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Modelling Operational Risk Measurement in Islamic Banking:
A Theoretical and Empirical Investigation

Hylmun Izhar

Abstract:

With the emergence and development of Islamic banking industry, the need to cater
operational risks issues has attracted the attention of academics in recent years. Such
studies commonly agree that operational risk is relatively higher and serious than credit
risk and market risk for Islamic banks. However, there is not any single research in the
context of Islamic banking which thoroughly tackles the issue of operational risks by
tackling it in three main aspects: theoretical, methodological, and empirical. This may be
due to the fact that operational risk is relatively new area, which requires further research
to understand the complexities it carries. This is the sources of motivation for the
research, which aims to fill this observed gap in the literature by responding to the
mentioned three aspects.

This research, hence, aims to develop a new measurement model of operational risk
exposures in Islamic banking with the objective of theoretically determining the
underlying features of operational risk exposures and its measurement particularly for
Islamic banks.

In its attempt to develop a theoretical framework of the proposed model, the research
provides a classification of operational risks in major Islamic financial contracts. In
addition, rather than adopting the existing operational risk measurement methods, this
research develops a proposed measurement model attributed as Delta Gamma Sensitivity
Analysis- Extreme Value Theory (DGSA-EVT) model. DGSA-EVT is a model to measure
high frequency-low severity (HF-LS) and low frequency-high severity (LF-HS) type of
operational risks. This is the core of this research’s methodological contribution.

As regards to the empirical contributions, in analysing operational value at risk (opVaR),
this research carefully analyses the behaviour of the data by taking into account volatility,
skewness and kurtosis of the variables. In the modelling, volatility analysis employs two
models: constant-variance model and exponential weighted moving average (EWMA)
model. Results of the empirical tests show that the operational risk variables in this
research are non-normal; thus, non-normality involving skewness and kurtosis as well as
volatility has to be taken into account in the estimation of VaR. In doing so, this research
employs Cornish-Fisher expansion upon which the confidence interval of operational
variables is an explicit function of the skewness and kurtosis as well as the volatility.

Empirical findings by deploying a set of econometrics tests reveal that for financing
activities, the role of maintaining operational efficiency as part of an Islamic bank’s
fiduciary responsibilities is immensely high. However, people risk is enormous and plays
a dominant role in affecting the level of operational risk exposures in Islamic banks in
investment activities.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Of all the different types of risks that affect financial institutions, operational risks can

be among the most destructive and most difficult to foresee. Operational risks,

therefore, continue to receive keen attention among market participants and

regulators, triggering dialogues and debates on the best ways to identify, measure, and

manage this important risk. This recognition has led to an increased prominence of

the importance of sound operational risk management in financial institutions and, to

a greater degree, operational risk in banks’ internal capital assessment and allocation

processes.

In fact, the banking industry is currently undergoing a surge of innovation and

development in these areas. The extraordinary demands of setting up a robust yet

sensible and practical operational risk management system are puzzling risk

professionals in every industry, and even more in financial institutions, where the

regulators set out very detailed requirements.

The Basel 2 Accord focuses on bringing together the world’s financial institutions

under a common regulatory framework, although the way to manage operational risk

is different for each financial institution. In addition, it was also expected that Basel 2

would enable banks to align regulatory requirements more closely with their internal

risk measurement and to improve operational processes. This initiative has led banks

around the world to collect data, which would allow them to model the occurrence

and severity of losses and to use these models to estimate their economic capital

requirement. Interestingly, in a survey conducted by the Risk Management

Association, the main reasons given for engaging in operational risk management

were to improve governance, and protect against the loss of reputation rather than

meeting Basel 2 regulatory requirements (Moosa, 2007).
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Nevertheless, forward-thinking institutions recognise that the accord also provides a

unique opportunity to modernise and upgrade their overall risk practices and risk

infrastructure, especially for credit and operational risk. For these banks, Basel 2

means more than compliance; rather, it denotes the opportunity to achieve distinct

competitive advantage in a tight global market. Some banking institutions have begun

developing processes required by Basel 2, but only a few of them made the

operational risk framework as a practical tool to drive bottom-line results by

enhancing operational and performance effectiveness.

Amid all such developments, the emergence of Islamic banks and financial

institutions provides an alternative financing and banking method. While they are

considered better protected against various risks due to the internal Shari’ah screening

process, the real life realities demonstrates that ‘the resilience of Islamic bank and

financial institutions’ may not necessarily an established fact, as they seem to be

subjected to the same market conditions and risks.

Considering the increased importance of the sector and its robust development, in

January 2006 the Islamic Financial Services Board (IFSB) issued its first two

standards on risk management in Islamic financial institutions and capital adequacy

for Islamic financial institutions. Operational risk, its management, and its use in

calculating risk-based capital form part of these standards. The IFSB Standard No. 1

covers guiding principles for risk management in institutions offering Islamic

financial services. While referring to the definition of operational risk used by the

Basel Committee, namely the risk of loss resulting from inadequate or failed internal

processes, people, and systems, or from external events, it also highlights additional

operational risks faced by Islamic financial institutions. These additional operational

risks for Islamic financial institutions are described as ‘Shariah non-compliance risk’

and those associated with the institutions’ fiduciary responsibilities toward different

fund providers.

The IFSB standard No. 2 covers capital adequacy for institutions offering Islamic

financial services. It states that the measurement of capital to cater for operational risk

may be based on either the Basic Indicator Approach or the Standardised Approach as

set out in Basel 2. Under the Basic Indicator Approach, a fixed percentage of 15% of

annual gross income, averaged over the previous three years, is set aside. Under the
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Standardised Approach, an amount of capital to cater operational risks is set aside

according to a defined beta percentage, ranging from 12% to 18%, in eight lines of

business (LOB); corporate finance, trading and sales, and payment and settlement,

commercial banking, agency services, retail banking, asset management, and retail

brokerage. In this regard, IFSB proposed that the Basic Indicator Approach could be

used by Islamic banks at the current state. However, subject to the supervisory

authority defining the applicable business lines, the supervisory authority may allow

Islamic banks in its jurisdiction to apply the Standardised Approach in which a

percentage (12%, 15%, or 18%) of gross income is set aside according to the business

lines.

As the efforts by IFSB and similar institutions evidence operational risk management

carries an important weight for a healthy running of Islamic financial institutions. It

is, thus, the aim of this research to explore the measurement of operational risk of

Islamic banks and financial institutions with the objective of developing a sound and

effective operational risk management process.

1.2. STATEMENT OF THE RESEARCH

The previous section indicates that capital calculation for operational risk, as

suggested by IFSB, may be based on the Basic Indicator Approach or the

Standardised Approach. This statement, however, raises a number of issues as

highlighted below:

(i) An adaptation of capital calculation methods, namely the Basic Indicator Approach

(BIA), the Standardised Approach (TSA) and Advanced Measurement Approach

(AMA) to cater for operational risk based on Basel is deemed to be inappropriate due

to different contractual features of an Islamic bank as compared to its conventional

counterpart;

(ii) The determination of beta percentage in eight lines of business may be arbitrary as

it is extracted from a conventional bank. Moreover, it may not reflect the

characteristics and nature of financial transactions in an Islamic bank;

(iii) An Islamic bank may have different line of business due to different nature of

transactional forms;



4

This research, hence, argues that to understand how much capital is needed to be set

aside is contingent upon the knowledge of exposure level of operational risk, which

should be known ex-ante. This suggests that there is an initial step, which is

overlooked in the process, namely the measurement of the operational risk exposure

itself. It is the aim of this research to contribute to this topic by developing an

efficient operational risk measurement method for Islamic banks and financial

institutions.

1.3 RESEARCH AIM AND OBJECTIVES

The aim of this research is to explore measurement of operational risk management

methods in the case of Islamic banks with the objective of developing a new model to

measure the exposure of operational risks in Islamic banking. In order to reach the

aim, following objectives are constructed:

a. to identify the extents to which operational risks are similar or dissimilar in an

Islamic banks as compared to its conventional counterparts;

b. to identify the spectrums of operational risks in an Islamic bank;

c. to identify the dimensions of operational risks in major Islamic financial

contracts;

d. to develop models for the measurement of operational risk in an Islamic bank;

e. to test the proposed models based on available data.

1.4 RESEARCH QUESTIONS

Research questions, which are clearly formulated, help to respond to the aim and

objectives of the research. Hence, the research questions of this research in line with

the aims and objectives are as follows:

a. Does the definition of operational risk in an Islamic bank embody the same

dimensions and framework as conventional banks?
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b. What are the dimensions and framework of operational risks in major Islamic

financial contracts, such as mudharabah, musharakah, murabahah, ijara, salam

and istisna’?

c. What are the underlying features of operational risk model in an Islamic bank?

d. How to empirically estimate the proposed model?

e. Among the identified risk factors, which one is the most dominant? Why?

The following chapters aim to respond to these research questions within the defined

aims and objectives.

1.5 RESEARCH METHODOLOGY

This research deploys mainly quantitative methodology encompassing from

mathematics, statistics and econometrics. However, this research also adopts

qualitative approach in the sense of developing a clear understanding on the subject

matter through the survey of the available material in its attempt to explicate the

dimensions of operational risks in an Islamic bank (Chapter 3).

In terms of research method, different quantitative approaches are employed

according to the objective of the research question. In developing the proposed

measurement model for instance, this research utilises theoretical mathematics and

statistics; which can be found in Chapter 4. In addition, statistics and econometrics are

deployed in empirically estimating the proposed model, as exemplified in Chapter 5

and 6.

1.6. SIGNIFICANCE AND CONTRIBUTIONS OF THE RESEARCH

In Islamic banking industry, the need to cater operational risks issues has been

highlighted by a number of recent study including Akkizidis and Kumar (2008),

Archer and Haron (2007), Hossain (2005), Iqbal and Mirakhor (2007), Khan and

Ahmed (2001), and Sundararajan and Errico (2002). All of these studies identified

operational risk management as an essential area of risk exposure to be managed for

the successful operations and functioning of Islamic banks due to the fact that Islamic

banks operate in a similar, if not the same, business environment. Khan and Ahmed
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(2001), for example, show that operational risk is relatively higher and serious than

credit risk and market risk for Islamic banks. Unfortunately, to the best of the

researcher’s knowledge, there is not any single research in the context of Islamic

banking which thoroughly tackles the issue of operational risks in three respects; (i)

being theoretical, (ii) being methodological, and (iii) being empirical. This may be

due to the fact that operational risk is relatively new area which requires further

research to tackle the complexities it carries. This is the reason from which this

research is developed; which attempts to fill this observed gap in the literature. Thus,

the contributions of this research emerge in three aspects: theoretical, methodological

and empirical, which is depicted in figure 1.1.
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Figure 1.1: Taxonomy of the Research’s Contributions

CHAPTER 1
INTRODUCTION

CHAPTER 7
CONCLUSION

CHAPTER 6
(2nd empirical chapter)

ASSESSING OPERATIONAL RISKS IN
INDONESIAN ISLAMIC BANKS

CHAPTER 5
(1st empirical chapter)

OPVAR BASED ON VOLATILITY,
SKEWNESS AND KURTOSIS

CHAPTER 4
MODELLING OPERATIONAL RISKS IN

ISLAMIC BANKING: A PROPOSED
FRAMEWORK

CHAPTER 3
OPERATIONAL RISKS IN

ISLAMIC BANKS

CHAPTER 2
LITERATURE REVIEW

Content:
Proposed Measurement Models:

- Delta Gamma Sensitivity Analysis
- Extreme Value Theory

Contents:
Nature & origin of Islamic Banks
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1.7 STRUCTURE OF THE RESEARCH

This research is composed of seven chapters that are assembled into three main parts:

Chapters 2 and 3 are theoretical; Chapter 4 is methodological; Chapters 5 and 6 are

empirical. Chapter 7 is the last chapter, which provides an integrated discussion and

concludes the research.

This research, hence, starts with an Introduction (Chapter 1), being this very chapter,

consisting of background, aim and objectives, issues of the research, research questions,

significance and contribution of the research and lastly, structure of the research. An

outline of the remaining chapters is as follows:

Chapter 2 (Operational Risk Management: Literature Survey on Theory and Empirical

Studies) discusses the historical background, definition, classification, and capital

allocation for operational risks. A review on the empirical studies in operational risks is

also presented in the last section of the chapter. Chapter 2 is mainly a survey of literature

with an objective to gain a basic idea on the concept of operational risk in general. In

addition, highlights of relevant literature are also presented in each chapter depending

upon the context of the discussion.

Chapter 3 (Operational Risks in Islamic Banks) starts with a discussion on the nature and

origin of Islamic banks and analyses why an Islamic bank has distinct operational

aspects, as compared to the conventional one. It continues by examining the operational

risk exposures in Islamic banks. The subsequent section discusses how to identify and

conduct a mapping of operational risk in Islamic banks. Islamic banks are also different

from conventional ones on the structure of their financial contracts; thus they bring

different features of operational risks in different contracts. These are discussed in the

later section. The analysis of issues in having adequate capital in order to cover

operational losses is also presented.

Chapter 4 (Modelling Operational Risks in Islamic Banking: A Proposed Framework)

commences with a review of the existing models in operational risk measurement and its

classifications, which is followed by a theoretical background of the proposed model and
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its features. In the subsequent section, attention is focused on the empirical aspect of the

proposed model.

Chapter 5 (Operational Value at Risk (OpVaR) Based on Volatility, Skewness and

Kurtosis) revisits the theoretical background of value at risk (VaR); and provides detailed

explanation on the methodology used in the study. It also renders a discussion on the

empirical findings. As the detailed discussion in the chapter identifies, in analysing VaR,

this study does not simply use the data and follow a prescribed assumption to produce

VaR. Rather, it carefully analyses the behaviour of the data by taking into account

volatility, skewness and kurtosis of the variables. As shown in the chapter, volatility

analysis employs two models: constant-variance model and exponential weighted moving

average (EWMA) model. This approach has been adopted by Li (1999), Hull and White

(1998), and RiskMetrics (1996).

Chapter 6 (Applying Econometrics to Operational Risks Analysis) is a continuation of

empirical examination conducted in chapter 5. While the objective of the previous

chapter is to figure out the level of scaled-standard deviation of volatility of earnings,

which is represented by the value of operational value at risk in IGCI (Income Generating

Channel for Investment) and IGCF (Income Generating Channel for Financing); the focus

of this chapter is to examine the relationship between identified risk factors with return

on securities (RoS) and return on financing (RoF). As Chapter 5 explains, RoS is the

earnings which is defined in terms of a series of risk factors in IGCI and RoF is earnings

in IGCF. By employing regression techniques and running a set of econometric tests, it is

expected that such techniques would provide a cause-effect framework; hence significant

determinants of operational risk could be identified. Thus, Chapter 6 presents a highlight

of empirical studies in operational risk, and describes the data and methodology, and

examines and discusses the empirical results

Chapter 7 being the Conclusion chapter discusses the finding of this research in light of

the aim, objectives and research questions as suggested in chapter 1.
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CHAPTER 2
OPERATIONAL RISK MANAGEMENT:A LITERATURE

SURVEY ON THEORETICAL FRAMEWORK AND
EMPIRICAL STUDIES

2.1 INTRODUCTION

Until very recently, it has been believed that banks are exposed to two main risks, namely

credit risk and market risk. Operational risk has been regarded as a mere part of ‘other’

risk. However, operational risk is not a new concept for banks, as it has been reflected in

banks’ balance sheets for many decades, as it occurs in the banking industry everyday

and affects the soundness and operating efficiency of all banking activities and all

business units.

The collapse of Barings in 1995, Britain’s oldest merchant bank, and the $1.8 billion

losses suffered by Sumitomo Corporation has shown the need for managing operational

risk into corporate consciousness. It is also worth to mention, as Chernobai et al. (2007)

observe, that the fall-down taking place at Orange County and Daiwa Bank in 1990s and

at Allied Irish Banks and Enron in early 2000s provides examples of what is so called

high-magnitude operational losses.

As Nash contends operational risk is the most striking and has been a “fundamental part”

of doing business, and hence, cannot be fully eliminated (as cited in Alexander, 2003: 3).

It has also become a dominant risk and has contributed an even larger share of total risk

(Ferguson, 2003; as cited in Chernobai et al., 2007). HSBC Group shares the same view

in its report, stating that:

…regulators are increasingly focusing on operational risk…This extends
to operational risk the principle of supporting credit and market risk with
capital, since arguably it is operational risk that potentially poses the
greatest risk.1

1 HSBC Operational Risk Consultancy group was founded in 1990, and is a division of HSBC Insurance
Brokers.
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It is, therefore, argued that a sound operational risk management is essential to the

prudent operation of a financial system as a whole.

While risk management can be understood as the use of financial engineering technology

of various sorts to manage the risks associated with financial positions and exposures

(Marshall, 2001: 150), operational risk is often defined as the entire process of policies,

procedures, expertise and systems that an institution needs in order to manage all the

risks resulting from its financial transactions (Hussain, 2000: 91).

Nonetheless, there has not been unanimity in defining what and how operational risk

occurs in the business as well as explicating the importance of managing operational risk,

as it is not just ‘other’ risk. For this reason, in the following section, the chapter discusses

the historical background, definition, classification, and capital allocation for operational

risks. A review on the empirical studies in operational risks is also presented in the last

section of the chapter.

2.2. THE BASEL CAPITAL ACCORD: A HISTORICAL BACKGROUND

Prior to 1988, bank capital was regulated by setting minimum levels for the ratio of

capital to total assets. However, definitions of capital and ratios considered acceptable

varied from country to country, but also some countries enforced their regulations more

diligently than others. Banks were competing globally and a bank operating in a country

where capital regulations were relaxed was considered to have a competitive edge over

one operating in a country with tighter more strictly enforced capital regulations. The

increased international competition among banks during 1980s emphasized how

inconsistently banks were regulated with regard to capital. As Crouhy et al. (2001)

observe that Japanese bank regulations contained no formal capital adequacy

requirements, while in the United States and the United Kingdom banks were required to

finance more than 5 percent of their risky assets by means of equity.

Another problem was that the types of transactions entered into by banks were becoming

more complicated. The over the counter derivatives market for products such as interest

rate swaps, currency swaps, and foreign exchange options was growing fast. These
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contracts increase the credit risks being taken by a bank. Many of these newer

transactions were off-balance sheet2 activities meaning that they had no effect on the

level of assets reported by a bank, nor on the amount of capital the bank was required to

keep, as a consequence.

The major increase in off-balance sheet activity by banks that took place in the 1980s,

surely, altered the risk profile of banks, while the regulatory requirements concerning

equity ratios remained the same. It, then, became apparent to regulators that total assets

were no longer a reliable indicator of the total risks being taken. A more sophisticated

approach than that of setting minimum levels for the ratio of capital to total balance sheet

assets was needed. The 1988 Basel Accord (known also as the 1988 BIS Accord, or the

‘Accord’) established international minimum capital guidelines that linked banks’ capital

requirements to the financial assets in their portfolio. It was also intended to harmonize

minimum capital ratios.

The BIS Accord defined two minimum standards for meeting acceptable capital

adequacy requirement; namely, an asset to capital multiple and a risk based capital ratio.

The first standard is an overall measure of the bank’s capital adequacy, which was similar

to that existing prior to 1988. It required banks to have an assets-to-capital multiple of at

most 20. The second standard, known as Cooke ratio, focuses on the credit risk

associated with specific on- and off-balance sheet asset categories. It takes the form of

solvency ratio, and is defined as the ratio of capital to risk weighted on-balance sheet plus

off-balance sheet exposures, where the weights are assigned on the basis of counterparty

credit risk.

There have been numerous criticisms of the 1988 Basel Accord. One of the primary

criticisms has focused on the fact that there is a much greater variation in the quality of

assets than those defined by the four categories named under the Accord. Krainer (2002:

425) points out that the categories are based on legal classifications of assets, which are

only remotely related to the investment quality of the assets. In addition, the Accord is

only advisory; its capital requirements are actually determined by local bank regulators.

2 Off-balance sheet is a position with potential financial consequences that does not appear on either the
asset side or the liabilities side of a balance sheet.
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For example, Krainer (2002: 426) reports that if an important economically powerful

country, such as Japan or Germany, relaxes its capital adequacy requirements, the BIS

tends to revise the Accord to accommodate that country.

The scope of the Accord is also limited since it does not address issues related to capital

adequacy such as portfolio effects3 and netting4. Another limitation is that the

requirements do not distinguish between loans to firms with differing risk levels, which

can lead to adverse incentive effects (Kirstein, 2002:394).

In a normal economic condition, when banks shift the composition of their portfolio into

more risky assets, they must increase their reserves and therefore decrease their financial

leverage. Moreover, Krainer (2002:425) argues that banks generally tend to decrease the

risk of their portfolios in recessions (the so-called flight to quality); resulting in increased

financial leverage of banks, these capital requirements will be countercyclical. However,

the regulators focused primarily on credit risk, and ignored market risk and operational

risk.

In response to the several problems with the 1988 Basel Accord, in April 1995 the Basle

Committee issued a consultative proposal to amend the Accord which became known as

the ‘1996 Amendment’, or after it was implemented, ‘BIS 98’.

The introduction of market risk to the scope of risks has made BIS 98 more

comprehensive than the Accord. Moreover, it also requires financial institutions to

measure and hold capital to cover their exposure to the market risk associated with debt

and equity positions in their trading book, foreign exchange and commodity positions in

both trading and banking book.

The amendment started to distinguish between a bank’s trading book and its banking

book (Hull, 2007: 176). The banking book consists mainly of loans and is not usually

3 Portfolio effects is the term used to describe various benefits that arise when a portfolio is well diversified
across issuers, industries, and geographical locations; naturally, a well-diversified portfolio is much less
likely to suffer from credit losses than is a portfolio of deals concentrated with one party, one industry, and
one geographical area.
4 Netting is the ability to offset contracts or claims against each other, with positive and negative values,
recognizing only the net amount. It takes place in the event of a default by counterparty.



14

marked to market for managerial and accounting purposes. The trading book consists of

numerous financial instruments, whether on or off-balance sheet, which are intentionally

held for short-term trading, and which are taken on by the bank with the intention of

making profit from short-term changes in prices, rates, and volatilities. All trading book

positions must be marked to market daily.

After reflecting the developments in the financial industry, the Basel Committee decided

to undertake a comprehensive amendment of the Accord, which is now commonly

referred to Basel I, and account for the diversity of risks taken by the banks. The new

capital accord of 1998 is now known as Basel II.

The document of ‘Operational Risk Management’ was released in 1998, which discussed

the importance of operational risk as a substantial financial risk factor.5 This is actually

one of the main objectives of Basel II; introducing operational risk as a new risk class.

Under Basel II, operational risk is subject to a regulatory capital charge. The Accord

defines and sets detailed instructions on the capital assessment of operational risk and

proposes several approaches that banks may consider to estimate the operational capital

charge, as well as outlines necessary managerial and disclosure requirements.

It seems that regulators are introducing a capital charge for operational risk for three

reasons (Hull: 2007). The first is that in an increasingly complex environment, banks face

many risks arising from the possibilities of human and computer error.6 The second is

that regulators want banks to pay more attention to their internal systems to avoid

catastrophic losses7 like at Barings Bank. The third is that the effect of the Basel II credit

risk calculation will be to reduce the capital requirements for most banks, and regulators

want another capital charge to bring the total capital back to roughly where it was before.

5 See BIS (1998)
6 All errors are ultimately human errors. In the case of a “computer error”, someone at a certain stage made
a mistake programming the computer
7 Catastrophic loss is the most extreme and the rarest forms of operational risk event which can destroy the
bank entirely, involving insider fraud, bad lending, poorly understood derivatives, counterparty failures,
natural disasters, and snowballing reputational losses.
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The Basel II Capital Accord underwent a number of amendments and was finalized in

June 2006.8 .

In sum, the proposals for the new Basel Accord makes changes to areas that were already

included the Accord and add another important dimension to regulatory capital

requirements – operational risk. Thus, there are now three areas of risk that are related to

the minimum capital requirement; (i) credit risk (which was the focus of the original 1988

Accord); (ii) market risk of trading activities (which was introduced in a 1996

amendment to the Accord), and (iii) operational risk.

It should be noted that a key conceptual change within Basel II is the introduction of the

comprehensive framework for capital regulation based on three pillars—minimum capital

requirements, supervisory review and market discipline; as depicted in Figure 2.1.

8 see Basel Committee (2001a, 2001b, 2002a, 2002b) for more discussions of the issues related to the
proposed Accord
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Figure 2.1
Structure of Basel II Capital Accord and Pillar I for Operational Risk

Source: Chernobai et al., (2007: 38)

Under Pillar 1, banks are required to calculate minimum capital charge, referred to as

regulatory capital, with the aim of bringing the quantification of this minimal capital

more in line with the banks’ economic loss potential. Under the Basel II framework there

will be a capital charge for credit risk, market risk and, for the first time, operational risk.

Whereas the treatment of market risk is unchanged relative to the 1996 Amendment of

the Basel 1 Capital Accord, the capital charge for credit risk has been revised

substantially.

It is further recognized that any quantitative approach to risk management should be
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of directors, management, employees, internal and external audit processes. In particular,

the board of directors assumes the ultimate responsibility for oversight of the risk

landscape and the formulation of the company’s risk appetite. This is where Pillar 2

enters. Through this important pillar, also referred to as the supervisory review process,

local regulators review the various checks and balances put in place. This pillar

recognizes the necessity of an effective overview of the banks’ internal assessment of

their overall risk and ensures that management is exercising sound judgement and has set

aside adequate capital for the various risks.

Finally, in order to fulfil its promise that increased regulation will also diminish systemic

risks9; clear reporting guidelines on risks carried by financial institutions are called for.

Pillar 3 seeks to establish market discipline through a better public disclosure of risk

measures and other information relevant to risk management. In particular, banks will

have to offer greater insight into the adequacy of their capitalization.

As Figure 2.1 shows, Basel II (under Pillar I), the regulators also offer three approaches

(BIS:2001a); namely (a) the basic indicator approach, (b) the standardized approach,

and (c) the advanced measurement approach in order to measure operational risk

regulatory capital10. The observation indicates that which of these is used depends on

the sophistication of the bank. The simplest approach is the basic indicator approach.

This sets the operational risk capital equal to the bank’s average annual gross income

over the last three years multiplied by 0.15.11 The standardized approach is similar to the

basic indicator approach except that a different factor is applied to the gross income from

different business lines. In the advanced measurement approach the bank uses its own

internal models to calculate the operational risk loss that it is 99.9% certain will not be

exceeded in one year. Details of how these three approaches operate are presented in the

section 2.5.

9 Systemic risk is the risk that a default by one financial institution will lead to defaults by other financial
institutions.
10 Regulatory capital is the capital that a bank is required to keep by regulators. It is designed to ensure that
there is enough capital in the banking system.
11 Gross income is defined as net interest income plus non-interest income. Net interest income is the
excess of income earned on loans over interest paid on deposits and other instruments that are used to fund
the loans. Years where gross income is negative are not included in the calculations.
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The first two approaches are based on top-down method, while the last approach is

following bottom-up method (see figure 2.1). Top-down method takes aggregate targets,

such as net income or net asset value, to analyze the operational risk factors and loss

events that cause fluctuations in the target. Meanwhile, bottom-up method disaggregates

the targets into many sub-targets and evaluates the impact that factors and events have on

these sub-targets.

2.3 OPERATIONAL RISK: A THEORETICAL FRAMEWORK

Risk is the fundamental element in finance which will inevitably affect financial

behaviour. For such fundamental concept, risk has a wide range of definitions.

The Oxford English Dictionary (2001), for instance, defines risk as “hazard, a chance of

bad consequences, loss or exposure to mischance”. McNeil et. al. (2005: 1) defines risk

as “any event or action that may adversely affect an organization’s ability to achieve its

objectives and execute its strategies” or, alternatively, “the quantifiable likelihood of loss

or less than expected returns”.

Certainly, risk has been associated with negative consequences, in other word, risk is

perceived as the probability of a negative deviation or sustaining a loss. As Vaughan and

Vaughan (1995: 8) notes that risk is “a condition in which there is a possibility of an

adverse deviation from a desired outcome that is expected or hoped for”. This negative

approach is also suggested by Geiger (as cited in Chernobai et al., 2007: 16), when he

defines risk as “an expression of the danger that the effective future outcome will deviate

from the expected or planned outcome in a negative way”.

Interestingly, Chernobai et al. (2007) raise a very important and valid point regarding

risk, stating that risk is not necessarily perceived as a negative concept. For example, in

the perspective of investment, risk is the volatility of expected future cash flows

(measured, for example, by the standard deviation). Because of this uncertainty and

because fluctuations in the underlying value may occur in either negative or positive

direction, risk defined in this way does not exclude the possibility of positive outcomes.

Hence, risk is not necessarily associated with a negative concept.
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In banking, the best known type of risk is credit risk, the risk of not receiving promised

repayments on outstanding investments such as loans and bonds, because of the default of

the borrower (Crouhy et al, 2001). The next important category is probably market risk,

which is described as the change in the value of a financial position due to changes in the

value of the underlying components on which that position depends, such as stock and

bond prices, exchange rates, commodity prices, etc. There are other two categories of

risks which have also become important part of banking operations: liquidity risk and

model risk. Liquidity risk can be defined as the risk stemming from the lack of

marketability of an investment that can not be bought or sold quickly enough to prevent

or minimize loss (McNeil et al., 2005:3). Model risk, on the other hand, is associated with

using a mis-specified (inappropriate) model for measuring risks (Dowd, 1997: 193). The

most recent risk category which has received a lot of attention, and also the focus of this

study, is operational risk, the risk of losses resulting from inadequate or failed internal

processes, people and systems, or from external events. Figure 2.2 depicts the spectrum

of financial risks.

Figure 2.2: Spectrum of Financial Risks

Source: Modified version of Moosa (2008: 7)
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Referring to the definition of risk discussed before, in the context of operational risk, a

negative approach towards risk is considered to be more relevant (Chernobai et al, 2007),

since it deals with mitigating the risk in the events of having the possibility of loss.

2.3.1. A Conceptual Definition

The collapse of Barings Bank in 1995 is without doubt has challenged the concerned

stakeholders in financial industry to define risk which gave a great impact on the industry

and yet was not clearly classified. However, the financial industry, later on, started to

recognise the type of risk, which can not be classified as either credit risk or market risk,

as operational risk.

Many different ways of defining operational risk have been gradually proposed. Albeit

the difficulties of describing operational risk, due to its diversity (Buchelt and Untregger,

2004) and complexity (Milligan, 2004), nevertheless attempts to settle the definition and

the coverage of operational risk have been made by Alexander (2003), Crouhy et al.,

(2001), Cagan (2001), Tripe (2000), Lopez (2002), Jarrow (2007), Moosa (2007) and

Jobst (2007), amongst others.

Attributed as “Risk X” (Metcalfe, 2003), operational risk is not only a lot easier to be said

than done (Allen and Bali, 2004), but it is also considered as a “fuzzy” concept (Crouhy

et al.,2001), because of the difficulties in distinguishing between operational risk and the

normal uncertainties faced by the organisation in its daily operations.

There are two general approaches in defining operational risk. The first approach is

‘residual approach’ which states that operational risk is everything other than credit risk

or market risk (Rao and Dev, 2006; Hull, 2007). More specifically, operational risk can

be drawn by looking at the bank’s financial statements and remove from the income

statement (i) the impact of credit losses and (ii) the profit or losses from market risk

exposure, thus the variation in the resulting income would the attributed to operational

risk (Hull, 2007). However, most people agree that this definition is too broad. Also, this
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definition does not include, as Marshall (2001: 45), Dowd (in Alexander, 2003: 45), and

Hull (2007: 323) point out, what is so called rogue trading12 risk.

Despite the fact that this view is deemed to be hardly suitable for identifying its scope

precisely (Buchelt and Unteregger, 2004), however, Medova and Kyriacou (2001) and

Jameson (1998) argue that the understanding of operational risk is everything that is not

exposed to credit and market risk, in other word, as a residual of credit and market risk,

remains prevalent among practitioners. Responding to this approach, Moosa (2007)

asserts that this sort of definition is probably a reflection of the lack of understanding and

the diversity of operational risk.

The second approach, which is ‘non-residual approach’, suggests that operational risk is,

in fact, the risk arising from operations (Crouhy et al., 2001). This includes the risk of

mistakes in processing transactions, making payment, etc. This definition of operational

risk, is unfortunately, too narrow and has amounted to the confusion between operational

risk and operations risk, given that the former is broader term and is only associated with

value-driving operations such as foreign exchange trading and settlement (Moosa, 2007:

170).

Early on, The Group of Thirty (1993: 4) defined operational risk as “uncertainty related

to losses resulting from inadequate systems or controls, human error or management”.

Furthermore, the Commonwealth Bank of Australia (1999: 17) came up with the broad

definition that operational risk is “all risks other than credit risk and market risk, which

could cause volatility of revenues, expenses and the value of the Bank’s business”. An

early definition of operational risk came up in a seminar at the Federal Reserve Bank of

New York when Shepheard-Walwyn and Litterman (1998: 176) characterised operational

risk as “a general term that applies to all the risk failures that influence the volatility of

the firm’s cost structure as opposed to its revenue structure”.

12 Rogue trading is an activity conducted by so-called rogue trader who acts independently of others - and,
typically, recklessly - usually to the detriment of both the clients and the institution that employs him or
her. In most cases this type of trading is high risk and can create huge losses. The most famous rogue trader
is Nick Leeson, who was a derivatives trader at the Singapore office of Britain's Barings Bank
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It is important to note that in the definition of The Commonwealth Bank of Australia

(1999), operational risk impinges upon both the revenue and cost sides of the business,

but in the definition of Shepherd-Walwyn and Litterman (1998) it covers the cost side

only. The difference between the two approach gives rise to the question if operational

risk is one sided.

In addition to the discussion above, the definition that identifies internal and external

sources of operational risk has been highlighted by Crouhy et al., (2006: 332), who assert

that operational risk is “the risk that external events, or deficiencies in internal controls or

information systems, will result in a loss-whether the loss is anticipated to some extent or

entirely unexpected”.

The diversity of defining operational risk in the early stage shows that there was no

consensus in the industry on the precise definition of operational risk (Webb: 1999).

However, some other vague concepts have been put forward, such as Tripe (2000) who

attributes operational risk as operational loss, without elaborating further. This of course,

does not reflect the diversity of the scope of operational risk. Likewise, Lopez (2002)

argues that operational risk is every unquantifiable risk, which seems to be the antithesis

of measuring regulatory capital against operational risk as required by the Basel II

Accord.

The first official publication of the Bank of International Settlements (BIS: 1998) defines

operational risk as (i) other risks, (ii) any risk not categorized as credit and market risk,

and (iii) the risk of loss arising from various types of human or technical errors.

Defining in a broader aspects, Barclay Bank (2004) suggests that the major sources of

operational risk include operational process reliability, IT security, outsourcing of

operations, dependence on key suppliers, implementation of strategic change, integration

of acquisitions, fraud, error, customer service quality, regulatory compliance,

recruitment, training and retention of staff, and social and environmental impact.

Large banks and financial institutions sometimes prefer to use their own definition of

operational risk. For example, Deutsche Bank (2005: 45) defines operational risk as
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“potential for incurring losses in relation to employees, contractual specifications and

documentation, technology, infrastructure failure and disasters, external influences and

customer relationships”.

The formal definition that is widely accepted was initially proposed by the British

Bankers Association (1997: 4) and adopted by BIS in January 2001, in which,

operational risk was defined as “the risk of direct or indirect loss resulting from

inadequate or failed internal processes, people or system or from external events”.

The second issue is regarding the wide scope of operational risk encountering human risk

(e.g. incompetence, fraud), process risk (e.g. model, transaction and operational risk

control) and technology risk (e.g. system failure, programming error). Whereas everyone

agrees that such risks are very important, much disagreement exists on how far one is

able to quantify such risks. This becomes particularly difficult when financially more

important risks like fraud and litigation are taken into account. None doubts the

importance of operational risk for the financial sector, but much less agreement exists on

how to measure this risk.

A refined definition of operational risk dropped the two terms, hence finalising the

definition of operational risk as “operational risk is the risk of loss resulting from

inadequate or failed internal processes, people or system, or from external events” (BIS,

2003b: 2).

Chernobai et al.(2007) argues that the definition is “causal based”, providing a

breakdown of operational risk into four categories based on its sources: (i) people; (ii)

processes; (iii) systems; and (iv) external factors.

In addition, the BIS paper also clarifies that the Pillar I capital charge is not meant to

capture or reflect systemic risks. It is important to note that this definition is based on the

underlying causes of operational risk, as it seeks to delineate operational risks from other

risks by referring to key internal and external aspects of the business operation that, alone

or in combination, can cause operational losses.
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2.3.2. Indicators of Operational Risk Exposures

The probability of operational risk events will increase with a large number of personnel

(due to increased probability of committing an error) and with a greater transaction

volume. Following BIS (2001a, Annex 4), Haunbenstock (2003), and Allen et al., (2004),

the operational risk exposure indicators include gross income, volume of trades or new

deals, value of assets under management, value of transactions, number of transactions,

number of employees, employees’ years of experience, capital structure (debt-to-equity-

ratio), historical operational losses, and historical insurance claims for operational losses.

In a study gauging the dependence between a bank size and operational loss amounts,

Shih et al., (2000) find that on average, for every unit increase in a bank size, operational

losses are predicted to increase roughly a fourth root of that. This means that when they

regressed log-losses on a bank’s log size, the estimated coefficient was approximately

0.25. However, in a similar study, Chapelle et al., (2005) estimated the coefficient to be

0.15.

It can therefore be argued that the exposures of operational risk in a financial institution

are likely to increase in proportion with the size and complexity of financial transactions

it engages with. However, in order to find out the sources of operational risk, the

subsequent section attempts to classify the different classes of operational risks.
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2.3.3. Classification of Operational Risks

A number of technical concepts have been introduced since the acknowledgement of

operational risk as a new class of risk. Therefore, it is noteworthy to get familiarised with

some basic concepts as well as a classification of operational risk (see Figure 2.3).

Figure 2.3: Operational Risk Classification

Source: Modified version of Chorafas (2004: 32) and Chernobai et al., (2007: 19)

The above figure shows that the classification of operational risk are based on five

classes: (i) nature of the loss, (ii) impact of the loss, (iii) degree of expectancy, (iv) risk

type, event type, loss type, (v) the magnitude (severity) of loss and frequency of loss.

These are discussed in the following sections:

2.3.3.1. Nature of the Loss

Operational losses can be internally inflicted or can result from external sources, or, in

the words of Crouhy, Galai and Mark (2001), operational loss is the cause of operational

failure risk13 and operational strategic risk14.

Internally inflicted sources include most of the losses caused by human, process, and

technology failures, such as those due to human errors, internal fraud, unauthorized

trading, injuries, and business delays due to computer failures or telecommunication

problems. External sources include man made incidents such as external fraud, theft,

13 Operational failure risk refers to internal event.
14 Operational strategic risk refers to external event.
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computer hacking, terrorist activities, and natural disasters such as damage to physical

assets due to hurricanes, floods, and fires.

Many of the internal operational failures can be prevented with appropriate internal

management practices; for example, tightened controls and management of the personnel

can help prevent some employee errors and internal fraud, and improved

telecommunication networks can help prevent some technological failures.

External losses are very difficult to prevent. However, Marshall (2001), Young and

Ashby (2001), van den Brink (2002) and Hoffman (2002) contend that it is still possible

to design insurance or other hedging strategies to reduce or possibly eliminate externally

inflicted losses.

2.3.3.2. Direct vs Indirect Operational Losses

Direct losses are the losses that directly arise from the associated events. For example, in

incompetent currency trader can result in a loss for the bank due to adverse exchange rate

movements. Another example might be by mistakenly charging the amount of £10,000

instead of £15,000 resulting in the loss for the bank in the amount of £5,000. The Basel II

sets guidelines regarding the estimation of the regulatory capital charge by the banks

based only on direct losses. Table 2.1 identifies the Basel II categories and definitions of

direct operational losses.
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Table 2.1: Direct Loss Type in Operational Risk

Loss Type Contents
Write-downs

Loss of recourse

Restitution

Legal liability
Regulatory and

Compliance
Loss of or damage to

assets

Direct reduction in the value of assets due to theft, fraud,
unauthorized activity, or market and credit losses arising as a
result of operational events.
Payments or disbursements made to incorrect parties and not
covered.
Payments to clients of principal and/or interest by way of
restitution, or the cost of any other form of compensation paid
to clients.
Judgements, settlements, and other legal cots.
Taxation penalties, fines, or the direct cost of any other
penalties, such as license revocations.
Direct reductions in the value of physical assets, including
certificates, due to an accident, such as neglect, accident, fire,
and earthquake.

Source: BIS (2001a: 3)

Indirect losses are generally opportunity costs and the losses associated with the costs of

fixing an operational risk problem such as near-miss losses.

In addition, near-miss losses have been mentioned in the regulatory proposals (BIS:

2001a), and there are hints that they might be used to augment internal loss data in the

calibration of the capital calculation models. Near-miss losses are actually the estimated

losses from those events that could potentially occur but were successfully prevented.

2.3.3.3. Expected and Unexpected Operational Losses

Some operational losses are expected; some are not. The expected losses (EL) are

generally those that occur on regular (such as everyday) basis, such as minor employee

errors and minor credit card fraud. In other word, expected loss is anticipated for the next

time period. For infrequent events, i.e. those which are extremely unlikely to occur more

than once in a given time period, expected losses are:

(2.1)
 

ievent
ii ofLossLikelihoodLossEL
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For more frequent events, expected losses E(L) depend on the form of the probability

distribution p(L) for the event frequencies and impacts; and in the continuous limit can be

written as:

(2.2)

Unexpected losses (UL), on the other hand, are those losses that generally cannot be

easily foreseen, such as natural disasters and large scale internal fraud.

For infrequent events, the following formula can be used to estimate the unexpected loss

over a number of possible outcomes denoted by i:

(2.3)

Or its continuous equivalent:

(2.4)

As with expected losses, it is assumed that the number of occurrences (N) of the event in

a time period, and the individual events impacts (I) are independent and identically

BIS (2001a) suggested that the capital charge for operational risk should cover

unexpected losses (UL) due to operational risk, and that provisions should cover expected

losses (EL). This is due to the fact that many banking activities with a highly likely

incidence of expected regular operational risk losses (such as fraud losses in credit card),

EL are deducted from reported income in the particular year. Therefore, in 2001 BIS

proposed to calibrate the capital charge for operational risk based on both EL and UL, but

to deduct the amount due to provisioning and loss deduction (rather than EL) from the

minimum capital requirement.






 dLLLpLE )()(

 
ievent

ii ELLossofLossLikelihoodUL 2)(






 dLLpLELUL )()([ 2
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However, accounting rules in many countries do not provide a robust and clear approach

to setting provisions, from example allowing provisions set only for future obligations

related to events that have already occurred. In this sense, they may not accurately reflect

the true scope of EL. Therefore, in the 2004 version of Accord, it was proposed to

estimate the capital charge as sum of EL and UL first and then subtract the EL portion in

those cases when the bank is able to demonstrate its ability to capture the EL by its

internal business practices. BIS (2006a: 56) further clarify the idea:

For operational risk EL to be measured to the satisfaction of national supervisors,
the bank’s measure of EL must be consistent with the EL plus UL capital charge
calculated using the AMA model approved by supervisors. …Allowable offsets
for operational risk EL must be clear capital substitutes or otherwise available to
cover EL with a high degree of certainty over a one year time horizon. Where the
offset is something other than provisions, its availability should be limited to
those business lines and event types with highly predictable, routine losses.
Because exceptional operational risk losses do not fall within EL, specific
reserves for any such events that have already occurred will not qualify as
allowable EL offsets.

Figure 2.4 portrays the dimensions of operational risk, showing the catastrophic

loss/stress loss which is the loss in the excess of the upper boundary of the estimated UL

such as 99.9% value at risk15. It requires no capital coverage; however, Mori and Harada

(2001), van den Brink (2002), and Chorafas (2004) suggest that insurance coverage may

be considered.

15 Value at risk is the worst loss that may occur with a given confidence level and for a given period.
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Figure 2.4: Coverage of Operational Risk

Source: Marshall (2001: 80)

2.3.3.4. Risk Type, Event Type and Loss Type

Unlike market risk management, in which the risks largely result from continuous

changes in market prices and rates (risk factors), operational risk management is often

about preventing, controlling, and mitigating loss events.

What is loss event? What is the relation between loss events and risks? Confusion arises

in the operational risk because of the distinction between risk type (or hazard type), event

type, and loss type. When banks record their operational loss data, it is very essential to

record it separately according to event type and loss type, and precisely identify the risk

type as well. Mori and Harada (2001), Alvarez (2002), and Dowd (2003) suggest that the

distinction between the three is comparable to cause and the effect:
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 Hazard constitutes one or more factors that increase the probability of occurrence of

an event.

 Event is a single incident that leads directly to one or more effects (e.g. losses).

 Loss constitutes the amount of financial damage resulting from an event

Figure 2.5
The Process of Loss Occurrence

Source: Modified version of Mori and Harada (2001: 3), Dowd (in Alexander, 2003: 37), and
Chernobai et al. (2007: 23)

Figure 2.5 shows how operational losses would occur in a process called “cause-effect”

(Mori and Harada, 2001, 3) relationship between hazard, event, and loss. As illustrated in

figure 2.4, loss is effect of event while event is cause of loss. Yet, event is effect of

hazard while hazard is cause of event. In other words, every loss must be associated with

an event that caused the loss, while every event must be associated with one or multiple

hazards that caused the event. Note that in the literature related to operational risk,

hazard is also termed as risk (Marshall, 2001), or cause (Dowd, in Alexander: 2003),

while loss might be named as effect (Dowd, in Alexander: 2003).
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By giving the following examples, Mori and Harada (2001: 4) further contend how

critical the correct identification of event type is, in order to decide whether a loss of a

particular loss type is attributed to credit, market, or operational risk:

(i) A reduction in the value of a bond due to change in the market price;

(ii) A reduction in the value of bond due to the bankruptcy of the issuer;

(iii) A reduction in the value of a bond due to a delivery failure.

In this case, the write-down of the bond (the loss type) belongs to the scope of market

risk, credit risk, and operational risk, respectively.

Accurate documentation of operational risk by the type of hazard, event, and loss is also

essential for understanding of operational risk. Marshall (2001) points out that event

usually involves a subject and an active verb (e.g. counterparty defaults, incorrect

counterparty entered, and fax machine fails), and has to be well defined and be clear

whether it has occurred or not. Unrecorded and accumulative events might be

dependently correlated (Powojowski et al., 2002), hence, it is necessary to be alert in

order to avoid its huge impact on losses.

The Basel II classifies operational risk into seven event types groups, as follows16:

1. Internal fraud: Acts of a type intended to defraud, misappropriate property or

circumvent regulations, the law, or company policy. Examples includes

intentional misreporting of positions, employee theft, and insider trading on an

employee’s own account.

2. External fraud: Acts by third party of a type intended to defraud, misappropriate

property or circumvent the law. Examples include robbery, forgery, check kiting,

and damage from computer hacking.

16 This categorisation is established by Basel Committee on Bank Supervision. For details, see “Sound
Practices for the Management and Supervision of Operational Risk”, Bank International Settlements, July
2002.
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3. Employment practices & workplace safety: Acts inconsistent with employment,

health or safety laws or agreements, or which result in payment of personal injury

claims, or claims relating to diversity or discrimination issues. Examples include

workers compensation claims, violation of employee health and safety rules,

organised labour activities, discrimination claims, and general liability (e.g., a

customer slipping and falling at a branch office)

4. Clients, products & business practices: Unintentional or negligent failure to meet

a professional obligation to specific clients (including fiduciary and suitability

requirements), or from the nature or design of a product. Examples include

fiduciary breaches, misuse of confidential customer information, improper trading

activities on the bank’s account, money laundering, and the sale of unauthorised

products.

5. Damages to physical assets: Loss or damage to physical assets from natural

disasters or other events. Examples include terrorism, vandalism, earthquakes,

fires, and floods.

6. Business disruption and system failures: Disruption of business or system failures.

Examples include hardware and software failures, telecommunication problems,

and utility outages.

7. Execution, delivery and process management: Failed transaction processing or

process management, and relations with trade counterparties and vendors.

Examples include data entry errors, collateral management failures, incomplete

legal documentation, unapproved access given to clients’ accounts, non-client

counterparty misperformance, and vendor disputes.

2.3.3.5. Operational Loss Severity and Frequency

Expected losses generally refer to the losses of low severity (or magnitude) and high

frequency. Generalizing this idea, operational losses can be broadly classified into four

main groups:
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(i) Low frequency/low severity;

(ii) High frequency/low severity;

(iii) High frequency/high severity;

(iv) Low frequency/high severity

The ‘severity-frequency quadrant’ shown in Figure 2.6 gives an idea on the assessment of

the likelihood (frequency) of operational risk and the magnitude (severity) of loss. It also

provides information on operational risk exposures across the bank.

As clearly seen in top half of figure 2.6 that if a business unit falls in the upper right hand

quadrant (high frequency/high severity), the business has a high likelihood of operational

risk and a high severity of loss, if failure occurs. However, Samad-Khan (2006) argues

that this is unlikely to happen; therefore it is not very useful for operational risk

modelling (Scandizzo: 2005). In addition, Chernobai et al., (2007) contend that the first

group (low frequency/low severity) is not feasible as well. Consequently, the two

remaining categories of operational losses that the financial industry needs to focus on

are ‘high frequency/low severity’ and ‘low severity/high frequency’ losses. The two areas

are described in the bottom half of Figure 2.6.
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Figure 2.6: Classification of operational risk by frequency and severity
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Source: Chernobai et al. (2007: 25)

The losses of high frequency/low severity are relatively unimportant for an institution and

often can be prevented. What cause the greatest damage are the low frequency/high

severity losses. Banks must be particularly attentive to these losses, because these cause

the greatest financial consequences to the institution, including potential bankruptcy.17

Just a few of such events may result in bankruptcy or a significant decline in the value of

the bank.

2.4 CAPITAL ATTRIBUTION FOR OPERATIONAL RISKS

One of the most critical resources in any business is its capital. Capital can be narrowly

defined as equity plus reserves, or more broadly to also include some types of long-term

subordinated debt (Marshall, 2001: 495).

17 The events that incur such losses are often called the tail events.
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The primary role of capital charge imposed by Basel II is to serve as a buffer to protect

against the damage resulting from risk. It can also be seen as a form of self-insurance

tool. A precise definition should be addressed in order to distinguish between two types

of risk-based capital, economic capital and regulatory capital. According to Chorafas

(2004), economic capital is the amount of capital market forces dictate for risk in the

bank. It is the cushion that provides protection against the various risks inherent in the

business institution and is designed to absorb unexpected losses up to some level of

insolvency risk. It does not include expected losses because these should already be

captured in loss provisions18.

Regulatory capital is the amount of capital necessary to provide adequate coverage of

banks’ exposures to financial risk. It is designed to ensure that there is enough capital in

the banking system.

Whereas, according to Marshall (2001), economic capital is what really matter and its

role becomes supreme because it is based on the objective estimates of business risk .

Moreover, the calculation of economic capital is on a firmer basis of quantifiable internal

and external events (Chorafas: 2004).

In a study on the allocation of operational risk capital, Jorion (2000), Crouhy et

al.,(2001), and Cruz (2002) suggest 25%, 20%, and 35% of risk-weighted assets

respectively. According to BIS (2001a), the portion of economic capital allocated to

operational risk ranges from 15% to 25% of risk-weighted assets. A 2000 Loss Data

Collection Exercise carried out by the Risk Management Group of the BIS revealed the

overall allocation of minimum regulatory/economic capital to operational risk across 41

banks, shown in Table 2.2.

18 See figure 2.4



37

Table 2.2: Ratio of Operational Risk Economic Capital to Overall Economic Capital
and to Minimum Regulatory Capital

Median Mean Minimum 25 th

percentile
75 th

percentile
Maximum

Operational risk
capital/Overall economic
capital

0.150 0.149 0.009 0.086 0.197 0.351

Operational risk
capital/Minimum
regulatory capital

0.128 0.153 0.009 0.074 0.170 0.876

Source: BIS (2001b: 26)

The results shown in table 2.2 suggests that, on average for banks in the sample,

operational risk capital represents about 15 percent of overall economic capital, although

there is some amount of dispersion around this figure. Operational risk capital, however,

appears to represent a rather smaller share of minimum regulatory capital, somewhat over

12 percent for the median bank in the sample. The results also imply that a reasonable

level of the overall operational risk capital charge would be about 14 to 15 percent of

minimum regulatory capital.

2.5. DETERMINATION OF REGULATORY CAPITAL

Banks have three alternatives for determining operational risk regulatory capital, basic

indicator approach (BA), standardized approach (SA), and advanced measurement

approach (AMA). In all three, the amount of regulatory operational risk capital is

proportional to some exposure indicator, which is an accounting measure of bank

activity.

2.5.1. Basic Indicator Approach (BIA)

The simplest approach is the basic indicator approach (BIA). Under this approach,

operational risk capital is set equal to 15% (denoted by ) of annual gross income over

the previous three years. Gross income is defined as net interest income plus non-interest

income. Hence the risk capital under the BI approach for operational risk in year t is

given by


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(2.5)

where and stands for gross income in year . It is important to

note that an operational risk-capital charge is calculated on a yearly basis.

No quantitative and qualitative requirements are specified by Basel II regarding the use

of (BIA). However, banks are encouraged to comply with the guidelines as described in

BIS (2003) and BIS (2006b). The approach is particularly convenient for small and

medium-size banks in the early stage of their implementation of the capital requirements.

2.5.2. Standardised Approach (SA)

Under the standardised approach (SA), banks’ activities are divided into eight business

lines: corporate finance; trading and sales; retail banking; commercial banking; payment

& settlement; agency services; asset management; and retail brokerage. Within each

business line, gross income is a broad indicator that serves as a proxy for the scale of

business operations and thus the likely scale of operational risk exposure. The capital

charge for each business line is calculated by multiplying gross income by a factor

(denoted by ) assigned to that business line. As in 2.1, the total capital charge is

calculated as a three year average over positive GIs, resulting in the following capital

charge formula:

(2.6)

Note that in formula (2.2), in any given year , negative capital charges (resulting

from negative gross income) in some business line j may offset positive capital charges in

other business lines.

