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Abstract 

 
Although the depolymerizing effects of animal kinesin-13 proteins have been well 

characterized, little is known of the two Arabidopsis kinesin-13 proteins. This project 

aimed to investigate in more detail the functions of AtKinesin-13A/B and their effect on 

microtubule dynamics.  The first aim was to analyse the function of both proteins in vitro 

using biochemical studies. Proteins were expressed in both bacterial and insect cells 

before undergoing co-sedimentation and turbidimetric assays to assess their activity and 

microtubule-interacting properties. The second aim of this project was to investigate the 

in vivo effects of these proteins on microtubule dynamics throughout the cell cycle. 

Tobacco BY2 cell lines were transformed with AtKinesin-13A and 13B, as well as human 

HsKinesin-13 for comparison under the expression of an estradiol-inducible promoter. 

This inducible system allowed transient expression of recombinant protein to analyse the 

effect of expression on cell growth, nuclear morphology and microtubule dynamics by 

immunofluorescence microscopy. 

 

These experiments show that AtKin13B appears to function during metaphase in aiding 

activation of the metaphase spindle checkpoint and subsequent progression through the 

cell cycle. Biochemical studies into its relationship with microtubules, combined with in 

vivo induction data, suggest that AtKin13B may have a subtle destabilizing effect on 

microtubules. Biochemical studies with AtKin13A showed that it binds specifically to 

microtubules, and it localized to chromosome arms in a similar pattern to AtKin13B, but 

may have different effects in plants. Human Kinesin-13 localized exclusively to spindle 

microtubules throughout the cell cycle showing that the activity of kinesin-13 proteins is 

species-specific and animal kinesins have little effect in plant systems.  



Contents 
1. Introduction         1 

 
1.1. Microtubules        1  

1.2. Microtubule Dynamics       3 

1.3. Plant Microtubule Arrays       9 

1.4. Microtubule Interacting Proteins        16 

1.4.1. Microtubules-Associated Proteins (MAPS)   16 

1.4.2. Kinesins        28 

1.4.3. Catastrophic Kinesins      31 

1.5. Kinesin-13s in Plants       37 

1.6. Research Aims        40 

 

2. Materials and Methods       41 

 

2.1.  MATERIALS        41 

 

2.2. METHODS         42 

Molecular Biology 

2.2.1. Transformations       42 

2.2.2. Plasmid DNA purification      44 

2.2.3. Restriction Digests       44 

2.2.4. Agarose Gel Analysis      45 

2.2.5. Amplification of fragments using PCR    45 

2.2.6. The GATEWAY
TM

 Cloning System    47 

2.2.7. DNA sequencing       48 

Biochemistry 

 

2.2.8. SDS-PAGE Analysis       48 

2.2.9. Electroblotting and Western Blotting    49 

2.2.10. Silver staining       50 

2.2.11. Expression of His-tagged proteins     50 

2.2.12. Purification of His-tagged proteins     53 

2.2.13. Microtubule Co-sedimentation Assays    54 

2.2.14. Microtubule polymerization assays     55  



Cell Biology 

 

2.2.15. BY-2 Suspension Culture Transformation    55 

2.2.16. Extraction of estradiol-induced protein    56 

2.2.17. Fixation and Immunostaining of BY-2 cells   57 

2.2.18. Confocal Laser Scanning Microscopy (CLSM)   58 

2.2.19. Growth Curve experiments      58 

 

3. Results          59 

 

3.1. Biochemistry         59 

3.1.1. Bacterial cell expression      59 

3.1.2. Insect Cell Expression      62 

3.2. Cell Biology         65 

3.2.1. Optimization of protein induction and extraction   65 

3.2.2. Localization of kinesin-13 protein through cell division  73 

3.2.3. The effect of kinesin-13 proteins on cell division and growth 76 

 

4. Discussion         80 

 

4.1. Expression and analysis of recombinant AtKin13A and 13B  80 

4.1.1. Bacterial Cell Expression 

4.1.2. Insect Cell Expression 

4.2. High concentrations of estradiol affect BY-cell proliferation  82 

4.3. Arabidopsis kinesin-13A and 13B localize to chromosomes during cell 

division         83 

4.4. AtKinesin-13B overexpression delays progression through mitosis 84 

4.5. AtKinesin-13B overexpression reduces cell proliferation  85 

4.6. Conclusion         86 

 

5. Appendices         88 

 

6. References         89 

 

 

 

 



Acknowledgements 

 
There are many people to whom I would like to express my thanks for this project. 

Firstly, I would like to thank my supervisor, Professor Patrick Hussey, for inspiring me to 

continue my studies in such an interesting area of Biology and for his guidance along the 

way. 

 

A huge thank you to Dr Andrei Smertenko, for his unceasing support and enthusiasm 

throughout the year. Throughout the ups and downs, he was always there to offer advice 

and to instil confidence. I’ve learnt so much from working with him, and without his help 

couldn’t have got to where I am now! 

 

Finally, my thanks go to everyone in the Hussey lab who were a source of knowledge, 

advice and laughter throughout the year. Dr Tim Hawkins, who carried out the initial 

work on this project and made the antibodies I used throughout the year, and Dr Mike 

Deeks were always on hand for technical advice and support. My fellow postgraduates 

Martin, Frances, Orla and Lizzy - it’s been huge! 

 



1 

 

1. INTRODUCTION 
 

 

1.1. Microtubules 
 

 

 
Microtubules represent key structural components of the eukaryotic cell cytoskeleton, 

important in many cellular processes such as division, cell expansion, vesicular transport 

and specifically for plants, cell wall formation.  

 

Built from subunits of the αβ-tubulin heterodimer, each tubulin monomer consists of 

around 450 amino acids with a molecular mass of 50kDa. Although a total of seven 

tubulin proteins are known to exist in nature, the only three present ubiquitously in 

eukaryotic organisms are α-tubulin, β-tubulin and γ-tubulin (Dutcher 2001). The two 

proteins which construct the heterodimer from which microtubules are assembled, α- and 

β-tubulin, share a 50% homology, whereas the more specialized γ-tubulin is involved in 

microtubule nucleation (Burns 1991). Each tubulin monomer can bind to a single GTP 

molecule, which is exchangeable in β-tubulin (at the E-site) but non-exchangeable in α-

tubulin (N-site). GTP-bound β-tubulin is required for microtubule assembly, and its 

hydrolysis follows the addition of a tubulin heterodimer to the growing microtubule end, 

whereupon it is made nonexchangeable within the microtubule (Kirchner & Mandelkow 

1985). 

 

During microtubule formation, tubulin heterodimers associate in an end-to-end fashion to 

form linear protofilaments (Desai & Mitchison 1997). Interactions between neighbouring 

α- and β-tubulin monomers allows lateral association between protofilaments to form 

sheets which subsequently fold into long, hollow-tubed cylinders (Chretien et al 1995). 

Each microtubule cylinder has a diameter of 25nm and typically consists of 13 

protofilaments, although genetic studies have indicated that protofilament number can be 

influenced by specific β-tubulin isoforms (Raff et al 1997) (FIG 1).  

 

As tubulin heterodimers polymerize in the same orientation, an intrinsic polarity exists 

within the microtubule polymer which produces structural and kinetic differences at each 

end.  The slower growing minus end has α-tubulin exposed, whereas the faster growing 
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plus end has β-tubulin dimers exposed. The polar nature of microtubule filaments is an 

essential prerequisite for the establishment of cell polarity and the directional movement 

of motor proteins (such as members of the kinesin and dynein family) along the 

microtubule.      

 

 

 

Figure 1: Microtubule structure. Electron micrographs of (A) the cross-section through a microtubule showing 

the thirteen protofilaments, and (B) a cryoelectron micrograph of an assembled microtubule in vitro. (C) and (D) 

show schematic representations of the microtubule, showing how the tubulin subunits fit together within the 

tubular lattice (Alberts et al 2002) 

 

 

. 
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1.2. Microtubule Dynamics 

 

1.2.1. Assembly 

 

Microtubule assembly takes place in three distinct phases: nucleation, elongation and 

steady state. Nucleation involves the spontaneous formation and subsequent growth of 

microtubules from seeds of oligomers proposed to contain between 6 and 13 dimers 

(Fygenson et al 1995, Voter & Erickson 1984). One factor identified as a key requirement 

for microtubule nucleation is the presence of GTP-tubulin. Furthermore, polymerization 

only occurs if a threshold of tubulin concentration known as the critical concentration is 

reached; above this threshold tubulin dimers add to the elongating microtubule (Valiron et 

al 2001).  

 

Although the rate of nucleation is strongly dependent on the initial concentration of free 

GTP-tubulin, the rate remains constant through most of the assembly phase despite 

subsequent drops in tubulin concentration. The elongation rate is also unaffected by free 

tubulin concentration, and is instead limited by the probability of tubulin dimers binding 

to the microtubule (Caudron et al 2000). Elongating microtubules are typically not blunt-

ended polymers, as mentioned earlier growing protofilaments form open-ended sheets 

which eventually close to form a tube. 

 

During the steady state phase a fixed proportion of tubulin is assembled in the 

microtubule lattice, with a second pool of tubulin remaining soluble. Throughout this 

stage the microtubule system remains out of equilibrium, that is, a continual supply of 

energy is required for GTP hydrolysis and thus the maintenance of steady state 

microtubules. This energy is used to drive the exchange of integral subunits with the 

tubulin dimers of the soluble pool (Valiron et al 2001). Clearly, despite the net proportion 

of bound tubulin remaining constant, individual tubulin monomers are in a state of 

constant flux between bound and soluble pools. This highly dynamic and seemingly 

misleading characteristic of ‘steady-state’ microtubules can be explained by two 

mechanisms: treadmilling and dynamic instability. 
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1.2.2. Treadmilling 

 

Treadmilling is the first mechanism by which steady state microtubules exhibit dynamic 

properties. It relies on the differing behaviour of steady state microtubule ends: the plus 

end continuously incorporates new tubulin dimers whilst the minus end continuously 

loses them (FIG 2) (Margolis & Wilson 1978). These opposing behaviours are due to net 

differences in critical subunit concentrations at either end. If both ends of the microtubule 

are untethered, this asymmetry allows apparent translocation of the microtubule around 

the cytoplasm, whereas if one end of the microtubule is fixed then treadmilling produces 

a unidirectional flux of tubulin dimers through the polymer length travelling from the plus 

end to the minus end (Margolis & Wilson 1981). 

 

 

Figure 2: Treadmilling: free microtubules undergo dynamic behaviour at both ends, with the minus end 

favouring depolymerization. When rates of polymerization and depolymerization rates are balanced at both 

ends, microtubules stay at constant net length despite a flow of tubulin dimers from the plus to minus end 

(Adapted from Hashimoto 2003) 

 

Two models have been proposed to explain treadmilling in microtubules: the Wegner 

model and differential dynamic instability at each end. The Wegner model (posited before 

the discovery of dynamic instability) basically translates an explanation of actin filament 

assembly to that of microtubules: GTP hydrolysis upon tubulin binding at one end allows 

the critical concentrations for growth to be different, so the end with the lower critical 

concentration will grow whilst the end with the higher critical concentration will 

persistently shorten (Wegner & Engel 1975). Alternatively, treadmilling could also occur 

if stages of dynamic instability had a net bias at each end (Grego et al 2001). 

 

 

Net 
Depolymerization 

Net 
Polymerization 

- + 
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1.2.3. Dynamic Instability 

  

First proposed following an analysis of the length distribution of fixed microtubules 

(Mitchison & Kirschner 1984a, Mitchison & Kirschner 1984b), the finding that 

microtubules can stochastically switch between phases of growth and shrinkage, without 

complete disassembly or maintenance of a steady length, represents a unique 

phenomenon known as dynamic instability. An intrinsic property of tubulin observable 

even in purified extracts, dynamic instability enables rapid rearrangement of the 

microtubule network to accommodate different structural and functional requirements 

throughout cell division and the cell cycle. Additionally, by repeated phases of growth 

and shrinkage the cell is able to respond to changing environmental cues and stresses 

(Komarova et al 2002) (FIG 3). 

 

The classical chemical kinetics model posits that microtubule stability is normally 

maintained by the presence of a GTP-tubulin ‘cap’ at the growing (plus) end. During the 

polymerization phase, GTP-bound tubulin dimers add to the plus end of a MT to cause 

elongation or growth. However, soon after the addition of GTP-dimers the tubulin 

subunits can hydrolyze their bound GTP to GDP and subsequently release a phosphate 

molecule (Pi). If the rate of GTP hydrolysis is faster than the addition of new tubulin 

dimers, the ‘GTP-cap’ is dissolved and GDP-tubulin subunits are exposed and lost at a 

rapid rate, resulting in MT depolymerization. Depolymerizing microtubules can be 

switched back to growth if GTP-tubulin dimers are added to the plus end before bound 

GTP is hydrolysed (FIG 3) (Desai & Mitchison 1997). 

 

The nature of the GTP-cap has been well-studied in vitro, though direct evidence of its 

size was traditionally hard to obtain. Initial data suggested that a monolayer of GTP-

tubulin subunits covers the 13-14 protofilaments of the microtubule (Caplow & Shanks 

1996, Drechsel & Kirschner 1994, Panda et al 2002). However, experiments using 

‘optical tweezers’ to track microtubule assembly dynamics showed evidence of a multi-

layered and highly variable GTP-cap (Schek et al 2007). This was confirmed in recent 

computational studies of microtubule dynamics, which suggested that the GTP-cap may 

in fact be up to several microns in length, comprising an average of forty GTP-tubulin 

dimers (Piette et al 2009).  
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Figure 3: Dynamic instability: GTP-bound tubulin dimers are added at the plus end. Contact with exposed α-

tubulin subunits leads to hydrolysis of GTP to GDP and subsequent depolymerization due to a conformational 

change. Growing microtubules have a GTP-cap structure at plus end which prevents depolymerization. Random 

loss of this cap leads to rapid depolymerization (catastrophe) and stochastic gain of a cap restores microtubule 

growth (rescue). Interestingly, the structure of growing and shrinking microtubule ends is markedly different, 

indicating that different mechanisms operate (Conde & Caceres 2009). 

 

This switch from growth to rapid shrinkage is known as ‘catastrophe’ and the switch from 

shrinkage to growth is called ‘rescue’. Interestingly, microtubules in vivo are frequently 

seen to ‘pause’ where they neither grow nor shrink (Shelden & Wadsworth 1993), and in 

vitro microtubules with pure tubulin pause much less frequently (Walker et al 1988). 

 

The energy needed to power dynamic instability is generated during the hydrolysis of a 

GTP molecule during polymerization. Although both α- and β-subunits associate with one 

molecule of GTP, in α-tubulin this molecule is non-hydrolysable. The GTP molecule 
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associated with β-tubulin, however, is exchangeable: GTP is hydrolysed to GDP during 

polymerization, which is then exchanged for GTP when released upon depolymerization 

 

1.2.4. Structural basis of microtubule dynamics 

 

Although a general model for the principles of dynamic instability is widely accepted, 

details of the structural and molecular mechanisms underpinning this process are still 

poorly understood.  

 

The first evidence suggesting a relationship between microtubule dynamics and the 

geometry of inter-subunit bonds came from early studies using cryoelectron microscopy. 

Protofilaments in microtubules were seen as relatively straight, whereas the intermediate 

depolymerization products of microtubules adopted curved structures and protofilaments 

seemed to peel from the microtubule ends forming ‘ram horns’ (FIG 3) (Mandelkow & 

Mandelkow 1985, Mandelkow et al 1991). 

 

These observations, combined with more recent structural studies (Lowe et al 2001, 

Ravelli et al 2004), led to the formulation of an ‘allosteric’ model in which the tubulin 

heterodimer exists in two differing conformations dependent on the nucleotide bound at 

the β-tubulin E-site (Wang & Nogales 2005). A relatively straight GTP-tubulin would 

allow the formation of linear protofilaments, whereas a curved GDP-tubulin conformation 

would account for the curved protofilaments seen in cryoelectron studies, but would not 

allow microtubule polymerization. Within the microtubule, however, GDP-tubulin 

subunits are held in a straightened, GTP-like state owing to structural constraints of the 

microtubule lattice (Melki et al 1989, Wang & Nogales 2005). This hypothesis of tubulin 

kinetics is in line with thermodynamic studies of dynamic instability: the energy produced 

by GTP hydrolysis is stored within the MT lattice as mechanical ‘strain’ needed to 

maintain the GDP-subunits in their unfavoured, straight conformation (Caplow et al 

1994). When the GTP cap is lost, therefore, rapid depolymerization ensues as GDP-

subunits convert into the low-energy, curved state (Nogales & Wang 2006). 

 

Recently, though, an opposing ‘lattice’ model has been proposed which posits that the αβ-

heterodimer adopts the curved conformation in solution, regardless of the state of its 
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attached nucleotide (Buey et al 2006, Rice et al 2008).  Structural rearrangements, 

therefore, do not occur in response to GTP binding. Rather, the tubulin dimers straighten 

as a result of incorporation into the growing microtubule lattice as a consequence of 

protofilament straightening during tube closure (Valiron 2011). The role of GTP in this 

model is to strengthen the lattice contacts and stabilize the MT-bound straight tubulin 

conformation (Rice et al 2008). After GTP hydrolysis, then, the microtubule 

protofilaments curve outwards either as a result of weaker lateral interactions with their 

neighbours, or due to decreased stability of the curved GDP-tubulin conformation. 

 

A paucity of direct experimental evidence means this question is still unresolved. The 

problem is that analysis usually involves external influences such as destabilizing agents 

or large structural assemblies which may impose geometric constraints on tubulin 

curvature. Support for the allosteric model, for example, comes from evidence that the 

curvature of tubulin bound to a non-hydrolysable GTP analogue, GMPCPP, is less than 

that of GDP-bound tubulin (Wang & Nogales 2005). Conversely, analysis of the crystal 

structures of γ-tubulin (Rice et al 2008) and more distantly related bacterial homologues 

(Gigant et al 2005, Oliva et al 2007) showed curved GTP-bound tubulin in support of the 

lattice model. 

 

Despite this, computational studies may prove useful alternatives as they eliminate the 

influence of external factors on tubulin conformation. A plethora of recent computational 

simulations have helped to better understand tubulin and MT properties, binding sites and 

the conformation of their termini (Summarized in Grafmueller & Voth 2011). A recent 

study, using atomistic simulations of short protofilaments, concluded that both the GDP- 

and GTP-bound tubulin states adopt a similar curved conformation in solution 

(Grafmueller & Voth 2011), supporting the lattice model for MT assembly. 

