
Durham E-Theses

An investigation into evolving support for component

reuse

Lavery, Janet

How to cite:

Lavery, Janet (1999) An investigation into evolving support for component reuse, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4399/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4399/
 http://etheses.dur.ac.uk/4399/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

Department of Computer Science

M.Sc. Thesis

An Investigation into Evolving Support for
Component Reuse

Janet Lavery

1999

The copyright of this thesis rests with
the author. No quotation from it should
1)0 pulilishcd in any form, including
Electronic and the Internet, without the
author's prior written consent. All
information derived from this thesis
must he acknowledged appropriately.

Abstract

It is common in engineering disciplines for new product development to be based

on a concept of reuse, i.e. based on a foundation of knowledge and pre-existing

components familiar to the discipline's community. In Software Engineering, this

concept is known as software reuse.

Software reuse is considered essential i f higher quality software and reduced

development effort are to be achieved. A crucial part of any engineering

development is access to tools that aid development. In software engineering this

means having software support tools with which to construct software including

tools to support effective software reuse.

The evolutionary nature of software means that the foundation of knowledge and

components on which new products can be developed must reflect the changes

occiuTing in both the software engineering disciphne and the domain in which the

software is to fimction. Therefore, effective support tools, including those used in

software reuse, must evolve to reflect changes in both soflware engineering and

the varying domains that use software.

This thesis contains a survey of the current understanding of software reuse.

Software reuse is defined as the use of knowledge and work components of

software that already exist in the development of new software. The survey

reflects the belief that domain analysis and software tool support are essential in

successfiil software reuse. The focus of the research is an investigation into the

effects of a changing domain on the evolution of support for component-based

reuse and domain analysis, and on the application of software reuse support

methods and tools to another engineering discipline, namely roll design. To

broaden understanding of a changing domain on the evolution of support for

software reuse and domain analysis, a prototype for a reuse support enviroiunent

has been developed for roll designers in the steel industry.

Acknowledgement

I would like to thank my friends in the Department of Computer Science for their
much-appreciated encouragement. I would especially like to thank my
supervisors, Dr. Cornelia Boldyreff and Dr. Steven Bradley, for their guidance
and support throughout the production of this thesis.

I would also like to thank British Steel who funded this research through the
REMAIN project and who allowed me access to their staff, especially Brian
Kendall who spent hours explaining the roll design process.

Many thanks to the members of the CARD and REMAIN projects for allowing
me to use them as a soimding board for my ideas.

Copyright

The copyright of this thesis rests with the author. No quotation from it should be
published without prior written consent from the author and information derived
from it should be acknowledged.

Declaration

No part of the material offered has previously been submitted by the author for a
degree in the University of Durham or in any other University. AH the work
presented here is the sole work of the author and no one else.

Contents

CHAPTER 1 INTRODUCTION 8

1.1 OBJECTIVES OF T H E CHAPTER 8
1.2 INTRODUCTION 8
1.3 R E S E A R C H A R E A AND CRITERIA FOR SUCCESS 9
1.4 O U T L I N E OF T H E REST OF T H E THESIS 10
1.5 SUMMARY 12

CHAPTER 2 BACKGROUND 13

2.1 OBJECTIVES OF T H E CHAPTER 13
2.2 SOFTWARE R E U S E 13

2.2.1 Domain Analysis 15
2.2.2 Domain Terminology J8

2.2.2.1 Ontology 18
2.2.2.2 Thesaurus 20

2.2.3 Component-based Reuse 20
2.2.3.\ Assets 21
2.2.3.2 Realising Reusable Assets 23

2.2.3.2.1 Developing Reusable Assets 23
2.2.3.2.2 COTS Commercial-Off-the-Shelf Software 24
2.2.3.2.3 Extracting Assets from Existing Applications 25

2.2.3.3 Metrics for Reuse 27
2.2.4 Generative Reuse 29

2.2.4.1 Generators 32
2.2.5 From Component-based to Generative Reuse 34

2.3 SUMMARY 36

CHAPTER 3 FURTHER BACKGROUND 37

3.1 OBJECTIVES OF T H E CHAPTER 37
3.2 L I B R A R Y 37

3.2.1 Library Structures 38
3.2.1.1 Vertical Scaling 39
3.2.1.2 Horizontal Scaling • 39

3.2.2 Search and Retrieval 40
3.3 L I B R A R Y ORGANISATIONS 41

3.3.1 Indexing 42
3.3.2 Enumerated Classification 44
3.3.3 Multi Faceted Classification 45
3.3.4 Attributes-Value Classification 47
3.3.5 Exploiting the Nature of Code 47

3.4 COMPARING L I B R A R Y ORGANISATIONS 49
3.5 THESAURUS 51

5.5.7 Thesaurus Overview 51
3.5.1.1 Equivalence Relationships 52
3.5.1.2 Hierarchical Relationships 52
3.5.1.3 Associative Relationships 53
3.5.1.4 An Example of Software Tool Support Using a Thesaurus 53

3.5.2 Thesaurus Assisted Understanding 56
3.5.3 Thesaurus Assisted Searching 57
3.5.4 Thesaurus Construction 57

3.5.4.1 Developing a Thesaurus 58
3.5.4.2 Maintaining a Thesaurus 61

3.6 SUMMARY : ; 62

CHAPTER 4 DOMAIN ANALYSIS 64

4.1 OBJECTIVES OF T H E CHAPTER 64

4.2 T H E DOMAIN O V E R V I E W 64
4.3 DOMAIN D E T A I L S 65

4.3.1 The Design Documents 65

4.3.2 The Roll Designers 6^
4.4 T H E PROBLEM DOMAIN IN A SOFTWARE ENGINEERING CONTEXT 69
4.5 T H E SUMMARY 71

CHAPTER 5 REQUIREMENTS FOR TOOL SUPPORT 72

5.1 OBJECTIVES OF T H E CHAPTER 72
5.2 O V E R V I E W OF T H E REQUIREMENTS 72
5.3 INITIAL REQUIREMENTS ; 73
5.4 INITIAL PROTOTYPE 75

5.4.1 ReST Scenario One 77
5.4.2 ReSTScenario Two 79
5.4.3 Results of the Demonstration of the Initial Prototype of ReST 79

5.5 T H E FINAL REQUIREMENTS FOR T H E PROTOTYPE R E S T 80
5.5.1 Requirements Specification for ReST. 80

5.5.1.1 Functionality of ReST 80
5.5.1.2 User Characteristics 81
5.5.1.3 General Constraints and Assumptions 81

5.6 SUMMARY 82

CHAPTER 6 DESIGN OF REST 83

6.1 OBJECTIVES OF T H E CHAPTER 83
6.2 R E S T PROTOTYPE DESIGN 83

6.2.1 Dataflow Details 83
6.2.1.1 ReST in Context of the Domain 84
6.2.1.2 The Processing within ReST 86

6.2.1.2.1 Indexing the Asset 88
6.2.1.2.2 Indexing the Asset 89
6.2.1.2.3 Assessing the Quality of Index Terms 90
6.2.1.2.4 Maintain Stoplist 92
6.2.1.2.5 Maintain Thesaurus 93
6.2.1.2.6 Search for Reusable Assets 95

5.2.2 Entity Relationships 96
6.2.2.1 Reuser's Relationships 96
6.2.2.2 Librarian's Relationships 98
6.2.2.3 Maintainer's Relationships 99
6.2.2.4 All Entity Relationships for ReST 100

6.3 V A L I D A T I O N OF D E S I G N AGAINST REQUIREMENTS 100

6.4 SUMMARY 101

CHAPTER 7 IMPLEMENTATION OF REST 102

7.1 OBJECTIVES OF T H E CHAPTER 102

7.2 IMPLEMENTATION OF T H E FINAL PROTOTYPE OF R E S T 102
7.2.1 Indexing an Asset ^ 04
7.2.2 Assessing the Quality of the Index Terms 106
7.2.3 Maintaining the Stoplist 108
7.2.4 Maintaining the Thesaurus 109
7.2.5 Retrieving Reusable Assets HI

7.3 VALIDATION OF IMPLEMENTATION AGAINST REQUIREMENTS i l l

7.4 SUMMARY '. 112

CHAPTER 8 TESTING AND EVALUATION OF REST 113

8.1 O B J E C T I V E S OF T H E CHAPTER 113

8.2 PROTOTYPE STATUS 113
8.2.1 Stoplist
8.2.2 Thesaurus : ^'f
8.2.3 Sample Data Files ^ 14
8.2.4 Search Functionality ^̂ -5

8.3 O V E R V I E W OF T H E TESTING PROCESS 115
8.4 T E S T R E S U L T S 117

8.4.1 Index Document Excerpt ^7
8.4.2 Initial Quality Assessment of Index Terms 119
8.4.3 Reclassify the Index Terms , J 20

8.4.4 Submit the Quality Assessment 124
8.4.5 Reject Stoplist Candidate 124
8.4.6Accept Thesaurus Candidate 125
8.4.7 Review Thesaurus 126
8.4.8 Search Surrogates for Specific Terms 127

8.5 SUMMARY 128

C H A P T E R 9 C O N C L U S I O N S 130

9.1 OBJECTIVES OF T H E CHAPTER 130
9.2 SYNOPSIS OF W O R K 130
9.3 C R I T E R I A FOR SUCCESS 132

9.3.1 Criterion One 133
9.3.2 Criterion Two 133
9.3.3 Criterion Three 134

9.4 E V A L U A T I O N 135
9.5 F U R T H E R W O R K 136

9.5.1 Further Work on ReST. 136
9.5.2 Further Research 137

9.6 SUMMARY 138

A P P E N D I X A I N D E X I N G P R O G R A M 139

A P P E N D I X B S A M P L E D A T A F I L E S 140

B. l E X P E R T R O L L DESIGN 140
B.2 NOTES ON DESIGNING PRIMARY R O L L S , 141
B.3 L X _ D E L _ F L A N G E _ G U I D E 144

A P P E N D I X C C O M P A R I S O N T E S T D A T A 149

R E F E R E N C E S . 1 5 0

List of Figures

F I G U R E 2.1 DOMAIN ANALYSIS PROCESS 17
F I G U R E 2.2 COMPONENT-BASED R E U S E 20
F I G U R E 2.3 A SIMPLE M O D E L OF GENERATIVE R E U S E 30
F I G U R E 3.1 ENUMERATED CLASSIFICATION E X A M P L E 45
F I G U R E 3.2 M U L T I F A C E T E D CLASSIFICATION E X A M P L E , 46
F I G U R E 4.1 ILLUSTRATION OF E Q U I V A L E N T T E R M S 67
F I G U R E 5.1 R E S T INDEX DOCUMENT COMPLETE 77
F I G U R E 5.2 THESAURUS IN T H E INITIAL PROTOTYPE OF R E S T 78
F I G U R E 6.1 CONTEXT DIAGRAM 85
F I G U R E 6.2 L E V E L 1 DATAFLOW DIAGRAM OF R E S T 87
F I G U R E 6.3 L E V E L 2 DATAFLOW DIAGRAM OF INDEX A S S E T 88
F I G U R E 6.4 L E V E L 3 DATAFLOW DIAGRAM OF INDEXING T H E A S S E T 89
F I G U R E 6.5 L E V E L 3 DATAFLOW DIAGRAM OF ASSESSING T H E Q U A L I T Y OF INDEX T E R M S 91
F I G U R E 6.6 L E V E L 2 DATAFLOW DIAGRAM OF MAINTAIN STOPLIST 93
F I G U R E 6.7 L E V E L 2 DATAFLOW DIAGRAM OF MAINTAIN THESAURUS 94
F I G U R E 6.8 L E V E L 2 DATAFLOW DIAGRAM OF SEARCH FOR R E U S A B L E ASSETS 95
F I G U R E 6.9 R E U S E R ' S ENTITY-RELATIONSHIP DIAGRAM 97
F I G U R E 6.10 L I B R A R L \ N ' S ENTITY-RELATIONSHIP DIAGRAM 98
F I G U R E 6.11 MAINTAINER'S ENTITY-RELATIONSHIP DIAGRAM 99
F I G U R E 6.12 E N T I T Y RELATIONSHIP DIAGRAM FOR R E S T 100
F I G U R E 7.1 OPENING S C R E E N FOR R E S T 103
F I G U R E 7.2 SAMPLE OF INDEX D A T A 105
F I G U R E 7.3 SAMPLE OF STOPLIST D A T A 106
F I G U R E 7.4 SAMPLE OF INDEX T E R M S CLASSIFIED AS PREFERRED TERMS ; 107
F I G U R E 7.5 A R E U S E R ' S V I E W OF THE PREFERRED TERMS FOR S M L 1 0 1 - T S 107
F I G U R E 7.6 SAMPLE OF SURROGATE REPRESENTATION (SEARCH T A B L E) 108
F I G U R E 7.7 STOPLIST CANDIDATE FORM 109
F I G U R E 7.8 THESAURUS RECORD DEFINITION ; 110
F I G U R E 7.9 A THESAURUS R E C O R D 111
F I G U R E 8.1 SCENARIO OF W O R K ACTIVITIES DESIGNED TO T E S T PROTOTYPE OF R E S T 116
F I G U R E 8.2 R E S U L T I N G INDEX -118
F I G U R E 8.3 P R E F E R R E D INDEX T E R M S 120
F I G U R E 8.4 D E F I N E D INDEX T E R M S 120
F I G U R E 8.5 T E R M S S E L E C T E D TO B E S E A R C H T E R M S 121
F I G U R E 8.6 A S S E T ' S SURROGATE 122
F I G U R E 8.7 UNDEFINED T E R M S 123
F I G U R E 8.8 A S C R E E N SHOT OF T H E THESAURUS IN R E S T 126

Chapter 1 Introduction

1.1 Objectives of the Chapter

This chapter provides the introduction to the thesis. Section 1.2 provides an

introduction to the general research area, Software Reuse. Section 1.3 provides an

infroduction to the research area specific to this thesis, evolving support for

component reuse and the criteria on which the success of this research wil l be

based. Section 1.4 provides an outline to the remaining chapters of the thesis.

Section 1.5 provides the summary for this chapter.

1.2 Introduction
In many engineering disciplines there is a wide selection of tried and tested

components common to the discipline with which engineers develop new

products [SOM96]. This allows engineers to build most of any new product from

existing components leaving only a small number of components unique to the

product to be originally developed. However in software engineering, new

products are traditionally developed from completely original components. Over

the last decade the research into software reuse, the use of the knowledge and

work components of software products that aheady exist in the development of

new software products, has begun to gradually infilfrate the development of new

software products [ZAN97]. Software reuse is thought to hold great potential for

raising the level of quality of software products, known as software applications,

while reducing the overall development time [ZAN97]. To achieve this it is

necessary to provide a reuse support environment. [PRE97]

Similarly, little explicit design reuse is found among engineers in the steel

industry. However, there is a growing recognition in the engineers of the roll

design community that design reuse can improve design practice and contribute

to improved product development.

Since, software applications are comprised of approximately 65% domain

specific software, understanding a software application's domain through domain

analysis is essential for successful reuse [BIG98]. Steel products also exhibit a

wide variation across their areas of application necessitating domain analysis

necessary here as well. Domain analysis is a complex process that begins with the

location of domain knowledge sources and ends with an extensive domain model,

including a definition of a domain language or domain terminology [PRI91].

The necessity of understanding a domain's terminology was recently made

apparent with the much-publicised crash of the Mars Climate Orbiter [DOW99].

Critical measurements sent to the Mars Climate Orbiter when it was preparing for

orbit around the planet Mars were mistakenly sent in imperial measurements and

not the metric measurements the spacecraft was expecting resulting in the loss of

a spacecraft worth 230 miUion dollars [DOW99].

1.3 Research Area and Criteria for Success

Most real-world domains are relatively stable; however, they are subject to

change over time as Arango and Prieto-Diaz explain:

"Domains change because the real world changes,

. implementation technologies change, and our understanding of

the problems and the solutions improves over time." [ARA91]

Whatever the causes for change domains will evolve over time as wil l the

terminology of the domain. I f software reuse is to be effective in aiding

developers to achieve high quality software and improve development times the

software reuse support environment wil l have to evolve with the domain and

reflect the most current understanding of the domain [ARA91].

This research wil l examine the proposal that a thesaurus developed as part of a

reuse support environment to define domain terms and their relationships can

evolve as knowledge of the domain expands through reuse. And that increased

understanding of the domain wil l reveal more opportimities for reuse. In addition,

this research wil l aim to demonsfrate that specific software reuse techniques can

be applied to support reuse in other engineering disciplines.

The proposal wil l be investigated in the following ways:

• An investigation into software reuse and domain analysis as it applies to

software reuse.

• An investigation into software tool support for software reuse and domain

analysis, which wil l support the evolution of the domain that must be

reflected in software reuse. The focus will be on supporting the evolution

of a component-based reuse library and the associated domain

terminology.

Development of a prototype of a reuse environment that will support

component-based reuse and will include a thesaurus that will evolve as

the domain understanding is increased. The prototype wil l be developed

for the roll design community at British Steel.

The prototype wil l be applied to the domain problems associated with the need to

reuse roll design documents and share domain knowledge within British Steel's

roll design commxmity. This constitutes a novel application of reuse support in

roll design engineering.

1.4 Outline of the rest of the thesis
This section contains a brief outline of each of the eight remaining chapters of

this thesis.

Chapter 2 contains the results of a literature survey on software reuse. This

includes a detailed examination of component-based reuse and a less detailed

examination of generative reuse. Domain analysis is considered necessary for

successfiil reuse; therefore this chapter includes an examination of domain

analysis as it relates to software reuse.

Chapter 3 contains the results of a literature survey exploring support for

component-based reuse and domain analysis. It contains a detailed examination

10

of the component-based reuse library. This chapter also contains a detailed

examination of software tools to support reuse and knowledge acquisition and

sharing, focusing specifically on the use of a thesaurus.

Chapter 4 contains the results of the domain analysis performed on the domain

chosen for this research. The domain is British Steel's roll design, where

difficulties have arisen as a result of their plan to cenfralise their roll design

environment. This chapter includes an analysis of the domain that puts the

problem domain in a software-engineering context.

Chapter 5 contains the requirements for a software tool to support the British

Steel roll design community when performing domain analysis and reuse of

domain assets concurrently! This chapter contains an initial set of requirements

based on a general imderstanding of the problem domain, a discussion of an

initial prototype based on those requirements and the final requirements based on

the evaluation of the initial prototype.

Chapter 6 contains the design based on the final requirements specification for

ReST contained in Chapter 5. The design of the final prototype of ReST consists

of dataflow diagrams used to identify the entities, processes and data that

comprise ReST and entity-relationship diagrams used to demonsfrate the

relationships between the entities that comprise ReST.

Chapter 7 contains the implementation details of the design of the final prototype

of ReST contained in Chapter 6. This chapter includes a description of the final

implementation of ReST, and examples of the user interface and sample data.

Chapter 8 contains the results of the testing and evaluation of the implementation

of the final prototype of ReST. This chapter also includes the status of the

prototype prior to testing, a descriptioa of the testing and evaluation method, and

the results of a scenario based evaluation.

Chapter 9 contains the conclusion formed as a result of the research and an

examination of possible further work.

11

1.5 Summary

The general research areas of this thesis are software reuse and domain analysis

as it pertains to software reuse in Software Engineering. The focus will be on an

investigation into the effects of a changing domain on the evolution of support for

component-based reuse and domain analysis and on the application of software

reuse support to another engineering discipline. To demonstrate the resuUs of the

investigation, a prototype for a reuse support enviroimient. Reuse Support Tool

(ReST), wi l l be developed. Specifically, the prototype wil l be use to demonstrate

the reuse of design artefacts produced as part of the steel industry's roll design

process. The prototype will include support for a component-based reuse library

and a thesaurus that contains the associated domain terminology. The way in

which the prototype allows reuse support to evolve over time and accommodate

changes in terminology wil l be demonstrated using scenarios.

12

Chapter 2 Baclcground

2.1 Objectives of the Chapter

The main objective of this chapter is to provide the results of a literature survey

on software reuse within software engineering. The practice of software reuse is

one of the means necessary to achieve the development of high quality software

faster and with less effort. This chapter includes a detailed examination of

component-based reuse and a less detailed examination of the more sophisticated

generative reuse. As an understanding of a software application's domain through

domain analysis is considered necessary for successfiil reuse, this chapter

includes an examination of domain analysis as it pertains to software reuse.

Section 2.2 provides the overview of software reuse and contains an investigation

into the subjects of domain analysis, component-based reuse and generative

reuse. Section 2.3 provides the summary for this chapter.

2.2 Software Reuse
Within the context of this thesis, software reuse' is defmed as the process of

using assets, which includes both knowledge and work products fi-om previously

developed software applications^ in the development of new software

applications. Reusable assets can be developed in any phase of the software life

cycle. Domain models, requirement specifications, designs, code, test cases, and

user documents are just a few examples of assets that should be available for

reuse [POU97]. The use of the term 'assets' is intended to imply that the

knowledge and work products of existing soflware applications have a lasting

value. Additionally, it draws attention to the fimdamental concept of reuse, that

an asset is a resource to be used repeatedly, and not an item restricted to a single

use [REI97]. Assets are examined in more detail in Section 2.2.3.1.

