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ABSTRACT 

Distribution, cytological organization and development of laticifers in some 
latex bearing plants were studied by the use of optical and electron 
microscopy. Seven species from five different families were used in a 
comparative study, which were Meconopsis cambrica & Papaver rhoeas 
(Papaveraceae), Hevea brasiliensis & Euphorbia wulfenii (Euphorbiaceae), 
Musa acuminata (Musaceae), Mandevilla splendens (Apocyanaceae) & 
Taraxacum officinale (Compositae/Asteraceae). Several preparation 
procedures have been compared and optimised for the structural preservation 
of the laticifers and for examination of their distribution in these taxa. 

Methods of fixation have been studied. Fresh unfixed samples showed good 
structural information and laticifer distribution in the tissue. This technique was 
also very fast and convenient to use. In practice this protocol can be applied 
in monitoring and screening bulk samples in a breeding program, where 
speed and convenience are very important. Samples fixed with aldehyde 
fixative gave reasonably good results for histology study but not at the 
electron microscope level. The samples fixed with this fixative however, were 
highly suited to immunohistochemical work. This information is invaluable 
and will be used and adapted for Hevea study in Malaysia. Both osmium and 
a combination of osmium tetroxide and zinc iodide were superior in term of 
ultrastructural preservation. 

Embedding media for laticifers were compared. For histological and 
immunohistochemical studies, Paraplast wax was used. The preparation 
procedure was easy and convenient, and overall structural information of 
laticifers was good. Spurr resin and araldite are both epoxy resins, but 
samples embedded in araldite gave better, more acceptable results. The 
carcinogenic nature of Spurr resin means that it must be handled with 
extreme caution, making it a less convenient embedding medium. The only 
acrylic resin was LR White, which was initially intended for an 
immunocytochemistry study where the priority was to retain antigenic sites. 
Samples embedded with this resin did not show good structural information. 

The final set of procedures evaluated was staining methods. The staining 
procedure has to be fast, must differentially stain laticifers and must be 
reliable. These stains can be grouped into two categories; standard 
histological stains such as Toluidine Blue and Safranin O with Astra Blue, 
and fluorescent stains such as Calcofluor, ANS and Acridine Orange. 
However almost all stains tested failed to differentially stain latex or laticifers. 
They however did assist in clarifying for identification the location and 
distribution of laticifers in the tissues. Using Toluidine Blue was very fast and 
easy, but all the fluorescent stains are faster and easier to use. Laticifers in 
all species examined, exhibited a similar pattern of distribution. They were 
located in the cambial regions of stems, petioles, leaves and roots, or closely 
located within the vascular bundle. 
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1. INTRODUCTION 
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1.1 LATICIFERS 

Secretory cells, canals and cavities are frequently encountered in the tissues of 

woody plants, often in the region around secondary xylem in stems. One such 

group of structures is laticifers, sometimes confused with secretory cells. The 

structure and distribution of laticifers have been discussed at length by Chalk 

(1983). 

The word laticifer and its adjectival form laticiferous are derived from the word 

latex, meaning juice in Latin. Esau (1965) described laticifers as cells or series 

of fused cells containing a fluid called latex and forming systems that pass 

through various tissues of the plant body. The systems are usually pictured as 

tubular structures that are branched or unbranched, and in many species a very 

complex laticiferous system is formed by anastomosis between tubes. 

In the past decade, research on laticifer organization has been largely 

overshadowed by work on the phloem system. It has been reported that laticifers 

and sieve elements show similar problems for microscopy studies with regard to 

tissue preservation. The high pressure within both types of cells is a major 

impediment during specimen preparation, because the moment tissues are 

excised the protoplasts tend to become damaged, with the contents of the 

cells being easily displaced, which thereafter makes any reconstruction of the 

overall laticifer system difficult (Fineran 1983, Fineran & Condon 1988). 

However, recent advances in technologies for microscopy, including preparation 

techniques such as cryo-preparation and low temperature electron microscopy 

make it possible to retain the integrity of the cells without using destructive 

chemicals. These methods have provided further information on laticifer 

architecture and cellular organization. 
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It is, however, very unfortunate that, until now, there has been little discussion 

about the specific function of the laticifers. Attention has been concentrated 

more on the structural studies and distribution of the laticifers in relation to their 

taxonomic distribution in the plants, as shown in Table 2. Altogether, the function 

of the laticifers was generally summarized as being a special type of storage or 

excretion system in plants. Another interesting observation, however, is that in 

almost all of the laticiferous plants, rubber or latex has been observed to have 

some repellent properties against insects, providing the plants with self defense 

against pest attack. 

Studies at the ultrastructural level show that apart from the ordinary organelles 

that can be found in laticifers such as rubber, [vacuoles, etc.], there are some 

organelles that can only be found in certain genera. These distinctive organelles 

can sometimes contribute as a unique characteristic to a certain plant. In 

Poinsettia (Euphorbiaceae) for instance, numerous nuclei and plastids with 

starch grains were reported as a very prominent feature of the laticifers ( Fineran 

1983, Roy & De 1992). Another example as in Hevea brasiliensis 

(Euphorbiaceae), are lutoids, the second most numerous organelle after rubber 

particles (Dickenson 1969, Gomez & Southorn 1969, Gomez & Yip 1975). The 

size of lutoids has been described as almost the same as rubber particles, which 

is 0.5-3 urn (Southorn 1966,1968 & 1969). Lutoids are very sensitive to osmotic 

conditions and will swell and may disrupt under hypotonic conditions (Homans 

era/. 1948). 
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1.2 STRUCTURE OF THE LATICIFERS 

Laticifers are an extremely heterogeneous group of cells, not only metabolically, 

but also developmentally and structurally (Mauseth 1988). They are typically 

classified into two fundamental classes on the basis of their structure. They may 

be simple or compound in origin (Esau 1965). The simple laticifers can be 

described as single cells while the compound laticifers are derived from series of 

cells. In a more highly specialized state the series of cells in a compound laticifer 

become united by dissolution of intervening walls. Because of this junction of 

cells the compound laticifers are commonly called articulated laticifers, whereas 

the simple laticifers are called non-articulated. Both kinds of laticifers may be 

branched or unbranched and are often referred to as 'vessels', probably due to 

their resemblance in origin to that of the conducting elements. This 

classification, however, according to some anatomists, has no relationship to 

taxonomic groups and thus different types of laticifers may be found in different 

species of one family (de Bary 1884). 

It has been reported that in several families, included the Asclepiadaceae and 

Euphorbiaceae, both articulated and non-articulated laticifers occurred, and in a 

few instances the two types occur together in the same plant, as in Jatropha 

(Dehgan & Craig 1978) 
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1.2.1 ARTICULATED LATICIFERS 

Articulated laticifers are fundamentally different from the non-articulated laticifers 

in their development and structure. Each is actually a row or file of individual 

laticiferous cells. Huang and Sterling (1970) observed in Allium, that each cell is 

connected to the two adjacent laticiferous cells by plasmodesmata, but in other 

tissue there is usually some form of perforation of the common wall. With the 

variations in structure the articulated laticifers can be divided further into two 

subdivisions. Some of the articulated laticifers consist of long cell chains or 

compound tubes not connected with each other laterally; others form lateral 

anastomoses with similar cell chains or tubes, all combined into a net-like 

structure or reticulum. The former are known as articulated non-anastomosing 

laticifers and the latter as articulated anastomosing laticifers (Esau, 1965) 

As with non-articulated laticifers, the articulated laticifers can occur in all parts of 

the plant body, either in young tissues or older ones, vegetative or floral. An 

investigation on Taraxum kok-saghyx, reported that the articulated laticifers are 

present in the seedling, at the germination stage (Bonner & Galston 1947). In 

Papaver somniferum laticifers are present in the seedling and young plant, but 

they are larger and most abundant in the seed capsule (Thureson-Klein 1969, 

Nessler & Mahlberg 1977). However, in the tree from which commercial rubber 

is extracted (Hevea brasiliensis), the most important laticifers are located in the 

bark from where the rubber is exuded when it is tapped (Gomez 1982). 

13 



1.2.2 DEVELOPMENT OF ARTICULATED LATICIFERS 

The articulated laticifers develop into extensive tube-like structures by the 

constant addition of new primordial cells to the existing ones and not by the 

growth of individual cells (Esau 1965). This growth is by the continuous 

initiation of the nearby parenchyma cells, which are later converted to laticifer 

cells. As these new cells differentiate adjacent to older, existing laticifers cells, 

the common wall becomes perforated, and the new cells are added to the 

laticifer, resembling the process where new vessel elements are added in the 

xylem (Mauseth 1988). 

There are two types of developments in articulated laticifers, depending on how 

the developing laticifers interrelate with the neighboring cells during the 

differentiation, which are the non-anastomosing articulate laticifers and 

anastomosing articulate laticifers. Non-anastomosing articulated laticifers occur 

in some species because any single laticifer, which is in a row of neighboring 

cells does not merge with another laticifer during its differentiation. This type of 

laticifer can be found in Achras (Sapotaceae), Allium (Liliaceae), Ipomoea 

(Convolvulaceae) and Musa (Musaceae). 

In articulated anastomosing laticifers, one laticifer can fuse with others, forming 

an extensive three-dimensional network that permeates the entire plant. 

Meconopsis, Papaver (Papaveraceae); Carica (Caricaceae); Cichorium, Lactuca, 

Taraxacum, Tragopogon (Compositae); and Hevea, Manihot (Euphorbiaceae) 

portray this type of laticifer. To make this formation possible, the laticifers must 

be able to branch. However, the laticifer itself does not grow out to form the 

branch; instead, regular parenchyma cells that lie between two existing laticifers 

are induced to differentiate into latex-bearing cells (Blaser 1945, Vertrees & 

Mahlberg 1978). 
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Witler and Mauseth (1984a,b) studied a phylogenetic series of Mammillaria 

(Cactaceae) and revealed an interesting set of stages in the evolution of a 

complex secretory system. Amongst the articulated laticifers, Mammillaria has a 

quite unusual type of laticifer because their wide lumina are formed by the 

disorganization (lysis) of cylindrical cell masses several cells wide and not by 

the resorption of the end walls of single files of cells. The laticifers furthermore 

are lined by a multicelullar epithelium that is quite thick. The diameter of the 

laticifers will increase further because the inner epithelial cells become 

disorganized. 

In subgenus Subhydrochylus ("semi milky" mammillarias), the group contain 

cortical regions of tissue whose cells are extremely watery, contain few 

chloroplasts and have unusual thin walls. The cells of the outer cortex begin 

differentiation by complex modification of their walls. The process begins by 

swelling at certain sites, forming bulbous pockets that expand throughout the 

wall. At the same time, other flat regions arise in the wall and stain darkly. The 

walls are converted to large regions that are non-compact and whose loose 

microfibrils alternate with dense, dark regions. These walls appear to be empty 

epithelial cells (Mauseth 1978b). The wall ultimately breaks down to form the 

lumen and the first "secretion". Simultaneously, the protoplasts become modified 

by filling with derived vesicles; the protoplast lysis, mixing with the wall material 

and adding to both the lumen and the secretion. The secretion is holocrine. 

However in subgenus Mammillaria, there is no structure formed by splitting of 

cells (schizogeny), and the walls are not modified as just described for subgenus 

Subhydrochylus. Instead the first step of differentiation is the production of 

numerous vesicles of diverse types and from diverse sources, which are from 

the chloroplast, endoplasmic reticulum, dictyosomes and plasmalemma. The wall 

becomes thinner as material is apparently removed from it, thereby forming more 
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vesicles. Finally, the walls rupture as digestion continues; where at this stage 

the protoplast has been converted to latex. Adjacent cells undergo division and 

create a smooth, well-defined epithelium (Mauseth 1978a). 

Another study by Sheldrake (1970) on 7 species with articulated laticifers and 4 

species of non-articulated laticifers, by electron microscopy, strongly suggested 

that the wall of the articulated laticifers is dissolved enzymatically by cellulase 

presence in the laticifers itself. He also suggested the high level of auxin could 

also help in increasing cellulase activity by weakening or loosing the structure 

of the cell wall. This (enzyme in the laticifers) is another fundamental enzymatic 

criterion in dividing the two groups of laticifers (articulate & non-articulate). 

An assay study carried out on the species with articulated laticifers showed a 

very high content of cellulase, whereas there is hardly any evidence of cellulase 

in the non-articulated species. This also explains why in certain species, 

laticifers are abundant and concentrated, as in Hevea brasiliensis, where the 

cellulase content is 50-150 times higher than the other species (Sassen 1965; 

Sheldrake & Moir 1970). It has also been reported that the amount of cellulase 

is higher in the young tree as compare to the mature tree, where the active 

differentiation of cells take place (Tracey 1950). 

1.2.3 NON-ARTICULATED LATICIFERS 

Non-articulated laticifers originate from single cells that through continued 

growth develop into tube-like structures, often much branched, but typically they 

undergo no fusions with other similar cells. The non-articulated laticifers vary in 

degree of complexity in their structure. Some further develop into long, more or 
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less straight tubes; others branch repeatedly, each cell thus forming an immense 

system of tubes. Esau (1965) decided that the appropriate names for these two 

types of structures are non-articulated unbranched laticifers and non-articulated 

branched laticifers, respectively. 

Non-articulated laticifers are characteristic of various species of the following 

families: Apocynaceae, Asclepiadaceae, Euphorbiaceae, Moraceae and 

Urticaceae (Fahn, 1982). Typically the non-articulated laticifers are 

extraordinarily long cells, often extending from the root up into the stem and 

leaves. However, in certain species, such as Cryptotesgia, Jatropa (Dehgan & 

Craig 1978) and Parthenium argentum (Metcalfe, 1967) the non-articulated 

laticifers are small, rather isodiametric idioblasts, somewhat resembling myosin 

cells. In some species they are unbranched as for instance Cannabis 

(Moraceae); Cyclanthus (Cyclanthaceae) (Wilder & Harris, 1982); Urtica 

(Urticaceae) and Vinca (Apocynaceae). In others, they branch frequently, 

forming an even more extensive network as in Asclepias, Cerepegia, 

Crypstostegia (Asclepiadaceae); Broussoetia, Ficus, Madura (Moraceae); 

Nerium (Apocynaceae) and Euphorbia, Jatropha (Euphorbiaceae). 

1.2.4 DEVELOPMENT OF NON-ARTICULATED LATICIFERS 

Non-articulated laticifers can occur in any part of the plant, most often in the 

softest regions such as the pith and cortex, but they can invade leaves and leaf 

gaps as well as wood and phloem (Mauseth 1988). Blaser (1945) and Mahlberg 

(1969) describe how the tip of the non-articulated laticifer may project into the 

margins of the shoot and root meristems, but as the meristem grows away, the 

laticifer continuously invades the newly formed stem and root tissues. In some 
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species, new initials are formed in new tissue and an older plant will have more 

laticifers than a younger plant. 

As already mentioned, different forms of non-articulated laticifers exist and in 

certain mature plants laticiferous cells may develop into very large systems 

which extend throughout the different shoot and root tissues. Rosowski (1968), 

who worked on some Euphorbia species, expressed the view that their entire 

laticifer system is derived from a few initials that are already present in the 

embryo. Mahlberg (1961) found in Nerium that the number of initials is constant 

and that they can all be distinguished in the embryo where they appear in the 

cotyledonary node from where they send branches into the cotyledon, the 

hypocotyl and the radicle. In Cryptostegia grandiflora it has been found that the 

early-formed laticiferous cells in the cortex branch radially in the position of the 

leaf gaps and penetrate into the pith. After a period of cambial activity these 

branches of the laticiferous cells become surrounded by the secondary phloem 

and xylem (Blaser 1945). 

Rachmilevitz and Fahn (1982) reported that in Ficus carica L, laticifers undergo 

a sequence of ultrastructural changes during differentiation. They noticed that 

vacuolar size increased by an autophagy process, which divided the cytoplasm 

into separated masses and follows a development of numerous vesicular 

structures in the cytoplasm, which subsequently are released into the vacuolar 

space, and the cytoplasm will disintegrate shortly after this process. 

A study by Roy and De (1992) on differentiation of non-articulated laticifers of 

Calotropis gigantea (Linn.) emphasizes the anatomy, distribution, structure and 

ultrastructural organization of the species using both light and electron 

microscopy. They reported that the enlargement and fusion of the small 

vacuoles accompanied by the degeneration of cell components occurs and is 

followed by a sequential lysis of cellular components with preservation of a thin 
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layer of peripheral cytoplasm and the formation of central vacuole. This 

formation of vesicles from peripheral cytoplasm and the release of electron 

dense osmiophilic globules into the vacuole of the cells of Calotropis is 

comparable to that observed in Ficus carica (Rachmilevitz & Fahn 1982), Pea 

cotyledon (Hinz, era/. 1999) and in tobacco (Miller, etal. 1999). 

There are other possibilities for the growth of non-articulated laticifers at their 

tips resulting in an intrusive manner of growth. Wilson et al. (1976) believed 

that the intrusive growth and extensive elongation of non-articulated laticifers in 

milkweed, Asclepias syriaca L, suggest a requirement for a pectolytic enzyme 

system. The pectinase could serve to loosen or dissolve the middle lamellae 

between cells and thus allow penetration of the growing tip of the laticifer. 

Assuming that the enzyme is synthesized in the laticifer, although the 

protoplasmic site of synthesis is not yet known, they concluded that the laticifer 

secretes pectinase ahead of the growing cell tip thereby dissolving pectic 

substance of the middle lamella, thus facilitating penetrations of the laticifer 

among other cells during its growth throughout the plant. Furthermore, such an 

enzyme also could loosen cell wall material distal from the tip of the laticifer to 

allow cell elongation. These criteria of enzyme releasing mechanism (toward the 

tips of the laticifers instead of in the laticifers and dissolving cell walls at any 

points along the laticifers) has been taken as a significant grouping criteria 

between articulated laticifers and non-articulated laticifers. 
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Table 1: A summary of the similarities and differences between 

articulated and non- articulated laticifers. 

Articulated Laticifers Non-articulated 

Laticifers 

Initial development Compound cells 

(involves parenchyma 

cells) 

Simple single cell 

Enzyme contribution into 

development 

Cellulase within the 

laticifers. Assisted by 

plant hormone (auxin). 

Pectinase in cell wall \ 

toward the tip of j 

laticifers. 

Laticifers distribution in 

plants 

All part of the plants All part of the plants 

Mode of development Cell wall degradation Intrusive growth 

1.3 LATEX 

Bonner and Galston (1947) noted that rubber frequently, but not always, occurs 

in plants in the form of the minute particles suspended in the liquid and in certain 

cases as an emulsion, with the whole forming latex. The latex is in turn 

contained within more or less specialized laticiferous cells or vessels. It has a 

chemical composition that differs in the different species of plants. The matrix 

may be regarded as cell sap of the laticifer. Among the suspended material are 
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rubber particles (C5He)n, waxes, resin, proteins, essential oils, mucilages (Fahn 

1982), carbohydrates, organic acids, salts, alkaloids, sterols, fats and tannin. In 

certain Euphorbia species, variously shaped starch grains can be found 

(Mahlberg 1975). Resin and particularly rubber are characteristic components of 

the latex in many plants and commonly belong to the hydrocarbon family, which 

includes balsams, camphors and carotenoids (Bonner and Galston 1947). 

In another form, latex can also be referred to as fluids, usually with a white 

milky (Asclepias, Euphorbia, Ficus, Lactuca) or clear (Morus, Nerium oleander) 

appearance or even translucent (Fahn 1982, Metcalfe & Chalk 1989). The milky 

appearance is due to the suspension of many small particles in a liquid 

dispersion medium (matrix) with a very different refractive index. In addition to 

that, the colour of the latex may differ between species. Metcalfe (1967) added, 

for example, that it might be yellow {Cannabis), orange (Papaver), red, or even 

greenish in different taxa. Some investigators reported the colour may vary in 

different parts of a single plant, or the colour may change after the latex has 

exuded from the plant as observed in Hevea brasiliensis (Gomez 1982). 

In term of size, the latex particles, as in Hevea brasiliensis, vary from 0.01 |am to 

more than 50nm and can differ in diameter in various species. In addition to that, 

latex particles may vary in shape from spherical to pear- or rod-shaped. In 

Hevea, the size and shape of the latex particles varies depend on the age or 

growth stages of the plant, where mature and older plants tend to have larger 

and spherical shapes compared with the young plants; where the size is smaller 

and spherical (Gomez 1982). 

In Hevea brasiliensis, latex is exploited commercially by a systematic excision of 

the external tissues of the trunk, via bark. Even though other species of plants 

especially in the Euphorbiaceae family, produce latex as well, they have not 
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being exploited commercially because of the latex production is not as great as 

in Hevea brasiliensis. 

Because latex is a term that covers dozens of types of secretions, it is not 

surprising that their ultrastructure is extremely diverse. It is at the level of 

electron microscopy that structural discrepancies can be determined. 

1.4 LATICIFERS DISTRIBUTION IN PLANTS TISSUES 

Even though cytological and differentiation studies still remain fragmentary for 

the vast majority of known laticiferous plants, some earlier work has shed some 

lights into the location and distribution of laticifers in the plant kingdom. Work 

done by Esau (1965), for instances, demonstrated that laticifers might occur in 

any plant organ and are not restricted to certain part of the plants only. This 

observation is further supported by other workers such as of Gomez (1982) in 

Hevea, Roy and De (1992) in Calotropis gigantea, Fineran (1982) in Euphorbia 

pulcherrima and Condon & Fineran (1989) in Calystegia. 