The June 2004 Basel II guidelines suggested an option to adopt an alternative version of

the standardized approach, which remain valid under the recent June 2006 Basel II

guidelines. Once a bank has been allowed to use this alternative, it will not be allowed to
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revert to use the standardized approach without the permission of its supervisor. Under

alternative standardized approach, the capital charge for the retail banking and the

commercial banking business lines is calculated by taking total loans and advances as the

operational risk exposure indicator, instead of gross income.

As set by the Basel Committee, the beta coefficient for each business line is shown in the

following table.

Table 2.3: Beta Factors for the Standardised Approach

Business line (j) Beta factors

j = 1, corporate finance
j = 2, trading & sales
j = 3, retail banking
j = 4, commercial banking
j = 5, payment & settlement
j = 6, agency services
j = 7, asset management
j = 8, retail brokerage

18%
18%
12%
15%
18%
15%
12%
12%

Source: BIS (2006b)

Hull (2007) contends that several conditions must be satisfied by a bank in order to use

the standardised approach:

1. The bank must have an operational risk management function that is responsible for

identifying, assessing, monitoring, and controlling operational risk;

2. The bank must keep track of relevant losses by business line and must create

incentives for the improvement of operational risk;

3. There must be regular reporting of operational risk losses throughout the bank;

4. The bank’s operational risk management system must be well documented;

5. The bank’s operational risk management processes and assessment system must be

subject to regular independent reviews by internal auditors. It must also be subject to

regular review by external auditors or supervisors or both.

)( j
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In sum, in order to qualify for the standardized approach, banks must be able to map their

business activities into the business lines.

2.5.3. Advanced Measurement Approach (AMA)

Advanced measurement approach (AMA) are the most complex and advanced, as the

resulting capital charge is the risk measure directly derived from the bank’s internal loss

data history and employs quantitative and qualitative aspects of the bank’s risk

measurement system for the assessment of the regulatory capital charge. To ensure

reliability of the assessment methodology, apart from the internal data, banks may

supplement their databases with external data as well as utilizes technique such as factor

analysis, stress tests, and Bayesian methods.

While the BIA and SA approaches prescribe the explicit formulas (2.1) and (2.2), AMA

approach lays down general guidelines. In the words of the Basel Committee (BIS:

2003):

Given the continuing evolution of analytical approaches for operational risk, the
Committee is not specifying the approach or distributional assumptions used to
generate the operational risk measure for regulatory capital purposes. However, a
bank must be able to demonstrate that its approach captures potentially severe “tail”
loss events. Whatever approach is used, a bank must demonstrate that its operational
risk measure meets a soundness standard comparable to that of the internal ratings-
based approach for credit risk (comparable to a one year holding period and the 99.9
percent confidence interval).

Banks are expected to gather internal data on repetitive, high frequency losses (three to

five years of data), as well as relevant external data on non-repetitive low-frequency

losses. Moreover, they must add stress scenarios both at the level of loss severity

(parameter shocks to model parameters) and correlation between loss types. In the

absence of detailed joint models for different loss types, risk measures for the aggregate

loss should be calculated by summing across the different loss categories. In general,

both so-called expected and unexpected losses should be taken into account (i.e. risk

measure estimates cannot be reduced by subtraction of an expected loss amount).

(2.7)  , , , ,: 1 ,..., ; 1,..., 8; 1,..., 7; 1,...,t i b t i b
kX i T b k N     
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where stands for the k th loss of type for business line b in year is

the number for such losses and years, say. Note that thresholds may be imposed for

each category and small losses less than the threshold may be neglected.

Consequently, the total historical loss amount for business line b in year t-I is as follows:

(2.8)

And the total loss amount for year is

(2.9)

The problem in the advanced measurement approach is to use the loss data to estimate

the distribution of for year t and to calculate risk measures such as VaR. Denoting

for the risk measure at a confidence level , the regulatory capital is determined by

(2.10)

where would typically take a value in the range 0.99-0.999 imposed by the local

regulator. Because the joint distributional structure of the losses in (2.8) and (2.9) for any

given year is generally unknown, it would then typically resort to simple aggregation of

risk measures across loss categories to obtain a formula of the form

(2.11)

A crucial requirement that the banks must satisfy in order to qualify for the AMA is to

have the availability of a minimum of five years of internal data. In the event of the lack

of data and the bank is exposed to infrequent which leads to potentially severe losses,

internal data may be complemented by external data, such as publicly available data or

pooled industry data.
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Nonetheless, with respect to quantification of regulatory capital, it is still a nascent

subject, particularly in the implementation of AMA. As reported in Quantitative Impact

Study by Bank for International Settlement (BIS), out of 357 banks surveyed, only 22

banks gave an estimate of operational risk capital using AMA approach, all of which

belong to the G10 countries (BIS, 2006). Interestingly, the study also reveals that

operational risk is the main driver for increasing minimum required capital. It is the

single largest positive contributor to increase in risk capital among all other exposures,

including credit risk exposure and market risk exposure. In light of this, the subsequent

section discusses some empirical aspects of operational risks and also highlights some of

the data issues in conducting empirical measurement for operational risk exposures.

2.6 A REVIEW OF EMPIRICAL STUDIES

As mentioned above, losses due to operational risk can be direct and indirect. Previous

studies have addressed the indirect impact of operational risk on the market value of a

bank’s equity. Particularly, several studies explored reputational risk caused by

operational loss events, and its impact on the market value of a bank. Reputational

damage inflicted on a bank as a result of an operational loss can be considered as an

indirect operational loss. Perry and de Fontnouvelle (2005) argue that from the point of

view of shareholders, operational loss announcements convey negative information about

the bank’s internal activities and signal direct adverse effect on the future cash flows

generated by the bank. Therefore, the bank’s stock price will be directly affected by such

an announcement. Similar studies have also been conducted by Palmrose et al. (2004),

and Murphy et al. (2004).

Having the similar framework of analysis, Cummins et al. (2004) examine the effect of

the announcements of large operational loss events on the market value of financial firm.

They argue that announcements of large operational losses events have statistically

significant adverse effect on the stock price. They found statistically significant evidence

that the material damage to the firm value exceeded the amount of actual operational loss,

which in turn implies that there is reputational damage to the firm due to an

announcement of a large operational loss. Furthermore, they showed that firms with
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stronger growth opportunities suffer greater losses in the market value due to operational

loss announcements.

Another important empirical finding of operational risk is generated by de Fontnouvelle

et al. (2004), who used loss data covering six large internationally active banks as part of

the BIS’ (2003a) operational risk loss data exercise to find out if the regularities in the

loss data make consistent modeling of operational losses possible. Their results turned

out to be consistent with the publicly reported operational risk capital estimates produced

by banks’ internal economic capital models. Using the similar data from the BIS’s

exercise, Moscadelli (2005) performs a thorough comparison of traditional full-data

analyses and extreme value methods for estimating loss severity distributions. He found

that extreme value theory outperformed the traditional methods in all of the eight

business lines proposed by the BIS. He also found the severity distribution to be very

heavy-tailed and that a substantial difference exists in loss severity across business lines.

In a similar study, Wei (2003) examined operational risk in the insurance industry. By

using data from the OpVaR operational loss database, his results indicate that operational

loss events have a significantly negative effect on the market value 182 of the affected

firms and that the effect of operational losses goes beyond the firm experiencing the loss

event. The conclusion derived from this study is that the significant damage of market

values of both the insurers and the insurance industry caused by operational losses should

provide an incentive for operational risk management in the U.S. insurance industry. In

addition, Wei (2007) expanded the analysis by estimating the aggregate tail operational

risk exposure, implementing a Bayesian approach to estimate the frequency distribution,

while estimating the severity distribution by introducing a covariate. He concluded that

the main driving force of the capital requirement is the tail distribution and the size of a

bank.

In another study, Wei (2006) examined the impact of operational loss events on the

market value of announcing and non-announcing U.S. financial institutions using data

from the OpVaR database. The study evidences significantly negative impact of the

announcement of operational losses on stock prices, which also shows declines in market

value to be of a larger magnitude than the operational losses causing them, which
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supports the conjecture put forward by Cummins et al. (2006). By using data from the

same source, Cummins et al. (2006) conducted an event study of the impact of

operational loss events on the market values of U.S. banks and insurance companies,

obtaining similar results to those obtained by Wei (2006). They found losses to be

proportionately larger for institutions with higher Tobin’s Q ratios, which implies that

operational losses are more serious for firms with strong growth prospects.

With regard to the data issues, it has been commonly viewed that operational risk data

can be a hindrance to conduct empirical studies on the measurement, causes and

consequences of operational risk. This point is made explicit by Wei (2007), who

suggested that quantification of operational risk has been hindered by the lack of internal

and external data on operational losses.

To deal with the data problem, Allen and Bali (2004) estimate an operational risk model

for individual financial institutions using monthly time series of stock returns over the

period 1973–2003. In another study, de Fontnouvelle et al. (2006) address the problem of

sample selection bias using an econometric model in which the truncation point for each

loss is modeled as an unobserved random variable. By using two external operational loss

databases to estimate the loss distribution and estimate the capital charge, they conclude

that the regulatory capital held against operational risk often exceeds that held against

market risk. They also conclude that supplementing internal data with external data on

extremely large events could result in a significant improvement in operational risk

models.

2.7. CONCLUDING REMARKS

The Basel standard, with the proposed variety of increasingly sophisticated and risk

sensitive methodologies for quantifying the capital charge, conceives measurement of

operational risk in the wider and more comprehensive context. It happens as a response

of an increasing number of business institutions suffering from huge operational losses

during 1980s and 1990s.
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Assessing operational risk in numerical terms is crucial, and yet, very challenging, since

the aspects of operational risks encompassing quantifiable and non-quantifiable variables.

However, one important factor has to be maintained; the availability and the right

calculation of risk based capital. While regulatory capital is essential to ensure that there

is a minimum amount of capital held in the banks, economic capital is very crucial for the

bank to protect the banks against insolvency due to various risks inherently attached in

the banking business. Moreover, quantifying economic capital is basically the expression

for unexpected losses.

Three major standards; basic indicator approach (BIA), standardized approach (SA), and

advanced measurement approach (AMA) have also been introduced by the regulators in

order to help banks determine the amount of regulatory capital that they should hold,

depending on the scale of business as well as their capitalization.
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CHAPTER 3

OPERATIONAL RISKS IN ISLAMIC BANKS: A

CONCEPTUAL INQUIRY

3.1 INTRODUCTION

Operational risk management in financial institutions has undoubtedly attracted more

attention from the regulators, practitioners, and also academia over the last decade. This

is partly attributed to the huge losses incurred by a number of financial institutions such

as Barings, Daiwa and Merril Lynch, resulting from malfunctioning of their operational

risk management (Hoffman, 2002; Hull, 2007; and Hussain, 2000). Learning from such

incidents, the regulators and practitioners have seriously taken the issue. In spite of the

wide range of areas and issues in operational risks that need to be catered, attempts to

define and classify operational risk have been made by several institutions, most notably

by Basel Committee on Banking Supervision or Bank for International Settlements (BIS).

For this purpose, BCBS proposed a definition of operational risk through its consultative

document on operational risk (BIS, 2001a).

The industry has a wide range of responses to the definition proposed by BIS. Despite the

raised criticisms, a positive side of the proposal is that banks started to realise the

importance of managing operational risk, and therefore they began to put aside a certain

percentage of capital for operational risk, in addition to credit and market risk.

As an emerging and growing industry, Islamic banking industry also need to develop

strategies and instruments to cater the same issue as highlighted by Akkizidis and Kumar

(2008), Archer and Haron (2007), Hossain (2005), Iqbal and Mirakhor (2007), Khan and

Ahmed (2001), and Sundararajan and Errico (2002), among others. This is not surprising

since Islamic banks operate in a similar, if not the same, business environment.
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Unfortunately, there have not been many studies tackling the operational risk related

issues thoroughly in relation to Islamic banking. This may be due to the fact that

operational risk is relatively new area which needs more research, but also the

complexities it carries should be considered as another reason for less available material.

This is the main reason motivated this chapter.

The chapter starts with a discussion on the nature and origin of Islamic banks and analyse

why an Islamic bank has a distinct operational aspect, as compared to the conventional

one. It goes on with an examination of operational risk exposures in Islamic banks. The

following section discusses how to identify and conduct a mapping of operational risk in

Islamic banks, as Islamic banks are also different from conventional ones on the structure

of their financial contracts; thus they bring different features of operational risks in

different contracts. This is the issue which will be discussed in the subsequent section.

It should be noted that the analysis would not have been complete without tackling the

issue of having adequate capital in order to cover operational losses. Finally, the last

section is allocated for concluding remarks.

3.2. NATURE AND ORIGIN OF ISLAMIC BANKS

The way financial system is constructed can be very central for efficient resource

allocation, as the history has shown that the financial system is determined by the nature

of financial intermediation. The rapid development in financial system has made financial

intermediary more important in the economy. The acquisition and processing of

information about economic agents, the packaging and repackaging of financial claims, a

financial contracting are among the activities that differentiate financial intermediation

from other economic activities (Mishkin, 2004). Consequently, the nature of

intermediation has changed drastically over the last three decades due to the changes in

macroeconomic policies, liberalisation of capital accounts, deregulation, and advances in

financial theory as well as breakthroughs in technology. For example, lending based

operations which characterise traditional banking activity has been replaced by more fee-

based services that bring investors and borrowers directly in contact with each other. In

addition, financial intermediation in the form of traditional banking—mainly based on the
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operations of lending—has declined considerably in developed countries where market-

based intermediation has become dominant.

In Islamic history, financial intermediation has established a historical record and has

made significant contributions to economic development over time. The simplest

manifestation of financial services within the early Muslim states took the form of

money-changers (sayarifah; sing., sarraf) who were also partially engaged in the holding

of deposits and the short-term financing of trade (Chapra and Khan, 2000). However, a

more sophisticated form of banking finance for trade and government was represented by

the jahabidhah (sing., jahbadh) who practiced much of the modern financing activities

under the supervision of the Muslim state (Chachi, 2005; Heck, 2006).

In the highly developed market economy of the Abbasid State, jahabidhah bankers

proliferated throughout the state, even though they were mostly of Jews who enjoyed the

status of Ahl al-Kitab origin (People of the Book) within the early Muslim state. The

jahabidhah were basically trade vendors who concurrently practiced business of

financing and commercial transactions to others. Banking operations were therefore

ancillary to primary mercantile operations, yet they seemed to have grown to sizeable

banking functions particularly when the jahabidhah accepted deposits in efforts to

augment their own businesses. Moreover, the high streets of Basra were so much

supplied with money-changers and jahabidhah that the banking network in Basra was

rightly called by a Western historian ‘the Wall-Street of the Middle Ages’ (Heck 2006).

In this regard, the famous Persian historian, Nasir-i Khusraw, was reported to have

estimated the number of jahabidhah bankers in the state of Isfahan alone at 200 banks

(Heck 2006).

It was such a complex network of banking activities that the call for appropriate

government supervision and regulation was acknowledged by the Islamic state. To this

effect, the Abbasid State established a central banking agency in year 316 H/ 929 A.D

called Diwan al-Jahabidhah to foresee the performance and growth of banks within the

empire. Dar al-Mal, on the other hand, was also established as a Treasury institution

whose function was to supervise an equally intense jahabidhah activities in Fatimid
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Egypt. Among the most commonly practiced banking instruments were the sakk (the

Arabic root of ‘cheque’) and the suftajah (which combined features of traveller cheques

and letters of credit), the hawalah (which is a means credit transfer), wadi’ah (i.e.

deposit), ruq’ah (which was a sort of promissory note). The use of cheque (sakk) was

particularly known since the time of the Rightly-Guided Caliphs. A renowned historian,

Ibn Abdel-Hakam, reported that Umar ibn al-Khattab paid for the grains delivered to the

state warehouses by cheque and that he used to pay government wages by cheques signed

by his treasurer Zaid ibn Thabit (Heck, 2006).

Having been regarded as an alternative financial intermediary with profit and loss sharing

contract (in mudarabah and musharakah contract) as its cornerstone, an Islamic bank is,

theoretically, expected to bring more stabilisation and efficiency in resource allocation. In

addition, an Islamic bank is also equipped with contracts which may, slightly, look

similar to what a conventional bank has been commonly practising; i.e. debt financing (in

murabahah contract). Nevertheless, the nature of debt in an Islamic bank is qualitatively

different from that of conventional bank since debt contract in an Islamic bank requires to

be tied to some underlying assets (Ahmed, 2005 and Khan, 1995). Consequently, the

distinctive contractual structure that an Islamic bank embodies necessitates different

treatment on the management of the operational system of an Islamic bank.

3.3 OPERATIONAL RISK EXPOSURES OF ISLAMIC BANKS

As a modern form of jahbadh, an Islamic bank is an institution offering financial services

conforming with Shariah. A set of Shariah principles governing the operations of Islamic

banks are:

(i) prohibition of dealing with interest (riba);

(ii) financial contracts must be cleared from contractual uncertainty (gharar);

(iii) exclusion of gambling (maysir) in any financial activity;

(iv) profit must not be originated from haram industries (prohibited industries such as

those related to pork products, pornography, or alcoholic beverages);

(v) each financial transaction must refer to a tangible, identifiable underlying asset, and

(vi) parties to a financial transaction must share in the risks and rewards attached to it.
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The principles mentioned above must be, conceptually, inherent in Islamic banks, in

order to distinguish them from conventional banks.

With regard to operational risk, Islamic banks face the same challenge as conventional

ones, to the extent that it exists in the ordinary course of various banking activities

(Archer and Haron, 2007; and Hossain, 2005). At this phase, the challenge is fairly

similar for all financial intermediaries, whether Shariah-compliant or not. Nevertheless,

the challenges are more complex for Islamic banks owing to their activities and unique

features of financial contracts. Islamic Financial Services Board (IFSB) clearly mentions

in its publication that Islamic banks are exposed to “a range of operational risks that

could materially affect their operations” (IFSB, 2007a: 22). Further, it is argued that

operational risks are likely to be more significant for Islamic banks due to their specific

contractual features (Fiennes, 2007; Greuning and Iqbal, 2008; Iqbal and Mirakhor, 2007;

Khan and Ahmed, 2001; Kumar, 2008; Sundararajan and Errico, 2002; and

Sundararajan, 2005).

In Islamic banks, operational risk is associated with the loss resulting from “inadequate or

failed internal processes, people and system, or from external events, including losses

resulting from Shariah non compliance and the failure in fiduciary responsibilities”

(IFSB, 2005a: 26). It is understood that the definition of operational risk in Islamic banks

includes legal risk (Archer and Haron, 2007; Cihak and Hesse, 2008; Djojosugito, 2008,

Fiennes, 2007; Khan and Ahmed, 2001; and Sundararajan, 2005), and also reputational

risk (Fiennes, 2007; Akkizidis and Kumar, 2008; Standard & Poor’s, 2008). The foremost

distinctive feature of this definition, as compared to the definition by Basel II, is the

inclusion of Shariah non-compliance risk and fiduciary risk. As a matter of fact, Shariah

non-compliance risk is considered to have a significant portion in operational risk (IFSB,

2007b: 6).

Shariah non-compliance risk is the risk arising from Islamic banks’ failure to comply

with the Shariah rules and principles determined by the Shariah Board or the relevant

body in the jurisdiction in which the Islamic bank operates (IFSB, 2005a). The failure to

comply with such principle will result in the transaction being cancelled, and hence the
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income or loss cannot be recognised. Moreover, fiduciary risk is the risk that arises from

Islamic banks’ failure to perform in accordance with explicit and implicit standards

applicable to their fiduciary responsibilities (IFSB, 2005a).

Another distinctive aspect from the definition is the recognition of reputational risk.

Maintaining good reputation is crucial for Islamic banks (Hamidi, 2006) since a failure to

do such thing could trigger an exodus of funds, which would result in a liquidity crisis.

Reputational damage could also make retail customers stop requesting financing from

Islamic banks, triggering a downturn in profitability. Therefore, in order to keep good

reputation, it is suggested that Islamic banks need to do two things; firstly, to ensure that

their financial products are Shariah compliant (Greuning and Iqbal, 2008; and Iqbal and

Mirakhor, 2007), secondly, to effectively maintain their fiduciary roles (Muljawan,

2005).

The spotlight above explains why operational risk management in Islamic banks is not

similar to that in conventional banks. There are a number of dimensions need to be added

in the analysis. Although it is argued earlier that the challenge is somewhat similar,

however, it is only to the extent that Islamic banks and conventional banks are dealing

with various banking activities. To a greater extent, operational risk management in

Islamic banks requires more thorough understanding of the sources of operational risk

from which the loss could occur. Operational risks in Islamic banks could, therefore,

appear based on the following major sources: (i) Shariah non-compliance risk; (ii)

fiduciary risk; (iii) people risk; and (iv) legal risk

3.3.1 Shariah Non-Compliance Risk

IFSB guiding principles of risk management for institutions offering Islamic financial

services—other than insurance institutions, clearly mentions the definition of Shariah

non-compliance risk. It is the risk which arises from “IIFSs’19 failure to comply with the

Shariah rules and principles determined by the Shariah board of the IIFS or the relevant

19 IIFS stands for institutions (other than insurance companies) which offer only Islamic financial services.
In many literatures, the term ”Islamic banks”, “IIFS” or “Islamic financial institutions” are used
interchangeably. IFSB opts to use IIFS in its publication.
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body in the jurisdiction in which the IIFS operate” (IFSB, 2005a: 26). For Islamic banks,

to be Shariah compliant is paramount. According to IFSB principle 7.1, Islamic banks

shall have in place adequate system and controls, including Shariah Board/Advisor, to

ensure compliance with Shariah rules and principles (IFSB, 2005a: 27). Such compliance

requirements must be pervasively infused throughout the organisation as well as in their

products and activities. Shariah compliance is considered by IFSB as a higher priority

category in relation to the other identified risks, since violation of Shariah principles will

result in the transactions being cancelled or income generated from them shall be

considered as illegitimate.

The need to ensure compliance with Shariah in operational risk management is vital

(Aziz, 2006) and it must encompass the products, activities, and contract documentation

— with regard to formation, termination and elements which might possibly affect

contract performance such as fraud, misrepresentation, or duress. Furthermore, the degree

of Shariah compliance, as IFSB (2005a) suggests has to be reviewed, at least, annually

which can be performed by a credible party, either from a separate Shariah control

department or as part of the existing internal and external audit. The main objective is to

ensure that (a) the nature of Islamic banks’ financing and equity investment and (b) their

operations are executed in adherence to the Shariah principles.

In the event that Shariah non compliance occuring, either in the products or activities,

Islamic banks need to keep record of the profits out of it. The record will help Islamic

banks assess the probability of similar cases arising in the future. Further, historical

reviews and data of potential areas of Shariah non-compliance will enable Islamic banks

to make an assessment on the potential profits which can not be recognised as legitimate

profits. In order word, potential loss could be managed, hence, reduced to a minimum

level.

With respect to Shariah requirements in financing contracts, albeit the diversity of

interpretations prevalent in the industry, Accounting and Auditing Organisation for

Islamic Financial Institutions (AAOIFI) has already issued its latest Shariah standard

(AAOIFI, 2005) that could be referred to by Islamic banks. In sum, Shariah compliant
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financing in the main contractual forms needs to fulfil the following shariah

requirements:

(i) Murabahah and ijarah contracts:

 The asset is in existence at the time of sale or lease or, in Ijarah, the lease contract

should be preceded by acquisition of the usufruct of the leased asset.

 The asset is legally owned by Islamic banks when it is sold.

 The asset is intended to be used by the buyer/lessee for activities or business

permissible by Shariah; if the asset is leased back to its owner in the first lease

period, it should not lead to contract of ‘inah, by varying the rent or the duration.

 In the event of late payment, there is no penalty fee or increase in price in

exchange for extending or rescheduling the date of payment of accounts

receivable or lease receivable, irrespective of whether the debtor is solvent or

insolvent.

(b) Salam and istisna’ contracts:

 A sale and purchase contract cannot be inter-dependent and inter-conditional on

each other. This is for the case of salam and parallel salam or istisna and parallel

istisna’.

 It is not allowed to stipulate a penalty clause in respect of delay in delivery of a

commodity that is purchased under salam contract. However, it is allowed under

istisna’ or parallel istisna’.

 The subject matter of an istisna’ contract may not physically exist upon entering

into the contract.

(c) Musharakah and mudarabah contracts:
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 The capital of the Islamic banks is to be invested in Shariah compliant

investments or business activities.

 A partner in musharakah cannot guarantee the capital of another partner or a

mudarib guarantees the capital of the mudarabah.

 The purchase price of other partner’s share in a musharakah with a binding

promise to purchase can only be set as per the market value or as per the

agreement at the date of buying. It is not permissible to stipulate that the share be

acquired at its face value.

3.3.2 Fiduciary Risk

Islamic banks are liable for losses arising from their negligence, misconduct or breach of

their investment mandate; the risk of losses which arises from such events is

characterised as a fiduciary risk. In other word, fiduciary risk is an indication of failure to

“perform in accordance with explicit and implicit standards applicable to their fiduciary

responsibilities” (IFSB, 2005a: 26). The indication of such failure can be seen from the

high degree of their earnings volatility. As a result of losses, Islamic banks may become

insolvent and as a consequence unable to (a) meet the demands of current account holders

for repayment of their funds, or (b) protect the interests of its investment account holders.

In performing their fiduciary role, Islamic banks are enforced to preserve the interests of

all fund providers, as prescribed by IFSB standard on risk management principle 7.2

(IFSB, 2005a: 2). In doing so, Islamic banks must ensure that the bases for “asset,

revenue, expense and profit allocations are established, applied and reported in a manner

consistent with Islamic banks’ fiduciary responsibilities” (IFSB, 2005a: 27).

Islamic banks’ fiduciary duty is all about preserving the trust from all fund providers.

Two important aspects that seriously need to be taken into consideration in safeguarding

the trust are; (a) Shariah aspect; Islamic banks must ensure that the activities and the

products are Shariah-compliance, (b) Performance aspect; Islamic banks are required to

have sound financial performance, without which, fund providers might indicate that

there is mismanagement or misconduct.
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In the Shariah aspect, Islamic banks may follow the guidance set by their own or

independent Shariah supervisory board, while in the performance aspect Islamic banks

may create policy which includes the following:

 Identification of investing activities that contribute to investment returns and

taking reasonable steps to carry on those activities in accordance with the Islamic

banks’ fiduciary and agency duties and to treat all their fund providers

appropriately in conformity with the terms and conditions of their investment

agreements;

 Allocation of assets and profits between the IIFS and their investment account

holders (IAH) will be managed and applied appropriately to IAH having funds

invested over different investment periods;

 Determination of appropriate reserves at levels that do not discriminate against

the right for better returns of existing IAH;

 Limitation the risk transmission between current and investment accounts.

 Timely provision of information disclosure to IAH and the market as a reliable

basis for assessing their risk profiles and investment performance.

In terms of fiduciary risk, the element of trust is very important in the relationship

between Islamic banks and the fund providers. This relationship, as Iqbal and Mirakhor

(2007) argue, distinguishes Islamic banks from conventional ones and is the sole

justification for the existence of the Islamic banks. Thus, Islamic banks are always

expected to act in the best interests of their fund providers, i.e. investors/depositors and

shareholders. In respect with fiduciary role, Islamic banks are exposed to fiduciary risk if

they are unable to align the objectives of the investors and shareholders with the actions

that they are supposed to carry out.

In terms of consequences, the fiduciary risk can be enormous, particularly if Islamic

banks start to lose their reputation from their customers. Iqbal and Mirakhor (2007) show

that fiduciary risk can give a huge impact on the bank’s cost and access to liquidity. If the
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banks are declared to be insolvent, which is the worst case, the banks are unlikely able to

meet the demands of the current and investment account holders. Hence, a sound level of

solvability help Islamic banks enhances their credibility in sights of the fund provider.

For this reason, Muljawan (2005) suggests three numerical indicators which can possibly

be used to indicate the level of a bank’s solvency; first, capital adequacy ratio (CAR)

based on IFSB directives; second, equity coverage ratio which reflects the capability of

the own capital to effectively cover the potential loss emanated from bank’s financial

exposures; and third, leverage ratio that indicates the estimate of the residual claims of

the bank.

Examples of fiduciary risk exposures are as follows (Greuning and Iqbal, 2008; Iqbal and

Mirakhor, 2007):

 In the case of a partnership based investment in the form of mudarabah and

musharakah on the assets side, the bank is expected to perform adequate

screening and monitoring of projects and any deliberate or even non-deliberate

negligence in evaluating and monitoring the project can lead to fiduciary risk. It

becomes incumbent upon management to perform due diligence before

committing the investors/depositors’ funds.

 Mismanagement of funds of current account holders, which are accepted on trust

(amanah) basis, can expose the bank to fiduciary risk as well. It is a common

practice of Islamic banks to utilise current account holders’ funds without any

obligation to share the profit with them. However, in a case of heavy losses on the

investment financed by current account holders’ funds, the depositors can lose

confidence in the bank and this can lead to their taking legal recourse.

 Mismanagement in governing the business, incurring unnecessary expenses or

allocation of excessive expenses to investment account holders is a breach of the

implicit contract to act in a transparent fashion.
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3.3.3 People Risk

People risk is another type of operational risk arising from incompetence or fraud, which

exposes Islamic banks to potential losses. This includes human errors, lack of expertise,

compliance and fraud (Akkizidis and Kumar: 2008). The risk of a loss intentionally or

unintentionally caused by an employee, such as employee error and employee misdeeds,

or involving employees such as in the area of employment disputes, is the risk class that

covers internal organisations problems, fraud and losses. Unfortunately, as Akkizidis and

Kumar (2008) contend, the largest amount of losses comes from intentional activities

such as fraud and unauthorised trading. For instance, an internal control problem cost the

Dubai Islamic Bank US$50 million in 1998 when a bank official did not conform to the

bank’s credit terms. This also resulted in a run on its deposits of US$138 million,

representing 7% of the bank’s total deposits, in just one day (Warde, 2000: 155). Another

case involving a large unauthorised loan, around US$242 million, was also caused by

bank official of the Dubai Islamic Bank and West African tycoon Foutanga Dit Babani

Sissoko (Warde, 2000: 156).

Although there has not been any single research assessing the exposure of people risk in

Islamic banks, it is understood that the challenge is considerably high. The thriving

development of Islamic banking industry, unfortunately, has not been matched up with

the number of people who have credentials in running and directing the business, which

as an issues has been highlighted by Aziz (2006), Edwardes (2002), Jackson-Moore

(2007), Khan (2004), Khan and Ahmed (2001), and Kumar (2008), and Nienhaus (2007).

The dimension of people risk in Islamic banks is understandably wider than in

conventional ones since the personnel of Islamic banks’ personnel are required to be

well-versed in both conventional banking products and their status in relation to Islamic

requirements (Aziz, 2006; Ebrahim, 2007; Nienhaus, 2007). There is a need, hence, that

Islamic banking industry must be equipped with a new breed of innovators, risk

managers, regulators and supervisors who have the right blend of knowledge of finance

and the understanding of the Shariah (Aziz, 2006).
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Furthermore, they should be aware of the existing Islamic alternatives and their

commercial advantages and disadvantages compared to the conventional products

(Nienhaus, 2007). A shortage in skilled bankers, who are, at the same time, well versed in

Shariah or Shariah scholars who are familiar with conventional banking products, as

Jackson-Moore (2007) contend, will lead to higher people risk. In other word,

inadequately trained staff or incapable personnel will expose Islamic banks unnecessarily

to operational risk. In response to a very demanding industry, staffs of Islamic banks

must be able to design Shariah compliant financial innovations in order to meet the

diversified needs of the clients and to match the ever-increasing scope of conventional

techniques, procedures, and products. More importantly, despite the fact of such

challenges, staffs of Islamic banks should be able to create financial contracts which are

more than just legally interest free. In sum, skilled staffs of Islamic banks will ensure that

the products are efficient as well as Shariah-compliant. Unskilled staffs can cause the

product to be, either illegitimate according to Shariah or inefficient.

The above mentioned fraud mentioned above affecting the the Dubai Islamic Bank shows

that Islamic banking institutions is not free from fraud, whether intentional or

unintentional. According to Akkizidis and Kumar (2008), it is intentional activities such

as fraud and unauthorised trading which has caused largest amount of losses. Fraud

invades every area of businesses and is committed when a motive coincides with an

opportunity. Moreover, Akkizidis and Kumar (2008) suggest that financial institutions

should establish appropriate system and thorough control for the management of

operational risks that may arise from employee. Hence, the following direction can be

established (Akkizidis and Kumar, 2008: 194-195):

 A selection of employees that respect and follow the Shariah principles

 A separation of the employees’ duties

 An internal supervision of the employees’ performances

 A monitoring of the employees’ behaviour

 Well established policies that are complying with the Shariah principles and are
well known by all employees

 Training process to direct the employees in the process of the risk management

 Well defined employment termination policies and procedures.
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3.3.4 Technology Risk

In an advanced financial industry, an Islamic bank’s operations are very much dependent

on its technological system. Its success depends, in great part, on its ability to assemble

increasingly rich databases and make timely decisions in anticipation of client demands

and industry changes. The advanced use of information technology (IT) has also brought

a new facet in the current competition of Islamic banking industry, as it is often that a

success of an Islamic bank’s business is determined by the ability to capitalise the use of

an information technology in different ways. An inability to keep up with the advanced

use of an information technology could cause an Islamic bank fall behind its competitors.

Therefore, every Islamic bank must be committed to an ongoing process of upgrading,

enhancing, and testing its technology, to effectively meet (Chorafas, 2004: 91): (a)

sophisticated client requirements, (b) market and regulatory changes, and (c) evolving

internal needs for information and knowledge management.

Chorafas (2004) argues that a failure to respond to the above prerequisites could increase

an exposure to operational risk related to IT. In addition, the use of software and

telecommunications systems that are not tailored to the need of Islamic banks could also

contribute to technology risk, as well as many other internal such as such as human error,

internal fraud through software manipulation (Chorafas, 2004: 91), programming errors,

IT crash caused by new applications, incompatibility with the existing systems, failures

of system to meet the business requirements (Akkizidis and Kumar, 2008: 191), external

fraud by intruders; obsolescence in applications and machines, reliability issues,

mismanagement, and the effect of natural disasters.

It is clear, hence, that the extensive use of an information technology could increase IT

related operational risk in number and severity originating from internal as well as

external events. However, high technology allows a visualisation which turns numbers

into graphs and images. Unfortunately, only few financial institutions have the ability to

capitalise the best that the technology can offer (Chorafas, 2004). Spending big sums of

money on technology without the corresponding return on investment (ROI) is also an

indication of an IT-related operational risk.
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3.3.5 Legal Risk

The inclusion of legal risk as part of broader notion of operational risk, however, has

been a subject of debate among academician and practitioners (Hadjiemmanuil, 2003;

and Scott, 2001). One of the reasons might be due to the difficulties in defining its nature

(Scott, 2001). Furthermore, as Scott (2001) argues, legal risk has an unpredictable effect

although it determines the amount of losses that banks have to incur. Integrating legal

risk as a subset of operational risk is also criticised because of being neither self-evident

nor universally accepted (Hadjiemmanuil, 2003). For instance, in May 2000 the IFCI

Financial Risk Institute, a non-profit foundation established by derivatives exchanges,

market participants and regulators issued descriptions of principal sources of risks which

concern regulators’ in derivatives and commodities markets. The documents specifically

include market, credit, settlement and ‘other’ risk. On this account, the residual ‘other’

category covers, in particular, liquidity, legal and operational risks. With regard to legal

risk, the document defines it as “the risk that a transaction proves unenforceable in law”

(Jorion, 2009: 590). Typical examples of legal risk are also given. These include legal

uncertainties surrounding the legal capacity of banks’ contractual counterparties to enter

into binding transactions, the legality of derivatives transactions and/or the recognition

and effectiveness of netting arrangements in bankruptcy (IFCI Financial Risk Institute,

2000; as cited in Hadjiemmanuil, 2003).

As a matter of fact, the meaning of legal risk varies, depending on the specific context

and the practical concerns of the persons employing it (Hadjiemmanuil, 2003). In relation

to litigation or liability insurance, the term may refer mainly to civil liabilities, including

duties to compensate the victims of torts and to make contractual payments or provide

indemnities in certain contingencies. In derivatives market, much emphasis is placed on

uncertainties regarding the legal recognition of novel contractual arrangements, which

have not been tested in the courts. In international lending or project finance, a major

concern is the relative risk of doing business in different countries; to a significant extent,

this depends on differences between their legal and judicial systems - in particular, their

effectiveness in enforcing creditors’ rights.
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Furthermore, Hadjiemmanuil (2003: 77) suggests that there are different ways in which

loss may arise, all of which are often classified under the domain of legal risk. Thus, the

loss may be attributable to:

(i) Legally flawed actions of the bank or its employees and agents, as a result of which

the bank either incurs direct liabilities or becomes unable to ascertain in law certain rights

in order to protect its interests;

(ii) Legal uncertainty; which does not depend on any fault of the bank itself, since this is

an external parameter, it affects even the most diligently and prudently run institutions.

Sometimes, the law is intentionally expressed in general and abstract terms. Because of

informational constraints, it is impossible to draft complete rules which make special

provision for each and every eventuality;

(iii) Legal uncertainties and financial innovation. Innovation, however, is a significant

contributor to legal risk as well. The adoption of new and complex transactional

techniques, in particular, is often surrounded by significant legal uncertainty and can

expose banks to potentially catastrophic risk;

(iv) Country specific legal perils and costs. The term legal risk can also refer to the

relative risk of doing business in different countries, as a function of the quality of their

legal system. Jurisdictions can be compared by reference to the effects of their laws and

judicial systems in terms of increasing or attenuating the risk. From this perspective, legal

risk is primarily an attribute of legal system, not of the banking institutions or of their

activities. This approach may be useful in relation to international lending or project-

finance activities, where the evaluation of a country’s relative legal risk can have

significant pricing and risk management implications.

Despite his critics, Hadjiemmanuil (2003) shows the reasons why legal risk is associated

with operational risk, it is because fraud which occurs in financial institutions is

considered to be both (a) the most significant category of operational loss event, and (b) a

legal issue.
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In Islamic banking context, although the term ‘legal risk’ is not clearly mentioned in the

IFSB standard when specifying the aspect of operational risk, nevertheless, from the

contributions by Cihak and Hesse (2008), Djojosugito (2008), Hassan and Dicle (2005),

Iqbal (2005), Kahf (2005), Kumar (2008), Nienhaus (2005), and Sundararajan (2005), the

impacts of legal risk on Islamic bank, with regard to the spectrum of operational risk

management, are substantial and cannot be neglected. In Islamic banks, legal risk may

arise from uncertainty in laws (Kumar, 2008), lack of reliable legal system to enforce

financial contracts (Djojosugito, 2008; Iqbal, 2005; Sundararajan and Errico, 2002; and

Sundararajan, 2005), legal uncertainty in the interpretations of contracts (Cihak and

Hesse, 2008), the legality of financial instruments (Djojosugito, 2008), lack of

availability of legal experts (Kumar 2008), and exposure to unanticipated changes in laws

and regulations (Djojosugito, 2008). In addition, it is argued that some operational

aspects of Islamic banking activities are not sufficiently covered by laws, which in turn,

results in the exposure of legal risk to Islamic banks (Djojosugito, 2008). It comes from

the fact that most of Islamic banks, at the current stage, operate within similar legal and

business environments (Hassan and Dicle, 2005; and Kahf, 2005).

Although the profile of legal risk in Islamic banks seemingly to be similar to the

conventional ones, however, the fact can be substantially different if the Shariah aspect is

taken into account in the operation of laws. For instance, there is a requirement that the

Court refer to the question of Shariah to Shariah people. However, the legal risk is still

present since the final decision will still be decided by the Court.

The other problem is regarding the jurisdiction of Shariah board. In Indonesia, for

example, the fatwas of National Shariah Board (DSN20) are only binding upon the

Shariah board of the Islamic banks, but not to the financing recipient of the Islamic

banks. Consequently, the party who receives financing can freely invest in any way he

likes. While it seems that it will not affect the Islamic bank directly, it will certainly

affect the income of the Islamic banks which in turn result in the income considered

illegitimate as it does not comply with Shariah principles. Although Shariah principles

20 DSN stands for Dewan Syariah Nasional, which means Shariah National Board
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which must be adhered to, can be included in the covenants, but such practice will not be

effective unless there is a consistent Shariah interpretation and legal enforcement.

Another common legal risk faced by Islamic banks is the issue of legality of Islamic

financial instruments (Djojosugito, 2008). The absence of recognisable laws pertaining to

Islamic financial instruments will also cause some transactions considered as illegal by

law even though they meet the requirements of Shariah principles. This is the case in

Indonesia where the law views some of mudarabah bonds issued as debt which in effect

is guaranteed by the patrimony of mubarib . While Shariah prohibits such recourse, the

law will not uphold the Shariah prohibition.

Legal capacity is another element of legal risk that affects the operations of Islamic

banks. The legal capacity is defined as the legal authority to enter into a contract. The

consequence of non-existence of any legal capacity is that the contract is deemed ultra

vires, and is therefore unenforceable. One example can be cited in this regard. It is related

to the use of Special Purpose Vehicle (SPV) in project finance transactions. While the

Shariah will view the SPV as either a mudarib or a wakil, the law will view them as a

trustee (Djojosugito, 2008: 117). At the outset, the difference seems trivial as all of them

share many things in common. However, when it comes to the issue of legal capacity of

the SPV to enter into a contract, the legal consequences depend on whether the SPV is

regarded as mudarib, wakil or simply a trustee. A transaction entered into by a SPV

which is perfectly acceptable under Shariah may be declared unlawful or illegal by a

court (Djojosugito, 2008: 118).

Compared to jurisprudences in Common and Civil law regimes, the Shariah

jurisprudence has different phase of development. While the Common Law jurisprudence

was developed by way of precedent and the Civil law by way of codification, the Islamic

jurisprudence was developed by way of scholarship. These facts make the conventional

law sometimes cannot accommodate fully the principles of Shariah. One example may be

cited in relation to IDB Sukuk (Djojosugito, 2008: 118). It is stated that the decrease in

the proportion of the pool to below 25 % will trigger a dissolution event. While the

decrease in the proportion itself is another type of risk, the treatment arises from such
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decrease will trigger a legal risk. While such a condition is not acceptable from Shariah

point of view and must lead to dissolution of the Sukuk because the prohibition in trading

of debts is absolute, the liquidation may not be authorised from legal point of view

because the law will see the reason as to why the proportion decreases to such level

taking into account the interest of the Sukuk’s holders. The other relevant issue is on

governing law, the fact that all Islamic banks’ financing is governed by laws other than

Shari’ah. The Shamil Bank case is a good representation on what a court may interpret

Shari’ah. The judgment of the case clearly state that Shariah cannot invalidate English

law even though the governing law of the contract is subject to the Glorious Principles of

Shariah. This represents legal risk as a contract, which is supposed to be governed by

Shari’ah, will be interpreted not according to Shariah .

3.4 IDENTIFICATION OF OPERATIONAL RISKS

A main part in designing an effective operational risk management system is the

identification of both internal and external operational risks (Akkizidis and Kumar,

2008). Internal operational risk attributes loss exposure to the potential for failure of

people, processes and technology in the course of regular business operations, such as

breaches in internal controls and monitoring, internal and external fraud, legal claims or

business disruptions and improper business practices (Zamorski, 2003). These risks are

more specifically defined as

(i) process risk associated with operational failures stemming from the breakdown in

established processes, failure to follow processes or inadequate process mapping

within business lines;

(ii) people risk from management failure, organisational structure or other human

failures, which may be exacerbated by poor training, inadequate controls, poor

staffing resources, or other factors, and

(iii) system risk, which reflects the operational exposure to disruptions and outright

system failure in both internal and outsourced operations. External operational risk

(or external dependency risk) arises from environmental factors, such as new
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competitor that changes the business paradigm, a major political and regulatory

regime change, unforeseen (natural) disasters, terrorism, vandalism, and other such

factors that are outside the control of the firm (Mark, 2002, as cited in Jobst, 2007).

In Islamic banks, such identification should also refer to the operational risks for the

insufficient compliance with Shariah rules and principles as clearly exemplified in the

section 3.3.1. Financial institutions should identify and assess the operational risk

inherently in all products, activities, processes, and systems. Moreover, based on Basel II

and IFSB directives, further states that risk identification is essential for the consequent

development of a practical operational risk monitoring and control system. However, the

key factors that negatively affect the financial institution in terms of reaching their

business objectives should be identified first.

Effective risk identification considers both internal and external factors that could

negatively affect the process of reaching the financial institution’s objectives. Some

internal factors are:

(i) the structures of the institution’s accounts;

(ii) the corresponding contracts;

(iii) the nature of the institution’s activities;

(iv) the quality of the institution’s human resources; and

(v) the organisational changes and employee turnover.

Moreover, some external factors are:

(i) the changes in the industry; and

(ii) the technological advances.

It should be a standard practice for a financial institution’s management to implement

policies and procedures to manage risks arising from their operational activities. The

institution, hence, should maintain written policies and procedures that identify the risk

tolerances approved by the board of directors and should clearly define lines of authority

and responsibility for managing the risks. The institution’s employees should be fully

aware of all policies and procedure that relate to their specific duties.
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The above factors should also be considered in the process for mapping the business

operations and the risks that influence them. The mapping of the operations’ processes is

used to define the key business operations, the various business units, the organisational

functions, and process flows as well as their direct or indirect links to business targets and

objectives. Note that operations used in the Islamic financial contracts must also be

linked to Shari’ah compliance. For instance, the commodities, assets, or constructions

agreed in istisna and salam contracts should always be linked to the Shari’ah principles.

Moreover, the operations that refer to the process of producing and delivering products

and services should be well defined and monitored in regards to risk of not complying

with Shariah principles. In addition, when the financial institution agrees on a partnership

type of agreement, such as the musharakah and mudarabah, additional mappings of the

operational processes that are linked to these contracts should also be designed.

The operational process mapping exercise is used to identify key operations and design a

roadmap of the combined key operations by defining inputs and outputs and linkage

between them. In the risk-mapping process, all possible risks that might affect the

operational processes are identified and linked to the operations process map. The

operational risk mapping is used as the basis to identify the types of operational risks’

causes and their existence in Islamic financial contracts.

3.4.1 Identification of Hazard, Events, and Losses

Having performed the operational risk mapping, an Islamic bank should be able to

identify what are the causes of the risks, what are the events, and what are the

downstream effects and consequences. However, it is sometimes difficult to identify the

differences between causes, events, and consequences. In general, operational risk

analysts and managers should have in their minds that:

 A ‘cause’ or ‘hazard’ should result in one or more events;

 An ‘event’ should have at least one cause and it must result in one or more
consequences;

 A ‘consequence’ or ‘loss’ must result from one or more events and may result in
new cause.
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Confusion usually arises in the operational risk because of the distinction between risk

type (or hazard type), event type, and consequence (or loss type). When banks record

their operational loss data, it is very essential to record it separately according to event

type and loss type, and precisely identify the risk type as well. Mori and Harada (2001),

Alvarez (2002) and Dowd (2003) suggest that the distinction between the three is

comparable to cause and the effect. While hazard constitutes one or more factors that

increase the probability of occurrence of an event; event is a single incident that leads

directly to one or more effects (e.g. losses); and loss constitutes the amount of financial

damage resulting from an event.

Mori and Harada (2001) shows how operational losses would occur in a process called

‘cause-effect’relationship between hazard, event, and loss. loss is effect of event while

event is cause of loss. However, event is the effect of hazard, while hazard is cause of

event. In other words, every loss must be associated with an event that caused the loss,

while every event must be associated with one or multiple hazards that caused the event.

It should, therefore, be noted that in the operational risk literature, hazard is also termed

as risk (Marshall, 2001), or cause (Dowd, in Alexander, 2003). While loss and effects, are

often used interchangeably (Dowd, in Alexander, 2003).

Operational risk causes, events, and losses are usually associated with internal control

weaknesses or lack of compliance with existing internal procedures as well as with the

Shariah principles. In explaining, examples of causes, events and losses are shown in

table 3.1.
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Table 3.1: Examples of Causes, Events, and Losses

Cause types Event types Consequence types
Deception of Individual’s
behaviour

Organisational and Corporate
Behaviour

Faults due to Information
Technology

External Political and Financial
Uncertainties

Inefficient Agreements with the
counter-parties / partners due to
inefficient operational
evaluation of processes

Non financial external
uncertainties

Mismatching specification in
commodities, assets

Uncertainties in manufacturing
and construction process

External partnership business
risk

Unclear definitions in business
activities for the partnership
agreements that may be against
the Shariah principles.

Internal Fraud
External Fraud

Employment practices and
workplace safety

Business disruption, system
failures

Damage to physical assets

Client, products, and business
practices

Execution, delivery, and process
management

Default of keeping the promise
to buy the commodity (in
murabaha contract)

Defaults of the commodity’s
delivery (salam and istisna
contracts)

Failures on deliveries by the
partnership obligations (in
musharaka and mudaraba
contracts)

Default in following the
principles of Shariah

Regulatory and Compliance

Legal liability

Loss/damage to assets

Third party losses and damages
to assets (in ijara contract)

Loss of reputation

Restitution

Loss of resources

Loss of opportunities

Loss of market share

Exposure to market and credit
risks

Losses from covering business
failures (musharaka and
mudaraba business agreement)

Non-compliance with Shariah
principles

Source: Akkizidis and Kumar (2008: 188)

A variety of causes and events can be found in all areas of an institution and are mainly

caused by the combined actions of people, technological systems, processes, and some

unpredictable events. People, for example, as human resources are the area of greatest

variability and, as a result, the sources of the majority of operational risks. It is, therefore,

recommended that the organisation look for root causes as opposed to effect. When a risk

event is evaluated, its causes or originating source must be identified as well as what

consequences or resulting effect it will have on other risks. The resulting consequences

will then give an indication to the risk manager whether a certain risk is to be ‘accepted’,
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‘avoided’, or ‘mitigated’. Therefore, an identification of root causes combined with

linking causation to relevant business activities is important, as it can help identify the

most significant risk which can have a detrimental effect to the financial institution.

The real life experience, however, indicates that, realistically, some operational risks

must be accepted. How much is accepted, or not accepted, mainly depends on the

operational risk impact and internal policies of the organisation. Operational risks with a

high degree of impact should not be accepted, even if their probability is low. The

decision to accept operational risk is affected by many inputs and policies. When a

manager decides to accept operational risks, the decision should be coordinated whenever

practical with the affected personnel and organisations, and then documented so that in

the future everyone will know and understand the elements of the decision and why it

was made.

3.4.2. Sources of Operational Risk

Mapping the operational risk during the identification process allows Islamic banks to

define and measure the risks within the business and better understand their operational

risk loss profile. Each financial institution has its own, individual and unique operational

settings. Thus, to be able to manage operational risk might require tailoring its definition

to the institution’s specific settings. In operational risk identification analysis, hence, all

major business disruptions that result in operational risk losses initiated from people,

system, and technology, policies, processes and delivery failures, transactions, and/or

internal and external events should be taken into account (Akkizidis and Kumar, 2008) as

follows:

1. People: humans are one of the main sources of operational risks and play a major

role in Islamic financial contracts.

2. Transactions: failures in financial transactions.

3. Systems and technology: this refers to systems and technology that are initiated

by internal and external events.
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4. Process and delivery failures: such disruption may refer to process execution and

delivery and present in most Islamic financial contracts.

5. Internal and external events: these are events that cause losses to Islamic banks

due to external events, political uncertainties, natural disasters, and the actual

implementation of the Islamic contracts.

6. Policies: which refer to incomplete or missing legal documentations which affect

the compliance to the Shariah principles. Furthermore, it includes unapproved

access given to client accounts, or even to employment practices and workplace

safety.

In Islamic bank, nevertheless, operational losses may also arise due to different types of

Islamic financial contracts, which include murabaha, ijara, salam, and istisna.

Operational losses also appear in musharakah and mudarabah contracts, where the

institution has a close business relation with the counterparties. In such agreements, the

institution can be exposed to a great degree of operational risk since it has the full

responsibility for covering the entire amount of associated losses.

For this reason, it is important to understand how different aspects of operational risks

arise in various Islamic financial contracts, which is discussed in the following section.

3.5 OPERATIONAL RISKS IN ISLAMIC FINANCIAL CONTRACTS

This section discusses different dimension of operational risk in different type of Islamic

financial contracts. As can be seen in Table 3.2, five dimensions of operational risk are

Shari’ah compliance risk (SR), fiduciary risk (FR), people risk (PR), legal risk (LR), and

technology risk (TR). The first three dimensions are, by nature, internally inflicted; while

the fourth one is naturally from external source. As for technology risk (TR); it can

originate from either internal or external operational failures. These are discussed in the

following sections:
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Table 3.2: The Dimensions of Operational Risk in Islamic Financial Contracts

Contracts Internal Risks External Risks
Shariah Compliance

Risk (SR)
Fiduciary Risk

(FR)
People Risk

(PR)
Technology
Risk (TR)

Legal Risk
(LR)

Technology
Risk (TR)

Murabaha Exchange of money
and commodity
needs to be ensured

In the event of late
payment, penalty
must be avoided as
it will tantamount
to riba.

Inability to meet
the specified
product stipulated
in the contract

Fail to
deliver the
product

Incompatibilit
y of the new
accounting
software

Products to be
sold must be
legally owned
by the bank

System failures
and external
security
breaches

Salam Final payment of
monetary rewards
must be concluded
in advance

Penalty clause is
illegitimate in the
event of seller’s
default in delivering
the goods

In parallel salam,
execution of second
salam contract is
not contingent on
the settlement of
the first salam
contract

Inability to meet
the specified
product
stipulated in the
contract.

Delivery of
inferior goods
can not be
accepted

Mismatch in
the
commodity’s
specification
due to
inability of
seller to
provide the
exact
product
mentioned in
the contract.

Incompatibilit
y of the new
accounting
software

Goods must
be delivered
when it is
due, as agreed
in the contract

Specification
mismatching in
commodities
productions
agreed in the
contract

Istisna Should not be used
as a legal device;
e.g. the party
ordering the
product to be
produced is the
manufacturer
himself

In parallel istisna’,
contracts should be
separated to avoid
two sales in one
deal

Need to ensure the
quality standards
of the products

Inability to
deliver the
product on
time

Incompatibilit
y of the new
accounting
software

Disagreement
with the sub-
contractor or
the customer
in the event of
remedying the
defects

Specification
mismatching in
commodities
productions
agreed in the
contract

Ijara Need to ensure that
leased asset is used
in a Shariah
compliant manner

In ijarah muntahia
bittamleek, an
option to purchase
can not be enforced.

