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Abstract

Surface reconstruction is one of the main research areas in computer

graphics. The goal is to find the best surface representation of the

boundary of a real object. The typical input of a surface reconstruc-

tion algorithm is a point cloud, possibly obtained by a laser 3D scan-

ner. The raw data from the scanner is usually noisy and contains

outliers. Apart from creating models of high visual quality, assuring

that a model is as faithful as possible to the original object is also one

of the main aims of surface reconstruction.

Most surface reconstruction algorithms proposed in the literature as-

sess the reconstructed models either by visual inspection or, in cases

where subjective manual input is not possible, by measuring the train-

ing error of the model. However, the training error underestimates

systematically the test error and encourages overfitting.

In this thesis, we provide a method for quantitative assessment in

surface reconstruction. We integrate a model averaging method from

statistics called bootstrap and define it into our context. Bootstrap-

ping is a resampling procedure that provides statistical parameter. In

surface fitting, we obtained error estimate which detect error caused

by noise or bad fitting. We also define bootstrap method in context



of normal estimation. We obtain variance and error estimates which

we use as a quality measure of normal estimates. As application, we

provide smoothing algorithm for point clouds and normal smoothing

that can handle feature area. We also developed feature detection

algorithm.
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Chapter 1

Introduction

In today’s technology, 3D has become one of the staple terms in daily life. 3D

is offered in various forms - movies, games and photography. It can be widely

defined either in reference to the object or the way our eyes observe it. A cartoon

drawn on a piece of paper is seen in 2 dimensions. An animation made out of

polygons is a 3D object but viewed in 2D on an ordinary computer or television.

In popular culture, a movie which requires polarized 3D glasses or red-cyan glasses

allows the viewer to see a 3-dimensional object in a 3-dimensional view, giving

viewer more in-depth in distance and width, similar to what we experience in the

real world.

As technology evolves, we can now have a 3D picture rather than an old-style

2D photo on paper. One may question which one is more aesthetically pleasing

- either a normal 2D picture, or a 3D picture seen through special devices like

3D-glasses [39]. Whatever the case, a 3D representation of a real world object

certainly offers more information.

A 3D supersedes 2D by giving extra information about an object. For in-

2



Figure 1.1: A 3D Scanner (Artec MHT 3D Scanner) can scan a real-life object
to be represented as 3D model on a computer.

stance, taking a picture of a cube using a Polaroid camera may not offer in depth

information of the length or width. A 3D camera, however, which uses 2 lenses

(in some cases, just one) can give us depth and distance information.

A 3D model can also be made with combinations of polygon and molded in a

3D editing tool program such as Maya or 3DS Max. In such programs, a user can

define an object the way that one intended. This can later be used for applications

such as animation or modelling a design for engineering or manufacturing.

On the other hand, device such as 3D scanner will produce point cloud and

needed to be processed further. In this context, a 3D object or model is defined

as representation on a standard 3-dimensional Cartesian coordinate system where

length, width and height is defined on x, y and z-axes. With this definition, we

differentiate it from the norm to describe 3D as a viewing capability, and stick to

how it is presented.
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The input data for a surface reconstruction is obtained from measurements of

real objects using optical devices such as 3D scanners or cameras producing image

sequences. A 3D scanner (as in Figure 1.1) has not yet been made available widely

as a commercially available user product. The model generated will provides more

information about the object, because it can capture the object in its entirety.

After reconstructed in the computer, one can rotate and view it from 360 degrees

direction.

1.1 The modelling pipeline

We show the pipeline of surface reconstruction in Figure 1.2. As the procedure is

not generic and one may choose different approaches, we acknowledge that this

pipeline may be varied. Firstly, data acquisition procedure provides a set of point

clouds from a real life object. Scanning may be done couple of times, positioning

the model from different angles to assure that the scanner could capture all regions

to provide few samples of point clouds. When this happens, registration needs to

be done so it can combine the multiple point cloud that we obtained [19].

Once we obtain the point clouds, we may apply other pre-processing step such

as outlier removal, simplification or denoising. Then, a surface representation is

reconstructed from the set of point clouds. Post-processing steps may include

some more denoising or smoothing if the data is still noisy, and remeshing. If the

model contains sharp edges, one may want to make sure that the feature is well

preserved. To use in animation or presentation, we may set up attributes and

apply a texture on the model.

While this is only a basic idea, one may skip some parts and even go from

4



Figure 1.2: Pipeline of surface reconstruction. Scanning on a Standford bunny
provides point clouds before being reconstructed into a 3D model.

point clouds to generating model by using a method such as implicit surface

reconstruction which handles denoising, estimates surfaces, and generates trian-

gulation without going through the steps shown in the Figure 1.2.

There is a variety of steps that can be done and these will be mentioned and

discussed in Chapter 2.

1.2 Surface Reconstruction

Surface reconstruction is one of the main research areas in computer graphics. Its

basic aim is to find the best approximate of surface representation of a real object.

In many geometric modelling applications we want to create the 3D model of a real

object, usually representing it by a surface describing the object’s boundary. The

process starts with data acquisition, where an optical device such as a 3D scanner

5



produces point sets describing the object. These point sets always contain noise.

Moreover, in several applications, ranging from visualisation to Finite Element

simulations, point sets are not suitable representations of the object’s boundary,

and surface representations such as implicit surfaces or meshes are preferable. The

process of transforming a point set into a surface is called surface reconstruction.

Other than the raw data being noisy, there is also the problem of outliers: a

point exist in a region that is quite far from the rest of the data due to inaccuracy

in sampling procedure. Through the reconstruction process, we may lose the fine

features of an object such as the sharp edges and the details of the boundaries.

To obtain a good surface representation, we have to use a procedure that will

eliminate or at least minimise these problems.

To tackle these problems we need a method for assessing the quality of the

reconstructed surface. Such methods can be subjective, such as visual inspection,

or objective, such as error estimation. The assessment of the final surface also

depends on the rendering process.

While it is more common to create a polygonal mesh for the purpose of ren-

dering, recent algorithms can simply do direct volumetric rendering. In this case,

the extraction of a polygonal mesh is not required. Researchers have different

opinions on the merits of each approach.

In all cases, human labour is still required to resolve the problems with the

quality of the data [103]. A good surface reconstruction algorithm that would be

able to deal with the mentioned issues and minimize the human involvement will

obviously have immediate practical implications.
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1.3 Motivation

This thesis will revolve around the development of surface reconstruction algo-

rithms from data obtained from measurements of real objects, assuring that the

model is as faithful as possible to the original object. As we have mentioned that

the faithfulness of the model is not always the goal of surface reconstruction, the

target applications of this thesis are those where the accuracy of the model is

important. For example, in CAD/CAM applications the model will be used for

the manufacturing of a physical object, and its faithfulness to the prototype is

important. Cultural heritage and medical applications are other such examples.

For instance, modelling an ancient statue or a human organ for the purpose of

analysing it or just visualising it, requires us to be sure that the produced model

is accurate.

Current surface reconstruction methods neglect the element of accuracy, either

by assuming that there is no noise or by dealing indirectly with it: for example by

smoothing the data with averaging operations during reconstruction. While many

surface reconstruction procedure assume that the noise is uniformly distributed,

Sun et al. [96] address that this is not the exactly the case. Our aim is to have

the proposed algorithms deal explicitly with this matter and provide estimates of

the data noise.

This is where a statistical method is useful. Statistical methods offer a vast

literature regarding data mining, supervised learning and model assessment. In

recent years, researchers have started to integrate this two fields to provide a

method which can be assessed quantitatively and not just visually.

One of the model averaging methods which is bootstrap sparks our interest
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as it could provide statistics such as variance and error estimate. In our case,

we envisioned that the error value could be estimated to detect different noise

level and be used for an algorithm such as denoising. Having such values like

error could define the quality of our approach and make the assessment more

quantitative, which relies on numerical value, rather than qualitative which relies

on human observation through eyes.

Without a doubt, having such information could give much insight such as

level of noise or quality of an approach, and require less involvement of checking

it visually thus avoiding the subjectivity of one person. Bootstrap procedure will

be the root of the thesis, and will be explored depending on the application of

surface reconstruction.

1.4 Overview of Thesis

This thesis will explore a quantitative assessment of post-processing steps in sur-

face reconstruction. As the field of statistics has already offered a vast literature

regarding statistical measurement on collected data, we found that recently, re-

searchers started to have interest in merging these two fields. This thesis will

apply a model averaging method called bootstrap to provide a quantitative value

which may tell the quality of our estimation. Our aim is:

1. To define the bootstrap method in a surface reconstruction setting. As this

is a new approach, a verification procedure is expected.

2. To provide error and variance estimates for handling noisy point sets. De-

pending on the issue with which we are dealing; either smoothing or esti-
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mating normal, we will choose the statistics accordingly.

3. To use the information obtained to recover the data. This will be used in

either smoothing, feature preservation or normal estimate to demonstrate

the benefit of having such statistics.

We will start by reviewing the literature related to this field in Chapter 2.

Then, in Chapter 3, a discussion of the mathematical background will list methods

that we use in our computation which had been used generally among researcher

in related field. This will includes the discussion of type of error and polynomial

fitting.

Chapter 4 will line out our test error estimation on a model based on boot-

strapping. Test error estimates can be used to signify the noise level and quality

of our estimate.

In Chapter 5, we come to a discussion regarding normal estimation. While

the essence of bootstrapping is similar to that described in the previous chapter,

we have to redefine the bootstrap approach on a normal estimation perspective.

We use variance value to signify the quality of normal estimate on a model. Later

in the chapter, an application is introduced to estimate a more accurate value of

normal from noisy point sets. We also define test error estimates on normal ap-

proximation so that a comparison between different methods and neighbourhood

can be done.

In Chapter 6, we will apply a bilateral filter which uses the error value that

we obtained from the bootstrapping procedure to smooth out the noisy points

and recover our model.
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Chapter 7 explores detection on a feature area , using values from Principal

Component Analysis and variance value from bootstrapping.

We conclude our thesis in Chapter 8, describing the contribution, limitation

and future works.
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Chapter 2

Literature Survey

In this chapter, we provide some relevant definitions and discussions related to

surface reconstruction. We start by defining the setting of this research. Basic

definition and data structures will be discussed in Section 2.1. Next in Section 2.2,

we address about normal computation on surface. Normal estimates may be used

in various step of surface reconstruction such as denoising and rendering, thus

having an accurate estimate can be helpful. Further discussion will be continued

in Chapter 5.

Section 2.3 presents denoising on meshes and point sets. As input data con-

tains noise, denoising may recover feature area. Our proposed method in regards

to denoising is presented in Chapter 6. Section 2.4 addresses surface reconstruc-

tion, which includes various approaches including implicit surface, Voronoi dia-

gram, RBF and surface fitting. We also address statistical approaches that have

been done in surface reconstruction before discussing the statistics in general in

Section 2.5. Finally, we discuss about feature detection in Section 2.6.
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2.1 Definitions and basic concepts

There are several available ways to generate and represent a 3-dimensional model

in geometric modelling. The most common are polygonal meshes, point set rep-

resentation, free form surfaces or implicit surfaces.

A mesh consists of vertices, edges and faces. A point is called a vertex. A

vertex connects to an other vertex through an edge to form a polygonal shape.

The vertices connected to form a polygon is called a face.

The point set representation is much simpler in definition. We need to define

only the positions of the vertices. No information of connectivity is needed.

Different ways of rendering are used for meshes and point sets. Throughout this

thesis, there will be fewer mentions of how rendering works for both as it would

not be our main focus. However, it will be taken into account when choosing

between those two representations.

In many applications, it is important to know the neighbourhood of a vertex.

We may use this knowledge to define features, run smoothing, or calculate nor-

mals. As the mesh representation includes the connectivity of points, we can use

it to define the neighborhood as the set of vertices connected to that vertex with

an edge. These points would be the 1-ring neighbourhood of the point. It can be

expanded to the two ring neighborhood for the considered point by including the

vertices that are connected to the 1-ring neighbourhood. This k-rings neighbour-

hood concept is used widely in mesh processing and the considered point can be

seen as a center of a dart board (the bulls-eye).

As there are no edges connecting the points in point-sets setting, we use the

concept of K-nearest neighbourhood instead. Searching through the space of
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points, we find points which are relatively close to a considered point. Using

brute-force, we may find the distances of every single points to the considered

point; and then simply find the K nearest points. However, it will be costly, as

we have to repeat the procedure for each point, and our models often consist of

thousands of points.

Data structures can be used to find and store the information of connectivity.

As for mesh representation, one can use half-edge data structure [14; 64] to make

the search for neighbouring points efficient. Half-edge data structure search the

vertex and mark 2 faces connected to an edge in this process is done iteratively.

For point sets representation, in searching for the K-nearest neighbourhood, see

[20; 24; 108]. Commonly, the space are subdivided and tree is constructed making

it easier to connect on point to the other base on its location in the subspace.

Researchers have different views on whether to use meshes or point sets. Mesh

representation provides connectivity information, which makes it easier to com-

pute neighbourhoods and apply a procedure in the neighbourhood (such as re-

covering sharp edges). On the other hand, rendering point sets may be better as

[45] believe that it can be faster and more accurate than mesh rendering.

In this thesis, we will focus on point sets rather than meshes. As our ap-

proaches use statistical methods, we believe that point sets would suit our ap-

proach better as it is not limited to connectivity.

2.2 Normal Estimation

Given a surface, the normal of a point is a direction perpendicular to the surface at

that particular point. This vector may be used in various steps of reconstruction.
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For instance, when handling noisy data, one may wish to smooth the data and

move it towards the direction of the normal. Another example is that the normal

may be needed in rendering so as to compute lighting and shadow.

Normal value may be represented by vector (i, j,k). Let f(x, y, z) = 0 be a

function which define an implicit surface, the normal at point (x, y, z) is given

by the gradient 5f . The normal direction is orthogonal to a tangent plane. In

practice, both functions cannot be easily defined globally for an object, especially

a complex looking one. Therefore, most of the methods are local and we find the

normals in a small neighbourhood.

Given a 1-ring of a vertex of a triangle mesh with m faces, a simple normal

can be estimated with

m∑

i=1

niAi

whereas ni is the normal of i-th neighbouring face and Ai is the area for i-th

face. This normal can be extended into k-rings by including weights in the above

equation, such that the weights will be lower for various increment of k. Note

that the k-rings neighbourhood does not directly provides information of spaces.

For point sets representation, given n points pi’s which is nearest to the vertex,

using Principal Component Analysis [53], a normal can be estimated by finding

the eigenvector for the smallest eigenvalue. These eigenvalues are derived from

the covariance matrix of the distance of points to the centroid of the points,

described as follows.

Given a neighbourhood of points {p0, p1, p2, ...pn} centered at p0, we construct

a 3 by 3 covariance matrix {bjk|j, k = 1, 2, 3}. For every vertex p, we calculate
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the eigenvalues of the covariance matrix

bjk =
n∑

i=1

(pij − p0j)(pik − p0k) (2.1)

where pi = (px, py, pz) is the i-th neighbouring point. Let a ≤ b ≤ c be the three

eigenvalues of the matrix in Eq. 2.1. The respective eigenvector corresponding to

a is the normal vector at p0.

Alliez et al. [2] computes normals with confidence values based on the ratios

of the eigenvalues of covariance matrix. The improved PCA normal estimation

by Pauly et al. [86] and Alexa et al. [1] use the weighted distance instead. Hu

et al. [52] propose a bilateral estimation of the normals. They decomposed the

vertices from k-rings neighbours and divided it into multiple layers, based on the

distances of the vertices to the considered vertex. By using Gaussian weights,

they estimated the normals by taking every layer into account.

Mitra et al. [80] used least square fitting to estimate the normals. They also

compute the optimal neighbourhood size to reduce error in normal estimation.

Dey and Sun [30] approximate normals and features of a model using the medial

axis. By creating a medial ball that is large enough with respect to a neighbour-

hood, the normal is estimated by the direction of the vertex from the center of

the medial ball. This approach can adapt to noisy data sets, but seems to be

expensive, as it considers global point sets instead of doing it locally.

As reliable normal estimations are essential for many geometric processing

and rendering algorithms, the literature on normal reconstruction is extensive.

The classic method proposed in [51] applies PCA on the k-neighbourhood of a

point. The result is equivalent to computing the normal of the minimum least
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square fitting plane for the same neighbourhood. Due to its simplicity and ro-

bustness, [51] is still widely used and considered to be part of the state-of-the-art.

Pauly et al. [88] improve on PCA by computing a weighted least square fitting

plane, with weights given by sigmoidal functions. Gopi et al. [44] use Singular

Value Decomposition to compute a normal that minimises the variance of the dot

products between itself and the vectors from the considered point to its nearest

neighbours. Mitra et al. [80] apply least square fitting on the points inside a

sphere of fixed radius. Hu et al. [52] combine several estimates obtained at dif-

ferent sampling rates to compute a more reliable normal. Dey et al. [28] compute

the normal as the vector pointing to the centre of the largest Delaunay sphere

passing through the considered point. Li et al. [72] create several random sub-

samples of the neighbourhood and uses them to estimate the local noise; it then

uses the local noise estimate to compute a kernel function which is minimised by

the tangent plane.

To improve normal estimation on noisy points, several approaches had been

proposed. A bilateral filter for normal smoothing was proposed in [58]. There, the

influence of the normal at dj on the normal at di depends on the distance between

di and dj and also on the distance from di to the tangent plane at dj . [113] had

also use bilateral filter on meshes to smooth normals. The first weight is similar,

which is distance-weight but the second weight is signal difference between di and

dj .

Most of the point set smoothing algorithms proposed in the literature focus

on updating the positions of the points, while the normals are only implicitly

updated. [91] uses a filter in the spatial domain, [89] filters in the frequency

domain, [69] uses anisotropic diffusion, while [112] simultaneously optimises the
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Figure 2.1: An example of a noisy model on the left. The model after denoising
process is displayed on the right.

point set and its parametrisation by minimising an energy function.

2.3 Denoising

Generally, the input from a 3D scanner will inevitably produce noise (See Figure

2.1). The term denoising is literally interpreted as a process of removing the noise

from the data. Going through the existing literature, this term is widely used

interchangeably with smoothing. It is not in some cases, however, Sun et al. [95]

have made a clear distinction between these two. In their terms, smoothing or

fairing is a process to remove certain high-frequency information, while denoising

is to preserve only genuine information at all frequencies.

