figure 4.1. In fact, AlSb has an indirect band gap, so 

that truly bound states can only exist up to the X-valley minimum, rather than the 

considerably higher F-valley minimum, but this still produces a very deep well. 

Since the two materials are usually grown on a GaSb substrate or buffer layer, in 

this work they are strained in-plane to match the bulk lattice constant of GaSb. The 

AlSb is in biaxial compression while the InAs is in biaxial tension, corresponding 

to in-plane strains of approximately —0.67% and -1-0.61%, respectively. The ma

terials are relaxed elastically in the growth direction (taken to be the 2;-direction), 

as described in Section 2.3.1. The strain is also included for consistency because 

the heterostructure considered in Section 4.3 includes a GaSb layer, and using a 

common in-plane lattice parameter allows direct comparison between the various 



4. HETEROSTRUCTURES — RESULTS 71 

AlSb InAs AlSb 

Figure 4.1 InAs/AlSb energy band hne-ups. The bands are drawn to.scale, with the 
numeric values given in Table 4.1. 

Structures. In any case, the lattice mismatch between the three materials is small 

(about ±0.6%) and thus including strain does not have a major effect on the con

duction band, unlike the valence band [37 . 

From Table 4.1, the well depth is 1.425eV, which is much greater than that 

of the more commonly used quantum well systems, such as InP/Ino.53Gao.47As or 

GaAs/AlGaAs, which have conduction band well depths in the range 0-0.3 eV. The 

large depth allows for the possibility of transitions between bound states within the 

well (intraband transitions) at energies around 0.8 eV, corresponding to the radiation 

wave length of 1.55/Lim, which is used in fibre optic telecommunications (see, for 

example, pl04 of [83]). This section concentrates on this transition. The pseudo-

potential calculations of the quantum well energy band structure and momentum 

matrix elements use 89 reciprocal lattice vectors and the first 9 in-plane projections, 

g||, in the wavefunction matching procedures (see Section 3.3). 
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4.2.1 Energy vs well width 

The variation in the bound state energies with well width is shown in Figure 4.2. 

This also shows the energy variation predicted by a simple ID single parabolic 

band (SPB) approximation (see Appendix C). To ensure a meaningful comparison 

between the two methods, the parameters for the SPB approximation are derived 

from the EPM band structure. From the figure, we see that the SPB prediction for 

the ground state energy is in excellent agreement with the results of the full EPM 

calculation, but the excited states disagree dramatically. This is because the EPM 

excited states have a sizeable contribution from the complex-A; branch leading down 

from the X-valley (see Figure D.IO), which is totally absent from the SPB. Thus, 

the SPB approximation is wholly inadequate for the study of properties involving 

any excited states and we expect the same to be true for 8 band k • p methods. 

The figure shows that there is a minimum width of 7 monolayers for a bound 

excited state to exist. In particular, at a well width of 7 monolayers there is a single 

excited state at an energy 0.816 eV above the ground state. Although this is quite 

a narrow well (7 x a^"^^'/^ ~ 2 lA) , its fabrication is certainly possible [6 . 

Before considering the properties of the 7 monolayer wide well, we compare the 

bound state energies predicted by the present theory with those reported by other 

workers. Bound state energy data for this system is somewhat limited, which is of 

course one of the motivations for its study. 

Boykin [10] uses a nearest-neighbour 10 band tight-binding model to calculate 

the energies of quasi-bound states in an InAs well between two AlSb barriers. Table 

4.2 compares the ground state energy, as a function of well width, as predicted in 

the present work and by Boykin. The predictions are in reasonable agreement, but 

it is impossible to make an absolutely meaningful comparison since many details 

of Boykin's calculation are unknown, such as the AlSb energy band edges and the 
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Figure 4.2 Bound state energies as a function of InAs well width, with AlSb barriers. 
The materials are in-plane strained to match the bulk lattice parameter of GaSb. The 
energy is with respect to the bottom of the well, which is 1.425 eV deep. The dashed fines 
show the results of a Id parabohc band calculation, using data derived from the empirical 
pseudopotential method (EPM). 
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Energy (eV) 
InAs width (a/2) This work Boykin 

2 1.36 1.2 
3 1.09 0.95 
4 0.90 0.8 
5 0.76 0.7 

Table 4.2 Comparison of the ground state energy predicted in the present work and by 
Boykin [10] for a narrow InAs/AlSb quantum well of various widths. The energy origin is 
at the InAs conduction band minimum. 

temperature at which the modelling is being done. However, it is not surprising that 

Boykin reports slightly lower energies, since in general the effect of the finite barrier 

widths is to slightly reduce the quantum confinement of the quasi-bound states, and 

hence their energy, with respect to the genuinely bound states of this work. 

Warburton et al. [70] report both theoretical and experimental results for a 150A 

wide well. Table 4.3 makes a comparison between their theoretical predictions and 

those of this work, where we have used a well width of 50a/2. They also report 

an experimentally measured ground to first excited state (1-2) transition energy 

of 0.134eV. As was the case with Boykin's data, direct comparisons are difficult, 

especially since Warburton et al. report data obtained from low temperature experi

ments and modelling, whereas this work models the materials at room temperature. 

Besides, comparison between theoretical and experimental data is often awkward 

as there is always uncertainty over the exact experimental parameters and mea

surements, and for purely practical reasons some effects must be omitted from the 

theoretical calculations. However, in this case the results are still in reasonable 

agreement. 

Experimental and theoretical predictions for the ground state energy have also 

been reported by Fuchs et al. [71], though unfortunately, these are also low tem

perature results. They report interband, spatially indirect transition energies, i.e., 
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Energy (eV) 
State/Transition This work Warburton et al. 

1 0.05 0.06 
2 0.16 0.18 
3 0.29 0.33 

1-2 0.11 0.12 
1- 3 0.24 0.27 
2- 3 0.13 0.15 

Table 4.3 Comparison of the energies of conduction band bound states, and transitions 
between them, as predicted in the present work and by Warburton et al. [70] for a 150A 
wide InAs/AlSb quantum well. The energy origin is at the InAs conduction band mini
mum. 

those corresponding to transitions from the top of the AlSb valence band to the InAs 

quantum well ground state. For a 7.5nm (25a/2) quantum well, in-plane matched 

to GaSb (as is the case for the present work), they predict and measure a transition 

energy of approximately 0.44eV, in contrast to the value of 0.33eV predicted in the 

present work.^ At first glance, this seems to cast the results presented in this work in 

a considerably less favourable light than the comparisons with Boykin and Warbur

ton et al. However, unlike those previous comparisons, this data directly includes 

the InAs principle band gap. Since the gap is relatively small, a small change in 

its value due to temperature variations is more noticeable than if the band gap was 

larger. I f we take into account the increased band gap of the low temperature InAs 

(Fuchs et al. assume a value of 0.357eV, whereas we are using the room tempera

ture, strained value of 0.299eV), then the prediction of this work becomes 0.39eV 

(assuming no other changes). The dilference between this value and that reported 

by Fuchs et al. is then of the same order as for the comparisons with Boykin and 

Warburton et al. 

^From Table 4.1, we note that the data in Figure 4.2 must be increased by 0.189eV to obtain 
the energy of the well states with respect to the top of the AlSb valence band. 
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Figure 4.3 In-plane energy dispersion of the two conduction band bound states in the 7 
monolayer InAs/AlSb SQW, as a function of the magnitude of the in-plane wave vector, 
|k||| = \{kx, ky)\. The close agreement between the curves for kx = ky and ky — 0 indicate 
an almost isotropic energy dispersion in |k|||. The energy scale is with respect to the 
bottom of the well, i.e., the bottom of the InAs conduction band. 

4.2.2 Energy vs k|j 

The variation of energy with in-plane wave vector, ky, in the two bound states of 

the 7 monolayer system is plotted in Figure 4.3. The energy dispersion is plotted 

as a function of the magnitude of the in-plane wave vector for both ky = (/c, 0) and 

k|| = {k,k). I t is apparent that the in-plane energy band structure is very nearly 

isotropic, which is to be expected because the states are dominated by the s-type 

component associated with the bulk InAs conduction band P-valley. One can also 

see the lift ing of the Kramers degeneracy away from the high symmetry point at 

k|| = (0,0). However, the splitting is very small in this case, being only about 10 

meV, so we can reasonably approximate both ground and excited states as spin 

degenerate for non-zero k\\, using the mean energy of the split bands. 

Another feature of the ground and first excited state dispersion curves is that they 
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Figure 4.4 Demonstration of the non-parabolicity of the in-plane energy dispersions for 
the 7 monolayer InAs/AlSb SQW. (a) Ground state (b) Excited state. Both energy scales 
are with respect to the bottom of the InAs well. 

are not parallel, and indeed, their energy difference is reduced with increasing in-

plane wave vector. This is due to the marked non-parabolicity of the InAs conduction 

band F-valley. Since the conduction band varies sub-quadratically even a small 

distance away from the F point, the effective mass increases and causes the in-plane 

dipersion for the excited state to have a lower curvature than that of the ground 

state [84 . 

The non-parabolicity of the in-plane subband is illustrated in Figure 4.4. Although 

the subband energies vary quadratically for very small |k||| they become notice

ably sub-parabolic at magnitudes well before the largest value shown in Figure 4.4, 

k||| = 0.08(27r/a||). 

Since we are interested in transitions between the two states, it is useful to plot 

their energy separation as a function of the magnitude of the in-plane wave vector 
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Figure 4.5 The vertical transition energy between the ground and excited states of the 
7 monolayer InAs/AlSb SQW, as a function of the in-plane wave vector magnitude. A 
parabola is also shown to demonstrate the non-parabohcty. 

— this is shown in Figure 4.5. In fact, Figure 4.5 shows the energy difference 

between the mean values of the ground and excited state, i.e., the lifting of the 

Kramers degeneracy is neglected, since it is so small. The plot shows that although 

the transition energy does vary with in-plane wave vector, it is within 5% of 0.8 

eV for wave vector magnitudes up to about 0.05(27r/a||). As a rough guide to how 

satisfactory this is for the possibility of (room temperature) devices, we consider 

the (classical) thermal energy, kbT, of a 2D particle. Equating this to an effective 

mass expression for the transition energy (with the effective mass, ml2, fitted to the 

curvature in Figure 4.5), /i^A;jj/2m*2, leads to a thermal energy of 26meV (at 300K) 

and a corresponding wave vector magnitude of 0.025(27r/a||). This naive picture 

suggests that the changes in £'12 with /cy would not hinder transitions at around 

0.8eV. 
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4.2.3 Joint density of states 

The joint density of states (see Section 3.7) between the conduction band ground 

and first excited bound states of the 7 monolayer system is shown in Figure 4.6. 

The non-parabolicity alters the joint density of states from the simple 'text book' 

form. I f parabolic subbands are assumed then the transition energy between bands 

i and j , with effective masses m* and m*, is 

E.= ^ f - ] . 4.1 

Therefore, from (3.53), the joint density of states is given by 

mlrrTj 

ml -
(4.2) 

Thus, using the parabolic subband approximation, we expect the JDOS to be either 

constant or a delta function, for differing or equal subband effective masses, respec

tively. Although the two subbands are not quite parallel, the joint density of states 

is still increased compared to interband transitions, since the curvature of the two 

subbands has the same sign for intraband transisitions in the conduction band. 

4.2.4 Momentum matrix elements 

The optical transition rate between states is proportional to the squared magnitude 

of the momentum matrix elements between them. The component of the momentum 

operator of interest in calculating the momentum matrix element depends on the 

polarization of the electromagnetic (EM) radiation. The two cases of particular 

interest are: 

• An EM plane wave propagating in the growth direction, resulting in an elec

tric field component in an in-plane direction. This is termed the Transverse 
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Figure 4.6 Joint density of states in energy, J12, between the ground and excited con
duction band states of the 7 monolayer InAs/AlSb SQW. This illustrates how the non-
parabolicity of the EPM in-plane band structure results in deviations from the simple 
stepped form predicted by assuming parabohc energy bands. 

Electric (TE) mode. 

• An EM plane wave propagating in an in-plane direction, giving an electric field 

component in the growth direction. This is termed the Transverse Magnetic 

(TM) mode. 

Of course, there are still two degrees of freedom in the in-plane direction. Thus, 

the transition rate due to the TE mode depends on the specific polarization of the 

electric field component in the plane of the well and the orientation, as well as the 

magnitude, of the in-plane electron wave vector. 

The squared magnitude of the momentum matrix elements between the ground 

and excited states of the 7 monolayer InAs/AlSb system are plotted in Figure 4.7 

as a function of |k|||. Curves for both the TE and T M modes are shown, but the 

TE squared matrix element has been scaled up by a factor of 10 for clarity. The key 
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features are the slow drop in squared matrix elements for both modes with increasing 
in-plane wave vector magnitude, and the disparity in the values for the two modes, 
in agreement with the k • p predictions of Warburton et al. [70]. In fact, at |k||| = 0, 
the squared matrix element for the TE mode is only approximately 0.5% of that for 
the T M mode. The difference in parity of the wavefunctions of the two states in 
the growth direction results in a large dipole matrix element between them, along 
that direction, and hence we also obtain a large momentum matrix element in the 
growth direction. This situation arises in the T M mode. In the plane of the well we 
have bulk-like states dominated by contributions from the same band (conduction, 
in this case) with no parity difference between the wavefunctions, hence the very 
small matrix elements for the TE mode. 

Simple effective mass and envelope function theories predict that the matrix el

ements for the TE mode vanish. The small but non-zero matrix elements arise here 

because of the slight band mixing of the bound states. The matrix elements have 

been demonstrated experimentally to be non-vanishing by Liu et al. [85] for GaAs 

based quantum wells. They obtained TE:TM signal ratios of 0.2% for a 54A wide 

GaAs/Alo.26Gao.74As quantum well and 3% for a 37A wide Ino.1Gao.9As/Alo.44Gao.56As 

quantum well. As they note, there is still some debate over the correct order of mag

nitude of TE:TM ratios, with some k • p calculations predicting ratios as high as 

10%. A recent theoretical study by Batty and Shore [86] predicts a TE:TM ratio of 

no more than 1% for various systems. Thus, the author believes the prediction here 

of a ratio of 0.5% to be at least qualitatively correct. 

4.2.5 Applied electric field 

We now turn our attention to the response of the system to a static electric field, 

Ea, applied in the well growth direction. We are interested in how the bound state 

energies change with the electric field. 
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Figure 4.7 Squared magnitude of the momentum matrix elements between the ground 
and excited conduction band states of the 7 monolayer InAs/AlSb SQW. The plot for the 
TE mode has been magnified by a factor of 10. 

The application of an electric field distorts the band profile of a heterostruct-

ure, so that the usual energy reference point, the top of the valence band, becomes 

a function of position along the well growth direction. Therefore, care must be 

taken when choosing the energy origin so that the shift in energy of the band edges 

(linear with the applied field) does not obscure the important physics. Therefore, 

we choose the origin of the applied electrostatic field to be midway between the left 

and right barriers. Chosen in such a way, the average of the electrostatic potential 

energy is zero, if the bound state energies are measured with respect to one of the 

energy bands (conduction, in this case) at the centre of the well, i.e., if the applied 

field origin spatially coincides with the energy reference point, then that reference 

point is unchanged. Equivalently, we calculate the change in the difference between 

the bound state energy and the average band edge potential energy in the well, as a 

function of applied field. Of course, the only experimentally measurable energies are 
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Figure 4.8 The change in energy with applied perpendicular electric field (Stark shift) 
of the ground state in a 7 monolayer InAs/AlSb single quantum well. The offset of the 
maximum from the origin is due to a lack of inversion symmetry in the potential of the 
well. The in-plane wave vector is zero. 

those corresponding to transitions between states, in which case the energy reference 

point is naturally irrelevant. 