Having said that, however, this doesn't mean that all plants in this vast plant 

kingdom have laticifers in their tissues or some of their tissues. In some 

plants the laticifers are barely present or there are none at all. In the case of 

known latex bearing plants the presence of laticiferous cells can sometimes be 

restricted or exclusively found in certain or specialized areas of plants only. 

Wilder and Harris (1982) have shown that in Cyclanthus bipartitus Poit. 

(Cyclanthaceae), the laticifers are restricted to certain tissues of the plants. 

They noticed that the laticifers were absent from roots and internal portions of 

rhizomes and from regions of leaf primordium. Their observation on the 
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occurrence of the laticifers in particular tissues of Cyclanthus, despite the earlier 

reports, suggest the possibility that this could be a point to separate the 

cyclanthaceous subfamilies Cyclanthoideae and Carludovicoideae merely at the 

level of subfamily, in their taxonomy nomenclature. 

According to Metcalfe and Chalk (1989), the distribution of laticifers within the 

plant body varies from one species to another. As stated earlier, very often they 

accompany the vascular tissue, and they occur particularly in the phloem, where 

it is not always easy to distinguish them from sieve tubes. Sometimes they are 

more widely distributed in the parenchymatous tissue, e.g. in Nerium oleander L. 

In the xylem itself they are generally restricted to the rays. In many plants they 

pass out into the leaves and may have branches extending into the mesophyll 

where they sometimes reach the hypodermis (if one is present) or the epidermis 

itself. 

In addition, Metcalfe (1967) emphasized that laticifers are not confined to plants 

with any one particular type of habit nor to plants from any particular type of 

habitat. They can also be found in herbs, including both xerophytic succulents 

and water plants, as well as in trees, shrubs, and lianas. In some species, as 

mentioned earlier, the latex is usually restricted to certain tissues, as found in 

the interesting Decaisnea insignis Hook. f. and Thomo., a shrub belonging to 

the family Lardizabalaceae which is related to the more familiar Berberis family, 

the Berberidaceae. Here the latex is restricted to the fruits where it is to be 

found in a system of canals. 
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1.5 THE DIVERSITY AND GEOGRAPHIC DISTRIBUTION OF LATEX 

BEARING PLANTS 

Rubber bearing plants have intrigued and fascinated botanists and keen 

plant microscopists for their diversified and complex relationships in the plant 

kingdom. Work carried out by Bonner and Galston as early as 1947, 

mentioned that rubber formation is a property scattered through numerous 

families of the plant kingdom in no discernibly regular fashion. The Moraceae, 

Euphorbiaceae, Apocynaceae, Asclepiadaceae and Compositae are particularly 

well represented. All genera within any one family are not ordinarily rubber 

forming, and the species of one genus may differ greatly in rubber forming 

capacity, as for example in Ficus and Euphorbia. 

A survey by Esau (1965) showed that latex occurs in 12500 species belonging to 

900 genera. However, there are certain rules regarding distribution of rubber in 

the plants. Rubber for instance is a property confined to the dicotyledons branch 

of the angiosperm and other that this group (monocodyledons) only producing 

latex. Of late, records show that latex-bearing plants belong to rather more than 

22 families, mostly of Dicotyledons; however a few monocotyledonous families 

are also included, together with one genus of Pteridophyte, Regnellidium, of the 

Marsileaceae (Metcalfe and Chalk 1989, Ingroville 1992). The plants containing 

latex vary and range from such small herbaceous annuals as the spurges 

(Euphorbia) to large trees like the rubber-yielding Hevea. 

The geographic distribution of latex bearing plants, as complex as the structures 

itself, is varied and fascinating. They can be found in all parts of the world, but 

arborescent types are most common in the tropical floras (Esau, 1965). Within a 

single genus, as Euphorbia, the tropical representatives may include numerous 
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species which form and accumulate significant amounts of rubber, whereas the 

representative of the same genus in the temperate zone may form, in general, 

little or no rubber (Bonner & Galston 1947). 

1.6 THE IMPORTANCE OF THE RUBBER INDUSTRY TO MALAYSIA: A 

BRIEF HISTORY 

Rubber is a major commodity to Malaysia. Undoubtedly, it played a major part 

in contributing to the growth of the country in the past and will do so in the near 

future. The rubber industry helped to transform Malaysia from a once-poor and 

undeveloped country to one of the faster growing developing countries. 

Sir Henry Wickham first introduced rubber trees into Malaya in 1877. The rubber 

tree quickly flourished in Malaysia; large areas of jungle were cut down and 

planted with rubber trees. By the end of the nineteenth century there were 2500 

hectares of rubber in Asia and it reached a half million hectares by 1910 and 

countries of Asia became the main suppliers of rubber. During the rubber boom 

years in Malaysia, land used for rubber plantation grew rapidly. It reached a 

peak of over 2 million hectares after which the area declined to the current 

figure of over 1.8 million hectares. Malaysia itself is amongst the three biggest 

world suppliers of natural rubber, alongside Thailand and Indonesia (Ching 

1977, Schultes 1978). 

Realizing the importance of rubber industry to the Malayan (it was known as 

Malaysia after the independence in 1957) economy, the government (British 
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government at that time), set up and established a research station in Kuala 

Lumpur in 1925, striving to address the problems and matters relating to rubber. 

The institute was known as The Rubber Research Institute of Malaysia (RRIM) 

and now after 74 years of its establishment it has contributed tremendously 

the growth of the rubber industry in Malaysia. In 1998, RRIM, Malaysia Rubber 

Producer Association (a research branch in United Kingdom) and The Malaysia 

Rubber Research and Development Board (MRRDB) were merged together and 

become one corporate company known as Malaysian Rubber Board (MRB). 

During the period of 1993-1997, the rubber industry's contribution to the 

country's Gross Domestic Product increased significantly, which accounted for 

20% for world production and 13% of the world export the same years. This is 

also due to the rapid expansion of the downstream rubber products and 

furniture manufacturing industries. A good deal of Malaysia's rubber (over half) 

comes from thousands of privately-owned plots of land called smallholdings, 

which are usually about 2 hectares, The rest is grown on big estates owned by 

various companies; each can cover over a thousand hectares (Sooi & Sekhar 

1978). These increases in productivity are mainly the outcome of innovations 

emanating from RRIM, complemented by contributions from the private sector, 

and extension and development agencies. However, the industry experienced 

low total production in 1993 owing mainly to reduced tapping because of low 

prices. 

The structural changes underlying the rubber industry were manifested in the 

shift in importance from the upstream to the downstream sector activities. The 

increasing raw rubber supply needs of the rubber processing industry could not 

be met following the declining trend in Malaysia's natural rubber (NR) output. 

This has resulted in the progressive increase in rubber imports, which not only 

met the needs of the products industry but also bolstered Malaysia's exports. Of 

significance was the large volume of latex imports that were needed to 
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supplement the latex requirement for the latex-based glove and rubber products 

manufacturing sector (Allen etal. 1976). 

Similarly, the fast expanding rubberwood furniture industry's material supply 

needs would depend on the long-term supply of rubberwood, which in turn would 

be dependent on the rate of rubber replanting programme. About 80% of the 

export value of wooden furniture consists of rubberwood furniture. 

Research and Development (R&D) activities in the upstream sector continued to 

be aimed at addressing issues faced by the producers such as the needed to 

increase latex, land and labour productivity, improved planting materials as well 

as to accelerate the adoption of labor-saving technologies to overcome the labor 

shortage, which is the main and current problem in the industry today (Sekhar & 

Pee 1985). 

1.7 OBJECTIVES 

Several objectives were addressed in this project. They are listed below: -

1. To investigate several tissue preparation techniques for studies of the 

structure and differentiation of laticifers, and to allow application of 

molecular probes to advance further studies of differentiation. 

2. To investigate structure changes of laticifers in different stages of 

development of Meconopsis cambrica. 

3. To investigate the structure and differentiation of laticifers in different 

tissues of Hevea brasiliensis. 

4. To investigate and compare laticifer development in several taxa. 
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Table 2: Summary of research carried out on latex bearing plants. 

SPECIES TECHNIQUES AUTHORS PAPERS 
Allamanda violaceae TEM Inamdar, J.A. et al. Ann. Bot. 62: 583-588, 1988 
Allium sp. Light & TEM Huang, S.M. & Sterling, C. Am. J. Bot. 57:1000-1003, 1970 
75 genera of Araceae Light mic. French, J.C. Bot. Gaz. 149(1): 71-81. 1988 
/. Asclepias syriaca 
II. Asclepias tuberosa 

fluorescent 
immunocytochemistry. 

Dunbar. K.B. era/. Amer. J. Bot. 73.(6): 847-851. 
1986 

Calotropis giganteae Light mic. &TEM Roy, A T . & De, D.N Ann. Bot. 70: 443-449, 1992 
Calystegia soldanella Fluorescence mic. Bruni, A. et al. Experentia 30, 1390-1391,1974 
Calystegia silvatica Light mic, TEM & SEM 

(freeze-drying) 
Condon, J.M. & Fineran, B.A. Bot. Gaz. 150(3). 289-302. 1989 

Cannabis sativa TEM Mesquita, J.F. & Santos Dias, 
J.D. 

Boletim Da Sociedade 
Broteriana 57, 337-56, 1986 

6 genera of Convolvulaceae Freezing for SEM Fineran, B.A. & Condon, J.M. Can. J. Bot. 66. 1217-1226. 
1988 

Cryptostegia grandiflora Light mic. Blaser, H. W. Am. J. Bot. 32, 135-141, 1945 
Cyclanthus bipartitus Light & stereo mic. Wilder, G.J. & Harris, D. H. Bot. Gaz. 143(1): 84-93. 1982. 
Euphorbia supina Light mic. Rosowski, J.R. Bot. Gaz. 129(2): 113-120. 1968 
Euphorbia lathyris Light mic. &TEM Groeneveld, H.W. & Roelvink, 

P.W. 

Groeneveld, H.W. et al. 

Planta 154:347-351, 1982 

Ann. Bot. 51,307-315,1983 
Euphorbia pulcherrima Light mic. (bright fields, 

phase, interference, 
fluorescence, Nomarsky & 
polarizing),TEM & SEM 
(freeze-fracturing) 

Fineran, B.A. Ann. Bot. 50: 207-220, 1982 

Ann. Bot. 52: 279-293, 1983 



/. Euphorbia abyssinica 
II. Euphorbia heterophylla 
III. Euphorbia inconstantia 
IV. Euphorbia lactea 
V. Euphorbia mauritanica 
VI. Euphorbia pseudocactus 
VII. Euphorbia milii 
VIII. Euphorbia terracina 
IX. Euphorbia tirucalli 
X. Euphorbia viguieri 

Light mic. &SEM Mahlberg, P. G. Amer. J. Bot. 62(6): 577-583. 
1975 

Euphorbia marginata Fluroscence mic. Bruni, A. et al. 

Bruni, A. & Tosi, B. 

Bruni, A. er al. 

Ann. Bot. 42, 1099-1108, 1978 

Protoplasma 102, 343-347, 1980 

Bot. Helvetica 92: 1-11, 1982 
Euphorbia esula Light mic. Mahlberg, P.G. er al. Bot. J. Linn. Soc. 94, 165-180, 

1987 
Euphorbia myrsinites TEM Biesboer, D. & Mahlberg, P.G. Planta 143, 5-10, 1978 
Ficus carica Light mic. &TEM Rachmilevitz, T. & Fahn, A. Ann. Bot. 49: 13-22, 1982 
Glaucium flavum TEM Nessler, C. L. Can. J. Bot. 60: 561-567, 1982 

Hevea brasiliensis TEM Dickenson, P.B. J. Rubb. Res. Inst. Malaya 21, 
543-559, 1969 

Light mic. Wimalaratna, S. D. Stain Technol. 48. 219-21.1973 

TEM Gomez, J.B. Proc. Int. Rubber Conf. 1-22. 
1975 

Light mic. Hao, B.Z. & Wu, J.L Ann. of Bot. 85: 37^3 , 2000 
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Hordeum sativum TEM Buvat, R. & Robert, G. Amer. J. Bot. 66:1219-1237. 
1979 

Jatropha podagrica Light mic. Cass, D. D Phytomorphology 35, 133-40, 
1985 

Jatropha species (37) Light mic. Dehgan, B. & Craig, M.E. Amer. J. Bot. 65(3): 34-352. 
1978 

1. Mammillaria heyderi TEM Wittier, G. H. & Mauseth, J. D. Amer. J. Bot. 71(1):100-110. 
1984 

II. Mammillaria guerreronis Light mic. & TEM 
Amer. J. Bot. 71(8): 1128-1138. 
1984 

Nelumbo nucifera Light mic. & TEM Esau, K. & Kosakai, H. Ann. Bot. 39,713-719, 1975 
Nerium oleander Light mic. Mahlberg, P. G. Amer. J. Bot. 48: 90-99,1961 

Botanical Gazette 124, 224-31. 
1963 

I. Pleiogynium solandri 
II. Spondias dulcis 
III. Mangifera indica 
IV. Schinus terebinthifolius 

Light mic. Venning, F.D. Amer. J. Bot. 35: 637-644. 1948 

Papaver bracteatum TEM Nessler, C. L. & Mahlberg, P. 
G. 

Amer. J. Bot. 65(9): 978-983, 
1978 

Papaver somniferum TEM Thureson-Klein, A. Ann. Bot. 34:751-759. 1970 

TEM Nessler, C.L. & Mahlberg, P. G. Bot. Gaz. 138(4):402^08. 1977 

Plumeria alba Light mic. Murugan, V. & Inamdar, J. A. Proceedings of Indian Academy 
of Sciences 97, 25-31, 1987 
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Vallaris solanaceae Light mic. & TEM Murugan, V. & Inamdar, J . A. Phytomorphology 37, 204-214, 
1987 
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2. MATERIALS AND METHODS 
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2.1 BUFFER 

Phosphate buffer solution (PBS) pH 7.0 was used in all procedures unless 

otherwise stated. 

2.2 PLANT MATERIAL 

2.2.1 Meconopsis cambrica (Family = Papaveraceae) 

Initially the plant specimens were sampled from six growth stages from the early 

fruit capsule stage to flower senescence stage, with the interval of 38 hours 

between developmental stages. Later in this experiment only stage 1 and 6 were 

used (Plate 1). Stage 1 is the very young fruit capsule, at flower anthesis, and 

stage 6 is when only the fruit itself left after the petals of the flower have fallen 

(senescent). Prof. Nick Harris supplied the plant. The flower stems were cut with 

the razor blade and immediately transferred into the fixatives in a small bottle. 

The samples were then further cut into small blocks (app. 10mm2) in the fixative. 

All sampling was carried out in the morning. 
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Plate 1: Six developmental stages of Meconopsis cambrica 

1 st. Stage of development 2nd. Stage of development 

3rd. Stage of development 4th. Stage of development 

5th. Stage of development 6th. Stage of development 



2.2.2 Papaver rhoeas. (Family = Papaveraceae) 

The choice of developmental stages was as in Meconopsis. Later in this 

experiment only stage 1 and 6 were used (Plate 2). Stage 1 (young sample) is 

the very young fruit capsule, at flower anthesis, and stage 6 (old sample) is 

when fruit itself is left after the petals of the flower have fallen (senescent). The 

protocol was very similar to that used for the Meconopsis. Plants were collected 

from the waste ground next to the Department of Biological Sciences at the 

University of Durham. 

2.2.3 Musa acuminata. (Family = Musaceae) 

Musa acuminata is a very common banana species that is very popular as an 

ornamental greehouse plant. There are several synonyms for this species. 

They are Musa cavendishii; Musa chinensis; Musa nana; Musa sinensis; Musa 

zebrine. However this banana tree is commonly known as Dwarf banana tree. 

Leaf material was sampled from two plants; one from The University of Durham 

Botanical Garden (Plat 3) and from a pot plant supplied by Professor N. Harris. 

Only two stages of development were monitored, which are stage 1 and 2. Stage 

1 was from a light green young leaf that had just emerged from the shoot and 

stage 2 was a dark green leaf whish was fully expanded. The leaves were cut 

into approximately 1.5 cm 2 and immediately immersed in the fixatives. The 

preparation for embedding was very similar to that for other samples, except that 

for the electron microscopical work the samples were embedded in a flat 

embedding mould. 
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Plate 2: Six developmental stages of Papaver rhoeas 

2nd Stage of development 1 st. Stage of development 

3rd. Stage of development 4th. Stage of development 

5th. Stage of Development 
3o 

6th. Stage of development 



Plate 3: Musa acuminata 

t 

Mature leaf 

Musa acuminata tree from University 
of Durham Botanical Garden 

Young leaf 
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2.2.4 Hevea brasiliensis (Family = Euphorbiaceae) 

The seeds were received from Malaysian Rubber Board (MRB). They were from 

the gene banks and were of different clones (mixed clones) of RRIM600, RRIM 

628 and GT1. 

The seeds were first washed under tap water to remove the dirt and sulphur 

residue (antifungus) and soaked in water overnight to soften the testa. 

Approximately 100 seeds were grown in the dark room for one month in 

Styrofoam and kept moist with a constant sprinkler. 

The first samples were taken from the seedlings in the dark room. The young 

white shoot and the cotyledon were cut and trimmed into small cubes for further 

fixation treatment. 

The plants were then transferred into Levingtons F2 Standard pH Compost and 

moved from the dark room to the growth room with a controled temperature of 

32°C. The compost was kept moist by watering for every 4-5 days. Plants were 

grown in 16-hour daylight (using fluorescent tube lighting). The second batches 

of samples were taken from the tissue of green plants (>3 months) (plate 4). The 

shoot apex, leaf, stem and the root were cut and immediately transferred into the 

fixative before being trimmed into 1 mm2 (for electron microscopical work) and 

1-2 cm 2 (histological work) blocks for further treatment. All treatments were 

carried out in the fume cupboard. 
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Plate 4: Hevea brasiliensis, pot-grown in the 
growth room. This is a one and a half year old 
tree. 
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2.2.5 Mandevilla splendens (Family = Apocyanaceae) 

Pot plant was supplied by Dr. Phil Gates; from a plant purchased at Strike's 

Garden Centre, Darlington, Co. Durham, United Kingdom. Matured green shoots 

were used (plate 5). At the time of sampling, the plant had not flowered. 

Sampling was performed in the morning. Cutting of approximately 2-3cm2 blocks 

were made from the green leaves and stem. The samples were immediately 

transferred into the fixatives for further treatment. 

2.2.6 Taraxacum officinale (Family = Compositae/Asteraceae) 

Taraxacum officinale (plate 6) plants were sampled from the field near the 

Department of Biological Sciences at University of Durham. The sampling was 

normally done in the morning. The leaves and the stem were cut into 3-4 cm 2 

sections and immediately immersed in the fixative. The samples were then taken 

to the fume cupboard for further trimming approximately into 1-2 cm 2 , and other 

procedures. 

2.2.7 Euphorbia wulfenii (Family = Euphorbiaceae) 

Euphorbia samples were taken from plants growing in the ornamental 

flowerbeds around the Department of Biological Sciences at University of 

Durham (plate 7). The leaves were cut whole from the stem and immediately 

transferred into a flask containing immunofix. The samples were taken to the lab 
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Plate 5: Mandevilla splendens tree growing in the 
pot. 
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Plate 6: Taraxacum officinale : Commonly known as dandelion. 
This plant is a very familiar sight blooming beautifully in green 
fields during summer. This particular one was sampled from the 
field near the Department of Biological Sciences at University of 
Durham. 
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Plate 7: Euphorbia wulfenii. This shrub was growing in 
the ornamental flower beds around the Department of 

Biological Sciences, University of Durham. 
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and were trimmed in the fume chamber into 2-3 cm 2 for further treatments. The 

trimmings were done while the samples were immersed in the fixative. 

2.3 TISSUE PREPARATION FOR MICROSCOPY 

2.3.1 Fixation 

2.3.2 Immunofixative 

Excised tissues were immediately placed in a solution containing freshly 

prepared 3% (w/v) paraformaldehyde, 1.25% (w/v) glutaraldehyde, and 50mM 

phosphate buffer pH 7. Tissues were fixed for 12 hours at R.T. The tissues were 

agitated using a 45° rotating platform at 2 r.p.m in the fume cupboard. 

2.3.3 Double fixation: with aldehyde/osmium tetroxide 

After the primary fixation with the immunofixative, the samples were washed in 

distilled water for 12 hours. The distilled water was then replaced with 2% 

aqueous osmium tetroxide for 8 hours on the rotator in the fume cupboard. 
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2.3.4 Triple fixation: with aldehyde/osmium tetroxide/zinc iodide (ZIO) 

According to Hawes (1994), the zinc iodide/osmium tetroxide (ZIO) technique is 

suitable for most plant, algal and fungal tissues. The fixative will impregnate the 

nuclear envelope, endoplasmic reticulum, Golgi apparatus, the tonoplast, plastid 

thylakoids and occasionally the stroma of mitochondria. In this experiment this 

procedure were applied to Hevea samples for ultrastructural studies. 