Major
maintenance of the
leased asset is the
responsibility of
the banks or any
party acting as
lessor.

Lessor needs
to
understand
that in the
event of
payment
delay, rental
due can not
be increased
as clearly
exemplified
by AAOIFI

Incompatibilit
y of the new
accounting
software

Enforcement
of contractual
right to
repossess the
asset in case
of default or
misconduct
by the lessee

Losses of
information on
the leased
assets specified
in the contract
due to external
security
breaches

Musharakah Profit allocation is
based on actual
profit, not expected
profit

Inadequate
monitoring of the
financial
performance of the
venture

Lack of
technical
expertise in
assessing the
project

Incompatibilit
y of the new
accounting
software

A mixture of
shares in one
entity may
lead to legal
risk if the
regulation
does not
facilitate such
action

Losses of
information on
the projects
specified in the
contract due to
external
security
breaches

Mudarabah Profit allocation is
based on actual profit,
not expected profit

Inadequate
monitoring of the
business

Inability to
provide
regular and
transparent
financial

Incompatibiliy
of the new
accounting
software

Misinterpretati
on of civil law
upon
implementatio
n of Shariah

Losses of
information on
the projects
specified in the
contract due to
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performance
of the project

compliant
mudaraba

external security
breaches

Source: Author’s own

3.5.1 Murabahah

Murabahah is “selling a commodity as per the purchasing price with a defined and

agreed profit mark-up” (AAOIFI, 2005: 127). This mark-up may be a percentage of the

selling price or a lump sum. Moreover, according to AAOIFI standard (2005), this

transaction may be concluded either without a prior promise to buy, in which case it is

called ordinary murabahah, or with a prior promise to buy submitted by a person

interested in acquiring goods through the institution, in which it is called a “financial

murabaha”, i.e. murabahah to the purchase orderer. This transaction is one of the trust-

based contracts that depends on transparency as to the actual purchasing price or cost

price in addition to common expenses.

Murabahah is the most popular contract in terms of its use, since most of Islamic

commercial banks operating worldwide rely on this contract in generating income.

Different dimensions of operational risk, which can arise in murabahah transaction are as

follows:

 Shariah compliance risk (SR) may arise if the Islamic banks give money, instead of

commodity, which will then result in the exchange of money and money. This is

prohibited in Shari’ah, since the exchange of money with money, plus additional

amount above the principal and paid in different time will tantamount to riba.

AAOIFI Shari’ah standard (2005) also requires Islamic banks to own, legally, the

commodity before they sell it to the customers. It is important to note that the

sequence of the contract is very central in murabahah transaction. Inability or failure

to conform with the sequence and Shari’ah requirement will result in the transaction

to be deemed illegitimate.

 Fiduciary risk (FR) arises due to the inability to meet the specified commodity

stipulated in the contract.
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 Legal risk (LR): profit originated from murabahah can not be equated with interest,

although it looks similar. The main difference is because the resulting profit is tied

with the underlying commodity. This might create legal problem as in certain

countries, the regulators only give limitation on interest rate, not profit rate. Hence,

the absence of so called ‘profit rate cap’ has the potential to crate legal problems if

there is any dispute. Another potential problem can occur at the contract signing

stage, since the contract requires the Islamic bank to purchase the asset first before

selling it to the customer, the bank needs to ensure that the legal implications of the

contract properly match the commercial intent of the transactions

 People Risk (PR) can result from two sides, seller as well as buyer. PR from the

seller side occurs if Islamic banks fail to deliver the specified product agreed in the

contract on due date, while PR from the buyer side takes place when the buyers does

not keep their promise to buy the commodity. This can happen in the binding

murabahah contract.

 Technology risk (TR) may result from an incompatibility of the new accounting

software or an external system failure.

3.5.2 Salam and Parallel Salam

AAOIFI Shari’ah standards (2005: 174) define salam as a transaction of the purchase of

a commodity for the deferred delivery in exchange for immediate payment. It is a type of

sale in which the price, known as the salam capital, is paid at the time of contracting,

while the delivery of the item to be sold, know as al-muslam fihi (the subject matter of a

salam contract), is deferred. The seller and the buyer are known as al-muslam ilaihi and

al-muslam or rabb al-salam respectively.

It should be noted that salam is also known as salaf, and a modification of salam is called

parallel salam whereby a seller enters into another separate salam contract with a third

party to acquire goods, the specification of which corresponds to that of the commodity

specified in the first salam contract (AAOIFI, 2005).
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 Shariah compliance risk (SR): One of the very central conditions in salam contract is

that the payment of salam capital must be paid full in advance. If payment is

delayed, the transaction is not called salam (AAOIFI, 2005: 172). Any delay in

payment of the capital and dispersal of the parties renders the transaction a sale of

debt for debt, which is prohibited, and the scholars agreed on its prohibition

(AAOIFI, 2005: 172). Another aspect which might lead to SR may also occur in

parallel salam; this will take place if the execution of the second salam contract is

contingent on the execution of the first salam contract. Penalty clause is also not

allowed, in the event of a seller’s default in delivering the good. The basis for not

allowing penalty in salam is because al-muslam fihi (the subject matter of a salam

contract) is considered to be a debt; hence it is not permitted to stipulate payment in

excess of the principal amounts of debt (AAOIFI, 2005: 173).

 Fiduciary risk (FR): Salam is generally associated with the agricultural sector. The

buyer must either rejects goods of an inferior quality to that specified in the contract,

or accept them at the original price. In the latter case, the goods would have to be

sold at a discount (unless the customer under a parallel salam agreed to accept the

goods at the originally agreed price)

 Legal risk (LR): Islamic banks may face legal risk if the goods can not be delivered

at the specified time (unless the customer under parallel salam agrees to modify the

delivery date).

 People risk (PR) can arise due to a seller’s default in delivering the commodity or

due to the commodity’s specification mismatching. Financial institutions may

minimise such type of operational risks by asking from the seller guarantees that they

are following a quality management system or following any standard system, or by

asking for references on past promises on salam contract or by collateralising their

losses via insurance policies.

 Technology risk (TR) may result from an incompatibility of the new accounting

software or the system fails to specify precisely the commodities agreed in the

contract.
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3.5.3 Istisna’ and Parallel Istisna’

Istisna’ is another type of forward contract, but the role of an Islamic bank as a financial

intermediary differs from that in a salam contract. In this case, the bank contracts to

supply a constructed asset (such as a building or a ship) for a customer. In turn, the bank

enters into a parallel istisna’ with a sub-contractor in order to have the asset constructed.

Its reliance on the parallel istisna counterparty (the sub-contractor) exposes it to various

operational risks, which need to be managed by a combination of legal precautions, due

diligence in choosing sub-contractors, and technical management by appropriately

qualified staff or consultants of the execution of the contract by the sub-contractor.

Islamic banks that specialise in istisna’ financing may have an engineering department.

Risks may include the following:

 Shariah compliance risk (SR) could arise if istisna is being used as a legal device for

mere interest based financing. For instance, an institution buys items from the

contractor on a cash payment basis and sells them back to the manufacturer on a

deferred payment basis at a higher price; or where the party ordering the subject

matter to be produced is the manufacturer himself; or where one third or more of the

facility in which the subject matter will be produced belongs to the customer. All the

circumstances mentioned above would make the deal an interest based financing deal

in which the subject matter never genuinely changes hands, even if the deal won

through competitive bidding. This rule is intended to avoid sale and buy back

transactions (bay al-inah). In parallel istisna’, the separation of contracts is a must,

hence this is not an instance of two sales in one deal, which is prohibited.

 Fiduciary risk (FR) may arise when the sub-contractor may fail to meet quality

standards or other requirements of the specification, as agreed with the costumer

under the istisna’ contract.

 Legal risk (LR): Islamic banks may face legal risk if no agreement is reached with

the sub-contractor and the customer either for remedying the defects or for reducing

the contract price.
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 People Risk (PR) may arise if the Islamic bank may be unable to deliver the asset on

time, owing to time overruns by the sub-contractor under the parallel istisna’, and

may thus face penalties for late completion.

 Technology risk (TR) may result from an incompatibility of the new accounting

software or the system fails to specify precisely the commodities that would be

produced in the contract

3.5.4. Ijarah and Ijarah Muntahia Bittamleek

In simple terms, an ijarah contract is an operating lease, whereas ijarah muntahia

bittamleek is a lease to purchase, while operational risk exposures during the purchase

and holding of the assets may be similar to those in case of murabahah. Other operational

risk aspects include the following:

 Shariah compliance risk (SR): The Islamic banks need to ensure that the asset will be

used in a Shariah compliant manner. Otherwise, it is exposed to non-recognition of

the lease income as non-permissible.

 Fiduciary Risk (FR): Major maintenance is the responsibility of an Islamic bank as a

lessor, as directed by AAOIFI Shariah standards (2005: 154). In addition, it is the

duty of the lessor to ensure that the usufruct is intact, and this is not possible unless

the asset is maintained and kept safe so that the lessor may be entitled to the rentals

in consideration for the usufruct. Thus, deficiencies in maintaining such

responsibility can be deemed to be sources of FR in ijarah contract.

 Legal risk (LR): The Islamic bank may be exposed to legal risk in respect of the

enforcement of its contractual right to repossess the asset in case of default or

misconduct by the lessee. This may be the case particularly when the asset is a house

or apartment that is the lessee’s home, and the lessee enjoys protection as a tenant.

 People Risk (PR) may arise when lessor is not allowed to increase the rental due, in

case of delay of payment by the lessee, as identified by AAOIFI (2005).

Misunderstanding of this principle by the staff is a source of losses caused by PR,



77

because the income generated from this, is not permissible from Shariah point of

view.

 Technology risk (TR) may occur due to an incompatibility of the new accounting

software or losses of information on the leased assets due to external security

breaches.

3.5.5 Musharakah

As known musharakah is a profit and loss sharing partnership contract. The Islamic bank

may enter into a musharakah with a customer for the purpose of providing a Shari’ah

compliant financing facility to the customer on a profit and loss sharing basis. The

customer will normally be the managing partner in the venture, but the bank may

participate in the management and thus be able to monitor the use of the funds more

closely. Typically, a diminishing musharakah is used for this purpose, and the customer

will progressively purchase the bank’s share of the venture.

Operational risks that may be associated with musharakah investments are as follows:

 Shariah compliance risk (SR): The source of SR may arise due to the final allocation

of profit taking place based on expected profit. AAOIFI (2005: 205) commands that

it is necessary that the allocation of profit is done on the basis of actual profit earned

through actual or constructive valuation of the sold assets.

 Fiduciary Risk (FR): Any misconduct or negligence of the partners are the sources of

FR. This can happen in the absence of adequate monitoring of the financial

performance of the venture.

 Legal Risk (LR): An Islamic bank which enters into musharakah contract needs to

acquire some shares from separate legal entity that undertake Shariah compliant

activities. A mixture of shares in one entity may lead to legal risk if the regulation

does not allow doing such action.
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 People Risk (PR): Lack of appropriate technical expertise can be a cause of failure in

a new business activity.

 Technology risk (TR) may occur due to an incompatibility of the new accounting

software or losses of the precise information on projects undertaken due to external

security breaches.

3.5.6 Mudarabah

As equity based financial contract, mudarabah is defined as a profit sharing and loss

bearing contract under which the financier (rab al mal) entrusts his funds to an

entrepreneur (mudarib). The exposure of operational risk in mudarabah is somewhat

similar to that of musharakah due to the similarities in the substance and form nature.

Since this type of contract may be used on the assets side of the balance sheet, as well as

being used on the funding side for mobilising investment accounts, the operational risk is

first analysed from the assets-side perspective and then from the funding side perspective

(which is related to fiduciary risk)

3.5.6.1 Asset-side mudarabah

Contractually, an Islamic bank has no control over the management of the business

financed through this mode, the entrepreneur having complete freedom to run the

enterprise according to his best judge judgement. The bank is contractually entitled only

to share with the entrepreneur the profits generated by the venture according to the

contractually agreed profit sharing ratio. The entrepreneur as mudarib does not share in

any losses which are borne entirely by the rab al mal. The mudarib has an obligation to

act in a fiduciary capacity as the manager of the bank’s funds, but the situation gives rise

to moral hazard especially if there is information asymmetry - that is, the bank does not

receive regular and reliable financial reports on the performance of the mudarib. Hence,

in addition to due diligence before advancing the funds, the bank needs to take

precautions against problems of information asymmetry during the period of investment.
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3.5.6.2 Funding-side mudarabah

Profit-sharing (and loss bearing) investment accounts are a Shari’ah compliant alternative

to conventional interest-bearing deposit account. Since a mudarabah contract is

employed between the Islamic bank and its investment account holders, the investment

account holders (IAHs) share the profits and bear all losses without having any control or

rights of governance over the Islamic bank. In return, the Islamic bank has fiduciary

responsibilities in managing the IAHs’ funds. The IAHs typically expect returns on their

funds that are comparable to the returns paid by competitors (both other Islamic banks

and conventional institutions). However, they also expect the Islamic bank to comply

with Shariah rules and principles at all times. If the Islamic bank is seen to be deficient in

its Shariah compliance, it is exposed to the risk of IAHs withdrawing their funds and, in

serious cases, of being accused of misconduct and negligence. In the latter case, the funds

of the IAHs may be considered to be a liability of the Islamic bank, thus jeopardising its

solvency.

3.6 CAPITAL REQUIREMENT FOR OPERATIONAL RISKS

Prior to discussing the measurement of capital requirement for operational risks in

Islamic banks, it is important to understand why banks should have adequate capital. For

this reason, the first part of this section attempts to elucidate the rational behind capital

adequacy requirement. This also explains, briefly, the relationship between bank

capitalisation and risk taking behaviour. Following to the discussion in the first part, the

subsequent parts discuss the measurement of capital attribution for operational risks and

operational risk capital charge in Islamic banks respectively.

3.6.1 Why Do Banks Need to Hold Capital?

Traditionally, capital adequacy requirements have been imposed to ensure solvency.

Following Maisel (1979, 1981) and Merton (1979), a bank can be declared ‘insolvent’ or

‘bankrupt’ when the market value of the bank liabilities to depositors, computed by

assuming that the bank’s obligations to depositors would be fully met, exceeds the market

value of the bank assets reduced by the costs of liquidation. In other words, negative net
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worth (based on market values) implies insolvency. For this reason banks generally

attempt to boost their risk-based capital ratios by means of (i) increasing the measures of

regulatory capital appearing in the numerators of leverage ratio, or (ii) decreasing the

regulatory measures of total risk appearing in the denominators (e.g., total risk-weighted

assets). Jones (2000) suggests that in the short run, most banks have tended to react to

capital pressures in the ways broadly envisioned by the framers of the Accord. That is, by

increasing their capacity to absorb unexpected losses through increased earnings

retentions or new capital issues, and by lowering their assumed risks through reductions

in loans and other footings.

The relationship between banks’ capitalisations and risk taking behaviours is one of the

central issues in the banking literature, because of the potential implications for

regulatory policies. The minimum capital requirement which currently constitutes the

core regulatory instrument for the banking industry is based on the premise that increased

capital enhances bank safety (Jeitschko and Jeung, 2007). As also discussed by Jeitschko

and Jeung (2005), however, this premise may not hold under some relevant

circumstances. Indeed, if increased capital induces a bank to increase asset risk (asset

substitution effect of capital), and this effect supersede the buffer effect of capital (larger

capital absorbs more risk), then it is possible that a more highly capitalised bank has a

higher probability of failure. This risk taking behaviour of banks related to capitalisation

explains why banks often experience rapid, large declines in their capital to asset ratio

(CAR), and are classified by regulators from well capitalised to troubled banks in as little

as a single reporting period. The implication of this positive relationship between risk

taking and capitalisation is that capital regulation alone may not be adequate to guarantee

the soundness of the banking business.

3.6.2 Measurement of Operational Risk based Capital

Basel II implemented an additional add-on to capital for operational risk. Prior to this

proposal, the Basel Committee on banking Supervision (BCBS) had argued that

operational risk exposures of banks were adequately taken care of by 8% credit risk-

adjusted ratio. But increased visibility of operational risks in recent years (as discussed in
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chapter 2) has induced regulators to propose a separate capital requirement for credit and

operational risks. BCBS now believes that operational risks are sufficiently important for

banks to devote resources to quantify such risks and to incorporate them separately into

their assessment of their capital adequacy. In the 2001 and 2003 Consultative Documents

the Basel Committee outlined three specific methods by which banks can calculate

capital to protect against operational risk: the Basic Indicator Approach (BIA), the

Standardised Approach (SA), and the Advanced Measurement Approach (AMA).

The Basic Indicator Approach is structured so that banks, on average, will hold 12% of

their total regulatory capital for operational risk. This 12% target was based on a

widespread survey conducted internationally of current practices by large banks.21 To

achieve this target, the Basic Indicator Approach focuses on the gross income of the

bank, that is, its net profits. This equals a bank’s net interest income plus net non-interest

income:

restIncomenetNonIntetIncomenetIntereseGrossIncom 

According to BCBS calculations, a bank that holds a fraction (α) of its gross income for

operational risk capital, where alpha (α) is set at 15%, will generate enough capital for

operational risk such that this amount will be 12% of its regulatory capital holdings

against all risks (i.e.: credit, market, and operational risks). For example, under the Basic

Indicator Approach:

eGrossIncomlCapitalOperationa 
eGrossIncom. 15

The problem with the Basic Indicator Approach is that it is too aggregative, or ‘top-

down’, and does not differentiate at all among different areas in which operational risks

may differ (e.g., Payment and Settlement may have a very different operational risk

profile from Retail Brokerage). A second issue is that αimplies operational risk that is

proportional to gross income. This ignores, according to Saunders and Cornett (2008),

21 Research has found that the amount of capital held for operational risk according to these models will
often exceed capital held for market risk and that the largest banks could choose to allocate several billion
dollars in capital to operational risk. See: Defontnouvelle et al., (2006).
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possible economies of scale effects that would make this relationship nonlinear (non-

proportional); that is,αmight fall as bank profits and/or size grows.

In an attempt to provide a finer differentiation of operational risks in a bank across

different activity lines while still retaining a basically top-down approach, the BCBS

offers a second method for operational capital calculation. The second method, the

Standardised Approach, divides activities into eight major business units and lines.

Within each business line, there is a specified broad indicator (defined as beta, β) that

reflects the scale or volume of a bank’s activities in that area. The indicator relates to the

gross income reported for a particular line of business. It serves as a rough proxy for the

amount of operational risk within each of these lines. A capital charge is calculated by

multiplying the βfor each line by the indicator assigned to the line and then summing

these components. Theβreflects the importance of each activity in the average bank. The

βis set by regulators and is calculated from average industry figures from a selected

sample of banks.

Suppose the industry βfor Corporate Finance is 18% and gross income from the

Corporate Finance line of business (the activity indicator) is £30 million for the bank.

Then, the regulatory capital charge for this line for this line for this year is:

CapitalCorporate Finance = βx Gross Income from the Corporate Finance line business for the

bank

= 18% x £30 million
= £5,400,000

The total capital charge is calculated as the three-year average of the simple summation

of the regulatory capital charge across each of the eight business lines.22

The third method, the Advanced Measurement Approach, allows individual banks to rely

on internal data for regulatory capital purposes subject to supervisory approval. Under the

Advanced Measurement Approach, supervisors require the bank to calculate its

22 The Basel’s Committee’s Loss Data Collection Exercise for Operational Risk (March 2003), based on
data provided by 89 banks from 19 countries, revealed that about 61 percent of operational loss events
occurred in the retail area, with an average loss of $79,300. Also, only 0.9 percent of operational loss
events occurred in the corporate finance area, but with an average loss of $646,600.
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regulatory capital requirement as the sum of the expected loss (EL) and unexpected loss

(UL) for each event type.

Internally generated operational risk measures used for regulatory capital purposes must

be based on a minimum three year observation period of internal loss data, whether the

internal loss data are used directly to build the loss measure or to validate it.

As mentioned in the previous chapter, there are some requirements that need to be

fulfilled for the bank to apply AMA, one of which is the robust data requirement. This

condition also applies to an Islamic bank which operates in a similar financial

environment as its conventional counterpart. The next sub-section, thus, briefly discusses

to what extent the Islamic finance industry adopts the calculation of risk capital

requirement as set out by Basel 2.

3.6.3 Operational Risk Capital Charge in Islamic Banks

The proposed measurement of capital to cater for operational risk in Islamic banks is also

adopting the methods set by BIS. As IFSB (2005b: 17) mentions in its standards that the

calculation of operational risk based capital in Islamic banks “may be based on either the

Basic Indicator Approach or the Standardised Approach as set out in Basel II”. However,

there is dissimilarity as regard with the use of the Standardised Approach (SA), since

IFSB (2005b) views that Islamic banks have different structure of business lines. Hence,

at the present stage, the Basic Indicator Approach (BIA) can be adopted by Islamic banks.

BIA requires the setting aside of a fixed percentage of average annual gross income over

the previous three years.

Problems of measurement is likely to arise due to lack of data, hence the extent of losses

arising from non-compliance with Shariah rules can not be ascertained. Therefore, IFSB

(2005b: 18) does not require Islamic banks to set aside any additional amount over and

above the 15% of average annual gross income over the preceding three years for

operational risk. Furthermore, in determining risk weights for operational risk, IFSB

(2005b: 18) recommends the exclusion of the share of profit sharing investment account
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holders from gross income. It is necessary to adjust this, since Islamic banks share profits

with their depositor-investors (Greuning and Iqbal, 2008).

3.7 CONCLUDING REMARKS

Operational risk is a recent addition to the list of risks faced by financial institutions,

which has received an increased attention in recent times. It has implications for Islamic

banks as well, as the management of operational risk in Islamic banks is similar to that in

conventional banks but includes several additional elements. In addition, due to the

unique features of their financial contracts, operational risk in Islamic banks can be

substantially different from what is exposed to the conventional ones. The relative

complexity of contracts, combined with the fiduciary obligations of Islamic banks, imply

that for Islamic banks, operational risk is a very important consideration. More

importantly, Shariah compliance risk as part of operational risk is paramount to Islamic

banks, which means Islamic banks must ensure, at all times, that all activities and

products are in conformity with Shariah principles. It is, then, apparent that the

dimension of operational risk exposure in Islamic banks is more sophisticated than in

conventional banks.

Operational risk is now recognised as a type of risk which can contribute to significant

losses in all financial institutions. For this reason, various techniques being applied in

banks today in order to measure and manage operational risk. The methods set out by BIS

help the Islamic banks determine their capital in order to absorb operational losses.

However, due to the small size of Islamic banks compared to the overall financial

industry, the more advanced methods in the calculation of operational risk based capital

is still not feasible to be implemented. The absence of significant amount of loss data is

also one of the problems that hinder Islamic banks to implement more sophisticated

methods. Given the rapid growth of Islamic financial industry, it is expected that lack of

data will not be the main issue in the near future.



85

CHAPTER 4

MODELLING OPERATIONAL RISKS IN ISLAMIC

BANKING: A PROPOSED FRAMEWORK

4.1 INTRODUCTION

The previous chapters identified the complexity of the multidimensionality and the

complexity of operational risk management and its measurement. The complexity of

operational risk measurement has been exacerbated by two dimensions of operational risk

data, namely high frequency-low severity (HF-LS) and low frequency-high severity (LF-

HS). Due to their nature, consequently, each type requires different approach to cater for

operational risk.

The current literature on operational risk almost exclusively focuses on two issues:

firstly, the estimation of operational risk loss processes using extreme value theory or

Cox processes, (Chavez-Demoulin et al., 2006; Coleman, 2003; de Fontnouvelle et al.,

2004; de Fontnouvelle et al., 2006; Ebnother et al., 2001; Jang, 2004; Moscadelli, 2004;

Lindskog and MecNeil, 2003), and secondly, the application of these estimates to the

determination of economic capital (de Fontnouvelle et al., 2004; de Fontnouvelle et al.,

2006, Moscadelli, 2004).

It should be noted that in the estimation of economic capital for operational risk, the

estimates appear to be quite large, in fact, at least as large as that necessary to cover

market risk. As evidenced by the references mentioned earlier that the modelling and

estimation of operational risk is treated identically to market and credit risk, i.e. a loss

process is modelled and estimated. However, this is where the similarity ends, as unlike

market and credit risk, which are external to the bank in their origin, operational risk is

internal to the bank.
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There is also an intensive use of Value at Risk (VaR) in the measurement of risk exposure

in financial institutions. For a long time, financial economists have considered empirical

behaviour models of banks where these institutions maximise some utility criteria under a

solvency constraint of VaR type (Gollier et al., 1996; Santomero and Babbel, 1996).

Similarly, other researchers have studies optimal portfolio selection under limited

downside risk as an alternative to traditional mean-variance efficiency frontiers (Roy,

1952; Levy and Sarnat, 1972; Arzac and Bawa, 1977). Finally, internal use of VaR by

financial institutions has been addressed in a delegated risk management framework in

order to mitigate agency problems (Kimball, 1997; Froot and Stein, 1998; Stoughton and

Zechner, 1999).

Despite a growing interest in VaR, there is, unfortunately, a very limited study in the

theoretical properties of risk measures and their consequences on operational risk

management in Islamic banking. Although IFSB Draft No. 2 on Capital Adequacy

Standard (2005) mentions the definition of operational risk and proposes Basic Indicator

Approach (BIA) and the Standardised Approach (TSA) as methods to calculate

operational risk capital. However, the standard excluded a very essential step, i.e. a

method to measure the magnitude of operational risk exposures. This shortcoming is also

identified in the studies by Khan and Ahmed (2001), Hassan and Dicle (2005), Ismail and

Sulaiman (2005), Kahf (2005), Muljawan (2005), and Sundararajan (2005). This study,

therefore, attempts to fill this gap by developing a new modelling for the measurement of

operational risk in Islamic banking, as presented in the following section.

The proposed model in this study, namely Delta-Gamma Sensitivity Analysis-Extreme

Value Theory (DGSA-EVT), is a model to measure HF-LS and LF-HS type of operational

risks. The first leg of the proposed model, namely DGSA, is a methodology that deals

with propagation of errors in the value adding activities which works by using measures

of fluctuations in the activities. The sensitivities of the output, hence, are deployed to

estimate the performance volatility. Through operating loss distribution that is the result

of the entire quantification process, the DGSA would help us in generating the level of

operational value at risk (OpVaR) of the analysed Islamic banks. Furthermore, the second

leg of the proposed model, Extreme Value Theory (EVT), is a technique to cater for an
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excess operational loss over a defined threshold, which is normally characterised by low

frequency and high severity (LF-HS) type of loss.

The second section of this chapter reviews in some more detail the existing models in

operational risk measurement and its classifications, while the third section explains the

theoretical background of the proposed model and its features. In the fourth section, the

chapter focuses on the empirical aspect of the proposed model. Conclusion is reached in

the fifth section.

4.2 A REVIEW OF OPERATIONAL RISK MODELLING

Operational risk models encompass a variety of statistical and econometric models

designed to measure the regulatory and economic capital to be held against operational

risk. Different models are also designed to study causes and consequences of operational

risk. This is partly due to the constantly changing financial environment, which has made

modelling of operational risk imperative (Peccia, 2003), Furthermore, operational risk

modelling is also needed to provide bank management with a tool to make a better

decision in carrying out a desirable level of operational risk. Bocker and Kluppelberg

(2005) suggest that the only feasible way to effectively manage operational risk is by

identifying and minimising it, which requires the development of adequate quantification

techniques. This position is substantiated by Fujii (2005), who points out that quantifying

operational risk is a prerequisite for the formulation of an effective economic capital

framework. Furthermore, Consiglio and Zenois (2003) emphasise the importance of

operational risk models by attributing some widely-publicised loss events to the use of

inadequate models rather than anything else. Actually, Giraud (2005) attributes the

collapse of Long-Term Capital Management in large part to “model bias in the risk

management process”. Holmes (2003) argues that even if operational risk modelling is

not scientific or reliable, it may force banks to carry more capital and encourage better

behaviour.



88

4.2.1 Taxonomy of Operational Risk Modelling

The operational risk can broadly be classified into three categories: (i) process approach,

(ii) factor approach, and (iii) actuarial approach. Additional techniques have taken place

under process approach, which is shown in italics in Table 4.1.

Table 4.1 Approaches in Operational Risk Modelling

Process Approach Factor Approach Actuarial Approach
 Causal models
 Bayesian belief

networks
 Fuzzy logic
 Statistical quality

control and reliability
analysis

 Connectivity
 System Dynamics

 Risk Indicators
 CAPM like models
 Predictive models

 Empirical loss
distributions

 Explicit distributions
parameterised using
historical data

 Extreme value theory

Source: Smithson and Song (2004: 58)

The following sections discuss the each of the identified categories of operational risk in

detail.

4.2.1.1 Process approach

The process approach focuses on the chain of activities that comprise an operation or

transaction in much the same way that an industrial engineer examines a manufacturing

process by looking at the individual work stations. Examples of this approach include:

Causal models attempts to look at a specific outcome (for example, a settlement

payment) in terms of the probabilistic impact of the activities that are in the chain (for

example, recognition that a payment date has occurred, calculation of the settlement

amount, notification of the counterparty, and paying or receiving) (Chernobai et al.,

2007: 72). The success of each activity in the chain might be modelled as a function of

inputs. Each of the inputs and implied outcomes is given a probabilities description, and,

using conditional probabilities, the probability of a failure further down the chain can be

estimated.



89

 Statistical quality control and reliability analysis; and

Connectivity which requires the modelling process to develop a ‘connectivity matrix’

that can then be used to estimate the likelihood of failure (or potential losses) for the

process as a whole (Moosa, 2008: 144).

Three additional techniques that could be considered ‘process’ approaches are:

Bayesian belief network, which extends the ‘causal model’ technique by treating the

initial model as the null hypothesis, so, as data is collected, the model can be tested to

provide a more accurate picture of the process (Chernobai et al., 2007: 72).

Fuzzy logic is a branch of mathematics that facilitates decision-making when some of

the inputs are vague, or if they are subjective judgements (Cruz, 2002: 169). In a ‘causal

model’, fuzzy logic could provide a way to aggregate the subjective drivers of a process.

 System dynamics, which extends ‘connectivity’, is carried out by making the

connections between activities dynamic (stochastic) (Chernobai et al., 2007: 75). This

technique requires a development of the model to simulate the cause-effect interactions

among activities that make up the processes within the firm.

4.2.1.2 Factor approach

A factor approach was initiated as an attempt to identify the significant determinants of

operational risk – either at the institution level or at the level of an individual business or

individual process. The objective is to obtain an equation that relates the level of

operational risk for institution i (or business i or process i) to a set of factors, as expressed

in the following model:

)Factor()Factor()lRiskOperationa( i 21   (4.1)

The key element of factor approach is the identification of appropriate factors in order to

obtain the measures parameters α, β, and γ. As a result, an estimation of the level of

operational risk that will exist in future periods can be materialised. In the analysis of
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operational risk quantification, Smith and Song (2004) describe three applications of the

factor approach;

Risk indicators for which regression techniques are utilised to identify the significant

operational risk factors.

CAPM-like model relates the volatility in share returns (and earnings and other

components of the institution’s valuation) to operational risk factors.

Predictive models, which use discriminated analysis and similar techniques to identify

factors that ‘lead’ operational losses.

4.2.1.3 Actuarial approach

An actuarial approach attempts to identify the loss distribution associated with

operational risk – either at the level of institution or at the level of a business or process.

Empirical loss distribution is the most straightforward way to estimate the loss

distribution, using the institution’s own data on losses or both internal data and

(properly scaled) external data. However, empirical loss distributions will probably

suffer from limited data points (especially in the tail of the distribution).

Explicit distributions parameterized using historical data is one way to get around the

sparse data problem. The analyst specifies a distributional form for the loss

distribution or a distribution for the frequency of occurrence of losses and a different

distribution for the severity of the losses.

Extreme value theory provides another way of getting around the data sparseness

problem. This theory is an area of statistics concerned with modelling the limiting

behaviour of sample extremes, which indicates that, for a large class of distributions,

losses in excess of a high enough threshold all follow the same distribution (a

generalised Pareto distribution).
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4.2.2 Operational Risk in Islamic Banking: Empirical Research

In the IFSB Draft No. 2 on Capital Adequacy Standard, operational risk is defined as the

risk of losses resulting from inadequate or failed internal risk and Shariah compliance

risk (IFSB, 2005: 22). This definition is rather different from Basel 2 on operational risk.

However, IFSB adopts Basel 2’s methodology in the calculation of minimum capital

requirement for operational risk exposure. Three methods have been proposed; namely

the Basic Indicator approach (BIA), the Standardised approach (TSA) and the Advanced

Measurement approach (AMA). BIA takes the moving average of gross income as a proxy

of the size of operational risk exposure and suggests a parameter of 15% to calculate the

minimum capital required to stand for this kind of risk. TSA is a little more refined as it

takes average gross income at the activity level, after dividing a bank’s activities into 8

categories and suggests a parameter for each of them. Finally, AMA allows using internal

measurement methodologies to calculate the minimum capital requirement for

operational risk exposure provided the bank satisfies certain qualification criteria to

assure the supervisory authority of the existence of efficient and independent operational

risk management system and of its ability to fairly estimate operational risk and the

capital needed to face it, including the expected losses as well as the unexpected losses.

The IFSB standards provide fairly detailed guidance on adaptation of Basel 2 to the

specific risk characteristics of Islamic banks. In particular, the IFSB draft proposes an

adaptation of standardised approach to risk measurement—based on externally provided

rating categories—and within this framework allows supervisory discretion to recognise

the extent of risks assumed by the PSIA’s23 in computing capital adequacy for Islamic

banks. Kahf (2005) opposes the use of gross income as a proxy of operational risk

exposure as set out by IFSB. In this respect, his argument is in line with Sundararajan

(2005) who argued that the use of gross income as the basic indicator for operational risk

measurement could be misleading in Islamic banks, as large volume of transactions in

commodities, and the use of structure finance raise operational exposures that will not be

captured by gross income. However, Sundarajan is still supporting the standardised

23 PSIA refers to profit sharing investment account
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approach that allows for different business lines to be better suited, but would still need

adaptation to the needs of Islamic banks.

Some empirical aspects of the operational soundness in Islamic banks are conducted by

Ismail and Suleiman (2005), Hassan and Dicle (2005) and Muljawan (2005). Using the

Cavello and Majnoni model, Ismail and Suleiman (2005) discuss the interaction between

the capital requirement as stated in the New Basel Capital Accord and the cyclical pattern

of profit. In addition, CAMEL framework is deployed by Muljawan (2005) as an

alternative tool to assess the operational soundness of Islamic banks. The analysis of

Hassan and Dicle (2005) is somewhat broader than other papers in the sense that it also

discusses the nature of operational risk. However, it does not make any suggestion on

how to handle capital requirements with respect to Islamic banks.

There are two issues that can be highlighted from the survey presented above: first, it is

clear that the empirical research that have been conducted are on the aspect of capital

attribution for operational risk; second, there has not been unanimity upon the standard of

operational risk measurement method. The most recent research on this issue is

conducted by Jackson-Moore (2007); nevertheless he could not come up with a

conclusive suggestion on the refined measurement method.

The following section discusses the framework proposed by this study in quantifying

operational risk exposures in Islamic banks.

4.3. DELTA-GAMMA SENSITIVITY ANALYSIS (DGSA)

One of the main objectives of measuring operational risk exposures is to decide which

type of operational risk indicators are significant so a mitigation technique can be

established accordingly. Therefore, a refined measurement method is essentially required

to provide a measure that has a defined relationship to a risk factor that can be assigned

as controllable or uncontrollable. This would result in the determination of an appropriate

intervention for controllable risks by focusing on their causes.

Given the foregoing discussion, the impact on operations can be separated into

controllable risk and uncontrollable risk. In this study, ‘controllable risk’ is defined as the
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risks, which have assignable causes that can be influenced. Generally, process-related

risks will have assignable causes and therefore, it is controllable. For instance, classifying

loan customers into the wrong credit categories can result in substantial differences in the

default rates and loan provision requirements, and is an example of a risk that is

controllable because the cause is known.

‘Uncontrollable risk’, on the other hand, is defined as any risks that do not have causal

factors that can be influenced. Their impact is determined through loss models that

analyse extreme values (losses), and use classification instead of causes. Ideally, extreme

loss models will be used with scenarios that provide stress points for the analysis.

Uncontrollable does not mean that there is nothing that can be done about it, as there are

many mitigation strategies that can be implemented in order to reduce the effects of loss.

Also uncontrollable risk may become controllable if an assignable cause can be found

and which would enable the management to carry out a corrective action.

The proposed DGSA deals with controllable risk; in other word DGSA is designed to be

linked with the causality process in HF-LS type of operational risks.

4.3.1. Building Blocks of DGSA

The analysis of DGSA begins by developing a function for a value adding process and

then examining the key factors that contribute to the performance and their associated

errors (uncertainties). This can be done by partitioning the business unit into different

income generating channels, which would then function as the unit of analysis for

measuring operational risk, as shown in Figure 4.1.
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Figure 4.1: Delta-Gamma Sensitivity Analysis Framework for Operational Risk

Measurement in Islamic Banks

Source: Author’s own
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Income generating channels can be defined as the production unit by which a bank

creates a product valuable to its customers. An activity in the income generating channels

employ purchased inputs, human resources, capital, and some form of technology to

perform its function (Porter, 1985). Since a business unit has profit and loss reporting (by

definition), its income generating processes are the key components that make up the

profit and loss for the business unit. In this proposed model, Islamic banks business

model can be partitioned into three income-generating channels, namely; (i) investment

channel; (ii) financing channel, and (iii) service channel.

a. Investment channel comprises any investment in the form of a partnership. There are

two types of investing instruments: fund management (mudarabah) and equity

partnership (musharakah). Mudarabah, which can be short, medium, or long term, is

a trust-based financing agreement whereby an investor entrusts capital to an agent to

undertake a project. Profits are based on a pre-agreed, agreed ratio. Musharakah,

which can be either medium or long term, is a hybrid of shirka (partnership) and

mudarabah, combining the act of investment and management. In the absence of debt

security, the Shariah encourages this form of financing.

b. Financing channel contains any financing instruments that are used primarily to

finance obligations arising from the trade and sale of commodities or property.

Financing instruments also include instruments generating rental cash flows against

exchange of rights to use the assets such as ijarah and istisna’. Financing instruments

are closely linked to a sale contract and therefore are collateralised by the product

being financed. These instruments are the basis of short-term assets for the Islamic

banks. Murabahah, a cost-plus sales contract, is one of the most popular contracts for

purchasing commodities and other products on credit.

c. Service channel consists of any financial transactions that create earnings by charging

fees. The example of which is wakala.

For each income generating channel, an earning figure can be located and linked up with

causal factors for the business. Causal factors can be defined as factors that have impacts
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on earnings. In other words, DGSA uses risk factors resulting from causal factors that

create losses with a random uncertainty to measure the variability of earnings.

The next step in DGSA is to divide losses into assignable and un-assignable losses. It is

important to note that the cut-off point of assignable and un-assignable losses is the

threshold determined from the maximum operating loss distribution. Assignable loss, by

definition is HF-LS type of operational risk which can be linked to a risk factor that could

contribute to the loss. In contrast, un-assignable loss cannot be tied to a risk factor, since

the cause is normally unknown as it can be from unprecedented external events. Based on

the causality between risk factors contributing to assignable losses, an earning function

can be produced in each income generating channel. The DGSA methods use factors,

which lead to loss and their sensitivities to generate loss distributions in different

business unit.

It is worth noting here that losses within business unit are not normally accounted for in a

systematic way that would allow their direct assignment to risk factors. Since there are a

large number of small losses, many banks simply aggregate operational losses in general

accounts along with other entries. They may be included as a cost of doing business or

simply mixed up in the profit and loss accounting. Without having a loss figure that can

be linked to risk factors, therefore, it is almost impossible to produce a direct

measurement of operational risk caused by assignable loss. Hence DGSA method can

overcome this problem.

In summary, the steps of building DGSA frameworks are as follows:

1) Establish the business model with income generating channel;

2) Determine the risk factors for the major activities in the income generating channel;

3) Determine the relations between risk factors and earning through setting up earnings

function in different income generating channel;

4) Estimate operational losses using uncertainty of the risk factors propagated to the

risk in earnings (Delta-Gamma method);
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5) Set the threshold of operating losses from the processes using the risk factor

uncertainties and operating losses from Delta-Gamma method;

6) Filter the large losses using the threshold.

The following section discusses the key features of the proposed model.

4.3.2. Key Features of DGSA

The DGSA methodology is the calculation technique to determine the value of the

assignable losses based on the sensitivity of the causality between the risk factors. DGSA

is produced through error propagation of the risk factors to measure operational risk. The

uncertainty of the risk factors is utilised to calculate the uncertainty in earnings using

sensitivities; with which the relation of the change in earnings to a change in the risk

factors can be located.

In DGSA, operational risk is measured as the uncertainty in earnings due to two parts.

First using the uncertainty in causal factors for losses up to a threshold and second using

a large loss model for un-assignable loss above a threshold. Causality model, hence, plays

a critical role in determining the risk factors establishing the model. Hence, the

combination of the two constitutes DGSA and is described by the operational risk formula

as follows:

)LL())X(u)...X(fu)E(u leunassignableunassignabn  1 (4.2)

Uncertainty in earnings due to operational risk is a function of the uncertainties in a set of

risk factors plus a function of the distribution of un-assignable losses larger than a given

threshold (μ). DGSA method is used to calculate the first term in the model. This model

expresses the uncertainty in earnings as a function of the uncertainty in a set of risk

factors:

))X(u)...X(u(f)E(u n 1 (4.3)

DGSA method for measuring operational risk is based on five following key concepts:
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(i) Earnings as a function of causal factors.

In DGSA method, it is assumed that earnings are described by a series of causal factors.

For a given earnings level, there is a set of causal factors whose values are used to

estimate earnings:

earnings = f (causal factors) (4.4)

Earnings described as a function of a set of causal factors. For example, earnings may be

calculated as 20% of sales revenue minus an adjustment for rejects. By separating the

causal factors into constants and volatilities, earnings can be described by a set of

performance drivers that create the expected level of earnings and a set of risk factors that

create volatility in the level of earnings (risk):

earnings = f ( performance drivers) ± f (risk factors) (4.5)

Earnings described as a function of performance drivers for level and risk factors for

volatility. Therefore in the model earnings are calculated as 20% of sales revenue

minus the variance to target cost for rejects. ‘Sales revenue’ is the performance driver

and ‘rejects’ is the risk.

(ii) The risk in earnings is a random fluctuation in value caused by uncertainty in the risk

factors. Given

)x(fE  (4.6)

Therefore

))x(u(f)E(u  (4.7)

(iii) The basic measure of uncertainty for operational risk is the standard deviation of the

mean, or standard error.
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In general, for any measure the standard deviation of the mean of the measured values is

referred to as the standard error or simply error (Damodaran, 2003). It is calculated from

a sample of n measures using the following formula:


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



n

k
kx )xx(

)n(n 1

2

1
1


(4.8)

where x is the mean of the measures. Note that this measure is different from the

standard deviation of the measures. In fact it is related to it by the simple formula:

n
x

x
 

(4.9)

(iv) Uncertainties are combined using the formula for the expected value of the sum of

variances.

This formula is given for the simple case of correlation values of only 0 or 1,

corresponding to independent measures and measures that are perfectly correlated.

Normally this should be sufficient for operational risk measures.
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(4.10)

Formula for combining uncertainties using standard errors where the i’s are

uncorrelated and the j’s are correlated (perfectly) measures.

(v) Uncertainties for functions of uncertainty measures are calculated using the law of

error propagation. For each risk factor the sensitivity of the earnings with respect to the

factor is needed. The sensitivity is the amount of change in earnings given a single unit

change in the factor with everything else remaining unchanged, or the partial derivative

of the earnings function with respect to the factor. Given the earnings function that

expresses earnings as a function of a factor

)x(fE 
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Then sensitivity is defined as

x
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(4.11)

The method of combining measurement uncertainties from various factors and

accounting for their correlation is known as the propagation of uncertainty. The basic

formula uses the sensitivities (partial derivatives) of the factors to calculate the standard

deviation of the estimate. It is based on a Taylor approximation for the uncertainty in

terms of factors such as:

)X...XX(fR n, 21 (4.12)

Using the Taylor approximation’s first term, the uncertainty for the measure can be

figured out using the following formula:
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The formula in 4.13 is the formula for the calculation of combined uncertainty from

many factors, also known as the ‘general law of error propagation’, where )(u  denotes

the uncertainty in the value, r is the risk measurement, x is the factor, and f is the

functional relationship between x and r. The partial derivative term is known as the

‘sensitivity to the factor’. This formula also explicitly considers correlation between

factors ij .

(vi) The gamma () of a portfolio on an underlying assets is the rate of change of the

portfolio’s delta with respect to the price of the underlying asset, while the delta is the

first derivative of the model, the gamma is the second partial derivative of the portfolio

with respect to different risk factors:
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(4.14)
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If the value of gamma is small, the delta changes slowly and adjustments to keep a

portfolio delta neutral only need to be made relatively infrequently. However, if gamma

is large in absolute terms, then delta is highly sensitive to the price of the underlying

asset. It is then quite risky to leave a delta neutral portfolio unchanged for any length of

time. In our analysis, gamma is an important factor in determining which risk factors are

more influential to income generating channels.

It is expected that partnership type of financing, such as mudarabah and musharaka

would give higher value since they are likely to increase the level of operational risk

exposures.

7) Threshold is used to separate losses to be analysed using DGSA from those that are

not assignable. As highlighted in the earlier paragraph, DGSA deals with small losses

(HF-LS type of operational risks); hence, the threshold is the transition point from small

loss (HF-LS) to large loss (LF-HS). However, to ensure that there will not be any overlap;

meticulous calculations must be carried out to set the threshold precisely since losses

assigned to risk factors using DGSA method are assumed to have random error

properties; and DGSA is used to estimate the central tendency of this uncertainty.

It is important to reiterate that the first stage of the proposed model, namely Delta

Gamma will result in the figure showing the level of operational risk exposures from any

controllable risks, reflected by the level of its value at risk. As shown in figure 4.1,

operational value at risk (opvar) of the delta gamma is generated from the operating loss

distribution of the earnings functions in each income generating function. However, with

regard to the sensitivity analysis showing the causality relationship between operational

risk factors, a more thorough analysis on how it will be operationalised in the proposed

model is discussed in the following section.

4.4 WHY SENSITIVITY ANALYSIS?

The activity in the field of sensitivity analysis (SA) has been steadily growing, due to the

increasing complexity of numerical models, whereby SA has acquired a key role in

testing the correctness and corroborating the robustness of models in several discipline.
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This has led to the development and application of several new SA techniques

(Borgonovo and Apostolakis, 2001a; Saltelli, 1997; Saltelli, 1999; Saltelli, Tarantolla and

Chan, 1999; Turany and Rabitz, 2000). It should be noted that most of the recent

literature in portfolio management has proposed SA approaches based on partial

derivatives (PDs) (Drudi, Generale and Majnoni, 1997; Gourieroux, Laurent and Scaillet,

2000; Manganelli, 2004; McNeil and Frey, 2000).

Nevertheless, recent studies in the SA literature have highlighted that PDs-based SA

suffers from several limitations when used for parameter impact evaluation and risk

management purposes (Borgonovo and Apostolakis, 2001a; Borgonovo and Apostolakis,

2001b; Borgonovo and Peccati, 2004; Cheok, Parry and Sherry, 1998). It is shown that

when a PDs-based SA is employed in the model to evaluate the impact of parameter

changes with respect to the generic model output, it will suffer from the two limitations

(Borgonovo and Apostolakis, 2001a; Borgonovo and Apostolakis, 2001b; Borgonovo and

Peccati, 2004):

1) It is equivalent to neglecting the relative parameter changes, or, equivalently, to

impose that all the parameters are varied in the same way;

2) It does not allow the appreciation of the model sensitivity to changes in groups of

parameters

Therefore, using Elasticity (E) is considered to be a better alternative as compared to PDs

(Simon and Blume, 1994) since the model does not neglect the relative parameter

changes in the model. Therefore, using elasticity based sensitivity analysis will

theoretically overcome limitiation 1 as mentioned above. However, limitation 2 might

still be in place, as E is not additive (Borgonovo and Apostolakis, 2001a; Borgonovo and

Apostolakis, 2001b; Borgonovo and Peccati, 2004).

This study aims to explore and demonstrate that the use of Differential Importance

Measure (D) would overcome the two above mentioned limitations.

Let us consider the generic model output:
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Y = f(x) (4.15)

where x = {x i, i = 1,2,…,n} is the set of the input parameters. Suppose:

dx = [dx1, dx2,…,dxn]T (4.16)

which denote the vector of change; if f(x) is is differentiable, then the differential

importance of xs at x0 is defined as (Borgonovo and Peccati, 2004)
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D can be interpreted as the ratio of the (infinitesimal) change in Y caused by a change in

xs and the total change in Y caused by a change in all the parameters. Thus, D is the

normalised change in Y provoked by a change in parameter xs. It can be shown that

(Borgonovo and Apostolakis, 2001a; Borgonovo and Apostolakis, 2001b; Borgonovo and

Peccati, 2004; Borgonovo and Peccati, 2005):

(i) D shares the additivity property with respect to the various inputs, for example, the

impact of the change in some set of parameters coincides with the sum of the individual

parameter impacts. More formally, let S {1,2,…, n} identify some subset of interest of

the input set; hence it would give:
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As a consequence,
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for example, the sum of the Di (i=1,…,n) of all parameters is equal to unity.

(ii) Equation (4.17) shows that D accounts for the relative parameters changes through

the dependence on dx. In fact, equation (4.17) can be rewritten as:
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In the hypothesis of uniform parameter changes (H1) (dx j=dxs j,s), the following can be

produced:
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It can be shown that D generalises other local SA techniques as the Fussel-Vesely

importance measure and Local Importance Measure based on normalised partial

derivatives. More specifically, in case H2 it holds that (Borgonovo and Peccatti, 2004):
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where Es(x0) is the elasticity of Y with respect to xs at x0. Equation (4.23) shows that E

produces the importance of parameters for proportional changes.

This section highlights the benefit of rectifying the partial derivatives based sensitivity

analysis with the elasticity based one. The main reason is mainly due to the different

variation that different variables might have. To put it differently, assuming that any

observed parameters will invariably move in a similar fashion may not be correct, in

particular when there are some derivatives products involved in the process. The next

challenge, hence, is to determine which risk factors will contribute significantly to the

whole process of determining the operational risk exposures, which is discussed in the

subsequent section.
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4.5 DETERMINATION OF RISK FACTOR CONTRIBUTION

From the practitioners’ point of view (Ebnother et al., 2001), a relevant question for them

is how much each of the process contributes to the risk exposure. If it turns out that only

a fraction of all processes significantly contribute to the risk exposure, then the risk

manager should only focus on this particular process. It is, therefore, important to analyse

how much each single process contributes to the total risk. This study considers

operational value at risk (OpVaR) resulting from operating loss distribution as a risk

measure. To split up the risk into its process components, this study considers comparing

the incremental risk (IR) of the processes.

Let IR(i) be the risk contribution of process i to OpVaR at the confidence level .

IR(i) = OpVaR(P) -OpVaR(P\{i}), (4.24)

where P\{i} is the whole set of workflows without process i. Since the sum over all IR’s

is generally to equal to the OpVaR, the relative incremental risk (RIC(i)) of process i is

defined as the IR(i) normalised by the sum over all IR, i.e.
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as a further step, for each , this paper counts the number of processes that exceed a

relative incremental risk of 1%. Equation 4.25 also suggests that in determining the risk

factor contribution, apart from the level of risk exposure, which sometimes is related to

the normality assumption of the model, the other key factor is the determination of the

confidence level. It is, therefore, essential to take the two elements into account in

generating a more accurate operational value at risk. Following the DGSA, which is the

first stage of the proposed model, the next step is to determine the maximum threshold.

One it is achieved, the subsequent stage is to analyse any operational risk variables
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beyond the threshold, which will be dealt with by extreme value theory technique

discussed in the following section.

4.6. EXTREME VALUE THEORY (EVT)

Extreme value theory (EVT) is a field of study in statistics that focuses on the properties

and behaviour of extreme events. In general, there are two main kinds of model for

extreme values. The most traditional models are the block maxima models; these are

models for largest observations collected from large samples of identically distributed

observations (McNeil et al., 2005: 271). The second type of model, which is more

comprehensive is the peak over threshold (POT) model; this is a model for all large

observations that exceed some high level, and is generally considered to be the most

useful for practical applications, due to their more efficient use of the data (often limited)

on extreme outcomes (McNeil et al., 2005: 301).

In our analysis, the application of EVT as the second leg of the proposed model starts

after the determination of a transition point resulting from DGSA. It is important to note

that the transition point is typically classified as the maximum threshold. EVT offers a

parametric statistical approach for the extreme values of data. Its roots are in the physical

sciences and it has recently been applied to insurance. Since traditional statistical

techniques focus on measures of central tendency (e.g. mean), they are not an accurate

estimators, when estimating values very far from the centre of the data. EVT, on the other

hand, deals only with the extreme values and ignores the majority of the underlying data

and its measures in order to provide better estimates of the ‘tails’.

The EVT methodology for operational risk is basically a loss model for large losses using

a GPD for the severity. The technique for fitting the GPD to data is the peaks over

threshold method (POT), where large values over a specific threshold are fitted to the

GPD. Following McNeil et al.(2005), the POT method deployed in the analysis uses the

following basic assumptions: i) the excesses of an independent identically distributed (or

stationary) sequence over a high threshold u occur at the times of a Poisson process; ii)

the corresponding excesses over u are independent and have a GPD; iii) excesses and

exceedance times are independent of each other.
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4.6.1 Operating Framework for EVT

As depicted in Figure 4.2, the steps for operating EVT in the analysis of the proposed

model start with the separation of loss amount into its severity and frequency.

Figure 4.2: The Application of Extreme Value Theory for Operational Risk

Measurement in Islamic Banks

Source: Author’s own

Low Frequency-High Severity (LF-HS):
unpredictable, un-assignable, and uncontrollable

Severity [ loss amount>threshold (µ)] Frequency distribution

Maximum likelihood method

Output:

Excess Loss Distribution (ELD)

Value at Risk for
Operational Losses

Fitted to GPD (Generalised Pareto Distribution) Fitted to Poisson Distribution

Combined in Monte Carlo Simulation
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Furthermore, excess losses are fit to a GPD to determine the severity of a loss given that

it exceeds the threshold. This is a conditional severity distribution for large losses. Since

the number of exceedances follows a Poisson distribution, it is fitted and used to estimate

the frequency of exceedances. Combining the severity and frequency distributions in a

Monte Carlo simulation gives the excess loss distribution. The resulting excess loss

distribution is a multi-period loss distribution for only those losses that exceed the

threshold.