Figure 4.8 shows the change in the ground state energy with applied electric 

field of the 7 monolayer InAs/AlSb quantum well. For applied fields with a 'smaU' 

magnitude (i.e., those that correspond to applied biases that are small compared 

to the well depth), envelope function theories would predict a quadratic energy 

dependence on the field because of the refiection symmetry of the quantum well 

structure [18,87]. This is not seen in Figure 4.8, where the energy maximum does 

not coincide with zero applied field but is displaced slightly. This is a consequence of 

the atomic resolution of the empirical pseudopotential method employed here. The 

quantum wells considered in this chapter are all an integer number of monolayers 

wide, with a monolayer being half the lattice parameter. A single monolayer contains 

two (001) planes of the atoms that make up the binary compound, each atomic layer 
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containing only atoms of the same type. So, for a 2 monolayer InAs/AlSb conduction 

band well, we have atomic layers arranged in the form 

• Sb • A l • Sb • A l As • In • As • In Sb • A l • Sb • Al • • • 

I t is apparent from the atomic arrangement that on the microscopic scale, the po

tential will not be symmetric about the centre of the well. 

The lack of symmetry in the microscopic potential results in a corresponding lack 

of symmetry in the bound state wavefunctions and hence a small dipole moment 

exists at zero bias. Therefore, when applying an electric field, either the positive 

or negative bias will expend energy to overcome the small opposite built-in dipole 

moment of the wavefunction, before inducing the larger dipole moment dependent 

on the field. This feature can be reproduced using simple envelope function models 

(such as the single parabolic band approximation) by introducing a small step in 

the potential. 

I t should be noted that this offset in the maximum of the response curve only 

occurs because of the perfect nature of the crystals when modelled by the EPM and 

the limitation to integer monolayers of the well width. Including an extra atomic 

layer in the well region would result in the usual response with the maximum at zero 

bias (cf. the symmetric charge densities thus obtained in Chapter 6). Apart from 

the displacement of the energy maximum, Figure 4.8 shows that the change in the 

ground state energy has the parabolic response to the applied field, as predicted by 

envelope function methods. 

Of more physical significance is how the energy difference between the ground 

and excited states varies with the application of the electric field. This is important 

because devices based on heterostructures need a bias to be applied so that the 

carriers involved in the desired optical transitions can be introduced or extracted 
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Figure 4.9 The variation with applied electric field of the transition energy, £'12, between 
the ground and first excited states of the 7 monolayer wide InAs/AlSb single quantum 
well. 

to the well region, as required by the particular functioning of the device. For 

example, a photodetector using the intraband transition discussed in this section 

would require a bias to alter the barrier potential profile to allow the electrons in 

the bound excited state to escape the well by tunnelling through the barriers. 

The variation in the intersubband energy with applied electric field is plotted 

in Figure 4.9. The change in the transition energy is small over the range of fields 

typically used in devices, which suggests that this system might be a viable candidate 

for photodetection at 1.55/̂ m. 

4.3 Asymmetric 'stepped' quantum well 

Having examined the case of the relatively simple, albeit unusually deep, single 

quantum well, we now move on to a more complicated heterostructure. Specifically, 
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Material Fc 

AlSb -0.189 2.128 1.425 2.008 
GaSb 0.211 0.937 1.257 1.101 
InAs . -0.299 0.000 1.793 1.096 

Table 4.4 The important energy band line-ups of the InAs/GaSb/AlSb system, as cal
culated by the EPM. The materials are in-plane stressed to lattice match GaSb. Ah the 
energies are with respect to the InAs conduction band minimum, and are in eV. References 
are given in Appendix D. 

we examine an asymmetric^ well formed by sandwiching layers of both InAs and 

GaSb between the AlSb barrier layers. The resulting band line-up is illustrated in 

Figure 4.10, with the numerical values listed in Table 4.4. The band edge line-up 

shows that this system is particularly interesting because not only does it form an 

asymmetric conduction band well but also, due to the type I I broken gap hetero-

junction formed between the InAs and GaSb layers, the InAs part of the conduction 

band well overlaps in energy with the valence band well formed in the GaSb layer. 

To understand the results, i t helps to split the energy range over which bound 

states may exist into three regions, as labelled in Figure 4.10. We can then char

acterise the states in each energy region as follows (following the labelling of the 

figure): 

1. Both InAs and GaSb conduction band states are allowed. In region (a) there 

is also a well formed in the X-valley of GaSb so that there will be bound X-

states present. In region (b) only F-like states are present in both the GaSb 

and InAs layers. 

2. This region corresponds to the GaSb band gap, so only F-like InAs conduction 

band bound states are present. 

^The term 'asymmetric' is used here to describe a macroscopic asymmetry in the heterostruct
ure, due to the choice in the materials forming the structure, rather than the small asymmetry in 
the potential on the atomic scale discussed in Section 4.2.5. 



4. HETEROSTRUCTURES — RESULTS 87 

AlSb GaSb InAs AlSb 

(a) 

(b) 

(a) 

(b) 

Figure 4.10 Band profile for the InAs/GaSb/AlSb asymmetric, or 'stepped', quantum 
well, showing the relative positions of the zone centre and X-valley band edges. The values 
for the labelled energy ranges, in which bound states can exist, are given in Table 4.4. 
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3. Valence band GaSb states are present. In region (a) there may also be InAs 
conduction band states, whilst region (b) includes the InAs band gap, so only 
GaSb states are allowed. Region (a) is the band overlap region. 

Of course, quantum tunneling means that in general a bound state will be spatially 

spread over each material region to a certain extent. 

4.3.1 Energy vs InAs layer width 

Figure 4.11 shows the variation in energy with InAs layer width of bound states with 

energies around the band overlap (labelled 3(a) in Figure 4.10), for a fixed GaSb 

layer width of 20 monolayers {a^/2). For narrow InAs layers, the conduction band 

bound states lie well above the top of the GaSb valence band and so the valence 

and conduction band wells act as two separate single wells. As the InAs layer width 

increases, the conduction band states drop in energy so that, at an InAs width 

of 20a_i/2, the conduction band ground state energy drops below the GaSb valence 

band maximum. Increasing the InAs width further causes the conduction and heavy 

hole ground states to cross. However, due to the coupling of the conduction and light 

hole states, the conduction and light hole ground state bands actually anti-cross. 

This anti-crossing behaviour is illustrated more clearly by Figure 4.12, which 

shows a similar plot to that in Figure 4.11 but with the bound state energies of 

a single 20 monolayer wide InAs/AlSb conduction band quantum well overlaid. 

This figure also shows more clearly the smaller amount of anti-crossing between the 

electron ground and heavy hole first excited states, resulting from the small amount 

of band mixing in the two states. In addition, the figure demonstrates how the light 

hole ground state begins to anti-cross with the excited conduction band state as the 

InAs width is increased further. 

The anti-crossing behaviour is analogous to the opening of so-called 'minigaps' 
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Figure 4.11 Variation in energy of bound states around the band overlap of the 
InAs/GaSb/AlSb stepped quantum well, for a 20a_i/2 wide GaSb layer and zero in-plane 
wave vector. The energy origin is at the top of the GaSb valence band, with the bottom 
of the InAs conduction band being at -211meV. The bands are labelled for reference in 
the text. 
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Figure 4.12 Comparison of the bound state energies in the InAs/GaSb/AlSb and 
InAs/AlSb quantum well systems, for zero in-plane wave vector. The GaSb layer is 20 
monolayers wide, as in Figure 4.11 (note that in this figure the InAs width starts at zero 
and the energy scale has been magnified slightly). The bands are labelled according to 
their nature for zero InAs layer width. The energy origin is at the top of the GaSb valence 
band, with the bottom of the InAs conduction band being at —211meV (note that Figure 
4.2 has the energy origin at the top of the InAs conduction band). 
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88-90] in the in-plane band structure, which occurs when the widths of the spatially 

adjacent (or very close) InAs and GaSb layers are such that one or more electron 

states is lower in energy than at least one hole state at the 2D Brillouin zone centre, 

k|| = (0,0). This has been attributed to hybridization of the electron and hole 

states when they are close in energy. When hybridization occurs, the wavefunctions 

of the two states have both electron and hole-like characteristics in the InAs and 

GaSb layers, respectively, and the associated probability density is distributed in 

both material layers in approximately equal measure [88]. However, the situation 

described in Figures 4.11 and 4.12 is slightly different, as is explained below. 

Figure 4.13 shows the in-plane averaged probability densities of the electron, 

heavy and light hole ground states, plus the first excited heavy hole state, at InAs 

layer widths of 20, 30 and 40aj./2. The labelling of the states is consistent with that 

of Figure 4.11. When the InAs width is 20a_L/2 (Figure 4.13(a)), we can clearly 

assign the bands to states as follows: 

62 Ihi 

63 !->• hh2 

64 I—>• hhi 

65 i -> C i . 

At an InAs width of 30aj./2 (Figure 4.13(b)) we observe hybridization between 

the light hole and electron ground states, labelled C2 and C4, respectively. We also 

see from Figure 4.11 that this corresponds to the anti-crossing of the light hole 

and electron energy bands, which is analogous to the minigaps of in-plane band 

structures. With the InAs layer as wide as 40ai/2 (Figure 4.13(c)) the hybridization 

of the two states is considerably reduced and we see that the mostly electron-like 

state, d2, is now lower in energy than the light hole-like state, ^ 3 , again indicating 
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that anti-crossing has taken place. 

The difference between this present case and those previously reported by other 

workers is that there is no hybridization with the lowest energy hole state, i.e., the 

heavy hole ground state. As mentioned earlier, when the InAs layer is sufficiently 

wide, the electron bands cross the ground state heavy hole band. However, minigaps 

appear in the in-plane band structure with hybridization occurring between electron 

and heavy hole, as well as light hole states. This can be explained in terms of 

band mixing within the valence band states for non-zero in-plane wave vector, such 

that the heavy hole ground state has an appreciable light hole admixture [11] away 

from the (2D) Brillouin zone centre. At the Brillouin zone centre (k|| = (0,0)) 

the coupling, and hence hybridization, between electron and heavy hole states is 

negligible^, hence the lack of anti-crossing and hybridization for these states in 

Figures 4.11, 4.12 and 4.13. 

Energy band anti-crossing as a function of electron wave vector is a familiar 

phenomenon from bulk energy band structure, and it is interesting to see related 

effects as the result of a variation in a spatial property of the heterostructure, namely 

the InAs layer width, rather than the electron wave vector. 

^In commonly used k • p schemes, there is zero coupling between electron and heavy hole states 
at the zone centre. 
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4.3.2 Applied electric field 

The application of an electric field to an asymmetric quantum well in the growth 

direction has fundamentally different effects to its application to a symmetric^ well. 

Due to the asymmetry of the unperturbed potential, the charge is already polarised 

with respect to the centre of the InAs/GaSb region, hence, the applied field does not 

have to do any work to induce a dipole moment. This results in a linear change in 

the bound state energies, even for small applied fields. Alternatively, we note that in 

perturbation theory, the first order linear term in the correction to the unperturbed 

energy no longer vanishes for small fields since the unperturbed wavefunction is not 

symmetric. The lack of symmetry in the unperturbed potential also means that the 

change in energy is no longer symmetric with the applied field but is a monotonic 

function of the field. 

While the characteristics described above are reasonably well known for asym

metric wells in general, the broken gap in this system can result in interesting 

variations on the underlying linear energy response. Figure 4.14 plots the variation 

in the 'averaged' energy of the bound states for a stepped well of 20 GaSb and 

20 InAs monolayers. By 'averaged' energy, we mean, as in Section 4.2.5, that the 

electrostatic potential energy origin is set to be midway between the barriers and 

the bound state energy reference is equivalent to the top of the GaSb valence band 

at this point. For this particular asymmetric well, the averaged energies must be 

treated with more caution than for the single quantum well. This is because the 

hole and electron bound states are concentrated in different spatial regions. The 

electron states are concentrated in the InAs region, the holes in the GaSb region, 

and thus the energy separation of electron and hole states increases with increasing 

applied field, the energy separation increasing by approximately |e\4/2 . 

''Or 'nearly' symmetric, as in the case of the InAs/AlSb single quantum well described in Section 
4.2. 
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Figure 4.14 The 'averaged' variation with applied electric field of the bound state energies 
of the asymmetric stepped well heterostructure. Both GaSb and InAs regions are 20 
monolayers wide. 

Comparison with Figure 4.11 reveals that for zero applied field, the energy levels 

plotted are, in order of increasing energy, Ihi, hh2, hhi and Ci. For a positive 

£'a, we obtain the expected results, i.e., the energy levels vary linearly, with the 

electron-hole energy separations increasing. However, for negative E^, the situation 

is more complex. The energy response remains linear in and eventually the 

ground state electron and heavy hole levels cross. With an increasingly negative 

field, the electron and ground light hole states anti-cross in the same energy region 

in which the electron and first heavy hole excited state cross. The now electron

like level continues to drop but then starts to anti-cross with an excited hole state 

below the plotted energy range. These effects are similar to those seen in Section 

4.3.1, where the crossing and anti-crossing behaviour was a result of variations in 

the InAs layer width, rather than variations in an applied electric field. So, again 

we see behaviour analogous to that which causes the minigaps in the in-plane band 
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structure. Wong et al. [91] have reported the results of microscopic calculations on 
a similar InAs/Alo.iGao.gSb system, including the effects of an applied electric field. 
However, they do not report any anti-crossing behaviour of the type seen in Figure 
4.14. Assuming the calculations were performed using step sizes between different 
applied fields that are small enough to properly resolve anti-crossing behaviour, 
its absence is probably the result of spatial separation of the electron and hole 
states, due to the nature of the multiple quantum well structure studied. They cite 
this spatial separation to account for the calculated optical matrix elements, which 
sometimes are much smaller than expected due to little overlap of the wavefunctions 
involved. 

It should be noted that a more rigorous analysis of the states around the band 

overlap should employ at least some element of self-consistency in the calculations. 

I f accurate predictions were to be made concerning the functioning of devices based 

on this type of system, band bending effects due to the possibly large scale interband 

charge transfer between InAs and GaSb layers would have to be taken into account. 

4.4 Summary 

This chapter has demonstrated the power of the complex band structure EPM 

technique, described in Chapter 3, for calculating various electronic properties of 

semiconductor heterostructure bound states. In particular, heterostructures with 

unusual band profiles cause no problem for this approach. 

In Section 4.2, we compared the predicted bound state energies to both calculated 

and experimentally determined values available in the literature and found satisfac

tory agreement, suggesting that the subsequent analysis is reasonably reliable. The 

existence of transitions within the conduction band well at an energy correspond

ing to the wave length used in fibre optic telecommunications was predicted. Since 
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intraband transitions between ground and first excited states have a larger TM mode 
momentum (or, equivalently, dipole) matrix element, and a substantially increased 
joint density of states than T M or TE mode interband transitions, devices based 
around this structure may have advantages over existing technology. Also, the vari
ation in the transition energy was shown to be small over a range of the applied 
electrostatic fields necessary for devices to function. 

Section 4.3 contains a study of the InAs/GaSb/AlSb asymmetric well. Again, 

the complex band structure EPM approach proved very powerful in the analysis 

of this system. We demonstrated band crossing and anti-crossing behaviour as a 

function of both the heterostructure dimensions and an applied electrostatic field. 