Reuse is intended as a method for significantly improving software quality and

software engineering productivity [HAL91]. Sommerville [SOM96] identifies

' Referred to as reuse for the remainder of this thesis.

13

several areas of software development that wi l l improve with the practice of

reuse. These are listed below:

• Application reliability;

• Testing;

• Consistency;

• Productivity;

• Development time; and

• Cost estimates.

Sommerville [SOM96] states that reuse of software assets miproves software

application reliability. Assets used in the development of software applications,

which have been in operation for some time, are assets that have been shown to

be reliable and thoroughly tested in real world conditions. Therefore, reusing

these previously tested assets in new software applications wil l increase the new

software application's reliability and reduce the time needed for testing.

Consistency across multiple software applications can be achieved by embedding

standards in reusable assets, thereby enforcing the use of the standards. Reuse

can aid with improvements to software engineering productivity by reducing the

time to market for new software appUcations, by reducing the time needed to

develop the software application. In addition, when software engineers develop a

single asset for use in multiple software applications instead of developing assets

individually for each software apphcation the development time of new software

applications is reduced. Improvements to the accuracy of estimating the cost of

an applications development can be achieved when reusable assets are known to

exist and have been reused in previous software application developments.

According to Bassett [BAS97] the reusability of an asset is based on the three

factors listed below:

• Usability or fitness of purpose;

• Generality or scope of applicability; and

• Adaptability or ease-of-use.

• Also referred to as application or applications within this thesis.

14

However, as Brooks [BR095] points out soflware applications wil l only be

developed using reusable assets when the reuse of assets requires less effort than

the development of new assets. Brooks [BR095] uses mathematical libraries as

an area where reuse of existing assets is more economic than development of new

assets. Mathematics is a well-understood domain with a standardised terminology

with which to discuss problems and design solutions. Rephcation of the effort

required to build both the domain understanding and the standard terminology

would be both expensive and a waste of time.

Poulin [POU97] breaks reuse down into two distinct classes, horizontal reuse and

vertical reuse. Horizontal reuse is the reuse of assets that are common to a wide

spectrum of problem areas, known as domains, such as graphical user interface

soflware or mathematical libraries. Vertical reuse is the reuse of domain specific

assets where the assets are constrained in some way be the domain. When

discussing reuse both horizontal and vertical reuses are considered as one. But

Poulin describes a typical software application as comprised of approximately:

• 15% application specific soflware;

• 20% domain independent software; and

• 65% of domain specific software.

Although little distinction is made between horizontal and vertical reuse, it is safe

to assume that efforts in research and industry are concentrated in the area where

more substantial gains are to be made, which is vertical reuse [POU97]. The

'driver' behind any reuse is the domain and domain analysis is essential for

successfiil reuse [BIG98].

2.2.1 Domain Analysis

As soflware apphcations are comprised of approximately 65% of domain specific

software, the understanding of the software application domain through domain

analysis is essential for successfiil reuse [BIG98]. Prieto-Diaz [PRI91] describes

domain analysis as a complex process that begins with the location of domain

knowledge sources and the defining of the domain boundary. An application may

in fact have more than one domain boundary, in which case the domain

15

boundaries and the points of interaction between the boundaries must be defined.

Once the knowledge sources and the domain boundary have been defined,

domain analysis methods are applied to provide a domain model [ARA91].

Domain analysis is a highly skilled and difficult activity, which can require a

good deal of time and effort to be completed successfiilly. Arango and Prieto-

Diaz [ARA91] believe that prior to analysis activities, a considered decision

should be made as to whether or not the domain is stable enough to justify the

effort required. This is necessary not only to create a usefiil domain model but

also to maintain the model as the domain evolves. In addition, there should be a

problem (or problems) that require a software solution (or solutions) within the

domain, known as the problem domain.

Consideration must also be given to the user community that would benefit fi-om

the production of a domain model. To justify the effort required to develop a

domain model, the user community must have a substantial interest in having the

domain modelled. The user community must require software solutions to

identified domain problems. Figure 2.1 provides an overview model of the

domain analysis process. The model includes the various knowledge sources

needed to perform domain analysis and the variety of work products that

comprise the domain model. This model does not contain a specific domam

analysis method. A detailed discussion of domain analysis methods is beyond the

scope of this thesis.

16

Domain
Knowledge

technical literature

existing software

domain experts

customer surveys

current/future requirements

Domain
Analysis

Domain
Model

taxonomies

functional model

standards

reuse guidelines

domain language

ontology

Figure 2.1 Domain Analysis Process

Though knowledge sources can vary from one domain to the next, there are

several knowledge sources common to most domains including technical

literature, existing applications, domain experts, customer information, and

current and future requirements [ARA91, PRE97]. Arango and Prieto-Diaz

[ARA91] state that domain analysis methods are usually based on a combination

of both knowledge and software engineering methods. Pressman [PRE97] asserts

that domain analysis must include the identification and classification of the

items found within the domain. In addition, a representative sample of items

found in the domain needs to be collected. This representative sample is then

analysed in context of the domain model to ensure the model's accuracy. The end

result of domain analysis is the domain model. The domain model consists of a

variety of representations of the domain including taxonomies, standards, domain

languages, and functional models [ARA91, PRE97]. In addition, the domain

model should include a set of reuse guidelines to aid with the identification of

existing reusable assets and the development of reusable assets [PRE97].

Included with the reuse guidelines should be examples of how domain assets

could be used in the development of new software appUcations [PRE97]. Taken

as a whole, the domain model is used to illustrate the generic objects and their

operations, and the static and dynamic structures [REI97] of an application's

domain. Prieto-Diaz [PRI91] states that the domain model provides the

foundation on which all applications within a domain can be built. An important

part of this foundation is the defming of a domain specific language or the

17

domain terminology. This definition of the domain terminology should include

not only the meaning of the terms within the domain, but also the context in

which the terms are used within the domain.

2.2.2 Domain Terminology

An important part of any domain analysis process is the defining of a domain

specific language. The domain specific language provides the terminology that is

used to model the domain [PRI91, PRE97]. As Figure 2.1 shows the domain

model includes a taxonomy that is used to identify the classification of objects in

the domain and a domain language that provides the terminology used within the

domain. Also shown in Figure 2.1 as a part of the domain model is an ontology,

which is in many respects a combining of the taxonomy and the domain

language. In an ontology the objects of a domain and the relationships between

them are identified, classified, and defined [CHA99].

2.2.2.1 Ontology
Within the Artificial Intelligence community the development of knowledge-

based applications requires an in-depth and detailed understanding of the

application's domain. Increasingly the foundation of the domain analysis is the

construction of an ontology of the specific domain [SWA99]. Chandrasekaran,

Josephson and Benjamins [CHA99] define an ontology as the means to classify

the objects of a domain. Within the context of the domain, objects are identified,

sorted, and defined, as are the relationships between the objects. In other words

an ontology is the domain terminology used to represent the collection of domain

specific terms and the concepts those terms represent. The domain terminology

may be written in a knowledge representation language. Ontology contains a core

layer of terms that are specific to the domain and an outer layer of terms that are

more general or domain independent. Ontologies are generally classified in a tree

structure fi-om very general domain independent terms down to specific domain

terms. Ontologies support knowledge acquisition, sharing and reuse by providing

repositories for the general and detailed knowledge about specific domains

[SWA99, VAL99]. Swartout and Tate [SWA99] believe that libraries of

18

ontologies fi-om a wide variety of domains would aid in developing knowledge-

based applications.

As part of the development of the Joint Forces Air Component Commander or

JFACC^ air campaign planning ontology, Valente et.al. [VAL99] investigated the

reuse of existing ontology in the development of a new ontology. Two instances

of reuse were examined: the inclusion of a publicly available ontology on time

theory, and the merging and inclusion of two ontologies within the aircraft

domain. In the first instance, a publicly available ontology on time theory, which

uses the Ontoligua"* knowledge representation language, was translated into

Loom, the JFACC knowledge representation language, prior to inclusion in

JFACC. This translation consisted of mapping the structure of Ontoligua on to

Loom. A direct automated mapping between the knowledge representation

languages was not possible. Some manual adjustments were required as the more

general concepts represented at the upper or outer level of the ontologies have

different structures. These differences highlight the bias constructed into each

ontology. The bias is the result of the original ontology developer's view of the

domain and the intended use of the application for which the ontology was

originally created. In the second instance, two ontologies developed for the same

general domain, aircraft, were merged together for inclusion in JFACC. Both

ontologies used the same knowledge representation language as JFACC, but were

constructed fi-om different perspectives of the aircraft domain. As both ontologies

were constructed for the same general domain, there was some overlap between

the ontologies that was removed. There were also many differences which when

combined created a richer and more widely useful ontology. In addition, the

different perspectives of the domain meant that different views of the domain

could be incorporated into JFACC, allowiiig users of the ontology to select the

domain view most appropriate to the use of the ontology. Valente et. al. found

that the reuse of ontology in the development of new ontology supported the

usefiihiess and quality of the new ontology but translation from one knowledge

representation language to another is difficult. Chandrasekaran, Josephson and

Benjamins [CHA99] propose that domain ontology could be used in information

' Developed at USC Information Sciences Institute
' Development details at http://www-ksl.standford.edu/

19

retrieval applications to provide an organisational structure of the information

and as a means to guide the search process. In this research, this proposal will be

tested with the construction of a thesaurus.

2.2.2.2 Thesaurus
Like an ontology, a thesaurus is a collection of terms used to represent concepts

within a specific domain and organised so that predefined relationships between

the terms are made explicit [IS02788, RAD90]. A thesaurus can be used to store

and define a domain's terminology. Unlike an ontology that is constructed as an

end product of the domain analysis process, a thesaurus can be developed over

time outside the domain process. For example, as understanding of the domain

increases when developers perform reuse [JAR95]. Thesauri are discussed in

more detail in Chapter 3, S ection 3.5.

2.2.3 Component-based Reuse

Reuse generally divides into two broad categories: component-based reuse,

discussed in this section, and generative reuse, discussed in Section 2.2.4. In

component-based reuse a reusable software component or a combinations of

reusable software components^ are placed into a developing software apphcation

with some or no modification. Figure 2.2 shows a model of component-based

reuse.

Requirements
Software Application

Development

Application

^ Software Application
Development

Existing
Assets

- 1 Library U -

New
Assets

Figure 2.2 Component-based Reuse

Referred to as asset or assets for the remainder of this thesis.

20

Kruzela [KRU93] describes component-based reuse process as follows. Existing

software applications are examined and assets thought to be useful for reuse are

identified and extracted. The assets are then modified to make them reusable

assets and then stored in a repository or library. Once the requirements for a new

software application are known, software engineers performing reuse, known as

reusers, wi l l search the library to find those reusable assets to be used in the new

application. The reusable assets are then usually adapted and included in the

development of the new application. Sommerville [SOM96] states that there are

three conditions that must be met for successfiil reuse.

• There must be a well stocked library containing reusable assets that can be

easily located, i.e. the assets are classified or catalogued in a manner that is

conducive to search and retrieval.

• The reusers must have confidence in the reusable assets, i.e. the assets wil l

behave as specified and be reliable. Sommerville suggests the use of a quality

standard. Assets would then have to comply with the quality standard prior to

inclusion in the library.

• There should be documentation accompanying each asset that will support

reusers understanding of the asset. It is suggested that the documentation

include examples of previous reuse of the asset including, a description of any

areas that needed modification and any problems encountered in reuse or

modification.

Assets includes both knowledge and work products generated as a result of

software development. Domain models, requirement specifications, designs,

code, test cases, end-user documentation and change reports are just a few

examples of assets that should be available for reuse [POU97]. The use of the

term 'assets' is intended to imply that the knowledge and work products of a

software applications have a lasting value and that an asset is a resource to be

used repeatedly, and not an item restricted to a single use [REI97].

2.2.3.1 Assets

In theory, any asset developed as part of an application's development and

maintenance process is a reusable asset [POU97]. A non-exhaustive list of assets

21

may include: ontologies, project plans, cost estimates, requirements

specifications, designs, source and executable code, test sets, user documentation

and change reports. However, not all assets are directly suitable for reuse

[KRU93]. Bassett [BAS97] states that reusable assets need to be usable, general,

and adaptable; his position is summarised by the following tenets:

• Reusable assets must be judged as likely to satisfy some requirement in future

application development.

• Reusable assets must be generalised sufficiently to be reusable in multiple

future application developments.

• Adapting a reusable asset must be more cost effective than filling the needs of

a new application development with a newly created asset.

In addition, reusable assets should be self-contained and be understood by the

reusers [HAL91].

To summarise, a reusable asset must be generalised, adaptable, needed in future

developments, self-contained and understandable. To illustrate this an example

could be a single code module. What would be required to ensure a code module

could be considered a reusable asset?

Adherence to a reuse standard [PRE97] that included implementation

guidelines such as naming conventions, code structure, header file

information and module interfaces during the initial development would

ensure that a code module is generalised. Modification of a code module

so that it adhered to the reuse standard would also ensure that the code

module was generalised.

Adapting a code module usually means that some functionality needs to

be added or removed prior to the use of the code module in the

development of a new application. Adaptation of a code module is in

many respects language dependent. For example, code developed using

an object-oriented language achieves adaptation via inheritance, where

the functionality contained in a base class is reused to provide the

22

foundation for the functionality contained in new objects (code

modules)[SOM96].

As fiiture requirements are one of the knowledge sources used during

domain analysis, domain analysis should provide guidance as to which

functionality is Hkely to be needed in multiple apphcations over time. A

code module that fixlfilled one or more fiiture requirements would be

reusable.

Code modules are self-contained, but would have to be accompanied by

relevant documentation to be understandable [HAL91]. Examples of

documents that are used to support reuser understanding of code

modules are the module's requirement specifications, design documents

and previous reuse history [PRE97].

2.2.3.2 Realising Reusable Assets
There are several ways to acquire reusable assets. Reusable assets can be

developed specifically for reuse, or purchased from outside suppliers, or

extracted from existing applications.

2.2.3.2.1 Developing Reusable Assets

Developing reusable assets is more costly than developing an asset that wil l used

in only one application. Brooks [BR095] declares that reusable assets are likely

to be three times more expensive to develop than assets that are developed for a

single application. Reusable assets 'cost' more to develop because more effort

must be expended during development. Reusable assets need to be generalised,

well documented, reliable, robust, and heavily tested. However, the cost of a

reusable component can be amortised over more than one application [HAL91].

Wasmund [WAS95] found that the pressure placed on an application

development team to get an application to market can undermine the effort and

time that is required to develop assets for reuse.

23

2.2.3.2.2 COTS Commercial-Off-the-Shelf Software

Another means for acquiring reusable components is to purchase commercial off-

the-shelf assets or COTS. COTS are tested software components intended to

eliminate the need to design and develop the same software features each time

they are needed in a new application development [KIE98]. COTS can be a broad

spectrum of different types and sizes of reusable assets. Gentleman [GEN97]

states that COTS can be an abstract data type, or subroutine, or a single class or

even a class library. COTS can also be much larger and more generic such as

databases or a domain specific information system. COTS can in fact be even

broader; they can be problem-oriented languages for expressing problems and

their solutions or even application generators. What is essential is that COTS

ahready exist to be used in the development of new appUcations.

The benefits of using COTS are similar to those of reuse. The development and

upgrading of COTS can be amortised over an entire customer base making the

cost of purchasing COTS less than the cost of creating new assets for an

application under development. Application development costs are also reduced

because the expertise needed to develop the reusable asset is encapsulated in the

COTS thereby eliminating the developing organisation's need to employ experts

for every application developed. The time to market of the application imder

development wi l l be reduced because the COTS have already been developed.

COTS are usually of high quality, especially i f they have been in use for some

time. COTS used in industry \yill have been tested under operational conditions,

and it is likely that errors will have been found and corrected. I f the COTS user

interface is familiar to the users of a new application, for example a net browser

for a network centred application, then the time needed to train users is reduced.

There are, however, risks attached to using COTS. Buying in third party software

has the risk of surrendering the application's future development to the vendor

[MCP93]. Gentleman [GEN97] identifies several other problems with using

COTS including the chance of the vendor going out of business leaving

purchasers with no support. It is likely that reusers wil l be unfamiliar with the

COTS and the time to develop new applications using COTS is lengthened by the

time it takes the reusers to understand the COTS sufficiently to integrate them

24

into the application under development. This problem is compounded when the

detailed specification of the COTS is incomplete or worse non-existent. It is

unlikely that COTS wil l exactly match the requirements of the application being

developed. Effort may have to be expended on supplementing the COTS

functionality and masking tmwanted fiinctionality provided by the COTS.

Additional time for testing and debug wil l be needed i f the COTS are modified

directly and not through interfaces or wrapping. It is not likely that COTS from

different vendors wi l l work together. A standard interface has yet to be adopted

by the COTS industry, though at present Microsoft's Distributed Component

Object Model (DCOM) and JaveBeans are contenders and the Object

Management Group (OMG) is trying to make both interoperable with Common

Object Request Broker Architectiire) CORBA. Kiely [KIE98] points out that

there needs to be a standardising of design notation to promote general

tmderstanding of COTS within the software engineering community. For

instance, the Uniform Modelling Language^ (UML) is gaining acceptance and

adoption by the software engineering commvmity.

Brooks [BR095] believes the true potential of COTS lies in metaprogramming

that would allow one or more applications to be reused as part of new

development. For that to happen, a nmnber of issues need to be addressed such as

a metaprogramming interface language and a financially rehable market for

COTS. Discussions need to be made on licensing agreements and how the COTS

industry is to charge for COTS that are used over and over again in new

developments and new versions of existing applications [KIE98].

2.2.3.2.3 Extracting Assets from Existing Applications

Acquiring reusable assets by exfracting them from existing applications also

requires a considerable amoimt of effort. Wasmund [WAS95] states that

extracting reusable assets from an existing application is possible when the

application's code is understandable and the applications' documentation is

complete and consistent with the implementation of the application. However, he

found that this is rarely the case. It is more usual for the source code to be the

* Developed by G.Booch, J.Rumbaugh, and I.Jacobson

25

only correct representation of the application. Therefore, considerable effort must

be expended on re-establishing the application's documentation. I f an

implementation has not been developed for reuse, effort must be expended in

modifying the code to make it suitable for reuse. Any modification of code could

introduce errors into the code, which means that time and effort must be

expended testing the assets once they have been modified for reuse. The

situation worsens when the code is difficult to understand and the design

rationale has been lost. Various tools and methods have been developed in an

attempt to alleviate these difficulties and make it possible to extract reusable

assets from existing applications. One example is the MIT project, Programmer's

Apprentice that used standard program patterns or cliches as a means of

identifying design strategies, thus enabling software engineers to abstract higher

level descriptions of the software [HAL91]. This then provides the means to

understand and document the application.

McParland [MCP93] cites domains such as stock control, or financial systems as

examples of domains that have existed in a computerised format for many years.

Existing applications within these stable domains provide a rich source of

reusable assets firom which to build templates for domain specific applications.

Templates are generic specifications used to capture the common elements, data

and functionality, of an application domain firom relatively stable domains for

reuse in new appUcations. Templates improve application quality, increase

developer productivity and are adaptable as the domain evolves. When

developers extract the commonahties from large numbers of applications within a

domain, they can build and rigorously test the templates to ensure a high quality

core foundation on which to develop a new application.

However, McParland [MCP93] cautions that even when using reverse

engineering tools and domain analysis methods, template extraction is a difficult

and time-consuming task. The effort that must be expended to develop the

templates needs to be weighed against the benefits reaUsed by using the

templates.

26

2.2.3.3 Metrics for Reuse
Businesses need metrics to assist management in finding the economic reality of

reuse within the limited time frame available in today's rapidly moving business

environment. Businesses need to be able to judge whether it would be more cost

effective to develop new assets for an application being developed or extract the

reusable assets from existing applications. Sneed [SNE98] presents two metrics

for measuring the cost of reusing existing applications in the development of new

applications which are intended to provide management with realistic reuse cost

estimates quickly. One metric measures the cost of converting existing code for

reuse; the other measures the cost of wrapping existing code for reuse. Botii

metrics have been developed on the premise that the costs of reuse are relative to

costs incurred in the development of a new application from scratch. The metiics

are intended to provide a comparison of the cost of reuse with the cost of

development from scratch. Additionally, the metrics can be used to provide the

means to compare the two methods of reuse, conversion and wrapping.

Conversion, a form of re-engineering, of an existing application requires that an

existing application be reconstructed in a new language, with modem databases

and interfaces. Measuring the cost of conversion requires mapping the

relationships between old and new code i.e. old and new statements and data

types. Initially, the existing application's code is reviewed and each statement and

data type is sorted into one of four possible relationship categories. The

relationships between the old code and the new code in level of difficulty are:

• One to one (1:1) where for example when one data field in a hierarchical

database is mapped to one data field in a relational database;

• One to many (1 :M) where for example when one statement in COBOL

EXAMINE is mapped to a fimction in C;

• Many to one (M: 1) where for example several lines of Assembler can be

mapped to a single line of C; and

• Many to many (M:N) where for example a loop construct in Assembler

that begins with a start-label and a conditional branch back to it is mapped

to a higher level language loop construct that begins with the conditional

and ends with a loop terminator.