4.6.2 Theoretical Building Blocks of EVT: Fisher-Tippet-Gnedenko Theorem

The Fisher-Tippet-Gnedenko theorem states that given a sample of independent

identically distributed loss data x1,x2,…, xn, as the number of observations n becomes

increasingly large, the maximum of the sequence of observations, under vert general

conditions, is approximately distributed as the ‘generalised extreme value’ (GEV)

distribution with cumulative probability distribution function (Lewis, 2004: 204):
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where µ is the location parameter, σ> 0 is a scale parameter, 1 + z > 0,

,, 0  and is the tail index parameter. The GEV has three forms; if >0,

then the distribution takes the form of a type II (Frechet) heavy-tailed distribution. For

<0, the distribution is takes the type III (Weibull) distribution. When =0, the

distribution is the type I (Gumbel) light-tailed distribution. In fact, the larger the tail

index parameter, the fatter is the tail.

4.6.3 Parameter Estimation

The parameter µ and σcan be estimated from the sample mean and sample standard

deviation, respectively. If we rank the data in order size so that x1>x2>…>xn, the tail

index parameter can be estimated using the Hill estimator (Cruz, 2002: 78):
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The problem now is how to choose k values, for which theory gives little susbtance as to

what value to choose. Furthermore, the actual estimate will be sensitive to the value of k

chosen. In practice, the average estimator, using either of the following two formulas,

often works well as identified in the following methods (Lewis, 2004: 204):
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Equation 4.29 and 4.30 attempt to substantiate what is mentioned in the earlier paragraph

as to the choice of k in the determination of the tail index parameter () can be estimated

using the Hill estimator. Although the only difference is only on (k-1) and (k) as shown in

both equations; the impact on , however, can be really substantial as the result would

significantly affect the distribution fitting within the area of extreme values above the

threshold. How big or small the tail index parameter (), would subsequently impinge

upon the modelling of the severity and frequency of extreme value distribution is

discussed in the following sub-section.

4.6.4 Severity Model

An alternative EVT approach to calculate OpVaR is to use peaks over threshold (POT)

modelling. The underlying principle of the operating framework is to use peaks over

threshold. Although the method of block maxima utilises the Fisher-Tippet-Gnedenko

theorem to inform us what the distribution of the maximum loss is, POT uses the
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Picklands-Dalkema-de Hann to inform us what is the probability distribution of all events

greater than some large present threshold. The Picklands-Dalkema-de Hann theorem

states that if Fu is the conditional excess distribution function of values of the ordered

losses X above some threshold, µ is given by

    Fu xy,XyXobPrF 0 . (4.31)

Then for a suitably high threshold the limiting distribution of Fu is a generalised Pareto

distribution (GPD) with cumulative distribution function (Jorion, 2007: 59):
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whereσ> 0, and x ≥0 when ≥0 and 0 ≤x ≤-β/when < 0. The parameters andβ

are referred to, respectively, as the shape and scale parameters. In other words, ys are

called excesses whereas xs are called exceedances.

It is possible to determine the conditional distribution function of the excesses (i.e., ys) as

a function of x:
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In this representations the parameters is crucial, when = 0, we have an exponential

distribution; when < 0, we have a Pareto distribution—II Type and when > 0, we

have Pareto distribution—I Type. Moreover, this parameter has a direct connection with

the existence of finite moments of the losses distributions. We have the following

equations:

 kxE if /k 1 (4.34)
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Hence in the case of a GPD as a Pareto—I Type, when ≥1, we have infinite mean

models. As also shown by Moscadelli (2004) and Neslehova et. al (2006).

Following Di Clemente-Romano (2004), we suggest to model the loss severity using the

lognormal for the body of the distribution and EVT for the tail in the following way:
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where:

= standardised normal cumulative distribution functions;

Nu(i) = number of losses exceeding the threshold u(i);

N(i) = number of loss data observed in the ith ET;

β(i) = scale parameters of a GPD;

(i) = shape parameters of a GPD;

An important issue to consider is the estimation of the severity distribution parameters.

While the estimation maximum likelihood (ML) in the lognormal case is straightforward,

in the EVT case, it is extremely important to consider whether ML or the alternative

probability weighted moment (PWM) routines are able to capture the dynamics

underlying losses severities.

With respect to ML, the log-likelihood function equals
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This method works well if> -1/2. In this case, it is possible to show that
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where

  












21
11

11 
M

(4.38)

Instead, the PWM consists of equating model moments based on a certain parametric

distribution function to the corresponding empirical moments based on the data.

Estimations based on PWM are often considered to be superior to standard moment-based

estimates. In our case, this approach is based on these quantities (Di Clemente-Romano

,2004):

 
  

,...,r,
rr

ZDPGZEw r
,r 10

11









(4.39)

where ,,, GPDDPG  1 Z follows a GPDβ

From the above equations, it is possible to show that
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Hosking and Wallis (1987) show that PWM is a viable alternative to ML, when ≥0.

Analysis in the proposed model, however, intends to estimate the GPD parameters using

mean excess plot together with the standard Hill estimator. The reason is simply to

anticipate the small number of observations beyond the threshold. The small numbers of

observations in the tail area will not only have high variance, it will also create

difficulties in the process of modelling the frequency distribution as discussed in the

following section.
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4.6.5 Frequency Model

Having fitted a GPD to the amount of loss for a set of excess losses, the next step is to

determine the frequency of losses using a Poisson distribution, which is well known as a

single parameter distribution for the number of occurrences of an event with relatively

small probabilities given a relatively large sample. The formula for the Poisson

distribution is (Jorion, 2007: 57):

!x
e)xPr(

x
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(4.41)

where x≥0, and the parameter λ> 0 can be interpreted as arithmetic mean. The fitting of

the Poisson to a set of occurrences proceeds using the inter-arrival times for the loss

events. That is, the average time between events can be used to determine the arrival rate

or lambda for the Poisson formula. Note that the arrival rate is simply the inverse of the

inter-arrival time. For the Poisson distribution, it can be shown that the maximum

likelihood estimator for λis given by the mean arrival rate formula as below (Johnson et

al., 1994)
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Formula for estimating λfor the Poisson distribution; where

k is the number of events in a period;

nk is the number of periods with k events;

n is the total number of periods.

A goodness of fit statistic for the Poisson distribution can be found using a simple 2-

squared test. The test statistic is (McNeil et al., 2005: 486):
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Chi-squared test statistic for the goodness of fit of the Poisson distribution to a set of

data, where Pr(k; λ) is the probability of k events for the Poisson distribution with

parameter λ. The degrees of freedom are n-2.

Although there are other types of modelling frequency distribution, such as binomial

distribution and negative binomial distribution; being the most practical model, the

analysis in this study intends to apply poisson distribution in the frequency distribution.

Once the analysis completes the modelling of severity and frequency, the next step is to

combine these two in order to to generate excess loss distribution as shown in figure 4.2.

The following sub-section discusses the techniques in combining severity and frequency

modelling.

4.6.6. Compounding via Monte Carlo Methods

Once the severity and frequency distributions have been estimated, it is necessary to

compound them via Monte Carlo methods to get a new data series of aggregate losses, so

that we can then compute the desired risk measures, such as the VaR and expected

shortfall.

The random sum L=X1+ … + Xn (where N follows a Poisson distribution) have

distribution function (McNeil et al., 2005: 367):
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where Fx(x) = Pr ( X ≤x) = distribution function of the severities Xi
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n*
xF = n-fold convolution of the cumulative distribution function of X.

Hence, the aggregation of frequencies and severities is performed as a sum of severities

distribution function convolutions, thus determining a compound distribution, whose

density function can be obtained by:
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0n

n*
xnL xFpxf

(4.45)

The analysis in this study computes this aggregation via convolution using Monte Carlo

methods. It should be noted that that the convolution is a bit more complex due to the

split of severity distribution in two parts: the body of the distribution, which follows a

lognormal distribution, and the tail, which follows a GPD. As a consequence, the study

will have two different severity levels. Hence, the probability associated at each severity

(i.e., the number of observations obtained by the Poisson distribution) has to be congruent

with the fact that losses may belong to the body or to the tail. The analysis will, however,

emphasize the severity level that belongs to the tail. Therefore, it is crucial to consider

F(u), where u is the GPD threshold and F is the distribution function associated to this

point. After having sampled from the two severity distributions, every single loss Xi

whose F(Xi) > F(u) will be modeled as a GPD random draw; the process of which will

be used to estimate operational value at risk in the tail area. The next step is to create

proximity of operational risk exposures by summing up the VaR resulted in the EVT

process, being the second stage of the proposed model and the DGSA process, being the

first stage of the proposed model.

4.7 CONCLUDING REMARKS

The scope of this chapter was to show that measuring operational risk, adapted to the

structure of business unit or value adding process, is feasible if the causality taking place

in the banking operations is considered. The proposed DGSA-EVT model would give a

number advantages to the operational risk managers. First, it is a reflection of potential

loss that is not merely based on actual loss figure which is rarely available. This aspect is

very crucial since in most cases, operational losses are not recorded. This advantage is
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achieved by combining operational value at risk in the first stage (DGSA) and second

stage (EVT) of the proposed model.

Second, the models will show which risk factors that dominantly contribute to the level

of exposure of operational risk. This is done through the analysis of cause-effect

relationship that takes place in the first stage of the proposed model. Moreover, running

the delta or gamma within the earnings function in each income generating channel will

not only show the dominant risk factor, but it will also possibly show the pattern of the

relationship among the analysed operational risk variables, whether they are linear or

nonlinear relationship.

In addition, through EVT process, the proposed model will also help operational risk

manager in the determination of risk which has a detrimental impact on the whole

system. However, in running the EVT, an analyst or operational risk manager, as

mentioned in the earlier paragraph, has to be careful in choosing the right method in

determining the tail index parameter (), so the chosen threshold does not result in the

high variance of the analysed variables.

Third, the proposed model, if implemented, is not costly, since it can be operationalised

by using a variety of key financial indicators in the financial statements of the bank.

Being too costly is actually one of the main reasons why financial institutions are

reluctant in setting up the infrastructure for operational risk management, especially for

its measurement.
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CHAPTER 5

OPERATIONAL VALUE AT RISK (OpVaR) BASED ON

VOLATILITY, SKEWNESS AND KURTOSIS

5.1 INTRODUCTION

As discussed in chapter 4, the proposed model in this study has two main stages

consisting of (i) an estimation of Delta-Gamma Sensitivity Analysis (DGSA) which will

result in value at risk (VaR) for operating loss distribution24, and (ii) an estimation of

extreme values resulting in VaR for excess loss distribution25. Thus, summing up both

VaRs would provide an approximation of the operational risk level in the analysed bank.

In furthering the details of the proposed measurement model, while the previous chapter

is theoretical construction in nature, this chapter aims at empirically testing the proposed

model by using empirical data.

Due to its computational and numerical intensity coupled with limited availability of

data, a few adjustments is made in testing the proposed model. Firstly, the process

through which VaR is generated needs a slight modification since the variables in the

analysis do not reflect non-linearity relationships. It should be noted that non-linearity

might arise from derivative products such as options. As shown in the later section, none

of the variables in the model are categorised as one, hence the issue of non-linearity is

irrelevant since a quadratic relationship among variables does not exist. A quadratic

relationship between variables occurs when a change in one variable affects a change in

another variable in a non-linear manner. As a result, the issue of first and second

derivative relationship, namely delta-gamma cannot be analysed. The analysis, therefore,

focuses on the issue of normality vis a vis non-normality of the distribution density

functions of the analysed variables. Secondly, through a range of statistical tests as well

24 See figure 4.1 in chapter 4
25 See figure 4.2 in chapter 4
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as simulation of histograms and graphs of probability density functions, the industrial

level data drawn from published monthly financial reports demonstrate that only two

variables under analysis constitute extreme value distribution reflecting extreme events

taking place within certain period of time. Consequently, the second leg of the proposed

model, namely extreme value theory model (EVT) could not be carried out.

In analysing VaR, this study does not simply use the data and follow a prescribed

assumption to produce VaR. One of the very strong assumptions in VaR is normal

distribution, which according to the report by Financial Times (2012), is no longer the

norm and an over reliance to it was perceived to be one of the causes leading to the 2008

global financial crisis.

Therefore, the analysis in this study will carefully examine the behaviour of the data by

taking into account volatility, skewness and kurtosis of the variables. As is shown in the

later section, volatility resulting from the variance employs two models: constant-

variance model and exponential weighted moving average (EWMA) model, which as an

approach is adopted by Li (1999), Hull and White (1998), and RiskMetrics (1996). While

the analysis in skewness and kurtosis of the data is applied to examine the level of non-

normality of the analysed variables.

In order to investigate the normality or non-normality of the analysed variables, this study

also employs a generation of probability density function through a simulation and

deploys two statistical tests, namely Kolmogorov-Smirnov and Anderson-Darling tests.

The results of all the tests mentioned above will help in determining the technique to be

applied to estimate the operational value at risk.

The organisation of this chapter is as follows; after this introduction, the second section

revisits the theoretical background of value at risk (VaR), while the third section

provides an explanation on the methodology used in the study. Section four, provides a

discussion on the empirical findings before it is concluded in the fifth section.
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5.2 WHAT IS VALUE AT RISK (VAR)?

Formally the Value at Risk (VaR) can be defined as the maximum loss that could occur in

a given confidence level within a certain period of time (Jorion, 2005 :252). If the

investor’s temporal horizon is denoted by τ, with Rt(τ) the series data in the interval (t, t+

τ) and with θthe level of confidence, the VaR given by the loss such that,

P(Rt(τ) ≤-VaR) = 1-θ (5.1)

Thus, the VaR is the percentile at the (1-θ)% of the variables under analysis in the

interval (t, t+ τ). In the model, the temporal horizon τand the level of confidence θare

parameter chosen by the investor. The choice of τdepends on the frequency with which

the investor wishes to control his/her investment.

As mentioned earlier that the RiskMetrics (1996) model assumes that the conditional

distribution Rt(τ) is a standard Gaussian distribution. In particular, RiskMetrics assumes

that the financial returns, conditioned to the forecast volatility level, are distributed like a

standardised normal distribution:

Rt(τ)/σt ~ N(0,1) (5.2)

The explicit modelling of the volatility series captures the time varying persistent

volatility observed in the real financial market. Given the hypothesis of normality, the

VaR at (1-θ)% is given by simply multiplying the tabulated value of the corresponding

percentile, k1- θ, times the volatility forecast in the period (t, t+ τ), therefore,

VaRt = k1- θ
σ
t (5.3)

The RiskMetrics hypothesis simplifies the VaR calculation for those portfolios with many

assets26 . If it is denoted with [w1, w2, …, wn]' the vector of the positions taken in n assets

forming the portfolio, its return at time t is given by,

Rp,t = ∑ , (5.4)

26 See RiskMetrics Technical Document (1996)
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Suppose return vector is

, , , , … , , ' (5.5)

which follows a joint Gaussian distribution, and the linear combination of the return is

normally distributed, , ( , , , ) where , is the mean and , is the standard

deviation of portfolio , . Assuming that within a short period of time the expected

return is null, the VaR is determined by the portfolio standard deviation, VaRt = k1- θ
σ
p,t.

More importantly, VaR is defined contingent on two arbitrarily chosen parameters; (i) a

confidence level (α), which indicates the likelihood that an investor will get an outcome

no worse than predicted VaR, and which might be any value between 0 and 1; and (ii) a

holding or horizon period, during which a certain portfolio is measured, and it could be a

day, a month or any time period.

Some VaRs are illustrated in figure 5.1, which shows a common probability density

function (pdf) of profit/loss over a chosen holding period.27 Positive values correspond to

profits, and negative observations to losses. If α=0.95, the VaR is given by the negative

point on the x-axis that cuts off the top 95% of profit/loss observations from the bottom

5% of tail observations. In this case, the relevant x-axis value (or quantile) is -1.645, so

the VaR is 1.645. The negative profit/loss value corresponds to a positive VaR, indicating

that the worst outcome at this level of confidence is a loss of 1.64528. Alternatively,

α=0.99 could be set and in this case the VaR would be negative of the cut-off between the

bottom 1% tail and everything else. The 99% VaR is 2.326.

27 The figure is constructed on the assumption that profit/loss is normally distributed with mean 0 and
standard deviation 1 over a holding period of 1 day.
28 In practice, the point on the x-axis corresponding to VaR will usually be negative and, where it is, will
correspond to a (positive) loss and a positive VaR. However, this x-point can sometimes be positive, in
which case it indicates a profit rather than a loss and, hence, a negative VaR. This also makes sense; if the
worst outcome at this confidence level is a particular profit rather than a loss, then the VaR, the likely loss,
must be negative.



121

Figure 5.1: Value at Risk

Source: Dowd (2005: 28)

Since VaR is contingent on the choice of confidence level, Figure 5.1 suggests that it will

usually increase when the confidence level changes29. This point is further illustrated in

Figure 5.2, which shows how the VaR varies, as we change the confidence level. In this

particular case, which is also quite common in practice, the VaR not only rises with the

confidence level, but also rises at an increasing rate.

Since the VaR is also contingent on the holding period, it should be taken into

consideration as to how the VaR would vary as the holding period changes. This

behaviour is illustrated in Figure 5.3, which plots 95% VaRs based on two alternative μ

values against a holding period that varies from 1 day to 100 days.

29 Strictly speaking, the VaR is non-decreasing with the confidence level, which means that the VaR can
sometimes remain the same as the confidence level rises. However, the VaR cannot fall as the confidence
level rises.
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Figure 5.2: VaR and Confidence Level

Source: Dowd (2005: 29)

With μ= 0, the VaR rises with the square root of the holding period, but with μ> 0, the

VaR rises at a lower rate and would in fact eventually turn down. Thus, the VaR varies

with the holding period, and the way it varies with the holding period depends

significantly on theμparameter.

Figure 5.3: VaR and Holding Period

Source: Dowd (2005: 30)
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VaR method earned its prominence among academics and practitioners since it was

introduced by JP Morgan in the mid-nineties. Many researchers have also given their

positive responses to the idea ever since. Risk managers, particularly, are very keen to

utilise VaR because of its analytical tractability. Although numerical methods to calculate

VaR have been developed leading to more accurate results depending on less restrictive

assumptions, many institutions seems to still rely on analytical methodologies. The most

important advantage of analytical methods over their numerical counterparts is the saving

of computing time that makes real time calculations possible. This seems to outweigh

their disadvantages for many practical applications. Nevertheless, the methods are not

without any flaws. One of the shortcomings is the normality assumption which has

become the main subject of criticism indicated by the subsistence of high skewness and

excess kurtosis of the distribution functions (Hull and White, 1998; Kupiec, 1995; Li and

Turtle, 1997) . This study, for that matter, attempts to resound similar criticisms in light

of the proposed theoretical framework presented in chapter 4.

Duffie and Pan (1997) identify jumps and stochastic volatility as possible causes of

kurtosis. They point out that under a jump-diffusion model, kurtosis is a declining

function of the time horizon, whereas under a stochastic volatility model, it is an

increasing function of the time horizon (at least for the time horizons normally

considered in VaR calculations).

Nevertheless, many alternatives exist for the statistical and computational decisions to be

made for the computation of VaR, which is a quantile of a portfolio’s loss distribution

over a given time horizon. Several methods have been proposed to compute a quantile of

the distribution, among them are Monte-Carlo simulation (Pritsker, 1996), Johnson

transformations (Zangari, 1996a; Longerstaey, 1996), Cornish-Fisher expansions

(Zangari, 1996b; Fallon, 1996), moment-based approximations utilising the theory of

estimating functions (Li, 1999), and Fourier-inversion (Rouvinez, 1997; Albanese, 2000).

It should be noted that with respect to time and calculations efficiency, Pichler and

Selitsch (1999), Mina and Ulmer (1999) and Jaschke (2001) demonstrate that Cornish-
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Fisher expansions are preferable to other methods, such as Johnson transformations,

Delta-Normal, and Fourier inversion.

However, before further analysing the technicalities of VaR based on Cornish Fisher

expansion, the following section is to discuss the potential risk factors within three

income generating channels indicated in chapter 4 followed by a discussion on the

behaviour of data in three aspects; volatility, skewness and kurtosis.

5.3 CONSTRUCTING THE PROPOSED DGSA METHODOLOGY

The proposed DGSA methodology is an estimation technique to determine the value of

assignable (controllable) losses based on the causality between risk factors. The model

commences by partitioning the business unit into different income generating channel

(IGC), which would then function as the unit of analysis for measuring operational risk30 .

Each IGC is partitioned into three different units: (i) investment channel, (ii) financing

channel, and (iii) service channel.31 The level of operational risk exposures is measured

as the uncertainty of earnings in each IGC in terms of a series of risk factors. This study,

however, defines uncertainty as volatility.32

An investment channel consists of any investment in the form of a partnership, while

financing channel contains any financing instruments that are used primarily to finance

obligations arising from the trade and sale of commodities or property. Service channel,

however, consists of any financial transactions that create earnings by charging fees.

In DGSA, it is assumed that earnings are described by a series of risk factors. For a given

earnings level, there is a set of risk factors whose values are used to estimate earnings:

= ( ) (5.6)

30 Income generating channel is defined as the production unit by which an Islamic bank creates a product
to its customers.
31 Hence, DGSA has three IGCs , namely IGCI (income generating channel for investment channel), IGCF

(income generating channel for financing channel), and IGCS (income generating channel for service
channel)
32 From this point onward, the term volatility is used to explain uncertainty
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The equation above shows that earnings are defined as a function of a set of risk factors,

which can be transformed into:

( ) ≈ ( ( … )) (5.7)

Suggesting that volatility of earnings, v(E) is determined by a set of volatility of risk

factors, ( ( … )).

Based on the IGC partitions, equation (5.7) can be expanded as follows:

( ) ≈ ( … ) (5.8)

( ) ≈ ( … ) (5.9)

( ) ≈ ( … ) (5.10)

where

( ) = volatility of earnings in investment channel

( ) = volatility of earnings in financing channel

( ) = volatility of earnings in service channel

… = volatility of a set of risk factors in investment channel

… = volatility of a set of risk factors in financing channel

… = volatility of a set of risk factors in service channel

In IGCI, earnings are represented by the rate of return on financial securities (RoS), which

is based on profit sharing. The financial securities represent ownership of profit sharing

based investments carried out by Islamic banks.

A proposed set of risk categories that have been highlighted in chapter 3 in relation to

operational risks are shariah non-compliance risk, fiduciary risk, people risk, legal risk
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and technology risk.33 Due to the quantitative nature of the data, shariah non-compliance

risk, legal risk and technology risk, which are qualitative in nature, is not be included in

the model constructed in thus study, as their relevant data cannot be captured by the

model. This, as a result, leaves the model with fiduciary risk and people risk.

Fiduciary risk can be characterised as a condition whereby Islamic banks are liable for

losses arising from their negligence, misconduct or breach of their investment mandate.

In other words, fiduciary risk is an indication of failure to “perform in accordance with

explicit and implicit standards applicable to their fiduciary responsibilities” (IFSB,

2005:26).

In the model, a set of fiduciary risk is decomposed into a series of risk factors, namely

volatilities of (i) volume of investment in financial securities (FS), (ii) return on saving

deposits (RoSD), (iii) return on 1-month time deposits (RoTD), and (iv) ratio of operating

expenses over operating income (BOPOI).

People risk, nonetheless, is another type of operational risk arising from incompetence or

fraud, which exposes Islamic banks to potential losses. This includes human errors, lack

of expertise, compliance and fraud (Akkizidis and Kumar: 2008). It should be noted that

the volatility of training expenses (TrI) are used as a proxy for people risk.

In IGCF, on the other hand, rate of return on financing (RoF) signifies earnings. RoF

contains a bulk of returns on financing, which unsurprisingly, is still predominated by

murabaha mode of finance.34 Fiduciary risk in IGCF is symbolised by the volatilities of

two elements, namely volume of financing (F) and the ratio of operating expenses over

operating income (BOPOF). As for people risk, IGCF employs a similar variable as IGCI,

that is the volatility of training expenses (TrF).

IGCS is deliberately taken out of the analysis, since the volume of service fee does not

contribute significantly to the value adding process.35 Hence, IGCI has the following the

earnings function:

33 See table 3.2 in Chapter 3
34 As of June 2010, murabaha makes up over 60 percent of the total financing.
35 As of June 2010, service fee only contributes less than 2% to the value adding process
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( ) ≈ ( , , , , ) (5.11)

Volatility of return on securities is a function of a series of risk factors, i.e. volatilities of

investment in securities ( ), return on saving deposits ( ), return on 1-month time

deposits ( ), ratio of operating expenses over operating income in investment

channel ( ), and training expenses in investment channel ( ).

Consequently, IGCF has the following earnings function:

( ) ≈ ( , , ) (5.12)

It should be noted that the volatility of return on financing is a function of a set of risk

factors: volatilities of volumes of financing ( ), ratio of operating expenses over

operating income in financing channel ( ), and training expenses in financing

channel ( ).
It is important to note that the focus of this chapter is to find out the level of scaled-

standard deviation of volatility of earnings in IGCI and IGCF with the objective of

developing an alternative measurement model of operational risk in Islamic banking. To

put it differently, this chapter centres around operational risk VaR based on volatility

analysis, skewness and kurtosis of and .

Surveying the available body of knowledge indicates that examining VaR based on the

volatility of earnings is widely accepted in the sphere of theoretical and empirical studies

and has become the backbone of risk measurement analysis (Alexander, 2008; Li, 1999;

and Marshall, 2001); without which, measuring risk exposures can be futile. Such VaR

examination is what Sundararajan (2005), Allen et al. (2004), and Hiwatashi and Ashida

(2002), describe as profit at risk models, earnings at risk models and volatility approach

respectively.

Based on this logic, empirical tests and discussion of the relationships between identified

risk factors with and are to be elaborated in chapter 6 as they are beyond the
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scope of this chapter. The following section, hence, attempts to examine the Gaussian

features of the data in the analysis. Such an examination is essential as an underlying

foundation to establish an accurate estimation of value at risk.

5.3.1 Empirical Analysis: Data, Skewness and Kurtosis

The data set for the empirical analysis in testing the proposed model of this study is

extracted from published monthly financial reports (balance sheet and income statement)

of Islamic banking industry in Indonesia. Such monthly data set, which comprises of 10

full-fledge Islamic commercial banks and 23 Islamic business units spanning from

January 2001 to June 2010, is chosen simply because of its accessibility.36 Following

Hull and White (1998) and Li (1999), this study forecasts the volatility of operational risk

variables in two ways: (i) a constant-variance model, and (ii) an exponential weighted

moving average (EWMA) model.37

In addition, skewness and kurtosis are also taken into account since omitting these

components could lead to a detrimental impact on the valuation of VaR especially when

it is found out that normality (Gaussian) assumption of the probability density function is

violated. Skewness is a measure of asymmetry and a third moment of a distribution.38

Symmetry of a distribution is viewed around its mean. Therefore, if the skewness of a

distribution is zero, the shape of the distribution on the left side of the mean will be a

mirror image of the shape on the right side of the mean. Thus, skewness of a normal

distribution will always be zero, as this distribution is perfectly symmetrical. Positively

skewed distributions are characterised by the existence of a few very large positive

values, i.e. large distributions right tail. Negatively skewed distributions, on the contrary,

have a few large negative values, i.e. large left tail. As an example, Elton et al. (2003)

shed some lights on why positive skewness matters for investors. It is argued that positive

skewness of a distribution would demonstrate higher probability for large gains and

36 This figure is accurate until June 2010. Up-to-date monthly financial reports can be accessed at
http://www.bi.go.id/web/en/Statistik/Statistik+Perbankan/Statistik+Perbankan+Syariah/
37 The term estimate and forecast should not be confused. A forecast is the value that an analyst expects a
certain parameter or other quantity to take at the end of a defined future horizon period, so all forecasts are
estimates but not all estimates are forecasts. In this study, the terms ‘forecast’ and ‘estimate’ can be used
interchangeably. This position, however, is also adopted by Dowd (2005) and RiskMetrics (1996).
38 Pearson (1895) is claimed to be the first person who introduced measures of skewness.
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limited loss. This assertion is also in line with Fogler and Radcliffe (1974) and Alderfer

and Bierman (1970) stating that negative skewness should be avoided; hence, it explains

why people find the need to buy insurance premium. To provide a better understanding,

three different shapes of skewness are illustrated in Figure 5.4.

Figure 5.4. Shapes of Skewness

Source: Chernobai, Rachev and Fabozzi (2007: 139)

Furthermore, being a fourth moment of a distribution, kurtosis indicates the peakedness

of the data (Johnson and Kotz, 1985), which is often thought as a measure of non-

normality (Hample’s 1968 as cited in Ruppert, 1987). By employing influence function,

Darlington (1970), Hample (1974), Johnson and Kotz’s (1985) and Ruppert (1987) prove

how an existence of kurtosis could deviate a distribution from being normal (Gaussian).

A higher kurtosis means that there is a high peak in the centre of the data, which implies

that the data embody heavy tails. The data that are severely kurtotic and also contain

heavy tails are often called leptokurtic (Allen, Boudoukh, and Saunders, 2004;

Chernobai, Rachev and Fabozzi, 2007; Moosa, 2007; and Alexander, 2008). The degree

of kurtosis in a distribution is measured by the sample kurtosis coefficient. Figure 5.5

depicts different shapes of kurtosis.
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Figure 5.5: Various Shapes of Kurtosis

Source: Chernobai et al., (2007: 139)

5.3.2 Volatility in Constant-Variance Model

The first step in the volatility analysis is to calculate monthly logarithm change, =
ln ( ) for all variables in the analysis. St is the rate of the variables at time t, and St -1 is

the rate of the variables at time t-1 (previous month). Subsequently, a new time series

data is obtained by dividing the return series by their respective standard deviation; this

method is attributed as constant-variance model (Hull and White, 1998).

Although the focus of this empirical attempt is on the volatility of RoS and RoF, other

variables are also included in the descriptive statistics to develop a better understanding.

The main reason is to observe their likely changing behaviour in two different variance

models, namely constant-variance model and exponential weighted moving average

model (EWMA).39 The latter is discussed in the subsequent subsection.

39 Full results of descriptive statistics are presented in Appendix 5A
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Table 5.1. presents the characteristics of all variables in constant-variance model based

on the data described above.

Table 5.1: Summary Statistics of Operational Risk Variables
in Constant-Variance Model

Variables Mean Standard
Deviation

Skewness Kurtosis

RoS −0.000347 0.06045 -1.186 12.623
RoF 0.004009 0.03724 1.5672 4.924
FS 0.02415 0.0373 1.3769 4.212
F 0.03362 0.0251 1.3807 3.531
Tr 0.04825 0.4754 -0.0419 0.851
RoSD −0.00181 0.0907 0.0569 3.41
RoTD −0.0023 0.0826 0.4721 2.389
BOPO 0.00134 0.1551 0.1727 1.863

As shown in Table 5.1.,all variables have a non-zero skewness; RoF, FS, F, RoSD, RoTD,

and BOPO have skewness more than zero (>0) or non-symmetrical, which means they do

not constitute normal distribution. A zero skewness is required for a distribution to be

qualified as normal (Gaussian) distribution (Cruz, 2002: 42). Meanwhile, skewness for

RoS is -1.186 and Tr is -0.0419. The negative value of skewness implies that both RoS

and Tr make up for negatively skewed distribution, since their skewness is below zero

(<0). Moreover, all variables exhibit a very significant excess kurtosis, ranging from 3.5

for variable F up to 12.6 for RoSD, except for Tr, RoTD and BOPO, which are 0.851,

2.389, and 1.863 respectively.40 As the theory suggests, a value of kurtosis is 3 for a

standard normal distribution (Bollerslev, 1986; Cruz, 2002). It is very obvious that all

variables display non-normality.

40 can be decomposed into and , while can be broken down into and .
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A question might arise as to whether the variables would demonstrate a changing

behaviour in an exponential weighted moving average (EWMA). Before answering this

question, the subsequent sub-section attempts to theoretically analyse why EWMA can be

a better forecast than constant-variance model.

5.3.3. Rationalising Exponentially Weighted Moving Average (EWMA)

The problems encountered when applying constant variance model stem from the small

jumps that are often encountered in financial asset prices but from the large jumps that

are only rarely encountered. When a long averaging period is used, the importance of a

single extreme event is averaged out within a large sample of returns. Hence, a very long

term constant-variance volatility estimation will not respond very much to a short, sharp

shock in the market (Alexander, 2008: 117).

Moreover, the main reason why this study utilises EWMA based volatility is due to its

superiority over other methods, such as equal weighted moving average and GARCH. A

number of studies have empirically proven that VaR forecasts based on the EWMA

estimator are superior to those based on the GARCH model (Alexander and Leigh, 1997;

Boudoukh, Ricardson and Whitelaw, 1997; Guermat and Harris, 2002).

One way to capture such sharp shocks or the dynamic features of volatility is to use an

exponential moving average of historical observations where the latest observations carry

the highest weight in the volatility estimate (RiskMetrics, 1996; Alexander, 2008). This

approach has two important advantages over constant-variance model and equally

weighted model. First, volatility reacts faster to shocks in the market as recent data carry

more weight than data in the distant past (Hull and White, 1998). Second, following a

shock, the volatility declines exponentially as the weight of the shock observation falls

(Li, 1999). In contrast, the use of a simple constant-variance leads to relatively abrupt

changes in the standard deviation once the shock falls out of the measurement sample,

which, in most cases, can be several months after it occurs.

An essential component underpinning EWMA is its moving average with declining

weights that gives greater weight to more recent observations and less weight to more
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distant ones. This type of weighting scheme might arguably be justified by claiming that

volatility tends to change over time in a stable way, which is certainly more reasonable

than assuming it to be constant. The volatility forecasting model proposed by this study

follows the form expressed in equation 5.13.:

=
(5.13)

where the weights, the terms, decline as i gets larger, and sum to 1. In EWMA model,

the weights would decline exponentially over time. This means that = , where λis a

constant between 0 and 1. This assumption leads to the following volatility forecasting

equations (5.14):

≈(1− )
(5.14)

The EWMA model has the intuitively appealing property that the influence of any

observation declines over time at a stable rate, and it is easy to apply as it relies on one

parameter only, namely λ41. The EWMA also leads to a very straightforward volatility

formula. If equation 5.13 is lagged by one period and is multiplied throughout by , the

following equation could be obtained:

≈ (1− ) = (1− )
(5.15)

Rearranging equation (5.15) and (5.14), the formula in 5.16 is obtained:

= + (1− ) −(1 − )
41 λ is also called decay factor
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≈ + (1− ) (5.16)

Equation 5.16 shows that the estimate of volatility at time t, , made at the end of the

time t-1, is calculated from the previous month’s volatility, σt-1, and the previous month’s

return, xt-1. The EWMA rule equation 5.16 can, therefore, be interpreted as a simple

updating rule that allows an update monthly volatility estimate each month based on the

most recent monthly return. A high λ means that the weight declines slowly, and a low

λ means it declines quickly.

Equation 5.16 also exhibits that there are two terms; the first term is (1− ) and the

second one is . The first term determines the intensity of reaction of volatility to

market events (Alexander, 2008: 139); the smaller is λthe more the volatility reacts to the

market information in yesterday’s return. The second term, nonetheless determines the

persistence in volatility irrespective of what happens in the market, if volatility was high

in the previous month, it will be still be high in this month. The closer λ is to 1, the more 

persistent is volatility following a market shock.42

Thus, a high λ gives little reaction to actual market events, but great persistence in

volatility; and a low λ gives highly reactive volatilities that quickly shy away. An

unfortunate restriction of EWMA models is that they assume that the reaction and

persistence parameters are not independent: the strength of reaction to market events is

determined by 1- λ and the persistence of shocks is determined by λ.

Values of mean, standard deviation, skewness and kurtosis of all variables resulting from

EWMA method based on the date collected from Indonesian Islamic banking sector for

the period of January 2001 up to June 2010 are presented in table 5.2. It is expected that

there will be slight changes taking place in the value of mean, standard deviation,

skewness and kurtosis after the transformation of operational risk variables from

constant-variance to EWMA. Changes are expected as the transformed data might be able

42 Since the data set is monthly, this study deploys λ=0.97 as suggested by RiskMetrics (1996).



135

to capture the time-varying and persistent volatility in the data series. If this happens, it is

hoped that the transformed data will exhibit normality (Gaussian) features.

Table 5.2: Summary Statistics of Operational Risk Variables in Exponential
Weighted Moving Average (EWMA)

Variables Mean Standard
Deviation

Skewness Kurtosis

RoS 0.007021 0.00408 1.0389 1.549
RoF 0.001045 0.00039 -0.7226 0.8176
FS 0.000466 0.000475 1.3959 0.90716
F 0.000619 0.000209 -0.0863 1.421
Tr 0.25291 0.0617 0.7135 9.3704
RoSD 0.00737 0.00197 -0.4074 1.0276
RoTD 0.00491 0.00249 -0.6797 −0.9218
BOPO 0.0181 0.00675 -0.5093 −0.8881

Table 5.2 shows that all operational risk variables still have a non-zero skewness and

kurtosis. As clearly exhibited by the summary of the statistics in table 5.2, skewness are

still non-zero and the kurtosis of the variables are either below 3 or above 3. In other

words, the transformed series are still skewed and leptokurtic. In general, standard

deviation, skewness and kurtosis display a decreasing trend after transformation using the

EWMA method although there is a drastic change on the kurtosis of RoS and Tr. RoS’s

kurtosis slumps from 12.623 in constant-variance to 1.549 in EWMA; and Tr’s kurtosis

shoots up from 0.851 to 9.37. The average of standard deviation, skewness, and kurtosis,
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however, is reduced to 0.01, 0.092 and 1.66 from 0.12, 3.798, and 33.8 respectively43 .

This evidence suggests that the transformed data is less disperse than the previous model.

More importantly, both models strongly suggest that the operational risk variables chosen

in this study exhibit non-normality which implies that the use of a modified version of a

standard VaR is inevitable in the estimation of operational value at risk.

Nevertheless, the findings above also prove that conditional normality assumption set by

RiskMetrics is not consistent, which is in line with empirical findings of Li (1999), Hull

and White (1998).

5.3.4 Fitting Probability Distributions

The analysis of volatility, skewness and kurtosis in the previous section has evidenced the

non-normality of operational risk variables. In order to examine the behaviour of the data

leading to VaR calculation, it is also very important to construct their histogram and

observe what might stand out. It has also been indicated that the data series are still

skewed and leptokurtic, even after the transformation, but the exact type of distribution

for each variable is still not known. Thus, it is important to understand what sort of

distribution which might fit the series data in the analysis.

To help with this process, a flow of analysis is illustrated in figure 5.6 to show how this

study utilises different techniques to ensure that the outcome of this chapter, namely

operational risk VaR; is robust and is theoretically justified.

43 The figures are generated after comparing the average of mean, standard deviation, skewness and
kurtosis in Table 5.1 and Table 5.2
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Source: Author’s own

Series Data

Forecast Volatilities

Volatility-Constant Variance Volatility-EWMA

Distribution Fitting of
OpRisk Variables

Objective

To investigate the
normality assumptions

Outcome



138

As reflected in figure 5.6, the analysis of this study has now reached a stage called

‘distribution fitting of operational risk variables’. The purpose of this stage is to examine

the non-normality of operational risk through non-parametric approach by utilising two

primary techniques: (i) graphical presentation, and (ii) statistical tests consisting of two

main tests; Kolmogorov-Smirnov test and Anderson-Darling test.

It should be noted for the purpose of analysis, graphs are powerful tools for analysing

trends and structures. They facilitate comparison of performance and structures over

time, and show trend lines and changes in significant aspects of bank operations and

performance (Nagafuji et al., 2011). In addition, they provide the bank management with

a high-level overview of risk trends in a bank.

Graphical presentation of operational risk variables in this study is carried out through

simulation in a manner that produces histogram and probability density function that fits

to the variables. In doing so, all results were produced with the help of two important

statistical software, namely easy fit 5.5 and XL Stat.

Easy fit 5.5 is a statistical package tailored to help this study deal with volatility and

make informed decisions by analysing probability data and then selecting the best fitting

distribution. It also allows the data to easily fit to a large number of distributions in

seconds. Furthermore, XL Stat is add-in statistical software which offers a wide variety of

functions to enhance the analytical capabilities of Excel, making it the ideal tool for data

analysis and statistics requirements. An important advantage of utilising XL Stat is that it

helps eliminate the complicated and risky data transfers between applications that had

been a requisite for data analysis.

In addition to generating histogram and probability density function of the data, the

simulation process will also produce QQ plot to confirm the specified distribution shown

simulated histogram and probability density function. In QQ plot, any reference

distributions that produce non-linear QQ plots can then be dismissed, and any distribution

that produces a linear QQ plot is a good candidate distribution for the data in the analysis.
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Statistical tests are carried out to investigate the goodness of fit of the data. To put it

simply, the tests are employed to evaluate the quality of fit between the data and the

distribution. The first one is Kolmogorov-Smirnov test statistic, defined as

= | ( ) − ( )| (5.16)

It should be noted that KS is the maximum of the vertical differences between two

cumulative distribution functions: ( ) and ( ). In the Kolmogorov-Smirnov test, the

KS statistic focuses on the fit between two distributions around their means. Furthermore,

this study also employs the modified version of the KS test, called Anderson-Darling .

The reason is mainly to observe the fit between two distributions in their tails.44

The followings are a brief description of table 5.3 and table 5.4. The aim is to see the

trend and structures of the data, particularly in the aspect of normality or non-normality

of the data. This will also help in determining as to whether the VaR analysis can go

straight to the standard analysis or a modification may be needed as a result.

 The x-axis stands for probability density function;

 The y-axis stands for the value of assigned variables;

 Axes in table 5.4 are originated from constant variance model;

 Axes in table 5.5 are originated from exponential weighted moving average model

(EWMA);

 Both tables present a combination of histograms and probability density functions of

operational risk variables.

44 Due to the extensive results of simulation, results of Kolmogorov-Smirnov and Anderson-Darling tests
are located in the appendix of this chapter.
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Table 5.3: Distribution Fitting in Constant-Variance Model
Return on Securities Return on Financing

Investment Financing

Training Saving Deposits

1-month Deposits Operating Expenses/Operating Income

Source: Author’s simulation
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Table 5.4: Distribution Fitting in EWMA Model
Return on Securities Return on Financing

Investment Financing

Training Saving Deposits

1-month Deposits Operating Expenses/Operating Income

Source: Author’s simulation
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Table 5.5: Summary of QQ Plots

Variables
QQ Plots in
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RoSD

RoTD

BOPO

Source: Author’s simulation

Confirming the non-parametric tests conducted in sub-section 5.3.2 and 5.3.3, the

simulation results as presented in table 5.3 and 5.4 demonstrate that none of the

operational risk variables in this study exhibit normality, which implies that the use of

conventional standard VaR will not be valid. Therefore, the cause for non-normality has

to be taken into consideration in the estimation of VaR.

Moreover, the results of histograms and simulated probability density functions are

substantiated by QQ plots as demonstrated in table 5.5. and a summary of the simulation

results are illustrated in table 5.6 below.
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Table 5.6: Summary of Distribution Fitting

Variables Distribution Functions in
Constant-Variance Model

Distribution Function in
EWMA

RoS Cauchy Inv. Gaussian

RoF Cauchy Gumbel min.

FS Cauchy Johnson SB

F General Pareto Gen. Extreme Value

Tr Dagum (4P) Cauchy

RoSD Burr (4P) Gen. Extreme Value

RoTD Log Logistic Gen. Pareto

BOPO Cauchy Johnson

Under constant-variance model, distribution functions are predominantly made up of

Cauchy distribution. Meanwhile, a transformation of the series data results in a mixture

of distribution functions, spanning from inverse Gaussian, Gumbel min., Johnson,

Cauchy, Gen. Extreme Value, to Gen. Pareto distribution. Table 5.6 above also proves

the plausibility of changing behaviour of data series after the transformation.

The simulation results also verify a remark stated in the introduction that it is unlikely to

employ extreme value theory test since there are only two variables, i.e. F and RoSD after

the transformation that constitute extreme value distribution. Furthermore, the results of

simulation are in coherence with the statistical findings of Kolmogorov-Smirnov tests and

Anderson-Darling tests.45

A range of non-parametric tests conducted above suggests that incorporating skewness

and kurtosis into the VaR calculation is imminent, which is discussed in the following

section.

45 Details of the findings are presented in the appendix
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5.4 ESTIMATING VAR USING CORNISH-FISHER EXPANSION: EMPIRICAL

EVIDENCE

Non-parametric approach seeks to estimate risk measures without making strong

assumptions about the distribution. The essence of this approach is to let the data speak

for themselves as much as possible and use the empirical or simulated distribution to

estimate risk measures. It estimates risks by fitting probability curves to the data and then

inferring the risk measure (Dowd, 1998; 2002).

Parametric approach, on the contrary, use additional information contained in the

assumed density or distribution function to estimate risk (Alexander, 2003; 2008). The

objective of any parametric approach is basically to make assumptions that are consistent

with the features of the empirical process, which is to be modelled.

By using non parametric approach in the previous section, it has been empirically shown

the volatility forecast and simulation that data in this study are skewed and leptokurtic.

Based on this finding and by considering the time and cost efficiency as pointed out in

section 5.2, the analysis now moves on to parametric approach using Cornish-Fisher

expansion in the calculation of VaR.

VaR of a portfolio, as commonly understood, is defined as the maximum loss that will

occur over a given period of time at a given probability level. The calculation of VaR

requires some assumptions about the distributional properties of the returns of the

portfolio components. One of the popular VaR models, delta-normal approach is based

on the assumptions of normally distributed returns of specified risk factors.46 Under this

model, it is viewed that there is a strictly linear relationship between the returns of the

risk factors and the market value of the portfolio. Consequently, non-linearity which

might result from nonlinear portfolio such as options is not taken into account in the

model, which eventually exposes a shortcoming of delta-normal approach.

A first step to solve this problem is to include the quadratic term of a Taylor series

expansion of the option pricing relation, i.e. the gamma matrix, in the VaR calculation

46 Delta normal uwas originally promoted by JP Morgan’s RiskMetrics
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framework. The inclusion of quadratic terms implies that non-linearity is being dealt with

by Taylor approximation. Other than nonlinearity, non normality due to the existence of

skewness and excess kurtosis can also be a hindrance to the accuracy of VaR calculation

(Mathai and Provost, 1992). There are several attempts to incorporate higher moments of

any distribution in approximation procedures to calculate the required quantile of the

distribution.

In a first attempt, Zangari (1996a) suggested to use the Cornish-Fisher expansion to

directly calculate the quantile of a distribution with known skewness and kurtosis. Other

approaches attempt to find a moment matching distribution for which the quantiles can be

calculated. This class of approaches contain Zangari (1996b) who suggested to use the

Johnson family of distributions to match the first four moments, Britten-Jones and

Schaefe (1997) who suggested to use a central χ2-distribution to match the first three

moments, and a simplifying approach that uses the normal distribution to match the first

two moments (El-Jahel et al., 1999).

It should be noted that there is a range of parametric approaches in the literature, such as

Levy approach (Mittnik et al., 1998, 2000; Mantegna and Stanley, 2000), Elliptical and

Hyperbolic approach (Eberlein et al., 1998; Eberlein, 1999; Bauer, 2000; Breckling et

al., 2000), normal mixture approach (Zangari, 1996a; Venkataraman, 1997), Jump

Diffusion (Merton, 1976; Duffie and Pan, 1997; Zangari, 1997; and Gibson, 2001),

Gram-Charlier expansion (Polanski and Stoja, 2008), and stochastic volatility approach

(Duffie and Pan, 1997; Billio and Pelizzon, 1997; Eberlein et al., 2001). This study,

however, employs Cornish-Fisher expansion, since it is proved to be superior and

preferable to other approaches, particularly in terms of time and calculations efficiency

(Cornish and Fisher, 1937 as cited in Mina and Ulmer, 1999; Dowd, 2002; Alexander,

2003, 2008, Mina and Ulmer, 1999; Jaschke, 2001; and Pichler and Selitsch, 1999).

In essence, Cornish-Fisher expansion is used to determine the percentiles of distributions,

which are non-normal. The actual expansion provides an adjustment factor that can be

used to adjust estimated percentiles for non-normality, and the adjustment is reliable

provided departures from normality are ‘small’ (Dowd, 2005: 171).
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Since the non-normality dominates the portfolios return distribution, hence a standard

VaR methodology is no longer appropriate. This study, therefore employs the Cornish

Fisher expansion, which is a normal analytical approximation, in finding the percentiles

of this portfolio’s distribution with which VaR can be estimated. This technique is also

attributed as partial simulation technique (Zangari, 1996a: 9).

With 95% level of confidence, calculation of VaR in normal distributions would typically

rely on critical values +/- 1.65. In the presence of non-normality which is characterised

by significant values of skewness and kurtosis, using the same critical values would give

misleading risk estimates. The reason for this is very straight forward: +/-1.65 come from

the normal distribution. As seen in figure 5.4 and 5.5, the presence of the third and fourth

moments causes the distribution to be positively skewed or negatively skewed.

Basically, the discrepancy between normal and non-normal VaR leads this study to search

for methods that augment the standard VaR methodology to account for the skewed

return distribution. In particular, this study seeks the counterparts to the quantiles +/-1.65

that capture the skewness and kurtosis of the distribution.

After taking into account skewness and kurtosis, the new distribution is, suppose .

Subsequently, the higher moments (skewness and kurtosis) of the distribution can be used

to estimate the percentiles of . The critical points of distribution (counterparts to

+/-1.65), hence, are estimated by applying the Cornish-Fisher expansion.

It should be noted that the applications of normal analytical approximations are motivated

by the understanding that any distribution can be viewed as a function of any other one

(Zangari, 1996a: 9). Suppose, the 5th and 95th percentiles of ’s distributions are

denoted by . and . , which can be calculated as a function of the standard normal

percentile z.05=-1.65, z.95=1.65, and ’s estimated moments. Say, a critical value, CV,

of the normal 95% confidence interval around the mean portfolio return E[R] is defined

as

= {−1.65 + ( ), ( ) + 1.65 } (5.17)
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Under the maintained assumptions, when R is no longer normal, that is, when R becomes

non-normal , the approximate confidence interval for E[RSK] can be written (Jaschke,

2002: 40):

= { [ ] + (−1.65 + . ) , [ ] + (1.65 + . ) }
= { [ ] + ( . ) , [ ] + ( . ) } (5.18)

The main purpose of the correction terms sαis to adjust for skewness. To a lesser extent it

corrects for higher order departures from normality. In the case of the normal

approximation interval, s.05=s.95=0. In practice, the Cornish-Fisher expansion allows us to

compute the adjusted critical values . and . as a function of the normal critical

values z.05 and z.95 directly, as identified by the following (Jaschke, 2002: 42; Javanainen,

2004: 8; Monteiro, 2004: 23):

= + 16 ( −1) + 124 ( −3 ) − 136 (2 −5 )
(5.19)

where

= critical value of a normal distribution depending on the confidence level;

= [( − [ ]) / measures Rm’s skewness; and

= [( − [ ]) / −3 measures Rm’s kurtosis.

The following tables compare the critical values resulting from Cornish-Fisher expansion

for two variables in the analysis, namely return on securities (RoS) and return on

financing (RoF).
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Table 5.7: Percentiles for Normal and Cornish-Fisher Approximation of Return on
Securities

Percentile 1st 5th 95th 99th

Normal -2.33 -1.645 1.645 2.33

Cornish Fisher Expansion -3.036 -1.298 2.003 3.053

Relative Difference 30.5% 31.3% 21.7% 31.03%

Table 5.8: Percentiles for Normal and Cornish-Fisher Approximation of Return on
Financing

Percentile 1st 5th 95th 99th

Normal -2.33 -1.645 1.645 2.33

Cornish Fisher Expansion -3.592 -1.824 1.473 1.79

Relative Difference 54.2% 10.9% 10.45% 23.2%

As depicted in table 5.7 and 5.8, there are significant differences between critical values

resulting from Cornish-Fisher expansion and commonly perceived normal distributions.

As for RoS, the use of Cornish-Fisher expansion generate new critical values which are

less than the normal one for its 1st and 5th percentiles, -3.036 and -1.298 as compared to

the normal ones, -2.33 and -1.645 respectively. As for 95th and 99th percentiles, Cornish-

Fisher expansion gives quite higher critical values, around 21.7% and 31.03% difference

from the normal distribution.

Meanwhile, the use of Cornish-Fisher expansion in the calculation of RoF’s critical

values demonstrate a similar pattern for the 1st and the 5th percentiles, except for the 95th
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and 99th percentiles, which result in critical values that are less than the normal

distribution.

In general, nonetheless, the discrepancy of critical values is higher for RoF than RoS;

ranging from 10.45% to 54.2% for RoF and only 21.7% up to 31.3% for the latter. The

results also suggest that incorporating higher moments in the confidence interval

valuation is essential, without which the whole process of VaR calculation can be

misleading.

Based on the findings presented above, the next step is to calculate VaR of RoS and RoF,

which is calculated by multiplying the market value of a portfolio with its volatility and

critical value.

VaR for RoS = . . (5.20)

VaR for RoF = . . (5.21)

where

= market value of return on securities;

= market value of return on financing;

= volatility of return on securities;

= volatility of return on financing;

= critical value of return on securities based on Cornish-Fisher expansion;

= critical value of return on financing based on Cornish-Fisher expansion.

Consequently, RoS and RoF have the following features:

= 16.57

= 19.68

= 0.0041

= 0.0004

. = 2.003

. = 1.473

. = 3.053
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. = 1.79

Based on the features above, the table 5.9. presents a comparison of VaR calculation

based on normal and Cornish-Fisher expansion at two levels of confidence, 95% and

99%.47

Table 5.9: VaR under normality and Cornish-Fisher Approximation

Confidence
Level (%)

Normal Cornish-Fisher
Return on
Securities

Return on
Financing

Return on
Securities

Return on
Financing

95%

99%

0.111318106

0.157672454

0.012611879

0.017863634

0.135556176

0.206605051

0.011297024

0.013733838

Table 5.9 illustrates risk measures for IGCI and IGCF represented by RoS and RoF

respectively. Under Cornish-Fisher expansion, the table can be read as follows:

 Given the volatility of 0.0041 for RoS, this study is 95% confident that the worst loss

in IGCI within a month will not exceed 0.13.