The anti-crossing behaviour is claimed to be analogous to the appearance of minigaps 

in the in-plane band structure, although in this case, the electron states cro55 the 

heavy hole ground state, since for zero in-plane wave vector the coupling between 

conduction and heavy hole bands is negligible. 



Chapter 5 

Envelope function theory and 

methods 

5.1 Introduction 

5.1.1 Envelope functions 

Envelope function theories involve expressing the electron wavefunction (or pseudo-

potential wavefunction, in the present work) explicitly in terms of functions that 

vary on the atomic scale and have the periodicity of the crystal lattice, and those 

that vary slowly on the atomic scale. A well known example is the Bloch form for 

the energy eigenfunction of an electron in a bulk crystal (see, for example, pl33 

of [52]) 

V'mk(r) = e^''""ti^k(r), (5.1) 

where m is the band index, k the electron wave vector and 'Umk(r) is a Bloch periodic 

function, which is periodic with the latticed In the reduced zone scheme, the wave 

^Note the distinction between the Bloch function, •0mk, and the Bloch periodic function, Umk-

98 
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vector k in (5.1) is restricted to the first Brillouin zone (IBZ) and the exponential 
term changes slowly over a unit cell — the atomic scale. Hence, the exponential term 
modulates the much more rapidly varying Umk{^), and imposes an overall 'envelope'. 

The wavefunction of a general electron state, such as that in a heterostructure, 

with energy E, will be some linear combination of these Bloch functions [54], 

"^(r) = Y^amk^mkir), (5.2) 
mk 

where the summations are over those values of m and k corresponding to energy E. 

The Umk, can be expanded using an orthonormal basis of the Bloch periodic functions 

chosen to have a particular wave vector, ko, due to the common periodicity of the 

two sets of functions, 

Umk (r) = ^ bnkQ,mkUnko (r) • (5.3) 
n 

Hence, we may rewrite (5.2) as 

= 5^«mke ' ' ' ' '5]]6nko,mkWnko(r) 
mk n 

( r 1 
Akv E E 

n \ k 
,mk 

m 
Wnko(r) 

/ 

= 5] c^kcke^""" ^inko(r) 
n \ k ) 

= J ] F „ k o ( r ) u „ k o ( r ) , (5.4) 
n 

where c„ko,k = E m «mk^'nko,mk and F„ko(r) = E k Cnko.ke'*' '" is the most general form 

of the envelope function. 

Of course, in bulk materials the charge density must be periodic with the lattice, 

since each unit cell is identical. Hence the exponential in (5.1) is merely a phase 
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factor, i.e., k G K^. However, in the presence of an interface, and therefore in all 
heterostructures, the wave vector is in general a complex quantity [54,60] and the 
envelope part of the wavefunction is no longer just a phase factor, but modulates 
the charge density.^ 

5.1.2 Benefits and problems of envelope function methods 

The usefulness of thinking in terms of envelope and periodic functions becomes ap

parent when introducing approximations to facilitate the solution of the Schrodinger 

equation, especially in the study of heterostructures. Indeed, probably the most 

widely used techniques for modelling heterostructures (for example [18,92,93]) are 

based on Kane's k • p model [94,95] for calculating the energy dispersion in bulk 

crystals, using the symmetry properties of the zone centre periodic functions. Even 

simpler 'textbook' approaches are capable of producing reliable results in certain 

circumstances, as demonstrated by the comparison between the EPM and ID single 

parabolic band (SPB) results in Chapter 4. These techniques are grouped together 

under the term 'envelope function approximations' (EFAs), which share the com

mon feature of not requiring explicit knowledge of the Bloch periodic functions, in 

contrast to pseudopotential and tight-binding methods, where the Bloch periodic 

functions are a natural product of the calculations. Instead, the information that 

characterises a material is usually represented by an 'eflPective mass' for each band 

included and the energy separation of the bands, both at ko. Thus, such methods 

are also referred to as effective mass approximations. We note that EFAs replace the 

true Schrodinger equation, the solution of which necessarily involves Bloch periodic 

components, with a 'Schr5dinger-like' equation that (usually) has a piece-wise con

stant potential term, and the energy eigenstates of which are just envelope functions 

^Although k is now complex, the real part is still chosen to lie within the IBZ so that the 
oscillatory nature of e^^ '^ is still slow on the atomic scale. This may be heavily attenuated if k has 
a large imaginary part. 
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(see, for example, [92]). 

EFAs have proven very successful in calculating many properties of heterostruct

ures [22,70] and also in device modelling, usually being implemented in ways requir

ing little computational power when compared to other methods. However, until 

recently there has been genuine concern over the physical and mathematical jus

tifications for the use of these EFAs. In particular, the choice of the appropriate 

boundary conditions to apply to envelope functions at heterojunctions was a con

tentious issue, with a particular choice being justified by the apparent success of the 

method in predicting some physical properties rather than by the use of first prin

ciples theory. These issues have now been theoretically resolved by Burt [17,96,97], 

with subsequent contributions from other workers [15,98-100], most notably Fore

man [14,16,101 . 

Burt showed how the wavefunction of an electron in a heterostructure may be 

expressed in terms of a unique set of envelope functions, which are both continuous 

and smooth over all space, including at abrupt heterojunctions. This is achieved, 

in part, by defining a single expression for the envelope function expansion of the 

wavefunction, valid for both well and barrier regions, with the same set of Bloch 

periodic functions being used throughout, by definition. Furthermore, he derived 

the usual effective mass equations from the exact Schrodinger equation, analysing 

the approximations made, and thus formally justifying such methods and resolving 

the boundary condition quandary. A full review of this work can be found in [17]. 

5.1.3 Chapter aims 

Although Burt's theory is rigorous and developed for application to semiconductor 

heterostructures, all his numerical results are for idealised one-dimensional models, 

intended as illustrations of the basic physical principles. Gomez et al. [100] have used 

a I D implementation of Burt's theory to make comparisons with standard effective 

• ' A w 
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mass methods. They looked at more varied structures than in Burt's original work, 

including double and graded-potential wells, but these still represented model, rather 

than realistic, systems. 

This chapter describes a method that the author has developed to extract env

elope functions from pseudopotential complex band structure calculations with the 

intention of verifying Burt's theory when applied to realistic three-dimensional ( 3 D ) 

quantum well systems (with the inclusion of spin orbit coupling effects). To the 

author's knowledge, there have been no other attempts to verify Burt's theory by 

directly extracting rigorously defined envelope functions from a microscopic model, 

such as the EPM. Cuypers and van Haeringen [102,103] have defined envelope func

tions in terms of pseudopotential wavefunctions, but in such a way that sometimes 

there is more than one envelope function associated with a given band. In addition, 

their envelope functions are derived from the bulk properties of each heterostruct

ure material, so that the basis states (the Bloch periodic functions) vary from one 

material to another, in contrast to Burt's theory. 

The subsequent chapter examines the results in detail, especially the spatial 

gradient of the envelope function near an abrupt interface, and investigates some 

of the consequences of approximations commonly made when using eff"ective mass 

envelope functions. 

5.2 Theory 

The starting point for envelope function theory is the fact that the electron wave-

function can be expanded using a complete set of orthonormal functions, {t i„(r)} , 

that are periodic with the crystal lattice, as shown in (5.4), 

* ( r ) = E ^ " ( ^ K W ' (5.5) 
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where the Fn{r) are defined as the envelope functions, which clearly depend on 
the particular choice of {w„(r)}, which is common throughout the heterostructure.^ 
The reference to the wave vector, ko, of the periodic states has been dropped for 
notational convenience. In the present work, bulk zone centre states will be used 
for the periodic functions, so n refers directly to the band index. This is the most 
common basis for k • p calculations as one is usually interested in states 'close' to 
the zone centre. Only lattice matched systems are considered, so that the ti„(r) 
straightforwardly form a basis for any function periodic with the lattice in both 
well and barrier materials. In general, both ^ and Un will be spinors, and the 
calculations presented in this thesis were performed with spin included, though the 
theory presented does not include spinors for notational clarity. 

Burt has shown [97] that in order to make the envelope functions unique, it is 

necessary, when expanding them in plane waves, that only wave vectors in a single 

Brillouin zone are used — for this work the first Brillouin zone (IBZ) is used. 

5.2.1 Supercell approach 

Following Burt's method, we require an expression for the wavefunction, in terms 

of a plane wave expansion, that is valid throughout the quantum well. The method 

so far expounded in Chapters 3 and 4 to calculate quantum well wavefunctions 

results in expressions that are valid only within each material layer, since they 

include summations over the bulk states of each material. Furthermore, that analysis 

employed the complex band structure approach, and clearly complex wave vectors 

do not lie solely in the (real) IBZ. A non-zero imaginary part to the wave vector 

corresponds to a wavefunction with exponential growth or decay, which may be 

expressed as a Fourier expansion with an infinite range of real wave vectors. 

^Here, we consider only lattice matched systems, in which case the lattice parameter is constant 
along the heterostructure growth direction, though it is possible to include strained materials (see 
p99 of [104]). 
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To achieve the required plane wave expansion, a supercell method [97] is em
ployed. The supercell is defined as follows: 

• In the 2;-direction (i.e., the growth direction), the supercell has the quantum 

well at its centre, and extends far enough into both barrier regions that the 

electron probability density of a bound state has decayed to a negligible value 

at the supercell boundaries. 

• In the xy-plane, the supercell has dimensions a x a, where a is the lattice 

constant. 

Thus, periodic boundary conditions can be applied along the z-direction, in analogy 

to the Born-von Karman boundary conditions used for bulk materials. In the plane 

of the well the wavefunction is already in the required form, since we consider states 

with real in-plane wave vector components, ky, which should be chosen to lie in 

the two-dimensional first Brillouin zone (1BZ||). Thus, the wavefunction for the 

quantum well heterostructure, for a given ky, can be expressed as a Fourier series 

^k„(r) = e^>^ii-ii5]J]ag(k||,^)e^(-'=+^)-^ (5.6) 
k g 

= e^'^rr^ (5.7) 

where g are reciprocal lattice vectors, is a unit vector in the ^-direction and a 

'reduced' wavefunction, has been defined. This is still a 3D function in both 

direct and reciprocal space but depends on the in-plane wave vector only through 

the parametric dependence of the Fourier coefficient, ag{ki^,k). It is the use of this 

reduced wavefunction that allows the in-plane supercell dimensions to be a x a for 

any k||, since (?i>k||(r) is periodic with the lattice in the xy-pl&ne. So, the Fourier 
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coefl5cients in (5 .6) are given by 

ag(k||,A;) = - L / 0k„(r)e-(^^'=+^)'-ci3r, (5.8) 
sc J 

with being the volume of the supercell, and the 3D wave vector, k = (k||. A;), 

lying in the IBZ. The zone centre states can also be expressed as a Fourier series, 

^x„(r) = ^ u „ g e ' s • ^ (5.9) 
g 

with the Fourier coefficients given by 

^ng = 7 ^ / «n(r)e-^'-d^r, (5.10) 

where Uc is the unit cell volume. Further, the zone centre functions are chosen to 

be orthonormal. Thus, the set of plane waves with reciprocal lattice wave vectors, 

{e^^ ' " } , can be expanded in terms of zone centre states, allowing the wavefunction 

to be expressed in the form [17,97] 

n \ k s I 

which, after comparison with (5 .5) , yields an expression for the envelope functions 

= J]E«g(k||,A:)<,e^^^e"'i|-^ii. (5.12) 
k g 

Finally, the r|| dependence can be factored out of (5 .12) to define an envelope func

tion that is a function of z only. 

/n(^) = EE«g(k|h^Kge''^- (5-13) 
k g 
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Calculate bulk 
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V?/> at well 
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Calculate 'reduced' 
wavefunction J 0, 
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Calculate D F T of <p, 
in terms of real wave 

vector, q 
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qi-> k + g 

Calculate Fourier 
coefficients, Ung, of 
periodic functions 

Construct the 
envelope functions, 

^n(r) 

Figure 5.1 The main steps involved in deriving the envelope functions, as described in the 
text, from wavefunctions generated using the complex band structure matching technique. 

5.3 Implementation 

The preceding section has dealt with the theoretical derivation of a set of unique 

and continuous envelope functions for a 3D supercell. This section illustrates how 

one calculates these functions in practice, starting with the results of the complex-

k wavefunction matching technique described in Chapter 3. The main steps are 

outlined in Figure 5.1. 

5.3.1 Wavefunction calculation 

I f the complex band structure approach has been used to obtain energy eigenfunc-

tions of quantum well bound states, it is not possible to apply (5.12) directly to 

obtain the envelope functions. This is because the sum over k in (5.12) must only 

include those z-components for which k = (ky -I- ê A;) is in the IBZ, and clearly a 

complex or purely imaginary component does not satisfy this condition, as men-
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tioned in Section 5.2.1. 

However, by imposing the supercell periodicity, i t is possible to express the wave-

function as in (5.6), with real k e IBZ. The first step is to calculate the value of the 

wavefunction on a 3D grid throughout the supercell, using the appropriate complex k 

and expansion coefficients in each region, and then take a discrete Fourier transform 

(DFT). In fact, it is more convenient to calculate the DFT of the 'reduced' wave-

function, 0k||(r), defined in Section 5.2.1. This yields a set of Fourier coefficients, 

O q , of the wavefunction, where q is the real DFT wave vector. 

"^^^E^w^"'"" (5.14) 
r 

^k„(r) = 5]aqe^^^ (5.15) 
q 

where A'" is the total number of samples, and q and r are now discrete variables 

taking A'̂  values (see Section 5.3.3). The wave vector q can always be split into a 

sum of a vector in the IBZ and a reciprocal lattice vector, 

q = k|| + ê A; + g, 

= k + g. (5.16) 

For a given q, there will be a unique k and g, so, for each q there is a unique 

mapping 

flq i-> ag(k||. A;). (5.17) 
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Band Basis states 

Conduction l ^ t ) , \Si) 

Heavy Hole y i | ( X + ^ y ) t ) , ^/l\iX-iY)i) 

Light Hole ^,[\{X + zY) i ) - ^ / l \ Z ^ ) ) , - ^ , { { X - i Y ) t ) - ^ 

SSO ^ ( [ ( X + zY) i) + \Z^)), - y / l i \ { X - lY) t ) - \ Z i ) ) 

Table 5.1 Typical k • p basis states, expressed in terms of S and P-orbitals. These states 
are simultaneous eigenvectors of the Hamiltonian and the total angular momentum oper
ator, H and J, respectively. 

5.3.2 Zone centre states 

The zone centre coefficients, Ung, have been found in the usual way by calculating 

the eigenvectors of the (pseudo) Hamiltonian at the F-point of the well material. 

I t is important for the derivation of the envelope function expression in (5.12) to 

ensure that these states are orthogonal. I t is also useful, for the purposes of a direct 

comparison of individual envelope functions with k • p results, to choose zone centre 

states that are also eigenvectors of the total angular momentum.^ The majority 

of k • p calculations include at most the spin split off (SSO), light, heavy and first 

conduction bands and the relevant symmetries of the basis states used are listed in 

Table 5 . 1 . 

5.3.3 Application of discrete Fourier transforms 

The discrete Fourier transform (DFT) of a 3D function, ip, periodic over a finite 

volume (in this case the supercell) with values (PsuS2,s3, is defined aŝ  (see for example 

''By convention, the angular momentum is quantised in the ^-direction. This choice is abitrary 
but it is important to note that the form of the Pauli spin matrices used in the EPM calculations 
(see Section 2.2.3) determines this direction. One can still have the well growth along either x or 
y, but the wavefunction cannot then also be made an eigenvector of J. 