 

These recent structural investigations place growing importance on the geometric states 

of microtubule intermediates in microtubule dynamics, independent of the chemical state 

of the bound nucleotide. Traditionally dominant models based on chemical kinetics, 

extolling the stabilizing role of a GTP cap, are becoming increasingly hard to reconcile 

with these structural studies. Although the chemical kinetics viewpoint is not invalidated, 

it is clear that future, sophisticated analyses should encompass these features of 

‘structural plasticity’ (Kueh & Mitchison 2009).  
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Interestingly, the recent characterisation of an antibody specific to GTP-tubulin has 

allowed new insights into the localization of GTP-tubulin in vivo, pointing to the role of 

GTP ‘remnants’ in aiding microtubule rescue (Dimitrov et al 2008). This antibody adds to 

a growing list of new tools allowing the study of polymerization/depolymerization at 

increasingly small experimental resolutions, one step further to unravelling the mechanics 

of microtubule dynamics at a molecular level.  

 

1.3. Plant Microtubule Arrays 

 

The cellular architecture of higher plants is fundamentally different to that of animal or 

fungal cells, containing a peripheral cytosolic layer at the cell cortex surrounding a large 

vacuole. Organelles and other cytoplasmic components are dispersed throughout the 

cytosol and in a state of constant movement due to the action of actin-/myosin-based 

cytoplasmic streaming. Importantly, absence of centrosomes or spindle pole bodies found 

in animal cells poses an interesting challenge for microtubule assembly and maintenance 

in plants. In animal cells, the centrosome plays a dominant role in creating the 

architecture of the interphase array, by nucleating microtubules and stabilizing their 

bound minus ends. Microtubule organization in plant cells, therefore, differs significantly 

to that of their animal counterparts, forming four distinct arrangements prominent at 

different stages of the cell cycle (FIG 4). 

 

Figure 4: Schematic representation of the four microtubule arrays. (A) The cortical interphase array arranged 

perpendicular to cell axis (B) the preprophase band, marking the site of future cell division (C) the mitotic 

spindle and (D) the phragmoplast aiding formation of the cell plate. (Adapted from Wasteneys 2002) 

D C B A
A 
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1.3.1. The Interphase Arrays: Cortical microtubules and the Preprophase 

Band 

 

In the cortical interphase array, microtubules are present at the cell periphery and lie 

perpendicular to the cell axis, closely coincident with cell wall fibers (Fig 4A). In 

growing interphase cells, microtubules and cell wall microfibrils are found parallel to 

each other, transverse to the direction of cell expansion. This apparent co-alignment led to 

the hypothesis that cortical microtubules have a role in cell wall formation,  acting as 

guides for cellulose deposition by constraining the distribution of cellulose synthase 

complexes (Giddings 1991, Heath 1974). 

 

Although generally accepted, lack of direct evidence and inconsistencies with 

observations of continued cellulose microfibril production after disruption of cortical 

microtubules, have always hampered this model (Smith & Oppenheimer 2005). More 

recently, studies of mutants showing defects in microfibril and microtubule organization 

led Wasteneys to propose  the ‘microfibril length regulation hypothesis’, in which cortical 

microtubules participate in regulating the length of cellulose microfibrils (Wasteneys 

2004). 

 

An interesting distinction between interphase microtubules of the plant and animal 

kingdoms is that plant microtubules are much more dynamic, as implied by a three- to 

four-times faster rate of fluorescence recovery after photobleaching (FRAP) (Hush et al 

1994). Although the average rates of plus end polymerization and depolymerization are 

slower than animal cells, a noticeably reduced ‘pause’ time can perhaps explain the 

increased recovery rate. Furthermore, dynamic properties have been observed at both the 

plus and minus ends, a feature rarely seen in cells with microtubule organizing centres. 

The unattached microtubule minus ends exhibit slow depolymerization with pausing, 

whereas the plus ends undergo dynamic instability favoured towards growth.  Due to this 

disparity in dynamic behaviour at each end, plant cortical microtubules are said to employ 

a mechanism known as ‘hybrid treadmilling’ (Ehrhardt & Shaw 2006, Lloyd & Chan 

2006). 
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As the cells approach mitosis their cytoskeletal organization changes dramatically: 

cortically-based microtubules begin to depolymerize to leave only a circumferential band 

around the nucleus which demarcates the plane of cell division (Fig 4B). Called the 

preprophase band (PPB), it consists of an array of parallel cortical microtubules and actin 

filaments which breaks down just before division to leave an ‘invisible’ imprint. The 

importance of this structure is highlighted by mutational studies in which plants lacking 

PPBs show irregular cell expansion and cell division defects (McClinton & Sung 1997, 

Traas et al 1995).  

 

Despite significant study into the timing of PPB appearance and its functional importance 

(Granger & Cyr 2001), the mechanism which drives its formation is still unclear. 

Fluorescence studies using a YFP-tagged plus-end binding protein to visualize and 

measure microtubule dynamics have helped to shed light on this process (Dhonukshe & 

Gadella 2003). In this model, PPB formation is thought to proceed in four stages: 

initiation, narrowing, maturation and eventual breakdown (FIG 5). During initiation, a 

broad PPB forms covering a large portion of the cell. The catastrophe frequency of these 

microtubules gradually starts to increase, providing a large pool of free tubulin dimers 

from which new microtubules form. This leads to narrowing of the PPB, and the 

continued cycle of increased catastrophe and subsequent MT growth rate promotes the 

formation of shorter microtubules in PPB maturation. Finally, it is proposed that during 

breakdown of the PPB the catastrophe rate reaches such a level (perhaps by total 

inactivation of MT-stabilizing proteins) that it cannot be overcome by increased MT 

growth rates, leading to its collapse. Nuclear envelope-derived microtubules, however, 

maintain higher growth rates and so survive, using the new tubulin pool from collapsed 

PPB MTs to construct the mitotic spindle (Dhonukshe & Gadella 2003). Interestingly, the 

fact that actin-depolymerizing drugs such as cytochalasin D affect the narrowing of the 

PPB (Granger & Cyr 2001), suggests an additional role for actin in PPB maturation. 
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Figure 5: Schematic model of PPB formation by alteration of dynamic instability (Dhonukshe & 

Gadella 2003) 

 

 

1.3.2. The Mitotic Spindle 

 

In early prophase the PPB breaks down and is replaced by the mitotic spindle which 

serves to separate daughter chromosomes (Fig 4C). Apart from their structure at the 

poles, mitotic plant spindle closely resemble those in animal and fungal cells. They serve 

during division to attach and capture chromosomes at prophase, align them at metaphase 

and then separate them at anaphase.  

 

Early study in animals cells led to the postulation of a ‘search and capture’ model for 

mitotic spindle formation (Kirschner & Mitchison 1986). As the microtubule minus ends 

are tethered to polarized centrosomes at either side of the nucleus, plus ends of growing 

microtubules emanate outwards and undergo rounds of growth and shrinkage. If these 

microtubules contact the kinetochore protein complexes at the centromeres of 

chromosomes, they are captured to form stable bundles. Eventually, with the help of a 

multitude of facilitating proteins, durable, bipolar spindles can be assembled (Zhang & 

Dawe 2011). 

 

This model, however, does not account for the many types of animal cells which are 

capable of forming seemingly normal bipolar spindles without centrosomes, such as 

animal oocytes or somatic cells with laser ablated centrosomes (Zhang & Dawe 2011). 

Interestingly, these cells manage to nucleate spindle arrays at or near to condensed 
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chromosomes. This process was elucidated quite elegantly in an in vitro study of Xenopus 

eggs: the addition of DNA-coated beads to egg extracts lacking centrosomes led to the 

initiation of bipolar spindles with similar properties to their centrosome-mediated 

counterparts (Heald et al 1996). This alternative mechanism, dependent on the small 

GTPase Ran, is known as ‘spindle self-organization’ (FIG 6). 

 

 

 

Figure 6: A comparison of spindle formation in animals and plants. The centrosomal or PPB-associated MTs are 

shown in red. Kinetochore-associated MTs are in green. In animal cells, MTs growing from the centrosomes and 

the kinetochores help to secure and align chromosomes correctly in the cell. In plants, the dotted red lines 

illustrate bridging MTs between the PPB and the nucleus, which are important along with spindle self-

organisation (Zhang & Dawe 2011). 

 

As plant cells lack organizing centrosomes, it has been argued that their spindles form 

with a similar self-organizing mechanism. Although definitive evidence is limited, the 

highly conserved nature of Ran in plants (Haizel et al 1997), combined with localisation 

and transgenic studies linking Ran-GAP to the spindle and PPB (Xu et al 2008, Yano et al 

2006), strongly support a link between the Ran cycle and spindle assembly.  

 

Despite this correlation, it is also important to note that although lacking centrosomes 

plants cells do have an early polarizing structure, the preprophase band. In addition to the 

cortical microtubules of the PPB during early mitosis, other microtubules randomly 
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dispersed around the nuclear periphery either encase the nuclear surface to form the 

prophase spindle, or radiate away to the cortex (Lloyd & Chan 2006). It has been shown 

that the PPB contributes to prophase spindle organization and bipolarity via the  

interaction of ‘bridge’ microtubules between the PPB and the nucleus (Ambrose & Cyr 

2008). In this way the preprophase band acts like a centrosome pair: important for 

imposing polarity upon the mitotic spindle from the equator, rather than the poles, but 

dispensable for mitotic spindle assembly per se (Bannigan et al 2008). 

 

1.3.3. Cytokinesis and the Phragmoplast 

 

Cytokinesis in higher plants is a highly regulated process involving cytoskeletal-assisted 

targeting and fusion of membrane vesicles. As cytokinesis in plant cells effectively 

involves the formation of a new extracellular compartment within the cell, its complexity 

compared to animal cells is markedly increased. This process is thus co-ordinated by a 

plant-specific microtubule array, the phragmoplast (Fig 4D). 

 

As the dividing cell reaches cytokinesis, microtubules from remnants of the mitotic 

spindle form a self-organizing double ring with the plus ends of each ring meeting and 

overlapping at the cell midzone (Euteneuer et al 1982). At late anaphase, the loosely 

dispersed spindle microtubules in the interzone laterally coalesce to form a cylindrical 

body. This then shortens in length and expands in width, with the addition of new 

microtubules at the growing edges as opposed to the spindle remnants involved in initial 

phragmoplast formation (Staehlin & Hepler 1996). As the cell plate expands, 

microtubules depolymerize at the centre and repolymerize at the edges of the expanding 

plate (Gu & Verma 1996, Gunning & Wick 1985). These microtubules direct cell wall-

forming vesicles to the site of the centrifugally expanding cell plate, which eventually 

coalesce to form the separating cross-wall between two daughter cells (Wasteneys 2002).  
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Figure 7: Cytokinesis in plant cells. Co-aligned MTs (red) and actin filaments (green) of the PPB determine the 

plane of cell division. During anaphase, overlapping spindle MTs initiate formation of the phragmoplast in the 

midzone. In telophase, an antiparallel bundle of MTs and actin filaments forms, allowing the accumulation of 

Golgi vesicles in the midzone. These fuse to form the cell plate, which expands outwards during cytokinesis 

accompanied by lateral translocation of MTs. Eventually the cell plate fuses with cortical attachment sites at the 

cell periphery (Jurgens 2005). 

 

 

Initially, the fusion of cell plate forming vesicles is spatially constrained to form a small 

disk of intermediates which give rise to a transient membrane compartment, the cell plate, 

before finally forming the new plasma membrane between daughter cells. Arriving 

vesicles fuse to the edges of the expanding cell plate, simultaneously reorganizing by 

secreting cell wall components into the vesicular lumen and removing excess membrane 

material. Finally, the cell plate fuses to the edge of the parental plasma membrane at 
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cortical sites demarcated by the preprophase band, leading to formation of two distinct 

daughter cells (FIG 7)(Jurgens 2005). 

 

Although aesthetic changes in the phragmoplast microtubule array had long been 

observed, details of the dynamic nature of these microtubules remained elusive. It was not 

until a pioneering study by Asada et al that any insight was gained into the mechanics of 

this intriguing structure. By using the newly developed technique of glycerination, 

cultured tobacco BY-2 cells were stably permeabilized and infused with DTAF 

(dichlorotriazonilamino fluorescein)-labelled tubulin at different points in cytokinesis. By 

comparing the incorporation of fluorescently-labelled tubulin into phragmoplast 

microtubules at different time points, they were able to determine their polymerization 

dynamics (Asada et al 1991).  

 

Their results suggested that a treadmilling system was operating, in which the equatorial 

region of the phragmoplast combines microtubule polymerization at the plus end with 

translocation towards the minus end. The fact that translocation was induced effectively 

by GTP and less effectively by ATP, and inhibited by non-hydrolysable analogues of 

these nucleotides, points to the role of a force-generating mechanochemical enzyme in 

this process. Interestingly, a recent study using computer modelling to simulate 

microtubule dynamics during phragmoplast formation shows that most microtubules in 

the phragmoplast actually undergo dynamic instability (Smertenko et al 2011).  

 

1.4. Microtubule Interacting Proteins 

 

1.4.1. Microtubule Associated Proteins (MAPs) 

 

The fact that microtubules are able to form distinct, stable arrays in response to 

developmental or environmental influences suggests the presence of proteins involved in 

regulating microtubule dynamics. Studies have shown that the reorganisation of 

microtubule arrays or the balance between catastrophic and rescue phases of dynamic 

instability are directly modulated by specialized Microtubule Associated Proteins (MAPs) 

(Lloyd & Chan 2004, Valiron et al 2001).  
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Early microtubule purifications isolated from cell extracts after rounds of assembly and 

disassembly led to the initial identification of MAPs as proteins which attach to 

microtubules in vivo. Most plant MAPs have functional homologues in all other 

eukaryotes, but not all animal and fungal MAPs are present in plants. A likely explanation 

for this may be that, although plant microtubules are structurally similar to their 

eukaryotic counterparts, plant microtubules differ significantly in their organization and 

dynamic properties. 

 

A group of MAPs unique to and well-studied in animal cells are the so-called ‘classical’ 

or neuronal MAPs. Abundant in the microtubule-rich mammalian brain tissue, this group 

includes MAP2, MAP4 and Tau (Cleveland 1993). Located in all animal microtubule 

arrays, overexpression of these proteins induced MT bundling and resistance to MT-

destabilizing drugs, highlighting their role as promoters of microtubule polymerization 

and stabilization (Ennulat et al 1989, Hoshi et al 1992). The microtubule-binding capacity 

of these proteins is conferred by a conserved C-terminal region of 18 amino acid repeats 

(Lewis et al 1988), and a proposed mechanism suggests that these MAPs bind 

longitudinally along the outer ridges of MTs, stabilizing the straight GDP-tubulin by 

longitudinal bridging of tubulin interfaces (Al-Bassam et al 2002). 

 

Although homologues of these classical MAPs are not found in plants, the mechanism by 

which they bind and stabilize microtubules is common to other proteins found in plants. 

In fact, since the discovery of neuronal MAPs a diverse range of microtubule interacting 

proteins have been identified with conserved homologues in many organisms. Although 

many have yet to be fully classified, most can be distinguished by their preferential 

binding to different locations on the microtubule.  

 

1.4.1.1. Plus end-tracking proteins (+TIPS) 

 

CLIP-170 

 

Microtubule plus end binding proteins (+TIPS) are a highly diverse group of proteins 

defined by their accumulation and tracking at microtubule plus ends (reviewed in 

Akhmanova & Steinmetz 2010). The first +TIP was identified as CLIP-170 (Cytoplasmic 

Linker Protein 170), when GFP-tagged CLIP-170 was seen to ‘track’ the growing plus 
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ends of microtubules using live cell video microscopy (Perez et al 1999). Since then, 

several CLIP family members have been found in a diverse range of phyla where they 

serve to regulate MT dynamics and link them to distinct cellular sites (Dujardin et al 

1998, Pierre et al 1992). In this respect, they form part of a system which ‘guides’ 

microtubules to their target destinations by regional control of microtubule dynamics. The 

microtubule-binding region of CLIP proteins contains one or more CAP-Gly domains 

necessary for plus-end tracking.  

 

A family of CLIP-associated proteins, or CLASPs, were identified using a yeast two-

hybrid screen with the coiled coil region of the mammalian CLIP-115 as bait 

(Akhmanova et al 2001). Overexpression of CLASPs in fibroblast cells led to MT 

stabilization, and inhibition of CLASP function by antibody injections appeared to 

prevent the formation of stabilized, aligned microtubules  (Akhmanova et al 2001). By 

binding to both MTs and CLIP proteins, they help to stabilize microtubules either directly 

or via interactions with bound CLIPs. 

 

Although CLIP homologues have been identified in various animals and fungi, clear 

counterparts in plants have been difficult to determine. Interestingly, when a YFP-fused 

mammalian CLIP was expressed in tobacco BY-2 cells it was shown to bind to and track 

microtubule plus ends, hinting that conserved pathways for regulating CLIP binding to 

MTs exist in both plants and animals (Dhonukshe & Gadella 2003). Furthermore, a 

single, putative CLASP member related to the Drosophila  MAST/ORBIT homologues 

has been identified in the plant genome, though its presence is surprising given the lack of 

CLIP family members (Bisgrove et al 2004, Gardiner & Marc 2003). Studies using 

reverse genetics and fluorescent fusion protein localization have shown that this 

Arabidopsis CLASP is a MAP involved in cell division and expansion (Ambrose et al 

2011, Ambrose et al 2007). 

 

EB1 

 

Another well-studied family of +TIPs are the end-binding (EB) proteins, distinguished by 

a highlight conserved N-terminal calponin homology (CH) domain responsible for 

microtubule binding. Homologues have been identified in many organisms, with the 

Arabidopsis genome containing three proteins (Chan et al 2003). EB proteins were shown 
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to localize preferentially to the distal ends of spindle and cytoplasmic MTs (Galjart & 

Perez 2003). As EB proteins can autonomously track MT ends without the aid of other 

binding partners, they are seen as ‘core’ components of the +TIP  network (Akhmanova 

& Steinmetz 2010). 

 

EB1 functions primarily as an ‘anti-pause’ factor, regulating microtubule dynamics and 

promoting interactions with attachment sites around the cell. The EB1 protein also has a 

proposed role in the recruitment of other cytoplasmic proteins/MAPs to form complexes 

at the MT plus ends. The adenomatous polyposis coli (APC) tumour suppressor protein 

has been supposed as the binding target for human EB1, and early studies have identified 

the plant homolog TANGLED1 as a putative binding partner of plant EB1 (Smith et al 

2001) . 