 Given the volatility of 0.0041 for RoS, this study is 99% confident that the worst loss

in IGCI within a month will not exceed 0.21.

Moreover, in the context of IGCF, the results of VaR can be interpreted as follows:

 Given the volatility of 0.0004 for RoF, this study has 95% confidence that the worst

loss in IGCF within a month will not exceed 0.0113

 Given the volatility of 0.0004 for RoF, this study has 99% confidence that the worst

loss in IGCF within a month will not exceed 0.014

The empirical evidence presented in table 5.9 show that incorporating skewness and

kurtosis will produce higher VaRs for RoS as compared to normal VaR. As clearly shown

in the table, normal VaR produces 0.111 and 0.157, lower than 0.13 and 0.206 at 95% and

47 Results of VaR are generated from EWMA model.
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99% confidence level. The results suggest that omitting higher moments would

underestimate the exposure of operational risk in IGCI. A similar picture, however, is not

found in RoF, since Cornish-Fisher expansion produces lower VaRs for IGCF. In IGCF,

normal VaR produces around 0.012 and 0.017 in comparison to slightly lower 0.011 and

0.013 at the level of confidence 95% and 99% respectively. The different VaR behaviour

between RoS and RoF might be contributed by the different level of volatility between

two variables leading to different patterns of confidence level.

The estimation exercise conducted above shows that incorporating volatility, skewness

and kurtosis does certainly make a significant difference to the estimation of operational

value at risk. Comparing the critical values produced by Cornish-Fisher expansion

technique as compared to the normal one, the results in table 5.7 and 5.8 suggest that for

RoS, the critical values of Cornish-Fisher tends to be higher than the normal one. But this

is not the case for RoF as the normal critical values are higher than the ones produced by

Cornish-Fisher expansion. It indicates that the VaR value for RoS is likely to be higher

than the VaR for RoF, which, interestingly is verified by the empirical results of VaR

estimation as depicted in table 5.9.

Based on the results shown in table 5.9, the analyst or operational risk manager in the

bank can come to the decision that the operational risk exposures in IGCI is higher than

the one in IGCF. Moreover, with respect to the comparison with the normal VaR; the

operational risk manager may give a suggestion to the management that for IGCI, the

bank needs to set aside a higher amount of capital, as compared to the one allocated for

operational risk in IGCF. In other words, the results also give an indication that

investment activities in Islamic banking industry in Indonesia have higher exposure to

operational risk than financing activities.

The other message from the empirical results is that if volatility, skewness and kurtosis of

the operational risk variable are not taken into account, the bank will under estimate the

amount of capital setting aside for the investment activities (IGCI), which could give a

detrimental financial impact on the bank. As for financing activities (IGCF), however,

had the volatility, skewness and kurtosis were not incorporated in the VaR estimation, the
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bank could have overestimated the amount of capital that will be put aside to cater

operational risks. Overestimation of capital will, obviously, not be favourable for the

bank as it will adversely affect the profitability level for financing activities.

5.5 CONCLUDING REMARKS

The aim of this chapter is mainly to empirically test the proposed DGSA-EVT model

presented in chapter 4 with the financial data. After deconstructing the proposed model as

well as identifying the characteristics of the data, it is found out that there is a need to

establish some adjustments in testing the model. This is needed due to the computational

and numerical intensity of the model. Moreover, the adjustment are also made due to the

nature of the financial instruments reflected in the collected data which do not show non-

linearity relationships among variables nor any extreme events taking place during the

period of the data, without the latter, an examination of extreme value theory (EVT)

model becomes implausible. Regarding the absence of nonlinearity, this might make

sense in the context of Islamic banking since non-linear financial instruments, such as

options are not largely flourishing. This study, for that reason, shifts its focus to

normality vis a vis non-normality instead. This has left the model with testing DGSA as a

result.

This chapter focuses on the assessment of operational risk exposures represented by the

value of VaR in two income generating channels, namely IGCI and IGCF; while an

examination of the causality of some identified risk factors is discussed in the chapter 6.

It should be noted that VaR in service fee channel is not taken into consideration since its

contribution to value adding process in the bank is not significant.

The presence of non-normality is addressed by using non parametric approach which has

been proven to be somewhat overwhelming in the data. Another attempt to smoothen the

non-normality is by transforming operational risk variables from constant-variance model

to exponential weighted moving average (EWMA).

Results of empirical tests have shown that the operational risk variables in this study are

non-normal; thus, non-normality involving skewness and kurtosis as well as volatility
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has to be taken into account in the calculation of VaR. In doing so, this study employs a

parametric approach called Cornish-Fisher expansion upon which the confidence interval

of operational variables is an explicit function of the skewness and kurtosis as well as the

volatility. This is also an indication that length of the confidence interval is related to

skewness and kurtosis of the variables. More importantly, the empirical findings also

suggest that incorporating higher moments might likely prevent calculation of VaR to be

underestimated or overestimated. As shown by the empirical results that if the volatility,

skewness and kurtosis were not taken into account in the estimation of VaR; in other

words, if the probability density function of the operational risk variables were assumed

to follow Gaussian features, the amount of capital to be set aside for investment activities

(RoS) would be underestimated. On the other hand, the amount of capital setting aside for

financing activities would be higher than necessary had the volatility, skewness and

kurtosis were not taken into consideration.
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CHAPTER 6

ASSESSING OPERATIONAL RISK IN INDONESIAN

ISLAMIC BANKS: AN EMPIRICAL ANALYSIS

6.1 INTRODUCTION

This chapter is a continuation of the empirical tests conducted in Chapter 5 on testing the

developed model of operational risk in Indonesian Islamic banking sector. While the

objective of the previous chapter is to figure out the level of scaled-standard deviation of

volatility of earnings with the objective of examining the exposures level of operational

risk, which is represented by the value of operational value at risk in IGCI and IGCF; the

focus of this chapter, however, is to examine the relationship between identified risk

factors with return on securities (RoS) and return on financing (RoF). As explained in the

previous chapter, RoS is the earnings which is defined in terms of a series of risk factors

in IGCI and RoF is earnings in IGCF.

By employing regression techniques and running a set of econometric tests, it is expected

that such techniques would provide a cause-effect framework through which significant

determinants of operational risk could be identified.

The use of regression technique is not alien in operational risk analysis. A number of

studies in this field have benefited from this technique, such as Allen and Bali (2004),

Cruz (2002), Chernobai et al. (2007), and Moosa (2007). The application of this

technique is often intertwined with risk factor approach since its main objective is to

identify which risk factor is dominant in the model.

This chapter is organised as follows; section 2 presents a highlight of empirical studies in

operational risk, section 3 describes the data and methodology, section 4 is devoted to the

examination of empirical results, and section 5 concludes the chapter.
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6.2 A SURVEY OF THE RELATED LITERATURE

The objective of this section is to present a snapshot on the role of regression techniques

and financial ratio in operational risk analysis. As might have been noticed that in the

operational risk literature, empirical studies with simulated data are arguably very

dominant, this might be due to the shortage of comprehensive data. This is contrary to the

studies that use actual loss data. An alternative to the estimation of operational risk is to

measure it as the residual of an econometric model that accounts explicitly for market and

credit risk, which is deployed by Allen and Bali (2004). Another alternative is to use the

factor approach, which is what Chernobai et al. (2007) utilised in identifying the

determinants of operational losses.

To deal with the data problem, Allen and Bali (2004) estimate an operational risk

measure for individual financial institutions using a monthly time series of stock returns

over the period 1973-2003. The model is represented by ordinary least squares (OLS)

regression of the monthly rate of return on a large number of explanatory variables,

which include the first difference of twenty-two variables representing credit risk, interest

rate risk, exchange rate risk and market risk. The three Fama-French (1993) factors are

also used as explanatory variables. An important finding resulting from Allen and Bali’s

research is that operational risk exposures often exceed market risk resulting in higher

capital charge for operational risk.

Nevertheless, Tripe (2000) sees some benefit in using ratios derived from financial

statement to determine capital requirements for a number of New Zealand banks based on

the volatility of non-interest expenses. He also considers two ratios: the ratio of operating

expenses to total assets and the ratio of operating expenses to income. The figures

suggest that bank capital levels should embody a significant element of operational risk.

Ford and Sundmacher (2007) also advocate the use of financial ratio such as cost to

income ratio as a leading indicator of operational risk. The underlying argument is that a

reduction of this ratio, which is essentially a measure of efficiency, is favourable since it

implies lower cost per dollar of income. The volatility of this ratio is also a leading

indicator as it results from factors associated with operational risk such as asset write-
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downs, unstable or unpredictable cost structures and volatile income sources. They also

suggest a ratio of training expenditure to total expenses and the proportion of incentive

based remuneration.

In a recent study, Chernobai et al. (2007) examine the microeconomic and

macroeconomic determinants of potential losses in financial institutions. On the basis of

twenty-four years of US public operational loss data covering the period 1980-2003, they

demonstrate that the firm-specific characteristics (such as size, leverage, volatility,

profitability and the number of employees) turned out to be highly significant in their

models. They also found that the overall macroeconomic environment is less important,

although operational losses tend to be more frequent and more severe during economic

downturns. The evidence they obtained indicates that contrary to the traditional view that

operational risk is unsystematic, operational loss events cluster at the industry level in

excess of what is predicted by the stochastic frequency estimates.

In the context of Islamic banking, there has not been any single study on both,

methodological and empirical studies in operational risk. Nonetheless, some empirical

studies on the aspect of operational soundness in Islamic banks are conducted by Ismail

and Suleiman (2005), Hassan and Dicle (2005) and Muljawan (2005).

Using the Cavello and Majnoni model, Ismail and Suleiman (2005) discuss the

interaction between the capital requirement as stated in the New Basel Capital Accord

and the cyclical pattern of profit. In addition, CAMEL framework is deployed by

Muljawan (2005) as an alternative tool to assess the operational soundness of Islamic

banks. The analysis of Hassan and Dicle (2005) is somewhat broader than other papers in

the sense that it also discusses the nature of operational risk.

In light of the brief available review above, this study fills an important gap, since it is

the first attempt in empirically analysing the exposure of operational risk in Islamic

banking. The following section describes the data and methodology utilised in this

chapter.
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6.3 A BRIEF BACKGROUND OF ISLAMIC BANKING INDUSTRY IN

INDONESIA

The history of Islamic banks in Indonesia can be traced back from the establishment of

the first Islamic bank, Bank Muamalat Indonesia November 1, 1991 in Jakarta. The bank

started its operation on 1 Nov, 1991 and subsequently was inaugurated by the Vice-

President on November 15th, 1991. Even though the regulation on Islamic banks did not

exist at the time, due to political support from the political elites, Bank Muamalat became

the only Islamic Commercial Bank in Indonesia over the period of 1991 up to 1998.

The Indonesian banking industry was regulated by Act No 7/1993, which was modified

by Banking Act 10/1998 which allows the banking industry to apply dual banking

system. Being the regulator of the banking industry in Indonesia, Bank Indonesia has

outlined the blue-print of Islamic development banks in Indonesia; a strategic plan with

the following objectives: (i) to formulate and improve regulation on Islamic banks, (ii) to

develop the Islamic bank network, (iii) to increase the understanding of people of the

Islamic banks system, (iv) to prepare infra-structures and supporting institutions to

support the development of Islamic banks, (v) to increase the efficiency, service quality

and competitiveness of Islamic banks, (vi) to develop profit-sharing scheme, and (vii) to

ensure Islamic banks to comply with professional and international standards.

As a result of the strategies outlined in the blue print, currently Islamic commercial banks

in Indonesia are composed of 10 full-fledge Islamic commercial banks and 23 Islamic

business units48. Islamic business units within conventional banks in 2010 have grown up

to nearly 47 % as compared to 2009 (Indonesian Islamic Banking Outlook, 2011: 31).

The first Islamic unit was initiated by Bank IFI, followed by Bank Jabar, Bank BNI,

Bukopin, Bank BRI, Bank Danamon, and lastly Bank BII which are currently are spread

across 20 provinces.

In all aspects, the growth of Islamic banking has been very fast. In terms of total assets in

2010, the sum was around IDR 90 trillion, an increase of IDR 67 trillion or grows around

48 In Indonesia, Islamic business unit is commonly termed as Shariah unit.
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36 %. In terms of assets, the share of Islamic banks in Indonesian banking is almost 3.7

%. The share of financing is more remarkable49. In 2010 total financing increased from

IDR 46.8 trillion to IDR 68.1 trillion or a growth of 68.7%. This figure shows that

Islamic banks are responsive to the development of the real economic sector.

FDR of Islamic banks in 2010 is 89.67% upon which, the financing scheme is still

dominated by murabahah i.e. 70.9%, followed by mudharabah, 15.2%, and mudharabah,

1.8%, and the rest is a small portion of salam, istishna, ijarah, rahn, and hawalah

(Indonesian Islamic Banking Outlook, 2011: 26). With regard to non-performing

financing, Islamic banking industry in Indonesia marked a very impressive figure, 3.02

only in 2010. As compared to the non performing financing (loan) in conventional banks,

which was around 12.1%.

Moreover, a better operational efficiency of the industry coupled was demonstrated by a

declining figure of the ratio of operating expense over operating income, which was

79.17% in 2010 as compared to 83.91 in the previous year. This promising figure is

coupled with an increasing trend of operating income, which grows up to 22% than the

year before.

6.4 DATA AND METHODOLOGY

The dataset utilised in this study is times series monthly data spanning from January 2001

up to June 2010. The data is extracted from published monthly financial reports (balance

sheet and income statement) of Islamic banking industry in Indonesia consisting of 10

full-fledge Islamic commercial banks and 23 Islamic business units.50 In the area of social

research, research methodology can be classified into two categories: qualitative and

quantitative. This study, for that matter, utilises the latter due to its attempts to operate a

49 IDR stands for Indonesian Rupiah, a national currency for Indonesia
50 An up-to-date monthly financial reports can be retrieved from
http://www.bi.go.id/web/en/Statistik/Statistik+Perbankan/Statistik+Perbankan+Syariah/
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range of econometric tests in analysing the relationship between a set proposed of

operational risk variables.

6.4.1 Estimation Methods

Methods are actually the specific technique of research. As Nachmias and Nachmias

assert, method is described as “a systematic procedure for attaining an object or doing

something” (1981: 15). In other words, method refers to data collection, data analysis and

the definition of analytical methods to test the hypothesis. In line with this, Figure 6.1

clearly describes the research process through which the final empirical outcome is

achieved.

First of all, all the raw statistical data are transformed into log form. In econometrics, a

logarithmic transformation is very popular for several reasons: first, many economic time

series exhibit a strong trend, i.e. a consistent upward or downward movement in the

values. When this is caused by some underlying growth process, a plot of the series will

reveal an exponential curve. In such cases, the exponential/growth component dominates

other features of the series (e.g. cyclical and irregular components of time series) and

may thus obscure the more interesting relationship between this variable and another

growing variable.

The next step is to run unit root tests. Unit root tests are carried out to examine the

stationarity of the data. As Koop (2005: 145) points out that the distinction between

stationary and non-stationary time series is an extremely important one. Financial

economists usually focus on non-stationary data that seems to be present in many times

series data, namely unit root non-stationarity (Koop, 2005: 146). In this respect, Stock

and Watson (1993) and Harris (1995) assert that estimated equations must not comprise

non-stationary variables to avoid the ‘spurious-regression’ problem, which may be

indicated by inflated R-squares and incorrect test statistics. A variable is said to be

stationary or having no unit roots if its stochastic properties (mean, variance, and

covariance with other variables) are time invariant (Koop, 2000:133). Therefore, testing

for non-stationarity has become a necessary prelude to any robust empirical analysis. A

given non-stationarity variable can be converted to a stationary one by differencing it
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appropriately. Statistically speaking, the following are few different ways of thinking

about whether a time series variable, suppose Y, is stationary or has a unit root (Koop,

2005: 145):

1. If Y has a unit root then its autocorrelations will be near one and will not drop much

as lag length increases;

2. If Y has a unit root then the series will exhibit trend behaviour;

3. If Y has a unit root, then ΔY will be stationary. For this reason, series with unit roots

are often referred to as difference stationary series.

Once unit root tests are conducted, the next step is to perform regression based on OLS.

Following regressions based on OLS, misspecification tests are performed to ensure that

the models do not violate the assumptions of classical linear regression model (CLRM)

comprising the following (Gujarati, 1999: 153-154):

(i) The explanatory variable X is uncorrelated with the disturbance term u;

(ii) The expected, or mean, value of the disturbance term u is zero. That is, E(ui) = 0;

(iii) The variance of each ui, is constant, or homoskedastic (homo means equal and

scedastic means variance). That is var (ui)=σ2;

(iv) There is no correlation between two error terms. This is the assumption of no

autocorrelation. Algebraically, this assumption can be written as

, = 0 ≠
It is very essential to meet all the assumptions mentioned above so the estimation based

on regression technique can satisfy a condition called ‘the best linear unbiased estimator’,

or BLUE (Gujarati, 1999: 103). If an estimator is linear, unbiased, and has a minimum

variance in the class of all linear unbiased estimators of a parameter, it is called a best

linear unbiased estimator (Gujarati, 1999: 103-104). With respect to this, there are three

elements that will be examined, normality of the model, autocorrelation and

heteroskedasticity. In doing so, this study will utilise Jarque-Bera, Lagrange-Multiplier

and White Heteroskedasticity tests.
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Figure 6.1: Flow of Analysis

Source: Author’s own
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As figure 6.1 demonstrates, the first OLS model can be considered as sufficiently robust

if the null hypothesis is accepted in all these three tests. However, the models need to be

rectified if the misspecification tests state otherwise.

6.4.2 Specification of the Models

In IGCI, earnings are represented by the rate of return on financial securities (RoS), which

is based on profit sharing. The financial securities represent ownership of profit sharing

based investments carried out by Islamic banks.

A proposed set of risk categories that was highlighted in chapter 3 and chapter 5 are

Shariah non-compliance risk, fiduciary risk, people risk, legal risk and technology risk.51

As explained in Chapter 5, shariah non-compliance risk, legal risk and technology risk,

which are qualitative in nature, are not included in the model, as they cannot be captured

by the data. As a result, that leaves the model with fiduciary risk and people risk.

Fiduciary risk can be characterised as a condition whereby Islamic banks are liable for

losses arising from their negligence, misconduct or breach of their investment mandate.

In other words, fiduciary risk is an indication of failure to “perform in accordance with

explicit and implicit standards applicable to their fiduciary responsibilities” (IFSB,

2005:26).

As set out by IFSB Guiding Principles of Risk Management 2005 Paragraph No. 123

under the section of operational risk, fiduciary risk is defined as “the risk that arises from

IIFS’s failure to perform in accordance with explicit and implicit standards applicable to

their fiduciary responsibilities. As a result of losses in investments, IIFS may become

insolvent and therefore unable to (a) meet the demands of current account holders for

repayment of their funds; and (b) safeguard the interests of their IAH. IIFS may fail to act

with due care when managing investment resulting in the risk of possible forgone profits

to IAH.”

51 Details of proposed operational risk categories are available in table 3.2 in Chapter 3.
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Furthermore, IFSB Guiding Principles of Risk Management 2005 Principles No 7.2 on

page 2 states that “IIFS shall have in place appropriate mechanism to safeguard the

interests of all fund providers. Where IAH funds are commingled with the IIFS’s own

funds, the IIFS shall ensure that the bases for asset, revenue, expense and profit

allocations are established, applied and reported in a manner consistent with the IIFS’s

fiduciary responsibilities”.

In the model, a set of proxies for fiduciary risks is decomposed into a series of risk

factors, namely volatilities of (i) volume of investment in financial securities (FS), (ii)

return on saving deposits (RoSD), (iii) return on 1-month time deposits (RoTD), and (iv)

ratio of operating expenses over operating income (BOPOI).

The choice of a proposed set of fiduciary risks mentioned in the previous paragraph

results from an inference drawn from the definition of fiduciary risk set out by IFSB. It

can also be read as follows: an unstable volume of investment in securities, return on

saving deposits, return on 1-month time deposits and operating expenses; reflected by

their respective high (low) volatility would demonstrate an inability (ability) of Islamic

banks to sustain their fiduciary responsibilities. In other words, a highly steady

performance of investment, return on saving deposits and time deposits demonstrates an

ability of an Islamic bank to safeguard the interest of their fund providers. Moreover, a

high volatility of operating expense might attribute to the operational errors that a

business may incur during its operations (Makridakis, 1998).

It is important to reiterate here that this study examines the relationship of the variables in

the form of their respective volatility rather than their absolute value. The reason is

because volatility is often used to describe the degree of risk exposure (Damodaran,

2001; Hull and White, 1998; Kupiec, 2001; Li, 1999)

People risk, nonetheless, is another type of operational risk arising from incompetence or

fraud, which exposes Islamic banks to potential losses. This includes human errors, lack

of expertise, compliance and fraud (Akkizidis and Kumar: 2008).
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A proxy for people risk, on the other hand, is represented by the volatility of training

expenses (TrI). It is argued that training expenditure has a reverse effect on the number of

employee errors and customer complaints (Taylor and Hoffman, 1999 and Shih, Samad-

Khan and Medapa, 2000). The more skilled the bankers, which is a result from intensive

training, the less people risk the bank would incur (Jackson-Moore, 2007). Hence, the

higher the volatility of training expenditure the higher it would affect the volatility of

operational risk indicator. Therefore, it is expected that the two variables have positive

relationship. IGCI, therefore, has the following earnings function:

( ) ≈ ( , , , , ) (6.1)

Volatility of return on securities is a function of a series of risk factors, including

volatilities of investment in securities ( ), return on saving deposits ( ), return on

1-month time deposits ( ), ratio of operating expenses over operating income in

investment channel ( ), and training expenses in investment channel( ).

In equation 6.1, proxies for fiduciary risk, namely FS, RoSD, RoTD, and BOPO are also

expected to have a positive relationship with the target variable, RoS. The argument is

that the more unsteady or volatile the explanatory variables the more volatile RoS can be.

To put it differently, a higher fiduciary risk will likely to positively impact a greater

exposure of operational risk, represented by the volatility of RoS.

A summary of the expected sign of each variable used in investment function model is

depicted in Table 6.1.
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Table 6.1: The Expected Signs of Variables in Investment Function Model
Dependent Variable: v(RoS)

Variables Expected Sign
v(FS) +
v(RoSD) +
v(RoTD +
v(BOPO) +
v(TrI) +

It should be noted that equation 6.1. is a combination of income-based model and

expense-based model. Income-based model of operational risk is basically a model to

analyse the volatility of historical income as a proxy of operational risk exposure or

operational losses in terms of some specific underlying risk factors (Marshall, 2001 and

Matten, 1996). On the other hand, expense-based model associates operational risk with

fluctuations in historical expenses, such as operating expense (Marshall, 2001).

In IGCF, rate of return on financing (RoF) signifies earnings. RoF contains a bulk of

returns on financing, which unsurprisingly, is still predominated by murabahah mode of

finance.52 Fiduciary risk in IGCF is symbolised by the volatilities of two elements:

volume of financing (F) and the ratio of operating expenses over operating income

(BOPOF). As for people risk, IGCF employs a similar variable as IGCI, that is the

volatility of training expenses (TrF). Consequently, IGCF has the following earnings

function:

( ) ≈ ( , , ) (6.2)

In equation, 6.2., volatility of return on financing is a function of a set of risk factors:

volatilities of volumes of financing ( ), ratio of operating expenses over operating

income in financing channel ( ), and training expenses in financing channel ( ).

All these explanatory variables are expected to have a positive relationship with the

proxy for operational risk exposures in IGCF, namely ( ), as depicted in table 6.2.

52 As of June 2010, murabaha makes up over 60 percent of the total financing.
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Table 6.2: The Expected Signs of Variables in Financing Function Model
Dependent Variable: v(RoF)

Variables Expected Sign
v(F) +
v(BOPO) +
v(TrF) +

It should be noted that IGCS is deliberately taken out of the analysis since the volume of

service fee does not contribute significantly to the value adding process.53

6.5 EMPIRICAL ANALYSIS AND THE FINDINGS

This section presents the empirical analysis process by referring to each of the part and

the relevant test before presenting the concluding findings.

6.5.1 Unit Root Tests

The unit root tests, Dickey-Fuller and Philip Perron, used in this study are to ensure that

the time series data are stationary. Stationary is an important concept in an econometric

analysis, because if the series is non-stationary then all the typical results of the classical

regression analysis are not valid. Regressions with non-stationary series, hence, may have

no meaning and are therefore called ‘spurious’.

The specification for the Dickey Fuller unit root test is:

tttt YYY    12110 (6.3)

in the ADF test, the unit root test can be presented as:




 
k

j
tjtjtit YY

1
1  , where j= 1,2, …. k. (6.4)

53 As of June 2010, service fee only contributes less than 2% to the value adding process
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If 1 from the above equation is significantly different from zero then it can be said that

Yt is stationary or does not have unit roots.

The distribution theory supporting the Dickey-Fuller tests is based on the assumption that

the error terms are statistically independent and have a constant variance. In using the

ADF methodology it is important to make sure that the error terms are uncorrelated and

that they really have a constant variance. Phillips and Perron (1988) developed a

generalisation of the ADF test procedure that allows for fairly mild assumptions

concerning the distribution of errors. It is a nonparametric method of controlling for

higher-order serial correlation in a series. The test regression for the Phillips-Perron (PP)

test is the AR(1) process:

ttt YY   1 (6.5)

While the ADF test corrects for higher order serial correlation by adding lagged

differenced terms on the right-hand side, the PP test makes a correction to the t-statistic

of the coefficient from the AR(1) regression to account for the serial correlation in  .

The PP statistics, hence, are just modifications of the ADF t statistics which take into

account the less restrictive nature of the error process. The asymptotic distribution of the

PP t statistics is the same as the ADF t statistics, and therefore the MacKinnon (1991)

critical values are still applicable. The summary of unit root tests is presented in table 6.3

and 6.4 below.
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Table 6.3: Summary of Augmented Dickey-Fuller (ADF) and Philip-Perron (PP)
Statistics at Level

Variables ADF PP
RoS 4.22* -5.53*
RoF 0.58 1.14
FS -3.59** -4.6*
F -3.67** -3.46**
Tr -3.68** -1.58
RoSD -3.24*** -3.71**
RoTD 2.12** 1.98**
BOPO 1.44 -1.67

Note: (1) The ADF and PP statistics were generated by model with constant and trend. k is the lag
length and was determined by Akaike info criterion and Schwarz criterion for the ADF test. The PP
test use the automatic lag length that suggested by Newey-West. All variables were tested in log form.
(2) ‘*’ denotes rejection of the null at 1% level; ‘**’ denotes rejection of the null at 5% level; ‘***’
denotes rejection of the null at 10%

Table 6.4: Summary of Augmented Dickey-Fuller (ADF) and Philip-Perron (PP)
Statistics at 1st Difference

Variables ADF PP
RoS 2.05* -1.53*
RoF -4.38* -3.21**
FS -4.18* -5.67*
F -5.62* -15.43*
Tr -10.54* -10.54*
RoSD -5.87* -7.32*
RoTD -4.73* -8.98*
BOPO -5.27* -6.75*

Note: (1) The ADF and PP statistics were generated by model with constant and trend. k is the lag
length and was determined by Akaike info criterion and Schwarz criterion for the ADF test. The PP
test use the automatic lag length that suggested by Newey-West. All variables were tested in log form.
(2) ‘*’ denotes rejection of the null at 1% level; ‘**’ denotes rejection of the null at 5% level; ‘***’
denotes rejection of the null at 10%

Using 2-lag difference for ADF and 4 truncation lag for PP, both tests were run with the

inclusion of a trend and intercept. As depicted in table 6.3 and 6.4, most variables are

already stationary at level with a different degree of significance level, except for RoF

and BOPO, which are stationary at first difference. RoS is already stationary at level with

1% level of significance. Meanwhile, FS, F, Tr, and RoTD are stationary at 5% level of

significance respectively; whereas RoSD is stationary at level with 10% significance

level.
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6.5.2 Discussing the Regression Results

Marshall (2001: 268) argues that a line of best fit between inputs and outputs is built by

minimising the sum of the squared deviations between y variables (operational risk

exposures) and a linear combination of risk factors (explanatory variables). The

sensitivity of losses to risk factor changes is then the beta coefficient of the factor. The t

score of the parameter can be used to test the significance of the factor. The extent to

which the regression captures the variation in the losses is captured by its R-squared and

the significance of the model as a whole can be analysed using its F-statistics. The

analysis under this study, two primary models are examined by using regression

technique: the first model results from IGCI (investment function) and the second one is

generated from IGCF (financing function). The results of the OLS-based regression as a

result of time series analysis are shown in table 6.5 and table 6.6 below.

Table 6.5: Regression Results for Investment Function
Dependent Variable: LROS

Specification Estimated Values
Constant 1.28

(1.07)
LFS -0.78

(-7.80)*
LRoSD 2.13

(6.84)*
LRoTD 0.21

(2.14)**
D(LBOPO) 0.79

(2.94)*
LTR 0.69

(4.54)*
R-squared 0.74

F-stat 59.62

DW 0.42

Note: ‘*’ denotes rejection of the null hypothesis at 1% level;
‘**’ denotes rejection of the null hypothesis at 5% level
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In line with the results of unit root tests presented in the previous section, all variables in

investment function are regressed at level, except for BOPO which is stationary at first

difference.

The regression results for the investment function in table 6.5 shows that most of the

operational risk variables are statistically significant at 99% level of confidence with the

p-value less than 0.001, except LRTOD which is significant at 95% level of confidence.

Furthermore, all variables also produced expected signs as highlighted in the previous

section, except for LFS which has negative coefficient. R-squared value shows that

around 74% variation of RoS is explained by FS, RoSD, RoTD, BOPO, and TR. This

finding is also strengthen by the high result of F-test and also significant at 1% level of

confidence. However, due to a very low value of Durbin-Watson, which is only 0.42; the

investment function model is indicated a severe serial correlation problem.

Table 6.6: Regression Results for Financing Function
Dependent Variable: D(LROF)

Specification Estimated Values
Constant 0.56

(1.26)
LF 0.03

(0.51)
D(LBOPO) 0.75

(10.95)*
LTR 0.20

(3.86)*
R-squared 0.73

F-stat 96.58

DW 2.22

* denotes rejection of the null hypothesis at 1% level

As shown in table 6.6, most of the explanatory variables in financing function model are

also statistically significant: BOPO and TR are significant at 1% level of confidence,

while F is not significant at all. In financing function model, RoF is regressed at first

difference as vindicated by the results of unit root tests presented in table 6.4. The R-

squared value also shows that the 73% of variation in RoF can be explained by the F,
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BOPO and TR. As compared to investment model, financing model might not suffer from

serial correlation problem, since the value of DW is relatively close to 2.54 Nonetheless,

in order to reach a conclusive result as to whether the models presented above are robust

and can explain the relationship between explanatory variables and target variables, there

is a need to conduct misspecification tests, the process and the result of which presented

in the following section.

6.5.3 Misspecification Tests

In an econometric analysis, it is necessary to observe the regression residuals to detect the

potential misspecification problems. One of the assumptions of classical linear regression

model for instance, is that the residuals are normally distributed with a zero mean and a

constant variance. Violation of this assumption, therefore, leads to the inferential

statistics of a regression model, i.e. t-stats, F-stats, not being valid. Consequently, it is

very essential to test for normality of residuals. This section primarily examines the

misspecification of the model in the three elements; namely normality, autocorrelation,

and heteroskedasticity.

6.5.3.1 Normality Test

Jarque-Bera (JB) test of normality that has now become very popular and is included in

several statistical packages.55 This is an asymptotic, or large sample, test and is based on

OLS residuals. This test first computes the coefficients of skewness, S (a measure of

asymmetry of a probability density function [PDF]), and kurtosis, K (a measure of how

tall or flat a PDF is in relation to the normal distribution), of a random variable; for a

normally distributed variable, skewness is zero and kurtosis is 3.

Jarque and Bera (JB) have developed the following test statistic:

= + ( ) (6.6)

54 A perfect condition of no serial correlation is normally indicated by the value of DW equal to 2 (Asteriou
and Hall, 2007)
55 The test is based on the work by C.M. Jarque and A.K. Bera, “A Test for Normality of Observations and
Regression Residuals”, published in International Statistical Review, Vol. 55, 1987, p. 163-172.
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where n is the sample size, S represents skewness, and K represents kurtosis. They have

shown that under the normality assumption the JB statistic given in the equation above

asymptotically (i.e., in large samples) follows the chi-square distribution with 2 degree of

freedom. Symbolically,

~ ( ) (6.7)

where asy means asymptotically.

As can be seen from equation 6.6., if a variable is normally distributed, S is zero and (K-

3) is also zero, and therefore the value of the JB statistic is zero. But if a variable is not

normally distributed, the JB statistic will assume increasingly larger values. What

constitutes a large or small value of the JB statistic can be easily learned from the chi-

square table. If the computed chi-square value from equation 6.6. exceeds the critical

Chi-square value for 2 d.f. at the chosen level of significance, that would suggest a

rejection of the null hypothesis of normal distribution; but if it does not exceed the

critical Chi-square value, the null hypothesis cannot be rejected. In this study, JB test is

conducted in EViews as presented for each of the function in Figure 6.2. and Figure 6.3.

Figure 6.2: JB Test for IGCI (Investment Function)
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Figure 6.3: JB Test for IGCF (Financing Function)

As shown in figures 6.2 and 6.3, the number of observations, which is 111, is qualified

for JB test56 . Secondly, it is rather obvious from the shape of histograms produced in

EViews that the models do not seem to be normally distributed. Thirdly, the figures

vividly demonstrate the non-normality of both the investment and financing function.

This is demonstrated by the high value of computed JB value, 26.86 and 219.11 for

investment and financing function, respectively. The results of JB tests are also

significant at 1% level of significance. Moreover, non-normality of both functions are

also confirmed by the value of skewness and kurtosis which are less than zero and greater

than 3.

6.5.3.2 Testing for Serial Correlation

Lagrange-Multiplier test is an alternative to the Durbin-Watson statistics for testing serial

correlation on any errors, which may exhibit autocorrelation. This is considered very

crucial, since the results of regression tests, as shown in table 6.3 and 6.4, indicate that

the models might suffer from a severe serial correlation problem, particularly for

investment function whose DW value is only 0.42. In this respect, the study employs

Breusch-Godfrey Serial Correlation LM Test. The Breusch-Godfrey LM test overcomes

the DW test, which has several drawbacks that make its use inappropriate in various

cases. As highlighted by Asteriou and Hall (2007), a few drawback embedded in DW

56 111 is quite large number to qualify for JarqueBera test, as indicated by Gujarati (1999: 178)
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test are (i) it may give inconclusive results, (ii) it is not applicable when a lagged

dependent variable is used, and (iii) it cannot take into account higher orders of serial

correlation. For these reasons, Breusch (1978) and Godfrey (1978) developed an LM test

which can accommodate all the above cases. Consider the model:

= + + +⋯+ + (6.8)

where

= + + ⋯+ + (6.9)

The Breusch-Godfrey LM test combines these two equations:

= + + +⋯+ + + +⋯+ + (6.10)

And therefore the null hypothesis and the alternative hypotheses are defined as:

H0: ρ1 = ρ2 = ... = ρp = 0 no autocorrelation

Ha: at least one of the ρs is not zero, thus, serial correlation.

Table 6.7: LM Test for Investment Function
Breusch-Godfrey Serial Correlation LM Test:

F-statistic 110.4335 Probability 0.000000
Obs*R-squared 75.69846 Probability 0.000000

Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 08/23/11 Time: 15:29
Presample missing value lagged residuals set to zero.

Variable Coefficient Std. Error t-Statistic Prob.

C 0.304949 0.682094 0.447077 0.6558
LFS 0.044421 0.057524 0.772221 0.4418

LROSD -0.025021 0.177452 -0.141003 0.8881
LROTD 0.069109 0.058954 1.172249 0.2438

D(LBOPO) -0.174140 0.155022 -1.123327 0.2639
LTR -0.182586 0.089848 -2.032167 0.0447

RESID(-1) 0.563473 0.091484 6.159255 0.0000
RESID(-2) 0.344589 0.095472 3.609319 0.0005

R-squared 0.681968 Mean dependent var -3.00E-15
Adjusted R-squared 0.660354 S.D. dependent var 0.711388
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S.E. of regression 0.414591 Akaike info criterion 1.146292
Sum squared resid 17.70419 Schwarz criterion 1.341574
Log likelihood -55.61923 F-statistic 31.55242
Durbin-Watson stat 1.945681 Prob(F-statistic) 0.000000

The result of LM test for investment function suggests that it suffers from autocorrelation

problem, as the value of observation*R-squared being 75.7 is really high, and strongly

significant at 1% confidence level. Hence, the result rejects the null hypothesis of no

serial correlation. The value of calculated F-stat also suggests that the model suffers from

serial correlation problem (reject H0).

Table 6.8: LM Test for Financing Function

Breusch-Godfrey Serial Correlation LM Test:
F-statistic 1.751800 Probability 0.161042
Obs*R-squared 5.339319 Probability 0.148571

Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 08/23/11 Time: 15:41
Presample missing value lagged residuals set to zero.

Variable Coefficient Std. Error t-Statistic Prob.

C 0.036560 0.443530 0.082429 0.9345
LF 0.012140 0.063462 0.191294 0.8487

D(LBOPO) 0.004501 0.068730 0.065495 0.9479
LTR -0.033401 0.054794 -0.609584 0.5435

RESID(-1) -0.185397 0.104107 -1.780836 0.0779
RESID(-2) -0.169930 0.103320 -1.644690 0.1031
RESID(-3) 0.004197 0.103067 0.040725 0.9676

R-squared 0.048102 Mean dependent var -2.46E-16
Adjusted R-squared -0.006815 S.D. dependent var 0.243350
S.E. of regression 0.244178 Akaike info criterion 0.079150
Sum squared resid 6.200792 Schwarz criterion 0.250021
Log likelihood 2.607174 F-statistic 0.875900
Durbin-Watson stat 1.933922 Prob(F-statistic) 0.515359

On the other hand, financing function is statistically immune from autocorrelation since

the result of LM test cannot reject the null hypothesis. As shown in the table 6.8, the

values Observation*R-squared coupled with F-statistic are low and insignificant. The

financing function is therefore free from autocorrelation problem. F-stat is insignificant
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suggesting the acceptance of null hypothesis. In other words, the model is statistically

immune from serial correlation problem.

6.5.3.3 Testing for Heteroskedasticity

One of the assumptions of the classical linear regression is that the disturbances should

have a constant (equal) variance independent of t, given in mathematical form by the

following equation:

( ) = (6.11)

Therefore, having an equal variance means that the disturbances are homoskedastic.

However, it is quite common in regression analysis to have cases where this assumption

is violated. In such cases, it is said that the homoskedasticity assumption is violated.

Suppose a classical linear regression is modelled as follows:

= + + +⋯+ + (6.12)

If the error term in the equation 6.12 is known to be heteroskedastic, then the

consequences on the OLS estimators or , can be summarised as follows (Asteriou

and Hull, 2007: 104):

 The OLS estimation for the are still unbiased and consistent. This is because

none of the explanatory variables are correlated with the error term. So, a

correctly specified equation that suffers only from the presence of

heteroskedasticity will give us values of which are relatively good.

 Heteroskedasticity affects the distribution of the increasing the variances of the

distributions and therefore making the estimators of the OLS method inefficient

(because it violates the minimum variance property). It is viewed that

heteroskedasticity does not cause bias, because is centred around β(so

= ), but widening the distribution makes it no longer efficient implying

that OLS is no longer the most efficient estimator.
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 Heteroskedasticity also affects the variances (and therefore the standard errors as

well) of the estimated . In fact, the presence of heteroskedasticity causes the

OLS method to underestimate the variances (and standard errors), hence leading

to higher than expected values of t statistics and F statistics. Therefore,

heteroskedasticity has a wide impact on hypothesis testing: neither the t statistics

nor the F statistics are reliable any more for hypothesis testing, because they will

lead us to reject the null hypothesis too often.

One way to detect the presence of heteroskedasticity is by applying appropriate tests;

such as Breusch-Pagan LM test, Glesjer test, Goldfeld-Quandt test, and White test. This

study employs heteroskedasticity test developed by White (1980).

Table 6.9: White Heteroskedasticity Test for Investment Function

White Heteroskedasticity Test:

F-statistic 34.85517 Probability 0.000000
Obs*R-squared 86.25369 Probability 0.000000

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 08/23/11 Time: 15:30
Sample: 2001:02 2010:04
Included observations: 111

Variable Coefficient Std. Error t-Statistic Prob.

C 106.0048 11.34988 9.339733 0.0000
LFS -4.525468 1.171285 -3.863677 0.0002

LFS^2 -0.298688 0.076535 -3.902649 0.0002
LROSD 50.85265 4.377724 11.61623 0.0000

LROSD^2 5.248876 0.436647 12.02087 0.0000
LROTD -0.220079 1.658346 -0.132710 0.8947

LROTD^2 0.013378 0.134129 0.099743 0.9207
D(LBOPO) -2.016736 0.346566 -5.819194 0.0000

(D(LBOPO))^2 -4.878183 0.433383 -11.25605 0.0000
LTR 1.016713 0.648089 1.568785 0.1199

LTR^2 0.208988 0.103483 2.019543 0.0461

R-squared 0.777060 Mean dependent var 0.501513
Adjusted R-squared 0.754766 S.D. dependent var 0.911509
S.E. of regression 0.451389 Akaike info criterion 1.340865
Sum squared resid 20.37523 Schwarz criterion 1.609377
Log likelihood -63.41801 F-statistic 34.85517
Durbin-Watson stat 1.292891 Prob(F-statistic) 0.000000
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Table 6.10: White Heteroskedasticity Test for Financing Function

White Heteroskedasticity Test:

F-statistic 2.485150 Probability 0.027505
Obs*R-squared 13.91891 Probability 0.030555

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 08/23/11 Time: 15:41
Sample: 2001:02 2010:04
Included observations: 111

Variable Coefficient Std. Error t-Statistic Prob.

C 1.494102 5.242167 0.285016 0.7762
LF 0.419422 1.382614 0.303354 0.7622

LF^2 0.035630 0.090363 0.394298 0.6942
D(LBOPO) -0.097779 0.104115 -0.939137 0.3498

(D(LBOPO))^2 -0.017172 0.036019 -0.476750 0.6345
LTR 0.238074 0.165158 1.441492 0.1525

LTR^2 0.031636 0.025365 1.247239 0.2151
R-squared 0.125396 Mean dependent var 0.058686
Adjusted R-squared 0.074938 S.D. dependent var 0.167125
S.E. of regression 0.160741 Akaike info criterion -0.757055
Sum squared resid 2.687125 Schwarz criterion -0.586184
Log likelihood 49.01656 F-statistic 2.485150
Durbin-Watson stat 2.191003 Prob(F-statistic) 0.027505

The results of White test for both the investment and financing function show that

computed White’s hetersokedasticity statistics in investment and financing function are

bigger than the critical value, 86.25 and 13.92 respectively; both suggest the presence of

heteroskedasticity in the models. In addition, the findings are also confirmed by the p-

values as well as F-stats of both functions, 0.00, 0.030 and 0.027 for investment and

financing function respectively suggesting the evidence of heteroskedasticity.

6.5.4 Modifying the Models

The previous section presents that the OLS-based regressions conducted in section 6.5.2

have violated the basic assumption of classical linear regression model in three respects;

normality, presence of serial correlation and heteroskedasticity. Thus, the regression

results cannot be used as the basis of drawing the conclusion in the analysis. This section,

hence, attempts to address the issue by modifying the regression models accordingly.
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A technique that is adopted in this study is weighted least squares (WLS) which,

according to Asteriou and Hall (2007), is one of the effective ways in overcoming

heteroskedasticity. WLS is conducted by re-estimating the model in a way which will

fully recognizes the presence of heteroskedasticity problem. WLS would then produce

(i) a new set of parameter estimates which would be more efficient than the OLS ones,

and (ii) a correct set of covariances and t-statistics. The advantage of using this method is

that it can also simultaneously correct the problem of non-normality.

In addition, this study also utilises White Heteroskedasticity test developed by White

(1980). White’s test is basically an LM test, but it has the following advantages: (i) it

does not assume any prior knowledge of heteroskedasticity, and (ii) it does not depend on

the normality assumption.

Another problem that is addressed in this section is the presence of serial correlation or

autocorrelation, which prevail in the investment function model. The reasons why there is

a need of making a correction on autocorrelation are as follows (Asteriou and Hall, 2007:

137):

(1) The OLS estimators of the βs are still unbiased and consistent;

(2) The OLS estimators will be inefficient and therefore no longer BLUE; and

(3) The estimated variances of the regression coefficients will be biased and

inconsistent, and therefore hypothesis testing is no longer valid. In most cases, R-

squared will be overestimated which may indicate a better fit than the one that truly

exist and the t-statistics will tend to be higher indicating higher significance of the

estimates than the correct one.

A popular remedy, among others, for autocorrelation problem is the Cochrane-Orcutt

iterative procedure (Asteriou and Hall, 2007; and Gujarati, 1999). In EViews, the

estimates from this iterative method can be obtained by simply adding the AR(1) error

terms to the end of the equation specification list. The implication behind the AR(1)

model is that the time series behaviour of, suppose Yt, is largely determined by its own

value in the preceding period. Thus, what will happen in the present time, suppose t, is
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largely dependent on what happened in t-1, or alternatively what will happen in t+1 is to

be determined by the behaviour of the series in the current time t.

The table 6.11 and table 6.12 summarise the results of rectified regression analysis based

on two methods: weighted least squares coupled with white heteroskedasticity, and the

Cochrane–Orcutt iterative procedure for investment function model.

Table 6.11: Regression Results for Investment Function
Dependent Variable: LROS

Specification Estimated Values
Constant 4.00

(2.42)**
LFS 0.13

(0.46)
LRoSD 1.32

(3.07)**
LRoTD 0.22

(1.24)
D(LBOPO) 0.18

(0.85)
LTR 0.43

(3.12)*
AR(1) 0.97

(26.67)*
R-squared 0.95

F-stat 342.8

DW 1.75

Note: ‘*’ denotes rejection of the null hypothesis at 1% level ;
‘**’ denotes rejection of the null hypothesis at 5% level

The results in table 6.11 depict that all the variables produce coefficients according to the

expected signs. Due to the presence of autocorrelation problem, investment function

model is transformed into autoregressive model through Cochrane-Orcutt iterative

procedure, which proves to make a positive difference in its DW value from 0.42 to 1.75.

More importantly, the model transformation is also very significant at 1% confidence

level, shown by variable AR(1).



182

Table 6.11 also shows that there are two main determinants of operational risk exposures

in IGCI; the volatility of training expenses and the volatility of return on saving deposits.

Volatility of training expenses is significant at 1% confidence level, whereas volatility of

return on saving deposits are positively related to the target variable and significant at 5%

level of confidence. The dominance of training in investment activities might show an

indication of the role of an intensive training which will produce highly specialised

human resources who are well versed in both Shariah and financial economics. In other

words, the result shows that the performance of investment activities in Islamic banking

is significantly affected by highly-skilled personnel who run the banking activities, which

unfortunately quite scarce at the present stage. The finding also confirms the concerns

raised by Archer and Haroon (2007) and Jackson-Moore (2007).

It is also apparent that volatility of return on saving deposits, which represents a fiduciary

role an Islamic bank, is also essential as demonstrated by the significance of its t-

statistics. However, it can be argued that investment activities in Indonesian Islamic

banks is highly affected by people risk as compared to other type of operational risks.

The rectified model, nonetheless, is also proved to be the best model, since the variability

of explanatory variables can be explained by the model at around 95% as shown by the

value of R-squared.
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Table 6.12: Regression Results for Financing Function
Dependent Variable: D(LRoF)

Specification Estimated Values
Constant 0.56

(0.91)
LF 0.03

(0.39)
D(LBOPO) 0.75

(5.4)*
LTR 0.20

(2.16)**
R-squared 0.73

F-stat 96.58

DW 2.22

Note: ‘*’ denotes rejection of the null hypothesis at 1% level;
‘**’ denotes rejection of the null hypothesis at 5% level

As for financing function model, it is only re-estimated by using WLS, OR weighted least

squares combined with white heteroskedasticity to address the issue of non-normality and

the presence of heteroskedasticity. An autocorrelation problem, however, is not an issue

for financing function model; this has been statistically proven by using Breusch-Godfrey

Serial Correlation LM tests in section 6.5.3.2 and depicted in table 6.8.

The results of the rectified regression model in Table 6.12 show that all variables produce

positive coefficient as expected. Meanwhile, the values of R-squared, F-stat and DW,

which are 73%, 96.58 and 2.2 respectively; shows that the model now fits in explaining

the variation of the explanatory variables with respect to the target variable, namely

volatility of return on financing.

Although people risk, represented by TR and is significant at 5% level of confidence, still

plays an important role in affecting the magnitude of operational risk exposures; it is no

longer dominant in financing activities as compared to its impact in investment activities.

Ratio of operating expenses to operating income (BOPO), on the other hand, plays a

major role in this regard.



184

The findings indicate that for financing activities, the role of maintaining operational

efficiency as part of an Islamic bank’s fiduciary responsibilities is immensely high in the

case of Indonesian Islamic banks. In the model, BOPO is significant at 1% level of

confidence.

6.6 CONCLUDING REMARKS

The focus of this chapter is to examine the relationship between the operational risk

variables in two income generating channels, namely investment (IGCI) and financing

(IGCF). By employing a range of econometrics tests, this study attempts to come up with

the determinants affecting operational risk exposures in Islamic banking activities. Due to

some misspecifications of the initial model, rectified models are then generated to

respond to such issues identified in the section 6.5.3.

Following some corrections on the initial models, the empirical finding in this study

shows that fiduciary risk and people risk are significant in both channels, IGCI and IGCF.

However, people risk is immense and plays a major role in affecting the magnitude of

operational risk exposures in Islamic banks, particularly in investment activities. The

finding is in line with the concern raised by Archer and Haroon (2007), Jackson-Moore

(2007) and Nienhaus (2007) over the high degree of people risk in Islamic banking

activities. This finding also validates the priority of Bank Indonesia, being the regulator

of Indonesian Islamic Banking industry, to enhance the capacity of human resource that

run the Islamic banking business, particularly in investment activities which shows a

growing trend over the last three years (Indonesian Islamic Banking Outlook, 2011).

As for financing activities, although people risk is also significant, its impact on the

exposure of operational risk is outweighed by the role of operational efficiency ratio,

represented by BOPO. The results suggest that an expansion of financing activities

should retain the prudential principle combined with a principle of costs minimisation; as

it would otherwise increase the level of un-repayment. Such finding is in line with the

projection of central bank of Indonesia as reported in Indonesian Islamic Banking

Outlook (2011).
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The important implications of the findings is that the right policy prescription, by means

of customising it to the nature of activities within the Islamic banking, should be applied

in order to achieve an effective operational risk management. Reflecting to the empirical

findings, an orientation towards enhancing human development and increasing the know-

how on investment activities should be the priority so as to make investments activities in

Islamic banking more attractive; whereas a cost reduction strategy can be emphasised in

financing activities in Islamic banking industry in Indonesia.
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CHAPTER 7

AN INTERPRETATIVE DISCUSSION AND CONCLUSION

7.1 INTRODUCTION

Prior to presenting the conclusion, this chapter provides a discussion of the research’s

findings upon which an elucidation based on the nature of this study’s contribution in

theoretical, methodological, and empirical areas are presented.

As depicted in figure 1.1, theoretical contribution of this study is presented in Chapter 2

and Chapter 3. While the analysis in Chapter 2 is on general-theoretical concept of

operational risks, the analysis in Chapter 3 is substantiated in the context of Islamic

banking. Chapter 4, further attempts to contribute to the methodological aspect of

operational risk measurement by developing a new model to measure operational risk

exposures in Islamic banks. A contribution of this kind, however, is still lacking in the

area of risk management in Islamic banking, particularly in operational risk management.

Furthermore, an empirical contribution of the research is presented in Chapter 5 as well

as 6.

The primary goal of the discussion in this chapter is mainly to relate the research’s

findings to the aim and objectives mentioned in the first chapter. As mentioned in chapter

1, the aim of this research is to develop and propose a new model to measure the

exposure of operational risks in Islamic banking. In explicating the discussion of

research’s findings, this chapter follows a sequential order of the research questions

formulated in section 1.4.
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7.2 REFLECTING ON THE THEORETICAL CONTRIBUTION

7.2.1 Does the Definition of Operational Risk in Islamic Banks Embody the Same

Dimensions as Conventional Banks?

Albeit the difficulties of describing operational risk, due to its diversity (Buchelt and

Untregger: 2004) and complexity (Milligan: 2004); attempts to settle the definition and

the coverage of operational risk have been made by a number of contenders including

Alexander (2003), Crouhy et al. (2001), Cagan (2001), Tripe (2000), Lopez (2002),

Jarrow (2007), Moosa (2007) and Jobst (2007).

There are two general approaches in defining operational risk. The first approach is

‘residual approach’ which states that operational risk is everything other than credit risk

or market risk (Rao and Dev, 2006; Hull (2007). More specifically, operational risk can

be drawn by looking at the bank’s financial statements and remove from the income

statement (i) the impact of credit losses and (ii) the profit or losses from market risk

exposure, thus the variation in the resulting income would the attributed to operational

risk (Hull: 2007).

Despite the fact that this view is deemed to be hardly suitable for identifying its scope

precisely (Buchelt and Unteregger: 2004), Medova and Kyriacou (2001) and Jameson

(1998) argue that the understanding of operational risk is everything that is not exposed

to credit and market risk. In response to this, Moosa (2007) asserts that a definition of this

sort is probably a reflection of the lack of understanding on the diversity of operational

risk.

The second approach, which is ‘non-residual approach’, suggests that operational risk is,

in fact, the risk arising from operations (Crouhy et al., 2001). This includes the risk of

mistakes in processing transactions, making payment, etc.

The diversity of defining operational risk in the initial stage shows that there was no

consensus in the industry on the precise definition of operational risk. In addition, some

other vague concepts have been put forward, such as Tripe (2000) who contends that

operational risk is simply an operational loss, without elaborating further. This of course,
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does not reflect the diversity of the scope of operational risk. Similarly, Lopez (2002)

argues that operational risk is every unquantifiable risk, which seems to be the antithesis

of measuring regulatory capital against operational risk as required by the Basel 2

Accord.