^With this definition, no factor of A''"^ appears in the expression for the inverse DFT. Many 
authors use for both direct and inverse DFTs. 
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p91 of [105]) 

Vt.M,t^ = ]^EEE^^x.̂ .̂̂ 3e ^ ^ 1 + - 2 + - 3 ) (5.18) 
Sl S2 S3 

where the Sj and are integers labelling the discrete position in direct and recip

rocal space, respectively, Nj is the number of samples in the direction, i.e., the 

number of positions at which the wavefunction is calculated, and TV = N1N2N3. 

The summations are over the values 

s 3 ^. A , _ f ^ _ j U i . . ^ . , - , o , i , . . . , ^ - : , i J , (,19) 
2 / ' V 2 y ' ' ' ' ' ' 2 ' 2 

with the possible values for the tj similarly defined. 

Consider a supercell of dimension M i x M 2 x M 3 , in lattice constants, a. The 

position, Xj, along the direction is defined by Sj through^ 

X, = ^ M , a , s, = - ( ^ ^ - i y . . . , - 1 , 0 , 1 , . ( 5 . 2 0 ) 

and hence, 

5 j Xj 
Nj Mja 

(5.21) 

The exponent in (5.18) becomes 

a \Mi M2 Ms 

^Since it is assumed that the two materials forming the quantum well are lattice matched, we 
have aj — a, for j = 1,2,3. 
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where we have introduced a 'DFT wave vector', q, given by 

_ 27r / t i t2 h , , . 

So, if q and r are expressed in units of 27r/a and a, respectively, the exponent can 

be written 

/ tiXi t2X2 h x A 

-z27r — - + —— + — - (5.24) 

where t j can take the values given in (5 .19) . 

5.3.4 Wave vector folding 
Equation (5 .23) shows that the j''^ component of q has values over the range 

Now, Mj and A''̂  are the number of lattice constants, a, and data samples in the 

j * ' ' direction, respectively. Clearly, for a good approximation to the continuous 

wavefunction, one should use as many samples per layer as possible. Therefore, we 

would like to have 

TV,- > M,, (5.27) 

which means that most of the wave vectors in (5.26) will have components larger 

than 27r/a, and will therefore lie outside the first Brillouin zone*". However, the wave 

^Of course, some vectors with components less than or equal to 27r/a will still lie outside the 
IBZ, such as (lll)27r/a, if we define the IBZ as the standard truncated octahedron. However, the 
largest possible component is 1 x 27r/o. 
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vector can be split into the sum of a wave vector inside the IBZ, k, and a reciprocal 
lattice vector, g, as described in Section 5.3.1. We call this 'wave vector folding', 
and to avoid verbosity in the following discussion, we say that a Fourier coefficient 
has been folded, when in fact it is the associated wave vector that has been folded. 

Effects of a finite {g} 

Within the approximation of discretising the wavefunction, the DFT theory is exact. 

However, in any numerical calculation, the number of reciprocal lattice vectors used 

must be finite and this has consequences for the wave vector folding procedure. The 

largest value of q in the j*^ direction is Nj/{2Mj) in 2-K/a, so, depending on the 

ratio Nj/Mj there may be q's that cannot be folded because there will be no g of 

large enough magnitude to facilitate the wave vector folding. 

In order to avoid wasting computational resources, care must be taken when 

choosing values of Nj and Mj to satisfy (5.27) when the set of g is finite. If the ratio 

Nj/Mj is too large then many of the DFT coefficients will have to be excluded from 

the envelope function calculation. 

In practice, this does not present a serious problem (see Sec. 5.4) and the ratio 

Nj/{2Mj) is set by the condition 

= W + 1, (5.28) 
2Mj 

where ^max is the largest component of the reciprocal lattice vectors in units of 

2Tv/a. To see why this is chosen, consider the set of 89 g-vectors used in this 

work. This includes vectors, with increasing magnitude, up to {331}. However, the 

largest components come from the {400} types and so from (5.28) we have a ratio 



5. E N V E L O P E FUNCTION THEORY A N D METHODS 112 

of Nj/{2Mj) = 5. The reason for the addition of 1 is now clear, since, for example, 

q = (5, 0 , 0 ) = ( 1 , 0 , 0 ) + (4, 0 , 0 ) (5.29) 

= k + g, (5.30) 

where k is in the IBZ and g is included in the finite set {g}. It should be noted that 

the size of {g} used in extracting the envelope functions need not be the same as 

that used in the original complex band structure calculations, as a much larger {g} 

could be used allowing a greater Nj/{2Mj) ratio. This work uses 89 g's throughout 

as a matter of convenience, both in ensuring compatibility between the various 

programmes needed and in computational effort. 

5.4 Error analysis 

Before examining the nature of the individual envelope functions i t is important to 

check that the expansion (5 .5) , with the calculated F„, does give a good representa

tion of the wavefunction, especially considering that some information is lost in the 

use of a finite set of reciprocal lattice vectors in the folding procedure.^ Therefore, 

in order to demonstrate the accuracy of the envelope function expansion, both the 

wavefunction and the in-plane averaged probability density have been calculated 

using a number of levels of approximation. 

To examine the effects of using a finite {g} in (5.8) and a supercell of finite z di

mension it is sufficient to compare the wavefunction as calculated in (5 .6) , using only 

those DFT Fourier coefficients allowed after the folding procedure and taking into 

account the allowed values of k (which are determined by the number of z-layers in 

* Remembering that even a very small imaginary k component results in a wavefunction with 
(real) exponential dependence on position and has a Fourier representation with an infinite number 
of terms. 
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the supercell), with that calculated using the original complex band structure. The 
envelope expansion itself, (5.5), gives identical results to (5.6), since there is no fur
ther loss in information.^ However, by calculating the envelope functions explicitly, 
it is possible to examine the effect of using only some terms in the expansion (5.5). 
These comparisons are shown for the electron ground state in an Ino.53Gao.47As/InP 
system, with a well width of 55o/4 and HI-V- • • V - I I I interfaces — other systems, 
including InSb/CdTe and InAs/AlSb, have also been studied with similar results. 
The Ino.53Gao.47As/InP system forms a standard type I well — the offset used is 
given in Appendix D. Note, however, that the well is an integer number of half-
monolayers wide. This is done to produce a microscopically symmetric (in-plane 
averaged) potential with respect to the centre of the well, and hence bound states 
with symmetric probability densities. This allows for a more direct comparison 
with standard envelope function approaches, which model single wells as perfectly 
symmetric (cf. the discussion in Section 4.2.5). 

Figure 5.2 shows the 'true' complex band structure wavefunction, as described in 

Chapters 3 and 4, along with the absolute error in using (5.6). The data is plotted 

at the arbitrary in-plane coordinate ry = (0.1,0.2)a to ensure that the 3D nature of 

the original wavefunction is maintained by the envelope function expansion. Clearly, 

the absolute error is negligible, hence the effects of imposing the supercell boundary 

conditions, sampling the (continuous) wavefunction and omitting unfoldable wave 

vectors is minimal. To examine the errors further, they are also plotted with a 

magnification factor of 1000. This indicates that by far the largest errors are near 

the interfaces between the two materials. This is to be expected for the following 

reasons: 

• In the well region, states with purely real wave vector (in the complex band 

^There will of course be small differences due to round off errors, but even for finite {g} and 
M3, (5.5) and (5.6) are mathematically equivalent. 
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structure description) tend to dominate the total wavefunction. Since the same 
{g} has been used in both the complex band structure and envelope function 
calculations, these states can be represented without information loss (apart 
from that due to the discretisation process). 

• In the barriers, where there are no real wave vectors, the dominant states have 

wave vectors with only 'small' imaginary parts. The Fourier representation of 

these states is therefore sharply peaked about the origin. The use of a finite 

number of g when constructing the envelope functions has only a negligible 

eflPect (this is also true for exponentially varying componenets of the wave-

function that occur in the well region). 

• In the barriers, but away from the interfaces, the wavefunction is small and 

monotonically decaying, so the absolute errors will be reduced. 

In other words, the wave vector folding procedure using a finite {g} causes errors 

near the interfaces, though these are still extremely small relative to the magnitude 

of the wavefunction. The wavefunction is plotted again in Figures 5.4 and 5.5. This 

time the errors are those due to using only a limited number of terms in the envelope 

function expansion. I t is apparent from Figure 5.4 that although the complete set 

of basis functions, u„(r), numbers 89 (x2, including spin), an expansion using only 

4 (x2) bands, 

V 

V = sso, Ih, hh 

is quite adequate in representing the wavefunction. This is because the bound states 

in the quantum well are much closer to the four band edges than to any other bands. 
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2; direction 
Figure 5.2 'True' CBS wavefunction at ry = (0.1,0.2)a and errors in (5.5), or (5.6). (a) 
Real part, spin up component, (b) Imaginary part, spin up. (c) Real part, spin down, (d) 
Imaginary part, spin down. 
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z direction 
Figure 5.3 Magnified error in the envelope function expansion of the wavefunction plotted 
in 5.2. (a) Real part, spin up component, (b) Imaginary part, spin up. (c) Real part, spin 
down, (d) Imaginary part, spin down. 
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Figure 5.5 shows the errors in using the expansion 

^ ^ FcUc, (5.32) 

which includes only the first (doubly degenerate) conduction band. This crude 

approximation is still reasonable, with the errors mainly being in the phase of the 

wavefunction, rather than its shape. However, there are subtle issues involved here, 

which will be discussed in Chapter 6, and the apparent success of this approximation 

should be treated with great caution. Results for the analogous approximations for 

valence band bound states have similarly small errors. The corresponding in-

plane averaged probability density is shown in Figures 5.6 and 5.7, the latter using 

the same approximations as in Figures 5.4 and 5.5. These confirm the previous 

observations concerning the wavefunctions. 

5.5 Example 

Having confirmed the validity of the envelope function expansion and the accuracy 

of the method used in its calculation, we briefly illustrate the results with a typical 

example, which is discussed in more detail in the following chapter. 

Again, the state under consideration is one of the spin degenerate pair of conduc

tion band quantum well ground states of an Ino.53Gao.47As/InP, of width 55a/4. Fig

ure 5.8 shows the ^-dependent part of the envelope functions, fn{z), which dominate 

in the expansion. These correspond to the bands that are close to the fundamental 

band gap, as one might expect for a state near the conduction band edge. Since 

spin is included explicitly in the calculations, each band is doubly degenerate at the 

zone centre, and hence the zone centre Bloch functions, w„(r), exist in pairs. For 

clarity, the envelope function of only one band per pair is shown, and their phases 
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(a) (b) CBS 
Error m ^^FyUy+FcUc 
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i i 
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f i p 
^ direction 

Figure 5.4 'True' CBS wavefunction at r|| = (0.1,0.2)a and errors in (5.5) using bands 
3-10 (including spin), (a) Real part, spin up component, (b) Imaginary part, spin up. (c) 
Real part, spin down, (d) Imaginary part, spin down. 

(a) 

(c) 

(b) 

(d) 

CBS 
Error in FcUc 

z direction 
Figure 5.5 'True' CBS wavefunction at ry = (0.1,0.2)a and errors in (5.5) using bands 
9-10 (including spin), (a) Real part, spin up component, (b) Imaginary part, spin up. (c) 
Real part, spin down, (d) Imaginary part, spin down. 
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Figure 5.6 In-plane averaged CBS probability density and errors when using (5.5), or 
(5.6). The magnified error plot has been offset on the vertical axis for clarity. 

Error in F^Uy -F FfAi^' 
Error in \FcUc 
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• • - m m 

z direction 
Figure 5.7 In-plane averaged CBS probability density and errors in (5.5) using bands 
3-10 and 9-10 (including spin). The error in using |Fcnc|̂  has been offset on the vertical 
axis for clarity. 
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z direction 
Figure 5.8 Dominant jn{z) for conduction band single quantum well ground state. See 
text for details. 

have been adjusted to make them real. 

5.6 Summary 

A technique has been developed that allows the derivation of a unique set of quantum 

well envelope functions (for a given basis of periodic functions) from realistic three-

dimensional pseudopotential complex band structure calculations. Comparisons of 

the wavefunction expressed in terms of the envelope function expansion with the 

original data shows that the errors introduced in the process are negligible. 

It has also been demonstrated that for states close to the band edges only a few 

terms dominate the envelope function expansion, (5.5), and that these are due to 

the band edge periodic functions either side of the fundamental gap (including the 

spin split-off band). This suggests that EFA schemes that only explicitly include the 

band edge terms are quite satisfactory. Even the single band edge representation of 
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the conduction band state, 

^ ^ FcUc, (5.33) 

appears to approximate the wavefunction and charge density reasonably well, justi

fying its wide use in many situations (but certainly not all situations, as is demon

strated in Sections 6.3.3 and 6.4.2). The error analysis presented in this chapter is 

for an Ino.53Gao.47As/InP quantum well, but it should be noted that similarly good 

results hold for the InSb/CdTe system featured in the following chapter. 



Chapter 6 

Envelope function results and 

approximations 

6.1 Introduction 

Chapter 5 explains how quantum well (and other heterostructure) bound state wave-

functions may be expressed in terms of an expansion of well defined envelope func

tions. Much of the chapter is devoted to a description of a numerical method for 

calculating the envelope functions from wavefunctions generated using the complex 

band structure pseudopotential method of Chapter 3. In this chapter, the nature of 

the envelope functions is investigated in more detail and comparisons made to the 

results of conventional methods. Of particular interest is the behaviour of the env

elope function, and particularly its spatial derivative, in the vicinity of an interface, 

which until Burt's work (see [17] and references therein), was poorly understood. 

The second half of the chapter examines dipole matrix elements between bound 

states within the quantum well. These are calculated directly from the complex band 

structure pseudopotential method and using envelope function expansions derived 

from these. The use of the envelope function expansions allows the results of Burt 

121 
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106] on failings of the so called atomic picture of interband dipole matrix elements in 
a model one-dimensional semiconductor, to be tested with the electronic structure 
of a real material. Related predictions on charge oscillation induced by coherent 
interband optical excitation [107,108] are tested in the same way. 

6.2 Results 

6.2.1 Nature of the envelope functions 

Having confirmed in Chapter 5 the validity of the envelope function expansion and 

the accuracy of the method used in its calculation, it is now appropriate to make a 

detailed examination of the envelope functions themselves. However, before proceed

ing, it is convenient to discus some of the complications introduced by the inclusion 

of spin in the calculations. 

• At the zone centre (F-point), each energy band is doubly degenerate, i.e., the 

conduction, heavy hole, light hole, spin split-off and all other bands are each 

doublets.-"̂  In this work, the term energy 'band' refers to a doublet (unless 

stated otherwise). I t should therefore be understood that the term 'heavy 

hole band', for example, is short-hand for the 'pair of degenerate heavy hole 

bands'. 

• Since each band is actually a doublet, there are two degenerate electron states, 

corresponding to the two spin states of the electron.^ Thus, there are two zone 

centre states per band (using the terminology adopted above). 

^In the absence of strain, there is further degeneracy, such as that of the light and heavy hole 
bands. 

^The degenerate electrons must obey the Pauli exclusion principle, however, in general it is not 
possible for one state to be purely spin up and the other purely spin down. 
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• So, an envelope function expansion of a quantum well state will include two 
envelope functions for each band, one for each of the two zone centre states 
per band. 

• The doublet energy degeneracies are not lifted for wave vectors along the 

primary axes in reciprocal space (the A symmetry line between P and X). 

• Therefore, quantum well states with zero in-plane wave vector will be doubly 

degenerate, since the growth direction is parallel to a primary axis (the z-axis, 

in this work). 