2.3.1 Mesh denoising

One of the classic mesh denoising methods is Laplacian smoothing. Given a set

S of vertices, Laplacian smoothing projected the considered vertex towards its

average of neighbouring points.

Define pi as considered vertex and qi’s are n numbers of the neighbouring
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vertices connected through edges to pi. By using Laplacian smoothing [101], the

projected pi is given by

p′i = αpi +
1 − α

n

n∑

j=1

qi

This algorithm is done iteratively and is considered at a one-ring neighbour-

hood. α is a user-defined constant where 0 ≤ α ≤ 1. A larger value of α will

require more iterations before the noisy model smoothes out. On the other hand,

a smaller value of α may smooth out features rather quickly. Regardless of the α

value, the model will lose its features and has a tendency to shrink after several

iterations.

To avoid the shrinking effect, Taubin [100] used a signal processing approach

which uses Fourier analysis. Compared to classic Laplacian smoothing, his al-

gorithm avoids shrinkage by projecting vertices in opposite directions for every

iteration. Similarly, HC algorithm [101] also push back the considered vertex

towards its original position. The approach produces a better result in terms of

avoiding shrinkage, but the properties of features and sharp edges may be lost

along the way.

Desbrun et al. [27] introduces volume preservation to avoid shrinkage. Re-

gardless of wherever the vertices are projected, the model will resize to match the

original volume. Looking under differential equation setting, they pointed out

that Laplacian smoothing and similar improved methods are using the concept of

diffusion, which will result in shrinkage. Instead of using diffusion, they looked at

the curvature flow of a model. The method used a similar approach of calculation

as [100] by using signal processing approach. It manages to keep the features but

tends to be expensive, as it needs more calculations.
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Desbrun et al. defines curvature flow as

∂pi

∂t
= −kini .

ki is the mean curvature while ni is normal for vertex pi. The differential equation

represents the process of moving the vertices along its normal direction of an

amount proportional to its curvature. By solving the equation we will be able

to smooth out the noisy surface and still preserve the features. In practice, this

equation has to be discretized first, as the equation is in continuous setting. After

discretization, we will have a sparse linear system, and solving the system would

not be difficult.

Eickstein et al. [32] made a direct improvement of Desbrun’s method by

incorporating the volume preservation into the differential equation, instead of

applying it separately as was previously done. The curvature flow is redefined as

∂pi

∂t
= −Lkini .

whereas L is the volume-controlled deformation-filtering operator. This opera-

tor preserves the volume locally, thus maintaining it globally as well. Hildebrandt

et al. [50] used anisotropic curvature flow to smooth the surface while preserving

the features.

Fleishman et al. [37] and Jones et al. [57] adapt 2-dimensional bilateral

image filtering to 3-dimensional meshes. The algorithm works at its local vertex,

moving the vertex in its normal direction using Gaussian filtering. It is affected

by the variance of the k-ring neighbourhood. If the variance is high (for example,

at sharp edges) the weights will be decreased. The particular region will not be
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smoothed out, therefore preserving the features and sharp edges. Under the same

approach, Sun et al. [95] used normal filtering and vertex position updating. The

quality of features preservation are dependant to the filtering method.

Guskov et al. [48] use signal processing methods on meshes. Their methods

can be used in mesh smoothing, enhancement, subdivision and multiresolution

editing. For an edge, they compute two directions of normals affected from the

two faces it shares. The difference between two normals is equivalent to the second

order differential equation, and the meshes may be smoothed out by defining a re-

laxation operation which minimizes this value. We show this idea in Figure 2.2 in

a two dimensional setting. Minimizing the difference of two normals may smooth

out the meshes. The implementation also takes other variables into account, for

example, weights are given depending on the distances to the considered edge.

For experimental purposes, instead of taking raw data, we usually take a 3D

model and add some noise on it. We can then compare the effectiveness of our

method by making a comparison of the original model and the smoothed one.

Besides visual inspection, one may use Metro Tool by [23] to estimate the error

produced by a method, by comparing the model before and after it has gone

through the denoising process.

2.3.2 Point set denoising

Point set denoising is different than mesh denoising in terms of absence of con-

nectivity. While mesh denoising uses mesh representation, point set denoising

deals with points in Euclidean space.

Moving least squares (MLS) method is one of the widely used approaches in
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Figure 2.2: Relaxation operation in 2D setting. The arrows represent the normals
for their respective lines. Minimizing the difference for two normals may smooth
out the sharp part.

point set denoising. Following [1; 6], we give a brief summary of MLS. Note that

while Amenta and Kil [6] define the error in the form of an energy function, both

methods are very similar.

Let a new point qi move along a normal direction from considered point ri.

The PCA normal is used in this method. Given a local frame of point sets, we

find the value of qi that will minimize the weighted distance of the points from

the tangent plane as

min
n∑

j=1

D(pj)θ(pj , qi)

D(pj) is the nearest distance of points pj to the tangent plane where qi lies.

θ(pj , qi) is the weight based on the distance of pj to qi (Refer to Figure 2.3).

Usually, the Gaussian function is used such that if the distance is larger, then the

weight is lower.

Then we will find the polynomial fitting such that it will minimize the follow-

ing equation

n∑

j=1

(d(fj − pj))
2θ(pj, qi)
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Figure 2.3: The new point q is moved along the normal direction represented
by the red line. The tangent plane H will move according to q. The blue lines
represent D(pj).

Figure 2.4: The polynomial approximation is represented by the purple line. We
try to minimize the weighted distance of the points pj to corresponding value of
fj . The green line represent d(fj − pj).

whereas d(., .) is the distance between two points. The function F is an n-

order polynomial fitting. fj ∈ F is the corresponding polynomial approximation

that aligns with its respective point pj on the normal direction. We will then

move the considered point ri so that it lies on the polynomial surface defined.

After an iteration, points ri’s will be moved and the model will be smoothed.

Levin [71] shows that the local error of MLS approximation is bounded. Lip-

man et al. [74] used a different projection, which does not require a local pa-

rameterization. Bremer and Hart [13] find sampling conditions that guarantee

well-defined normals on neighbourhoods of the surfaces, which lead to well-defined

MLS surfaces.
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Pauly and Gross [85] propose an algorithm for point set denoising based on

filtering the frequency domain. Scheidegger et al. [94] performs triangulations

on the points sets. As the points may be non-uniformly dense and noisy, they

have developed a triangulation that can adapt noises. Schall et al. [92] took a

slightly different approach by incorporating the concept of probability in model

smoothing. The vertices are moved towards the high probability density area.

This method manages to diminish the outliers. Then, they adapts a non-local

filter originally developed for image processing [93]. The filter is based on a

measure of similarity, which is used to find similarity weighed averages across the

whole set.

Qin et al. [91] use the bilateral filtering for point sets denoising. Their ap-

proach is very similar in concept to Fleishman et al. (which was discussed in

the previous subsection). While Fleishman et al. use bilateral filtering for mesh

smoothing, Qin et al. apply it on point set smoothing. Here, a local tangent plane

is estimated from the PCA normal, and the filtering is applied to the points in

the K-nearest neighbourhood.

2.4 Surface Reconstruction

In surface reconstruction, researchers look for effective methods of processing

raw point set data obtained by optical acquisition devices into surface represen-

tations. Possible preprocessing steps may include point set denoising, while mesh

denoising can be seen as a postprocessing step of surface reconstruction.

Most of the early work in surface reconstruction does not explicitly deal with

noise in the data. As a result, the distinction between training error and test
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error is only implicit, and data pre-processing, or model post-processing, is rec-

ommended for dealing with the problem of overfitting noisy data. [51; 68] and the

Voronoi-based methods [4; 10] are early papers that influenced the development

of the field.

2.4.1 Implicit surface

Implicit methods, pioneered in [51], are a major branch of surface reconstruc-

tion algorithms, which have demonstrated several advantages in terms of both

robustness and computational efficiency [17; 18; 83].

In a typical pipeline, an isosurface is defined throughout the space. Then,

an octree can be constructed, implicit function is computed with its component

defined on the octree cells. Finally, water-tight triangle mesh is extracted with

Marching Cube [114]. In many implicit reconstruction approaches the issue of

noise is dealt with indirectly, through a user defined variable tuning the algorithm

to the level of noise present in the data. For example, in [83] this parameter is

the tolerance of local training error of the algorithm, while in [84] a regularization

parameter is used.

2.4.2 Voronoi diagram

Voronoi diagram and Delaunay triangulation have been used by [4; 5; 7; 10] to

construct surface from unorganized points. By heuristic arguments, the triangles

are determined whether they should belong to the surface or not. This approach

will naturally eliminate noisy data and outliers. If the noise level is close to the

density of the sample data, however, the algorithm might not work as it cannot
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differentiate the noise from the data.

Under the same motivation that the previous methods related to Voronoi

diagram and Delaunay triangulation is not able to deal with noisy points, Mederos

et al. [78] use the power crust algorithm to handle noisy point sets.

Voronoi based methods have been further extended, resolving issues such as

holes in the surface [29], noise outliers [66] and finding conditions for provably

good samples [3; 9].

2.4.3 Surface fitting

Surface reconstruction based on local polynomial surface fittings is becoming

increasingly popular, especially in the form of Moving Least Square surfaces [71].

Most of these approaches do not explicitly deal with the noise [1; 46], or the

algorithms require a user defined parameter indicating the level of noise [74].

One classic surface reconstruction paper is by Hoppe et al. [51]. Given a

set of unorganized points, their method can create a surface reconstruction with

no prior knowledge of topology nor boundary. The surface is reconstructed by

minimizing the distance of the points to the unknown surface M. Then, through

a contouring procedure, the meshes are built giving the reconstruction as a sim-

plicial surface, here a triangle mesh. The Marching Cubes algorithm [75] is used

in the contouring. By estimating a function that minimizes the signed distance

of the points to the surface, we can loosely say that the approach is similar to

polynomial regression in statistics. This approach is prone to overfitting.

Kobbelt et al. [65] regenerate polygonal meshes to transform meshes with

arbitrary connectivity to a subdivision connectivity. Using a shrink wrapping
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Figure 2.5: Example of the curve generated from an extrapolation. The missing
data may be recovered.

approach, the base mesh is goes through subdivision until it produces appropriate

models after iterations. The concept is like wrapping a plastic membrane around

an object, producing the same object but with better connectivity. An example of

bad connectivity is when we apply the marching cube algorithm straightforwardly

on a model. A wrinkle may appear due to the different level of intensity of points

in an area.

Carr et al. [18] used radial basis functions (RBF) in his approach. The

radial basis functions are used as functions that approximate the signed distances

in the neighbourhood of given initial data; the approach makes use of normal

information, which is either given with the point set data, or estimated from

them. By using an error minimisation technique, the local approximations are

combined into a smooth surface. One of the advantages of this technique is that

it may recover lost data. A simpler example is as shown in Figure 2.5, where

a curve may estimate the value on the top part based on the given points by

extrapolating the data.

Improving the approach of radial basis functions, Ohtake et al. [82] used

compactly supported functions to produce a simpler and faster method. Explic-
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itly they mentioned that this method is more robust than the one by Carr et.

al, avoiding globally supported basis functions is one key point of improvement.

Another improvement includes adaptively selecting the support of the RBF ac-

cording to the properties of the data [84]. In this case, the centre of the RBF

is chosen. Chen and Cheng [21] use an algorithm that can recover incomplete

models and preserve sharp edges by marking the feature region and iteratively

adjusting face normal on the mesh. Tagliasacchi et al. [99] introduced rotational

symmetry axis (ROSA) and used skeletons and normal direction to construct

missing data, reconstructing incomplete point clouds. Other papers that use

RBF to recover defective or missing data are [31; 81; 106].

Xiao et al. [105] recover missing data by using texture synthesis. By mapping

the texture on the existing data, the algorithm propagates the pattern over the

missing data and reconstructs the area. [98] use volumetric priors to recover lost

data, which works well on highly incomplete scans data, but does not work well

with models with sharp edges.

Using MLS surface, [36] constructed piecewise smooth surface to preserve

sharp edges. [41] applied local shape priors to preserve the sharp edges. Firstly,

they defined a library of local shape priors where a feature is defined for a given

shape of points (Refer to Figure 2.6). Then, in an augmentation process for a

particular shape of points, they are able to reference a similar match from the

library. The algorithm can simply be seen as a search and match procedure, but

is reliable as it also includes some criteria in the decision making process, such

as the directions of the normals. This method is effective in preserving the sharp

edges but is very time consuming. They stated themselves that this method is

very expensive for highly dense samples; besides, defining a library for local shape

27



Figure 2.6: The purple figure is an example of local shape prior. The cube
is going through an augmentation procedure where a potential sharp edge is
matched with a local shape prior, therefore producing a final result where the
sharp edge is preserved.

priors is also a tedious work.

Ohtake et al. [83] defined an implicit model called Multi-level Partition Unity

(MPU) which approximates the surface using repeated subdivisions of the region

of space. This approach is good at preserving features but very sensitive to the

quality of input data. [104] improves MPU by adapting the method on high

curvature regions and around feature areas.

Other surface fittings include B-spline surface [68] which is used widely in

modeling industry, but has several disadvantages. It performs poorly for complex

surfaces, is more expensive, and does not handle sharp edges and holes very well.

Surface reconstruction algorithms can be used for point set denoising by pro-

jecting the data points on the reconstructed surfaces. Other point set denoising

techniques use spatial [91] or spectral filtering [89], and anisotropic diffusion [69].
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2.4.4 Statistical approach in surface reconstruction

Statistical methods for surface reconstruction deal with the noise more directly. In

[56; 90] a Bayesian approach is employed for surface reconstruction and smooth-

ing, with the level of noise required as a user input. In [109] a variational Bayesian

approach is employed to automatically estimate the level of data noise. In [109]

comparisons between models are possible through the computation of the log

evidence.

Kahzdan et al. [63] applied the Poisson formulation in their work. By incor-

porating noisy points with normals into the Poisson equation, the solution will

approximate a smooth surface. Instead of solving each point in its own local

neighbourhood, this method works globally by solving on all points at the same

time. However, if there is missing data, it will try to connect the region instead

of leaving it for a recovery process to fix.

Pauly and Gross [85] showed how the uncertainty can be incorporated into a

geometric model. However, the assumption is that the amount of noise (variance)

is known. [60; 61] developed a hierarchical method for representation and fast

rendering of models incorporating uncertainty by using probabilistic models.

Using Bayesian statistics, Jenke et al. [56] define a probability distribution

over the points. The noisy points have different probability depending on the

location and the points which lie on the surface should have a higher probability

than the outliers. Bayes’ rule is used to estimate the points that belong to the

model and to smooth out the noise at the time of reconstruction. To preserve

the sharp edges, they applied the augmentation procedure based on a curvature-

based edge detector. The procedure is incapable of detecting edges if the noise
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level is high, however.

Qian et al. [90] used the same approach with Bayesian statistics to construct

meshes from noisy point data. However, their approach did not emphasize sharp

edge preservation as Jenke et al. did.

Yoon et al. [110] use a model averaging method called ensemble to deal with

outliers. They define the general framework of ensembles on surface reconstruc-

tion. A sample data set is run repeatedly to create different models. After going

through a deterministic algorithm which analyses the error, the models are com-

bined to produce an ensemble result. While cost-efficiency is one of their concerns

for improvement, it may also be useful to integrate a method which can preserve

features and sharp edges.

Ivrissimtzis et al. [54] relate mesh representation with the concept of neural

network. These neural meshes are constructed iteratively using Growing Cell

Structures [40], which are similar to coarse-to-fine interpolation as in [82]. The

new insertion of vertices to form the neural meshes is influenced by the probability

density of the input signals to minimize the error. [77] improved the previous

method to produce a more accurate construction around concave structures in a

model.

Regarding statistical approaches in the wider area of graphics and computer

vision, Bubna et al. [15] compared statistical approaches in this area. By ex-

perimenting with various model selection criteria on 3D models, they suggested

using Bayesian criteria and bootstrapped variants for model averaging. Akaike

information criterion increases bias for higher order polynomial fitting. So, it

should be avoided.

The statistical approach is effective when it comes to outliers and estimating
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error. We are still, however, seeking a model which is not only statistically good,

but also visually correct. Thus, the issue of feature preservation should also be

incorporated in statistical approaches.

2.5 Statistics

Traditionally, the researchers in geometric modelling try to construct a good

model by removing the noise heuristically, using geometric methods . It may

be interesting to point out that in statistics, there are various approaches in

understanding and dealing with noisy data sets.

Lee et al. [70] points out that there is not much integration between these

two fields. However, there have been a number of researchers using statistical

approaches in order to solve surface reconstruction problems. These papers will

be included in next subsection.

Note that while discussing the following methods, there is not much existing

research on how they can be applied specifically to the area of graphics. Most of

them are generally defined while we need it specifically to our setting.

In statistical modelling we try to find the best model that fits the data. We

then estimate the error to assess a model. It has the similar principal as sur-

face reconstruction, which finds the best surface representation assuring that the

model is as faithful as possible to the original object.

There are two types of error: training error and test error. These type of error

are discussed much further in Section 3.1. These two errors are brought up for

discussion, as most smoothing algorithms, such as Laplacian or MLS smoothing,

are using training error for their error estimation. Minimizing training error as a
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way to find the best model may still produce a good result visually, but should

be regarded as a bad assessment because it may not be faithful to the data. It

may lead to overfitting, which favours complex models and do not generalise well

for independent data.

2.5.1 Model averaging and model selection

Given N points of a data sample, we may calculate statistical measurements

such as mean, variance or standard deviation of the sample. [33] had introduced

a model averaging method called bootstrap method to estimate sampling distribu-

tion. Using bootstrap procedure, we are creating multiple data sets from the same

sample we used previously. Each new data set consists of N points taken ran-

domly from the data sample, allowing repetition of any point. We may combine

the statistical measurement of the data sets and see the probability distribution

for the sample.

