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Abstract

This thesis explores renormalisation group flows in integrable quantum field theories

with boundaries, as described by the g-function. The main focus is on the g-function

in the staircase model, the renormalisation group flow of which passes close to the

unitary minimal models. This g-function is used to identify flows between boundary

conditions both within and between the minimal models. In certain limits the

MA
(+)
m theories which interpolate between pairs of minimal models emerge from

the staircase model, and exact expressions for the g-function in these models are

extracted from the staircase g-function. Perturbative tests on theMA
(+)
4 g-function

are discussed, as is initial work on the g-function for the MA
(−)
4 theory, which

describes flows that emerge when the bulk coupling is taken to have the opposite

sign to that in MA
(+)
4 . Expressions are also found for excited state versions of the

MA
(+)
m g-function, and these allow the unique identification of certain boundary

flows.
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Chapter 1

The Renormalisation Group and

Conformal Field Theory

1.1 Statistical Mechanics

Materials that exhibit sudden changes in their properties have long been the subject

of scientific study. Such changes, known as phase transitions, encompass a wide va-

riety of physical phenomena, from the changes in the state of water as it moves from

solid ice to liquid to gas, to materials whose magnetic properties are suddenly lost

or gained. Everyday observations show that such transitions are induced by changes

in external variables such as temperature, but it was not until the development of

statistical mechanics that the process of these phase transitions could be described

in detail through the microscopic properties of the materials in question.

Statistical mechanics allows the analysis of systems involving an infinite number

of degrees of freedom (see, for example, [2–5]), and the focus here will be on systems

defined on a lattice. Thermodynamic quantities such as entropy, internal energy,

free energy and magnetisation can be extracted purely from the knowledge of the

Boltzmann weights e−βH which encode each configuration of the system. These

weights are determined by the Hamiltonian H which gives the energy for each con-

figuration, and by β = kB/T , where T is the temperature and kB is the Boltzmann

constant. The Boltzmann weights are summed over to form the partition function

1
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Z

Z = Tr e−βH , (1.1.1)

where the trace is taken over all the possible configurations of the system. The

probability of a system being in a particular configuration {σ} with energy H{σ} is

then given by

pσ =
1

Z
e−βH{σ} (1.1.2)

and the thermodynamic variables can also be calculated as functions of Z and its

derivatives. For example, the free energy F is defined as

F = − 1

β
lnZ. (1.1.3)

The focus here will be on models describing magnetic systems. The simplest and

most famous of these is the Ising model, which describes the behaviour of ferromag-

netic materials, and in particular their property of spontaneous magnetisation. This

property means that below a certain temperature they retain their magnetisation

even when the external magnetic field is removed, and it is through the Ising model

that statistical mechanics can be used to describe this sudden change in behaviour

that occurs as the temperature is varied. The Ising model can be defined in any

number of dimensions, but it is the model defined on a two-dimensional square lat-

tice that is of relevance to this thesis. The sites of the lattice are occupied by spins

pointing either ‘up’ or ‘down’, and the more the spins are aligned with one another

the greater the magnetisation of the system. In order to better illustrate certain

concepts that will be important throughout this thesis, the details of this model will

be introduced in the context of a more complex model, the Blume-Capel or tricriti-

cal Ising model (see, for example [6]). The difference between its set-up and that of

the Ising model is that vacant sites are allowed in the lattice. The situation at each

lattice site is described by the variable σi, which can take one of three values: 0 for

the vacant sites and ±1 for spin up and spin down, respectively. The Hamiltonian
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for the model in a particular configuration {σi} is

H({σi}) = −J
∑
<i,j>

σiσj + µ
∑
i

σ2
i − h

∑
i

σi (1.1.4)

where <,> denotes the sum over nearest-neighbour pairs in the lattice. J > 0 is

the coupling constant for the interaction between neighbouring spins, µ is viewed as

a chemical potential for the vacancies, h is the external magnetic field, and
∑

i σi

is equal to the magnetisation of the system in this configuration. The partition

function is

Z =
∑

{σi∈{0,±1}}

e−βH({σi}) (1.1.5)

where the first sum is over all possible configurations of the σi’s. The expectation

value of the magnetisation, M , is given by

M =
∑

{σi∈{0,±1}}

pσ
∑
i

σi =
1

βZ

∂Z

∂h
= −∂F

∂h
. (1.1.6)

In the µ → −∞ limit, the contribution to the partition function from configu-

rations where one or more lattice sites is vacant becomes insignificant with respect

to configurations with all sites occupied, and the model reduces to the Ising model

which has partition function

Z =
∑

{σi∈{±1}}

eβ(J
∑
<i,j> σiσj+h

∑
i σi). (1.1.7)

For J > 0, at temperatures less than a certain critical temperature TC known as the

Curie temperature, the Ising model is dominated either by the configuration with

all spins up (for h > 0), or with all spins down (for h < 0). These ordered phases

persist for h → 0+ and h → 0−, respectively. The system is therefore magnetised

even when there is no external magnetic field, meaning that the model describes a

uniaxial ferromagnet.

A statistical system is characterised by its correlation length, ξ. This measures

the distance over which the degrees of freedom (e.g. spin) of particles occupying

the various lattice sites are correlated to one another, and so defines the scale at
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which microscopic properties have a significant impact on the system. The two point

correlation function G(r) between spins separated by a distance r is

G(r) = 〈σ(r)σ(0)〉 =
1

Z

∑
{σi}

σ(r)σ(0)e−βH({σi}) (1.1.8)

and the correlation length is defined via its decay:

G(r) ∝ e−r/ξ

r(d−1)/2
for r � ξ (1.1.9)

where d is the number of dimensions. The correlation length is dependent on the

external parameters such as temperature, pressure and the external magnetic field,

and as such enters into the description of critical points of the system. A criti-

cal point in the space of the external parameters occurs when one or more of the

thermodynamic variables exhibits a sudden change as the external parameters are

smoothly varied. Such behaviour usually indicates a phase transition in the system.

If a thermodynamic variable defined in terms of a first derivative of the partition

function has a discontinuity for some values of the external parameters then this

indicates a first-order phase transition. If, instead, a first-derivative-type thermody-

namic variable is continuous but its own derivative is divergent then such a critical

point indicates a second-order or continuous phase transition. The continuous be-

haviour is due to the correlation length becoming infinite at the critical point, so

that at this point the system must exist in one unique phase. As the critical point is

approached from either side, the correlation length tends smoothly to infinity, and

the difference between the thermodynamic quantities in question tends smoothly to

zero.

The tricritical Ising model (1.1.4) exhibits both types of phase transition. In its

µ → − ∞ Ising model limit, at every point on the line h = 0, T < TC there is

a discontinuity in the magnetisation M(h) signalling a first-order phase transition

with finite correlation length between the ordered phases with all spins up and all

spins down. As T → TC , the discontinuity tends to zero so that M(h) becomes

continuous at T = TC , and the two phases become indistinguishable. However, the

magnetic susceptibility χ ∼ ∂M
∂h

diverges at this point, as does the correlation length,



1.1. Statistical Mechanics 5

meaning that (h, T ) = (0, TC) is a critical point associated to a second-order phase

transition. For T > TC there is a single, disordered phase. The phase diagram for

the Ising model is depicted in figure 1.1, and the behaviour of the magnetisation

M(h) at h = 0 is shown in figure 1.2.

spin−up phase
Ordered

spin−down phase
Ordered

h

TTC

Disordered phaseFerromagnet

Figure 1.1: Phase diagram of the Ising model: the thicker line marks the first-order
line and the dot indicates the second-order critical point.

h

M

(a) T < TC

There is a disconti-
nuity in the value of the
magnetisation at h = 0.

h

M

(b) T = TC

M is a continuous
function of h, but ∂M

∂h
diverges at h = 0.

h

M

(c) T > TC

M(h) and ∂M
∂h are

both continuous for all
values of h.

Figure 1.2: Plots showing the dependence of the magnetisation M on the external
magnetic field h.

Critical points also arise for other values of µ, and here the focus will be on the

behaviour of the model when h = 0. When T = 0 the partition function is dominated

by the ground state, which for µ < 2J is the configuration with all sites occupied,

either with all spins up or all spins down, just as in the ordered phase of the Ising

model. For µ > 2J the ground state is the configuration where all sites are vacant,

corresponding to a non-magnetic phase. The magnetisation M(h) is discontinuous

at µ = 2J due to the shift between the ordered and non-magnetic phases, and so

there is a critical point here signalling a first-order phase transition. This critical
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point lies at one end of a line of such points that signal a first-order phase transition

in the (µ, T ) plane between ordered and disordered phases, and which extends until

the phase transition becomes second-order. The point where this occurs is called

the tricritical point. From the discussion of the Ising model, there is a critical point

at (µ, T )→ (−∞, TC) lying at a second-order phase transition between the ordered

and disordered phases, and this transition extends into the (µ, T ) plane as a second-

order critical line which meets the first-order critical line at the tricritical point.

This phase behaviour is illustrated in the diagram below.

e
µ

0

phase

Ordered

Disordered

phase

Tricritical point

Ising

T

Figure 1.3: Phase diagram for the tricritical Ising model at h = 0.

1.2 The Renormalisation Group Flow

Close to a critical point, most thermodynamic variables have power-law dependence

on the external variables. The exponents which appear in these power laws are called

the critical exponents. In the example of the Ising model, critical exponents govern

the power-law dependence of M and χ on T and h close to the point T = TC , h = 0.

The critical exponents depend only the parameters defining the universality class to

which the system belongs, such as the number of dimensions and the symmetries

of the Hamiltonian. This makes the study of critical points particularly interesting,

but the infinite correlation length at second-order critical points makes them very

difficult to analyse. It was for this reason that the renormalisation group (RG)

method was developed, most notably by Wilson [7], in order to transform the system
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to a simpler one whilst preserving the long-distance behaviour of the original system

(see, for example [2–5,8–11]).

The infinite correlation length at a critical point makes the system insensitive to

scale transformations, and so a change in the length scale of the system can be con-

sidered. For magnetic systems this can be achieved in a simple way by implementing

a block spin transformation. The premise of this is to begin with a regular lattice

and divide it up into blocks, assigning to each block a spin; this spin is decided by

the spins of the original lattice which lie inside that block. For example, figure 1.4

shows a lattice divided into three by three blocks, with the new lattice sites lying at

the centre of each block.

Original lattice sites

New lattice sites

Figure 1.4: Block transformation of a lattice using 3× 3 blocks.

The Hamiltonian for the system is then expressed in terms of these new spins.

A rescaling has taken place during this process as follows: if the original lattice

spacing is a and the lattice is broken up into identically sized blocks of length

b, then the new lattice spacing after the transformation is ab. To maintain the

original spatial density of lattice sites, a rescaling must be performed on the spatial

distances, x → x/b, and hence the correlation length is scaled in the same way,

ξ → ξ/b. In practice this involves a re-summation in the taking of the trace in the
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partition function, resulting in the partition function being re-expressed in terms

of a transformed Hamiltonian defined via the new spins. This can be seen in the

example of the one-dimensional Ising model. Consider the situation of a closed chain

of n spins, for which the partition function is

Z =
∑
{σi=±1}

exp

[
n∑
i=1

{
K + Jσiσi+1 + 1

2
h (σi + σi+1)

}]
. (1.2.1)

Here K = 0, but is included because it will be non-zero after the transformation. β

is assumed to have been absorbed into the couplings and for simplicity n is taken to

be even, with σn+1 = σ1. The lattice is divided up into blocks of two neighbouring

original lattice sites, and each block is represented by the left-hand site in each

block, that is σi with i odd. Therefore, the σi with even i should be summed over

first in (1.2.1). Initially summing only over σ2 leads to

Z =
∑

σ1,σ3,σ4,··· ,σn

(
exp(2K)2 cosh (J(σ1σ3) + h) exp

(
h

2
(σ1 + σ3)

)
× (1.2.2)

n∏
i=3

exp
{
K + Jσiσi+1 + 1

2
h (σi + σi+1)

})

and so after the summation has been carried out for all even i

Z =
∑

σj , j odd

n/2∏
j=1

exp(2K)2 cosh (J(σ2j−1σ2j+1) + h) exp

(
h

2
(σ2j−1 + σ2j+1)

)
. (1.2.3)

Relabelling σi for i odd as the new lattice sites σ′i produces the renormalised partition

function

Z =
∑
σ′i

n/2∏
i=1

exp(2K)2 cosh
(
J(σ′iσ

′
i+1) + h

)
exp

(
h

2
(σ′i + σ′i+1)

)
. (1.2.4)

The renormalised partition function is expected to indicate that the renormalised

theory behaves in a similar way to the original one. In this case the initial Hamil-

tonian was a nearest-neighbour Hamiltonian, so short-distance interactions are ex-

pected to dominate the Hamiltonian in the new partition function. In fact it can
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again be written in a nearest-neighbour form. Setting

Z =
∑

{σ′j=±1}

exp

 n/2∑
i=1

{
K ′ + J ′σ′iσ

′
i+1 + 1

2
h′
(
σ′i + σ′i+1

)} (1.2.5)

=
∑

{σ′j=±1}

n/2∏
i=1

exp
{
K ′ + J ′σ′iσ

′
i+1 + 1

2
h′
(
σ′i + σ′i+1

)}
(1.2.6)

and equating the factors in the products in (1.2.4) and (1.2.6) for all possible values

of σ′i and σ′i+1, it is possible to solve for K ′, J ′ and h′ to see that the renormalised

partition function can indeed be expressed via a nearest-neighbour Hamiltonian.

The above process demonstrates how renormalisation leads to the Hamiltonian

being expressed in terms of new couplings. The renormalisation group transforma-

tion can therefore be thought of as an operator R acting on the space of all possible

couplings {Ki}. If the transformation is applied repeatedly, then the resulting flow

in the set of couplings is known as the renormalisation group flow. If at some point

the set of couplings is such that R{K∗i } = {K∗i } then {K∗i } is a fixed point of this

flow. Since ξ → ξ/b under the renormalisation group transformation, ξ must be

infinite or zero at the fixed point, and the focus will be on the ξ = ∞ case as this

corresponds to the system being at a critical point. Working back along a flow end-

ing at such a critical fixed point, ξ must always be infinite and so the system is at

a critical point at all points in the flow.

Studying the effect of the renormalisation group transformation on points close

to a fixed point allows a picture to be formed of the renormalisation group flows in

the region surrounding this fixed point. Assuming R is differentiable at {K∗i } and

defining R(Ki) = K ′i, R can be linearised close to the fixed point so that

R (Ki) =R (K∗i ) +
∑
j

R′ (K∗)
(
Kj −K∗j

)
(1.2.7)

⇒ K ′i =K∗i +
∑
j

∂K ′i
∂Kj

∣∣∣∣
K=K∗

(
Kj −K∗j

)
. (1.2.8)

Treating Ki and K ′i as the components of vectors K and K ′ and
∂K′i
∂Kj

∣∣∣
K∗

as a matrix
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M , and writing Ki = K∗i + δKi and K ′i = K∗i + δK ′i, the above becomes

δK ′ = M δK. (1.2.9)

Assuming M possesses a complete set of eigenvectors ψa and eigenvalues λa, δK and

δK ′ can be expanded in terms of the eigenvectors so that

δK =
∑
a

uaψa and δK ′ =
∑
a

u′aψa (1.2.10)

and so by (1.2.9)

δK ′ = M δK =
∑
a

uaλaψa. (1.2.11)

Therefore, u′a = λaua, and repeated (say n) applications of the transformation close

to the fixed point gives u
(n)
a = (λa)

n ua. The quantities ua are coordinates of the

eigenbasis, and are known as the scaling variables, and defining λa = bya , the ya

are known as the renormalisation group eigenvalues. The value of ya therefore

determines the effect of the renormalisation group transformation on the coordinate

associated to the eigenvector ψa, thereby showing whether the renormalisation group

flow is towards or away from the fixed point in this direction. If ya > 0 then the

renormalisation group flow is away from the fixed point, and ua is known as a

relevant variable, whereas if ya < 0 the flow is towards the fixed point and ua is an

irrelevant variable, as depicted in figure 1.5. If ya = 0 then ua is called a marginal

relevant

irrelevant

fixed point

Figure 1.5: RG flows close to a fixed point with one relevant direction and one
irrelevant direction associated to it.

variable, since in the linearised regime it does not have a significant effect.

The eigenvectors associated to the irrelevant scaling variables provide a basis

for a hyper-surface on which all points are attracted to the given fixed point. All
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renormalisation group flows on the surface therefore end at the fixed point, so each

point is a critical point and the surface is known as the critical surface. Each point

on the critical surface of a particular fixed point belongs to the same universality

class as the fixed point. This means that the long distance behaviour of a theory at

each point on the critical surface will be governed by that of the fixed point.

In cases where the parameter space has more than one critical fixed point, renor-

malisation group flows can follow trajectories between them. These occur when,

once the theory has been shifted slightly away from the initial fixed point in a rel-

evant direction, the renormalisation group flow takes the theory to another fixed

point, with respect to which the direction of the flow is irrelevant. The initial and

final fixed points are known as the UV and IR fixed points, respectively. In such

cases there is a crossover phenomenon determined by a crossover scale. Moving

along the RG flow the theory is initially controlled by the UV fixed point, in the

sense that correlation functions over distances up to the scale set by the crossover

scale behave as at the UV fixed point. There is then a transition period, after which

the theory is controlled by the IR fixed point. Another possibility is that an RG

flow might pass close to a number of fixed points. In this case there is a series of

crossovers, and the theory is controlled by each fixed point in turn. Such behaviour

will be seen when the staircase model is introduced in chapter 4.

In the tricritical Ising model, a flow in a certain relevant direction away from

the tricritical fixed point takes the theory to the Ising fixed point. So, the theory

is initially controlled by the tricritical fixed point, and then after a crossover period

is controlled by the Ising fixed point. If the theory is initially shifted away from

the tricritical fixed point in the opposite direction from that just described then

the correlation length becomes finite, and so in this case the crossover is from the

tricritical fixed point to a massive theory. The two flows just described are depicted

in figure 1.6.

Conjugate to each scaling variable ua is a local field φa of scaling dimension xa,

where in d dimensions xa + ya = d. These are known as the scaling fields, and close
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Ising fixed point

non−critical fixed point

tri−critical fixed point

Figure 1.6: RG flows between fixed points in the tricritical Ising model.

to a fixed point the Hamiltonian can be written as

H =
∑
a

∑
r

uaφa(r). (1.2.12)

The scaling fields are themselves described as relevant, marginal or irrelevant, de-

pending on the scaling variable to which they are conjugate. These fields will have an

important role in the perturbation of conformal field theories which will be described

later.

The link with conformal field theory (CFT) arises from local scale invariance.

The lattice set-up and the block-spin transformations used the discussion above

resulted in the Hamiltonian at a fixed point having global scale invariance. However,

block-spin transformations can also be considered that do not have a constant block

size b, but instead use one that depends on the position within the lattice b(r),

such as that depicted in figure 1.7). As long as b(r) varies smoothly and slowly

Figure 1.7: A lattice transformed by a non-constant block-spin transformation.
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enough with r, then in the neighbourhood of a particular lattice cell at r̂, the

transformation will be the same as if the whole lattice was transformed by constant

block-size b(r̂). Therefore, as long as the Hamiltonian only includes short-distance

interactions, the Hamiltonian will transform in the same way as for a constant block

size, and will have the same fixed point. The renormalisation group transformation is

now a local rescaling, and such transformations are members of the set of conformal

transformations.

In the rest of this thesis, RG flows will be viewed in the context of quantum

field theory, so it is the continuum limit of these lattice theories that is important.

Assume now that the lattice has spacing a (up until this point the spacing has been

taken to equal one). In taking the continuum limit, the lattice spacing must be

taken to zero in such a way that the correlation length remains large. This can be

achieved by considering a theory close to the critical surface. Here the correlation

length ξ (measured in lattice units) is very large, and diverges as the critical surface

is approached. As this is the case, it makes sense to measure distances in units of

the physical correlation length ξphys = aξ. From this perspective, ξphys is held fixed

meaning that the lattice spacing a becomes variable and tends to zero as ξ →∞ in

such a way that aξ remains fixed and finite. So, the continuum limit arises as the

limit of a series of models defined on increasingly fine lattices, as the critical surface

is approached.
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1.3 Conformal Field Theory

The conformal group [9, 10, 12, 13] is the group of coordinate transformations that

leave the metric unchanged up to a scale factor. In three or more dimensions this

is the group of global translations, dilations (scale transformations) and rotations,

plus the special conformal transformations which transform the coordinates as

xµ → xµ − aµx2

1− 2a.x+ a2x2
. (1.3.1)

However, in two dimensions the group is much bigger, in fact infinite dimensional,

and it is this that makes two-dimensional conformally invariant theories so interest-

ing. In two-dimensional Euclidean space the line element is ds2 = dx2 + dy2. This

can be re-expressed using z = x + iy and z̄ = x − iy so that ds2 = dzdz̄. Under a

transformation z → f(z, z̄), z̄ → f̄(z, z̄)

ds2 = dzdz̄ → dfdf̄ =

(
∂f

∂z
dz +

∂f

∂z̄
dz̄

)(
∂f̄

∂z
dz +

∂f̄

∂z̄
dz̄

)
. (1.3.2)

For this transformation to be conformal it must satisfy dfdf̄ = Λ(z, z̄)dzdz̄, which

holds if f = f(z) and f̄ = f̄(z̄), or alternatively if f = f(z̄) and f̄ = f̄(z). It is

conventional to take the former case, so that f and f̄ are respectively holomorphic

and anti-holomorphic. These functions form an infinite set of transformations. They

are not necessarily invertible, and are therefore known as local conformal transfor-

mations. The transformations are generated by the operators

ln = −zn+1∂z l̄n = −z̄n+1∂z̄ (1.3.3)

which form the elements of the Witt algebra

[ln, lm] = (n−m)ln+m

[
l̄n, l̄m

]
= (n−m)l̄n+m

[
ln, l̄m

]
= 0. (1.3.4)

l−1, l0 and l1 form a finite sub-algebra and generate the global conformal trans-

formations corresponding to the transformations present in higher dimensions: l−1,

l0 + l̄0, l0 − l̄0 and l1 respectively generate the translations, dilations, rotations and
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special conformal translations.

In order to study conformally invariant field theories, the way fields transform

under conformal transformations must be determined. Primary fields are of partic-

ular importance, and these transform as

φ′(w, w̄) =

(
dw

dz

)−h(
dw̄

dz̄

)−h̄
φ(z, z̄) (1.3.5)

under any conformal transformation z → w(z), z̄ → w̄(z̄). h and h̄ are the conformal

and anti-conformal dimensions of the field and are defined via the scaling dimension

∆ and spin s as

h = 1
2
(∆ + s) h̄ = 1

2
(∆− s). (1.3.6)

A field obeying (1.3.5) for some but not all conformal transformations is called

quasi-primary. The energy-momentum tensor, the tensor made up of the conserved

currents due to constant spacetime translations, is such a field. Returning briefly

to d dimensions, the change of action under a general coordinate transformation

xµ → xµ + εµ(x) is

δS =

∫
ddxT µν∂µεν . (1.3.7)

If rotational invariance is assumed then T µν is symmetric. (1.3.7) can then be

written as

δS = 1
2

∫
ddxT µν (∂µεν + ∂νεµ) . (1.3.8)

The bracketed part of this can be re-written using the fact that under an infinitesimal

coordinate transformation, the metric transforms as gµν → gµν − (∂µεν + ∂νεµ).

Requiring this to be a conformal transformation requires that ∂µεν +∂νεµ = α(x)gµν

with α some function of x, and taking the trace of both sides of this gives α(x) =

2∂ρε
ρ/d. So under a conformal transformation the change in the action is

δS =
1

d

∫
ddxT µµ ∂νε

ν . (1.3.9)

The trace of the energy-momentum tensor must therefore vanish in conformally

invariant theories. For a two-dimensional conformal field theory in the (z, z̄) coor-
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dinates, the tracelessness and symmetry of Tµν fix Tzz̄ = Tz̄z = 0. The conservation

of the energy-momentum tensor ∂µTµν = 0 then becomes

∂zTz̄z + ∂z̄Tzz =0⇒ ∂z̄Tzz = 0 (1.3.10)

and ∂zTz̄z̄ + ∂z̄Tzz̄ =0⇒ ∂zT̄z̄z̄ = 0 (1.3.11)

and this leads to the natural definition Tzz = T (z) and Tz̄z̄ = T̄ (z̄).

To study conformal symmetry in quantum field theory the behaviour of corre-

lation functions must be considered. Under a conformal transformation z → w(z),

z̄ → w̄(z̄) the correlation functions of primary fields transform as

〈φ1(w1, w̄1)φ2(w2, w̄2) · · ·φn(wn, w̄n)〉 = (1.3.12)

n∏
i=1

(
dw

dz

)−hi
w=wi

(
dw̄

dz̄

)−h̄i
w̄=w̄i

〈φ1(z1, z̄1)φ2(z2, z̄2) · · ·φn(zn, z̄n)〉.

The form of the two-point and three-point correlation functions can then be fixed

by considering the restrictions placed on (1.3.12) when w(z) is one of the global

conformal transformations, which leads to the conclusion

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 =


C12

(z1−z2)2h(z̄1−z̄2)2h̄ if h1 = h2 = h, h̄1 = h̄2 = h̄

0 otherwise

(1.3.13)

〈φ1(z1, z̄1)φ2(z2z̄2)φ3(z3, z̄3)〉 =
C123

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13 z̄h̄1+h̄2−h̄3

12 z̄h̄2+h̄3−h̄1
23 z̄h̄3+h̄1−h̄2

13

.

(1.3.14)

where C12 and C123 are constants and zij = zi − zj. Information about correlation

functions is often encoded using the operator product expansion (OPE). This ex-

presses the product of two fields at points z and w respectively as an expansion

in powers of (z − w), the coefficients of which are fields which are non-singular at

z = w. The product of fields, and hence the expansion, only has meaning when

considered inside a correlation function; the presence in the expansion of negative

powers of (z − w) makes manifest the singular behaviour which generally appears
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in correlation functions involving fields at the same position. OPEs simplify the

task of evaluating the correlation functions of a theory since correlators of strings

of operators can be reduced down to two point functions, the forms of which are

known.

The OPEs involving the fields which arise from the energy-momentum tensor are

of particular interest. The non-regular part of its correlation function with a string

of primary fields is given by the Ward identity [14]

〈T (z)φ1(z1) · · ·φn(zn)〉 =
n∑
i=1

{
hi

(z − zi)2
+

1

z − zi
∂

∂zi

}
〈φ1(z1) · · ·φn(zn)〉 (1.3.15)

with a similar identity holding for T̄ (z̄). The OPE of T (z) with a single primary

field of conformal dimensions (h, h̄) is then

T (z)φ(w, w̄) =
h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄) + regular terms. (1.3.16)

The OPE of T (z) with itself is

T (z)T (w) =
c

2(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w
+ regular terms (1.3.17)

so that

〈T (z)T (0)〉 =
c

2z4
. (1.3.18)

c is known as the central charge or the conformal anomaly, and its importance will

be discussed later.

The fields inside a correlation function must be time-ordered. A particularly

illuminating way to decide the time direction is radial quantisation. Starting from

Minkowski space with real coordinates (x, t), the spatial direction x is compactified

so that spacetime becomes a cylinder with the spatial direction running along the

circumference of length L. This is then analytically continued into Euclidean space,

so that the coordinates on the cylinder are defined to be w = x+ it. The conformal

map z(w) = exp(−2πwi/L) then maps this onto the complex plane, so that time is

now measured by the radial distance from the origin, and at fixed time the distance
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t

x

L

z‘time’

Figure 1.8: Radial quantisation: time flows in the radial direction.

x is measured by the distance around the circle of radius exp(2πt/L) centred on the

origin. This is depicted in figure 1.8.

A field φ(z, z̄) with conformal dimension (h, h̄) can now be expanded in modes

as

φ(z, z̄) =
∑
m∈Z

∑
n∈Z

z−m−hz̄−n−h̄φm,n. (1.3.19)

The energy-momentum fields T (z) and T̄ (z̄) have conformal dimensions (2, 0) and

(0, 2) respectively and so

T (z) =
∑
n∈Z

z−n−2Ln with Ln =
1

2πi

∮
dz zn+1T (z)

and T̄ (z) =
∑
n∈Z

z̄−n−2L̄n with L̄n = − 1

2πi

∮
dz̄ z̄n+1T̄ (z̄). (1.3.20)

The Ln and L̄n’s are the generators of conformal transformations on the Hilbert

space of the quantum theory. The algebra they obey is called the Virasoro algebra

and is derived using (1.3.17) and (1.3.20) to be

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (1.3.21)[

L̄n, L̄m
]

= (n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0 (1.3.22)[

Ln, L̄m
]

= 0. (1.3.23)

As in the Witt algebra, the global conformal transformations are generated by L−1,
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L0 and L1 and as before, dilations are generated by L0 + L̄0. In the complex plane,

the effect of a dilation by a factor α is z → αz, which scales the radial distance and

so corresponds to a time translation. It is therefore natural to associate L0 +L̄0 with

the Hamiltonian. The quantum states making up the Hilbert space are eigenstates of

this Hamiltonian. It is natural to assume the existence of a vacuum state |0〉 which

is invariant under the global conformal transformations, and hence annihilated by

L−1, L0, L1, L̄−1, L̄0 and L̄1. In fact, assuming T (z)|0〉 and T̄ (z̄)|0〉 are well-defined

as z, z̄ → 0, the definitions of the conformal generators imply that

Ln|0〉 = 0 and L̄n|0〉 = 0 ∀n ≥ −1. (1.3.24)

Other states are created by acting with fields (now viewed as operators) on the

vacuum state. In terms of ‘in’ and ‘out’ states, corresponding to t = −∞ and

t = +∞ respectively, the in states are viewed as being those created by fields at

z = 0, z̄ = 0 acting on the vacuum state, |φin〉 = limz,z̄→0 φ(z, z̄)|0〉. The out

state is the hermitian conjugate of this, where conjugation is defined as φ†(z, z̄) =

z−2hz̄−2h̄φ(1
z̄
, 1
z
) with φ(z, z̄) assumed to be quasi-primary. This leads to the out

state being defined as 〈φout| = 〈0| limw,w̄→∞w
2hw̄2h̄φ(w, w̄).

Let φ now be a primary field of conformal dimensions (h, h̄) and define the in

state it creates as

|h, h̄〉 = φ(0, 0)|0〉. (1.3.25)

Then from the definition of the conformal generators and the OPE of the energy-

momentum fields with a primary field,

L0|h, h̄〉 = h|h, h̄〉 and L̄0|h, h̄〉 = h̄|h, h̄〉 (1.3.26)

making |h, h̄〉 an eigenstate of the Hamiltonian. In addition,

Ln|h, h̄〉 = 0 and L̄n|h, h̄〉 = 0 for n > 0. (1.3.27)
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Using the Virasoro relations,

L0(Ln|h, h̄〉) = (h− n)Ln|h, h̄〉. (1.3.28)

So, since acting with L0 produces the conformal dimension of a state, the operators

L−n for n > 0 act as raising operators, creating excited states. The general form of

an excited state is then given by L−m1L−m2 · · ·L−mn |h, h̄〉 with mn ≥ mn−1 ≥ · · · ≥

m1 ≥ 1. These states are called descendants of |h, h̄〉. Such a state has eigenvalue

h+m1 +m2 + · · ·+mn of L0, and the number N = m1 +m2 + · · ·+mn is defined

as the level of the descendant. |h, h̄〉 and its descendants form a closed subset of

the Hilbert space with respect to the Virasoro generators, which means they form a

representation of the Virasoro algebra. This is called a Verma module.

Excited states can also be thought of as descendant fields acting on the vacuum

state. If the descendant field is defined as

φ−n(z) = (L−nφ)(z) =
1

2πi

∮
z

dw
1

(w − z)n−1
T (w)φ(z) (1.3.29)

then

L−n|h, h̄〉 = φ−n(0)|0〉. (1.3.30)

A primary field φ and its descendants make up a conformal family [φ]. The operator

product expansion of two fields contains in its general form fields arising from all

conformal families. However, not all of these will actually appear; the information

about which conformal families can occur in an OPE is encoded in the fusion rules

φa × φb =
∑
k

N c
abφc (1.3.31)

where φi denotes a primary field and all members of its conformal family, and the

fusion coefficients N c
ab are non-negative integers.

In general the field-content of a theory is made up of an infinite set of conformal

families. However, this set can be restricted by the presence of null fields χ(z). Null

fields arise from states |χ〉 which are linear combinations of descendant states but

which themselves satisfy Ln|χ〉 = 0 ∀ n > 0 so that they act as a highest-weight
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state of a sub-module of the Verma module of which they are part, thus making the

representation reducible. They are orthogonal to all states in the original Verma

module, including themselves, and hence have zero norm. These properties mean

that no information is lost by setting |χ〉 = 0, and doing so makes the representation

irreducible. From the field viewpoint, the analogue of the orthogonality property is

the vanishing of the correlation function of the null field with any other string of

fields. A null field is a descendant field; using (1.3.29) and the Ward identity (1.3.15),

a correlation function involving a descendant field can be rewritten in terms of dif-

ferential operators acting on the correlation function involving the corresponding

primary field. Therefore, a correlation function involving a primary field whose con-

formal family includes a null field will satisfy a partial differential equation (PDE).

These PDEs impose constraints which have the effect of truncating the operator

algebra. For certain values of the conformal dimension h there exists an infinite

number of null fields and the effect of the truncation is that the number of confor-

mal families becomes finite. Such theories are called the minimal models and are

labelled by positive coprime integers p and p′ and denoted M(p, p′). In terms of

these labels the central charge is

c =1− 6(p− p′)2

pp′
, (1.3.32)

so that c < 1, and the conformal dimensions of the primary fields are

h =hr,s =
(pr − p′s)2 − (p− p′)2

4pp′
, 1 ≤ r < p′ and 1 ≤ s < p. (1.3.33)

The above has the symmetry hr,s = hp′−r,p−s and so the corresponding primary fields

satisfy φ(r,s) = φ(p′−r,p−s) meaning that there are (p − 1)(p′ − 1)/2 distinct primary

fields, and hence conformal families, in the theory. The possible conformal weights

are often tabulated, forming the entries of the so-called Kac table.

Amongst these theories are the unitary minimal models, the representations of

which contain no states of negative norm. Using the Virasoro algebra the norm of
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a basic descendant state is

〈h|LnL−n|h〉 =
(

2nh+
c

12
n(n2 − 1)

)
〈h|h〉 (1.3.34)

and so a unitary theory must have 2nh + c
12
n(n2 − 1) ≥ 0 for all n ≥ 0. c must

be non-negative, otherwise the condition is not satisfied for large enough n. In

addition, the condition for n = 1 requires that h ≥ 0, so that the primary fields

of a unitary model must have non-negative conformal dimension. Finding unitary

minimal models therefore amounts to considering which values of p and p′ make

(1.3.33) non-negative, and in particular this must hold when (pr − p′s)2 takes its

smallest possible value. The restrictions on r and smean that pr−p′s can never equal

zero. However, since p and p′ are coprime there exist 1 ≤ ρ < p′ and 1 ≤ σ < p such

that pρ− p′σ = 1. So the smallest possible value taken by the conformal dimension

is h = (1 − (p − p′)2)/4pp′, which is only non-negative if |p − p′|=1. The unitary

minimal model with (p, p′) = (m+ 1,m) is denotedMm, and for the c ≥ 0 unitarity

condition to also be satisfied and the model to be non-trivial m must be greater

than or equal to three.

The partition function for the minimal models can be written in a particularly

simple form. This can be seen by considering a conformal field theory on a torus.

For a torus with modular parameter τ , defined in the complex plane as having

vertices (0, 1, τ, 1 + τ) with opposite edges identified, the partition function can be

expressed in terms of the Hamiltonian and momentum operators that arise in radial

quantisation. This is possible because radial quantisation corresponds to a theory

defined on a cylinder, from which a torus can be created by sewing together the

ends. It was seen earlier that time translations are generated by the dilation operator

L0 +L̄0, and in fact the Hamiltonian is H = 2π(L0 +L̄0)−πc/6. Spatial translations

correspond to rotations centred on the origin, and therefore the momentum operator

is proportional to L0− L̄0, in fact P = 2π(L0− L̄0). The torus partition function is

Z(τ, τ̄) = Tre−ImτH+iReτP (1.3.35)
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which on defining q = exp(2πiτ) becomes

Z(τ, τ̄) = Tr qL0−c/24q̄L̄0−c/24. (1.3.36)

The Hilbert space for the theory is defined as

H =
⊕
h,h̄

nh,h̄Vh ⊗ V̄h̄ (1.3.37)

where Vh and V̄h̄ are the Verma modules arising from the action of the holomorphic

and anti-holomorphic generators respectively on a state corresponding to a primary

field of dimensions (h, h̄). The nh,h̄ are non-negative integers determining which

Verma modules appear in the Hilbert space. In view of this decomposition of the

Hilbert space, the partition function can be rewritten as

Z(τ, τ̄) =
∑
h,h̄

nh,h̄χh(q)χh̄(q̄), (1.3.38)

where χ, known as the character of a Verma module, encodes the degeneracy dh(N)

at each level of a conformal family and is defined as

χh(q) =
∑
N

dh(N)qh+N−c/24. (1.3.39)

A torus with modular parameter τ is invariant under the action of the maps S :

τ → −1/τ and T : τ → τ + 1. The partition function of a theory on the torus

should therefore be invariant under these transformations, and this constrains which

representations contribute to the partition function. In particular, invariance under

S(τ) restricts the values that can be taken by the nh,h̄. Under this transformation

the characters χ and χ̄ obey

χh
(
e−2πi/τ

)
=
∑
h′

Sh
′

h χh′
(
e2πiτ

)
(1.3.40)

with the matrix S determined by the model in question. For a minimal model
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M(p, p′), the element of S for h = ha,b and h′ = hc,d is

Sh
′

h = 2

√
2

pp′
(−1)1+bc+ad sin

(
πacp

p′

)
sin

(
πbdp′

p

)
. (1.3.41)

This matrix is symmetric and orthogonal. Its orthogonality means that it preserves

the inner product of vectors, and hence the partition function

Z(τ, τ̄) =
∑
h,h̄

χh(q)χh(q̄) (1.3.42)

is invariant under S, defining nh,h̄ = δh,h̄ . The modular transformation T demands

that h − h̄ ∈ Z and this is clearly satisfied here. A partition function of the above

form is therefore known as a diagonal modular invariant.

Some of the minimal models describe the statistical models already discussed.

The simplest unitary minimal model is M(4, 3) = M3. This has three distinct

primary fields, with conformal dimensions h1,1 = 0, h1,2 = 1/16 and h1,3 = 1/2,

and central charge c = 1/2. This matches the operator content of the critical two-

dimensional Ising model, which consists of the identity operator of dimensions (0, 0)

and two local scaling operators, σ of dimensions (1/16, 1/16) and ε of dimensions

(1/2, 1/2). σ and ε are continuum versions of the terms appearing in the lattice

Hamiltonian, with σ corresponding to σi and ε to the nearest-neighbour term σiσj.

A similar correspondence between primary fields and operators exists between the

next minimal model in the series, M(5, 4) =M4 with central charge c = 7/10, and

the tricritical Ising model.



Chapter 2

Integrability Away From

Criticality

2.1 Perturbed Conformal Field Theory

The tools described in the previous two sections can now be used to consider two-

dimensional field theories away from the renormalisation group fixed point described

by a conformal field theory. This can be achieved by considering a perturbed confor-

mal field theory (PCFT), where the original CFT is perturbed in a relevant direction

with the respect to the fixed point it describes. It is then possible to consider the

renormalisation group flow of such a theory. This section will consist of a review of

Alexander Zamolodchikov’s work on this subject [15] (see also [10]).