• For a particular band, the envelope functions of a pair of degenerate bound 

states, labelled ( 1 ) and (2 ) , are related by 

if.'"(r)r=i^;?'wr. 

where i and i' label the degenerate zone centre states and we have used no

tation such that the bound state has the envelope function expansion 

We consider the 55a/4 Ino.53Gao.47As/InP system introduced in Section 5.4. The z 

dependent parts, fniz), of various envelope functions are plotted in Figures 6.1-6.5, 

for zero in-plane wave vector. These are for one of the spin degenerate pair of the 

lowest two electron and lowest three hole bound states, with all the fn{z) being 

made real (for clarity) by adjusting their phase. Of the two envelope functions 

corresponding to each band, only the one with the largest magnitude is shown for 

clarity. 

The key points of interest are outlined below. 

• The envelope functions do indeed vary slowly over the unit cell. 
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• They are continuous and smooth — their smoothness is discussed later, with 
reference to the gradients of the envelope functions near heterojunctions. 

• The non-negligible envelopes can be divided into two groups according to which 

zone centre state they are associated with in the envelope function expansion, 

i.e., 

1. Conduction and heavy hole, c and hh, respectively. 

2. Light hole and spin split off, Ih and sso, respectively. 

For a given bound state, one group has envelope functions with even parity 

and the other with odd parity, with respect to the centre of the well. This has 

been explained within the k • p formalism by other workers [ 1 2 . 

• For each bound state, a single band dominates the envelope function expan

sion. The corresponding envelope has the general form expected from simple 

'particle in a box' calculations. 

• At zero in-plane wave vector, ky = ( 0 , 0 ) , the heavy hole band is mostly, but 

not entirely, decoupled from the other bands. The standard formalism of the 

k • p Hamiltonian has no mixing between the hh band and the other bands at 

k|| = ( 0 , 0 ) [109,110 . 
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z direction 

Figure 6.1 Dominant /„(2;) for electron ground state, at ky = (0,0). The well interfaces 
are indicated by vertical lines. 

z direction 

Figure 6.2 Dominant jn{z) for first excited electron bound state, at ky = (0,0). 
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z direction 

Figure 6.3 Dominant /^(z) for valence ground state, at kn = (0,0). 

z direction 

Figure 6.4 Dominant jn{'^) for first excited valence state, at ky = (0,0). 
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z direction 

Figure 6.5 Dominant jn{z) for second excited valence state, which in this case is the 
light hole like ground state, at kii = (0,0). 
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6.2.2 Comparison to SPB model 

To compare directly the results obtained from the EPM with an effective mass 

EFA, a simple one-dimensional single parabolic band (ID SPB) model is used. The 

relevant effective masses are obtained from the EPM calculations, rather than ex

periment, to ensure a fair comparison. This was done by direct measurement of the 

curvature of the relevant energy band, as calculated by the EPM. Recall that the 

effective mass tensor may be expressed in the form [ 1 1 1 

' ' ( 6 . 1 ) 
m*- ti^ dkidkj' 

which simplifies to 

' ' ' ^ ^ (6.2) 

as here we are only interested in the effective mass in the growth direction. The 

SPB quantum well depth is set to be the same as the band offsets used for the EPM 

calculation. 

Since the SPB model has only one band, there is only one envelope function to 

consider, whilst there are usually several bands with non-negligible envelope func

tions derived from the EPM model. We concentrate here on the envelope function 

labelled c in Figure 6 . 1 , which for conduction band ground states makes the domi

nant contribution to the envelope function expansion. This envelope function (and 

its spin degenerate 'twin') is multiplied by its associated zone centre Bloch periodic 

function for the first conduction band. This function and the one calculated using 

the SPB model are shown in Figure 6.6. Both have been normalised according to 

lusc ~ '^^^ envelope functions are in very good agreement with each 

other. 
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ID SPB 

z direction 
Figure 6.6 The dominant EPM-derived envelope function, /c(2), and the envelope as 
calculated using the ID SPB model, for the conduction band ground state. Both envelopes 
have been normalised. 

In order to examine the behaviour of the envelope functions at the interfaces, 

their spatial derivatives are calculated. Hov r̂ever, the EPM-derived envelope function 

ŵ as first scaled so that it has the same value as the SPB envelope at the interfaces, 

to allow a more meaningful comparison between the two derivatives. The results 

are plotted in Figure 6.7. 

The most obvious difference between the two results is that while the SPB deriva

tive is discontinuous at the interfaces, the EPM derivative is continuous over all z. 

The discontinuity in the SPB gradient is a result of the boundary conditions applied 

at the interfaces (see Appendix C), 

m 
^ V , / 6 ( ^ o ) = - ^ V , / ^ ( z o ) , 

Tfi:. 
(6.3) 

where and m*^ are the electron bulk effective masses in the barrier and well ma

terials, respectively, and is the position of the interface. Thus, the ratio between 
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the discontinuous values is simply the ratio between the two effective masses, since 
the envelope, f{z), is matched at the interface. 

Burt has shown [17] how this boundary condition can be derived from the true 

boundary condition, that the derivatives of the full wavefunction match at the in

terfaces. Figure 6.7 shows that there is in fact a rapid change in the EPM-derived 

envelope function derivatives at the interfaces, and that at an interface this deriva

tive is midway between the discontinuous values of the SPB model. 

I t is important to note that the EPM envelope functions are derived from a 

wavefunction that obeys the true boundary conditions, as obtained from the form of 

the (pseudo) Hamiltonian. Thus, this rapid change of envelope function derivative 

at interfaces is a genuine physical feature, and is due to the differences in the bulk 

properties of the two materials. 

I t should also be pointed out that the oscillations in the EPM envelope function, 

which are particularly apparent in the derivative, are a mathematical consequence 

of the particular envelope function theory adopted. 

6.3 Dipole matrix elements 

6.3.1 Background 

The interaction between a charged particle and an electromagnetic radiation field can 

be expressed as either A • p or E • r, depending on the choice of gauge (see Section 

3.6). Either choice can be used without difficulty when dealing with heterostruc-

ture bound states, the A • p form involving the calculation of momentum matrix 

elements and the E • r form requiring the calculation of position, or dipole, matrix 

elements. However, some commonly used intuitive pictures and approximations lead 

to completely false predictions for the matrix elements of certain types of transitions 
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Figure 6.7 The gradients of the dominant EPM-derived envelope function and that cal
culated using the ID SPB model, for the conduction band ground state. 

when using the E • r form of the interaction, as has been pointed out by Burt 

107,108]. Here, we are able to demonstrate the validity of Burt's predictions for real 

systems, by comparisons of dipole matrix elements calculated using the full wave-

function and approximations to i t using the envelope function expansion method 

developed in the previous chapter. 

6.3.2 Envelope function method 

The calculation of the dipole matrix element between two quantum well bound 

states using the complex band structure method is discussed in Section 3.6. In 

this section, we consider calculating the dipole matrix element using the envelope 

function expansion of (5.5), namely 

^(r) = 5]F„(r)«„(r). (6.4) 
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In the supercell approach of Section 5 .2 .1 , the wavefunction in all three regions of the 
system is described by a single Fourier representation. This simplifies the procedure 
for calculating the dipole matrix element compared to that described in Section 3.6, 
which can be written as 

, - r = [Y.^n{v)Un{v)] zY,Frn[v)Urn{v)d\dz (6.5) 

= E r 'fn{^)fm{z) f K{T)Um{r) d \ dz, (6.6) 

where ZQ and zi are the end points of the supercell along the ^-direction (the well 

growth direction). Again it is assumed that the two states, n and m, have the 

same in-plane wave vector and, as with the complex band structure calculation, the 

in-plane integration is over a unit cell face, Oy. 

Using the Fourier expansion for the Bloch periodic functions given in (5.9) it is 

possible for (6 .6) to be rewritten in the form 

Znm= [ zfnm{z)Unm{z)dz, (6.7) 
Jzn 

where 

fnmiz) = f : { z ) U z ) (6.8) 

gg' 

and the z-dependent part of the envelope function, fn{z), is given by (5.13). 

The accuracy of the reproduction of a quantum well wavefunction when per

forming only a partial sum over the envelope and Bloch periodic functions was 

investigated in Section 5.4. Two particular cases were examined, which we refer to 
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as the 'single band edge' and 'double band edge' approximations, or SBE and DBE, 

S B E : F^'\v)uj{r) (6.10) 

DBE: ^ F^^\v)uy{r) + F^^\T)U,{T) (6 .11) 

where j indicates either a conduction band (c) or valence band (v) bound state. 

Thus, for example, a state bound in the conduction band quantum well has an 

SBE approximation including only the dominant term^ which is the product of the 

conduction band Bloch periodic part and its corresponding envelope function, 

^ F^'\T)uc{r), (6.12) 

whilst the DBE approximation would also include the terms with the heavy hole, 

light hole, and spin split off u„'s. When i t comes to predicting the probability den

sity of a single bound state, the SBE approximation is very successful. In fact, the 

contribution from the dominant conduction band term to the total probability den

sity of the conduction band bound state in the 55a/4 wide Ino.53Gao.47As/InP well is 

97%. This leads one to expect that the SBE approximation should be a very useful 

one when predicting various electronic properties of quantum wells, including dipole 

matrix elements, and has been widely used as such (see for example [112-115]) . 

However, Burt's algebraic approximations suggest otherwise, and it is the validity 

or otherwise of these approximations when calculating dipole matrix elements which 

is of particular interest here. 

^In fact, due to spin degeneracy, the states come in pairs, so that the SBE approximation will 
actually have two terms (see Section 6.2.1). 
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(eA) 

Transition EPM DBF SBE 

C 1 - C 2 15.793 15.751 15.431 
Ci—hhi 5•10-^ 2•10-^ 4 • 10-^ 
Ci—hh2 0.636 0.634 1 • io-« 
Ci—lhi 4.819 4.807 1 • 10-8 

C2—hhi 0.002 0.002 4•10-8 

C2-hh2 5 • 10-^ 6 • 10-^ 1 -.10-^ 
C2-lhi 0.010 4•10-^ 3•10-^ 

hhi—hh2 11.766 11.688 11.688 
hhi—lhi 1.408 1.392 1.393 

Table 6.1 Magnitude of the dipole matrix elements for an Ino.53Gao.47As/InP single quan
tum well of width 55a/4 = 80.696A, calculated using the fu l l complex band structure EPM 
and the double and single band edge approximations to the envelope function expansion. 

6.3.3 Results 

Table 6.1 lists the magnitudes of the (generally complex) dipole matrix elements 

between pairs of states in the 55a/4 wide Ino.53Gao.47As/InP single quantum well, as 

calculated using the complex band structure method, DBE and SBE approximations. 

The dipole matrix element between the same state is merely the position expectation 

value of that state, i.e., Znn = (z), for state n, hence this must be real. In this system, 

the potential is symmetric about the centre of the well,^ and so by setting the z origin 

to be in the centre of the well, the expectation value is zero. In theory, the states in 

the quantum well are orthonormal, so the position of the z-origin origin should have 

no effect when calculating the dipole matrix element between states [106]. However, 

in practice some pairs of different states are not truly orthogonal,^ due to the use of 

''Strictly speaking, only the in-plane averaged potential is symmetric since the zinc-blende 
structure does not have inversion symmetry along the primary axes. 

^Most pairs of states are orthonormal to within machine precision, and so the z origin really 
has no effect. The worst case for this system was a 0.6% overlap between the hh2 and Ihi states. 
Whilst this is a small error in terms of the overlap, any finite overlap between states leads to a 
dipole moment that is proportional to the z origin, so the apparent error in the dipole moment 
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a finite number of reciprocal lattice vectors in the original complex band structure 
calculation, hence it is important to use the same origin for all methods used in 
calculating the dipole moment to ensure a fair comparison. 

Comparison in Table 6.1 of the DBE results to those using the full wavefunctions 

in the calculations shows that the dipole matrix elements predicted by the DBE 

approximation are at least qualitatively reliable, and generally numerically reliable 

as well. The matrix elements predicted by the DBE approximation tend to be 

slightly too small, but it must be remembered that terms that make small but finite 

contributions to the ful l wavefunctions have been dropped in the envelope function 

expansions, hence this is to be expected. Thus, at least for dipole matrix element 

calculations, the DBE approximation is a perfectly valid one. 

We now turn our attention to the SBE approximation. Table 6.1 shows that 

for the miraband transitions considered (c i -C2, hhi-hh2 and hhi-lhi), the SBE 

is as successful as the DBE approximation in predicting dipole matrix elements. 

However, the SBE approximation fails completely to predict the correct in^erband 

dipole matrix elements [107,108]. This is not just a quantitative failure due to the 

somewhat cruder approximation to the full wavefunction of the SBE compared to 

DBE envelope function expansion, but a qualitative failure as well. Consider the 

dipole matrix element between the ground conduction and light hole states (c i -

Ihi), corresponding to the fundamental strong T M mode transition. Both the full 

EPM and the DBE approximation predict a dipole matrix element that is equivalent 

to approximately 6% of the well width. In stark contrast,the SBE approximation 

predicts a dipole matrix element equivalent to only 10~^% of the well width! 

could be large. 
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6.3.4 Discussion 

The dipole matrix elements for intraband transitions are as expected, i.e., they 

are on the same scale as the well width — equivalent to as much as 20% of the 

well width for the C 1 - C 2 transition. This is the expected result, since the envelope 

functions of the ground and first excited states have s and p-like symmetry with 

respect to the centre of the well, and the Bloch periodic state multiplying this is 

the same in both cases, Uc{r). The envelope functions vary on the scale of the well, 

and hence we expect dipole matrix elements on the same scale. Thus, there is little 

difference between the predictions of the SBE and DBE approximations and the full 

wavefunction calculation. 

The results for interband transitions, however, are initially somewhat surprising. 

Since the probability density of a state can be reproduced to within a few percent 

by the SBE approximation, one would expect calculations of dipole matrix elements 

using such an approximation to be at least qualitatively correct, as is indeed the 

case for intraband transitions. For interband transitions, the SBE approximations 

for the wavefunctions of the two states are 

^'('=)(r)=Fi'=)(r)u,(r) (6.13) 

^M(r) ^Fi^)(r)u„(r). (6.14) 

Thus, using the same reasoning as for the intraband case, one would expect dipole 

matrix elements on the atomic scale for interband transitions between ground states, 

since both states have an s-like envelope function with the only significant differences 

being between the Bloch periodic parts, Uc(r) and Uy{r). As these vary within 

the primitive unit cell, the 'atomic' scale, but are periodic with the lattice, one 

would expect dipole matrix elements on the atomic scale. This is not the case, and 

interband dipole matrix elements increase with the well width. In fact, calculations 
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by the author predict a 13.6eA ci-lhi dipole matrix element for a 153.9A wide 
InSb/CdTe quantum well, which is certainly not on the atomic scale. Obviously, 
the SBE approximation has omitted detail that is vital to the correct evaluation 
of the interband dipole matrix elements. Burt [108] has shown that this is the 
contribution of the 'cross' terms, 

{F^^^u,\z\F^^^u,) + {F^^\\z\F^^\), (6.15) 

which dominate the interband matrix element, even though they derive from terms 

which play only a minor role in the envelope function representation of the wave-

function. These terms have similar features to those of intraband matrix elements 

in the SBE approximation, i.e., a common Bloch periodic function and envelopes of 

differing parity. Thus, large dipole matrix elements are obtained, though these are 

not as large as for intraband transitions since Fy"^^ and Fc^'^ are of smaller magnitude 

than Fc'^^ and Fv^\ as can be seen from Figures 6.1 and 6.5. 