27

The total number of statements that fall into each relationship are tallied.

Each relationship is weighted based on the level of expected difficulty in the

conversion. The weights found in the formula are based on Sneed's own

experience and research into conversion. He considers the simplest mapping to be

1:1 with the weight doubling with each level of difficulty. The convertibility of

the existing statements is calculated as follows:

Convertibility (nw) = (1:1)1 + (1:IV1)2 + (IV1:1)4 + (IVI:N)8

/ Sum (Instructions + Data Types)

Once convertibility is calculated, the convertibility ratio is calculated and used to

determine whether or not to convert the existing code for reuse. The ratio is:

The total number of statements and data structures (n) divided by

the convertibility (nw) or n/nw.

The ratio is used to determine whether or not conversion of an existing

application is cost effective, according to the following guidelines:

• A ratio greater than 0.75 means that reuse is considered approximately 33%

or less than the cost of development and therefore reuse by conversion is

recommended.

• A ratio between 0.75 and 0.50 means that the cost of reuse at best is about

50% of the cost of development and could in fact come close to the cost of

development and therefore reuse by conversion is not recommended.

• A ratio of 0.50 or less indicates that reuse costs wi l l approach, i f not exceed

the cost of development and applying reuse by conversion is not

recommended.

Wrapping or reverse engineering of existing code for reuse requires that the

existing code is sliced into reusable components and the components wrapped

using application program interface, or in the case of a database, a data access

layer. In wrapping, the existing code remains in its original language and current

environment. Initially, existing code is sliced into potentially reusable modules or

components with input, output and predicates documented. This process results in

28

a listing of callable functions. The listing is then compared with the requirements

of the new application to discover to which of the four weighted categories the

fimction belongs. The categories are weighted according to the amount of effort

required to make the code reusable. The categories with weights are as follows:

• Reusable without modification, weighting of 1;

• Reusable with minor modification, weighting of 0.75;

• Reusable with major changes required, weighting of 0.50; and

• Functions that do not fit the new application, weighting of 0 (zero).

The wrappability of the existing code is calculated as the number of reusable

operations and data divided by the simi of all the existing operations and data.

The ratio of reusability is computed as:

The sum of all weighted functions divided by the sum of all callable

program slices (functions) or fw/f

where

fw = f1 (1.0) + f2(0.75) + f3(0.5) + f4(0) and

f = all callable program slices.

A resulting ratio of less than 0.5 indicates that wrapping existing code for reuse

would require too many changes to the existing code and that it would be less

costly to develop the new application without this method of reuse.

Sneed [SNE98] recommends that reuse using conversion or wrapping or some

combination of both should only be considered when the cost of reusing existing

code is less than 33% of the estimated cost of developing a new application

without reuse.

2.2.4 Generative Reuse

Though component-based reuse is successfiil in areas such as mathematical

libraries, problems arising during the understanding, location and modifying of

components in other domains can be overcome with the change to the more

productive generative reuse [JAR95, THI97]. McParland [MCP93] considers

29

generative reuse with the use of templates and automated code generation

encapsulated in a CASE (Computer Aided Software Engineering) tool as a means

to increase engineering productivity substantially.

Generative reuse is a process in which the knowledge about a domain and

software engineering is reused to develop new apphcations. A new application is

defined or specified using a domain specific language, the specification is then

used as input for a code generator which transforms the input to output in the

form of code for the new application [BIG98, SOM96]; Figure 2.3 illustrates a

simple model of generative reuse based on Sommerville's [SOM96] model of

generative reuse.

Application Description
Program Generator

Generated Program

Domain ~̂
Knowledge J

Figure 2.3 A Simple Model of Generative Reuse

For generative reuse to be practised successfully the domain must be very well

understood and defined [SOM96]. In generative reuse systems such as Draco^,

several domains must be modelled and the progression to an implementation

requires multiple transformations [BIG98, NEI89]. Brooks [BR095] believes that

generative reuse is only possible in areas where the domain is well understood

and where both the problem and the various solutions are understood. In addition,

a common language understood by all members of the domain community must

be defined. This common language must be able to communicate both the domain

problems and solutions to all members of the domain community. As well as a

common language, the domain itself must be well disposed to generative reuse.

The domain should require few parameters; have a variety of imderstood

30

solutions; and have been analysed sufficiently to provide the rules for selecting

the solution once the parameters are known. Though domains that share these

properties are considered to be exceptions rather than the rule. Brooks [BR095]

cites two domains, programs for sorting and systems for integrating differential

equations, where generative reuse has routinely and effectively been used.

Sommerville [SOM96] cites application generators and parser generators as

examples of successfiil generative reuse. Application generators are used to

develop business data processing systems. Data processing for business is a well-

understood domain, the tools used to specify the application such as a 4GL have

been in use for some time. Parser generators are used in language processing. A

parser generator takes as input the rules of a language or grammar and outputs a

parser for the language. As with data processing, language processing is also a

domain that is well tmderstood.

Biggerstaff [BIG98] describes Draco, a generative reuse tool (system), which has

been used successfully in the domain of telecommunications. Hall and Boldyreff

[HAL91] state that Draco is intended to reuse analysis and design information.

The approach taken is to define the problem domain in terms of objects and their

operations and then to match them with objects and operations in terms of

domains aheady analysed and known to Draco. When a match occurs, the

software engineers interact with Draco to refine the known designs to develop the

implementation of the application in the new domain.

In Draco the problem area for which a software solution is being sought, known

within Draco as the world, is divided into one or more relevant domains [BIG98,

NEI89]. Each domain contains a substantive collection of domain specific

knowledge defined in a domain specific modelling language. Biggerstaff [BIG98]

states that there have been approximately twenty domains modelled, including

data structures, databases, SQL, and various network sub-domains. A reuser

writes a specification for the new application in one of the domain languages.

This specification is then refined (transformed) into one or more other domain

' Developed by J.M.Neighors

31

languages providing models of the next level of domains. The models are then

refined fiirther until they are brought together for transformation into the

executable code. The refinements do not follow a linear path. The refinements,

like the relationships between the domains, are graph like and can include

recursion between domains and recursion within a domain such as a data

structure being refined to simpler abstractions. Draco can also generate the

documentation and the diagnostic or simulation tools for the target.

The emphasis in generative reuse is modelling the common elements of the

domain. Jarzabek [JAR95] argues that generative reuse is the process of

identifying and modelling both the commonalities and the variants of the

application's domain. In this approach, the variants between existing systems are

modelled and included in the domain model. One domain where generative reuse

has been successful is programming language systems. Within the programming

language systems domain, commonalties are modelled using finite state automata

and parsing algorithms, whereas variants can be modelled using regular

expressions notation and BNF. The problem is that to achieve a significant and

accurate understanding of a domain, substantial effort and time is needed for

domain analysis. Investigation into successfiil generative reuse domains, to aid

with techniques needed for modelling variants, is limited by the narrowness of

the domains in which generative reuse has been successfiil.

2.2.4.1 Generators
A generator is a form of translator that transforms expressions from one language

to another, usually in the confines of a specific problem domain [BAS97]. Bassett

[BAS97] uses a GUI generator as an example, where a visual representation

language is used to develop screens which a generator then translates into C code.

An area of concern with the use of generators is that the narrowness of the

domain in which they works means that multiple generators are required to

develop a usefiil application. Therefore there must be a mechanism in place, such

as an interface language, to allow output from various generators to work

together. Another area of concern is that when the generated output does not meet

all the needs of the application under development, the output must then be

32

altered in some way. Bassett [BAS97] provides three strategies for coping with

this concern:

• White box generation;

• Black box generation; and

• Grey box generation.

As expected, in white box generation, the developer is allowed to directly edit the

generated output. The main drawback is the need to re-edit every time the output

is re-generated. Black box generation provides the developer with specific 'exit

points' where customising and editing may occur, for instance the addition of

functionality. However, this means that some areas of the generated output, such

as data structures, become sacrosanct, which can potentially place unnecessary

restrictions on the new application. In grey box generation the generated output is

a frame which uses parameter passing to handle variations.

In this context. Basset [BAS97] defines a fi-ame as follows: "A frame is a generic

structure that can give rise to a variety of specific instances.'''' Parameters are

used to highlight the difference between a fi-ame instance and its parent fi-ame.

The parameters contain default values that can be overwritten by other frames.

Frames can be combined with other frames and contain frames. Bassett [BAS97]

interprets the scepticism surrounding generators as the result of the

incomprehensibility and rigidity of the generated output. Developers reject code

generation because working aroimd or correction to the generated output is more

work than developing the source code. Bassett suggests that to overcome the

problems associated with code generation, a bi-directional generator and frames

be used to develop a new appUcation. For example, a developer could use a

graphical representation to form the input to a generator; the generator would

generate a frame output in the graphical representation for further manipulation

by the developer before franslation into machine code for the computer.

Henninger [HEN94] believes that the development of frames requires a very

substantial effort in domain analysis and knowledge representation. However

frames do provide conceptual closeness and can be used to effectively estimate

modification effort.

33

Thibault and Consel [THI97] contend that industry has not adopted the use of

generators because of the lack of tools to support the building of generators. They

offer a two level 'framework' for the design of generators.

In the first level an abstract machine, which captures the fundamental operations

that occur in the domain, is defined. The absfract machine contains the operations

of the domain as they work on an explicitly defined state. This provides the

means to reason about the operations and their interactions. The second level is to

define a micro-language (or domain specific language) which will provide the

interface to the abstract machine. Once both levels of the design 'framework' are

complete; it is possible to build an interpreter for the micro-language, using the

operations defined in the absfract state machine, and the absfract state machine

itself. To generate the new application, the reuser must specify the application in

the micro-language thereby producing a micro-program that will be mapped to

operations in the implemented abstract machine using partial evaluation. Partial

evaluation is a program fransformation process that specialises a program based

on the known values of some of the inputs. The operations in the absfract

machine are then mapped to an optimised implementation.

2.2.5 From Component-based to Generative Reuse
Wasmund [WAS95] believes that component-based reuse cannot succeed in

providing the improved quality and productivity needed by today's industries.

The pressure on software engineers to get a product to market as quickly as

possible is in direct conflict with additional time needed to develop reusable

assets. The effort and cost associated with exfracting reusable assets from

existing applications to be reused in the development of a new application

generally exceeds the effort and cost of developing the application from scratch.

The use of COTS leaves a development company at the mercy of vendors for

upgrades.

However, Reifer [REI97] proposes that the productivity and quality gains

believed possible with the inclusion of reuse into the development of applications

34

can be achieved by the adoption of a reuse process maturity model. This model is

similar to the Capabihty Maturity Model^ (CMM) used to improve software

development process. The Reuse Process Maturity Model suggested has five

distinct levels presented below. They are as follows:

• Level one is ad-hoc reuse, and is practised randomly.

• Level two is project-wide reuse where reuse is practised within projects and

assets are by-products of the project. At this level reuse is repeatable only on

a project by project basis.

• Level three is organisation-wide reuse, where reuse is part of how an

organisation does business. At this and all subsequent levels reuse is a

repeatable process and reusable assets are products of the reuse process.

• Level four is product-line reuse where reuse is viewed as a business unto

itself

• Level five is broad-spectrum reuse where reuse is a significant part of the

business culture and processes are optimised with reuse in mind.

Lim [LIM98] describes several other reuse maturity models, all of which are

similar to the one presented above. A l l have an ad-hoc or chaotic level where

reuse is not repeatable and end with a level where reuse is ingrained in the

corporate culture.

Biggerstaff [BIG98] maintains that the 'driver' behind any reuse is the domain

and that domain analysis is much more important than tools and methods for

reuse, whereas Basset [BAS97] maintains that effective reusable assets are

developed through their co-evolution with the systems that reuse them. Jarzabek

[JAR95] asserts a combination of these two viewpoints and proposes that

component-based reuse is the necessary start to understanding and modelhng the

domain sufficiently prior to the practice of generative reuse. As more component-

based reuse is practised, the understanding of the domain is increased. With that

increased understanding comes more opportunities for component-based reuse.

Through the examination of the existing reusable components it should be

' Developed by the Software Engineering Institute for the U.S. Department of Defence

35

possible to identify the commonalities of the domain. The examination of the

existing unique instantiations of the reused components is intended to locate the

variants within the domain. Once commonalities and variants have been

identified, suitable modelling language or languages need to be defined. The

modelling language is then used as the basis for the application generator input

and in the defining and development of the actual application generator.

2.3 Summary

This chapter contains the results of a literature survey on reuse within software

engineering. It is maintained that successful reuse is dependent on a good

understanding of the domain in which the assets are to be developed and reused

[BIG98] and that a good understanding of the domain can be aided by the

practice of component-based reuse [BAS97]. In addition, it is proposed that

component-based reuse is the necessary start to understanding and modelling the

domain sufficiently to enable the practice of the more gainful generative reuse

[JAR95]. Ontologies are believed to be potentially useful in supporting

knowledge acquisition and sharing, as well as an aid to effective component-

based reuse by providing repositories for the general and detailed knowledge

about specific domains [SWA99, VAL99]. In this research, this proposal wil l be

tested with the construction of a thesaurus.

36

Chapter 3 Further Background

3.1 Objectives of the Chapter
The main objective of this chapter is to provide the results of a literature survey

exploring support for component-based reuse and domain analysis. Specifically,

it provides a detailed examination of the reuse library and the thesaurus, which

have been proposed as tools to support reuse and knowledge acquisition and

sharing.

Section 3.2 provides the component-based reuse library^ overview including an

examination of surrogates, library structures, the library size scaling issue, and

covers the subject of search and retrieval of potentially reusable assets. Section

3.3 provides an examination of possible organisational approaches for libraries.

Section 3.4 provides a comparison of the previously presented approaches to

library organisation. Section 3.5 provides a detailed examination of thesauri

including the identification and definition of the possible relationships between

terms in a thesaurus; and an examination of the support that a thesaurus can

provide for domain analysis and component-based reuse. In addition, Section 3.5

provides an examination of the issues surrounding the construction of a

thesaurus. Section 3.6 provides the summary for this chapter.

3.2 Library
In component-based reuse, assets are predominantly natural language documents

[MIL98]. Even code modules can be classified as natural language documents as

they include header files and conmients. In component-based reuse it is unusual

for the actual assets themselves to be stored in tiie library. A. Mi l l et.al. [MIL98]

state that assets are invariably large, detailed, and complex entities. This makes

the tasks of search and retrieval of assets both time consuming and complicated.

It is more usual for a library to contain a representation of each asset, which is

known as a surrogate. The surrogates are more abstiact, concise and lacking in

unnecessary detail. Surrogates provide a summary of the asset in much the same

' Referred to as library for the remainder of the thesis.

37

way as an abstract provides a summary of a thesis. Surrogates reduce the effort

and complexity of the search and retrieval of reusable assets and as an aside

reduce the overall size of the library. Surrogates should promote understanding of

the asset. I f location and imderstanding do not happen then reuse cannot happen

[FRA94]. Surrogates are based on some common language between those

engineers that develop the surrogate and those reusers that query the library

looking for reusable assets. Without a common language it will be difficult i f not

impossible for a reuser to locate and understand the assets contained in the

library. Domain analysis can provide a common language. For instance a

domain model consists of a variety of representations of the domain including the

domain languages [ARA91, PRE97]. A more detailed possibiHty is an ontology,

the domain terminology, which represents the collection of domain specific terms

and the concepts those terms represent [CHA99]. Another possibility that is

explored in this thesis is a thesaurus, which contains the collection of domain

specific terms and the defined relationships between those terms. Section 3.5 of

this chapter provides a detailed examination of thesauri.

3.2.1 Library Structures
There are a variety of possible structures for a component-based reuse library

including flat file, hierarchical, database, multiple, and distributive [MIL98].

Frakes and Pole [FRA94] contend that the contents and structure of a library are

only issues when the reuser community has insufficient knowledge about the

library's complete structure and contents. Library issues are unimportant i f staff

turnover is low or the asset collection is small. In both cases, the reuser

community would have sufficient knowledge of the assets to make finding and

understanding them simple. However, Mi l l et.al. [MIL98] consider it important

that the reusers and the maintainers of the library share some common knowledge

of the structure of the library so that reusers can locate the reusable assets as they

are required.

The library's structure is usually inhibited by the content of the surrogates it

contains and the searching mechanisms used in the reuse process. I f an

exhaustive search method is applied then the structure of the library can be

38

arbitrary. However, i f the searching mechanism is restricted to a library with a

particular structure, say hierarchical, then the library's structure is restricted, and

must be hierarchical. Obviously the library's maintainer must have an in-depth

understanding of the library's structure.

3.2.1.1 Vertical Scaling

Brooks [BR095] states that programs are comprised of conceptual chunks much

larger than high-level language functions, modules or classes, and that by

providing a reuse library of such conceptual chunks with variation via

parameters, developers could construct new higher quality systems with less

effort. Biggerstaff [BIG98] asserts that a significant factor in the success of

reusing assets, which are code modules or components, is the size of the

components available for reuse. The reuse of larger components reduces the

amount of writing and debugging a developer must do. This in tum encourages

the developer to use reusable components. A four year study of reuse at NTT

software Laboratories (see reference IS092 in [BIG98]) found that reusing larger

modules achieved a higher rate of reuse. Though small modules, up to 50 lines of

code, constituted 48% of the reusable components, their reuse ratio was only 6%;

whereas with large modules, more than 1000 lines of code, constituted only 6%

of the reusable components, their reuse ratio was 56%.

However, vertically scaling, increasing the component size, has the effect of

narrowing the domain in which the component is reusable. Larger components

are irmately more domain specific, which in tum reduces the number of

applications where it would be suitable to reuse the component. Since large

components are more domain specific they can have more fimctionality than is

required by a new application and be too large and complex to understand

sufficiently to modify.

3.2.1.2 Horizontal Scaling

One way of combating the vertical scaling problem is to increase the number of

variations of a module i.e. to provide customised versions of components held in

the library. This is known as horizontal scaling [BIG98]. Ideally, a component

39

should be available for a large number of environments. However, as Biggerstaff

[BIG98] states a single large code module reflects the consequences of many

design decisions, any of which could have a nimiber of different consequences.

To provide a customised version of a large component for every possible

consequence for every design decision would result in a combinatorial explosion

of the number of components held in the library. The problems associated with

large components could be reduced by the use of global standards, such as Win32

API, and by narrowing domains. However, global standards are not prevalent in

the software industry and components that look as i f they would be reusable

across domains or in wider domains are restricted to use in very narrow domains,

hindering efforts in reuse.

3.2.2 Search and Retrieval
Component-based reuse is only successful i f the reusers can locate assets to be

reused in the development of new software applications [FRA94]. Stated simply,

assets are represented by surrogates that are stored in a library. A reuser queries

the library in an attempt to locate reusable assets relevant to the development of

new applications. The library is searched for assets that meet the criteria defined

by the query. The search result, the subset of surrogates that meet the search

criteria, is presented to the reuser. Using the subset of surrogates contained in the

search result the reuser selects the candidate asset or assets for reuse.

The level of recall and precision achieved by the search fraditionally measures

the success of a search. Recall is a ratio of the number of relevant assets retrieved

over the total number of relevant assets available in the library [MIL98].

Precision is a ratio of relevant assets retrieved over the total number of assets

retrieved from the library as a result of the search [MIL98]. Difficulties arise

when trying to define 'relevance' also known as the search goal [MIL98,

HEN94]. The search goal can vary depending on the state of the development and

the needs of the reuser. Henninger [HEN94] contends that a reuser's

understanding of the problem domain and potential solutions start as an i l l -

defined need for information and increases with the development of the new

application. Henninger maintains that an effective search and retrieval method

40

should be an aid to increasing the reuser's understanding of both the problem

domain and the potential solution. CodeFinder was developed to test this view. It

was designed to support incremental query construction and retrieval using

spreading activation (which retrieves items related to the query). Henninger

found that when the problem domain and potential solutions were ill-defined, the

incremental query construction and spreading activation were useful, but as the

problem and solution became clearer the users found the spreading activation

problematic.

A searching mechanism must avoid search results that contain either false

positives or false negatives. A false positive search result is an asset found in the

search that matches the search criteria imposed by the search query but not an

asset the reuser requires. A false negative search result is an asset that is required

by the reuser that is not returned in the search result because it does not match the

search criteria imposed by the search query. False positives generally occur when

the search criterion is too broad and false negatives occur when the search

criterion is too narrow. To be able to retrieve the assets required by the reuser, a

query must be well articulated [HEN94]. Difficulties arise when a natural

language is used to define surrogates and queries. Terminology mismatches can

occur when surrogates are defined by one person and later searched for by

someone else. Henninger [HEN94] claims that terminology mismatch is a major

problem in search and retrieval. His studies have shown agreement on naming

common objects occurs between 15 and 35 percent of the time. Even when up to

15 aliases are allowed for, agreement only rises to between 60 and 80 percent.

Aid with query construction is necessary for effective reuse.

3,3 Library Organisations

There are a variety of approaches for library organisations that wil l support

effective component-based reuse. Most support the reuse of natural language

documents; however, some exploit the nature of code. Sections 3.3.1 to 3.3.5

contain a description of each of the five different approaches to library

organisation listed below:

• Indexing

41

• Enumerated Classification

• Multi Faceted Classification

• Attribute-Value Classification

• Exploiting the Nature of Code

A comparison of these is presented in section 3.4.