Cabrera and Meer [16] uses bootstrap method to fit ellipses on 2D data. In

a 2D setting, they presented methods to estimate splines from the noisy data

using bootstrap method. Comparing the result with least square fitting, they

showed visually that it is more accurate to use the bootstrap method. Using the

same motivation, we will apply the same approach in a 3D setting. The ensemble

technique, which has several similarities with the bootstrap method, was used for

surface and normal reconstruction in [110].

In contrast, our focus is on test error estimation and overfitting detection. In

[70] the test error of implicit models is locally estimated through extra sample

validation. The method there is similar to the leave-one-out bootstrap estimator,
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which, as we will see, overestimates the test error. The estimated test error is

guiding a sophisticated algorithm for building a multi-scale implicit model, and

no actual test error values are reported.

Another example of model averaging method is bagging. By aggregating

bootstrap samples, this method may be used to lower the variance [11; 49]. This

method may increase the accuracy of model prediction and avoid overfitting.

Existing model prediction faces the bias-variance dilemma: that is increasing

bias while decreasing the variance and vice versa. In geometric computing, we

may take the classic example of Laplacian smoothing where bias increases while

variance decreases after every iteration. Even recent approaches using curvature

flow suffer from the bias-variance effect. In that case, the decreasing of bias is

countered by volume preservation. Breiman [12] claimed that he managed to

reduce bias and variance simultaneously by using iterated bagging.

2.6 Feature Detection

Given its importance in geometric modelling applications [76], feature detection

and feature extraction has received considerable research interest, both for 3D

point sets and polygonal meshes.

Regarding feature detection on point sets, Yang et al. [107] use PCA to

compute principle curvatures on neighborhoods of varying size. The curvature

information can then be used for feature detection. Similarly, Gatzke and Grimm

[42] use quadratic fitting to compute a curvature map, which is then used to

detect and classify features. Basdogan and Oztireli [8] focus on the application of

point set registration. Its main descriptor for feature detection uses the distance
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between a point and the centre of mass of its neighbourhood. Li and Guskov [73]

first smooth the point set with the MLS projection and then define as features

those areas where the difference between normals of neighbouring points is at

maximum. Gumhold et al. [47] analyse the eigenvalues and eigenvectors of a

neighbourhood and computes the probability that a point is a certain type of

feature, such as sharp edge, boundary or corner. Demarsin et al. [26] use normal

computations to obtain a segmentation of the point set and then detects sharp

features between the segments. Joel et al. [25] identify as features the points with

the highest error in a RMLS polynomial fitting. Chica [22] produces a voxelised

model of the point data, which is then segmentised using visibility computations.

The features are extracted from the segmentised voxelisation. [79] used Voronoi-

based method and computed covariance matrices on Voronoi cells. The matrices

provide curvature information and feature is detected by thresholding area with

relatively higher curvature.

Considerable research effort has also been directed into the computation of

features on polygonal meshes. The techniques applied there are similar to those

for point sets. Yoshizawa et al. [111] use polynomial fittings to compute curvature

information which is then used for detecting feature lines on triangle meshes. Sun

et al. [97] use eigenanalysis on a tensor, which is computed as an average weighted

by the geodesic distance of tensors of neighboring normals. Wang [102] analyses

angles between normals to detect features and then uses bilateral filtering to

reconstruct them. Ohtake et al. [84] detect features by first constructing an

implicit model of the data and then computing curvature information from the

implicit model.

Feature detection is an ill posed problem. Methods are usually evaluated with
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visual inspection, and detection on point sets is more difficult than detection on

meshes.

2.7 Summary

In studying surface reconstruction, researchers have come up with various type of

approaches. Many stand-alone surface reconstruction methods are available, but

they may not be able to handle issues like feature preservation or outliers. This is

why some researchers handle this issue separately. For instance, computation of

normal or denosing is done separately as a pre- or post-processing step, depending

on where it falls on the surface reconstruction pipeline.

While there is a vast amount of literature regarding surface reconstruction,

it is only recently that statistics have been brought into geometric computing.

While statistics itself had developed a solid base in error estimation and model

approximation, it had not been applied much in this field. The terms are not

well-defined in our context.

Integrating the statistical approach into geometric modelling should never be

seen as starting from scratch. We aim to apply existing methods, which are useful

but complex, and transform them into a form suitable for geometric computing,

creating accurate and robust algorithms.
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Chapter 3

Background

In this chapter, we will define and summarise some of the terms that we will

be using in this thesis. We will start with the definition of error and the way

that we will be using in this thesis. Secondly, bias-variance decomposition will

be discussed. Bias-variance decomposition is a reaction due to different variables

used to estimating data. Both of these are already well-defined in statistical areas.

Here, however, we extend the discussion into the context of use in the research

presented. Our input data is in R3 and we use surface polynomial fitting which

requires a 2.5 dimensional setting with plane and height function. In final part

of this chapter, we apply localisation for this purpose.

3.1 Types of error

In surface reconstruction, our input data comes in the form of point clouds from

the acquisition procedure. The data are given in R3. However, in this section,

we will mostly discuss the definitions in 2D for the sake of simplicity. The terms

36



are often defined in a 2D setting before going into higher dimensional setting.

In statistics, a prediction model is a function which estimates input data.

Points scattered on 2D plane with a Cartesian coordinate system can be fit-

ted using numerous functions such as polynomial fitting, exponential series and

Fourier series. The aim is to choose a function or model which best represents

the data; this procedure is known as model selection. A typical way to select a

good model is to rely on the value of error.

There are two main types of error; training error and test error which is also

called generalisation error. In a 2D setting, given a set of samples (xi, yi) ∈ R2

for i = 1, 2, ...n, a function f(xi) = Yi is estimated to fit the data. Training error

of the model is the average loss over the sample

1

n

n∑

i=1

|Yi − yi| (3.1)

Test error is defined as the average loss over independent test sample and

generally it is more difficult to estimate. For example, if we have a large number

of samples, we could exclude some for the purpose of verification. Given a sample

yi with i = 1, 2, ..., n−1, n, n+1, ...,m−1,m, we use the first n samples to estimate

fit a model and estimate training error. The remaining m − n samples could be

our inputs for test error as follow

1

m − n

m∑

i=n+1

|Yi − yi| (3.2)

In practice, instead of taking the first n samples, we will use n samples in a

random sequence instead of an incremental sequence.

Training error usually underestimates the expected error of the model on an
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Figure 3.1: Example of overfitting

independent sample. If we use training error as our error estimation, we may

obtain a smaller value of error than we are supposed to have. This is due to a

phenomenon called optimism of the training error. This phenomenon is related

to the concept called overfitting, in which the data is fitted very closely to the

samples, which may reduce the training error.

We illustrate overfitting in an example. We generate points from a sinus

function with added noise, which is a maximum of random value up to 0.2 in

positive or negative direction as shown in Figure 3.1. In practice, one may choose

cubic or quartic fitting to fit the given points, rather than a degree 6 or higher

which intuitively will overfit the points. Referring to Figure 3.1(left), we can see

that cubic, quartic and quintic fittings estimate the points rather well. The mean

square errors (which are forms of training error) for cubic, quartic and quintic

are 0.1386, 0.1444 and 0.1273 respectively. As the training error for quintic is the

lowest, it may indicates that the quintic is the best fitting for this data. Without

referring to the actual function before noise, which is represented by the dotted
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blue line in the figure, we can assume that quintic polynomial fits better as it

passes through a lot of points.

However, relying on the value of training error may misguide us. In Figure

3.1(right), we show the fitting of sixth and seventh order polynomial and the

mean square errors are 0.1026 and 0.0883 respectively. Without a visual aid, one

may assume that the seventh order polynomial fitting is better but the figure

proves otherwise. Overfitting of this estimate make it a worse choice. Although

quintic fitting has a higher training error, we may favour it as opposed to the

seventh order polynomial fitting. As mentioned before, one would not normally

choose such a high order for a polynomial fitting, but here is an example where

we may question if we can actually rely on the training error.

Another term we will use in this thesis is ground truth error. We often assume

that samples came from a smooth model with some noise. Assuming that the

actual model is known and (xi, y
t
i) are points of the model, we introduce the term

ground truth error, which is defined by replacing yt
i in Equation 3.1. For the

previous example, this would be data values before the noise is added. While

this may not be made possible for data acquired in our study, the discussion

and comparison to this value is important for verification of our method. In this

case, y = sin(x) will be used to obtained the ground truth error. We run through

different polynomial fittings and provide the training error and ground truth error

as shown in Table 3.1. As we can see, training error is not a good estimate of

the ground truth error. Thus, for a more reliable model assessment, we need to

develop methods for estimating the test error.

For this research one of our aims is to use a method which can estimate test

error in such a way that our reliance on visual assessment of the fitting can be
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minimized. While it is relatively easy to check for a 2-dimensional case, it is more

tricky when the data is 3-dimensional.

Notice that some smoothing algorithms, such as MLS smoothing, are using

training error for their error estimation. Minimizing training error as a way to

find the best model may still produce a good result visually, but may result

in overfitting. This favours complex models which do not generalise well for

independent data.

Degree of Polynomial fitting Training error Ground truth error
3rd 0.1386 0.0786
4th 0.1444 0.0744
5th 0.1273 0.0490
6th 0.1026 0.0988
7th 0.0883 0.1817

Table 3.1: Training error and ground truth error for the polynomial fitting of
different degree. The data is {sin(x) ± rand[0, 0.2], x = 0 : 0.25 : 6}

3.2 Bias variance decomposition

To extend the discussion regarding training error, we would like to discuss about

bias-variance decomposition.

Following what had been described in [49] and also described in [43], test error

can be decomposed into different parts given by

σ2 + Bias2(f(x)) + Var(f(x)) (3.3)

where σ2 is variance of the new estimate, which is irreducible error. Bias2(f(x))

is defined as mean squared error, which is the squared value of training error given
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Figure 3.2: Error estimation from bias variance decomposition (green curve) and
training error (blue curve).

in Equation 3.1. Var(f(x)) is the variance as generally defined in common liter-

ature as E[f(x)2] − (E[f(x)])2 where E(x) is mean of the samples xi’s.

Model complexity is the ability of the model to adapt to a more complicated

data. In geometric modelling, a complex model is one with more parameters. For

example, in splines, increasing the number of control points will increase model

complexity. In our case, when we use polynomial fitting, the complexity is the

order of the polynomial. Looking at Figure 3.1 as an example, we can see that a

cubic fitting may give a better fit for the data as it able to adapt the sinus shape

in the given range, compared to a quadratic or linear fitting.

Figure 3.2 shows the behaviour of the issue that we dealt with in the previous

section. When we increase the model complexity (in previous case it was polyno-

mial degree), training error, which is referred in this case as bias, will decrease.

This is why it is not reliable to depend on training error to find the quality of an

estimate. While bias reduces, variance increases and affects test error. As showed
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by the green curve, a low test error might be obtained when we are able to find

the middle ground of bias and variance.

In geometric computing, [55] defined an inaccurate model as having a high

value of bias, while truly model-free inference may cause a high variance. A

simple example can be discussed in the case of classic Laplacian mesh smoothing.

After a few iterations, the model will be smoothed out, which can be seen as an

action of reducing the variance of the model. However, it will also shrink and

produce an inaccurate model hence having a higher value of bias.

While bias-variance decomposition would not be a part of our research, this

concept will be of assistance in understanding the property of test error in later

chapters.

3.3 Localisation

One of our main tools in most of the proposed algorithms is to fit a polynomial

surfaces on a selected neighbourhood of point clouds. Although we are given

3-dimensional data, we fit the surface in 2.5-dimensions such that z = f(x, y)

is a height function for given point (x, y). As all of the methods are applied

locally, we assume that the projection of the surface on the tangent plane gives a

good local parameterisation. This is a standard assumption in all local method

in surface reconstruction, simplifying the model from 3D to 2.5D. Without local

parameterisation, numerical instability may occur when we apply polynomial

surface fitting on a neighbourhood of points.

It is vital to select a coordinate system of points so that the points expand

over the domain rather than scatter vertically around the z direction. Hence we
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are going through a process which we called localisation.

Our data sets are given in 3-dimensional coordinates (x, y, z) ∈ R, and all of

our approaches use a local neighbourhood of points instead of dealing with all

the points in a model. To estimates a model, we will be using surface polynomial

fitting, and next we will define the steps before fitting a polynomial surface.

Given a point set of D = {d1, d2, . . . , dN} with N points, we search for K-

nearest neighbourhood for each point, such that for di, we obtain a neighbourhood

of Pi = {pi
1, p

i
2, p

i
3, ..., p

i
K}. When there is no room for ambiguity, we may drop

out the superscript i in Pi. We may also refer this i-th neighbourhood as P. We

will use the neighbourhood Pi = {p1, p2, p3, ..., pK}, to compute the normal at di

and obtain ni = (n1, n2, n3) which will give the tangent plane of the surface at di.

We generally use Principal Component Analysis to estimate our normals. Note

that these normals are not oriented and existing literature such as [67] can be

followed to orientate normals on a model.

To fit a surface polynomial, we orientate Pi from the Cartesian coordinate

system (X,Y,Z)-axes centered at (0, 0, 0) to (X′,Y′,ni)-axes centered at di. We

follow the orientation step as described in [38] .

Note that these two set of axes contains vectors where X = (1, 0, 0), Y =

(0, 1, 0) and Z = (0, 0, 1), while X′ = (u1, u2, u3) and Y′ = (w1, w2, w3) are

arbitrary chosen vectors which satisfy the condition that (X′,Y′,ni)-axes is or-

thornomal. Rotation matrix M which will transform the X′Y′ni to XYZ is given
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by

M =












u1 u2 u3 0

w1 w2 w3 0

n1 n2 n3 0

0 0 0 1












(3.4)

We wish to transform XYZ to X′Y′ni instead. As MX′ = X, so X′ = M−1X

whereas M−1 = MT , where MT denotes the transpose matrix of M . Hence, for

any point pi that we wish to transform to (X′,Y′,ni)-axes centered at di, we can

obtain p′i such that

p′i = MT












pi,x − di,x

pi,y − di,y

pi,z − di,z

1












(3.5)

by neglecting the 1 in the last row.

As a note, after we have gone through polynomial surface fitting, we should

orientate back to the (X,Y,Z)-axes, which is given by

pi = M












p′i,x

p′i,y

p′i,z

1












+












di,x

di,y

di,z

0












(3.6)

and again neglecting the 1 in the last row.
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Chapter 4

Bootstrap Error Estimates

Background for this chapter has been discussed in Section 2.5. We aim to have an

objective assessment method to study based on estimations of test error. Hence,

we define a statistical method called bootstrap in context of surface reconstruc-

tion. We will test the algorithm on various models including scanned data.

Section 4.1 - 4.2.1 have been presented in

• Ahmad Ramli and Ioannis P. Ivrissimtzis. ”Bootstrap test error estimations

of polynomial fittings in surface reconstruction”, In VMV, pages 101-112,

2009

4.1 Bootstrap surface reconstruction

In this section we briefly describe the bootstrap method and the several error

estimators we can compute. The bootstrap method is based on repetitive random

resampling of the data and the averaging of the results obtained from each sample.

The reuse of the data as a result of the repetitive resampling is particularly helpful
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in cases where the available data are sparse, as is the case with local surface

reconstruction.

For further details on the bootstrap method, we refer to a statistical learning

handbook such as Hastie et al. [49].

4.1.1 Creation of bootstrap sets

Let the set of training data P = {p1, p2, . . . , pK} be of size K where pi is a 3D

point. We use principal component analysis to estimate a tangent plane for P,

and we locally parametrize P over it as in Section 3.3. That is, each point pi is

written as (xi, yi), where xi is its projection on the tangent plane and yi is its

distance from the tangent plane.

We randomly sample P with replacement to draw a bootstrap sample Sb with

the same size as P. As we sample with replacement, the expected number of

distinct elements in Sb is lower than K. In fact, we can easily calculate that the

expectation for the number of distinct elements in Sb is

K ∙ (1 −
1

e
) ≈ K ∙ 0.632 (4.1)

The sampling procedure is repeated B times and the bootstrap samples

S1, S2, . . . , SB (4.2)

are generated. The choice of B is a trade-off between accuracy and computa-

tional cost. The more bootstrap sets we process, the higher the reliability of the

estimates.
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Algorithm 1 Algorithm for bootstrap error estimation

Algorithm bootstrap error()

Given point sets of SN = {d1, d2, ..., dN}, the algorithms estimate the bootstrap
error for neighbourhood of di.

Define Errboot and ˆErr
(1)

as zero
Get Pi, the K nearest neighbourhood for di

Estimate PCA normal
Localize Pi to a 2.5D centered at di

for j=1:K

Run bootstrap as follow

for b=1:B

Generate a random subsampling

Fit the polynomial on the bootstrap samples

|f ∗b(xj) − yj| is computed and added to Errboot

if the subsample does not include pj

|Ci| = |Ci| + 1

|f ∗b(xj) − yj| is added to ˆErr
(1)

end if

end for

Delocalize the points and obtain estimated projection from bootstrap

Obtain training error, bootstrap error Errboot from Eq. 4.3 and leave

one out error ˆErr
(1)

from Eq. 4.4

end for
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4.1.2 Bootstrap error estimations

On each bootstrap set Sb we fit a model f ∗b. In our context, that means a

polynomial surface of order M is fitted on the locally parametrized bootstrap set

using a distance minimization algorithm.

For a neighbourhood of points, the bootstrap error estimation Errboot is the

average distance between the predictions of the bootstrap models on the data

and the actual values of the data

Errboot =
1

B

1

K

B∑

b=1

K∑

j=1

|f ∗b(xj) − yj| (4.3)

As one would expect, the bootstrap error, generally, underestimates the test error

because some data points are used both for surface fitting and for error estimation.

To solve this problem, one can compute the leave-one-out bootstrap estimate of

the test error

ˆErr
(1)

=
1

K

K∑

j=1

1

|Cj|

∑

b∈Cj

|f ∗b(xj) − yj| (4.4)

where Ci is the set of indices of bootstrap sets that do not contain the point pi

and |Ci| denotes the size of the set Ci. Implementation of bootstrap error and

leave-one-out error is shown in Algorithm 1.

Unlike the bootstrap error Errboot, the leave-one-out error ˆErr
(1)

, generally,

overestimates the test error. This is due to the training-set-size bias phenomenon,

which is related to the fact that ˆErr
(1)

uses training sets of size smaller than K.