The construction of the perturbed theory means that the original CFT is the

UV limit of the resulting field theory, and as such governs the structure its field

content. The action of the field theory is described by the perturbation of the

original conformal field theory by one of its relevant fields. A field with conformal

dimensions (h, h̄) is relevant if its scaling dimension ∆ = h + h̄ satisfies ∆ < 2. A

spinless field is chosen so that the theory is rotation invariant, and so h = h̄ and the

field is relevant if h < 1. The focus will be on unitary theories; these have h ≥ 0

meaning that all such fields are primary. The perturbation of the action by such a

25
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relevant, spinless, primary field φ is then given as

SPCFT = SCFT + λ

∫
φ(x) d2x. (2.1.1)

λ is a coupling constant which indicates the distance of the perturbation away from

the fixed point and is taken to be zero at the fixed point itself. It must have

dimension (mass)2−2h for the action to be dimensionless.

An important property to maintain as the theory is perturbed away from the

fixed point is that of integrability (it will be seen in section 2.2 that in the case of

massive field theory this leads to simple scattering behaviour). A theory is integrable

if it has an infinite number of commuting conserved charges which arise as integrals

of conserved densities. In a CFT, the energy momentum tensor is such a conserved

density since

∂z̄T = 0. (2.1.2)

The associated charge is then

Q1 =

∮
T (z)

zn
dz n ∈ Z. (2.1.3)

Since T is holomorphic, this integral is equal to 2πi ∂n−1
z T (z)/(n− 1)! and this result

is independent of the choice of closed contour. In particular, if the contour is chosen

to be a circle centred on the origin then the value of the integral is independent

of the radius of the circle. In radial quantisation, a circle centred on the origin

represents a particular time slice, and therefore Q1 is a conserved charge. T (z) is a

conformal descendant of the identity operator since by (1.3.29)

(L−2I)(z) =
1

2πi

∮
z

dw
1

(w − z)
T (w) = T (z). (2.1.4)

Further conserved charges arise from considering other descendants of the iden-

tity operator. The action of a Virasoro operator L−n with n ≥ 2 is

(L−nI)(z) =
1

2πi

∮
z

dw
1

(w − z)n−1
T (w) =

1

(n− 2)!
∂n−2
z T (z). (2.1.5)
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and a general descendant of the form (L−k1L−k2 · · ·L−knI)(z), ki ≥ 1 is a combi-

nation of powers of T (z) and its derivatives. The set of such fields is not linearly

independent because fields such as (2.1.5) are total derivatives, and therefore since

L−1 acts as ∂
∂z

they also emerge as a field of the form

α(L−1L−l1L−l2 · · ·L−lmI)(z). (2.1.6)

with α some multiplicative factor. In order to restrict to a linearly independent set,

only fields made up of elements of the form

(L−k1L−k2 · · ·L−knI)(z) k1 ≥ 2, ki ≥ 1 for i 6= 1 (2.1.7)

are considered. The space of such fields is labelled as Ω, and decomposes into

spaces of fields at each level as Ω =
⊕∞

s=0 Ωs. Since the identity field has conformal

dimensions (0, 0), a descendant at level N has dimensions (N, 0), and (1.3.6) implies

that N is equal to the spin of the field. The descendants described above can

therefore be denoted by T
(a)
s , where s is the spin, and a distinguishes between the

various descendants at a particular level. Their relation to T (z) means that the T
(a)
s

are all holomorphic, satisfying

∂z̄T
(a)
s = 0, (2.1.8)

and can be integrated to give an infinite set of conserved charges

Q(a)
s,n =

∮
T

(a)
s

zn
dz n ∈ Z. (2.1.9)

In order for the perturbed theory to be integrable, at least some of these con-

served charges must survive away from the fixed point described by the CFT. The

T
(a)
s are no longer conserved in the perturbed theory and the former conservation

equations become

∂z̄T
(a)
s = λR

(a,1)
s−1 + · · ·+ λnR

(a,n)
s−1 (2.1.10)

where the R
(a,n)
s−1 are local fields in the perturbed theory. The left hand side has

dimensions (s, 1) and λ has dimensions (1 − h, 1 − h) for perturbing field φ of di-
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mensions (h, h) (these left and right dimensions have the same relation to spin and

scaling dimension as the conformal dimensions did in the CFT), so R
(a,n)
s−1 must have

dimensions (s − n(1 − h), 1 − n(1 − h)). This indicates that for s > 1 R
(a,n)
s−1 is the

perturbed theory version of a descendant of a relevant primary field of dimensions

(1−n(1−h), 1−n(1−h)). Since h < 1 due to φ being relevant, n(1−h) > 1 for large

enough n and the right dimension of R
(a,n)
s−1 becomes negative. However, since it is

a unitary CFT that is being perturbed, no fields can have negative dimensions and

so the right hand side of (2.1.10) involves a finite number of terms. Furthermore,

n > 1 implies that 1 − n(1 − h) < h, so assuming that φ is the most relevant field

(the field of smallest dimension bar the identity) then 1−n(1− h) must equal zero.

So for an n > 1 term to exist in (2.1.10) h must have the form

h = 1− 1

n
(2.1.11)

and R
(a,n)
s−1 is a level s− 1 descendant of the identity field. For the n = 1 term, R

(a,1)
s−1

has dimensions (s − 1 + h, h) making it a level s − 1 descendant of φ. The space

of such fields, along with its decomposition into spaces at each level, is denoted by

Φ =
⊕∞

s=0 Φs.

Assuming first that (2.1.11) is not satisfied and only the n = 1 term appears in

(2.1.10), then

∂z̄T
(a)
s = λR

(a,1)
s−1 . (2.1.12)

Zamolodchikov [15] defined operators Dn, n ∈ Z which define the action of ∂z̄ on

the T
(a)
s (z, z̄) in the perturbed theory. These operators act on elements of Ω as

DnT
(a)
s (z, z̄) =

1

2πi

∮
z

φ(w, z̄)(w − z)nT (a)
s dw (2.1.13)

and have the following properties

∂z̄ =− λD0, (2.1.14)

D−n−1I =
1

n!
Ln−1φ(z, z̄) =

1

n!
∂nz φ(z, z̄) and (2.1.15)

[Ln, Dm] =− ((1− h)(n+ 1) +m)Dn+m. (2.1.16)
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Then, for example,

∂z̄T (z, z̄) = −λD0L−2I = λ(1− h)D−2I = λ(1− h)∂zφ(z, z̄). (2.1.17)

Identifying λ(h− 1)φ(z, z̄) with Tz̄z = −Θ, this is the conservation equation for the

energy-momentum tensor in the perturbed theory (cf 1.3.11))

∂z̄T = ∂zΘ. (2.1.18)

Considering the one-form

α = Tdz + Θdz̄, (2.1.19)

dα = 0 by the continuity equation and so α is a closed form. An integral of α

between two points is therefore independent of the particular contour chosen, so

that an integral over a closed contour is equal to zero. In particular this means that

integrals over circular contours around the origin

∮
Tdz + Θdz̄ (2.1.20)

are always equal to zero, making such integrals conserved charges in radial quanti-

sation.

So one conserved quantity has been found for the perturbed theory, but since the

energy-momentum tensor is expected to be conserved in any field theory the real

question is whether there are other conserved quantities. The Dn algebra demon-

strates that not all the derivatives ∂z̄T
(a)
s (z, z̄) can be expressed as total derivatives

with respect to z. However, Zamolodchikov showed that the existence of some con-

served quantities can be determined by counting the dimensions of the spaces Ωs

and Φs [15]. The properties of (2.1.12) already discussed mean that ∂z̄ maps from

Ωs to Φs−1. Define Φ̂s to be the space of those fields in Φs which are not total ∂z

derivatives, and Πs to be the projection operation from Φs onto Φ̂s. Then if

Πs−1∂z̄Ts = 0, (2.1.21)
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∂z̄Ts can only equal one of the total ∂z derivative fields in Φs−1. A conservation

equation of the form

∂z̄Ts = ∂zΘs−2, Θs−2 ∈ Φs−2 (2.1.22)

therefore exists if the linear map Πs−1∂z̄ has a kernel of non-zero dimension. Zamolod-

chikov’s counting argument, which identifies when such a kernel occurs, relies on the

property that a linear map A : X → Y satisfies the equation

dim(kerA) + dim(imA) = dim(X). (2.1.23)

This means that ker(Πs−1∂z̄) has non-zero dimension if dim(Ωs) >dim(im(Πs−1∂z̄)).

This is certainly true if dim(Ωs) >dim(Φ̂s−1), and this requirement is the key element

of Zamolodchikov’s counting argument.

Zamolodchikov noted that if φ lives in a Virasoro representation which includes

null fields, then the null field equations can provide the extra relations between

descendent fields necessary for conservation equations to exist. Null fields occur

when a primary field has dimension

hr,s =
1

24
(c− 1) +

1

4
(rα+ + sα−)2 (2.1.24)

where

α± =

√
1− c±

√
25− c√

24
. (2.1.25)

This dimension is real for c < 1. φ(1,3), i.e. the field with dimension h1,3, is a relevant

field in this regime, and so φ = φ(1,3) is a natural example to consider. This satisfies

the null field equation

(
L−3 −

2

h+ 2
L−1L−2 +

1

(h+ 1)(h+ 2)
L3
−1

)
φ(1,3) = 0. (2.1.26)

Consider T4(z, z̄) = (L−2L−2I)(z, z̄). Using the Dn operators this satisfies

∂z̄T4 = λ(1− h)

(
2L−2L−1 +

h− 3

6
L3
−1

)
φ. (2.1.27)
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Using the null field equation and the Virasoro algebra this can be expressed as

∂z̄T4 = λ

(
1− h
h+ 2

)
∂z

(
2hL−2 +

(h− 2)(h− 1)(h+ 3)

6(h+ 1)
L2
−1

)
φ(1,3) (2.1.28)

which is a conservation equation. From the counting argument viewpoint, this arose

because dim(Ω4) = 1 (since T4 is its only linearly independent field) and dim(Φ̂3) = 0

(due to the null field equation). Hence Πs−1∂z̄ has a kernel of non-zero dimension. It

has been seen above that conservation equations exist for a theory with perturbing

field φ(1,3) for T2 and T4, and Zamolodchikov used the counting argument to show

that such equations also exist for T6 and T8 and therefore conjectured that the Ts

for all even, positive values of s give rise to conserved quantities

∮
Tsdz + Θs−2dz̄. (2.1.29)

As was discussed earlier, the minimal models are special cases of theories involv-

ing null fields. However, one has to be careful when applying the above assumptions

to the minimal models. This is because the central charge c is rational in these mod-

els, and so there is the possibility of (2.1.11) being satisfied meaning that an extra

term of the form λnR
(a,n)
s−1 (which will be a level s−1 descendent of the identity field)

must be added to (2.1.12). For a unitary minimal model Mm, φ(1,3) has dimension

h1,3 = 1− 2
m+1

, which has the form of (2.1.11) for odd values of m. The dimension

of Ωr for r = 1, 3 ,5 and 7 is zero meaning that R
(a,n)
s−1 must be a total ∂z derivative

for s − 1 = 1, 3, 5 and 7 and so conservation equations for T2, T4, T6 and T8 still

exist. Zamolodchikov conjectured that this is in fact true for Ts for all even s.

2.1.1 The c-theorem

In order to study the RG flow of perturbed CFTs, Zamolodchikov defined the c-

function [16], which encodes the position of a theory along the RG flow from a

fixed point. His c-theorem states that a renormalisable theory with couplings {λj}

and positive-definite Hermitian product possesses a function C({λj}) of the RG

couplings, which is
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i) non-increasing along the direction of the RG flows

ii) stationary only at fixed points

iii) equal at a fixed point to the central charge of the theory describing the fixed

point.

The proof of this [5,10,12,16] uses the energy-momentum tensor Tµν . As before, the

components of the energy-momentum tensor are labelled as

Tzz = T Tz̄z̄ = T̄ Tzz̄ = Tz̄z = −Θ. (2.1.30)

The conservation of the energy-momentum tensor, ∂µTµν = 0 then implies that

∂z̄T − ∂zΘ = 0 and (2.1.31)

∂zT̄ − ∂z̄Θ = 0. (2.1.32)

The two-point functions for these components have the form

〈T (z, z̄)T (0, 0)〉 =
F (zz̄)

z4
(2.1.33)

〈Θ(z, z̄)T (0, 0)〉 = 〈T (z, z̄)Θ(0, 0)〉 =
G(zz̄)

z3z̄
(2.1.34)

〈Θ(z, z̄)Θ(0, 0)〉 =
H(zz̄)

z2z̄2
(2.1.35)

Taking the correlation function of (2.1.31) with T (0, 0) and with Θ(0, 0) gives

zz̄F ′(zz̄)− zz̄G′(zz̄) + 3G(zz̄) = 0 and (2.1.36)

zz̄G′(zz̄)−G(zz̄)− zz̄H ′(zz̄) + 2H(zz̄) = 0. (2.1.37)

Eliminating G from this leads to

zz̄F ′(zz̄) + 2zz̄G′(zz̄)− 3zz̄H ′(zz̄) + 6H = 0 (2.1.38)

so defining

C = 2F + 4G− 6H (2.1.39)
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gives

zz̄C ′(zz̄) = −12H(zz̄). (2.1.40)

By positivity H ≥ 0, so C ′(zz̄) ≤ 0. Therefore, C is a non-increasing function of

R =
√
zz̄, at some fixed values of the RG couplings {λj}. Since C is dimensionless,

this is equivalent to it being non-increasing along the RG trajectory at fixed R.

Therefore, defining C({λj}) ≡ C(1, {λj}) gives a quantity that is a function of the

RG couplings that is non-increasing along the RG trajectories. Furthermore, C is

stationary only at fixed points, since this only occurs when H and therefore Θ are

equal to zero. Finally, at a fixed point H = G = 0 and F = c/2 by (1.3.18), so the

definition of C (2.1.39) implies that C = c. So C({λj}) satisfies all the requirements

of Zamolodchikov’s theorem.

Zamolodchikov analysed the c-function for the perturbation of a unitary minimal

model Mm by the relevant operator φ(1,3)

Spert = SMm + λ

∫
φ(1,3)(x)d2x, (2.1.41)

with λ > 0. For m � 1, the IR limit of the RG flow was found to be another

fixed point, with c-function value cIR = 1 − 6
m(m−1)

, equal to that of the minimal

model Mm−1. It was shown in [17] that the only unitary CFTs with c < 1 are

the unitary minimal models. So, at least for m � 1, the IR fixed point of the

RG flow from Mm can be identified with Mm−1. Zamolodchikov also showed that

in the IR limit, the perturbing operator becomes φ
(m−1)
(3,1) . This has the dimension

1 + 2/(m − 1) and so is an irrelevant operator, explaining the flow into Mm−1.

The field theory which describes this interpolating flow between Mm and Mm−1 is

denoted byMA
(+)
m . Although Alexander Zamolodchikov’s proof was given for m�

1, evidence that such flows exist for all m > 3 emerges when Alexei Zamolodchikov’s

thermodynamic Bethe ansatz approach is applied to the MA
(+)
m theories [18], and

this will be discussed further in section 2.3.
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2.2 The S-matrix

The previous section demonstrated how a theory that lies on a renormalisation

group flow in a relevant direction away from a fixed point can be considered as a

perturbation of that fixed point. However, to fully define a theory in this manner is

very complicated as quantities are expressed as sums of an infinite number of terms.

An alternative description of such theories can be found by recalling the fact that in

a flow between UV and IR fixed points, each point in the flow except the UV fixed

point itself is controlled by the IR fixed point, as was described in section 1.2. If

this IR fixed point is non-critical then this means that the theory can be described

by a massive field theory. Moving from Euclidean space to Minkowski space, the

asymptotic states of the theory can be interpreted as collections of particles whose

scattering is described by the S-matrix [19–22].

The S-matrix S is a unitary matrix which given a basis of asymptotic states |in〉

for t→ −∞ and |out〉 for t→∞ maps between the in-basis and the out-basis:

|in〉 = S|out〉. (2.2.1)

Combined with the unitarity of the matrix, this allows the scattering amplitude

between an initial state expressed via the in-basis and a final state expressed via the

out-basis to be given entirely in terms of the in-basis or the out-basis:

Amplitude = 〈final, out|initial, in〉 = 〈final, in|S|initial, in〉

= 〈final, out|S|initial, out〉. (2.2.2)

The existence of conserved charges has several important consequences in the scat-

tering theory. Before investigating this further, some notation must be established.

Working in light-cone coordinates, the momentum of a particle of mass m is

(p, p̄) = (p0 + p1, p0 − p1) (2.2.3)

so that when the particle is on-shell pp̄ = m2. p and p̄ can be expressed in terms of
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the rapidity θ of the particle as

p = meθ p̄ = me−θ. (2.2.4)

Multi-particle asymptotic states are distinguished by the types ai and rapidities θi

of the particles involved. An n-particle state is written as

|Aa1(θ1)Aa2(θ2) · · ·Aan(θn)〉 in
out
. (2.2.5)

Physically, since an in-state is defined as having no further interactions for t→ −∞

the particle with the greatest rapidity must be the left-most particle, and that with

the smallest rapidity must be right-most. The opposite is true for out-states, which

have no further interactions for t→∞. This can be represented by taking the Aai(θ)

symbols outside the bra-ket notation and requiring that they do not commute. The

in- and out-states are then represented by

in: Aa1(θ1)Aa2(θ2) · · ·Aan(θm) θ1 > θ2 > · · · > θm (2.2.6)

out: Ab1(θ′1)Ab2(θ′2) · · ·Abn(θ′n) θ′1 < θ′2 < · · · < θ′n (2.2.7)

so that the position of the Aai(θ)’s represents the physical position of the particle.

The action of the S-matrix is then

Aa1(θ1)Aa2(θ2) · · ·Aam(θm) =

∞∑
n=m

∑
θ′1<···<θ′n

Sb1···bna1···am (θ1, · · · , θm; θ′1, · · · , θ′n)Ab1(θ′1)Ab2(θ′2) · · ·Abn(θ′n)

(2.2.8)

with θ1 > θ2 > · · · > θm.

The energy-momentum operator acts on states as

P |Aa(θ)〉 = mae
θ|Aa(θ)〉 and P̄ |Aa(θ)〉 = mae

−θ|Aa(θ)〉. (2.2.9)

If the theory contains additional conserved quantities then these are taken to cor-
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respond to operators Qs which are assumed to be simultaneously diagonalised with

respect to the basis of asymptotic states. These operators are then defined to act

on asymptotic states as

Qs|Aa(θ)〉 = q(s)
a esθ|Aa(θ)〉. (2.2.10)

Comparing with (2.2.9), the energy-momentum operators are taken to be Q1 = P

and Q−1 = P̄ . As in section 2.1 only those conserved quantities which are local

conserved charges will be considered, i.e. those which arise as integrals of local

conserved densities. Since multi-particle asymptotic states are viewed as a collection

well-separated wavepackets, this means that the action of Qs is additive

Qs|Aa1(θ1)Aa2(θ2) · · ·Aan(θn)〉 =(
q(s)
a1
esθ1 + q(s)

a2
esθ2 + · · · q(s)

an e
sθn
)
|Aa1(θ1)Aa2(θ2) · · ·Aan(θn)〉. (2.2.11)

Conservation of such a charge means that given an initial state which is an eigenstate

of Qs with some eigenvalue as above, the final state must be a superposition of states

for which all states in the superposition have that same eigenvalue. Applying this

to an m → n scattering process with the in- and out-states given by (2.2.6) and

(2.2.7) results in the condition

q(s)
a1
esθ1 + q(s)

a2
esθ2 + · · · q(s)

ame
sθm = q

(s)
b1
esθ
′
1 + q

(s)
b2
esθ
′
2 + · · · q(s)

bn
esθ
′
n . (2.2.12)

If the theory has conserved charges for an infinite number of values of s then an

infinite number of such equations exist. For all these to be satisfied for generic θi,

the left-hand side must be exactly the same as the right hand side in each case so

that m must equal n and

θi = θ′i and q(s)
ai

= q
(s)
bi
, i = 1, · · · ,m (2.2.13)

(up to a possible re-ordering of the final rapidities). q
(s)
ai = q

(s)
bi

does not necessarily

imply that ai equals bi, just that the conserved charges do not distinguish between

the particle types in question. Therefore, when an infinite number of conserved

quantities exist, scattering cannot lead to particle production, so all processes have
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the form n → n. In addition, the initial and final sets of rapidities and hence the

initial and final sets of momenta must be equal. This means that if there is no

degeneracy in the masses of the particles then the S-matrix is diagonal.

Further consequences of the existence of conserved charges can be found by

using the fact that the initial and final states can be viewed as collections of well-

separated particles, which means that it is sufficient to consider the effect of the

charge operators on single-particle wave-functions. Such a wave function in position

space is given by

ψ(x1) ∝
∫ ∞
−∞

e−a
2(p1−p̃)2

eip
1(x1−x̃)dp1 (2.2.14)

with a being the spread of the wave-packet and x̃ and p̃ the particle’s approximate

position and momentum respectively. Consider acting on this with some operator

A which has the effect of giving the wave-function a momentum-dependent phase-

factor:

Aψ = ψ̃ ∝
∫ ∞
−∞

e−a
2(p1−p̃)2

eip
1(x1−x̃)e−iφ(p1)dp1. (2.2.15)

Since the greatest contribution to the integral comes at p1 ≈ p̃ it makes sense to

expand φ(p1) in powers of p1 − p̃, φ(p1) ≈ φ(p̃) + (p1 − p̃)φ′(p̃) so that

ψ̃ ∝
∫ ∞
−∞

e−a
2(p1−p̃)2

eip
1(x1−x̃−φ′(p̃))dp1. (2.2.16)

The approximate position of the wave-packet has now shifted to x̃ + φ′(p̃) whilst

the approximate momentum remains unchanged. In a similar fashion, considering a

multi-particle state of well-separated particles as a product of single-particle wave-

functions the action of the operator will give a phase which depends on all of the

momenta. Expanding this phase as a multi-variable function with the expansion

centred on the approximate values of each of the momenta leads to a shift in the

position of each particle.

The action of certain charge operators can have this position-shifting effect. As-

sume that there exist conserved charge operators Ps which act on one-particle and

well-separated multi-particle states as (P1)s, with P1 being the spatial part of the

energy-momentum operator. When acting on a one-particle state with spatial mo-

mentum p1 this operator has the eigenvalue (p1)s. So, acting on the one-particle
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wave function with exp(−iξPs) produces a phase factor exp(−iξ(p1)s), which corre-

sponds to a shift in the position of the particle by sξ(p1)s−1. For s = 1 this is in line

with the momentum operator generating constant spatial translations. For a multi-

particle state consisting of a set of particles with momenta p1
i , the operator Ps shifts

each position by sξ(p1)s−1
i . So for a theory containing these conserved charges there

exist operators which shift the positions of the wavepackets in the well-separated

initial and final states.

The conservation of charge means that all charge operators Qs commute with

the S-matrix. This means that acting with exp(−iξPs) on both the initial and final

states leaves the scattering amplitude of a process unchanged, since

〈final|eiξPsSe−iξPs|initial〉 = 〈final|S|initial〉. (2.2.17)

The charge operators can therefore be used to shift the positions of the particles in

the initial and final states without affecting the amplitude. This property means

that for an integrable theory in 1 + 1 dimensions the S-matrix for an n→ n scatter-

ing process can be factorised into 2-particle S-matrices. To see this, first consider

3 → 3 particle scattering, for which the possible processes are shown in Fig.2.1.

Inspection of figures 2.1a) and 2.1c) shows that these processes are composed of

a) b) c)

Figure 2.1: 3→ 3 scattering processes.

two-particle interactions and so their amplitudes factorise into products of ampli-

tudes of 2→ 2 processes. Although this is not immediately obvious for figure 2.1b),

the position-shifting properties of charge operators discussed above mean that this

process can be transformed to process 2.1a) or 2.1c) without changing the amplitude.

The amplitude for process 2.1b) therefore factorises into 2→ 2 processes. Since this

factorisation occurs for all possible processes the full S-matrix factorises into a prod-

uct of two-particle S-matrices. For processes involving larger numbers of particles
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the same arguments can be applied, so that with appropriate position-shifting by the

charge operators all amplitudes can be seen to factorise into 2→ 2 processes. This

property is unique to 1 + 1 dimensional systems, because only there will particles

of different rapidities always collide, allowing this position-shifting argument to be

applied.

For integrable theories in 1+1 dimensions the problem of finding the full S-matrix

is therefore reduced to finding the 2-particle S-matrices, defined by

Aa(θ1)Ab(θ2) = Scdab(θ1 − θ2)Ad(θ2)Ac(θ1) (2.2.18)

with θ1 > θ2, as shown in Fig.2.2. S only depends on the difference of the rapidi-

a b

d c

Figure 2.2: 2-particle scattering

ties because the S-matrix is Lorentz invariant and Lorentz transformations translate

rapidities by a constant. The 2-particle problem itself is reduced by various restric-

tions on the form of such S-matrices. Firstly this is restricted by the symmetries

which are assumed for the theories in question:

Parity: Scdab(θ) = Sdcba(θ) (2.2.19)

Charge conjugation symmetry : Scdab(θ) = S c̄d̄āb̄(θ) (2.2.20)

Time-reversal symmetry : Scdab(θ) = Sbadc(θ). (2.2.21)

Further conditions arise from real analyticity, which requires that S(θ) is real when

θ is purely imaginary, unitarity

Sefab (θ)Scdef (−θ) = δcaδ
d
b (2.2.22)
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and crossing symmetry, which is the symmetry arising when an incoming particle is

instead viewed as an outgoing particle

Scdab(θ) = Scb̄ad̄(iπ − θ). (2.2.23)

In addition, returning to the 3 → 3 processes, the existence of infinitely many

conserved charges also shows that the amplitudes of the processes 2.1a) and 2.1c)

are the same. Since this is true for any initial and final sets of rapidities, the S-matrix

elements for the two processes must be equal, and this results in the Yang-Baxter

equation

Sβαa1a2
(θ12)Sb1γβa3

(θ13)Sb2b3αγ (θ23) = Sβγa2a3
(θ23)Sαb3a1γ

(θ13)Sb1b2αβ (θ12) (2.2.24)

where θij denotes θi − θj.

These conditions simplify for diagonal theories, which are those for which a = c

and b = d in Scdab(θ). Such S-matrices need only be denoted by two indices Sab(θ). In

this case the crossing and unitarity conditions simplify and the Yang-Baxter equa-

tion becomes trivial. The removal of this constraint makes it harder to determine

what the S-matrix should be for a particular theory. However, bound states can

be easily handled in diagonal theories, and considering these provides additional

constraints on the form of the S-matrix. This approach was pioneered by Alexan-

der Zamolodchikov [15, 23]. Bound states can be identified by considering the pole

structure of the S-matrix. A bound state corresponding to a pole in the S-matrix

element Sij(θ12) at θ12 = χkij is seen as a particle of type k emerging from the fusion

of particles of type a and b and existing for some macroscopic time before splitting

again as shown in Fig.2.3. The existence of such a bound state makes it possible

to find further S-matrix elements using the bootstrap principle. This is achieved

by considering another particle l interacting with these particles. The ability of the

conserved charge operators to shift the positions of the particles in the initial and

final states means that the amplitude for l to interact with i and j before they fuse

is the same as for l to interact with k, so that the interaction with l takes place after
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i j

j i

k

Figure 2.3: Bound state

the fusion. This results in the S-matrix bootstrap equation

Slk(θ) = Sli(θ − iπ + χjki)Slj(θ + iπ − χijk) (2.2.25)

Given an initial proposal for an S-matrix element with a pole indicating a bound

state, this equation can be used to find an S-matrix element for the particle corre-

sponding to that bound state. If this new element itself has a pole corresponding

to a bound state, then the process can be repeated, and so on. The equation can

therefore be used iteratively to find all S-matrix elements. If a finite number of

particles emerge then this suggests that the initial proposal was correct.
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2.3 The Thermodynamic Bethe Ansatz

The methods described for finding the exact S-matrix rely on the theory in question

being defined on a space of infinite volume, since only there can particles become

sufficiently well-separated so as to be viewed as free particles when they are not

interacting. However, it is also important to be able to consider theories defined

on a finite space; by varying the size of the space a theory can be considered at

different points along its RG flow. Through the Thermodynamic Bethe Ansatz

(TBA) [24, 25] it is possible to use the exact infinite-volume S-matrix to find the

exact energy spectrum of a theory, whatever the size of the space on which it is

defined. The focus will be on finding the ground state energy for a theory defined

on a torus formed from a cylinder of length L and circumference R, as in figure 2.4.

As a simple example, consider a theory involving only a single type of massive

particle. There are two ways of writing the partition function of a theory defined

L

R

Figure 2.4: Torus. Green and red dotted lines indicate different ways of viewing the
Hilbert space.

on a torus, depending on what is taken as the time direction. This corresponds to

whether states are viewed as living along the ‘R’ direction or the ‘L’ direction, and

the two possibilities for the space occupied by states at a fixed time are demonstrated

by the red and green lines in figure 2.4. The ‘red-type’ and ‘green-type’ states are

defined as belonging to Hilbert spaces HR and HL, respectively, and contribute to

Hamiltonians HR and HL.

Consider the limit where L→∞ but R remains finite. From the HR viewpoint

the ground state is dominant, so denoting the ground state energy by E(R) the

dominant term in the partition function is

Z(R,L) ∼ e−E(R)L. (2.3.1)
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On the other hand, since R remains finite all states contribute when the partition

function is formed from HL:

Z(R,L) = TrHL
[
e−RHL

]
. (2.3.2)

Since L → ∞, from this viewpoint the spatial dimension occupied by the states is

infinite, allowing the exact S-matrix to be found. In such a situation the asymp-

totic Bethe ansatz can be used. This quantises the allowed momenta of particles,

and arises when periodicity conditions are applied to the ‘time’-direction in the

N -particle wave-function. For an N -particle state the ansatz is

eipiLΠj 6=iS(θi − θj) = 1, i = 1 · · ·N. (2.3.3)

After defining S(θ) = exp(iχ(θ)) and taking logarithms this becomes

mL sinh(θi) +
∑
j 6=i

χ(θi − θj) = 2πni, i = 1 · · ·N, ni ∈ Z. (2.3.4)

The integers {ni} determine the allowed rapidities {θi} and hence characterise a

state. The focus here is on fermionic-type particles, so all the rapidities must be

different and therefore so must the ni’s.

As L → ∞ the system is dominated by states for which N is large and in

addition the rapidities in the set {θi} for each state become closer together. It

therefore makes sense in this limit to refer to the density of allowed rapidities rather

than the explicit set {θi}. The density ρ1(θ) is defined so that in a rapidity interval

∆θ there are n = ρ1(θ)∆θ allowed rapidities. (2.3.4) can then be rewritten as

mL sinh(θi) +

∫
R
χ(θi − θ′)ρ1(θ′)dθ′ = 2πni. (2.3.5)

Considering some particular set of integers {ni}, in an interval ∆θ there will be

values of θ that are not allowed in this state, but would be allowed for some other

choice of the ni’s. These unfilled θi’s are described as holes. The total density of

particles and holes is labelled as ρ(θ), so that there are n′ = ρ(θ)∆θ occupied and
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unoccupied θi’s in the interval ∆θ. With a view to writing the above condition in

terms of ρ(θ) a strictly increasing function J(θ) is defined as in [26]

J(θ) = mL sinh(θ) +

∫
R
χ(θ − θ′)ρ1(θ′)dθ′. (2.3.6)

Comparing this with (2.3.5) implies that J(θ)/(2π) = ni when θ = θi. If in an

interval ∆θ J(θ) is equal to an integer a certain number of times, then a value of

θ for which this integer belongs to the set {ni} under consideration corresponds to

the rapidity of a particle. If the integer is not in {ni} then this θ corresponds to

a hole. The number of particles and holes appearing in a given interval therefore

corresponds to the number of times J(θ) is equal to an integer in that interval. So

since J(θ) is strictly increasing, ρ(θ) = (1/2π)dJ(θ)/dθ, and therefore

2πρ(θ) = mL cosh(θ) + 2π

∫
R
φ(θ − θ′)ρ1(θ′)dθ′ (2.3.7)

where

φ(θ) =
1

2π

dχ(θ)

dθ
= − i

2π

d lnS(θ)

dθ
. (2.3.8)

Given a density ρ(θ), different particle rapidity sets {θi} can result in the same

particle density ρ1(θ), and this freedom must be quantified in order to write the

partition function as a sum over the densities. The number of such possibilities in

an interval ∆θ is the number of ways of choosing n rapidities from the set of n′

possibilities, which is
n′!

n!(n′ − n)!
. (2.3.9)

Multiplying together the number of possibilities arising in each interval ∆θ gives the

total number of possible rearrangements over the full extent of θ, denoted by N .

The partition function (2.3.2) can now be re-expressed as

Z(R,L) =
∑
ρ,ρ1

N (ρ, ρ1)e−RHL . (2.3.10)
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Defining S(ρ, ρ1) = lnN (ρ, ρ1) this can be written as

Z(R,L) =
∑
ρ,ρ1

e−RHL+S(ρ,ρ1). (2.3.11)

In terms of the particle density, the Hamiltonian HL is

HL =

∫
R
m cosh θρ1(θ)dθ (2.3.12)

and using Stirling’s formula

S(ρ, ρ1) =

∫
(ρ ln ρ− ρ1 ln ρ1 − (ρ− ρ1) ln(ρ− ρ1)) dθ. (2.3.13)

Denoting the free energy density by f(ρ, ρ1),

−RLf(ρ, ρ1) = −RHL + S(ρ, ρ1) (2.3.14)

so that the dominant term in the partition function comes from the configuration

(ρ, ρ1) which minimises f(ρ, ρ1). Performing the extremisation and imposing the

constraint (2.3.7) results in the condition

ε(θ) = mR cosh(θ)−
∫
R
φ(θ − θ′) ln

(
1 + e−ε(θ

′)
)
dθ (2.3.15)

where ε(θ) is called the pseudoenergy and is defined via

e−ε =
ρ1

ρ− ρ1

. (2.3.16)

(2.3.15) is the TBA equation for a theory with a single massive particle.

The resulting expression for the free energy is

−RLf(ρ, ρ1) =
1

2π

∫
R
mL cosh(θ) ln

(
1 + e−ε(θ)

)
dθ. (2.3.17)

This can now be compared to the other approach to calculating the partition function

(2.3.1). The exponent of the dominant term there is −E(R)L, so equating this with
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(2.3.17) gives

E(R) = − 1

2π

∫
R
m cosh(θ) ln

(
1 + e−ε(θ)

)
dθ. (2.3.18)

Therefore, through the TBA equation (2.3.15), the ground state energy of a theory

defined on a system of finite compact spatial dimension R can be calculated from

the exact infinite-volume S-matrix.

TBA equations can also be found for theories with massless particles. Although

the scattering of such particles cannot be determined by the techniques described in

the previous section, it is still possible to propose S-matrices based on the expected

behaviour of the particles involved [27]. Zamolodchikov [18] did this in order to find

TBA equations to describe the MA
(+)
m theories introduced in section 2.1. These

interpolate between the minimal models Mm and Mm−1, so that the UV and IR

limits of MA
(+)
m are both CFTs. The ground state energy of a CFT defined on a

cylinder (or equivalently a torus), with states living on the circumference and time

propagating along the length of the cylinder, is known to be E(R) = −cπ/6R. This

relationship between the ground state energy and the central charge suggests the

definition of a function ceff (r),where r = mR, known as the effective central charge,

which is defined at all points along the RG flow as

ceff (r) =
−6RE(R)

π
(2.3.19)

and coincides with the central charge at points where the theory is described by a

CFT. Note that although it is built on a similar premise, this function differs in

definition from the c-function described in section 2.1.1. The value of this function

can indicate which CFTs are appearing in an RG flow, and where this information

is already known, provides a test for the UV and IR ground state energy results

emerging from the TBA calculations.

MA
(+)
4 interpolates between the tricritical Ising model M4 (c = 7/10) and

the Ising model M3 (c = 1/2). The theory contains a single massless particle.

Right-moving particles, i.e. those with momentum p equal to energy E, are treated

separately from left-moving particles, which have p = −E. Their momentum can be

parametrised by starting with the expression for momentum for a massive particle
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with rapidity β, p = m sinh β, and setting β = θ + θ1 for the right-movers and

β = θ − θ1 for the left-movers. Then taking the limit m→ 0 and θ1 →∞ in such a

way that M = meθ1 stays finite leads to the following expressions for the momentum

of the right- and left-movers:

pR = 1
2
Meθ and pL = −1

2
Me−θ. (2.3.20)

M has dimensions of mass and determines the crossover between the UV and IR

theories. Note that now in the two cases zero momentum corresponds to θ → ∓∞,

respectively. Zamolodchikov found that left-left and right-right scattering is trivial,

and that the right-left scattering between particles of rapidities θ and θ′ is described

by the S-matrix

SRL(θ − θ′) = S(θ − θ′) = − tanh

(
θ − θ′

2
− iπ

4

)
(2.3.21)

(with left-right scattering satisfying SRL(θ − θ′)SLR(θ′ − θ) = 1).

The TBA equations can then be derived by using the same process as before

but giving the left- and right-movers separate density functions. This leads to the

system of TBA equations

ε1(θ) =1
2
MReθ −

∫
R
φ(θ − θ′)L2(θ′)dθ′

ε2(θ) =1
2
MRe−θ −

∫
R
φ(θ − θ′)L1(θ′)dθ′ (2.3.22)

where

La(θ) = ln
(
1 + e−εa(θ)

)
for i = 1, 2 (2.3.23)

and

φ(θ) = − i

2π

d lnS(θ)

dθ
=

1

2π cosh θ
. (2.3.24)

The ground state energy is [18]

E(R) =
−M
4π

∫
R

(
eθL1(θ) + e−θL2(θ)

)
dθ (2.3.25)
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and in the UV and IR limits can be calculated exactly with the results

E(R→ 0) =
−7π

60R
(2.3.26)

E(R→∞) =− π

12R
, (2.3.27)

in agreement with the results from CFT.

Zamolodchikov also proposed TBA equations forMA
(+)
m for allm > 3, as systems

of m− 2 integral equations [18]:

ε1(θ) =1
2
MReθ −

∫
R
φ(θ − θ′)L2(θ′)dθ′ (2.3.28)

εa(θ) =−
∫
R
φ(θ − θ′) (La−1(θ′) + La+1(θ′)) dθ′ a = 2, 3, · · ·m− 3 (2.3.29)

εm−2(θ) =1
2
MRe−θ −

∫
R
φ(θ − θ′)Lm−3(θ′)dθ′. (2.3.30)

The ground state energy is given by

E(R) = −M
4π

∫
R

(
eθL1(θ) + e−θLm−2(θ)

)
dθ (2.3.31)

which in the UV limit becomes

E(R→ 0) = − π

6R

(
1− 6

m(m+ 1)

)
(2.3.32)

and in the IR limit is

E(R→∞) = − π

6R

(
1− 6

(m− 1)m

)
. (2.3.33)

These are in line with the central charge values of c = 1 − 6
m(m+1)

for a minimal

modelMm. The method used to evaluate the ground state energy (via the effective

central charge ceff (r)) will be discussed in detail in section 4.1.

It will be seen in the following chapters that these TBA systems emerge in certain

limits of a massive diagonal scattering theory known as the staircase model, where

the standard concepts of the S-matrix apply. A more detailed discussion of the

behaviour of these pseudoenergies and the calculation of the ground state energy
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will be made in this context in chapter 4.



Chapter 3

Integrable Theories with

Boundaries

3.1 Boundary Conformal Field Theory

The focus of this chapter is to introduce how the concepts of conformal field the-

ories and their perturbations already discussed can be adapted and extended to

theories living on a space with boundaries [9,10,13,28–30]. For such a theory to be

conformally invariant, the boundary conditions must be invariant under conformal

transformations as well as the bulk theory. Such boundary conditions are found by

considering coordinates parallel and perpendicular to the boundary and demanding

that the parallel/perpendicular component of the energy-momentum tensor vanishes

on the boundary.