To prepare the ZIO, 3 g of zinc powder and 1 g of resublimed iodine were added 

to 20 ml distilled water in a small vial. The vials were shaken vigorously by hand 

for 10-15 min to make sure the mixtures were mixed and reacted properly. The 

solution was than filtered with filter paper into another clean vial. The solution 

should be clear or very pale yellow: If it is too yellow this means that free iodine 

is still available and not usable. The filtered solution was mixed with an equal 

volume of 2% w/v 0 s 0 4 . The solution must be used immediately for fixation. The 

fixing procedure is similar to that used for osmium tetroxide (2.3.3). 

2.4 Dehydration 

After the samples had been washed in water, they were dehydrated in a graded 

series of alcohols, 25%, 50%, 75%, 95% (v/v) and twice in 100%, allowing 30 

minutes (twice) for each step. Dehydration was carried out at room temperature 

on a rotator. 
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2.5 TISSUE EMBEDDING 

2.5.1 Embedding in LR White Acrylic Resin 

LR White medium grade resin was used. The resin was stored at 4°C and 

allowed to equilibrate at R.T. before opening to prevent the absorption of 

atmospheric water. All manipulations involving the resin were carried out in a 

fume hood and protective clothing was used. 

An equal volume of resin (medium grade) was added to the dehydrated samples 

with 100% ethanol and the solutions were thoroughly mixed. Tissues were 

infiltrated for 12 hours at R.T., and then the solution was replaced with 100% 

resin for 4 hours. The resin was replaced twice daily for two days. Finally the 

tissues were embedded in polypropylene capsules and the resin polymerised for 

12 hours at 60°C. 

2.5.2 Embedding in Araldite resin 

The sample was infiltrated with propylene oxide.araldite in the ratio of 2:1, 1:1, 

1:2 for 1 hour for each step. The specimens were then infiltrated with 100% resin 

and another fresh batch of pure resin for another 1 hour. The samples were 

orientated and embedded in a flat embedding mould for leaf, and BEEM 

capsules for other tissues, and left to polymerise in a 60°C oven for 48 hours. 
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2.5.3 Embedding in Spun* resin 

As Spurr resin is known to be very toxic, ail procedures in handling and 

polymerising the resin were carried out with great care. Throughout the whole 

protocol, double gloves were used at all times and all manipulation was done in 

a fume cupboard. 

The specimens were infiltrated with pure ethanol:spurr with the ratio of 2:1, 1:1, 

1:2 for 1 hour for each step. The solution was replaced with pure resin for 1 

hour and a batch of fresh resin for another 1 hour. Finally the samples were 

orientated and embedded in flat embedding mould, or BEEM capsule, and left to 

polymerised in 60°C oven for 48 hours. 

2.5.4 Embedding in Paraplas wax 

An equal volume of Histoclear was added to the dehydrated samples and the 

solutions thoroughly mixed. Tissues were infiltrated for 2 hours then the solution 

was replaced with 100% Histoclear. Tissues were infiltrated in several changes 

of Histoclear for at least 15 hours then an equal volume of molten wax was 

added. Tissues were infiltrated for 12 hours at 60°C then the solution was 

replaced with 100% wax. Tissues were infiltrated in several changes of wax for 

36 hours. Tissues were embedded in fresh wax using a metal mould. The warm 

moulds were submerged in a beaker of cold tap water for hardening or just left 

on the table at room temperature (when they took a longer time to harden). 
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2.5.6 Low temperature methods: Freeze-substitution 

Two approaches were used in this method. Firstly the conventional methods 

were used, which utilized the cryochamber from the microtome as the freezing 

chamber to freeze the samples. Secondly, an instrument especially designed 

for the purpose was used. In the conventional method, 2% Osmium tetroxide 

was dissolved in cold acetone. The stem of the plants was rapidly frozen by 

quickly dipping into liquid nitrogen. The frozen samples were then transferred 

into the vial containing osmium tetroxide and kept in the freezer at -80°C for two 

weeks to allow slow substitution of the medium into the tissue. The samples 

were transferred into the cryochamber and then were slowly brought up to room 

temperature over the period of 12-48 hours by adjusting the temperature of the 

cryochamber. The samples were then washed with acetone three times and 

then stained with 0.5% uranyl acetate in acetone for 2-12 hours at 4°C. The 

samples were again washed with acetone and followed the normal dehydration 

procedures [as in 2.4] except that acetone was used instead of ethanol. LR 

White resin was used to embed the samples. 

In the second method, samples from the leaves were cut approximately 1 mm 2 in 

size and immediately immersed in cryofix fixative. The samples were then stuck 

onto a slamming stud and cryofixed by slamming against a cold copper plate 

using a Leica MM90 system. The frozen samples were then quickly transferred 

to a Leica Automatic Freeze substitution chamber for the freeze substitution 

process. Tissues were first freeze-substituted in acetone at -50°C for 3 days. 

The acetone was then replaced by pre-chilled ethanol at -50°C for 24 h in three 

changes. The tissues were then infiltrated in increasing concentration of Lowicryl 

HM20 as follows: 1 hrs of 25% resin: ethanol -50°C, 1 hrs of 50% resin: ethanol 

-50°C, 1 h 75% resin: ethanol -50°C and finally 100% pure resin for 24 h at 

-50°C, three changes. Next stage was the polymerisation of the resin under the 
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UV light. First the resin was polymerised for 2 days at -50°C, then another 2 

days at -20° and finally 2 days at room temperature. The blocks were ready for 

sectioning with normal ultramictome. 

2.5.7 Microwave oven technique 

Fresh samples (stem) were cut and immediately immersed in a beaker of tap 

water. The beaker and the plant were then put in the microwave oven (Sanyo 

650W) and then were heated for 1-5 minutes. The results were assessed by 

looking at the degree of latex coagulated inside the laticifers. Longer heating will 

make the latex burst out from the laticifers or the tissue may be damaged. 

2.6 Sectioning resin embedded materials 

Embedded materials were sectioned using glass knives on a Sorvall MT2-B or 

Reichert Ultracut-S ultra microtome. The sections were floated onto a reservoir 

of water, which was created on the glass knives using insulating tape sealed 

with dental wax. 

Semi-thin 1um sections, for light microscopy, were removed from the reservoir 

with a round-tip glass pipette and placed on a drop of water on TESPA coated 

slides. Sections were dried down on a hotplate for a few minutes until the 

sections had adhered to the slides. 

Ultra thin 150nm sections were collected onto grids from the reservoir. Sections 

for morphological studies were collected onto 200 mesh copper grids. 
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2.7 Sectioning wax embedded materials 

Wax blocks were trimmed and attached on a wooden cube as a holder. The 

blocks were then cut at 8-10 \xm on a Leitz 1512 rotary microtome. The sections 

were floated onto a drop of distilled water on a preheated albumin-smeared 

microscope slide and allowed to dry overnight on a 40°C hotplate. Sections were 

dewaxed by immersing the slides for 15 minutes in Histoclear, followed by 3 

minutes in 80%, 50%, 30% histoclear in ethanol, then in a decreasing order of 

100% ethanol for 10 minutes and 3 minutes each in 70%, 50% and finally 30% 

ethanol before the staining procedure. 

2.8 Formvar coating grids 

A thin film of 0.3% (w/v) Formvar in chloroform was floated onto distilled water 

and the grids carefully placed on the formvar film. The film and grids were picked 

up using a strip of parafilm and allowed to air dry at R.T. in a dust free 

environment. 

2.9 TESPA (aminopropyltriethoxysilane) coating of microscope slides 

Microscope slides were washed in detergent then rinsed thoroughly in distilled 

water. The slides were immersed in a 2% solution of TESPA in acetone for 10 

seconds, then rinsed in two changes of acetone and finally in distilled water. The 

slides were air dried at R.T in a dust free environment. 
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2.10 SCANNING ELECTRON MICROSCOPY (SEM) 

Specimens were dehydrated as described in section 2.4 in a graded series of 

acetone instead of alcohol. Specimens were then critical point dried in liquid 

carbon monoxide in an E 3100 Jumbo Critical Point Drier, then mounted on 

stubs and dissected using a stainless steel blade. Specimens were gold coated 

and then viewed on a Hitachi JEOL JSM 848SEM at 25 kV. Images were taken 

both with film and stored in Iomega™ zip disks. 

2.11 TRANSMISSION ELECTRON MICROSCOPY (TEM) 

Sections were collected on 200 mesh copper grids and were dried on a piece of 

filter paper. The grids were then stained on a droplet of uranyl acetate for 10 

minutes and washed by dipping in fresh distilled water. The grids were 

immediately transferred to a droplet of lead citrate for another 10 minutes and 

washed in fresh distilled water. The sections were observed with a Philip EM 300 

transmission electron microscope, at 100 kV. Micrographs were taken on plate 

film and then proceed for development and printing. 

2.11.1 Micrographs enhancement 

Micrographs were scanned with an Agfa flatbed scanner and enhanced with 

Adobe™ Photoshop 5.0 software. 
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2.12 HISTOCHEMISTRY 

2.12.1 Calcofluor 

Fresh plant samples were cut with a razor blade and instantly put into droplets of 

0.01% (w/v) aqueous solution of calcofluor. Sections were left stained for 5 

minutes. Sections were rinsed in distilled water and viewed with epi-fluorescent 

illumination using a Nikon Diaphot equipped with an epifluorescence attachment 

and a Nikon ultra-violet filter block {X= 405nm). 

2.12.2 ANS (8-anilino-1 -naphtalene sulphonic acid) 

Fresh samples were cut with a razor blade and instantly put into droplets of 0.1 % 

(w/v) ANS on a slide. The samples were left to be stained for app. 2-3 minutes 

and viewed with epi-fluorescent illumination using an ultra-violet filter block and 

with blue excitation as described by Gates & Oparka (1982). 

2.12.3 Acridine orange 

Fresh plant samples were cut with a razor blade and instantly put into droplets of 

0.01% (w/v) aqueous acridine orange on a slide. Sections were rinsed in 

distilled water and mounted with a cover slip. For sectioned samples, the 

samples were mounted in Citifluor. Samples were viewed with epi-fluorescent 

illumination using a Nikon blue filter block (X = 495nm) (Sanderson 1994). 
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2.12.4 Toluidine blue 

Sections were stained for 1-3 minutes in a solution of freshly filtered 0.01% (w/v) 

Toluidine blue in 1 % boric acid. Sections were rinsed in distilled water, air dried 

and mounted in DPX (Conn 1969) 

2.12.5 Oil Red O and Dansyl Chloride 

The samples (leaf) were cut into approximately 10 mm 2 before being fixed in 

FAA (Formalin:Acetic Acid:Alcohol) fixatives for at least 24 hours. The samples 

were then cleared in 1:1 hydrogen peroxide (30%): Glacial acetic acid in a test 

tube which was boiled on a hot plate in the fume hood for 2-3 hours. Then the 

samples were washed in 70% ethanol for 10 minutes followed by three change 

of deionised water. The samples were stained with Toluidine blue O for 2-3 

minutes before the upper and the lower epidermis layers were peeled off. Then 

they were stained with Oil Red O for 15 minutes followed by Dansyl Chloride for 

10 minutes. The samples were then washed in 1 % sodium bicarbonate pH 8 and 

washed with deionised water before mounting onto a slide with 60% glycerine or 

citifluor. The samples were viewed under the fluorescent microscope with the 

green filter. 
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2.12.6 Safranin 0 and Astra blue 

This stain was used for wax sections only. The sections were stained with 30% 

(w/v) Safranin in ethanol for 3 minutes before rinsing in distilled water. The 

sections were then transferred into Astra blue (5mg/ml in 20mg/ml tartaric acid) 

for 10 seconds. Then the sections were rinsed with distilled water followed by 5 

seconds in 30% ethanol. The sections were left on a 45°C hotplate for at least 1 

hour before being transferred into 100% histoclear. The sections were finally 

mounted with DPX or histomount under the cover slip and were again left on the 

hotplate overnight (Conn 1969) 

2.12.7. Control treatments. 

2.12.7.1 Autofluorescent and staining control 

Unstained control samples were observed under the microscope to take account 

of autofluorescence staining artefacts in the cells. 

2.13 IMMUNOCYTOCHEMISTRY 

2.13.1 Immunocytochemistry for light microscopy 

Sections were first rinsed in TBS (100mM Tris, 150mM NaCI) pH 8, and then 

incubated in a blocking solution containing 1 % pre-immune serum, 0.01% Tween 
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20 in TBS for 30 minutes at R.T. Excess blocking solution was removed from the 

slides and then the sections were incubated in primary antibody diluted with 

blocking solution. Optimised incubations for different antisera ranged from 4-24 

hours at 4-20°C. Sections were then washed in several changes of TBS for 15 

minutes, then incubated with conjugated secondary antibody (diluted as 

manufacturer [Sigma-Aldrich Company] instruction). 

2.13.2 Silver Detection 

Sections were incubated in 5nm gold-labelled secondary antibody (diluted as 

manufactures instructions) for 2 hours at R.T. in total darkness. Sections were 

sequentially rinsed in several changes of TBS, distilled water, Milli-Q (heavy 

metal-free) water. Sections were then silver enhanced for 1-3 minutes in 

darkness using Amersham IntenSEM following manufacturers instructions (the 

reaction was monitored for the best result). The sections were rinsed in Milli-Q 

water, air dried and mounted in DPX. Sections were viewed under epi-

fluorescense illumination using a Nikon IGGS filter block. 

2.14 Nomarski Imaging OR Differential Interference Contrast (DIC) 

Nomarski imaging or differential interference contrast (DIC) basically involved 

manipulation of two special optical components in the microscope called 

Wollaston prisms (Shaw & Rawlins 1994). 
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To adjust the microscope for DIC (Nikon Optiphot), bright field imaging was 

obtained with the condenser set to DIC position with the image-splitting prism 

out of the optical path. Next the condenser aperture was open and the polarizing 

filters were inserted. One was not added until the field was maximally dark and 

then the image-splitting prism was inserted as well and adjust until the best 

image (personal opinion) was achieved. 

2.15 LIST OF SUPPLIERS 

AGAR SCIENTIFIC LTD. 66A Cambridge Road, Stansted, Essex. CM24 8DAfor 

microscopy supplies 

BDH LABORATORY SUPPLIES MERCK LTD. Hunter Boulevard, Luterworth, 

Leicester. LE17 4XN for microscopy supplies and general chemicals 

BIO-RAD LABORATORIES Ltd. Bio-Rad House, Maylands Ave., Hemel 

Hempstead, Herts HP2 7TD 

BIO-CELL RESEARCH LABORATORIES, Cardiff Business Technology Centre, 

Senghenydd Rd, Cardiff CF2 4AY for Immunohistochemistry 

EASTMAN-KODAK LTD, Acornfield Rd. Knowsley Industrial Park North, 

Liverpool L33 7UF, UK 

LONDON RESIN COMPANY, P.O. Box 34, Basingstoke, Hants RG21 2NW, UK. 
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NIKON Japan, Fuji Building 2-3, Marunouchi 3-Chome, Chiyoda-Ku, Tokyo 100 

Japan. 

NIKON UK Ltd, Haybrook, Halesfield 9, Telford, Shropshire TF7 4EW. 

POLYSCIENCES Ltd, 24 Low Farm Place, Moulton Park, Northampton NN3 1HY 

for microscopy supplies 

SIGMA-ALDRICH COMPANY LTD. Fancy Road, Poole, Dorset. BH17 7NH for 

general chemicals 

SPI supplies, Toronto, Canada for consumables in Electron microscopical work 

TAAB LABORATORIES EQUIPMENT LTD. 3 Minerva House, Calleva Industrial 

Park, Aldermaston, Berkshire. RG7 4 QW for microscopy supplies. 

ZEISS UK, PO Box 78, Woodfield Rd, Welwyn Garden City, Herts AL7 1LU, UK. 

For microscopy supply and parts. 
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The results in this project have been divided into several sections based on the 

anatomy and ultrastructure of samples. The main emphasis has been placed 

on methodology and descriptions of latex vessels on each species, according to 

different treatments applied to the species. 

3.1 Meconopsis cambrica (Papavaraceae) 

3.1.1 Effect of different embedding media and fixatives regimes on the 

distribution and structure of laticifers at two developmental stages 

(stage 1-young and stage 2 - old). 

All samples in this experiment were stained with toluidine blue and observed 

under bright field light microscope, or as otherwise stated. 

3.1.1.1 Fresh samples (no embedding medium) stained with 

calcofluor 

Fresh samples from the field were collected to observe the unfixed stage of the 

plant's cells. Both the leaves and the stem when cut, immediately produced a 

white and very runny liquid. The latex then turned yellowish with time. 
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Without any chemical fixation, the plants have the advantages in providing 

information on the integral and original state of the cells. Hand-cut thin sections 

(approximately 1mm) of Meconopsis flower stem were stained with calcofluor 

and observed with epi-fluorescent illumination. Calcofluor stain was used 

because it reacts with cellulose, which is the major component of the cell wall, 

and will make the cell walls of the tissues fluoresce blue when exposed to UV 

light. 

Figures 1a & 1b show images of Meconopsis flower stem obtained using 

calcofluor staining alone and in combination with bright field illumination. 

Laticifers are clearly seen as a row of dark cloudy cells in the cambial region. 

The murky presentation of the cells is due to the latex oozing out during the 

sectioning and clogging the laticifers, hence obstructing light passing through 

the cell (fig. 1b). The latex, however, did not fluoresce with this stain. The 

technique that combines both UV and BF illumination, revealed a distinctive 

array of laticifers. This is a very good and fast technique to examine the 

location of the laticifers in fresh samples, provided the laticifers in the plant 

have a large amount of latex to facilitate the observation. 

3.1.1.2 Samples embedded in LR White resin 

Figure 2 shows a transverse section (ts) of young Meconopsis stem. Laticifers 

can be identified in the cambial region of the vascular bundle, with their 

irregular shapes compared to other parenchyma cells. The arrangement of the 

laticifers resembles those in figures 1a & 1b. The laticifers also contain dense 

cytoplasm, which is a prominent feature of young laticifers. Fine structure 
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Figure 1a 

Figure 1a & 1b: Cross section of fresh Meix»DQpsia.stem. Latjcfers can be se 
appearance in the cambist region. Figure 1a was a at>sssoctictt erf stem, v » 

lb was observed when tee incident iip>tlkjmir»ate from betow trie so. 
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Figure 2: Cross section of young Meconopsis stem, embedded in LR 
White. Laticifers can be differentiated from other ceils by their typical ir
regular shapes or dense cytoplasm in young samples. Xylem showed a 
common thickening of the wail which is very distinguishable with the stain. 
Lv=laticifers, x=xylem. Bar= 30pm. 

i 
Figure 3: Cross section of old Meconopsis stem, embedded in LR White. 
Laticifers in this sample can clearly be identify by their contents, which was 
the vacuoles. Arrows showed the content of the xylem that look like they 
contained vacuoles inside them, which was sometimes confusing. 
Lv=laticifers, x=xylem. Bar=30pm. 



appears to be well preserved where there is no cell shrinkage. In an older 

sample (fig. 3), vacuoles can be clearly seen in the laticifers. Lumen in xylem as 

shown in figure 3 can sometimes be mistaken for vacuoles (arrows). 

A longitudinal section (Is) of young Meconopsis stem (fig. 4) showed a row of 

latex vessels with vacuoles. Two or more laticifers can be seen located side by 

side and in parallel of each other. Nuclei can clearly be seen in laticifers. 

Cytoplasm was quite dense in most of the laticifers. However in older plants, as 

shown in figure 5, vacuoles are quite scarce in laticifers. However cytoplasm 

appears to be quite distinguishable. Nuclei were also very scarce in the laticifers 

of old samples. The cell wall at certain places (black arrow) in figure 5; was 

observed to have disintegrated, probably due to cell lysis and the wall joining the 

other wall of adjacent cell to make a bigger network of laticifers. 

Both in figures 4 & 5, the characteristics of laticifer cells of young and old plants 

are quite conspicuous, where the younger laticifer cells generally contain more 

cytoplasm, whereas the older plant's cell (probably due to the ageing factor) 

contain less cytoplasm. 

3.1.1.3 Samples embedded in Araldite resin 

3.1.1.3.1 Young and old Meconopsis fixed with osmium tetroxide and 

zinc iodide (ZIO) 

There were two regimes of fixatives used in this experiment, the first was fixed 

with osmium tetroxide plus zinc iodide (ZIO) and secondly the samples were 

fixed with standard osmium tetroxide. 
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Figure 4: Longitudinal section of young Meconopsis stem. Laticifers contain 
numerous vacuoles in the cytoplasm. The cytoplasm in the laticifer was also 
quite dense compared with the surrounding cells, a distinguishing features 
and a typical character of young laticifers. Arrows indicated vacuoles. 
Lv=laticifers, n=nucleus. Bar=30um. 

Lv 

Lv 

Figure 5: Longitudinal section of old Meconopsis stem. Laticifers can be 
identified and distinguished from other cells by their content of apparent cy
toplasm within the cells, though vacuoles were hardly visible in the laticifers. 
Cell wall thinning occurred at several points ( ) and even break down, 
hence connecting with the neighbouring cells. Some laticifers' end tip 
showed swelling and forming bulbous form ( ), probably the initial step in 
the process of interconnecting with other adjacent laticifers. 
Lv=laticifer, n=nucleus. Bar=60um. 