To solve this opposite problem, we follow [34]. One can use the .632 estimator

ˆErr
(.632)

= .368 ∙ ˉerr + .632 ∙ ˆErr
(1)

(4.5)
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which is a weighted average between the underestimating training error

ˉerr =
1

K

K∑

j=1

|f(xj) − yj| (4.6)

where f is the model fitted to the whole data set P, and the overestimating

leave-one-out error ˆErr
(1)

. The .632 estimator reduces the upward bias of the

bootstrap error. The .632 constant is related to the probability of a given data

point to be member of a certain bootstrap sample (See Equation 4.1).

[35] improved the .632 estimations by the .632+ estimator

ˆErr
(.632+)

= (1 − w) ∙ ˉerr + w ∙ ˆErr
(1)

(4.7)

with

w =
.632

1 − .368 ∙ R
(4.8)

with

R =
ˆErr

(1)
− ˉerr

γ − ˉerr
(4.9)

where γ is the no-information error rate given by

γ =
1

K2

K∑

j=1

K∑

k=1

|f(xj) − yk| (4.10)

Intuitively, the .632+ error estimate is also a weighted average of the under-

estimating training error and the overestimating leave-one-out error. Unlike the

.632 error, however, the weights are not fixed, but depend on the amount of over-

fitting on the original data, as this is estimated by the relative overfitting rate R

in Eq. 4.9.
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According to [35], the value of R is zero when there is no overfitting ( ˆErr
(1)

=

ˉerr). In this case, .632+ error is the same as the .632 estimator. When the

no information rate, γ approaches the value of leave-one-out error (see Equation

4.9), R will become 1 and the .632+ error will become the leave-one-out error.

This happen when there is no information whether overfitting occurs or not,

deriving the term of no-information.

4.2 Results

We tested the proposed bootstrap test error estimation method on synthetic and

natural data. For synthetic data, starting from a smooth model, we simulate

raw data by adding to each point a random displacement in the direction of the

previously computed normal. A noise level equal to ξ refers to displacements

of magnitude uniformly and randomly sampled from the interval [0 , ξh], where

h is the average, throughout the model, of the distance between a point and its

nearest neighbour. The original points are used as the ground truth against which

we measure the error of the estimated normals.

Figure 4.1: Sphere with different noise levels. From left to right, the noise level
is 0.25, 0.50, 1.0 and 1.50.
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The validation of test error estimations in the context of surface reconstruction

from noisy point sets is a challenging task, as it is difficult to obtain reliable

independent estimates of the test error to compare against.

In a first experiment, we used a set of 26,010 points lying on a sphere, added

a constant amount of noise to them, and then computed several error estimators

on 50 and 100 nearest point neighborhoods for each point. Fig. 4.1 shows the

sphere model at various levels of noise. As the underlying surface is simple and

regular one expects most of the test error to be the result of the data noise.

However, as the initial model is smooth, the data noise is approximately equal to

the added noise, which is a known quantity. Apart from the data noise, a second

source of test error is the possible overfitting or underfitting. As the initial model

is simple and regular, any underfitting and overfitting would be related to the

size of the local neighborhoods and the order of the polynomial fitting, which are

controllable quantities, rather than the features of the underlying surface, which

in the case of the sphere do not exist.

Table 4.1 (columns 2-6) shows the average error estimations on the sphere

for polynomials of order three and four and neighborhoods of size 50 and 100.

We report the training, leave-one-out, .632 and .632+ errors. We also report a

leave-one-out error estimate for the center only of the neighborhood, using the

equation

ˆErr
(1)

p =
1

|Cp|

∑

b∈Cp

|f ∗b(xp) − yp| (4.11)

where Cp is the set of indices of bootstrap sets that do not contain the central

point (xp, yp).

In all experiments, the unit distance is the average throughout the model of
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the distance between a point and its nearest neighbor. In all experiments, the

number of bootstrap sets was B = 50.

Noise ˉerr ˆErr
(1)

p
ˆErr

(1)
.632 632+ Mean γ Max γ

Cubic 0.0 0.0011 0.0013 0.0016 0.0014 0.0014 0.0014 0.0014
0.5 0.4206 0.5085 0.5735 0.5172 0.5725 0.5710 0.5514

N=50 1.0 0.7270 0.8915 0.9899 0.8931 0.9894 0.9886 0.9599
2.0 1.2126 1.5945 1.6602 1.4955 1.6568 1.6555 1.6073

Noise ˉerr ˆErr
(1)

p
ˆErr

(1)
.632 632+ Mean γ Max γ

Quartic 0.0 0.0010 0.0015 0.0019 0.0016 0.0016 0.0016 0.0016
0.5 0.3897 0.5479 0.7088 0.5914 0.7084 0.7079 0.6575

N=50 1.0 0.6806 0.9312 1.2332 1.0298 1.2332 1.2322 1.1518
2.0 1.1463 1.6010 2.1309 1.7686 2.1306 2.1302 1.9790

Noise ˉerr ˆErr
(1)

p
ˆErr

(1)
.632 632+ Mean γ Max γ

Cubic 0.0 0.0015 0.0015 0.0018 0.0017 0.0017 0.0017 0.0017
0.5 0.4509 0.4942 0.5154 0.4917 0.5065 0.5048 0.5001

N=100 1.0 0.7725 0.8538 0.8834 0.8426 0.8806 0.8786 0.8677
2.0 1.2799 1.4827 1.4676 1.3985 1.4657 1.4642 1.4483

Noise ˉerr ˆErr
(1)

p
ˆErr

(1)
.632 632+ Mean γ Max γ

Quartic 0.0 0.0012 0.0013 0.0015 0.0014 0.0014 0.0014 0.0014
0.5 0.4358 0.5037 0.5440 0.5042 0.5363 0.5325 0.5221

N=100 1.0 0.7501 0.8511 0.9360 0.8676 0.9346 0.9324 0.9136
2.0 1.2479 1.3784 1.5637 1.4475 1.5625 1.5607 1.5336

Table 4.1: Bootstrap error estimations.

The comparison between cubic and quartic neighborhood error estimates shows

that quartics have smaller training error, fitting the data more closely, as ex-

pected. However, in neighborhoods of size 50, for any amount of added noise,

the leave-one-out, .632 and .632+ errors of the quartics are significantly higher

than those of the cubics, showing that the smaller training error was a result of

overfitting. We can see this effect shown in Figure 4.2. While training error for

both cubic and quartic are relatively low, the .632+ errors shows a higher value
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Figure 4.2: Training error and 632+ error on cubic and quartic fitting for different
noise level. The neighbourhood size is 50.

of error. Although the training error is lower for quartic as compared to cubic,

the .632+ error is higher for quartic because of overfitting.

In neighborhoods of size 100, the neighborhood error estimates on cubics and

quartics are comparable. Thus, for neighborhoods of size 100 the use of quartics

can be justified as they do not significantly overfit the data.

The comparison between cubic and quartic point error estimates shows little

evidence of overfitting. That means that even in relatively small neighborhoods of

size 50, near their center there is enough geometric information that even a quartic

polynomial does not overfit. As a result of the better quality of information in

the center of a neighborhood, we also notice that the point error estimates are

lower than the neighborhood error estimates.

The comparison between neighborhoods of size 50 and 100 shows that the

corresponding errors are comparable, except of the quartic leave-one-out, .632
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and .632+ errors which are significantly smaller for the larger neighborhoods of

size 100. The fact that the error of the quartics drops while the amount of data is

increasing is another confirmation of the overfitting of the smaller neighborhoods

of size 50 by the quartics. Obviously, small neighbourhood are easily overfitted.

A final observation is that all estimators tend to underestimate very large

amounts of noise. We believe that this is an artifact of the validation experiment.

In particular, the added noise is reported as a displacement in the normal direction

of the initial smooth data. In contrast, the test error is computed by distance

measurements in the normal direction of the noisy data. For large amounts of

noise, the difference between the two normals becomes significant, affecting the

correspondence between the added noise and its estimates.

4.2.1 No-information error rate

The values of the .632+ error in Table 4.1 are very close to the values of the

leave-one-out error, indicating an average relative overfitting rate R near 1. In

fact, several times the validation experiment returned values of R that exceeded

1. In these cases the value of R was capped to 1 to be inside the interval [0,1] of

its theoretical range.

To explain the experimental behavior of R, we notice that the denominator of

Eq. 4.9 tends to zero when γ approaches ˉerr and the computation of R becomes

unstable. In our case in particular, the local parameterization uses the tangent

plane. The numerical difficulties exist because in our setting, we might encounter

a planar surface resulting to γ = ˉerr. When this happen, R would not serve its

purpose of detecting overfitting, thus the model is non-informative.
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We propose two alternative computations of γ which result in more robust

computations for R. The first method, instead of computing the γ on the training

set, uses the mean of γ over all bootstrap samples. The second method uses the

maximum of γ over all bootstrap samples. Notice that, in the second case, the

γ used in the computations is systematically higher than the expected value of

the γ in Eq. 4.10. In this case, however, we are not interested in the value of

γ itself, but in the value of R and larger values of γ which lead to more robust

computations for R.

The resulting .632+ error estimates are shown in Table 4.1 (columns 7-8). As

expected, the use of the maximum γ gives .632+ estimates further away from

the leave-one-out error; however, in this experiment on the sphere, there is no

sufficient numerical evidence to verify that these are more accurate estimates of

the test error.

As a second experiment, we compare our approach with [49]. Fig. 4.3 shows

colormaps of R computed with the three different values of γ. The colormap

of the values of R computed as in [49] verifies that the overestimation of R is

restricted in the flat areas of the model. The computations of R using the mean

and the maximum γ show an improved behavior of R, with a larger number of

neighborhoods returning values smaller than one.

4.2.2 Validation on natural models

To validate the relevance of the technique when dealing with natural models, we

computed .632+ error estimates on the Bimba model with different amounts of

added noise. The model has 74,764 points. We still assume that the model is
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Figure 4.3: Three different computations of the value of R. The first follows [49].
The second and the third use the mean and the maximum values of γ computed
over all bootstrap samples, respectively.

smooth and the source of noise is only from the added noise. The average error

estimations are summarized in Table 4.2. We notice that the training error is

again smaller than the test error, while the .632+ error, being in between the

training error and the leave-one-out error, is expected to be more accurate. The

no-information error rate was computed as an average over all bootstrap samples.

Noise ˉerr ˆErr
(1)

.632 .632+

0.00 0.08 0.11 0.10 0.10
0.25 0.25 0.35 0.31 0.33
0.50 0.45 0.62 0.56 0.61
0.75 0.66 0.89 0.80 0.88
1.00 0.85 1.15 1.04 1.15
2.00 1.21 1.66 1.50 1.66

Table 4.2: Cubic polynomial fitting on the Bimba model on neighborhoods of size
N = 50.

As expected with a natural model, the test error estimated on the model with-

out any added noise can be significant. Fig. 4.4 shows the original Bimba model

and the .632+ test error estimations on it. We notice that the high test error
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values concentrate on the sharp features of the model, indicating the inability of

polynomials of low degree to capture such features.

Figure 4.4: The Bimba model and the .632+ error estimations colormap.

To validate the accuracy of the method on models with varying amounts of

noise, following [109], we tested the method on the Bimba model with continu-

ously varying noise from 0.0 to 1.0. The results are shown in Fig. 4.5. The col-

ormap of the .632+ error indicates that it can adapt nicely to a varying amount

of noise. This is better observed in the smooth parts of the model where the

added noise is the main source of test error. We also see that the model features

are again captured by the .632+ estimator, this time as a second source of test

error.

To validate the general ability of the bootstrap methods to cope with natural

and CAD objects, we tested them on the Bunny and the Fandisk models. In the

Bunny, we notice that the error concentrates in the ear tips, which are notoriously

difficult to model. In the Fandisk, the error concentrates on the sharp features

as well as on the thin part of the model where two different surface sheets come

close to each other.

57



Figure 4.5: The Bimba model with continuously varying added noise from 0.0
to 1.0 and the colormap of the .632+ test error estimations.

Figure 4.6: .632+ error estimations colormaps.
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4.2.3 Tests on scanned models

We run the bootstrap procedure on two scanned models to see the effect of our

algorithm in real life data. In this experiment, we do not add any noise as in

previous cases, and the source of noise is merely from the scanning procedure.

Thus in this case, there is no independent way to validate the estimation as

in previous case. The models chosen are Fertility model with 241607 points

and Ramses with 826266 points as shown in Figure 4.7. The model (yellow) is

displayed next to its error estimation (grayscale). The darker area signify the

higher error estimated at that particular area. We display the errors in Table 4.3.

Noise K ˉerr ˆErr
(1)

.632 .632+

Fertility 100 0.1281 0.1489 0.1412 0.1420
Ramses 50 0.1764 0.2470 0.2210 0.2343

Table 4.3: Cubic polynomial fitting on the Fertility model on neighborhoods of
size N = 100.

Visually, our bootstrap error is faithful in showing high error on feature and

noisy areas. As we can see from the Fertility model, there is a long visible line

on the right hand-side of the model (first and third figure in top row). In its

error estimation counterpart, the colourmapping display a long dark line which

indicates high value of error (grayscale picture, second and fourth figure in top

row). In this case, the high error value is caused by the feature area. We can also

see that the black lump on its side as shown on the grayscale picture is caused

by noisy area as seen on the model.

The Ramses model has average higher noise in comparison to Fertility model.

However we can see that the error detected nicely around edges as well as the
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Figure 4.7: The model and colourmap of Fertility (top row) and Ramses (bottom
row). The model is shown in the first and the third column. Second and fourth
column show the colourmapping of the .632 error. The error is capped at 1 error
level for visualisation purposes. Fertility Model is provided courtesy of Frank ter
Haar by the AIM@SHAPE Shape Repository. Ramses model is provided courtesy
of the AIM@SHAPE Shape Repository.

60



decorative feature under its neck area.

4.3 Summary

We proposed the use of bootstrap based techniques for test error estimation in

the context of surface reconstruction. Validation experiments on synthetic and

natural smooth models with local polynomial surface fitting indicate that the .632

and .632+ error estimates are the most reliable, as their values lie between the

training error, which underestimates the test error, and the leave-one-out, which

overestimates it.

The experiments also show that some commonly used settings of polynomial

fitting, such as quartic polynomials on neighborhoods of size 50, exhibit a small

but quantifiable amount of overfitting. This shows that overfitting detection not

only has academic interest, but also may provide assistance in making choice of

a type of fitting in a set of neighbourhood.

To the best of our knowledge, this is the first method computing test error

estimates in the context of surface reconstruction from large noisy point sets.

However, assuming that the main source of test error is data noise, our work has

similarities with the Bayesian data noise estimator proposed in [109]. There is a

relation between the two papers due to the fact that the distribution of the values

of the bootstrap models f ∗b(xi) approximates the posterior of the model under

non-informative priors [49]. That is, the creation of the bootstrap models can be

seen as a direct, naive approach to the estimation of the posterior distribution of

the model. As bootstrap is much simpler than the direct Bayesian approach, it

can be easily extended to more complex geometric modelling settings.
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Chapter 5

Normal estimates on point clouds

5.1 Introduction

Several of the state-of-the-art surface reconstruction algorithms require accurate

estimations of normal vectors associated with the points of the set. The process

of estimating such normals is known as normal reconstruction.

In this chapter we propose a method for normal reconstruction based on boot-

strap. In our context of normal reconstruction, the initial data set is the K nearest

neighborhood of a point di of the point set. The model fitted in each bootstrap

sample is an estimated tangent plane computed with Principal Component Anal-

ysis (PCA). From each tangent plane we compute a normal vector; the average

of these normals is our normal estimate at di. The variance of the angles of the

bootstrap normals is also computed and treated as a confidence value for the

normal at di. Later, we will also introduce error estimation method for a normal

estimate.

Our experiments show that the bootstrap normals are comparable with the
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commonly used PCA normals, and thus their main advantage lies in the confi-

dence values associated with them. As an application, we construct a bilateral

Gaussian filter for normal smoothing. In this filter, the influence of di on dj de-

pends not only on the distance between di and dj , but on the normal bootstrap

variance at di as well.

In summary, the main contributions of this chapter are:

• A bootstrap-based method for normal reconstruction which produces nor-

mals with confidence values based on variance.

• A bilateral Gaussian filter for normal smoothing utilising the confidence

values of the bootstrap normals.

• An error estimation method for normal estimates.

In this chapter, we will apply bootstrapping to a normal estimation. Given a

point set, the normal of each point is computed from Principal Component Anal-

ysis. We apply bootstrapping to a normal estimation to estimate the reliability

of a calculation. The background of bootstrap has been discussed in Chapter 4,

and we saw that the bootstrapping procedure generates samples which may be

used to estimate error, variance, probability density and other statistical values.

There are two statistical values which will be presented. Firstly, we will

estimate the variance of normal estimates. We will study the variance of the

angle of the normals generated from the bootstrap samples. The value itself

signifies the reliability of our estimation based on this property: If the average

angle of the samples is small, it signifies that the normal is reliable. Comparing

variance value for normal estimates across point sets can give an indication of

reliability and quality of the estimate.
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Secondly, we will implement a test error estimation method based on the

bootstrap procedure. We will show that an appropriate adjustment is needed, in

contrast to what had been implemented in Chapter 4.

Section 5.2 - 5.3.2 have been presented in

• Ahmad Ramli and Ioannis P. Ivrissimtzis. ”Bootstrap-based normal recon-

struction”, In Curves and Surfaces, pages 575-585, 2010.