Consider a theory defined on a right cylinder of finite length, formed by identi-

fying the vertical sides of a rectangle in the upper half complex plane. A rectangle

with vertices 0, R, iL and R+ iL corresponds to a cylinder of length L and circum-

ference R. Imposing boundary conditions a and b on the lower and upper horizontal

sides of the rectangle respectively translates to the circles at the bottom and top of

the cylinder having these conditions. As in section 2.3, the partition function for

this theory can be found in two different ways, depending on what is taken as the

‘time’ direction on the cylinder, which of course affects the form of the Hamiltonian.

In both cases, coordinate transformations are applied which are similar to that used

50
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in formulating radial quantisation. Firstly, time is taken to travel in the compacti-

time
a)

b

a

b a

a
b

w

w

|a>

|b>

timeb)

R

L

R

L

Figure 3.1: Set-up for cylinder partition function: a) time direction around the
cylinder b) time direction along the cylinder.

fied direction around the cylinder, corresponding to the horizontal direction on the

rectangle. The map w(z) = exp(πz/L) takes the rectangle to a half-annulus on

the upper half of the complex plane, with the a boundary forming the end of the

annulus on the positive real axis, and the b boundary doing likewise on the negative

real axis. The time direction is now the radial direction on the plane, as depicted

in figure 3.1a. This is the same set-up as for radial quantisation in the previous

section, but because the space under consideration is now the upper half plane the

Hamiltonian is defined slightly differently. To see this, consider a theory defined

on the full upper half of the complex plane, with boundary condition a on the full

positive real axis and boundary condition b on the negative real axis. Such a change

in boundary condition is viewed as the effect of a boundary condition changing field

φ(ab)(z) inserted at the origin. In this set-up, the conformal boundary condition on

the energy momentum tensor is

T (z) = T̄ (z̄) (3.1.1)
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on the boundary (which is equivalent to Txy = 0). This allows the dilation operator

on the upper half plane to be written as

D = L0 =
1

2πi

∮
zT (z)dz. (3.1.2)

The other Virasoro operators are defined similarly, and there is only one Virasoro

algebra in contrast to the two that exist for a theory on the full complex plane.

This dilation operator therefore generates time translations on the half-annulus so

applies to the theory on the finite cylinder. The Hamiltonian is related to the above

dilation operator and is defined as

Hstrip
ab =

π

L

(
L0 −

c

24

)
(3.1.3)

so that the partition function is

Zab(R,L) = Tr e−RHab (3.1.4)

and in terms of characters

Zab(R,L) =
∑
h

nhabχh(e
−πR/L). (3.1.5)

The other option is to take the time direction to be along the length of the

cylinder (and in the vertical direction on the rectangle). From this viewpoint the

partition function is the propagation of the system from boundary state |a〉 at the

bottom of the cylinder to boundary state |b〉 at the top of the cylinder. Then at

each point in time the theory is defined on a circle, and so the partition function is

Zab(R,L) = 〈a|e−LHcircle|b〉. (3.1.6)

In this case it makes sense to map the rectangle to a full annulus on the complex

plane via the map w(z) = e−2πiz/R so that the a and b boundaries respectively lie on

the inner and outer concentric circles which form the edges of the annulus, as shown

in figure 3.1b. On the full plane, as for radial quantisation, there are two Virasoro
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algebras, leading to the Hamiltonian on the circle being defined as

Hcircle =
2π

R

(
L0 + L̄0 −

c

12

)
. (3.1.7)

For a boundary on a circle, the conformal boundary condition corresponds to the

following condition on a boundary state |a〉

(
Ln − L̄−n

)
|a〉 = 0. (3.1.8)

Note that the n = 0 condition implies that h = h̄ for |a〉. A basis of boundary states

satisfying the above condition is given by the Ishibashi states [31]. For a minimal

model, there is a basis state for each Verma module, and so they are labelled by the

highest weight of each representation, and denoted |h〉〉. They are defined in terms

of orthonormal bases of each level of both the holomorphic and anti-holomorphic

Virasoro representations. Given a level of dimension dh(N), such a basis is denoted

as |h,N ; i〉 for Vh and |h,N ; i〉 for V̄h,where 1 ≤ i ≤ dh(N). The Ishibashi states are

then defined as

|h〉〉 =
∞∑
N=0

dh(N)∑
j=1

|h,N ; j〉 ⊗ |h,N ; j〉 (3.1.9)

which means that

〈〈h′|e−LHcircle |h〉〉 =δh,h′
∞∑
N=0

dh(N)∑
j=1

e−4πL(h+N−c/24)/R (3.1.10)

= δh,h′χh
(
e−4πL/R

)
. (3.1.11)

The physical boundary states are expanded in terms of the Ishibashi states as

|a〉 =
∑
h

gha |h〉〉, (3.1.12)

defining gha = 〈〈h|a〉. In this notation the partition function (3.1.6) is

Zab(R,L) =
∑
h

ghag
h
bχh

(
e−4πL/R

)
. (3.1.13)
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The partition functions that emerge from the different time-direction viewpoints

must be equal. Using the modular transformation rule for the characters (1.3.40),

the partition function expression (3.1.5) can be written as

Zab(R,L) =
∑
h,h′

nhabS
h′

h χh′
(
e−4πL/R

)
(3.1.14)

where nhab is the number of copies of the representation of highest weight h appearing

in the spectrum of Hab. On imposing linear independence of the characters, equality

of the partition functions (3.1.5) and (3.1.6) becomes the Cardy condition

ghag
h
b =

∑
h′

nh
′

abS
h
h′ . (3.1.15)

When certain choices are made for the coefficients nhab there is a one-to-one map be-

tween Virasoro representations and allowed boundary states. Denoting these states

|h′〉 and defining

ghh′ =
Shh′√
Sh0
, (3.1.16)

the Cardy condition holds when nhh′0 = δh,h′ and nhh′h′′ =
∑

j S
j
h′S

j
h′′S

h
j /S

j
0. The first

condition indicates that only the representation h = 0 appears in the spectrum of

the Hamiltonian for the (a, b) = (0, 0) boundary condition, and that the spectrum

of Hh′,0 is the h = h′ representation. The second condition is the same expression

as the Verlinde formula for the fusion coefficients N c
ab on the torus, and so the

coefficients nhab are equal to the fusion coefficients. Since the fusion coefficients are

indexed by the highest weights of the Virasoro representations, this confirms their

correspondence with the allowed boundary states. In the minimal models Mp,p′ ,

the highest weights take their labels from the Kac table, and so a boundary state

corresponding to hr,s is labelled as (r, s). Since hr,s = hp′−r,p−s, the corresponding

boundary conditions are identified with one another

(r, s) ≡ (p′ − r, p− s). (3.1.17)

The fusion coefficients appear here due to the action of boundary changing op-
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erators. Consider a theory defined on a vertical strip, with time moving upwards.

Take the left-hand boundary to have boundary condition 0 until time t0 and then

boundary condition a thereafter, and the right-hand boundary to have condition b

always. Up until t0, the fact that nh0b = δb,h means that only states in the represen-

tation of highest weight b can propagate. However, after t = t0, states belonging to

other representations can propagate, and the number of copies of the representation

of highest weight c is given by ncab. However, since the change in boundary condition

is realised by a boundary changing operator φ(0a), this process can also be viewed

as the action of the operator on the propagating states. Since states emerge as the

action of fields on the vacuum state, the action of the boundary changing operator

can be expressed via the operator algebra. From this viewpoint, the number of

copies of a particular representation c is given by the fusion coefficients N c
ab.

The leading term in the partition function is the contribution from the ground

state. This term dominates in the thermodynamic limit L/R → ∞ so that (3.1.6)

becomes

Zab ∼ 〈a|0〉〈0|b〉eπLc/6R, (3.1.18)

where |0〉 is the bulk ground state. For Ishibashi states 〈0|h〉〉 = δ0h so

〈a|0〉 = g0
a ≡ ga, (3.1.19)

where ga is known as the g-function for boundary condition a. This was first in-

troduced by Affleck and Ludwig [32]; it is described as the ground-state degeneracy

and its logarithm as the boundary entropy. This is because the calculation of the

entropy Sab from (3.1.18) produces

Sab ∼
πcL

3R
+ ln〈a|0〉+ ln〈b|0〉 (3.1.20)

and so ln ga is the contribution to the entropy from the boundary a. For a minimal

modelMp,p′ the g-function for a boundary corresponding to highest weight h = ha1,a2
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is found from (1.3.41) to be

g(a1,a2) =

(
8
pp′

)1/4

(−1)1+a1+a2 sin
(
πa1p
p′

)
sin
(
πa2p′

p

)
√
− sin

(
πp
p′

)
sin
(
πp′

p

) . (3.1.21)

The g-function encodes the boundary conditions of a conformal field theory,

just as the central charge encodes the bulk theory. This suggests that it would be

interesting to consider an off-critical version of the g-function, which would coincide

with the critical g-function at fixed points, just as the effective central charge agrees

with the central charge when the bulk theory is conformal. This subject will be

discussed in section 3.3, but first the concept of considering a boundary conformal

field theory away from a fixed point will be made more concrete.

3.2 Perturbed Boundary Conformal Field Theory

To consider perturbed conformal theories defined on spaces with boundaries, it must

be determined how integrability can be preserved when such a theory is perturbed

away from the boundary conformal field theory (BCFT) fixed point, just as was

done in section 2.1 for a CFT defined on a space without boundaries. This was

investigated by Ghoshal and Zamolodchikov in [33] (see also [34]). To study this,

consider a theory defined on the left half of the Euclidean plane, x ≤ 0, −∞ < y <∞

so that the y-axis forms a boundary and y is taken to be the time direction. Now,

in addition to a perturbation of the bulk theory, a perturbation of the boundary can

also be considered. In terms of bulk and boundary couplings λ and µ and relevant

bulk and boundary fields φ(x, y) and ψ(x) the perturbed action is written as [33]

SPBCFT = SBCFT + λ

∫ ∞
−∞

dy

∫ 0

−∞
φ(x, y) dx+ µ

∫ ∞
−∞

ψ(y) dy. (3.2.1)

For integrability to survive, it needs to be checked that an infinite number of con-

served charges exist when a boundary is present. These turn out to be slightly

amended versions of the conserved charges found in the case of the pure bulk per-

turbation which were described in section 2.1. Symmetry considerations mean that
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the perturbed theory should have the following condition at the boundary

Txy |x=0 =
d

dy
b(y) (3.2.2)

for some local field b(y). This is the perturbed theory version of the condition (3.1.1)

for boundaries in a conformal field theory. If this condition holds then it is possible

to find conserved quantities for the theory.

To introduce this, the conservation of the Hamiltonian at the boundary of the

perturbed theory will first be considered (which must hold for any time-translation

invariant theory). As was discussed in the previous section, in the perturbed theory

there are the continuity equations, (2.1.18) and its anti-holomorphic counterpart

∂z̄T = ∂zΘ and ∂zT̄ = ∂z̄Θ (3.2.3)

which give rise to path-independent integrals

P1(C) =

∫
C

(Tdz + Θdz̄) and P̄1(C) =

∫
C

(
T̄ dz̄ + Θdz

)
(3.2.4)

that equal zero when the contour C is closed, as long as there are no other operators

inside the contour. This can be used to show the existence of a conserved quantity

in the left-half (x, y) plane. Consider the contour C = Cx1 + Cy + Cx2 shown in

figure 3.2. which is taken to be closed at x → −∞. Consider adding together P1

iy

x

y1

y2

C_x1

C_y

C_x2

Figure 3.2: Contour C = Cx1 + Cy + Cx2 .
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and P̄1. Both equal zero for a closed contour and so

P1(C) + P̄1(C) = 0. (3.2.5)

Now consider the part of this integral where the contour runs up the imaginary

y-axis between y1 and y2, denoted Cy.

P1(Cy) + P̄1(Cy) = i

∫ y2

y1

(T −Θ− T̄ + Θ)dy (3.2.6)

and so noting that T − T̄ = −iTxy, (3.2.2) implies that

P1(Cy) + P̄1(Cy) = b(y2)− b(y1). (3.2.7)

So, by (3.2.5)

P1(Cx1) + P̄1(Cx1)− b(y1) = −(P1(Cx2) + P̄1(Cx2))− b(y2). (3.2.8)

This means that

HB =

∫ 0

−∞
(T (x, y) + T̄ (x, y) + 2Θ(x, y))dx− b(y) (3.2.9)

is independent of y. It is therefore a conserved quantity, identified with the Hamil-

tonian of the perturbed boundary theory, which exists if the boundary perturbation

is such that (3.2.2) holds.

A similar method can be followed to find conserved quantities at the boundary

from the other bulk conserved densities. For a theory with a pure bulk perturbation,

these conserved densities were seen to obey the equations (2.1.22)

∂z̄Ts = ∂zΘs−2 and ∂zT̄s = ∂z̄Θ̄s−2. (3.2.10)

Following the same pattern as above it makes sense to require at the boundary that

i
(
Ts −Θs−2 − T̄s + Θ̄s−2

)
|x=0 =

d

dy
bs−1(y), (3.2.11)
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where bs−1(y) can be any local field defined on the boundary, since then the quantity

H
(s)
B =

∫ 0

−∞
dx
(
Ts(x, y) + Θs−2(x, y) + T̄s(x, y) + Θ̄s−2(x, y)

)
− bs−1(y) (3.2.12)

is independent of y and hence is conserved. So, for the perturbed theory to be

integrable the perturbing boundary field must be such that an infinite number of

these conserved quantities (3.2.12) exist.

Ghoshal and Zamolodchikov [33] proposed that this is the case for a unitary

minimal model perturbed by bulk and boundary perturbing fields φ(1,3) and ψ(1,3)

respectively. As was described earlier in this section, for a pure bulk perturbation

by φ(1,3) there are an infinite number of conserved charges Ts with s even [15].

When a boundary perturbation is added, for integrability to survive (3.2.11) must

be satisfied for some field bs−1(y) by each pair (Ts, T̄s). Indications that this is the

case can be found by considering the situation λ = 0, µ 6= 0, where the perturbation

is purely by the boundary field ψ(1,3). Since the bulk theory is not perturbed, Θs−2

and Θ̄s−2 both equal zero, and so a field bs−1(y) must be found that satisfies

i
(
Ts − T̄s

)
|x=0 =

d

dy
bs−1(y). (3.2.13)

For the energy-momentum tensor T2 this can be seen by considering the x→ 0 limit

of the following correlation function in the perturbed theory

〈(T (y + ix)− T̄ (y − ix))X〉CFT+µ
∫∞
−∞ ψ(1,3)(y) dy, (3.2.14)

where X is a string of fields sitting away from the boundary. Using the Gell-Mann-

Low formula this can be rewritten as a correlation function in the non-perturbed

theory
〈(T (y + ix)− T̄ (y − ix))Xe−µ

∫∞
−∞ ψ(1,3)(y

′) dy′〉CFT
〈e−µ

∫∞
−∞ ψ(1,3)(y

′) dy′〉CFT
. (3.2.15)

In the x→ 0 limit this is controlled by terms with the integrand

µ(T (y − ix)− T̄ (y + ix))ψ(1,3)(y
′) (3.2.16)
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which using (1.3.16) has the operator product expansion

µ

(
h1,3

(y + ix− y′)2
− h1,3

(y − ix− y′)2
+

1

y + ix− y′
∂

∂y′
− 1

y − ix− y′
∂

∂y′

)
ψ(1,3)(y

′).

(3.2.17)

Since such terms appear as integrands, the rule

lim
ε→0

∫ (
f(x)

x+ iε
− f(x)

x− iε

)
dx = −2iπ

∫
f(x)δ(x)dx (3.2.18)

(see for example [35]) can be used so that

lim
x→0

(T (y − ix)− T̄ (y + ix)) = −2iπµ

(
h1,3δ

′(y − y′) + δ(y − y′) ∂
∂y′

)
ψ(1,3)(y

′).

(3.2.19)

Then (3.2.13) is satisfied at s = 2 by taking

b1(y) = 2πµ(1− h1,3)ψ(1,3)(y). (3.2.20)

Similar methods can be used to find bs−1 for each Ts so that, at least to the first

order in µ, (3.2.13) is satisfied for all s even.

3.3 The Off-Critical g-function

In section 2.3 it was seen how the effective central charge allows the identification

of minimal models appearing as fixed points in RG flows. The g-function that was

introduced towards the end of section 3.1 encodes the boundary conditions of a

CFT, and just as the central charge was generalised to the effective central charge,

it is natural to extend the idea of the g-function to all points along the RG flow, so

that it coincides with the expected CFT values at fixed points. Such a function then

encodes the boundary behaviour of a theory both at and away from fixed points.

Boundary quantum field theories are defined not only by how particles scatter

off one another, but also by how the particles scatter off the boundaries. Therefore,

in addition to the bulk S-matrix, reflection factors must be defined for such theories.

The focus will be on theories where the scattering of a particle off the boundary is
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elastic, so that the rapidity of the particle is unaffected. The reflection factor for a

particle of type a scattering off a boundary with boundary condition α is denoted

in terms of its rapidity as R
(a)
α (θ). As for the bulk S-matrix, it satisfies unitarity,

crossing symmetry and bootstrap equations [33], which take the form:

Ra(θ)Ra(−θ) = 1, (3.3.1)

Ra(θ)Rā(θ − iπ) = Saa(2θ) (3.3.2)

Rc̄(θ) = Ra

(
θ + iU b

ac

)
Rb

(
θ − iŪa

bc

)
Sab
(
2θ + iŪ b

ac − iŪa
bc

)
, (3.3.3)

where U c
ab corresponds to a pole in the reflection factor, indicating a bound state.

Expressions for the exact g-function for certain integrable field theories have

been found in terms of the S-matrix and reflection factors of the theory, and the

pseudoenergies solving the periodic TBA equations for that theory (as introduced

in section 2.3). For a massive diagonal integrable theory with N types of particle,

the g-function for boundary condition α was found by Dorey et al. in [36,37] to be

ln gα(r) =

1

2

∞∑
n=1

1

n

N∑
a1=1

· · ·
N∑

an=1

∫
Rn

n∏
i=1

dθi

1 + eεai (θi)
φa1a2(θ1 + θ2)φa2a3(θ2 − θ3) · · ·φana1(θn − θ1)

+ 1
2

N∑
a=1

∫
R
dθ
(
φ(a)
α (θ)− 1

2
δ(θ)− φaa(2θ)

)
ln
(
1 + e−εa(θ)

)
, (3.3.4)

where

φab(θ) = − 1

2π

d

dθ
lnSab(θ) and φ(a)

α (θ) = − i

2π

d

dθ
lnR(a)

α (θ). (3.3.5)

As before, r = mR, where the theory is defined on a cylinder of circumference R

with a boundary at one end. Note, however, that the pseudoenergies which appear

in the g-function expressions are those satisfying the TBA equations defined on the

torus. The second line of this formula was originally proposed as the full g-function

expression by LeClair et al. [38]. It had the expected dependence on the boundary

parameter (which appears in the reflection factor), but failed to produce the correct
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bulk dependence. Dorey et al. [36] resolved this by proposing the addition of the

infinite sum term. Starting with the case of a single particle type this arose from

working initially in the IR and considering the contributions to the partition function

and hence to the g-function from all possible particle number configurations. They

then found the full result valid for all values of r by rewriting the expressions found

in terms of TBA quantities, and showed that this expression had both the correct

UV behaviour and agreement at each particle-number order with the expected IR

terms. This led to the single particle-type version of the above formula (3.3.4), and

the latter emerged as a generalisation of this case. An alternative approach was

taken by Woynarovich [39] whose approach was to evaluate the g-function through

its definition as the O(1) contribution to the free energy (see (3.1.18)), which he

found by considering the partition function expressed in terms of the saddle point

solution of the free energy and the fluctuations around it. This was only partially

successful, but in [40] Pozsgay used an adapted version of this method to successfully

reproduce the above equations. The key feature of this approach is that the infinite

sum term arises from the Fredholm determinants of certain integral operators which

are defined in terms of the S-matrix and the TBA pseudoenergies.

An expression has also been found for the MA
(+)
4 theory (the TBA system of

which was described in section 2.3), which has massless bulk degrees of freedom even

in the far IR limit. For this theory the exact g-function is [41]

ln g(r) = ln g0(r) + ln gb(r)

= ln g0(r) + ln gb1(r) + ln gb2(r) + ln gb3(r) (3.3.6)
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where

ln g0 =
∞∑
j=1

1

2j − 1

∫
dθ1

1 + eε(θ1)
· · · dθ2j−1

1 + eε(θ2j−1)
φ(θ1 + θ2)φ(θ2 + θ3) · · ·φ(θ2j−1 + θ1)

(3.3.7)

ln gb1 =− 1
2

ln 2 (3.3.8)

ln gb2 =

∫ (
φ( 3

4)(θ)− φ(2θ)
)
L(θ)dθ (3.3.9)

ln gb3 =

∫
φ(θ − θb)L(θ)dθ. (3.3.10)

Here φ(θ) = 1
2π cosh(θ)

and φ(3/4)(θ) is defined using the block notation

(x)(θ) =
sinh

(
θ
2

+ iπx
2

)
sinh

(
θ
2
− iπx

2

) , φ(x)(θ) = − i

2π

d

dθ
ln (x)(θ) =

− sin(πx)/(2π)

cosh(θ)− cos(πx)
,

(3.3.11)

and ε(θ) satisfies

ε(θ) = 1
2
reθ −

∫
R
φ(θ + θ′)L(θ′)dθ′, (3.3.12)

which is equivalent to the TBA equations (2.3.22) upon setting ε(θ) = ε1(θ) and

employing the symmetry ε1(θ) = ε2(−θ). Further flows arise when 1
2

ln 2 is added

to ln gb. This result was also reproduced by Pozsgay [40] using the same method as

in the massive diagonal case.

The situation for the interpolating theoriesMA
(+)
m with m > 4 is expected to be

more complex since unlike MA
(+)
4 , these theories are non-diagonal. The following

chapters will explore how a massive diagonal theory known as the staircase model

can be used to probe these models.



Chapter 4

Introduction to the Staircase

Model

4.1 The Bulk Theory

The staircase model was first introduced by Al.B. Zamolodchikov in [42]. It will

be seen that this model is strongly linked to the collection of flows Mm → Mm−1

discussed in the previous chapters. The staircase model involves a single massive

particle of mass M and its S-matrix is

S(θ) =
sinh θ − i cosh θ0

sinh θ + i cosh θ0

= tanh

(
θ − θ0

2
− iπ

4

)
tanh

(
θ + θ0

2
− iπ

4

)
(4.1.1)

where θ0 is a real parameter. One of the original motivations for studying this

theory is its connection with the sinh-Gordon model. This an integrable theory

with S-matrix

SshG(θ) =
sinh θ − i sin γ

sinh θ + i sin γ
(4.1.2)

for real coupling constant γ. The staircase model emerges when γ is analytically

continued to complex values of the form γ = π/2 + iθ0.

Since the theory involves a single massive particle, from equation (2.3.15) the

TBA equation for the staircase model on a circle of circumference R is

ε(θ) = r cosh θ −
∫
R
φS(θ − θ′)L(θ′)dθ′ (4.1.3)

64
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where r = mR. Defining

φ(θ) =
1

2π cosh(θ)
(4.1.4)

the staircase model kernel is

φS(θ) = − i

2π

d

dθ
lnS(θ) = φ(θ − θ0) + φ(θ + θ0). (4.1.5)

so that the TBA can also be written as

ε(θ) = r cosh θ −
∫
R
φ(θ − θ′) (L(θ′ + θ0) + L(θ′ − θ0)) dθ′. (4.1.6)

The function φ(θ) has its support close to θ = 0 so φS(θ) is localised about θ = ±θ0,

as shown in the figure below.

Figure 4.1: The staircase kernel φS(θ) with θ0 = 30.

The integral of φ(θ) is ∫
R
φ(θ)dθ = 1

2
. (4.1.7)

To study the form of the pseudoenergy ε(θ) the terms of the TBA equation

must be considered as r and θ vary, following [42] and [43]. The driving term for

the equation is r cosh(θ), and the form of ε(θ) depends on the size of this term.

When reθ � 1 or re−θ � 1 the TBA equation is dominated by the driving term.

ln(1 + e−ε(θ)) therefore experiences double-exponential decay in these θ-regions so

that L(θ) ∼ 0 for θ � ln(1/r) and θ � − ln(1/r). These regions overlap for r > 1,

so for r →∞ L(θ) = 0 for all values of θ. As r decreases towards r = 1, both ln(1/r)
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and − ln(1/r) tend towards zero and L(θ) has a small non-zero region centred around

θ = 0. For r < 1, L(θ) becomes significant in the regions around |θ| = ln(1/r) where

r cosh(θ) is of order 1. For |θ| < ln(1/r) the driving term becomes small and the

TBA is instead dominated by the convolution term involving φ(θ) and L(θ). So, for

r < 1, L(θ) is zero for |θ| � ln(1/r) and then becomes non-zero, taking the form of

a kink, for |θ| ≈ ln(1/r) before becoming constant again (but not necessarily zero)

as |θ| decreases further and the driving term becomes insignificant.

However, this is not the full story for |θ| < ln(1/r). The presence of θ0 in the

kernel means that the TBA equation couples ε(θ) to ε(θ + θ0) and ε(θ − θ0), and

so the kinks centred on θ = ± ln(1/r) affect the form of L(θ) for |θ| < ln(1/r) (the

form is unaffected outside this region because there the driving term dominates).

The form of the L(θ) as r varies depends on the number of integer multiples n of

θ0 that fit within the interval [− ln(1/r), ln(1/r)]. The behaviour at some particular

value of n can be considered by working in the limit where θ0, ln(1/r)→∞ in such

a way that

(m− 3)θ0 � 2 ln(1/r)� (m− 2)θ0. (4.1.8)

As will become apparent later, the labelling of the integers here is to aid the

identification with the minimal models Mm. The regions θ < ln(1/r) − nθ0 and

θ > − ln(1/r) +nθ0 cannot be coupled to either the left or right hand kinks, so L(θ)

is constant in these regions. However, for θ ≈ − ln(1/r) + kθ0 or θ ≈ ln(1/r)− kθ0

for k ≤ n ∈ Z, L(θ) is coupled to the left and right-hand kinks respectively, and the

picture becomes more complicated.

The form of L(θ) becomes more clear when the derivative L′(θ) is considered.

So far it is known that as θ increases through the region θ < ln(1/r) − nθ0, L′(θ)

is initially zero, and then becomes non-zero around θ = − ln(1/r) while L(θ) takes

the form of a kink, before returning to zero as L(θ) becomes constant. The same

pattern occurs as θ decreases through the region θ > − ln(1/r)+nθ0. Differentiating

the TBA equation (4.1.6) (using dφ(θ − θ′)/dθ = −dφ(θ − θ′)/dθ′ and integration

by parts to get the second term) gives

ε′(θ) = r sinh θ −
∫
R
φ(θ − θ′) (L′(θ′ + θ0) + L′(θ′ − θ0)) dθ′. (4.1.9)
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Noting also that

L′(θ) =
−ε′e−ε(θ)

1 + e−ε(θ)
(4.1.10)

the above equation couples L′(θ) to L′(θ ± θ0), and hence to L′(θ ± 2θ0) and so on.

For |θ| < ln(1/r) the sinh(θ) term can be ignored, so using the localised nature of

φ(θ) it is clear from the equation that L′(θ) will be zero at all points except in the

regions around ∓ ln(1/r)± kθ0, k ∈ 0, · · · , n. So there are kinks at − ln(1/r) + kθ0

and at ln(1/r)− kθ0 for all k ∈ 1, · · · , n which are ‘descendants’ of the ‘seed’ kinks

at θ ≈ ± ln(1/r).

The form of L(θ) changes as the value of r decreases and ln(1/r) increases. At

points where 2 ln(1/r) is equal to an integer multiple of θ0 the form of L(θ) undergoes

a transition after which each of the two seed kinks will have one more descendant.

So every time b2 ln(1/r)/θ0c increases by one the number of kinks increases by two.

For (m− 3)θ0 � 2 ln(1/r)� (m− 2)θ0 there are a total of 2m− 4 kinks, which are

labelled from right to left as as Ki, i = 1 · · · 2m−4. Between each pair of consecutive

kinks there are near-constant plateaux, and including the L(θ) = 0 plateaux to the

left of K2m−4 and to the right of K1 there are 2m − 3 such plateaux. The value of

θ at the centre of the non-zero plateau immediately to the left of Ki is

zi =
(m− 2− i)θ0

2
i = 1 · · · 2m− 5 (4.1.11)

and z0 and z2m−4 are taken to indicate some arbitrary values lying in the right and

left hand zero-valued plateaux respectively. The widths of the non-zero plateaux

alternate: defining α = 2 ln(1/r) − (m − 3)θ0, α satisfies 0 � α � θ0, and then

the plateaux centred on zi for i odd have width α and those with i even have width

θ0 − α. The values of ε(θ) and L(θ) on the plateaux are labelled by εi and Li for

i = 0 · · · 2m− 4. The form of L(θ) for various values of r is shown in figure 4.2.

It is the effect of this behaviour on the effective central charge that gives the

theory its staircase nature. The effective central charge ceff (r) is

ceff (r) =
3

π2

∫
R
r cosh(θ)L(θ)dθ. (4.1.12)
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(a) ln r = −110 (b) ln r = −100

(c) ln r = −90 (d) ln r = −80

Figure 4.2: Plots of L(θ) at ln r = −110,−100,−90 and −80. As will be described
in the main text, the theory passes close to each of the unitary minimal modelsMm

in turn as r varies. Here, for the first two plots the theory is close toM6. The third
then shows L(θ) when the theory is in the crossover period between M6 and M5,
and for the final plot the theory is close to M5.

The plot in figure 4.3 shows how, for sufficiently large θ0, the value of ceff (r) passes

through a series of plateaux as r varies, the values of which are those of the central

charges of the unitary minimal models

cMm = 1− 6

m(m+ 1)
. (4.1.13)

To see more explicitly why this should be the case, ceff (r) can be decomposed as
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Figure 4.3: Plot of ceff (r) for r = −195 · · · 5. The blue dotted lines show the values
of the central charges of the minimal modelsMm for m = 3 · · · 9 moving from right
to left.

ceff (r) = c+ + c−, with

c+ =
3

2π2

∫ ∞
−∞

reθL(θ)dθ (4.1.14)

c− =
3

2π2

∫ ∞
−∞

re−θL(θ)dθ, (4.1.15)

where c+ = c− by the symmetry of L(θ). Since L(θ) ∼ 0 for |θ| � ln(1/r), reθ/2 ∼ 0

for θ � ln(1/r) and re−θ/2 ∼ 0 for θ � − ln(1/r), the domains of integration can

be restricted to K1 for c+ and K2m−4 for c−. The methods used in [43] can now be

followed to find ceff entirely in terms of ε(θ) and L(θ). The TBA equation (4.1.6) is

first differentiated with respect to θ, then multiplied by L(θ) before being integrated

over the kink Ki to give

Ai = Ci −Bi
+ −Bi

− (4.1.16)
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where

Ai =

∫
Ki

dθ ε′(θ)L(θ) (4.1.17)

Bi
± =

∫
Ki

dθ

∫
R
dθ′ φ′(θ − θ′)L(θ′ ± θ0)L(θ) (4.1.18)

Ci =

∫
Ki

dθ r sinh θL(θ). (4.1.19)

Also

r sinh θ =
r

2

(
eθ − e−θ

)
∼


reθ

2
for θ ∈ K1

0 for θ ∈ K2, · · · , K2m−5

−re−θ
2

for θ ∈ K2m−4

(4.1.20)

so
3

π2

∫
Ki

r sinh θL(θ)dθ = δi,1c+ − δi,2m−4c−. (4.1.21)

Therefore, focussing on the i = 1 part of (4.1.20) gives

π2

3
c+ = A1 +B1

+ +B1
−. (4.1.22)

This can be manipulated using the following result from [43]

∫
Ki

dθf ′ ∗ P (θ)Q(θ) = −
∫
Ki

dθf ′ ∗Q(θ)P (θ) +

(∫ ∞
−∞

dθf(θ)

)
[P (θ)Q(θ)]zi−1

zi

(4.1.23)

where

α ∗ β(θ) =

∫
R
dθ′α(θ − θ′)β(θ′), (4.1.24)

f(θ) is an even function with its support concentrated at the origin, and P (θ) and

Q(θ) vary slowly with respect to the scale of the support of f close to zi−1 and zi.

In the case in question, φ(θ) has the properties of f(θ) and L(θ) behaves like P (θ)
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and Q(θ). So

∫
Ki

dθ

∫
R
dθ′ φ′(θ − θ′)L(θ′ ± θ0)L(θ) (4.1.25)

=−
∫
Ki

dθ

∫
R
dθ′ φ′(θ − θ′)L(θ′)L(θ ± θ0) +

(∫ ∞
−∞

dθ φ(θ)

)
[L(θ)L(θ ± θ0)]zi−1

zi

(4.1.26)

=−
∫
Ki∓2

dθ

∫
R
dθ′ φ′(θ − θ′)L(θ′ ∓ θ0)L(θ) + 1

2
[L(θ)L(θ ± θ0)]zi−1

zi
. (4.1.27)

Both variables are shifted by ±θ0 in going from the second to the third lines, and

Ki ± θ0 = Ki∓2 is used. Therefore,

Bi
± = −Bi∓2

∓ + 1
2

[L(θ)L(θ ± θ0)]zi−1

zi
(4.1.28)

Since B−1
− = 0 and [L(θ)L(θ + θ0)]z0z1 = 0 this means that B1

+ = 0, so applying

(4.1.28) to (4.1.22)

π2

3
c+ = A1 −B3

+ + 1
2

[L(θ)L(θ − θ0)]z0z1 . (4.1.29)

From (4.1.16)B3
+ = −A3−B3

−, and then from (4.1.28)B3
− = −B5

++1
2

[L(θ)L(θ − θ0)]z2z3 ,

and so on, resulting in

π2

3
c+ =

m−2∑
j=1

(
A2j−1 + 1

2
[L(θ)L(θ − θ0)]z2j−2

z2j−1

)
. (4.1.30)

Also

[L(θ)L(θ − θ0)]z2j−2

z2j−1
= L(z2j−2)L(z2j−2 − θ0)− L(z2j−1)L(z2j−1 − θ0) (4.1.31)

= L(z2j + θ0)L(z2j)− L(z2j+1 + θ0)L(z2j+1) (4.1.32)

= [L(θ)L(θ + θ0)]z2jz2j+1
(4.1.33)

so
π2

3
c+ =

m−2∑
j=1

(
A2j−1 +

1

4
[L(θ) (L(θ + θ0) + L(θ − θ0))]z2j−2

z2j−1

)
, (4.1.34)
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using [L(θ)L(θ + θ0)]z0z1 = 0 = [L(θ)L(θ − θ0)]z2m−6

z2m−5
. Revisiting the TBA equation

(4.1.6) and setting θ = zi, i = 1, · · · , 2m− 5 gives

ε(zi) = εi = −1
2

(L(zi + θ0) + L(zi − θ0)) . (4.1.35)

The surface term in the expression for c+ only involves these particular values of θ,

so (4.1.34) becomes

π2

3
c+ =

m−2∑
j=1

(∫
K2j−1

ε′(θ)L(θ)dθ − 1

2
[L(θ)ε(θ)]z2j−2

z2j−1

)
. (4.1.36)

Changing the variable twice,

∫
K2j−1

ε′(θ)L(θ)dθ =

∫ ε2j−2

ε2j−1

ln(1 + e−ε)dε (4.1.37)

=−
∫ −e−ε2j−2

−e−ε2j−1

ln(1− u)

u
du (4.1.38)

=Li2
(
−e−ε2j−2

)
− Li2

(
−e−ε2j−1

)
, (4.1.39)

where Li2(x) is the dilogarithm function defined as

Li2(x) =

∫ 0

x

ln(1− u)

u
du. (4.1.40)

This expression can be simplified further by introducing new notation for the plateau

values

e−εi =

 x(i+3)/2 for i odd

y(i+2)/2 for i even
(4.1.41)

so that the non-zero plateau values of L(θ) are

ln(1+xa) for z2a−3 − α/2� θ � z2a−3 + α/2 , a = 2 . . .m−1 and

(4.1.42)

ln(1+ya) for z2a−2 − (θ0−α)/2� θ � z2a−2 + (θ0−α)/2 , a = 2 . . .m−2,

(4.1.43)
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where α is defined in the discussion immediately after (4.1.11) as

α = 2 ln(1/r)− (m− 3)θ0, (4.1.44)

and the plateaux form the sequence

{ln(1 + xm−1), ln(1 + ym−2), ln(1 + xm−2), · · · , ln(1 + y2), ln(1 + x2))}. (4.1.45)

The xa and ya can be evaluated from the TBA equation, as this couples each xa

plateau to all other xa plateaux, and similarly for the ya plateaux:

xa =
√

(1 + xa−1)(1 + xa+1) a = 2 · · ·m− 1 (4.1.46)

ya =
√

(1 + ya−1)(1 + ya+1) a = 2 · · ·m− 2. (4.1.47)

The solution to these equations is [44]

1 + xa =
sin2

(
πa
m+1

)
sin2

(
π

m+1

) , 1 + ya =
sin2

(
πa
m

)
sin2

(
π
m

) . (4.1.48)

From (4.1.48), ln(1+x1) = ln(1+y1) = 0 = ln(1+ym−1) = ln(1+xm), and so since

L(θ) is zero for θ � − ln(1/r) and θ � ln(1/r), these constants can be added to the

sequence (4.1.45) in their natural places. Note that xa = xm+1−a and ya = ym−a,

which reflects the more general symmetry L(θ) = L(−θ). These plateau values are

approximate, becoming exact when the limit θ0 → ∞ is taken in such a way that

−(m − 2)θ0/2 � ln r � −(m − 3)θ0/2. In the following sections these values will

be described as the plateau values of L(θ), and the caveat that they only become

exact in such a limit will be left implicit.

Returning to the calculation of c+, Li2 is related to the Rogers dilogarithm L(x)

function by

L
(

x

1 + x

)
= −Li2(−x)− 1

2
ln(1 + x) ln(x) (4.1.49)
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so on including the surface term

c+ =
3

π2

m−2∑
j=1

(
L
(

xj+1

1 + xj+1

)
− L

(
yj

1 + yj

))
. (4.1.50)

This can be evaluated using various sum rules for the Rogers dilogarithm [45]:

n−2∑
k=2

L

(
sin2 π

n

sin2 kπ
n

)
=
π2(n− 3)

3n
(4.1.51)

L(x) + L(1− x) =
π2

6
(4.1.52)

L(1) =
π2

6
(4.1.53)

L(0) = 0. (4.1.54)

Combining these gives

m−2∑
j=1

L
(

xj+1

1 + xj+1

)
=
π2(m− 2)

6
− π2(m− 2)

3(m+ 1)
(4.1.55)

m−2∑
j=1

L
(

yj
1 + yj

)
=
π2(m− 2)

6
− π2(m− 3)

3m
− π2

6
(4.1.56)

which leads to

ceff = 2c+ = 1− 6

m(m+ 1)
. (4.1.57)

This is equal to the central charge for the minimal modelMm. So, for (m− 3)θ0 �

2 ln(1/r) � (m − 2)θ0, the theory is close to the minimal model Mm, and as

r increases, the transition from Mm to Mm−1 occurs at ln(r) ≈ −(m − 3)θ0/2.