6.4 Charge oscillation 

6.4.1 Background 

We now turn our attention to the charge oscillation induced by coherent interband 

optical excitation. The starting point is the time-dependent Schrodinger equation, 

+ Vir) 
2me 

$(r , t ) = z n - $ ( r , t ) . (6.16) 
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The solutions take the usual form 

$(r , t ) = ^(r)e-^"* (6.17) 

a; = | , (6.18) 

where E is the total energy of the state and ^(r) is the solution to the time-

independent Schrodinger equation. 

Suppose at time t = 0 the electron is in the state 

$(r, 0) = ^ (r, 0) + (r, 0 ) ) (6.19) 
V 2 

: = i ^ ( ^ W ( r ) + ^ W ( r ) ) , (6.20) 
v 2 

which is the special case of a 1:1 combination of valence and conduction band states. 

The equal weight is chosen to emphasise the results by producing the maximum 

amount of charge oscillation. If the electron is coherently excited by a laser, then at 

a later time, t, it will be in the state 

$(r, t) = ^ {¥''\T) e'̂ "* + ¥'\v) e'"=') , ( 6 .21 ) 
V 2 

so that the charge density will be (in units of e, with c.c. indicating the complex 

conjugate term) 

$( r , t ) |^ = - l ^ rWf + (*('^))*^'(^)e-""^''' + c.c.) (6.22) 
2 V / 
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with the period of oscillation, T, determined thus, 

(jJcv = ojc — <^v (6.23) 

= {E, - Ey)/h (6.24) 

- ^ 
~ T ' 

(6.25) 

Thus, the charge density is made up of two terms that are static in time, 

U \ ¥ ^ ) f + \ ^ i c ) f \ (6.26) 

and two oscillatory terms, labelled as / / ( r , i ) , 

l_t{T, t) = \ ((^(^))* e-'"-* + c.c.) . (6.27) 

6.4.2 Results 

The results in this section are for a InSb/CdTe single quantum well of width 55a/4, 

where a = 6.48A. Since the conduction band does not couple strongly with the heavy 

hole band for an EM electric field parallel to the growth direction (TM mode), we 

consider excitation between the light hole and conduction band ground states. 

Figure 6.8 shows the in-plane averaged charge (i.e., probability) density, calcu

lated directly using the complex band structure method. One can clearly see that 

the charge oscillates on the scale of the well width. This is interesting because it 

has been pointed out [107] that the charge might intuitively be expected to oscillate 

only on the atomic scale, rather than what could be termed the 'quantum well' 

scale. This intuitive expectation is based on similar assumptions to those discussed 

in Section 6.3.3 with regard to the calculation of interband dipole matrix elements, 

and is because the probability density of the bound states can be reasonably approx-
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z direction z direction 

Figure 6.8 The in-plane averaged charge density, |$| , for a 55a/4 InSb/CdTe well, as 
calculated using the complex band structure EPM approach. Such charge oscillation could 
occur due to coherent interband optical excitation. The charge density is shown at time 
intervals of T/8. 
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imated by envelope function expansions including only the appropriate SBE terms, 
as demonstrated in Section 5.4. Conduction and valence ground states have very 
similar envelope functions but differ in the nature of their Bloch periodic parts, one 
of which will be that for the valence band edge and the other for the conduction 
band edge. These characterise the atomic aspects of the crystal, and the time de
pendence of a simple linear combination of just these dominant terms would give 
oscillations on the atomic length scale. 

Figure 6.9 shows the DBE approximation to the charge density, as in Figure 6.8. 

As with the dipole matrix element calculations, the DBE approximation faithfully 

reproduces the result obtained with the full complex band structure calculation, 

for the ci-lhi case at least. In contrast, the SBE approximation to the charge 

density, plotted in Figure 6.10, predicts negligible charge oscillation on the quantum 

well scale, but merely oscillations on the atomic scale. I t is apparent that, as in 

the dipole moment, the 'other' band edge terms play a critical role in describing 

the charge oscillation. Again, it is the 'cross' terms in the charge density, which are 

included in the DBE but missing from the SBE approximations, that are responsible 

for the large-scale oscillations in Figures 6.8 and 6.9. 

The DBE approximations for the spatial part of the valence and conduction state 

wavefunctions are^ 

^(-) ^ + (6.28) 

^ Fl^^Uy + F^^^c- (6.29) 

Therefore, the spatial part of the first term in the charge density modulation term. 

^The spin degeneracy of the bands and the sum over the light and heavy hole bands is made 
implicit here, for notational simplicity. 
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Figure 6.9 The in-plane averaged charge density, |$| , for a 55a/4 InSb/CdTe well, as 
calculated using the DBE approximation. Such charge oscillation could occur due to 
coherent interband optical excitation. The charge density is shown at time intervals of 
T/8. 
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Figure 6.10 The in-plane averaged charge density, |$| , for a 55a/4 InSb/CdTe well, 
as calculated using the SBE approximation. Such charge oscillation could occur due to 
coherent interband optical excitation. The charge density is shown at time intervals of 
T/8 . 
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n{T,t), is 

2 
c| (6.30) 

The states under consideration here are the Ci and Ihi bound states, whose dominant 

envelope functions are plotted in Figures 6.1 and 6.5. These show that F^l^^ and 

Fc^^ have opposite parity, with respect to the centre of the well, as do F^^^ and 

Fc'^\ Thus, their products have odd parity leading to the spatial variation in /^(r, t) 

required for the charge oscillation to be on the scale of the quantum well. In the 

SBE approximation, (6.30) reduces to 

^ (F^^'^y F^'^ulu,, (6.31) 

in which the envelope functions both have even parity with respect to the centre 

of the well, so that their product also has even parity. Thus, using the SBE fj,{r, t) 

cannot produce charge oscillations over the whole of the well, but only over the 

atomic scale, due to the factor of uluc, which is periodic with the lattice. 

6.5 Operator ordering in EFAs 
This section contains work that is the result of a collaboration between the 

author and Paul Stavrinou, of the Interdisciplinary Research Centre for 

Semiconductor Materials, Imperial College of Science, Technology and 

Medicine. 

6.5.1 Introduction 

Section 6.2 illustrates that it is possible to express the electron wavefunction in terms 

of envelope functions that are uniquely defined, and are continuous in value and 
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gradient, even across heterojunctions, as predicted by Burt [17]. Figure 6.7 confirms 
that the discontinuity in the gradient of an envelope function at an interface, which 
has been obtained using an approximate rather than exact theory, arises as an 
approximation to the smooth but rapid change in the gradient of the exact env
elope function. I t also supports the traditional choice of boundary conditions, the 
continuity of f{z) and (m*)~^Vz/(z) (see Appendix C). Hovî ever, the comparison 
between exact and approximate envelope functions used only a single parabolic band 
for the latter. In reality, the commonest EFAs used are based on more sophisticated 
k • p models, using a number of interacting bands instead of a single isolated one. 

The usual, well established approach to using k • p perturbation theory when 

modelling heterostructures is to start with the Kane [95] form for the matrix elements 

of the Hamiltonian for bulk crystals. Kane partitions the electron states into two 

categories, here labelled A and B. Category A contains the states corresponding to 

the bands of interest and those that interact strongly with them, whilst category B 

contains states that interact only weakly with those in A. This allows the use of 

the perturbation scheme developed by Lowdin [116], in which the weak interactions 

between states in A and B are removed while interactions between the states in A are 

'renormalised'. The matrix containing the renormalised A states is then diagonalised 

exactly. As Kane showed, this scheme lends itself well to the description of the bands 

of a bulk semiconductor close to the zone centre and around the fundamental band 

gap, i.e., the light and heavy hole, spin split off and lowest conduction bands (labelled 

Ih, hh, sso and c, respectively). These are the natural choice for the category A 

states, with the remaining, energetically remote bands assigned to category B and 

included in the Hamiltonian only as perturbations. 

The usefulness of this method comes from the fact that the perturbations due 

to the states in B can be included using a small number of parameters; the effective 

masses and energy separations of the bands in A. These masses and energies may be 
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readily determined experimentally. If one is interested in low energy valence band 

states only, then the conduction band and spin split off states may be reassigned to 

B, depending on the strength of their interaction with, and energy separation from 

the light and heavy hole states. 

Kane's model has proved very successful for bulk materials. However, its appli

cation to heterostructures has, until recently, not been without its problems. These 

problems arise because the Kane model was developed for bulk homogeneous crys

tals, and so the form of the Hamiltonian at abrupt heteroj unctions was a matter 

of some debate. This is because, for calculating heterostructure states, it is nec

essary to include the variation of system properties in the growth direction. At 

first sight, this can be achieved by replacing with -id/dz in the original Kane 

Hamiltonian [92,117]. However, if a straight substitution of the type 

d 

k, -I— (6.32) 

kl ^ (6.33) 

is made, the resultant Hamiltonian is non-Hermitian, and so, to ensure Hermiticity 

(and also conservation of current density across a heteroj unction), some authors 

have 'symmetrised' the Hamiltonian [92,117]. The problem*" with this approach is 

that there are an infinite number of possible symmetrisations [118] (cf. Section C . l , 

which discusses this in the context of the SPB approximation). 

This ambiguity was resolved as a consequence of Burt's derivation of eff'ective 

mass envelope function equations from first principles [17]. The derivation shows for 

inhomogeneous systems, including heterostructures, how the remote bands should 

^There were a number of problems with the traditional k • p method for heterostructure cal
culations. One other notable inconsistency is the assumption made during the calculation of 
heterostructure states that the Bloch periodic functions, ̂ ^(r), do not change between materials, 
even though the elements of the Kane-like Hamiltonian used for each material include the correct 
material dependence. 
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be included in the Schrodinger-like approximate envelope function equation. This 
equation has been used by Foreman [16] to calculate a new, so called 'ordered', 
k • p Hamiltonian, i^ordj applicable to heterostructures, without the need for the 
traditional symmetrisation procedure. Foreman [16] has shown that the traditional 
symmetrised Hamiltonian [92,117], î sym, results in incorrect matching conditions, 
in the common approach of obtaining general solutions for the wavefunction on 
each side of a heteroj unction and then matching them at the interface. Further, 
if the conduction band is included as a perturbation (category B), calculations for 
valence band quantum well bound states using the two Hamiltonians sometimes 
predict substantially differing effective masses. This has been further demonstrated 
by Stavrinou and van Dalen [99], who calculated in-plane band structure using the 
the two Hamiltonians. 

The purpose of this section is to demonstate that k • p heterostructure calcu

lations for quantum wells which use the ordered Hamiltonian give in-plane band 

structure in agreement with pseudopotential calculations, whereas that is not al

ways the case with the symmetrised Hamiltonian. 

6.5.2 Calculations 

The elements of the ordered Hamiltonian, -f/ord, that differ from the symmetrised 

Hamiltonian, i/gym, arise naturally from Burt's first principles derivation of the 

effective mass envelope function equation, which, for band a, is [ 1 7 

E ^ • ('^-' • + r)F„(r) = EF^iv), (6.34) 
2m, 

a' 

where ^aa' is the effective mass tensor, Ha^J approximates the a*'̂  band edge profile, 

due to a band ofTset, and the remaining symbols have their usual meaning. The 



6. E N V E L O P E FUNCTION RESULTS A N D APPROXIMATIONS 148 

effects of the remote bands are included in ^aa'-, which takes the form 

^, „ = A (,35) 

where the sum is over all remote bands, 6, poh is the momentum matrix element 

between a and h, and E\,{T) is the energy of band 6, which depends on the material, 

and therefore the position in the heterostructure. The states labelled o/a' and b 

are in categories A and B, respectively. The important point to note with the first 

(kinetic energy) term in (6.34) is that the ordering of the differential operators is 

not the result of any assumptions or symmetrisation procedures, but emerges when 

the equation is derived from the ful l Schrodinger equation. 

In this section, we include only the light, heavy hole and spin split off bands 

explicitly, i.e., the category A states are Ih, hh and sso, with all remaining bands 

being in B. Following Foreman [16], we replace the effective mass tensor with three 

dimensionless parameters that describe the interactions between the p-type valence 

band zone centre states, \X), \Y) and \Z), and the remote bands, b, 

3me ^ - ^ ^ 
0 

ri5 

6m. 

— Ey 

Py\b)f 
— 

Eb — Ey 

where each summation is over states of the same symmetry type,^ Ey is the valence 

band edge energy in the absence of spin orbit coupling, and (without loss of gener

ality) we only consider finite momentum matrix elements between the remote states 

*Only states with symmetries corresponding to s,p and d orbitals are included since the effect 
on the valence band of other orbitals is negligible. 
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Material cr TT 5- Ao 

Ino.53Gao.47As 3.236 0.512 0.140 0.370 0.38 
InP 1.939 0.488 0.138 0.110 0 

InSb 4.658 0.419 0.136 0.980 0.25 
CdTe 0.990 0.306 0.127 0.840 0 

Table 6.2 The EPM derived valence band k • p parameters for the Ino.53Gao.47As/InP 
and ersatz InSb/CdTe quantum wells. The parameters a, TT and 5 are defined in (6.36). 
AQ and Ay are the spin split off energy and valence band offset, respectively. Note that 
the InSb/CdTe valence band offset has been artificially reduced from its true value of 
0.87eV. The reason for this is explained in the text. These parameters were used by Paul 
Stavrinou to obtain the k-p quantum well band structure plotted in Figures 6.11 and 
6.12. 

and \X). The symmetry types are those applicable in the absence of spin orbit cou

pling, which is included in the Hamiltonian at a later stage. These three parameters 

may be expressed in terms of the more common Luttinger parameters [119], 

71 = - 1 - f 2(7 + 47r + 45 (6.37a) 

72 = c7 - TT + 2(5 (6.37b) 

73 = a + TT - (5. (6.37c) 

For the work presented in this section, the author calculated values for the a, TT 

and 5 parameters in (6.36) within the framework of the EPM, for each material 

in the quantum wells investigated. This was done with the spin orbit coupling 

'switched o f f (i.e., 5^ was set to zero, cf. Section 2.2.3) and care was taken to 

ensure that the valence band state used in the calculations had the correct X-type 

symmetry. These values, along with the band offsets and spin orbit splittings, for 

the Ino.53Gao.47As/InP and ersatz InSb/CdTe systems are given in Table 6.2. 
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6.5.3 Results 

The in-plane energy band structure for a 55a/4 wide Ino.53Gao.47As/InP valence band 

quantum well is shown in Figure 6.11. The figure compares band structure calculated 

by the author using the full complex band structure EPM method (see Chapter 3) 

and that calculated by Paul Stavrinou, using the symmetrised and ordered k • p 

Hamiltonians. Unfortunately, these results are not very useful for the purpose of 

demonstrating the validity of the ordered over symmetrised Hamiltonians, since the 

difference between the bands calculated by the two Hamiltonians is small and on the 

scale of the errors, with respect to the EPM data, inherent in using a k • p method 

that explicitly includes the top valence bands only. The figure does at least provide 

reassurance that for this system the three (x2, for spin) band k • p method is in 

very good agreement with EPM predictions, over the energy range shown. 

The small difference between the band structures of the symmetrised and or

dered Hamiltonians is predominantly due to the small ratio between Ino .53Gao.47As 

and InP a parameters (see [16] for a discussion of the importance of a). To ob

tain large differences in the band structure generated from the two Hamiltonians, 

we require materials with a greater ratio between their cr's. In addition, we note 

that narrower wells should also enhance the differences, since we require appreciable 

barrier penetration by the envelope functions in order for changes in the boundary 

conditions, due to differences in the Hamiltonians, to be noticeable. For these rea

sons, calculations were performed for a second system — a 12a/4 wide InSb/CdTe 

quantum well. 