5.2 Bootstrap normal reconstruction for PCA

Following the definitions given in Chapter 4, we will define bootstrap variance. If

f(P) is any quantity computed from the data P, we can use the bootstrap samples

in Eq 4.2 to estimate any aspect of the distribution of f(P). In particular we can

estimate its mean by

f̄(P) =
1

B

B∑

b=1

f(Sb) (5.1)

and its variance by

V̂ ar[f(P)] =
1

B − 1

B∑

b=1

(f(Sb) − f̄(D))2 (5.2)

Given a sufficiently large number of bootstrap samples B, the bootstrap statistics

in Eq. 5.1 and Eq. 5.2 are good approximations of the true mean and variance of

f(P), because the distribution of the f(Sb) follows the distribution of f(P) under

non-informative priors (See [49]).
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5.2.1 Algorithm

Applying the bootstrap method to the problem of normal reconstruction, let the

input of the algorithm be an unorganised 3D point set D = {d1, d2, . . . , dN}. For

a given point di ∈ D we find its K-neighbourhood

Pi = {p1, p2, . . . , pK}, pi ∈ D, i = 1, 2, . . . , K (5.3)

Following the bootstrap sampling procedure, we generate a set of bootstrap sam-

ples {S1, S2, . . . , SB} consisting of B subsets of Pi. On each of the Si we apply

PCA and compute a tangent plane. For a consistent orientation of the normals

of these planes, we first apply PCA on the whole dataset P and, by choosing an

arbitrary orientation, we compute a normal nP. Then, we obtain the bootstrap

normals {n1,n2, . . . , nB} by choosing for ni the orientation that minimises the

angle between nP and ni. This will consistently orientate the normals from boot-

strap samples. Note that this does not globally orientate normals for all of the

points in the model.

Our final estimate for the normal at di is the average of the bootstrap normals

computed on Pi

n(di) = (
B∑

b=1

nb)/|
B∑

b=1

nb| (5.4)

This statistic can be seen as the result of Eq. 5.1, where the function f defined

on the subsets of Pi returns the PCA normal of a subset.

The second bootstrap statistic we compute for di is the variance of the angles

between the bootstrap normals and the normal of the first bootstrap sample.
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That is, we compute the variance

νi = V̂ ar{< n1,ni > |i = 1, . . . , B} (5.5)

whereas < n1,ni > is the angle between n1 and ni. This statistic can be seen as

the result of Eq. 5.2, where the function f defined on the subsets of Pi returns

the angle between the PCA normal of a subset and n1.

This second statistic will be used as a confidence value for our normal estimate

n(di). Notice that other bootstrap statistics could also be treated as confidence

values for the normal estimates. In particular, one could treat the PCA tangent

planes as the fitted models, compute distances between points in Pi and these

tangent planes, and use them to compute one of the several bootstrap error

estimates proposed in the literature (See [49]). However, we think that processing

angles between normal vectors, rather than distances between data points and

tangent planes, is a more direct approach and thus more likely to give reliable

confidence values.

5.2.2 Normal reconstruction

We tested the proposed normal reconstruction method on synthetic models.

Starting from smooth triangle meshes, we used their connectivity to compute

reliable normals at the vertices. These normals were used as the ground truth

against which we measured the error of the estimated normals.

To reiterate from chapter 4, a noise level equal to ξ refers to displacements

of magnitude uniformly randomly sampled from the interval [0 , ξh], where h is

the average throughout the model of the distance between a point and its nearest
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neighbour.

Table 5.1 summarises the results of the bootstrap normal reconstruction. The

Sphere and the Bunny models were tested at noise levels of 0.25, 0.5, 1.0 and 1.5,

and with neighbourhood sizes of 15 and 30. The reported numbers are the average

angle differences (in radians) with the ground truth normals. We highlighted the

comparison with blue text for one that has a smaller angle than the other. We can

see that it is not definitive to say that the PCA normal is better than the bootstrap

normal. Hence, we conclude that the bootstrap normal reconstruction and the

PCA normal reconstruction produce comparable results. However, the bootstrap

normal reconstruction also provides confidence values which are not available with

PCA normal. We also note that the bootstrap method is computationally more

intensive, taking 529 seconds to process the 11146 vertices of the Bunny model

on a low-end commodity PC.

Sphere k=15 k=30
Noise PCA Bootst. PCA Bootst.
0.25 0.0546 0.0547 0.0296 0.0297
0.50 0.1141 0.1151 0.0586 0.0591
1.00 0.2818 0.2847 0.1306 0.1311
1.50 0.4881 0.4949 0.2601 0.2599

Bunny k=15 k=30
Noise PCA Bootst. PCA Bootst.
0.25 0.1388 0.1397 0.1732 0.1739
0.50 0.1754 0.1748 0.1880 0.1882
1.00 0.3175 0.3152 0.2471 0.2463
1.50 0.4660 0.4670 0.3278 0.3264

Table 5.1: Average angle difference between the ground truth normals and the
estimated normals in radians. The number of bootstrap samples is always B = 50.
A lower value is highlighted in blue colour text.
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5.2.3 Bootstrap variance

In a second experiment, we examined the claim that normals with higher boot-

strap variance are generally less accurate. Working on the Bunny and Fandisk

models at various noise levels, we split the set of vertices into a high variance

subset, containing the vertices with the highest 15% variances, and a low vari-

ance subset, containing the rest of the vertices. We computed and reported the

average normal error of the two sets separately. The neighbourhood size K is

fixed to 50 and the results are summarised in Table 5.2.

Bunny 0.25 0.50 1.00 1.50
Low Var. 0.1707 0.1768 0.2082 0.2489
High Var. 0.4731 0.4920 0.5168 0.5927

Fandisk 0.25 0.50 1.00 1.50
Low Var. 0.0590 0.0745 0.1146 0.1818
High Var. 0.5813 0.5746 0.5850 0.5911

Table 5.2: The average normal error on the high and low variance subsets of the
Bunny and the Fandisk models.

We notice that, as expected, the high variance set has normal estimates with

significantly higher average error. Moreover, this is the case at all noise levels,

meaning that the method can handle error from both sources, that is, the model

features and the added noise. We note that the method works for fixed neighbour-

hood size, which means that to compare the confidence level of normal estimation

on one point to the other, we have to use a fixed K to compute normals on D.

This is because higher or lower values of K would respectively naturally decrease

or increase the variance, without necessarily changing the accuracy of the normal

estimates.

Fig. 5.1 shows colourmaps of the bootstrap variance for the Bunny and Fan-
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disk models at various levels of noise. We notice that the high variance areas

concentrated on the features of the mesh. We also notice that this pattern de-

grades slowly as the added noise increases.

Figure 5.1: From left to right: Colourmaps of the bootstrap variance at noise lev-
els 0.25, 0.5, 1.0 and 1.5, respectively. The darker colours signify higher variance.

5.3 Bilateral Gaussian filter for normal

smoothing

In previous section we showed that normal estimates with lower bootstrap vari-

ance are generally more reliable than those with higher variance. In this section,

we will use the bootstrap variance as a confidence value and propose a bilateral

Gaussian filter for normal smoothing. In each filtering iteration, normal at a

point di is updated as a distance weighted average of the normals at the neigh-

borhood of di, while the confidence values are used to reduce the influence of the
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less reliable normals.

5.3.1 Bilateral Gaussian filter

One iteration of the proposed filter updates the normal n(di) at a data point

di ∈ D by

n(di) → (1 − α)n(di) +
α

c(di)

∑

p∈Ni

G(νj , σν)G(||di − p||, σd)n(p) (5.6)

In Eq. 5.6, G is the Gaussian function with zero mean and standard deviation b

given by

G(a, b) = e−a2/b2 , (5.7)

||∙|| denotes Euclidean distance, and c(di) is a normalisation factor that makes

the sum of the weights equal to 1, that is

c(di) =
∑

p∈Ni

G(νj , σν)G(||di − p||, σd) (5.8)

The variances σν and σd of the two Gaussians in Eq. 5.6 are user defined

parameters. A smaller value of σν would mean normals with high variance, that

is, less reliable normals, which will have less influence on the smoothing process.

A smaller value of σd would mean that the influence of a point decays more

rapidly with distance. In our experiments, we used a σd equal to h which is the

average throughout the model of the distance between a point and its nearest

neighbour. Finally, α is a user defined parameter controlling the strength of the

filtering operation.
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5.3.2 Evaluation

We tested the algorithm on the Cube and the Fandisk point sets with 0.5 level of

added noise, σν = 10−12 and 1.1× 10−12, respectively, and α = 0.1. As in Section

3, we used the normals obtained from the underlying meshes before the addition

of noise as the ground truth.

The results and a comparison with the single Gaussian filter corresponding to

σν = ∞ are shown in Fig. 5.2. The computed normal errors are shown separately

for the feature areas where νi ≥ 0.04 (left), and the non-feature areas (right).

In all cases, the proposed bilateral filter outperforms the single Gaussian filter.

We also notice that in the non-feature areas the normal error increases from the

very first iteration of the single Gaussian filter. The reason is that the inaccurate

normal estimates in the feature areas corrupt the more reliable estimates in the

smoother areas. This is a serious limitation of the single Gaussian filter, which is

overcome by the proposed bilateral filter.

Fig. 5.3 shows the normals of the Cube model after applying the bilateral filter

and after applying the simple Gaussian filter. We conclude that the superiority

of the bilateral filter, as demonstrated by the graphs in Fig. 5.2 (top), is visually

significant.

Notice that the above validation of the filtering algorithm is mainly concerned

with the accuracy of the bootstrap normals compared to a ground truth; here,

the normals were obtained from a smooth triangle mesh whose vertices were used

in the construction of the test data sets. One of the primary uses of point sets is

the fast, high quality rendering of 3D models. We do a quantitative comparison,

while in the literature, qualitative comparisons based on the quality of rendering

71



Figure 5.2: Comparison between the single Gaussian filter (blue dotted line) and
the proposed bilateral filter (green crossed line). Top: Cube with 0.5 noise level.
Bottom: Fandisk with 0.5 noise level. Left: Feature areas. Right: Non-feature
areas.

are most common (See for example [58]).

5.4 Normal estimation with higher order

5.4.1 Introduction

In previous sections, we estimated normals using Principal Component Analysis,

which is equivalent to a least square fitting of a planar surface. Normal compu-

tation from the gradient value obtained from a non-planar surface had been done
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Figure 5.3: Top: Normals before smoothing is applied. Bottom Left: The
proposed bilateral filter. Bottom Right: Simple Gaussian filter. In all figures,
the angle of view is centered at the circle.
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such as in [88].

In this section we define normal computation from a polynomial fitting and

apply bootstrap methods on a quadratic surface fitting. We intend to see if

the bootstrap method can supersede a single fitting as well as if higher degree

polynomial can outperform PCA normal.

While we define a general formula for any given polynomial degree, we limit

the discussion to linear (PCA normal) and quadratic in order to see the compari-

son more easily. A higher degree polynomial, such as a cubic, needs more points,

and we then have to deal with other issues such as overfitting.

5.4.2 Algorithm

We repeat the bootstrap method on a normal construction, using polynomial sur-

face fitting instead of PCA normal. For a neighbourhood of Pi = {p1, p2, p3, ..., pK}

we will fit a polynomial surface of degree M .

Again we firstly localize (x, y, z) ∈ R3 to parameterise a 3-dimension to

(x′, y′, z′) in 2.5-dimension to allow a fitting of a height function z′ = f(x′, y′)

on a plane (x′, y′) from point sets (x, y, z) ∈ Pi (The function for polynomial

fitting surface is available in Appendix A.

Given that a parametric surface ~r = (x′, y′, f(x′, y′)), a normal at point (x′, y′)

is given by

n =
~rx × ~ry

|~rx × ~ry|
(5.9)

whereas ~rt is a partial derivative ∂f/∂t, × is a cross vector product and | .| is

a norm for the vector.

74



As the points pi’s had been localized to 2.5-dimensional, the normal that we

obtained has to be transformed back to 3-dimensional. Then, the bootstrapping

procedure follows similar steps to those defined in Section 5.2.

Algorithm 2 Algorithm for bootstrap normal reconstruction using higher degree
polynomial

Algorithm bootstrap normal higher()
n = 0;
for i=1:N

Estimate normal in a single fitting.

for j=1:B

Create bootstrap samples

Fit a polynomial surface

Compute normal nj(by (5.9) )

Make orientation of normal consistent with n1

Compute the angle difference between nj and n1

end for

Compute variance of angle difference

Compute mean of normal

end for

5.4.3 Result and Discussion

We had run this method on the previous model that we used, starting with a

sphere. Similar to the previous section, the normal value produced via bootstrap-

ping does not improve the one that we compute without bootstrapping (which

we will call single fitting). This result is shown on Table 5.3. Table 5.4 shows the

comparison between bootstrapping on a PCA normal and quadratic fitting for a
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sphere.

K=15 K=30
Noise Single fit Bootstrap based Single fit Bootstrap based
0.25 0.0449 0.0483 0.0228 0.0232
0.50 0.0901 0.0958 0.0445 0.0450
1.00 0.2138 0.2248 0.0932 0.0936
1.50 0.3713 0.3956 0.1791 0.1825

K=15 K=30
Noise Single fit Bootstrap based Single fit Bootstrap based
0.25 0.1063 0.1022 0.1421 0.1390
0.50 0.1329 0.1340 0.1485 0.1459
1.00 0.2421 0.2525 0.1836 0.1841
1.50 0.3758 0.3947 0.2436 0.2463

K=15 K=30
Noise Single fit Bootstrap based Single fit Bootstrap based
0.25 0.1008 0.1009 0.1118 0.1117
0.50 0.1356 0.1390 0.1262 0.1266
1.00 0.2342 0.2437 0.1628 0.1642
1.50 0.3940 0.4169 0.2373 0.2402

Table 5.3: Angle difference (in radian) of ground truth normal and estimated
normals (single fit on quadratic based or bootstrap aggregation) of sphere (top),
bunny with 11146 points (middle) and fandisk with 24664 points (bottom).

As in the previous subsection, we display the angle difference of the normal

estimates with the ground-truth normal. Thus, a lower value signifies a better

estimation. In every case except 1.50 noise level, a quadratic fitting would produce

a better estimate of normals than PCA-normal. When we increase the size of the

neighbourhood from 15 to 30, we could see that the estimation of normal improves

as well for both cases.

We could simply claim that the normal obtained from quadratic fitting esti-

mates better than PCA normal on a sphere. This is simply because higher order

polynomial such as quadratic fitting imitates the a shape of sphere in a local

76



neighbourhood, thus giving a better normal straightaway.

Having said that, when we consider a neighbourhood of points from a natural

model, the neighbourhood tends to be curvy rather than planar. This is especially

true for models Bunny and Bimba.

K=15 K=30
Noise PCA Bootst. M2 Bootst. PCA Bootst. M2 Bootst.
0.25 0.0542 0.0483 0.0295 0.0232
0.50 0.1146 0.0958 0.0592 0.0450
1.00 0.2487 0.2248 0.1292 0.0936
1.50 0.3947 0.3956 0.2280 0.1825

Table 5.4: Angle difference (in radian) of ground truth normal and the estimated
normals (PCA based or quadratic using bootstrap aggregation) of sphere. We
use a K nearest points for our neighbourhood and number of bootstrap samples
B is 50.

PCA M2
Noise Single fit Bootstrap Single fit Bootstrap
0.25 0.2142 0.2152 0.1839 0.1827
0.50 0.2216 0.2228 0.1871 0.1861
1.00 0.2526 0.2537 0.2038 0.2036
1.50 0.2959 0.2982 0.2313 0.2318

PCA M2
Noise Single fit Bootstrap Single fit Bootstrap
0.25 0.0915 0.0924 0.0978 0.0970
0.50 0.0974 0.0985 0.1009 0.1002
1.00 0.1185 0.1196 0.1124 0.1121
1.50 0.1536 0.1555 0.1341 0.1343

Table 5.5: Angle difference (in radian) of ground truth normal and the estimated
normals (PCA based or bootstrap aggregation) of bunny with 11146 points (top)
and 34835 points(bottom). We use a K=50 nearest points for our neighbourhood
and number of bootstrap samples B is 50.

We furthered our test by comparing PCA and bootstrap method on Bunny

as displayed in Table 5.5. We used two different Bunny models with 11146 and
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38435 points using K = 50 and B = 50. First is the comparison between single

fitting and bootstrap. In all cases, both results are comparable, as bootstrapping

may give a better approximate in one case and worse in the other case. However,

we can clearly see, comparing between PCA normal and quadratic fitting, the

latter give a better estimate than the former.

In this case, bootstrapping does not play a significant role, as one can simply

use a single fitting which is most cost-effective in this case. However, if a quality

of estimation is in question, the bootstrap method may offer one as shown in the

earlier section.

5.5 Bootstrap error estimation on normals

In this section, we will address limitations to using variance as our statistic and

present bootstrap error estimates on normals.

5.5.1 Variance effect on different neighbourhoods

In practice, the chosen value of K nearest neighbourhood to compute normals is

user-defined. One may choose a neighbourhood appropriately depending on total

number of points and the sparseness of the distribution. Usually it should not

be too small, such that noise may affect the computation, or too large, such that

features may become a factor.

It is one of our interests to provide an automatic selection of neighbourhoods

such that it will give us the best estimates of normal and optimum values to be

used in other post-processing step. However, we have to analyse whether variance

information could be relied on in such a matter.
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Note that in comparing the variance value of one point to the other, a lower

variance signifies a better estimates. We should note, however, that the value of

K is fixed, thus the comparison is possible. We will see now whether the variance

value can signify the quality if the size of the neighbourhood is a variable we want

to compare.

Table 5.6 shows us the angle difference between ground truth normals and

estimated PCA normals (which we labelled as ground truth error ) for different

neighbourhoods used in computing normal on Bunny with 0.5 noise level. Al-

though the variance of a neighbourhood of 100 is lower than a neighbourhood

of 50, the ground truth error shows the opposite. As we increase the size of the

neighbourhood, the variance of an area will reduce. Thus, for a different choice

of neighbourhood, one cannot generalise that a low variance value will imply a

low error value. Thus, one should not use a variance value in determining a good

selection of K.

Estimating a good K cannot not be done from variance due to a phenomenon

known as bias and variance decomposition, which had been addressed in Section

3.2. Error can be decomposed to a component of bias and variance as follows,

Error2 = Bias2 +V ariance. While increasing the number for K, the complexity

decreases and therefore the variance will become lower (as showed in Table 5.6).

Up until this section, we have been comparing the quality of the model with

a fixed K thus intentionally ignoring the information of bias as the complex-

ity remains the same. This would be different when comparing different K as

complexity varies.

We show another example in Figure 5.4. Mean variance is plotted for different
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Number of Neighbourhood, K 30 100
Mean Variance 0.0205 0.0141

ground truth error 0.1880 0.2866

Table 5.6: Angle difference (in radian) of real normal and estimated normals
for different neighbourhood in bunny with 0.5 noise level. Mean variance of the
normal estimation is also displayed.

neighbourhood sizes for a cube model in the region highlighted in the figure. The

neighbourhood starts to include the feature area once the neighbourhood is more

than 50 points (which is represented by blue and black coloured regions).