A refined definition of operational risk that is currently widely accepted, and as

mentioned in Chapter 2, is the risk of loss resulting from inadequate or failed internal

processes, people or system, or from external events. It is clear that such definition entails

four main sources of operational risk; (i) people, (ii) processes, (iii) systems, and (iv)

external factors.

An Islamic bank, on the other hand, is a financial institution that runs its business by

following a set of Shari’ah principles as set out in Chapter 3. With respect to operational

risk, it is viewed that an Islamic bank encounters very similar financial challenges as its

conventional counterpart since they are operating in a similar, if not the same business

environment. One of the very differences in the operation between the two is the shariah

restrictions that are attached to the running of business of an Islamic bank.

Nevertheless, it is also understood that the challenges are more complex for Islamic

banks due to their activities and unique features of Islamic financial contracts that are not

only consisting of debt financing, but also hybrid financing as well as equity financing;

each of which would bring different implications to the dimensions of operational risk.

In an attempt to define operational risk, one of the very influential governing bodies in

Islamic finance industry, namely Islamic Financial Services Board, defines operational

risk as the risk of loss resulting from inadequate or failed internal processes, people and

system, or from external events, including losses from shariah non-compliance and the

failure in fiduciary responsibilities. Although it is also claimed that the definition of

operational risk in Islamic banks includes legal risk and reputational risk, its distinctive

features, however, is the inclusion of shari’ah non-compliance risk and fiduciary risk.

Chapter 3 clearly defines shariah non-compliance risk as the risk arising from Islamic

banks’ failure to comply with the shariah rules and principles determined by the shari’ah
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board or the relevant body in the jurisdiction in which the Islamic bank operates; whereas

fiduciary risk arises in the event that Islamic banks fail to perform in accordance with

explicit and implicit standards applicable to their fiduciary responsibilities.

The spotlight above explains why operational risk management in Islamic banks is not

similar to that in conventional banks. As indicated in Chapter 3, operational risk

management in Islamic banks requires more rigorous understanding as to the sources of

operational risk due to a range of financial contracts that should comply with certain

shariah restrictions, which bring about somewhat different fiduciary responsibilities to

Islamic banks. In brief, operational risks in Islamic banks could appear based on the

following major sources: (i) shari’ah non-compliance risk, (ii) fiduciary risk, (iii) people

risk, (iv) technology risk, and (v) legal risk

7.2.2. Operational Risks Dimensions in Major Islamic Financial Contracts

With regard to the dimension of operational risks in Islamic financial contracts, it is

understood that different contracts carry different complexity of operational risks.

According to the discussion in Chapter 3, five identified sources of operational risk that

are spread across major financial contracts are as follows; shariah non-compliance risk,

fiduciary risk, people risk, technology risk, and legal risk. Out of five, the first four are

categorised as internal sources, while the last one, namely legal risk is considered as an

external source. Moreover, Chapter 3 also attempts to systematically analyse the

proposed sources of operational risk (see Table 3.2).

7.3. REFLECTING ON THE METHODOLOGICAL CONTRIBUTION OF THE

STUDY

After discussing the theoretical elements of operational risk in Chapter 2 and 3, this study

moves on with the methodological analysis of the subject. In this respect, an attempt has

been made to develop an entirely new model to measure operational risks exposure in

Islamic bank, which constitutes the methodological and empirical contribution of this

study.
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As widely observed by academics as well as market players, and is clearly pointed out in

Chapter 4, one of the challenges in the analysis of operational risk is not only about its

multi-dimensionalities, but also due to the scarcity of operational risk data which makes

operational risk even more difficult to be measured quantitatively. In this respect, this

study attempts to contribute to the modelling of operational risk measurement in Islamic

banking by developing a model attributed as Delta-Gamma Sensitivity Analysis Extreme

Value Theory (DGSA-EVT) model. It is expected that the constructed model, as discussed

in Chapter 4, is able to capture the operational risk exposures taking place in two types of

areas, namely high frequency-low severity (HF-LS) and low frequency-high severity (LF-

HS).

In dealing with the two types of aforementioned data, DGSA being the first leg of the

proposed model is designed to cater HF-LS data, while EVT being the second leg of the

model is tailored towards dealing with LF-HS type of data. In doing so, DGSA starts with

a separation of different value adding process, namely income generating channels (IGC)

in Islamic banking. As discussed in Chapter 4, income generating channel is defined as

the production unit by which a bank creates a product valuable to its customers. In this

regard, the bank is then partitioned into three income generating channels comprising of

investment (IGCI), financing (IGCF) and services (IGCS) activities. Investment channel is

composed of any investment in the form of a partnership, while financing channel

consists of any financing instruments that are used primarily to finance obligations

arising from the trade and sale of commodities. In addition, service channel contains any

financial transactions that create earnings by charging fees.

Following the partition in three income generating channels, the next step, as the

proposed model suggests, is to establish the earnings function in each IGC. Fluctuation or

volatility of the target variable is considered as the proximity of operational risk

exposures. As the name of the model indicates, Delta-Gamma attributes to the non-linear

relationship taking place between variables in the earnings function, while sensitivity

analysis, as thoroughly discussed in Chapter 4, refers to the technique used to determine

the causality between analysed variables within earnings function.
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A theoretical examination is also addressed to the key factors that contribute to the

performance or the fluctuations of target variable in this regard. In other words, an

establishment of key risk indicators influencing the target variable is necessary. It should

be noted that in the proposed model, an HF-LS area constitutes operating loss distribution

leading to the estimation of operational value at risk, within which causality between risk

factors in the earning function can be established.

Furthermore, the second leg of the proposed model, EVT, is a technique to cater for an

excess operational loss over a defined threshold which is normally characterised by low

frequency and high severity (LF-HS) type of loss.

A subsequent attempt to develop a new measurement model of operational risk is by

deploying EVT in catering LF-HS type of data. Prior to deploying this technique, as

depicted in Figure 4.1, the proposed model asserts the necessity of determining maximum

operating loss distribution of DGSA which would then function as a threshold or cut-off

point between the DGSA and EVT.

EVT, being the second leg of the proposed model, attempts to fit the distribution of

maximum losses beyond DGSA, which is characterised by an extremely skewed density

area.

In determining tail index parameter within EVT, the proposed model utilises mean excess

plot together with the standard Hill estimator. The reason is mainly to anticipate a small

number of observations beyond the threshold which may not only cause a high variance;

but it may also create difficulties in the process of modeling the frequency distribution.

Following an examination of severity and frequency of the data, the proposed model

combines the two in order to to generate excess loss distribution as shown in figure 4.2

(see Chapter 4).

In the final stage of the model, proximity of operational risk exposures is established by

summing up the VaR resulted in the EVT process, being the second stage of the proposed

model and the DGSA process, being the first stage of the proposed model.
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Any modeling exercise, how robust it is, may be subject to empirical testing; in this

respect, an empirical test of the proposed model is presented in Chapter 5 and 6, and is

discussed in the subsequent section.

7.4. REFLECTING ON THE EMPIRICAL CONTRIBUTIONS OF THE STUDY

7.4.1. Empirical Estimation of the Proposed Model

As discussed in chapter 4, the proposed model in this study has two main stages

comprising (i) an estimation of Delta-Gamma Sensitivity Analysis (DGSA) resulting in

value at risk (VaR) for operating loss distribution (see Figure 4.1 in Chapter 4), and (ii) an

estimation of extreme values resulting in VaR for excess loss distribution (see Figure 4.2

in Chapter 4). Both VaRs, thus, would provide an approximation of the operational risk

level in the analysed bank. While the Chapter 4 is aimed at contributing to the

methodological aspect of operational risk measurement, Chapter 5 and Chapter 6’s

primary goal is to empirically test the proposed model by using some empirical data.

In empirically testing the proposed model, the study deploys monthly data ranging from

January 2001 until June 2010, which was extracted from the published financial reports

of Islamic banking Industry in Indonesia. However, due to the computational and

numerical intensity of the proposed model coupled with the scarcity, or rather the

unavailability of data, it is argued that there is a need to conduct a number of alterations

in testing the model. Another factor contributing to the adjustment of empirical tests of

the proposed model is the non-linearity relationship among the analysed variables that is

non-existent.

An absence of non-linear relationship among variables implies that a deployment of

delta-gamma technique is prevented. It has also been discovered from the simulation of

the density functions of analysed variables conducted in Chapter 5 that none of the

variables demonstrates an extreme density function. An application of EVT, thus,

becomes unlikely.

It is argued in Chapter 5 that nonexistence of sophisticated derivatives products is the

main factor as to why there is no non-linear relationship between analysed variables.
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However, as discussed in Chapter 5, it is still possible to operate DGSA by shifting its

focus to the normality vis a vis non-normality instead.

In DGSA, the level of operational risk exposures in each income generating channel is

represented by VaR, which in this study is analysed by incorporating the volatility,

skewness and kurtosis of the analysed variables. However, Due to the insignificant

contribution to the value adding process, IGCS is taken out of the analysis.

In estimating operational VaR in IGCI and IGCF, this study meticulously examines the

behaviour of the volatility, skewness and kurtosis of the analysed variables. As discussed

in Chapter 5, volatility analysis in this study adopts two methods, namely constant-

variance model and exponential weighted moving average (EWMA) model. The rationale

behind the use of both techniques is to compare the level of volatility of the analysed

variables. It turns out that a transformation of data from constant-variance to EWMA

tends to display a declining trend of standard deviation, skewness and kurtosis of data. In

other words, the transformed data to EWMA shows a less disperse pattern. Another

important message from the transformation is that the data still shows non-normality

which suggests that a modification of standard VaR estimation is very likely.

Furthermore, non-normality of the data are also proven by two statistical tests: (i)

Kolmogorov-Smirnov, and (ii) Anderson-Darling whose thorough results are presented in

the appendix.

In response to the non-normality of the variables, this study, therefore, deploys a

technique called Cornish-Fisher expansion. Such a technique is a method of estimating

VaR whereby a confidence interval of operational variables is an explicit function of the

skewness, kurtosis, and volatility.

A substantial difference in the value of VaR has been discovered when Cornish-Fisher

expansion is deployed as compared to the normal VaR. For investment activities, VaR

based-Cornish Fisher expansion is higher than the normal one; whereas for financing

activities, a deployment of Cornish-Fisher expansion gives a lower VaR as compared to

the normal VaR.
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An inference that can be withdrawn from the results is that an underestimation or

overestimation of the capital catering for operational risk for investment and financing

activities respectively, could have occurred, should the volatility, skewness and kurtosis

are not incorporated in the estimation of VaR.

A continuation of testing the proposed model is discussed in Chapter 6 with an objective

to examine the relationship between identified risk factors with their respective earnings

functions, namely return on securities (RoS) in IGCI and return on financing (RoF) in

IGCF. In doing so, as systematically depicted in Figure 6.1 the research mainly utilises

regression techniques combined with misspecification tests which comprise (i) jarque-

bera, (ii) lagrange multiplier, and (iii) white heteroskedasticity.

The proposed model by this study, thus, can be empirically tested by the identified tests

and methods as presented above and illustrated in the relevant chapters.

7.4.2. The Most Dominant Identified Risk Factors

With an objective of examining the relationship between operational risk variables,

Chapter 6 attempts to determine the most significant factors influencing operational risk

exposures in two income generating channels, namely investment (IGCI) and financing

(IGCF). In order to reach accurate empirical results, a rectification of the initial model is

deemed necessary due to some misspecifications of the initial regression model in three

respects: normality, presence of serial correlation and heteroskedasticity.

In overcoming heteroskedasticity, a technique that is adopted in this study is weighted

least squares (WLS) which, according to Asteriou and Hall (2007), is quite effective

remedy for such problem.

In addition, this study also utilises White heteroskedasticity test, since it has two

advantages; (i) it does not assume any prior knowledge of heteroskedasticity, and (ii) it

does not depend on the normality assumption.

The presence of serial correlation or autocorrelation in investment function model,

however, is overcome by the use of Cochrane-Orcutt iterative procedure which results in
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a change of DW value from 0.42 to 1.75. More importantly, the model transformation is

also significant at 1% confidence level, shown by variable AR(1). Chapter 6 also shows

that there are two main determinants of operational risk exposures in IGCI; the volatility

of training expenses and the volatility of return on saving deposits. Volatility of training

expenses is significant at 1% confident level; whereas volatility of return on saving

deposits are positively related to the target variable and significant at 5% level of

confidence. The dominance of training in investment activities might show an indication

of the role of an intensive training which will produce highly specialised human

resources who are well versed in both Shariah and financial economics. In other words,

the result shows that the performance of investment activities in Islamic banking is

significantly affected by highly-skilled personnel who run the banking activities, which

unfortunately quite scarce at the present stage.

It is also apparent that volatility of return on saving deposits, which represents a fiduciary

role an Islamic bank, is also essential as demonstrated by the significance of its t-

statistics. However, it can be argued that investment activities in Islamic bank is highly

affected by people risk as compared to other type of operational risks.

The rectified model, nonetheless, is also proved to be the best model since the variability

of explanatory variables can be explained by the model at around 95% as shown by the

value of R-squared.

As for financing function model, since an autocorrelation problem does not exist in the

initial model, a re-estimation is only carried out to address the issue of non-normality and

the presence of heteroskedasticity.

The results of the rectified regression show that all variables produce positive coefficient

as expected. Meanwhile, the values of R-squared, F-stat and DW show that the model is

already fit in explaining the variability of the explanatory variables with respect to the

target variable, namely volatility of return on financing.

In financing activities, people risk is significant at 5% confident level which shows that

it plays an important role in affecting the level of operational risk exposures.
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Nonetheless, it is no longer dominant in financing activities as compared to its impact in

investment activities. On the other hand, ratio of operating expenses to operating income

(BOPO), plays a significant role in this regard, shown by its significance at 1%

confidence level. The finding indicate that for financing activities, the role of maintaining

operational efficiency as part of an Islamic bank’s fiduciary responsibilities is immensely

high.

A bottom line that can be drawn from the rectified models in both, IGCI and IGCF, is that

fiduciary responsibilities and people risk are immense in investment as well as financing

activities.

7.5 RECOMMENDATIONS OF THE RESEARCH

Theoretical and methodological contribution of this study as well as the empirical

analysis conducted by this research points out a number of recommendations which can

be summarised as follows:

 There is a dire need in developing human capacity in Islamic banking. The greatest

challenge is to produce individuals who are well versed in both financial economics

and shari’ah, especially in fiqh muamalat. A systematic education programme and

training will hopefully help in overcoming the dearth of qualified individuals which

contribute to the high level of people risk especially in investment activities as

suggested by the empirical finding of this study. Moreover, an integrated programme

involving universities, Shari’ah scholars and market players to address such needs of

the industry may be considered;

 With regard to financing activities in Islamic banking, this research suggests that an

operational efficiency, as part of an Islamic bank’s fiduciary responsibilities, needs

to be enhanced;

 A standard setting body such as IFSB may consider conducting a survey and

research with an objective to examine the extent to which an implementation of risk

measurement methods outlined in IFSB’s standards on risk management have been

implemented by Islamic banks around the world. The results of such surveys would
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provide crucial information on whether some Islamic banks come up with their own

operational risk measurement methods or are in compliance with the standards;

 IFSB may also consider carrying out a research to generate beta percentage which

would suit better to Islamic banks. It is expected that the findings of such research

would produce a more refined version of the standardised approach;

 The industry should start building a comprehensive operational risk data which can

help stakeholders in assessing the degree of operational risk more accurately. In the

absence of such data, the proposed model developed in this study can be used as

alternative measurement methods since it can be operated based on the standard

published financial reports.

7.6 LIMITATIONS AND SUGGESTIONS FOR FUTURE RESEARCH

As repetitively mentioned and highlighted in the previous section, this research’s

contributions lie in three aspects: theoretical, methodological, and empirical. It should be

reiterated that a research of this kind is the first attempt which thoroughly tackles three

aspects aforementioned in the area of operational risk measurement in Islamic banking.

Nonetheless, some limitations can also be highlighted from this research. One of which is

related to the empirical aspects, namely the data which are extracted from financial

statements. The research would have given more accurate results, if it utilised internal

operational loss data from each individual bank (micro-data), which unfortunately is

difficult to generate or is not available at all.

Another limitation is that the research has not been able to capture qualitative

components of operational risk, such as Shariah non-compliance risk, technology risk,

and legal risk. This would have again enhanced the predictability power of the model

presented in this study by providing a comprehensive perspective.
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Reflecting from the limitations pointed out above, some recommendations for future

research can be sketched out as follows:

 An expansion of data can be considered to cover more quantitative as well as

qualitative aspects of operational risks;

 An expansion of data covering more regions such as South East Asian, GCC, and

Europe may also be considered. It would be important to help interested parties in

understanding the behaviour of market players in managing operational risks across

the regions;

 A market survey may also be crucial in capturing the qualitative aspect of the data,

hence the results would be more accurate.

7.7 EPILOGUE

This research is designed to address the theoretical, methodological, and empirical

aspects of operational risks in Islamic banking, which is still lacking in the literature, by

proposing a new model to measure operational risk in Islamic banking. Through its

comprehensive elucidation as demonstrated in chapter 2 until chapter 6, it can be stated

that the research has achieved its aim and objectives. It is hoped that the findings and

recommendations of this research would give benefit and are taken into account by

academics as well as market players. It is hoped in particular that the model and

methodology developed and proposed by this study can be considered as an important

contribution to the available body of knowledge, and can be considered to be

implemented in the industry. Furthermore, it is also expected that this research would

trigger further studies, especially in the area of operational risk management in Islamic

banking.

===***===
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APPENDIX 5.1

Descriptive Statistics for RoS and RoF in Constant Variance and EWMA

Return on Securities Return on Securities EWMA

Mean -0.000346803 Mean 0.007021176
Standard Error 0.005686561 Standard Error 0.000385894
Median -0.000832986 Median 0.005878347
Mode -0.010446057 Mode #N/A
Standard
Deviation 0.06044897

Standard
Deviation 0.004083922

Sample Variance 0.003654078 Sample Variance 1.66784E-05
Kurtosis 12.62335777 Kurtosis 1.549670716
Skewness -1.186232734 Skewness 1.038922483
Range 0.568468408 Range 0.022355536
Minimum -0.289929953 Minimum 7.68E-08
Maximum 0.278538455 Maximum 0.022355613
Sum -0.039188688 Sum 0.786371766
Count 113 Count 112

Return on Financing RETURN ON FINANCING ewma

Mean 0.004009509 Mean 0.001045753
Standard Error 0.003503083 Standard Error 3.68112E-05
Median 0 Median 0.001105029
Mode -0.010446057 Mode #N/A
Standard
Deviation 0.037238288

Standard
Deviation 0.000389573

Sample Variance 0.00138669 Sample Variance 1.51767E-07
Kurtosis 4.924353855 Kurtosis 0.817625143
Skewness 1.56722886 Skewness -0.722683906
Range 0.247260619 Range 0.00205196
Minimum -0.09220188 Minimum 3.2736E-06
Maximum 0.155058739 Maximum 0.002055234
Sum 0.453074567 Sum 0.117124292

Count 113 Count 112
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APPENDIX 5.2
Simulation Results

RoS (constant-variance)

Probability Density Function
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P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=4825.6 2=150.22
a=-24.124 b=0.7508

2 Burr (4P) k=0.92181 =3.6158E+8
=8.3733E+6 =-8.3733E+6

3 Cauchy =0.00982 =9.7935E-5

4 Dagum (4P) k=0.69323 =1.0534E+8
=2.0603E+6 =-2.0603E+6

5 Erlang (3P) m=369 =0.00331 =-1.2214

6 Error k=1.0 =0.06045 =-3.4680E-4

7 Error Function h=11.698

8 Exponential (2P) =3.4532 =-0.28993

9 Fatigue Life (3P) =0.00148 =40.317 =-40.317

10 Frechet (3P) =2.3456E+8 =2.1619E+7 =-2.1619E+7

11 Gamma (3P) =396.19 =0.00318 =-1.2578

12 Gen. Extreme Value k=-0.37 =0.04538 =-0.01392

13 Gen. Gamma (4P) k=2.2189 =240.65
=0.17684 =-2.0922

14 Gen. Pareto k=-1.1971 =0.17331 =-0.07923
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15 Gumbel Max =0.04713 =-0.02755

16 Gumbel Min =0.04713 =0.02686

17 Hypersecant =0.06045 =-3.4680E-4

18 Inv. Gaussian (3P) =2.2779E+6 =20.302 =-20.302

19 Johnson SU =0.28737 =1.205
=0.04784 =0.0159

20 Kumaraswamy 1=6.078 2=2541.7
a=-0.38174 b=1.0879

21 Laplace =23.395 =-3.4680E-4

22 Levy (2P) =0.24857 =-0.3089

23 Log-Logistic (3P) =3.5984E+8 =8.2822E+6 =-8.2822E+6

24 Logistic =0.03333 =-3.4680E-4

25 Lognormal (3P) =0.01822 =1.2066 =-3.3441

26 Normal =0.06045 =-3.4680E-4

27 Pearson 5 (3P) =920.93 =1755.5 =-1.9126

28 Pearson 6 (4P) 1=1.5878E+6 2=3.4093E+5
=6.8449 =-31.879

29 Pert m=8.6977E-4 a=-0.30856 b=0.28901

30 Power Function =1.367 a=-0.29376 b=0.27854

31 Rayleigh (2P) =0.21174 =-0.29371

32 Triangular m=-8.2902E-4 a=-0.29841 b=0.28426

33 Uniform a=-0.10505 b=0.10435

34 Weibull (3P) =6.0971 =0.40531 =-0.38271

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)
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46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)

Goodness of Fit - Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.24994 18 11.562 10 148.45 21

2 Burr (4P) 0.20247 3 6.6271 4 51.967 4

3 Cauchy 0.06438 1 0.5631 1 11.649 2

4 Dagum (4P) 0.20492 4 6.5057 3 56.893 5
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5 Erlang (3P) 0.24896 16 12.381 19 188.72 24

6 Error 0.20894 6 7.0046 6 65.432 6

7 Error Function 0.24556 12 11.696 13 152.29 22

8 Exponential (2P) 0.51693 33 38.392 32 87.394 9

9 Fatigue Life (3P) 0.2498 17 11.627 11 137.42 16

10 Frechet (3P) 0.29334 26 19.836 25 284.55 27

11 Gamma (3P) 0.25432 19 12.35 18 137.42 19

12 Gen. Extreme Value 0.22547 7 13.933 23 N/A

13 Gen. Gamma (4P) 0.24795 15 11.799 16 137.42 18

14 Gen. Pareto 0.25448 20 47.902 34 N/A

15 Gumbel Max 0.31292 28 22.686 28 91.764 10

16 Gumbel Min 0.29926 27 14.028 24 106.7 13

17 Hypersecant 0.23157 8 9.0568 8 92.103 11

18 Inv. Gaussian (3P) 0.2459 13 11.734 15 188.71 23

19 Johnson SU 0.24032 10 7.7903 7 80.727 8

20 Kumaraswamy 0.26191 22 13.786 22 197.64 26

21 Laplace 0.20894 5 7.0046 5 65.432 7

22 Levy (2P) 0.55337 34 43.27 33 0.4377 1

23 Log-Logistic (3P) 0.19575 2 6.4343 2 48.621 3

24 Logistic 0.23898 9 10.056 9 95.374 12

25 Lognormal (3P) 0.25889 21 11.983 17 128.75 15

26 Normal 0.24782 14 11.714 14 137.42 17

27 Pearson 5 (3P) 0.28426 25 13.032 20 113.36 14

28 Pearson 6 (4P) 0.24419 11 11.633 12 142.38 20

29 Pert 0.32136 29 21.419 27 313.63 29

30 Power Function 0.43165 31 31.313 31 378.25 31

31 Rayleigh (2P) 0.44988 32 29.869 30 344.8 30

32 Triangular 0.32454 30 21.208 26 304.46 28

33 Uniform 0.26914 24 26.77 29 N/A

34 Weibull (3P) 0.2628 23 13.783 21 190.7 25

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit

38 Dagum No fit (data min < 0)
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39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)
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P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=6.1572 2=1.4626E+5
a=-0.00294 b=236.76

2 Burr k=2193.6 =1.5695 =1.0305

3 Burr (4P) k=46274.0 =1.9054
=2.3436 =-3.0055E-4

4 Cauchy =0.00189 =0.00556

5 Dagum k=0.23592 =5.0101 =0.011

6 Dagum (4P) k=0.21642 =0.80105
=0.76348 =7.6800E-8

7 Erlang m=2 =0.00238

8 Erlang (3P) m=6 =0.00157 =-0.00312

9 Error k=1.2445 =0.00408 =0.00702

10 Error Function h=173.14

11 Exponential =142.43

12 Exponential (2P) =142.43 =7.6800E-8

13 Fatigue Life =12.777 =4.3847E-5

14 Fatigue Life (3P) =1173.3 =5.3860E-9 =7.6800E-8
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15 Frechet =0.52833 =0.00172

16 Frechet (3P) =0.71995 =0.00325 =-2.8081E-7

17 Gamma =2.9557 =0.00238

18 Gamma (3P) =6.452 =0.00157 =-0.00312

19 Gen. Extreme Value k=0.06035 =0.00298 =0.00511

20 Gen. Gamma k=0.84573 =2.3683 =0.00238

21 Gen. Gamma (4P) k=1.1286 =4.493
=0.00256 =-0.00259

22 Gen. Pareto k=-0.3077 =0.00661 =0.00196

23 Gumbel Max =0.00318 =0.00518

24 Gumbel Min =0.00318 =0.00886

25 Hypersecant =0.00408 =0.00702

26 Inv. Gaussian =0.02075 =0.00702

27 Inv. Gaussian (3P) =0.00327 =0.00708 =6.9990E-8

28 Johnson SB =3.6165 =1.925
=0.06417 =-0.00219

29 Kumaraswamy 1=1.9544 2=431.51
a=-6.6282E-4 b=0.19197

30 Laplace =346.29 =0.00702

31 Levy =0.00223

32 Levy (2P) =0.00223 =6.9783E-8

33 Log-Logistic =0.89205 =0.00497

34 Log-Logistic (3P) =5.2621 =0.01094 =-0.00461

35 Log-Pearson 3 =0.14311 =-3.6689 =-4.7649

36 Logistic =0.00225 =0.00702

37 Lognormal =1.3817 =-5.29

38 Lognormal (3P) =0.29015 =-4.3439 =-0.00653

39 Nakagami m=0.70049 =6.5826E-5

40 Normal =0.00408 =0.00702

41 Pareto =0.09015 =7.6800E-8

42 Pareto 2 =533.25 =3.7407

43 Pearson 5 =0.66664 =0.00149

44 Pearson 5 (3P) =0.66651 =0.00149 =7.6800E-8
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45 Pearson 6 1=1.7792 2=2.4876E+8 =9.5788E+5

46 Pearson 6 (4P) 1=6.4521 2=4.6033E+5
=723.16 =-0.00311

47 Pert m=0.00449 a=-3.6765E-4 b=0.02537

48 Power Function =0.54942 a=7.6800E-8 b=0.02236

49 Rayleigh =0.0056

50 Rayleigh (2P) =0.00621 =-7.5158E-4

51 Reciprocal a=7.6762E-8 b=0.02237

52 Rice =4.8417E-5 =0.00574

53 Triangular m=6.9886E-8 a=5.5302E-8 b=0.02282

54 Uniform a=-5.2383E-5 b=0.01409

55 Weibull =0.69206 =0.01119

56 Weibull (3P) =1.9595 =0.00866 =-6.6614E-4

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SU No fit

60 Log-Gamma No fit

61 Student's t No fit

Goodness of Fit - Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.13619 11 1.7021 7 18.027 12

2 Burr 0.19857 30 3.3979 25 36.052 24

3 Burr (4P) 0.14459 17 2.2436 13 16.227 9

4 Cauchy 0.1803 25 5.0117 27 41.019 27

5 Dagum 0.2023 31 3.0583 18 37.276 25

6 Dagum (4P) 0.47048 51 33.444 49 227.48 48

7 Erlang 0.3815 46 26.62 47 44.751 29

8 Erlang (3P) 0.19407 28 3.2937 24 20.774 19

9 Error 0.14986 18 3.2659 22 43.08 28
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10 Error Function 0.74689 55 151.99 56 374.55 50

11 Exponential 0.3366 40 10.783 32 77.474 41

12 Exponential (2P) 0.3366 39 10.924 34 77.472 40

13 Fatigue Life 0.69496 54 76.252 53 224.16 47

14 Fatigue Life (3P) 0.69381 53 75.815 52 223.13 46

15 Frechet 0.44456 49 25.113 45 116.41 43

16 Frechet (3P) 0.33037 38 20.486 40 N/A

17 Gamma 0.13831 14 3.2909 23 12.313 3

18 Gamma (3P) 0.1349 10 1.6947 6 19.286 16

19 Gen. Extreme Value 0.12238 5 1.6614 4 14.769 5

20 Gen. Gamma 0.24415 34 5.776 29 10.444 1

21 Gen. Gamma (4P) 0.13915 15 1.7223 8 18.048 13

22 Gen. Pareto 0.16132 22 27.907 48 N/A

23 Gumbel Max 0.12831 6 1.5185 2 16.371 10

24 Gumbel Min 0.19247 26 10.48 31 45.046 30

25 Hypersecant 0.14416 16 3.1158 20 39.983 26

26 Inv. Gaussian 0.10724 1 19.624 39 13.298 4

27 Inv. Gaussian (3P) 0.44473 50 26.408 46 98.936 42

28 Johnson SB 0.13827 13 1.8586 9 15.195 6

29 Kumaraswamy 0.1577 21 2.1072 11 15.99 8

30 Laplace 0.17257 23 4.1023 26 30.894 23

31 Levy 0.36682 44 21.591 41 70.13 38

32 Levy (2P) 0.3672 45 21.601 42 70.087 37

33 Log-Logistic 0.36442 43 17.247 38 145.23 45

34 Log-Logistic (3P) 0.11579 3 1.3423 1 21.917 21

35 Log-Pearson 3 0.30957 37 138.38 55 N/A

36 Logistic 0.1312 8 2.8657 14 55.192 36

37 Lognormal 0.33935 42 13.865 36 47.505 33

38 Lognormal (3P) 0.13093 7 1.5879 3 19.798 17

39 Nakagami 0.19503 29 3.1315 21 29.624 22

40 Normal 0.13696 12 2.9265 17 45.776 32

41 Pareto 0.55805 52 46.007 51 123.93 44

42 Pareto 2 0.33673 41 10.797 33 75.164 39

43 Pearson 5 0.41021 47 22.87 43 50.586 34
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44 Pearson 5 (3P) 0.41029 48 24.698 44 N/A

45 Pearson 6 0.23922 33 5.3076 28 11.616 2

46 Pearson 6 (4P) 0.13489 9 1.6947 5 19.286 15

47 Pert 0.17967 24 2.9223 16 21.096 20

48 Power Function 0.30281 36 11.654 35 45.347 31

49 Rayleigh 0.12183 4 2.8839 15 19.007 14

50 Rayleigh (2P) 0.15338 19 2.0907 10 16.821 11

51 Reciprocal 0.79177 56 124.03 54 233.1 49

52 Rice 0.11407 2 3.1001 19 N/A

53 Triangular 0.22634 32 6.002 30 20.265 18

54 Uniform 0.19398 27 33.674 50 N/A

55 Weibull 0.30239 35 15.604 37 52.031 35

56 Weibull (3P) 0.15653 20 2.1077 12 15.986 7

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SU No fit

60 Log-Gamma No fit

61 Student's t No fit
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P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=12.502 2=1.2174E+7
a=-0.12515 b=1.2603E+5

2 Burr (4P) k=0.57999 =25.318
=0.32672 =-0.33777

3 Cauchy =0.0119 =0

4 Dagum (4P) k=0.95291 =9.2154
=0.15418 =-0.15349

5 Erlang (3P) m=16 =0.00871 =-0.13922

6 Error k=1.0 =0.03724 =0.00401

7 Error Function h=18.989

8 Exponential (2P) =10.394 =-0.0922

9 Fatigue Life (3P) =0.18589 =0.18579 =-0.18499

10 Frechet (3P) =3.0351 =0.08688 =-0.1022

11 Gamma (3P) =16.437 =0.00871 =-0.13922

12 Gen. Extreme Value k=0.02033 =0.02594 =-0.0115

13 Gen. Gamma (4P) k=0.81113 =25.323
=0.00267 =-0.14032
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14 Gen. Pareto k=-0.38107 =0.06027 =-0.03963

15 Gumbel Max =0.02903 =-0.01275

16 Gumbel Min =0.02903 =0.02077

17 Hypersecant =0.03724 =0.00401

18 Inv. Gaussian (3P) =5.4272 =0.18905 =-0.18504

19 Johnson SU =-3.0373 =2.0391
=0.02745 =-0.06114

20 Kumaraswamy 1=2.7138 2=2254.1
a=-0.09753 b=1.8515

21 Laplace =37.977 =0.00401

22 Levy (2P) =0.07963 =-0.09731

23 Log-Logistic (3P) =9.4135 =0.159 =-0.15941

24 Logistic =0.02053 =0.00401

25 Lognormal (3P) =0.19572 =-1.7438 =-0.1743

26 Normal =0.03724 =0.00401

27 Pearson 5 (3P) =41.435 =8.9399 =-0.21718

28 Pearson 6 (4P) 1=138.15 2=42.697
=0.05948 =-0.19317

29 Pert m=-0.00839 a=-0.09489 b=0.17383

30 Power Function =0.76433 a=-0.0922 b=0.15506

31 Rayleigh (2P) =0.07381 =-0.09356

32 Triangular m=-0.00703 a=-0.09542 b=0.15931

33 Uniform a=-0.06049 b=0.06851

34 Weibull (3P) =2.7198 =0.11335 =-0.09751

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)
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45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)

Goodness of Fit - Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.17932 19 3.6901 17 32.945 19

2 Burr (4P) 0.13024 4 1.5143 2 17.896 4

3 Cauchy 0.05277 1 0.44318 1 4.1846 1

4 Dagum (4P) 0.1253 2 1.641 3 20.817 5
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5 Erlang (3P) 0.16407 10 3.8315 18 34.157 20

6 Error 0.16363 9 2.6807 7 11.205 2

7 Error Function 0.17101 15 4.7394 21 37.674 21

8 Exponential (2P) 0.37607 33 24.543 31 193.14 29

9 Fatigue Life (3P) 0.17365 16 3.3312 13 32.553 15

10 Frechet (3P) 0.1818 20 9.3232 26 N/A

11 Gamma (3P) 0.17776 18 3.4808 16 29.575 11

12 Gen. Extreme Value 0.1321 5 2.66 5 21.236 7

13 Gen. Gamma (4P) 0.177 17 3.4247 15 29.704 12

14 Gen. Pareto 0.16819 13 33.441 33 N/A

15 Gumbel Max 0.14921 6 3.1552 11 28.764 10

16 Gumbel Min 0.2732 30 15.189 29 45.68 23

17 Hypersecant 0.19012 21 3.3661 14 24.031 8

18 Inv. Gaussian (3P) 0.20929 25 4.1076 20 30.839 13

19 Johnson SU 0.15503 7 3.0957 8 31.071 14

20 Kumaraswamy 0.19995 22 5.6266 24 48.175 25

21 Laplace 0.16363 8 2.6807 6 11.205 3

22 Levy (2P) 0.47724 34 35.118 34 449.58 31

23 Log-Logistic (3P) 0.12615 3 1.6423 4 20.819 6

24 Logistic 0.20008 23 3.903 19 27.903 9

25 Lognormal (3P) 0.17016 14 3.2227 12 32.561 16

26 Normal 0.21219 26 5.0263 22 41.902 22

27 Pearson 5 (3P) 0.16694 11 3.1171 9 32.573 18

28 Pearson 6 (4P) 0.16732 12 3.1349 10 32.572 17

29 Pert 0.24127 29 9.1724 25 104.86 28

30 Power Function 0.28924 31 19.157 30 210.15 30

31 Rayleigh (2P) 0.23439 27 9.4484 27 71.81 26

32 Triangular 0.31201 32 12.46 28 83.589 27

33 Uniform 0.2373 28 30.243 32 N/A

34 Weibull (3P) 0.20056 24 5.6137 23 48.174 24

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit

38 Dagum No fit (data min < 0)
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39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)
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P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=3.1835E+6 2=26.902
a=-234.15 b=0.00302

2 Burr k=826.91 =2.8147 =0.01257

3 Burr (4P) k=4763.3 =7.0124
=0.00819 =-0.00125

4 Cauchy =1.7254E-4 =0.00115

5 Dagum k=0.14447 =14.233 =0.00144

6 Dagum (4P) k=0.20062 =0.71406
=0.76732 =3.2736E-6

7 Erlang m=7 =1.4513E-4

8 Erlang (3P) m=137 =3.4487E-5 =-0.00367

9 Error k=1.4764 =3.8957E-4 =0.00105

10 Error Function h=1815.1

11 Exponential =956.25

12 Exponential (2P) =959.25 =3.2736E-6
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13 Fatigue Life =1.4715 =4.2378E-4

14 Fatigue Life (3P) =0.00746 =0.05257 =-0.05152

15 Frechet =1.0133 =5.1381E-4

16 Frechet (3P) =1.4374 =6.9818E-4 =-3.9867E-6

17 Gamma =7.2058 =1.4513E-4

18 Gamma (3P) =109.75 =3.8408E-5 =-0.00317

19 Gen. Extreme Value k=-0.65708 =4.1118E-4 =9.8393E-4

20 Gen. Gamma k=0.83419 =5.0766 =1.4513E-4

21 Gen. Gamma (4P) k=16.713 =2.5695
=0.00901 =-0.00838

22 Gen. Pareto k=-1.9331 =0.00238 =2.3429E-4

23 Gumbel Max =3.0375E-4 =8.7042E-4

24 Gumbel Min =3.0375E-4 =0.00122

25 Hypersecant =3.8957E-4 =0.00105

26 Inv. Gaussian =0.00754 =0.00105

27 Inv. Gaussian (3P) =0.00286 =0.00105 =2.9065E-6

28 Johnson SB =-6.0898 =3.0675
=0.0109 =-0.00849

29 Kumaraswamy 1=7.0013 2=412.97
a=-0.00124 b=0.00453

30 Laplace =3630.2 =0.00105

31 Levy =0.00477

32 Levy (2P) =7.7568E-4 =3.0014E-6

33 Log-Logistic =1.7208 =8.9410E-4

34 Log-Logistic (3P) =2.7712E+8 =57773.0 =-57773.0

35 Log-Pearson 3 =0.2222 =-1.6166 =-6.6531

36 Logistic =2.1478E-4 =0.00105

37 Lognormal =0.75862 =-7.0123

38 Lognormal (3P) =0.02919 =-4.3075 =-0.01243

39 Nakagami m=2.8105 =1.2440E-6

40 Normal =3.8957E-4 =0.00105

41 Pareto =0.17802 =3.2736E-6

42 Pareto 2 =1518.9 =1.588
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43 Pearson 5 =3.0402 =0.00242

44 Pearson 5 (3P) =2.6532 =0.00206 =4.8790E-7

45 Pearson 6 1=3.371 2=1.2966E+8 =40478.0

46 Pearson 6 (4P) 1=116.41 2=11995.0
=0.45593 =-0.0034

47 Pert m=0.00107 a=-1.7454E-4 b=0.00213

48 Power Function =1.2254 a=-3.2308E-6 b=0.00206

49 Rayleigh =8.3439E-4

50 Rayleigh (2P) =8.1059E-4 =2.2666E-6

51 Reciprocal a=3.2559E-6 b=0.00207

52 Rice =9.5791E-4 =4.0440E-4

53 Triangular m=0.0012 a=2.6598E-6 b=0.00209

54 Uniform a=3.7099E-4 b=0.00172

55 Weibull =1.3492 =0.00136

56 Weibull (3P) =7.0179 =0.00245 =-0.00125

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SU No fit

60 Log-Gamma No fit

61 Student's t No fit

Goodness of Fit – Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.15355 10 3.2575 9 21.624 6

2 Burr 0.21303 27 6.3768 23 42.658 23
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3 Burr (4P) 0.14988 9 3.0351 7 19.375 3

4 Cauchy 0.1315 4 2.8612 3 26.385 10

5 Dagum 0.20059 25 4.5297 16 29.562 13

6 Dagum (4P) 0.57324 53 45.779 51 N/A

7 Erlang 0.2573 34 12.006 31 52.92 28

8 Erlang (3P) 0.17884 19 4.8618 18 38.481 22

9 Error 0.16333 14 3.8579 12 32.601 16

10 Error Function 0.82013 55 403.38 56 483.91 47

11 Exponential 0.36781 49 21.426 43 262.89 43

12 Exponential (2P) 0.36771 47 21.524 45 261.4 42

13 Fatigue Life 0.48743 50 41.268 49 66.357 31

14 Fatigue Life (3P) 0.17362 17 4.3841 14 30.871 15

15 Frechet 0.35551 46 21.673 46 199.21 40

16 Frechet (3P) 0.30006 40 19.506 41 N/A

17 Gamma 0.22558 29 10.597 29 50.529 27

18 Gamma (3P) 0.19736 23 5.2926 19 25.561 9

19 Gen. Extreme Value 0.11311 2 17.365 38 N/A

20 Gen. Gamma 0.28258 37 10.693 30 96.725 34

21 Gen. Gamma (4P) 0.14476 6 2.9053 4 20.058 5

22 Gen. Pareto 0.16727 16 34.371 48 N/A

23 Gumbel Max 0.24057 31 13.504 33 53.653 29

24 Gumbel Min 0.11129 1 2.247 1 24.655 7

25 Hypersecant 0.15763 13 3.7177 10 27.963 12

26 Inv. Gaussian 0.24488 32 20.132 42 57.749 30

27 Inv. Gaussian (3P) 0.31571 44 16.351 37 132.18 36

28 Johnson SB 0.13463 5 2.7768 2 18.986 1

29 Kumaraswamy 0.14745 7 3.0107 5 19.111 2

30 Laplace 0.15548 11 3.8244 11 27.712 11

31 Levy 0.88928 56 247.49 55 1318.8 48

32 Levy (2P) 0.49182 51 31.598 47 420.15 46

33 Log-Logistic 0.29756 39 15.312 35 203.52 41

34 Log-Logistic (3P) 0.1187 3 3.1711 8 24.811 8

35 Log-Pearson 3 0.17546 18 98.818 53 N/A

36 Logistic 0.16723 15 3.8733 13 35.118 19
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37 Lognormal 0.30027 41 13.58 34 157.59 38

38 Lognormal (3P) 0.18852 21 4.8441 17 35.609 20

39 Nakagami 0.1575 12 8.9043 26 33.471 18

40 Normal 0.17885 20 4.4261 15 32.798 17

41 Pareto 0.49686 52 44.572 50 93.809 33

42 Pareto 2 0.36781 48 21.429 44 262.93 44

43 Pearson 5 0.31396 43 17.811 40 152.33 37

44 Pearson 5 (3P) 0.31684 45 17.567 39 161.11 39

45 Pearson 6 0.27356 36 10.102 28 89.46 32

46 Pearson 6 (4P) 0.21502 28 5.7657 22 43.515 25

47 Pert 0.19848 24 5.4825 21 44.207 26

48 Power Function 0.31324 42 15.89 36 N/A

49 Rayleigh 0.25062 33 8.5839 25 42.763 24

50 Rayleigh (2P) 0.2689 35 9.1746 27 36.943 21

51 Reciprocal 0.68796 54 116.03 54 398.54 45

52 Rice 0.22791 30 6.794 24 N/A

53 Triangular 0.19375 22 5.3189 20 30.068 14

54 Uniform 0.20291 26 52.268 52 N/A

55 Weibull 0.29316 38 13.373 32 111.01 35

56 Weibull (3P) 0.14984 8 3.0343 6 19.376 4

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SU No fit

60 Log-Gamma No fit

61 Student's t No fit
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Probability Density Function

His togram Cauchy

x
0.30.20.10-0.1-0.2-0.3

f(
x

)

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Probability Density Function

His togram Cauchy

x
0.150.10.050-0.05-0.1

f(
x

)

0.64

0.56

0.48

0.4

0.32

0.24

0.16

0.08

0



246

P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=24.359 2=6.0720E+6
a=-0.15453 b=44556.0

2 Burr (4P) k=0.50763 =4.1916E+6
=54415.0 =-54415.0

3 Cauchy =0.01062 =0.0147

4 Dagum (4P) k=1.1974 =11.795
=0.20023 =-0.18521

5 Erlang (3P) m=28 =0.00681 =-0.16447

6 Error k=1.0 =0.03733 =0.02415

7 Error Function h=18.945

8 Exponential (2P) =8.9191 =-0.08797

9 Fatigue Life (3P) =0.14362 =0.24591 =-0.2243

10 Frechet (3P) =4.115 =0.11875 =-0.11207

11 Gamma (3P) =27.701 =0.00681 =-0.16447

12 Gen. Extreme Value k=0.12158 =0.02289 =0.00783

13 Gen. Gamma (4P) k=0.89365 =33.778
=0.00361 =-0.16163
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14 Gen. Pareto k=-0.19877 =0.04742 =-0.0154

15 Gumbel Max =0.0291 =0.00735

16 Gumbel Min =0.0291 =0.04095

17 Hypersecant =0.03733 =0.02415

18 Inv. Gaussian (3P) =11.982 =0.24843 =-0.22428

19 Johnson SU =-1.9533 =1.9963
=0.04162 =-0.02975

20 Kumaraswamy 1=3.148 2=1064.5
a=-0.09626 b=1.1262

21 Laplace =37.889 =0.02415

22 Levy (2P) =0.09587 =-0.09407

23 Log-Logistic (3P) =10.82 =0.17746 =-0.1585

24 Logistic =0.02058 =0.02415

25 Lognormal (3P) =0.15257 =-1.4695 =-0.20863

26 Normal =0.03733 =0.02415

27 Pearson 5 (3P) =66.604 =18.815 =-0.26271

28 Pearson 6 (4P) 1=312.64 2=67.633
=0.05593 =-0.23833

29 Pert m=0.01606 a=-0.09165 b=0.18934

30 Power Function =0.85816 a=-0.08797 b=0.17835

31 Rayleigh (2P) =0.08444 =-0.08933

32 Triangular m=0.01092 a=-0.09082 b=0.18177

33 Uniform a=-0.0405 b=0.0888

34 Weibull (3P) =3.1576 =0.13327 =-0.09618

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)



249

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)

Goodness of Fit - Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.18749 14 6.0022 16 65.507 24

2 Burr (4P) 0.14126 2 3.4075 4 21.088 3

3 Cauchy 0.12432 1 2.3221 1 11.158 1

4 Dagum (4P) 0.1495 3 3.2656 2 20.042 2

5 Erlang (3P) 0.20298 19 6.4782 18 52.982 15
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6 Error 0.18138 6 5.4814 8 38.582 7

7 Error Function 0.42494 32 25.435 30 72.846 26

8 Exponential (2P) 0.46029 33 28.647 32 307.42 30

9 Fatigue Life (3P) 0.18514 9 5.8198 13 51.877 14

10 Frechet (3P) 0.20903 22 10.414 24 N/A

11 Gamma (3P) 0.18489 8 5.9751 15 60.296 21

12 Gen. Extreme Value 0.17344 5 7.572 21 25.232 6

13 Gen. Gamma (4P) 0.18584 13 5.8839 14 57.324 20

14 Gen. Pareto 0.21677 23 28.028 31 N/A

15 Gumbel Max 0.20292 18 5.1465 6 21.102 4

16 Gumbel Min 0.27389 28 17.702 28 62.951 22

17 Hypersecant 0.19394 16 5.8064 12 40.035 9

18 Inv. Gaussian (3P) 0.20551 20 6.4974 19 52.994 16

19 Johnson SU 0.19323 15 4.4268 5 40.593 10

20 Kumaraswamy 0.22194 24 8.2487 23 41.802 12

21 Laplace 0.18138 7 5.4814 7 38.582 8

22 Levy (2P) 0.47234 34 38.512 33 629.37 31

23 Log-Logistic (3P) 0.15436 4 3.3249 3 23.127 5

24 Logistic 0.20004 17 6.2912 17 46.309 13

25 Lognormal (3P) 0.18547 11 5.7109 11 55.603 19

26 Normal 0.20727 21 7.3325 20 66.434 25

27 Pearson 5 (3P) 0.1856 12 5.5943 9 54.127 18

28 Pearson 6 (4P) 0.18536 10 5.6005 10 54.126 17

29 Pert 0.25427 27 11.761 25 108.52 27

30 Power Function 0.30973 30 21.197 29 157.53 29

31 Rayleigh (2P) 0.34907 31 14.254 27 63.314 23

32 Triangular 0.27598 29 12.874 26 137.08 28

33 Uniform 0.23444 26 39.802 34 N/A

34 Weibull (3P) 0.22216 25 8.2008 22 41.8 11

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)
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40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)
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Fitting Results

# Distribution Parameters
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1 Beta 1=0.51173 2=1.7268
a=9.7960E-7 b=0.00245

2 Burr k=0.63705 =2.053 =1.8827E-4

3 Burr (4P) k=312.91 =0.45005
=231.87 =9.7960E-7

4 Cauchy =1.3447E-4 =2.0096E-4

5 Dagum k=1.3296 =1.5584 =2.1310E-4

6 Dagum (4P) k=1.9299 =1.4653
=1.5212E-4 =-2.1798E-6

7 Error k=1.4407 =4.7527E-4 =4.6658E-4

8 Error Function h=1487.8

9 Exponential =2143.3

10 Exponential (2P) =2147.8 =9.7960E-7

11 Fatigue Life =1.7761 =1.5799E-4

12 Fatigue Life (3P) =0.97108 =3.3663E-4 =-2.5317E-5

13 Frechet =1.0244 =1.6067E-4

14 Frechet (3P) =1.2931 =1.8865E-4 =9.7960E-7

15 Gamma =0.96376 =4.8412E-4

16 Gamma (3P) =1.1273 =4.1359E-4 =3.4929E-7

17 Gen. Extreme Value k=0.34148 =2.2326E-4 =2.2541E-4

18 Gen. Gamma k=1.0399 =1.0114 =4.8412E-4

19 Gen. Gamma (4P) k=0.31984 =9.8994
=2.5857E-7 =-2.0173E-6

20 Gen. Pareto k=0.16139 =3.6852E-4 =2.7141E-5

21 Gumbel Max =3.7057E-4 =2.5268E-4

22 Gumbel Min =3.7057E-4 =6.8047E-4

23 Hypersecant =4.7527E-4 =4.6658E-4

24 Inv. Gaussian =4.4967E-4 =4.6658E-4

25 Inv. Gaussian (3P) =3.5687E-4 =4.7353E-4 =8.8791E-7

26 Johnson SB =1.0215 =0.44789
=0.00186 =7.4402E-5

27 Kumaraswamy 1=0.95679 2=11.015
a=9.7960E-7 b=0.00607

28 Laplace =2975.6 =4.6658E-4

29 Levy =0.8994
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30 Levy (2P) =0.89815 =8.7590E-7

31 Log-Logistic =1.4932 =2.7793E-4

32 Log-Logistic (3P) =1.7291 =2.8057E-4 =-3.5864E-6

33 Log-Pearson 3 =4.7126 =-0.501 =-5.8094

34 Logistic =2.6203E-4 =4.6658E-4

35 Lognormal =1.0827 =-8.1704

36 Lognormal (3P) =0.94574 =-8.0871 =-1.2948E-5

37 Normal =4.7527E-4 =4.6658E-4

38 Pareto =0.1765 =9.7960E-7

39 Pareto 2 =40.763 =0.01856

40 Pearson 5 =2.909 =7.2573E-4

41 Pearson 5 (3P) =1.1411 =2.3470E-4 =1.0074E-6

42 Pearson 6 1=2.1134 2=2.4345 =3.3774E-4

43 Pearson 6 (4P) 1=1.6515 2=3.5113
=7.1802E-4 =5.3632E-7

44 Pert m=2.6047E-6 a=4.7183E-7 b=0.00299

45 Power Function =0.35563 a=9.7960E-7 b=0.00204

46 Rayleigh =3.7227E-4

47 Rayleigh (2P) =4.6563E-4 =8.6572E-7

48 Reciprocal a=9.7430E-7 b=0.00206

49 Rice =2.3135E-5 =4.6990E-4

50 Triangular m=9.7596E-7 a=7.2417E-7 b=0.0021

51 Uniform a=-3.5661E-4 b=0.00129

52 Weibull =1.0446 =4.7567E-4

53 Weibull (3P) =1.0236 =4.7051E-4 =8.7593E-7

54 Chi-Squared No fit

55 Chi-Squared (2P) No fit

56 Erlang No fit

57 Erlang (3P) No fit

58 Johnson SU No fit

59 Log-Gamma No fit

60 Nakagami No fit

61 Student's t No fit
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Goodness of Fit – Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.21794 31 10.532 33 N/A