Therefore, as r varies from 0 to∞, ceff (r) descends a staircase, with the steps made

up of the central charges cm of the minimal modelsMm. The RG flow of the staircase

model therefore begins in the UV at a fixed point described by the model Mm→∞,

and then flows close to a series of fixed points made up of the minimal models Mm,

before flowing to a massive theory in the IR limit. This interpretation is supported

by perturbative work done for m� 1 [46]. The behaviour just described is depicted

in figure 4.4.

Another important property of the staircase model that has emerged here is
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Figure 4.4: Depiction of the flow in the bulk theory of the staircase model.

that the plateau values xa and ya when (m− 3)θ0 � 2 ln(1/r)� (m− 2)θ0 are the

same as those that appear in the UV of the MA
(+)
m models [18, 44]. Coupled with

the matching of the central charge values, this indicates that in this limit the TBA

equation for the staircase model decouples into the MA
(+)
m equations. This will be

explored in more detail in section 5.3.

4.2 The Staircase Model with Boundaries

The focus of the next chapter will be to analyse this theory when it is defined on a

space with boundaries using the g-function, as introduced in section 3.3. Since the

staircase model is a massive diagonal theory the expression for its exact g-function

should be given by the formula (3.3.4), with the particle number N set to one. One

further piece of information that is needed to write down an expression for the g-

function is the reflection factor for this theory. Since the staircase model S-matrix

arose from analytic continuation from the sinh-Gordon model, it seems natural to

perform the same analytic continuation on the reflection factor of that model. The

reflection factor for the boundary sinh-Gordon model with no additional boundary

degrees of freedom [47] follows from that of the first sine-Gordon breather which

was found in [48]. This involves the two parameters that determine the integrable
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boundary conditions in the boundary sine- and sinh-Gordon models [33]. After

continuing the sinh-Gordon bulk coupling the staircase model reflection factor is

found to be

R(θ) =
(1

2
)(3

4
− iθ0

2π
)(3

4
+ iθ0

2π
)

(1
2
− E

2
)(1

2
+ E

2
)(1

2
− F

2
)(1

2
+ F

2
)
, (4.2.1)

using the same block notation as before (3.3.11). E and F are related to the two

original boundary parameters of the sinh-Gordon model. They often take real values

in the sinh-Gordon model, but just as the bulk coupling was analytically continued,

in the staircase model it will be interesting to consider the boundary parameters at

complex values for which real-analyticity is preserved. The staircase model boundary

parameters are therefore taken to be real parameters θb1 and θb2 defined via

E =
2iθb1
π

, F =
2iθb2
π

. (4.2.2)

Using (3.3.4), the logarithm of the g-function is then [1]

ln g(r) = ln g0(r) + ln gb (r) (4.2.3)

where

ln g0(r) =
∞∑
n=1

1

2n

∫
Rn

dθ1

1 + eε(θ1)
· · · dθn

1 + eε(θn)
φS(θ1 + θ2)φS(θ2 − θ3) · · ·φS(θn − θ1)

(4.2.4)

and

ln gb (r) =
1

2

∫
R
dθ
(
φb(θ)− φS(2θ)− 1

2
δ(θ)

)
L(θ). (4.2.5)

Here ε(θ) solves the TBA equation (4.1.3), φS(θ) is the bulk kernel defined in (4.1.5),

and φb(θ) is the boundary kernel which expressed in the block notation (3.3.11) is

φb(θ) = − i

2π

d

dθ
lnR(θ)

= −φ(θ) + φ( 3
4

)(θ − 1
2
θ0) + φ( 3

4
)(θ + 1

2
θ0)

+ φ(θ − θb1) + φ(θ + θb1) + φ(θ − θb2) + φ(θ + θb2) . (4.2.6)
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The properties

(a+ b)(θ)(a− b)(θ) = (a)(θ + iπb)(a)(θ − iπb) (4.2.7)

and

φ( 1
2

)(θ) = − 1

2π cosh(θ)
= −φ(θ) (4.2.8)

are used in defining the above. Like φ(θ), the function φ(3/4)(θ) has its support close

to θ = 0, as can be seen in figure 4.5. and its integral is

Figure 4.5: Plot of φ(3/4)(θ)

∫
R
φ(3/4)(θ)dθ = −1

4
. (4.2.9)

Collecting together the boundary parameter-dependent terms and those with

explicit θ0-dependence, ln gb splits naturally into three new terms as ln gb = ln gb1 +

ln gb2 + ln gb3 , with

ln gb1 =
1

2

∫
R
dθ
(
−φ(θ)− 1

2
δ(θ)

)
L(θ) , (4.2.10)

ln gb2 =
1

2

∫
R
dθ
(
φ( 3

4
)(θ − 1

2
θ0) + φ( 3

4
)(θ + 1

2
θ0)− φ(2θ − θ0)− φ(2θ + θ0)

)
L(θ) ,

(4.2.11)

ln gb3 =
1

2

∫
R
dθ (φ(θ − θb1) + φ(θ + θb1) + φ(θ − θb2) + φ(θ + θb2))L(θ) . (4.2.12)

As was discussed in the previous section, L(θ) is made up of a series of plateaux,
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with the number of plateaux depending on the number of integer multiples of θ0

in the interval [− ln(1/r), ln(1/r)], so that the form of L(θ) varies with r. Coupled

with the localised nature of φ(θ) and φ(3/4)(θ), this means that in the large-θ0 limit

the g-function itself passes through a series of plateaux as r varies. The dependence

on L(θ) and ε(θ) means that the plateaux of the g-function occur when the bulk

theory is close to a minimal model (although as will be described below, boundary

crossovers can occur while the bulk theory stays close to the same minimal model,

meaning that g(r) can visit more than one plateau value while ceff (r) remains on the

same step). This means that each plateau of the g-function is expected to correspond

to the conformal g-function value of either a single Cardy boundary condition or a

superposition of them. From (3.1.21), the g-function value of a Cardy boundary

condition (a, b) in the unitary minimal model Mm is

g(m, a, b) =

(
8

m(m+ 1)

) 1
4 sin(aπ

m
) sin( bπ

m+1
)√

sin( π
m

) sin( π
m+1

)
, (4.2.13)

with the g-function for a superposition of n boundary conditions

(a1, b1)&(a2, b2)& · · ·&(an, bn) being

g(m, (a1, b1)&(a2, b2)& · · ·&(an, bn)) =
n∑
i=1

g(m, ai, bi). (4.2.14)

In the following sections rules will be developed that use the flow in the g-function

to identify each pair of boundary parameters (θb1, θb2) with a series of conformal

boundary conditions as r varies. In addition, by focussing on pairs of consecutive

‘steps’ in the staircase model, exact equations will be derived for the g-function of

the MA
(+)
m models. The next section demonstrates how this can be done for the

final ‘step’ of the staircase model, as the bulk theory flows from M4 to M3.



Chapter 5

The Staircase Model g-function

5.1 Warm-up Example: MA
(+)
4

The focus of this warm-up example is to show how equations for the exact g-function

of the boundary version of the interpolating theoryMA
(+)
4 can be extracted from the

staircase model g-function, and will give a more detailed derivation of the results of

Dorey, Rim and Tateo [41] which were discussed in section 3.3. MA
(+)
4 interpolates

between the minimal models M4 and M3 in the bulk, so the only values of r that

are of interest when considering how this theory might emerge from the staircase

model are those for which the bulk theory comes close to or moves between these

minimal models. From (4.1.57), the effective central charge of the staircase model

is close to 7/10 when θ0/2 � ln(1/r) � θ0 and 1/2 when 0 � ln(1/r) � θ0/2, so

as ln(1/r) decreases through the domain

0� ln(1/r)� θ0, (5.1.1)

the bulk theory moves from the vicinity of the minimal model M4 to that of M3,

with the crossover occurring at ln(1/r) ≈ θ0/2. In order forMA
(+)
4 to be described

exactly, the staircase model must be ‘re-focussed’ about ln(1/r) = θ0/2, with θ0

taken to infinity so that whatever the value of r, it is impossible for the theory

to reach either the ‘step’ above M4, i.e. M5, or the massive theory which forms

the IR limit of the staircase model. A new variable r̂ must also be defined, which

79
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when varied from zero to infinity moves the theory along the full RG flow ofMA
(+)
4 .

Formally, this is achieved by defining

ln r = −θ0/2 + ln r̂ (5.1.2)

and taking a double-scaling limit where r̂ is initially held finite while the limit

θ0 →∞ is taken, after which ln r̂ is allowed to vary over the full real line. Note that

the bulk crossover occurs at ln r̂ ≈ 0.

Turning now to the form of the pseudoenergy ε(θ), the figure below shows the

form L(θ) at values of r for which the bulk theory is close to M4 and M3, and

during the transition between them. It is natural to divide L(θ) into two mirror-

0.2

0.4

0.6

0.8

 

–60 –40 –20 20 40 60θ 

Figure 5.1: Plots of L(θ) produced with θ0 = 60. From the highest to lowest curves
the values of r are ln r = −50, −40, −30, −20 and −10. When ln r = −50 and
ln r = −40 the bulk theory is close to M4, the bulk crossover from M4 to M3

occurs when ln r ≈ −30, and when ln r = −20 and ln r = −10 the bulk theory is
close to M3.

image parts, centred on θ0/2 and −θ0/2, which become infinitely separated as the

limit θ0 → ∞ is taken. By holding θ finite as this limit is taken, each of these two

parts can be ‘tracked’ as θ0 →∞ by defining the following functions

ε1(θ) = lim
θ0→∞

ε

(
θ +

θ0

2

)
and ε2(θ) = lim

θ0→∞
ε

(
θ − θ0

2

)
(5.1.3)

which clearly satisfy ε1(θ) = ε2(−θ). θ is only allowed to vary over the full real line
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once the limit has been taken. Similarly

L1(θ) = ln(1 + eε1(θ)) = lim
θ0→∞

L

(
θ +

θ0

2

)
and

L2(θ) = ln(1 + eε2(θ)) = lim
θ0→∞

L

(
θ − θ0

2

)
. (5.1.4)

Using (5.1.2), in the double-scaling limit the staircase TBA (4.1.6) can be re-

expressed in terms of these new functions as

ε1(θ) = lim
θ0→∞

1
2
r̂e−θ0/2

(
eθ+θ0/2 + e−(θ+θ0/2)

)
−
∫
R
φ

(
θ +

θ0

2
− θ′

)
(L(θ′ + θ0) + L(θ′ − θ0)) dθ′

= lim
θ0→∞

(
1
2
r̂
(
eθ + e−(θ+θ0)

)
−
∫
R
φ (θ − θ′)

(
L

(
θ′ +

3θ0

2

)
+ L

(
θ′ − θ0

2

))
dθ′
)

(5.1.5)

and

ε2(θ) = lim
θ0→∞

1
2
r̂e−θ0/2

(
eθ−θ0/2 + e−(θ−θ0/2)

)
−
∫
R
φ

(
θ − θ0

2
− θ′

)
(L(θ′ + θ0) + L(θ′ − θ0)) dθ′

= lim
θ0→∞

(
1
2
r̂
(
eθ−θ0 + e−θ

)
−
∫
R
φ (θ − θ′)

(
L

(
θ′ +

θ0

2

)
+ L

(
θ′ − 3θ0

2

))
dθ′
)
.

(5.1.6)

Since θ is kept finite as the θ0 → ∞ limit is taken, the second exponential term

vanishes in (5.1.5) and the first vanishes in (5.1.6). θ = ±3θ0/2 lie outside the non-

zero region of L(θ) in the relevant part of the staircase model, so in the θ0 →∞ limit

the terms involving L (θ′ ± 3θ0/2) equal zero. After combining these observations

with (5.1.4), and allowing θ to vary over the full real line, (5.1.5) and (5.1.6) become

the coupled pair of equations

ε1(θ) =1
2
r̂eθ −

∫
R
φ(θ − θ′)L2(θ′)dθ′ (5.1.7)

ε2(θ) =1
2
r̂e−θ −

∫
R
φ(θ − θ′)L1(θ′)dθ′. (5.1.8)
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This is the TBA system for MA
(+)
4 that was introduced in section 2.3, in equation

(2.3.22). Plots of these functions at various values of r̂ are shown in the figures below,

and it is apparent that given some value of r̂, L1(θ) and L2(θ) can be appropriately

shifted and glued together to form the staircase L(θ) at ln r = ln r̂ − 30.

(a) L1(θ) (b) L2(θ)

Figure 5.2: Plots of L1(θ) and L2(θ) at ln r̂ = −20,−10, 0, 10, 20, where for ln r̂ = 20
L1(θ) has a kink close to θ = −20 and L2(θ) has a kink close to θ = 20, etc.

The behaviour of these equations in the UV (r̂ � 1) and IR (r̂ � 1) limits gives

a simple example of how the plateaux values of L(θ) given in (4.1.48) emerge. To

begin with, set r̂ � 1, so that the theory is described by M4. When θ � ln(1/r̂),

ε1(θ) (5.1.7) is dominated by the driving term r̂ exp(θ) and so tends to infinity,

meaning that L1(θ) ≈ 0. This corresponds to the y1 plateau in (4.1.48) at m = 4.

Turning to (5.1.8), the driving term tends to zero for these values of θ, and so since

L1(θ) also vanishes here, ε2(θ) = 0 and L2(θ) = ln 2, corresponding to the value

of the y2 plateau in (4.1.48). The symmetry between ε1(θ) and ε2(θ) means that

when θ � − ln(1/r̂) this behaviour is switched, with the plateaux values becoming

L1(θ) = ln 2 and L2(θ) = 0, corresponding to the y2 and y3 plateaux in (4.1.48)

respectively. For |θ| � ln(1/r̂), the driving term can be neglected in each equation,

leaving a pair of simultaneous equations in exp(−ε1(θ)) and exp(−ε2(θ)) which solve

to show that both L1(θ) and L2(θ) have a plateau of value ln((3 +
√

5)/2) for these

values of θ. These plateaux correspond to the x2 and x3 plateaux at m = 4. When

r̂ � 1, ε1(θ) is dominated by the driving term for θ � − ln r̂, so that L1(θ) vanishes

for these values of θ, and by symmetry L2(θ) vanishes for θ � ln r̂. There is now
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no value of θ for which neither L1(θ) nor L2(θ) vanishes, and so the only non-zero

values of L1,2(θ) are L1(θ) = ln 2 for θ � − ln r̂ and L2(θ) = ln 2 for θ � ln r̂. These

plateau values line up with the y1, x2 and y2 plateaux that emerge from (4.1.48) at

M3. The plateau values in the UV and IR limits are summarised below:

r̂ � 1 L1(θ) L2(θ)

θ � ln(1/r̂) 0 ln 2

− ln(1/r̂)� θ � ln(1/r̂) ln
(

3+
√

5
2

)
ln
(

3+
√

5
2

)
θ � − ln(1/r̂) ln 2 0

r̂ � 1

θ � ln r̂ 0 ln 2

− ln r̂ � θ � ln r̂ 0 0

θ � − ln r̂ ln 2 0

. (5.1.9)

As was discussed for the full staircase model, the sizes of these plateaux change

as r̂ varies. Focussing on L1(θ), in the far UV (r̂ → 0) limit, the widths of the

plateaux of height 0 and ln 2 tend to zero, while the width of the central plateaux

tends to infinity. As r̂ increases from zero, the central plateau shrinks allowing the

width of the other two to increase in size, until at r̂ = 1 the central plateau has

shrunk to zero so that L1(θ) consists of a plateau of value ln 2 for negative values

of θ, and a zero-valued plateau for positive values of θ, with a kink between the

two centred on θ ≈ 0. This is the point at which the crossover between M4 and

M3 occurs. As r̂ continues to increase, the kink between the two plateaux shifts in

the direction of decreasing θ, until in the far IR (r̂ →∞) limit it goes off to minus

infinity. The behaviour of L2(θ) is that of L1(θ) reflected in the line θ = 0.

By working in the double-scaling limit defined above (5.1.2), an exact equation

for the MA
(+)
4 g-function can be derived from the formulae for the staircase g-

function (4.2.4)-(4.2.12) in terms of the pseudoenergies ε1(θ) and ε2(θ). Beginning

with ln g0, the analysis is made simpler if the symmetry of φS(θ) and ε(θ) is used to
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rewrite (4.2.4) as

ln g0(r̂) =
∞∑
n=1

1

2n

∫
Rn

dθ1

1 + eε(θ1)
· · · dθn

1 + eε(θn)
φS(θ1 − θ2)φS(θ2 − θ3) · · ·φS(θn + θ1)

(5.1.10)

where the n = 1 term is

1
2

∫
R

dθ

1 + eε(θ)
φS(2θ). (5.1.11)

Using the definition of φS(θ) (4.1.5), each product of n φS(θ) factors appearing in

the integrands in (5.1.10) can be expanded into a sum of 2n terms of the form

φ(θ1 − θ2 − α1θ0)φ(θ2 − θ3 − α2θ0) · · ·φ(θn + θ1 − αnθ0) (5.1.12)

with αi = ±1. Since φ(θ) has its support close to θ = 0, each such term is only

non-zero in a sub-region of Rn. The value of (5.1.10) is therefore dependent on

the value of the measure factor 1/(1 + exp(ε(θi))) at each coordinate θi of the sub-

regions (where for now the single staircase pseudoenergy ε(θ) is used). Since L(θ) =

ln(1 + exp(−ε(θ))) is equal to zero for |θ| � ln(1/r), exp(−ε(θ)) = 0 and 1/(1 +

exp(ε(θ)))→ 0 for these values of θ, so for the product of measure factors to be non-

zero in a particular sub-region, each coordinate θi in that sub-region must satisfy

|θi| � ln(1/r). Given {α1, · · · , αn}, the corresponding sub-region is centred on

(θ̃1, θ̃2, · · · , θ̃n), satisfying

θ̃1 − θ̃2 = α1θ0

θ̃2 − θ̃3 = α2θ0

...

θ̃n + θ̃1 = αnθ0. (5.1.13)

The only solutions to this occur when the θ̃i are integer or half integer multiples of

θ0. The only such values of θ̃i for which 1/(1+exp(ε(θ̃i))) is non-zero are θ̃i = 0 and

θ̃i = ±θ0/2. It is clear from inspection of (5.1.13) that the only solutions involving
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these values occur when n is odd and are

(θ̃1, θ̃2, · · · , θ̃n) = (±θ0/2,∓θ0/2,±θ0/2, · · · ,±θ0/2), (5.1.14)

corresponding to

(α1, α2, · · · , αn) = (±1,∓1,±1, · · · ,±1) (5.1.15)

respectively. In the double-scaling limit (5.1.2), ε(θ) is described by ε1(θ − θ0/2)

in the region around θ = θ0/2 and by ε2(θ + θ0/2) around θ = −θ0/2. So, when

θi ≈ ±θ0/2, the measure factors 1/(1 + exp(−ε(θi))) in (5.1.10) can be replaced by

1/(1 + exp(−ε1(θi − θ0/2))) or 1/(1 + exp(−ε2(θi + θ0/2))) respectively. Denoting

the measure factors 1/(1 + exp(ε1,2(θ))) by χ1,2(θ), the integrand in the nth term in

ln g0(r̂) is

χ1(θ1 −
θ0

2
)χ2(θ2 +

θ0

2
) · · ·χ1(θn −

θ0

2
)×

φ(θ1 − θ2 − θ0)φ(θ2 − θ3 + θ0) · · ·φ(θn + θ1 − θ0)+

χ2(θ1 +
θ0

2
)χ1(θ2 −

θ0

2
) · · ·χ2(θn +

θ0

2
)×

φ(θ1 − θ2 + θ0)φ(θ2 − θ3 − θ0) · · ·φ(θn + θ1 + θ0) (5.1.16)

which upon changing the variables and using the symmetry ε1(θ) = ε2(−θ) gives

the expression for ln g0(r̂) to be

ln g0(r̂) =
∞∑
n=1
n odd

1

n

∫
Rn

dθ1

1 + eε1(θ1)

dθ2

1 + eε1(θ2)
· · · dθn

1 + eε1(θn)
φ(θ1+θ2)φ(θ2+θ3) · · ·φ(θn+θ1).

(5.1.17)

The other terms in ln g(r) are simpler. Using again the localised behaviour of

φ(θ), ln gb1 (4.2.10) is determined by L(θ ≈ 0), which in the double scaling limit

is equal to L1(θ → −∞) = L2(θ → ∞). As can be seen from (5.1.9), this has

constant value ln 2 throughout the RG flow and so can be taken outside the integral

in (4.2.10) so that

ln gb1(r̂) = −1
2

ln 2. (5.1.18)

ln gb2 (4.2.11) is governed by θ ≈ ±θ0/2 so can be re-expressed in terms of ε1(θ)
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and ε2(θ) as

ln gb2(r̂) =1
2

∫
R
dθ

(
φ(3/4)(θ −

θ0

2
)− φ(2θ − θ0)

)
L1(θ − θ0

2
)+

1
2

∫
R
dθ

(
φ(3/4)(θ +

θ0

2
)− φ(2θ + θ0)

)
L2(θ +

θ0

2
)

=

∫
R
dθ
(
φ(3/4)(θ)− φ(2θ)

)
L1(θ) (5.1.19)

where L1(θ) = L2(−θ) and the fact that φ(θ) and φ(3/4)(θ) are even have been used

in reaching the final step.

The behaviour of ln gb3 (4.2.12) is governed by L(θ ≈ ±θb1) and L(θ ≈ ±θb2).

(4.2.12) is symmetric with respect to a sign change of either or both of the boundary

parameters, θb1 → −θb1 and θb2 → −θb2, and so θb1 and θb2 can be taken to be

non-negative without loss of generality. In the double-scaling limit, the boundary

parameters can be treated by defining

θb1,b2 =
θ0

2
+ θ̂b1,b2, (5.1.20)

where θ̂b1,b2 are held fixed while the θ0 → ∞ limit is taken, and afterwards are

allowed to take all real values. Then L(θ ≈ θb1,b2) = L1(θ ≈ θ̂b1,b2) and L(θ ≈

−θb1,b2) = L2(θ ≈ −θ̂b1,b2) so that ln gb3 becomes

ln gb3(r̂) =
1

2

∫
R
dθ
{(
φ(θ − θ̂b1) + φ(θ − θ̂b2)

)
L1(θ) +

(
φ(θ + θ̂b1) + φ(θ + θ̂b2)

)
L2(θ)

}
(5.1.21)

=

∫
R
dθ
(
φ(θ − θ̂b1) + φ(θ − θ̂b2)

)
L1(θ) (5.1.22)

using L1(θ) = L2(−θ).

So, the expressions (5.1.17), (5.1.18), (5.1.19) and (5.1.22), make up the g-

function ln g(r̂) = ln g0(r̂) + ln gb1(r̂) + ln gb2(r̂) + ln gb3(r̂) for MA
(+)
4 . When θ̂b2

(or equivalently θ̂b1) is taken to plus or minus infinity before r̂ is varied, these equa-

tions reduce to the single boundary parameter results of Dorey et al. [41] which were

reported in section 3.3. The plots in figure 5.3 show some examples of the behaviour

of the g-function at various values of the boundary parameters. The horizontal lines
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indicate the conformal g-function values of certain Cardy boundary conditions (a, b)

or their superpositions atM4 andM3 ((4.2.13),(4.2.14)), and their agreement with

the values of plateaux of ln g(r̂) is clear from the plots.

(a) θ̂b1 = 20, θ̂b2 = −20

(b) θ̂b1 = −20, θ̂b2 = −40

(c) θ̂b1 = 20, θ̂b2 = 40

Figure 5.3: Flow of ln g(r̂) for ln r̂ = −30 · · · 30 at various values of the boundary
parameters θ̂b1 and θ̂b2.
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To determine in general which boundary conditions appear and the flows that

occur between them, the UV and IR limits of the value of the g-function must be

studied. Beginning with ln g0(r̂), the products of φ(θi + θj) have their support close

to θi = 0 for i = 1, · · · , n so (5.1.17) is governed by ε1(θ ≈ 0). In the far UV limit

(r̂ → 0), exp(−ε1(θ ≈ 0)) = (1 +
√

5)/2 so that ln g0(r̂) becomes

lim
r̂→0

ln g0(r̂) =

∞∑
n=1
n odd

1

n

(√
5− 1

2

)n ∫
Rn
dθ1dθ2 · · · dθnφ(θ1 + θ2)φ(θ2 + θ3) · · ·φ(θn + θ1)

=
∞∑
n=1
n odd

1

n 2n+1

(√
5− 1

2

)n

=
1

4
ln

(
1 +

2√
5

)
(5.1.23)

where (4.1.7) has been used. In the far IR limit (r̂ → ∞), exp(−ε1(θ ≈ 0)) → 0

and so 1/(1 + exp(ε1(θ ≈ 0)))→ 0 and limr̂→∞ ln g0(r̂) vanishes.

ln gb1 is constant throughoutMA
(+)
4 , so it is equal to −1

2
ln 2 in both the UV and

IR limits. ln gb2(r̂) is controlled by L1(θ ≈ 0) and so taking the UV and IR values

of this from (5.1.9) gives

lim
r̂→0

ln gb2(r̂) = −1
2

ln
3 +
√

5

2
(5.1.24)

lim
r̂→∞

ln gb2(r̂) = 0. (5.1.25)

ln gb3(r̂) depends on L1(θ ≈ θ̂b1) and L1(θ ≈ θ̂b2). Beginning with the simplest

cases, if θ̂b1 → ∞ before r̂ is varied then from (5.1.9) L1(θ̂b1) = 0 for all values

of r̂, and if θ̂b1 → −∞ then L1(θ̂b1) = ln 2 for all values of r̂. If θ̂b1 = 0 then

L1(θ̂b1) = ln((3+
√

5)/2) for r̂ → 0, but then changes value during the bulk transition

from M4 to M3, becoming L1(θ̂b1) = 0 for r̂ → ∞. For finite, non-zero values of

θ̂b1 the situation is more complicated. In this case, in the far UV limit the central

plateau of L1(θ) has infinite width and so L1(θ̂b1) ≈ ln((3 +
√

5)/2) for all finite

values of θ̂b1. As ln(1/r̂) decreases this plateau shrinks, and L1(θ̂b1) moves off this

plateau while the bulk is still close toM4, corresponding to a boundary flow within
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this minimal model. For θ̂b1 > 0 a transition in the value of L1(θ̂b1) occurs at

ln(1/r̂) ≈ θ̂b1, after which L1(θ ≈ θ̂b1) ≈ 0. There are no further transitions in this

case, and L1(θ ≈ θ̂b1) remains zero into the far IR limit (r̂ → ∞). For θ̂b1 < 0

the transition occurs at ln(1/r̂) ≈ −θ̂b1, after which L1(θ ≈ θ̂b1) ≈ ln 2. After the

bulk transition at ln(1/r̂) ≈ 1, L1(θ ≈ θ̂b1) keeps this value until the point where

ln(1/r̂) = θ̂b1, after which L1(θ ≈ θ̂b1) ≈ 0 and there are no further transitions. The

same rules apply for θ̂b2.

At the values of r̂ for which both θ̂b1 and θ̂b2 lie on plateaux of L1(θ), L1(θ̂b1)

and L1(θ̂b2) can be pulled outside the integral in (5.1.22) to give

ln gb3(r̂) = 1
2

(
L1(θ̂b1) + L1(θ̂b2)

)
. (5.1.26)

The possible plateau values of ln g(r̂) can then be found by adding this to the expres-

sions for ln g0(r̂), ln gb1(r̂) and ln gb2(r̂) in the UV and IR limits, and these values can

then be identified with boundary conditions using (4.2.13). The tables below give

the boundary condition identified for each possible pair of plateau values L1(θ̂b1)

and L1(θ̂b2); the first table is for the UV limit, where the theory is close toM4, and

the second is for the IR limit where it is close to M3.

M4:

L(θ̂b1) L(θ̂b2) ln g Boundary condition

0 0 1
4

ln 5−
√

5
40

(1, 1) = (+)

ln 3+
√

5
2

0 1
4

ln 5+2
√

5
20

(1, 2) = (0+)

ln 2 0 1
4

ln 5−
√

5
10

(2, 1) = (0)

ln 3+
√

5
2

ln 2 1
4

ln 5+2
√

5
5

(2, 2) = (d)

ln 3+
√

5
2

ln 3+
√

5
2

1
4

ln 65+29
√

5
40

(1, 3)&(1, 1) = (−0)&(+)

ln 2 ln 2 1
4

ln 2(5−
√

5)
5

(3, 1)&(1, 1) = (+)&(−).

(5.1.27)
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M3:

L(θ̂b1) L(θ̂b2) ln g(r) Boundary condition

0 0 −1
2

ln 2 (1, 1) = (+)

ln 2 0 0 (1, 2) = (f)

ln 2 ln 2 1
2

ln 2 (1, 3)&(1, 1) = (+)&(−).

(5.1.28)

The boundary condition labels (+), (−), (0), (0+), (−0) and (d) in (5.1.27) and

(+), (−) and (f) in (5.1.28) are the standard labels for boundary conditions in the

tricritical Ising model (described by M4) and the Ising model (described by M3)

respectively.

Combining these identifications with the movement between plateau values de-

scribed above results in the network of flows shown in figure 5.4, where the top

layer represents flows withinM4, the bottom layer represents those withinM3, and

the vertical flows represent the flows that occur during the bulk transition around

ln(1/r̂) = 0. It should be noted here that the identification of g-function values

(3,1)&(1,1)

(2,2)

       

       

     
            

 

 

 

 

 

    

 ,

 

      (2,1)
(1,3)&(1,1)

(2,2)

(1,2)

(1,1)

(1,2)
(2,1)

(1,2)
(1,2)

(1,1)

(1,3)&(1,1)

θbθb
1

2

^
^

Figure 5.4: Flows between boundary conditions in theMA
(+)
4 interpolating theory.

with boundary conditions in (5.1.27) and (5.1.27) is not unique, because ambigui-

ties arise due to the symmetries of the conformal g-function (4.2.13). Firstly, there

is the equivalence of the boundary conditions (a, b) and (m − a,m + 1 − b) which
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was first discussed around (3.1.17). The only ambiguity resulting from this is that

there is a choice in the labelling of the boundary conditions appearing in the table

above. However, the symmetries

g(m, a, b) = g(m,m−a, b) and g(m, a, b) = g(m, a,m+1−b) (5.1.29)

do result in ambiguities as to the actual physical boundary condition that occurs.

The boundary condition (m − a, b) will be referred to as the spin-flip conjugate of

(a, b). In the Ising model this arises from the symmetry of the g-function under the

Z2 flip from the (+) to (−) boundary conditions, and an analogue of this symmetry

exists in the higher unitary minimal models. In the original staircase g-function

ln g(r), these symmetries arise from the fact that L(θ) is even so that

ln g(r, θb1, θb2) = ln g(r, θb1,−θb2) = ln g(r,−θb1, θb2). (5.1.30)

In terms of the double-scaling limit g-function, ln g(r̂) is unchanged if both θ̂bi →

−θ̂bi and L1(θ)→ L2(θ).

However, there are good indications that the correct boundary condition identifi-

cations have been made. The boundary flows found in [49] and [50] for the tricritical

Ising model match those along the edges of theM4 level of figure 5.4, and the flows

at the M3 level match those which occur in the Ising model (see, for example, [32]

and [51]). Furthermore, the combinations of these with the bulk flows agree with

those found in [52] in the case of one boundary parameter. It will be seen in chap-

ter 6.2 that a version of the g-function involving an excited bulk state can be used

to check the identification of the boundary conditions, but for now they will be

assumed to be correct. The conjugate boundary conditions can be incorporated by

allowing θb1 and θb2 to take negative values, so that if (θb1, θb2) is identified with (a, b)

then (θb1,−θb2) is identified with (m−a, b), and in the case of the superposition the

conjugate of each boundary condition in the superposition is taken.
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5.2 The Full Staircase

The focus is now widened to the study of g-function flows in the full staircase

model, such as those plotted in figure 5.5. The results appearing here and in the

next chapter were reported in [1]. The aim of this section is to find the flows

between boundary conditions that occur during the full RG flow of the staircase

model. To achieve this, Cardy boundary conditions (or superpositions) must be

identified with configurations of boundary parameters (θb1, θb2) in the staircase g-

function, whenever the bulk theory passes close to each of the unitary minimal

models Mm, and the flows induced by either pure boundary transitions or those

coinciding with bulk transitions must be determined, just as was done for theM4 →

M3 flows in the previous section. The derivation of exact g-function equations for

flows between consecutive minimal models Mm and Mm−1, i.e. those described by

the interpolating theories MA
(+)
m , will be left to the section 5.3.

The first task is to establish the value of each term in the g-function ln g(r) =

ln g0(r) + ln gb1(r) + ln gb2(r) + ln gb3(r) when it is close to a minimal model Mm,

i.e. for (m− 3)θ0/2� ln(1/r)� (m− 2)θ0/2.

5.2.1 ln g0(r)

As in the warm-up case, the most complex term to treat is ln g0(r)

ln g0(r) =
∞∑
n=1

1

2n

∫
Rn

dθ1

1 + eε(θ1)
· · · dθn

1 + eε(θn)
φS(θ1 − θ2)φS(θ2 − θ3) · · ·φS(θn + θ1),

(5.2.1)

and as was described in the warm-up case, the ‘double-bump’ form of φS(θ) means

that the value of ln g0(r) is determined by sub-regions of Rn centred on (θ̃1, θ̃2, · · · , θ̃n),
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(d) θb1 = 180

Figure 5.5: Plots of the logarithm of the staircase g-function flows at four different
values of θb1. θ0 is set to 60, and the collection of curves in each plot emerge as
θb2 ranges from 0 to 200 in steps of 2. The five highlighted flows in each plot
are θb2 = 200, 150, 100, 50 and 0, with θb2 = 200 producing the lowest-lying of
these, and reading from left to right, this is joined by the other flows in decreasing
numerical order. The plateau values of ceff indicate that the bulk passes close to
the minimal modelsM9 down toM3 for these values of r, and the logarithms of the
conformal g-function values (4.2.13) of the Cardy boundary conditions at each of
these minimal models are indicated by the short light blue horizontal lines. Those g-
function plateaux that do not coincide with these lines correspond to superpositions
of these boundary conditions.
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which satisfy

1 −1 0 0 · · · 0 0

0 1 −1 0 · · · 0 0

0 0 1 −1 · · · 0 0

· · · · · · ·

· · · · · · ·

0 0 0 0 · · · 1 −1

1 0 0 0 · · · 0 1





θ̃1

θ̃2

θ̃3

·

·

·

θ̃n


= θ0



α1

α2

α3

·

·

·

αn


(5.2.2)

where αi = ±1, i = 1 · · ·n. Inverting this gives

θ̃1

θ̃2

·

·

·

θ̃n


= 1

2
θ0



1 1 1 · · · 1 1

−1 1 1 · · · 1 1

−1 −1 1 · · · 1 1

· · · · ·

· · · · ·

−1 −1 −1 · · · −1 1





α1

α2

·

·

·

αn


(5.2.3)

from which it is clear that when n is odd each θ̃i is a half integer multiple of θ0, and

when n is even the θ̃i’s are integer multiples of θ0. Therefore, if L(θ̃i) is non-zero then

θ̃i lies at the centre of a plateau of L(θ) when (m−3)θ0/2� ln(1/r)� (m−2)θ0/2.

In particular, the centres of the non-zero x-type plateaux are

{−(m− 3)θ0/2,−(m− 5)θ0/2, · · · , (m− 5)θ0/2, (m− 3)θ0/2}, (5.2.4)

which are integer multiples of θ0 for m odd and half integer multiples of θ0/2 for m

even. The centres of the non-zero y-type plateaux are

{−(m− 4)θ0/2,−(m− 6)θ0/2, · · · , (m− 6)θ0/2, (m− 4)θ0/2}, (5.2.5)

which are half integer multiples of θ0 for m odd and integer multiples for m even.

So, when m + n is odd each θ̃i lies at the centre of an x-type plateau, and when
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m+ n is even each θ̃i lies at the centre of a y-type plateau.

Hence for (m−3)θ0/2� ln(1/r)� (m−2)θ0/2, L(θ) and therefore the measure

factors 1
1+exp(ε(θ))

can be approximated by the plateau values xa and ya (4.1.48) in

each of the sub-regions centred on (θ̃1, θ̃2, · · · , θ̃n). Given (α1, · · · , αn), the corre-

sponding term in ln g0(r) is

1

1 + eε(θ̃1)
· · · 1

1 + eε(θ̃n)
×∫

Rn
dθ1 · · · dθnφ(θ1 − θ2 − α1θ0)φ(θ2 − θ3 − α2θ0) · · ·φ(θn + θ1 − αnθ0)

≈ 1

2n+1

1

1 + eε(θ̃1)
· · · 1

1 + eε(θ̃n)
. (5.2.6)

This becomes exact when the limit θ0 → ∞ is taken in such a way that r̂ remains

within the above domain. From now on ‘≈’ will be replaced with ‘=’ in such calcu-

lations, with the caveat that true equality only holds in this limit. In the warm-up

case (where only M3 and M4 appeared) only relatively few terms of above form

were non-zero. However, as m increases, the number of integer and half integer mul-

tiples of θ0 for which L(θ) is non-zero increases, and so do the number of non-zero

terms of the form (5.2.6). Nevertheless, it is possible to formulate an expression for

the terms of the sum in ln g0(r), by splitting the sum in ln g0(r) into two terms,

ln gA(r) consisting of those terms where m + n is odd, and ln gB(r) consisting of

those terms for which m+ n is even.

First, consider the situation when m+ n is odd. Here the non-zero terms of the

form (5.2.6) correspond to the sub-regions for which

1

1 + eε(θ̃i)
=

xa
1 + xa

, a ∈ {2, · · · ,m− 1} (5.2.7)

for each θ̃i. Using (5.2.2), there are restrictions on the values taken by consecutive

1/(1 + exp(ε(θ̃i))) terms in (5.2.6):

1

1 + eε(θ̃i)
=

xa
1 + xa

for i = 1, · · · , n− 1

⇒ 1

1 + eε(θ̃i+1)
=

xa+1

1 + xa+1

or
1

1 + eε(θ̃i+1)
=

xa−1

1 + xa−1

(5.2.8)
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with only the former option allowed if a = 2 and only the latter if a = m− 1. There

is also the additional constraint that

1

1 + eε(θ̃1)
=

xa
1 + xa

⇒ 1

1 + eε(θ̃n)
=

xm−a+1±1

1 + xm−a+1±1

(5.2.9)

where only the ‘−’ choice is allowed for a = 2 and only the ‘+’ choice for a = m−1.

Each term in the sum in ln g0(r) is itself a sum of all possible terms of the form

(5.2.6) obeying these rules at a particular value of n, so that for n = k it is a sum of

sequences of measure factors of length k. It is possible to construct a matrix which

when taken to the kth power has entries that reproduce these sequences. Consider

an r × r matrix A, the entries of which satisfy

Ai,i−1 = Ai,i+1,

Aij = 0 for j 6= i− 1 or i+ 1. (5.2.10)

If this matrix is taken to the power k then the (i, j) entry is

(
Ak
)
ij

= Ail1Al1l2 · · ·Alk−2lk−1
Alk−1j. (5.2.11)

Assigning the same value to each non-zero element within a particular row, then

the form of A means that if an element of one of the above sequences with non-zero

value has the row s value, then the next element in the sequence must either have

the row s− 1 or row s+ 1 value (with suitable restrictions if s = 1 or s = r). This

is the same restriction as that on consecutive terms in the sequences of measure

factors in (5.2.6). So, setting r = m− 2 and the entries of A to be equal to

A =



0 x2

1+x2
0 0 · · · 0 0 0

x3

1+x3
0 x3

1+x3
0 · · · 0 0 0

0 x4

1+x4
0 x4

1+x4
· · · 0 0 0

...
...

...
...