 

In plant cells, several groups have investigated the subcellular localization patterns of 

GFP-fused Arabidopsis EB1 proteins, showing that the protein colocalizes with 

microtubules and exhibits plus-end tracking ability (Chan et al 2003, Dixit et al 2006, 

Mathur et al 2003). Arabidopsis EB1 protein also labels microtubule minus ends at sites 

from which microtubules can grow and shrink. These minus-end nucleation sites are 

mobile, supporting the idea of a flexible centrosome in plants (Chan et al 2003). 

 

SPR1 

 

A plant-specific +TIP was identified by a mutational screen which showed plants with 

right-handed helical growth in roots and etiolated hypocotyls (Furutani et al 2000). Called 

SPR1 (SPIRAL1), GFP-fusions showed that the protein localizes to MTs in all four plant 

arrays and is highly expressed in tissues undergoing rapid cell elongation. (Nakajima et al 

2004, Sedbrook et al 2004). Interestingly, SPR1:GFP was seen to track the growing plus 

ends of microtubules in a similar way to CLIP-170, indicating its role as a +TIP 

(Sedbrook et al 2004). The Arabidopsis genome contains five other SPR1 homologues 

which only show sequence similarity in the N- and C-terminal regions but have high 

variability in the intervening sequences (Nakajima et al 2004). As this SPR1 gene encodes 

a small, novel 12kDa polypeptide, it is plausible that this plant-specific protein family 

evolved to regulate the unique plant MT arrays (Bisgrove et al 2004) 
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1.4.1.2. Minus end-binding proteins 

 

In addition to the proteins known to track the highly dynamic MT plus ends, there are 

also proteins involved in capping and stabilizing the less dynamic minus end. One such 

protein with known minus end-specific properties is the nucleating factor γ-tubulin. A 

member of the tubulin family (along with α- and β-subunits), γ-tubulin is highly 

conserved across all eukaryotes. It is found in complexes with an array of associated 

proteins, known as γ-tubulin complex proteins (GCPs), with which it forms either a small 

complex (γ-TuSC) of two γ-tubulin molecules, or a large ring complex (γ-TuRC) 

containing tubulin molecules associate with several GCPs (Raynaud-Messina & Merdes 

2007) (FIG 8). 

 

 

Figure 8: Schematic representation of the small complex (γ-TuSC), or the ring complex (γ-TuRC). The γ-TuSC 

consists of two γ-tubulin molecules associated with either GCP2 or 3. The ring  or lock-shaped complex consists 

of several γ-tubulin molecules associated with GCPs 4, 5 and 6 (Raynaud-Messina & Merdes 2007). 

 

Although, as described earlier, microtubules can quite easily nucleate in vitro providing 

the necessary conditions are met, γ-tubulin plays a key role in nucleation in vivo.  Due to 

conflicting experimental evidence, different mechanisms for γ-tubulin-dependent 

microtubule nucleation have been proposed (Erickson 2000). The ‘template model’ 

suggests that γ-tubulin monomers associate laterally to form the ring complex upon which 

αβ-dimers form in a hollow tube. This model, however, does not explain MT nucleation 

from small complexes. The alternative ‘protofilament model’ posits that γ-tubulin 
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molecules longitudinally associate into short protofilaments, curved due to the 

conformational constraint of γ-tubulin monomers. αβ-subunits then associate with the 

terminal γ-tubulin molecules either laterally or longitudinally to form several 

protofilaments which close to form a tube. This model also serves to explain nucleation 

from γ-TuSCs and even monomeric γ-tubulin (Erickson 2000, Raynaud-Messina & 

Merdes 2007).  

As well as serving vital roles in MT nucleation, studies have also linked γ-tubulin small 

complex proteins (γ-tubulin, GCP2 and 3) to mitosis and cell cycle progression. Cells 

lacking γ-TuSCs show aberrant spindle formation with monopolar arrays, and Drosophila 

embryos lacking γ-TuSCs are not viable (Raynaud-Messina & Merdes 2007, Yuba-Kubo 

et al 2005). The role of γ-TuRC proteins GCP4, 5 and 6, however, is considerably less 

clear. A recent study has shown that γ-TuRC GCPs may help to improve the fidelity of 

centrosome-dependent MT nucleation by γ-TuSCs (Verollet et al 2006). Other studies 

confirm that GCP4 and 5 are nonessential for normal MT nucleation, but Drosophila 

mutants are sterile (Vogt et al 2006). It is thought GCPs 4, 5 and 6 could function in 

higher eukaryotes to assemble the larger ring complexes required for the formation of 

specific MT arrays in differentiated cells (Oegema et al 1999). Interestingly, evidence 

pointing to γ-tubulin functioning as a pause and anti-catastrophe factor suggests a 

potential role in MT rescue events (Bouissou et al 2009). 

 

As the role of γ-tubulin and its associated proteins in nucleation of MTs in animal and 

fungal cells is now well characterized, a similar function in plant cells has also been 

confirmed (Drykova et al 2003, Horio & Oakley 2003, Pastuglia et al 2006). 

Interestingly, though, the cellular localization of γ-tubulin in plant cells does not seem 

entirely congruous with a role in nucleation alone. In addition to its presence at 

established nucleation sites, such as on the nuclear surface, γ-tubulin was also highly 

enriched along MTs in all arrays and not restricted to MT minus ends (Liu et al 1994, Liu 

et al 1993, Panteris et al 2000). Mutational and RNAi knockdown studies on the two 

functionally redundant Arabidopsis γ-tubulin genes showed that γ-tubulin plays an 

essential role in the organization of all plant MT arrays through interphase and cell 

division (Binarova et al 2006, Pastuglia et al 2006). γ-tubulin depletion caused defects in 

spindle and phragmoplast formation as well as disruption to cortical MT organization.  
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1.4.1.3. Lattice-binding proteins 

 

XMAP215 

 

Although the dynamic behaviour of microtubules takes place at their tips, many proteins 

have been found which bind along the length of the microtubule and still influence MT 

dynamics. One particularly large and extensively studied family was first discovered in 

Xenopus as XMAP215. Initially identified from the purification of Xenopus extracts 

shown to stimulate the growth rate of microtubules in vitro, XMAP215 was characterized 

as a 215 kDa protein able to stimulate an eight-fold increase in MT growth rate (Gard & 

Kirschner 1987). Other studies with XMAP215 in Xenopus egg extracts alluded to its role 

as a stabilizing factor: immunodepletion of the protein dramatically increased catastrophe 

at the plus end, with a concurrent reduction in average microtubule length (Tournebize et 

al 2000). Interestingly, the addition of XMAP215 to depleted extracts restored the 

catastrophe frequency to that to control extracts, highlighting its influence on both 

catastrophe and growth in physiological conditions (Tournebize et al 2000).  

 

The function of different domains in XMAP215 was elucidated by analysing the 

expression of GFP-tagged protein fragments; the N-terminal region was found in co-

localize with MTs in egg extracts but not in cells, and the C-terminal region co-localized 

with MTs and centrosome in extracts and in cells.  This suggested that the C-terminal 

region is responsible for microtubule binding (Popov et al 2000). 

 

Genome sequencing has revealed homologues of this protein in a wide range of 

eukaryotic systems (Ohkura et al 2001). Proteins all share a conserved N-terminal 

repeating structure known as the TOG domain (Tumour Overexpressed Gene), named 

after the human XMAP215 homologue ch-TOG. These domains consist of approximately 

200 amino acid residues and contain up to five HEAT motifs, responsible for protein-

protein interactions. Except for fission yeast, it seems that all eukaryotic organisms 

contain only one member of this family.  

 

The mechanism by which TOG domain proteins such as XMAP215 increase microtubule 

growth rate has been a contentious point. The traditional model suggested that XMAP215 

acted as a tubulin ‘shuttle’ or ‘template’, bringing short oligomers of tubulin subunits to 
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the growing microtubule end (Gard & Kirschner 1987). This was supported by in vitro 

optical trapping experiments which showed that microtubules grew in distinct steps of 

60nm, the approximate length of 7-8 tubulin dimers (Kerssemakers et al 2006). 

 

This template model, however, is hard to reconcile with recent evidence showing that 

XMAP215 binds to tubulin molecules with a 1:1 stoichiometry. Furthermore, the flux of 

XMAP215 to the plus end is not fast enough to provide sufficient tubulin to account for 

the high MT growth rates. This, combined with the fact that XMAP215 actually 

depolymerises MTs in the absence of free tubulin, led to the development of a non-

templating model which can account for these observations. It is argued that XMAP215 

acts as a ‘processive polymerase’ which catalyses the addition of individual tubulin 

subunits as it moves with the growing MT (Brouhard et al 2008). In this way, XMAP215 

would stabilize an intermediate step in the polymerization pathway, increasing the 

probability that the tubulin heterodimer is incorporated into the growing MT. 

Concurrently, as the free energy of this intermediate state would be less than both the 

unbound and bound states, this process would also operates in reverse, accelerating the 

exchange of tubulin dimers into and out of the lattice (Brouhard et al 2008). This model, 

therefore, provides a good explanation for both the polymerization and depolymerization 

properties of XMAP215. 

 

The plant member of the MAP215 family was first identified in 2001 (Whittington et al 

2001). Temperature-sensitive mutants in the mor1 gene (microtubule organisation1) were 

seen to exhibit disorganised and shortened cortical microtubules at the restrictive 

temperature, a phenotype rescued by returning to the permissive temperature. This 

pointed to a similar role for MOR1 (or AtMAP215) in stabilizing and promoting the 

growth of cortical microtubules. A more severe mor1 mutant was also identified, named 

gemini pollen1, which was lethal in homozygous plants and exhibited aberrant 

cytokinesis in haploid microspores (Twell et al 2002). Finally, a recent study with the 

temperature sensitive mor1 mutant found that at the restrictive temperature all cell cycle 

arrays contained shorter microtubules compared to wild type (Kawamura et al 2006).  

Thus, the MOR1/GEM1 protein influences the dynamics of cortical, PPB, mitotic and 

phragmoplast microtubules. As its biochemical properties are similar to those of 

XMAP215 (Hamada et al 2004), it most likely acts with a similar ‘processive’ 

mechanism. 



24 

 

An interesting question raised by the study of TOR-domain protein function is, why do 

these proteins bind along the microtubule lattice if they only function at the tip? Although 

their function in MT polymerization and observations of plus tip tracking has led to their 

classification as +TIP proteins, evidence for XMAP215 binding to the microtubule lattice 

has been shown (Brouhard et al 2008). Once bound, they then laterally diffuse to the 

microtubule tip and thus increase the chance of protein-protein interactions. As mentioned 

earlier, the C-terminal regions of TOG proteins are thought to mediate microtubule lattice 

biding, containing positively charged serine, glycine and lysine residues capable of 

interacting with the negatively charged tubulin C-termini (Al-Bassam et al 2006). 

Additionally, XMAP215 binds to MTs with a very low affinity, allowing for high 

diffusion rates through repeated cycles of binding, release and re-binding (Widlund et al 

2011). XMAP215 molecules would therefore localize to MT plus ends by recognising 

some additional features or via interaction with other +TIPS.  

 

Katanin 

 

Katanin, originally isolated from the eggs of the sea urchin Strongylocentrotus 

purpuratus, is a heterodimer consisting of a 60kDa microtubule-stimulated ATPase and a 

80kDa (p80) subunit responsible for subcellular targeting and regulation of the 

microtubule-severing 60kda (p60) subunit (McNally & Vale 1993). In animal cells, 

katanin localizes to centrosomes where it cuts MTs from their anchored minus ends 

(McNally et al 1996) 

 

Although first reported in animals, direct evidence for the severing action of katanin was 

uncovered in plants. The advantage of plant systems to their animal counterparts is that 

loss-of-function mutants are viable, and the action of katanin on interphase microtubules 

allows easy identification by light microscopy. In animal cells, however, the study of 

katanin is hindered by tightly bundled MT structures found in spindles, axons, dendrites 

and cilia (Roll-Mecak & McNally 2010). 

 

The Arabidopsis genome encodes one p60 and four p80 subunit homologues, at least one 

of which associates with the catalytic subunit. Mutations to the katanin gene produce 

aberrant cortical microtubule orientation and cell expansion in root epidermal cells 

(Nakamura & Hashimoto 2009). Additionally, mutants display many cortical 
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microtubules which converge to common cortical sites, suggesting that katanin severs 

microtubules at their minus ends. In this way, katanin increases microtubule dynamics in 

the cytoplasm by facilitating microtubule treadmilling via the release of minus ends from 

their cortical attachment sites. In contrast, katanin overexpression causes cortical MT 

bundling followed by MT shortening (Stoppin-Mellet et al 2006). Therefore, katanin may 

also have a role in generating free cortical microtubules which are subsequently 

incorporated into bundles. 

 

MAP65 

 

The MAP65 proteins comprise the most abundant family of MAPs in plants. First 

discovered as three electrophoretically separable 65kDa proteins purified from tobacco 

BY-2 cells (Chang-Jie & Sonobe 1993), the MAP65 family has grown to encompass a 

range of proteins with different functions, with nine genes identified in Arabidopsis 

(Hussey et al 2002).  

 

Initial biochemical studies of tobacco MAP65 demonstrated its ability to bind and bundle 

microtubules in vitro (Chang-Jie & Sonobe 1993). The development of antibodies against 

tobacco MAP65 led to the identification of three isotypes, MAP65-1a, -1b and -1c 

(Smertenko et al 2000). Interestingly, although the other two proteins were shown to bind 

universally to all MT arrays, NtMAP65-1a antibodies recognised only subsets of 

interphase microtubules and specifically highlighted the anaphase spindle and 

phragmoplast midzones (Smertenko et al 2000). Localization of the Arabidopsis MAP65-

1 and MAP65-3 proteins also showed selective binding throughout the cell cycle and 

enrichment at the MT midzones, highlighting a general role of these MAPs in MT cross-

bridge formation and stabilization (Muller et al 2004, Smertenko et al 2004). 

 

The fact that both NtMAP65-1a and ATMAP65-1 are present at the cortical array and 

preprophase band, disappear during metaphase and subsequently reappear during 

anaphase and cytokinesis, suggests a process of stringent cell cycle control. It has been 

shown that although AtMAP65-1 is phosphorylated throughout the cell cycle, it is 

hyperphosphorylated by cyclin-dependent and mitogen-activated protein kinases 

(CDKs/MAPKs) during metaphase (Smertenko et al 2006). Furthermore, mutation of a 

putative CDK phosphorylation site restored its MT binding capacity, and led to 
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localization at the spindle midzone throughout spindle morphogenesis (Mao et al 2005). 

Combined with other mutagenesis studies, these data suggest that MAP65-1 is controlled 

throughout the cell cycle by its phosphorylation state, and that dephosphorylation is 

necessary for its appearance at anaphase and cytokinesis. 

 

Although bacterially expressed recombinant AtMAP65-1 was shown to form 25nm cross-

links between MTs in vitro, it did not show polymerization effects nor could it protect 

microtubules against cold-induced depolymerization (Smertenko et al 2004). It functions 

only when dimerised, with the C-terminal domains binding to adjacent MTs, and N-

terminal regions contributing to dimer formation (Smertenko et al 2004). Similar 

biochemical studies on the tobacco subfamily NtMAP65-1b showed comparable bundling 

properties (Wicker-Planquart et al 2004). The bundling function of MAP65-1 has also 

been shown in vivo using GFP-protein fusions (Mao et al 2006), and recent studies have 

found that MAP65-1 and MAP65-2 play a critical role in the microtubule-dependent 

mechanism for stipulating axial cell growth in the expanding hypocotyl, independent of 

any mechanical role in microtubule array organization (Lucas et al 2011) 

 

WAVE-DAMPENED 

 

Another microtubule-bundling protein which binds along the MT lattice is WAVE-

DAMPENED2 (WVD2). The Arabidopsis mutant was identified due to its distinct cell 

expansion defects including skewed root growth, thicker organs, short stature  and 

dampened root waving on tilted agar surfaces (Yuen et al 2003). Analysis of these 

phenotypes revealed they were due to overexpression of the WDV2 gene, which caused 

oblique orientation of cortical microtubules in elongating cells as opposed to transversely 

in the wild type (Yuen et al 2003).  

 

The WVD2 gene encodes a novel, plant-specific 23 kDa protein which contains a 

conserved domain shared with seven other Arabidopsis proteins (Yuen et al 2003). 

Furthermore, the C-terminus of these proteins shows limited sequence homology to that 

of the vertebrate MAP TPX2 (Targeting Protein for Xklp2), critical for mitotic spindle 

formation in Xenopus egg extracts (Wittmann et al 2000). WDV2 appears to localize to 

cortical microtubules, and analysis of the WDV2 protein in vitro demonstrated its ability 

to bind and bundle microtubules, consistent with observations in the wdv2 mutants (Perrin 
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et al 2007). In this way, WDV2 appears to regulate cell expansion via its association with 

and organization of cortical microtubules. 

 

MAP70 

 

MAP70 is a recently discovered plant-specific MAP isolated biochemically in an attempt 

to identify MAPS not found by bioinformatics searches (Korolev et al 2005). The 

Arabidopsis gene AtMAP70-1 encodes a 70 kDa protein and forms part of a highly 

conserved five-member gene family. Studies using GFP-tagged protein in vivo showed 

continuous co-localization with all four microtubule arrays in both transiently and stably 

expressed plant suspension cultures, but did not label the phragmoplast midzone (Korolev 

et al 2005). GFP-fusions to variously truncated portions of the protein implicated a 

conserved central-coiled-coil domain along with part of a non-regular secondary structure 

region (NORS) in microtubule binding. Interestingly, MAP70-5 and its binding partner 

MAP70-1 have been identified as essential for secondary wall patterning in Arabidopsis 

wood cells (Pesquet et al 2010), highlighting the importance of the MAP70 family in 

vascularisation and cell wall deposition.   

 

MAP18 

 

MAP18 is another recently characterised pant-specific MAP purported to play a role in 

directional cell growth and cortical microtubule organization (Wang et al 2007). In vitro 

studies with the 18 kDa recombinant protein confirmed its MT-biding capability, and 

immunolocalization showed it focussed to dot-like regions along cortical microtubules. 

The fact that MAP18 inhibited MT polymerization in biochemical experiments, and 

overexpression in Arabidopsis caused cortical MT disruption and increased sensitivity to 

MT destabilizing drugs, all point to a role for MAP18 as a microtubule-destabilizing 

factor in Arabidopsis (Wang et al 2007). 
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1.4.2. Kinesins        

 

1.4.2.1. Structure 

 

Kinesins constitute a superfamily of microtubule motor proteins found ubiquitously in 

eukaryotic organisms. They are involved in a variety of cellular processes, such as 

organelle or vesicle transport, spindle formation, chromosome segregation and 

microtubule dynamics.  