2 Burr 0.10003 3 1.7194 2 19.157 8

3 Burr (4P) 0.29899 39 17.711 42 N/A

4 Cauchy 0.24879 34 12.863 37 42.588 28

5 Dagum 0.10186 5 1.8715 3 12.868 4

6 Dagum (4P) 0.09866 2 1.6841 1 14.256 5

7 Error 0.30096 40 11.301 35 51.81 37

8 Error Function 0.55199 50 50.814 51 208.83 42

9 Exponential 0.16203 22 3.5128 14 23.682 14

10 Exponential (2P) 0.16236 23 3.6611 17 23.727 15

11 Fatigue Life 0.31858 42 14.442 40 44.209 30

12 Fatigue Life (3P) 0.14767 18 2.6167 9 21.777 11

13 Frechet 0.10534 6 3.8983 20 10.557 3

14 Frechet (3P) 0.10114 4 5.5637 25 N/A

15 Gamma 0.15693 21 3.4915 13 23.388 13

16 Gamma (3P) 0.17873 28 3.9001 21 46.159 32

17 Gen. Extreme Value 0.14772 19 3.5236 15 28.247 19

18 Gen. Gamma 0.18582 29 3.9404 22 49.559 33

19 Gen. Gamma (4P) 0.13179 15 2.6469 10 30.178 21

20 Gen. Pareto 0.13169 14 6.4713 29 N/A

21 Gumbel Max 0.22422 32 6.8115 30 25.65 18

22 Gumbel Min 0.34476 44 22.244 44 49.787 34

23 Hypersecant 0.30717 41 11.849 36 50.16 35

24 Inv. Gaussian 0.14599 17 6.1307 28 32.261 22

25 Inv. Gaussian (3P) 0.11978 12 4.0024 23 17.647 7

26 Johnson SB 0.08876 1 8.8882 31 N/A

27 Kumaraswamy 0.16606 24 3.8541 19 24.093 16

28 Laplace 0.33535 43 14.063 39 56.886 38

29 Levy 1 53 N/A N/A
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30 Levy (2P) 1 52 N/A N/A

31 Log-Logistic 0.11035 7 2.0848 5 8.8356 2

32 Log-Logistic (3P) 0.11052 8 2.2075 7 16.795 6

33 Log-Pearson 3 0.17395 26 4.306 24 40.673 27

34 Logistic 0.2951 37 11.014 34 45.425 31

35 Lognormal 0.11294 9 2.0154 4 35.281 24

36 Lognormal (3P) 0.12443 13 2.3916 8 21.192 10

37 Normal 0.28008 36 10.329 32 43.384 29

38 Pareto 0.52366 49 37.143 46 7.6282 1

39 Pareto 2 0.15645 20 3.4205 12 21.102 9

40 Pearson 5 0.20412 30 17.285 41 37.45 25

41 Pearson 5 (3P) 0.11364 10 5.5781 26 N/A

42 Pearson 6 0.11386 11 2.1803 6 28.67 20

43 Pearson 6 (4P) 0.13407 16 2.6801 11 32.352 23

44 Pert 0.22777 33 5.6584 27 51.619 36

45 Power Function 0.29549 38 13.614 38 N/A

46 Rayleigh 0.34835 45 35.391 45 102.96 40

47 Rayleigh (2P) 0.44884 47 46.513 49 123.69 41

48 Reciprocal 0.55471 51 43.109 47 38.203 26

49 Rice 0.45147 48 46.817 50 N/A

50 Triangular 0.3779 46 21.001 43 78.295 39

51 Uniform 0.25301 35 44.242 48 N/A

52 Weibull 0.17465 27 3.7696 18 24.494 17

53 Weibull (3P) 0.16897 25 3.6375 16 22.821 12

54 Chi-Squared No fit

55 Chi-Squared (2P) No fit

56 Erlang No fit

57 Erlang (3P) No fit

58 Johnson SU No fit

59 Log-Gamma No fit

60 Nakagami No fit

61 Student's t No fit
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F (constant-variance)
Probability Density Function

His togram Gen. Pareto

x
0.140.120.10.080.060.040.020

f(
x)

0.44

0.4

0.36

0.32

0.28

0.24

0.2

0.16

0.12

0.08

0.04

0

Probability Density Function

Gen. Pareto (-0.333; 0.04195; 0.00214)

x
0.120.10.080.060.040.02

f(
x)

24

22

20

18

16

14

12

10

8

6

4

2

0



259

P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=1.2106 2=7.7599
a=0.001 b=0.24192

2 Burr k=553.03 =1.3522 =3.9076

3 Burr (4P) k=332.89 =1.2807
=3.2866 =8.4239E-4

4 Cauchy =0.01524 =0.02782

5 Dagum k=0.22678 =4.5948 =0.05802

6 Dagum (4P) k=0.2552 =3.7293
=0.05817 =0.00118

7 Erlang m=1 =0.01881

8 Erlang (3P) m=2 =0.02201 =4.3402E-4

9 Error k=1.0 =0.02514 =0.03362

10 Error Function h=28.123

11 Exponential =29.747

12 Exponential (2P) =30.829 =0.00118
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13 Fatigue Life =1.0971 =0.02033

14 Fatigue Life (3P) =0.62281 =0.03539 =-0.00867

15 Frechet =1.1452 =0.01435

16 Frechet (3P) =6.9191 =0.11779 =-0.0966

17 Gamma =1.7875 =0.01881

18 Gamma (3P) =1.5075 =0.02201 =4.3402E-4

19 Gen. Extreme Value k=0.04644 =0.01861 =0.02198

20 Gen. Gamma k=0.96605 =1.7254 =0.01881

21 Gen. Gamma (4P) k=1.8645 =0.49181
=0.05928 =0.00118

22 Gen. Pareto k=-0.333 =0.04195 =0.00214

23 Gumbel Max =0.0196 =0.0223

24 Gumbel Min =0.0196 =0.04493

25 Hypersecant =0.02514 =0.03362

26 Inv. Gaussian =0.06009 =0.03362

27 Inv. Gaussian (3P) =0.12141 =0.04434 =-0.01072

28 Johnson SB =11.437 =2.3539
=6.8057 =-0.0236

29 Kumaraswamy 1=0.64337 2=1.7946
a=0.00118 b=0.15577

30 Laplace =56.245 =0.03362

31 Levy =0.01312

32 Levy (2P) =0.01508 =-5.8119E-4

33 Log-Logistic =1.7535 =0.02343

34 Log-Logistic (3P) =2.5354 =0.03289 =-0.0057

35 Log-Pearson 3 =4.2058 =-0.46559 =-1.7789

36 Logistic =0.01386 =0.03362

37 Lognormal =0.9506 =-3.737

38 Lognormal (3P) =0.58964 =-3.316 =-0.00925

39 Normal =0.02514 =0.03362

40 Pareto =0.33265 =0.00118

41 Pareto 2 =306.37 =9.9552

42 Pearson 5 =0.97045 =0.01273



262

43 Pearson 5 (3P) =0.5639 =0.00411 =0.00117

44 Pearson 6 1=1.5724 2=1.2516E+8 =2.6927E+6

45 Pearson 6 (4P) 1=1.5138 2=12274.0
=269.28 =4.1091E-4

46 Pert m=0.00363 a=0.00116 b=0.18836

47 Power Function =0.32693 a=0.00118 b=0.15267

48 Rayleigh =0.02682

49 Rayleigh (2P) =0.03413 =-0.00766

50 Reciprocal a=0.00118 b=0.15267

51 Rice =4.3764E-5 =0.02964

52 Triangular m=0.00118 a=0.001 b=0.15459

53 Uniform a=-0.00993 b=0.07717

54 Weibull =1.2844 =0.03628

55 Weibull (3P) =1.2759 =0.03524 =8.4273E-4

56 Chi-Squared No fit

57 Chi-Squared (2P) No fit

58 Johnson SU No fit

59 Log-Gamma No fit

60 Nakagami No fit

61 Student's t No fit

Goodness of Fit - Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.0763 9 0.58732 7 6.8297 9

2 Burr 0.06819 5 0.45328 2 9.8018 23

3 Burr (4P) 0.0761 8 0.55278 5 6.6131 6

4 Cauchy 0.16534 40 3.5343 35 12.261 27

5 Dagum 0.078 12 0.43196 1 11.444 25

6 Dagum (4P) 0.06671 4 0.59383 8 6.3914 5

7 Erlang 0.31442 53 30.745 54 86.171 52

8 Erlang (3P) 0.18283 45 9.1671 44 26.339 40

9 Error 0.1676 42 3.3335 32 24.286 37
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10 Error Function 0.52707 55 90.727 55 268.71 53

11 Exponential 0.12291 29 3.0382 31 17.412 30

12 Exponential (2P) 0.11261 27 2.4832 30 14.724 28

13 Fatigue Life 0.15959 38 4.7082 37 19.199 34

14 Fatigue Life (3P) 0.09129 24 0.76953 16 8.6626 19

15 Frechet 0.16757 41 6.3739 39 34.634 43

16 Frechet (3P) 0.08671 17 0.97296 22 11.638 26

17 Gamma 0.07777 11 0.77869 17 8.0272 16

18 Gamma (3P) 0.08715 19 0.67966 11 6.3444 3

19 Gen. Extreme Value 0.08251 15 0.78701 19 8.3892 18

20 Gen. Gamma 0.08778 20 0.68123 12 4.9701 1

21 Gen. Gamma (4P) 0.06546 2 0.71623 14 7.6428 12

22 Gen. Pareto 0.05755 1 15.664 50 N/A

23 Gumbel Max 0.08462 16 0.78133 18 6.1398 2

24 Gumbel Min 0.15552 37 8.1203 42 19.632 35

25 Hypersecant 0.14521 36 2.4641 29 15.056 29

26 Inv. Gaussian 0.11176 26 7.5263 41 22.407 36

27 Inv. Gaussian (3P) 0.0902 23 0.79807 20 7.9695 15

28 Johnson SB 0.07976 13 0.71569 13 8.7292 20

29 Kumaraswamy 0.13051 33 4.4636 36 29.056 41

30 Laplace 0.1676 43 3.3335 33 24.286 38

31 Levy 0.28369 50 10.555 45 77.604 49

32 Levy (2P) 0.30362 51 11.68 46 72.743 48

33 Log-Logistic 0.13332 35 2.1734 28 17.928 32

34 Log-Logistic (3P) 0.0894 22 1.141 23 8.8529 21

35 Log-Pearson 3 0.06562 3 0.47467 3 7.7125 13

36 Logistic 0.12982 32 2.1452 27 8.2582 17

37 Lognormal 0.12167 28 2.0396 25 17.507 31

38 Lognormal (3P) 0.08936 21 0.85426 21 7.8656 14

39 Normal 0.10748 25 2.0942 26 7.2876 11

40 Pareto 0.37259 54 26.573 53 78.844 51

41 Pareto 2 0.13055 34 3.5012 34 18.382 33

42 Pearson 5 0.16049 39 6.6966 40 38.771 45

43 Pearson 5 (3P) 0.24426 47 15.124 48 77.773 50
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44 Pearson 6 0.08189 14 0.60218 9 6.7919 8

45 Pearson 6 (4P) 0.08682 18 0.67452 10 6.3464 4

46 Pert 0.06848 6 0.7312 15 8.8926 22

47 Power Function 0.25785 48 12.66 47 72.483 47

48 Rayleigh 0.17007 44 6.1987 38 24.538 39

49 Rayleigh (2P) 0.12701 30 1.665 24 11.179 24

50 Reciprocal 0.30462 52 15.683 51 71.64 46

51 Rice 0.20456 46 8.3575 43 33.55 42

52 Triangular 0.27628 49 15.541 49 34.875 44

53 Uniform 0.12758 31 25.269 52 N/A

54 Weibull 0.07519 7 0.50725 4 6.9089 10

55 Weibull (3P) 0.07703 10 0.55543 6 6.6132 7

56 Chi-Squared No fit

57 Chi-Squared (2P) No fit

58 Johnson SU No fit

59 Log-Gamma No fit

60 Nakagami No fit

61 Student's t No fit
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P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=8200.6 2=17392.0
a=-0.02232 b=0.04927

2 Burr k=10.093 =3.5947 =0.00129

3 Burr (4P) k=90908.0 =3421.1
=1.4194 =-1.414

4 Cauchy =8.9889E-5 =7.0090E-4

5 Dagum k=0.15313 =17.725 =8.2039E-4

6 Dagum (4P) k=0.15007 =0.84066
=0.86306 =1.5905E-4

7 Erlang m=8 =7.0979E-5

8 Erlang (3P) m=156 =1.6973E-5 =-0.00202

9 Error k=1.2771 =2.0976E-4 =6.1990E-4

10 Error Function h=3371.0

11 Exponential =1613.2

12 Exponential (2P) =2169.9 =1.5905E-4

13 Fatigue Life =0.4236 =5.6841E-4

14 Fatigue Life (3P) =0.00586 =0.03566 =-0.03504
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15 Frechet =2.4119 =4.5287E-4

16 Frechet (3P) =1.3999E+8 =29368.0 =-29368.0

17 Gamma =8.7336 =7.0979E-5

18 Gamma (3P) =133.1 =1.8424E-5 =-0.00184

19 Gen. Extreme Value k=-0.61913 =2.2147E-4 =5.8263E-4

20 Gen. Gamma k=0.95352 =7.8618 =7.0979E-5

21 Gen. Gamma (4P) k=2.1535 =58.796
=5.2299E-4 =-0.00284

22 Gen. Pareto k=-1.8282 =0.00121 =1.9185E-4

23 Gumbel Max =1.6355E-4 =5.2550E-4

24 Gumbel Min =1.6355E-4 =7.1431E-4

25 Hypersecant =2.0976E-4 =6.1990E-4

26 Inv. Gaussian =0.00541 =6.1990E-4

27 Inv. Gaussian (3P) =46.976 =0.01271 =-0.01209

28 Johnson SU =0.09459 =2.047
=3.7883E-4 =6.3963E-4

29 Kumaraswamy 1=0.92175 2=1.9949
a=1.5905E-4 b=0.00148

30 Laplace =6742.0 =6.1990E-4

31 Levy =1.4189

32 Levy (2P) =2.0 =1.3519E-4

33 Log-Logistic =3.8175 =5.7154E-4

34 Log-Logistic (3P) =2.2409E+8 =24252.0 =-24252.0

35 Log-Pearson 3 =2.9198 =-0.24255 =-6.7505

36 Logistic =1.1565E-4 =6.1990E-4

37 Lognormal =0.4126 =-7.4587

38 Lognormal (3P) =0.03438 =-5.0986 =-0.00549

39 Nakagami m=2.5416 =4.2788E-7

40 Normal =2.0976E-4 =6.1990E-4

41 Pareto =0.77666 =1.5905E-4

42 Pareto 2 =2215.2 =1.3729

43 Pearson 5 =5.2079 =0.00272

44 Pearson 5 (3P) =246.18 =0.81794 =-0.00271
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45 Pearson 6 1=7.3371 2=90.266 =0.00753

46 Pearson 6 (4P) 1=0.57414 2=1.2618
=9.0927E-4 =1.5905E-4

47 Pert m=5.1440E-4 a=1.3109E-4 b=0.00157

48 Power Function =0.64896 a=1.5905E-4 b=0.00147

49 Rayleigh =4.9461E-4

50 Rayleigh (2P) =3.6138E-4 =1.4513E-4

51 Reciprocal a=1.5783E-4 b=0.00149

52 Rice =5.7984E-4 =2.2055E-4

53 Triangular m=3.5102E-4 a=1.2735E-4 b=0.00149

54 Uniform a=2.5658E-4 b=9.8322E-4

55 Weibull =2.8794 =6.9457E-4

56 Weibull (3P) =3.3568 =7.1100E-4 =-2.0141E-5

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SB No fit

60 Log-Gamma No fit

61 Student's t No fit

Goodness of Fit - Summary

# Distribution

Kolmogorov
Smirnov

Anderson
Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.19905 13 4.8684 5 35.833 10

2 Burr 0.20454 19 5.3003 15 57.237 31

3 Burr (4P) 0.27183 41 16.693 45 79.584 36
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4 Cauchy 0.15528 3 6.124 21 18.737 1

5 Dagum 0.16924 5 3.1675 1 31.924 4

6 Dagum (4P) 0.57503 53 45.359 53 N/A

7 Erlang 0.33652 52 13.598 41 76.533 35

8 Erlang (3P) 0.19676 9 5.1056 11 37.057 17

9 Error 0.2127 23 5.813 20 61.545 32

10 Error Function 0.85796 54 483.93 54 2176.7 46

11 Exponential 0.3118 49 23.725 48 198.06 44

12 Exponential (2P) 0.31219 50 16.339 44 32.121 5

13 Fatigue Life 0.2691 40 8.3569 33 41.237 20

14 Fatigue Life (3P) 0.20086 15 4.9095 6 35.837 11

15 Frechet 0.30702 46 11.721 40 29.676 3

16 Frechet (3P) 0.23861 31 6.9845 24 52.58 28

17 Gamma 0.24138 32 7.7414 29 48.339 24

18 Gamma (3P) 0.21478 25 5.3868 16 33.7 6

19 Gen. Extreme Value 0.13006 1 10.53 37 N/A

20 Gen. Gamma 0.24444 33 7.0766 25 46.351 21

21 Gen. Gamma (4P) 0.2013 16 4.9626 8 35.889 12

22 Gen. Pareto 0.17173 6 19.084 47 N/A

23 Gumbel Max 0.2679 39 11.168 39 91.674 40

24 Gumbel Min 0.13021 2 4.6079 2 36.615 15

25 Hypersecant 0.20909 21 5.7594 19 64.314 33

26 Inv. Gaussian 0.26207 36 10.7 38 88.429 39

27 Inv. Gaussian (3P) 0.19751 10 4.9193 7 36.81 16

28 Johnson SU 0.19899 12 5.0105 9 54.52 29

29 Kumaraswamy 0.29302 45 17.466 46 N/A

30 Laplace 0.22698 28 7.2099 27 81.277 37

31 Levy 1 56 N/A N/A

32 Levy (2P) 1 55 N/A N/A

33 Log-Logistic 0.26507 37 8.0361 32 38.116 18

34 Log-Logistic (3P) 0.15874 4 5.1791 13 48.17 22

35 Log-Pearson 3 0.1854 7 8.5573 34 N/A

36 Logistic 0.20385 18 5.2363 14 57.16 30

37 Lognormal 0.25884 35 7.9948 31 48.219 23
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38 Lognormal (3P) 0.20351 17 5.095 10 35.993 13

39 Nakagami 0.21615 26 6.4027 23 65.45 34

40 Normal 0.19766 11 4.8162 3 34.393 7

41 Pareto 0.33172 51 27.447 52 172.67 43

42 Pareto 2 0.31179 48 23.728 49 198.1 45

43 Pearson 5 0.27715 42 9.2818 36 35.526 9

44 Pearson 5 (3P) 0.21077 22 5.4697 17 35.466 8

45 Pearson 6 0.24819 34 7.1504 26 50.184 26

46 Pearson 6 (4P) 0.28289 43 26.167 51 N/A

47 Pert 0.21393 24 6.354 22 52.511 27

48 Power Function 0.31012 47 14.431 42 29.335 2

49 Rayleigh 0.22622 27 8.6216 35 109.08 41

50 Rayleigh (2P) 0.26712 38 7.6542 28 39.633 19

51 Reciprocal 0.28916 44 16.19 43 153.38 42

52 Rice 0.23299 29 5.7262 18 N/A

53 Triangular 0.23547 30 7.9873 30 84.719 38

54 Uniform 0.18649 8 24.61 50 N/A

55 Weibull 0.2047 20 5.1601 12 48.743 25

56 Weibull (3P) 0.20054 14 4.8231 4 36.189 14

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SB No fit

60 Log-Gamma No fit

61 Student's t No fit
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Fitting Results

# Distribution Parameters

Q-Q Plot
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1 Beta 1=1843.3 2=1701.6
a=-28.062 b=25.997

2 Burr (4P) k=2.4896 =9.248
=3.3524 =-2.9062

3 Cauchy =0.26184 =0.09568

4 Chi-Squared (2P) =1 =-1.0986

5 Dagum (4P) k=0.26209 =10.708
=1.8023 =-1.3483

6 Erlang (3P) m=120 =0.04204 =-4.9798

7 Error k=1.5209 =0.45555 =0.04825

8 Error Function h=1.5522

9 Exponential (2P) =0.87194 =-1.0986

10 Fatigue Life (3P) =0.01063 =42.708 =-42.662

11 Frechet (3P) =1.2525E+8 =5.7017E+7 =-5.7017E+7

12 Gamma (3P) =121.31 =0.04177 =-5.0273

13 Gen. Extreme Value k=-0.35391 =0.46406 =-0.09499

14 Gen. Gamma (4P) k=1.4955 =106.36
=0.31036 =-6.9776

15 Gen. Pareto k=-1.1595 =1.7337 =-0.75454

16 Gumbel Max =0.35519 =-0.15677

17 Gumbel Min =0.35519 =0.25327

18 Hypersecant =0.45555 =0.04825

19 Inv. Gaussian (3P) =1.0368E+5 =27.751 =-27.703

20 Johnson SU =-0.03089 =2.6482
=1.1214 =0.03421

21 Kumaraswamy 1=3.5224 2=645.95
a=-1.4205 b=8.8011

22 Laplace =3.1044 =0.04825

23 Levy (2P) =0.85413 =-1.1591

24 Log-Logistic (3P) =1.1482E+8 =2.9211E+7 =-2.9211E+7

25 Logistic =0.25116 =0.04825

26 Lognormal (3P) =0.03951 =2.4435 =-11.472

27 Normal =0.45555 =0.04825

28 Pearson 5 (3P) =235.97 =1660.6 =-7.0175

29 Pearson 6 (4P) 1=17613.0 2=19223.0
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=47.495 =-43.471

30 Pert m=-0.06435 a=-1.1701 b=1.7507

31 Power Function =0.80355 a=-1.0986 b=1.626

32 Rayleigh (2P) =0.88706 =-1.1214

33 Triangular m=-0.04082 a=-1.1755 b=1.6619

34 Uniform a=-0.74078 b=0.83728

35 Weibull (3P) =3.5546 =1.6362 =-1.4285

36 Burr No fit (data min < 0)

37 Chi-Squared No fit (data min < 0)

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)

Goodness of Fit - Summary
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# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.04971 3 0.3848 7 3.5887 8

2 Burr (4P) 0.04868 2 0.24051 2 3.5194 6

3 Cauchy 0.08702 22 1.7372 22 5.9492 20

4 Chi-Squared (2P) 0.45938 34 37.396 35 165.42 30

5 Dagum (4P) 0.03932 1 0.14944 1 1.9003 1

6 Erlang (3P) 0.06216 15 0.54576 17 5.7981 19

7 Error 0.06508 18 0.36358 6 3.2274 5

8 Error Function 0.08935 23 1.1416 20 5.4636 17

9 Exponential (2P) 0.3051 33 18.843 31 127.38 29

10 Fatigue Life (3P) 0.05054 4 0.41272 10 3.2132 4

11 Frechet (3P) 0.10085 26 2.3771 23 20.195 26

12 Gamma (3P) 0.06594 19 0.64668 18 7.0077 21

13 Gen. Extreme Value 0.05178 7 4.2711 28 N/A

14 Gen. Gamma (4P) 0.05433 10 0.47531 12 3.8347 10

15 Gen. Pareto 0.09522 24 27.383 33 N/A

16 Gumbel Max 0.11757 29 3.3262 26 14.977 25

17 Gumbel Min 0.06718 20 2.8961 25 2.2169 2

18 Hypersecant 0.07567 21 0.54092 16 5.7481 18

19 Inv. Gaussian (3P) 0.05248 8 0.41413 11 3.5847 7

20 Johnson SU 0.05734 14 0.33783 4 4.7691 14

21 Kumaraswamy 0.05563 13 0.50976 15 5.0899 15

22 Laplace 0.10396 27 1.1774 21 10.167 23

23 Levy (2P) 0.46605 35 28.03 34 256.78 31

24 Log-Logistic (3P) 0.05318 9 0.31995 3 3.9149 12

25 Logistic 0.06334 17 0.3609 5 3.9196 13

26 Lognormal (3P) 0.05449 11 0.48603 13 3.835 11

27 Normal 0.05083 6 0.39285 8 3.5918 9

28 Pearson 5 (3P) 0.06273 16 0.66467 19 8.1005 22

29 Pearson 6 (4P) 0.05067 5 0.4079 9 3.2127 3

30 Pert 0.11399 28 2.4923 24 14.756 24
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31 Power Function 0.25167 32 16.578 30 N/A

32 Rayleigh (2P) 0.157 30 4.7568 29 29.171 28

33 Triangular 0.17157 31 3.9008 27 21.985 27

34 Uniform 0.10032 25 20.647 32 N/A

35 Weibull (3P) 0.05516 12 0.49596 14 5.3397 16

36 Burr No fit (data min < 0)

37 Chi-Squared No fit (data min < 0)

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)
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Q-Q Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=5220.3 2=6999.0
a=-4.2663 b=6.1999

2 Burr k=4.4432 =5.2214 =0.28335

3 Burr (4P) k=5.329 =6.7009
=0.38348 =-0.08323

4 Cauchy =0.01237 =0.20958

5 Dagum k=0.28211 =14.597 =0.23546

6 Dagum (4P) k=0.63769 =90.297
=1.5711 =-1.3534

7 Erlang m=18 =0.01084

8 Erlang (3P) m=261 =0.00307 =-0.59735

9 Error k=1.0 =0.04715 =0.20508

10 Error Function h=14.996

11 Exponential =4.8761

12 Exponential (2P) =4.9359 =0.00248

13 Fatigue Life =1.0053 =0.12717

14 Fatigue Life (3P) =0.00438 =10.685 =-10.48

15 Frechet =0.96569 =0.10579

16 Frechet (3P) =2.9332E+8 =1.9151E+7 =-1.9151E+7

17 Gamma =18.915 =0.01084

18 Gamma (3P) =263.25 =0.00304 =-0.59707

19 Gen. Extreme Value k=-0.39742 =0.04114 =0.19343

20 Gen. Gamma k=0.80679 =10.594 =0.01084

21 Gen. Gamma (4P) k=1.3014 =200.83
=0.01497 =-0.67543

22 Gen. Pareto k=-1.262 =0.1632 =0.13293

23 Gumbel Max =0.03677 =0.18386

24 Gumbel Min =0.03677 =0.2263

25 Hypersecant =0.04715 =0.20508

26 Inv. Gaussian =3.8791 =0.20508

27 Inv. Gaussian (3P) =6.6077 =0.20971 =-9.5332E-4
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28 Johnson SU =0.1435 =1.2827
=0.04295 =0.21161

29 Kumaraswamy 1=5.4683 2=1935.5
a=-0.05854 b=1.0668

30 Laplace =29.991 =0.20508

31 Levy =0.09098

32 Levy (2P) =0.07766 =0.00243

33 Log-Logistic =1.7008 =0.18918

34 Log-Logistic (3P) =9.7528E+7 =2.0501E+6 =-2.0501E+6

35 Log-Pearson 3 =0.09769 =-1.8931 =-1.4733

36 Logistic =0.026 =0.20508

37 Lognormal =0.58903 =-1.6582

38 Lognormal (3P) =0.02231 =0.74278 =-1.8966

39 Nakagami m=5.1655 =0.04426

40 Normal =0.04715 =0.20508

41 Pareto =0.23041 =0.00248

42 Pareto 2 =192.48 =38.869

43 Pearson 5 =32.113 =6.4957

44 Pearson 5 (3P) =33.72 =6.9822 =-0.00463

45 Pearson 6 1=8.6279 2=4.3806E+8 =1.0259E+7

46 Pearson 6 (4P) 1=488.94 2=10238.0
=21.873 =-0.84085

47 Pert m=0.20552 a=-0.01229 b=0.41464

48 Power Function =1.3094 a=7.0355E-4 b=0.40641

49 Rayleigh =0.16363

50 Rayleigh (2P) =0.14955 =-0.00113

51 Reciprocal a=0.00248 b=0.40643

52 Rice =0.19943 =0.0474

53 Triangular m=0.20958 a=-0.00538 b=0.41068

54 Uniform a=0.12341 b=0.28676

55 Weibull =1.3462 =0.28705

56 Weibull (3P) =5.5122 =0.28228 =-0.05895

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit
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59 Johnson SB No fit

60 Log-Gamma No fit

61 Student's t No fit

Goodness of Fit - Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.17161 13 5.7497 10 57.252 15

2 Burr 0.1933 25 6.8766 19 58.393 19

3 Burr (4P) 0.19177 24 7.3467 20 69.671 30

4 Cauchy 0.07249 1 0.88493 1 5.9143 1

5 Dagum 0.19991 28 6.2733 14 46.385 10

6 Dagum (4P) 0.13008 6 2.651 2 29.383 5

7 Erlang 0.27726 39 12.358 31 89.522 31

8 Erlang (3P) 0.18297 20 6.5794 16 67.137 27

9 Error 0.12987 5 2.6642 4 25.411 2

10 Error Function 0.97936 56 1060.9 56 N/A

11 Exponential 0.45495 50 34.316 48 345.69 45

12 Exponential (2P) 0.45361 49 34.388 49 342.1 43

13 Fatigue Life 0.50323 53 41.607 52 414.87 47

14 Fatigue Life (3P) 0.17164 14 5.7458 9 57.252 16

15 Frechet 0.42511 48 33.426 47 502.6 48

16 Frechet (3P) 0.24655 34 12.722 32 100.49 32

17 Gamma 0.19147 22 7.9029 25 61.798 23

18 Gamma (3P) 0.19156 23 6.6896 18 67.511 28

19 Gen. Extreme Value 0.1588 11 19.527 37 N/A

20 Gen. Gamma 0.25341 36 14.675 34 113.63 34

21 Gen. Gamma (4P) 0.1718 15 6.0173 13 57.255 18

22 Gen. Pareto 0.20765 31 29.235 45 N/A

23 Gumbel Max 0.22673 33 11.33 30 69.251 29

24 Gumbel Min 0.20663 29 8.6657 28 51.753 13

25 Hypersecant 0.14781 7 3.7832 7 37.623 9

26 Inv. Gaussian 0.18383 21 9.3868 29 60.565 21
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27 Inv. Gaussian (3P) 0.16888 12 8.1861 27 50.01 12

28 Johnson SU 0.12402 2 2.7713 5 29.332 4

29 Kumaraswamy 0.19649 27 7.9184 26 66.912 26

30 Laplace 0.12987 4 2.6642 3 25.411 3

31 Levy 0.39636 45 33.265 46 637.9 49

32 Levy (2P) 0.41874 47 37.772 51 675.42 50

33 Log-Logistic 0.34147 42 26.738 44 276.6 41

34 Log-Logistic (3P) 0.12733 3 2.8787 6 33.007 6

35 Log-Pearson 3 0.49902 52 103.75 54 N/A

36 Logistic 0.15307 10 4.5054 8 48.848 11

37 Lognormal 0.29174 41 21.395 39 250.98 40

38 Lognormal (3P) 0.17436 18 5.7701 11 58.504 20

39 Nakagami 0.17286 16 6.6044 17 56.131 14

40 Normal 0.17352 17 5.8161 12 57.253 17

41 Pareto 0.58095 54 47.316 53 N/A

42 Pareto 2 0.45974 51 34.85 50 347.98 46

43 Pearson 5 0.15219 9 7.8099 23 35.023 8

44 Pearson 5 (3P) 0.15099 8 7.7686 22 35.021 7

45 Pearson 6 0.25236 35 13.242 33 107.64 33

46 Pearson 6 (4P) 0.1808 19 6.283 15 66.007 24

47 Pert 0.26351 37 15.29 36 165.33 37

48 Power Function 0.4041 46 26.281 43 202.09 38

49 Rayleigh 0.28917 40 19.761 38 150.94 35

50 Rayleigh (2P) 0.34855 43 23.374 40 246.11 39

51 Reciprocal 0.75968 55 108.16 55 308.05 42

52 Rice 0.20752 30 7.3749 21 61.001 22

53 Triangular 0.26513 38 15.13 35 154.7 36

54 Uniform 0.22239 32 24.739 41 N/A

55 Weibull 0.3728 44 26.055 42 343.49 44

56 Weibull (3P) 0.19559 26 7.8389 24 66.91 25

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SB No fit

60 Log-Gamma No fit
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61 Student's t No fit
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P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=8673.4 2=16349.0
a=-10.414 b=19.625

2 Burr (4P) k=1.0775 =2.1473E+7
=1.0357E+6 =-1.0357E+6

3 Cauchy =0.0456 =0.00557

4 Dagum (4P) k=108.9 =15.533
=1.198 =-1.6734

5 Erlang (3P) m=213 =0.00626 =-1.3365

6 Error k=1.0 =0.09079 =-0.00181

7 Error Function h=7.7884

8 Exponential (2P) =3.2144 =-0.31291

9 Fatigue Life (3P) =0.00765 =11.813 =-11.815

10 Frechet (3P) =2.0152 =0.25672 =-0.3228

11 Gamma (3P) =193.54 =0.00657 =-1.2744
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12 Gen. Extreme Value k=-0.35048 =0.08769 =-0.02906

13 Gen. Gamma (4P) k=0.87353 =65.146
=0.00556 =-0.66493

14 Gen. Pareto k=-1.1516 =0.32605 =-0.15335

15 Gumbel Max =0.07079 =-0.04267

16 Gumbel Min =0.07079 =0.03905

17 Hypersecant =0.09079 =-0.00181

18 Inv. Gaussian (3P) =84796.0 =8.8515 =-8.8532

19 Johnson SU =-0.0299 =1.5544
=0.1131 =-0.00449

20 Kumaraswamy 1=4.2325 2=1192.8
a=-0.37509 b=1.7922

21 Laplace =15.577 =-0.00181

22 Levy (2P) =0.26144 =-0.33007

23 Log-Logistic (3P) =8.1885E+7 =3.8564E+6 =-3.8564E+6

24 Logistic =0.05005 =-0.00181

25 Lognormal (3P) =0.0284 =1.1629 =-3.2023

26 Normal =0.09079 =-0.00181

27 Pearson 5 (3P) =312.44 =501.76 =-1.6137

28 Pearson 6 (4P) 1=30936.0 2=22843.0
=7.6575 =-10.373

29 Pert m=-0.0167 a=-0.32604 b=0.39807

30 Power Function =0.91541 a=-0.31291 b=0.37826

31 Rayleigh (2P) =0.23163 =-0.31667

32 Triangular m=-0.00576 a=-0.32285 b=0.38592

33 Uniform a=-0.15906 b=0.15544

34 Weibull (3P) =4.2515 =0.40766 =-0.37582

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)



288

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)

Goodness of Fit - Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.09656 12 1.2453 8 12.833 14

2 Burr (4P) 0.06838 1 0.48203 1 10.495 5

3 Cauchy 0.08768 8 1.5509 18 18.75 22

4 Dagum (4P) 0.16381 27 5.9902 25 43.427 24

5 Erlang (3P) 0.09742 15 1.4583 16 11.342 10

6 Error 0.08365 6 0.6787 5 10.726 8

7 Error Function 0.10356 20 1.2723 13 10.724 7

8 Exponential (2P) 0.4071 33 27.887 33 184.68 28
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9 Fatigue Life (3P) 0.09618 10 1.251 9 12.831 13

10 Frechet (3P) 0.25023 30 16.324 29 N/A

11 Gamma (3P) 0.09669 14 1.4169 15 13.448 16

12 Gen. Extreme Value 0.09553 9 5.0211 24 N/A

13 Gen. Gamma (4P) 0.10185 19 1.7455 19 13.464 17

14 Gen. Pareto 0.14263 24 25.15 32 N/A

15 Gumbel Max 0.15124 25 3.6519 22 15.964 20

16 Gumbel Min 0.11555 23 3.7271 23 9.0804 4

17 Hypersecant 0.0767 3 0.52921 4 6.2037 1

18 Inv. Gaussian (3P) 0.09823 17 1.2531 10 14.566 18

19 Johnson SU 0.07954 5 0.51449 3 6.7392 3

20 Kumaraswamy 0.11344 21 2.223 21 17.553 21

21 Laplace 0.08365 7 0.6787 6 10.726 9

22 Levy (2P) 0.51588 34 36.58 34 241.4 29

23 Log-Logistic (3P) 0.06955 2 0.50373 2 10.497 6

24 Logistic 0.07902 4 0.68051 7 6.2955 2

25 Lognormal (3P) 0.09641 11 1.3269 14 12.457 11

26 Normal 0.09785 16 1.2719 12 12.835 15

27 Pearson 5 (3P) 0.10061 18 1.51 17 14.813 19

28 Pearson 6 (4P) 0.09656 13 1.2614 11 12.831 12

29 Pert 0.20309 28 8.1823 26 54.852 26

30 Power Function 0.32053 32 23.251 31 N/A

31 Rayleigh (2P) 0.27302 31 13.509 28 65.922 27

32 Triangular 0.24586 29 9.1402 27 54.265 25

33 Uniform 0.155 26 22.667 30 N/A

34 Weibull (3P) 0.11484 22 2.2046 20 19.04 23

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)
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43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)
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P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=884.8 2=94.012
a=-0.17982 b=0.02725

2 Burr k=1.2263E+14 =0.91967 =1.6529E+13

3 Burr (4P) k=192.54 =5.9621
=0.02676 =-0.00292

4 Cauchy =0.00125 =0.00753

5 Dagum k=0.187 =16.441 =0.00946

6 Dagum (4P) k=0.21929 =0.89273
=0.95053 =1.7769E-4

7 Erlang m=13 =5.2716E-4

8 Erlang (3P) m=149 =1.6514E-4 =-0.01729

9 Error k=1.3966 =0.00197 =0.00738

10 Error Function h=358.61

11 Exponential =135.59
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12 Exponential (2P) =138.94 =1.7769E-4

13 Fatigue Life =0.62518 =0.0061

14 Fatigue Life (3P) =0.00586 =0.33489 =-0.32752

15 Frechet =1.8385 =0.0051

16 Frechet (3P) =4.2726 =0.00775 =-0.00149

17 Gamma =13.99 =5.2716E-4

18 Gamma (3P) =141.87 =1.7099E-4 =-0.01686

19 Gen. Extreme Value k=-0.41869 =0.00205 =0.00682

20 Gen. Gamma k=0.90715 =10.878 =5.2716E-4

21 Gen. Gamma (4P) k=8.4806 =6.2373
=0.03258 =-0.03271

22 Gen. Pareto k=-1.3131 =0.00837 =0.00376

23 Gumbel Max =0.00154 =0.00649

24 Gumbel Min =0.00154 =0.00826

25 Hypersecant =0.00197 =0.00738

26 Inv. Gaussian =0.10318 =0.00738

27 Inv. Gaussian (3P) =0.09155 =0.00733 =1.1415E-4

28 Johnson SU =0.77047 =2.5318
=0.00439 =0.00884

29 Kumaraswamy 1=5.9407 2=369.66
a=-0.00296 b=0.02716

30 Laplace =717.23 =0.00738

31 Levy =0.00516

32 Levy (2P) =0.0067 =1.7764E-4

33 Log-Logistic =3.0018 =0.00692

34 Log-Logistic (3P) =1.4463E+5 =159.56 =-159.55

35 Log-Pearson 3 =0.14214 =-1.1752 =-4.8013

36 Logistic =0.00109 =0.00738

37 Lognormal =0.44111 =-4.9684

38 Lognormal (3P) =0.02921 =-2.689 =-0.06056

39 Nakagami m=4.2445 =5.8246E-5

40 Normal =0.00197 =0.00738

41 Pareto =0.2727 =1.7769E-4
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42 Pareto 2 =522.05 =3.8482

43 Pearson 5 =1.8262 =0.00943

44 Pearson 5 (3P) =12.492 =0.08537 =6.8529E-5

45 Pearson 6 1=10.404 2=1.3260E+6 =930.85

46 Pearson 6 (4P) 1=193.1 2=885.51
=0.12023 =-0.01888

47 Pert m=0.00782 a=-3.4638E-4 b=0.01295

48 Power Function =1.6779 a=8.3257E-6 b=0.01261

49 Rayleigh =0.00588

50 Rayleigh (2P) =0.00533 =9.8462E-5

51 Reciprocal a=1.7754E-4 b=0.01263

52 Rice =0.00709 =0.002

53 Triangular m=0.00843 a=-2.7003E-6 b=0.01288

54 Uniform a=0.00396 b=0.01079

55 Weibull =2.2858 =0.00884

56 Weibull (3P) =5.9576 =0.01113 =-0.00297

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SB No fit

60 Log-Gamma No fit

61 Student's t No fit

Goodness of Fit - Summary

# Distribution

Kolmogorov
Smirnov

Anderson
Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.07736 9 0.79488 7 22.857 20

2 Burr 0.39711 47 27.214 46 197.02 45

3 Burr (4P) 0.07183 5 0.75878 4 22.299 18

4 Cauchy 0.12245 24 2.6064 23 18.551 9

5 Dagum 0.07181 4 0.72136 1 22.812 19

6 Dagum (4P) 0.57409 54 43.779 52 15.399 6

7 Erlang 0.20889 37 7.9601 33 32.934 31
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8 Erlang (3P) 0.10309 17 1.3126 17 17.628 7

9 Error 0.10826 20 1.2106 14 23.436 22

10 Error Function 0.93772 56 741.78 56 N/A

11 Exponential 0.40427 50 28.059 49 191.99 43

12 Exponential (2P) 0.39905 48 27.752 47 178.67 42

13 Fatigue Life 0.30398 46 16.979 40 106.79 39

14 Fatigue Life (3P) 0.08318 12 0.9292 9 25.013 26

15 Frechet 0.29102 45 20.172 42 104.87 38

16 Frechet (3P) 0.16611 35 8.5145 35 N/A

17 Gamma 0.10919 21 2.0157 21 11.193 2

18 Gamma (3P) 0.09021 13 1.1108 13 20.555 15

19 Gen. Extreme Value 0.06698 1 8.359 34 N/A

20 Gen. Gamma 0.15557 34 3.2674 25 23.026 21

21 Gen. Gamma (4P) 0.06969 2 0.73495 2 23.821 24

22 Gen. Pareto 0.1068 19 20.198 43 N/A

23 Gumbel Max 0.14158 30 4.1009 27 19.669 13

24 Gumbel Min 0.10553 18 1.2406 15 8.3296 1

25 Hypersecant 0.11406 23 1.3961 18 14.586 4

26 Inv. Gaussian 0.12345 25 4.6158 30 18.663 11

27 Inv. Gaussian (3P) 0.11084 22 4.2025 28 13.527 3

28 Johnson SU 0.07452 7 0.74373 3 15.281 5

29 Kumaraswamy 0.07152 3 0.77301 6 22.298 17

30 Laplace 0.14215 31 2.3874 22 26.538 27

31 Levy 0.50569 51 32.984 50 330.43 47

32 Levy (2P) 0.56901 53 42.946 51 360.95 48

33 Log-Logistic 0.22054 39 10.224 37 77.3 36

34 Log-Logistic (3P) 0.08267 11 0.93629 10 17.671 8

35 Log-Pearson 3 0.27096 41 153.57 55 N/A

36 Logistic 0.09998 16 1.0515 12 23.807 23

37 Lognormal 0.19698 36 6.995 32 60.634 34

38 Lognormal (3P) 0.07696 8 0.95199 11 28.326 29

39 Nakagami 0.09808 14 1.4847 19 19.402 12

40 Normal 0.08176 10 0.91669 8 25.007 25

41 Pareto 0.53572 52 45.341 53 115.56 40
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42 Pareto 2 0.40424 49 28.058 48 192.11 44

43 Pearson 5 0.28909 44 21.049 44 126.77 41

44 Pearson 5 (3P) 0.12567 26 4.837 31 26.685 28

45 Pearson 6 0.14759 32 2.8163 24 18.558 10

46 Pearson 6 (4P) 0.09957 15 1.2508 16 19.773 14

47 Pert 0.12906 28 3.4613 26 33.142 32

48 Power Function 0.28334 43 17.225 41 N/A

49 Rayleigh 0.21949 38 11.002 38 81.895 37

50 Rayleigh (2P) 0.27589 42 13.286 39 69.801 35

51 Reciprocal 0.70527 55 104.49 54 265.2 46

52 Rice 0.13165 29 1.8773 20 N/A

53 Triangular 0.15002 33 4.3136 29 29.454 30

54 Uniform 0.12864 27 24.141 45 N/A

55 Weibull 0.23337 40 9.0887 36 49.919 33

56 Weibull (3P) 0.07214 6 0.76643 5 22.297 16

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SB No fit

60 Log-Gamma No fit

61 Student's t No fit
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RoTD (constant-variance)
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P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=158.71 2=709.67
a=-1.1396 b=5.0874

2 Burr (4P) k=0.55451 =76381.0
=2460.1 =-2460.1

3 Cauchy =0.03979 =-0.01091

4 Dagum (4P) k=109.12 =21.394
=1.4441 =-1.8496

5 Erlang (3P) m=138 =0.00697 =-0.96505

6 Error k=1.0822 =0.08259 =-0.00233

7 Error Function h=8.5612

8 Exponential (2P) =3.8097 =-0.26482

9 Fatigue Life (3P) =0.05954 =1.3718 =-1.3766

10 Frechet (3P) =7.1305 =0.3817 =-0.41688

11 Gamma (3P) =135.93 =0.00704 =-0.95942

12 Gen. Extreme Value k=-0.11337 =0.06845 =-0.03488

13 Gen. Gamma (4P) k=1.4231 =50.909
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=0.05272 =-0.83481

14 Gen. Pareto k=-0.63933 =0.18677 =-0.11627

15 Gumbel Max =0.0644 =-0.03951

16 Gumbel Min =0.0644 =0.03484

17 Hypersecant =0.08259 =-0.00233

18 Inv. Gaussian (3P) =387.41 =1.3743 =-1.3767

19 Johnson SU =-0.37943 =1.8005
=0.12329 =-0.03287

20 Kumaraswamy 1=3.8895 2=281.52
a=-0.31679 b=1.1587

21 Laplace =17.122 =-0.00233

22 Levy (2P) =0.21901 =-0.28397

23 Log-Logistic (3P) =19.207 =0.79964 =-0.8078

24 Logistic =0.04554 =-0.00233

25 Lognormal (3P) =0.06297 =0.25925 =-1.3009

26 Normal =0.08259 =-0.00233

27 Pearson 5 (3P) =290.46 =402.49 =-1.3931

28 Pearson 6 (4P) 1=1433.0 2=411.09
=0.41771 =-1.4619

29 Pert m=0.00609 a=-0.29152 b=0.25906

30 Power Function =1.481 a=-0.27197 b=0.21687

31 Rayleigh (2P) =0.19853 =-0.27078

32 Triangular m=-0.01568 a=-0.27593 b=0.24987

33 Uniform a=-0.14539 b=0.14073

34 Weibull (3P) =3.9168 =0.34722 =-0.31898

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)
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44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)

Goodness of Fit – Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.13213 19 2.5691 19 12.261 12

2 Burr (4P) 0.08687 2 0.8519 1 7.508 1

3 Cauchy 0.10764 10 1.6026 7 13.11 19
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4 Dagum (4P) 0.1538 25 5.3943 24 31.348 25

5 Erlang (3P) 0.127 14 2.4334 15 11.319 6

6 Error 0.10013 6 1.3546 5 11.859 9

7 Error Function 0.14273 22 2.9938 21 24.924 24

8 Exponential (2P) 0.4405 33 27.869 31 208.91 30

9 Fatigue Life (3P) 0.12772 16 2.4179 14 12.328 14

10 Frechet (3P) 0.09181 3 9.0681 27 N/A

11 Gamma (3P) 0.12856 17 2.4534 16 12.329 15

12 Gen. Extreme Value 0.10644 8 1.7808 8 9.6686 5

13 Gen. Gamma (4P) 0.1289 18 2.4824 17 12.306 13

14 Gen. Pareto 0.14343 23 31.899 32 N/A

15 Gumbel Max 0.10331 7 2.3454 11 8.236 3

16 Gumbel Min 0.15464 26 9.3161 28 14.704 21

17 Hypersecant 0.09724 4 1.4187 6 12.474 18

18 Inv. Gaussian (3P) 0.13685 21 2.5531 18 12.373 17

19 Johnson SU 0.09931 5 1.1621 3 8.2627 4

20 Kumaraswamy 0.15643 27 4.0803 23 18.067 23

21 Laplace 0.10662 9 1.3544 4 11.934 10

22 Levy (2P) 0.49157 34 36.264 34 408.45 31

23 Log-Logistic (3P) 0.08007 1 1.0252 2 7.9989 2

24 Logistic 0.1115 11 1.7935 9 13.954 20

25 Lognormal (3P) 0.12733 15 2.3956 13 12.341 16

26 Normal 0.13403 20 2.814 20 12.199 11

27 Pearson 5 (3P) 0.12525 12 2.3158 10 11.393 8

28 Pearson 6 (4P) 0.12697 13 2.374 12 11.356 7

29 Pert 0.20921 30 6.8344 26 38.994 27

30 Power Function 0.34311 32 17.211 30 103.16 29

31 Rayleigh (2P) 0.28381 31 12.596 29 51.723 28

32 Triangular 0.20059 29 6.7795 25 37.931 26

33 Uniform 0.19067 28 34.307 33 N/A

34 Weibull (3P) 0.15311 24 4.0347 22 18.059 22

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit



304

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)
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RoTD (ewma)
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P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=1.0486 2=0.79844
a=7.3922E-5 b=0.00858

2 Burr k=4960.1 =1.8505 =0.53959

3 Burr (4P) k=53218.0 =361.12
=0.65537 =-0.62983

4 Cauchy =0.00112 =0.00619

5 Dagum k=0.03917 =32.198 =0.00819

6 Dagum (4P) k=0.05963 =26.068
=0.00856 =-5.5759E-4

7 Erlang m=3 =0.00127

8 Erlang (3P) m=91 =2.7112E-4 =-0.01966

9 Error k=4.9113 =0.00249 =0.00491

10 Error Function h=283.42

11 Exponential =203.81
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12 Exponential (2P) =207.28 =8.2155E-5

13 Fatigue Life =1.1181 =0.00286

14 Fatigue Life (3P) =0.00426 =0.58252 =-0.57761

15 Frechet =0.9667 =0.00206

16 Frechet (3P) =2.5814E+8 =6.8903E+5 =-6.8903E+5

17 Gamma =3.8675 =0.00127

18 Gamma (3P) =96.696 =2.6434E-4 =-0.02062

19 Gen. Extreme Value k=-0.68331 =0.00275 =0.00453

20 Gen. Gamma k=0.81255 =2.8757 =0.00127

21 Gen. Gamma (4P) k=25.538 =0.04859
=0.00838 =2.8015E-5

22 Gen. Pareto k=-2.007 =0.01657 =-6.0425E-4

23 Gumbel Max =0.00195 =0.00378

24 Gumbel Min =0.00195 =0.00603

25 Hypersecant =0.00249 =0.00491

26 Inv. Gaussian =0.01898 =0.00491

27 Inv. Gaussian (3P) =0.00352 =0.00492 =7.9696E-5

28 Johnson SB =-0.52246 =0.42445
=0.00794 =-3.5520E-4

29 Kumaraswamy 1=1.1246 2=0.99362
a=7.5381E-5 b=0.00858

30 Laplace =566.83 =0.00491

31 Levy =1.1883

32 Levy (2P) =1.0705 =8.2128E-5

33 Log-Logistic =1.5657 =0.00368

34 Log-Logistic (3P) =2.0444E+8 =2.6299E+5 =-2.6299E+5

35 Log-Pearson 3 =1.5717 =-0.75068 =-4.4162

36 Logistic =0.00138 =0.00491

37 Lognormal =0.93689 =-5.5961

38 Lognormal (3P) =0.03424 =-2.6047 =-0.06903

39 Nakagami m=2.0936 =3.0244E-5

40 Normal =0.00249 =0.00491

41 Pareto =0.26241 =8.2155E-5
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42 Pareto 2 =626.61 =3.0724

43 Pearson 5 =0.85379 =0.00159

44 Pearson 5 (3P) =0.97437 =0.00199 =7.9416E-5

45 Pearson 6 1=1.4724 2=1.0722E+8 =3.9397E+5

46 Pearson 6 (4P) 1=222.84 2=2757.2
=0.45639 =-0.03203

47 Pert m=0.00662 a=-0.00557 b=0.00864

48 Power Function =1.1585 a=5.2946E-5 b=0.00858

49 Rayleigh =0.00391

50 Rayleigh (2P) =0.00421 =-4.9885E-4

51 Reciprocal a=8.2042E-5 b=0.0086

52 Rice =0.00397 =0.00269

53 Triangular m=0.00693 a=-0.00127 b=0.00887

54 Uniform a=5.8521E-4 b=0.00923

55 Weibull =1.2026 =0.00588

56 Weibull (3P) =1.2908E+8 =2.4024E+5 =-2.4024E+5

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SU No fit

60 Log-Gamma No fit

61 Student's t No fit

Goodness of Fit - Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.15854 5 7.9365 23 N/A

2 Burr 0.25817 35 9.8434 30 62.899 38
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3 Burr (4P) 0.15629 4 3.7646 5 7.3505 1

4 Cauchy 0.191 13 9.0982 28 30.014 8

5 Dagum 0.22918 27 5.4218 9 31.946 10

6 Dagum (4P) 0.2123 16 4.4379 6 27.702 6

7 Erlang 0.41564 52 31.747 50 151.35 45

8 Erlang (3P) 0.21407 17 6.0479 14 53.973 31

9 Error 0.19305 14 5.7472 10 44.788 20

10 Error Function 0.68723 54 221.82 54 678.65 47

11 Exponential 0.27441 39 12.833 37 39.7 15

12 Exponential (2P) 0.27537 40 12.737 36 41.79 17

13 Fatigue Life 0.33279 50 17.222 42 64.523 39

14 Fatigue Life (3P) 0.22276 25 5.8822 12 48.142 25

15 Frechet 0.31201 47 15.062 39 56.103 34

16 Frechet (3P) 0.22229 22 7.3706 21 75.806 42

17 Gamma 0.27548 42 17.332 43 55.767 33

18 Gamma (3P) 0.2227 24 6.1033 15 57.709 36

19 Gen. Extreme Value 0.14601 3 6.2052 16 N/A

20 Gen. Gamma 0.27538 41 11.346 32 43.99 18

21 Gen. Gamma (4P) 0.22826 26 5.3848 8 34.042 11

22 Gen. Pareto 0.11753 1 31.48 48 N/A

23 Gumbel Max 0.28316 44 15.28 40 52.549 29

24 Gumbel Min 0.17128 8 3.1057 2 10.828 3

25 Hypersecant 0.25256 33 7.4264 22 20.082 4

26 Inv. Gaussian 0.30123 45 41.771 52 49.983 26

27 Inv. Gaussian (3P) 0.31973 48 19.661 46 68.456 40

28 Johnson SB 0.13166 2 31.543 49 N/A

29 Kumaraswamy 0.22014 19 8.9308 27 N/A

30 Laplace 0.28093 43 9.1117 29 22.849 5

31 Levy 1 55 N/A N/A

32 Levy (2P) 1 56 N/A N/A

33 Log-Logistic 0.2515 32 11.525 33 40.926 16

34 Log-Logistic (3P) 0.18768 11 6.5782 18 37.384 13

35 Log-Pearson 3 0.18963 12 6.7731 20 114.61 44

36 Logistic 0.23908 30 6.6252 19 51.114 28
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37 Lognormal 0.26412 37 12.214 35 48.125 24