0 0 0 0 · · · 0 xm−1

1+xm−1
0


, (5.2.12)

the entries of Ak are then made up of all the possible sequences of xa/(1 + xa) of
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length k obeying the constraint given in (5.2.8). It is noted here for later use that

due to the property xa = xm+1−a, the entries of A satisfy

Aij = Am−1−i,m−1−j. (5.2.13)

It now remains to determine which of these entries obey the constraint (5.2.9)

between the initial and final elements of the sequence of measure factors. This

amounts to restricting the terms (5.2.11) to those with

Alk−1j = Am−1−i±1,j. (5.2.14)

where only the ‘−’ sign is allowed for i = 1 and only the ‘+’ sign for i = m− 2.

Consider first the ‘+’ choice. Then for i = 2, the only non-zero term occurs when

j = m− i−1 = m−3, and for i = 3, · · · ,m−2 there are two choices, j = m− i±1.

In each case,

Am−i,j =
xm−i+1

1 + xm−i+1

. (5.2.15)

Although there is a choice in the value of j for i 6= 2, this has no impact on the

preceding terms in the sequence, and so for a = 4, · · · ,m−1, each sequence of mea-

sure factors beginning with xa/(1 + xa) and satisfying the ‘+’ part of the constraint

(5.2.9) appear twice in Ak. So, to reproduce each sequence of measure factors satis-

fying the ‘+’ part of the constraint (5.2.9) once and only once, j = m− i− 1 must

be chosen so that the relevant elements of Ak are those of the form

(
Ak
)
ij

= Ail1Al1l2 · · ·Alk−2lk−1
Am−i,m−i−1 i = 2, · · · ,m− 2. (5.2.16)

where for now the Einstein summation convention has been dropped on i.

Similarly, if the ‘−’ sign is chosen in (5.2.14) then for i = m−3 the only non-zero

term appears when j = m − 2 − (m − 3) + 1 = 2. For i = 1, · · · ,m − 4 there are

two choices, j = m− 2− i± 1. In each case

Am−i−2,j =
xm−i−1

1 + xm−i−1

(5.2.17)
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so here the sequences of measure factors beginning with xa/(1 + xa) for

a = 2, · · · ,m− 3 and satisfying the ‘−’ part of the constraint (5.2.9) appears twice

in Ak. As before, the choice j = m− 1− i can be made so that the set of elements

of Ak of the form

(
Ak
)
ij

= Ail1Al1l2 · · ·Alk−2lk−1
Am−i−2,m−i−1 i = 1, · · · ,m− 3 (5.2.18)

contains each sequence of measure factors satisfying the ‘−’ part of the constraint

(5.2.9) once and only once.

Conversely, if j = m− i− 1 in (5.2.11) then the only possible values of lk−1 are

lk−1 = m − 3 for i = 1, lk−1 = m − i or lk−1 = m − i − 2 for i = 2, · · · ,m − 3,

and lk−1 = 2 for i = m − 2. The set of such elements of Ak is the union of

the two sets (5.2.16) and (5.2.18) found above. The kth term of ln gA(r) is the

sum of the elements of these sets so, reintroducing the summation convention, for

(m− 3)θ0/2� ln(1/r)� (m− 2)θ0/2,

ln gA(r) =
∑
n≥1

m+n odd

1

2n

1

2n+1
Ail1Al1l2 · · ·Aln−2ln−1Aln−1,m−i−1. (5.2.19)

The sum of matrix elements here is the sum of the anti-diagonal elements of An,

known as the anti-trace of An. So

ln gA(r) =
∑
n≥1

m+n odd

1

2n

1

2n+1
antiTr(An), (5.2.20)

where defining the N ×N matrix JN to have elements

(JN)ij = δi,N+1−j, (5.2.21)

the anti-trace can be expressed using Jm−2 as

antiTr(Ak) = Tr(AkJm−2). (5.2.22)

Turning to the situation where m + n is even, the non-zero terms in ln gB(r)



5.2. The Full Staircase 99

correspond to those sub-regions for which

1

1 + eε(θ̃i)
=

ya
1 + ya

, a ∈ {2, · · · ,m− 2} (5.2.23)

for each θ̃i. A similar constraint to the m + n odd case exists on the values of the

measure factors for consecutive θ̃i’s:

1

1 + eε(θ̃i)
=

ya
1 + ya

for i = 1, · · ·n⇒

1

1 + eε(θ̃i+1)
=

ya+1

1 + ya+1

or
1

1 + eε(θ̃i+1)
=

ya−1

1 + ya−1

(5.2.24)

with only the former option allowed if a = 2 and only the latter if a = m − 2. So,

the relevant sequences again appear as elements of powers of a matrix of the form

(5.2.10), which in this case is an m− 3 ×m− 3 matrix B defined as

B =



0 y2

1+y2
0 0 · · · 0 0 0

y3

1+y3
0 y3

1+y3
0 · · · 0 0 0

0 y4

1+y4
0 y4

1+y4
· · · 0 0 0

...
...

...
...

0 0 0 0 · · · 0 ym−2

1+ym−2
0


(5.2.25)

There is also the additional constraint that

1

1 + eε(θ̃1)
=

ya
1 + ya

⇒ 1

1 + eε(θ̃n)
=

ym−a±1

1 + ym−a±1

(5.2.26)

where only the ‘−’ choice is allowed for a = 2 and only the ‘+’ choice for a = m−2.

This is the same form of constraint as in the m+ n odd case, just with m replaced

with m − 1, and since the y-plateaux at Mm have the same values as the x-type

plateaux at Mm−1, matrix B is just the same as matrix A with m → m − 1.

The same conclusions can therefore be drawn and the allowed sequences of measure

factors appear as the terms of the anti-trace of Bk:

ln gB(r) =
∑
n≥1

m+n even

1

2n

1

2n+1
antiTr(Bn). (5.2.27)
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Now what remains is to evaluate ln gA(r) and ln gB(r) using the known values of

{xa} and {ya} (4.1.48). To achieve this the anti-trace of the powers of matrices that

appear in these expressions is rewritten in terms of the trace of powers of (slightly

manipulated) matrices, which allows these expressions to be evaluated using the

eigenvalues of the matrices in question. It suffices to derive this for the m + n odd

case, since the m + n even case follows upon shifting m → m − 1. The situation

depends on whether m is even or odd.

If m is even then

ln gA(r) =
∑
n≥1
n odd

1

2n

1

2n+1
antiTr(An) =

∑
n≥1
n odd

1

2n

1

2n+1
Tr(AnJm−2) (5.2.28)

The property (5.2.13) leads to the observation

(Jm−2AJm−2)ik = (Jm−2)ij1Aj1j2(Jm−2)j2k =δi,m−1−j1Aj1j2δj2,m−1−k (5.2.29)

=Am−1−i,m−1−k = Aik. (5.2.30)

This means that for n odd

AnJm−2 = A(Jm−2AJm−2)A(Jm−2AJm−2)A · · · (Jm−2AJm−2)AJm−2 = (AJm−2)n

(5.2.31)

so that using the identity

∞∑
n=1

1

n
TrMn = −Tr ln(I −M) = − ln Det(I −M) (5.2.32)

(5.2.28) becomes

ln gA(r) =
1

4

∑
n≥1
n odd

1

n
Tr(1

2
AJm−2)n (5.2.33)

=
1

8
ln

Det(I + 1
2
AJm−2)

Det(I − 1
2
AJm−2)

. (5.2.34)
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To find the eigenvalues of AJm−2, note that the matrix A can be written as

Aij = lij
xi+1

1 + xi+1

(5.2.35)

where lij is the incidence matrix of the Am−2 Dynkin diagram. The transpose of

this matrix appears in [18] where the eigenvalues are given as

λk = 2 cos

(
πk

m+ 1

)
, k = 2, 3, · · · ,m− 1, (5.2.36)

so these are also the eigenvalues of A. The eigenvectors ψk of A have the property

Jm−2ψk = (−1)kψk. (5.2.37)

Therefore, the eigenvalues of AJm−2 are µk = (−1)kλk, that is

{µk} = {2 cos
2π

m+ 1
, 2 cos

4π

m+ 1
, · · · , 2 cos

(m− 2)π

m+ 1
}, all with multiplicity two.

(5.2.38)

So
Det

(
1 + 1

2
AJm−2

)
Det

(
1− 1

2
AJm−2

) =
cos4 π

m+1
cos4 2π

m+1
· · · cos4 (m−2)π

2(m+1)

sin4 π
m+1

sin4 2π
m+1
· · · sin4 (m−2)π

2(m+1)

. (5.2.39)

This can be simplified using the well-known trigonometric identities

cos
π

n
cos

2π

n
· · · cos

(n− 1)π

2n
=

1

2(n−1)/2
for n odd, (5.2.40)

and

sin
π

n
sin

2π

n
· · · sin (n− 1)π

n
=

n

2n−1
(5.2.41)

which implies

sin2 π

n
sin2 2π

n
· · · sin2 (n− 1)π

2n
=

n

2n−1
for n odd. (5.2.42)
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Then ln gA(r) becomes

ln gA(r) =
1

8
ln

(
1

(m+ 1)2

sin4 mπ
2(m+1)

cos4 mπ
2(m+1)

)
=

1

8
ln

(
4

m+ 1

sin4 mπ
2(m+1)

sin2 π
m+1

)2

for m even.

(5.2.43)

If m is odd then

ln gA(r) =
∑
n>1
n even

1

2n

1

2n+1
antiTr(An) =

∑
n>1
n even

1

2n

1

2n+1
Tr(AnJm−2). (5.2.44)

(5.2.31) no longer holds, but it is still possible to re-express (5.2.44) as the trace

over powers of certain matrices. To see this, consider the matrix A2, defined as the

(m− 2)× (m− 2) matrix that only differs from A in the elements

(A2)m−1
2
,m−3

2
= (A2)m−1

2
,m+1

2
= 0. (5.2.45)

Then it can be shown that

Tr(AnJm−2) = Tr(An − An2 ) (5.2.46)

for all m odd. Since each entry Aij of A is proportional to the entry lij of the

incidence matrix of the Am−2 Dynkin diagram, the non-zero terms in

Tr(AnJm−2) = Ail1Al1l2 · · ·Aln−2ln−1Aln−1,m−i−1, (5.2.47)

can be pictured as a weighted path on the Am−2 Dynkin diagram, made up of steps

between neighbouring nodes and starting at node i and finishing at the conjugate

node m − i − 1. The terms of Tr(An) and Tr(An2 ) can be interpreted as weighted

paths on the same Dynkin diagram, but this time starting and finishing on the same

node i. Since m is odd, the paths in both cases must be made up of an even number

of steps, so this interpretation makes it clear that both sides of (5.2.47) vanish for

n odd. So n can be assumed to be even, which in any case are the values of interest

for m odd.

Starting with the left hand side of (5.2.46) and dropping the summation conven-
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tion, if a particular term

Ail1Al1l2 · · ·Aln−2ln−1Aln−1,m−i−1 (5.2.48)

in (5.2.47) has i < m−1
2

, then using (5.2.10) the sequence must contain the element

Am−1
2

m+1
2

at least once. Suppose that the final time it appears is at Alrlr+1 . Using

(5.2.13), the value of (5.2.48) is unchanged if each index ls > lr is replaced by its

conjugate m−1−ls (note that m−1
2

is self-conjugate). In particular, the final element

in the sequence is now Am−ln−1−1,i. So, each term in trace of AnJm−2 with i < m−1
2

is equal to a term in the trace of An where the element Am−1
2

m−3
2

appears at least

once. Similarly, if i > m−1
2

then Am−1
2

m−3
2

must be present in (5.2.48). Taking the

conjugates of the indices after the final appearance of this element again equates

each such term in the trace of AnJm−2 with a term in the trace of An, this time with

the property that the element Am−1
2

m+1
2

appears at least once. Finally, if i = m−1
2

in (5.2.48) then m− i− 1 = m−1
2

and so the term is already a term in the trace of

An. By similar conjugation of indices the converse property follows that any term

in Tr(An) which contains Am−1
2

m+1
2

or Am−1
2

m−3
2

at least once is equal to a term in

Tr(AnJm−2). Therefore, Tr(AnJm−2) is equal to the sum of the terms of Tr(An) that

contain Am−1
2

m+1
2

or Am−1
2

m−3
2

at least once.

Turning to the right hand side of (5.2.46), it follows from the definition of A2

(5.2.45) that Tr(A2)n is equal to the sum of those terms of Tr(An) which contain

neither Am−1
2

m+1
2

nor Am−1
2

m−3
2

. So, Tr(An−(A2)n) consists of those terms of Tr(An)

that contain either Am−1
2

m+1
2

or Am−1
2

m−3
2

at least once. These are exactly the terms

that make up Tr(AnJm−2), so the identity (5.2.46) holds. So, using (5.2.32)

ln gA(r) =
1

4

∑
n>1
n even

1

n
Tr
((

1
2
A
)n − (1

2
A2

)n)
(5.2.49)

=
1

8
ln

Det
(
I − 1

4
(A2)2)

Det
(
I − 1

4
(A)2) . (5.2.50)

In order to evaluate this, the characteristic equation and eigenvalues of A2 must

be determined. To find these, first note that the only non-zero entry on the middle

row of (A2 − λI) is −λ in the central column. So, expanding about the middle



5.2. The Full Staircase 104

row, Det(A2−λI) is equal to −λ multiplied by the determinant of a block diagonal

matrix, with the blocks consisting of the upper-left- and lower-right-most m−3
2
× m−3

2

submatrices of A − λI. Labelling these submatrices as P − λI and Q − λI, the

characteristic equation of A2 is

− λDet(P − λI) Det(Q− λI) = 0 (5.2.51)

and the problem reduces to finding the eigenvalues of the submatrices P and Q of

A.

These can be found from considerations of the form of the eigenvectors ψk of A

for k = {3, 5, 7, · · ·m− 2}. Since m is odd, the property (5.2.37) of the eigenvectors

means that the central component of each ψk with k odd is zero, and that (ψk)i =

− (ψk)m−1−i. With these properties, the linear independence of the ψk’s implies the

linear independence of the vectors ξk formed from the first (m − 3)/2 elements of

each ψk with k odd. Since the central element of each ψk with k odd is zero-valued,

the first (m− 3)/2 entries of the vector Aψk = λkψk are equal to the entries of the

vector Pξk, so that Pξk = λkξk. So the eigenvalues of P are λk for k odd, and the

symmetries of the matrix A mean that Q has these same eigenvalues. So, in addition

to 0, there are (m − 3)/2 further eigenvalues of A2, each with multiplicity 2, with

values

ξk = 2 cos
( πk

m+ 1

)
, k = 3, 5 . . .m−2 . (5.2.52)

If m+1 = 2 mod 4 the A2 itself is not fully diagonalisable. However, only the values

of the eigenvalues and their algebraic multiplicities are needed to evaluate ln gA(r),

which becomes

ln gA(r) =
1

8
ln

Det
(
I − 1

4
(A2)2)

Det
(
I − 1

4
(A)2) =

1

8
ln

sin4 3π
m+1

sin4 5π
m+1
· · · sin4 (m−2)π

m+1

sin2 2π
m+1

sin2 3π
m+1
· · · sin2 (m−1)π

m+1

=
1

8
ln

sin2 3π
m+1

sin2 5π
m+1
· · · sin2 (m−2)π

m+1

sin2 2π
m+1

sin2 4π
m+1
· · · sin2 (m−1)π

m+1

. (5.2.53)
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The identity (5.2.41) at n = (m+ 1)/2 becomes

sin
2π

m+ 1
sin

4π

m+ 1
· · · sin (m− 1)π

m+ 1
=

m+ 1

2(m+1)/2
(5.2.54)

and dividing the identity at n = (m+ 1) by this gives

sin
π

m+ 1
sin

3π

m+ 1
sin

5π

m+ 1
· · · sin mπ

m+ 1
=

(
m+1
2m

)(
m+1

2(m+1)/2

) (5.2.55)

so that

ln gA(r) =
1

8
ln

(
2

(m+ 1) sin2 π
m+1

)2

for m odd. (5.2.56)

As was noted earlier,

ln gB(r)|Mm = ln gA(r)|Mm−1 . (5.2.57)

So, if m is even then m−1 is odd and ln gB(r) is given by (5.2.56) with m→ m−1:

ln gB(r) =
1

8
ln

(
2

m sin2 π
m

)2

. (5.2.58)

Adding this to ln gA for m even (5.2.43) gives ln g0(r):

ln g0(r) = ln gA(r) + ln gB(r) (5.2.59)

= ln

((
8

m(m+ 1)

) 1
4 sin mπ

2(m+1)√
sin π

m
sin π

m+1

)
for m even. (5.2.60)

When m is odd ln gB(r) is given by (5.2.43) with m→ m− 1 so

ln gB(r) =
1

8
ln

(
4

m

sin4 (m−1)π
2m

sin2 π
m

)2

(5.2.61)
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and

ln g0(r) = ln gA(r) + ln gB(r) (5.2.62)

= ln

((
8

m(m+ 1)

) 1
4 sin (m−1)π

2m√
sin π

m
sin π

m+1

)
for m odd. (5.2.63)

5.2.2 ln gb1(r) and ln gb2(r)

The derivations of the values of ln gb1 and ln gb2 when the bulk theory is close toMm

are much simpler. Looking at the expressions (4.2.10) and (4.2.11) for ln gb1 and

ln gb2, the localised nature of φ(θ) and φ(3/4)(θ) means that the only parts of L(θ)

that contribute to ln gb1 and ln gb2 are L(θ ≈ 0) and L(θ ≈ θ0/2) = L(θ ≈ −θ0/2)

respectively. As can be seen from (5.2.4) and (5.2.5), when the bulk theory is close

to a minimal model θ = 0 lies the centre of the central plateau of L(θ), which has

the value ln(1 + x(m+1)/2) or ln(1 + ym/2) depending on whether m is odd or even,

respectively. θ = θ0/2 lies at the centre of the first plateau to the right of this,

the value of which is ln(1 + y(m−1)/2) for m odd and ln(1 + xm/2) for m even. So

while the bulk theory stays close to Mm, L(θ) is approximately constant close to

these values of θ and so can be pulled outside the integrals and evaluated using the

plateau values given by (4.1.48) and the integral results (4.1.7) and (4.2.9):

ln gb1(r) = −1
2
L(0) =



−1
2

ln(1+x(m+1)/2) = −1
2

ln

(
1

sin2 π
m+1

)
for m odd

(5.2.64)

−1
2

ln(1+ym/2) = −1
2

ln

(
1

sin2 π
m

)
for m even

(5.2.65)
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and

ln gb2(r) = −1
2
L
(

1
2
θ0

)
=



−1
2

ln(1+y(m−1)/2) = −1
2

ln

(
sin2 (m−1)π

2m

sin2 π
m

)
for m odd

(5.2.66)

−1
2

ln(1+xm/2) = −1
2

ln

(
sin2 mπ

2(m+1)

sin2 π
m+1

)
for m even .

(5.2.67)

When ln g0, ln gb1 and ln gb2 are summed, the pieces which differ depending on

whether m is odd or even cancel, giving

ln g0 + ln gb1 + ln gb2 = ln

((
8

m(m+ 1)

) 1
4
√

sin
π

m
sin

π

m+ 1

)
∀m ≥ 3. (5.2.68)

As can be seen from (4.2.13), this is the equal to ln g(m, 1, 1) = ln g(m,m−1, 1), the

logarithm of the g-function value of the conformal boundary condition associated

with the bulk vacuum field or its conjugate. These are the boundary conditions with

the smallest conformal g-function value, and the reason why this emerges becomes

apparent once ln gb3 is analysed.

5.2.3 Adding in ln gb3(r)

Using the same reasoning as for ln gb1 and ln gb2, the behaviour of ln gb3 depends on

L(θ ≈ θb1) = L(θ ≈ −θb1) and L(θ ≈ θb2) = L(θ ≈ −θb2). Since θb1 and θb2 can

take any real value, they will not always lie at the centre of plateaux of L(θ), and

so it is possible for ln gb3 to undergo pure boundary transitions as r varies through

the domain (m − 3)θ0/2 � ln(1/r) � (m − 2)θ0/2, that is while the bulk model

remains close to Mm. Suppose that for a certain value of r, θb1 and θb2 both lie on

plateaux of L(θ), so that each lie within one of the x- and y-type intervals (4.1.42)

and (4.1.43). Then as before the factors of L(θ) can be pulled outside the integrals,

giving

ln gb3(r) = 1
2

(L (θb1) + L (θb2)) . (5.2.69)
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For small changes in r, θb1 and θb2 will remain on their respective plateaux, so

the value of ln gb3(r) will be unaffected. So, adding this to the other terms of the

logarithm of the g-function gives rise to a plateau of ln g(r), like those seen in

figure 5.5.

Given a pair of boundary parameters (θb1, θb2), the task now is to identify par-

ticular boundary conditions with plateau values of ln g(r), just as was done in the

warm-up case in section 5.1. When |θb1| � ln(1/r) and |θb2| � ln(1/r) both L(θb1)

and L(θb2) are effectively zero and the logarithm of the g-function is independent

of the boundary parameters and is equal to ln g0 + ln gb1 + ln gb2. Since ln gb3 is al-

ways non-negative this is the lowest possible value of ln g(r) within eachMm, which

explains the identification made above of ln g0 + ln gb1 + ln gb2 with the boundary

conditions with the lowest conformal g-function, (1, 1) or (m− 1, 1).

If |θb1| � ln(1/r) then L(θb1) becomes non-zero and different boundary condi-

tions emerge, and the same applies to θb2. Then on a plateau of ln g(r), each choice of

a pair of boundary parameters (θb1, θb2) corresponds to two (possibly equal) plateau

values of L(θ), with each taking the form of

ln(1 + xa) a =1 · · ·m (5.2.70)

or ln(1 + ya) a =1 · · ·m− 1, (5.2.71)

from which the logarithm of the g-function can be calculated using (5.2.68) and

(5.2.69). Given a pair of plateau values, the following rules allow the identification

of either a single Cardy boundary condition or a superposition of the latter which

has this g-function value:

L(θb1) L(θb2) Boundary condition

ln (1+xa) ln (1+yb) [xa, yb] ≡ (b, a)

ln (1+xp) ln (1+xq) [xp, xq] ≡ (1, |p−q|+1)&(1, |p−q|+3)& · · ·&(1,m−|p+q−m−1|)

ln (1+yr) ln (1+ys) [yr, ys] ≡ (|r−s|+1, 1)&(|r−s|+3, 1)& · · ·&(m−1−|r+s−m|, 1)

.

(5.2.72)

In the above, θb1 and θb2 are allowed to take both positive and negative values, with

the same result holding for θb1 ↔ θb2. These rules have the property that sending
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θbi → −θbi has the effect of conjugating the corresponding plateau index, which

seems a natural assumption to make. This will be explored further in section 6.2.

To see how these results arise, ln g(r) must be calculated by evaluating ln gb3 (5.2.69)

using the L(θ) plateau values (4.1.48) and adding this to the other parts of ln g(r)

(5.2.68). For the [xa, yb] case this gives the result

ln g(r) = ln

( 8

m(m+ 1)

) 1
4 sin( aπ

m+1
) sin( bπ

m
)√

sin( π
m+1

) sin( π
m

)

 (5.2.73)

which can immediately be seen to equal ln g(m, b, a) as defined in (4.2.13). The

other two cases are slightly more complicated.

For plateau values [xp, xq]

ln g(r) = ln

((
8

m(m+ 1)

) 1
4 sin( pπ

m+1
) sin( qπ

m+1
)
√

sin π
m

sin3/2 π
m+1

)
. (5.2.74)

To see that the proposed superposition of boundary conditions has this same g-

function value, the conformal g-function values of each boundary condition making

up the superposition are added together giving

ln [g(m, 1, |p−q|+1) + g(m, 1, |p−q|+3) + · · ·+ g(m, 1,m−|p+q−m−1|)]

= ln

[(
8

m(m+ 1)

) 1
4

√
sin π

m

sin π
m+1

×
(

sin

(
(|p−q|+1)π

m+ 1

)
+ · · ·+ sin

(
(m−|p+q−m−1|)π

m+ 1

))]
. (5.2.75)

Equality with (5.2.74) emerges upon using the identity [53]

n−1∑
k=0

sin(α + kβ) = sin

(
α +

n− 1

2
β

)
sin

nβ

2
cosec

β

2
. (5.2.76)

This same identity can be used to show the equality between the ln g(r) result for

the [yr, ys] plateaux

ln g =

(
8

m(m+ 1)

) 1
4 sin( rπ

m
) sin( sπ

m
)
√

sin π
m+1

sin3/2 π
m

(5.2.77)



5.2. The Full Staircase 110

and the conformal result for the proposed superposition

ln [g(m, |r−s|+1, 1) + g(m, |r−s|+3, 1) + · · ·+ g(m,m−1−|r+s−m|, 1)]

= ln

[(
8

m(m+ 1)

) 1
4

√
sin π

m+1

sin π
m

×
(

sin

(
(|r−s|+1)π

m

)
+ · · ·+ sin

(
(m−1−|r+s−m|)π

m

))]
. (5.2.78)

Although the above rules are successful in assigning a boundary condition with

the correct g-function value to a pair of plateau values, as in the warm-up example

there is still some ambiguity due to the Z2 spin-flip symmetry of the g-function.

In terms of L(θ), these symmetries arise from the fact that L(θ) is even so that

xa = xm+1−a and yb = ym−b, which means that the same g-function value arises for

each of the four choices (±θb1,±θb2). This means the [xa, yb] plateau configuration in

the g-function could be identified with the boundary condition (m−a, b) rather than

(a, b). There is even greater freedom when the g-function equals that of a superpo-

sition of boundary conditions, because then each one of these boundary conditions

(a, b) can be individually exchanged for its spin-flip conjugate whilst leaving the g-

function of the superposition unchanged. It is possible that this ambiguity could be

resolved by considering the RG flows of inner products not only between boundary

states and the bulk ground state as has been done in defining the g-function so far,

but also between boundary states and excited bulk states. This will be explored fur-

ther in section 6.2. Further ambiguities can arise from more ‘accidental’ equalities

between the g-functions of different boundary conditions, and appear as additional

equalities in the set of g-function values for all possible superpositions of Cardy

boundary conditions. For example, g(5, 1, 3) = 2g(5, 1, 1), so that the g-function

is unable to distinguish between the (1, 3) and (1, 1)&(1, 1) boundary conditions in

M5. However, modulo the spin-flip ambiguities, the identifications between plateau

values and boundary conditions given in (5.2.72) are the only set of rules that have

been found to work consistently for all minimal models Mm. Furthermore, the

boundary conditions that emerge line up with those appearing in [52] (see also [54]),

where the perturbation of a minimal model with boundary described by a single
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boundary parameter were considered. The rules given in (5.2.72) will therefore be

assumed to be correct, and the spin-flip ambiguity will be left implicit.

Now that all the g-function plateaux in the staircase model have been identified

with conformal boundary conditions, it remains to determine what flows occur be-

tween these as r varies for particular values of the boundary parameters. The pure

boundary flows that occur while the bulk theory is close to a minimal model must

be identified, along with those that coincide with bulk transitions. Once again, this

is all governed by the form of L(θ) as r varies. As can be seen from the discussion of

the plateaux of L(θ) in section 4.1 ((4.1.42), (4.1.43)), if the bulk theory is initially

close to Mm then as ln(1/r) ranges from (m − 2)θ0/2 down to (m − 3)θ0/2 the x-

type plateaux decrease in width down to 0, while the widths of the y-type plateaux

start at 0 and increase. At ln(1/r) = (m− 3)θ0/2 the crossover fromMm toMm−1

occurs, and the y-type plateaux ofMm become the x-type plateaux ofMm−1. New

y-type plateaux appear as ln(1/r) decreases further, whose centres coincide with

those of the Mm x-type plateaux.

The simplest situation occurs once ln(1/r) < |θbi | for i = 1, 2, since then, as was

described earlier, ln g(r) becomes independent of the boundary parameters so the

only transitions are bulk transitions. The g-function here is equal to that of the

(1, 1) boundary condition whenever the bulk theory is close to a minimal model, so

the boundary condition flow is simply through the (1, 1) boundary conditions of the

minimal models appearing in the flow of the bulk theory for ln(1/r) < |θbi|. If both

θb1 and θb2 are sent to infinity before r is varied then ln(1/r) < θb1 and ln(1/r) < θb2

for all values of r and the full g-function flow consists solely of the (1, 1) boundary

condition of each successive minimal model. Since this flow arises when ln gb3 is zero,

the fact that ln gb3 is non-negative for all values of r means that this flow provides a

lower bound on the g-function at each value of r. This is seen in figure 5.5a, where

for ln r > −180 the lowest-lying flow is through plateaux corresponding to the (1, 1)

boundary conditions of the minimal models from M8 down to M3.

When |θb1| < ln(1/r) or |θb2| < ln(1/r) the boundary transitions do not nec-

essarily coincide with the bulk transitions. Transitions in the value of L(θbi) for

i = 1, 2 and hence in the value of ln g(r) occur whenever r is such that either θb1
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or θb2 (or both) lies on a kink between the L(θ) plateaux, i.e. somewhere between

the intervals (4.1.42) and (4.1.43). The presence of both θbi and −θbi for i = 1, 2,

coupled with the symmetry of L(θ) means that transitions caused by descendants

of the left and right hand seed kinks of L(θ) occur at the same values of r. For θbi

positive, boundary crossovers associated with θbi therefore occur when r satisfies

ln(1/r)− kθ0 = θbi ⇒ ln(r) = −kθ0 − θbi , k = 0, 1, . . . (5.2.79)

or

ln(1/r)− kθ0 = −θbi ⇒ ln(r) = −kθ0 + θbi , k = A,A+1, . . . (5.2.80)

where A = d2θbi/θ0e, the smallest integer greater than or equal to 2θbi/θ0 (this

restriction on the value of k is due to the fact a transition involving θbi can only

occur if |θbi | < ln(1/r)). Similar rules hold for θbi negative, but with the signs before

θbi switched.

To treat the cases where |θbi | < ln(1/r), consider first the values of r for which the

theory is close to the minimal model Mm, (m − 3)θ0/2 � ln(1/r) � (m − 2)θ0/2.

The simplest case here occurs if a boundary parameter satisfies θbi = γθ0/2 for

γ ∈ Z, so that while the theory is close toMm the parameter sits at the centre of an

x- or y-type plateau of L(θ), and so L(θ) and therefore ln g(r) are constant for these

values of r. In both of these cases there are no pure boundary transitions associated

to the parameter in question; all the boundary transitions coincide with the bulk

transition since it is at this point that the x-type plateaux vanish and are replaced

by the Mm−1 y-type plateaux, and the Mm y-type plateaux are re-identified as

the Mm−1 x-type plateaux. This is the case for θb1 in the plots in figure 5.5; all

the boundary transitions that occur while the bulk is close to a minimal model are

induced by θb2.

If θbi 6= γθ0/2 then as r ranges through (m− 3)θ0/2 � ln(1/r) � (m− 2)θ0/2,

θbi lies initially at some non-central point of anMm x-type plateau. Then as ln(1/r)

decreases, at some point L(θbi) will undergo a transition after which θbi lies on an

Mm y-type plateau, thus effecting a flow between g-function values corresponding
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to different boundary conditions. The value of r for which the transition occurs

depends on the distance of the boundary parameter from the centre of the relevant

x-type plateau, and the particular y-type plateau that θbi moves to depends on

whether it lies to the left or right of the centre of the x-type plateau.

To consider this in more detail, assume that θb1 initially lies on the ln(1 + xr)

plateau of L(θ), with θb2 on the ln(1+xs) plateau, so that θb1 ∈ [z2r−3−θ0/2, z2r−3 +

θ0/2] and θb2 ∈ [z2s−3 − θ0/2, z2s−3 + θ0/2]. These plateaux are centred on z2r−3

and z2s−3 respectively (4.1.11). Assuming that neither parameter coincides with

the centre of its x-type plateau, then if θb1 > z2r−3 L(θb1) moves to the ln(1 + yr−1)

plateau after the boundary transition, whereas if θb1 < z2r−3 it moves to the ln(1+yr)

plateau. Replacing r with s, the same rules apply for θb2. Which transition occurs

first depends on the distance of each boundary parameter from the centre of their

respective x-type plateaux. If |θb1 − z2r−3| > |θb2 − z2s−3| then the θb1 transition

occurs first as ln(1/r) decreases. If the opposite is true then the θb2 transition

precedes the θb1 one, and if they are equal then the transitions happen at exactly

the same value of r.

Let us assume initially that the values of θb1 and θb2 are such that neither lie at

the centre of a plateau, and that their distances from the centres of their respective

x-type plateau are sufficiently different from one another for the L(θb1) transition

to be effectively complete before the L(θb2) transition begins, or vice versa. Then

while the bulk theory stays close toMm, the set of possible flows starting from the

plateau configuration L(θb1) = ln(1+xr), L(θb2) = ln(1+xs) is

[yr, ys] ←−−− [xr, ys] −−−→ [yr−1, ys]x x x
[yr, xs] ←−−− [xr, xs] −−−→ [yr−1, xs]y y y

[yr, ys−1] ←−−− [xr, ys−1] −−−→ [yr−1, ys−1]

. (5.2.81)

The set of flows arising from all possible boundary parameter pairs (θb1, θb2) is then

the union of such diagrams. θb1 and θb2 will again be allowed to take all real values

satisfying the above conditions, both positive and negative. The full diagram is
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then made up of interlocking 3 × 3 blocks of the form (5.2.81), with the plateau

configurations at the centre of each forming the set {[xr, xs]| r, s ∈ 2, · · · ,m− 1}.

As an example, let us considerM5. Then there are nine possible [xr, xs] starting

points for the flows, and the union of the resulting blocks of flows produces a 7× 7

grid. The figure below shows the lower (θb2 > 0) part of this:

...
...

...
...

...
...

...

[y4, x3] ←−− [x4, x3] −−→ [y3, x3] ←−− [x3, x3] −−→ [y2, x3] ←−− [x2, x3] −−→ [y1, x3]y y y y y y y
[y4, y2] ←−− [x4, y2] −−→ [y3, y2] ←−− [x3, y2] −−→ [y2, y2] ←−− [x2, y2] −−→ [y1, y2]x x x x x x x
[y4, x2] ←−− [x4, x2] −−→ [y3, x2] ←−− [x3, x2] −−→ [y2, x2] ←−− [x2, x2] −−→ [y1, x2]y y y y y y y
[y4, y1] ←−− [x4, y1] −−→ [y3, y1] ←−− [x3, y1] −−→ [y2, y1] ←−− [x2, y1] −−→ [y1, y1]

.

(5.2.82)

As is clear from the above, boundary conditions corresponding to plateau values of

the form [xr, xs] behave as sources in the network of flows for each Mm, whereas

those corresponding to [yr, ys] act as sinks.

The rules given in (5.2.72) can be used to convert the plateau configurations

to specific boundary conditions, modulo the Z2 ambiguity described earlier, and

the result in the M5 case is shown in figure 5.6. In this figure, the requirement

that the θb1 and θb2 transitions be well-separated has been removed and this has

introduced additional flows: the flows depicted by straight diagonal arrows arise

when θb1 and θb2 are exactly the same distance from the centres of their respective

x-type plateaux, so the transitions occur simultaneously; the curved flows occur

when the θb1 transition begins before the θb2 transition is complete, or vice versa.

Note that reflection in the lines θb1 = θb2 and θb1 = −θb2 maps a boundary condition

to itself, whereas reflection in the line θb1 = 0 sends a boundary condition to its



5.2. The Full Staircase 115

θb2

θb1

(1,3)

(2,2)
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0 30 45 60 7515−30−60−75 −45 −15−90 − 90+

15

30

45

60

75

90+

0

(2,1)&(1,5)

&(1,1)
(1,5)&(1,3)

Figure 5.6: A diagram showing the pure boundary flows that occur when the bulk
theory is close to M5, for various values of θb1 and θb2, where θ0 = 60.

spin-flip conjugate.

To complete the picture of the flows between boundary conditions, the flows that

coincide with the bulk transitions also need to be studied. The bulk flow fromMm to

Mm−1 occurs as ln(1/r) decreases through a region centred on ln(1/r) = (m−3)θ0/2,

and the g-function during this period is again governed by the form of L(θ). As has

already been discussed, as ln(1/r) approaches (m− 3)θ0/2 the widths of the x-type

plateaux shrink to zero while the y-type plateaux increase in size. After the crossover

at ln(1/r) = (m−3)θ0/2, the plateaux which were y-type while the bulk theory was

close to Mm become the x-type plateaux for Mm−1:

ln(1 + ya)|Mm → ln(1 + xa)|Mm−1 , a = 1, · · · ,m− 1. (5.2.83)

As can be seen from (4.1.48), ya|Mm = xa|Mm−1 and so the transition leaves the

values of these plateaux are unchanged. However, their different interpretations

within their respective minimal models means that in the context of the g-function

they are associated with different boundary conditions, and this will be explored in

greater detail below. As ln(1/r) decreases beyond the transition point, new y-type
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plateaux emerge whose centres coincide with those of theMm x-type plateaux, and

whose heights can be found by evaluating (4.1.48) atMm−1 with a = 1, · · · ,m− 2.

As the bulk theory transition occurs, the set of possible boundary conditions

changes from those allowed inMm to those allowed inMm−1, and so the g-function

describes a flow from an Mm boundary condition to an Mm−1 one. These bound-

ary flows can be determined by considering the Mm and Mm−1 plateaux of L(θ)

on which the boundary parameters lie immediately before and after the transition.

Suppose for now that both |θb1| ≤ (m − 3)θ0/2 and |θb2| ≤ (m − 3)θ0/2, so that

L(θb1) and L(θb2) are both non-zero at the point where the transition from Mm

to Mm−1 takes place. The possible configurations in this situation fall into three

categories:

(i) If

θb1, θb2 6= (m−3)θ0/2− kθ0 , k = 0, 1, . . .m− 3. (5.2.84)

then neither θb1 nor θb2 lies at the centre of an x-type plateau of Mm as the bulk

transition is approached. Then θb1 and θb2 have either been positioned at the centre

of y-type plateaux for the whole period where the bulk theory is close to Mm, or

they have each initially been on an x-type plateau, and then moved to a y-type

plateau as r has varied through the Mm range. In either case, both θb1 and θb2

lie on y-type plateaux once ln r is such that the bulk transition takes place. As

described above, the bulk transition does not change the value of these plateaux,

but after it they are re-interpreted as x-type plateaux. Taking

θb1 ∈ ((m−3)θ0/2−(r−1)θ0 , (m−3)θ0/2−(r−2)θ0) and

θb2 ∈ ((m−3)θ0/2−(s−1)θ0 , (m−3)θ0/2−(s−2)θ0),

the corresponding pair of plateau values immediately prior to the transition is

[yr, ys]|Mm , which according to (5.2.83) flows to [xr, xs]|Mm−1 during the bulk tran-

sition. Such flows therefore begin at ‘sinks’ in the network of pure-boundary flows

for Mm and end at ‘sources’ in the network for Mm−1.

Translating the plateau values to Cardy boundary conditions using the rules
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given in (5.2.72) produces the flow

(f, 1) & (f+2, 1) & · · · & (g, 1) Mm

↓

(1, f) & (1, f+2) & · · · & (1, g) Mm−1

(5.2.85)

where

f = |r−s|+1 , g = m−1−|r+s−m| and 2 ≤ r, s ≤ m−2 . (5.2.86)

The symmetry [yr, ys] = [ym−r, ym−s] and the θb1 ↔ θb2 symmetry of the g-function

(which means that [yr, ys] is equivalent to [ys, yr]) allow r and s to be restricted to

2 ≤ r ≤ s ≤ m− 2, r + s ≤ m (5.2.87)

whilst still giving rise to the full set of flows of the type (5.2.85). Applying these

restrictions to f and g gives

1 ≤ f < g ≤ m− 1 , f − g ∈ 2Z. (5.2.88)

(ii) If one of θb1 or θb2 lies at the centre of an x-type plateau ofMm prior to the bulk

transition then since the centres of the plateaux are fixed while the bulk is close to

Mm, the boundary parameter remains on this plateau right up to the point where

the transition occurs. Then after the transition y-type plateaux emerge with the

same centres as the Mm x-type plateaux, so the boundary parameter now lies at

the centre of a newMm−1 y-type plateau. Without loss of generality, let us assume

that it is θb1 for which this is the case. Then with

θb1 = (m− 3)θ0/2− (s−2)θ0 2 ≤ s ≤ m−1 (5.2.89)

and

θb2 ∈ ((m−3)θ0/2−(r−1)θ0 , (m−3)θ0/2−(r−2)θ0), r = 2 · · ·m− 1, (5.2.90)
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θb1 originally lies at the centre of the ln(1 + xs)|Mm plateau and after the transition

ends up at the centre of the ln(1+ys−1)|Mm−1 plateau, whereas θb2 behaves as in case

i), and in the process of the transition moves from ln(1 + yr)|Mm to ln(1 +xr)|Mm−1 .