The cross section from the stem of young samples fixed with ZIO did not show 

clear and strong evidence of the laticifers location as in other samples prepared 

with other fixation techniques. However, in some photographs as shown in figure 

6, vacuoles in the laticifers make the cell (laticifers) quite recognisable and 

different from other non-laticiferous cells. From the same photograph, 

plasmolysis was also quite noticeable (arrows) in certain cells (parenchyma), 

but fortunately the plasmolysis did not seem to occur in the vascular bundle 

region and especially in the laticifers. 

As in the younger plant, the laticifers in older plants were also quite difficult to 

locate. And it was even harder to verify if the suspected cells were the laticifers 

or not due to the lack of vacuoles in the older plants (figure 7). This photograph 

also shows extensive plasmolysis occurring in the parenchymatous cells; as 

in the young plants. The fixatives seemed to fix the cells in the vascular bundle 

quite well for that reason. 

3.1.1.3.2 Young and old Meconopsis fixed with osmium tetroxide 

In longitudinal section (Is) of the old Meconopsis stem (figure 8), fixed with 

Os0 4 . laticifers were clearly seen and observed to be located running in parallel 

to xylem. Vacuoles were, however, quite prominent in the laticifers, in contrast 

to the previous observation. Another interesting observation was that, there 

were quite a few places where the cells wall seemed to swell and formed 

bulbous tips toward the end of laticifers (arrow). It was thought that these were 

actually the place where the joining of two developing neighbouring laticifers 

occurred. However, there was no evidence of cell plasmolysis in this particular 

sample. 
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Figure 6: Grots section of young MeGonopsb stem fixed with ZIO. Laticifers 
can be seen containing vacuoles. Cell ptasmalemma were noticed to be 
shrunk inward trie cells In the parenchyma ceHs (arrow), out were not ob-

Lv l̂attcifers, x»xylem. Bar«30um. 
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Figure 7: Gross section of old Msconopais stem fixed with ZIO. Vacuoles 
wale less visible In the laticifers. Plaamalemma in the parenchyma cells 
suffered quite severe shrinkage (arrow). Cell plastnolysle was not ob
served in latlcrferous cells. Lv»taticlfers, xw f̂ern. Bar* 30um. 
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o n 9'* u d i n a section of old Meconnpsis stem, fixed with osmium tetroxide. Laticifers seem to run in 
parallel with xylem. Vacuoles were quite scarce. Again, there were a few points, especially toward the end of 

the laticifers, where the cell wall showed swelling (arrows). Lv=tetlcifers, x=xylem. Bar=30um 



In figure 9, a longitudinal section of young Meconopsis shows a stack of laticifers 

running in parallel with the xylem. Vacuoles could be observed in the laticifers. 

The structures seemed to be preserved very well, as there was no evidence of 

cell shrinkage. 

However a cross section of young Meconopsis stem showed that it was rather 

difficult to identify the location of the laticifers, as shown in figure 10. The 

location of the laticifers were confirmed by comparing the fixed-embedded 

section with the fresh unfixed samples (Figure 1) There was no evidence of 

vacuoles or other organelles observed in the laticifers. 

3.1.1.4 Samples embedded in Spurr resin 

3.1.1.4.1 Young and old Meconopsis fixed with osmium tetroxide/zinc 

Iodide (ZIO) 

Results from the young Meconopsis stem (Is) fixed with ZIO, showed laticifers 

that contained numerous vacuoles (figure 11). The cell wall at the tip of the 

laticifers appeared to have disintegrated and joined the neighbouring laticifers, 

forming an extensive network of laticifers (arrows) as described previously. 

Cytoplasm in the laticifers was quite dense. However, in cross section (ts) of the 

young sample, vacuoles could hardly be seen (fig. 12). However laticifers could 

be identified by their irregular shape compare to other cells. Plasmolysis was 

seen in parenchyma cells. Fixatives seem to fix the structure of laticifers and 

cells in the vascular bundle well. 
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Figure 10: Cross section of old Meconopsis stem. No vacuoles 
were visible in the laticifers. Cell plasmolysis was apparent in the 
parenchyma cells, outside the vascular bundle (arrows). X=xylem, 
Lv= laticifers. Bar 5 70pm 
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Figure 11: LS section of young Meconopsis stem fixed with ZIO. 
Vacuoles can be seen in the laticifers. Arrows showed the point 
where two laticifers joined together after the ceil wall disintegrated. 
X s xylem, Lv= laticifers. Bar=30um. 

Figure 12: Cross section of young Meconopsis stem fixed with 
ZIO. Vacuoles were not visible in laticifers. Cell plasmolysis was 
quite evident in parenchyma cells (arrows). 
X=xylem, Lv= laticifers. Bar=30um. 
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Similarly with the young sample, the old Meconopsis stem, shown here in 

longitudinal section, exhibited cell plasmolysis in parenchyma cells. Laticifers 

and cells in the vascular bundle seemed to be preserved very well. Vacuoles 

could be observed in the laticifers (figure 13). In cross section (ts) of the old 

Meconopsis as shown in figure 14, again it was quite hard to distinguish the 

location of laticifers. Even though it was quite difficult to identify the laticifer 

cells by their normal content (vacuoles), on the other hand, their irregular 

shapes (caused by a few cells merging together), were easily seen. Vacuoles 

were not visible in the laticifers cells and cell plasmolysis was only observed in 

the parenchyma cells. 

3.1.1.4.2 Young and old Meconopsis fixed with osmium tetroxide 

In a longitudinal section of young Meconopsis stem, vacuoles could be seen 

clearly in laticifers (figure 15). In one particular laticifer (arrow), the cell wall had 

started to expand and formed a bulbous shape. However the cell wall did not 

disintegrate and hence did not merge with the neighbouring laticifers. The 

results also showed that the cell wall expanded not toward the tip of the cell, but 

at the middle of the cell. 

It is quite interesting to note in figure 16, laticifers in young Meconopsis (ts) were 

not only forming in a single array of cells but were also in a shape of a 'flower1 

arrangement (*). It was also quite obvious that some laticifers appeared to have 

a dense amount of cytoplasm. Vacuoles were quite apparent in the laticifers. 
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Figure 13: Ls of old Meconopsis stem fixed with ZIO. Vacuoles could be 
observed in the laticifers. Arrows showed cell plasmolysis in parenchyma 
cells. Lv=laticifer, x=xylem. Bar=30um. 

Figure 14: Ts sample of old Meconopsis stem fixed with ZIO. Vacu
oles could not be observed in the laticifers. Cell plasmolysis were very 
severe in parenchyma cells (arrows). Lv=latjcifer, x=xylem. Bar=30pm. 
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Figure 15: LongMudlnal section of young Meconooste stem, fixed with osmium tetroxide. Utfclfare were located In betwe* 
xylem and phloem, vacuoles can be seenFWIaldlers. Arrows indicated the place where the oat waiaof ege tatdfer 

swelled and appeared to be blocking the neighboring teflcifer. Lv=taticlfers, x=xytem, ph=phtoem. Ber = 30um. 



Figure 16: Cross section of young Meconopsis stem fixed with osmium 
tetroxide. Laticifers can be seen containing vacuoles. A few laticiferous 
cells form a conspicuous "flower" arrangement ( * ). 
X=xylem, Lv= laticifers. Bar=30um. 
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In older Meconopsis stem as shown in figure 17, vacuoles were visible in the 

laticifers. Cell walls of the laticifers were seen to disintegrate at several points 

and interconnected with parallel laticifers (arrow). As mentioned before, this 

may be an initial stage in the formation of an anastomosing network of laticifers. 

3.1.1.5 Distribution of laticifers in young Meconopsis cambrica stem 

using the Differential Interference Contrast (DIC) Technique 

Figure 18 show an image of a cross section of young Meconopsis stem, 

observed with DIC microscopy. Results showed that the lignified cell walls of 

xylem were clearly visible. Laticifers could be observed located in the cambial 

region. However there was no vacuole visible in the laticifers. The cell wall of the 

laticifers could not be defined clearly as shown in figure 19 and at some point it 

was also clear that there were holes or gaps in between two adjacent laticifers, 

apparently because the cell wall ruptured (figure 20). 
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Figure 18: A Nomarski image of a cross section of young Meconopsis stem. 
Cell wall outline shown very clearly especially the wall with secondary thick
ening as for xylem. Laticifers were observed to be empty. 
X=xylem, Lv= laticifers. Bar = 30 urn. 

Figure 19: A longitudinal section of young Meconopsis stem, under Nomar
ski microscopy. Laticifers seem to be empty, without vacuoles. Cell walls of 
the laticifers were not defined well. Arrows show a sieve plate in the sieve 
tube. Lv= laticifers, st= sieve tube. Bar = 50pm. 
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Figure 20: Nomarski image of Meconopsis, showed cell wall ruptures. Ar
rows showed cell wall of the laticifers ruptured. Laticifers were observed to 
be located on both side of xylem, because of the orientation during section
ing. Lv= laticifers, n= nucleus, x=xylem. Bar = 30um. 
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3.1.2 Scanning Electron Microscopy (SEM) of laticifers in 

Meconopsis cambrica 

Scanning electron microscopy images of Meconopsis showed rows of laticifers 

located in the cambial region of the vascular bundle (fig. 21) and numerous 

empty vacuoles could be seen in the laticifers. At a certain point (arrow), as 

seen before, the cell wall started to disintegrated and interconnected with the 

adjoining laticifers. It was also observed that two or more laticifers were stacked 

close with each other, which presumably later will merge and form a bigger 

laticiferous cell. 

3.1.3 Ultrastructural study of laticifers in Meconopsis cambrica: 

Effect of different preservative regimes and embedding 

medium on structural preservation. 

3.1.3.1 Samples fixed with Os0 4 , embedded in Araldite 

Electron micrograph of young laticifers in Meconopsis showed a large vacuole 

containing a net-like structure (figure 22). Whereas in contrast with the older 

samples as shown in figure 23, laticifers contained numerous vacuoles, packed 

closely together and apparently lacking a net-like structure or totally empty 

Neighbouring cells appeared to be well preserved without any plasmolysis in 
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Figure 21: SEM of young Meconopsis stem. Laticifers were occupied with nu
merous amount of vacuoles. Arrows ( ^ )showed starch grains. Insert: showed 
vacuoles ( -*- ) in the laticifers. Cell wall ruptured ( ) and merged with the 
adjacent laticifers. Lv=laticifers, x=xylem. Magnification = x 100 (insert magnifica
tion = x150). 
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Figure 22: Laticifers in young Meconopsis stem with net-like structure. 
Vacuoles were occupied with a net-like structure, located in the centre of 
the laticifers (the biggest vacuole). Note that small vacuoles always asso
ciated very closely with the endoplasmic reticulum (arrows). Bar= 2.4um. 
Small insert showed net-like structures at a higher magnification . 
Bar=0.3um. v=vacuole, cw=cell wall, Gb=Golgi bodies, er=endoplasmic re
ticulum. 
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Figure 23: Vacuoles in laticifers of old Meconopsis stem, fixed with 
osmium tetroxide. Vacuoles were arranged closely together and very 
tightly packed. Net-like structures were not present in the vacuoles. 
Arrows showed electron dense structure in the laticifers. Symbol (*) 
indicated some vacuoles in cell wall inclusion. V=vacuoles, cw=cell 
wall, Bar= 5.6um. 
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young samples (figure 22). A few other organelles could be seen such as 

endoplasmic reticulum, vacuoles, polysomes and microtubules (fig. 24 & 25). 

Figure 26 shows an observation on the configuration of cell wall in the young 

(Figure 26a) and older sample (Figure 26b). Young sample showed microfibrils 

in loose arrangement whereas the older showed microfibrils in a more compact 

arrangement. Figure 27 showed mature laticifers occupied by empty vacuoles. 

Two laticifers were seen to be located adjoining to each other. Several different 

sizes of vacuoles were quite obvious in the laticifers, especially in the old 

sample. Ultrastructure information was generally very well preserved and there 

was hardly any structural damage or artefacts present in the samples treated 

with this procedure. 

3.1.3.2 Samples fixed with ZIO; embedded in Araldite 

Apart from the vacuoles, the laticifers also contained electron dense 

organelles, which were quite prominent in old laticifers and this was very 

prominent in ZIO fixed samples, as shown in figure 28. These vacuoles had a 

single membrane and were packed closely to each other, particularly in the 

mature laticifers. 

Most vacuoles were observed to be closely associated with endoplasmic 

reticulum and it was believed that these vacuoles originated from the dilation of 

endoplasmic reticulum. Vacuoles could be seen forming in different sizes and 

containing different structures. Some were empty and some contained electron 

dense material as seen in figure 29. Some ER could be seen in a tubular form, 

aggregate and forming multilayered cisternae. The different forms of 

endoplasmic reticulum observed are demonstrated very well in figure 29 of 
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Figure 24: TEM micrograph of laticifers in young Meconopsis stem. Few other 
organelles could be seen other than vacuoles in this laticifer. Vacuoles which 
originated from endoplasmic reticulum were observed near the plasmalemma 
(arrows) and it was presumed that this was the place where the vacuoles 
were synthesized before they moved toward the centre of the cell. Vacuoles 
vary in sizes and evolved from small to large by coalescing with the other 
vacuoles. V-vacuoles, M=mitochondria,er=endoplasmic reticulum, cw=cell 
wall. Bar=1.2um. 
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Figure 25: Organelles in laticifers of young Meconopsis stem. Endoplasmic 
reticulum is seen here, localised near the cell wall. Several vacuoles were 
observed near the endoplasmic reticulum. Para-mural bodies were present in 
between the plasmalemma and cell walls (arrows). Two microtubules were 
also observed (mt) near the plasmalemma. V=vacuoles, cw=cell wall, 
er=endoplasmic reticulum, M=Mitocondria. Bar= 0.42pm. 
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Figure 26 : Microfibrils arrange
ment in the cell wall of young and 
old laticifers. 

A: Young laticifers cell wall shows 
microfibrils were arranged quite 
l o o s e . C w = c e 11 w a l l , 
e r=endop lasmic ret icu lum, 
v=vacuole. Bar = 5pm. 

B: Old laticifers cell wall shows 
microfibrils were arranged more 
compact compare to the younger 
laticifers (b). Arrows shows elec
tron dense material in the cell 
walls. Bar = 1pm. 



Figure 27: Electron dense organelles in old Meconopsis stem, fixed 
with Os0 4 . Arrows show electron dense organelles amongst vacuoles. 
That could probably be part of endoplasmic reticulum and many heav
ily loaded small vesicles. The vacuoles were so compact that there 
were hardly any other organelles could be observed in the laticifers. 
Note that arrangement of microfibrils of the cell wall at certain places 
were quite loose and cell wall degradation were also noticeable. 
( - ). V=vacuoles, cw=cell wall,. Bar= 4.0pm. 
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Figure 28: Laticifers in old Meconopsis stem, containing 
vacuoles and electron dense substances. Vacuoles were 
tightly packed to each other. Electron dense substance 
(arrows) was clumped near cell wall, which is most probably 
the endoplasmic reticulum. The cell wall (microfibrils) were 
quite loose. Cw=cell wall, v=vacuoles. Bar=2.0um. 
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Figure 29: Laticifers of young Meconopsis stem fixed with ZIO. Notice one 
big vacuole occupying the laticifers with some organelles within it. There 
were net-like structure and globule ( - • ) inside the vacuole. There was also 
some rough endoplasmic reticulum with a lot of ribosomes attached. One 
particular arrangement of er was observed ( • ) in a circular form. Mul-
tivesilular body (mt) were present in cell, which probably related to loss of 
cytoplasmic structural integrity. V=vacuoles, er=endoplasmic reticulum, 
cw=cell wall, Gb=Golgi bodies, lb=lipid body, mt=mitochondria, 
mv=multivesicular body. Bar= 5.6pm. 
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young laticifers. There was also smooth endoplasmic reticulum with ribosomes 

still attached to them, as well as suspended in the cytoplasm. Some other 

organelles were also observed such as Golgi bodies (Gb), lipid bodies (lb), and 

mitochondria (mt). 

The electron micrograph of a laticifer cell wall (figure 30) shows at least three 

layers of wall with different microfibril orientation. In this sample (an older 

sample) there was barely any para-mural vesicles observed (Figure 30) as 

compared to the younger sample (figure 25). The middle layer of the cell wall 

looked more compact compared to the outer layer, where the microfibrils were 

bound closely together and very densely packed. The microfibrils in the outward 

layer of the walls were packed loosely. Endoplasmic reticulum was stained very 

dark with ZIO fixative. 

3.1.3.3 Samples fixed with Glutaraldehyde; embedded in LR White 

Both osmicated samples embedded in Araldite showed good ultrastructural 

preservation. However with LR White embedding medium, the quality of the 

structures were less than satisfactory. Figure 31a&b showed laticifers in old 

Meconopsis stem, embedded in LR White. It was very clear from the observation 

that the vacuole membrane seemed to be broken and looked quite porous or 

loose. There were no other organelles present in the laticifers. Cell walls of the 

laticifers were preserved quite well. 
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Figure 30: Cell wall of old Meconopsis stem fixed with ZIO. The cell wall 
contained microfibrils that were more compact in the middle compared to 
the outward region of the wall. The microfibrils in both sides (outward re
gion) were loosely arranged. There were no para-mural vesicles in the 
old samples. However electron dense masses were very prominent 
(arrows). V=vacuoles, cw=cell wall, er=endoplasmic reticulum. 
Bar=0.7um. 



b 

Figure 31 a&b: Laticifers structure in young & old Meconopsis stem 
embedded in LR White. 

Vacuoles were observed to show some disfiguration. There were no 
other organelles visible. cw=cell wall, v=vacuole, er=endoplasmic reticulum 

Bar (a) = 0.6pm, Bar (b) = 4.4pm. 



3.2 Papaver rhoeos (Papavaraceae) 

3.2.1 Effect of different embedding media and fixatives regimes on 

the distribution and structure of laticifers 

3.2.1.1 Fresh samples stained with Calcofluor 

Figure 32 showed Papaver rhoeos has a similar arrangement of laticifers in the 

stem tissue as compare to Meconopsis. Freshly cut flower stem also showed 

that latex was exuded from cells in the cambial region which, is again very 

similar to Meconopsis (figure 1). Initially it was thought that latex might possibly 

ooze out from the xylem. But there was no further evidence to support this 

assumption. This assumption was further dismissed, as xylem was fully 

differentiated and dead cells. 

The technique on the other hand revealed the location of laticifers quite well, if 

not obscured by the latex smearing and smudging the xylem during cutting, 

hence gave a misleading observation. Laticifers were located in the cambial 

region of the samples and they could be seen in situ clearly when observed 

under bright field illumination. 
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Figure 32: A hand cut section of fresh young Papaver stem. The sample was 
viewed under the light microscope (BF/UV). Laticifers were located in and 
around the vascular bundle region. Arrows indicated latex smears that came 
out from the laticifers when the section was made. The latex seemed to block 
the xylem cells. X=xylem, ep=epidermis. Bar = 180 urn. 



3.2.1.2 Samples embedded in LR White resin 

Semithin sections of young Papaver stem, embedded in LR White resin show a 

row of irregular sized cells, compared with other surrounding cells; presumed to 

be laticifers in the cambial region of the vascular bundle (fig. 33). Vacuoles were 

not visible in those cells. Even though xylem is composed of dead cells and 

should have no cytoplasm, few xylem vessels looked as if they had undergone 

cell plasmolysis (arrows). Figure 34 of a longitudinal section of an old sample, 

showed the laticifers extending in parallel with the xylem. In some places 

(arrow), the cell walls of the laticifers were seen to swell. Structural preservation 

seemed to be good. 

3.2.1.3 Samples embedded in Araldite resin 

Laticifers could clearly be seen containing latex in the semithin sample of old 

Papaver impregnated in zinc iodide (Fig. 35). The laticifers were arranged in one 

row of cells in the cambial region of the vascular bundle. It is quite interesting to 

note that in this sample, particularly in a few of the xylem cells (arrow), structures 

resemble latex as in the laticifers were very prominent. This result is similar to 

the result observed in the fresh sample where latex was first thought to be 

exuded from the xylem. Figure 36, of the old sample fixed with osmium tetroxide 

further confirms the previous suspicion on the observation that latex-like 

structures were present in the xylem. 
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Figure 33: Across section of young Papaver stem in LR White. Laticifers were 
located in the cambial region of the vascular bundle with distinct irregular 
shapes. However, the laticifers seemed to be empty. Cell plasmolysis was 
quite apparent in most cells including the laticifers (arrows). 
Lv=laticifers, x=xylem. Bar = 20 urn 

z 

Figure 34: A longitudinal section of young Meconopsis stem in LR 
White. The laticifers run in parallel with the xylem. The cell walls of the 
laticifers were observed to be swollen (arrows). 
Lv=laticifers, x=xylem. Bar = 20 urn. 
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Figure 35: Semithin section of old Papaver stem, showing the laticifers 
with vacuoles. Laticifers are located in the cambial region. Two xylem 
cells (arrow) contained some structure that resembled vacuoles. Cells 
plasmolysis was quite evidence, especially in the parenchyma cell. 
Lv^laticifers, x=xylem. Bar = 30 urn. 
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3.2.1.4 Samples embedded in Spurr resin 

The Spurr embedded sample showed the same evidence of granular substance 

present in the xylem. Figure 37, of the old sample impregnated with zinc iodide, 

showed that laticifers were located in a single ring around the cambial region. 

The photograph also showed the evidence of laticifer cells dissolved and two 

adjacent laticifers joining together to form a bigger laticiferous cell (arrow). 