3.3.1 Indexing

Traditionally an index is an alphabetised subject hsting that is given at the end of

the book. By means of an index a reader can search and locate the parts of the

book relevant to the subject he/she needs to read about. When applied to reuse,

indexing is a largely automated process of constructing siurogates for assets.

Assets are indexed, providing a list of unique key words or phrases that are then

associated with the asset and become the asset's surrogate. Kelledy and Smeaton

[KEL97] state that within any asset there can be a number of terms (words or

phrases) which do not contribute to defining the asset's surrogate or aid with

discriminating between assets. Within a text document words such as 'the', ' i t '

and 'this' would appear frequentiy but would not contribute towards defining the

surrogate or distinguishing the asset from others in the library. These frequently

occurring words are included in a stoplist, which provides a listing of terms to be

disregarded during indexing. It is possible for an asset to contain terms that are

common to a large number of assets. These common terms i f included in the

surrogate would decrease the means of distinguishing between the assets. These

common terms are candidates for addition to the stoplist; however, care must be

taken to ensure that the term would not be relevant to reusers when searching the

library before adding it to the stopUst.

Indexing can be performed with either an uncontrolled or confroUed terminology

or some combination of both. The premise behind an automated uncontrolled

terminology is that terms extracted directly from the document with reasonable

frequency are good indicators of the assets content [MIL97]. Frakes and Pole

[FRA94] describe indexing, as a process that is highly automated and low cost as

little effort is required to construct surrogates and populate the library. They go

42

on to say that uncontrolled terminology means that reusers can be very precise

when constructing queries and improve search results by reducing the number of

non-relevant assets retrieved (false positives). However, the terms used within the

assets and then the surrogates must be known and understood by the reuser prior

to the formation of the query, or the query may result in incomplete search results

(false negatives) and in some cases incorrect search results.

With confroUed indexing, the mdex terms are accumulated by domain experts

who review the assets and build the associated surrogates of index terms. A

controlled terminology places restrictions on the terms suitable for use in

surrogates and searching. This restriction ensures that an engineer developing the

surrogate and populating the library and the reuser searching the library are

working with the same terms and can reduce search effort and promote reuse.

However, manually developing a controlled terminology is a labour intensive

activity and therefore costly to an organisation. More commonly there is a

combination of the two where an automated process forms an uncontrolled

terminology which is then edited by domain experts to form a confrolled

terminology suitable for using in surrogates.

In addition to term exfraction, indexing can also provide a frequency count of the

number of times a term appears in an asset. This frequency count can be used to

select the relevant terms to be placed in the surrogate (if restriction required) or

can be used later in searching the library. For example, CodeFinder [HEN94]

uses inverse document frequency, which supports the argument that the

frequency of an indexed term is significant when it occurs in a document less

frequently. In this example, it is proposed that less frequent terms are a more

precise representation of the contents of document. A precise representation of

document contents reduces the number of false positives in a search result i.e. it

reduces the number of dociunents that meet the search criteria but are in fact not

relevant to the reusers needs.

An index can be comprised of terms that are either single words or single

phrases. A phrase is a combination of one or more words that convey meaning.

Kelledy and Smeatori [KEL97] found that when an index contains phrases the

43

search precision is higher than when an index is comprised of single words.

Phrases by their definition are less ambiguous and increase a reuser's

understanding of the asset in which they occur. Phrases occur less frequently in

an asset, thereby providing a more precise representation of the contents of the

asset.

In addition to using indexing to create surrogates for specific assets, indexing can

also be used to create and maintain an inclusive index for all assets in the library.

An inclusive index is used in domain analysis, surrogate definition, and asset

retrieval. In domain analysis an inclusive index contributes to the development of

the domain specific language. In surrogate definition an inclusive index is used to

build an asset's index or as a tool in other asset classification schemes, such as

faceted classification. An inclusive index of asset terms can be used in retiieval,

to assist with the location of acceptable search terms.

3.3.2 Enumerated Classification
Frakes and Pole [FRA94] describe an enumerated classification scheme as a

process in which the domain is described using confrolled terms that are mutually

exclusive and structured hierarchically, similar to a book's table of contents.

These terms and their relationships within the hierarchy are then applied to the

assets to form the surrogates. Figure 3.1 illusfrates an example of an enumerated

classification.

44

Data Structure

Database Design

Open

Read

Write

Implementation

Open

Read

Write

File Design

Open

Read

Write

Implementation

Open

Read

Write

Figure 3.1 Enumerated Classification Example

The hierarchical structure helps to promote reuser understanding of the

relationships between the terms, making the surrogates easy to define and

understand. The hierarchical structure provides a logical searching structure,

where a surrogate collection is searched using simple tree search algorithms.

However, Frakes and Pole [FRA94] caution that much effort is required to

perform the sufficient domain analysis to ensure that the terms and their

relationships are correctly defined and that the hierarchy is complete. Any

changes within the domain, either through increased understanding or evolution,

may need to be reflected in changes to the hierarchy and require changes to some

i f not all of the siirrogates contained in the library.

3.3.3 Multi Faceted Classification
H. M i l l et.al. [MIL97] explain multi-faceted classification schemes as the process

whereby the asset's surrogate is constructed from a set of common attributes

(facets), and the values assigned to each facet. The facets are short textual

45

descriptions of the common attributes. There can be a large number of possible

facets; however, surrogates are usually limited to a combination of between six

and eight possible facets. The values assigned to each facet are selected from a

controlled terminology. The terminology is organised in a hierarchical stinicture

where the root terms are m fact the facets. Figure 3.2 illusfrates a possible

hierarchical structure for values to be used with the facets: Data Structure, Asset

Type and Operation.

Asset Type Data Structure Operation

Design Database Open

Implementation Table Close

Records Read

Files Write

Copy

Delete

Figure 3.2 Multi Faceted Classification Example

The presence of several values provides altemative values, as opposed to partial

values. The terminology is controlled which wil l limit the possible values in a

facet, but this provides for the use of common terminology when defining and

searching the surrogates. To ensure that the choice of values is not too rigid a

hierarchical structure of the terminology can allow a choice of broader or

narrower values as shown in Figure 2.4 where "Data Sti-ucture" is a broader value

than "Database" and "Table" is a narrower value than Database. A. Mil l et.al.

[MIL98] contend that a thesaurus can provide additional richness to the

terminology. A thesaurus can be developed to include additional relationships

between terms such as preferred term, non-preferred term, synonyms or any

relationship required by domain. A thesaurus can be used to help a reuser to

define a search query by allowing a reuser to locate any synonyms for the facet

value being considered for use in the search query [PRE97]. For example a

synonym for 'delete' is 'remove'.

Prieto-Diaz [PRI89] states that the order of the facets in the surrogate can be used

to further define the asset. The order of the facets can be used to convey the

46

intention of the reusable asset or to reflect the priorities of the reuser community.

Domain analysis is essential to support multi-faceted classification. It is only

through a thorough understanding of the domain that the facets, the predefined

terminology (values), and the needs of the reusers, can be discovered. Frakes and

Pole [FRA94] state that, unlike enumeration classification, multi-faceted

classification schemes for surrogates adapt easily to changes in the domain. New

facets can be defined and values can be added or reorganised without reordering

part or all of the library.

3.3.4 Attributes-Value Classification
Pressman [PRE97] characterises attribute - value classification of assets as a

process that is similar to multi-faceted classification in that extensive domain

analysis is required. The domain analysis is used to find attributes with which to

describe the assets and suitable values for each attribute to contain. However

there are differences, in attribute - value classification, there are no limits to the

number of attributes assigned to an asset, there is no structure, and a thesaurus is

not used. An example stated by Frakes and Pole [FRA94] provides the kind of

information available from the domain that can be used in attiibutes - value

classification. Possible attributes may be parts of an asset such as its function,

data type, language, and author. A possible value for each of these attributes

could be {sort, queues, Pascal, F. Bloggs}.

3.3.5 Exploiting the Nature of Code
Historically most software engineers practice some form of reuse, i.e. they reuse

code that they or respected colleagues have written. Software engineers are

comfortable reusing code, especially code modules with which they are very

familiar, module where they understand the functionality and side effects i f any,

and where they have confidence in the module's quality. Productivity studies

have shown that good software engineers have good filing systems that allow

them to quickly locate modules they consider fit for reuse [BAS97]. This form of

reuse is commonly known as 'ad-hoc' reuse. Ad-hoc reuse can entail the reuse of

unchanged modules: however, it is more common for ad-hoc reuse to require

some changes to the reusable asset, i.e. modification, addition or deletion of

47

functionality. Basset [BAS97] refers to ad-hoc reuse as copy-and-modify where

existing assets are copied then modified to work on the new apphcation. Though

effective to some extent, in reducing effort by reusing working and tested assets,

a copy-and-modify reuse strategy has several inherent problems. When assets

have not been designed for reuse, the effort to understand, modify and then reuse

an asset can be greater than developing the asset from scratch. Typically software

engineers modify assets one character at a time; a process that is as tedious as it is

time consuming. Changes made to an original reusable asset that has been copied

and modified for use in several appUcations must be manually made to some or

all of the copies. The major reason ad-hoc or copy-and-modify reuse is not

effective reuse is that it is difficult, i f not impossible, to find the common

elements in a group of similar assets and identify the elements that are unique to

each application.

Though ad-hoc reuse is generally practised in the software engineering

community, a more planned and managed reuse process is needed. In component-

based reuse there are methods that exploit the traits inherent in code. A. Mi l i

et.al. [MIL98] describe reuse methods which take advantage of the traits inherent

in code, specifically the executable nature of code or the patterns found in source

code. Though these methods restrict the assets to that of either executable or

source code software engineers are likely to be familiar with the concept of reuse

code.

Reusable executable code assets are located by matching sample input data with

the desired output result. It is expected that by using a reasonable data sample

that the new application wil l need to process, and by knowing the intended result

of the processing it is possible to locate the correct executable code assets for

reuse in the new application.

Code skeletons as described by Bassett [BAS97] are a mechanism for dealing

with the variations required to make a reusable program part of a new

application. The code skeletons contain the general or common reusable elements

of a program. A developer uses an editor to 'flesh out' the particular instance of

the program. Code skeletons are considered to be better than ad-hoc reuse as they

48

allow developers to show where the variation of each reuse has occurred.

However, when changes must be reflected in each existing instance of a code

skeleton, every existing reused code skeleton must be altered manually.

3.4 Comparing Library Organisations
Among the different approaches to the organisation of a component-based reuse

library, indexing is considered the least expensive and easiest to develop,

maintain, and use. Indexing using an uncontrolled terminology can be completely

automated and requires no domain analysis [FRA94]. Conversely, structured

classifications such as multi-faceted classification require extensive domain

analysis prior to development and the intervention of domain experts during

maintenance [HEN94]. To ensure they do not incorrectly limit the search to a few

branches, reusers using a structured classification method need to understand

both the structure of the library and the terminology used in the surrogates

[HEN94].

Frakes and Pole [FRA94] conducted an empirical study to compare four different

approaches to component-based reuse library organisation, including three

structured classification methods. Specifically, they compared indexing,

enumerated classification, multi-faceted classification and attribute-value

methods. The study used Proteus, a reuse library system that supports multiple

component-based reuse methods. The study measured the search effectiveness

and search times of each method. Search effectiveness was measured using

precision, recall and overlap. Overlap is a ratio of the number of relevant assets in

the intersection of two methods divided by the number of relevant assets in their

union. Also, test subjects were asked to rate their preference for each method and

the method's assistance with understanding the reuse assets.

Frakes and Pole [FRA94] found that though there was no significant difference in

the recall and precision measures between the four methods, all four methods

being moderately effective in searching, each method found different assets for

the same search queries. The average overlap for the methods ranged between 72

and 85 percent. Search times did vary significantly; there was an average

49

difference of 60 percent between the slowest (indexing) and the fastest

(enumerated classification). Test subjects did not favour any particular method.

Each method was rated as best and worst and no one method was consistently

rated as satisfactory. It was found that there was no significant difference

between methods for helping subjects understand assets. A l l four methods were

judged to be only moderately helpful.

Frakes and Pole [FRA94] conclude that the asset collection in the library should

be represented in as many ways as is possible. Using more than one method will

increase a reusers chances of finding relevant assets and having a variety of

methods ensures that reusers have access to the method they prefer. In addition,

they concluded that none of the methods advance reusers' understanding of the

assets and that techniques such as domain analysis are probably needed to

support understanding.

H. M i l i et.al. [MIL97] conducted a study comparing approaches to component-

based reuse library organisation and found that searching surrogates consisting of

the asset's index terms using an uncontrolled terminology performed better than

searching surrogates comprised of multi-faceted classification using a controlled

terminology. They hypothesise that there are two distinct searching stages,

neither of which can be satisfied by a multi-facetted classification method. In the

first stage the reuser does not have a clear idea of what is needed for the

application under development. The reuser needs to explore the library to find

potentially reusable assets. A multi-facetted classification method is too rigid to

be useful in this stage. In the second stage the reuser has a very clear idea of what

is needed for the application under development. The reuser needs to be able to

find reusable assets that precisely fit those needs. A multi-facetted classification

method does not provide the level of detail a reuser must have about each asset.

This supports Henninger's [HEN94] theory that the relevance of the search

results varies with the needs of the reuser. Reusers start with an ill-defined need

to understand a new applications domain and progress to a specific need to

develop the new application.

50

3.5 Thesaurus
There is a need for support of knowledge acquisition and sharing, as well as an

aid to effective component-based reuse. It has been proposed that an Ontology

would be useful by providing repositories for the general and detailed knowledge

about specific domains [SWA99, VAL99]. In this research, this proposal wil l be

tested with the construction of a thesaurus. Like an ontology, a thesaurus is a

collection of terms used to represent concepts within a specific domain and

organised so that predefined relationships between the terms are made explicit

[IS02788, RAD90]. Also like an ontology, a thesaurus can be used to promote

reusers understanding of a domain. However, an ontology is an end product of

extensive domain analysis, whereas a thesaurus can be developed as part of the

reuse process.

3.5.1 Thesaurus Overview
A thesaurus is a collection of terms used to represent concepts within a specific

domain and organised so that predefined relationships between the terms are

made explicit [IS02788, RAD90]. It can also be used to increase reusers

understanding of a domain. Development of a thesaurus can be made part of the

reuse process. The terms within a thesaurus and their relationships can be defined

as knowledge of the domain expands through reuse. Increased understanding of

the domain, brought about by developing and maintaining the thesaurus and the

practice of reuse wil l reveal more opportunities for reuse [JAR95]. The Standard

ISO'° 2788 - 1986 (E) Documentation - Guidelines for the establishment and

development of monolingual thesauri, IS02788'\ (ISO 2788 standard)

[IS02788] defines terms as a word or collection of words used to define by way

of their specific meaning within the domain, the domain concept they represent,

and their relationship to other terms. For example a bank can be defined as an

institution where money is deposited or lent etc. but a bank is also a more specific

type (narrower term) of a financial institution. A thesaurus would provide not

only the definition for the terms bank and financial institution but also their

relationship with each other. Terms held in a thesaurus have a single domain

specific definition attributed to them; i.e. a term represents a single domain

International Organization for Standardization
" Prepared by Technical Committee ISO/TC 46, Documentation

51

concept. The ISO 2788 standard [IS02788] defmes three types of relationships

between terms. These relationships are listed below:

• Equivalence

• Hierarchical

• Associative

These three relationships between terms are described in more detail in

subsections 3.5.1.1 to 3.5.1.2.

3.5.1.1 Equivalence Relationships
The ISO 2788 standard [IS02788] describes equivalence relationships as

relationships that cover synonyms and quasi-synonyms. Synonyms are terms that

have the same, or nearly the same, meaning. Quasi-synonyms are terms that when

used in natural languages are considered different but when used within a domain

are treated as synonyms. Within equivalence relationships terms are designated as

either preferred terms or non-preferred terms. Preferred terms are the most hkely

term to represent the domain concept within the user community. The

equivalence relationship is defined as either USE or USED FOR, as in non-

preferred USE preferred, and preferred USED FOR non-preferred. As an

example, 'software maintenance' USE 'software evolution' would indicate that

'software evolution' should be used instead of 'software maintenance'.

3.5.1.2 Hierarchical Relationships
The ISO 2788 standard [IS02788] defines hierarchical relationships as

superordination and subordination relationships. The more general or broader

term is SUPERORDINATE to a more specific or narrower term and a narrower

term is SUBORDINATE to a broader term. There are three tj^es of hierarchical

relationships: generic, hierarchical whole-part, and instance. Generic

relationships are used to identify the link between a class and its members, where

a broader term is a class and narrower term is a member of a class as in the class

'employee' and the member 'department manager'. Hierarchical whole-part

relationships are for a limited range of relationships where the actual working of

the narrower term implies the name of its broader term; as in Durham (narrower

term), England (broader term). Instance relationships occur between general

52

terms, the classes, and individual instances of a term. For example. Roll Mi l l

(class) and British Steel Roll Mi l l at Teesside (instance) illustrates an instance

relationship. A domain concept that cannot be described by a more general

domain concept is said to be a top term. A domain concept that cannot be

narrowed is said to be a bottom term.

3.5.1.3 Associative Relationships
Aitchison and Gilchrist [AIT72] state that associative relationships are the

relationships that exists between terms which are bound conceptually in the

minds of the users within the community but cannot be defined hierarchically or

equivalently. An associative relationship is defined as related terms, in that when

applying one term, for example in a search query, a user would profit by being

reminded of the existence of the related term. As an example consider the

relationship between a discipUne and its objects [IS02788], such as Software

Engineering and programs. The ISO 2788 standard [IS02788] present ten

possible associated relationships listed below:

1. Discipline and objects

2. Process and instrument

3. Action and product of action

4. Action and its patient

5. Concepts related to their properties

6. Concepts related to their origin

7. Concepts hnked by causal dependency

8. A thing and its counter agent

9. A concept and its unit of measure

10. Syncategorematic phrases and their embedded noun (the

embedded noun of'model ship' is 'ship' [IS02788])

3.5.1.4 An Example of Software Tool Support Using a Thesaurus

Practitioner, an academic and industry collaboration project funded by ESPRIT,

identified both methods and software tool to improve the theoretical and technical

aspects of reuse. As part of the project a thesaurus was developed to aid with

domain terminology understanding and improve searching for reusable assets

53

[MIL94]. H. M i l i et.al. [MIL94] describe Practitioner as a project where the

emphasis of the project was on the reuse of assets developed early in a software

application's development. The software tools delivered as part of this project

were PRESSTO, PRESSTIGE, and MUCH (Multiple User Creating Hypertext).

The tools were developed in a specific order, with lessons learned fi-om

experiments conducted on one tool influencing the development of a subsequent

tool. The first tool developed was PRESSTO a quickly developed indexing and

retrieval tool which enables developers to classify, store and retrieve reusable

word-based documents. A matrix is built, where the rows are designated by the

index terminology and the document identifiers designate columns. Asset

retrieval is a matter of searching the matrix for a list of appropriate document

identifiers. The index terminology contains either terms in the thesaurus, or terms

defined by the user or all the terms contained in the documents excluding those

terms contained in a stoplist. The evaluation of PRESSTO highlighted some

shortcomings of the tool. It was found that on tasks where the user needed to

understand the retrieved document the tool provided inadequate help.

Additionally, the cross-referencing between documents caused the retiieval of

documents that were not actually relevant to the search query that is to say it

cause false positive search results as defined in Section 3.2.1.2. This was not

overcome until the use of hypertext links in MUCH. PRESSTIGE was developed

to improve with user understanding of retrieved documents; this required

substantial analysis of the industrial domain and the software systems used in

steel mills.

PRESSTIGE was developed as a more powerful software tool to support reuse.

PRESSTIGE supported the storage and retrieval of surrogates (defined in Section

3.2) as the means to find reusable assets. It contained a domain specific thesaurus

and generic fi-ames called questionnaires which when completed comprise the

surrogates. An extended Boolean retrieval language, the common command

language (CCL), supported reti-ieval of assets. The questionnaires were searched

for terms held in the thesaurus and quantified and constrained by CCL. The

thesaurus was developed so that it could be assembled automatically by

importing external thesauri or semi-automatically by indexing documents and

defining relationships. Some manual development and maintenance of the

54

thesaurus was necessary. The thesaurus held concepts of the domain (terms), the

terminology of the domain (terms), and the relationships connecting the terms.

The thesaurus was used to promote user understanding of the context of the

terms.

The surrogates or questionnaires were comprised of three parts. Firstly, the assets

administration information such as date created and who created it. Secondly, a

black box description of the asset's properties such as interfaces with other assets,

and its relationships to other assets such as a specific code module's test cases.

Thirdly, a clear box description stating the internal structure of the asset such as

its sub-parts and their interrelationships.