Table 6.2 shows that the â ^̂ ") : cr^''^"'"') ratio for the InSb/CdTe material sys

tem is approximately 4.7:1, in contrast to a ratio of 1.7:1 for the Ino.53Gao.47As/InP 

system. This suggests that the band structures calculated by the two k • p Hamilto

nians should differ in a far more noticeable way than for Ino,53Gao.47As/InP. Indeed 
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Figure 6.11 Valence energy band structure for a Ino.53Gao.47As/InP quantum well, of 
width 55a/4. The figure shows the comparison between the band structure predicted by 
the full EPM calculation and that predicted by the k • p method, using both ordered and 
symmetrised Hamiltonians. The k • p data was calculated by Paul Stavrinou, using bulk 
material parameters provided by the author. The EPM data is the average of the spin 
split bands. 
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Figure 6.12 Valence energy band structure for the ersatz InSb/CdTe quantum well, of 
width 12o/4 and with the reduced VB offsetof 0.25eV. The figure shows the comparison 
between the band structure predicted by the full EPM calculation and that predicted by 
the k • p method, using both ordered and symmetrised Hamiltonians. The k • p data was 
calculated by Paul Stavrinou, using bulk material parameters provided by the author.The 
EPM data is the average of the spin split bands. 

this is the case, but there are a different set of problems associated with this system. 

Firstly, the correct well depth, 0.87eV, is so deep that even the ground and first 

few excited bound states occur at energies and wave vectors sufficiently far away 

from the valence band edge that the bulk k • p method is becoming increasingly 

inaccurate compared to the EPM. Secondly, the spin orbit coupling in InSb is par

ticularly strong, leading to a spin split off energy of 0.98eV, compared to 0.37eV for 

1^0.53Gao.47As, whilst the fundamental band gap is small, 0.18eV. Unfortunately, the 

k • p method employed does not deal with this extreme situation very well. How

ever, by reducing the InSb/CdTe valence band offset to 0.25eV to create an ersatz 

system, some very satisfactory results are obtained. 

Figure 6.12 shows the valence band structure for the ersatz InSb/CdTe quantum 
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well, of width 12a/4. The difference between dispersion curves of the symmetrised 
and ordered Hamiltonians is quite striking. We also note that the energy bands ob
tained using the ordered Hamiltonian are in excellent agreement with those of the full 
E P M calculation, in contrast to those calculated using the traditional, symmetrised 
Hamiltonian. We consider this to be conclusive proof of the validity of the ordered 
Hamiltonian and the incorrectness of the traditional symmetrised Hamiltonian. 



Chapter 7 

Summary and conclusion 

This thesis presents theoretical methods and results for the study of electronic states 

in semiconductor heterostructures. The foundation for the work is the empirical 

pseudopotential method (EPM). 

In Chapter 2, a description of the EPM is given, concentrating on the aspects and 

modifications necessary for heterostructure calculations. This demonstrates the solid 

physical basis of the method, highlighting its genuinely microscopic nature, i.e., the 

resolution of individual atoms. The chapter describes how the important effects of 

spin orbit coupling and strain are readily introduced. The chapter ends with typical 

examples of the bulk crystal properties of InP; full zone energy band structure, 

(single) density of states, imaginary part of the dielectric function and valence charge 

density. These all illustrate that the EPM can give an accurate description of energy 

bands and wavefunctions throughout the Brillouin zone. Such bulk calculations are 

important as a means of checking that the empirically determined pseudopotential 

parameters provide not only a good description of the particular data to which 

they were fitted, but also of the electronic properties as a whole. This is especially 

useful when, as in this work, the parameter fitting was done to a limited number 

of transition energies at high symmetry points in the Brillouin zone. That the 

154 
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calculated density of states, dielectric function and real space charge density all 
produce expected results is a great source of comfort before embarking on hetero
structure calculations. 

Chapter 3 describes the complex band structure EPM method used to calcu

late the energies and wavefunctions of bound states in heterostructures of arbitrary 

configuration. The only restriction imposed is that the states under consideration 

must be genuinely bound, i.e., there must be no undecaying propagating states in 

the extreme left and right barrier regions. 

Knowledge of the wavefunctions enables the calculation of both the momentum 

and position (or dipole) matrix elements between bound states, and hence an esti

mate of the relative transition rates, induced by electromagnetic (EM) radiation, of 

pairs of states. Generation of the in-plane energy band structure for pairs of states 

allows their joint density of states to be calculated. This also effects the rates of EM 

induced transitions. The methods for calculating these quantities are described in 

the chapter, including the approximations required to make the calculation of the 

joint density of states practicable. At the end of the chapter is a description of the 

method used to approximate the effect of applying an electrostatic field along the 

heterostructure growth direction. 

An important point about the methods described in Chapter 3 is their flexibility. 

Valence and conduction band offsets can be adjusted down to monolayer precision. 

This was originally built into the software by the author to allow for the modelling 

of heterostructures consisting of an arbitrary choice of materials. However, this 

feature could also be used to approximate band bending effects, for example. It 

should also be noted that, although not utilised for the work presented here, the 

software allows for the effects of strain and an electrostatic field, the in-plane band 

structure, probability (hence charge) density and momentum matrix elements to all 

be calculated for any structure, provided the states of interest are bound. 
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The power and versatility of the methods described in Chapter 3 are, at least 
partially, illustrated in Chapter 4. The bound state energies of InAs/AlSb quan
tum wells are in good agreement with theoretical and experimental data of other 
workers, even though no eflfort had been made to maximise the agreement. This 
suggests that were one interested in modelling a specific system as accurately as 
possible, the appropriate tailoring of the input data to the EPM parameter fitting 
procedures should result in a heterostructure calculation capability that would be a 
very powerful predictive and analytic tool. 

The predictions for the InAs/AlSb system are that there is the strong possibility 

of EM induced transitions within the conduction band at the technologically very 

important wavelength of 1.55/um. Because the transition is an intraband one, the 

joint density of states is much larger than for interband transitions, and we also 

expect an enhanced dipole (hence momentum) matrix element compared to transi

tions between electron and hole ground states. This promising narrow well system 

merits further investigation in terms of specific device applications. 

The second part of Chapter 4 investigates the behaviour of the InAs/GaSb/AlSb 

asymmetric well bound states in the region of the InAs/GaSb band overlap. I t 

was found that hybridization and the associated band anti-crossing occurs between 

electron-like and light hole-like states as a function of both the InAs layer width and 

the applied electric field strength. This is analogous to the appearance of minigaps 

in the in-plane band structure of InAs/GaSb heterostructures, reported by other 

workers, except that there is no electron-heavy hole interaction, since the coupling 

between these bands is negligible at the 2D zone centre. The anti-crossing between 

some of the states modifies the response of their energies to an applied electrostatic 

field from the strictly linear variation normally obtained in asymmetric wells. 

Chapters 5 and 6 report on the first demonstration of the validity of Burt's exact 

envelope function theory for a realistic system. This required the development of a 
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procedure for extracting envelope functions, as defined by Burt, from bound state 
wavefunctions generated by the complex band structure EPM approach. These 
envelope functions were shown to be very similar in form to those calculated by 
traditional k • p methods, except that the derived envelope functions are continuous 
and smooth over all space. However, in the regions around interfaces they vary 
more rapidly and it is shown that the envelope function gradient follows, closely but 
smoothly, the usual discontinuity in the gradient of the envelope function generated 
by an effective mass model. Chapter 6 demonstrates dramatically the inadequacies 
of the single band edge (SBE) approximation when calculating interband dipole 
matrix elements and the time dependence of charge oscillations induced by coherent 
EM excitation. Again, this demonstrates the validity for real systems of predictions 
made by Burt. Although the SBE approximation reproduces at least 90% of the 
probability density of a bound state, the contribution to the wavefunction from the 
other band edge term in the full envelope function expansion contains the symmetry 
information that is vital for obtaining finite interband dipole matrix elements. 

Finally, the chapter addresses the issue of k • p differential operator ordering, in 

collaboration with Paul Stavrinou. The author has generated k • p parameters from 

bulk EPM calculations. These were used by a three band k • p calculation of the 

in-plane energy band structure for valence band quantum wells. Both traditionally 

accepted 'symmetrised' and new 'ordered' k • p Hamiltonians were used and compar

ison made with equivalent complex band structure EPM calculations. Whilst the 

Ino.53Gao.47As/InP calculations were inconclusive, those for an ersatz InSb/CdTe 

well provided striking evidence of the incorrectness of the symmetrised Hamiltonian 

and the accuracy of the ordered Hamiltonian, both in quantitative and qualitative 

terms. 

To summarise, the complex band structure empirical pseudopotential method is 

a powerful tool for studying the electronic states of heterostructures. Envelope func-
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tion and effective mass models are also often very useful, though great care must be 
taken both in their range of apphcability and in the details of their implementation. 

S u g g e s t i o n s f o r f u r t h e r w o r k 

An obvious extension to this work would be to develop the heterostructure software 

one stage further and calculate calculate actual absorption spectra. Most of the 

necessary work has already been done, in that the the ability to calculate of the 

joint density of states and momentum matrix elements between bound states is 

already in place. This would provide a more useful means of evaluating structures 

for potential device applications, as well as allowing for more direct comparison with 

experimental data. 

The heterostructure calculations in this thesis have not employed self-consistent 

techniques. A possibly significant improvement to the techniques employed would 

be the incorporation of self-consistency and allowance for band bending effects. Such 

effects would be of greatest importance for the InAs/GaSb/AlSb stepped well, where 

charge transfer from the GaSb valence band to InAs conduction band takes place 

with sufficiently wide layers and/or applied electrostatic fields. Such charge transfer 

may significantly modify the band edge profiles and hence the electronic properties 

of the system. 

Lastly, this thesis is limited to the analysis of bound states only. The author has 

developed software that treats the heterostructure problem in terms of the scattering 

at the heterojunction of an incident state, using a complex band structure EPM 

method very similar to that described in Chapter 3. Whilst this was successful for 

incident and scattered states within the F-valley of each material, X-valley states 

proved numerical troublesome, with current conservation often being lost. This is 

due to the lack of convergence of solutions to the pseudo-Hamiltonian for states 

near the Brillouin zone boundary, when using only 89 reciprocal lattice vectors. 
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Other workers [120] have worked around this problem by essentially using a non-

symmetric set of reciprocal lattice vectors, so that the Fourier representation of the 

wavefunction is much more accurate in the incident (growth) direction. This has 

the unfortunate side-effects in terms of loss of symmetry, but it may be that the 

incorporation into the software of such techniques, possibly in a modified form, would 

prove useful for the further study of the interesting heterostructures considered in 

Chapter 4. 



Appendix A 

Derivation of the pseudo 

Hamiltonian 

To demonstate the derivation (see, for example, [25,28]) of the pseudo Schrodinger 

equation, (2.5), we first rewrite the energy eigenfunction for valence electrons, (2.4), 

using Dirac notation, 

where is some function to be determined and il^c are core electron energy eigenfunc-

tions. Thus, the valence states, with wavefunction are automatically orthogonal 

to the core states. Substituting (A. l ) into the Schrodinger equation, (2.1), gives 

H\^) -Y,H\xPc){M^) = E\^) -Y,E\'^c){i^cW)- (A.2) 
c c 

Now, the core states are eigenstates of the Hamiltonian, with energy Ec, i.e., H = 

l-i/̂ c), so, expanding the Hamiltonian in terms of kinetic and potential energy leads 
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to 

f 1 )̂ + V\^) -Y^EcMi^cM = E\ip) -J2e\A){AM, (A.3) 

where T is the kinetic energy operator. Rearranging results in 

+ <̂̂ ) l^cXV'cl) M = ^ k > , ( A . 4 ) 
c 

which is precisely the pseudo-Hamiltonian of (2.5), as required. 



Appendix B 

The dielectric function and 

reflectivity 

The dielectric function, e{uj), which is a function of photon energy, E - hu, is in 

general a complex quantity, i.e., 

e{uj) = ei{uj)+ie2{uj). (B.l) 

The imaginary part is due to absorption of the incident electromagnetic waves and 

hence can be related to the excitation of electrons by photon absorption. Hence, 

combining Fermi's Golden Rule with classical electromagnetic theory leads to a 

semi-classical expression for the imaginary part of the dielectric function, per unit 

volume (see, for example, p31 of [25] or Chapter 6 of [3]), 

where u = Eh~^, AE^ — {E^ - E) and Pij(k) is the momentum matrix element 

between states in bands i and j at wave vector k. The summation is such that only 

electrons excited from the valence to conduction bands {v —> c) are included, and 
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the integration is over a single Brillouin zone. 

The Kramers-Kronig relation, 

2 r°° Lo'eo(uj') , 

TT Jo to' - OJ^ 
(B.3) 

where P indicates the Cauchy principle value, allows the calculation of the real part 

of the dielectric function from the imaginary part, The complex refractive index is 

related to the complex dielectric function by N^{u) = ei+ie2. Thus, from an initial 

calculation of 62 one may obtain the reflectivity. 

Niiu) - 1 

N{LJ) + 1 
(B.4) 

allowing comparison with a directly measurable quantity. 



Appendix C 

Single parabolic band 

approximation 

The single parabolic band (SPB) approximation is the most extreme simplification 

of the eflE'ective mass approximation. Each relevant energy band of the electronic 

band structure of a material is approximated by a parabolic band. Further, in 

the description of inhomogeneous systems, such as heterostructures or impurities 

in a bulk crystal, each band is considered in isolation, hence the use of the term 

'single'. Since, to a good approximation, zinc-blende materials have a parabolic 

energy conduction band near the zone centre (F-point), and there are no other 

bands close in energy, the SPB approximation for the calculation of donor states 

and the properties of conduction band quantum wells and superlattices is expected 

to be a good one. 

The SPB approximation for a homogeneous semiconductor is essentially equiv

alent to the usual free electron model described in standard quantum mechanics 

textbooks, but with the free electron mass replaced by an effective mass, m*. Alter

natively, i t can be thought of as a k • p model that explicitly includes only a single 

band. Since we are interested in heterostructures that confine the electron in one 
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direction only (quantum wells, etc), we only consider a one dimensional (ID) model, 
along the z-direction. 

The time independent Schrodinger-like equation for the envelope function mul

tiplying the Bloch periodic part of the relevant band, in a region takes the form 

where VR is a constant potential within R and Ek is the energy. Solutions of (C.l) 

have the general form 

h{z) ^ A+e^'^ + A.e-''\ (C.2) 

where the A are constants of integration and the wave vector k is given by 

*=i«HM. (C .3 ) 

c . l Heterostructures 

In the application of the SPB approximation to heterostructures, the piece-wise 

constant potential term within each material region is chosen to recreate the band 

offsets that form the well. For a single well of depth VQ and width L , with the real 

space origin at its centre, the envelope function Schrodinger-Iike equation is as in 

(C. l) , but with the potential term being 

0 z < L / 2 , 
VR = { (C.4) 

VQ \Z\ > L / 2 . 
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The solutions in each of the three regions are still of the type (C.2) but we must 
impose the relevant quantum mechanical boundary conditions to obtain the valid 
energies and determine the coefficients. 

I f we consider the case of bound states, then we must set one of the coefficients in 

each barrier region to zero to prevent fkiz) diverging with increasing or decreasing z. 

This leaves four unkown constants which are determined by the boundary conditions 

applied at the well walls, z = ±L/2. This leads to the question of particular interest 

here: 'What are the appropriate boundary conditions?' 