Figure 38 of the longitudinal section, showing a young sample impregnated with 

zinc iodide supported the observation from the TS sample (figure 33), that two 

adjacent cells merged at a point where the cell wall disintegrated (arrows). Cell 

wall disintegration was also noticed in several locations along the cell walls of 

the laticifers cells. 

3.2.1.5 infrastructure observation on the development of the 

articulated laticifers in Papaver rhoeas 

Cell wall degradation has been observed in light micrographs of both species i.e. 

Meconopsis and Papaver. Figure 39 shows a laticifer cell in the stem of young 

Papaver. It is quite obvious from the micrograph that the cell wall of the laticifers 

break down in several places (indicated by arrows). However, it is quite difficult 

to determine whether the process was due to enzymatic reaction or sectioning 

artifact. On the other hand, there was the evidence that enzyme might have 

involved in loosening the cell wall's microfibrils, as shown in figure 40. The cell 

wall looks thinned and there is a gap between the cell wall and plasmalemma 

(arrows). The evidence can also be seen in figure 41 & 42. it was quite 

interesting to note that electron dense substances were most frequently, if not 
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Figure 39: Laticifers in Papaver stem. Cell wall were broken at several 
places (arrows). Cw= cell wall, v= vacuoles. Bar = 2.0 urn. 
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Figure 40: Gap between cell wall and plasmalemma. Arrows indicate the 
gap present in between the cell wall and the plasmalemma of the laticifers 
cw= cell wall. Bar= 2.0pm. 
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Figure 41: Cell Wall of the Laticifers possibly becoming thinner by enzyme activities. 

A: Arrows indicate the place where the cell wall has become thinner. Electron dense sub
stance is quite prominent nearby. v=vacuoles, cw=cell wall. Bar = 1 .Opm 

B: Small vacuoles concentrated near the point where the cell wall is thinnest. Arrows indi
cate the place where the enzymatic process possibly took place. v=vacuoles, cw=ceil 
wall, 8v=small vesicle, er= endoplasmic reticulum. Bar = 2.0pm 
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Figure 42: Cell wail of the laticifers 
ruptures and breaks into two sec
tions. 

A: Cell wall totally separated into two 
parts, leaving a big gap in between. 
( m » ) . Arrows indicate cell wall mi
crofibrils residue. v=vacuoles, 
cw=cel! wall, er=endoplasmic reticu
lum. Bar= 0.34pm 

B: Electron dense substances 
(arrows) and vacuoles migrating into 
the neigbouring cell. V=vacuoles, 
cw=cell wall, sv=small vacuoles. 
Bar = 2.0pm 
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always, located and concentrated amongst with small vacuoles near the point 

where the cell wall became thinner. 

3.3. Hevea brasiliensis (Euphorbiaceae) 

3.3.1 A study of the distribution and structure of laticifers in different part 

or the plant using different staining reagents. 

3.3.1.1 Fresh samples stained with ANS: Stem 

All parts of the plants oozed out a very viscous white and sticky latex when they 

were cut. The latex turned from white to yellowish colour after a period of time. 

Fresh samples stained with the ANS gave a greenish colour under an 

epifluorescence microscopy using BV filter. Figure 43 showed fresh hand-cut 

sections of Hevea stem. There is hardly any evidence of laticiferous cells visible 

or fluorescing even though other tissues like xylem and fibre sclereids stain or 

fluoresce very well. Even though the laticifers did not stain well with this 

reagent, it was known that the laticiferous cell should be in between the xylem 

(x) and the fibre sclereids (fs). Latex or other compounds in the laticifers did not 

fluoresce or pick up the stain as well. 
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Figure 43: Cross section of hand-cut Hevea stem; stained with ANS. Results 
show that only lignified cells such as xylem and stone cells were stained well 
with ANS. Laticifers or latex did not stain well with this staining method. 
X=xylem, c=cambial region, fs=fibre sclereid, ep=epidermis Bar = 200 urn. 
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3.3.1.2 Fresh samples stained with ANS: Leaf cotyledon 

Hevea cotyledon showed abundant traces of latex in the laticiferous cell 

area (figure 44). The latex fluoresced along the vascular system of the 

cotyledon. The latex fluoresced as bright as the xylem vessels, compared with 

the other part of the samples. These results also showed that latex vessels are 

not distributed exclusively alongside the axis of the vascular system. There was 

also some distribution of the laticifers in the outer side of the vascular bundle. 

3.3.1.3 Fresh samples stained with ANS: Root 

Hand-cut sections of fresh Hevea roots showed similar results to those observed 

in stem. Figure 45 shows that laticifers in the samples do not stain very well 

with the reagent. Despite that however, latex in the laticifers stained slightly 

(arrows) and can be seen located in the cambial region of the sample. Xylem 

cells were observed to fluoresce very noticeably. There was no trace of 

sclerenchyma cell (secondary thickening) present in the root sample obviously 

because of its function as opposed to the stem (supporting cells). 

3.3.1.4 Fresh samples stained with ANS: Petiole 

Figure 46 shows a fresh, hand-cut section of Hevea petiole. Even though latex 

can be observed in the cambial region or in between the xylem and the 
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Figure 44: Fresh sample of Hevea cotyledon; stained with ANS. (a) Diagramatic figure 
showed the place of sampling from the seed of Hevea. (b) Latex stained quite clearly 
in this sample (arrows), almost as much as the xylem vessels. It was clear that laticif
ers are located around the vascular bundle and on the outer side of the vascular sys
tem (in the cambial region). X=xylem. Bar = 200 pm. 
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Figure 45: Freshly hand-cut Hevea root; stained with ANS. (a) A diagramatic figure 
showed the place of sampling in Hevea root, (b) Xylem stained properly with ANS. Lati
cifers were however, stained slightly (arrows) but not as bright as the xylem. 
X=xylem, Bar = 190 pm. 
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Figure 46: Cross section of Hevea petiole; stained with ANS. (a) 
A diagrammatic figure of Hevea leaf show the place of sampling, 
(b) Photograph shows that xylem and stone cells fluoresced very 
brightly. Laticifers and latex however were quite difficult to distin
guished but pick up the stain slightly ; and fluoresced very 
weakly (arrows). X-xylem, fs=fibre sclereid, ep=epidermis. 
Bar = 200pm. 
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sclerenchyma cells, however the latex (arrows) did not fluoresce brightly as 

compared to the xylem and the fibre sclereids. 

3.3.1.5 Fresh samples stained with ANS: Leaf 

Staining epidermis-cleared leaves with ANS clearly revealed the distribution of 

veins and veinlets in Hevea leaves (Figure 47). However there was no evidence 

of the laticiferous system or latex vessels present in the photographs, partly 

because either the latex itself did not stain well, or if it was stained then probably 

it was obscured by the xylem cells, which was presumably sandwiched the 

laticiferous cells, since this was not a sectioned sample. 

3.3.1.6 Fresh samples stained with Acridine orange: Stem 

Figure 48 (a) showed a cross section of Hevea stem stained with acridine 

orange. The thickened and lignified wall of xylem and fibre sclereids 

fluoresced with an orangish colour. There was hardly any evidence of 

laticiferous cells or latex that pick up the stain. The results showed here were 

very similar to those samples stained with the ANS, where it was quite difficult to 

clearly observe the location of laticifers. Figure 48 (b), of a longitudinal section, 

shows sclerenchyma cells and xylem fluorescing very well. The cambial region, 

where the laticifers would normally be found, shows no evidence of its 

appearance. 
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Figure 47: Cleared leaves of Hevea stained with ANS. (a) A diagrammatic figure of Hevea 
leaf showing the place of sampling, (b) ANS stained the vascular bundle very well. Even 
the small veinlets were clearly shown in the photographs. However, laticifers or latex did 
not stain very well in this sample. Vn=vein, mv=mivein, v=veinlet, Bar = 200 urn. 
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Figure 48 (a): A cross section of 
Hevea stem, stained with acridine 
orange. Xylem vessels and fibre 
sclereid were stained brightly. Lati-
cifers or latex did not pick up the 
stain very well. X=xylem, fs=fibre 
s c l e r e i d , c = c a m b i a l r e g i o n , 
ep=epidermis. Bar = 190 um. 
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Figure 48(b) : A longitudinal section 
of Hevea stem, stained with acridine 
orange. Xylem and fibre sclereids 
were stained very well with this 
stain, as in figure 49. There was no 
laticifers or latex visible in this sam
ple. X=xylem, fs=fibre schlereid, 
c=cambial region, ep=epidermis. 
Bar - 30 um. 
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3.3.1.7 Fresh samples stained with Acridine orange: Cotyledon 

It is interesting to note that in the cross section of Hevea cotyledon as shown in 

figure 49, it appears that latex stained with Acridine orange quite well, revealed 

as distinguishable orangish dots along the axis of vascular tissues. This result 

was similar to those stained with the ANS (figure 44). It was obvious from the 

result that there was no other cells stained (i.e fibre sclereids). 

3.3.1.8 Fresh samples stained with Acridine orange: Petiole 

In Hevea petiole, as shown in Fig. 50, latex or latex vessels did not stain well in 

the tissues. The tissue where the latex vessels were supposed to be located 

(arrows), were not stained at all. The pattern showed similar results to previous 

samples of Hevea where only lignified cell walls fluoresced. 

3.3.1.9 Fresh samples stained with Acridine orange: Root 

Figure 51 shows a typical Hevea root, stained with Acridine orange. The stain 

created an orangish colour to the xylem area. Latex or laticifers were not stained 

in the tissue. The result showed here were almost identical to the one stained 

with the ANS (figure 45). 
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Figure 49: Cross section of Hevea cotyledon stained with acridine orange. 
(a) A diagrammatic figure of Hevea seed showing the sampling area. 
(b) Even though the outline of the laticifers cells were not clear, however 
latex stained and fluoresced brightly. There is no lignified cell yet present 
in this stages. Bar = 200pm. 
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Figure 50: Hevea petiole stained with Acridine orange, (a) A diagrammatic figure 
of Hevea petiole, showing the place of sampling, (b) Lignified cells were stained 
brightly orange by the stain. Arrows indicate the location where the laticifers were 
expected to be present. Fibre sclereid (fs) are very prominent in the tissues. 
X-xylem, fs= fibre schlereid, ep=epidermis. Bar = 190 urn. 
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Figure 51: A cross section of Hevea root stained with acridine or
ange, (a) A diagrammatic figure of Hevea root showing sampling 
area, (b) Arrows indicate the cambial region where the laticifers 
were supposed to be located. Xylem fluoresced strongly. There are 
no other lignified cells present. X=xylem. Bar = 200 urn 
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3.3.1.10 Fresh samples stained with Acridine orange: Leaf 

Cleared Hevea leaves stained with acridine orange revealed a clear outline of 

the vascular system (Figure 52). Laticifers or latex did not stain, as did 

lignified tissue in the vein. However from this result, it is clear that acridine 

orange can also be used as a marker to trace the distribution of vascular tissue 

in the leaf. 

3.3.1.11 Samples fixed with osmium tetroxide, stained with Toluidine 

blue 

Figures 53 (a&b) showed a semi-thin section of Hevea stem stained in toluidine 

blue. This longitudinal section shows a few laticiferous cells (Lv) in the cambial 

region. The laticiferous cells could be distinguished from other cells by their long 

tube-like character, running in parallel with one or more other laticiferous cells. 

In this instance, the cell wall of the laticifers appears to have broken down, 

joining the two neighbouring laticifers to form a complex system of laticifers. In 

figure 53(b), it is also quite noticeable that the adjacent cell wall separating the 

first laticiferous cell and the second one seems to be loosened (arrows). This 

was probably one of the stages where the merging process of two of more 

laticiferous vessels happened, which later will lead into a more complex and 

elaborate system of tubes (anastomosis). The fixative seems to work well and 

no cell plasmolysis was observed. 
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Figure 52: Cleared leaves of Hevea stained with Acridine orange, (a) A diagrammatic figure 
of Hevea leaf showing sampling area, (b) The veins and the veinlet (arrows) were stained 
brightly by the stain. However latex vessels were not stained in this sample. 
V svein, vn*veinlet. Bar = 190 urn. 
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Figure 53: (a&b) Cross section of Hevea stem stained with To
luidine blue. Laticifers (Iv) are visible amongst other cells, dis
tinguished by their long tube-like characters. Arrows indicate 
the place where cell walls start to loosen or disintegrate. 
Lv-laticifers, tc=tannin cells. Bar = 30um. 
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3.3.1.12 Samples fixed in osmium tetroxide and zinc Iodide (ZIO), 

stained with toluidine blue 

Figures 54 (a&b) show cross sections of Hevea shoot apex fixed in ZIO. Some 

cells (presumably tannin cells) seem to be impregnated quite strongly with the 

stain. Laticifers were observed in figure 54(b), just outside the xylem (in the 

cambial region). The fixative did not impregnate the laticifers properly. 

However, some organelles seem to pick up the stained slightly in the laticifers. 

Cell plasmolysis can be seen from the results, shown in figures 54(a), where 

plasmalemma was observed to be pulling away (shrinking) from the cell walls, 

leaving an empty spaces between both plasmalemma and cell wall. This was 

caused by improper penetration of fixatives into the cells, and occurred quite 

regularly in hard and/or woody samples as in this case in the shoot apex of 

Hevea. Lignified cells (fibre sclereids) were stained blue with toluidine blue. 

3.3.1.13 Samples Stained with Safranin O and Astra Blue: Stem 

Figure 55(a&b) showes a cross section of Hevea stem stained in Safranin 0 and 

Astra blue. Xylem stained red while other cells were stained blue. There is no 

clue on the location of the laticifers in the samples. However it was believed 

from the previous results that the laticifers were located in the cambial region of 

the samples, which in this case showed by the darker blue line in figure 55b 

(arrows). 
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Figure 54: (a&b) Latictfers in Hevea shoot apex, fixed with ZIO. Laticifers were lo
cated in the cambial region of the sample and quite close to the fibre sclereid. Few 
cetts (arrows), presumably containing tannin were heavily impregnated with the 
ZIO fixative, ( c ) A diagram showing the place of sampling in Hevea shoot apex. 
Ls^latfcifers, fs*fibre sclereid. Bar * 30pm. 
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3.3.1.14 Samples stained with Safranin O and Astra Blue: Root 

In root samples, as shown in figure 56, laticifers were distinguished from the 

other cells by their content of coagulating latex. Several laticifers were observed 

to run in parallel to each other. Tannin cells were stained bright red and can be 

distinguish from the xylem cells, which were also stained red by its content 

(xylem was empty) (figure 54a). 

3.3.1.15 Samples stained with Safranin O and Astra Blue: Shoot apex 

Crystals were found scattered in parenchyma cells in Hevea shoot apex. A cross 

section of Hevea shoot apex showed abundant crystals in the parenchyma 

cells as well as the tannin cells. The crystals were shown very clearly under 

Nomarski illumination (figure 57a) compared to the normal bright field 

illumination (figure 57b). However, there are no traces of latex in the laticifers 

(Lv). 

3.3.2 infrastructure of laticifers in Hevea Brasiliensis 

Laticifers in Hevea show an abundance of rubber particles suspended in a 

matrix, as shown in figure 58(a&b). The rubber particles appeared in a dark 

colour, apparently impregnated by the osmium tetroxide and other heavy metals 

from the staining i.e. uranyl acetate and lead citrate. From the result, it was also 

clear that all rubber particles were spherical but they were in different sizes. 
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Figure 55(a&b): Cross section of Hevea stem stained with Safranin 0 and astra 
blue. Figure a, with normal bright light illumination, shows no evidence of laticifers 
in the cambial region. Figure b of the same section view with a Nomarski illumina
tion and shows a row of dark cells (arrows) just outside the xylem, which are be
lieve to be laticifers. X*xylem, c=cambial region. Bar = 100 um 

Figure 56: Longitudinal section of Hevea root. Latex vessels can be observed 
in this samples (Lv) and latex can be seen coagulating inside the vessels. 
Lv=laticifers, tc= tannin cell. Bar = 190 um 
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Figure 57: Hevea shoot apex stained with Safranin O and Astra blue. The cross sec
tions of the sample show no traces of latex present in the laticifers (Lv). Figure (a), in 
Nomarski illumination, and (b) bright field illumination shows crystals are abundant in 
the parenchyma cells. C=crystal, Lv=laticifers, x=xylem, tc=tannin cells. Bar=30 urn. 

126 



Figure 58 (a) : TEM image of a 
section through Hevea stem, 
fixed with OsCv Rubber particles 
are abundant in the laticifers. 
They are in spherical shapes and 
stained black with heavy metal. 
Orange arrows ( ) show rubber 
particles coagulate and clump to
gether. Cell walls show the fibres 
are loosening and disintegrating 
(»> ). Cw= cell wall, rp=rubber 
particles, Bar = 0.10 pm. 

(a) 

Figure 58 (b) : TEM image of a section 
through Hevea stem, fixed with Os0 4 . 
Rubber particles can be seen in vari
ous sizes. Arrows ( ^) show a residue 
of microhelices from lutoids. 
Rp=rubber particles, cw=cell wall, 
is=intercellular space. Bar = 0.10 pm. 

(b) 
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In figure 58a it was clear that cell walls of the laticifers were starting to 

disintegrate and the wall fibres loosened (black arrows). This has already been 

shown in the samples observed under light microscopy. It is obvious that the 

process of cell wall disintegration was a starting point of joining the two or more 

neighbouring laticifers together to form a more complex and bigger system of 

articulation of the laticifers in Hevea. There was also evidence of rubber 

particle coagulation as shown in figure 58a (yellow arrows). In figure 58b, free 

microhelices from the broken lutoids, an organelle exclusively found in this 

genus, were also observed amongst the rubber particles (arrows). Lutoids were 

very sensitive to osmotic pressure and it is hard to maintain the structure of the 

lutoids when laticifers were put under turgor pressure during sectioning. 

3.3.2 Freeze substitution technique to preserve laticifers in Hevea 

brasiliensis. 

An attempt to use cryo preservation as an alternative way to fix laticifers was not 

very successful. There were no latex vessels observed from the samples that 

were used in the cryo technique. Figure 59a & b show cross sections of 

cryofixed Hevea leaves stained with toluidine blue. Parenchyma cells seem to 

be fixed quite well, where there is no cell plasmolysis and they seem structurally 

intact (Figure 59a). However, the penetration of the fixatives seems to be 

inadequate, shown by the broken cells (orange arrows). Tannin cells were 

preserved properly as shown in figure 59b (black arrows). 
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Figure 59a&b : Cross section of cryofixed Hevea leaf. The cryo tech
nique seem to fix parenchyma cells quite well. However, laticifers or latex 
were not observed in this sample. X-xylem, fs=ftbre sclereid, 
ep=epidermis. Bar = 40pm. 
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3.4 Musa acuminata (Musaceae) 

3.4.1 Distribution and structure of laticifers 

3.4.1.1 Laticifers in fresh samples of Musa 

Musa leaves when cut, gave clear and sticky latex. The results of the fresh 

sample stained with calcofluor and viewed under bright field light microscopy 

shows no structural evidence of laticifers (Fig. 60). One possible reason is that 

the image itself is not very clear since it was very hard to erect or make the leaf 

blade to stand at 90° to the microscope stage plane, without it falling down 

during observation. Only the cell walls in the vascular region are excited with the 

fluorescent light. 

3.4.1.2 Araidite resin: Samples stained with Toluidine blue 

This is a sample fixed with Os0 4 . The laticifers in Musa are observed in the 

peripheral region of the vascular bundle. The distinct black osmicated cell 

differentiated the laticifers from other parenchyma cells (Fig. 61). The laticifers 

are not confine to the xylem area but also can be found in the phloem region and 

very close to the cells. It is also very obvious that the laticifers also stained 

darker compared to the other cells, which is sometime a good marker to 

differentiate laticifers from other cells. 
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Figure 60: Fresh sample of old Musa leaf stained with calcofluor. 
The vascular bundle excited very brightly, but it is hard to tell the location of the laticifers. 

The red colour were excited by the chlorophyll in the parenchyma cells. 
Vb=vascular bundle, ep=epidermis. Bar= 190um 



3.4.1.3 Spurr resin: Samples stained with Toluidine blue 

Figure 62 of old Musa shows a similar observation to that in figure 61. The 

laticifers can be found in the peripheral region of the vascular bundle. However, 

latex in the laticifers was noticeably scarce. 

3.4.1.4 Wax medium: Samples stained with Safranin O and Astra blue. 

In Musa leaf samples, Safranin 0 and Astra blue stained laticifers and their 

content (latex) quite well. Laticifers can clearly be distinguished from other cells 

by bright red staining by the Safranin 0 reagent (figure 63 a&b). A sample 

viewed with Nomarski illumination showed raphide presence quite clearly 

(arrow), compared to the normal bright field image. 