A software tool, the Team Work CASE tool, was used to provide a data flow

diagram representation of an asset's sub-parts and their interrelationships. The

evaluation of PRESSTO demonstrated the difficulties that could arise when

documents contain cross-referencing. The evaluation of PRESSTIGE identified

problems users could have understanding the relationships between assets and

between an asset's sub-parts. This led to the development of MUCH, a

collaborative working tool which contained the indexing, searching and browsing

fimctionality of PRESS and PRESSTIGE with additional hypertext fimctionality,

and 'knowledge' of document structures to promote user understanding of

reusable assets. MUCH allowed for importation of text documents and provided a

predetermined sequence of hypertext links within the document to support

understanding of assets. Predefined generic document structures, called outlines,

were applied to a document, and then the document was indexed. The index

consisted of the document headings that fell into specific areas of the outline.

Rada [RAD90] describes MUCH, as a tool developed to support reuse with a

metathesaurus; a thesaurus made up of more than one thesauri. MUCH provided

a collaborative work environment for the indexing, browsing, searching and

retrieval of reusable documents. Additionally MUCH provided guidance to users

on the structure of the thesaurus. Users of MUCH could dynamically generate

new documents from existing documents. A user would select terms from the

thesaurus, which would then be applied to an established document outline.

55

MUCH used hyper-link technology to locate paragraphs in existing documents

that contained those terms contained in the user-defined outline. MUCH also

provided a tool for automatically building thesauri fi-om text. However, the

resulting thesauri were not useful. Domain expertise and manual effort are

required in the development and maintenance of a thesaurus.

3.5.2 Thesaurus Assisted Understanding

The success of reuse is directly linked to the reuser community's ability to define

and imderstand the reusable assets of the domain [BIG98]. Brooks [BR095]

suspects that one of the problems facing reuse today is the extent of the

terminology that must be learned; for example, a class Ubrary with over 3000

objects can have objects requiring between 10 to 20 parameters and optional

variables. Anyone using the library would need to understand both the extemal

interface (syntax) and the functional behaviour (semantics) of all the objects.. As

difficult a task as this sounds. Brooks concludes that it is achievable as people do

learn the syntax and subtle semantics of a language while acquiring an average

terminology of 10,000 words. However, studies have shown that agreement when

naming common objects is only likely to occur between 15 and 35 percent of the

time. Increasing the number of possible aliases, even to as many as 15, for a

common object wi l l only increase agreement to between 60 and 80 percent

[HEN94].

Brooks [BR095] concludes that more research should be done into how people

acquire an understanding of language. However, one feature that is understood, is

that people's understanding of a language increases when they can place the

terms (words and phrases) of the language in context. By placing terms into

context and using them, people learn to understand the syntax and semantics of a

specific terminology. A thesaurus can be used to help people place terms in

context by providing broader terms, narrower terms and related terms. A

thesaurus can provide additional richness to the terminology. A thesaurus can be

developed to include additional relationships between terms such as preferred

term, non-preferred term, synonyms or any relationship required by domain

[MIL98]. Practitioner used a thesaurus to promote reuser understanding of the

56

domain terms and the context in which they were used [MIL94]. In Practitioner

the thesaurus aided in the definition of the surrogates and the defining of search

queries [MIL94].

3.5.3 Thesaurus Assisted Searching

As a reuser's comprehension of the domain increases their ability to perform

reuse improves. Conversely, effective reuse wil l improve a reuser's .

imderstanding of the domain [JAR95]. Henninger [HEN94] asserts that an

effective search and retrieval method should be an aid to increasing the reuser's

understanding of both the problem domain and the potential solution.

Terminology mismatch is a major problem in search and retrieval. Support with

surrogate definition and query construction is essential for effective reuse.

Difficulties arise when a natural language is used to define surrogates and

queries. Terminology mismatches can occur when surrogates are defined by one

person and later searched for by someone else. A.Mil i et.al. [MIL98] maintain

that a thesaurus can provide additional richness to the terminology. A thesaurus

that contains a definition for domain terms and incorporates the relationships

between terms wil l help the reuser place the terms into a context thereby

improving the construction of search queries. The work done in Practitioner

supports the concept that a thesaurus can be used to improve search effectiveness.

3.5.4 Thesaurus Construction

This section presents the issues related to the construction of a thesaurus. The

discussion covers both the development and maintenance issues stirrounding the

construction of a thesaurus. The construction of a thesaurus is constrained by the

intended use of the thesaurus. In this discussion the construction of the thesaurus

is constrained by the intention of this research to develop the thesaurus as a

software tool to support reuse and to record the results of on-going domain

analysis i.e. the increased understanding of the domain terminology resulting

from the practice of reuse.

57

3.5.4.1 Developing a Thesaurus
It is generally recognised that the information attached to a term should contain

its definition, a broader term, any narrower term and any related terms [RAD90].

When a term can represent more than one domain concept, one interpretation is

selected as the standard definition and the others are entered into the scope note

[IS02788]. A scope note is an area designated to hold information about the term

that falls outside the range of its definition and relationships.

The ISO 2788 standard [IS02788] states that it is hierarchical relationships that

distinguish a thesaurus from a dictionary or glossary. The hierarchical

relationships between terms provide a hierarchical structure for relating the terms.

A term is related to either broader (more general) terms and / or narrower (more

specific) terms. Within hierarchical relationships care should be taken when

adding proper names which can overload a thesaurus. However, i f deemed as

necessary then when using the proper name to define a surrogate, enter both the

proper name (instance) and its broader term (class) in the thesaurus. Highly

specific terms should be restricted to terms understood to be at the core of the

domain. The inclusion of highly specific fringe terms would unbalance the

structure of the thesaurus, thereby making it awkward to navigate.

Terms are designated as related terms when they have an associative relationship.

Terms that have an associative relationship but share a common broader term are

not designated as related terms. As individual related terms do not form part of

the hierarchical structure, a facet indicator is assigned to the related terms. A

facet indicator is a word or phrase that does not represent a domain concept but is

used to indicate the basis on which a thesaurus has been structured. A facet

indicator would not be used in indexing, surrogate definition, querying or

imderstanding assets. Care should be taken to ensure that terms are not being

designated as a related term simply because to do so would be easier than

locating the correct place in the hierarchy for the term.

Prior to constructing a thesaurus, the form of its structure should be settled. An

alphabetical structure provides an alphabetical listing of all preferred or non-

preferred terms. Non-preferred terms provide only a reference to the preferred

58

term. Preferred terms provide all other information, such as definition, broader

term, narrower terms, related terms, and scope note. An alphabetical structure is

easy to construct and maintain. However, it does not convey hierarchical

structure of the concepts within the domain. Domain analysis of the structure of

the concepts leads to insight into the systematic or hierarchical structure for a

thesaurus.

In an enumerated approach subject areas of the domain would group terms. This

method is best when domains include multiple subject areas or for thesauri that

are intended to cover multiple domains. The subject areas would need to be

defined prior to construction of the thesaurus, as they are difficult to change after

terms have been assigned.

In a faceted approach basic features would describe terms. This approach is best

when the thesauri are intended for a single subject domain or a volatile domain. It

is easy to change a faceted structure, and a higher level of agreement between

constructors and users is usually obtained. However, a faceted structure means

that the terms are scattered and the hierarchical structure of the domain is not

immediately apparent. Aitchison and Gilchrist [AIT72] state that when

constructing the initial thesaurus, a faceted structure can mean that complex

terms within the domain are missed. This is a resuU of missing terms that do not

fit in the facet xmder consideration.

A combination of structures is also possible; for instance, a thesaurus can have

enumerated subject areas but a faceted structure for each subject area. Effective

domain analysis and understanding of user needs will generally provide

knowledge required to select the appropriate structure for the thesaurus.

Theoretically, it is possible to build a thesaurus using one of two distinctly

separate methods, deductive or inductive [IS02788]. Rada [RAD90] and the ISO

2788 standard [IS02788) state that in the deductive method an index comprising

an unconti-oUed terminology of terms taken from existing assets is created then

given to domain experts who construct the thesaurus. This method is useful when

a large store of assets are readily available. In the inductive method the domain

59

experts apply their knowledge of the domain to construct the thesaurus, which is

then used to index the assets or define the surrogates using the controlled

terminology in the thesaurus. This method is useful when the domain is well

understood and the store of assets is as yet small. It is not common practice to

apply only one of the methods, but instead to apply a combination of both. This

means that the thesaurus and the asset's confroUed terminology index are

developed side-by-side. For example a number of assets are indexed, those terms

plus others added by a group of domain experts are placed in the thesaurus. Over

time more assets are indexed, any terms not known in the thesaurus are reviewed,

defined and given to domain experts as candidates for addition to the thesaurus.

It is possible to automate the indexing of an asset and to provide not only the

terms contained in the asset but also the frequency with which the term occurs in

the asset.

From his review of Practitioner (see Section 3.5.1.3), Rada [RAD90] ascertained

that thesauri automatically developed from text were not useful and that the

development of successful thesauri requires considerable human effort. The ISO

2788 standard advises that prior to inclusion in the thesaurus, a term, its meaning

and its relationships be verified in technical sources and with domain experts.

Additionally, consideration should be given to the user community's

understanding of the terms. The source of the term, its date of inclusion in the

thesaurus and the names of any authorities consulted on its definition or

relationships must be recorded. During initial development of the thesaurus it is

likely that a domain expert wi l l include terms which have not occurred during

indexing or the assets. These terms must be carefully identified. Once the term is

encountered in an index the identifier is removed;

It is recommended that a thesaurus be the subject of a pilot scheme prior to

general publication. A selected group of users from the intended user community

should be given the opportunity to recommend changes to the terms and their

defined relationships. Though obliged to review the recommendations, the

developers should not be obligated to incorporate the recommendations into the

thesaurus.

60

Aitchison and Gilchrist [AIT72] state that it is possible to reuse existing thesauri,

i f they are available for the domain under consideration. The decision to reuse

existing thesauri should be based on their availability and whether the effort

required to review and update the existing thesauri would be less than developing

a new thesaurus from scratch.

The ISO 2788 [IS02788] standard advises that during development,

consideration must be given to the issues surrounding the maintenance of the

thesaurus. The issues pertaining to the maintenance of a thesaurus are presented

in the next section.

3.5.4.2 Maintaining a Thesaurus
The ISO 2788 [IS02788] standard advises that the issues surrounding the

maintenance of the thesaurus be given consideration during the development of

the thesaurus. The two main issues surrounding the ihaintenance of a thesaurus

are changes to the domain and usefubiess of the thesaurus. Change to the domain

and the user community must be reflected in the contents of the thesaurus. The

usefulness of the terms within the thesaurus must be measured.

Actual modification of the thesaurus should be restricted to those who have an

expert imderstanding of the domain and the structure of the thesaurus. However,

users of the thesaurus must have the means to communicate their need for

changes to the thesaurus. The standard recommends that the mechanism for

requesting change to the thesaurus should be in place when the thesaurus is

initially used. Even something as simple as filling in a change request form

would be sufficient.

The standard advises that use of terms within the thesaurus be measured over

some predetermined period. What to measure and how to record the

measurements are issues that should be settled prior to general release, and

therefore should be considered during development. Measurement should begin

with the general release of the thesaurus. It is suggested that the use of a term be

measured i.e. the number of times a term is interrogated, used in defining a

61

surrogate, used in defining search queries, and found in an indexed asset. Unused

terms over some defined time period are candidates for deletion, however, i f a

term has been used in surrogate definition then deletion is not possible. It is

therefore recommended that the thesaurus allow for a term to be marked as "for

retrieval purposes only" without any actual deletion occurring. Terms that are

over used are terms that are candidates for splitting into two or more specific,

probably narrower, terms.

It is recommended that thesauri be rigorously reviewed on a regular basis. These

reviews are considered necessary to ensure that the thesaurus reflects the changes

in the domain and the needs of the user community.

3.6 Summary

This chapter contains the results of a literature survey exploring support for

component-based reuse and domain analysis. Specifically it contains a detailed

examination of the library based component reuse and the thesaurus proposed in

Chapter 2 as an aid to component-based reuse and domain analysis.

Component-based reuse is only successful i f the reusers can locate assets to be

reused in the development of new software applications [FRA94]. When

imderstood a domain's terminology can be used to aid reusers in providing

consistency to the terms used in surrogate definitions and search query

constructs. In addition, effective search and retrieval method should be an aid to

locating the potentially reusable assets while increasing the reuser' understanding

of both the problem domain and the potential solution [HEN94]. To promote

effective reuse and increased domain understanding a domain's terminology must

be defined in a way that places the terms in context. A thesaurus can be used to

help reusers place terms in context by providing the additional richness to the

terminology that comes with defining the relationships between the terms within

the domain [MIL98]. Practitioner has shown that a thesaurus can promote reuser

understanding of the domain terms and the context in which they were used

[MIL94].

62

Though it is possible to automate some aspects of the construction of a thesaurus,

such as indexing assets to find domain specific terms for inclusion in the

thesaurus, developing and maintaining a thesaurus requires considerable effort

from domain experts [RAD90]. The domain experts need to imderstand the

domain terminology and the structure of the thesaurus [IS02788].

In this research, the approaches to software reuse reviewed in the previous

chapter and this chapter wil l be applied to support design reuse in the domain of

roll design within the steel industry. The aim is to show that specific software

reuse techniques can be applied to support reuse in other engineering disciplines.

63

Chapter 4 Domain Analysis

4.1 Objectives of the Chapter
The main objective of this chapter is to provide the results of the domain analysis

performed as part of this research within British Steel's roll design community.

Analysis of this domain consisted of discussions with domain experts including

British Steel roll designers, and academic members of C A R D ' ^ and REMAIN*^.

In addition, an examination of a small sample of British Steel roll design

documents was performed.

Section 4.2 provides an overview of the domain. Section 4.3 provides details of

the domain that are relevant to this thesis. Section 4.4 provides the details of the

problem domain when put into a Software Engineering context. Section 4.5

provides the summary for this chapter.

4.2 The Domain Overview
British Steel is an international company in the steel products manufacturing

industry. British Steel has several steel rolling mills. The purpose of a rolling mill

is to take steel in some initial form such as an ingot or a slab and transform it into

a final structure required by a customer such as an I-beam or rail. The

transformation process requires that the initial steel form (e.g. a slab) be passed

though a series of one or more sets of shaping rolls forming a predetermined final

shape (e.g. an I-beam). The steel is passed one or more times through the section

forming a series of intermediate shapes before reaching the desired final shape

(e.g. an I-beam). The number of passes through the section is dependent on the

mill being used, the initial shape of the steel, the rolls design, the intermediate

shapes and the final shape to be achieved. A mill site may contain a number of

sections. It is the job of the roll designers to design the rolls in the section m such

a way that wi l l ensure the finished product is of high quality while at the same

time containing the manufacturing costs.

Computer Aided Roll Design is an EPSRC SEBPC project

64

British Steel's roll design division is in the process of moving from decentralised

roll design environments, where each mill designs its own rolls autonomously, to

a centralising roll design environment, where design documents are stored and

accessed within a central repository. The design documents vary in both size and

format. The advantage of a centralised design environment is that all design

documents wi l l be available to the entire company's roll design community.

British Steel would like the means of exploiting this advantage to improve their

design process.

In conjunction with the move to a centralised design environment, British Steel is

faced with the imminent retirement of several experienced roll designers. The

company would like to be able to capture and make available for reuse the wealth

of knowledge and experience held by the retiring roll designers. Ideally high-

level design documents would contain a large portion of that knowledge.

However, at present there are a limited number of high-level design documents

written, though the number is expected to increase. However, there are lower

level design documents, known as D++ documents that contain a substantial

portion of the knowledge held by the retiring roll designers.

4.3 Domain Details
Within the scope of this thesis the domain has two major components, the design

documents and the roll designers (designers). Section 4.3.1 provides the domain

details on the design dociraients. Section 4.3.2 provides the domain details on the

roll designers.

4.3.1 The Design Documents

The design documents represent the roll design at various levels in the design

hierarchy and provide different levels of design detail. The lowest level of design

documents are intricate and detailed drawings. Above these are D++ design

documents that are machine-readable documents used to automatically generate

A British Steel fvmded project on the Application of Software Engineering Techniques for Re
use and Maintainabihty to Computer Aided Roll Design

65

drawings. D++ design documents are a slightly higher level of design document

intended to provide a diagrammatic design with a degree of analysis specific to

the steel industry. Above the D++ diagrams are HTML design documents. The

HTML design documents are generated directly from the D++ diagrams. The

HTML design documents represent the design in increasing layers of detail and

provide hypertext links amongst their layers. Above the HTML documents are

high-level design documents consisting primarily of free text in fixed formats.

The high-level design documents provide detailed information pertaining to

industry methods and/or specific products.

Not only is there a variation in the kinds of design docimients but there is also a

variation on the availability of the different kinds of design documents. There is a

low-level design document (drawings) for every product manufactured at each

mill . There are a large number of D - H - design documents for a cross section of

products at each mill. There is at least one, possibly more, HTML design

document for each D++ design document. There are a limited number of high-

level.design documents. However, it is the high-level design docimients that have

the potential to include the largest amount of design knowledge and the

production of these documents is being encouraged at British Steel.

Designers often retrieve existing design documents to assist them in creation of

new designs. The roll designers are most likely to retrieve documents with which

they are familiar. Often these are design documents that they themselves have

written. At present each rolling mill has its own design environment. Documents

for each mill are written and stored within the mill's design environment. Though

in the same industry and designing similar products, each mill has idiosyncrasies

in the terminology that it uses, which is reflected the design documents. As an

example the measurement terms "depth" and "width" are equivalent in that they

measure the same thing. The difference between the terms is only evident i f the

roll designers know whether or not they are reading a design document that is

describing an I-beam or an H-beam. This can be seen in Figure 4.1 below.

66

Figure 4.11llustration of Equivalent Terms

The beams are manufactured at different mills. There is no formal standard for

the terminology to be used in design documents. The terminology in a design

document wi l l reflect the mill the roll designer works in. The terminology used in

a design document may also reflect the product the roll designer designs for and

the designer's personal preferences.

There is a glossary of terms available to the roll designers, the Glossary of Roll

Design Terms [BS97]. This glossary was an attempt by a few roll designers at

British Steel to help the roll design community overcome problems that resulted

from misunderstanding related to their domain terminology. The glossary was

intended to be an alphabetised listing of all roll design terms, where each term

was to have a definition and a hsting of associated terms. For the most part this is

what was achieved. However, the glossary was difficuh to compile as a few

willing roll designers constructed it by hand. The glossary's development was not

automated in any way; domain experts selected and defined the terms. Once

developed the glossary was not significantly maintained. Though a substantial

piece of work it is possible to use the contents of the glossary to demonstrate the

terminology problems within the domain. Below is a list of domain terminology

problems, with examples taken directly from the glossary.

• Many of the terms have one or more alternative definitions.

For example, the term "Wobbler" is defined as "Type of universal joint used

at roll end" and has the alternate meaning "Fluted end of roll".

67

• In some cases the alternative meaning is used as an area to write a note to the

reader of the glossary.

For example, the term "Camber" is defined as "A tendency to bend sideways

as the work piece comes out of the roll gap". The alternative meanmg for the

term "Camber" is "Not the same as thermal camber".

• Some terms have the same or very similar definitions.

For example, the terms "Groove", "Pocket" and "Pass". "Groove" is defined

as "The shape actually cut into one roll for one pass shape". The term

"Pocket" is defined as "Shape cut in roll". The term "Pass" is defined as "The

shape formed between grooves cut in two rolls".

• A nimiber of terms have no definition and no associated terms.

For example, the terms "Billet" and "Box Hole Collar".

• The association or relationship between the terms is not defined.

For example, the term "Barrel" is defined as "The working portion of the roll

available for cutting grooves". The alternative meaning for "Barrel" is "Rolls

used for flat products often have a barrel shape - slightly larger in diameter in

the middle". A term associated with "Barrel" is "Neck". The term "Neck" is

defined as "The end of the roll that accepts the bearings and drive couplings".

The alternative meaning for "Neck" is "the straight part of a sheet piling

section leading to the lock". A term associated with "Neck" is "Barrel". The

four definitions provided are not identical or similar even though the terms

"Barrel" and "Neck" are associated

• The glossary does not indicate i f a term is mill specific though some

definitions imply a restriction to a particular mill or product.

For example, the definition for the term "Droop" is "Lock hanging down on

Larssen Piling".

The glossary does not make clear which of the terms is an accepted standard

either in the roll design community or the industry in general.

68

4.3.2 The Roll Designers

There is a wide variance in the industrial and design experience of the roll

designers in British Steel. This variance ranges from roll designers with many

years experience as roll designers for British Steel, to recent graduates with no

relevant work experience. Experienced roll designers may have experience of

several mills or sections, or their in-depth knowledge may be restricted to a single

mill or section. British Steel would like to capture the knowledge of roll design

held by the experienced roll designers and make it available to less experienced

roll designers. The need to capture this knowledge is made more urgent by the

fact that some of the more experienced roll designers are due to retire. There is at

present no formalised process or mechanism in place to aid with the capture and

sharing of roll design knowledge. The intended centralised roll design

enviromnent wi l l provide a central area for storage of all design documents, but

at present there are no tools to aid with search and retrieval of design documents.