 

The first kinesin protein was identified based on its motility in the cytoplasm of giant 

axons from squid (Brady et al 1982, Vale et al 1985). Now known as kinesin-1, it 

consisted of two heavy chains with proposed motor activity linked to two light chains 

which mediated binding of the motor to its relevant cargo (FIG 9). For several years 

kinesin-1 was the only protein known to move along microtubules towards their plus 

ends, opposite to the previously discovered and better characterised dyneins. It was not 

until the gene sequence encoding a Drosophila melanogaster kinesin heavy chain (KHC) 

was made public that many other kinesin-related proteins were identified by sequence 

homology. Since then, a large number of kinesin proteins have been identified and 

divided into 14 separate groups, though many still remain unassigned (Endow et al 2010).   

 

Although a startling amount of variation exists between proteins of different groups, all 

kinesins are characterized by a highly conserved motor domain. The force-producing 

KHCs contain the motor ‘head’ domain, which confers ATPase activity, a coiled-coil 

‘stalk’ region and ‘tail’ which binds the kinesin light chains. The position of the head 

domain varies between groups: it is at the N-terminus of kinesin-1, the C-terminus of 

kinesin-14 and centrally located in kinesin-13 (Kim & Endow 2000).  
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Figure 9: Structure of the homodimeric motor protein kinesin-1. The head domains bind ATP and microtubules, 

with an 8nm distance between them allowing processive movement along MTs in a step-by-step mechanism. The 

neck linker region confers directionality. The neck is connected to a 70nm coiled-coil stalk region which holds 

the two heads together. At the end of each stalk is situated the cargo binding domains (Yildiz & Selvin 2005).    

 

The stalk region generally mediates protein dimerization, although there is variation in its 

exact role. In kinesin-1, for example, the stalk contains a flexible hinge region allowing 

the tail to fold back and inhibit motor domain binding to microtubules (Hackney & Stock 

2000). It also has a role in coordinating the two head regions, allowing for processive 

movement of kinesin-1 along microtubules. The stalk region can mediate association of 

kinesins with other non-motor proteins: the budding yeast kinesin-14 Kar3, for example, 

can bind with itself or two other non-motor proteins, causing a conformational change 

which increases the motor speed (Barrett et al 2000, Manning et al 1999). 

 

Between the head and stalk regions lies the flexible neck linker, a mechanical element 

which changes its conformation depending on the bound nucleotide state. By docking 

onto the motor core in the ATP-bound state and undocking after ATP hydrolysis, it is 

proposed that this neck region creates the power stroke necessary for motor motility (Rice 

et al 1999). This region has also been shown to confer directionality, as mutations in 

conserved neck residues which interact with the head region produce bidirectional motors 

(Endow & Higuchi 2000).  
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Although these structural features play an important role in regulating kinesin activity, the 

pivotal characteristic of kinesin proteins, their ability to hydrolyse ATP, is a function of 

the conserved catalytic core. The core domain consists of an eight-stranded β-sheet with 

three α-helices on each side. It contains very highly conserved switch I and II motifs 

whose conformations change during the ATP hydrolysis cycle, a mechanism very similar 

to their G-protein counterparts (Rice et al 1999, Yun et al 2001).  

 

Kinesin-1 is a processive motor protein which can make over one hundred steps each time 

it binds to a microtubule. Each 8nm step, the distance between adjacent tubulin dimers 

along a microtubule protofilament, is tightly coupled to ATP hydrolysis: For every ATP 

molecule hydrolysed one step is taken which generates roughly 6-8 pN of force 

(Schnitzer & Block 1997). Processive motors such as kinesin-1 move along microtubules 

towards the microtubule plus ends using alternate heads with a ‘hand-over-hand’ 

mechanism (Kaseda et al 2003), whereas other motors, such as kinesin-14, detach from 

the microtubule immediately after hydrolysing a single ATP molecule (Endow & Higuchi 

2000). 

 

1.4.2.2. Cellular Function 

 

Kinesin motor proteins play important roles in a diverse range of cellular processes. The 

classical kinesin-1 is essential for the transportation of vesicles and organelles to specific 

regions of the cytoplasm, known to bind cargoes associated with the mitochondria, 

endoplasmic reticulum, Golgi complex, endosomes and vesicles of the presynaptic axons 

in synaptic transmission, for example (Endow et al 2010). As well as vesicles/organelles, 

kinesin-1 also binds lysosomes, receptor and adaptor proteins, and signal-pathway-

interacting proteins, highlighting its diverse range of cargos and role in spatially 

regulating signal transduction (Verhey & Rapoport 2001). The heterotrimeric kinesin-2 

motor also has a transport function, involved in the intraflagellar transport required for the 

formation and maintenance of mammalian flagella and cilia (Rosenbaum & Witman 

2002). 

 

Kinesin family members function crucially in cell division, involved in forming the 

bipolar structure of the mitotic spindle, transport of chromosomes towards the equator of 

the spindle, chromosome segregation and poleward transport of chromosomes after 
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segregation (Yildiz & Selvin 2005). To carry out these functions, kinesin motors utilize 

several mechanisms (Sharp et al 2000). Microtubule sliding occurs when motors diffuse 

along a microtubule whilst remaining attached to another microtubule, a mechanism used 

by the Drosophila kinesin-14, Ncd, to bundle and slide microtubules in the formation of 

spindle poles (Skold et al 2005). Kinesins can also transport chromosomes along spindles 

directly, with kinesin-4 chromokinesin serving to segregate chromosomes towards 

opposite poles (Wang & Adler 1995). Finally, kinesin proteins allow chromosome 

transport by coupling kinetochore motility to spindle microtubule dynamics. It is thought 

that kinesin-7 could use its minus-end directed motility to transport kinetochores towards 

MT plus ends in metaphase, and subsequently anchor them to shortening MTs during 

anaphase (Lombillo et al 1995). 

 

1.4.3. Catastrophic Kinesins 

 

The kinesin super-family of proteins are molecular motors which utilize the energy 

derived from ATP hydrolysis to produce force. Traditionally, all of these 

mechanochemical enzymes were thought to translocate along the microtubule lattice in a 

uni-directional manner, “walking” along microtubules via a conformational change 

induced by ATP hydrolysis. However, the discovery that several kinesin family members 

exclusively depolymerize microtubules from both ends has challenged this idea. 

 

Although there are three kinesin families known to exhibit depolymerizing activity 

(kinesin-8, kinesin-14 and kinesin-13), it is the kinesin-13s which are best characterized. 

Screens for motors involved in spindle function in Xenopus eggs led to the discovery of 

XKCM1 (Xenopus Kinesin Central Motor 1) (Walczak et al 1996), and early 

depletion/overexpression experiments highlighted the importance of these motors as 

catastrophe factors. This, coupled with a comprehensive collection of in vitro assays 

characterising the microtubule-depolymerizing function of XKCM1, provided compelling 

evidence for this new class of kinesin motor proteins (Desai et al 1999). The mammalian 

homolog of XKCM1, MCAK (Mitotic Centromere-Associated Kinesin), is one of the 

four kinesin-13 proteins found in mammals and is generally used as the prototypical 

subject for functional experiments.  
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Kinesin-13 proteins are homodimeric factors with a distinctive structure: their kinesin 

motor domain, containing the ATP- and microtubule-binding sites, is situated in the 

middle of the protein sequence. The kinesin-13 motor core shares a high sequence 

similarity to all kinesins, with many highly conserved regions such as the nucleotide-

biding motif. Immediately N-terminal of the motor core lies a kinesin-13 class-specific 

region of 60 amino acids known as the neck region, and N-terminal to this is a 25-30 kDa 

domain involved in subcellular targeting and localization (Walczak et al 2002, Wordeman 

et al 1999). The C-terminus contains variable coiled-coil regions and is proposed to act 

with the N-terminus in dimerization (Maney et al 2001) (FIG 10).  

 

Figure 10: Schematic of the kinesin-13 protein structure. As shown, both the N- and C-terminal domains 

contribute to dimerization (Moores et al 2006) 

 

1.4.3.1. Depolymerization mechanism  

 

The depolymerizing activity of kinesin-13 essentially centres around the production of the 

bent, unstable conformation of tubulin at the microtubule ends (Desai et al 1999). In 

theory this could be achieved in two ways: either by selective stabilization of the bent 

tubulin conformation or by active catalysis of a straight-to-bend transition (Moores & 

Milligan 2006). The fact that kinesin-13 motors are able to depolymerize stabilized 

microtubule substrates provides compelling evidence that they actively deconstruct 

microtubules rather than waiting for exposed unstable tubulin dimers to act upon (Desai 

et al 1999). 

 

Assays using the non-hydrolysable ATP analogue AMPPNP highlighted the key step in 

this depolymerization mechanism, as unpeeling of stabilized microtubules only occurred 

in the presence of this ATP (Desai et al 1999, Moores et al 2002). This provided the basis 

for a putative model of kinesin-13 motor action (FIG 11) (Moores et al 2002). In the first 

step, the kinesin-13 motor protein acts like a classical kinesin, binding a microtubule 

whilst exhibiting microtubule-induced ADP release. Next, binding of ATP causes a 

conformational change to the kinesin and its underlying tubulin dimer, causing the dimer 



33 

 

to bend outwards from the microtubule wall (FIG11-2). The hydrolysis and release of 

ATP facilitates detachment of the kinesin-13-tubulin complex from the protofilaments 

(FIG11-3), followed by release of the kinesin-13 molecule ready for another round of 

depolymerization (FIG11-4). Therefore, whereas conventional kinesins utilize the energy 

of ATP to generate a “power stroke”, kinesin-13 uses it to bend microtubule 

protofilaments (Moores et al 2002). 

 

 

Figure 11: Model for the microtubule depolymerisation activity of kinesin-13 motors.  Kinesin-13 binds to  a 

microtubule, releasing ADP (1). When ATP binds a conformational change in the tubulin dimer is produced (2), 

and ATP hydrolysis leads to detachment of the tubulin-kinesin-13 complex from the microtubule protofilament 

(3). Subsequent separation of this complex released the kinesin-13 molecule ready for another round of 

depolymerization (Moores et al 2002). 

Although the kinesin-13 motor core is built around the highly conserved eight-stranded β-

sheet structure, the presence of several unique structures, particularly in loop two and α-

helix four, may help to explain its function. Interestingly, positioning of a key energy-

transducing element, the α4 helix, directly over the tubulin intra-dimer interface suggests 

its direct role in depolymerization. Despite this, mutational studies of kinesin-13-specfic 

residues in or around this helix only weaken the motor-MT interaction. However, 

mutations elsewhere in the motor core do not reduce MT binding but do disrupt the ATP-

dependent bending of tubulin during the depolymerization cycle. Therefore, it is most 
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likely the cooperative effect of several kinesin-13-specific residues within the motor core 

which contribute to its depolymerization activity (Moores & Milligan 2006).   

 

Although the MT depolymerization properties of kinesin-13 proteins are defined by the 

motor core, in vitro studies show that it functions poorly in comparison to full-length 

proteins (Hertzer et al 2006, Ovechkina et al 2002). The fact that monomeric neck+motor 

constructs show activity almost identical to that of full-length constructs highlights the 

role of this neck region in depolymerization (Hertzer et al 2006, Ovechkina et al 2002). 

However, the neck region alone does not exhibit depolymerization activity (Maney et al 

1998), nor does it confer activity when expressed with a classical motile kinesin motor 

region (Maney et al 2001).   

 

Structural analysis of neck+motor constructs have supported the hypothesis that the neck 

region provides additional MT attachment for the motor, via an abundance of positively 

charged residues, as it carries out its power stroke (Moores et al 2006, Ovechkina et al 

2002). Removal of these positively charged residues either by deletion or alanine 

substitution drastically reduced the depolymerization activity of MCAK. Furthermore, 

replacement of this non-functional neck region with the K-loop of KIF1A, containing 6 

positively charged residues, rescued the neckless mutants (Ovechkina et al 2002). Taken 

together, this shows that overall charge is an important functional property of the neck 

region, suggesting a role in assisting depolymerization by electrostatic tethering to 

microtubules. A more recent study suggests that the neck domain plays a role in blocking 

other proteins from binding to the same protofilament, thus increasing depolymerization 

efficiency (Mulder et al 2009). 

 

Kinesin-13 proteins bind to the MT lattice and move rapidly along its surface to the plus 

or minus ends by diffusion (Helenius et al 2006). As described earlier for other lattice-

binding MAPs, 1D diffusion is more efficient than 3D diffusion in allowing motors to 

quickly reach MT ends, but this diffusion is bi-directional and does not favour either pole.  
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1.4.3.2. Cellular Function and Localization 

 

Functional analysis of these proteins is difficult as activity of MCAK seems to be closely 

linked to the ratio of tubulin dimers to polymer.  In general terms, Kinesin-13 proteins 

depolymerize microtubules and regulate their dynamics, especially during cell division. 

MCAK localizes to kinetochores, spindle poles and microtubule plus ends where it has a 

role in chromosome dynamics, poleward microtubule flux and correct spindle positioning 

during mitosis (Wordeman 2010) (FIG 12 & 13). 

 

During cell division the MT cytoskeleton undergoes several dramatic rearrangements. 

The initial stage involves the disintegration of interphase arrays and subsequent formation 

of mitotic spindle from polarized centrosomes. Although it is well established that 

kinesin-13 motors play a key role in spindle formation and dynamics, it has been hard to 

pick out conserved functions between systems. 

 

One of the most well-established roles of kinesin-13 motors is in the initiation of spindle 

bi-polarity, as depletion of kinesin-13 in a range of organisms results in a high percentage 

of monopolar spindles or extremely dense bipolar spindles (Walczak et al 1996).  

Furthermore, the role of kinesin-13 motors in the ensuring the proper regulation of 

spindle dynamics is clear, as inhibition in almost all model system produces perturbation 

in microtubule polymer levels (Ems-McClung & Walczak 2010). Interestingly, though 

the subclasses of microtubule affected seem to be dependent on the cell type and kinesin-

13 studied (Ems-McClung & Walczak 2010). 

 

At the other end of mitotic spindles, kinesin-13 motors have also been localized at the 

kinetochore and have been ascribed several roles. Several studies support the role of 

MCAK in regulating kinetochore-microtubule attachments, though it is not known 

whether their role extends to the correction of prevention of aberrant connections.  

 

Since their function as MT depolymerizers has been so well characterized, it has long 

been proposed that kinesin-13 motors play a role in the kinetochore-mediated MT 

depolymerization which leads to chromosome segregation in anaphase. Indeed, initial 

findings that inhibition of centromeric kinesin-13 led to anaphase defects supported this 
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idea (Maney et al 1998). However, the fact that the rates of chromosome segregations 

remained normal suggested that these defects were more likely due to attachment defects 

in late metaphase (Kline-Smith et al 2004). Despite this work in vertebrates, studies in 

insect systems showed clearly that insect kinesin-13s account for most of the 

chromosome movement in anaphase (Rogers et al 2004), highlighting the functional 

difference between species. 

 

 

Figure 12: schematic of kinesin-13 protein function at different stages of mitosis. Blue: chromosomes, Black: 

kinetochores, Green: spindle MTs, Dark Green: centrioles, Red Asterisk: kinesin-13 (Moores & Milligan 2006) 
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Figure 13: Localization of MCAK during mitosis. Aurora B is a regularity kinesin which colocalizes with MCAK 

(Adapted from Lan et al 2004).  

 

1.5. Kinesin-13 in Plants 

 

In the model plant system Arabidopsis thaliana, genes encoding at least 61 kinesin-like 

proteins have been identified (Reddy & Day 2001), the largest number of kinesins among 

all eukaryotic systems sequenced. Of this 61, only two Arabidopsis genes were found to 

group with the MCAK family of kinesin-13 proteins (FIG 14). AtKinesin-13A is the 

larger of the two proteins, consisting of 794 amino acids, whereas AtKinesin-13B is 

slightly smaller at 684 amino acids. 

 

As these kinesins have only been recently identified, little is known about their structure 

and cellular function. A study by Lu et al in 2005 analysed the kinesin encoded by the 

At3g16630 gene, described as AtKinesin-13A. Identified as a protein encoded by 794 

amino acids and a predicted molecular mass of 89 kDa, they showed that sequence 

similarity with MCAK and other kinesin-13 motors was limited only to the motor core 
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(Lu et al 2005). Lu et al used immunofluorescence and electron microscopy to localize 

AtKinesin-13A with the Golgi apparatus and demonstrated its role in plant trichome 

morphogenesis. In this way, they proposed that microtubules, kinesins and the Golgi 

apparatus work together to regulate plant cell morphogenesis in flowering plants.  

 

 

Figure 14:  Section of a schematic diagram of all Arabidopsis kinesins. The motor domains are marked in red 

and the coiled coil domains in green. ARM are armadillo/β-catenin-like repeats. The two kinesin-13 proteins are 

numbers 43 (MGL6.9) and 47 (MSL1.9), both exhibiting internal motor domains. The larger MSL1.9 is termed 

AtKinesin-13A, and the smaller MGl6.9, AtKinesin-13B (Adapted from Reddy & Day 2001) 

 

 

Importantly, though, the apparent lack of a “neck” region in the kinesin-13A protein was 

used to confirm their finding that it does not have the depolymerase activity normally 

associated with kinesin-13 motors. Detailed study into the neck region of MCAK 

mentioned above (Ovechkina et al 2002), however, showed that the charge of the neck 

region was more important than its length. Furthermore, the depolymerization activity 

seemed to be directly proportional to the number of positively charged residues in the 

neck region. Interestingly, sequence comparison between the two Arabidopsis kinesins 

and MCAK reveals that some positive residues in the neck region of AtKinesin-13A are 

conserved with MCAK. Furthermore, other positive residues can be identified in this 
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region, although not conserved in the MCAK sequence. Using the evidence mentioned 

above, it is likely that AtKinesin-13A could have some depolymerizing activity, albeit 

significantly less than the MCAK due to a much lower number of positively charged 

residues.  

 

Another limitation of this study is the fact that the other kinesin-13 protein was 

completely ignored. As the antibody used to detect the AtKin13A protein in biochemical 

and immunofluorescence studies was raised against quite a large portion of the protein 

with significant similarity between both Arabidopsis proteins, the C-terminal 271 amino 

acids, it is highly likely that the antibody would be cross-reactive. Indeed, close 

examination of their immunoblot shows the presence of at least one smaller band which 

could be the smaller protein. It is difficult, therefore, to attribute the conclusions of this 

study to a particular kinesin-13 protein.  