The flow is then [xs, yr]Mm → [ys−1, xr]Mm−1 which on converting to Cardy boundary

conditions using the rules (5.2.72) becomes

(r, s) Mm

↓

(s−1, r) Mm−1

, 2 ≤ r ≤ m−2 , 2 ≤ s ≤ m−1 . (5.2.91)

(iii) If

θb1 =(m− 3)θ0/2− (r−2)θ0, 2 ≤ r ≤ m−1 and (5.2.92)

θb2 =(m− 3)θ0/2− (s−2)θ0, 2 ≤ s ≤ m−1 (5.2.93)

then both boundary parameters lie at the centres of x-type plateaux prior to the

transition. The flow in the plateau values induced by the bulk transition is then

[xr, xs]Mm → [yr−1, ys−1]Mm−1 , so this time ‘sources’ in the Mm flow network flow

to ‘sinks’ in the Mm−1 network. This corresponds to the following flow in Cardy

boundary conditions:

(1, f) & (1, f+2) & · · · & (1, g) Mm

↓

(f, 1) & (f+2, 1) & · · · & (g−2, 1) Mm−1

(5.2.94)

where now

f = |r−s|+1 , g = m−|r+s−m−1| and 2 ≤ r, s ≤ m−1 . (5.2.95)

The symmetries used in case (i) can again be used to reduce the domains of r

and s while still producing all possible flows. This time the restrictions amount to
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2 ≤ r ≤ s ≤ m− 1 and r + s ≤ m+ 1 which in terms of f and g corresponds to

1 ≤ f < g ≤ m, f − g ∈ 2Z . (5.2.96)

To get a complete set of rules for the boundary flows induced by the bulk

transition, the situation where either one or both boundary parameters satisfy

|θbi | > (m − 3)θ0/2 must be included. In this case, one or both of L(θb2) and

L(θb2) has become equal to zero before the transition occurs, and so just remains

zero during and after the transition. Recalling that ln(1 + x1)|Mm , ln(1 + xm)|Mm ,

ln(1 + y1)|Mm and ln(1 + ym−1)|Mm are all equal to zero, by careful choice of the

labelling of the zero-valued plateaux it is possible to incorporate the situations that

arise here into the rules already formulated.

(i) If both L(θb1) and L(θb2) equal zero before the transition, or if L(θb1) = 0

and θb2 lies away from the centre of a non-zero x-type plateau (or vice versa), then

by labelling the flow(s) on the zero-valued plateaux as y1 → x1 or ym−1 → xm−1

these flows can be incorporated into case (i) by extending the r and s domains to

allow r, s = 1,m− 1. This corresponds to allowing f to equal g in the flows of the

form (5.2.85), so that now

1 ≤ f ≤ g ≤ m− 1 , f − g ∈ 2Z . (5.2.97)

The choices f = g = 1 and f = g = m− 1 in (5.2.85) produce the flows

(1, 1)|Mm → (1, 1)|Mm−1 and

(m− 1, 1)|Mm → (1,m− 1)|Mm−1 . (5.2.98)

These (f, g) values correspond to the situation where ln gb3 = 0. The logarithm of the

g-function is then ln g0 + ln gb1 + ln gb2, which equals ln g(m, 1, 1) = ln g(m,m− 1, 1)

when the bulk is close to a minimal model, as seen in (5.2.68). Recalling the sym-

metry (a, b)|Mm = (m− a,m+ 1− b)|Mm, it is clear that the flows in (5.2.98) are

in agreement with this.
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(ii) The final situation to consider is where |θb2| > (m−3)θ0/2 while θb1 lies at the

centre of an x-type plateau, say θb1 = (m− 3)θ0/2− (s−2)θ0, 2 ≤ s ≤ m−1. Then,

labelling the flows between the zero-valued plateaux as before, the flow induced

by the bulk transition is either [xs, y1]|Mm → [ys−1, x1]|Mm−1 or [xs, ym−1]|Mm →

[ys−1, xm−1]|Mm−1 with 2 ≤ s ≤ m−1. The flow therefore fits into case (ii) if the

domain of r is extended to allow r = 1 and r = m− 1, so that the flows appearing

in (5.2.91) can occur for

1 ≤ r ≤ m−1 , 2 ≤ s ≤ m−1 . (5.2.99)

Combining these rules for the bulk transitions with the networks of flows at each

minimal model (such as that depicted for M5 in (5.2.82)) describes all the flows

that can occur as ln(1/r) decreases through the staircase model and passes close to

the series of minimal modelsMm. In the cases where the flows between consecutive

minimal models are induced by only one boundary parameter, say θb1 (which occurs

when ln g(r) is independent of θb2 or when θb2 sits at the centre of an Mm y-type

plateau), then the flows seen agree with those found perturbatively by Fredenhagen

et al. [52] in the single parameter case. To conclude this section, some examples of

combined sequences flows are shown in figures 5.7 and 5.8 for θb1 equal to 180 and 60

respectively, at various values of θb2. An important feature of these diagrams is the

matching of the parts below and including M4. This is also apparent in figure 5.5,

where plot 5.5b matches plot 5.5c for ln r > −60, and plot 5.5c matches plot 5.5d

for ln r > −120, and is due to the fact that L(θb1) equals zero for ln r � −θb1 so

that ln g(r) is independent of θb1 for these values of r.
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Figure 5.7: A diagram of the flows between boundary conditions for θb1 = 180 as
the bulk theory flows close to the series of minimal models M8 → · · · → M3.
The horizontal direction shows flows within a particular minimal model, and the
vertical direction shows flows occurring during the bulk transitions. The flows here
correspond to the g-function plots in figure 5.5d, and the same flows have been
highlighted in both figures.
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Figure 5.8: A diagram of boundary conditions flows for θb1 = 60, corresponding to
the g-function plots in figure 5.5b, with the same highlighted flows.
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5.3 The MA
(+)
m g-function

The boundary condition flows found in the previous section can also be obtained

in a more formal way by finding exact equations for the g-function of the theories

MA
(+)
m with m > 3, which interpolate between the minimal modelsMm andMm−1.

As was done for MA
(+)
4 warm-up case in section 5.1, this is achieved by taking a

suitable double-scaling limit that focusses in on the relevant section of the staircase.

For MA
(+)
m this limit is taken by defining

ln(r) = −(m− 3)θ0/2 + ln(r̂) (5.3.1)

and holding ln r̂ finite while the limit θ0 →∞ is taken, before allowing ln r̂ to vary

from −∞ to ∞ so that as r̂ ranges from 0 to ∞, the bulk theory flows from Mm

to Mm−1. As in the warm-up case, holding θ finite until after the θ0 → ∞ limit is

taken and defining

εa(θ) = lim
θ0→∞

ε(θ + (m− 1− 2a)θ0/2), a = 1 · · ·m− 2 (5.3.2)

allows each section of the staircase pseudoenergy ε(θ) centred on (m− 1− 2a)θ0/2

to be tracked as the θ0 → ∞ is taken. Following the method used for MA
(+)
4 ,

substituting these definitions along with (5.3.1) into the staircase TBA (4.1.3) leads

to the coupled TBA system

ε1(θ) =
1

2
r̂ eθ −

∫
R
φ(θ − θ′)L2(θ′) dθ′

εa(θ) = −
∫
R
φ(θ − θ′)(La−1(θ′) + La+1(θ′)) dθ′ a = 2 . . .m−3

εm−2(θ) =
1

2
r̂ e−θ −

∫
R
φ(θ − θ′)Lm−3(θ′) dθ′ (5.3.3)

where La(θ) = ln(1 + e−εa(θ)). This is the same system of equations as was proposed

for MA
(+)
m by Al.B. Zamolodchikov in [18]. The effective central charge becomes

ceff(r̂) =
3r̂

2π2

∫
R
(eθL1(θ) + e−θLm−2(θ)) dθ (5.3.4)
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and moves from cm at r̂ = 0 to cm−1 at r̂ → ∞ as the bulk theory flows from Mm

toMm−1. In terms of the x- and y-type plateaux of ε(θ) the plateaux of εa(θ) when

the bulk theory is close to Mm (r̂ � 1) and Mm−1 (r̂ � 1) are

r̂ � 1 La(θ)

θ � ln(1/r̂) ln (1 + ya|Mm)

− ln(1/r̂)� θ � ln(1/r̂) ln (1 + xa+1|Mm)

θ � − ln(1/r̂) ln (1 + ya+1|Mm)

r̂ � 1

θ � ln r̂ ln
(
1 + xa|Mm−1

)
− ln r̂ � θ � ln r̂ ln

(
1 + ya|Mm−1

)
θ � − ln r̂ ln

(
1 + xa+1|Mm−1

)
.

(5.3.5)

The matching between the εa(θ) pseudoenergies and the staircase pseudoenergy ε(θ)

can be seen by comparing plots of La(θ) to the corresponding sections of L(θ) at

appropriate values of r and r̂. For example, figure 5.9 shows L1(θ), L2(θ) and L3(θ)

for MA
(+)
5 , plotted at various values of ln(r̂). Figure 5.10 shows L(θ) plotted at

the corresponding values of ln(r) = ln(r̂) − θ0 (with θ0 = 60), and it is clear that

L1(θ), L2(θ) and L3(θ) match the θ > 30, −30 < θ < 30 and θ < −30 parts of L(θ),

respectively.

(a) L1(θ) (b) L2(θ) (c) L3(θ)

Figure 5.9: Plots of L1(θ), L2(θ) and L3(θ) forMA
(+)
5 . The sequence of curves from

the highest to lowest lying correspond to ln(r̂) = −20,−10, 0, 10 and 20 in each case.
The bulk crossover from M5 to M4 occurs at ln(r̂) = 0.
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Figure 5.10: Plots of L(θ) at ln r = −80,−70,−60,−50 and −40, moving from the
highest to lowest lying curves. The dotted vertical lines divide the plots into the
sections that correspond to the plots of L1(θ), L2(θ) and L3(θ) above. The bulk
crossover from M5 to M4 occurs at ln(r̂) = −60.

The task now is to re-express the staircase g-function

ln g(r) = ln g0(r) + ln gb1(r) + ln gb2(r) + ln gb3(r)

(as defined in (4.2.4) and (4.2.10)-(4.2.12)) in the double scaling limit (5.3.1) in

terms of the εa(θ), in order to find an exact expression for the g-function atMA
(+)
m .

The analysis in the previous section of where each part of the staircase g-function has

its support was independent of the value of r and so still holds here. However, the

conclusions drawn there as to the actual value of the g-function are only valid while

the theory is close to Mm, so form only the UV limit of the g-function in MA
(+)
m .

Hence a careful analysis is needed of each part of the g-function to determine how

it behaves for all values of r̂.

As was discussed in the previous section, the staircase ln g0 is given by

ln g0(r) =
∞∑
n=1

1

2n

∫
Rn

dθ1

1 + eε(θ1)
· · · dθn

1 + eε(θn)
φS(θ1 − θ2)φS(θ2 − θ3) · · ·φS(θn + θ1)

(5.3.6)

which for each n is made up of 2n terms of the form

∫
Rn

dθ1

1 + eε(θ1)
· · · dθn

1 + eε(θn)
φ(θ1 − θ2 − α1θ0)φ(θ2 − θ3 − α2θ0) · · ·φ(θn + θ1 − αnθ0)

(5.3.7)
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with αi = ±1. The support of such integrals was found in the previous sec-

tion, independent of r, to be sub-regions of Rn which were centred on coordinates

(θ̃1, θ̃2, · · · , θ̃n) satisfying the restrictions (5.1.13) on consecutive θ̃i’s. These θ̃i’s

turned out to be elements of the sets

{−(m− 3)θ0/2,−(m− 5)θ0/2, · · · , (m− 5)θ0/2, (m− 3)θ0/2} for m+ n odd,

(5.3.8)

{−(m− 4)θ0/2,−(m− 6)θ0/2, · · · , (m− 6)θ0/2, (m− 4)θ0/2} for m+ n even.

(5.3.9)

The behaviour of the measure factors 1
1+exp(ε(θi))

needs to be determined around

these values of θi, for all r̂ ∈ R+. Following the pattern in the previous section, ln g0

will be split into two terms ln g0(r̂) = ln g′A(r̂) + ln g′B(r̂), with ln g′A comprising of

those terms for which m + n is odd, and the terms of ln g′B being those for which

m + n is even. The UV limits of ln g′A(r̂) and ln g′B(r̂) are given by ln gA (5.2.20)

and ln gB (5.2.27) respectively.

Turning first to ln g′B, for r̂ � 1 the values of θ̃i (5.3.9) sit at the centres of y-type

plateaux of Mm. Since the Mm y-type plateaux grow in width as r̂ increases and

the crossover is approached, and plateaux of these values survive the bulk transition

and are simply re-identified as x-type plateaux atMm−1, L(θ) is constant for values

of θ close to each θ̃i for all r̂ ∈ R+, and therefore the measure factor 1
1+exp(ε(θ))

is

also constant close to these values. So ln g′B is equal to ln gB and from (5.2.61) and

(5.2.58):

ln g′B|MA
(+)
m

=



ln

((
4

m

) 1
4 sin (m−1)π

2m√
sin π

m

)
for m odd (5.3.10)

ln

((
2

m

) 1
4 1√

sin π
m

)
for m even . (5.3.11)

In contrast, the terms of ln g′A are not constant throughout MA
(+)
m . Here the

sub-regions of Rn in question are centred on coordinates θ̃i that all have the form

θ̃i = (m − 2a + 1)θ0/2, a = 2 · · ·m − 1, so that the θ̃i’s (5.3.8) sit at the centres
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of x-type plateaux of Mm for r̂ � 1, but the value of L(θ̃i) changes as the bulk

transition occurs and the x-type plateaux vanish and are replaced by new y-type

plateaux with the same centres for r̂ � 1. So, the measure factors 1
1+exp(ε(θ))

cannot

always be expressed in terms of the x-type plateaux as was done for ln gA, while the

theory was close to Mm (5.2.7). Nevertheless, it is still possible to find an exact

expression for these terms of ln g0 for MA
(+)
m . Around this value of θ, the staircase

pseudoenergy ε(θ) is described by εa−1(θ ≈ 0), so each factor 1
1+exp(ε(θi))

can be

replaced by 1
1+exp(εa−1(θi−(m−2a+1)θ0/2))

in ln g0 so that (5.3.7) becomes

∫
Rn

dθ1

1 + eεa1−1(θ1−(m−2a1+1)θ0/2)
· · · dθn

1 + eεan−1(θn−(m−2an+1)θ0/2)
×

φ(θ1 − θ2 − α1θ0)φ(θ2 − θ3 − α2θ0) · · ·φ(θn + θ1 − αnθ0) (5.3.12)

with ai for i = 1, · · · , n determined by {αi}. The restrictions on the values of

consecutive θ̃i’s (5.1.13) mean that after a change of variables

θi → θi +
m− 2ai + 1

2
θ0 (5.3.13)

such a term becomes

∫
Rn

dθ1

1 + eεa1−1(θ1)
· · · dθn

1 + eεan−1(θn)
φ(θ1 − θ2)φ(θ2 − θ3) · · ·φ(θn + θ1). (5.3.14)

Furthermore, the restrictions (5.1.13) mean that for i = 1 · · ·n− 1, 1

1+eεa−1(θi)
must

be followed by 1

1+eεa(θi+1) or 1

1+eεa−2(θi+1) , and also that if the sequence of measure

factors begins with 1

1+eεa−1(θ1) it must end with 1

1+eεm−a−1(θn) or 1

1+eεm−a+1(θn) (with

only the former applying to a = 2 and only the latter to a = m − 1). The UV

limits of these agree with the constraints (5.2.8) and (5.2.9) that appeared in the

previous section, and the allowed sequences of measure factors for MA
(+)
m have the

same form as those that appeared for the theory closeMm, just with each factor of

xa
1+xa

replaced with 1

1+eεa−1(θi)
. The steps in the previous section which enabled the

identification of the allowed sequences of terms with the anti-trace of products of a

matrix depended only on the relationship between the terms in the sequences, not

the value of the elements themselves. So, the same reasoning can be applied here
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and after defining the (m− 2)× (m− 2) matrix A′(θ) to be

A′(θ) =



0 1
1+eε1(θ) 0 0 · · · 0 0 0

1
1+eε2(θ) 0 1

1+eε2(θ) 0 · · · 0 0 0

0 1
1+eε3(θ) 0 1

1+eε3(θ) · · · 0 0 0

...
...

...
...

...
...

...

0 0 0 0 · · · 1

1+eεm−3(θ) 0 1

1+eεm−3(θ)

0 0 0 0 · · · 0 1

1+eεm−2(θ) 0


,

(5.3.15)

ln g′A(r̂) can be expressed as

ln g′A(r̂) =
∑
n≥1

m+n odd

1

2n

∫
Rn

antiTr
(
Πn
i=1A

′(θi)dθi
)
φ(θ1−θ2)φ(θ2−θ3) · · ·φ(θn−1−θn)φ(θn+θ1).

(5.3.16)

where if n = 1 appears here, the corresponding term in the sum is

1
2

∫
R

antiTr(A′(θ))φ(2θ)dθ.

Expressions for ln gb1(r̂) and ln gb2(r̂) can similarly be derived by generalising the

results of the previous section. ln gb1(r) is governed by L(θ ≈ 0), which for m even

this has constant value ln(1+ym/2|Mm). For m odd L(θ ≈ 0) is not constant, but is

equal to ln(1 + exp(−ε(m−1)/2(θ ≈ 0))). Therefore

ln gb1(r̂) =



−1
2

∫
R
dθ
(
φ(θ) + 1

2
δ(θ)

)
ln(1 + e

−εm−1
2

(θ)
) for m odd

(5.3.17)

−1
2

ln(1+ym/2) for m even.

(5.3.18)

Similarly, ln gb2 is governed by L(θ ≈ θ0/2) which has constant value ln(1+y(m−1)/2|Mm)

for m odd, but is non-constant for m even, equalling ln(1 + exp(−ε(m−2)/2(θ ≈ 0))).

So, ε(θ) in (4.2.11) can be replaced by ε(m−2)/2(θ−θ0/2), and after a shift in variable
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ln gb2(r̂) is found to be

ln gb2(r̂) =



−1
2

ln(1+y(m−1)/2) for m odd

(5.3.19)∫
R
dθ
(
φ( 3

4
)(θ)− φ(2θ)

)
ln(1 + e

−εm−2
2

(θ)
) for m even .

(5.3.20)

The validity of these expressions can be checked by evaluating ln g0(r̂)+ln gb1(r̂)+

ln gb2(r̂) in the UV (r̂ → 0) and IR (r̂ → ∞) limits. In the previous section it was

noted that if the boundary-dependent part of the g-function vanishes and the bulk

theory is close to a minimal modelMm then the g-function equals that of the (1, 1)

boundary condition. ForMA
(+)
m , in the UV limit the bulk theory isMm and in the

IR limit it isMm−1, so in each of these limits the boundary parameter-independent

part of the g-function is expected to equal that of the (1, 1) boundary condition of

the respective minimal models. For the UV limit, since the integrals in ln g0(r̂) have

their support close to θi = 0 for all i, and the integrals in ln gb1(r̂) for m odd and

ln gb1(r̂) for m even have their support close to θ = 0, whenever exp(−εa(θ)) appears

in each of these equations it can be replaced with xa+1|Mm . These expressions then

become the same as the results of the previous section, which is as expected since

the calculations there were for the staircase model close toMm. Therefore for both

m odd and m even (ln g0 + ln gb1 + ln gb2)|r̂=0 is given by (5.2.68):

(ln g0 + ln gb1 + ln gb2)|r̂=0 = ln

((
8

m(m+ 1)

) 1
4
√

sin
π

m
sin

π

m+ 1

)
= ln g(m, 1, 1).

(5.3.21)

In the IR limit, the supports of the various integrals have the effect that each

exp(−εa(θ)) term can be replaced by ya|Mm−1 . For ln g0(r̂) this means that the
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matrix A′(θ) becomes A′IR where

A′IR =



0 y1

1+y1

∣∣Mm−1 0 · · · 0 0

y2

1+y2

∣∣Mm−1 0 y2

1+y2

∣∣Mm−1 · · · 0 0

0 y3

1+y3

∣∣Mm−1 0 · · · 0 0
...

...
...

...

0 0 0 · · · 0 ym−3

1+ym−3

∣∣Mm−1

0 0 0 · · · ym−2

1+ym−2

∣∣Mm−1 0


(5.3.22)

and then

ln g′A(r̂ →∞) =
∑
n≥1

m+n odd

1

n2n+2
Tr ((A′IR)nJm−2) . (5.3.23)

This can be evaluated by noting that the central (m−4)×(m−4) sub-matrix of A′IR

is equal to the matrix B (5.2.25) evaluated forMm−1. Since y1|Mm−1 and ym−2|Mm−1

equal zero, all the entries in the first and final rows of A′IR are zero. This means

that (A′IR)n also has only zero entries in its first and final rows, and that its central

(m − 4) × (m − 4) sub-matrix is equal to (B|Mm−1)n. Therefore, the anti-trace of

(A′IR)n is equal to that of (B|Mm−1)n so that

ln g′A(r̂ →∞) =
∑
n≥1

(m−1)+n even

1

n2n+2
Tr
((
B|Mm−1

)n
Jm−4

)
= ln gB|Mm−1 (5.3.24)

which using (5.2.58) and (5.2.61) is evaluated to be

ln g′A(r̂ →∞) =



ln

((
2

m− 1

) 1
4 1√

sin π
m−1

)
for m odd

(5.3.25)

ln

((
4

m− 1

) 1
4 sin (m−2)π

2(m−1)√
sin π

m−1

)
for m even.

(5.3.26)

The exp(−εa(θ)) terms in ln gb1(r̂) and ln gb2(r̂) can similarly be replaced by
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ya|Mm−1 and evaluated using (4.1.48) at Mm−1, so that

(ln g0 + ln gb1 + ln gb2)|r̂→∞ = (5.3.27)

ln

((
4

m

) 1
4
√

sin
π

m

)
− 1

2
ln

(
1

sin2
(

π
m−1

))+ ln

((
2

m− 1

) 1
4 1√

sin π
m−1

)
for m odd

and

(ln g0 + ln gb1 + ln gb2)r̂→∞ = (5.3.28)

ln

((
2

m

) 1
4
√

sin
π

m

)
− 1

2
ln

sin2
(

(m−2)π
2(m−1)

)
sin2

(
π

m−1

)
+ ln

( 4

m− 1

) 1
4 sin

(
(m−2)π
2(m−1)

)
√

sin π
m−1


for m even

which both give the expected result

(ln g0+ln gb1+ln gb2)|r̂→∞ = ln

((
8

m(m− 1)

) 1
4
√

sin
π

m− 1
sin

π

m

)
= ln g(m−1, 1, 1).

(5.3.29)

The final task is adapt the expression for ln gb3(r) (4.2.12) forMA
(+)
m . As in the

warm-up example, the boundary parameters (θb1, θb2) need to be treated carefully

in the double-scaling limit (5.3.1) to ensure that the g-function can still describe all

possible boundary flows. This is achieved by picking two integers a1 and a2 from

the set {0 · · ·m− 1} and defining θ̂b1 and θ̂b2 by

θbi = 1
2
(m−1−2ai)θ0 + θ̂bi (5.3.30)

for i = 1, 2, keeping θ̂b1 and θ̂b2 finite until after the θ0 → 0 limit is taken, when

they are then allowed to vary over all real values. This has the effect of restricting

L(θb1) and L(θb2) to take the values of ln(1+e−εa1 (θ)) and ln(1+e−εa2 (θ)) respectively

(which equal 0 if ai = 0 or m− 1). The full set of boundary flows is found by doing

this for all pairs of integers (a1, a2) in turn.
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In terms of the rescaled boundary parameters θ̂b1 and θ̂b2, ln gb3 (4.2.12) becomes

ln gb3 a1a2
(r̂, θ̂b1, θ̂b2) = 1

2

2∑
i=1

∫
R
dθ
(
φ(θ − θ̂bi) ln(1 + e−εai (θ)) + φ(θ + θ̂bi) ln(1 + e−εm−1−ai (θ))

)
=

2∑
i=1

∫
R
dθ φ(θ − θ̂bi) ln(1 + e−εai (θ)) (5.3.31)

where the symmetry εa(θ) = εm−1−a(−θ) has been used.

The full exact expression for theMA
(+)
m g-function is found by adding the above

to the expressions (5.3.10), (5.3.11) and (5.3.16)-(5.3.20) for ln g0(r̂), ln gb1(r̂) and

ln gb2(r̂). The results depend on whether m is odd or even, and consist of families

of expressions indexed by a1 and a2 and dependent on r̂ and the rescaled boundary

parameters θ̂b1 and θ̂b2:

ln ga1a2(r̂, θ̂b1, θ̂b2) = ln

((
4

m

) 1
4
√

sin
π

m

)
− 1

2

∫
R
dθ
(
φ(θ) + 1

2
δ(θ)

)
ln(1 + e

−εm−1
2

(θ)
)

+ ln gA(r̂) + ln gb3 a1a2
(r̂, θ̂b1, θ̂b2) for m odd; (5.3.32)

ln ga1a2(r̂, θ̂b1, θ̂b2) = ln

((
2

m

) 1
4
√

sin
π

m

)
+

∫
R
dθ
(
φ( 3

4
)(θ)− φ(2θ)

)
ln(1 + e

−εm−2
2

(θ)
)

+ ln gA(r̂) + ln gb3 a1a2
(r̂, θ̂b1, θ̂b2) for m even. (5.3.33)

The constant term in each expression arises from adding the appropriate expression

for ln gB(r̂) ((5.3.10) for m odd or (5.3.11) for m even) to ln gb2(r̂) (5.3.19) in the m

odd case and ln gb1(r̂) (5.3.18) in the m even case.

Some examples of the flows in the value of ln g(r̂) at MA
(+)
5 are shown in the

plots in figures 5.11 and 5.12 . Using the relationship (5.3.30) at θ0 = 60, the values

of the θ̂b1 and θ̂b2 in figures 5.11a and 5.11c correspond to the staircase boundary

parameters (θb1, θb2) = (60, 50) and (θb1, θb2) = (100, 50), respectively. Since the

staircase model matches the MA
(+)
5 flows for −3θ0

2
< ln r < − θ0

2
, the flow in figure

5.11a matches the −90 < ln r < −30 part of the highlighted θb2 = 50 flow in figure

5.5b. Also, since the staircase flow is independent of θb1 for θb1 > ln 1
r
, the flow in

5.11c matches the same part of the θb2 = 50 highlighted flow in figures 5.5c and
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5.5d. The central plateaux in figures 5.11a and 5.11c fail to coincide fully with

the conformal g-function values indicated by the horizontal lines. This is because

having θ̂b2 = −10 positions this boundary parameter close to the centre of the

central plateau of L1(θ) on which it initially lies, meaning that the bulk transition

begins before the ‘pure’ boundary transition atM5 is complete, and then the ‘pure’

boundary transition atM4 begins before the bulk transition is over. In figures 5.11b

and 5.11d this problem is remedied by slightly increasing the size of θ̂b2 so that the

boundary and bulk transitions are sufficiently separated. All the plateaux of ln g(r̂)

in these figures then coincide with the conformal values.

In each of flows in figure 5.11 only L1(θ) contributed to ln gb3 a1a2
(r̂, θ̂b1, θ̂b2); the

plots in figure 5.12 show examples of flows where other pseudoenergies contribute.

Each of the boundary condition flows appearing in these figures matches those pre-

dicted from the staircase model. This can be seen by considering the values of

La1(θ̂b1) and La2(θ̂b2) at various points in the flow, and translating these into the x-

and y-type plateaux of the staircase L(θ). The flows seen in the plots can then be

checked against the rules given in (5.2.72). For example, the values of L2(θ̂b1 = 15)

and L3(θ̂b2 = −15) correspond to the flow [x3, x4]|M5 → [y2, y4]|M5 → [x2, x4]|M4 →

[y2, x4]|M4 , which using (5.2.72) does indeed reproduce the flow in boundary condi-

tions seen in figure 5.12a (after recalling that (2, 4)|M4
∼= (2, 1)|M4).

For generalMA
(+)
m , for finite θ̂b1 and θ̂b2 the boundary flows encoded in (5.3.32)

and (5.3.33) all begin in the UV at the Mm boundary condition corresponding

to the [xa1+1, xa2+1] plateau configuration. For 2 ≤ a1, a2 ≤ m − 3 the flows are

those seen in figure 5.13. If θ̂b1 = θ̂b2 = 0 then the flow is the direct vertical flow

from [xa1+1, xa2+1]|Mm to [ya1 , ya2 ]. Similar direct flows occur when one boundary

parameter is zero and the other tends to plus or minus infinity, or when both tend to

plus or minus infinity. For other, finite values of the rescaled boundary parameters,

additional ‘pure boundary’ flows also occur as theory flows from its UV to its IR

limits. If one or both of a1 and a2 equals 1 or m− 2 then the flows truncate, just as

the flow in figure 5.12b flowed straight to the (1, 1) boundary condition as the bulk

theory flowed to M4. This behaviour is illustrated for the a1 = 1, 2 ≤ a2 ≤ m − 3

choice in figure 5.14 and the a1 = a2 = 1 choice in figure 5.15.
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(a) a1 = 1, a2 = 1, θ̂b1 = 0, θ̂b2 = −10

(1,2) (1,1)

(1,3)&(1,1) M

M 4

5(2,2)

(b) a1 = 1, a2 = 1, θ̂b1 = 0, θ̂b2 = −15

(c) a1 = 1, a2 = 1, θ̂b1 = 40, θ̂b2 = −10
(2,1)

(1,2) (1,1) M
4

M
5

(1,2)

(d) a1 = 1, a2 = 1, θ̂b1 = 40, θ̂b2 = −15

Figure 5.11: g-function flows in MA
(+)
5 with a1 = a2 = 1. ceff (r̂) is also plotted

to show where the bulk transition from M5 to M4 occurs. The horizontal lines
show the conformal g-function values that match the plateaux of ln g(r̂); the green
lines indicate boundary conditions in M5, and the blue lines those in M4. The
diagrams on the right hand side depict the boundary condition flows, and match
the M5 →M4 steps of figures 5.8 and 5.7, respectively.
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(a) a1 = 2, a2 = 3, θ̂b1 = 15, θ̂b2 = −15

M 5

M
4

(1,2)&(1,4)(3,1)

(1,3) (2,1)

(b) a1 = 3, a2 = 3, θ̂b1 = −15, θ̂b2 = −15

M 5

M
4

(1,1)

(1,1)

(1,3)&(1,1)

Figure 5.12: g-function flows in MA
(+)
5 with a1, a2 6= 1. Conformal g values and

ceff (r̂) are again plotted, as in figure 5.11.
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Chapter 6

Further Results on the g-function

In the previous chapter, the analysis of the g-function for the staircase model en-

abled exact expressions for the g-function in the MA
(+)
m models to be found, and

allowed the identification of boundary flows within these models. The flows found

both confirm and extend flows found perturbatively by Fredenhagen et al. [52]. In

this chapter a number of further results on the g-function will be reported, which

are as yet unpublished. Firstly, section 6.1 describes an analytic approach to the

perturbative expansions of the exact g-function in the scaling Lee-Yang andMA
(+)
4

models, which have previously only been found numerically. Secondly, in section 6.2

a proposal is made for an exact expression for an excited state g-function in the

MA
(+)
m models, and the ability of this to solve the spin-flip ambiguities present in

the flows identified from the ground state g-function is discussed. Finally, in sec-

tion 6.3 theMA
(−)
4 theory will be discussed, which interpolates betweenM4 and a

massive field theory. After describing how this model emerges from analytic contin-

uation of theMA
(+)
4 model, proposals will be made for the ground state g-function

in this model.

6.1 Perturbative Expansions of the Exact g-function

A means of checking a proposal for the exact g-function for a particular model is

to find its expansion in small r and to compare the results to expansion coefficients

found using conformal perturbation theory. This has not been attempted for the

137
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MA
(+)
m models with m > 4. However, expansions were found numerically by Dorey

et al. for the scaling Lee-Yang model [36] and for MA
(+)
4 [41], and were found

to be in agreement with conformal perturbation theory, so this at least provides

confirmation of the results that underpinned the work on the staircase model. It

has been possible to verify analytically how some of these expansion terms arise

from the g-function expressions, and it is this work that appears in this section.

6.1.1 Expansion of the Scaling Lee-Yang Model g-function

The Lee-Yang model is the simplest non-unitary minimal model, with c = −22/5.

It has only two bulk fields, the identity field and φ, which has scaling dimension

xφ = −2/5. Only the boundary condition corresponding to φ admits a relevant

perturbation by the one non-trivial boundary field, ψ, which has scaling dimension

xψ = −1/5. The scaling Lee-Yang model describes the RG flow from the CFT to a

massive field theory when it is perturbed by these fields:

Spert = SL−Y + λ

∫
φ(x)d2x+ µ

∫
ψ(x)dx (6.1.1)

where λ and µ are the bulk and boundary couplings, respectively. The S-matrix for

this theory is

S(θ) = −(1)(2) (6.1.2)

using a slightly different block notation from that used previously

(x) =
sinh

(
θ
2

+ iπx
6

)
sinh

(
θ
2
− iπx

6

) . (6.1.3)

The reflection factor corresponding to a boundary condition labelled by b is

Rb(θ) =

(
1

2

)(
3

2

)(
4

2

)−1(
S

(
θ + iπ

b+ 3

6

)
S

(
θ − iπ b+ 3

6

))−1

. (6.1.4)

The TBA equation is

ε(θ) = mR cosh(θ)−
∫
φ(θ − θ′)L(θ′)dθ′. (6.1.5)
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The g-function for boundary condition α was found in [36], as the one particle-type

version of equation (3.3.4):

ln gα(r) = ln g0(r) + ln g1(r) (6.1.6)

= 1
2

∞∑
n=1

1

n

∫
Rn

dθ1

1 + eε(θ1)
· · · dθn

1 + eε(θn)
φ(θ1 + θ2)φ(θ2 − θ3) · · ·φ(θn − θ1)

+
1

4

∫ ∞
−∞

(φα(θ)− 2φ(2θ)− δ(θ))L(θ)dθ (6.1.7)

where

φ(θ) = − i

2π

d

dθ
lnS(θ) = −

√
3

π

sinh(2θ)

sinh(3θ)
(6.1.8)

and

φα(θ) = − i
π

d

dθ
lnRα(θ) (6.1.9)

with ∫
φ(θ)dθ = −1,

∫
φα(θ)dθ = −2. (6.1.10)

The focus here will be on the 1 boundary condition (corresponding to R0(θ)),

for which expansions arising from perturbed conformal field theory are given in [29].

Since there is no boundary perturbation for this boundary condition, dimensional

considerations mean that the small r perturbative expansion of ln g(r) is expected

to take the form

ln g(r) = fr +
∞∑
n=0

d(α)
n

(
λR12/5

)n
(6.1.11)

where λ ∝ m12/5, r = mR as before, and f is the free energy per unit length. To

find the expansion of ln g(r) analytically from (6.1.7) the expansion of ε(θ) for small

r is needed. The ‘kink’ TBA equation is that which arises when r cosh θ is replaced

by 1
2
reθ in (6.1.5). In [29] the expansion of the kink pseudoenergy for small reθ is

given as

εkink(θ) = ln
1 +
√

5

2
+ C1

(
reθ
)6/5

+ C2

(
reθ
)12/5

+ · · · (6.1.12)
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where

C1 =
2−7/5π7/5Γ

(
1
5

)
cos π

5
Γ
(

2
5

)
Γ2
(

3
5

)
Γ
(

4
5

) (Γ
(

2
3

)
Γ
(

1
6

))6/5

, C2 =

(
1√
5
− 1

2

)
C2

1 . (6.1.13)

This can be used to find expansions for L(θ) and 1/(1 + eθ), since ε(θ) behaves like

εkink(θ) for small reθ and positive θ. Firstly, Lkink(θ) = ln(1 + e−εkink(θ)) so writing

εkink(θ) = C0 + α where C0 = ln((1 +
√

5)/2) and α is small gives

ln(1 + e−(C0+α))

≈ ln(1 + e−C0(1− α +
α2

2
))

= ln

(1 + e−C0)

1 +

(
−α + α2

2

)
e−C0

1 + e−C0


≈ ln(1 + e−C0)− C1

e−C0

1 + e−C0
(reθ)6/5

+

(
C2

1

2

(
e−C0

1 + e−C0
−
(

e−C0

1 + e−C0

)2
)
− C2

e−C0

1 + e−C0

)
(reθ)12/5 (6.1.14)

so

Lkink(θ) = ln

(
1 +
√

5

2

)
− 3−

√
5

2
C1(reθ)6/5

+

(
(−2 +

√
5)C2

1

2
− (3−

√
5)C2

2

)
(reθ)12/5 + · · · . (6.1.15)

Similarly

1

1 + eεkink(θ)

≈ 1

1 + eC0+α

≈ 1

1 + eC0(1 + α + α2

2
)

≈ 1

1 + eC0
− C1e

C0

(1 + eC0)2
(reθ)6/5

+

(
C2

1

(
e2C0

(1 + eC0)3
− 1

2

eC0

(1 + eC0)2

)
− C2e

C0

(1 + eC0)2

)
(reθ)12/5 (6.1.16)
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so

1

1 + eεkink(θ)
=1

2
(3−

√
5) + (2−

√
5)C1(reθ)6/5

+

(
9− 4

√
5

2
C2

1 + (2−
√

5)C2

)
(reθ)12/5 + · · · . (6.1.17)

Since the g-function is dependent on both positive and negative values of θ an

‘anti-kink’ expansion εanti−kink(θ) = εkink(−θ) and its related functions must also

be included. Noting that the constant term in the expansion of the full ε(θ) must

be the same as that for εkink(θ), the kink and anti-kink expansions are combined to

find the following expansions for small re|θ|:

ε(θ) = ln
1 +
√

5

2
+ 2C1 cosh

(
6θ

5

)
r6/5 + 2C2 cosh

(
12θ

5

)
r12/5 + · · · (6.1.18)

L(θ) =
∞∑
k=0

Bk cosh

(
6kθ

5

)
r6k/5

= ln

(
1 +
√

5

2

)
− (3−

√
5)C1 cosh

(
6θ

5

)
r6/5

+
(

(−2 +
√

5)C2
1 − (3−

√
5)C2

)
cosh

(
12θ

5

)
r12/5 + · · · (6.1.19)

1

1 + eε(θ)
=
∞∑
k=0

Ak cosh

(
6kθ

5

)
r6k/5

=1
2
(3−

√
5) + 2(2−

√
5)C1 cosh

(
6θ

5

)
r6/5

+
(

(9− 4
√

5)C2
1 + 2(2−

√
5)C2

)
cosh

(
12θ

5

)
r12/5 + · · · . (6.1.20)
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Inserting these expansions into (6.1.7) then gives

ln gα(r) =
1

4

∫ ∞
−∞

(φα(θ)− 2φ(2θ)− δ(θ))

(
∞∑
k=0

Bk cosh

(
6kθ

5

)
r6k/5

)
dθ

+1
2

∞∑
n=1

1

n

∫
Rn

n∏
i=1

dθi

(
∞∑
k=0

Ak cosh

(
6kθi

5

)
r6k/5

)
φ(θ1 + θ2)φ(θ2 − θ3) · · ·φ(θn − θ1).