Figure 5.4: Mean variance for different sizes of neighbourhood. The point is
centered at the green dot, the 50 nearest neighbourhood is coloured red, the 70
nearest neighbourhood expands to the blue region and 150 nearest neighbourhood
expands to the black region. The model used is a cube with 6146 points and 0.5
noise level.

As the neighbourhood size increases, variance decreases. The effect can be

seen when we increase the neighbourhood from 20 to 50. The staggered pattern

after that is caused by feature area which is verified by the purple line when we
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tested it on a non-noisy cube.

The result is an example of bias-variance decomposition. Complexity is af-

fected by the chosen number of neighbourhoods, thus making it impossible for us

to rely on the quality of normal estimation based on variance value. Similarly,

if we use a different polynomial degree, it will also alter the complexity of the

estimation on a model. So, when we compute variance as our measure of confi-

dence value on a model, a comparison of quality cannot be made when a variable

presents that alters the complexity of the computation.

5.5.2 Conceptualisation

Here, we propose using error estimation on normal using the bootstrap method.

The bootstrap method has a straightforward definition concerning the estimation

of statistical values, but we have to define and conceptualise it accordingly to our

case.

We had implemented error estimation in the model fitting in Chapter 4. As a

discussion, we revisited our definition of training error. We had defined training

error as the average distance between the input training data and the predictions

of the model. So, if a prediction results in a point that is further away from the

sample, the training error will be higher.

Figure 5.5: Different noise level and normals.
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For normal estimation, this would not necessarily be the case.Although in

practice noise does affect normal estimation, we may still estimate a good normal

even though the noise level is higher, as illustrated in Figure 5.5. Thus, to define

error in the context of normal estimates, we cannot simply used the error defined

in Chapter 4.

We had defined our ground truth error as the angle difference between the

normal computed from the samples and the normal from a smooth model. As

we have seen that this definition has been a valid way to represent a measure

of quality in our normal estimation, we will further define training error for

normal estimates as the average angle difference between the normal estimates of

input training data and normal estimates of the predictions of the model. This

definition will be used when we apply the bootstrap methodology to find a test

error.

5.5.3 Algorithm

As our data is generated by adding some noise from a smooth model, we may

have certain normal values beforehand which may be used for the purpose of

verification. This obviously would not be the case in a real-life problem, where

we are required to estimate the normals ourselves.

In this case, if we could have an error estimate which provides us with some-

thing similar to what we had defined as the ground truth error, it would be a very

beneficial tool to check the quality of estimates. We will see that the bootstrap

method can be a tool to solve this issue.

We will apply bootstrapping for a normal estimation by starting with PCA
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normals before extending our case into higher degree polynomials.

The bootstrap error estimation Errboot is defined in Equation 4.3. In this case,

our Z∗b remains the same as in Chapter 4, which is a K-nearest neighbourhood

of point at di. However, the part of the equation |f ∗b(xi) − yi| has to be defined

accordingly to what we want to achieve. As we have shown in previous section

that training error uses angle difference as parameters, we will use this same value

for this method as well.

While |f ∗b(xi)−yi| is the distance between predictors and their sample points,

we redefine this whole term as the angle difference between two vectors. To

differentiate it in the context of normal estimates, we will note this as θ(w1,w2)

as the angle difference vectors w1 and w2. Thus, for a PCA normal estimate

gb(xi) on bootstrap samples in neighbourhood of point xi, the Errboot is given by

Errboot =
1

B

1

N

B∑

b=1

K∑

i=1

θ(gb(xi),ni). (5.10)

Given a point di with K-neighbourhood Z = {p1, p2, ..., p3}, bootstrapping

procedure works as described in Algorithm 3. Technically if ni, normal at point

xi for the model is made available in the acquisition process, we can use the given

value in our estimation. As the purpose of this mechanism is to estimate error

without any initial information, however, we would estimate ni using PCA nor-

mal on a certain neighbourhood for point xi. Note that this neighbourhood may

be different from K and may include points which are not included in Z. This

statement have a greater impact once we are comparing the error between differ-

ent neighbourhoods, and in this case ni’s should be constant and not recalculated

using different K’s.
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Algorithm 3 Algorithm for bootstrap test error estimate on normals

Algorithm testerror normal()

sum=0;
for b=1:B

Random resampling on Z to obtain Zb

for i=1:K

Compute gb(pi)
Make orientation of normal consistent with n1

Compute θ(gb(p),ni)
sum+= θ(gb(pi),ni)

end for

end for
Compute mean of bootstrap normal, Σgi(pi)/B
Compute error estimates as in (5.10)

PCA normal does not necessarily keep the consistency of normal direction,

but when we are estimating normals from bootstrap samples, we orientate it ac-

cordingly, so that the angle difference is minimum and Equation 5.10 is estimated

correctly.

When we estimate the normal on each points {p1, p2, ..., pK} in a particular

neighbourhood around point di, it is worth mentioning that, when we try to

compute g(xi) at xi = pi, the neighbourhood that we use is still Z and not the

K-nearest neighbourhood for point pi.

The consequence of this is that even for different pi’s, the value of gb(pi) will

always be the same as gb(di), as PCA normal creates a plane for neighbourhood

Z, thus, giving the similar normal value for its neighbourhood as well. Of course,

if this is extended to a different method of normal computation such as normal

from quadratic fitting, gb(di) may be different.
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5.5.4 Result and Discussion

As usual, our result is validated on a simple model, sphere and cube. As this is

a new approach, we feel that it is necessary to do a verification procedure. For

the verification, we would see the error estimation on different value of K-nearest

neighbourhood.

Our expectation of error estimates is as follow: for a sphere with some noise,

a normal estimation would be better if we use more points in the neighbourhood.

Thus, when we increase K, we would expect the error to decrease. For cube, the

error would be different depending on the location of the point itself. Assuming a

point is close to the sharp edges of a model, the PCA normal computed would be

good as long as it does not include the point on the other side of the cube. When

K includes the points in the feature area, we would assume that the normal com-

putation would be relatively worse than before it includes the feature. So, when

we increase the value of K, the error should decrease and increase immediately

when it touches the feature.

We start with a test on a sphere of 4098 points with different noise levels as

shown in Figure 5.6.

We will rely on the value of the estimated bootstrap error and compare it

with the ground-truth error. We can see that a similar pattern of approximation

is given by our error estimation, although the value is higher than the ground

truth error for every different noise level.

Although the error estimation is not exactly the same as the ground truth,

we can see that the values are comparable for different noise levels. Let us say

that we choose our neighbourhood of K to be 50. The error estimation and the
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Figure 5.6: Error estimation from different sizes of neighbourhoods on a selected
region for a sphere with 0.25, 0.5, 1.0 and 1.5 noise level. The result shown is
an average for the selected region (orange and dark red coloured) as in the figure
below, which includes 100 points.

ground truth for the bootstrap method and the single fitting are given in Table

5.7 .

Table 5.7 is an extract of Figure 5.6 in a neighbourhood of 50. Here, we

can see that our estimates gives a good approximation to compare the quality of

normal estimation for different noise level.

Going back to Figure 5.6 and looking at each graph individually, we try to see

if we can choose in which neighbourhood the normal estimate is at its best. For a
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Estimated error Ground truth error
Noise level Bootstrap Single fitting

0.25 0.1264 0.0354 0.0354
0.50 0.1467 0.0564 0.0569
1.00 0.2304 0.1216 0.1213
1.50 0.3769 0.2234 0.2260

Table 5.7: Estimated error and ground truth error (for bootstrap and single
fitting) on a region (as shown in Figure 5.6) for a sphere at neighbourhood of 50.
Values are shown for different noise level.

1.5 noise level (bottom right), we can see that the blue line (error estimates) goes

down as we increase the size of the neighbourhood K. This pattern would imply

that choosing a larger K would be better, and this pattern follows the ground

truth error (both bootstrap and single fitting). The same pattern applies to the

1.0 noise level.

Noise level K increase from 20 to 70
0.25 Error increase from 0.10 to 0.15
0.50 Error decrease from 0.18 to 0.14 and increase again to 0.16
1.00 Error decrease from 0.40 to 0.25
1.50 Error decrease from 0.60 to 0.40

Table 5.8: Characteristic of the error estimation for different noise level. The
value used had been rounded for discussion.

Table 5.8 is built up from Figure 5.6 to summarize the behaviour of the error

estimates. We can see that a lower noise level produces lower error estimates in

its range. Although the graph of 0.25 and 0.5 does not follow this pattern, we

can see that the range of increment is relatively small. While the increment of

0.05 and 0.02 are shown for 0.25 and 0.5 noise level respectively, the decrement

of 0.15 and 0.20 shown for 1.0 and 1.5 noise level which is relatively bigger.

If we choose to use bootstrap error estimates to choose an optimum value of

K, it may be worth noting the difference between the error values. However, we
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would like to note that bootstrap test error on normal estimates can certainly

help us, giving us a better idea of our normal estimates. The test error estimates

improves significantly compared to variance estimates as well as shows a nice

pattern on our normal estimates. In practice, the green and red lines in the graph

showing the ground truth error are not available at all, making this bootstrap

test error stands on its own.

Figure 5.7: Error estimation from different sizes of the neighbourhoods. The
cube (right) shows the considered point (black dot), its 50 nearest neighbourhood
coloured in orange, and the rest of the neighbourhood up to 80 coloured in dark
red.

Figure 5.7 displays the error estimation of angle difference for different sizes of

a neighbourhood on a particular point (the considered point is marked as a black

dot in the figure to the right) on a cube of 6146 points with 0.5 error level. We

increased the size of the neighbourhood ranging from 20 to 80 in steps of 2 and

displayed three different errors. The first one (red line) is the angle difference

between PCA normal and the ground truth normal. To reiterate, we define
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ground truth normal from the initial non-noisy model which is obtained from

the underlying connectivity. The second one (green line) is the angle difference

between bootstrap normal and the ground truth normal. The third one (blue

line) is the bootstrap error estimate, Errboot that estimated from the bootstrap

procedure.

One of the motivations driving us to obtain error estimations is to be able to

compute the optimum neighbourhood size for normal estimation. Unlike previous

sections where we displayed the statistics for the whole model, here we only select

a patch or a section on the model to see a certain behaviour when we increase

the size of the neighbourhood. An optimum neighbourhood size should vary

for different properties of the surface. For instance, in an area where surface

features are not present, we should include more points in the computation, thus

including a larger neighbourhood size. On the other hand, if the neighbourhood

starts to include the feature area, the error may be high, therefore indicating

lower neighbourhood size.

We run the same algorithm on the Bunny in the neighbourhood around its

body as shown on Figure 5.8. We can observe the same pattern that we have

seen in the Sphere model previously, as the area contains no feature.

Figure 5.9 displays the error estimates around the tail of the Bunny which

include feature area when we increase to a certain neighbourhood size. Referring

to the red and green line which display the ground truth normal can give us an

idea of the reliability of the normal estimates in that particular area. For 0.25

and 0.5 noise level, the estimates are better for K ≤ 40, which we assume is when

it reaches the feature area. We can see that the blue line indicates a constant

increment, which indicates that the estimates would be better if we use a smaller
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Figure 5.8: Error estimation from different size of the neighbourhood on a region
of the Bunny of 34835 points with 0.25, 0.5, 1.0 and 1.5 noise level (top left, top
right, bottom left and bottom right respectively). The result shown is an average
for the selected region (orange and dark red coloured), as in the figure in the
bottom, which includes 70 points.

neighbourhood rather than a larger, as opposed to what we had in Figure 5.8.

As for 1.0 and 1.5 noise level, the ground truth error shows that increasing

the size of the neighbourhood will result in better normal estimates, which is

captured nicely by our error estimates (blue line).

We move on to include another variable, which is the different order of fitting.

Here, we wish to see if we can verify that a fitting is better than the other by

relying on error estimates. Figure 5.10 shows the test error estimates on nor-
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Figure 5.9: Error estimation from different size of the neighbourhood on a region
of the Bunny of 34835 points with 0.25, 0.5, 1.0 and 1.5 noise level. The result
shown is an average for the selected region (orange and dark red coloured) which
includes 200 points, as shown in the bottom of the figure .

mal estimates using different orders of polynomial surface fitting. We display

the results for the selected region on a sphere for different levels of noise. Our

error estimates shows a higher error for normal, based on fitting in quartic, cu-

bic, quadratic and PCA normal. One exception is 1.50 noise level, where test

error estimates for normal based on quadratic fitting and PCA normal are both

overlapping one another (dotted blue and red line).

From the ground truth error, we can see that the error estimates give quite
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Figure 5.10: Error estimation for different sizes of neighbourhoods on a region of a
sphere with 0.25, 0.5, 1.0 and 1.5 noise level, using bootstrap on PCA, quadratic,
cubic and quartic fitting. The result shown is an average for the selected region
(orange and dark red coloured) which includes 100 points as shown in the bottom
of the figure.

reliable estimates, but further caution needs to be taken into consideration. While

there is not much issue in comparing quartic and cubic cases, error estimates for

PCA normal does not react exactly as we wanted.

Figure 5.11 details the observation from Figure 5.10. On a smaller scale, the

error estimates do not contradict the ground truth error, except for 1.0 noise level.

We had noticed that there seems to be a small range where we cannot conclude

that one method is better than the other, or as in previous case, a neighbourhood
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Figure 5.11: Error estimation for different sizes of the neighbourhoods on a region
of a sphere with 0.25, 0.5, 1.0 and 1.5 noise level, using bootstrap on PCA and
quadratic fitting. The result shown is an average for the selected region (orange
and dark red coloured)which includes 100 points as shown in the bottom of the
figure.

gives better estimates than the other.

While it has been our motivation to obtain an optimum neighbourhood size

for a particular fitting, we have not managed to point an exact value and choose

to define a range from visual inspection. This limitation of evaluating the range

of reliability of error estimates should be noted in further research. However,

we have shown that bootstrap error estimates on normal has provided an insight

which has not been available to us before. As in real life, ground truth error is
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not something that can be obtained; bootstrap error estimates can help us to

understand the property of point sets without relying on visual inspection.

5.6 Summary

In this chapter, we explore variance and error estimates in the context of normal

estimation on noisy point clouds. Using variance, we can obtain a confidence

value for our estimates and later use it to smooth noisy normals.

To check the quality of our estimates for different neighbourhood sizes, we can

not rely on the variance. We had shown this issue as it relates to bias-variance

decomposition. Bootstrap error estimates had been proposed and defined ac-

cordingly to normal estimates, which differ from our approach in Chapter 4. The

result shown that bootstrap error estimates can offer a qualitative insight for

normal estimates.

Next, we point out our observation on how orientation may affect normal

estimates from bootstrapping, which can be a direction for future research.

5.6.1 Discussion of orientation issues

The bootstrap normals are computed by Eq. 5.4 as averages of B normals. As

PCA gives unoriented vectors, the orientations of these B normals were computed

separately. Table 5.9 shows the error of the bootstrap normal estimation when

different normal orientation methods are used.

The columns under Bootst.(1) show the results when an orientation consistent

with the ground truth normal is selected. In this case, the bootstrap normal

estimation outperforms PCA. Of course, as the ground truth normal is not known,
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Sphere k=15 k=30
Noise PCA Bootst.(1) Bootst.(2) PCA Bootst.(1) Bootst.(2)
0.25 0.0546 0.0545 0.1644 0.0296 0.0296 0.1403
0.50 0.1141 0.1137 0.2348 0.0586 0.0591 0.1664
1.00 0.2818 0.2456 0.4633 0.1306 0.1290 0.2665
1.50 0.4881 0.3752 0.6582 0.2601 0.2242 0.4178

Bunny k=15 k=30
Noise PCA Bootst.(1) Bootst.(2) PCA Bootst.(1) Bootst.(2)
0.25 0.1388 0.1370 0.2100 0.1732 0.1696 0.2331
0.50 0.1754 0.1664 0.2600 0.1880 0.1817 0.2547
1.00 0.3175 0.2776 0.4172 0.2471 0.2330 0.3206
1.50 0.4660 0.3826 0.5781 0.3278 0.2970 0.4066

Table 5.9: Average angle difference between the ground truth normals and the
estimated normals in radians. In Bootst.(1), the normals generated from the
bootstrap samples were oriented consistently with the ground truth normal. In
Bootst.(2) the orientation was random. The number of bootstrap samples was
always B = 50.

the method cannot be used for normal estimation; however, the result shows

that bootstrap normal estimation combined with an accurate vector orientation

algorithm could potentially outperform PCA. The columns under Bootst.(2) show

the results when a random orientation is chosen for each normal. In this case, the

results are clearly worse than PCA, showing again that a good normal orientation

algorithm is essential for accurate bootstrap normal estimations.

Finally, we notice that the consistent orientation of a set of normal estimates

which correspond to the same data point set is a problem that has attracted con-

siderably less research interest than the problem of consistent normal orientation

over a point set (see for example [51]).
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Chapter 6

Bilateral Smoothing

In Chapter 4, we discussed the implementation of bootstrap error estimates on

point sets. In this chapter, we will use the obtained information to perform

smoothing on noisy models.

Section 6.2 has been presented in

• Ahmad Ramli and Ioannis P. Ivrissimtzis. ”Bootstrap test error estimations

of polynomial fittings in surface reconstruction”, In VMV, pages 101-112,

2009

6.1 Overview of bootstrap estimates

Bootstrap error estimation is a statistical method of averaging to predict the error

value of a fitting. Given a point cloud of Z = {z1, z2, z3, ..., zN}, bootstrap samples

are generated from a random resampling of Z. We fit the bootstrap samples to a

function and repeat the process B times. Bootstrap error underestimates the real

error, as it uses the training samples for the estimation of error. To improve the
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error computation, we use leave-one-out error estimation instead, which mimics

the process of cross-validation. An averaging of training error and leave one

out error will produce .632 error. We use polynomial surfaces for our fitting, as

explained in Chapter 4. A further estimation uses the no-information error rate

to detect overfitting and produce one that we call .632+ error. As the estimation

of the relative overfitting rate is unstable, we wish to use .632 error instead.