Experienced roll designers are able to locate the existing design documents that

they need when developing a new design. However, there is no formal

mechanism in place to help less experienced roll designers to locate existing

design documents that could be used when they are developing new design

documents. There is no formal mechanism in place to help roll designers of any

level of experience to develop new design documents so that they can later be

used to help other roll designers develop design documents. There is no formal

mechanism in place to help roll designer to browse potentially useful design

documents i.e. design documents that can be used to increase knowledge and aid

in clarifying what is needed in a new design.

4.4 The Problem Domain in a Software Engineering Context

British Steel's roll design community is moving from decenfralised roll design

environment to a single cenfralised roll design environment. A cenfralised design

environment has the potential to improve the roll design process, improve the

quality of the design documents produced by the community and improve the roll

design communities ability to capture and share domain knowledge. By providing

a central repository (a library) of design documents (assets) it is anticipated that

roll designers (reusers) wil l be able to search and retrieve existing design

69

documents (reusable assets) when developing new design documents (assets).

British Steel needs to stop the depletion of the knowledge base (domain

knowledge) that the imminent retirement of several experienced designers is

likely to cause. Knowledge capture and sharing is possible through domain

analysis and domain engineering or domain modelling. In software engineering

terms this means that British Steel's roll design community needs to be able to

reuse existing assets, v^hich are for the most part natural language documents. In

addition, British Steel's roll design community needs to be able to develop new

assets for reuse while increasing their understanding through analysis of the

domain.

To date there has been no planned or managed process for the practice of domain

analysis and reuse. Software tool support is needed so that the roll design

community (reusers) can begin to do the domain analysis and reuse concurrently,

and in a planned and managed way. There needs to be software tool support to

enable the reusers to search and retrieve assets from the library to meet varying

search goals, including the gleaning of knowledge, browsing to aid when the

problem definition is unclear, and to reuse existing assets in the development of

new assets. This wi l l require not only software tool support but also an

understanding of the terminology used in the domain. There needs to be software

tool support to assist reusers in developing new assets in a manner that will

support the £issets' later reuse. This wil l require not only software tool support but

also an understanding of the terminology to be used in the new assets. There

needs to be software tool support to aid reusers in the extraction of knowledge

contained in existing assets so that the knowledge can be stored and shared with

the reuser community. It should be noted that extraction of knowledge from

existing assets is likely to be performed by reusers with varying levels of domain

knowledge. Software tool support is needed to help the reusers overcome the

terminology issues raised as a result of reusing domain specific natural language

assets.

There are six issues surrounding the reuse of the natural language assets

developed by the British Steel roll design commimity. They are as follows:

70

1. The terminology contains terms that have more than one meaning. Which of

these meanings the reuser community more commonly applies is not

apparent.

2. The terminology contains groups of terms (two or more) with the same

meaning. Which of these terms is more commonly in use in the reuser

community is not apparent.

3. There are relationships between the terms that have not been defined. These

relationships may be equivalence, hierarchical or associative.

4. Reusers may not understand terms used by other reusers.

5. Reusers with limited experience in the domain are not familiar with some of

the terms in the domain.

6. There is no single source the reuser can access that wil l clarify the meaning of

the terms in the terminology or the relationships between the terms in the

terminology.

4.5 The Summary
British Steel's move to from a decenfrahsed roll design environment to a

centialised design environment has the potential to improve the roll design

process, improve the quality of the design documents produced by the

community and improve the roll design communities ability to capture and share

domain knowledge. The roll designers need to be able to reuse existing design

documents, develop new design documents that are suitable for reuse while

increasing their overall understanding of the domain. The practice of domain

analysis and reuse will require software tool support. The requirements for the

software tool support are presented in Chapter 5.

71

Chapter 5 Requirements for Tool Support

5.1 Objectives of the Ciiapter

The main objective of this chapter is to provide the requirements specification for

a prototype of the software tool support needed by British Steel roll design

community to enable them to perform domain analysis and reuse of domain

assets concurrentiy. This chapter presents an initial set of requirement based on a

general understanding of the problem domain. An initial prototype based on the

initial set of requirements wil l be developed to test the accuracy and

completeness of the initial requirements. A review of the initial prototype will be

performed to identify any misconceptions about the problem domain and to glean

any additional requirements. A final set of requirements for the prototype will be

based on the review.

Section 5.2 provides an overview of the requirements. Section 5.3 provides the

initial requirements for the software solution. Section 5.4 provides details of an

initial prototype of the software tool support and how it was used to glean

additional information about the roll design community. Section 5.5 provides the

final requirements for the required software tool support, which reflects the

additional information discovered by using the initial prototype. Section 5.6

provides the summary for this chapter.

5.2 Overview of the Requirements

British Steel's roll design community is moving from decentralised roll design

environments to a centralised roll design environment. British Steel's roll design

community needs to be able to perform, concurrently, ongoing analysis of the roll

design domain especially vocabulary/terminology analysis to support component-

based reuse. To perform ongoing domain analysis roll designers (reusers) need to

locate and extract domain knowledge from assets that exist and to store that

knowledge in a manner that wi l l allow other reusers to share it. The reusers will

need to locate and extract domain knowledge from newly developed assets and

store that knowledge in a manner that wil l allow other reusers to share the

domain knowledge. To perform reuse the reusers need to populate a library with

72

those assets that already exist and those that are to be developed. The assets and

the library must be structured to promote search and retrieval of reusable assets.

The reusers need to search and retrieve library assets to satisfy one of the three

distinct reuse needs listed below.

• Reuse to increase domain knowledge.

• Reuse to develop new assets.

• Reuse to clarify the development needs of new assets.

The reusers need to develop new assets in a manner that wil l support the assets'

later reuse. Software tool support is required to sustain component-based reuse,

while performing domain analysis. The terminology issues that arise as a result of

reusing natural language assets without an enforced standard can have a

detrimental effect on both component-based reuse and domain analysis. Software

tool support wi l l be needed to assist the reuse in resolving the following issues.

There are terms in the terminology with more than one meaning. The terminology

contains different terms that have the same meaning. The relationships between

the terms are not defined. There is no single source the reuser can access that wil l

clarify the meaning of the terms in the terminology or the relationships between

the terms in the terminology. Reusers from one work area may not understand

terms used by reusers in another work area. Reusers with limited experience in

the domain are not familiar with some of the terms in the domain.

5.3 Initial Requirements

This section contains the initial requirements for a prototype of a software tool

that could be used to support reuse and increase domain knowledge. As part of

the requirements process a first pass or initial prototype. Reuse Support Tool

(ReST) is to be developed to demonstrate software tool support for reuse and

ongoing domain analysis.

It is proposed that as reusers' understanding of the terminology used in the

domain increases understanding of the domain will also increase. A thesaurus is a

single store for the terms used in the domain. It contains a definition for each

term held in the store, and is used to identify the relationships between the terms

73

of the domain. The prototype, ReST, wil l be used to demonsfrate the reuse of

existing assets and the development of new assets for reuse. ReST will be used to

demonsfrate that a thesaurus could be used to support reuse by providing a reuser

with assistance when defining an asset's surrogate, constructing search queries

and imderstanding the domain's terminology. Eight initial requirements are listed

below:

1. Develop a domain specific thesaurus that will hold domain specific terms, a

definition for each term and the relationships between the terms. The

thesaurus should make clear which of the terms are considered standard terms

(preferred terms) within the reuser community.

2. Populate the thesaurus with domain specific terms that are found in the assets.

3. Assist a reuser to populate the reuse library by constructing surrogates for

each potentially reusable asset. A surrogate should contain only those terms

that occur in its asset. A surrogate should contain only those terms that are

defined by the reuser community as standard terms. A surrogate should

contain only those terms that are defined in the thesaurus as standard or

preferred terms.

4. Allow a reuser access to the thesaurus when constructing the surrogates. The

thesaurus wil l identify those terms that are standard (preferred) terms within

the reuser community.

5. Enable a reuser to search the library for reusable assets. As surrogates consist

of standard terms only, search queries wil l consist of standard terms only.

6. Allow a reuser access to the thesaurus when defining a search query. The

thesaurus wil l identify those terms that are standard (preferred) terms within

the reuser community.

7. Assist reusers in understanding the terminology of the domain. This

assistance wil l be in the form of access to the thesaurus. The thesaurus will

74

help the reuser put the terms in context by providing domain specific terms,

the definition for each term and the defined relationships between the terms.

8. Index the assets to provide a list of unique terms and the frequency with

which those tenns occur in an asset. The index wil l be evaluated to provide a

quality assessment of the terms used in the asset to the reuser. The index wil l

be used to define the surrogate, populate the thesaurus, and populate a

stoplist, which is a tool used in indexing.

5.4 Initial Prototype
As part of the requirements gathering process an initial prototype of the Reuse

Support Tool (ReST) was developed. The overall intention for the development

of the first prototype of ReST was to increase the understanding of the problem

domain, better assess the needs of the reuser community and to demonsfrate the

initial requirements. The first prototype of ReST was constructed and then used

in a demonstiation that examined examples of possible input and the likely

resulting output.

Although previously studied reuse support systems such as those developed by

the Practitioner project have contributed to the development of the prototype at

the requirements level, the prototype has been constructed independently. Reuse

of the earlier systems was not feasible given their implementation technology.

The initial prototype of ReST was developed using Microsoft ACCESS version

1.1, which provided a simple user interface. Background documents used to glean

samples of possible input and output data were the Glossary of Roll Design

Terms [BS97] and Expert Roll Design [SML98]. No actual processing was

implemented; instead database tables holding samples of input and expected

output data were used to simulate actual processing. Microsoft ACCESS forms

were exploited to create a simple user interface. Internal macros such as

OPENFORM were used to simulate the user interface functionality.

75

The initial prototype of ReST was developed and demonsfrated in conjunction

with two scenarios. Scenarios are an ordered list of simple tasks that a reuser

would need to perform to complete a body of work, such as creating an asset's

surrogate and adding it to the library. The initial prototype of the ReST was

developed to show the understanding of simple tasks and demonsfrate how ReST

could be used to overcome terminology problems likely to occur while

performing those tasks. It was shown to a potential reuser (designer) and

interested academics working on the CARD and REMAIN projects at a formal

demonsfration.

Each scenario is based on an ordered list of simple tasks that need to be

performed to accomplish a body of work. For example to create a document

surrogate and add it to the library a reuser must perform several tasks. To begin

with the document is indexed. This provides a list of terms used in the

performance of a quality check. This provides a breakdown of terms into

categories, such as preferred terms, non-preferred terms, and terms that are

imdefined, as yet, within the domain. Decisions on actions to be taken concerning

the terms in each category need to be made. Terms that are to be placed into the

surrogate need to be identified. Accompanying each series of tasks was a series

of questions. These questions arose during the development of the initial

prototype of ReST and identified areas of the problem domain and solution that

were imclear. The scenarios with the questions were used in conjunction with the

initial prototype of ReST to demonsfrate the initial requirements, clarify domain

understanding and generate general discussion. Copies of the scenarios were

distributed during the demonsfration of ReST. Each scenario was enacted, while

questions were asked and general discussion encouraged. Answers to questions

explicitly asked were recorded during the demonsfration. Where questions were

not explicitly asked it was possible to glean answers from the general discussion.

Figure 5.1 contains a screen shot in the initial prototype of ReST and is one of the

screens used during the demonsfration of the initial prototype of ReST. It

contains the result of indexing an asset and the processing that is available to a

reuser once indexing is complete. The asset was not actually indexed. Terms

76

were manually selected from a British Steel document "Expert Roll Design"

[SML98] and entered into a database table where they were stored.

licrosoft Access

jj File Edit View Insert Format Records Tools Window Help

M Thesauius

Prefened depth

Definition

Scope Note The depth of an H beam is the same as the width of an
I beam. The terminology is mill dependent

Broader Term

Narrower Term

Related Term depths, widths

Scunthorpe Idepth

Date Created I 10/08/9912:39:00 Deated By [d ^ I s f
Dates Modified I ~ ~ ' Modified By

Teeside | width

Top Term P ~

In Use F
Bottom Term \

Search Dose

Record: H | < 11 7 >• I M of 44

jNtJM i
Start University 0... C^Microtoft... Microsoft... | ^ M i a o s o f t E . . . iguntitled-Pa... {<pfl |E<PM4 :10

Figure 5.1 ReST Index Document Complete

5.4.1 ReST Scenario One

The body of work is the creation of a document's surrogate and its addition to the

reuse library.
Act ions /Tasks Questions Answers
Index the document. W h i c h o f the f o l l o w i n g should be

included w i t h the list o f unique terms:
a frequency count; and / or the place
term occurs in the document;

Both - frequency count w i l l help
define relevance o f terms in
surrogate, experienced designers
w i l l on ly need to see relevant
sections. W o u l d be useful i f terms
could be highlighted in document.

D o qua l i ty check on index terms Index terms to be included in the
surrogate are:
all index terms; a l l index terms also in
the thesaurus; or all index terms also
in the thesaurus and defined as a
preferred term?

A l l terms used in surrogate should
be upl i f ted to preferred terms.

F r o m the index terms extract the
subset that are in the thesaurus,
but not a preferred terms.

Should the non-preferred terms found
in the document be changed to
preferred terms?

N o

F r o m the index terms extract the
subset w h i c h are not i n the
thesaurus.

W o u l d i t be useful to track the number
o f non-preferred terms and unknown
terms that occur in documents over
time?

Unknown

Index terms not in the thesaurus
should be either: added to
stoplist; added to thesaurus;
saved to file or ignored.

N o questions. N o comments.

77

What f o r m does the surrogate take?
Text summary, a hst o f key phrases or
other?

I f a l l terms needed f o r surrogate
are n o w in the thesaurus, enter
the surrogate details.

Copies o f actual surrogates to be
sent

Figure 5.2 contains a screen view of the Thesaurus in the initial prototype of

ReST. Not all of the possible relationships between terms in the domain were

demonstrated in the thesaurus. The only relationship demonstrated was the

equivalence relationship which is defined as either USE or USED FOR, as in

non-preferred USE preferred, and preferred USED FOR non-preferred. The

intention of the initial thesaurus was to demonstrate the concepts behind using

and maintaining a thesaurus and not domain knowledge therefore the definition

was not included.

mTHESAURUS

Prefeiied Term: jHSBSBT
Non-Piefeired Teim: |groove

Definition: text description here

Created By U*ei: |1

Dale Created: | 25/01/99

Updated By Uien |

Date Updated: 25/01/99

Record: li \ < \ { 3 >• of 19

31

Figure 5.2 Thesaurus in the initial prototype of ReST

78

5.4.2 ReST Scenario Two
The body of work is the retrieval of relevant documents from the reuse library.
Act ions /Tasks Questions Answers
Enter Search Term
e.g. open flange

Which of the following would be
useful:
terms with a minimum frequency count;
and / or B O O L E A N operators (A N D ,
O R , N O T) .
Should search terms contain only
standard (preferred) terms or any term?

Frequency counts - Yes
B O O L E A N - N o t Asked

Query contains any term, which
are automatically uplifted prior to
initiating search.

D o search Should the search results contain the
document I D and: the full surrogate; the
relevant sections of the document; the
location of the relevant sections in the
document; the entire document; or the
surrogate and the functionality
available to allow the user to select one
or more documents from the search
result to be retrieved?

A l l , experienced designers would
only need to see limited sections
of a document, new designers
may need to make use of a wider
amount of the documents

Refine the search. When search results are too large would
it be useful to refine the search by
searching previous results only?
Would it be useful to refine searches
using relationship used in the thesaurus
such as broader or narrower terms?
Should terms be automatically found or
selected by user?

Y e s

Y e s

Both - with the ability to switch
automation on/off.

General Observation During searching would it be useful to
have the thesaurus open and on screen
or invisible until explicitly called by the
user?

Explicitly called.

5.4.3 Results of the Demonstration of the Initial Prototype of ReST
The demonstration of ReST with the scenarios established that generally the

proposed solution met the needs of potential reusers. Additional insights into the

reuser community were gleaned. Inexperienced reusers are likely to require most

of the functionality proposed by ReST all the time. They will be using it not only

to locate reusable assets but also to increase their knowledge of the domain and

its terminology. As a reuser's level of experience in the work place increases

their need to use ReST wil l decrease. In this case the constant presence of ReST

on the screen would be annoying and automating the assistance would be

considered intrusive. It was agreed generally that the best approach would be to

provide as much functionahty as possible but to allow the reuser to decide when

to bring the functionality into play.

After the demonsfration British Steel provided a hard copy of an additional high-

level design document to be used as sample data for a functioning prototype of

ReST. The document 'TSfotes on Designing Primary Rolls with One Beam Shape

79

Forming Pass" [ORD99] is a long detailed text document. Four pages of this

docimient were entered as a text only document and used as an additional sample

data in the development of the final prototype for ReST.

5.5 The Final Requirements for ttie prototype ReST

This section contains the requirements specification for the final prototype of

ReST (Reuse Support Tool). The requirements are based on the domain analysis

contained in Chapter 3, the initial requirements for ReST and the results of the

formal demonstration.

5.5.1 Requirements Specification for ReST
This section contains a listing of the overall requirements for ReST, the

characteristics of potential reusers and general constraints and assumptions that

wi l l affect the development of ReST.

5.5.1.1 Functionality of ReST
The final prototype for ReST should provide sufficient functionaUty to

demonstrate how to index a design asset, construct a surrogate, search and

retrieve relevant surrogates, and capture and maintain the domain knowledge to

be held in the thesaurus.

The final prototype ReST, Reuse Support Tool, will be used to demonstiate how

a software tool could be used to assist reusers to:

• index a design asset providing a list of unique terms and the frequency with

which those terms occur in the asset;

• classify each term contained in the index as either a preferred term, or a term

defined in the thesaurus, or a term not in the thesaurus, or an internal stoplist

term, or a stoplist candidate term, or a candidate term for inclusion in the

thesaurus, or a search term, that is included in an asset's surrogate;

• construct surrogates using preferred terms only;

• construct search queries using preferred terms only;

• populate the thesaurus with terms found in the assets; and

80

• maintain the thesaurus and the stopHst.

5.5.1.2 User Characteristics

There is a wide variance in the experience and educational backgrounds of the

company's rolhng mill designers. The most likely users for a software support

tool that is the implementation of ReST fall into four categories:

• Reusers with many years experience within the company particularly in

rolling mill design section.

• Reusers with several years experience in the company, but not necessarily in

the rolling mill design section.

• Reusers with several years experience as engineers or designers in a similar

industry.

• Reusers with little practical experience, such as recent imiversity graduates or

apprentices.

It should be noted that only users with experience in British Steel rolling mill

design should be allowed to write to the stoplist and the thesaurus.

5.5.1.3 General Constraints and Assumptions

ReST wil l be developed using Microsoft Access 97. Data will be stored and

manipulated in tables.

It is assumed that:

• there wi l l be a central repository for design assets;

• individual design assets can be uniquely identified;

• all reusers wi l l be able to read the design assets;

• all reusers wi l l be able to define surrogates;

• all reusers wi l l be able to propose candidate terms for inclusion in the stoplist

and thesaurus including suggested definitions and relationships; and

• only a subset of reusers will be allowed to write to the stopUst and the

thesaurus.

81

5.6 Summary
This chapter contained the requirements specification for the software tool to

support needed by the British Steel roll design community to enable them to

perform domain analysis and reuse of domain assets concurrently. The final

prototype for ReST will demonstrate the fiinctionality needed to: index a design

asset; construct a surrogate; search and retrieve surrogates; and populate and

maintain the thesaurus. The prototype will demonstrate how the thesaurus can be

used to: assess the quality of an asset; identify an asset's terms to be included in a

surrogate; aid with the construction of a search query; and store the domain

terminology.

82

Chapter 6 Design of ReST

6.1 Objectives of the Chapter

The main objective of this chapter is to provide the design details of the final

prototype of ReST (Reuse Support Tool). The design is based on the final

requirement in Chapter 5. Dataflow diagrams are used to identify the entities,

processes and data that comprise ReST. Entity-Relationship diagrams are used to

show the relationships between the entities that comprise ReST.

Section 6.2 contains the design details of ReST. Section 6.2.1 contains a series of

dataflow diagrams with textual descriptions explaining the data and the processes

of the proposed solution. Section 6.2.2 contains a series of entity-relationship

diagrams with textual descriptions explaining the relationships between the

entities of the proposed solution. Section 6.3 provides the validation of the design

against the requirements for the final prototype of ReST stated in Chapter 5.

Section 6.4 contains a summary of this chapter.

6.2 ReST Prototype Design
This section provides the design details of the final prototype of ReST. The

design includes dataflow diagrams that are used to identify the entities, process

and data that comprise ReST. In addition, entity relationship diagrams have been

provided to define the type of relationships that exist between the many entities

that comprise ReST.

6.2.1 Dataflow Details
In this section a series of dataflow diagrams illustiates the design of the final

prototype of ReST. The first diagram is the context diagram. This diagram is used

to portray ReST in the context of British Steel's proposed centralised design

environment. It identifies those entities outside of ReST with which ReST will

need to co-operate in order to function. The remainder of this section follows the

logical decomposition of the Context Diagram into the level one, two and three

diagrams. Decomposition is based on the identification of processes and the data

83

needed as input. Also shown is each process' resulting output i f any, as well as

any associated internal data stores.