3.4.1.5 infrastructure of laticifers in Musa acuminata 

infrastructure studies of old Musa leaf lamina showed laticifers as cells with 

electron-dense contents of a granular nature (figure 64). Laticifers were located 

very close to the epidermis cells especially in the spongy cell area. However, a 

TEM image of young Musa leaf did not show any evidence of latex presence in 

the laticifers. Instead they contain numerous globular structures that occupied 

almost 41 % of the laticifers (figure 65). 
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Figure 61: A cross section of Musa leaf, embedded in Araldite 
resin. Laticifers in Musa can be distinguished from other cells 
by dark iatex occupying the ceils. Lv=laticifers, ps=palisade 
cells, x=xylem, Bar = 30pm. 
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Figure 62: A cross section of old Musa leaf, embedded in Spurr resin. 
There is little latex in the laticifers. Notice raphide (rp) on the left side 
of the photo. Lv=laticifers, x=xylem, ps=palisade cell, sp-spongy cell. 
Bar= 30Mm. 
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Figure 63: (a) Nomarski illumination, (b) bright field illumination. A cross section of 
young Musa leaf, stained with Safranin 0 and Astra blue. Laticifers were clearly 
stained as red. Arrows indicate the residue of raphides. 
Lv= laticifers, x=xylem, ep=epidermis .Bar= 30pm. 
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Figure 64: SEM image of Laticifers in Old Musa leaf lamina, (a) Laticifers were 
quite distinct from other cells with their granular content of latex (x200). (b) A higher 
magnification image of laticifers cell (x1000) showing the surrounding cells were al
most empty, lacking organelles compared to the laticfer (arrow). (c ) Latex in laticif
ers (arrow) They are arranged in a very compact group and clumping together. The 
sizes of the latex particles also varies. No other organelles were observed, 
(x 3500). Lv=laticifers, ep=epidermis, pc=palisade cells. 
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Figure 65: TEM Micrograph of laticifers in young Musa leaf lamina. 
Globular organelles were quite abundant in the laticifers. Latex parti
cles were not observed in this stage. Arrows show small globules 
coalescing into large one. Cw=cell wall, gl=g lobule, 
er=endoplasmic reticulum, pl-plastid. Bar=0.4um 
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It was also observed that latex particles were spherical in shapes (figure 

64b&66) but the sizes may vary between them. Globules were abundant in 

the laticifers of old Musa leaf (figure 66). Other organelles such as Golgi bodies, 

endoplasmic reticulum and plastids were also present. 

3.5. Mandevilla splendens (Apocynaceae) 

3.5.1 Distribution and structure of laticifers 

3.5.1.1 Laticifers in the leaf lamina of Mandevilla splendens stained 

with Safranin O and Astra blue. 

Mandevilla leaves when cut gave out white and sticky latex. Figure 67(a), shows 

a cross section of Mandevilla leaves (midvein). Laticifers were quite easily 

distinguishable from the other cells with their content stained brightly red by the 

reagent. Fibre sclereids were quite prominent in the samples. In figure 67(b), 

laticifers can be seen scattered in the middle section of the leaf (between 

palisade cells and spongy cells) and some are located quite close to the xylem. 

Tannin cells were very prominent in the samples and located in the palisade 

cells and spongy cells region. It was quite difficult sometimes to differentiate 

between tannin cell and the laticiferous cell in the sample since both were 

stained red by the reagent. The only clue come from the granular substance 

(latex) that occupied the laticifers, whereas the tannin cells in the cell looks more 

compact (figure 68). 
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Figure 66: TEM micrograph of mature/old Musa leaf lamina. Latex parti
cles were abundant. Vacuoles were quite scarce compare to the latex. 
Plastids were also quite abundant in the laticifers. Lp-latex particles, 
p-plastid, G=golgi bodies, er=endoplasmic reticulum . Bar= 3.2pm. 
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Figure 67: Cross section of Mandevilla leaf lamina stained with Safranin 0 and Astra 
blue. In figure 66a, laticifer was observed as bright red cell (Lv). Fibre sclereid (fs) were 
quite eminent showing sclerified cells with thickening cell wall. Figure 66b shows some 
traces of latex vessels (Lv) near xylem. Tannin cells were abundant. X=xylem, tc=tannin, 
pc= palisade, sp= spongy cells, vb= vascular bundle, Lv=laticifers, fs=fibre sclereid, 
ph=phloem, ep=epidermis. Bar= 30 pm. 



Figure 68: Laticifers in Mandevilla leaf lamina embedded in wax. It is clear 
from the photograph that tannin cells and laticifers can be confusing, be
cause both are stained red. However, latex in laticifers looked granular 
compare to the compact-appearances of the tannin cells. Lv=laticifers, 
x=xylem, pc=palisade cells, tc-tannin cells. Bar = 190pm. 
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3.5.1.2 Laticifers in the stem of Mandevilla splendens stained with 

Safranin 0 and Astra blue. 

Mandevilla stem exuded white and milky latex when cut. The latex was quite 

runny compared with Hevea. Figure 69a showed laticifers were located in the 

cambial region of the stem. The laticifers were stained almost identically to 

tannin cell. The identification of laticifers can be misleading because of the 

same colour stained by the reagent and 'mixing* in almost the same area with 

tannin cells. However as in the leaf, the granular appearances distinguishes 

between the two cells (Figure 69b). It was quite interesting to note that latex 

particles were also observed to occupy the cells resembling phloem cells (figure 

69c). This is because of the perforation of the wall that was observed 

surrounding the latex in the cells. 
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Figure 69: Laticifers in Mandevilla stem. 
Laticifers were stained bright red and 
located in the cambial region of the 
stem (a). Granular appearance distin
guishes the laticifers from tannin cells 
(b). Longitudinal section of the stem 
show latex particles coagulating and 
clumping together (c ), and in one par
ticular cell it looked as if the latex parti
cles occupied and were contained in the 
phloem (arrows show the perforation). 
Lv=laticifers, x=xylem( tc=tannin cell. 
Bar a = 190pm, Bar (a&b) = 30 urn. 
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3.6 Taraxacum officinale (Compositae/Asteraceae) 

3.6.1 Distribution and structure of laticifers 

3.6.1.1 Laticifers in the leaf of Taraxacum officinale stained with 

Safranin 0 and Astra blue 

Taraxacum leaf when cut oozed a very clear and runny sap. It was not sticky like 

the other species in this experiment. Figure 70(a) showed a cross section of 

Taraxacum leaf lamina stained with Safranin O and Astra blue for laticifers. It 

showed that laticifers and their content were stained red and located near the 

vascular bundle. A cross section through the leaf midvein however did not 

reveal any evidence of laticifers presence (Figure 70b). 

3.6.1.2 Laticifers in the flower stem of Taraxacum officinales stained with 

Safranin O and Astra blue 

In the flower stem of Taraxacum, it was difficult to identify laticiferous cells. 

This is probably due to the nature of the latex itself, where the laticifers could not 

retain the latex during the sectioning. However some laticifers were stained 

vaguely red and the laticifers were quite small in size (figure 71). 
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Figure 70: Laticifers in Taraxacum leaf, (a) A cross section through leaf lam
ina. Laticifers were observed near the vascular bundle (arrows). Bar=190um. 
(b) A cross section through leaf midvein. It was very hard to locate laticifers in 
the sample. The image showed the laticifers or latex did not stain well with the 
reagent. Bar = 30um. Lv=laticifers, vb=vascular bundle, ep-epidermis, 
ph=phloem, x=xylem, c=cambial region. 
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Figure 71: Laticifers in Taraxacum flower stem, stained with 
safranin O and Astra blue. Laticifers were initially quite diffi
cult to identify. They are very tiny and almost did not stain by 
the reagent (arrows), and located in the cambial region of the 
sample. Ph=phloem, x=xylem. Bar = 30pm. 
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3.6.2 Immunohistochemistry of the cell wall protein: Localisation of JIM5 

binding in Taraxacum officinale 

Immunohistochemistry techniques may be used to localise specific proteins and 

polysaccharide epitopes both temporally and spatially within a cell. Work 

carried out at the John Innes Institute in Norwich, has successfully utilised 

antibodies raised against a number of plant glycoproteins, AGPs and pectins, to 

localise these component to specific sites within plant cells (Knox ef a/. 1989, 

1990, 1991, Pennell et al. 1989, 1991, Pennel & Roberts 1990, Baldwin et al. 

1993). 

A number of attempts have been made to apply the immuno technique to the 

samples. Several antibodies were used, however the rate of specific labelling 

on the target was very low. Most of the time only JIM5 showed quite a prominent 

results. 

The anti-polygalacturonic acid antibody JIM5, which recognised epitopes of un-

esterified pectin, has been used to determine the spatial distribution of pectin in 

Taraxacum cell walls. 

JIM5 binding was detected on wax embedded sections of Taraxacum leaf using 

gold conjugated to a secondary antibody. JIM5 binding was localised to the cell 

walls of the tissue (figure 72(a)). It was also noticed that the strongest binding 

was toward the tips of the leaf as compared to the middle portion of the leaf 

(Figure 72(b). 

146 



e p 

e p 

Figure 72: Localisation of JIM5 binding in Taraxacum leaf. Higher labelling intensity 
was observed toward the tips of the leaf (a) compared to the middle of the leaf (b) 
Ep=epidermis, Bar = 30um. 

147 



3.7 Euphorbia wuffenii (Euphorbiaceae) 

3.7.1 Distribution and structure of laticifers 

Euphorbia stem and leaf showed no traces of laticifers when stained with 

Safranin 0 and Astra blue (figure 73). Most of the cells in the cambial region, 

where the laticifers were expected to be present, were observed to be empty and 

did not contain any cytoplasmic materials, which supposedly explained why the 

reagent did not differentially stain well. 
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Figure 73: Thin section of Euphorbia stem (a&b) and leaf (c), stained with Safra-
nin O and Astra blue. Laticifers were not clearly stained, thus making it very diffi
cult to distinguish them from other cells. C= cambial region, x=xylem, 
vb=vascular bundle, pc=palisade cells, ep=epidermis . Bar a= 30 urn. 
Bar b & c= 190 urn. 
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4. DISCUSSION 
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4.1 General 

This study was initiated to examine and compare the development of laticifers 

in a range of species of latex bearing plants from five different families. 

Emphasis has been made on application of a range of microscopical techniques, 

and in particular a comparison of the effects of preparation techniques such as 

the use of different fixatives (including immunofix, osmium tetroxide, and osmium 

tetroxide plus zinc iodide), and embedding media (wax, resins and low 

temperature embedding) on tissue preservation for both screening purposes and 

for study of the development of laticifers. Additionally different staining reagents 

have also been compared for these purposes, including the use of histological 

and biochemistry stains. Optical microscopy and electron microscopy (using 

both scanning electron microscope and transmission electron microscopes) were 

used in the examination of the cell biology of developing laticifers. 

Laticifer distribution in the plant kingdom has been studied quite extensively 

(Table 1). Most of these studies focused on the distribution and development of 

laticifers in a particular species. Only a few studies showed suitable technical 

protocols for identifying laticifers in selected latex-bearing plants (Gomez & Moir 

1979, Bruni & Tosi 1980, Jayabalan et al. 1992). This study described in this 

thesis was initiated with the aim of extending understanding of this topic by 

presenting and comparing observations and interpretations on seven different 

taxa of latex bearing plants. 

At the beginning of the program it had been anticipated that both antisera to 

specific components of latex synthesis and latex itself would be available for 

associated immunocytochemical studies. Similarly, it was thought that it would 

be likely that (in other laboratories) advances in molecular biology would provide 
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suitable molecular (RNA) probes for examination, by in situ hybridization, of the 

differentiation of laticifers. Unfortunately, in the short term, neither types of 

probes were available but the comparisons of tissue preparation methods 

reported here will be of particular relevance once such probes are available. 

The discussion considers five main aims concerned with: 

• a comparison of tissue preparation techniques for studies of the structure 

and differentiation of laticifers, and to allow application of molecular 

probes to advance further studies of differentiation. 

• a comparison of tissue preparation and staining techniques for application 

in the screening of samples in selection programmes. 

• the structure of laticifers in different stages of development of Mecanopsis 

cambrica. 

• the structure and differentiation of laticifer in different tissues of Hevea 

brasiliensis. 

• a comparison of laticifers development in several taxa. 

4.2 Different techniques and protocols to determine the location, 

structure and differentiation of laticifers in plants. 

The techniques chosen and examined were for the most part based on 

techniques that have been applied and used by others working with latex 

bearing tissues and that gave good consistent results (e.g. Johansen 1940, 

Sakai 1973, Wimalaratna 1973, Glauert 1985, Jayabalan ef al. 1992, Mori & 

Bellani 1996). Recent developments in microscopical preparation techniques 
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however suggest that it may be possible to optimize the protocols further, and 

indeed some techniques used with success on other tissues had not yet been 

applied to Hevea and other taxa mentioned here. 

4.2.1 Fixation 

Before any plant sample goes through histological or cytological study, it usually 

has to go through a series of preparative protocols. The first step is the fixation 

process that will preserve the cells in the first instance after live plant tissues 

have been sampled. The idea of fixing the samples is to make sure that there is 

little or no alteration in the subcellular integrity while observations and 

interpretation are being made. Any alteration or changes that happened in the 

cells can cause artifacts and thus will give misleading results (Glauert 1985). 

Fixatives used in this experiment include a single reagent or a combination of 

chemicals to preserve the plant tissue. A procedure involving minimal chemical 

association such as cryo-fixative was also used. 

In looking into the most suitable fixatives, several criteria were taken into 

consideration. The first and main concern is to make sure that the fixatives must 

not in any way cause obvious disruption to the fine structure. The degree of 

damage can be verified by investigating the fine structure of organelles such as 

membranes, tubules and ribosomes etc. Ideally it is very important to have 

control samples where the subcellular organization is in its original stage and 

unaltered by any kind of chemical treatment (Harris & Oparka 1994). 

Unfortunately, it is quite difficult to achieve that ideal model and essentially 

impossible for electron microscopy studies. The closest available technique is 

probably the cryo-technique where the chemicals used in preparing the sample 

are less extensive, thus reducing the chance of chemically-induced artifact 
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formation, if not completely eliminating it. However problems with artifacts from 

the freezing process may be induced instead. Uwins et al. (1993) showed that 

there were substantial differences in potato cell integrity when fixed with different 

techniques. He made a comparison between the fresh samples and the samples 

fixed with the various fixatives including the cryo-technique and noticed 

artifacts present in almost all of the fixed samples. 

In the experiments reported here, fresh (unfixed) samples were used as a 

reference or standard (figure 1, 33,43-52, 60). The fresh samples were 

immediately investigated under the optical microscope to observe the overall 

histological structure. The fresh samples showed the overall distribution of 

laticifers in the tissues. The identification of laticifers was made easier by the 

presence of coagulated latex in the laticifers, thus making the fresh samples a 

useful and quick reference when locating the laticifers in the sections of 

embedded samples later on. However, special care has to be taken with this 

technique. The observation could be very misleading since some latex could 

smear the neighboring cells and thus give false results. Several non-chemical 

approaches to coagulate latex in situ were attempted. Heating methods and 

even boiling in hot water were used to coagulate the latex but the tissue damage 

caused was at an unacceptable level for further structural examinations. 

Attempts with a microwave fixation method (Westcot et al. 1993) had mixed 

success. The technique was applied to various tissues but without consistent 

results. It is not clear whether this lack of success in coagulating latex without 

causing extensive damage to the tissues was because the tissue was not 

suitable for such an approach or because the equipment was insufficiently 

controllable. There are now some early reports (personal communications) 

suggesting that microwave fixation may be more effective and consistent if 

carried out in short (second) bursts using very controlled power, rather than with 

a typical 'domestic' or even commercial microwave oven. 
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Investigations in plant anatomy and cytology cannot be completed without 

involving the fixatives. The most common and important fixatives in electron 

microscopy study include aldehydes and strong oxidising agents; these are 

usually prepared in an ionically balanced buffer. Aldehyde fixatives [commonly 

formadehyde and glutaraldehyde] work by crosslinking proteins and nucleic 

acids; the strong oxidizing agents, commonly osmium tetroxide or potassium 

permanganate, fix unsaturated (fatty acid and ethylenic) bonds (Glauert, 1985). 

Osmium tetroxide and potassium permanganate also act as stains for electron 

microscopy since they contain heavy metals. 

Wilson et al. (1984) noted that laticifer cells, with fluid content of latex, did not 

fix well using only aldehyde fixatives, probably due to the high hydrocarbon 

concentration that is characteristic of many latexes. He then resorted to using a 

freezing technique. This method, however, gave very limited information on the 

subcellular information since the cells' integrity was not fixed properly. This may 

in part have been due to the lack of refinement of freezing techniques at that 

time. He did find however that osmium tetroxide gave a very good lipid 

immobilization and thus gave some fine structural information. With osmium 

tetroxide however, the rate of penetration of the fixative into the sample is very 

slow, thus hindering the optimum structural preservation. 

Complementing osmium tetroxide with glutaraldehyde fixation eliminates this 

shortfall as glutaraldehyde penetrates faster than osmium into the cell. Very 

good overall fine ultrastructural preservation was achieved with this combination 

of fixatives (see e.g. figure 22 & 23). Most of the organelles showed good 

structural preservation, where the membranes looked intact, and there was no or 

only little occurrence of cell plasmolysis compared to the samples fixed with 

other fixatives. The combination of fixatives seems to fix the latex in the laticifers 

quite well. In semithin sections of the resin-embedded samples, laticifers showed 

latex as dark, granular substances inside them (figure 8 & 16). Whereas in the 
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ultrathin sections, latex was observed as being very dark when fixed with 

osmium tetroxide (figure 58) in the case of Hevea brasiliensis. Other work 

showed that in a whole -mounts of freshly exuded latex particles from Hevea 

brasiliensis were observed as dark electron dense particles under the TEM when 

fixed with osmium tetroxide alone (Gomez & Moir, 1979). 

Fixation for immunocytochemistry 

It is generally found that fixation protocols involving strong oxidizing agents are 

not good at preserving antigenicity within samples. As it had been thought that 

some immunocytochemical studies would be carried out within this programme 

or at a later stage of my work in Malaysia, attempts were made to optimize an 

'immuno fix' protocol. Cell plasmolysis was more noticeable in samples fixed 

with aldehyde alone (Immunofix) (figure 31 & 70). This fixative was found not to 

be a ideal as a general fixative, but it appeared to be sufficiently suitable for 

immunohistochemical studies where structural information is often compromised 

to retain the antigenic properties of proteins (Coetzee 1985). 

Although antisera to latex components were not available, the suitability of the 

protocol was tested by immunohistochemistry study on plant samples fixed with 

immunofix and using an antibody to a cell wall protein (figure 72). The immuno-

staining resulted in a positive and specific reaction indicating that the sample 

preparation method would have wider applicability to my further studies of Hevea 

laticifers. 

In further work with antibodies to Hevea components it may be possible to 

improve the structural integrity within the samples by increasing the 'strength' of 

aldehyde fixation [either by longer fixation or by use of a more concentrated 
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solution] without loss of antigenicity, and/or modifying the buffer to reduce any 

plasmolysis. 

Special fixation techniques 

The site of synthesis of latex is still the subject of discussion. Suggestions for the 

site of synthesis include plastids, or modifications of them, and the 

endomembrane system (endoplasmic reticulum, Golgi apparatus, various 

vesicles and vacuoles (Harris, 1986), or part of it. In addition to the combination 

of conventional fixatives described above, special modifications have been 

made to the above fixatives in order to get better results and observations on 

certain specialized organelles. Zinc iodide was added to the osmium tetroxide 

to generate the fixation/stain complex ZIO. This is particularly effective in 

contrasting endoplasmic reticulum, the nuclear envelope, Golgi apparatus, 

plastid thylakoids and cristae of mitochondria (Marty, 1973 & 1978; Hawes, 

1994). In this case, the samples fixed with this combination of fixatives showed 

endoplasmic reticulum, the tonoplast and occasionally the Golgi apparatus very 

well (figure 29 & 30). The image contrast was very good, making the observation 

of the endoplasmic reticulum quite easy because of its dark appearance. In 

most ZIO impregnated samples, the tonoplast appeared extremely dark, almost 

obscuring other organelles. This is not common in all plant tissues; often the 

tonoplast remains unstained. It is probable that the ZIO reacted with and 

precipitated a vacuolar component on to the membrane. Even on the semithin 

section, the dark appearance of the impregnated organelles showed up clearly 

in some cells against others in which organelles were not impregnated. 
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Freeze fixation 

An alternative to chemical fixation with all of its associated problems is freezing 

or cryo-fixation. The aim here is to fix the tissue sufficiently quickly to retain the 

life-like structure without the development of ice crystals. Ice crystals would 

inevitably cause considerable damage by their expansion, tearing through 

membranes and organelles. Wilson et al. (1984) used cryofixation of latex 

bearing tissues but with only limited success. Since then there have been 

significant advances in both freezing (to improve rates of freezing and reduce 

ice damage) to subsequent handling (to avoid partial thawing and/or 

condensation onto the specimen) and media for infiltration of the tissues after 

freezing. 

The protocol described above, despite these advances, still gave only modest 

quality of preservation. This may be because the tissue pieces were relatively 

large; this is required to avoid cutting damage to the long laticifers, but with 

larger pieces of tissues the rate of freezing is slower and hence there is more 

ice formation. 

Optimising fixation 

Generally all the above fixatives managed to give acceptable results for 

identification and distribution of laticifers in the samples, with the exception for 

the microwave technique. Unfixed samples could give fast and quite reliable 

results. Samples could be viewed and results can be achieved within the same 

day of sampling. Chemical fixation however involves a considerable amount of 

time in the preparation procedure. Aldehyde fixatives which was initially intended 
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for the immunostudy, showed promising results in term of ultrastructural 

information provided. But the most superior fixatives in this study that give good 

structural information, both for the optical and electron microscope were the 

combinations of aldehydes and osmium tetroxide, and of osmium tetroxide with 

zinc iodide. 