 

A more recent study conducted in our lab sought to analyse the individual properties of 

these two proteins. Antibodies were raised against specific regions of the two proteins 

from areas between the motor and C-terminal domains showing very little sequence 

similarity (Hawkins, personal communication). Analysis of protein localization using 

immunofluorescence showed that AtKinesin-13A (then called CMK-2) localized 

predominately to the preprophase band and mitotic spindle, consistent with that of its 

depolymerizing homologues in other organisms. AtKinesin-13B, however, was not found 

on mitotic spindle but was instead localized to discrete Golgi-like structures within the 

cytoplasm. Furthermore, cells and leaf tissue infiltrated with AtKinesin-13A showed 

shortened, fragmented microtubules, pointing to a function of this protein in microtubule 

depolymerization. 

 

A fresh insight was shed onto these plant kinesins when a recent study suggested a role 

for Atkinesin-13A in regulating microtubule dynamics via is interaction with the ROP 

effector RIP3 (Mucha et al 2010). Importantly, they found that cells expressing RIP3 and 

AtKinesin-13A fusions would sometimes show fragmented microtubules.  
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1.6. Research Plan 

 

This data, combined with other work from the Hussey lab (Hawkins, personal 

communication) suggests that at least one of the plant kinesin-13 proteins may actually 

function as a microtubule depolymerizer. In light of this recent work, this project aims to 

investigate in more detail the functions of AtKinesin-13A/B and their effect on 

microtubule dynamics.  

 

The first aim is to analyse the function of both proteins in vitro using biochemical studies. 

Proteins will be expressed in both bacterial and insect cells before undergoing co-

sedimentation and turbidimetric assays to assess their activity and microtubule-interacting 

properties.  

 

The second aim of this project is to investigate the in vivo effects of these proteins on 

microtubule dynamics throughout the cell cycle. Tobacco BY-2 cell lines will be 

generated which express bothAtKinesin-13A and 13B, as well as a human HsKinesin-13 

for comparison, under the expression of an estradiol-inducible promoter. This inducible 

system will allow transient expression of recombinant protein and allow me to analyse the 

effect of expression on cell growth, nuclear morphology and microtubule dynamics by 

immunofluorescence microscopy. 
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2. MATERIALS AND METHODS 

 

2.1 MATERIALS 

 

2.1.1 Plant Material 

 

Arabidopsis thaliana of the Columbia (Col-O) ecotype were grown from LEHLE seeds. 

 

2.1.2 E. coli strains 

 

Table 1: bacterial strains used in protocols 

Strain Genotype Application 

DH5  All gateway 

cloning 

XL-1 Blue  Glycerol stocks 

BL21 DE3 Rosetta 2
TM

  Protein expression 

 

2.1.3 Agrobacterium strains 

 

Table 2: agrobacterium strains used in protocol 

Strain Resistance Application 

LBA4404 Rif & Strep 
Transformation of BY-2 

cells 

GV3101 Rif & Gent 
Transformation of BY-2 

cells 

C58C3 Nal & Strep 
Floral dipping of A. 

thaliana 
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2.1.4 Vectors and Constructs 

 

Table 3: vector details used for cloning 

Vector name Application Size 

(bp) 

Resistance 

Cassette 

Source 

pDONR207 Gateway Donor Vector 5585 Gentamicin 

(bacteria) 

Invitrogen 

pGAT4 Bacterial protein 

expression with N-

terminal 6His Tag. 

 

5256 Ampicillin 

(bacteria) 

 

pMDC7 Gateway Destination 

vector for estrogen-

inducible ectopic gene 

expression 

 Spectinomycin 

(bacteria) 

Hygromycin 

(plants) 

 

PIEx-7 Insect cell expression 

vector with N-terminal 

6His Tag. 

3723 

 

 

 

Ampicillin Merck 

 

2.2 METHODS 

 

Molecular Biology 

 

2.2.1 Transformations 

 

2.2.1.1 Preparation of chemically competent cells 

 

E.coli strains 

 

Glycerol stocks were streaked out onto LB agar plates (5g/l yeast extract, 10g/l tryptone, 

5g/l NaCl, 20g/l  Agar, pH 7.0) and grown overnight at 37
o
C for14-16 hours. A single 

colony was used to inoculate 100ml SOB medium (2% tryptone (w/v), 0.5 % yeast extract 
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(w/v), 0.05% NaCl (w/v), 2.5mM KCl and 10mM MgCl2, pH 7.0) in a 1L flask and 

incubated at room temperature (25
o
C) until the OD600= 0.4-0.6. The culture was then put 

on ice for 10 minutes and the cells pelleted by centrifugation at 2500  g for 5 minutes at 

4
o
C. The supernatant was discarded and the pellet resuspended in 32ml of ice-cold TB 

buffer (10mM PIPES pH 6.7, 15mM CaCl2.2H20, 250mM KCl and 55mM MnCl2.4H20 to 

pH 6.7 using KOH), before another 10 minute incubation on ice. The cells were 

centrifuged again at 2500  g for 5 minutes at 4
o
C and the pellet resuspended in 8ml of 

ice-cold TB buffer. DMSO was added to a final concentration of 0.7% (v/v) before a final 

incubation on ice for 10 minutes. Cells were then separated into 400m aliquots, frozen 

in liquid nitrogen and stored at -80
o
C. 

 

Agrobacterium strains 

 

Agrobacterium tumefaciens strains were grown on YEB agar plates (5g/l beef extract, 

1g/l yeast extract, 5g/l peptone, 5g/l sucrose, 0.5g/l MgSO4.7H20 and 20g/l agar at pH 

7.2) supplemented with the relevant antibiotics (C58C3: 25mg/ml Nalidixic Acid, 

100mg/ml streptomycin, GV3101: 25mg/ml Gentamicin, 25mg/ml rifampicin, LBA4404: 

25mg/ml Rifampicin, 100mg/ml Streptomycin) for approximately 2 days at 30
o
C.  

Individual colonies were then used to inoculate 5ml of YEB supplemented with 

appropriate antibiotics and incubated overnight at 30
o
C. The overnight culture was then 

used to inoculate 500ml of YEB (with antibiotics) and grown at 30
o
C for approximately 

4-5 hours until the OD600= 0.5-0.6. The culture was then chilled on ice and pelleted by 

centrifugation at 3000  g for 5 minutes at 4
o
C. The supernatant was discarded and the 

pellet gently resuspended in 50ml of ice-cold 0.15M NaCl, before being incubated for 15 

minutes on ice. The cells were centrifuged again at 3000  g for 5 minutes at 4
o
C and the 

supernatant again discarded. The cells were resuspended in 5ml of ice-cold 20mM CaCl2, 

separated into 100-200l aliquots and quick-frozen in liquid nitrogen for storage at -80
o
C. 
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2.2.1.2 Transformation of chemically competent cells using the Heat Shock method 

 

E.coli strains 

 

A 200l aliquot of chemically competent E.coli cells was thawed on ice to which 1-20l 

of plasmid DNA was added. The cells were incubated on ice for 30 minutes before being 

“heat-shocked” at 42
o
C for 30 seconds and then placed back on ice for a further 2 

minutes. 800l of SOC medium (SOB medium, 20mM (0.36% (v/v) glucose) was added 

and the cells were left to recover at 37
o
C for 1 hour with shaking. Cells were then spread 

onto suitably selective LB agar plates and incubated at 37
o
C for 14-16 hours. 

 

Agrobacterium strains 

 

Approximately 1-2g of plasmid DNA was added to thawed 200l aliquots of chemically 

competent Agrobacterium cells on ice. Cells were immediately quick-frozen in liquid 

nitrogen and then incubated in a water bath at 37
o
C for 5 minutes. 400l of YEB medium 

was added to the cells, which were then left to recover at 30
o
C for 2-4 hours. Cells were 

plated onto suitably selective YEB agar plates and grown for 48-72 hours at 30
o
C. 

 

2.2.2 Plasmid DNA purification 

 

Plasmid DNA was purified using the Wizard Plus SV Miniprep DNA Purification System 

(Promega). DNA was eluted into 100µl of nuclease-free water and stored at -20
o
C. 

 

2.2.3 Restriction Digests 

 

Digests were carried out in a total reaction mixture of 20l containing 5l of purified 

plasmid DNA, 10l of 10x Reaction buffer, 3l of sterile distilled water and 2l of the 

relevant restriction enzyme.  Reaction mixtures were incubated at their optimum 

temperature for 2 hours. 
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2.2.4 Agarose Gel Analysis 

 

Agarose Gels were used to resolve PCR and restriction digest products. Gels were 

prepared by dissolving 1% (w/v) Agarose Low EEO (Melford) in 0.5 TAE buffer 

(0.04M Tris acetate, 1mM EDTA) by microwaving. Once the liquid had cooled, 5l of 

Ethidium Bromide was added per 200ml of buffer and poured into trays with variously 

sized well combs. The gels, once set, were transferred to an electrophoresis tank and 

submerged in 1 TAE buffer. Samples were prepared by mixing with 5 DNA loading 

buffer (Bioline) and then loaded into wells alongside the Bioline Hyperladder I marker. 

1% gels were run for 20-30 minutes at 100V and visualized by UV illumination using a 

BioRad Gel-Doc 1000 system.  

 

2.2.5 Amplification of fragments using PCR 

The Polymerase Chain Reaction was used to produce DNA fragments for cloning. For 

high fidelity reactions the Phusion  (Finnzyme) DNA polymerase was used. 

 

 A typical Phusion PCR reaction mixture contained: 

 

Component Volume (l) 

sdH20 34 

5 GC Buffer 10 

Forward Primer (10pmol/l) 0.5 

Reverse Primer (10pmol/l) 0.5 

10mM dNTPs 1 

MgCl2 1 

DMSO 1.5 

Template DNA 1 

Phusion DNA polymerase 0.5 
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The thermocycler programme was typically composed of the following steps: 

 

Stage 1 98
o
C 30s  

    

Stage 2 98
o
C 10s  

 68
o
C 20s 30 cycles 

 72
o
C 30s  

    

Stage 3 72
o
C 7min  

For reactions where a high fidelity was not important, for example when amplifying 

sequences for genotyping purposes, the non-proofreading BioTaq Red (Bioline) DNA 

polymerase was used. Again, a typical Taq mixture contained the following: 

 

Component Volume (l) 

sdH20 34.5 

10 NH4 Reaction Buffer 10 

Forward Primer (10pmol/l) 0.5 

Reverse Primer (10pmol/l) 0.5 

10mM dNTPs 1 

MgCl2 2.5 

Template DNA 0.5 

Phusion DNA polymerase 0.5 

 

The PCR programme comprised of the same stages as above except the annealing 

temperature was set at 63
o
C. 

 

In both cases, the annealing temperature was always first set at 5
o
C below that of the 

melting temperature of each timer, and then further optimized if initial reactions did not 

produce positive results. 
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2.2.6 The GATEWAY
TM

 Cloning System 

 

The GATEWAY system involves cloned DNA sequences being transferred between 

vectors using site-specific recombination, enabling the transfer of specific DNA 

sequences of interest into multiple vectors whilst maintaining the same reading frame and 

orientation. Rather than a series of restriction and ligation reaction reactions, this system 

involves two recombination steps: the BP reaction involving recombination between an 

attB-flanked PCR product and a Donor vector to form an entry clone, and the LR reaction 

which involves recombination between the entry clone and a destination vector to 

produce an expression clone.  

 

2.2.6.1 BP Reaction 

 

The BP reaction was used to insert Gateway PCR products into the donor vector 

pDONR207 involving the BP CLonase II Enzyme Mix (Invitrogen). Typical 10µl 

reactions were set up as follows: 

 

Component Volume (l) 

PCR product 0.5 

pDONR207 vector 3 

TE Buffer 4.5 

BP Clonase II 2 

 

After addition of BP Clonase the mixture was briefly vortexed and then incubated for 1 

hour at 25
o
C. 1µl of Proteinase K solution (Invitrogen) was added to terminate the 

reaction and the solution was incubated for a further 10 minutes at 37
o
C. 

 

Approximately 3µl of the BP reaction mixture was used to transform 150µl of competent 

DH5α cells (as described in 2.2.1) and the transformed cells were spread onto LB agar 

plates containing 25µg/ml Gentamicin. Plasmid DNA was purified from positive bacterial 

colonies and subsequently digested to confirm the presence of the correct insert (as in 

2.2.3). Correct insertion into the desired region was also checked with sequencing using 

gene-specific primers (see appendix) 
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2.2.6.2 LR Reaction 

 

This reaction involves recombining the fragment of interest out of the entry clone and into 

the appropriate destination vector. In this case the destination vector used was pMDC7, 

an estrogen-inducible vector derived from PER8. A typical 10µl reaction mixture was as 

follows 

Component Volume (l) 

Entry clone 0.3 

pMDC7 vector 1 

TE Buffer 6.7 

LR Clonase II 2 

 

After addition of LR Clonase II the mixture was gently vortexed and then incubated for 1 

hour at 25
o
C. The reaction was quenched with addition of 1µl Proteinase K solution and 

incubated for 10 minutes at 37
o
C. 

 

As with the BP reaction, the recombinant destination vector was transformed into DH5α 

cells and spread onto LB agar plates containing 100µg/ml Spectinomycin. The plasmid 

DNA was purified and the presence of correct insert checked as described above. 

 

2.2.7 DNA Sequencing 

 

Sequencing was carried out by the Durham University DNA Sequencing Service, using 

an Applied Biosystems 3730 DNA Analyzer. 

 

Biochemistry 

 

2.2.8 SDS-PAGE (Polyacrylamide Gel Electrophoresis) Analysis 

 

Gel plates were thoroughly cleaned with detergent, distilled water and 70% ethanol and 

assembled. For analysis of the kinesin proteins, 7.5% resolving gel buffer was used 

(0.75M Tris-HCL, pH8.8, 10% (w/v) Ammonium persulphate, 10% (w/v) SDS). The 

polymerization catalyst TEMED was added to the resolving gel mixture, which was then 
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poured into the plates. A layer of ethanol was added on top of the gel to prevent drying 

and maintain a flat gel front. After polymerization, the ethanol was washed off and a well 

comb inserted. TEMED was added to 4% Stacking gel buffer (0.25M Tris-HCl, pH 6.8, 

10% (w/v) Ammonium persulphate, 10% (w/v) SDS), which was subsequently poured 

into the gel assembly. After polymerization the gel combs were removed and excess 

stacking gel buffer washed off. The remaining gel components were disassembled and the 

gel was submerged vertically in a tank of gel running buffer (2.5mM Tris, 19mM 

Glycine, 0.01% SDS). Protein samples were mixed 1:1 with 2×SDS sample buffer 

(0.25M Tris-HCl pH 6.8, 4% (w/v) SDS, 20% (v/v) glycerol, 1% (v/v) mercaptoethanol) 

and loaded into wells alongside 3µl of Pageruler
TM

 Protein Ladder (Fermentas). A current 

of 25mA was applied to each gel and the proteins were left to run until the loading dye 

front reached the bottom of the gel. Gels were then stained for 30-60 minutes in gel 

staining solution (35% (v/v) EtOH, 7% (v/v) Acetic acid, 0.25% (v/v) Coomassie Briliant 

blue R-250) and then de-stained in de-stain solution (35% EtOH and 7% Acetic acid) 

before scanning. 

 

2.2.9 Electroblotting and Western Blotting 

 

Proteins were transferred from SDS-PAGE gels to nitrocellulose membranes. Gels were 

placed between two nitrocellulose membranes and surrounded by filter paper in a transfer 

assembly. This was then submerged vertically in a tank containing transfer buffer (48mM 

Tris, 38mM Glycine, 0.037% (w/v) SDS, 20% (v/v) methanol). The assembly was 

orientated so that the gel was nearest the –ve electrode and the membrane nearest the +ve 

electrode. A potential difference of 50V was applied across the gel/membrane for 1.5 

hours or 20V if transferring overnight. After transfer the membrane was washed in 

distilled water and stained with 100× Amido black (0.5g Amidoblack in 50ml of 5% (v/v) 

Acetic acid). 

 

After rinsing in distilled water the membrane was incubated for 20min in 2×TBST buffer 

(20mM Tris, 300mM NaCL, pH7.4) containing 5% (w/v) dried milk powder.  After 

blocking the membrane was incubated with the primary antibody for 1 hour, typically 

diluted to 1:1000 in 2TBST + milk buffer. The membrane was then washed for 11 min, 

15min and 110min in 2TBST before incubation with the secondary anti-mouse IgG 
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horseradish peroxidase-conjugated antibody (GE Healthcare) for 40 minutes. This 

antibody was typically diluted 1:3000 again in 2TBST + milk. Incubation times and 

antibody concentrations differed depending on individual optimization. 

 

The probed proteins were visualized in two ways. After incubation for approximately 5 

minutes with 1ml of ECL reaction solution (Millipore), a piece of X-ray film was exposed 

and developed with timings dependent on signal strength. As an alternative to X-ray film, 

a Fujifilm Intelligent Dark Box II was used to take a picture directly of the membrane, 

eliminating the need for x-ray film and the associated chemicals.    

 

2.2.10 Silver staining of proteins on nitrocellulose membranes 

 

The membrane was thoroughly rinsed with distilled water to remove all excess ECL, 

amidoblack or antibody solutions. The membrane was then incubated for 2-5 minutes 

with shaking in the silver nitrate solution (2% (v/v) Na3-citrate, 0.8% (v/v) FeSO4.7H2O, 

0.2% (v/v) AgNO3). After incubation the membrane was rinsed in distilled water and 

some photo-fixer usually added to increase the contrast. Finally, the membrane was rinsed 

again, scanned and air-dried. 

 

2.2.11 Expression of His-tagged proteins  

 

2.2.11.1 Bacterial Expression 

 

Protein gene fragments were cloned into the pGAT4 expression vector (Novagen) and 

transformed into BL21 DE3 Rosetta 2
TM 

 E.coli cells. Cells were grown in 50ml LB 

cultures (+ relevant antibiotics) at 37
o
C overnight and used to inoculate 1L of pre-warmed 

LB medium with appropriate antibiotics.  The 1L cultures were incubated at 37
o
C until 

the OD600= 0.4-0.8.  When the OD reached desired value, IPTG was added to a final 

concentration of 1mM and the culture was incubated for 3-6 hours.  After incubation the 

cultures were centrifuged at 6000rpm for 5 minutes to pellet the cells (Beckman JLA 

10.500 fixed angle rotor). 
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2.2.11.2 Insect (Sf9) cell Expression 

 

Protein gene fragments were first cloned into the pIEx-7 expression vector (Merck). This 

vector allows rapid, transient transfection in insect cells with a 6×Hist tag for purification. 