6.2.1.1 ReST in Context of the Domain

Figure 6.1 contains the dataflow context diagram for ReST. The main purpose of

the context diagram is to identify the three distinct users of ReST. Al l three users

of ReST are represented as external entities in the context diagram. Each entity:

• represents a sub-set of British Steel rolling mill designers;

• interacts with ReST to perform distinctly different tasks;

• provides specific external data needed to initiate processing in ReST; and

• must possess a different level of knowledge and experience to perform the

tasks and provide the specific external data.

The main difference between the entities is the tasks that the designer is

performing. There may be any nimiber of Reusers, Librarians, or Maintainers. A

single designer may be a Reuser, a Librarian and a Maintainer. Whether a

designer is interacting with ReST as a Reuser or Librarian or Maintainer is

dependent on the task the designer is performing and the external data they are

entering into ReST. A single bubble entitled ReST is used to encase all the

processes, data stores and internal data of the prototype.

84

Context Diagram ReST

Indexing request
Search request

Thesaurus candidate
definition, relationships
Temi reclassification

Assets

Thesaunjs candidate
approval/rejection,

Thesaurus term
definition, relationships

Stoplist candidate
approval/rejection

Ubranan

Stoplist candidates

Maintainer

Thesaurus candidates

Reuser

Stoplist candidate
rejection nofice

Thesaunjs candidate
rejection nofice
Reusable asset

Figure 6.1 Context Diagram

A Reuser is any British Steel rolling mill designer from a recent graduate to an

experienced designer with many years experience within British Steel's rolling

mill design community. A Reuser will use ReST to perform any one of three

main tasks. The first is to provide the design community with reusable design

assets by indexing a design asset and then classifying the index terms. The

second is to locate reusable design assets. And the third is to nominate index

terms as candidates for either the stoplist or the thesaurus.

A Librarian is any British Steel rolling mill designer with sufficient knowledge of

the domain vocabulary to be able to maintain the stoplist and with the permission

to do so. Though any Reuser can nominate a word for inclusion in the stoplist, the

actual addition to the stophst requires the intervention of a Librarian. The

Librarian must explicitly approve a stoplist candidate before it can be included in

the stoplist. The Librarian can also reject any candidate for inclusion in the

stoplist. For example the word "line" can occur often enough in an asset's index

as to render it meaningless in, context of the asset. It would be logical for a Reuser

85

to submit it as a candidate for inclusion in the stoplist. However, a Librarian

would have to reject "line" for inclusion in the stoplist because it is a word that is

necessary within domain specific terms such as "centre line". "Centre line" is a

standard industry term and would need to be included in the thesaurus as a

preferred term.

A Maintainer is any British Steel rolling mill designer with sufficient knowledge

of the domain to maintain the thesaurus and with the permission to do so. The

Maintainer not only needs to understand the domain vocabulary, but must also

understand the relationships between the terms in the vocabulary and the precise

structure of the thesaurus that contains the terms and their defined relationships.

Though any Reuser can nominate a term for inclusion in the thesaurus, the actual

addition to the thesaurus requires the intervention of a Maintainer. The

Maintainer must explicitly approve a thesaurus candidate before it can be

included in the thesaurus. Any Reuser may propose a term's definition and

proposed relationships for the term. However, only a Maintainer can expUcitly

define the term and enter its relationships in the thesaurus. A Maintainer can

reject any candidate for inclusion in the thesaurus.

6.2.1.2 The Processing within ReST
Figure 6.2 contains a level one dataflow diagram of ReST. This diagram is used

to illustrate the four main process areas of ReST. Each process area is encased in

a bubble that contains sub-processes that are illustrated in the level two and three

dataflow diagrams provided later in this section.

86

Level 1 ReST

stoplist candidates
indexing request

Stoplist candldata
approval/rejection Term reclassification

Maintain
Stopiist

2

Thesaurus candidate
definition, relationsliips

Stoplist

Sloplist candidate
rejection notice Storiist

Stoplist

Stoplist candidates

mesaufus i asset id
search term

frequency

Assets

Search for
Reusatsle

Assets
4

Triesaurus

Search request

Maintain
Thesaurus

Thesaunjs term
definition, relationshi

esaums candidate
approval/reiection

Thesaurus
candidate
rejection

notice
Thesaurus
candidate

Figure 6.2 Level 1 Dataflow Diagram of ReST

Process one entitled "Index Asset" is the main process used by Reusers to

provide the design community with reusable design assets by indexing a design

asset and then classifying the index terms. As part of the classification of the

index terms the Reuser wi l l nominate index terms as candidates for either the

stoplist or the thesaurus. When reclassifying a term as a thesaurus candidate the

reuser may propose the term's definition and relationships. "Index Asset" is

illustrated in more detail in Figures 6.3, 6.4 and 6.5. Process two entitled

"Maintain Stoplist" is used by the Librarian to maintain the stoplist and is

illustrated in more detail in Figure 6.6. Process three entitled "Maintain

Thesaurus" is used by the Maintainer to maintain the thesaurus and is illustrated

in more detail in Figure 6.7. Process four entitled "Search for Reusable Assets" is

87

used by the Reuser to retrieve reusable design assets and is illustrated in more

detail in Figure 6.8.

6.2.1.2.1 Indexing the Asset

The "Index Asset" process is illustrated as a level two dataflow diagram in Figure

6.3 below. The diagram shows the decomposition of "Index Asset", and the

internal and external data need for the process.

Level 2 Index Asset 1

Stoplist candidates
Indexing request

asset Id. term, frequency
type

Indexing
the Asset

Thesaurus candidates
Assessing the

Quality of
Index Terms

Thesaurus

asset I d , searx^\ tenri
frequency

Stoplist
Thesaunjs cadidate

definition, relationships

Assets

Term
reclassification

Thesaurus

Figure 6.3 Level 2 Dataflow Diagram of Index Asset

A Reuser's indexing request will identify the asset to be indexed. Individual

design assets are indexed, to provide a list of imique terms contained in the asset

and the frequency with which those terms occur within the asset. The "Indexing

the Asset" process then outputs the indexed terms. This process is illustrated in

more detail in Figure 6.4. The "Assessing the Quality of Index Terms" takes the

indexed terms and automatically classifies each term. A Reuser then expUcitly

reclassifies each term. When a Reuser reclassifies a term as a thesaurus candidate

the Reuser wi l l propose a term definition and relationships. The "Assessing the

Quality of Index Terms" process is illustrated in more detail in Figure 6.5.

6.2.1.2.2 Indexing the Asset

The "Indexing the Asset" process is illusfrated as a level three dataflow diagram

in figure 6.4. The diagram illustrates the decomposition of the process, the

internal and external data used during processing, and the data stores that are

accessed during processing.

Level 3 Indexing the Asset 1.1

Indexing request

Thesaurus

sort
terms

asset Id
term

frequency asset Id
term

frequency
type

Stoplist

Figure 6.4 Level 3 Dataflow Diagram of Indexing ttie Asset

The asset to be indexed is selected from the assets store. The asset is then indexed

to provide a list of unique terms contained in the asset and the frequency with

which those terms occur within the asset. The index terms have the following

properties.

• They are comprised of one or more consecutive words.

• They do not begin with any words that exist in the current stoplist.

• They do not end with any words that exist in the current stoplist.

• They do not contain any words that exist in the current stoplist.

89

The index terms are then sorted into their initial classification or type. The initial

classification is carried out automatically by ReST. The index terms wil l be

automatically classified as one and only one of the following three types.

• Preferred terms

• Defined terms

• Undefined terms

An index term classified as a preferred term is a term that has been defined within

the thesaurus as a preferred term. An index term classified as a defined term is a

term that has been defined within the thesaurus but not as a preferred term. An

index term classified as an undefined term is a term that has not been defined

within the thesaurus.

6.2.1.2.3 Assessing the Quality of Index Terms

The "Assessing the Quality of Index Terms" process is illustrated as a level three

dataflow diagram in figure 6.5. The diagram illustrates the decomposition of the

process, the internal and external data used during processing, and the data stores

that are accessed during processing.

90

Level 3 Assessing the Quality of Index Terms 1.2

internal
stoplist Term

reclassification
internal stoplist terms

asset id, term
frequency, type / reclassify

terms
, 1.2.1

Thesaurus candidate
definition, relationships

Thesaurus candidates

Stoplist candidates

asset Id
search tenn
frequency

asset id
defined term,

frequency

uplift
terms
1.2.2 Thesaurus

asset id , search temi
frequency

Figure 6.5 Level 3 Dataflow Diagram of Assessing the Quality of Index
Terms

Upon completion of the automatic classification a reuser is required to intervene

in the reclassification of the index terms. The index terms must be reclassified

into one and only one of the four categories or types listed below:

• Internal stoplist term;

• Stoplist candidate;

• Thesaurus candidate; or

• Search term.

91

An index term classified as an internal stoplist term is a term that has meaning

within the domain but is judged not useful when searching for the asset. An index

term classified as a stoplist candidate is an index term that a reuser has nominated

for addition to the stbplist. An index term classified as a thesaurus candidate is an

index term that a reuser has nominated for inclusion in the thesaurus. With this

classification the Reuser may enter a proposed definition and relationships for the

term. An index term classified as a search term is an index term that is defined in

the thesaurus as a preferred term and is judged useful, by the Reuser, when

searching for the asset. An index term defined in the thesaurus as something other

than a preferred term and judged useful when searching for the asset is also

classified as a search term; however, the index term is exchanged for its preferred

term before being classified as a search term.

An asset's surrogate is the collection of all the search terms for that asset. When a

defined term is reclassified as a search term, the defined term is exchanged for its

preferred term before the term is included in the asset's surrogate. This exchange

process is known as 'uplifting' the vocabulary.

A term's initial classification provided during the "Indexing the Asset" process

restricts the reclassification that the Reuser may perform within ReST. A

preferred term may be reclassified as either a search term or as an internal stoplist

term. A defined term may be reclassified as either a search term or as an internal

stoplist term. An undefined term may be reclassified as an intemal stoplist term,

or a stoplist candidate, or a thesaurus candidate.

6.2.1.2.4 Maintain Stoplist

The "Maintain StopUst" process is illusfrated as a level two dataflow diagram in

figure 6.6. The diagram illusfrates the decomposition of the process, the intemal

and external data used during processing, and the data stores that are accessed

during processing.

92

Level 2 Maintain Stoplist 2

stopiist candidates stoplist
candidates

Sloplist candidates
stopiist candidate
approval/rejection

stoplist Modify
Stoplist

Stopiist

Stoplist
candidate
rejection

notice

Stcplist candidates

Figure 6.6 Level 2 Dataflow Diagram of Maintain Stoplist

The Librarian uses the "Maintain Stoplist" process to populate and modify the

data contained in the stoplist. The stoplist is a store holding a collection of unique

words that are meaningful within the context of natural language but have no

specific meaning within the domain. Words such as "then" and "that" are

examples of stoplist words. The stoplist is populated by index terms found in the

design assets. These terms are initially classified as undefined terms in the "Index

the Asset" process and then reclassified by a Reuser as stoplist candidates in the

"Assess the Quality of Index Terms" process. The Librarian reviews the stoplist

candidates and selects or rejects the candidates. The selected stoplist candidates

are added to the stoplist. When the Librarian rejects the candidates a candidate

rejection notice is sent automatically.

6.2. L2.5 Maintain Thesaurus

The "Maintain Thesaurus" process is illustiated as a level two dataflow diagram

in figure 6.7. The diagram illustrates the decomposition of the process, the

internal and external data used during processing, and the data stores that are

accessed during processing.

93

Level 2 Maintain Thesaurus 3

Ihesaunjs
candidates

Thesaurus candidates Thesaunjs candidate
approval/rejection

Thesaurus candidates
Modify

^ , Thesaurus

-
Thesaurus lenn

definition, relationships

Thesaurus

Thesaunjs

Thesaurus
candidate
rejection

notice

Thesaurus candidates

Figure 6.7 Level 2 Dataflow Diagram of Maintain Thesaurus

The thesaurus is the store for the domain specific knowledge found in the design

assets. It holds the terminology used within the domain and defines the

relationships between the terms in the domain. The Maintainer uses the

"Maintain Thesaurus" process to populate and modify the data contained in the

thesaurus. The Maintainer must maintain not only the data contained in the

thesaurus but also the structure of the thesaurus that is defined by the .

relationships between the terms contained in the thesaurus. The thesaurus is

populated by index terms found in the design assets. These terms are initially

classified as undefined terms in the "Index the Asset" process and then

reclassified by a Reuser as thesaurus candidates in the "Assess the Quality of

Index Terms" process. A Reuser can propose the term's definitions and its

relationships when they reclassify the term as a thesaurus candidate. The

Maintainer may reject, modify or add the proposed definition and relationships to

the thesaurus. A Maintainer may also enter any term definitions or relationships

not provided within the thesaurus candidate term. Population of the thesaurus

cannot be automated to any useful extent. Direct intervention by a Maintauier is

required for data to be entered or modified in the thesaurus. The Maintainer

reviews each thesaurus candidate and either selects or rejects the data for entry

into the thesaurus. When a Maintainer rejects a thesaurus candidate, an automated

candidate rejection notice is output.

94

6.2.1.2.6 Search for Reusable Assets

The "Search for Reusable Assets" process is illustrated as a level two dataflow

diagram in figure 6.8. The diagram illustrates the decomposition of the process,

the internal and external data used during processing, and the data stores that are

accessed during processing.

Level 2 Search for Reusable Assets 4

Search request 7 gf/^^, \ / Find
S u r r o g a t e s ^ ^ " ^ ^ ^

Query Asset Ids

4.1 / \ 4.2
^ / Preferred term \ ^ y

Asset ids \
/ Thesaurus

Find \
Assets / Assets]

Reusable \

7
Figure 6.8 Level 2 Dataflow Diagram of Searcfi for Reusable Assets

Each asset has a surrogate that contains a group of terms selected by a reuser as

potentially useful search terms. The surrogate also contains the asset's unique

identifier. Every term in a surrogate is a term that is defined in the thesaurus as a

preferred term. Therefore, search queries used to locate reusable assets'

surrogates are comprised of preferred terms only. The thesaurus contained in

ReST is available during the definition of a search query to provide a reuser with

assistance in locating the preferred term for any term defined in the thesaurus.

The intention of the search is to find all the reusable assets in the reuse library

that meet the search criteria i.e. contain the search term or terms as defined by the

search query. The search through the surrogates wil l provide the reuser with a list

95

of reusable assets' unique identifiers. Then the reuser must browse the actual

reusable assets to locate precisely the potential asset for reuse.

6.2.2 Entity Relationships

This section contains a series of four entity-relationship (e-r) diagrams. Each

diagram is provided to demonstrate the relationships that exist between the

entities of the final prototype of ReST. The entities in the e-r diagrams are

comprised of the external data entities and the data stores identified in the

previous section dataflow diagrams. The relationships are either one to one (1:1)

or one-to-many (1:M) or many-to-many (M:N) each relationship is named. Figure

6.9 illustrates the relationships that exist between the Reuser and the other entity

within ReST. Figure 6.10 illustrates the relationships that exist between the

Librarian and the other entity within ReST. Figure 6.11 illustrates the

relationships that exist between the Maintainer and the other entity within ReST.

Figure 6.12 brings all three of the previous e-r diagrams together to illustrate the

relationships that exist between all the entities in ReST.

6.2.2.1 Reuser's Relationships
Figure 6.9 is an entity relationship diagram illustrating the relationships that exist

between the Reuser and the other entities within ReST. Entities within ReST that

are not related to the Reuser are not shown in this e-r diagram.

96

dastjfy

Thesaurus Tbeuunis
Candidate Canddate
Rejected
Notice

N M

Figure 6.9 Reuser's Entity-Relationship Diagram

Though there can be any number of assets, each asset can have only one index.

An index is classified to provide its quality report (the index terms and the term

classifications). An index can have only one quality report. The Reuser can

reclassify the terms in a quality report. This reclassification is used to construct

the internal stoplist (a sub-set of quality report terms) and to define the surrogate

(a sub-set of quality report terms). There can be only one internal stoplist for a

quality report. There can be only one surrogate for a quality report. It is therefore

possible to deduce that an asset can have associated with it only one index, one

surrogate, one internal stoplist, and one quality report.

The Reuser compiles and sends both thesaurus candidates and stoplist candidates.

The Reuser receives both thesaurus candidate rejection notices and stoplist

candidate rejection notice. These rejection notices are only received when a

reuser's candidate has been rejected. There is no notice sent when a candidate has

been approved.

To locate the surrogates of potentially reusable assets the Reuser must compose a

search query. When composing search queries a Reuser may use the thesaurus to

overcome any vocabulary difficulties that they may encounter. The search of the

97

surrogates is restricted to the definition of the search query i.e. the search result

wi l l be only those surrogates that meet the search criteria as defined by the search

query. The search results are returned to the Reuser.

6.2.2.2 Librarian's Relationships
Figure 6.10 is an entity relationship diagram illustrating the relationships that

exist between the Librarian and the other entities within ReST. Entities within

ReST that are not related to the Librarian are not shown in this e-r diagram.

Librarian

approved

Stoplist
Candidate
Re jec ted
Notice

Stoplist
Candidate

Stoplist

Figure 6.10 Librarian's Entity-Reiationsiiip Diagram

Figure 6.10 identifies entities that have a relationship with the Librarian. The

Librarian is responsible for the maintenance of the Stoplist. The Librarian

receives stoplist candidates. I f the Librarian elects to reject the candidate then the

Librarian sends a stoplist candidate rejected notice. I f the Librarian approves the

candidate the stoplist is modified accordingly. It should be noted that there is

only ever one stoplist.

98

6.2.2.3 Maintainer's Relationships
Figure 6.11 is an entity relationship diagram illustrating the relationships that

exist between the Maintainer and the other entities within ReST. Entities within

ReST that are not related to the Maintainer are not shown in this e-r diagram.

Maintainer

approved

T h e s a u r u s

"Piesaurus
Candidate
Rejected
Notice

T h e s a u r u s
Candidate

Figure 6.11 Maintainer's Entity-Relationship Diagram

Figure 6.11 identifies entities that have a relationship with the Maintainer. The

Maintainer is responsible for the maintenance of the Thesaurus. The Maintainer

receives thesaurus candidates. I f the Maintainer elects to reject the candidate then

the Maintainer sends a thesaurus candidate rejected notice. I f the Maintainer

approves the candidate, the thesaurus is modified accordingly. It should be noted

that there is only ever one thesaurus.

99

6.2.2.4 Ail Entity Relationships for ReST
Figure 6.12 is an assemblage of Figures 6.9, 6.10 and 6.11there are no additional

entities or relationships and no entities or relationships have been removed.

Figure 6.12 has been added for completeness and to illustrate all the entities

connected with ReST and the relationships that exist between them.

Stoprilst
Cartddarta

Thesairus
Canddats
ReiKtad

Figure 6.12 Entity Relationship Diagram for ReST

6.3 Validation of Design against Requirements
This section provides the validation of the design presented in this chapter. The

design is shown to satisfy the functional requirements presented in Section

5.5.1.1 of Chapter 5 of this document. Listed below are each of the functional

requirements and the number of the design section(s) that contains the design

relating to the requirement.

100

Requirement Design Section Number

• Index a design asset providing a list of unique 6.2.1.2.1 and 6.2.1.2.2

terms and the frequency with which those

terms occur in the asset.

• Classify each term contained in the index as 6.2.1.2.1, 6.2.1.2.2 and

either a preferred term, or a term defmed in the 6.2.1.2.3

thesaurus, or a term not in the thesaurus, or an

intemal stoplist term, or a stopHst candidate

term, or a candidate term for inclusion in the

thesaurus, or a search term, that is included in

an asset's surrogate.

• Construct surrogates using preferred terms 6.2.1.2.3

only.

• Construct search queries using preferred terms 6.2.1.2.6

only.

• Populate the thesaurus with terms found in the 6.2.1.2.3 and 6.2.1.2.5

assets.

• Maintain the thesaurus aiid the stophst. 6.2.1.2.4 and 6.2.1.2.5

6.4 Summary
This chapter contains the design details of the final prototype of ReST (Reuse

Support Tool). This includes a series of dataflow diagrams with textual

descriptions explaining the data and the processes in the final prototype of ReST

and a series of entity-relationship diagrams with textual descriptions explaining

the relationships between the entities in the final prototype of ReST. There are

three external entities: the Reuser, the Librarian, and the Maintainer. Al l three

external entities are British Steel roll designers. However each entity performs

specific tasks when interacting with ReST. There are four main processes: Index

Assets performed by the Reusers; Maintain Stoplist performed by the Librarian;

Maintain Thesaurus performed by the Maintainer; and Search for Reusable

Assets performed by the Reusers.

101

Chapter 7 Implementation of ReST

7.1 Objectives of tire Chapter

The main objective of this chapter is to provide the implementation details of the

final prototype of ReST designed in Chapter 6.

Section 7.2 provides the description of the final implementation of ReST and

includes examples of the user interface and some sample data. Section 7.3

provides the vaUdation of the implementation against the functional requirements

stated in Chapter 5 Section 5.5.1.1. Section 7.4 provides the summary of this

chapter.