The above studies optimizing the fixation protocols for the different types and 

needs of structural studies at optical and electron microscopy, and for 

immunocytochemistry in particular, will be very useful in our future work in 

Malaysia, on the comparative development of Hevea and its latex vessels. 

4.2.2 Embedding media 

Several embedding media have been used in this study to see which would give 

the best results in terms both structural and ultrastructural information. The 

embedding media used were wax for the light microscopy observation, and 

Araldite, Spurr resin and LR-White for the electron microscopy observation and 

light microscopy observation. Smith & Croft (1991) noted that the ideal 

embedding medium should have low viscosity, will polymerize uniformly without 

shrinkage, will permit the use of various stains, is easy to section and is stable in 

the electron beam. Of the resins used Araldite is the longest established. This 

resin is based on epoxy components that are both very viscous and 

hydrophobic, and so not very compatible with cells constituents. The 

polymerized resin is however very stable even when cut in ultra thin sections for 

electron microscopy. Spurr resin is also based on epoxy resins but with a 

formulation giving a much more fluid liquid for impregnation into tissues. It was 

designed specifically for work with plant tissues where infiltration rates are 

reduced by the presence of the plant cell walls. LR White resin is acrylic based, 
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very fluid in comparison to the epoxy resins and it has the major advantage of 

being hydrophilic. It does not however have the same high degree of stability in 

the electron microscope. 

Wax embedding 

In these experiments Paraplast wax was used to embed the samples primarily 

for histological study. However wax has wider application and is not limited to 

histological study only. The medium was used extensively as an embedding 

medium for immunohistochemistry studies as well (Roberts 1994; Schumacher 

1995; Vitha 1997). In most samples, laticifer cells appeared well-defined in terms 

of their shape and structure with wax embedded samples (figure 63, 67,68 & 69). 

The long embedding time incurred in the procedure has apparently no 

destructive effect on laticifer cellular integrity in the samples. 

The subsequent staining procedures, which involve quite a lengthy process 

where samples have to be dewaxed first and taken through series of ethanol, 

hinder a quick evaluation/observation on the quality of the sections. However, 

sections after removing the wax, can be viewed unstained with Differential 

Interference Contrast (DIC) and gave a good, almost 3D, image. Laticifer cell 

walls can be observed quite clearly with this technique and in some sections cell 

wall breakdown was clearly seen too (figure 18,19 & 20). Laticifer cell 

articulation can also be observed in this instance. It was observed that this 

technique (DIC) was not only suitable with wax embedded samples (after 

dewaxed), but also showed good results with other embedding media (unstained 

samples). 
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Epoxy resin embedding 

A particular advantage of epoxy resins is that they can be polymerized uniformly 

with little change in volume. They are also relatively quite stable in the electron 

beam and thus suitable for a high contrast study. However the main 

disadvantage is their high viscosity, which makes the infiltration process quite 

lengthy compared with the other embedding media (Roberts & Hutcheson 1975). 

Other reports on the applicability of this resin with the plant organelles, showed 

that the resin has a very good crosslinking with the lipids, starch and other 

organelles, and thus gave good overall structural information (Kosakai 1973; 

Bronner 1975; Amelee 1976). 

It was found that samples embedded with this resin experienced less electron 

damage compared to the other embedding media. In semithin sections, laticifers 

were observed to look normal in terms of shape and size, indicating that there 

was no chemical interference between the fixatives and the resin that might have 

an effect to the cell integrity (figure 22-30 & 35). Despite a lengthy processing 

procedure, that was compensated by the strong support under the electron 

beam and good ultrastructural information obtained from the section. 

Spurr resin on the other hand has a slightly different behavior in terms of 

structural information provided from the samples embedded. Spurr resin is one 

of the two epoxy resins apart from araldite resin, used in this experiment. The 

difference between these two epoxy resins lies in the viscosity of the resin. 

Compared with Araldite, Spurr resin has a very low viscosity, which allows it to 

penetrate the plant samples quicker (Spurr 1969). This is found to be quite 

useful when time is a priority and structural information can be compromised. 

However, strict precautions have to be taken when handling this resin as it 

contains carcinogenic substances. In the laboratories it is essential to always 
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wear 2 pairs of gloves as an extra precaution. Several reports on the accidental 

skin contact with the resin have shown that it can caused immediate skin 

irritation (Melan 1994, Oliver 1994). 

In general, laticifers were observed to be well preserved in sections of samples 

embedded in this resin (figure 11-17 & 37). Even though, the ultrastructure of 

the organelles was not so well preserved as samples embedded in the araldite, it 

was still considered to give a very good overall preservation of the cells. 

Peterson et al. (1978) observed that cellular preservation on dried herbarium 

specimens embedded with this resin was good. There were, however, a few cell 

artifacts where the cell walls of the laticifers had broken and the membrane of 

certain organelles such as the ER was not as clearly defined as in the araldite 

embedded samples (figure 38 & 39). Even though no immunohistochemistry 

study was carried out with the samples embedded with this resin, other studies 

on this resin showed that it is capable of giving good results with tobacco 

leaves (Berg ef al. 1988; Stroobants et al. 1990). 

Acrylic resin 

LR White was the least viscous compared with the Spurr and araldite resins, 

thus making the time taken for resin infiltration into the cell shorter. The other 

advantage of this resin is that it is miscible with water, so there was no need to 

use intermediate solvent in the procedure, although there several reports 

indicating that use of some alcohol as an intermediate can improve tissue 

structure preservation. However, it has a major disadvantage as an embedding 

media. Reid (1974) noted that this type of resin will polymerize with considerable 

shrinkage and is unstable in the electron beam. In the work reported here it was 

apparent that the stability of the resin depends on the amount of electron beam 
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energy bombarded onto the resin. The higher the energy used, the more 

unstable the resin will be, and the greater the chance of the resin breaking or 

tearing. 

Histological studies carried out on the laticifers in the samples embedded with 

this resin showed good overall structural preservation in terms of cell integrity 

(figure 2 & 3). On some sections, latex in the laticifers can be seen as well. 

Reports on the ability of this resin to give good ultrastructural preservation have 

been provided by other workers (Craig & Miller 1984, Evans et al. 1997). 

Attempts were also made to do immunohistochemical study on the samples 

embedded with this resin. Good results were achieved with an antibody to a cell 

wall component. 

Optimising embedding 

Wax embedded samples gave overall good structural information in light 

microscopy study. The preparation procedure was also quite user-friendly. 

However, from the results presented here, araldite is a good choice if good 

structural information is needed, both for histological or cytological study and 

particularly for ultrastructural studies. However, other embedding media were 

also suitable for some purposes. Spurr resin for example, gave good 

ultrastructural information as well but not as good as araldite, but for safety 

reasons (carcinogenic substances) it is not preferable to be routinely used in the 

laboratories. In the case of samples embedded in LR White resin, structural 

information was not as good. This embedding medium however was very good if 

immunocytochemistry studies were to be carried out 
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The above observation gave some light on the applicability of embedding media 

to the laticifers structural information in samples. The study will be very valuable 

especially for the future study on laticifers in Hevea that will be carried out in 

Malaysia. 

4.2.3 Staining 

Staining procedures were chosen and monitored for the suitability with the lipid 

and cell contents of the laticiferous cells in plants. Several histological stains 

and cytochemical stains were used in this experiment to achieve the objective. 

They are toluidine blue, Safranin O and Astra blue, Calcofluor, ANS (8-anilino-1-

naphtalene sulphonic acid), Acridine orange, and Oil Red O and Dansyl 

Chloride. 

Staining of the biological sections has many purposes. It may be solely to 

achieve sufficient contrast for ease of studying cellular structures, either for 

general staining or selective staining (Lewis and Knight 1986). Selective 

staining is very useful for the biologist carrying out quantitative studies on cells. 

The other reason for the staining of biological materials is to determine the 

chemical composition of the cell at the structure level. In this experiment, we 

concentrated on observing the selective stain of several staining reagents on 

laticifers for qualitative studies only. 

Amongst of the first stains used for trying to visualize the laticifers in resin-

embedded samples was toluidine blue. Toluidine blue is a metachromatic stain, 

which can change its colour without changing its chemical structure (Horobin et 

al. 1990, Kiernan 1990). This is due to the molecular stacking of the dye 

molecules, and the phenomenon is influenced by changes in water content, 

concentration and solvent, pH and temperature. The stain was observed to show 
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the laticifers quite well. Vacuoles were also stained aqua blue with this stain 

(figure 2-17, 33-38). This stain showed that it would not differentially stain the 

laticifers from other cells organelles and structures. Xi & Burnett (1997) showed 

that this stain nevertheless, could differentially stain fungal structures of 

Rhynchosporium secalis from barley seed and leaf tissue. Whereas Graham & 

Joshi (1996) used this stain with Bismarck brown to show the delineation of cell 

walls of the epidermis in rose and flowering dogwood. It was also noticed that 

some other organelles such as starch grains were also stained dark blue (figure 

15). Since the stain did not differentially stain the laticifers and other cell 

structure, the irregular shape and sometimes the vacuolar content of the 

laticifers were used to identify the cells. It is though still a good general stain for 

histological study. Safranin 0 and Astra blue, which are also metachromatic 

stains, showed different staining behavior. Warmke & Lee (1976) noted that cell 

walls were stained quite well with this stain. Laticifers were clearly shown up with 

this staining reagent, especially latex, where they were stained dark red (figure 

63, 67-69). Even though other cells such as tannin cells were also stained red, 

latex could be distinguished within the resin by its granular structure compared 

to tannin. Other parenchyma cells were stained blue. Xylem was stained red as 

well but was quite easily recognised and distinguished from other cells by it 

thick lignified cell walls. This stain in general is a good stain for laticifer cells 

since it can differentially stain it from other cells. Nevertheless, this stain took 

longer to complete the staining procedure as compared to Toluidine blue stain. 

Apart from Toluidine blue, Safranin 0 and Astra blue there were other types of 

stains that were used in this experiment for the histologies study; these were 

fluorescent stains. Instead of staining non-living materials (fixed-embedded 

samples), these stains were able to stain fresh/living cells and this gave the 

advantage over the other histological stains, because results can be achieved in 

a shorter time with less risk of artifacts from the fixation, dehydration and 

embedding procedures. These stains are also known as vital stains, and they 
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were normally applied to the sections with a very low concentrations (0.01% 

w/v) in order to minimize disruption to the material (Horobin 1990). In this 

experiment, calcofluor, ANS, Acridine orange, and Oil Red 0 and Dansyl 

chloride were used. Samples stained with calcofluor gave an overall bluish 

color to the cell walls when observed under the fluorescent microscope with a 

UV filter (figure 1a). The stain, however, did not stain the laticifers cells and 

latex very well. Combining UV epifluorescent illumination with bright field 

[trans] illumination though, gave a good indication of the laticifers' location in the 

sample (figure 1b, figure 33). Still the stain gave a good general outline of the 

cell walls and lignified cells such as xylem in the tissue (Smith & McCully 1978). 

In the case of ANS, it tends to bind to the hydrophobic molecules. With this 

stain, the overall cells in the fresh samples were observed to be greenish in 

colour under the epi-fluorescent microscope (figure 43-47). Coagulated latex 

was stained with this stain (figure 44). This stain has also been found to be a 

sensitive vascular stain (reviewed by Gates & Oparka 1982), especially in the 

cleared leaf samples (figure 47). Similar results were also observed with 

Acridine orange. This stain has the ability to stain intracellular RNA and DNA. 

This reagent stained the cell walls and lignified cells very well and gave an 

overall orangish colour to the samples (figure 48-52). Latex can be distinguished 

by bright orange dots in the cells, even though there was no cell wall outline 

visible (figure 49). This stain was also observed to be a good vascular stain 

(figure 52). Oil red 0 and Dansyl chloride stain also gave similar results as the 

Acridine orange, where only the vascular tissues were stained properly 

(unpublished result). 
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Optimising staining 

In general, almost all the stains used in this experiment showed little differential 

staining to the laticifers cells or latex in the samples. However, they can be used 

as a general stains in helping to locate the laticifer distribution in the tissue. 

Toluidine blue stain was a very fast stain for viewing the results especially in the 

resin embedded samples. The staining protocols involved a very simple and 

easy staining procedure. Safranin 0 and Astra blue stain, which were used for 

the wax embedded samples, involve a quite lengthy procedure. However, since 

this stain was a double stain, differential staining was observed in the samples, 

sometimes making the identification of certain cells easier. 

Other stains that were used with the fluorescent microscope such as the 

Calcofluor, ANS and Acridine orange can be used as a general cell wall stain. 

Using these stains with the combination of fluorescent and bright field technique 

can give good and sometime interesting results on the location and distribution 

of laticifers in the samples. 

These optimized staining technique will be used and further refined for Hevea 

study that will be carried out in Malaysia. Fluorescence stains were in particular 

very promising and will be fine tuned further to achieve better results. 

4.2.4 The use of microscopy techniques to visualize the laticifers in plant 

tissues. 

Optical and electron microscopy have been used as supplementary tools in 

assisting botanists looking at plant cells. New techniques were created and 
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existing techniques were modified to achieve certain objective in research such 

as the used of microwave oven to fix plant tissues etc. Several microscopical 

techniques are reported here in an attempt to obtain a better view of laticifers in 

the plant tissues, especially in optical microscopy. The most notable success 

was the bright field illumination with the fresh samples where coagulated latex in 

the laticifers can be easily detected by a black mass in the cells (figure 1b, 33). It 

was a very convenient technique, where results can be viewed rapidly. However, 

this technique can only be applied to samples where latex has the ability to 

coagulate and is retained in the laticifers. Good results were obtained using 

this technique on Meconopsis cambrica, Papaver rhoeas, Musa acuminata and 

Taraxacum officinale. However, in Hevea brasiliensis and Euphorbia wulfenii, 

even though latex was coagulated, and some was retained in the laticifers, 

results were not as good as the other samples. This was because both samples 

(Hevea and Euphorbia) exuded so much latex when cut that the latex smeared 

and obscured other cells as well, not only making it difficult to view the sample 

but also giving misleading results as well. 

The other technique that was applied was the Differential Interference Contrast 

(DIC) or Nomarski technique. A Nomarski technique gives the illusion of a 3D 

effect and improves upon the resolution of what can be seen when looking at the 

unstained samples, due to the optical sectioning of the specimen by the 

illumination. This effect is basically achieved when the light is first polarised and 

then passed through a prism, which splits the light up into two beams and then 

rotates them so they are at right angles to each other; the light then travels 

through the specimen and up to the objective where the beams recombine and 

interfere with each other. Shaw & Rawlins (1994) observed that this technique is 

particularly good at revealing edges in biological structures such as organelle 

and nuclear boundaries, cell boundaries and cell walls. Observations reported 

here showed that the cell walls outline was shown very nicely with this 

technique (figure 18,19,20). The cell wall breaking down in some of laticifers 

cells were noticed as well (figure 20). This technique was, however, not able to 
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demonstrate the outline of the latex (vacuoles) in the laticifers. Because there 

was no staining involved in this procedure, there was hardly any colour variation 

observed from the samples. 

4.2.5 Summary on the evaluation of light microscopy techniques for 

screening breeding material 

One of the aims was to identify light microscopy preparation techniques that 

could be used to identify laticifers numbers and distribution in breeding lines. 

Such a technique would need to be rapid, reliable, clear for identification and 

give good structural preservation. The preparation techniques and protocols 

used are summarized below, and the strength and weakness of each techniques 

and protocols analyzed. 

Fixation 

Unfixed and freshly cut tissues, have the ability to be used as a quick reference 

for the distribution of laticifers in the tissue. The time taken for the preparation 

protocol was very short and result can be viewed very fast. The only downside 

with this technique was when used with plants in which the laticifers exuded too 

much latex, which could smear the neighbouring cells and obscure the laticifers 

themselves. But this shortfall could be minimized if latex in the laticifers 

coagulated. The samples have to be disposed of after the investigation and 

could not be kept for archiving and further investigation. 
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An easy and relatively quick immunofix protocol was developed. Preservation of 

the plant cells was reasonable and results were consistent. It is anticipated that 

further immuno studies will be carried out with samples fixed with this fixative. 

Osmium tetroxide and the combination of osmium tetroxide with zinc iodide, on 

the other hand, were quite cumbersome and involved a more complex 

preparational procedure. The structural information obtained was far better 

than in the samples fixed with immunofix, but considering the time involved and 

not so user-friendly, both osmium tetroxide and a combination with zinc iodide 

were only good and suitable for the purpose if details of ultrastructural 

information were the priority. 

Embedding 

Wax, and Araldite and Spurr resins were all good embedding media, which 

were capable of giving reliable results. In terms of ease of use and the length of 

time taken to prepare the samples for viewing, wax has the advantage over the 

other two resins. Furthermore, samples embedded in wax were easier and 

quicker to section especially if serial sections were required. Additionally, epoxy 

resins were quite harmful especially Spurrs, which was carcinogenic. 

Staining 

Staining procedure in this study can be categorized into two main groups. First 

were the stains for samples with no embedding media and used for fluorescent 
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work such as Calcofluor, ANS, Acridine orange and Oil Red 0 with Dansyl 

chloride. Secondly there were the stains for embedded samples such as 

Toluidine blue and Safranin 0 and Astra blue. All the stains for the un-

embedded samples were capable of giving fast and reliable results. Even though 

none of the stains mentioned were very specific to the latex of laticiferous cells, 

however these general cell wall stains help to enhance identification. . Toluidine 

blue and Safranin O plus Astra blue have also shown the capability of giving 

good, consistent and accurate results. The only downside particularly with 

Safranin 0 and Astra blue was that they take longer in the staining procedure, 

where the samples has to be dewaxed, rehydrated and then stained with a 

two-step staining before results could be viewed under the light microscope. 

On balance, the most suitable preparation technique for the rapid screening of 

breeding material would seem to be the examination of fresh samples and 

staining with fluorescent stains (which would probably require further refinement 

in technique). This is especially vital if a group or a big batch of samples were to 

be screened and a fast result is required for breeding purposes. Another major 

advantage is that this staining procedure does not require much technical 

knowledge and is very simple to use even by an inexperienced laboratory 

assistant. Moreover, this procedure can also be carried out in the field and in 

many isolated rubber estates (in a mobile lab) where usually proper facilities for 

anatomy study are not available. 
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4.3 Structure of laticifers in different stages of development in 

Meconopsis cambrica ; changes during tissue aging 

Tissues from plants at different stages of growth were compared, and some 

structural differences of cell component were found in relation to their stage of 

development. There are several changes in the shape, sizes and structure of 

organelles in the laticiferous cells that go through this developmental process. In 

this work particular attention was paid to some specific organelles. Emphasis 

was on the observation of the development and changes taking place in 

components of the endomembrane system e.g. vacuoles, the endoplasmic 

reticulum, to laticifer cell walls and to the presence or absence of plastids or 

plastid type structures. 

4.3.1 Endoplasmic reticulum 

As early as 1960s endoplasmic reticulum (ER) was discovered to be part of the 

secretory pathway in eukaryotic cells. In contrast to animal cells where secretion 

is typically extracellular, in plants the secretory pathway can target and deposit 

materials to both the outside of the cells and to specific organelles e.g. the 

vacuoles within the cells. In the secretory pathway, proteins travel from the ER 

through the Golgi apparatus to arrive at the cell surface or at the vacuoles 

(Pallade 1975, Denecke et al. 1990). The process involves protein biosynthesis 

and bi-directional protein traffic; and endocytosis of extracellular molecules as 

well as recycling of membranes and proteins to maintain the cell integrity (Crofts 

et al. 1999, Vitale & Denecke 1999). ER is a network of tubules, vesicles and 

sacs that are interconnected. They may serve specialized functions in the cell 

including protein synthesis, production of hormones , production and deposition 
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of storage compounds, and insertion of membrane proteins (Albert et al. 1994). 

There are two types of endoplasmic reticulum, the rough and the smooth. Rough 

endoplasmic reticulum bears the ribosomes during protein synthesis. The newly 

synthesized proteins are secreted into the cisternae. The system then sends the 

proteins via small vesicles to the Golgi complex, or, in the case of membrane 

proteins, it inserts them into the membrane. Rough endoplasmic reticulum may 

either be vesicular or tubular, or it may consist of stacks of flattened cisternae 

that may have bridging areas connecting the individual sheets. The ribosomes 

sit on the outer surfaces of the sacs (or cisternae). In plants smooth ER is 

associated with lipid synthesis, and synthesis and transport of e.g. nectar 

(Robards 1988). 

Nessler (1982) observed that the differentiation of laticifer initials in Glaucium 

flavum (Papaveraceae) was characterized by the prolifertion of numerous 

vesicles from dilation of endoplasmic reticulum. Experiments reported here 

show that laticifers of young developing Meconopsis showed the presence of 

numerous ER. These ER were observed to be apparently actively involved in 

vacuole biogenesis, where small vacuoles were seen closely associated and 

located very close to them (figure 24, 25). Micrographs indicate that the small 

vacuoles were replaced by larger ones and that these finally coalesce to form 

the bigger vacuoles. Golgi apparatus, which are involved in biogenesis 

processes (Nebenfuhr ef al. 1999), were also present, normally close to the ER 

(figure 24). The dilation of ER membrane was clearly seen, which indicated the 

initial stage of vacuoles' synthesis. ER can be seen drawn together parallel to 

the longitudinal cell axis of the cell wall. In the older samples however, ER were 

quite scarce or absent. This might correlate with the reduced amount of 

vacuoles present in the older laticifers vessels. This might also suggested that 

at this stage (ageing stage) the biosynthesis of vacuoles was becoming slower 

or had entirely stopped. 
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4.3.2 Vacuoles 

The vacuoles of plant cells are multifunctional organelles of plant development. 