Given a noisy model of a point cloud, error is estimated on each point using

bootstrap error estimation. To reiterate, in our experiment, noise is randomly

generated in normal directions from an existing model. The function that we use

in bootstrapping is a polynomial fitting degree 3 or 4. Generally, we can use any

relevant functions for the purpose of bootstrapping.

Figure 6.1 shows example of the bootstrap error estimation on the Bunny with

1.0 noise level and on Bimba with 0.5 noise level. For the Bunny, the area with

less features is estimated around 1.0, with a bit of cyan and yellow representing

around 0.9 and 1.1 respectively. As for the Bimba, the non-feature area remains

around 0.5 while the feature area has a higher value. Note that both error values

in the figures are capped for visualisation.

There are three parts in this chapter. Firstly, we will address a straight

forward smoothing where values are obtained from the bootstrapping procedure.

To overcome the limitation of it, we will later introduce a smoothing algorithm

which takes some other factors into account. In particular, this is a smoothing

algorithm which relied on factors from distance and error value from neighbouring

points. Finally, we will take into account the density of the model to avoid

oversmoothing.
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Figure 6.1: Bootstrap error estimation on the Bunny with 1.0 noise level (left)
and Bimba with 0.5 noise level (right). This is the colour mapping of the error.
The polynomial fitting of 50 neighbouring points was used for the bootstrapping.
For visualisation, the values of error are capped in between [0.6,1.4] for Bunny
and [0.4,0.9] for Bimba.

6.2 Naive smoothing

In a simple application of the bootstrap method for test error estimation, we use

the fitted bootstrap surfaces to denoise the point set. In particular, we project

each point to the average of the values at that point of all the bootstrap models,

that is

(xi, yi) → (xi,
1

B

B∑

b=1

f ∗b(xi)) (6.1)

Fig. 6.2 (top) shows the Bimba model with 0.25 added noise, before and after

denoising.

As is the case with all point set denoising algorithms based on projections

to locally fitted surfaces, a low quality surface fitting (caused for example by a

poorly estimated tangent plane) may actually increase the noise. An example of

this noise increase can be seen in Fig. 6.2, near the ear of the Bimba model.
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In the case of bootstrap surfaces, we can use the test error estimates to detect

poor quality fittings and avoid using them for denoising. Assuming that the main

source of test error is surface features rather than noise, the proposed algorithm

can remove the noise while avoiding surface degradation near the features. Fig. 6.2

(bottom) shows the results of the denoising algorithm: the projection of Eq. 6.1

is applied only if the .632+ error is below a threshold.

From Table 4.2 we see that the average .632+ error for this model is 0.48.

We show the results for thresholds of 0.6 (bottom left) and 0.5 (bottom right),

and we notice that the problems caused by poor quality local fittings have been

largely resolved.

Fig. 6.3 shows the results of denoising the Cube model. We notice a smooth

surface is generated on each side of the cube.

The value of error in a fitting is increased if the area is high in noise or if the

fitting is bad. Consider Bunny in Figure 6.1: the feature area which is around the

tip of its ears causes higher value of error. In this case, this is the result of a bad

fitting, due to the fact that polynomial fitting that we have used in that particular

area does not estimate well. For the non-feature area, the error remains around

1.0, which is caused by the noise. The cause of error is not distinguishable. It will

either be from the noise, due to the feature, or both. While this is a limitation,

it should not be a major issue in smoothing. Our aim is to do a projection based

on the information provided from error estimation. While a high value of error

could not define the cause, a low value of error implies that both the fitting of the

chosen function is good and the noise is small. Hence a straightforward projection

is possible and should produce a fine result.

An example is shown in Figure 6.3. From a noisy cube (top left), we estimate
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Figure 6.2: Top: The Bimba model with 0.25 added noise, before and after naive
bootstrap denoising. Bottom: The Bimba model denoised by projections to good
quality local fittings only. The error thresholds are 0.6 and 0.5, respectively.
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Figure 6.3: Top: The Cube model with 0.25 added noise, before (left) and after
naive bootstrap denoising (right). Bottom: The colormap of the .632+ errors
(left), and the model denoised by projection to good quality local fittings only
(right).
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the error (bottom left). When we project the value straight away, we will get

the result as shown in top right of the figure. Around the edges of the cube,

we observe that the high value of estimated error is actually caused by the bad

fitting due to the feature area and, in this case, not from the higher level of noise

in that particular area.

We proposed a naive smoothing of a noisy model. For the area with low esti-

mated error, we project each point to the fitting we obtained from the bootstrap

procedure. This seems to work for the model we used, as the error is relatively

low (in this case it is 0.25 noise level). Our confidence level of the projection is

the same as the estimated error, and thus we omit the projection of the area with

a higher value of error.

However, the limitation of this method is evident when the noise level is

generally high, such as in Bunny in Figure 6.1. In this case, the naive projection

would not work, as our confidence level is the same as the estimated error. Thus

the model will remain noisy.

We should also note that in practice, it is quite common to have models with a

small amount of noise, as we seen in scanned data in Section 4.2.2 where Fertility

and Ramses model have errors less than 0.25. It is also more challenging to

denoise point sets rather than meshes. As an additional note, we only use the

connectivity for visualisation, not in the computation.

6.3 Bilateral Filtering

The fact that each point is handled separately results in a projection that still

retains the noise. As the error is estimated in a neighbourhood of points, we wish
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to project all points in that neighbourhood with the polynomial fitting we used

in the bootstrapping step. This method is adaptive, as we rely on the value of

the error.

We wish to combine with the idea applied in MLS smoothing, which is to give

weight based on the distance of neighbouring points to the central point of the

neighbourhood. The estimated error of a point corresponds to the central point,

so we would project less if the points are relatively far from the central point.

The essence of the the naive smoothing, as in the previous subsection, is to

do the projection if the noise is low. So this is a factor to contribute in doing the

smoothing.

Given the point cloud of Z = {z1, z2, z3, ..., zN}, we run the bootstrapping

of the polynomial fitting to obtain the estimated projection zB
i and its error Wi

(from Eq 4.5).

For a neighbourhood of K nearest points {zi,1, zi,2, zi,3, ..., zi,K} around the

considered point zi,0, then we would project each point as following

zi,j → (1 − wi,j)zi,j + wi,jz
B
i,j (6.2)

given that wi,j = θ1(‖ zi,j −zi,0 ‖)θ2(Wi). The subscript of i, j for any variable

Θi,j represents that the value of the variable Θ = {w, z} at the j-th nearest

point from zi. Function θk(x) = G(x, hk) is a weight function, which is Gaussian

function that has been defined in Equation 5.7. In this case hk is user-defined

value according to its θk.
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6.3.1 Results

We tested the proposed normal reconstruction method on synthetic models. After

stripping off the connectivity, we added some noise as in previous chapters. We

have run the Algorithm 4 on Bimba with 0.5 noise level.

Algorithm 4 Algorithm for bilateral smoothing

Algorithm bilateral(K,B,degree)

The algorithms run through every point estimating the bootstrap error. Then,
it will project the points using the error values and distance as weights.
1. For every point zi,0, i=1:N

1.1 Let wi=0 for all i’s. Find the K-nearest points zi,j ’s for the
considered point, j=1:K.

1.2 Compute the error

1.2.1 Find the normal for the vertices, normali. In
practice we compute the PCA-normal.

1.2.2 Localise the K-nearest neighbourhood of the
point to transform it to a planar space.

1.2.3 Run the bootstrapping algorithm, bootstrap and
obtain Wi.

2. Get the average of Wi’s to estimate the error of the model.
3. For every point zi,0, i=1:N

3.1 Fit the surface polynomial on the neighbourhood and obtain the
fitted values z∗i,j .

3.2 For the point in the neighbourhood zi,j , j=1:K

Project the point and its neighbourhood to z∗i,j with
weight wi,j such that zi,j=(1-wi,j)zi,j+wi,jz

∗
i,j

Figure 6.4 shows the 0.5 noise level Bimba and its bootstrap projection (on

top row). Although the bootstrap projection on its own has improved the noisy

model to make it smoother, we will show how a bilateral filtering would provide a
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Figure 6.4: Bilateral smoothing on the Bimba with 0.5 noise level. Figure shows
the noisy model (top left) and its bootstrap projection (top right). The bottom
rows display the bilateral smoothing with different h2 values. |W| is the expected
value of wi .
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better result, especially around the feature area. In the bottom row of the figure,

the bilateral smoothing with different h2 values are shown. We could see that the

use of different h2 provides different degrees of smoothness. Given any value of

h2, the area which has the error value significantly higher than the h2 would be

smoothed less. As shown in the bottom row of Figure 6.4, the model is still noisy

when h2 is valued at half of the model error. Increasing h2 to 0.75 of the model

error, or to the full value of model error would give us a better smoothing.

Figure 6.5: Comparison between bootstrap projection (left column) and bilateral
filter (with h1 = d, h2 = 0.75|W |) (right column).

Figure 6.5 shows the comparison between the naive projection from the boot-

strap averaging of the polynomial fitting and the bilateral filtering, as to show the

improvement made by the proposed bilateral filtering. Bootstrap estimation fit a
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neighbourhood individually and the quality of the fitting is given by its error esti-

mates. We could see that the feature area of the Bimba such as the ear, hair and

bottom edges is badly estimated in Figure 6.5(left). On the other hand, Figure

6.5(right) shows that the area has been smoothed after a bilateral smoothing.

6.3.2 Weights influence on smoothing

We show the effect of using different values of h1 and h2 in Figure 6.6. We also

display the reflection lines of the model in Figure 6.7 to assist us in looking at

the smoothness of the model.

If the variance for distance weight is increased, neighbouring points will have

more influence on a considered point. So, when the value of h1 is increased, the

model generally becomes smoother. We can see this effect in both figures as h1

is increased after each column. While a single filter would smooth out the whole

model, a bilateral filtering would avoid smoothing the feature area thus preserving

the feature. We should note that by increasing h2 to infinity, we would be left

with a single filter using the distance parameter only. As we can see from Figure

6.6, for h1 = 1.5d the ear of the Bimba started to deform when the h2 value

increased, which means that we start to lose the weight of the error parameter.

We run the bilateral filtering on the Bunny with 0.5 noise level. The result

for different h1 and h2 is shown in Figure 6.8 and its reflection lines in Figure 6.9.

6.4 Multi-pass smoothing

There are a few things that we should note from the implementation of Algorithm

4. The smoothing procedure is only done once, but each point is updated before
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Figure 6.6: The effect of bilateral smoothing for different values of h1 and h2.
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Figure 6.7: Reflection lines for the Bimba with respect to Figure 6.6.
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Figure 6.8: The effect of bilateral smoothing for different values of h1 and h2 on
the Bunny.
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Figure 6.9: Reflection lines for the Bunny with respect to Figure 6.8.
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we move on to the next one. So, if i-th and j-th point are neighbouring points in a

small vicinity, after the i-th point has been projected through bilateral filter, the

computation on the j-th point will include the projected i-th point value instead

of the original noisy one. This accelerates the smoothing process and can be run

in one pass. However, we suggest the next improvement to be made with regards

to other issues that may arise.

Firstly, the size of neighbourhood, K, is user-defined. In practice, for a model

with 10,000 to 50,000 points, choosing K = 100 seems to be an appropriate

value. As the smoothing is an extension of the bootstrap error estimates, we

use the same value of K in the smoothing procedure. It is fine in practice to

keep a constant K for bootstrap error estimates, as it will detect the overfitting

and provide us with information such as higher error around the feature area or

wherever it overfits.

In Algorithm 4, using a bilateral filter, we simply project a point onto the

polynomial surface constructed with K points, whereas K is defined earlier on.

While we can see that Bunny could be smoothed nicely, Bimba does not retain

much of its features because of oversmoothing.

Note that one of the main differences between our bilateral filtering method

and some other smoothing method is that a point is not projected with respect

to the neighbouring points. Instead, depending on the fitting we defined earlier,

a point and its neighbourhood will be projected towards the fitting.

As we rely on the distance weight in our bilateral filter, the second issue that

we should consider is the density of the model.

We propose an improvement of the bilateral filter by applying multiple itera-

tions in our smoothing procedure as well as adapting to the density of the model,
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Algorithm 5 Algorithm for multipass bilateral filtering

Algorithm bilateral multi(K,B,degree,iteration,varp,varh)

The algorithms is similar to Algorithm 4 but with multiple iteration in
smoothing step.
for i=1:N

Let wi=0 for all i’s. Find the K-nearest points zi,j ’s for the
considered point, j=1:K.

Compute the bootstrap error (Algorithm 1, bootstrap error) and
obtain wi

end for
for i=1:N

Speculative neighbourhood selection by linear mapping and obtain
number of neighbourhood K̂i as in Equation 6.3

Compute local average distance between points, dL

Fit the surface polynomial on the neighbourhood K̂i and obtain the
fitted values z∗i,j .

end for
for k=1:number of iteration

for j=1:K̂i

Project the point and its neighbourhood to z∗i,j with
weight wi,j such that zi,j=(1-wi,j)zi,j+wi,jz

∗
i,j as in

Equation 6.2 but with h1 = a ∗ dL as defined in
Equation 6.5

end for

end for
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as in Algorithm 5.

In this procedure, we use heuristic neighbourhood selection as shown in Figure

6.10 based on the error given. We select different sizes of neighbourhood as a

piecewise linear function with two components, defined as

K̂i = max{10, y} (6.3)

where K̂i is the size of the neighbourhood for i-th point. If the error is high,

we will penalise the size of neighbourhood to 10. This is because, if a fitting is

bad, we wish to use a lower value of the neighbourhood, as we assume that the

cause of high error is from the feature area. Reducing this number would exclude

points where feature area present. But if the error is considerably low, in this

case ranging from 0 to mean(wi), we select a y value from a linear equation

y =
10 − K

mean(w)
wi + K (6.4)

given that when error is zero, x1 = 0, the size of the neighbourhood should be

at its maximum, which in this case y1 = K. When error x2 = mean(wi), we let

y2 = 10, so that the size of the neighbourhood will decrease when error increases.

In Chapter 4, we can see that for non-feature areas, the error usually corre-

sponds to the noise level. The choice of mean(wi) is based on that observation

and can also be user-defined.

We would then compute the average distance between points in the local

neighbourhood K̂i, denoted dL. Using multiple iterations, we follow Equation 6.2

where weight is defined by

h1 = a ∗ dL (6.5)
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Figure 6.10: Heuristic neighbourhood selection by linear mapping.

where a is a user-defined value.

6.4.1 Implementation and Result

Figures 6.11 and 6.12 show the result of the Bimba model with 0.5 noise level after

being smoothed with the bilateral filters. In this example, we choose h1 = 0.1dL

and h2 = 0.3|W | and run 300 iterations.

Compared to the previous approach, a multipass smoothing (Algorithm 5)

produces a better result due to a couple of reasons. Firstly, a localised dL enables

us to adapt to the sparseness of the model. As the model is not distributed

uniformly, the distance from one point to another is not a constant. Thus, for a

certain neighbourhood, we may get a different dL. As our variance h1 relies on

this factor, making it adaptable to the sparseness gives a different impact to the

smoothing procedure.

Secondly, multiple iterations smooth the area slowly rather than quickly. This

procedure disallow the area to be drastically oversmoothed by a high value of h1
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or h2 .

Figures 6.11 and 6.12 show a significant improvement compared to Algorithm

4. Visually, the area around the hair is smoothed nicely and not oversmoothed

as in Algorithm 4.

Figure 6.11: The effect of multipass bilateral smoothing with h1 = 0.1dL and
h2 = 0.3|W |, after 300 iterations, b=10.

We compare this result with the other methods. Figure 6.13 compares the

result of our method with Poisson Surface Reconstruction and AMLS. We can see

that while the feature area is better preserved with our method compared to Pois-

son, AMLS supersedes our result in smoothness as well as feature preservation,

for instance around the ear.
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Figure 6.12: The effect of multipass bilateral smoothing with h1 = 0.1dL and
h2 = 0.3|W |, after 300 iteration, b=10, before (left) and after (right).

Figure 6.13: Comparison with other methods, from left: Poisson Surface Recon-
struction, our method and AMLS.
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6.4.2 Summary

Our multipass bilateral smoothing has similarities with MLS, which projects

points to a fitting with certain weights. In our case, we used error values as

one of the weights. While the method can smooth the model, one of the issues

worth analyzing is to find automatically the value for the variances h1 and h2.

Another limitation is that this method may not be able to preserve sharp edges

such as from Cube or Fandisk. This is a common limitation of point smoothing

based on averaging of neighbouring points.

All of these can be directions for future research.
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Chapter 7

Feature Detection on Point

Clouds

Recovering feature areas is one of the challenging aspects in surface reconstruc-

tion. Having a knowledge of the feature on a particular model may help, either

in visualising a model or in applying different geometric processing methods on

different parts of the model if we wish to do so.

Given a model where noise is present, it may not be necessary to explicitly sep-

arate the feature and non-feature areas to apply a procedure such as smoothing.

For instance, in sharp edge preservation on meshes, Hildebrandt and Polthier[50]

use information derived from mean curvature to denoise a model and recover its

sharp features.

As discussed in Section 2.6, there are various ways to differentiate feature

areas such as by computing curvature values, normal comparison or error values

comparison on the model.

In this chapter, we will discuss some new approaches that we used to detect
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feature areas. Firstly, we will use properties of the Principal Component Analysis

and later, using information that we have collected from bootstrapping procedures

in previous chapters, we will make use of it to detect feature areas.

Section 7.1 has been presented in

• Ahmad Ramli and Ioannis P. Ivrissimtzis. ”Distance based feature detection

on 3d point sets”, In TPCG, pages 53-56, 2009.

7.1 Feature detection from PCA

7.1.1 Algorithm

In this section we propose an implicit feature detection algorithm on point sets.

At the first stage of the algorithm, the goal is to compute a function giving

the distance between a point and its nearest feature. For each point p, we run

Principal Component Analysis (PCA) on its K-neighborhood, for an increasing

sequence of K’s. We process the eigenvalues obtained from the PCA, trying

to detect when the K-neighborhood has reached a feature. Then, we use the

radius of the K-neighborhood as a measure of the distance between p and its

nearest feature (See Fig. 7.1). At the second stage of the algorithm we smooth

the distance function using bilateral filtering. Finally, the feature points of the

point set are detected as the points at a near zero distance form their nearest

feature.