Expression is directed by the baculovirus hr5 enhancer and the IE1 (immediate early) 

promoter which recruit endogenous transcription machinery and thus circumvent the need 

for baculovirus production. 

 

2.2.11.2.1 Storage and growth of Insect Cells 

 

Sf9 insect cells were thawed from stocks stored at -70
o
C. The thawing and passaging of 

cells was conducted as described in the Novagen ‘Insect Cell Expression’ manual. Cells 

were grown at 28
o
C and passaged into fresh T-25 flasks at a ratio of 1:8 every 3-4 days 

under a laminar flow hood. Cells were grown in serum-free BacVector® Insect Cell 

Medium (Novagen) which was supplemented with 5% (v/v) fetal bovine serum for 

several passages after thawing. 

 

2.2.11.2.2 Plasmid transfection 

 

Insect cells were transfected with the GeneJuice (Novagen) liposome-based reagent. 

Table 5 below summarizes the components and their required volumes.  

 

Table 4: Summary of the transfection ingredients  

Transfection Ingredients 6-well plate 
10ml (125ml) 

flask 

Number of Cells 1×10
4
 1×10

7
 

Culture volume/well 2.5ml 8ml 

Amount of plasmid DNA 2µg 20µg 

Volume of GeneJuice 10µl 100µl 

Volume of serum-free medium added to DNA and 

GeneJuice for dilution 

100µl 1ml 

Volume of serum-fee edium added to transfection 

mixture after 15min incubation 

0.8ml N/A 
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For the small-scale optimization experiments, the 6-well plate format was used, whereas 

for larger suspension cultures the flask format was used. For 6-well plates, 1×10
6
 (2.5ml) 

cells were transferred to each well one hour before transfection to equilibrate. For each 

well, both 2µg of DNA and10µl of GeneJuice were diluted with 100µl serum-free 

medium. The DNA was slowly added dropwise to the GeneJuice solution whilst shaking, 

and the mixture was left to incubate at room temperature for 15 minutes. After 15 minutes 

0.8ml of serum-free medium was added to the transfection mixture, and this mixture was 

then added to each well after aspiration of medium from the cells. The lid was put on each 

plate and they were sealed with parafilm. For flask formats larger than 10ml, all other 

volumes and amounts were scaled up accordingly. Figure 15 below summarizes the insect 

cell transfection process.  

 

 

Figure 15: Schematic diagram of the stages involved in the GeneJuice transfection protocol 



53 

 

After transfection the cells were harvested to extract the recombinant protein. For the 6-

well plate format, cells were scraped off the bottom of each well, transferred to a sterile 

Eppendorf  tube and spun in a bench-top centrifuge at 3000rpm for 30s. The media was 

aspirated with a pipette and 100µl of 2×SDS sample buffer was added. Samples were 

boiled at 100
o
C for 3 min, spun for 5min at top speed in a bench top centrifuge and 

loaded on 7% SDS-PAGE gels for analysis. 

 

For large-scale suspension cultures, cells were harvested by centrifugation at 3000rpm on 

a Beckman JLA 10.500 fixed angle rotor to pellet the cells. Extraction was then carried 

out as described in the Nickel Column Purification section below. 

 

2.2.12 Purification of His-tagged proteins  

 

2.2.12.1 Removal of periplasmic fraction with osmotic shock (bacteria only) 

 

After the initial centrifugation step, newly harvested bacterial cells were re-suspended in 

5ml/gpellet of sucrose buffer (50mM HEPES, 20% (w/v) sucrose, 1mM EDTA, pH 7.9) 

and then re-pelleted by centrifugation at 7000  g for 30 minutes at 4
o
C (Beckman JA-20 

rotor). After centrifugation the supernatant was again discarded and the pellet re-

suspended in 5ml/gpellet  of 5mM MgSO4 ad incubated on ice for 10 minutes. Cells were 

then pelleted by a final centrifugation at 4500  g for 20 minutes. The supernatant was 

discarded and the pellet was re-suspended in 1.5ml/gpellet of extraction buffer (1M HEPES 

pH 7.0, 5M NaCl, 5mM mercaptoethanol) containing relevant protease inhibitors (PMSF, 

Leupeptin, pepstatin A, TAME) before continuing the nickel column purification protocol 

described below. 

 

2.2.12.2 Nickel Column Purification  

 

After initial centrifugation step, pelleted cells were resuspended in ice-cold protein 

extraction buffer (1M HEPES pH 7.0, 5M NaCl, 5mM mercaptoethanol) containing 

protease inhibitors (PMSF, Leupeptin, pepstatin A, TAME).  The cells were then 

sonicated in order to disrupt the cell membranes and release expressed protein. Roughly 

10 pulses were used, with the duration of each pulse lasting 1 second per ml of 
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resuspended cells. The pause between each pulse was the same as the duration of the 

pulse. The lysate was then centrifuged at 48,000  g for 10 minutes (JA-20 fixed angle 

rotor).  

 

The Ni-NTA (Qiagen) column was equilibrated with 2ml of resin slurry mixed with 3ml 

of extraction buffer without the protease inhibitors.  The buffer was removed and the 

collected bacterial supernatant was passed through a 0.4m filter membrane and loaded 

into the column. The supernatant and Ni-NTA were incubated on ice for 10 minutes with 

gentle shaking to allow binding of the His-tagged protein to the Ni-NTA beads. After 

incubation the supernatant was removed and the Ni-NTA beads were washed with 

imidazole buffer (1M HEPES pH 7.0, 5M NaCl) containing increasing concentrations of 

imidazole. Several washes with 20mM imidazole buffer were used until the resin returned 

to its original colour. Then, three washes with 40mM imidazole and two washes with 

60mM imidazole were carried out. The expressed protein was finally eluted out three to 

four times with 1ml of elution buffer (50mM HEPES pH 7.0, 300mM NaCl, 250mM 

Imidazole). The yield and purity of the protein was assessed by SDS-PAGE analysis. 

 

The concentration of purified proteins was measured using a Bradford protein assay. This 

spectroscopic assay uses the absorbance shift of the dye Coomassie Brilliant Blue G-250 

in response to varying protein concentration. 5l of the protein eluent was added to 1ml 

of Protein Assay Dye (Biorad), and the Ab595 was measured and compared to a protein 

standard curve.After measuring the concentration, eluted proteins were dialysed overnight 

in 100ml of dialysis buffer (80mM PIPES ph 6.8, 1mM MgCl2, 1mM EGTA, 75mM KCl, 

1mM DTT, 10M ATP, 10% (w/v) sucrose) 

 

In vitro protein experiments 

 

2.2.13 Microtubule Co-sedimentation assays 

 

Tubulin used in these assays was isolated from porcine brain by two 

assembly/disassembly cycles followed by phosphocellulose chromatography, as described 

in (Shelanski et al 1973). The recombinant protein and tubulin were centrifuged at 

200,000 × g for 10min at 4
o
C to remove aggregates, and their concentrations measured 
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using a Bradford assay.  For co-sedimentation, tubulin was added to a final concentration 

of 8M and mixed with recombinant protein to a kinesin to tubulin ratio of 1:3. ATP and 

GTP were added and the reactions incubated at 37
o
C for 30 minutes, and then centrifuged 

at 100,000  g for 10 minutes (Beckman TLX Ultracentrifuge, rotor TLA120.1) In all 

negative controls, when microtubules were not added with the protein, reaction mixtures 

were made up to the final volume with MTSB buffer (50mM PIPES, 2mM EGTA, 2mM 

MgSO4, 100mM NaC, 5% (v/v) Glycerol). The supernatant was collected and the pellet 

was washed and re-suspended in SDS-PAGE sample buffer. Samples were analysed by 

SDS-PAGE and stained with Coomassie. 

 

2.2.14 Microtubule polymerization assays 

 

Porcine tubulin was used in all assays. Tubulin was stored at -80
o
C, and before each assay 

it was rapidly thawed at 37
o
C, incubated on ice for 10 minutes to depolymerize, and spun 

at for 200,000 × g 10 minutes at 4
o
C to remove aggregates.  

 

For bacterial proteins, tubulin was used at a final concentration of 8µM. The control run 

was set up with 80µl of tubulin and 20µl of dialysis buffer. ATP and GTP was added to a 

final concentration of 1mM. The dialysis buffer was replaced by kinesin protein for the 

other assays and the turbidity was monitored at 350nm and at 32
o
C using a Helios beta 

spectrophotometer equipped with Unicam Peltier temperature control unit 

(Thermospectronic, UK). 

 

Cell Biology 

 

2.2.15 BY-2 Suspension Culture Transformation 

 

Tobacco BY-2 (Bright Yellow) suspension cultures were used to test the effect of kinesin 

over-expression on microtubule dynamics and cell cycle progression.  An estrogen 

receptor-based chemical-inducible system was used to regulate the expression of kinesin 

proteins in transformed BY-2 cells (Zuo et al 2000). This system uses a chimaeric 

transcription activator (XVE) created by the fusion of the DNA-binding domain of the 
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bacterial repressor LexA (X), the transactivating domain of VP16 (V) and the regulatory 

region of the human estrogen receptor (E).  

 

The Gateway destination vector PMDC-7 (Curtis & Grossniklaus 2003) derived from the 

PER-8 estradiol-inducible vector, was used in these expression experiments. It confers 

resistance to spectinomycin in agrobacterium and hygromycin in plant cells. PMDC-7 

vectors containing the relevant kinesin-13 gene constructs were transformed into the 

agrobacterium strains LBA4404 and GV3101 via the heat-shock method previously 

described. Agrobacterium colonies were used to inoculate 3ml cultures of YEB medium 

supplemented with the corresponding antibiotics and left to grow at 30
o
C overnight. 

0.1ml of Agrobacterium culture was mixed with 4ml of BY-2 cells in a 10cm petri dish 

and incubated for 2 days at 20
o
C without shaking on a flat surface. The BY-2 cells were 

then spread onto plates containing BY-2 agar (4.31g/l Murashige & Skoog basal salt 

medium (sigma cat no M5519), 370mg/l KH2PO4, 2mg/ml 2.4-D and 30g/l sucrose, pH 

5.8, 7g/l plant agar) and the relevant selection antibiotics (hygromycin, spectinomycin) as 

well as carbenicillin and vancomycin to kill the agrobacterium. 

 

After 10-14 days calli should appear as small opaque dots. Calli were transferred to new 

selective medium before being used to set up transformed BY-2 liquid culture. 1cm calli 

were added to 20ml of BY-2 liquid media containing the relevant selection antibiotics in 

100ml Erlenmeyer flasks. 

 

2.2.16 Extraction of estradiol-induced protein 

 

10ml of BY-2 cell culture was sieved through a 40-60µm mesh strainer and rinsed with 

BY-2 medium to remove residual β-estradiol. The sieved BY-2 cells were frozen with 

liquid nitrogen and crushed with a pre-chilled pestle and mortar. Two different techniques 

were then used to extract protein from the frozen cell powder. 

 

2.2.16.1 TCA Extraction 

 

 Five volumes of 15% TCA was added to the cell powder and vigorously mixed until 

homogeneous. The mixture was then centrifuged at 4500rpm for 10 min and the 

supernatant discarded. The protein pellet was re-suspended and washed in acetone 
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solution (80% (v/v) acetone, 100mM Tris-HCl, pH8.5) before being centrifuged again at 

4500 rpm for 5 min. This process was repeated twice and the resultant pellet was 

resuspended in 2×SDS loading buffer, boiled for 3 min at 100
o
C, centrifuged and loaded 

on a gel. To determine whether recombinant kinesin protein was present, gels were 

transferred to nitrocellulose membranes and immunoblotted with anti-HA primary 

antibody (1:200 dilution).  

 

2.2.16.2 Hot SDS Extraction 

 

With this method, 0.5ml of boiling 2×SDS loading buffer was added to approximately 

0.5ml of frozen BY-2 cell powder and mixed immediately. As above, samples were 

boiled for 3 min at 100
o
C, centrifuged and loaded on gel. Western blotting was also 

carried out as above. 

 

2.2.17 Fixation and Immunostaining of BY-2 suspension culture cells 

 

BY-2 lines were induced with β-estradiol to a concentration of 1µM. 10ml of BY-2 cell 

cultures were sieved through a 40-60µm mesh strainer and 10ml of fixative solution was 

added (3.7% (w/v) paraformaldehyde, 50mM PIPES pH 6.8, 5mM EGTA, 2mM MgSO4, 

0.4% (v/v) Triton X-100). To make the fixative, the required amount of 

paraformaldehyde was placed in a 50ml centrifuge tube and half the required volume of 

water was added. After shaking the paraformaldehyde solution was incubated in a 65
o
C 

water bath for 5 minutes after which 25µl/5ml of 0.1M NaOH was added. When the 

solution had cleared, the fixative was removed from the water bath and the rest of the 

fixative constituents were added. 

 

Samples were mixed and incubated with the fixative for 30min at room temperature 

before being washed 3 times in PBS buffer (570mg/l Na2HPO4, 212mg/l KH2PO4, 8g/l 

NaCl, 1ml/l Tween 20, pH 7.0). Cells were then treated with an enzyme mixture for cell 

wall digestion (1% (w/v) Macerosyme, 0.2% (w/v) pectolyase, 0.4M mannitol, 5mM 

EGTA, 15mM MES pH 5.0) supplemented with protease inhibitors (100mM PMSF, 

10mg/ml leupeptin, 1mg/ml pepstatin A) for 5 minutes before another 3 washes with PBS 

buffer. 
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200µl cell samples were placed on poly-L-lysine coated coverslips and incubated in a 

humid chamber for 10 min. Excess buffer was carefully removed with tissue paper and 

the cover slips were incubated for a further 5 min. Cover slips were then placed in 6-well 

plates containing PBS buffer to wash off unattached cells. Cover slips were then 

incubated in PBS buffer containing 2% (w/v) BSA for 20 min to block unspecific binding 

of antibodies. The cover slips were then incubated for one hour with primary antibody 

buffer containing PBS (+2% BSA) and the primary antibody of choice diluted to 1:500. 

Coverslips were washed 3 times with PBS and then incubated for 50 minutes with the 

secondary antibody solution. Finally, if nuclear staining was required cover slips were 

incubated with a PBS solution containing DAPI for 10 minutes, before mounting cover 

slips onto slides using VectaShield (Vector Laboratories). The edges were sealed with 

nail varnish. Slides were imaged by CLSM or on a fluorescence microscope for cell 

counting experiments. 

 

2.2.18 Confocal Laser Scanning Microscopy (CLSM) 

 

Immunostained slides were imaged using the Leica SP5 microscope. The antibodies used 

are listed below 

 

Primary 

Antibodies 

Species 

Raised in 

Secondary 

Antibodies 

Species raised 

in 

Conjugate 

Anti-HA Mouse   TRITC 

Anti-Tubulin Rate Anti-  FITC 

 

 

2.2.19 Growth Curve experiments of induced BY-2 cells 

 

To investigate the effect of AtKIN13A/B induction on the BY-2 cell cycle, growth curves 

were measured over a period of 10 days. Transformed BY-2 cell lines of AtK13A, 

AtK13B and HsK13 were seeded into 90ml BY-2 medium at 2g/90ml. Lines were 

induced with 1µM of β-estradiol and 0.3µM APM. 5ml samples were collected every 

three days, sieved through a mesh strainer, dried and weighed. When plotting on graph 

the error bars were calculated using the standard deviation of the means. 
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3. RESULTS  
  

3.1. Biochemistry 
 

3.1.1. Bacterial Expression 
 

Expression and analysis of recombinant AtKin13A and 13B 

 

Constructs for the full length Arabidopsis K13A and K13B genes were already available 

from the lab. These were then cloned into pGAT4 vectors and expressed as 6×His tagged 

fusion proteins in BL21 DE3 Rosetta 2 cells. After the removal of the periplasmic extract 

via osmotic shock, the recombinant proteins were purified as described in chapter 2. 

Samples were analysed by SDS-PAGE pre- and post-dialysis (‘E’ and ‘D’ respectively), 

with clear bands present for each protein at their predicted molecular weights (HsKin13: 

81kDa, AtKin13A: 89kDa, AtKin13B: 77kDa). The presence of high molecular weight 

bands corresponding to roughly double the predicted size of Kin13A, points to the 

formation of dimer complexes (FIG 16A). 

 

The microtubule-binding capability of the recombinant proteins was assessed with a co-

sedimentation assay (FIG 16B). AtKIN13A and 13B were added to MAP-free porcine 

brain tubulin with a ratio of 1:3, along with ATP and GTP. After a 30 minute incubation 

period the supernatants and pellets were centrifuged, separated on SDS-PAGE gels and 

stained with Coomassie. The presence of bands at the predicted molecular weight of both 

proteins in the pellet, and not in the negative controls, shows that both proteins bind 

specifically to microtubules in vitro. For both proteins, faint high molecular weight bands 

in the pellet without microtubules suggest they are aggregates which precipitate non-

specifically with microtubules in the pellet. 

 

The presence of both kinesin proteins in the pellet was confirmed by western blotting. 

The supernatant and pellets containing tubulin and each kinesin were transferred to 

nitrocellulose membranes and probed with either anti-His (1:500 dilution) (FIG 16C) or 

specific anti-kinesin-13A/B (1:1000 dilution) (FIG 16D) primary antibodies. Although 

the proteins were expressed with a 6×His tag in order to aid extraction and detection, 

probing with the anti-His tag antibody was not particularly helpful as the presence of 

many bands in both pellets suggests a low specificity and some cross-reactivity with 

bacterial proteins still present after extraction. Probing with protein-specific primary 
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antibodies, however, confirmed the presence of bands at the predicted weights. 

Interestingly, the fact that no signal was detected in both supernatant samples highlights 

the specificity of these antibodies and shows that both kinesin proteins bind entirely to 

microtubules in the pellet.  

 

The effect of both AtKin13A and AtKin13B on microtubule polymerization in vitro was 

tested using turbidimetric assays (FIG 16E). As microtubules scatter light much more 

effectively than free microtubule dimers, the turbidity of a solution is proportional to the 

amount of tubulin polymer and the length of microtubules (Hunter et al 2003). Both 

proteins were added to MAP-free porcine brain tubulin at a Kin13 to tubulin ratio of 1:3. 