(6.1.21)

To find the expansion of ln g in powers of r it needs to be determined for which

terms it is possible to swap the sums in the expansions of L(θ) and 1/(1 + eθ) with

the integrals. For large |θ|, both φ(θ) and φ1(θ) ∼ 1/e|θ|. This means that upon

swapping the integral and the sum in ln g1(r), the k = 0 and k = 1 terms of the φ(2θ)

part are convergent, but only the k = 0 term of the φ1(θ) part is convergent. ln g

is finite, and so what remains after subtracting off convergent terms should itself be

convergent. Therefore, considering the convergent terms described above separately

should not affect other terms in the expansion, and should reproduce terms expected

from the expansions given in [29] and [36].

The first thing to check is that when d0 is found from the k = 0 constant terms,

it is equal to the conformal g-function value for the 1 boundary condition [29]

ln g1 =
1

4
ln

5−
√

5

10
. (6.1.22)

The constant terms can be pulled outside the integrals in (6.1.21) so that for ln g0(r)

the constant term is

1
2

(
A0

∫
φ(2θ)dθ +

A2
0

2

∫
φ(θ1 + θ2)φ(θ2 − θ1)dθ1dθ2 + · · ·

)
= 1

2

∞∑
n=1

(−A0)n

2n
= −1

4
ln(1 + A0)

= −1

4
ln

(
5−
√

5

2

)
(6.1.23)
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and for ln g1(r) it is

1

4
ln

(
1 +
√

5

2

)∫ ∞
−∞

(φ1(θ)− 2φ(2θ)− δ(θ))) dθ =

(
−1

2
+

1

4
− 1

4

)
ln

(
1 +
√

5

2

)
.

(6.1.24)

Adding these together gives

d0 = −1

4
ln

(
5−
√

5

2

)
− 1

2
ln

(
1 +
√

5

2

)
=

1

4
ln

(
5−
√

5

10

)
(6.1.25)

as expected.

Moving on to the r6/5 term, swapping the integral and sum in the φ1 term

produces a divergent term as discussed above. In [29] the coefficient of r6/5 in the

expansion of
∫∞
−∞ φ1(θ)L(θ)dθ was found numerically to be zero, so this will be

assumed to be true. However, it is possible to find the r6/5 term in the expansion

for ln g0(r) and the other parts of ln g1(r) analytically.

From (6.1.21) the coefficient of r6/5 in the expansion of ln g0 is

1
2

(∫
A1 cosh

(
6θ

5

)
φ(2θ)dθ +

2

2

∫
A0A1 cosh

(
6θ1

5

)
φ(θ1 + θ2)φ(θ2 − θ1)dθ1dθ2

+
3

3

∫
A2

0A1 cosh

(
6θ1

5

)
φ(θ1 + θ2)φ(θ2 − θ3)φ(θ3 − θ1)dθ1dθ2dθ3 + · · ·

)
=
A1

2

∞∑
n=1

∫
(A0)n−1 cosh

(
6θ1

5

)
φ(θ1 + θ2)φ(θ2 − θ3) · · ·φ(θn − θ1)dθ1 · · · dθn.

(6.1.26)

To evaluate the integrals in the above sum, first consider the term

∫
cosh

(
6θ1

5

)
φ(θ1 + θ2)φ(θ2 − θ1)dθ1dθ2. (6.1.27)

Performing a change of variables u = θ1 + θ2, v = θ2 − θ1, which has Jacobian 1/2,
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gives

cosh

(
6θ1

5

)
= cosh

(
3

5
(u− v)

)
= cosh

(
3u

5

)
cosh

(
3v

5

)
− sinh

(
3u

5

)
sinh

(
3v

5

)
. (6.1.28)

The variables can now be separated, and since φ(θ) is an even function only the cosh

terms in the above give a non-zero contribution once the integral is performed. So

∫
cosh

(
6θ1

5

)
φ(θ1 + θ2)φ(θ2 − θ1)dθ1dθ2 = 1

2

(∫
cosh

(
3u

5

)
φ(u)du

)2

. (6.1.29)

For the higher terms in the sum similar changes of variables can be performed so

that θ1 = (u1 − u2 − u3 − · · · − un)/2. Then, after repeatedly applying the double

angle formula to cosh
(

6θ1
5

)
, only one term involves no sinh factors, and hence only

this term, cosh
(

3u1

5

)
cosh

(
3u2

5

)
· · · cosh

(
3un

5

)
, gives a non-zero contribution once in-

tegrated. Hence the coefficient of r6/5 in the expansion of ln g0 is given by

A1

4A0

∞∑
n=1

(A0)n
(∫

cosh

(
3u

5

)
φ(u)du

)n
=
A1

4A0

(
1

1 + 1
2
A0(1 +

√
5)
− 1

)
=− C1

2

(
2−
√

5
)
, (6.1.30)

where the integral identity

∫ ∞
0

sinh(ax) cosh(bx)

sinh(cx)
dx =

π

2c

sin aπ
c

cos aπ
c

+ cos bπ
c

for c > |a|+ |b| (6.1.31)

has been used to give

∫
cosh

(
3u

5

)
φ(u)du = −1

2
(1 +

√
5) (6.1.32)
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and the summation identity

∞∑
n=1

xn =
1

1− x
− 1 (6.1.33)

has also been used.

Turning to the convergent terms of ln g1(r), using (6.1.19) the coefficient of r6/5

from expansion of the −1
2
φ(2θ) term is

− 1
2

(
−(3−

√
5)C1

)∫ ∞
−∞

φ(2θ) cosh

(
6θ

5

)
dθ

=−
√

3

2π
(3−

√
5)C1

∫ ∞
−∞

sinh(4θ)

sinh(6θ)
cosh

(
6θ

5

)
dθ

=−
√

3

2π
(3−

√
5)C1

(
π

6

sin 2π
3

cos 2π
3

+ cos π
5

)
=

1

4

(
1−
√

5
)
C1, (6.1.34)

where the integral identity (6.1.31) has again been used. The coefficient of r6/5

coming from the δ(θ) term can be read off from the expansion of L(θ) giving (3−
√

5)C1

4
.

So, adding these to the ln g0 term gives

C1

(
−1

2

(
2−
√

5
)

+
1

4

(
1−
√

5
)

+
1

4

(
3−
√

5
))

r6/5 = 0 (6.1.35)

which, combined with the zero-valued numerical result for the φ1 term gives the r6/5

term in the expansion of ln g(r) to be zero. This is as expected, since there is no

boundary perturbation here so the regular part of the expansion is expected to be

in powers of r12/5.

6.1.2 Expansion of the MA
(+)
4 g-function

The aim of this section to confirm analytically some of the expansion coefficients for

the MA
(+)
4 g-function with one boundary parameter which were found numerically

in [41]. In this theory the bulk perturbing field φ1,3(x, x̄) has scaling dimension

xbulk = 6/5 and the boundary perturbing field φ1,3(x) has scaling dimension

xbound = 3/5. This means that with bulk coupling λ and boundary coupling µ, the
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perturbative expansion of the g-function is expected to take the form [41]

ln g(r) =fr +
∞∑

m,n=0

c(α)
m,n

(
µR2/5

)m (
λR4/5

)n
=fr +

∞∑
m,n=0

c(α)
m,n

(
νr2/5

)m (
κr4/5

)n
(6.1.36)

where κ is related to λ by the equation λ = κM4/5 and ν is a function of the boundary

parameter θb and is related to the boundary coupling µ by µ = ν(θb)M
2/5. Note

that the theory is only being considered after it has emerged from the double-scaling

limit of the staircase model, so the ‘hat’ has been dropped from the r̂ variable used

in the previous chapter.

As was described in section 3.3 and derived in detail in section 5.1, the g-function

for this model was found in [41] to be

ln g(r) = ln g0(r) + ln gb(r) (6.1.37)

= ln g0(r) + ln gb1(r) + ln gb2(r) + ln gb3(r) (6.1.38)

where

ln g0 =
∞∑
j=1

1

2j − 1

∫
dθ1

1 + eε(θ1)
· · · dθ2j−1

1 + eε(θ2j−1)
φ(θ1 + θ2)φ(θ2 + θ3) · · ·φ(θ2j−1 + θ1)

(6.1.39)

ln gb1 =− 1
2

ln 2 (6.1.40)

ln gb2 =

∫ (
φ( 3

4)(θ)− φ(2θ)
)
L(θ)dθ (6.1.41)

ln gb3 =

∫
φ(θ − θb)L(θ)dθ (6.1.42)

with φ(θ) = 1/(2π cosh(θ)) and

φ( 3
4)(θ) =

− sin
(

3π
4

)
2π
(
cosh(θ)− cos

(
3π
4

)) . (6.1.43)

so that ∫
φ( 3

4)(θ)dθ = −1

4
. (6.1.44)
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ε(θ)=ε1(θ) satisfies the TBA system

ε1(θ) =1
2
reθ −

∫
R
φ(θ − θ′)L2(θ′)dθ′ (6.1.45)

ε2(θ) =1
2
re−θ −

∫
R
φ(θ − θ′)L1(θ′)dθ′. (6.1.46)

As in the Lee-Yang case, the approach here will be to use the expansions of

the pseudoenergies to determine terms in the expansion of ln g(r). If the 1
2
re−θ

term is removed from the ε2(θ) equation then the reduced equations are known

as the kink TBA equations, and the pseudoenergies that solve them are denoted

εkinka (θ). For small r and positive θ, the original pseudoenergies behave like the kink

pseudoenergies, and so as in the Lee Yang case the small r exp |θ| expansions of ε1(θ)

and ε2(θ) can be found from the expansions of the kink pseudoenergies. These are

given in [18] as

εkinka (θ) = A′0 + A′1ψ
(2)
a (reθ)4/5 + A′2ψ

(3)
a (reθ)6/5 + · · · (6.1.47)

where

ψ(2) = (1, 1), ψ(3) = (1,−1) (6.1.48)

and

A′0 = − ln

(
1 +
√

5

2

)
. (6.1.49)

The expansion of the full ε(θ) = ε1(θ) is then given by combining the expansions of

εkink1 (θ) and εkink2 (−θ) which results in

ε(θ) =− ln

(
1 +
√

5

2

)
+ 2A′1 cosh

(
4θ

5

)
r

4
5 + · · · (6.1.50)

L(θ) = ln

(
3 +
√

5

2

)
− 2A′1

e−A
′
0

1 + e−A
′
0

cosh

(
4θ

5

)
r

4
5 + · · · (6.1.51)

1

1 + eε(θ)
=1

2
(
√

5− 1)− 2A′1
eA
′
0(

1 + eA
′
0

)2 cosh

(
4θ

5

)
r

4
5 + · · · (6.1.52)
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where
e−A

′
0

1 + e−A
′
0

= 1
2
(
√

5− 1) and
eA
′
0(

1 + eA
′
0

)2 = −2 +
√

5. (6.1.53)

The above can be used to find the constant and r4/5 terms in the expansions

of the various components of ln g. First, consider the θb = 0 case. The constant

term here should equal that of the (0+) boundary condition, which has conformal

g-function value 1
4

ln 5+2
√

5
20

. For ln g0(r), since

∫
dθ1 · · · dθ2j−1φ(θ1 + θ2)φ(θ2 + θ3) · · ·φ(θ2j−1 + θ1) =

1

22j
, (6.1.54)

the constant term in the expansion of ln g0 is equal to

∞∑
j=1

1

2j − 1

(
1
2
(
√

5− 1)
)2j−1

∫
dθ1 · · · dθ2j−1φ(θ1 + θ2)φ(θ2 + θ3) · · ·φ(θ2j−1 + θ1)

=1
2

∞∑
j=1

1

2j − 1

(√
5− 1

4

)2j−1

=
1

4
ln

(
5 + 2

√
5

5

)
. (6.1.55)

The constant term coming from the φ( 3
4

) term in ln gb2(r) is −1
4

ln 3+
√

5
2

, and that

coming from the −φ(2θ) term is also −1
4

ln 3+
√

5
2

. These are cancelled by the constant

term in the ln gb3(r) expansion, which is 1
2

ln 3+
√

5
2

. So adding these results to ln gb1(r)

which is itself a constant, in the θb = 0 case the constant term for the full g-function

is
1

4
ln

(
5 + 2

√
5

5

)
− 1

2
ln 2 =

1

4
ln

(
5 + 2

√
5

20

)
(6.1.56)

as expected.

Moving on to the coefficient of r4/5, for ln g0(r) consider the first few terms in

the infinite series. For j = 1 the relevant coefficient is

∫
2(2−

√
5)A′1 cosh

(
4θ
5

)
2π cosh(2θ)

dθ =
(2−

√
5)A′1

2π

∫
cosh

(
2u
5

)
coshu

du (6.1.57)

where the change of variable u = 2θ has been used. For j = 2 the coefficient of r4/5
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is

3

3(2π)3

∫ 1
4
(
√

5− 1)22(2−
√

5)A′1 cosh
(

4θ1
5

)
cosh(θ1 + θ2) cosh(θ2 + θ3) cosh(θ3 + θ1)

dθ1dθ2dθ3

= 1
2

(√
5− 1

2

)2

2(2−
√

5)A′1

(∫
cosh

(
2u
5

)
2π coshu

du

)3

, (6.1.58)

which is evaluated by performing the change of variables u1 = θ1 + θ2, u2 = θ2 + θ3

and u3 = θ3 + θ1 which has Jacobian 1/2 and allows the variables in the integrand

to be separated once the addition formula has been applied to the cosh term in the

numerator. The integral is evaluated as (
√

5− 1)/2 using the identity

∫ ∞
−∞

cosh ax

cosh bx
dx =

π

b
sec

aπ

2b
for b > |a|. (6.1.59)

Generalising these terms, the full coefficient of r4/5 coming from ln g0 is

(2−
√

5)A′1

∞∑
j=1

(√
5− 1

2

)2j−2(∫
cosh

(
2u
5

)
2π coshu

du

)2j−1

= (2−
√

5)A′1

∞∑
j=1

(√
5− 1

2

)4j−3

= −A′1
∞∑
j=1

(
1
2

(
7− 3

√
5
))j

=
5− 3

√
5

10
A′1. (6.1.60)

Moving to ln gb, ln gb1 is just a constant so makes no contribution to the r4/5

term. For the φ( 3
4

) term in ln gb2, the coefficient of r4/5 is

(√
5− 1

)
A′1

2
√

2π

∫
cosh

(
4θ
5

)
cosh(θ)− cos 3π

4

dθ = (
√

5− 1)A′1 (6.1.61)

using the identity

∫ ∞
−∞

cosh ax− cos t1
cosh bx− cos t2

dx =

(
π

b

sin a(π−t2)
b

sin t2 sin aπ
b

− π − t2
b sin t2

cos t1

)
(6.1.62)

with t1 = π/2, t2 = 3π/4, a = 4/5 and b = 1. For the −φ(2θ) term the coefficient
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of r4/5 is

(
√

5− 1)A′1

∫
φ(2θ) cosh

(
4θ

5

)
dθ =

(
√

5− 1)A′1
2π

∫
cosh

(
4θ
5

)
cosh(2θ)

dθ (6.1.63)

=
(3−

√
5)

2
A′1. (6.1.64)

Finally, for ln gb3 at θb = 0 the coefficient of r4/5 is

(1−
√

5)A′1

∫
φ(θ) cosh

(
4θ

5

)
dθ =

(1−
√

5)A′1
2π

∫
cosh

(
4θ
5

)
cosh(θ)

dθ (6.1.65)

=− 2A′1. (6.1.66)

Adding all these together gives the full r4/5 term in the expansion ln g(r) with θb = 0

as
A′1
10

(−10 + 2
√

5)r4/5. (6.1.67)

Turning now to θb = −∞, the constant term in this case should agree with the

conformal g-function value of the (0) boundary condition, which equals 1
4

ln 5−
√

5
10

. In

this case, ln gb3 is constant and equal to 1
2

ln 2, so the constant term in the expansion

of ln g(r) is

1

4
ln

(
5 + 2

√
5

5

)
− 1

2
ln

(
3 +
√

5

2

)
=

1

4
ln

5−
√

5

10
(6.1.68)

as expected. The r4/5 coefficient of the expansion of ln g(r) is that of the θb = 0 case

with the ln gb3 coefficient subtracted off and so becomes

A′1
10

(10 + 2
√

5)r4/5. (6.1.69)

To summarise, the expansions in the two boundary parameter cases are

ln g(r) θb = 0 1
4

ln
(

5+2
√

5
20

)
+

A′1
10

(−10 + 2
√

5)r4/5 + · · ·

θb = −∞ 1
4

ln
(

5−
√

5
10

)
+

A′1
10

(10 + 2
√

5)r4/5 + · · ·

In [41] the coefficients of r4/5 for the above values of the boundary parameter

were given exactly by evaluating correlation functions in perturbed conformal field

theory. Assuming equality between the θb = 0 result found above and that of [41]
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allows A′1 to be evaluated, and this can then be substituted into the above θb = −∞

result to check its consistency with the θb = −∞ result of [41].

When θb = 0, the coefficient of r4/5 is given in [41] as

B(−1/5, 3/5)κ

2(2π)−1/5η3
(6.1.70)

where B(x, y) is the Euler beta function B(x, y) = Γ(x)Γ(y)/Γ(x+ y),

κ =
1

2
√

2(3π)1/5

√
Γ(7/10)

Γ(3/10)
(6.1.71)

and η =
√

(1 +
√

5)/2. So, for the result found above to be in agreement with this

requires

A′1 =
10

−10 + 2
√

5

B(−1/5, 3/5)
√

Γ(7/10)
Γ(3/10)

4
√

2(3/2)1/5
(

(1+
√

5)
2

)3/2
. (6.1.72)

To simplify this note that

23/2

(−10 + 2
√

5)(1 +
√

5)3/2
= − 23/2

√
320
√

1 +
√

5
= −

√√
5− 1√
160

(6.1.73)

so

A′1 = − 5√
160

B(−1/5, 3/5)
√

Γ(7/10)
Γ(3/10)

√√
5− 1

2
√

2(3/2)1/5
. (6.1.74)

Substituting this into the above result for θb = −∞ gives the coefficient of r4/5 to

be

A′1
10

(
10 + 2

√
5
)

=−
(
10 + 2

√
5
)

2
√

160

B(−1/5, 3/5)
√

Γ(7/10)
Γ(3/10)

√√
5− 1

2
√

2(3/2)1/5
(6.1.75)

=−
B(−1/5, 3/5)

√
Γ(7/10)
Γ(3/10)

√
1+
√

5
2

4
√

2(3/2)1/5
(6.1.76)

= −B(−1/5, 3/5)κη

2(2π)−1/5
. (6.1.77)

This matches exactly the result given in [41] for θb = −∞.
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6.2 The Excited State g-function in MA
(+)
m

The g-function that has been explored so far is defined as the inner product between

a boundary state and the bulk ground state. If the inner product under consideration

is instead between a boundary state and a bulk excited state then this is described

as the excited state g-function. For a conformal theory, the value of this g-function

for boundary condition (a, b) and an excited state corresponding to a conformal field

of conformal dimension hc,d is [52]

g(c,d)(m, a, b) =

√
8

m(m+1)
(−1)1+ad+bc sin (m+1)πac

m
sin mπbd

m+1√√
8

m(m+1)
sin πc

m
sin πd

m+1

. (6.2.1)

The focus here will be on the state corresponding to the field of conformal dimension

h2,2 so that

g(2,2)(m, a, b) =

(
8

m(m+1)

)1/4

sin 2πa
m

sin 2πb
m+1√

sin 2π
m

sin 2π
m+1

. (6.2.2)

g(2,2) does not have the spin-flip symmetry possessed by the ground state g-function

(g(m, a, b) = g(m,m − a, b)), which means that in most cases it is possible to use

this excited state g-function to distinguish between a boundary condition and its

spin-flip conjugate. Since

g(2,2)(m,m− a, b) = −

(
8

m(m+1)

)1/4

sin 2πa
m

sin 2πb
m+1√

sin 2π
m

sin 2π
m+1

= −g2,2(m, a, b) (6.2.3)

with a ∈ {1, · · · ,m−1} and b ∈ {1, · · · ,m}, g(2,2)(m, a, b) is only equal to−g(2,2)(m, a, b)

when a = m/2 (for m even) or b = (m + 1)/2 (for m odd), and in these cases

a = m − a or b = m + 1 − b respectively, so the boundary conditions in question

are self-conjugate under the spin-flip. So, if the value of the MA
(+)
m ground state

g-function is equal to the conformal g-function value of (a, b) and (m−a, b) for some

values of boundary parameters (θb1, θb2) near a minimal modelMm, then knowledge

of g(2,2) for those values of the boundary parameters would determine which of the
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two boundary conditions was the correct identification. In most cases this is also

true if the boundary parameters are such that they correspond to a superposition

of Cardy boundary conditions when the theory is close to a minimal model. There

are a few ambiguities which remain, and these will be discussed at the end of this

chapter. For now attention will be turned to finding an off-critical expression for

g(2,2) in MA
(+)
m .

To check that the flows between boundary conditions identified in section 5.2 are

correct, an expression for g(2,2)(r) must be found that is defined at all points along

the RG flow in MA
(+)
m and agrees with the conformal values of g(2,2) (6.2.2) in the

UV and IR limits, just as was done in defining an exact expression for the ground

state g-function g(r) in section 5.3. Klassen and Melzer [55] proposed that for m

even the TBA equations for pseudoenergies ε
(2,2)
a (θ) for the state corresponding to

the field φ(2,2) are

ε
(2,2)
1 (θ) =

1

2
r eθ −

∫
R
φ(θ − θ′)L(2,2)

2 (θ′) dθ′

ε(2,2)
a (θ) = −

∫
R
φ(θ − θ′)(L(2,2)

a−1 (θ′) + L
(2,2)
a+1 (θ′)) dθ′ a = 2 . . .m−3

ε
(2,2)
m−2(θ) =

1

2
r e−θ −

∫
R
φ(θ − θ′)L(2,2)

m−3(θ′) dθ′ (6.2.4)

where

L(2,2)
a (θ) = ln

(
1 + tae

−ε(2,2)
a (θ)

)
(6.2.5)

with

ta =

 −1 for a = m−2
2

or a = m
2

1 otherwise
. (6.2.6)

The difference between this and the ground state TBA is simply due to the change

of the sign accompanying exp(−εa(θ)).

These pseudoenergies have a plateaux behaviour similar to that of the ground

state. In the UV limit r � 1 the central plateau of each ε
(2,2)
a is labelled by x

(2,2)
a+1

and the right and left hand plateaux are labelled by y
(2,2)
a and y

(2,2)
a+1 respectively,
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with

x(2,2)
a =


0 for a = 1 or a = m∣∣∣∣ sin (m−1−2a)π

m+1
sin

(m+3−2a)π
m+1

sin2 2π
m+1

∣∣∣∣ for a = 2, · · · ,m− 1
(6.2.7)

and

{
y(2,2)
a

}m−1

a=1
=
{

0, ŷ1, · · · , ŷ(m−6)/2, 0, 1, 0, ŷ1, · · · , ŷ(m−6)/2, 0
}
, ŷr =

sin 2rπ
m

sin 2(r+2)π
m

sin2 2π
m

.

(6.2.8)

In the IR limit, the central plateau of exp(−ε(2,2)
a (θ)) is equal to x

(2,2)
a at Mm−2 for

a = 2 · · ·m− 3, and zero for a = 1 and a = m− 2. The left and right hand plateau

are the same as in the UV limit.

A proposal has been made by Watts [56] as to how the ground state g-function

can be converted into g(2,2) in the case of a single boundary parameter. He looked

at flows occurring within a minimal model Mm and so used the kink TBA system

εkink1 (θ) = −
∫
R
φ(θ − θ′)Lkink2 (θ′) dθ′

εkinka (θ) = −
∫
R
φ(θ − θ′)(Lkinka−1 (θ′) + Lkinka+1 (θ′)) dθ′ a = 2 . . .m−3

εkinkm−2(θ) =
1

2
r eθ −

∫
R
φ(θ − θ′)Lkinkm−3(θ′) dθ′. (6.2.9)

The pseudoenergies ε
(2,2),kink
a for the (2, 2) excited state follow by using the same

sign-changing prescription as described above. The flow investigated was in the ratio

of the g-function with that of the (1, 1) boundary condition, both for the ground

state and the (2, 2) excited state. For the ground state this is given by

ln

(
ln gMm(r)

ln g(m, 1, 1)

)
=

∫
R
φ(θ − θb1)Lkinka (θ)dθ (6.2.10)

and Watts found that the expected flow in the excited state g-function is found by

replacing Lkinka (θ) by L
(2,2),kink
a (θ) so that

ln

(
ln g

(2,2)
Mm

(r)

ln g(2,2)(m, 1, 1)

)
=

∫
R
φ(θ − θb1)L(2,2),kink

a (θ)dθ. (6.2.11)
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Since only a single boundary parameter was used, the flows seen were between those

of the forms (1, a) and (b, 1).

In terms of the two boundary parameterMA
(+)
m ground state g-function (5.3.33),

the situation studied by Watts is reproduced when r is such that the theory is close

to a minimal model, and one of the terms in ln gb3 vanishes, such as is the case if

a2 is taken to equal 0 or m − 1 (or similarly for a1). It therefore seems natural to

generalise to the two parameter situation and to propose that for MA
(+)
m with m

even (the situation where Klassen and Melzer’s excited state TBA equations apply),

the full exact equation for ln g(2,2)(r) is found from the ground state g-function

ln g(r) (5.3.33) by replacing each occurrence of exp(−εa(θ)) with ta exp(−ε(2,2)
a )(θ).

Following the prescribed pattern and adding suitable constant terms, the proposal

for ln g(2,2)(r) is

ln g(2,2)
a1a2

(r, θb1, θb2) =

ln

((
2

m

)1/4
√

sin
2π

m

)
+

∫
dθ
(
φ( 3

4)(θ)− φ(2θ)
)

ln
(

1− e−ε
(2,2)
(m−2)/2

(θ)
)

+ ln g
(2,2)
A (r) + ln g

(2,2)
b3 a1a2

(r) +

(⌊
2a1

m

⌋
+

⌊
2a2

m

⌋)
πi (6.2.12)

with (a1, a2) ∈ {0, · · · ,m − 1} as before and
⌊

2ai
m

⌋
being the greatest integer less

than or equal to 2ai/m.

ln g
(2,2)
A (r) =∑
n odd

1

2n

∫
antiTr

(
n∏
i=1

A(2,2) (θi) dθi

)
φ(θ1−θ2)φ(θ2−θ3) · · ·φ(θn−1−θn)φ(θn+θ1)

(6.2.13)

and A(2,2)(θ) is the matrix defined by

A(2,2)(θ) =
1

1 + taeε
(2,2)
a (θ))

la,b. (6.2.14)
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with la,b the incidence matrix of the Am−2 Dynkin diagram. Also,

ln g
(2,2)
b3 a1a2

(r, θb1, θb2) =
2∑
i=1

∫
R
dθ φ(θ − θbi) ln(1 + taie

−ε(2,2)
ai

(θ)). (6.2.15)

Finally, the πi terms are included to allow the expression to distinguish between

boundary conditions that are conjugate under the spin-flip symmetry, since when ex-

ponentiated it determines if the value of the excited g-function is positive or negative.

There will still be an overall ambiguity in relating the boundary parameters to spe-

cific boundary conditions, since the same flows would be identified with (θb1,−θb2),

(a1,m−1−a2) if the coefficient of πi was replaced with 1 +
⌊

2a1

m

⌋
−
⌊

2a2

m

⌋
. However,

it is the ratios of g
(2,2)
a1a2 (r, θb1, θb2) at different values of r that are important in deter-

mining which boundary conditions flow to one another, and this is unaffected by any

constant terms in (6.2.12). Unlike the situation for the ground state g-function, the

ratio of the excited state g-function of two boundary conditions changes when either

is replaced by its spin-flip conjugate. So, the combined information of the ground

state and excited state g-functions is able to determine which boundary flows occur,

up to certain ambiguities that arise when superpositions appear in the flows, and

these will be discussed at the end of this section.

A check on this proposal is to evaluate ln g(2,2)(r) in its UV and IR limits in

the situation where ln g
(2,2)
b3 (r) equals zero, which occurs if a1, a2 ∈ {0,m − 1}. In

this situation the ground state g-function was equal to that of the (1, 1) boundary

condition in the UV and IR limits (and that of its spin-flip conjugate). The excited

state g-function is therefore expected to be equal to that of one or other of these

boundary conditions, which for Mm have the values

g(2,2)(m, 1, 1) =

(
8

m(m+ 1)

) 1
4
√

sin
2π

m
sin

2π

m+ 1
(6.2.16)

g(2,2)(m,m− 1, 1) = −
(

8

m(m+ 1)

) 1
4
√

sin
2π

m
sin

2π

m+ 1
. (6.2.17)

Since both ln gA and the other non-constant term in the boundary-independent

part of ln g(2,2) have their support close to θ = 0, in the UV limit each factor of

exp(−ε(2,2)
a (θ)) can be replaced by x

(2,2)
a . In this limit, the matrix A(2,2) is denoted
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by A
(2,2)
UV , where

A
(2,2)
UV =

x
(2,2)
a+1

x
(2,2)
a+1 + ta

la,b. (6.2.18)

Using the same methods as in section 5.2.1, in the UV limit ln g
(2,2)
A becomes

ln g
(2,2)
A (r � 1) =

1

8
ln

Det
(
1 + 1

2
A(2,2)Jm−2

)
Det

(
1− 1

2
A(2,2)Jm−2

) , (6.2.19)

where Jm−2 is as defined in section 5.2.1. The eigenvalues of A(2,2)Jm−2 have been

found for all even values of m up to m = 12 using Maple, and in each case are the

elements of the following set, which will be assumed to be correct for all m even

{
2 cos

4π

m+ 1
, 2 cos

6π

m+ 1
, 2 cos

8π

m+ 1
, · · · , 2 cos

mπ

m+ 1

}
, all with multiplicity two.

(6.2.20)

So,

ln g
(2,2)
A (r � 1) =

1

8
ln

m/2∏
a=2

(
1 + cos 2aπ

m+1

)2(
1− cos 2aπ

m+1

)2

=
1

8
ln

m/2∏
a=2

cos4 aπ
(m+1)

sin4 aπ
(m+1)

=
1

8
ln

(
sin4 π

(m+1)

(m+ 1)2 cos4 π
(m+1)

)

= ln

√√√√ sin π
(m+1)√

m+ 1 cos π
(m+1)

 . (6.2.21)

Also, in the UV limit

∫
dθ
(
φ( 3

4)(θ)− φ(2θ)
)

ln
(
1− e−ε(m−2)/2(θ)

)∣∣∣∣
r�1

= −1
2

ln

(
1−

sin π
m+1

sin 3π
m+1

sin2 2π
m+1

)
.

(6.2.22)
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For (a1, a2) = (0, 0), adding all the terms together gives ln g(2,2)(r � 1) to be

ln

((
2

m

)1/4
√

sin
2π

m

)
+

∫
dθ
(
φ( 3

4)(θ)− φ(2θ)
)

ln
(

1− e−ε
(2,2)
(m−2)/2

(θ)
)

+ ln g
(2,2)
A

∣∣∣∣∣
r�1

= ln

( 2

m(m+ 1)

) 1
4

√
sin π

m+1
sin 2π

m
sin 2π

m+1√
cos π

m+1

(
sin2 2π

m+1
− sin π

m+1
sin 3π

m+1

)


= ln

((
8

m(m+ 1)

) 1
4
√

sin
2π

m
sin

2π

m+ 1

)
, (6.2.23)

which is the logarithm of the excited state g-function of the (1, 1) boundary atMm.

(a1, a2) = (m− 1,m− 1) gives the same result but with a factor of 2πi added to it.

Once exponentiated, this therefore gives the same g(2,2) value as the case above, so

again the boundary condition is (1, 1). For (a1, a2) = (0,m−1) or (a1, a2) = (m−1, 0)

the additional term is πi, so the corresponding boundary condition has g(2,2) value

that is the negative of that of (1, 1). The boundary condition that is identified with

these cases is therefore (m − 1, 1). In section 5.2 it was predicted that in the RG

flow fromMm toMm−1 the (1, 1)|Mm boundary condition flows to (1, 1)|Mm−1 , and

(m − 1, 1)|Mm flows to (m − 1, 1)|Mm−1 . To check whether this is indeed the case,

the IR limit of ln g(2,2)(r) must also be calculated.

In the IR limit, each factor of exp(−ε(2,2)
1 (θ)) and exp(−ε(2,2)

m−2(θ)) can be re-

placed by zero, and for all other values of a exp(−ε(2,2)
a (θ)) becomes x

(2,2)
a |Mm−2 .

So, labelling the matrix A(2,2) in this limit by A
(2,2)
IR and recalling that x1|Mm−2 =

xm−2|Mm−2 = 0, ln g
(2,2)
A becomes

ln g
(2,2)
A (r � 1) =

1

8
ln

Det
(

1 + 1
2
A

(2,2)
IR,mJm−2

)
Det

(
1− 1

2
A

(2,2)
IR,mJm−2

) (6.2.24)

=
1

8
ln

Det
(

1 + 1
2
A

(2,2)
UV,m−2Jm−4

)
Det

(
1− 1

2
A

(2,2)
UV,m−2Jm−4

)
= ln

√√√√ sin π
(m−1)√

m− 1 cos π
(m−1)

 . (6.2.25)
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In addition,

∫
dθ
(
φ( 3

4)(θ)− φ(2θ)
)

ln
(
1− e−ε(m−2)/2(θ)

)∣∣∣∣
r�1

=

∫
dθ
(
φ( 3

4)(θ)− φ(2θ)
)

ln
(

1− x(2,2)
(m−2)/2|Mm−2

)
= −1

2
ln

(
1−

sin π
m−1

sin 3π
m−1

sin2 2π
m−1

)
. (6.2.26)

Adding these to the constant term in the (a1, a2) = (0, 0) case gives ln g(2,2)(r � 1)

as

ln

((
2

m

)1/4
√

sin
2π

m

)
+

∫
dθ
(
φ( 3

4)(θ)− φ(2θ)
)

ln
(

1− e−ε
(2,2)
(m−2)/2

(θ)
)

+ ln g
(2,2)
A

∣∣∣∣∣
r�1

= ln

((
8

m(m− 1)

) 1
4
√

sin
2π

m− 1
sin

2π

m

)
(6.2.27)

which is equal to the logarithm of the excited state g-function of the (1, 1) boundary

atMm−1. As in the UV limit, (a1, a2) gives the same result, and (a1, a2) = (0,m−1)

and (a1, a2) = (m − 1, 0) correspond to the (m − 1, 1) boundary condition. So the

boundary flows from the UV to the IR are (1, 1)|Mm → (1, 1)|Mm−1 and (m −

1, 1)|Mm → (m− 1, 1)|Mm−1 , in agreement with the predictions made earlier.

The examples below will demonstrate how the excited state g-function can be

used to verify the predictions made by the ground state g-function when ln gb3(r)

and ln g
(2,2)
b3 (r) are non-zero. The excited state g-function values are tabulated at

various points in the RG flow, as are the boundary condition predictions made from

the ground state g-function in section 5.2. Where there are superpositions of bound-

ary conditions it will be checked that the excited state g-function is able to uniquely

distinguish which superposition appears. Where there is no ambiguity then if the

value of the logarithm of the conformal excited state g-function (6.2.2) of this pre-

diction agrees with ln g(2,2)(r) at the corresponding point in the RG flow then the

predicted boundary condition does indeed appear in the boundary flow in question.

If there is not agreement then its spin-flip conjugate must appear.
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• MA
(+)
4 : θb1 � 0, θb2 � 0, |θb1| � |θb2| both finite, a1 = 1 and a2 = 2.

Point in
ln g

(2,2)
b3 (r) ln g(2,2)(r)

RG flow

r → 0 ln
(

1− sin π
5

sin 3π
5

sin2 2π
5

)
ln
((

2
5

) 1
4 sin2 π

5

sin3/2 2π
5

)
+ πi

|θb1| � ln 1
r
� |θb2| 1

2
ln
(

1− sin π
5

sin 3π
5

sin2 2π
5

)
ln

((
2
5

) 1
4 sin π

5√
sin 2π

5

)
+ πi

0� ln 1
r
� |θb1| 0 ln

((
2
5

) 1
4

√
sin 2π

5

)
+ πi

ln 1
r
� 0 0 ln

(
1

21/4

)
+ πi

Point in Ground state B.C. prediction
g(2,2)(B.C.)

RG flow plateau configuration from ln g(r)

r → 0 [x2, x3]|M4 (1, 4)&(1, 2) −
(

2
5

) 1
4 sin2 π

5

sin3/2 2π
5

|θb1| � ln 1
r
� |θb2| [x2.y3]|M4 (3, 2) −

(
2
5

) 1
4 sin π

5√
sin 2π

5

0� ln 1
r
� |θb1| [y1, y3]|M4 (3, 1) −

(
2
5

) 1
4

√
sin 2π

5

ln 1
r
� 0 [x1, x3]|M3 (1, 3) − 1

21/4

The only superposition that appears is (1, 4)&(1, 2). From (6.2.2), g(2,2)((1, 4)) and

g(2,2)((1, 2)) are not negatives of one another, and so the superposition created by

replacing either or both boundary conditions with their spin-flip conjugates (which

would give the same ground state g-function value) cannot give the same g(2,2) value,

so the combined ground state and excited state g-function values uniquely identify

the boundary condition as (1, 4)&(1, 2). Therefore, at each point in the flow, the

value of the excited state g-function given by ln g(2,2)(r) agrees with that of the

boundary condition predicted by the proposed rules (5.2.72) for the ground state

boundary condition. The excited state g-function has therefore verified the flow

which begins at the (1, 4)&(1, 2) boundary condition of M4, and then undergoes

pure boundary transitions first to (3, 2) and then to (3, 1), before undergoing the

bulk transition to M3 after which the boundary condition is (1, 3). The flow is

illustrated in figure 6.1.
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(1,4)&(1,2)

(3,2)

(3,1)

(1,3)

θ^ −induced
transition

θ^ −induced
transition

Bulk−induced
transition

M

M3

4

b2

b1

Figure 6.1: Boundary condition flow in MA
(+)
4 found by combining the values of

ln g(r) and ln g(2,2)(r) for finite θb1 and θb2 with θb1 � 0, θb2 � 0 and |θb1| � |θb2|,
and with a1 = 1 and a2 = 2.

• MA
(+)
6 : θb1 � 0, θb2 � 0, |θb1| � |θb2| both finite, a1 = 3 and a2 = 4.

Point in
ln g

(2,2)
b3 (r) ln g(2,2)(r)

RG flow

r → 0 1
2

ln
(

1− sin 3π
7

sin π
7

sin2 2π
7

)
+ ln

((
1
7

) 1
4 sin π

7
sin 3π

7

sin3/2 2π
7

)
+ 2πi

1
2

ln
(

1 +
sin 5π

7
sin π

7

sin2 2π
7

)
|θb1| � ln 1

r
� |θb2| 1

2
ln
(

1− sin 3π
7

sin π
7

sin2 2π
7

)
ln

((
1
7

) 1
4 sin π

7√
sin 2π

7

)
+ 2πi

0� ln 1
r
� |θb1| 0 ln

((
1
7

) 1
4

√
sin 2π

7

)
+ 2πi

−|θb1| � ln 1
r
� 0 0 ln

((
1
5

) 1
4

√
sin 2π

5

)
+ 2πi

−|θb2| � ln 1
r
� −|θb1| 1

2
ln
(

1− sin 3π
5

sin π
5

sin2 2π
5

)
ln

((
1
5

) 1
4 sin π

5√
sin 2π

5

)
+ 2πi

ln 1
r
� −|θb2| 1

2
ln
(

1− sin 3π
5

sin π
5

sin2 2π
5

)
ln

((
1
5

) 1
4 sin π

5√
sin 2π

5

)
+ 2πi
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Point in Ground state B.C. prediction
g(2,2)(B.C.)