38 Lognormal (3P) 0.2213 20 5.9592 13 52.75 30

39 Nakagami 0.23316 29 25.062 47 45.186 21

40 Normal 0.22189 21 5.7836 11 48.112 23

41 Pareto 0.39891 51 34.055 51 44.701 19

42 Pareto 2 0.27432 38 12.836 38 39.669 14

43 Pearson 5 0.32313 49 15.384 41 56.631 35

44 Pearson 5 (3P) 0.30801 46 17.503 44 54.963 32

45 Pearson 6 0.22242 23 8.924 26 51.105 27

46 Pearson 6 (4P) 0.2318 28 6.2255 17 61.375 37

47 Pert 0.16041 6 2.7697 1 30.941 9

48 Power Function 0.21489 18 4.9039 7 35.858 12

49 Rayleigh 0.24804 31 10.145 31 81.926 43

50 Rayleigh (2P) 0.25515 34 8.2683 24 71.765 41

51 Reciprocal 0.57426 53 86.197 53 245.26 46

52 Rice 0.26243 36 11.735 34 N/A

53 Triangular 0.1838 9 3.6487 4 28.693 7

54 Uniform 0.18502 10 18.956 45 N/A

55 Weibull 0.20754 15 8.7518 25 46.512 22

56 Weibull (3P) 0.16578 7 3.3142 3 8.8311 2

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SU No fit

60 Log-Gamma No fit

61 Student's t No fit
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P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=3339.0 2=3922.2
a=-12.142 b=14.265

2 Burr (4P) k=0.88488 =1.1072E+7
=8.2439E+5 =-8.2439E+5

3 Cauchy =0.04911 =0.00742

4 Dagum (4P) k=0.58051 =17.22
=1.114 =-1.062

5 Erlang (3P) m=135 =0.01345 =-1.8133

6 Error k=1.175 =0.15515 =0.00134

7 Error Function h=4.5574

8 Exponential (2P) =2.5184 =-0.39573

9 Fatigue Life (3P) =0.02694 =5.7278 =-5.7285

10 Frechet (3P) =9.5419E+7 =1.5464E+7 =-1.5464E+7

11 Gamma (3P) =169.76 =0.01195 =-2.0278

12 Gen. Extreme Value k=-0.29512 =0.14245 =-0.04778
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13 Gen. Gamma (4P) k=2.1648 =38.136
=0.38549 =-2.0644

14 Gen. Pareto k=-1.0254 =0.49146 =-0.24131

15 Gumbel Max =0.12097 =-0.06848

16 Gumbel Min =0.12097 =0.07117

17 Hypersecant =0.15515 =0.00134

18 Inv. Gaussian (3P) =7894.5 =5.73 =-5.7287

19 Johnson SU =-0.15217 =1.8769
=0.25006 =-0.02205

20 Kumaraswamy 1=3.4809 2=292.2
a=-0.50674 b=2.3649

21 Laplace =9.1149 =0.00134

22 Levy (2P) =0.29014 =-0.42099

23 Log-Logistic (3P) =211.2 =16.413 =-16.411

24 Logistic =0.08554 =0.00134

25 Lognormal (3P) =0.04213 =1.2975 =-3.6621

26 Normal =0.15515 =0.00134

27 Pearson 5 (3P) =281.59 =732.27 =-2.6086

28 Pearson 6 (4P) 1=8169.7 2=2106.2
=1.6271 =-6.313

29 Pert m=-0.01666 a=-0.44254 b=0.52539

30 Power Function =0.89635 a=-0.39573 b=0.44435

31 Rayleigh (2P) =0.3089 =-0.40729

32 Triangular m=0.00498 a=-0.42767 b=0.47671

33 Uniform a=-0.26739 b=0.27008

34 Weibull (3P) =3.5182 =0.56766 =-0.51223

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)
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43 Gamma No fit (data min < 0)

44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)

Goodness of Fit – Summary

# Distribution
Kolmogorov

Smirnov
Anderson

Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.14769 15 3.9939 10 54.089 16

2 Burr (4P) 0.11821 4 2.5995 7 34.649 9

3 Cauchy 0.08121 1 0.60814 1 1.6155 1

4 Dagum (4P) 0.12457 7 2.4661 5 29.389 6

5 Erlang (3P) 0.1503 19 4.1189 19 66.054 24

6 Error 0.10889 3 1.974 3 24.564 4

7 Error Function 0.14537 11 4.0181 15 50.997 14

8 Exponential (2P) 0.39379 33 22.023 31 152.65 29

9 Fatigue Life (3P) 0.14559 13 4.0065 11 57.965 19
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10 Frechet (3P) 0.19821 28 6.629 25 42.289 11

11 Gamma (3P) 0.15281 20 4.1055 18 59.53 22

12 Gen. Extreme Value 0.14192 10 15.717 30 N/A

13 Gen. Gamma (4P) 0.14557 12 4.0274 16 50.981 13

14 Gen. Pareto 0.17653 24 38.893 34 N/A

15 Gumbel Max 0.20185 29 7.1795 26 33.289 7

16 Gumbel Min 0.19753 27 7.3181 27 21.112 3

17 Hypersecant 0.11949 6 2.3667 4 35.274 10

18 Inv. Gaussian (3P) 0.14859 18 4.0088 13 54.103 17

19 Johnson SU 0.13486 9 2.8903 8 29.188 5

20 Kumaraswamy 0.15827 23 4.623 21 68.227 26

21 Laplace 0.1 2 1.4173 2 18.503 2

22 Levy (2P) 0.44344 34 29.545 33 375.84 31

23 Log-Logistic (3P) 0.11835 5 2.5894 6 34.608 8

24 Logistic 0.13082 8 2.9662 9 48.601 12

25 Lognormal (3P) 0.14805 16 4.0283 17 65.963 23

26 Normal 0.14858 17 4.0171 14 54.115 18

27 Pearson 5 (3P) 0.1557 21 4.1694 20 51.751 15

28 Pearson 6 (4P) 0.14593 14 4.0073 12 57.968 20

29 Pert 0.18319 25 6.521 24 69.421 27

30 Power Function 0.26089 31 14.128 29 156.25 30

31 Rayleigh (2P) 0.26447 32 9.3346 28 91.14 28

32 Triangular 0.20302 30 6.3598 23 58.132 21

33 Uniform 0.18688 26 29.375 32 N/A

34 Weibull (3P) 0.15793 22 4.6262 22 67.769 25

35 Burr No fit (data min < 0)

36 Chi-Squared No fit (data min < 0)

37 Chi-Squared (2P) No fit

38 Dagum No fit (data min < 0)

39 Erlang No fit (data min < 0)

40 Exponential No fit (data min < 0)

41 Fatigue Life No fit (data min < 0)

42 Frechet No fit (data min < 0)

43 Gamma No fit (data min < 0)
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44 Gen. Gamma No fit (data min < 0)

45 Inv. Gaussian No fit (data min < 0)

46 Johnson SB No fit

47 Levy No fit (data min < 0)

48 Log-Gamma No fit

49 Log-Logistic No fit (data min < 0)

50 Log-Pearson 3 No fit

51 Lognormal No fit (data min < 0)

52 Nakagami No fit

53 Pareto No fit

54 Pareto 2 No fit

55 Pearson 5 No fit (data min < 0)

56 Pearson 6 No fit (data min < 0)

57 Rayleigh No fit (data min < 0)

58 Reciprocal No fit

59 Rice No fit

60 Student's t No fit

61 Weibull No fit (data min < 0)
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P-P Plot
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Fitting Results

# Distribution Parameters

1 Beta 1=3.3625 2=1.9468
a=-0.00363 b=0.03057

2 Burr k=932.16 =2.9743 =0.20077

3 Burr (4P) k=12613.0 =75.374
=0.46345 =-0.38768

4 Cauchy =0.00329 =0.02143

5 Dagum k=0.09443 =21.409 =0.02625

6 Dagum (4P) k=0.1058 =22.367
=0.02777 =-0.00176

7 Erlang m=7 =0.00252

8 Erlang (3P) m=136 =5.8335E-4 =-0.06119

9 Error k=4.5778 =0.00675 =0.01809

10 Error Function h=104.79

11 Exponential =55.292
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12 Exponential (2P) =55.858 =1.8337E-4

13 Fatigue Life =0.93906 =0.01199

14 Fatigue Life (3P) =0.00633 =1.0656 =-1.0475

15 Frechet =1.4041 =0.01075

16 Frechet (3P) =2.1428 =0.01378 =-4.6107E-4

17 Gamma =7.183 =0.00252

18 Gamma (3P) =114.45 =6.4116E-4 =-0.05544

19 Gen. Extreme Value k=-0.58217 =0.00741 =0.01671

20 Gen. Gamma k=0.89519 =5.7623 =0.00252

21 Gen. Gamma (4P) k=12.356 =0.18402
=0.02862 =-0.00144

22 Gen. Pareto k=-1.7285 =0.03835 =0.00403

23 Gumbel Max =0.00526 =0.01505

24 Gumbel Min =0.00526 =0.02112

25 Hypersecant =0.00675 =0.01809

26 Inv. Gaussian =0.12991 =0.01809

27 Inv. Gaussian (3P) =0.08329 =0.01812 =1.2496E-4

28 Johnson SB =-0.48241 =0.62872
=0.02529 =0.00217

29 Kumaraswamy 1=2.8732 2=2.091
a=-0.00295 b=0.03066

30 Laplace =209.57 =0.01809

31 Levy =0.26398

32 Levy (2P) =0.01467 =1.8319E-4

33 Log-Logistic =2.2905 =0.01603

34 Log-Logistic (3P) =2.0656E+8 =8.3107E+5 =-8.3107E+5

35 Log-Pearson 3 =0.27376 =-1.1714 =-3.807

36 Logistic =0.00372 =0.01809

37 Lognormal =0.61014 =-4.1277

38 Lognormal (3P) =0.03405 =-1.6314 =-0.17765

39 Nakagami m=2.7319 =3.7223E-4

40 Normal =0.00675 =0.01809

41 Pareto =0.2234 =1.8337E-4
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42 Pareto 2 =370.29 =6.6918

43 Pearson 5 =8.8328 =0.14035

44 Pearson 5 (3P) =4.6881 =0.07005 =8.9465E-5

45 Pearson 6 1=5.7971 2=1302.2 =4.0675

46 Pearson 6 (4P) 1=171.94 2=4675.7
=2.4396 =-0.07191

47 Pert m=0.02078 a=-0.00549 b=0.03068

48 Power Function =1.4645 a=1.3285E-4 b=0.03013

49 Rayleigh =0.01443

50 Rayleigh (2P) =0.01371 =-1.0193E-4

51 Reciprocal a=1.8330E-4 b=0.03015

52 Rice =0.01642 =0.00715

53 Triangular m=0.02322 a=-6.4911E-4 b=0.03074

54 Uniform a=0.0064 b=0.02977

55 Weibull =1.7547 =0.02207

56 Weibull (3P) =103.78 =0.56216 =-0.54094

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SU No fit

60 Log-Gamma No fit

61 Student's t No fit

Goodness of Fit - Summary

# Distribution

Kolmogorov
Smirnov

Anderson
Darling Chi-Squared

Statistic Rank Statistic Rank Statistic Rank

1 Beta 0.16413 14 2.7095 6 41.535 22

2 Burr 0.21319 26 4.7808 17 44.765 25

3 Burr (4P) 0.13714 4 2.8886 9 32.511 13

4 Cauchy 0.22486 32 9.0356 35 44.435 24

5 Dagum 0.16568 15 2.469 4 31.662 11

6 Dagum (4P) 0.14878 8 2.3066 3 32.126 12

7 Erlang 0.27081 46 8.1542 32 67.927 36
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8 Erlang (3P) 0.20677 22 4.7161 15 46.051 26

9 Error 0.18129 18 3.2051 11 27.33 6

10 Error Function 0.82436 55 390.68 55 998.4 47

11 Exponential 0.29734 48 19.933 46 50.246 29

12 Exponential (2P) 0.29341 47 19.875 45 43.864 23

13 Fatigue Life 0.31319 51 20.767 48 39.405 21

14 Fatigue Life (3P) 0.1994 19 4.4293 14 34.985 17

15 Frechet 0.26215 42 15.618 42 20.134 5

16 Frechet (3P) 0.24887 38 11.301 40 N/A

17 Gamma 0.2453 36 7.3573 30 56.272 32

18 Gamma (3P) 0.21808 27 4.872 19 48.007 27

19 Gen. Extreme Value 0.13804 5 6.499 25 N/A

20 Gen. Gamma 0.24625 37 5.8561 23 77.617 40

21 Gen. Gamma (4P) 0.14854 7 2.2569 2 33.174 15

22 Gen. Pareto 0.12184 2 24.414 50 N/A

23 Gumbel Max 0.26769 45 9.9831 39 76.883 38

24 Gumbel Min 0.13956 6 3.0589 10 33.012 14

25 Hypersecant 0.22265 30 6.9336 26 56.35 33

26 Inv. Gaussian 0.26692 44 12.248 41 76.912 39

27 Inv. Gaussian (3P) 0.25942 41 8.9101 34 5.2834 1

28 Johnson SB 0.11811 1 17.683 44 N/A

29 Kumaraswamy 0.16194 12 2.6835 5 38.027 18

30 Laplace 0.25025 39 9.2465 37 61.573 35

31 Levy 0.99692 56 818.52 56 1.0378E+5 48

32 Levy (2P) 0.51594 52 33.448 51 104.42 45

33 Log-Logistic 0.22322 31 8.7214 33 12.124 2

34 Log-Logistic (3P) 0.17022 16 4.4245 13 30.573 10

35 Log-Pearson 3 0.15929 11 117.32 53 N/A

36 Logistic 0.21267 24 5.7498 21 53.512 31

37 Lognormal 0.23532 33 7.2251 27 18.33 4

38 Lognormal (3P) 0.20565 21 4.7703 16 39.403 20

39 Nakagami 0.21301 25 9.0789 36 61.51 34

40 Normal 0.20053 20 4.4087 12 34.864 16

41 Pareto 0.51979 53 43.361 52 89.221 43
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42 Pareto 2 0.29739 49 19.935 47 49.301 28

43 Pearson 5 0.29846 50 16.853 43 29.282 8

44 Pearson 5 (3P) 0.2638 43 9.4602 38 17.191 3

45 Pearson 6 0.24022 34 5.9529 24 68.797 37

46 Pearson 6 (4P) 0.22207 29 4.8277 18 52.073 30

47 Pert 0.16223 13 2.7514 7 39.336 19

48 Power Function 0.15798 9 7.8963 31 N/A

49 Rayleigh 0.21258 23 5.7944 22 77.664 41

50 Rayleigh (2P) 0.2543 40 7.2942 28 87.598 42

51 Reciprocal 0.6845 54 117.62 54 288.69 46

52 Rice 0.24354 35 5.6537 20 N/A

53 Triangular 0.15885 10 2.1774 1 27.335 7

54 Uniform 0.17535 17 21.968 49 N/A

55 Weibull 0.21869 28 7.3044 29 98.497 44

56 Weibull (3P) 0.13587 3 2.8647 8 30.225 9

57 Chi-Squared No fit

58 Chi-Squared (2P) No fit

59 Johnson SU No fit

60 Log-Gamma No fit

61 Student's t No fit
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APPENDIX 6.1
Unit Root Tests

LROS (LEVEL)
ADF Test Statistic 4.218319 1% Critical Value* -3.4911

5% Critical Value -2.8879
10% Critical Value -2.5807

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LROS)
Method: Least Squares
Date: 08/22/11 Time: 15:56
Sample(adjusted): 2001:04 2010:04
Included observations: 109 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LROS(-1) 0.334757 0.079358 4.218319 0.0001
D(LROS(-1)) 0.649611 0.174966 3.712785 0.0003
D(LROS(-2)) -0.721331 0.183773 -3.925129 0.0002

C 1.643692 0.411725 3.992211 0.0001

R-squared 0.343550 Mean dependent var -0.098775
Adjusted R-squared 0.324794 S.D. dependent var 0.760272
S.E. of regression 0.624722 Akaike info criterion 1.932988
Sum squared resid 40.97918 Schwarz criterion 2.031753
Log likelihood -101.3478 F-statistic 18.31707
Durbin-Watson stat 1.731350 Prob(F-statistic) 0.000000

PP Test Statistic 5.526277 1% Critical Value* -3.4900
5% Critical Value -2.8874
10% Critical Value -2.5804

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.467389
Residual variance with correction 0.411888

Phillips-Perron Test Equation
Dependent Variable: D(LROS)
Method: Least Squares
Date: 08/22/11 Time: 15:57
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LROS(-1) 0.343259 0.072847 4.712047 0.0000
C 1.684706 0.383711 4.390562 0.0000

R-squared 0.169229 Mean dependent var -0.096834
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Adjusted R-squared 0.161607 S.D. dependent var 0.753466
S.E. of regression 0.689902 Akaike info criterion 2.113320
Sum squared resid 51.88018 Schwarz criterion 2.162140
Log likelihood -115.2892 F-statistic 22.20339
Durbin-Watson stat 1.055792 Prob(F-statistic) 0.000007

LROS (1st DIFFERENCE)
PP Test Statistic -1.529401 1% Critical Value* -3.4906

5% Critical Value -2.8877
10% Critical Value -2.5805

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
2

( Newey-West suggests: 4 )

Residual variance with no correction 0.460129
Residual variance with correction 0.496359

Phillips-Perron Test Equation
Dependent Variable: D(LROS,2)
Method: Least Squares
Date: 08/23/11 Time: 14:45
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
D(LROS(-1)) -0.146032 0.170024 -0.858892 0.3923

C -0.067662 0.065547 -1.032267 0.3043

R-squared 0.006784 Mean dependent var -0.062508
Adjusted R-squared -0.002412 S.D. dependent var 0.683756
S.E. of regression 0.684580 Akaike info criterion 2.097992
Sum squared resid 50.61420 Schwarz criterion 2.147092
Log likelihood -113.3896 F-statistic 0.737695
Durbin-Watson stat 1.206966 Prob(F-statistic) 0.392303

ADF Test Statistic -2.435343 1% Critical Value* -4.0452
5% Critical Value -3.4515
10% Critical Value -3.1509

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LROS,2)
Method: Least Squares
Date: 08/23/11 Time: 14:47
Sample(adjusted): 2001:05 2010:04
Included observations: 108 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LROS(-1)) -0.681214 0.279720 -2.435343 0.0166
D(LROS(-1),2) 0.554442 0.228284 2.428735 0.0169
D(LROS(-2),2) 0.084581 0.191434 0.441827 0.6595
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C 0.191697 0.136931 1.399950 0.1645
@TREND(2001:01) -0.004733 0.002138 -2.213935 0.0290

R-squared 0.102354 Mean dependent var -0.063667
Adjusted R-squared 0.067494 S.D. dependent var 0.690063
S.E. of regression 0.666368 Akaike info criterion 2.071242
Sum squared resid 45.73679 Schwarz criterion 2.195414
Log likelihood -106.8470 F-statistic 2.936145
Durbin-Watson stat 1.446046 Prob(F-statistic) 0.024114

LRoSD (LEVEL)

ADF Test Statistic -3.244152 1% Critical Value* -4.0429
5% Critical Value -3.4504
10% Critical Value -3.1503

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LROSD)
Method: Least Squares
Date: 08/23/11 Time: 14:49
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LROSD(-1) -0.547314 0.168708 -3.244152 0.0016
C -2.472530 0.784508 -3.151696 0.0021

@TREND(2001:01) -0.004699 0.001433 -3.278540 0.0014
R-squared 0.107248 Mean dependent var -0.034469
Adjusted R-squared 0.090716 S.D. dependent var 0.389923
S.E. of regression 0.371817 Akaike info criterion 0.885825
Sum squared resid 14.93076 Schwarz criterion 0.959055
Log likelihood -46.16327 F-statistic 6.487137
Durbin-Watson stat 1.329005 Prob(F-statistic) 0.002185

1ST DIFFERENCE

ADF Test Statistic -5.879333 1% Critical Value* -4.0452
5% Critical Value -3.4515
10% Critical Value -3.1509

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LROSD,2)
Method: Least Squares
Date: 08/23/11 Time: 14:50
Sample(adjusted): 2001:05 2010:04
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Included observations: 108 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.

D(LROSD(-1)) -2.506282 0.426287 -5.879333 0.0000
D(LROSD(-1),2) 0.470641 0.363985 1.293022 0.1989
D(LROSD(-2),2) 0.320288 0.248258 1.290138 0.1999

C 0.063817 0.072547 0.879662 0.3811
@TREND(2001:01) -0.001804 0.001112 -1.621821 0.1079

R-squared 0.465331 Mean dependent var -0.033955
Adjusted R-squared 0.444567 S.D. dependent var 0.481574
S.E. of regression 0.358904 Akaike info criterion 0.833668
Sum squared resid 13.26766 Schwarz criterion 0.957841
Log likelihood -40.01806 F-statistic 22.41061
Durbin-Watson stat 1.419057 Prob(F-statistic) 0.000000

LEVEL
PP Test Statistic -3.705670 1% Critical Value* -4.0429

5% Critical Value -3.4504
10% Critical Value -3.1503

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.134511
Residual variance with correction 0.142888

Phillips-Perron Test Equation
Dependent Variable: D(LROSD)
Method: Least Squares
Date: 08/23/11 Time: 14:51
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LROSD(-1) -0.547314 0.168708 -3.244152 0.0016
C -2.472530 0.784508 -3.151696 0.0021

@TREND(2001:01) -0.004699 0.001433 -3.278540 0.0014

R-squared 0.107248 Mean dependent var -0.034469
Adjusted R-squared 0.090716 S.D. dependent var 0.389923
S.E. of regression 0.371817 Akaike info criterion 0.885825
Sum squared resid 14.93076 Schwarz criterion 0.959055
Log likelihood -46.16327 F-statistic 6.487137
Durbin-Watson stat 1.329005 Prob(F-statistic) 0.002185

1ST DIFFERENCE
PP Test Statistic -7.319482 1% Critical Value* -4.0437

5% Critical Value -3.4508
10% Critical Value -3.1505

*MacKinnon critical values for rejection of hypothesis of a unit root.
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Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.123009
Residual variance with correction 0.092723

Phillips-Perron Test Equation
Dependent Variable: D(LROSD,2)
Method: Least Squares
Date: 08/23/11 Time: 14:51
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LROSD(-1)) -2.045722 0.220102 -9.294432 0.0000
C 0.056316 0.069219 0.813587 0.4177

@TREND(2001:01) -0.001628 0.001068 -1.524265 0.1304
R-squared 0.455006 Mean dependent var -0.034701
Adjusted R-squared 0.444819 S.D. dependent var 0.477260
S.E. of regression 0.355609 Akaike info criterion 0.796922
Sum squared resid 13.53095 Schwarz criterion 0.870571
Log likelihood -40.83069 F-statistic 44.66614
Durbin-Watson stat 1.411154 Prob(F-statistic) 0.000000

LROSD LEVEL
ADF Test Statistic -3.244152 1% Critical Value* -4.0429

5% Critical Value -3.4504
10% Critical Value -3.1503

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LROSD)
Method: Least Squares
Date: 08/23/11 Time: 14:52
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LROSD(-1) -0.547314 0.168708 -3.244152 0.0016
C -2.472530 0.784508 -3.151696 0.0021

@TREND(2001:01) -0.004699 0.001433 -3.278540 0.0014

R-squared 0.107248 Mean dependent var -0.034469
Adjusted R-squared 0.090716 S.D. dependent var 0.389923
S.E. of regression 0.371817 Akaike info criterion 0.885825
Sum squared resid 14.93076 Schwarz criterion 0.959055
Log likelihood -46.16327 F-statistic 6.487137
Durbin-Watson stat 1.329005 Prob(F-statistic) 0.002185
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1ST DIFFERENCE
ADF Test Statistic -5.879333 1% Critical Value* -4.0452

5% Critical Value -3.4515
10% Critical Value -3.1509

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LROSD,2)
Method: Least Squares
Date: 08/23/11 Time: 14:53
Sample(adjusted): 2001:05 2010:04
Included observations: 108 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LROSD(-1)) -2.506282 0.426287 -5.879333 0.0000
D(LROSD(-1),2) 0.470641 0.363985 1.293022 0.1989
D(LROSD(-2),2) 0.320288 0.248258 1.290138 0.1999

C 0.063817 0.072547 0.879662 0.3811
@TREND(2001:01) -0.001804 0.001112 -1.621821 0.1079

R-squared 0.465331 Mean dependent var -0.033955
Adjusted R-squared 0.444567 S.D. dependent var 0.481574
S.E. of regression 0.358904 Akaike info criterion 0.833668
Sum squared resid 13.26766 Schwarz criterion 0.957841
Log likelihood -40.01806 F-statistic 22.41061
Durbin-Watson stat 1.419057 Prob(F-statistic) 0.000000

LEVEL

PP Test Statistic -3.705670 1% Critical Value* -4.0429
5% Critical Value -3.4504
10% Critical Value -3.1503

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.134511
Residual variance with correction 0.142888

Phillips-Perron Test Equation
Dependent Variable: D(LROSD)
Method: Least Squares
Date: 08/23/11 Time: 14:53
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
LROSD(-1) -0.547314 0.168708 -3.244152 0.0016

C -2.472530 0.784508 -3.151696 0.0021
@TREND(2001:01) -0.004699 0.001433 -3.278540 0.0014

R-squared 0.107248 Mean dependent var -0.034469



332

Adjusted R-squared 0.090716 S.D. dependent var 0.389923
S.E. of regression 0.371817 Akaike info criterion 0.885825
Sum squared resid 14.93076 Schwarz criterion 0.959055
Log likelihood -46.16327 F-statistic 6.487137
Durbin-Watson stat 1.329005 Prob(F-statistic) 0.002185

1ST DIFFERENCE

PP Test Statistic -7.319482 1% Critical Value* -4.0437
5% Critical Value -3.4508
10% Critical Value -3.1505

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.123009
Residual variance with correction 0.092723

Phillips-Perron Test Equation
Dependent Variable: D(LROSD,2)
Method: Least Squares
Date: 08/23/11 Time: 14:55
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LROSD(-1)) -2.045722 0.220102 -9.294432 0.0000
C 0.056316 0.069219 0.813587 0.4177

@TREND(2001:01) -0.001628 0.001068 -1.524265 0.1304

R-squared 0.455006 Mean dependent var -0.034701
Adjusted R-squared 0.444819 S.D. dependent var 0.477260
S.E. of regression 0.355609 Akaike info criterion 0.796922
Sum squared resid 13.53095 Schwarz criterion 0.870571
Log likelihood -40.83069 F-statistic 44.66614
Durbin-Watson stat 1.411154 Prob(F-statistic) 0.000000

LROTD LEVEL
ADF Test Statistic 2.124770 1% Critical Value* -2.5846

5% Critical Value -1.9430
10% Critical Value -1.6173

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LROTD)
Method: Least Squares
Date: 08/23/11 Time: 14:56
Sample(adjusted): 2001:04 2010:04
Included observations: 109 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
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LROTD(-1) 0.008981 0.004227 2.124770 0.0359
D(LROTD(-1)) 0.039604 0.103331 0.383270 0.7023
D(LROTD(-2)) -0.363618 0.149525 -2.431818 0.0167

R-squared 0.068364 Mean dependent var -0.040521
Adjusted R-squared 0.050786 S.D. dependent var 0.248226
S.E. of regression 0.241841 Akaike info criterion 0.026063
Sum squared resid 6.199617 Schwarz criterion 0.100136
Log likelihood 1.579593 Durbin-Watson stat 1.909651

PP Test Statistic 1.982646 1% Critical Value* -2.5843
5% Critical Value -1.9429
10% Critical Value -1.6172

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.059513
Residual variance with correction 0.057792

Phillips-Perron Test Equation
Dependent Variable: D(LROTD)
Method: Least Squares
Date: 08/23/11 Time: 14:57
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
LROTD(-1) 0.008046 0.004132 1.947153 0.0541

R-squared 0.007988 Mean dependent var -0.039649
Adjusted R-squared 0.007988 S.D. dependent var 0.246044
S.E. of regression 0.245060 Akaike info criterion 0.034339
Sum squared resid 6.605969 Schwarz criterion 0.058749
Log likelihood -0.905792 Durbin-Watson stat 1.716886

1ST DIFFERENCE
ADF Test Statistic -4.735118 1% Critical Value* -4.0452

5% Critical Value -3.4515
10% Critical Value -3.1509

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LROTD,2)
Method: Least Squares
Date: 08/23/11 Time: 14:57
Sample(adjusted): 2001:05 2010:04
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Included observations: 108 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.

D(LROTD(-1)) -1.324076 0.279629 -4.735118 0.0000
D(LROTD(-1),2) 0.342118 0.227694 1.502533 0.1360
D(LROTD(-2),2) -0.041153 0.153612 -0.267903 0.7893

C 0.046814 0.048654 0.962169 0.3382
@TREND(2001:01) -0.001635 0.000763 -2.141887 0.0346

R-squared 0.472040 Mean dependent var -0.010117
Adjusted R-squared 0.451537 S.D. dependent var 0.323803
S.E. of regression 0.239803 Akaike info criterion 0.027195
Sum squared resid 5.923080 Schwarz criterion 0.151368
Log likelihood 3.531468 F-statistic 23.02264
Durbin-Watson stat 1.935164 Prob(F-statistic) 0.000000

PP Test Statistic -8.954848 1% Critical Value* -4.0437
5% Critical Value -3.4508
10% Critical Value -3.1505

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.057626
Residual variance with correction 0.048675

Phillips-Perron Test Equation
Dependent Variable: D(LROTD,2)
Method: Least Squares
Date: 08/23/11 Time: 14:58
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LROTD(-1)) -0.924108 0.101696 -9.086918 0.0000
C 0.047878 0.047505 1.007858 0.3158

@TREND(2001:01) -0.001514 0.000741 -2.043484 0.0435

R-squared 0.436535 Mean dependent var -0.008369
Adjusted R-squared 0.426002 S.D. dependent var 0.321261
S.E. of regression 0.243396 Akaike info criterion 0.038641
Sum squared resid 6.338859 Schwarz criterion 0.112290
Log likelihood 0.874745 F-statistic 41.44814
Durbin-Watson stat 1.907368 Prob(F-statistic) 0.000000

LBOPO (LEVEL)
ADF Test Statistic 1.444668 1% Critical Value* -2.5846

5% Critical Value -1.9430
10% Critical Value -1.6173

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
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Dependent Variable: D(LBOPO)
Method: Least Squares
Date: 08/23/11 Time: 15:00
Sample(adjusted): 2001:04 2010:04
Included observations: 109 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
LBOPO(-1) 0.013568 0.009392 1.444668 0.1515

D(LBOPO(-1)) -0.749813 0.217911 -3.440910 0.0008
D(LBOPO(-2)) -0.054852 0.222986 -0.245989 0.8062

R-squared 0.106162 Mean dependent var -0.044643
Adjusted R-squared 0.089297 S.D. dependent var 0.419667
S.E. of regression 0.400491 Akaike info criterion 1.034887
Sum squared resid 17.00167 Schwarz criterion 1.108960
Log likelihood -53.40132 Durbin-Watson stat 1.251267

PP Test Statistic -1.668364 1% Critical Value* -4.0429
5% Critical Value -3.4504
10% Critical Value -3.1503

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
0

( Newey-West suggests: 4 )

Residual variance with no correction 0.163058
Residual variance with correction 0.163058

Phillips-Perron Test Equation
Dependent Variable: D(LBOPO)
Method: Least Squares
Date: 08/23/11 Time: 15:00
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LBOPO(-1) -0.238937 0.143216 -1.668364 0.0981
C -0.763516 0.504815 -1.512469 0.1333

@TREND(2001:01) -0.004589 0.001966 -2.333943 0.0214
R-squared 0.048644 Mean dependent var -0.043862
Adjusted R-squared 0.031026 S.D. dependent var 0.415877
S.E. of regression 0.409374 Akaike info criterion 1.078281
Sum squared resid 18.09943 Schwarz criterion 1.151512
Log likelihood -56.84462 F-statistic 2.761058
Durbin-Watson stat 1.404670 Prob(F-statistic) 0.067692
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1ST DIFFERENCE
ADF Test Statistic -5.270874 1% Critical Value* -4.0452

5% Critical Value -3.4515
10% Critical Value -3.1509

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LBOPO,2)
Method: Least Squares
Date: 08/23/11 Time: 15:01
Sample(adjusted): 2001:05 2010:04
Included observations: 108 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LBOPO(-1)) -2.532419 0.480455 -5.270874 0.0000
D(LBOPO(-1),2) 0.701529 0.367431 1.909283 0.0590
D(LBOPO(-2),2) 0.472230 0.221585 2.131140 0.0355

C 0.070171 0.079147 0.886592 0.3774
@TREND(2001:01) -0.002290 0.001215 -1.884610 0.0623

R-squared 0.437263 Mean dependent var -0.038148
Adjusted R-squared 0.415409 S.D. dependent var 0.512624
S.E. of regression 0.391944 Akaike info criterion 1.009797
Sum squared resid 15.82290 Schwarz criterion 1.133970
Log likelihood -49.52903 F-statistic 20.00851
Durbin-Watson stat 1.370912 Prob(F-statistic) 0.000000

PP Test Statistic -6.746960 1% Critical Value* -4.0437
5% Critical Value -3.4508
10% Critical Value -3.1505

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.150522
Residual variance with correction 0.115003

Phillips-Perron Test Equation
Dependent Variable: D(LBOPO,2)
Method: Least Squares
Date: 08/23/11 Time: 15:01
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LBOPO(-1)) -1.732860 0.203739 -8.505309 0.0000
C 0.069948 0.076556 0.913681 0.3629

@TREND(2001:01) -0.002129 0.001181 -1.802375 0.0743

R-squared 0.412140 Mean dependent var -0.035686
Adjusted R-squared 0.401151 S.D. dependent var 0.508330
S.E. of regression 0.393372 Akaike info criterion 0.998774
Sum squared resid 16.55738 Schwarz criterion 1.072424



337

Log likelihood -51.93259 F-statistic 37.50799
Durbin-Watson stat 1.291229 Prob(F-statistic) 0.000000

LTR (LEVEL)
ADF Test Statistic -3.681239 1% Critical Value* -4.0444

5% Critical Value -3.4512
10% Critical Value -3.1507

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LTR)
Method: Least Squares
Date: 08/23/11 Time: 15:01
Sample(adjusted): 2001:04 2010:04
Included observations: 109 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LTR(-1) -0.857329 0.232891 -3.681239 0.0004
D(LTR(-1)) 0.850821 0.228706 3.720153 0.0003
D(LTR(-2)) 1.945342 0.358940 5.419684 0.0000

C -1.226472 0.365227 -3.358110 0.0011
@TREND(2001:01) -0.003133 0.001216 -2.575928 0.0114

R-squared 0.262786 Mean dependent var -0.040869
Adjusted R-squared 0.234432 S.D. dependent var 0.443909
S.E. of regression 0.388406 Akaike info criterion 0.991256
Sum squared resid 15.68937 Schwarz criterion 1.114712
Log likelihood -49.02344 F-statistic 9.267910
Durbin-Watson stat 2.094475 Prob(F-statistic) 0.000002

PP Test Statistic -1.576034 1% Critical Value* -4.0429
5% Critical Value -3.4504
10% Critical Value -3.1503

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.185806
Residual variance with correction 0.211440

Phillips-Perron Test Equation
Dependent Variable: D(LTR)
Method: Least Squares
Date: 08/23/11 Time: 15:02
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LTR(-1) -0.092605 0.100038 -0.925696 0.3567
C -0.058508 0.169422 -0.345340 0.7305

@TREND(2001:01) -0.002341 0.001320 -1.773298 0.0790
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R-squared 0.031304 Mean dependent var -0.039689
Adjusted R-squared 0.013365 S.D. dependent var 0.439948
S.E. of regression 0.436999 Akaike info criterion 1.208881
Sum squared resid 20.62452 Schwarz criterion 1.282112
Log likelihood -64.09292 F-statistic 1.745039
Durbin-Watson stat 1.872513 Prob(F-statistic) 0.179526

1ST DIFFERENCE
ADF Test Statistic -10.54052 1% Critical Value* -4.0437

5% Critical Value -3.4508
10% Critical Value -3.1505

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LTR,2)
Method: Least Squares
Date: 08/23/11 Time: 15:03
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LTR(-1)) -1.019613 0.096733 -10.54052 0.0000
C 0.082013 0.086071 0.952857 0.3428

@TREND(2001:01) -0.002174 0.001337 -1.625979 0.1069

R-squared 0.509427 Mean dependent var -0.003221
Adjusted R-squared 0.500257 S.D. dependent var 0.623316
S.E. of regression 0.440637 Akaike info criterion 1.225705
Sum squared resid 20.77527 Schwarz criterion 1.299355
Log likelihood -64.41379 F-statistic 55.55611
Durbin-Watson stat 1.992778 Prob(F-statistic) 0.000000

PP Test Statistic -10.54578 1% Critical Value* -4.0437
5% Critical Value -3.4508
10% Critical Value -3.1505

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.188866
Residual variance with correction 0.203071

Phillips-Perron Test Equation
Dependent Variable: D(LTR,2)
Method: Least Squares
Date: 08/23/11 Time: 15:04
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LTR(-1)) -1.019613 0.096733 -10.54052 0.0000
C 0.082013 0.086071 0.952857 0.3428
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@TREND(2001:01) -0.002174 0.001337 -1.625979 0.1069
R-squared 0.509427 Mean dependent var -0.003221
Adjusted R-squared 0.500257 S.D. dependent var 0.623316
S.E. of regression 0.440637 Akaike info criterion 1.225705
Sum squared resid 20.77527 Schwarz criterion 1.299355
Log likelihood -64.41379 F-statistic 55.55611
Durbin-Watson stat 1.992778 Prob(F-statistic) 0.000000

LROF LEVEL
ADF Test Statistic 0.576038 1% Critical Value* -4.0444

5% Critical Value -3.4512
10% Critical Value -3.1507

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LROF)
Method: Least Squares
Date: 08/23/11 Time: 15:08
Sample(adjusted): 2001:04 2010:04
Included observations: 109 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
LROF(-1) 0.070013 0.121543 0.576038 0.5658

D(LROF(-1)) -0.151571 0.243741 -0.621853 0.5354
D(LROF(-2)) -0.384040 0.239231 -1.605309 0.1115

C 0.539803 0.770511 0.700579 0.4851
@TREND(2001:01) -0.002003 0.002009 -0.997005 0.3211

R-squared 0.055810 Mean dependent var -0.055113
Adjusted R-squared 0.019495 S.D. dependent var 0.472887
S.E. of regression 0.468255 Akaike info criterion 1.365178
Sum squared resid 22.80332 Schwarz criterion 1.488635
Log likelihood -69.40223 F-statistic 1.536819
Durbin-Watson stat 1.293580 Prob(F-statistic) 0.196968

PP Test Statistic 1.141308 1% Critical Value* -4.0429
5% Critical Value -3.4504
10% Critical Value -3.1503

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.210915
Residual variance with correction 0.181039

Phillips-Perron Test Equation
Dependent Variable: D(LROF)
Method: Least Squares
Date: 08/23/11 Time: 15:08
Sample(adjusted): 2001:02 2010:04
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Included observations: 111 after adjusting endpoints
Variable Coefficient Std. Error t-Statistic Prob.

LROF(-1) 0.020361 0.113153 0.179943 0.8575
C 0.216008 0.718920 0.300462 0.7644

@TREND(2001:01) -0.002302 0.001914 -1.202381 0.2318

R-squared 0.030744 Mean dependent var -0.054636
Adjusted R-squared 0.012795 S.D. dependent var 0.468597
S.E. of regression 0.465590 Akaike info criterion 1.335631
Sum squared resid 23.41156 Schwarz criterion 1.408861
Log likelihood -71.12751 F-statistic 1.712837
Durbin-Watson stat 1.233587 Prob(F-statistic) 0.185216

LROF (1ST DIFFERENCE)
PP Test Statistic -3.201995 1% Critical Value* -4.0437

5% Critical Value -3.4508
10% Critical Value -3.1505

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.212725
Residual variance with correction 0.185343

Phillips-Perron Test Equation
Dependent Variable: D(LROF,2)
Method: Least Squares
Date: 08/23/11 Time: 15:09
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LROF(-1)) -1.051915 0.229211 -4.589292 0.0000
C 0.091224 0.091025 1.002182 0.3185

@TREND(2001:01) -0.002603 0.001407 -1.850320 0.0670

R-squared 0.180169 Mean dependent var -0.040940
Adjusted R-squared 0.164845 S.D. dependent var 0.511718
S.E. of regression 0.467642 Akaike info criterion 1.344669
Sum squared resid 23.39978 Schwarz criterion 1.418318
Log likelihood -70.95678 F-statistic 11.75734
Durbin-Watson stat 1.211468 Prob(F-statistic) 0.000024

ADF Test Statistic -4.384068 1% Critical Value* -4.0452
5% Critical Value -3.4515
10% Critical Value -3.1509

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LROF,2)
Method: Least Squares
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Date: 08/23/11 Time: 15:09
Sample(adjusted): 2001:05 2010:04
Included observations: 108 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LROF(-1)) -2.007134 0.457825 -4.384068 0.0000
D(LROF(-1),2) 0.858584 0.357414 2.402214 0.0181
D(LROF(-2),2) 0.431728 0.233202 1.851304 0.0670

C 0.108766 0.093676 1.161081 0.2483
@TREND(2001:01) -0.003107 0.001443 -2.153688 0.0336

R-squared 0.224385 Mean dependent var -0.041707
Adjusted R-squared 0.194264 S.D. dependent var 0.516388
S.E. of regression 0.463524 Akaike info criterion 1.345273
Sum squared resid 22.13001 Schwarz criterion 1.469446
Log likelihood -67.64474 F-statistic 7.449476
Durbin-Watson stat 1.240663 Prob(F-statistic) 0.000026

LF LEVEL
ADF Test Statistic -3.656628 1% Critical Value* -4.0429

5% Critical Value -3.4504
10% Critical Value -3.1503

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LF)
Method: Least Squares
Date: 08/23/11 Time: 15:11
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LF(-1) -0.238877 0.065327 -3.656628 0.0004
C -1.659645 0.460597 -3.603246 0.0005

@TREND(2001:01) -0.002342 0.000813 -2.878893 0.0048

R-squared 0.114991 Mean dependent var -0.011602
Adjusted R-squared 0.098602 S.D. dependent var 0.228909
S.E. of regression 0.217331 Akaike info criterion -0.188139
Sum squared resid 5.101119 Schwarz criterion -0.114909
Log likelihood 13.44172 F-statistic 7.016323
Durbin-Watson stat 2.377237 Prob(F-statistic) 0.001365

PP Test Statistic -3.464070 1% Critical Value* -4.0429
5% Critical Value -3.4504
10% Critical Value -3.1503

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.045956
Residual variance with correction 0.041027
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Phillips-Perron Test Equation
Dependent Variable: D(LF)
Method: Least Squares
Date: 08/23/11 Time: 15:11
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LF(-1) -0.238877 0.065327 -3.656628 0.0004
C -1.659645 0.460597 -3.603246 0.0005

@TREND(2001:01) -0.002342 0.000813 -2.878893 0.0048

R-squared 0.114991 Mean dependent var -0.011602
Adjusted R-squared 0.098602 S.D. dependent var 0.228909
S.E. of regression 0.217331 Akaike info criterion -0.188139
Sum squared resid 5.101119 Schwarz criterion -0.114909
Log likelihood 13.44172 F-statistic 7.016323
Durbin-Watson stat 2.377237 Prob(F-statistic) 0.001365

1ST DIFFERENCE
ADF Test Statistic -5.614584 1% Critical Value* -4.0452

5% Critical Value -3.4515
10% Critical Value -3.1509

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LF,2)
Method: Least Squares
Date: 08/23/11 Time: 15:11
Sample(adjusted): 2001:05 2010:04
Included observations: 108 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LF(-1)) -1.439365 0.256362 -5.614584 0.0000
D(LF(-1),2) 0.060224 0.217837 0.276465 0.7827
D(LF(-2),2) -0.010153 0.145319 -0.069866 0.9444

C 0.027174 0.044580 0.609546 0.5435
@TREND(2001:01) -0.000789 0.000686 -1.148714 0.2533

R-squared 0.678044 Mean dependent var -2.22E-05
Adjusted R-squared 0.665541 S.D. dependent var 0.380551
S.E. of regression 0.220082 Akaike info criterion -0.144445
Sum squared resid 4.988904 Schwarz criterion -0.020273
Log likelihood 12.80005 F-statistic 54.22985
Durbin-Watson stat 1.996406 Prob(F-statistic) 0.000000

PP Test Statistic -15.42924 1% Critical Value* -4.0437
5% Critical Value -3.4508
10% Critical Value -3.1505

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )
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Residual variance with no correction 0.045620
Residual variance with correction 0.038614

Phillips-Perron Test Equation
Dependent Variable: D(LF,2)
Method: Least Squares
Date: 08/23/11 Time: 15:12
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LF(-1)) -1.353298 0.090526 -14.94925 0.0000
C 0.025319 0.042185 0.600192 0.5496

@TREND(2001:01) -0.000732 0.000652 -1.122777 0.2640

R-squared 0.676233 Mean dependent var 0.000479
Adjusted R-squared 0.670181 S.D. dependent var 0.377088
S.E. of regression 0.216561 Akaike info criterion -0.194994
Sum squared resid 5.018162 Schwarz criterion -0.121345
Log likelihood 13.72467 F-statistic 111.7422
Durbin-Watson stat 2.048510 Prob(F-statistic) 0.000000

FS LEVEL
ADF Test Statistic -3.598643 1% Critical Value* -4.0444

5% Critical Value -3.4512
10% Critical Value -3.1507

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LFS)
Method: Least Squares
Date: 09/20/11 Time: 15:28
Sample(adjusted): 2001:04 2010:04
Included observations: 109 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LFS(-1) -0.557082 0.154803 -3.598643 0.0005
D(LFS(-1)) -0.255930 0.272143 -0.940426 0.3492
D(LFS(-2)) 0.191524 0.255516 0.749556 0.4552

C -3.642371 1.018142 -3.577467 0.0005
@TREND(2001:01) -0.016912 0.004610 -3.668720 0.0004

R-squared 0.188253 Mean dependent var -0.066256
Adjusted R-squared 0.157032 S.D. dependent var 0.582368
S.E. of regression 0.534691 Akaike info criterion 1.630531
Sum squared resid 29.73304 Schwarz criterion 1.753987
Log likelihood -83.86394 F-statistic 6.029676
Durbin-Watson stat 1.299925 Prob(F-statistic) 0.000210
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PP Test Statistic -4.641050 1% Critical Value* -4.0429
5% Critical Value -3.4504
10% Critical Value -3.1503

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.274454
Residual variance with correction 0.281461

Phillips-Perron Test Equation
Dependent Variable: D(LFS)
Method: Least Squares
Date: 09/20/11 Time: 15:29
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

LFS(-1) -0.600402 0.133008 -4.514027 0.0000
C -3.921527 0.884807 -4.432072 0.0000

@TREND(2001:01) -0.018194 0.003918 -4.643106 0.0000

R-squared 0.169122 Mean dependent var -0.065527
Adjusted R-squared 0.153735 S.D. dependent var 0.577340
S.E. of regression 0.531110 Akaike info criterion 1.598961
Sum squared resid 30.46444 Schwarz criterion 1.672191
Log likelihood -85.74233 F-statistic 10.99149
Durbin-Watson stat 1.345537 Prob(F-statistic) 0.000045

1ST DIFFERENCE

ADF Test Statistic -4.079865 1% Critical Value* -4.0468
5% Critical Value -3.4523
10% Critical Value -3.1514

*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(LFS,2)
Method: Least Squares
Date: 09/20/11 Time: 15:29
Sample(adjusted): 2001:07 2010:04
Included observations: 106 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LFS(-1)) -3.471260 0.850827 -4.079865 0.0001
D(LFS(-1),2) 1.670672 0.748213 2.232883 0.0278
D(LFS(-2),2) 1.309487 0.617434 2.120853 0.0364
D(LFS(-3),2) 0.717153 0.454285 1.578641 0.1176
D(LFS(-4),2) 0.214117 0.266858 0.802362 0.4243

C -0.093398 0.127731 -0.731207 0.4664
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@TREND(2001:01) -0.000391 0.001872 -0.209052 0.8348
R-squared 0.359122 Mean dependent var -0.055339
Adjusted R-squared 0.320281 S.D. dependent var 0.685620
S.E. of regression 0.565260 Akaike info criterion 1.760693
Sum squared resid 31.63234 Schwarz criterion 1.936581
Log likelihood -86.31675 F-statistic 9.245918
Durbin-Watson stat 1.236015 Prob(F-statistic) 0.000000

PP Test Statistic -5.664024 1% Critical Value* -4.0437
5% Critical Value -3.4508
10% Critical Value -3.1505

*MacKinnon critical values for rejection of hypothesis of a unit root.

Lag truncation for Bartlett kernel:
4

( Newey-West suggests: 4 )

Residual variance with no correction 0.304577
Residual variance with correction 0.257679

Phillips-Perron Test Equation
Dependent Variable: D(LFS,2)
Method: Least Squares
Date: 09/20/11 Time: 15:29
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

D(LFS(-1)) -1.693156 0.235832 -7.179509 0.0000
C 0.005063 0.109698 0.046151 0.9633

@TREND(2001:01) -0.001463 0.001689 -0.866018 0.3884
R-squared 0.335833 Mean dependent var -0.051911
Adjusted R-squared 0.323419 S.D. dependent var 0.680289
S.E. of regression 0.559568 Akaike info criterion 1.703592
Sum squared resid 33.50349 Schwarz criterion 1.777241
Log likelihood -90.69754 F-statistic 27.05208
Durbin-Watson stat 1.223548 Prob(F-statistic) 0.000000
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APPENDIX 6.2
Regression Results

Dependent Variable: LROS
Method: Least Squares
Date: 08/23/11 Time: 15:26
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C 1.281917 1.196592 1.071307 0.2865
LFS -0.784835 0.100632 -7.799032 0.0000

LROSD 2.129038 0.311270 6.839854 0.0000
LROTD 0.219086 0.102065 2.146535 0.0341

D(LBOPO) 0.798280 0.271323 2.942177 0.0040
LTR 0.692927 0.152517 4.543268 0.0000

R-squared 0.739522 Mean dependent var -5.286916
Adjusted R-squared 0.727118 S.D. dependent var 1.393865
S.E. of regression 0.728129 Akaike info criterion 2.255860
Sum squared resid 55.66798 Schwarz criterion 2.402321
Log likelihood -119.2002 F-statistic 59.62093
Durbin-Watson stat 0.424671 Prob(F-statistic) 0.000000

Dependent Variable: D(LROF)
Method: Least Squares
Date: 08/23/11 Time: 15:37
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.

C 0.565114 0.447220 1.263615 0.2091
LF 0.033094 0.063860 0.518219 0.6054

D(LBOPO) 0.754363 0.068886 10.95094 0.0000
LTR 0.204839 0.053004 3.864593 0.0002

R-squared 0.730310 Mean dependent var -0.054636
Adjusted R-squared 0.722749 S.D. dependent var 0.468597
S.E. of regression 0.246738 Akaike info criterion 0.074393
Sum squared resid 6.514135 Schwarz criterion 0.172034
Log likelihood -0.128830 F-statistic 96.58394
Durbin-Watson stat 2.228165 Prob(F-statistic) 0.000000
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Dependent Variable: LROS
Method: Least Squares
Date: 08/23/11 Time: 15:33
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints
Convergence achieved after 15 iterations
White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coefficient Std. Error t-Statistic Prob.
C 4.001626 1.650942 2.423844 0.0171

LFS 0.134162 0.287630 0.466440 0.6419
LROSD 1.321568 0.430591 3.069194 0.0027
LROTD 0.219408 0.176210 1.245152 0.2159

D(LBOPO) 0.178289 0.209748 0.850019 0.3973
LTR 0.426427 0.136518 3.123592 0.0023

AR(1) 0.970464 0.036382 26.67402 0.0000

R-squared 0.952311 Mean dependent var -5.283856
Adjusted R-squared 0.949533 S.D. dependent var 1.399869
S.E. of regression 0.314480 Akaike info criterion 0.585726
Sum squared resid 10.18643 Schwarz criterion 0.757575
Log likelihood -25.21495 F-statistic 342.8025
Durbin-Watson stat 1.758621 Prob(F-statistic) 0.000000
Inverted AR Roots .97

Dependent Variable: LROS
Method: Least Squares
Date: 08/23/11 Time: 15:33
Sample(adjusted): 2001:03 2010:04
Included observations: 110 after adjusting endpoints
Convergence achieved after 15 iterations
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

C 4.001626 1.377139 2.905754 0.0045
LFS 0.134162 0.298345 0.449687 0.6539

LROSD 1.321568 0.550240 2.401801 0.0181
LROTD 0.219408 0.190241 1.153319 0.2514

D(LBOPO) 0.178289 0.122574 1.454544 0.1488
LTR 0.426427 0.145265 2.935500 0.0041

AR(1) 0.970464 0.031431 30.87580 0.0000

R-squared 0.952311 Mean dependent var -5.283856
Adjusted R-squared 0.949533 S.D. dependent var 1.399869
S.E. of regression 0.314480 Akaike info criterion 0.585726
Sum squared resid 10.18643 Schwarz criterion 0.757575
Log likelihood -25.21495 F-statistic 342.8025
Durbin-Watson stat 1.758621 Prob(F-statistic) 0.000000

Inverted AR Roots .97
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Dependent Variable: D(LROF)
Method: Least Squares
Date: 08/23/11 Time: 15:42
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints
White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coefficient Std. Error t-Statistic Prob.

C 0.565114 0.620988 0.910023 0.3649
LF 0.033094 0.092251 0.358734 0.7205

D(LBOPO) 0.754363 0.139723 5.398978 0.0000
LTR 0.204839 0.094719 2.162606 0.0328

R-squared 0.730310 Mean dependent var -0.054636
Adjusted R-squared 0.722749 S.D. dependent var 0.468597
S.E. of regression 0.246738 Akaike info criterion 0.074393
Sum squared resid 6.514135 Schwarz criterion 0.172034
Log likelihood -0.128830 F-statistic 96.58394
Durbin-Watson stat 2.228165 Prob(F-statistic) 0.000000

Dependent Variable: D(LROF)
Method: Least Squares
Date: 08/23/11 Time: 15:43
Sample(adjusted): 2001:02 2010:04
Included observations: 111 after adjusting endpoints
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.
C 0.565114 0.651459 0.867459 0.3876
LF 0.033094 0.092371 0.358270 0.7208

D(LBOPO) 0.754363 0.168890 4.466587 0.0000
LTR 0.204839 0.059909 3.419183 0.0009

R-squared 0.730310 Mean dependent var -0.054636
Adjusted R-squared 0.722749 S.D. dependent var 0.468597
S.E. of regression 0.246738 Akaike info criterion 0.074393
Sum squared resid 6.514135 Schwarz criterion 0.172034
Log likelihood -0.128830 F-statistic 96.58394
Durbin-Watson stat 2.228165 Prob(F-statistic) 0.000000