The turbidity of the mixture was monitored at 350nm. As can be seen in FIG 16E, both 

kinesin proteins produced a dramatic increase in the turbidity of the microtubule mixture 

as compared to the control.  

 

The fact that graphs for Kin13A and 13B are dissimilar could be significant. The turbidity 

in the Kin13A reaction mixture increased linearly, suggesting that what we are seeing is 

just an artefact of aggregation. To confirm this, a similar assay could be run with just the 

protein itself. The Kin13B graph, however, is more logarithmic which points to the 

presence of an enzymatic reaction and thus a functional protein.  

 

Dimerization could in theory lead to bundling, but it is difficult to discern whether this is 

a physiological effect or not. Another issue is the fact that proteins expressed in 

prokaryotic systems may not undergo the post-translational modifications and folding 

necessary for correct functionality. The expressed kinesins may simply be inactive and 

the increased turbidity of the solution attributable to the formation of protein and tubulin 

aggregates. It was important, therefore, to express the protein in a eukaryotic system and 

repeat these in vitro assays.  
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Figure 16: Biochemical analysis of recombinant AtKin13A/B proteins. Markers in kDa (A) Coomassie-stained 

SDS-PAGE gel of purified proteins pre(E)- and post(D)- dialysis. (B) Cosedimentation of AtK13A/B. 

supernatants (S) and pellets (P) were separated on SDS-PAGE gels and stained with Coomassie. (C) and (D) are 

immunoblots of the Cosedimentation assay probed with anti-His and anti-K13A/B antibodies respectively. (E) 

Effect of 3µM AtKin13A/B on the turbidity of a 10µM tubulin solution. The assay was performed at 32oC, and 

the turbidity was monitored at 350 nm. Atkin13A (red), AtKin13B (blue), control (green) 
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3.1.2. Insect Cell Expression 

 

As the activity of the recombinant proteins may have been affected by the lack of 

eukaryotic post-translational machinery, similar biochemical studies were conducted on 

proteins expressed from insect Sf9 cells. 

 

Expression and analysis of recombinant AtKin13A, 13B and HsK13 

 

For expression in insect cells, AtK13A, AtK13B and HsK13 gene constructs were cloned 

into the pIEx-7 expression vector. This vector allows efficient expression of recombinant 

His-tagged proteins directly in insect cells, by-passing the time consuming process of 

baculovirus creation. Although a large number of insect Sf9 cell transfection reagents are 

commercially available, we used the GeneJuice (Novagen) liposome-based reagent (see 

chapter 2). Other reagents had been used, such as the Attractene (Qiagen) and 

Nanofection (PAA) transfection kits, but test experiments with both these methods failed. 

The inclusion of human Kinesin-13 would provide a useful control and functional 

comparison when conducting microtubule polymerization assays. 

 

Before conducting large-scale expression experiments, a degree of optimization was 

required to check that this system worked and to determine the appropriate incubation 

time. An initial time-course transfection was conducted in 6-well plates with all three 

genes at three time points: 24, 48 and 72 hours (FIG 17A). After incubation cells were 

centrifuged, combined with SDS loading buffer and run on SDS-PAGE gels. Western 

blotting with anti-His primary antibodies confirmed the presence of recombinant protein 

and that a 72 hour induction time produced the highest yield. No bands were present in 

the AtKin13A lanes, suggesting that transfection of this protein was not successful. 

 

Once optimized, a larger scale transfection experiment with AtKin13B was conducted. 

After the 72 hour incubation period, a similar Ni-NTA extraction protocol to bacterial 

expressed proteins was used, during which samples of the total cell extract (before nickel 

extraction), flow-through (unbound protein from the nickel column) and eluted protein 

were taken. Western blotting of these samples with anti-K13B antibodies (1:1000) 

showed the presence of a clear band of predicted molecular weight in the eluent, a band 
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not present in the flow-through (FIG 17B). This shows that all the recombinant protein 

bound to the nickel column, and that the extraction procedure managed to concentrate the 

recombinant protein from the total cell extract. 

 

To assess the effect of the AtKin13B on microtubule dynamics, turbidimetric assays of 

different concentrations were carried out (FIG 17C). In both cases, there was a significant 

increase in turbidity compared to the control, with turbidity of the solution roughly 

doubling when twice the amount of protein was used. This suggests that AtKin13B has a 

concentration-dependent effect on the turbidity of tubulin solutions. The logarithmic 

shape of both curves is similar to that of bacterially-produced protein, and the curve with 

3µM  AtKin13B peaks at an absorbance of 0.1, identical to the bacterial protein (FIG 

16E). This is interesting because the protein was expressed in a eukaryotic system, so is 

assumed to have folded correctly. It is likely that the logarithmic curve seen in the 

bacterial protein is reflective of correctly folded protein. This increase in turbidity could 

be due to an unexpected function of AtKin13B in stabilizing tubulin dimers. Incorrect 

folding of the full-length protein is unlikely to be as much of an issue here as a eukaryotic 

expression system was used, but the issue of protein dimerization is not entirely ruled out. 

More studies on this protein will have to be carried out to better ascertain the in vitro 

function.  

 

The turbidimetric assay of HsKin13 (FIG 17D) was less encouraging as straight lines for 

each concentration used suggested the results may have been artefacts. The highest 

concentration of HsKin13 produced a low turbidity, as expected with the well-

characterised depolymerization effect of human kinesin-13s. However, the turbidity of the 

tubulin solutions was higher with 0.2µM compared to 0.1µM, although in theory an 

inverse concentration-dependent relationship between HsKin13 and turbidity would mean 

these results should be the other way around. It is possible, therefore, that this result could 

be a mere artefact of protein aggregation or low protein concentration. Furthermore, the 

concentration of HsKin13 used was very low (0.1-0.4µM) which may have severely 

limited protein function. 
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Figure 17: Biochemical Analysis of insect cell-expressed proteins. (A) Immunoblot of timecourse transfection experiment. (B) 

Immunoblot of AtK13B probed with anti-13B antibodies after large-scale transfection. (C) Effect of AtKin13B on the turbidity 

of a 10µM tubulin solution. The assay was performed at 32oC, and the turbidity was monitored at 350 nm. Control 0µM (blue), 

3µM (red), 6µM  (green) (D) Turbidimetric assay of HsKin13. 0.2µM Hskin13 (green), 0.1µM (red) and 0µM (blue). 
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3.2. Cell Biology 

 

3.2.1. Optimization of protein induction and extraction 

 

Expression of recombinant proteins in BY-2 cells was carried out using a β-estradiol 

inducible expression system (see Methods). As β-estradiol induction had not been used in 

the lab before, some optimization was required. Firstly, two different methods of protein 

extraction were used to determine the amount of recombinant protein produced after 

induction (FIG 18A). Initial work using the TCA method produced variable results and 

often quite low yields. An attempt to precipitate the proteins in 100% acetone without the 

use of TCA was also unsuccessful. In contrast, the boiling SDS method, which involved 

adding crushed plant material directly to SDS loading buffer, produced much higher 

yields of total plant protein when run on an SDS-PAGE gel. Western blotting with anti-

HA antibody confirmed that the hot SDS protein extraction was effective for both K13A 

and 13B, and the presence of single bands in each lanes showed that the HA antibody did 

not cross-react with native proteins (FIG 18B). 

 

After establishing a reliable extraction protocol, a variety of western blotting conditions 

were tested to determine the most suitable blocking solutions and antibody concentrations 

for maximum protein detection. A single BY-2 HsKIN13 line was induced with 50µM β-

estradiol and harvested after seven days. After protein extraction and transfer, the 

nitrocellulose membrane was cut into 12 strips, each with a different concentration of 

primary anti-HA antibody or blocking solution. Figure 18C shows that the western 

conditions which produce the best signal are: A blocking solution of 2×TBST with 5% 

milk, primary antibody dilution of 1:200 and primary antibody incubation time of 1 hour. 

  

The next question we asked was how the level of recombinant protein produced was 

dependent on the concentration of β-estradiol used to induce the lines. Two BY-2 lines 

transformed with HsKin13 and AtKin13B were induced with a range of estradiol 

concentrations from 0.5µM to 10µM and harvested after 24 hours. As seen in Fig 19A, a 

range of low concentrations of estradiol did not produce much variation in the induction 

level of each recombinant protein, regardless of the construct used. The silver stained 

membrane shows that protein loading was equal (FIG 19B). 
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Figure 18: Optimization of estradiol-induced kinesin-13 proteins. (markers in kDa) (A) HsKin13 and AtKin13B 

proteins extracted with different methods, either hot SDS, 100% (v/v) acetone or the TCA method. Samples were 

run on SDS-PAGE gels and separated with Coomassie. (B) Immunoblot of protein from both lines extracted with 

the hot SDS method and probed with anti-HA antibody. (C) Optimization of immunoblotting conditions. Protein 

was extracted from a HsKin13 line after induction and transferred to nitrocellulose membrane. Each strip 

subjected to different dilution of primary anti-HA antibody and blocking solution.   
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Figure 19: (A) Immunoblot of BY-2 lines transformed with HsK13 and AtKin13B induced with varying 

concentrations of β-estradiol. Membrane probed with anti-HA antibody. (B) Silver-stained nitrocellulose 

membrane used for the immunoblot in (A) (markers are kDa). 
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Although lower concentrations did not have a concentration-dependent effect on protein 

induction, it was still possible that more protein could be produced by increasing the 

estradiol concentration further. To test this, a BY-2 line transformed with AtKin13B was 

induced with a range of β-estradiol concentrations from 10µM to 100µM and samples 

were taken after one, two and 5 days to see how protein expression changed over time 

(FIG 20A). 

 

After one day incubation, the amount of protein seemed to increase proportionately with 

an increase in estradiol concentration. This appears in contrast to the previous induction 

experiment with lower estradiol concentrations. Interestingly, though, from two days the 

level of induced protein did not change significantly with increasing estradiol 

concentrations but stayed at a high level. The band at 10µM is similar to that at 40µM, 

but after five days of induction the 40µM band is significantly thicker than DAY 2 or 

DAY 1. The presence of empty lanes at 10µM and 20µM concentrations at DAY 5 cannot 

be explained by incorrect loading, as the silver membrane in Fig 20B shows equal protein 

levels in each lane. Instead, it is possible that after 5 days of induction the BY-2 cells are 

able to overcome the elevated protein levels and start to degrade or break down 

recombinant protein. Therefore, it is only at estradiol concentrations above 20µM that 

recombinant protein levels are high enough to activate the degradation machinery. 

 

As higher estradiol concentrations seemed to induce more protein, the phenotypic effects 

of these concentrations were analysed using fluorescence microscopy (FIG 21). DAPI 

staining allowed nuclear morphology to be judged. Samples induced with 20µM estradiol 

showed several cells containing giant nuclei, denoting a defect in karyokinesis at 

anaphase so chromosomes and nuclei could not properly separate. At 40µM estradiol 

there were several multi-nucleate cells and small blue dots in the cytoplasm thought to be 

mini- nuclei. In this case, defects in metaphase plate formation led to improper alignment 

of chromosomes so nuclei divided abnormally but no cytokinesis occurred. The 

phenotype at 100µM estradiol was the most dramatic, displaying both giant and lobed, 

multinucleate cells with highly condensed chromosomes.  

 

Although the phenotypes were consistent with those observed with other microtubule-

destabilising drugs, analysis of untransformed BY-2 cells suggested they may be artefacts 

of high estradiol concentrations. Control WT samples with no β-estradiol contained lots 
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of dividing cells with nuclei at all stages of mitosis (FIG 21). At 20µM estradiol many 

cells contained mini-nuclei, and at 40 and 100µM there were almost no cells undergoing 

cell division. Furthermore, the weight of cultures reduced massively at higher estradiol 

concentrations compared to uninduced controls, showing a marked cessation of cell 

growth (TABLE 1). 

 

Table 1: Effect of high estradiol concentration on WT cell growth 

Β-estradiol concentration g/10ml 

0µM 6 

10 µM 5.96 

40 µM 0.14 

100 µM 0.083 

 

In summary, despite the fact that high concentrations of β-estradiol induce more 

recombinant protein in BY-2 cells, these concentrations also appear detrimental to normal 

cell growth. The concentration-dependent abnormalities in nuclear morphology of 

induced AtKin13B samples suggests a synergistic role between the induced protein and β-

estradiol; perhaps estradiol has a microtubule-destabilising effect which causes cessation 

of growth in WT cells but more serious phenotypes when acting with overexpressed 

Kin13B. Although this may suggest a MT destabilizing role for Arabidopsis kinesin-13s, 

it is clear that non-toxic concentrations of estradiol must be used for future induction 

experiments.  

 

Once extraction technique, western conditions and estradiol concentrations had been 

optimized, several lines for each kinesin-13 gene were screened to see how reproducible 

the induction system was and identify high expressing lines (FIG 20C). A β-estradiol 

concentration of 1µM was used, to avoid toxicity. Fig 20C shows that all constructs were 

expressed and stable proteins of the correct size were produced. However, the expression 

levels differed between each line. For HsKin13, line number 3 was the highest expresser, 

with a band significantly thicker than the other two, whereas for AtKin13B line 1 was the 

highest expressing line. In AtKin13A, only line 3 showed significant expression, with a 

very faint band in line 2 and nothing in line 1. How expression levels differ so much can 

be explained by two scenarios; either the samples contained a small number of 
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transformed cells with high expression levels, or they contained a larger number of 

transformed cells with low expression. This question cannot be answered without analysis 

of the lines by immunofluorescence.  
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Figure 20: (A) immunoblot of a AtKin13B line induced at different concentrations. Protein was extracted at 3 

different time points. (B) Silver-stained membrane of Day2 and Day5 samples (C) Immunoblot of three 

transformed BY-2 lines per gene construct, induced with 1µM estradiol. Markers are in kDa 

 

 

 



72 

 

 

 

 

 
Figure 21: WT and AtKin13B BY-2 cells stained with DAPI (blue) at different concentrations of β-estradiol. The 

WT cells on the right were also stained with DAPI (white) and treated with differing estradiol concentrations. 

Scale bar = 25µm 
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3.2.2. Localization of kinesin-13 proteins through cell division 

 

Immunofluorescence microscopy was used to confirm that active or correctly folded 

proteins were produced by the estradiol induction system, and to investigate their 

localization during cell division. Three lines for each construct were initially screened to 

check their expression levels, and the two highest expressers were induced for 72 hours 

with 1µM β-estradiol. Samples of each culture were immunostained with anti-tubulin and 

anti-HA antibodies, before being mounted on coverslips and viewed under the 

microscope (see Material & Methods 2.2.17). 

 

The control WT images show stereotypical microtubule and nuclear formations at the 

four main stages of cell division (Fig 22A). At prophase, spindle MTs surround newly 

condensed chromosomes. During metaphase, spindle MTs emanating from both poles of 

the nucleus arrange chromosomes down the centre of the cell in a ‘metaphase plate’. 

Chromosomes are pulled apart by opposing spindle fibres in anaphase, before 

decondensing during the formation of the phragmoplast.  

 

At all stages of mitosis, HsKin13 seemed to colocalize with spindle microtubules. As 

spindle MTs surround dividing chromosomes it is hard to completely rule out 

chromosomal binding from prophase through to anaphase, but during telophase and 

phragmoplast formations it is clear that overexpressed HsKin13 localizes exclusively to 

microtubules (Fig 22B). Both AtKin13A and 13B show a different localization pattern 

(FIG 23A & B). From prophase to anaphase, staining is seen on the chromosomes but not 

with microtubules, with the areas of highest signal at the ends of chromosome arms. In 

both cases some weak staining is seen colocalizing with microtubules of the phragmoplast 

in telophase.  

 

The strong staining at the ends of chromosomes arms can be explained by two 

possibilities. The primary antibodies could be restricted to the outer edges of 

chromosomes due to masking of epitopes during the fixation process or by geometric 

constraints preventing them penetrating further into the nucleus. Alternatively, the 

AtKin13 proteins may bind to chromosomes indirectly via other kinesins or 

chromosome-binding proteins enriched at the chromosome arms. 
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Figure 22: Immunostained BY-2 cells at different stages of cell division (scale bar: 10µm) (A) WT, untransformed BY-2 cells 

(B) HsK13 lines  



75 

 

 
Figure 23: Immunostained BY-2 cells at different stages of cell division (scale bar: 10µm) (A) AtKin13A lines (B) AtKin13B 

lines 
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3.2.3. The Effect of Kinesin-13 induction on cell division and growth 

 

To investigate the effect of these proteins on the cell cycle and progression through 

mitosis, cell counting studies were carried out. In these experiments, two lines for each 

construct were induced for 72 hours then fixed and stained with anti-tubulin antibody and 

DAPI. One thousand cells were counted for each line, with the number of cells at each 

stage of cell division recorded. Data for both lines were combined and averaged to 

increase reliability.  

 

The graph in Figure 24 shows the proportion of cells at different mitotic stages. By 

comparing how the proportion of cells at each mitotic stage changes after protein 

overexpression, it is possible to determine when the protein has an effect. For HsKin13, 

there was no significant change in anaphase and telophase stages after induction, but the 

proportion of prophase cells reduced concurrent with an approximate 5% increase in 

metaphase cells. This suggests that overexpressed HsKin13 protein acts during the 

metaphase checkpoint to delay the transition to anaphase, perhaps by altering spindle 

dynamics. When the delay is overcome, however, the subsequent mitotic stages occur 

normally, suggesting that HsKin13 is inhibited or degraded during this time.  

 

For AtKin13A, there is no statistically significant difference between uninduced and 

induced samples for any mitotic stages. As Arabidopsis kinesin-13s have severely 

reduced equivalents of the neck region known to confer the depolymerization activity of 

mammalian kinesin-13s, it is quite possible that AtKin13A has a more subtle effect on 

cell cycle progression which is not highlighted by this experiment.  

 

With AtKin13B, there is a significant increase of over 10% for the proportion of 

metaphase cells after induction. As with HsKin13, this suggests that an Arabidopsis 

protein also acts during the metaphase checkpoint, with overexpression leading to a delay 

in the metaphase to anaphase transition. The proportion of anaphase cells and telophase 

cells both reduces after induction, which may be linked to delay at the metaphase 

checkpoint causing a more rapid separation of chromosomes and completion of mitosis. 

There is also a small increase in the percentage of prophase cells after induction, but may 

be due to natural variation.  

 



77 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 24: Graph showing the effect of kinesin-13 protein induction on different stages of cell division. 1000 cells 

at different stages of mitosis were counted in induced (+est) and uninduced (-est) samples to determine the 

percentage of dividing cells at each stage. Blue: prophase, Red: metaphase, Green: anaphase, Purple: telophase. 