In Section 3.2 it was pointed out that the interface boundary conditions are 

derived from the form of the Schrodinger equation. However, the derivation of (C.l) 

is only valid for a piece of homogeneous material and therefore cannot be used to 

deduce the boundary conditions at a heterojunction. The conservation of current 

density, which, for a quantum mechanical state ip, is given by (see, for example, 

p215 of [1]) 

j = - ^ ( V ' * V ^ - V V ^ * ) . (C.5) 

Within the EFA, (C.5) becomes, along z, 

' ' i r l f - f l n (0.6) 2m*^-' dz' ' dz-

which is often used to suggest a form for the matching conditions for the env

elope functions. From (C.6), the current density is continuous at a heteroj unction 

if fk{z) and {m*)''^dfk/dz are each continuous. However, one can equally match 

{m*Y~^ fk{z) and {m*)^°-dfk/dz, where a make take any value [118]. In other words, 

the matching conditions appear to be an ad hoc mathematical convenience, without 

rigorous physical justification. The justification for the continuity of fk{z) and 
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(m*) ^dfk/dz requires a microscopic model of the type developed by Burt [17 . 



Appendix D 

E P M parameters and transition 

energies 

D . l Pseudopotential form factors 

Material 

AlSb -0.209788 0.043316 0.060000 0.060245 0.051541 0.033573 
GaSb -0.184287 0.000939 0.049996 0.075108 0.038286 0.008504 
InP -0.230000 0.014711 0.051069 0.072154 0.053969 0.009583 
InAs -0.231960 -0.005982 0.051448 0.060784 0.048085 0.009996 
InSb -0.218539 0.000000 0.040000 0.058957 0.046679 0.010060 
Ino.53Gao.47As -0.235572 0.010084 0.049959 0.053293 0.047697 0.011019 
CdTe -0.260031 -0.000470 0.045000 0.091921 0.072342 0.010295 

Table D . l The pseudopotential form factors, in Rydbergs, used in the EPM calculations 
(see Section 2.2.2). The values were produced by the fitting procedure described in Section 
2.4.1. 

For Ino.53Gao.47As, rather than obtaining the form factors by interpolating be

tween those of InAs and GaAs (the virtual-crystal approximation), they were found 

directly by the usual fitting procedure, since enough experimental data exists on 
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this particular alloy for the present purposes. This approach was chosen because 
the virtual-crystal method cannot include disorder induced effects, which may be 
important in determining the properties of the alloy [121 . 

D.2 Pseudopotential form factor gradients 

Material 9l 9'n 9t 9l 5n 

AlSb 
GaSb 
InAs 

0.399970 
0.227963 
0.268558 

0.123260 
0.151559 
0.172243 

-0.039000 
0.013918 

-0.033086 

-0.087165 
-0.100002 
-0.088970 

-0.087156 
-0.000013 
-0.046673 

-0.000772 
0.000000 

-0.000030 

Table D.2 The pseudopotential form factor gradients, in Rydbergs/(27r/a), used in the 
EPM calculations, where a is the unstrained lattice parameter of the material (see Section 
2.3.3). The values were produced by the fitting procedure described in Section 2.4.3. 

D.3 Pseudopotential spin parameters 

Material 5^ 

AlSb 0.004146 
GaSb 0.003816 
InP 0.000540 
InAs 0.001827 
InSb 0.004676 
Ino.53Gao.47As 0.001838 

CdTe 0.003210 

Table D.3 The pseudopotential spin parameters, used in the EPM calculations (see Sec
tion 2.2.3). For each material, Sa was set to 1. The values were produced by the fitting 
procedure described in Section 2.4.2. 
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D.4 Miscellaneous experimental parameters 

Material a (A) C l l C12 C44 Reference 

AlSb 6.136 8.769 4.341 4.076 [44] 

GaSb 6.095 11.81 5.32 5.94 [44] 

InP 5.8688 10.11 5.61 4.56 [122] 

InAs 6.0583 8.329 4.526 3.959 [44] 

InSb 6.48 6.58 3.49 3.03 [25] 
Ino.53Gao.47As 5.8688 9.99 4.93 4.89 [122] 

CdTe 6.48 — — — [25] 

Table D.4 The experimentally determined values of the lattice constant, a, and elastic 
moduH, Cij, used in the EPM calculations. The data is for room temperature {•̂  300K) 
and the elastic moduH are given in 10̂ ^ dyn-cm~^. The lattice parameter of InSb has been 
chosen to be exactly equal to that of CdTe, though its actual value is 6.478A. Data not 
used in calculations reported in this work (e.g., InSb Cij) is included for completeness. 
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D.5 Bulk transition energies 

D.5.1 Aluminium antimonide 

Energy (eV) 
Transition Experimental Calculated 

1.614 1.613 
2.29 2.295 

Ao 0.675 0.675 
2.211 2.213 

El 2.890 2.978 
A i 0.42 0.412 
a -5.9 -5.898 
b -1.35 -1.350 

Table D.5 Experimental transition energies 
and deformation potentials for AlSb used in 
the parameter fitting procedures, along with 
the final calculated values. The experimen
tal transition energies are taken from [123], 
except Eg^i and Eg^j,, which are the average 
of values from [123] and [124]. The origi
nal values foT Eg^i are 1.613 and 1.615, and 
for Eg^d are 2.300 and 2.28, respectively. In 
both cases the data is for 300K/room tem
perature. The deformation potentials, a and 
b, are taken from [44] and are for 77K. 

> 9 

i-i 

d 1 

-1 

-2 
X U,K 

Wave vector, k 

Figure D . l Bulk band structure of AlSb, calculated using the EPM. 
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D.5.2 Gallium antimonide 

Energy (eV) 
Transition Experimental Calculated 

E, 
Ao 
El 
A i 

Ex 

0.725 
0.76 
2.055 
0.435 
0.761 
1.05 

0.726 
0.760 
1.695 
0.455 
0.890 
1.046 

Table D.6 Experimental transition energies 
for GaSb used in the parameter fitting pro
cedures, together with the final calculated 
values. The experimental energies are taken 
from [123], and are for 300K. 

X U,K 
Wave vector, k 

Figure D.2 Bulk band structure of GaSb, calculated using the EPM. 
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D.5.3 Indium arsenide 

Energy (eV) 
Transition Experirnental Calculated 

Eg 0.356 0.357 
Ao 0.39 0.391 . 
E'o 4.6 4.217 
El 2.50 2.131 
E'l 6.4 5.629 
E2 4.72 3.904 
a -6.0 -6.000 
b -1.8 -1.800 

Table D.7 Experimental transition energies 
and deformation potentials for InAs used in 
the parameter fitting procedures, together 
with the final calculated values. The ex
perimental transition energies are taken from 
[44], and are for 295-300K, except E'Q which 
is for 80K. The deformation potentials, a and 
b, are also taken from [44] and are for 300K. 

4 h 

> 9 

IB 
S 1 

0 h 

-1 

-2 
X U,K 

Wave vector, k 

Figure D.3 Bulk band structure of InAs, calculated using the EPM. 
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D.5.4 Indium phosphide 

Energy (eV) 
Transition Experimental Calculated 

E, 1.35 1.355 
Ao 0.11 0.110 

4.8 4.382 
0.07 0.048 

El 3.15 2.640 
A i 0.15 0.066 

0.5 0.495 
E2 5.02 4.035 

0.7 0.703 

Table D.8 Experimental transition energies 
for InP used in the parameter fitting proce
dures, along with the final calculated values. 
The experimental data is from [44], except 
for Eg, which is from [122]. All values are for 
295-300K, except E'Q, which is for 77K. 

> 9 

>5 

S 1 

- 1 

-2 
X U,K 

Wave vector, k 

Figure D.4 Bulk band structure of InP, calculated using the EPM. 
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D.5.5 Indium antimonide 

Energy (eV) 
Transition Experimental Calculated 

E, 0.180 0.180 
Ao 0.98 0.980 

K 3.16 3.534 
0.33 0.480 

El 1.88 1.903 

E[ 5.25 4.890 
A i 0.50 0.597 
E2 4.08 3.637 

Table D.9 Experimental transition energies 
for InSb used in the parameter fitting pro
cedures, along with the final calculated val
ues. The experimental transition energies are 
taken from [44], and are for 300K. 

> 9 

I 1 

- 1 

-2 
X U,K 

Wave vector, k 

Figure D.5 Bulk band structure of InSb, calculated using the EPM. 
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D.5.6 Ino.ssGan 47 As 10.47-' 

Transition 
Energy (eV) 

Experimental Calculated 

Ao 
El 
A i 

Ex 

0.75 
0.37 
2.65 
0.24 
1.39 
1.68 

0.753 
0.370 
2.232 
0.224 
1.393 
1.683 

Table D.IO Experimental transition ener
gies for Ino,53Gao.47As used in the parame
ter fitting procedures, together with the final 
calculated values. The experimental transi
tion energies are taken from [122], although 
the value for is calculated using E^^^'^ = 
2.14. This InAs energy corresponds to the 
present calculations. All data is for room 
temperature. 

X U,K 
Wave vector, k 

Figure D.6 Bulk band structure of lno.53Gao.47As, calculated using the EPM. 
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D.5.7 Cadmium telluride 

Energy (eV) 
Transition Experimental Calculated 

Ao 
E'o 
El 
A : 
E2 

1.44 
0.84 
5.16 
3.07 
0.56 
5.40 

1.440 
0.840 
5.344 
3.325 
0.496 
5.100 

Table D . l l Experimental transition ener
gies for CdTe used in the parameter fitting 
procedures, together with the final calculated 
values. The experimental transition energies 
are taken from [125], and are for 300K. 

> 9 

S 1 

- 1 

X U,K 
Wave vector, k 

Figure D.7 Bulk band structure of CdTe, calculated using the EPM. 
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D.6 Complex band structure 

D.6.1 Aluminium antimonide 

0) 

(a) 
(b) 
(c) 

k± {2ir/a_i) 
kr 

Figure D.8 Strained complex band structure of AlSb. The strain is consistent with 
dislocation free growth on GaSb, leading to negative strain in the in-plane direction and 
hence positive strain in the perpendicular (growth) direction. Thus, along the growth 
direction, the heavy hole band is raised above the light hole band around the zone centre 
[37]. The energy bands are labelled as follows: (a) purely real k, (b) purely imaginary k, 
(c) complex k with real part at X. 
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D.6.2 Gallium antimonide 

> 

- 1 

(a) 
(b) 

- - - (c) 
- - - - - (d) 

k± (27r/ax) 

Figure D.9 Complex band structure of GaSb. The energy bands are labelled as follows: 
(a) purely real A;, (b) complex A;, (c) purely imaginary k, (d) complex k with real part at 
X. 
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D.6.3 Indium arsenide 

A;_L (27r/ax) 

Figure D.IO Strained complex band structure of InAs. The strain is consistent with 
dislocation free growth on GaSb, leading to positive strain in the in-plane direction and 
hence negative strain in the perpendicular (growth) direction. Thus, in the growth direc
tion, the light hole band is raised above the heavy hole band around the zone centre [37]. 
The energy bands are labelled as follows: (a) purely real k, (b) purely imaginary k, (c) 
complex k, (d) complex k with real part at X. 
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D.7 Heterojunction band line-ups 

Unfortunately, values for heterojunction energy band line-ups are not always as well 

established as would be preferable. Much experimental and theoretical effort has 

been put in to the determination of numerous band line-ups, however, theoretical 

predictions for the same heterojunction vary considerably, so the data used in this 

work is taken f rom experiment, although sometimes experimental values are also in 

poor agreement. Yu et al. [62] have published a review of this topic and collated the 

various data available at the time, commenting on the validity or otherwise of the 

data where a consensus has emerged. In the following sections, each system modelled 

in this thesis is discussed in a l i t t le detail, specifying any additional references. 

D.7.1 I n A s / G a S b / A l S b system 

Materials AEy (eV) Reference 

InAs/GaSb 

AlSb/GaSb 

InAs /AlSb 

0.50 [126] 
0.56 [127] 
0.56 [128] 

0.51 ± 0 . 1 [129] 
0.52 [130] 

0.04-0.08 [131] 
> 0.267 [132] 

0.40 ± 0 . 1 5 [133] 
0.45 ± 0 . 0 8 [134] 

0.35 [135] 
0.39 ± 0 . 0 7 [136] 

0.16 In-Sb [137] 
0.17 In-Sb [137] 
0.22 Al-As [137] 
0.15 Al-As [137] 

"Table D.12 Experimentally determined 
band offsets for the InAs/GaSb/AlSb system, 
taken mostly from Yu et al. [62]. The GaSb 
valence band maximum lies above that of 
InAs and AlSb. The AlSb valence band 
maximum lies above that of InAs. The 
In As/AlSb results are for InAs grown on 
relaxed AlSb. The InAs/AlSb entries also 
indicate the interface type formed during 
growth. 

There is only one reference for InAs/AlSb experimental data. However, recent the-
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A E , (eV) 
Materials Used Exp. 

InAs/GaSb 0.51 0.53 
AlSb/GaSb 0.40 0.40 
InAs/AlSb 0.11 0.18 

Table D.13 Offset values used in the calculations and average experimental values. 

oretical calculations [138] predict an offset of /\Ey = 0.19eV (AlSb above InAs), for 

both interface types, which is consistent w i th the experimental result. 

The average value of A E ^ for the InAs/GaSb heterojunction is 0.53eV, for the 

AISb/GaSb heterojunction i t is 0.40eV (excluding the first two results), and for 

InAs /AlSb i t is O.lSeV. While i t is desirable to use these values in the EPM calcula

tions, in a heterostructure consisting of all three materials, such as that described in 

Section 4.3, they are not quite consistent. Therefore, one or more of the values must 

be modified. Addi t ional experimental data is available to assist in this process. The 

band overlap between InAs and GaSb, where the InAs conduction band minimum 

lies below the GaSb valence band maximum, has recently been measured as 0.146eV 

at 300K [139]. In the present calculations, the InAs band gap has been fitted to 

experiment (including strain effects) w i th a value of 0.299eV. For a given InAs band 

gap, varying AEy also varies the band overlap, and so a balance between the two 

must be struck. 

The values actually used are given in Table D.13. These are in satisfactory 

agreement, wi th the exception of the InAs/AlSb offset, and lead to a InAs/GaSb 

band overlap of 0.211eV. Increasing the InAs offset relative to both GaSb and AlSb 

seems desirable, but this would increase the band overlap wi th GaSb, which is 

already possibly too large, according to [139]. On the other hand, a value for the 

InAs /AlSb ^Ey of O.leV has recently been quoted [140,141], hence the oflfsets used 

in the calculations provide a reasonable compromise to the available experimental 
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data. 

D.7.2 . Ino.53Gao.47As/InP system 

Experimental determination of the conduction band offset for the Ino.53Gao.47As/InP 

system typically give a value of approximately OAAEg [62], where AEg is the dif

ference in the fundamental band gaps of the two materials. A value of 0.38eV [122 

is used for the valence band offset in the present work. This is equivalent to a 

conduction band offset of 0.37A£'p. 

D.7.3 I n S b / C d T e system 

Published data for the CdTe/InSb system is extremely sparse, wi th only one ex

perimental and one theoretical offset available. Fortunately, these are in very good 

agreement, suggesting that the data is reasonably reliable. Experiment suggests 

a valence band offset of 0.87 ± O.lOeV [142] for both (100) and (110) interfaces, 

whilst an ab in i t io pseudopotential calculation for (110) interfaces predicts a value 

of 0.88eV [143]. This work uses a value of 0.87eV. 
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