RG flow plateau configuration from ln g(r)

r → 0 [x4, x5]|M6 (1, 4)&(1, 2)
(

1
7

) 1
4 sin π

7
sin 3π

7

sin3/2 2π
7

|θb1| � ln 1
r
� |θb2| [x4, y4]|M6 (4, 4)

(
1
7

) 1
4 sin π

7√
sin 2π

7

0� ln 1
r
� |θb1| [y4, y4]|M6 (3, 1)&(1, 1)

(
1
7

) 1
4

√
sin 2π

7

−|θb1| � ln 1
r
� 0 [x4, x4]|M5 (1, 3)&(1, 1)

(
1
5

) 1
4

√
sin 2π

5

−|θb2| � ln 1
r
� −|θb1| [y3, x4]|M5 (3, 4)

(
1
5

) 1
4 sin π

5√
sin 2π

5

ln 1
r
� −|θb2| [y3, y4]M5 (2, 1)

(
1
5

) 1
4 sin π

5√
sin 2π

5

Again, it needs to be checked that the superpositions are uniquely determined. In

each of the predicted superpositions, both boundary conditions have g(2,2) values

which are not the negatives of one another, so the same g(2,2) value could not be

reproduced by replacing either or both boundary conditions with their spin-flip

conjugate. The combined ground state and excited state information uniquely de-

termines the superposition. So, the agreement between the final columns of the

two tables verifies the flow in MA
(+)
6 that begins at (1, 4)&(1, 2), undergoes pure

boundary flows first to (4, 4) and then to (3, 1)&(1, 1), and then undergoes the bulk

transition to M5 after which the boundary condition is (1, 1)&(1, 3). There are

then two further pure boundary flows, first to (3, 4), and finally to (2, 1). The flow

is depicted in figure 6.2.

Flows between boundary conditions can be seen more explicitly by creating three-

dimensional plots consisting of the values of the ground state and excited g-functions

as found from the formulae (5.3.33) and (6.2.12), respectively, plotted against the

effective central charge for r ∈ R+, so that the flow can be tracked as it moves

between consecutive minimal models Mm and Mm−1. Figure 6.3 shows the flows

that arise at MA
(+)
6 when θb1 is held fixed and equal to zero, with a1 = 3, and θb2

is taken at various values along the full real line, with a2 taking each of the values

{1, 2, 3, 4} in turn. The local minima and maxima in the (g(2,2), g) plane at c = 6/7

and c = 4/5 indicate the fixed points in the flows when the bulk theory is close

to the respective minimal models M6 and M5, and the corresponding boundary

conditions are labelled. The thicker close-to-vertical flow lines mark the meeting
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−inducedb1

^

transition

θ

−inducedb1

^

transition

θ

^
b2
−induced

transition

θ

^
b2
−induced

transition

θ

(1,4)&(1,2)

(4,4)

(3,1)&(1,1)
M6

(1,3)&(1,1)

(3,4)

(2,1)

transition
Bulk−induced

M5

Figure 6.2: Boundary condition flow in MA
(+)
6 found by combining the values of

ln g(r) and ln g(2,2)(r) for finite θb1 and θb2 with θb1 � 0, θb2 � 0 and |θb1| � |θb2|,
and with a1 = 3 and a2 = 4.

of the flows arising from each value of a2, with a2 = 1 appearing on the far right

and the others following in order. These lines are naturally thicker due to certain

flows arising from consecutive values of a2 both taking these values. Part of the

flow depicted in figure 6.2 appears in the far left a4 section, but since θb1 is held

fixed at zero there are no θb1 induced flows and the bulk transition occurs once the

(4, 4) boundary condition is reached at M6, so the flow seen is (1, 4)&(1, 2)|M6 →

(4, 4)|M6 → (3, 4)|M5 → (3, 5)|M5(∼= (2, 1)|M5) rather than the more complex flow

depicted in figure 6.2. The truncation of flows of the type depicted in figure 5.14

can be seen in the a2 = 1 and a2 = 4 sections of the plot, where the number of fixed

points decreases from three to two in moving from the M6 to the M5 level.

Another example of flows is shown in the plot in figure 6.4. Here the flows are

those that arise from a1 = 1 with θb1 →∞ (though to create the plots the maximum

value of ln
(

1
r

)
was taken to be 20 so θb1 was set at 30). These choices mean that the

only boundary conditions to appear are those of the form (a, 1) and (1, b), and so

when r is such that the theory is close to a minimal model the conditions of Watts’
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Figure 6.3: g(r) and g(2,2)(r) plotted with a1=3, θb1 = 0, and θb2 = −30 · · · 30 in
steps of 2 at ln r = −20 · · · 20 for each value of a2 ∈ {1, 2, 3, 4} in turn. The vertical
axis is the effective central charge ceff (r).

paper are reproduced. Watts plots

g(r)

g(m, 1, 1)
against

g(2,2)(r)

g(2,2)(m, 1, 1)

/
g(r)

g(m, 1, 1)
.

So, recalling that close to a minimal model Mm,

ln g(r)− ln gb3(r) = ln g(m, 1, 1) and

ln g(2,2)
a1a2

(r)− ln g
(2,2)
b3 a1a2

(r)−
(⌊

2a1

m

⌋
+

⌊
2a2

m

⌋)
πi = ln g(2,2)

a1a2
(m, 1, 1),
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to make the comparison with Watts’ results clear the values plotted here are

Ground state: g′(r) = gb3(r) and (6.2.28)

Excited state: (g(2,2)
a1a2

)′(r) =
g

(2,2)
b3 a1a2

(r) exp
[(⌊

2a1

m

⌋
+
⌊

2a2

m

⌋)
πi
]

gb3(r)
. (6.2.29)

The aerial view of the plots shown in figure 6.5 shows how at c = 6/7 and c = 4/5

these plots match the M6 and M5 curves in figure 3 of Watts’ paper.

Figure 6.4: g′(r) and (g(2,2))′(r) (defined above) forMA
(+)
6 plotted with a1 = 1 and

θb1 = 30, and θb2 = −30 · · · 30 in steps of 2 at ln r = −20 · · · 20 for each value of
a2 ∈ {1, 2, 3, 4} in turn. The vertical axis is ceff (r). The ground state and excited
state g-functions have been normalised so that they match the plots in Watts’ paper,
as described in the main text.

In all the examples above the combined information from the ground state and

excited state g-functions made it possible to identify uniquely the superpositions of

boundary conditions that appeared. However, this is not always the case, as will
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Figure 6.5: ‘Aerial view’ of figure 6.4. The flows inM6 andM5 are denoted by blue
and black boundary conditions and arrows respectively. The five green dots indicate
points where the g-values of certain M6 and M5 boundary conditions coincide in
the (g′(r), (g(2,2))′(r)) plane.

be explored below. In section 5.2 the superpositions that were identified with the

[xr, xs] and [yr, ys] plateau configurations were of the forms

(1) (1, p)&(1, p+ 2)&(1, p+ 4)& · · ·&(1, q) and (6.2.30)

(2) (p, 1)&(p+ 2, 1)&(p+ 4, 1)& · · ·&(q, 1) (6.2.31)

respectively. However, the ground state g-function value of the superpositions above

would be the same if any number of the boundary conditions making up the super-
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position was replaced by their spin-flip conjugates. It is usually possible for the

excited state g-function g(2,2) to identify which of these possible superpositions is

the correct one, but there are certain exceptions. These occur when the sum of the

g(2,2) values of a subset of the boundary conditions making up the superposition is

equal to the sum of these values when each member of the subset has been replaced

by its spin-flip conjugate. For a superposition of type (1) such an ambiguity arises

if some subset consisting of k non-self-conjugate boundary conditions (1, pi) with

i = 1 · · · k satisfies

k∑
i=1

g(2,2)(1, pi) =
k∑
i=1

g(2,2)(1, pi) =
k∑
i=1

g(2,2)(m− 1, pi) (6.2.32)

which from (6.2.2) means that

k∑
i=1

sin
2πpi
m+ 1

= −
k∑
i=1

sin
2πpi
m+ 1

. (6.2.33)

This equation can be satisfied if the subset of boundary conditions consists of one

or more pairs of boundary conditions (1, pr) and (1, ps) such that

|pr − ps| =
m+ 1

2
or pr + ps = m+ 1. (6.2.34)

The latter case is of no consequence, since then (1, pr) and (1, ps) are conjugates of

one another so conjugating both of these makes no difference to the superposition

itself. However, the former case does change the superposition, so if that is satis-

fied then g(2,2) is unable to distinguish between the superposition containing (1, pr)

and (1, ps) and that containing (1, pr) and (1, ps). Since pr and ps are integers this

situation can only occur if m is odd. Furthermore, the form of the original superpo-

sition (6.2.30) means that |pr − ps| is even, so m must equal 3 (mod 4), and for the

ambiguity to arise there must be at least (m+5)/4 boundary conditions in the super-

position. The boundary condition (1, 1)&(1, 3) atM3 obeys these conditions but in

reality there is no ambiguity, since (1, 1) = (1, 3) and so taking the conjugate of both

boundary conditions reproduces the same superposition. The first real ambiguity

occurs atM7, and can only occur in superpositions containing three or more bound-
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ary conditions. In particular g(2,2)((1, 1)&(1, 3)&(1, 5)) = g(2,2)((1, 7)&(1, 3)&(1, 3))

and g(2,2)((1, 3)&(1, 5)&(1, 7)) = g(2,2)((1, 5)&(1, 5)&(1, 1)). Other more occasional

ambiguities, similar to the accidental ambiguities described in section 5.2, can arise

if the subset of the superposition consists of three boundary conditions where

sin
2πp1

m+ 1
= ±1 and sin

2πp2

m+ 1
= sin

2πp3

m+ 1
= ∓1

2
.

However, these only occur when m + 1 is a multiple of twelve, and in longer su-

perpositions that those already known to possess ambiguities. So, g(2,2) allows the

exact identification of type (1) superpositions containing less than (m+5)/4 bound-

ary conditions at m ≡ 3 (mod 4), and of type (1) superpositions of all lengths for

m 6≡ 3 (mod 4).

The ambiguities around the type (2) superpositions arise in a similar manner,

occurring if one or more pairs of boundary conditions (pr, 1) and (ps, 1) satisfy

|pr − ps| =
m

2
. (6.2.35)

Here m/2 must be even so m ≡ 0 (mod 4), and such an ambiguity can only

arise in a superposition of length (m + 4)/4. Although the (3, 1)&(1, 1) bound-

ary condition at M4 satisfies these conditions, (3, 1) = (1, 1) so conjugating both

elements leads to the same superposition. So, the first ambiguity arises at M8,

where g(2,2)((1, 1)&(3, 1)&(5, 1)) = g(2,2)((7, 1)&(3, 1)&(3, 1)) and

g(2,2)((3, 1)&(5, 1)&(7, 1)) = g(2,2)((5, 1)&(5, 1)&(1, 1)). As for the type (1) superpo-

sitions, there are occasional ambiguities, occurring when m is a multiple of twelve,

but again these occur in longer superpositions than those already identified as con-

taining ambiguities. So, in general, g(2,2) can be used to identify exactly the type

(2) superpositions containing less than (m + 4)/4 boundary conditions at Mm for

m ≡ 0 (mod 4), and type (2) superpositions of all lengths for all other values of m.
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6.3 The MA
(−)
4 g-function

6.3.1 MA
(+)
4 to MA

(−)
4 by Analytic Continuation

As was discussed in section 2.1, the interpolating theory MA
(+)
4 describes the RG

flow induced by the perturbation of the minimal model M4 by the field φ1,3, and

this corresponds to the term λ
∫
φ1,3 d

2x being added to the action of the conformal

field theory, with the bulk coupling λ > 0. The IR limit of this flow is the M3

minimal model, but as was described in section 1.2, the IR fixed point of an RG

flow from a conformal field theory need not itself be a conformal field theory, and

can instead be described by a massive field theory. Such a flow arises when M4 is

again perturbed by φ1,3 but this time with λ < 0, and the interpolating theory that

emerges is known as MA
(−)
4 . Zamolodchikov found that, up to the sign change,

both theories have the same relationship between λ and the crossover scale M :

λMA
(+)
4

= κM4/5 = −λMA
(−)
4

, where κ = 0.418695516 · · · [18, 44].

The TBA system for MA
(−)
4 was found by Zamolodchikov [44]

ε1(θ) = r cosh(θ)−
∫ ∞
−∞

φ(θ − θ′)L2(θ′)dθ′

ε2(θ) = −
∫ ∞
−∞

φ(θ − θ′)L1(θ′)dθ′, (6.3.1)

where as forMA
(+)
4 , φ(θ) = 1

2π cosh(θ)
and La(θ) = ln(1+exp(−εa(θ))). The effective

central charge is

ceff (r) =
3r

π2

∫
R
dθ cosh(θ)L1(θ). (6.3.2)

The TBA system is clearly similar to that ofMA
(+)
4 (2.3.22), with the values of the

plateaux which make up L1(θ) and L2(θ) coming from the same set of values as are

taken by the plateaux in the MA
(+)
4 pseudoenergies (5.1.9): when r < 1 L1(θ) = 0

and L2(θ) = ln 2 for |θ| � ln(1/r) and L1(θ) = L2(θ) = ln((3 +
√

5)/2) for |θ| �

ln(1/r); when r > 1 L1(θ) = 0 for all θ and L2(θ) = ln 2. Zamolodchikov observed

[44] that the effective central charge ceff (r) in the two theories must be related to

one another, at least in their perturbative expansions, by analytic continuation to

complex r. This is because ceff (r) has a regular perturbative expansion in powers
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of λr4/5; changing the sign of λ moves the theory from MA
(+)
4 to MA

(−)
4 , and in

the expansion this change can be effected by instead continuing r to ρ exp(−5πi/4)

with ρ ∈ R+. Dorey and Tateo [57] showed that analytic continuation was not

only of use perturbatively, but could be applied directly to the TBA system in the

scaling Lee Yang model to find new TBA systems describing excited states. Dorey,

Dunning and Tateo [58] found that analytic continuation could also be used to move

between massless and massive TBA systems of particular models, and Dorey and

Miramontes [59] explored this further in the context of the homogeneous sine-Gordon

models [60, 61].

The emergence of the MA
(−)
4 TBA system from the analytic continuation of

the MA
(+)
4 system can be seen by considering the asymptotic behaviour of the Y-

systems of the theories in the spirit of [59]. These are systems of equations which

are satisfied by any solution to the TBA equations [62], and have the same form in

both MA
(+)
4 and MA

(−)
4 [18, 44]:

Y1

(
θ +

iπ

2

)
Y1

(
θ − iπ

2

)
= 1 + Y2(θ)

Y2

(
θ +

iπ

2

)
Y2

(
θ − iπ

2

)
= 1 + Y1(θ) (6.3.3)

where Ya(θ) = exp(−εa(θ)). The Y-functions have the periodicity property

Y1

(
θ +

5πi

2

)
= Y2(θ) Y2

(
θ +

5πi

2

)
= Y1(θ). (6.3.4)

Although the Y-system is the same for both theories, the theory to which a particular

solution to the Y-system corresponds can be seen by considering the asymptotic

behaviour of Ya(θ). For MA
(+)
4 this is

Y1(r, θ)
θ→+∞−−−−→ exp

(
−reθ

2

)
Y1(r, θ)

θ→−∞−−−−→ 1

Y2(r, θ)
θ→+∞−−−−→ 1

Y2(r, θ)
θ→−∞−−−−→ exp

(
−re−θ

2

)
(6.3.5)
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but for MA
(−)
4

Y1(r, θ)
θ→+∞−−−−→ exp

(
−reθ

2

)
Y1(r, θ)

θ→−∞−−−−→ exp

(
−re−θ

2

)
Y2(r, θ)

θ→+∞−−−−→ 1

Y2(r, θ)
θ→−∞−−−−→ 1 (6.3.6)

Analytically continuing r to ρ exp(−5πi/4) in the MA
(+)
4 TBA system (2.3.22)

and shifting θ in order to make the relationship with the asymptotic behaviour

ofMA
(−)
4 clear leads to the following asymptotic behaviour in the analytically con-

tinued MA
(+)
4 Y-functions

Y1

(
e−

5πi
4 ρ, θ +

5πi

4

)
θ→+∞−−−−→ exp

(
−ρe

θ

2

)
Y1

(
e−

5πi
4 ρ, θ − 5πi

4

)
θ→−∞−−−−→ 1

Y2

(
e−

5πi
4 ρ, θ +

5πi

4

)
θ→+∞−−−−→ 1

Y2

(
e−

5πi
4 ρ, θ − 5πi

4

)
θ→−∞−−−−→ exp

(
−ρe

−θ

2

)
. (6.3.7)

Using the periodicity properties (6.3.4) then gives

Y1(e−
5πi
4 ρ, θ +

5πi

4
) = Y2(e−

5πi
4 ρ, θ − 5πi

4
)
θ→−∞−−−−→ exp

(
−ρe

−θ

2

)
Y2(e−

5πi
4 ρ, θ +

5πi

4
) = Y1(e−

5πi
4 ρ, θ − 5πi

4
)
θ→−∞−−−−→ 1. (6.3.8)

So defining Y ′a(ρ, θ) = Ya(e
− 5πi

4 ρ, θ+ 5πi
4

), the new Y-system Y ′a(ρ, θ) has asymptotic
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behaviour

Y1(ρ, θ)
θ→+∞−−−−→ exp

(
−ρe

θ

2

)
Y1(ρ, θ)

θ→−∞−−−−→ exp

(
−ρe

−θ

2

)
Y2(ρ, θ)

θ→+∞−−−−→ 1

Y2(ρ, θ)
θ→−∞−−−−→ 1 (6.3.9)

which is the same as for MA
(−)
4 (6.3.6). So, the analytic continuation acts on the

pseudoenergies in the following way:

ε
1,MA

(+)
4

(θ)
r→ρ exp(− 5πi

4 )
−−−−−−−−−→ ε

1,MA
(−)
4

(
θ − 5πi

4

)
= ε

2,MA
(−)
4

(
θ +

5πi

4

)
(6.3.10)

ε
2,MA

(+)
4

(θ)
r→ρ exp(− 5πi

4 )
−−−−−−−−−→ ε

2,MA
(−)
4

(
θ − 5πi

4

)
= ε

1,MA
(−)
4

(
θ +

5πi

4

)
. (6.3.11)

This effect can be seen in figures 6.6 and 6.7, which show contour plots of theMA
(+)
4

pseudoenergies at r = ρ exp(ψ) as ψ is continued from 0 to −5πi/4, and also of the

MA
(−)
4 pseudoenergies for real r. As the analytic continuation is performed, singu-

larities of La(θ), which appear as concentric patterns in the plots, move position.

If these cross the real axis then the integration contour used in the TBA system

has to be deformed away from the real axis (as was done in [57]), in order to avoid

passing through the singularities. The deformation of the integration contour is also

depicted in the figures.

It is also possible to see numerically how analytic continuation takes theMA
(+)
4

ceff (r) (defined via (2.3.25)) to the MA
(−)
4 ceff (r) (6.3.2). Zamolodchikov found

that for MA
(+)
4 , ceff (r) has the perturbative expansion [18]

c
eff,MA

(+)
4

(r) =
7

10
+

3

2π
r2 +

∞∑
n=2

an
(
λr4/5

)n
(6.3.12)

whereas in MA
(−)
4 it has the expansion [44]

c
eff,MA

(−)
4

(r) =
7

10
+
∞∑
n=2

bn
(
λr4/5

)n
. (6.3.13)
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(a)MA
(+)
4 r = 1 (b)MA

(+)
4 r = exp

(−5πi
8

)

(c)MA
(+)
4 r = exp

(−5πi
4

)
(d)MA

(−)
4 r = 1

Figure 6.6: Contour plots of |1+Y1(θ)|
1+|1+Y1(θ)| with the horizontal and vertical axes being

the real and complex parts of θ, respectively, in units of π
2
. The plots in 6.6a, 6.6b

and 6.6c correspond to theMA
(+)
4 TBA system as the argument of r moves from 0

to −5πi
4

. The concentric patterns occur around zeros of 1+Y1. As the argument of r
increases in magnitude, these zeros move in the positive Im(θ) direction for positive
Re(θ), and in the negative Im(θ) direction for negative Re(θ). The tanh-shaped
curves show how the integration contour used to solve the TBA system must be
deformed to avoid the singularities as they cross the real axis. The diagonal lines
of small circular contours close to the imaginary axis are artefacts of the numerics
used to generate the data. In 6.6d the plot corresponds to theMA

(−)
4 TBA system.

Comparing this with 6.6c, other than the diagonal lines just mentioned, the matching
is clear between 6.6c and 6.6d shifted by θ → θ − 5πi

4
.



6.3. The MA
(−)
4 g-function 174

(a)MA
(+)
4 r = 1 (b)MA

(+)
4 r = exp

(−5πi
8

)

(c)MA
(+)
4 r = exp

(−5πi
4

)
(d)MA

(−)
4 r = 1

Figure 6.7: Contour plots of |1+Y2(θ)|
1+|1+Y2(θ)| . 6.7a, 6.7b and 6.7c show the analytic contin-

uation of theMA
(+)
4 TBA system, and 6.7d corresponds to theMA

(−)
4 TBA system

at r = 1. It matches 6.7c when shifted by θ → θ − 5πi
4

.
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Analytic continuation r → ρ exp(−5πi
4

) should map the terms making up the sum

in c
eff,MA

(+)
4

(r) to c
eff,MA

(−)
4

(r). This was seen numerically by evaluating

c′
eff,MA

(+)
4

(r) = c
eff,MA

(+)
4

(r)− 3

2π
r2 (6.3.14)

at r = ρ exp(−5πi
4

) using Fortran, which produced the fit

0.69999999999985 + 6.2584802217353× 10−11r4/5 − 0.39535852554392r8/5

+0.164671495497996r12/5 − 0.00442294682565r16/5 − 0.006084462740218r4

−0.00113457797974r24/5. (6.3.15)

Using theMA
(−)
4 TBA system for real r produces the following fit for c

eff,MA
(−)
4

(r)

0.70000000000000− 9.7105172596272× 10−13r4/5 − 0.39535851867431r8/5

+0.16467119535971r12/5 − 0.00441678527165r16/5 − 0.00614380663949r4

−0.00091844415724r24/5 (6.3.16)

which matches well with the analytically continued fit above. It has also been

possible to plot the analytically continued c′
eff,MA

(+)
4

(r) for values of r less than about

ln r = 1 (for larger values of r the singularities in L(θ) seen in the pseudoenergy

plots get too close to the imaginary axis for the numerical integration to succeed).

This plot and that of c
eff,MA

(−)
4

are shown in figure 6.8, with clear matching between

them.

6.3.2 The g-function

As was discussed in section 6.1, in MA
(+)
4 the perturbative expansion of the g-

function with one boundary parameter θb takes the form

ln g(r) =fr +
∞∑

m,n=0

c(α)
m,n

(
νr2/5

)m (
κr4/5

)n
(6.3.17)
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Figure 6.8: Separate and combined plots of the analytically continued c
eff,MA

(+)
4

(r)

and of c
eff,MA

(−)
4

. The final plot combines the first two, with the dotted line plotting
c
eff,MA

(−)
4

.

where λ = κM4/5 and ν is a function of θb. When there is no boundary perturbation,

the regular part of the expansion is purely in powers of r4/5. This occurs when θb = 0,

and when θb is taken to ±∞ before r is varied. Then

ln g(r) =fr +
∞∑
n=0

d(α)
n

(
κr4/5

)n
(6.3.18)
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In [41] the expansions were found numerically for these values of θb. At θb = −∞

(which corresponds to the (0) boundary condition) the expansion was found to be

ln g(r) =− 0.3214826953191671− 0.3535533905994r + 0.5337825122412r4/5

− 0.017417394r8/5 + 0.0133024r12/5 − 0.00130r16/5

− 0.0008r4 + · · · . (6.3.19)

The θb =∞ case (which describes flows from the (+) boundary condition) is found

by subtracting ln(2)/2, giving constant term −0.668056285599137. The constant

and r4/5 terms were confirmed analytically in section 6.1 as

ln g(r) =
1

4
ln

(
5−
√

5

10

)
− 1

2
ln 2 +

A′1
10

(10 + 2
√

5)r4/5 + · · · (6.3.20)

=− 0.6680562855991361 + 0.5337825122395083r4/5 + · · · (6.3.21)

where

A′1 = − 5√
160

B(−1/5, 3/5)
√

Γ(7/10)
Γ(3/10)

√√
5− 1

2
√

2(3/2)1/5
, (6.3.22)

in agreement with the above. For θb = 0, which describes flows from the (0+)

boundary condition, the perturbative expansion was found numerically to be

ln g(r) =− 0.1868444605395363 + 0.1464466094005r − 0.2038867770734r4/5

− 0.008541178r8/5 − 0.0020624r12/5 + 0.00151r16/5 − 0.0004r4 + · · ·

(6.3.23)

and the constant and r4/5 terms were again confirmed analytically in section 6.1 as

ln g(r) =
1

4
ln

(
5 + 2

√
5

20

)
+
A′1
10

(−10 + 2
√

5)r4/5 + · · · (6.3.24)

≈− 0.1868444605395326− 0.2038867770751854r4/5 + · · · . (6.3.25)

SinceMA
(+)
4 andMA

(−)
4 only differ in the sign of λ, the perturbative expansion

of the g-function for MA
(−)
4 in these boundary cases should follow from (6.3.18)
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upon shifting λ → −λ, or equivalently κ → −κ. So, the coefficients of r4n/5 in the

MA
(+)
4 andMA

(−)
4 expansions have the same absolute value but differ by a sign for

n odd and are equal for n even. An expression for the exact g-function for MA
(−)
4

must therefore obey these rules in its perturbative expansion.

Using the methods outlined at the end of section 3.3, a proposal was made by

Pozsgay for an exact expression for theMA
(−)
4 g-function [63]. Part of his proposal

involved an infinite sum:

ln g1(r) =
∞∑
j=1

1

2j

∫
R2j

dθ1

1 + eε1(θ1)

dθ2

1 + eε2(θ2)
· · · dθ2j

1 + eε2(θ2j)
φ(θ1+θ2)φ(θ2−θ3) · · ·φ(θ2j−θ1)

(6.3.26)

where ε1(θ) and ε2(θ) solve the MA
(−)
4 TBA system (6.3.1). Notice that the sum

here is over even powers, whereas in theMA
(+)
4 g-function, ln g0 was a sum over odd

powers (3.3.7). This confirmed indications coming from the A2 homogeneous sine-

Gordon model, which is a theory involving two massive particles from whichMA
(−)
4

emerges under certain choices of parameters in the limit where one of the particle

masses is taken to zero. Pozsgay’s full proposal for the g-function did not have the

expected perturbative expansion. However, a study of the differences between the

expected expansion and that arising from Pozsgay’s proposal suggested what the

other terms in the g-function should be and led to the following proposal [64] for

flows from the (+) boundary condition (which in theMA
(+)
4 theory corresponds to

θb =∞):

ln g(r) = ln g1(r) + ln g2(r) (6.3.27)

where ln g1 is given above and

ln g2(r) =
1

4

∫ ∞
−∞

dθ (2φ(θ)− δ(θ)) (L1(θ) + L2(θ))− ln 2. (6.3.28)

To test this proposal, its perturbative expansion must be compared to the above

MA
(+)
4 results, to check that the corresponding coefficients in each theory have the

same absolute value, and that the expected sign-changing behaviour is observed.

Using similar analytic methods to those implemented in section 6.1, ln g1 has the
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expansion

1

4
ln

(
1
2

(
5−
√

5

5

))
+ 1

2
ln 2 +

15− 7
√

5

10
A′1r

4/5 + · · · (6.3.29)

≈0.0250908949608091− 0.0240655695515436r4/5 + · · · (6.3.30)

This has been verified by solving the massive TBA numerically and calculating g1

using Fortran before fitting it to a series of the above form using Maple:

ln g1(r) =0.025090894960809− 2.62× 10−9r − 2.44× 10−13r2/5

− 0.024065569380745r4/5 + 1.30× 10−8r6/5 + 0.008563591929185r8/5

+ 0.000001591227208r2 − 0.001605162176630r12/5

+ 0.000042286794764r14/5 + 0.000370663456047r16/5. (6.3.31)

As expected, it appears that the coefficients of odd powers of r2/5 can be assumed

to be zero. Furthermore, the coefficient of r appears to be zero, and this is also to

be expected in this boundary independent part of the g-function [41]. Implementing

these observations leads to a more constrained fit

ln g1(r) =0.025090894960809− 0.024065569551547r4/5 + 0.008563741458027r8/5

− 0.001594289252229r12/5 + 0.000445356012558r16/5

− 0.000114795125707r4 − 0.000013470755383r24/5 (6.3.32)

which can be seen to be in agreement with the terms found analytically.

Moving to ln g2, the constant and r4/5 terms in its expansion can again be found

analytically. The integral contributes no constant term, so the constant is just − ln 2

and the r4/5 term is(√
5− 5

2

)
A′1r

4/5 ≈ −0.5097169427532075 (6.3.33)
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Finding the expansion of the integral part numerically gives

ln g2(r) + ln 2 =− 7.15× 10−16 + 0.500000022397917r + 2.08× 10−12r2/5

− 0.509716944150008r4/5 − 1.11× 10−7r6/5 − 0.025979871791119r8/5

− 0.000013386108369r2 − 0.0116171698725921r12/5−

0.000351892088096r14/5 − 0.001133705655781r16/5. (6.3.34)

Again it seems correct to constrain the regular part to powers of r4/5, and to drop

the constant term, giving

ln g2(r)+ ln 2 =

0.500000000014746r − 0.509716942690669r4/5 − 0.025981136515188r8/5

− 0.011708160725455r12/5 − 0.001750837361228r16/5

+ 0.000917387731753r4 + 0.000259141783205r24/5. (6.3.35)

Adding the analytically obtained expansions of ln g1 and ln g2 gives

ln g(r) =
1

4
ln

(
1
2

(
5−
√

5

5

))
− 1

2
ln 2 +

15− 7
√

5− 25 + 5
√

5

10
A′1r

4/5 + · · ·

=
1

4
ln

(
1
2

(
5−
√

5

5

))
− 1

2
ln 2− 10 + 2

√
5

10
A′1r

4/5 + · · · . (6.3.36)

Comparison with theMA
(+)
4 θb =∞ result shows that both the constant term and

the r4/5 coefficient are as expected, with the expected sign change in the r4/5 term.

Adding the numerical fits gives

ln g(r) =

− 0.668056285599136 + 0.500000000006609r − 0.533782512240741r4/5

− 0.017417394874754r8/5 − 0.013302459608256r12/5 − 0.001305180754752r16/5

+ 0.0007982488821876r4 + 0.000267720630612r24/5, (6.3.37)

which is in good agreement with the regular part of (6.3.19), with the expected sign
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changes. This therefore seems a good proposal for the g-function for this particular

boundary case.

The next step is to see how this expression for the g-function can be adapted

for flows starting from the (0+) boundary condition (the case corresponding to

θb = 0 in the MA
(+)
4 situation). The formula for the MA

(+)
4 g-function for this

boundary situation hints at how an expression can be found for MA
(−)
4 . Going

from the θb = ∞ to the θb = 0 expressions for the MA
(+)
4 g-function just involves

adding the term
∫∞
−∞ φ(θ)L

(1,MA
(+)
4 )

(θ)dθ (where L
(1,MA

(+)
4 )

(θ) solves the massless

TBA equations (2.3.22)). An equivalent term must be found in the MA
(−)
4 case to

add to (6.3.27). Considering the perturbative expansion of the MA
(+)
4 term, the

regular part of its MA
(−)
4 counterpart must have coefficients of the same absolute

value, and exhibit the sign-changing behaviour described previously. These sign-

changes can be effected by taking the expansion in theMA
(+)
4 case and analytically

continuing r to re−5iπ/4. So, it should be possible to find the required additional

term by analytically continuing
∫∞
−∞ φ(θ)L

(1,MA
(+)
4 )

(θ)dθ.

Using the MA
(+)
4 TBA equations (2.3.22) the integral can be rewritten as

∫ ∞
−∞

φ(θ)L
(1,MA

(+)
4 )

(θ)dθ = −ε
(1,MA

(+)
4 )

(0) + 1
2
r. (6.3.38)

ε
(1,MA

(+)
4 )

(θ) has a regular perturbative expansion in powers of r4/5, so it is this part

of the above for which it makes sense to consider the continuation. Using (6.3.10),

the continuation has the following effect on this term:

−ε
(1,MA

(+)
4 )

(0)→− ε
(1,MA

(−)
4 )

(−5πi/4) = −ε
(1,MA

(−)
4 )

(5πi/4), (6.3.39)

where the fact that the massive pseudoenergies are symmetric has been used.

This produces a numerical fit where the coefficients of the r term and the odd
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powers of r2/5 can be assumed to be zero. Constraining the fit as before leads to

0.481211825059603 + 0.737669289314415r4/5 + 0.008876215908657r8/5

+ 0.015364903506098r12/5 + 0.002820720013630r16/5 − 0.000387956360825r4

− 0.000297171684214r24/5. (6.3.40)

As before, the constant and r4/5 terms can be analytically verified. ε
(1,MA

(−)
4 )

(θ) has

expansion

ε
(1,MA

(−)
4 )

(θ) = − ln

(
1 +
√

5

2

)
+ 2A′1 cosh

(
4θ

5

)
r

4
5 + · · · . (6.3.41)

and so

−ε
(1,MA

(−)
4 )

(5πi/4) = ln

(
1 +
√

5

2

)
+ 2A′1r

4/5 + · · · (6.3.42)

≈ 0.4812118250596035 + 0.7376692893146938r4/5 + · · · .

(6.3.43)

Adding this to (6.3.36) gives the same constant term as appears in (6.3.24), and the

same absolute value but opposite sign for the r4/5 coefficient, as expected. Adding

the numerical fit to the expansion for the MA
(−)
4 g-function for the (+) boundary

condition (6.3.37) gives

− 0.186844460539532 + 0.500000000006609r + 0.203886777073673r4/5

− 0.008541178966097r8/5 + 0.002062443897842r12/5 + 0.001515539258878r16/5

+ 0.000410292521362r4 − 0.000029451053602r24/5. (6.3.44)

Again, the expected relationship with (6.3.23) is observed. Therefore, the proposal

for flows in MA
(−)
4 from the (0+) boundary condition is

ln g(r) = ln g1(r) + ln g2(r)− ε1

(
5πi

4

)
. (6.3.45)

with ε1(θ) solving the MA
(−)
4 TBA system.
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Ideally, the aim would be to find an expression for the MA
(−)
4 g-function for

all boundary situations, i.e. those corresponding to θb 6= 0,±∞ in MA
(+)
4 . This

involves determining how θb should be analytically continued to move from the

massless to the massive case. It is expected that the massive boundary parameter

should be related in a simple way to the boundary parameter used by Chim when

he analysed the massive tricritical Ising model in [49]. However, it has not yet been

possible to find what this relationship should be, so the question of finding the full

exact g-function for MA
(−)
4 remains open.



Chapter 7

Conclusions

In this final chapter, the main results of the thesis will be summarised, and the open

questions arising from these results will be discussed.

It has been seen how the analysis of the g-function in the staircase model en-

abled the identification (up to certain ambiguities) of the flows between boundary

conditions that occur both within unitary minimal models and as a result of bulk

flows between consecutive models. In the limits corresponding to a single boundary

parameter, these flows confirmed the perturbative results of Fredenhagen et al. [52],

and new flows emerged when the second boundary parameter also induced changes

in the value of the g-function. Furthermore, considering the staircase model equa-

tions in certain double-scaling limits allowed the extraction of expressions for the

exact g-function for the MA
(+)
m interpolating theories. Pozsgay’s alternative ap-

proach to the exact g-function suggests a means of verification of these equations;

this was done for the MA
(+)
4 case in [40], and although a full proof has not been

found, he has made checks on the first few terms of the ln g0 expression in MA
(+)
5

andMA
(+)
6 [63], which seem to give good indications of the matching of his results

with those reported in section 5.3. Scope for further work lies in the possibility that

further boundary parameters could be included in the staircase model reflection fac-

tor in addition to the two already considered. Such a boundary configuration does

not follow directly from boundary sinh-Gordon theory, but arises when defects are

placed next to the original two-parameter boundary [65,66], and investigation of the

g-function of such a model might allow further boundary flows to be identified.

184



Chapter 7. Conclusions 185

It has been possible to confirm analytically some perturbative results on the

scaling Lee-Yang model and on MA
(+)
4 , which had previously only been found nu-

merically. This provides additional confirmation of the exact g-function results

which were the foundations on which the expressions for the staircase g-function

were built. However, since the methods used only allowed the first couple of terms

in the expansions to be found, it remains an open question as to how the higher

terms can be found analytically.

It has also been possible to make proposals for theMA
(−)
4 g-function for certain

values of the boundary parameter, but as was discussed in section 6.3 an expression

valid for all values of the boundary parameter has so far proved elusive. Further

work is therefore needed on the relationship between the boundary parameter and

the boundary coupling to determine exactly how the boundary parameter behaves

under the analytic continuation that takes MA
(+)
4 to MA

(−)
4 .

Exact g-function equations have been found for an excited state in the MA
(+)
m

theories in the cases where m is even, and it has been seen that the combined

information from the ground state and excited state g-function allows the unique

identification of boundary flows in the majority of cases. This is also an area that

could be explored further. Only the g-function arising from the inner product of a

boundary state with the bulk state corresponding to the φ2,2 field was considered

here. However, other excited states could be considered, and indeed Klassen and

Melzer [55] proposed TBA equations for the (m/2,m/2) state in MA
(+)
m with m

even. This might be a means to uniquely identify those flows involving the bound-

ary condition superpositions which were not uniquely determined by the ground

state and (2, 2)-excited state g-functions. Expressions for the (2, 2)-excited state g-

function are also still to be found forMA
(+)
m when m is odd. Klassen and Melzer [55]

found that, unlike for m even, it was not possible to find a simple way to adapt the

ground state TBA system to find the excited state TBA system in this case. Indeed,

for the (m/2,m/2) excited state they found that the TBA system which worked for

m even actually led to a system describing flows between minimal models with non-

diagonal modular invariants (the so-called Dn minimal models) for m odd [67]. It

therefore seems that to find the (2, 2)-excited state for m odd may prove rather more
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complex than for m even.

There are, however, other ways of considering excited states. Dorey and Tateo

[57] found in the Lee-Yang model that TBA equations for excited states could be

found from the ground state TBA system by analytic continuation of the bulk cou-

pling, or equivalently of r, around singularities of the ground state energy, and these

equations match those found by Bazhanov et al. [68] using alternative methods.

These results indicate that the g-function for excited states might arise from analytic

continuation of the ground state expression. However, the process is more difficult

than for the TBA itself, as the infinite sum part of the g-function involves multiple

integrals which make the process of dealing with the residues that arise from the

deformation of the contour more complex. Another possibility lies in the Truncated

Conformal Space Approach, which has been used by Takacs and Watts [69] to find

excited state g-functions for boundary flows in the Lee-Yang model. If this could be

extended to bulk flows, and in particular to theMA
(+)
m interpolating theories, then

it would provide both a useful means of checking the TBA results already found,

and an alternative approach to finding expressions for other excited states. There

is therefore great scope for exploring this issue further.
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