The proposed feature detection algorithm is based on the PCA of neighbor-

hoods of varying size. For every vertex p, we calculate the eigenvalues of the

covariance matrix defined in Equation 2.1. As a repeat, a ≤ b ≤ c are the three
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Figure 7.1: An expanding k-neighborhood of a point reaches a feature of the
model. The graph shows the ratio of the smallest and largest eigenvalues of the
PCA analysis.

eigenvalues of the matrix.

The ratio a/c is used as a measure of the how flat the neighbourhood is. A

small value of a/c means that a is small with respect to c, indicating a flat area.

[87] has a similar approach, considering the ratio a/(a + b + c)) instead.

We keep increasing the i-neighbourhood, creating a function fa/c(i) of values of

a/c, until fa/c(i) exceeds a user-defined threshold Ta/c. Experimentally we found

that a value Ta/c = 0.1 gives satisfactory results. Even though the thresholding of

fa/c(i) is by itself a crude instrument for feature detection, we found it sufficient

for the purpose of computing the distance function. If Ta/c is not exceeded after

a certain number of iterations the process will terminate.

Notice that we can take into consideration the derivative of fa/c(i) as well as

its value. For example, we may use the function fa/c(i)+ d ∙ f ′
a/c(i) whereas d ≥ 1

is a user-define value. As shown in Figure 7.2, by thresholding this function, we

may compute a more accurate distance function on smooth models, as it shows
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Figure 7.2: Comparison betweenfa/c(i) and fa/c(i) + df ′
a/c(i).

a better indication of the jump when it reaches a feature.

However, as Fig. 7.3 indicates, that approach would be less robust in the

presence of noise due to the fact that fa/c(i) is far higher than thresholding value.

When the neighborhood has been computed, we assign the radius of that

neighborhood as the distance hp between the point p and its nearest feature.

This is the main difference between our method and previous approaches with

varying neighbourhoods, where such information is discarded.

The next step is the bilateral filtering of the distance function h. The new

value of h′
j of the distance value of at the vertex j is given by

h′
j = (1 − α)hj + α

∑n
i=1 ga(‖pj − qi‖).gb(‖hj − hi‖).hi∑n

i=1 ga(‖pj − qi‖).gb(‖hj − hi‖)
(7.1)

where α is a user-define value and ga, gb are Gaussian functions. The standard

deviation of ga is the average over the whole point set of the distance between

a point and its nearest neighbour, while the standard deviation of gb was set to

0.01.
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Figure 7.3: The computation of the function fa/c(i) on corresponding points of a
smooth and a noisy model. The graph of fa/c(i) shows the problems associated
with the direct application of PCA for feature detection.
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Figure 7.4: Top: Colourmaps of the distance function. Middle: Feature
detection with the threshold value Th set at 10% and 20% of the maximum value
of h. Bottom: Feature detection with Th set at 20% and 30% of the maximum
value of h.
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To increase the effectiveness of the method, before applying bilateral filtering

we find the points with zero distance values, which are the detected features

and some noisy points, and replace their values with −max(radius), that is, the

negative value of the maximum radius. This way, the features of the model are

accentuated and better preserved by the filtering process. Note that otherwise

the edge-preserving property of the bilateral filtering would not have been fully

utilised, as the distance function is smooth.

After the smoothing process, the features of the point set are extracted by

thresholding the distance function. The value of the threshold Th is critical for

the shape of the features. Having Th as a user-defined parameter is typical in

feature detection applications.

7.1.2 Validation

We tested the proposed algorithm on the Fandisk and Bunny models, as well as

on the Fandisk model with added noise.

Fig. 7.4 shows the results on the two smooth models. Notice a small region on

the flat area of the Fandisk where there seems to be an error in the computation

of the distance function. The reason is that the model is thin there, and the two

surface sheets that are close to each other are identified as features. However,

the problem is solved with a suitable thresholding of the distance function. The

results on the Bunny are comparable with [87].

Fig. 7.5 shows the results on the noisy Fandisk model. Note the considerable

improvement after the bilateral filtering. We believe that this is indicative of

the robustness of the proposed method and its potential compared to naive PCA
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Figure 7.5: Top: Colourmap of the distance function before and after bilateral
filtering. Bottom: Feature detection with Th = 0, before and after bilateral
filtering.

126



analysis.

The feature detection method closer to our approach is the one proposed

in [88]. There, similarly to our approach, neighbourhoods of different size are

analysed with PCA, however, there the extracted information corresponds to a

probability map, while our algorithm creates a distance map. The difference is

not just in the interpretation of the PCA results; our map encodes information

about the size of the neighborhood, which is ignored in [88]. We believe that

the analysis of the PCA results towards the creation of a distance map is a more

robust approach because a distance map is expected to be smooth, allowing thus

post-processing operations.

7.2 Variance-based feature detection

In this section we extend the discussion from Chapter 5 on the subject of feature

detection. From Equation 5.2, we obtain the variance value for the normal esti-

mation on a model. We will use this information to detect the feature area on a

model.

7.2.1 Variance and feature area

In estimating normals using bootstrap methods, variance on a particular point

gives an indication whether the estimate is relatively accurate or inaccurate in

comparison to normal estimates on other points. As discussed in Chapter 5, a

high variance is caused either by noise or the presence of a feature. Assuming

that the noise level is uniform, a high value of variance will signify the feature

area as shown in Figure 7.6. Using this understanding, a colour mapping of the
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Figure 7.6: Visual representation of normal direction from bootstrap samples on
a neighbourhood.

variance could show us the feature and non-feature areas.

Revisiting Figure 5.1, which shows a model with less noise, a straightforward

colour mapping may indicate a feature area defined as

F = {i|νi > th} (7.2)

whereas F is a set containing the indices with respect to i-th point of the model,

νi is the variance of the model and th is a threshold value to separate the region.

Figure 7.7: An example of color map.

In practice, thresholding is also important for visualisation. We show an

example of a color map in Figure 7.7. If most of the variance values lie between a

and b and few fall between f and g, a colour mapping would signify the difference

of a model between a and b. For this example, thresholding the value at b would

be recommended for visualisation. In Figure 5.1, as we define the same th value

for different noise level, we experience similar effect as in previous examples and

the visualisation starts to include non-feature area on a model with higher noise
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level.

We tested different th values on 0.5 and 1.0 noise level Bunny, and the results

are displayed in Figure 7.8 and 7.9 respectively. In these figures, the values which

are larger than the threshold value are equalized to th and represented in a black

colour region. We could see that although the model is noisy, choosing a larger

value of th may differentiate feature and non-feature areas.

Figure 7.8: Variance mapping of Bunny 0.5 noise level with different value of
thresholding. Thresholding value for top-left, top-right and bottom-left is 0.005,
0.010 and 0.015 respectively. Histogram of variance ν is displayed as well and is
capped at νi ≤ 0.04 for visualisation.

It would be quite tedious to generate models and test them visually for each
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Figure 7.9: Variance mapping of Bunny 1.0 noise level with different value of
thresholding. Thresholding value for top-left, top-right and bottom-left is 0.01,
0.02 and 0.03 respectively. Histogram of variance ν is displayed as well and is
capped at νi ≤ 0.09 for visualisation.

value of th. So we explore the distribution of the variance to find a relation with

the thresholding value th. In both figures, histograms for variance are displayed

(bottom-right of both figures). We wish to use this information to select the

thresholding value.

In Figure 7.8, we can see that by increasing the value of th, we are able to

separate feature and non-feature areas. We can see that choosing th = 0.015

corresponds to the part of the graph where the height of the histogram bar starts
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getting smaller by comparison. We assumed that most of the area is non-feature.

Thus, looking at the pattern of the histogram, we may choose a threshold value

at the start of the ’tail’ of the distribution. A similar case is shown in Figure 7.9

where th = 0.03 seems to be a good choice for thresholding value.

Unfortunately, at this point, we rely on the observation of the histogram in

order to choose a suitable value. But we believe that the histogram could be

a good guide in finding the value automatically. This is possibility for a future

research.

Figure 7.10: Variance mapping of Fandisk 0.5 noise level. Thresholding value is
0.02. Histogram of variance ν is displayed as well and is capped at νi ≤ 0.1 for
visualisation.

Figure 7.10 shows the variance mapping of Fandisk with 0.5 noise level. We

choose 0.02 as a thresholding value from the observation of histogram and display

the variance mapping in the figure to the left. We can see that the feature area

is well separated from the non-feature area.

The limitation of this approach is when the noise level is high. The value

of variance on non-feature areas may be increased due to the noise level. Thus,
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often the thresholding leaves some parts on non-feature areas to be marked as

shown in Figure 7.9 (bottom-left). We believe, however, that even for 1.0 noise

level, which is considerably high, feature area are still marked nicely.

7.3 Summary

This chapter describe two different methods of feature detection: an algorithm

based on distance function giving the distance between a point and its nearest

feature, and thresholding on variance values, which is an extension from Chapter

5. The end-product of each implementation is a set of points marked to be feature

or non-feature areas.

We have shown that thresholding variance values as feature detection pro-

vides a reliable result, even on a noisy model. In this thesis, we often separate

feature and non-feature areas for the purpose of verification, as when testing if

our methods could handle different characteristics of a model.

In many practical applications, the detected features should be lines. Can-

didate methods for such an improvement are line growing approaches [25] and

snakes [59; 62]. As feature detection and extraction are interdependent prob-

lems, we believe that any further improvement should be specific to the feature

extraction method that will be used.
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Chapter 8

Conclusion

We have presented bootstrap surface reconstruction. Throughout Chapters 4 to 7,

we have covered topics regarding error estimates, normal estimation, smoothing,

and feature detection.

8.1 Contributions

The main contribution of this thesis is a applying statistical method called boot-

strap to provide a quantitative measure of quality for procedures in surface re-

construction. While the bootstrap method has been around for quite some time,

it had not been applied in this particular area. While a few, including [16; 49]

have discussed it in regards to the 2-dimensional problem, our bootstrap proce-

dure has been applied to 3-dimensional data sets. In our approach, we reduce a

3D space to a 2.5D and recognize factors that may influence our estimation. For

instance, the existence of feature area had affected our estimates of noise on a

certain area, but in return revealed features that may or may not be shown by
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visual observation.

We demonstrate bootstrap error estimates in Chapter 4, which emphasizes test

error estimation for a fitting on point sets. In Chapter 5, we discuss the quality

of fitting on normal estimation using variance and error estimates. While the

basis of our methodology is bootstrapping, we have shown in those two chapters

that different approaches should be used according to the property of the data.

For instance, for normal estimation, variance property can signify the quality of

normal estimates, while for the purpose of denoising, error estimates can offer

more information about the fitting and the data itself.

Other than that, we have also made several other contributions:

1. In Section 6.2, we show how the value of error estimates directly relate to

the quality of fitting. This is to show that the right error estimates (which

is test error instead of training error) could be a legitimate valuation for

quality of a fitting.

2. We then introduce a more advanced denoising step in Chapter 6. We make

use of the error estimates as our confidence level of our approximation and

run a smoothing procedure on the point sets.

3. In Section 5.3.1, we demonstrate a smoothing procedure on normal values

which gave us a good result on and around feature area.

4. In Chapter 7, we present two different ways to detect features on point

clouds. The method can also handle a considerable amount of noise.
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8.2 Scope of the research

While we had presented some applications as noted in Section 8.1, a bootstrap

estimate can be adapted to a post-processing method in surface reconstruction.

In Equation 4.3, while we used polynomial surface fitting as our function f(x)

that estimates the points, we can also use any other functions as we wish.

The same goes for our normal estimation as described in Chapter 5. As the

bootstrapping on variance had only required the normal value after the estimation

(as shown in Equation 5.2), one may also choose a different approach in estimating

normal values.

This is to reiterate that the bootstrap methodology can be generalised and

used as a tool rather than being restricted to the particular approach which we

have shown in this thesis.

While implying that the bootstrap method can be used for other approaches,

we admit that we have only tested bootstrapping on polynomial surface fitting.

We have used linear, quadratic, cubic, quartic and occasional quadric along our

test.

While it is obviously not possible to try every different function available, our

choice of limiting our work to only polynomial surface functions is due to the

following reasons:

• Polynomial surface is one of the common functions used in the area of

surface reconstruction. In normals computed using Principal Component

Analysis (PCA), the largest eigen vector of the covariance matrix is sim-

ilarly a linear plane constructed from least square minimization (which is

equivalent to the first order of polynomial surface). MLS surface also used
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polynomial surface in its projection.

• While quantitative assessment on surface reconstruction has only surfaced

recently, and bootstrapping which provides test error estimation has not

been used in this area, one of our areas of focus is on the verification of

our procedure, and to show that the error that we estimated was test error

and not training error. Thus, choosing a polynomial surface fits in nicely as

its property can be well-understood in our research. For instance, a higher

order of polynomial fitting may result in overfitting which can reduce the

training error. Understanding this attribute allow us to observe our result,

compare and understand how bootstrapping results in different degrees of

polynomials.

8.3 Limitations

After using the bootstrap method, we had found few limitations of the method:-

• As the bootstrap procedure requires random sampling for B number of

times, and we must repeat it for every single point, the procedure is gener-

ally slow.

• It is clear that error estimates from bootstrapping are unable to differentiate

between noise and feature area. However, an error value gives the quality

estimates of a function f(z) on the data z’s. If w is an average error value

on a non-feature area, and we are using a function f such that f(z) ≤ w, we

will not be able to detect the feature area. However, we should note that if

that was the case, it means that we have found a good surface representation
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for our data.

To reiterate, if we are seeking the source of bad fitting, an error value

may not differentiate noise in the data or high value due to feature area.

However, how we make use of it is what matters.

8.4 Future work

In this thesis, we have defined an error estimation method and used the given

information in estimating better normals and point fitting. There are a few

improvement which could be made for future research.

As run-time is not a factor in our research, our algorithms and codings are

not optimised for speed. Currently we recognise two factors which slow down the

run-time. Firstly, the programming language that we used is Matlab, which is

relatively slower than other programming languages like C++. Secondly, there

are numerous nested loops due to a straightforward implementation of the formula

such as bootstrapping. A tweaking of programming may provide us a faster

algorithm.

We are also interested to use functions other than polynomial surface fittings

as our estimator. In particular, spline surfaces may give a better approximation

for certain area with features and sharp edges. The sharp corners of a CAD

object may be better reconstructed with such function.

Finally, there are numerous other statistical methods which can be applied

in our case. Other than the Bayesian Approach as used by [90], there are other

model averaging methods such as Bagging and Boosting, which can be integrated

into this field.
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Throughout this thesis, we have shown how statistics and surface reconstruc-

tion can go side by side, and there is huge potential for research in merging these

two fields together.
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Appendix A

Appdx A

A.1 Normal in polynomial surface fitting

The height function f(x, y) for different degree M is given as follow:-

For quadratic,

M = 2,

f(x, y) = c1x
2 + c2xy + c3x + c4y

2 + c5y + c6.

∂f

∂x
= 2c1x + c2y + c3,

∂f

∂y
= c2y + 2c4y + c5.
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For cubic,

M = 3,

f(x, y) = c1x
3 + c2x

2y + c3x
2 + c4xy2 + c5xy + c6x + c7y

3 + c8y
2 + c9y + c10.

∂f

∂x
= 3c1x

2 + 2c2xy + 2c3x + c4y
2 + c5y + c6.

∂f

∂y
= c2x

2 + 2c4xy + c5x + 3c7y
2 + 2c8y + c9.
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For quartic,

M =4,

f(x, y) =c1x
4 + c2x

3y + c3x
3 + c4x

2y2

+ c5x
2y + c6x

2 + c7xy3 + c8xy2

+ c9xy + c10x + c11y
4 + c12y

3

+ c13y
2 + c14y + c15.

∂f

∂x
=4c1x

3 + 3c2x
2y + 3c3x

2 + 2c4xy2

+ 2c5xy + 2c6x + c7y
3 + c8y

2

+ c9y + c10

∂f

∂y
=c2x

3 + 2c4x
2y

+ c5x
2 + 3c7xy2 + 2c8xy

+ c9x + 4c11y
3 + 3c12y

2

+ 2c13y + c14.
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and José L. Marroqúın. Searching in metric spaces. ACM Comput.

Surv., 33[3]:273–321, 2001. 13

144



BIBLIOGRAPHY

[21] Chun-Yen Chen and Kuo-Young Cheng. A sharpness-dependent fil-

ter for recovering sharp features in repaired 3d mesh models. IEEE Trans.

Vis. Comput. Graph., 14[1]:200–212, 2008. 27

[22] Antoni Chica. Visibility-based feature extraction from discrete models.

In Proc. Symposium on Solid and Physical Modeling, pages 347–352. ACM,

2008. 34

[23] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro:

measuring error on simplified surfaces. Technical report, Paris, France,

France, 1996. 20

[24] Michael Connor and Piyush Kumar. Fast construction of k-nearest

neighbor graphs for point clouds. IEEE Trans. Vis. Comput. Graph.,

16[4]:599–608, 2010. 13

[25] Joel II Daniels, Linh K. Ha, Tilo Ochotta, and Claudio T.

Silva. Robust smooth feature extraction from point clouds. In Proc. Shape

Modeling and Applications, pages 123–136, Washington, DC, USA, 2007.

IEEE. 34, 133

[26] Kris Demarsin, Denis Vanderstraeten, Tim Volodine, and Dirk

Roose. Detection of closed sharp edges in point clouds using normal esti-

mation and graph theory. Comput. Aided Des., 39[4]:276–283, 2007. 34

[27] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H.
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[77] João F. Mari, José Hiroki Saito, Gustavo Poli, Marcelo R.

Zorzan, and Alexandre L. M. Levada. Improving the neural meshes

algorithm for 3d surface reconstruction with edge swap operations. In SAC,

pages 1236–1240, 2008. 30

[78] Boris Mederos, Nina Amenta, Luiz Velho, and Luiz Henrique

de Figueiredo. Surface reconstruction for noisy point clouds. In Sympo-

sium on Geometry Processing, pages 53–62, 2005. 25
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