Error bars represent the standard deviation of the mean. 
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The next question we asked was whether over-expression of the kinesin-13 proteins 

affected cell growth by altering microtubule dynamics. To do this we induced BY-2 lines 

of known cell weight and took samples every three days to measure the change in cell 

weight (and thus growth) over time. As well as induced/ uninduced lines, cultures were 

also treated with the microtubule-destabilising drug Amiprophos-Methyl (APM), known 

to affect culture growth by disrupting microtubule dynamics. If any of the kinesins had a 

destabilizing activity on microtubules, they would in theory accentuate the APM-

mediated reduction in growth. If the proteins had a stabilizing function, however, they 

would be expected to counter-act the APM and result in normal cell growth, in a similar 

way to taxol. 

 

For HsKin13 lines, there was no effect on cell growth either with APM on its own or 

APM with induced protein (FIG 25A). Cells appeared to grow normally to reach the 

stationary phase and the APM did not seem to affect growth at all. With AtKin13A both 

induced and uninduced samples treated with APM showed reduced growth compared to 

the controls (FIG 25B). Interestingly, cells treated with both APM and induced with 

estradiol grew slightly slower than APM on its own, hinting that AtKin13A may have a 

destabilizing effect on microtubules. However, this argument is hampered by the lack of a 

statistically significant difference between the two curves, due to overlapping error bars. 

Furthermore, the two uninduced cultures grew slower than expected from controls, barely 

reaching the stationary phase by day 9. 

 

AtKin13B (FIG 25C) cultures treated with APM and induced with estradiol grew at a 

much slower rate than the untreated samples. Importantly, the uninduced APM-treated 

culture grew normally and reached the stationary phase, but the induced sample did not. 

This suggests that overexpression of AtKin13B significantly disrupts cells growth, 

presumably by altering microtubule dynamics and progression though the cell cycle. 
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Figure 25: Graphs showing the effect of protein induction and APM treatment on cell proliferation. Green: +est, 

Purple: -est, Red: +APM – est, Blue: + APM +est. 
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4. DISCUSSION 

 

The aim of this project was to investigate the function of the Arabidopsis Kinesin-13 

proteins. To achieve this, in vitro studies using bacterial and insect cell-expressed proteins 

were conducted to assess their activity and effect on microtubule dynamics. The in vitro 

properties of these proteins were analysed in tobacco BY-2 cells using an oestrogen-

inducible expression system and immunofluorescence microscopy, with human Kinesin-

13 used as a comparison. The results of these experiments are discussed below. 

 

4.1. Expression and analysis of recombinant AtKin13A and 13B  

 

4.1.1. Bacterial Expression 

 

The results described earlier show that full-length kinesin-13s can be produced in both 

bacterial and insect cell expression systems. The bacterially expressed proteins showed 

specific tubulin binding in co-sedimentation assays.  

 

The turbidimetric experiments to assess the effect on tubulin dynamics produced some 

interesting results. The increase in turbidity seen with both proteins can be explained in 

two ways: either the protein increases the total amount of polymer by promoting MT 

polymerization, or it could induce bundling of already assembled microtubules. However, 

this data is in conflict with the well-characterized effects of other kinesin-13 proteins on 

microtubules, which induce a reduction in the total amount of MT polymer or in the rate 

of MT polymerization. In fact, similar studies with the mammalian kinesin-13 homologue 

MCAK show a rapid reduction in turbidity (Hunter et al 2003, Moores et al 2002). It is 

possible, therefore, that plant kinesin-13 proteins possess functional characteristics which 

are unique for this type of kinesin. 

 

As mentioned, one explanation for these results is that plant kinesins could increase the 

amount of MT polymer by increasing the number of microtubule ends from which new 

microtubules can seed. By destabilizing and shortening microtubules, more MT fragments 

would be available for nucleation, leading to an overall increase in turbidity. Although 

MCAK has been characterized as a particularly powerful depolymerase (Hunter et al 
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2003), it is important to bear in mind that the structural dissimilarities between human 

and plant kinesin-13 (Lu et al 2005) may affect their respective functions, so this remains 

a plausible explanation.  

 

Dimerization could in theory lead to bundling, and has been identified as a necessary 

property of the plant microtubule-bundling protein MAP-65 (Smertenko et al 2004). If 

each kinesin protein bound to another protein as well as a tubulin molecule, which in turn 

bound to other tubulin molecules, then large kinesin/tubulin aggregates could rapidly 

build up in the solution. The formation of these aggregates would produce a gradual 

increase in turbidity, and it is unclear whether a logarithmic or linear curve would be 

produced. The fact that there was no change in the amount of tubulin in the pellet of co-

sedimentation assays points to aggregation or bundling, rather than a depolymerising 

effect. If the purified protein could depolymerise microtubules, the density of tubulin in 

the pellet would reduce as seen with vertebrate kinesin-13s (Desai et al 1999, Hunter et al 

2003). 

 

As mentioned, the logarithmic curve produced with AtKin13B seems suggestive of an 

enzymatic reaction, whereas the linear AtKin13A curve is more indicative of inactive 

protein, though it could be a logarithmic reaction with a much slower rate. To confirm 

this, the AtKin13A assay could be repeated with the protein alone, so if aggregation was 

in operation the curve would be an identical shape. To check that these results were not 

due to incorrect protein folding, turbidimetric assays were repeated with an insect cell 

eukaryotic expression system. 

 

4.1.2. Insect Cell Expression 

 

This experiment shows that the GeneJuice (Novagen) transfection system can be used to 

successfully produce recombinant kinesin proteins. Furthermore, the results for 

AtKin13B were almost identical to those from the bacterial expression system, producing 

a logarithmic curve. The magnitude of the curve increased depending on the kinesin 

concentration, as the turbidity of the solution doubled when twice as much protein was 

added. The fact that both bacterial and insect cell expression assays are the same suggests 

that either this represents the real in vitro activity of AtKin13B, or in both cases the 

protein was improperly folded and produced an artefact caused by aggregation. As 
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mentioned earlier, an increase in turbidity is hard to reconcile with the expected function 

of kinesin-13s as depolymerisers. However, any functional comparisons can only be 

made with their well-characterized vertebrate counterparts, which have several structural 

dissimilarities, most notably lacking the neck region implicated in the depolymerizing 

activity. Perhaps these in vitro experiments highlight an unexpected property of plant 

kinesin-13s as microtubule stabilizers.  

 

To improve this data, the more robust baculovirus transfection technique can be used to 

express these proteins in insect cells, allowing larger-scale experiments on the 

recombinant proteins. The GeneJuice transfection did work, but results in low yields of 

recombinant protein. It is clear that more work is needed in this area to investigate the 

biochemical properties of these proteins before solid conclusions can be made. 

 

4.2. High concentrations of estradiol affect BY-cell proliferation 

 

The results in Fig 21 show that β-estradiol is toxic to tobacco BY-2 cells at concentrations 

higher than 10µM, causing a cessation of cell growth and nuclear morphology defects. 

Although higher estradiol levels induce more protein, this benefit is far outweighed by the 

detrimental effect on the cells. Increasing concentrations of β-estradiol produced different 

morphology defects: 20µM estradiol seemed to disrupt karyokinesis by producing cells 

with giant nuclei, whereas 40µM estradiol led to the formation of multinucleate cells with 

defects in early metaphase. 100µM concentrations of estradiol produced severe defects, 

with several giant, lobed and multinucleate cells with highly condensed chromosomes. 

The toxic effect of β-estradiol was confirmed by analysing WT BY-2 samples, which also 

contained mini-nuclei and a huge reduction in the number of mitotic cells. Furthermore, 

Table 1 highlighted the marked cessation of cell growth compared to WT, untreated cells.  

 

Although β-estradiol is mammalian hormone, studies have shown that one of its 

metabolites 2-methoxyestradil (2ME2) suppresses microtubule dynamics and arrests 

mitosis without directly destabilizing microtubules. As well as affecting microtubule 

dynamics, 2ME2 also induced spindle asymmetry and prevented cell growth (Kamath et 

al 2006). However, when used in Arabidopsis plants for inducible protein expression, β-

estradiol was not shown to be toxic to the host (Zuo et al 2000). It may be that tissue 
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cultures are more vulnerable to estradiol than whole plants, but it is still surprising that a 

mammalian hormone can also have a toxic effect on plant cells. After further optimization 

of β-estradiol, the concentration of 1 µM was established as a safe and effective level to 

use. 

Despite the fact that high estradiol concentrations massively reduced cell proliferation in 

all samples, it is interesting to note that the transformed cell line showed more severe 

phenotypes than the WT cells. This suggests that overexpression of AtKin13B may act 

synergistically with the estradiol to produce nuclear morphology defects; the destabilizing 

function of AtKin13B combining with the suppression of microtubule dynamics by 

estradiol, for example. AtKin13B may, therefore, have some subtle role in regulating 

microtubule dynamics which only becomes apparent when expressed in cells also treated 

with microtubule-destabilising drugs.  

 

4.3. Arabidopsis kinesin-13A and 13B localize to chromosomes during cell 

division 

 

The confocal images in figures 22 and 23 show that there is disparity between the mitotic 

localization of mammalian and plant kinesin-13. HsKin13 was shown to localize 

exclusively at spindle microtubules, whereas AtKin13A and 13B were present on 

chromosomes, with some staining at the spindle microtubules of anaphase and telophase. 

Previous studies in animal cells have localized MCAK to the spindle poles, kinetochores 

and microtubule plus ends (Moores & Milligan 2006, Wordeman 2010), but it is 

interesting that in this case localization seems to be exclusively to the spindle.  

 

As HsKin13 is being expressed in a foreign system, it could be that crucial binding 

partners or regulatory proteins lacking in plant cells disrupt the usual HsKin13 

localization. It is well established, for example, that mammalian MCAK is regulated 

directly by the mitotic protein Aurora B kinase, which inhibits its microtubule 

depolymerizing activity via phosphorylation (Andrews et al 2004, Wordeman et al 1999). 

Aurora B has also been shown to recruit MCAK to the inner centromere during 

prometaphase (Wordeman et al 1999). Although Aurora-like kinases have been identified 

in Arabidopsis (Demidov et al 2005) and shown to be required for chromosome 

segregation in tobacco BY-2 cells (Kurihara et al 2006), they are clearly separate from 
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animal and fungal Auroras. Furthermore, the localization of HsKin13 to the spindle in 

BY-2 cells may occur because the mammalian-specific proteins required for targeting to 

the centromeres, as well as the centrosomes themselves, are not present. Aurora B kinase 

is just one example of the species-specific kinases and chromosome-interacting proteins 

involved in kinesin-13 function, so it is not surprising that a different localization pattern 

has emerged. 

 

As mentioned, AtKin13A and B both localized to the chromosomes at prophase and 

metaphase, as well as at the anaphase spindle and phragmoplast microtubules. Both plant 

kinesins showed strong staining at the ends of the chromosome arms which could have 

been because antibodies were restricted due to epitope masking and geometric 

constraints.  

 

However, another explanation is that the kinesins bind to or interact with other 

chromosome-interacting proteins enriched at the chromosome arms. The chromokinesins, 

another class of kinesin proteins with their motor domains situated at the N-terminus, 

have been shown to localize to chromosome arms during mitosis (Mazumdar & Misteli 

2005). The human kinesin-10 protein KID (Kinesin-like DNA-binding protein), a plus-

end directed motor that binds both MT and chromosomes (Tokai et al 1996, Yajima et al 

2003), has been reported to play a role in chromosome movement and the orientation of 

chromosome arms in metaphase (Levesque & Compton 2001). Four flowering plant 

kinesin-10 genes have been identified in plants, but their function is currently unknown 

(Reddy & Day 2011). Interestingly, though, a comprehensive analysis of plant kinesins 

found that the only domain common to both plants and animals is the DNA-binding motif 

present in kinesin-10 (Richardson et al 2006). It is possible, therefore, that plant kinesin-

13 and kinesin-10 proteins may function together to regulate the microtubule-dependent 

process of chromosome orientation. 

 

4.4. AtKinesin-13B overexpression delays progression through mitosis  

 

The cell cycle chart in Figure 24 shows that overexpression of AtKin13B leads to an 

increase in the proportion of metaphase cells. This suggests that overexpressed Kin13B 

delays dividing cells at the metaphase checkpoint, thus delaying subsequent progression 
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through to anaphase. The checkpoint is in place to ensure that cell division does not 

continue until proper connections between the spindle and kinetochores are established. 

At this stage, sensing of the bipolar tension acting on chromosomes of the metaphase 

plate initiates entry into anaphase by releasing inhibition of the anaphase-promoting 

complex (APC) (Musacchio & Salmon 2007). Interestingly, in animal cells Aurora B 

kinase functions as a mitotic error-checker (Kallio et al 2002), detecting and destabilizing 

incorrect attachments via its regulation of MCAK. In this way, overexpression of 

AtKin13B may disrupt spindle microtubule dynamics during metaphase and affect their 

co-ordinated, bipolar attachment to chromosomes.  

 

As Figure 24 shows, overexpression of HsKin13 also increases the proportion of 

metaphase cells, although to a lesser extent than AtKin13B. As MCAK is known to be 

involved in activating the spindle checkpoint, it is not surprising that overexpression 

disrupts this process. Furthermore, HsKin13 may have a lesser effect than Kin13B 

because BY-2 cells lack the necessary mammal-specific kinases required for full 

activation.  

 

The fact that only one stage of mitosis is significantly affected by Kin13B overexpression 

implies that its activity is cell cycle-regulated. The regulation of MCAK by Aurora B 

kinase is already well characterised, and it is likely that plant-specific kinases operate 

during mitosis to control when the kinesin-13 proteins are active. AtKin13A induction 

appeared to have no significant effect on cell cycle progression. More study is needed 

into the function of these proteins through the cell cycle, the relationship between these 

proteins and their associated kinases, and the phosphorylation mechanism in operation. 

 

4.5. AtKinesin-13B overexpression reduces cell proliferation 

 

As earlier work suggested the combination of AtKin13B overexpression and high β-

estradiol concentration appeared to reveal a subtle microtubule-disrupting effect, protein 

induction was combined with the anti-microtubule drug Amiprophos-Methyl (APM). 

APM has been well-characterized as an anti-microtubule drug which directly inhibits 

microtubule dynamics in plant cells via destabilization (Falconer & Seagull 1987, 

Morejohn & Fosket 1984). If the kinesins had a destabilizing effect, therefore, 
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overexpression would amplify the reduction cell proliferation caused by APM treatment 

alone. If they acted as stabilizers in a similar way to the drug taxol, the detrimental effects 

of APM should in theory be reversed.  

 

As shown in Figure 25C, overexpression of AtKin13B in APM-treated BY-2 cells led to a 

significant reduction in cell proliferation and growth. This reduction in growth could be 

explained by the cell cycle results above. In untreated cells AtKin13B overexpression 

leads to a delay in the metaphase checkpoint which is eventually overcome, but with the 

addition of APM the effect of AtKin13B overexpression on weakened microtubules is 

enhanced and cell division is detrimentally affected. This effect, however, was not 

apparent in both HsKin13 and AtKin13A lines. Human kinesin-13 may not have the same 

function it shows in its native environment due to the lack of regulatory proteins 

mentioned above. For AtKin13A, the cultures were still growing and did not reach the 

stationary phase, so it is hard to predict what overexpression would have caused in older 

cells.  

 

4.6. Conclusion 

 

These experiments show that AtKin13B appears to function during metaphase in aiding 

activation of the metaphase spindle checkpoint and subsequent progression through the 

cell cycle. Biochemical studies into its relationship with microtubules, combined with in 

vivo induction data, suggest that AtKin13B may have a subtle destabilizing effect on 

microtubules, contrary to is previous characterization as a Golgi-associated protein (Lu et 

al 2005). It is clear that this protein is tightly regulated during cell division, and so it 

would not be surprising that, like its mammalian counterpart MCAK, it is phosphorylated 

and de-phosphorylated by specific mitotic kinases. Further work is needed into the 

function of this protein and the nature of any regulatory interactions. 

 

Biochemical studies with AtKin13A showed that it binds specifically to microtubules, 

however its effect on microtubule dynamics was difficult to determine. The in vitro 

assays suggested that bacterially-expressed protein forms aggregates in solution, and 

overexpression in BY-2 cells had no significant effect on the cell cycle. Interestingly, 

AtKin13A localized to chromosomes in a similar pattern to AtKin13B, so both proteins 
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may have a similar role in cell cycle regulation. Previous experiments conducted in the 

lab have shown that this protein may have a microtubule-destabilizing effect (Tim 

Hawkins, personal communication). It is clear that further work with the estradiol-

inducible BY-2 system is needed to investigate the potential properties of this protein. 

 

Human Kinesin-13, a well-characterised microtubule depolymerizer, was used in this 

study as a functional comparison for the Arabidopsis kinesin-13s. When expressed in 

tobacco BY-2 cells, it localized exclusively to spindle microtubules throughout the cell 

cycle, inconsistent with studies of MCAK in animal cells (Moores & Milligan 2006, 

Wordeman 2010). Plant cells, however, lack centrosomes and other animal-specific 

regulatory proteins, so this result is not surprising. In BY-2 cells, HsKin13 

overexpression delayed BY-2 cells at metaphase, suggesting a similar function to MCAK 

in regulation of the spindle checkpoint. These results show that the activity of kinesin-13 

proteins is species-specific and the effect of animal kinesins in plant systems is markedly 

reduced.  
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5. APPENDICES 
 

Primer sequences 

 

 

 Forward Reverse 

AtKin13A 

Gateway 

GGGGACAAGTTTGTACAAA

AAAGCAGGCTTCACCATGGG

CGGCCAAATGCAGCAAAAC 

TTAAGCATAATCTGGAACATCAT

ATGGATACCGAGGAACTCTCTTA

CGGCTCA 

AtKin13B 

Gateway 

GGGGACAAGTTTGTACAAA

AAAGCAGGCTTCACCATGAG

CGGAAGACAGAGATCTGTTG 

TTAAGCATAATCTGGAACATCAT

ATGGGTACCCAGTGGTAGAGAC

TAATACA 

HsKin 

Gateway 

GGGGACAAGTTTGTACAAA

AAAGCAGGCTTCACCATGGC

CATGGACTCGTCGCTTCA 

TTAAGCATAATCTGGAACATCAT

ATGGATACTGGGGCCGTTTCTTG

CTGCTTAT 

HA 

Gateway 

N/A GGGGACCACTTTGTACAAGAAA

GCTGGGTCTTAAGCATAATCTGG

AACATCATATGG 
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