(Hofte & Chrispeels 1992; Hara-Nishimura et al. 1998; Herman & Larkins 

1999). They are lytic compartments and have a function of reservoirs for ions 

and metabolites, including pigments, and are crucial to processes of 

detoxification and general cell homeostasis. They are also the most conspicuous 

compartments in most plant cells. They may consist of one or more very large 

vesicles, which are separated from the cytoplasm by a single membrane called 

the tonoplast (Albert et. a/., 1994). 

In Meconopsis cambrica vacuoles are very prominent organelles in the 

laticifers, in both young and old samples. However, different compositions in the 

vacuoles of young and old samples were observed at two different stages of 

development. Francis (1999) noted that plant cell vacuoles are widely diverse in 

form, size, content, and functional dynamics, and a single cell may contain more 

than one kind of vacuole. I observed that the vacuoles in the young sample in 

particular, were occupied with a dense net-like structure (figure 22), which is not 

observed in the vacuoles of the old sample (figure 30). It was also noticed that, 

as the plant grew, the number of vacuoles in the laticifers increased and their 

arrangement became more compact, compared to the younger plant (figure 29). 

In most cases the vacuoles occupied more that an estimated 80% of the 

laticifers in the older samples (figure 23). 

Vacuoles arise initially in young dividing cells by the fusion of vesicles derived 

from both the endoplasmic reticulum and the Golgi apparatus (Hohl et al. 1996; 

Hinz et al. 1999). Esau & Kosakai (1975) noted that in Nelumbo nucifera, 

laticifers contained numerous small vacuoles, or vesicles, which later merge with 

the central vacuole by an autophagy process. In the case of Meconopsis, It was 
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observed that both the formation of vesicles from the dilation of endoplasmic 

reticulum and from the Golgi apparatus, especially in the young sample (figure 

24 & 25). 

Even though it has been commonly assumed that all vacuoles have the same 

origin and belong to a common group, there are major differences amongst them 

morphologically (Chrispeels 1991; Okita & Rogers 1996). With improvements in 

cell fractionation and biochemical analyses as well as in the use of new 

molecular probes, it has become possible to characterize specialized vacuolar 

compartments in the cells from a variety of tissues (Hoh et al. 1995; Paris et al. 

1996; Webb et al. 1999). Other than just filling the space of the cells, and 

transporting substances in the cells, the vacuoles also act as storage 

compartments in plants. In some plants, the vacuoles of certain specialized cells 

contain such interesting secondary plant products as rubber (as in Hevea and 

Euphorbia) and opium (as in the Papaver family) (Nessler & Mahlberg 1978). 

The micrographs suggest a relationship between the ER [a possible site of pro 

latex synthesis] and the vacuoles [where latex is accumulated]. Specific 

contents of the vacuole and their substances in Meconopsis cambrica (and 

other species that having laticifers with vacuoles i.e. Papaver rhoeas, 

Taraxacum officinale etc.) can only be determined by doing a proper biochemical 

assay and molecular assessment. It is, however, notoriously difficult to prepare 

clean, intact vacuoles for analysis of their content, but the future availability of 

antibodies to latex components and enzymes involved in synthesis could, by use 

of immunocytochemistry, further our understanding of the process of latex 

deposition. 
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4.3.3 Cell walls 

Attention has been paid to cell wall form, as it is apparent that during 

differentiation of laticifers there is, at the same time, both deposition of material 

to the lateral/vertical walls of the elongating tubular cells, and also breakdown 

of the end walls between the cells to form the extensive laticifer networks. 

Growing plant cells are shaped by an extensible wall that is a complex amalgam 

of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, 

pectins, and structural proteins (Cosgrove 1997). The plant cell wall is a 

specialized form of extracellular matrix that is closely applied to the external 

surface of the plant cell plasma membrane. Moreover, the cell wall is involved in 

cell division, growth, cell differentiation and defense against microorganisms 

(Keller 1993; Showalter 1993; Musel et al. 1997). The primary wall is 

present in all cells but a secondary wall is present in only certain cells 

(Mauseth 1988; Carpita & Gilbert 1993). The cell walls of young growing plant 

cells are thinner and are only semirigid to accommodate their future expansion 

(Waldron & Selvandran 1992; Stolle-Smits et al. 1999). Nunan et al. (1998) 

monitored the development of cell walls in grape berries and observed 

differences in the thickness of the cell wall from before ripening through to the 

final ripe berry and noticed no significant changes in the cell wall thickness, but 

protein content increased. 

Difference of cell wall thickness in two developmental stages in Meconopsis 

cambrica are reported above. Cell walls of young Meconopsis showed cellulose 

microfibrils were arranged very loosely (figure 26a). This will accommodate the 

cell expansion during the growth. Whereas in the older sample, thickening of cell 

walls was obvious with a new deposit of more densely packed fibrils forming a 

secondary cell wall were observed (figure 26b). Nessler & Mahlberg (1977) 
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noted that in Papaver somniferum, the thinning of laticifer cell walls occurred 

progressively and simultaneously on the wall on either side of the middle 

lamella and this suggests that wall-degrading enzymes, rather than pressure, 

may be involved in the process. Most laticifers in the old sample can be seen still 

retaining the primary cell wall (figure 23, 27, 28, 30). Nevertheless, it is hard to 

say, at this point how and where the change is taking place without further 

biochemical study. 

Microtubules were also noticed very closely associated with the cell wall in some 

sections (figure 25). Other workers have shown that microtubules are involved in 

co-ordinating mitosis, cytokinesis and the guidance of cellulose synthase 

complexes during cell wall deposition (Hepler & Hush 1996; Foissner & 

Wasteney 1999). Similarly microtubules may play some role in the regulated 

programme of death in specific cells e.g. xylem and the formation of tubular 

transport networks (Greenberg, 1997; Whetton ef al. 1998; Cassab 1998; 

Scheres & Benfey 1999). 

There was some indication of cell wall breakdown occurring in the samples (e.g. 

figure 42). It was believed that with this action adjacent cells may merge and 

form a bigger laticiferous cell. Results also showed the position of cell wall 

breakdown not only adjacent to the laticiferous cell but close to other 

parenchyma cells as well (figure 41). This process could turn the joining 

parenchyma cells into laticiferous cells eventually. Other workers who have 

worked on cell wall degradation have shown that proteolytic enzymes are 

involved in the process (Giordani & Noat 1988; Chye & Cheung 1995; Subroto 

ef al. 1996). The most notable enzyme involved in the early stages of this 

process was pectinase (Ward & Moo-Young 1989; Capek 1995; Ebbelaar ef al. 

1996). 
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4.4 Laticifers distribution in different part of rubber bearing plants 

Using the combination of the above-mentioned techniques, attempts were made 

to establish the location and distribution of laticifers in different parts of Hevea 

brasiliensis. Two staining reagents were used in accessing the results, ANS and 

Acridine orange were applied to the fresh samples. 

ANS binds to the hydrophobic molecules; it stained the fresh samples and gave 

an overall greenish appearance when observed under epi-fluorescence 

microscope. Latex was stained well in the seed cotyledon of Hevea and 

showed as numerous bright green spots throughout the section. Latex was 

scattered in the outer region of the vascular bundle (figure 44). However, in the 

root and petiole, latex was weakly stained and could be observed located in the 

cambial region of the vascular bundle (figure 44 & 46). Apart from those parts of 

the plants that showed the distribution of latex in the cambial region, the others 

did not show a very constant and conclusive result on the whereabouts of 

laticifers in the samples. Attempts to apply the staining reagent at different 

dilutions and different length of time to the samples did not improve results. 

Leaf tissues were particularly difficult to handle, especially when it came to 

peeling the cuticles and trying to observe the laticifers under the microscope. 

Even if the laticifers were stained, the view was hindered by the position of the 

laticifers, which were sandwiched in-between the vascular tissues (figure 47). 

The vascular elements were, however, outlined very well with the staining 

reagent. It was concluded that, during cutting and sectioning, the latex oozed out 

from the laticifers as a result of turgor pressure and left no latex for the reagent 

to stain. 
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Samples stained with Acridine orange, showed almost a similar pattern of 

results obtained with ANS. Seed cotyledon showed latex was stained brightly 

with the latex marked as bright dots (figure 49). There were no apparent lignified 

cells present in the samples. Latex in the root was weakly stained and could be 

seen in the cambial region of the vascular bundle (figure 51). Vascular elements 

in the leaf were clearly defined and outlined (figure 52). For the same reason as 

the above, it was concluded that, during cutting and sectioning, the latex oozed 

out from the laticifers in the larger organs [leaves and roots] as a result of turgor 

pressure and left no latex for the reagent to stain. 

In short, laticifer distribution in some parts of the plant could be determined by 

use of these two staining reagents. Even though most of the parts did not show 

very conclusive results in term of latex staining, the distribution of the laticifers 

cells can still be determined by other means such as the shape and relative size 

of the laticifers in the tissues, with the help of these stains. 

4.5 Laticifers in several latex bearing plants 

4.5.1 Meconopsis cambrica 

In general, all members of Papaveraceae have been reported to have articulate 

laticifers (Metcalfe & Chalk 1989). Some are articulated anastomosing and the 

others are articulated non-anastomosing. Laticifers in Meconopsis are of 

articulated anastomosing type as recorded by Kapoor and Sharma (1963). 

It was observed that laticifers in Meconopsis cambrica occur in the outer region 

of the xylem, in both young and old samples (figure 1-20). It was often difficult 
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to distinguish laticifers from other cells and this is especially true with embedded 

samples. Unlike the fresh cut sample, some embedded samples did not retain 

the latex inside the laticifers, thus making the identification of the laticifers quite 

difficult. In the fresh samples, laticifers can be easily recognized in thick section 

of fresh cut whole stem, as prepared for observation by light microscopy. The 

presence of coagulated latex inside the laticifers helped in identifying the 

location of laticifers in the cells (figure 1). Examination under the electron 

microscopy further confirmed that these cells are laticifers (figure 21). 

Another interesting observation, especially in transverse section, was that the 

shape of the laticiferous cells was more likely to be irregular as compare to other 

surrounding parenchyma cells (figure 2,3). This feature can sometimes be 

exploited as a quick indicator as to where the laticiferous cell is. Even thought 

this observation was not so conclusive and precise, it helped in the elimination 

process during the initial investigation to locate and identify the whereabouts of 

the laticifers in the cells. 

However this irregularity of shape of laticifers was not totally a coincidence since 

some work has shown that during the development of the laticifers, cell wall 

breakdown occurred (Ward & Moo-young 1989; Ebelaar ef al. 1996). This 

process was assisted by the enzymatic activities, especially by the pectinase. As 

the plant grew, more cell walls broke down thus joining the neighboring cells to 

form a bigger cell network. The process of cell wall breaking down and several 

cells undergoing the similar activities, contributed in reshaping the laticiferous 

cell, either into irregularly shape cells or in terms of cell size, becoming much 

bigger than the initial cell. This process also made the laticifers anastomose 

throughout the entire plant. 
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4.5.2 Papaver rhoeas 

The distribution and pattern of laticifers in Papaver rhoeas shows little difference 

from that of Meconopsis cambrica. The laticifers, even though quite difficult to 

be distinguished from other cells, have a very distinct characteristic, which is 

the irregularity of their shapes (figure 33, 35, 37). They are arranged and 

confined to the cambial region of the vascular bundle and are almost a regular 

characteristic in this genus as described by Nessler & Mahlberg (1976). 

However, it is noteworthy to mention that something resembling vacuoles was 

also observed in the xylem cells, which was not observed in Meconopsis. 

Initially when observing the fresh samples. It was thought it might be a latex 

smear from the neighboring laticifers, however the observation from the semithin 

section of the same sample verifies that there are vacuoles inside the xylem 

(figure 35 & 36). This might suggest that during cutting or sectioning, latex 

smeared into the xylem or the xylem itself might still be undergoing the process 

of xylogenesis. 

4.5.3 Musa acuminata 

In this study, we concentrated on the leaf of the plant to see the distribution of 

the laticifers partly because the latex seems to be more prominent in that part. 

There were several difficulties in an attempt to observe laticiferous cells in Musa 

leaves, especially when trying to erect the thin lamina of the leaf onto the slide 

for viewing under the optical microscope. Most results from the attempts showed 
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either the stain did not infiltrate well thus giving less contrast than other samples, 

or the image itself was out of focus due to the angle of the leave not being 

perpendicular to the slide surface (figure 60). 

Laticifers in banana have been reported to bear many similarities to other 

laticifers in the plant kingdom (Fahn, 1979) and are present in almost all parts of 

the plant except the root (Skutch, 1932). A study by Kallarackal et al. (1986) 

showed that laticifers in Musa were always associated with the vascular bundle. 

In resin embedded samples, however, latex can be easily recognized as a dark, 

grainy substance in the laticifers (figure 61 & 62) and can be observed located in 

the middle of the leave lamina near to the vascular bundle. The dark appearance 

was due to the heavy metal impregnated from the osmium tetroxide fixative. 

While in the wax embedded samples and stained with safranin 0 and Astra blue, 

the latex was observed quite distinctively from the other cells by its bright 

reddish colour (see figure 63). 

At a higher magnification using a scanning electron microscope, laticifers were 

revealed as containing numerous small globules, packed inside the laticiferous 

cells (figure 64). It was also observed that the size of the latex varies. This 

observation was illustrated well in the transmission electron microscope (figure 

65). From the micrograph, it was also noticed that some small globules 

coalescing with each other's to form a bigger globules. 
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4.5.4 Hevea brasiliensis 

It was reported that latex is produced from all major parts of Hevea brasiliensis 

(Gomez & Moir 1979; Gomez 1982). Laticifers were observed to be present in 

almost all parts of the plant. Fresh section from all parts of Hevea produced 

white milky latex, which turned pale to yellowish after some time. Latex will 

coagulate if left at room temperature. Histochemical studies of laticifers showed 

that latex was observed in the root (figure 45), leaf cotyledon (figure 44), petiole 

( figure 46) leaf (figure 47) and the stem (figure 43). Laticifers that were 

observed in those parts of the plants were located in the cambial region of the 

tissue. Even though in some of the parts, the degree of staining was not as 

strong as would have been expected, latex can be seen as a more intense 

green dot in the cells if stained with the AIMS, and bright red with Acridine 

orange (figure 49). The locations of laticifers with the histochemical stains were 

confirmed by the results of the resin-embedded sections (figure 53, 54 & 56). 

Latex particles in Hevea brasiliensis were observed to be spherical in shape and 

in different sizes (figure 58). Latex particle sizes were reported ranging from 

0.005 urn to 3 urn (Dickenson 1969; Gomez & Moir 1979). Attempts to measure 

the particles size distribution by light microscopy gave misleading results since 

many of the particles lie beyond the limit of resolution (Gomez 1966). Using 

electron microscopy, van den Tempel (1952) found a maximum in the size 

frequency curve at about 0.1 jam, so that in fact the most numerous particles is 

too small to be seen in the light microscope. Under the electron microscope, 

latex particles appeared as dark osmiophilic particles (figure 58) and some are 

transparent, where the shape of the latex particles was still visible even if they 

are situated under another latex particles. From the micrographs, latex particles 

can also be seen as overlapping with each other, thus making measurement of 
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individual particle size even more difficult. Other alternatives such as using 

colloidal suspensions are not so viable since after some time latex will 

coagulate. 

4.5.5 Euphorbia wulfenii 

Euphorbia wulfenii, as Hevea brasiliensis is another latex-bearing species in the 

Euphorbiaceae family. Since they were sometimes used as an 

ornamental/garden plants, the latex is quite potentially dangerous especially to 

children. The latex can caused severe inflammation if contacted with the skin 

(Frohne & Jurgen-Pfander 1984). 

Histochemistry study on fresh cut samples was quite difficult to carry out 

because the latex was so abundant, so the whole cut surface was smeared with 

latex. Embedded samples on the other hand did not show any traces of laticifers 

when stained (figure 73). Most of the cells and the suspected laticiferous cells 

looked empty. 

4.5.6 Taraxacum officinale 

Although there are many studies on the pharmaceutical properties of this plant, 

little attention has been focused on the laticifers distribution in this species. 

Fresh dandelion stem and leaf when cut will produce clear transparent fluid. In 
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wax embedded samples of leaf lamina, laticifers were observed to be located 

near the vascular bundles of the cells (figure 70a). The latex was stained red 

with the reagent. It was quite difficult to identify the laticifers as they were 

comparatively quite small in size compare with the other cells (figure 71). Our 

observation showed that laticifers in the stem were observed in the outer region 

of the cambial cells. 

An immunocytological study on the cell wall proteins was carried out on this 

species. This ad hoc experiment was initiated primarily to verify the 

immunocytochemistry technique for used on other samples, once antibodies 

that were thought to be suitable for latex particles or laticifers cells become 

available. A range of antibodies to some cell wall components was used. In 

many cases no antibody was observed but this is not surprising as the target 

molecules are minor components associated with specific stages of cell 

differentiation in only some species. The panel of antibodies tested did however 

yield one that gave some positive and specific immuno-staining, indicating that 

the general approach for the development of the method would be suitable at a 

later stage in our work once suitable antibodies are available. 

4.5.7 Mandevilla splendens 

Laticifers in wax-embedded samples can be seen in the phloem area by its 

distinct red colour (figure 67,68,69) when stained with safranin 0 and Astra blue. 

Even though tannin cells were also stained red, the granular appearance of the 

latex in the laticiferous cell distinguished them both. From this instance, it was 

also quite obvious that a differential staining procedure especially between 

laticiferous cells and tannin cells is necessary in order to make a definite 
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judgment between these two cells. It was felt that to get an accurate results, 

empirical methods should have been established rather than the mere-

experience-judgment. 

4.6 Difficulties in laticifers identification 

There were several problems encountered during experiments, especially in 

getting the constant and correct combination of techniques to identify the 

laticifers in the plant tissues. The main problem was to retain latex in the 

laticifers during preparation and observation. It was due to the fact that, latex in 

the laticifers was under a great turgor pressure and the moment the laticifers 

were cut, latex will ooze out immediately leaving the cells to be partially or totally 

empty. Several preventive measures were taken, such as trying to coagulate 

latex in the warm water, fixing the cut samples immediately in situ, and the more 

extreme measure using a microwave technique. The last measure turned out 

not to be quite destructive to the cells and not very successful. 

There was also some confusion during interpretation, of the results especially in 

the ultrastructural level. A very careful approach has to be taken when observing 

and extracting the information from the micrographs. In figure 41 & 42 for 

example, it was quite difficult to come to the conclusion on whether the cell wall 

of the laticifers did break down or whether it is just an artifact, because of the 

plane of sectioning that might make the cell wall look like that. To verify the 

observation, several serial sections and different orientations must be taken 

before any conclusive observation can be made. Another method in that 

particular case would be to do enzymatic study or immunogold labeling on that 

particular protein. Immunogold labeling studies carried out on laticifers or latex 

were not successful. This experiment was hampered by the lack of a specific 
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antibody against the cells (laticiferous cells) or latex available at the time of the 

experiment. Perhaps in the future, work can be carried out to raised the 

antibodies against the laticiferous cells of the specific species, thus make the 

antibody available for the study to be carry out further. 

4.7 Conclusions 

Several hypotheses were identified in the Introduction and addressed in this 

project. They are: -

1. To investigate several tissue preparation techniques for studies of the 

structure and differentiation of laticifers, and to allow application of 

molecular probes to advance further studies of differentiation. 

2. To investigate structure changes of laticifers in different stages of 

development of Meconopsis cambrica. 

3. To investigate the structure and differentiation of laticifers in different 

tissues of Hevea brasiliensis. 

4. To investigate and compare laticifers development in several taxa 

Comparison of tissue preparation techniques for studying structure and 

differentiation of laticifers were carried out. Tissue of latex bearing plants are 

extremely difficult to work with, hence the few previous published studies despite 

the very considerable commercial importance. In this study, several protocols 

involving fixation, embedding and staining procedures were tested. The 

protocols have been selected and optimized for the different types of studies on 

laticifers structure and distribution in seven taxa of five different families. For 

light microscopy study, fresh unfixed samples showed good and acceptable 
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structural information. This procedure was also very easy and reliable to be used 

as compared to other processed samples (as in fixed embedded samples). A 

protocol for immunohistological study was also successful adapted and this 

protocol will be applied in Hevea study when suitable probe is available. 

Ultrastructural information on the laticifers achieved in this study showed that 

future work could be carried out for a more detail and comprehensive study on 

the cytology study on Hevea in particular of using ZIO fixatives to study the 

endomembrane system in the laticifers of Hevea. These results are vital in 

setting the foundation for future applications of using molecular probes to 

advance on understanding of control of cell differentiation. This is particularly 

important as many initial advances in the study of how genetics is linked to 

development and differentiation are now being made. 

From this study, the results showed that most of the techniques in the end 

achieved acceptable results. For the specific purpose of screening the samples 

in breeding line, un-fixed fresh samples stain with fluorescent stain is therefore 

recommended. This preparation procedure can give a reliable, rapid and clear 

result, which is very vital in the breeding programme. 
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