7.2 Implementation of the final prototype of ReST
The final prototype of ReST is a functioning prototype to demonstirate the

proposed solution to the domain problem stated in Chapter 4. ReST was

implemented using Microsoft Access 97. Microsoft Access 97 provides a user

interface that is relatively easy to define, tables for data storage, data

manipulation functions and its own version of Visual Basic for developing the

more complex functionality of the prototype.

The user interface for ReST was constructed using Access forms that are linked

by commands initiated by the user of ReST. Data is stored in Access tables and

manipulated through a series of commands entered by the user. Access contains

some pre-constructed functionality such as functions to find or delete records that

is exploited in ReST. The remaining functionality is contained in a group of

related modules and coded in the version of Visual Basic available in Access.

Functions such as the indexing of assets and assessing the quality of the index

terms are written in Visual Basic. Access is capable of accepting output generated

by Perl scripts and able to issue command line instructions. These features were

utilised to provide the initial data included in the stoplist. The opening screen

display for the user interface for ReST is illustrated in Figure 7.1.

102

Mam : Foim

Figure 7.1 Opening Screen for ReST

A l l areas of ReST are open to every user. To index an asset, a Reuser selects 1,

"Index an Asset". The Reuser is then asked to login and selects the asset for

indexing. ReST automatically indexes the asset. After an asset has been indexed

the index of terms can be saved for later use, deleted, or classified. Indexing an

asset is explained more fiilly in section 7.2.1. Though not explicitly stated in the

design of ReST, the need for a Reuser's id is implied in the design contained in

Chapter 6. A Reuser's id is necessary i f automated e-mails containing thesaurus

and stoplist candidate rejection notices are to be sent.

To classify a saved index a Reuser selects 2, "Compile Quality Report on Stored

Index". The Reuser is then asked to login and selects the asset's index for

classification. Classifying the index terms is explained more fully in section

7.2.2.

To review the contents of the stoplist or the thesaurus the Reuser selects 3,

"Maintenance Tasks".

103

To review the stoplist candidates and modify the stoplist a Librarian selects 3,

"Maintenance Tasks". Modifying the stoplist is explained more fully in section

7.2.3.

To review the thesaurus candidates and modify the thesaurus a Maintainer selects

3, "Maintenance Tasks". Modifying the thesaurus is explained more fully in

section 7.2.4.

To search for assets for reuse the Reuser selects 4, "Search for Surrogates". The

reuser defines the search query and is shown the asset ids of potentially reusable

assets. Searching for reusable assets is explained more fully in section 7.2.5.

7.2.1 Indexing an Asset

The indexing function is written in Visual Basic code and is called from the user

interface. An asset is selected and indexing occurs automatically. For trials during

implementation two small text files were used. These files are contained in

Appendix B. A single asset's index is held in the index table at any one time. The

data in the index table is cleared at the end of every work session. The index table

holds the asset's unique identifier, the term, the term's frequency, the date of

indexing, and the identifier of the reuser who initiated the indexing of the asset.

The Reuser is presented with a subset of the fields in the table when reviewing

the index. The Reuser is presented with the asset's id, the index term, and the

frequency count. A sample of the Reuser's view of the index table is shown

below in Figure 7.2. This sample contains only a subset of the data that was

compiled when asset "SMLlOl-ts" was indexed.

104

Document Id Term Frequency
S M L 1 0 1 - t s bstp 1
S M L I O I - t s centre line 1
S M L I O I - t s diagonal 1
S M L I O I - t s d imensions

S M L I O I - t s elongation 1
S M L I O I - t s expans ion 1
S M L I O I - t s fillet 1
S M L I O I - t s finishing p a s s 1
S M L I O I - t s finishing p a s s profile 1
S M L I O I - t s foot line 2

S M L I O I - t s gap 1

Figure 7.2 Sample of Index Data

An asset's index can contain a large number of terms. It was therefore necessary

to demonstrate the need for functionality and storage space for indices that are

still to be assessed. Saved indices are stored in a single table, and contain the

same data as the index table. Unlike the index table which holds the index for

only one table the saved index table can hold zero or more asset's indices.

In indexing an asset the asset's text is parsed one word at a time. I f the word is

contained in the stoplist the word is ignored. Once a word that is not in the

stoplist is found it is added as the first word of a new term. Words from the asset

are added to the term until a word contained in the stoplist is found. Then the

stoplist word is ignored; the term is considered complete and added to the index.

This procedure continues until the end of the asset.

It is intended that ReST be used to demonstrate that population of the reuse

library, the stoplist and the thesaurus can occur concurrently. However, index

terms are phrases (a group of one or more words) contained in the asset that do

not contain any stoplist words. Therefore, it was necessary to populate the stoplist

with some words prior to developing the indexing functionality. To populate the

stoplist a Perl script written by a colleague''* was adapted to provide data for the

stoplist. A copy of this Perl script is contained in Appendix A. Design assets were

indexed using the Perl script. This provided a list of unique words and the

number of times each unique word occurred within the asset. From the index list

words with high frequency and no specific meaning in the domain were selected

105

and entered into the stoplist. Once the stoplist numbered over one himdred and

fifty words it was possible to index an asset for terms that would have meaning

within the domain that could be useful input data for demonstrating the quality

assessment procedure developed for ReST. Figure 7.3 contains a sample of the

words contained in the stoplist. During reclassification of index terms a Reuser

can nominate new terms for inclusion in the stoplist. These candidates are held in

the stoplist candidate table. The Librarian wil l review the stoplist candidate table

and approve or reject each candidate. I f the stoplist candidate is rejected, the

reuser that generated the stoplist candidate record should be notified of the

rejection via e-mail. The automating of the rejection e-mail has not been

implemented. A small sample of the data contained in the stoplist is presented

below.

btoplist term

above

a c c o u n t

ad

add

a d d r e s s

adequate ly

Figure 7.3 Sample of Stoplist Data

7.2.2 Assessing the Quality of the Index Terms

The terms in the index table can be assessed immediately after indexing, or the

index can be stored then assessed at some later time. To assess the quality of the

terms contained in an asset, each term is given a classification and the total

number of terms in each classification is calculated. ReST performs the initial

classification of the index terms automatically. Each term is classified into one

and only one of three categories: Preferred Terms, Defined Terms and Undefined

Terms. The Reuser is presented with an Access form displaying the total number

of terms for each classification. For the Reuser to reclassify any or all of the

terms the Reuser must elect to display the terms in each classification separately

and manually select the reclassification category. Figure 7.4 contains a sample of

James Ingham, Department of Computer Science, University of Durham

106

data from asset SMLlOl-ts (see Appendix B) is presented below. This sample

contains those terms that were initially classified as preferred terms. Figure 7.5

shows the form view of the same data.

Preferred Term Frequency
e longa t i on 1

finishing pass 1

h e a d 1

o p e n flange 2

s p r e a d 1

Figure 7.4 Sample of Index Terms Classified as Preferred Terms

S P i e f e i i e d Terms T D T X

Term Frequency Internal Search
Stoplist Term

1 Add Add Undo

finishing pass
1 Add I Add | Undo

Open Thesaurus Ctose

Record; M 1 >• I of 5

Figure 7.5 A Reuser's Viewofttie Preferred Terms for SML101-ts

ReST was developed using only two small text documents to represent design

assets. It was not therefore necessary to construct and file separate surrogates for

each "asset". The concept of an asset's surrogates is represented in ReST as an

Access table structiare. The table contains records consisting of three fields: the

name of the assets the surrogate is for, the search term, and the frequency count

107

for the search term. Figure 7.6 shows examples of the data contained in the

search table.

Surrogate f-or Term Frequency
Designing Pr imary Rolls depth 18

Des ign ing Pr imary RoWs edging 11

Designing Pr imary Rolls elongation 2

Designing Pr imary Rol ls finishing p a s s 3

Des ign ing Pr imary Rol ls v\eb 16

S M L I O I - t s finishing p a s s 1

SML101 -1S open flange 2

Figure 7.6 Sample of Surrogate Representation (Search Table)

Note that the index terms classified as preferred terms "finishing pass" and "open

flange" have been reclassified as search terms and comprise the surrogate for an

asset imiquely identified as "SMLlOl-ts".

7.2.3 Maintaining the Stoplist

Reusers nominate candidates for inclusion in the stoplist. The Librarian reviews

the stoplist candidates and either accepts or rejects the candidates. When a

candidate is rejected, the Reuser that sent the nomination is to be notified

automatically via e-mail. This functionality has not been implemented. Figiu^e 7.7

shows the screen form the Librarian uses to review, approve and reject candidates

for inclusion in the stopHst.

108

m Stoplisl Candidates

Requested By

|dcs3jl

Surrogate

: Date Requested

Action

Record; i

30/08/9913:48:46

: SMLIOI-ts 3
requirements

31

1 > I > i o f 1

Approve: Reject

J J

Close

Figure 7.7 Stoplist Candidate Form

7.2.4 Maintaining the Thesaurus

It is intended that the thesaurus be a multi-faceted thesaurus holding domain

specific knowledge. It is also intended that terms contained in the design assets

be used to populate the thesaurus. Population of the thesaurus requires not only

the definition of the terms but also the definition of any relationships between the

terms. An Access table is used to store the terms, their definitions and their

relationships with other terms held in the thesaurus. The population of the

thesaurus cannot be automated to any useful extent. Direct intervention by a

Maintainer is required for data to be entered or modified in the thesaurus.

Records contain the data pertaining to a single unique preferred term. Index terms

that have been reclassified by a Reuser as thesaurus candidate terms are stored in

a thesaurus candidate table. The Maintainer reviews the thesaurus candidates and

selects the data for entry into the thesaurus. The Maintainer can modify the data

in the thesaurus to enhance the data held in the thesaurus candidate records. For

instance, a Maintainer can define an additional relationship. The Maintainer can

reject the candidate. I f the thesaurus candidate is rejected the Reuser that

109

generated the thesaurus candidate record should be notified of the rejection via e-

mail. The automating of the rejection e-mail has not been implemented. The

definition of the fields that make-up a thesaurus record is presented in Figure 7.8.

Field Definition

Preferred Term A unique term that is accepted as an industry standard by the reuser

community.

Definition A text only definition of the preferred term.

Scope Note A text area intended to hold additional definitions of the preferred

term, extra information on the terms in the thesaurus record or the

source of information in the record.

Broader Terms Terms that have a broader definition than the preferred term and are

in the same classification facet.

Narrower Terms Terms that have a narrower and more precise definition than the

preferred term and are in the same classification facet.

Related Term Terms that are related to the preferred term in the context of the

domain but are not suitable for inclusion in any other field in the

record.

Scunthorpe Term The term that has the same meaning as the preferred term but are

unique to the Scunthorpe mill.

Teeside Term The term that has the same meaning as the preferred term but are

unique to the Teeside mill.

Top Term The term that has the broadest definition within the classification

facet that the preferred term is in.

Bottom Term The term that has the narrowest definition within the classification

facet that the preferred term is in.

Date Created The date the record was created.

Created By The unique id for the maintainer who created the record.

Date Modified The dates the record was modified.

Modified By The unique id for the maintainers who modified the record.

In Use A Boolean with a value of yes or no. If the field contains yes, then

the preferred term is currently in use within the domain. If the field

contains no, the preferred term is not currently in use within the

domain but is a preferred term in historical assets and is therefore

still available for use when searching for reusable assets.

Figure 7.8 Thesaurus Record Definition

Figure 7.9 presents a single record from the Thesaurus in ReST. Notice that not

all fields are completed. The records will become complete as understanding in

the domain matures.

110

Ei T h e s a u r u s . i D j X

Preferred fi?

Definition

uide rails Broader Term rails

Rails used to guide rather than support. Specialty
product for lifts, mines etc

Scope Note

Date Created | 09/08/9914:41:18 Created By jdcsSjl

Dates Modified i ~ Modified By

Search
In Use F

Narrower Terra

Related Term

Scunthorpe |

Teeside j

Top Term [

Bottom Term (

guide, guiding

Close

Record; M M 19 _ M H > * J of t4 2} J.

Figure 7.9 A Thesaurus Record

7.2.5 Retrieving Reusable Assets

ReST was developed using only two small text documents to represent design

assets. It was not therefore necessary to construct and file separate surrogates for

each "assef. The concept of an asset's surrogates is represented in ReST as an

Access table structure. The table contains records consisting of three fields: the

name of the assets the surrogate is for, the search term, and the frequency count

for the search term. The search terms contain only terms that have been defined

in the thesaurus as preferred terms. Therefore, search queries contain only terms

that are preferred terms. A query wil l result in the presentation of a search table

record, which provides the asset's unique identifier. At this time there is no

automated link to the actual asset.

7.3 Validation of Implementation against Requirements

This section provides the validation of the implementation presented in this

chapter. The implementation is shown to satisfy the functional requirements

presented in Section 5.5.1.1 of Chapter 5 of this document. Listed below are each

111

of the functional requirements and the number of the implementation section that

contains the implementation details relating to the requirement.

Requirement

• Index a design asset providing a list of unique

terms and the frequency with which those

terms occur in the asset.

• Classify each term contained in the index as

either a preferred term, or a term defined in the

thesaurus, or a term not in the thesaurus, or an

internal stophst tenn, or a stoplist candidate

term, or a candidate tertn for inclusion in the

thesaurus, or a search term, that is included in

an asset's surrogate.

• Construct surrogates using preferred terms

only.

• Construct search queries using preferred terms

only.

• Populate the thesaurus with terms found in the

assets.

• Maintain the thesaurus and the stoplist.

Implementation

Section Number

7.2.1

7.2.2

7.2.2

7.2.5

7.2.4

7.2.3 and 7.2.4

7.4 Summary
This chapter contained the implementation details of the final prototype of ReST.

The final prototype has been implemented as a Microsoft Access 97 database.

The implementation meets the requirements stated in Chapter 5 and was

developed firom the design presented in Chapter 6.

112

Chapter 8 Testing and Evaluation of ReST

8.1 Objectives of the Chapter

This chapter provides the details surrounding the testing and evaluation of the

final prototype of ReST (Reuse Support Tool). The functionality of ReST is to be

tested against the tasks hsted in the scenario in Figure 8.1 to check that ReST

performs as expected. The scenario wil l be used again in a formal demonstration

of ReST. The formal demonstration allows ReST to be evaluated against the

expectations and needs of the potential user community. The results of the testing

and evaluation are presented in this chapter. Each activity in the scenario in

Figure 8.1 is evaluated separately.

Section 8.2 provides the status of the prototype prior to testing. Section 8.3

provides an overview of the testing procedure that includes how the prototype has

been tested and used in a formal demonstration. Section 8.4 provides the details

of the test results including the discussion generated during the formal

demonstration of the prototype. The result for each activity in the scenario is

discussed separately. Section 8.5 provides the summary of this chapter.

8.2 Prototype Status
This section provides details of the status of the final prototype of ReST prior to

testing. This includes the details on the stoplist, the thesaurus, the sample data

used in the development and testing of the prototype, and the search

functionality.

8.2.1 Stoplist
The stoplist used during indexing of assets contains three hundred and thirty-

three terms. The stoplist was developed during the development of the prototype.

The terms contained in the stoplist can be found in the two sample data files

discussed in section 8.2.3. The stoplist was compiled without the help of a

domain expert. Commonly understood knowledge about the natural language was

used to compile the stoplist.

113

8.2.2 Thesaurus
The thesaurus contains forty-four preferred terms. Each preferred term has a

definition and defined relationships to other terms. The preferred terms are not

necessarily related to other preferred terms. They are sometimes related to terms

that have no explicit definition in the thesaurus. The content of the thesaurus was

developed for demonstration purposes only and has not been reviewed by a

domain expert. The terms contained in the thesaurus were selected during the

development of the prototype. The preferred terms in the thesaurus can be found

in the two sample data files discussed in section 8.2.3. The term selection was for

the most part random. However, any term defined in the thesaurus as a preferred

term can be found in the "Glossary of Roll Design Terms" [BS97] (glossary).

The preferred terms' definitions were taken firom the glossary. There is one

exception, the preferred term "depth", which was intentionally added to the

thesaurus to demonstrate the equivalence relationship unique to the domain, that

of the relationship between mill specific terms. The definition for the term

"depth" was not found in the glossary.

8.2.3 Sample Data Files
There are two sample data files. Both files are text only files, were used in the

development of the initial and final prototype of ReST, and can be found in

Appendix B. The first sample data file contained excerpts fi-om the high-level

design document "Notes on Designing Primary Rolls with One Beam Shape

Forming Pass" [ORD99]. The excerpts comprised a sample data file that was four

pages in length, contained one hundred and ninety-one lines of text and one

thousand four hundred and thirty-six words. The second sample data file

contained excerpts fi^om the high-level design document "Expert Roll Design"

[SML98]. The excerpts comprised a sample data file that was one page in length,

contained fifty-four Unes of text and three hundred and seven words. The second

file was used in the demonstration of the initial prototype of ReST and in the

demonstration and testing of the final prototype of ReST.

114

8.2.4 Search Functionality
The search functionality contained in the final prototype of ReST was provided

for the formal demonstration. The emphasis in the demonstration was on how to

locate potentially reusable assets via their surrogates and how the thesaurus could

be used to help reusers define search queries. The search queries were

constrained to a single term each. The terms used in the demonstration were

terms that are defined as preferred terms in the thesaurus and known to be

included in one or more of the test surrogates. There was no domain expertise

applied to defining the search queries.

There was an insufficient pool of test documents to enable testing of precision,

recall, overlap, or relevance to the search goal. The premise that restricting the

contents of the surrogate to preferred terms would increase recall at the cost of

precision was not tested.

8.3 Overview of the Testing Process
The final prototype for ReST was developed as a functioning prototj^je to be

used to demonstrate proposed software tool support that was intended to support

the practice of component-based reuse and domain analysis concurrently. In the

context of this work, domain analysis is the development of a domain specific

thesaurus and the ongoing population and maintenance of the thesaurus; Testing

of ReST consisted of enacting the work activities presented in the scenario in

Figure 8.1.

115

A c t i o n / T a s k s R e s u l t Comments
Index document
e x c e r p t .

Breaks the document i n t o 47
unique terms.

Perform the i n i t i a l
q u a l i t y assessment
of t h e indexed
terms.

5 p r e f e r r e d terms
9 d e f i n e d terms
33 undefined terms

Automatic c l a s s i f i c a t i o n
can only r e s u l t i n these
t h r e e c a t e g o r i e s

R e c l a s s i f y t h e
terms manually.

0 p r e f e r r e d terms
0 d e f i n e d terms
31 undefined terms
9 i n t e r n a l s t o p l i s t terms
1 s t o p l i s t c a ndidate
1 t h e s a u r u s candidate
3 s e a r c h terms (these
become the Surrogate)

I n a c t u a l use undefined
terms should equal 0.

Note t h a t because s e a r c h
terms a r e u p l i f t e d t o
p r e f e r r e d terms the
o v e r a l l number of terms
i s reduced

Submit the q u a l i t y
r e p o r t .

Now ab l e t o view document
h i s t o r y .

Could be used t o a s s e s s
the i n s t i t u t i o n a l i s i n g
of the standard
terminology and the
u s e f u l n e s s of the
thes a u r u s

Review S t o p l i s t
C a ndidate and
r e j e c t proposed
a d d i t i o n .

Term i s d e l e t e d . No a d d i t i o n
t o the s t o p l i s t .

Automatic e-mail
messaging should be
implemented.

Review Thesaurus.
S e a r c h f o r
p r e f e r r e d term
"depth"

The term, w i t h d e f i n i t i o n
and v a r i o u s r e l a t i o n s h i p s
a r e d i s p l a y e d .

S e a r c h s u r r o g a t e s
c o n t a i n i n g the
p r e f e r r e d term f o r
" d i a g o n a l "

The t h e s a u r u s i s used t o
f i n d the p r e f e r r e d terra
"diagonal r o l l i n g " which i s
then used t o s e a r c h the
s u r r o g a t e s . The document i d
"Primary R o l l Design" i s
found.

Good r e c a l l but may be
at the c o s t of
p r e c i s i o n .

S e a r c h s u r r o g a t e s
f o r t he term
" f i n i s h i n g p a s s "

Two document i d s , " S M L l O l - t s "
and "Primary R o l l Design"
a r e found.

Figure 8.1 Scenario of Work Activities Designed to Test Prototype of
ReST

The scenario is an ordered list of simple tasks encompassing the activities that

need to be performed to complete a body of work. The scenario presented in

Figure 8.1 includes activities for all the external entities discovered in the design

of the prototype: the Reuser, the Librarian, and the Maintainer. The scenario was

performed using a sample data file that included excerpts taken firom the high-

level design document "Expert Roll Design" [SML98]. A copy of the excerpt is

contained in Appendix B. The first column of the scenario contains the list of

tasks to be performed. The result of each activity performed on the text file is

presented in the middle column of the scenario. Li addition, the scenario was

enacted using the final prototype of ReST at a formal demonstration presented to

two British Steel roll designers and a group of academics fi-om the CARD and

116

REMAIN projects. The third column of the scenario has been used for comments

intended to generate discussion during the demonstration. The discussion

generated during the formal demonstration is included in Section 8.5. The overall

time taken for the formal demonstration was under one hour including questions

and discussion.

8.4 Test Results

This section contains an analysis of the test results and the discussion generated

during the formal demonstration of ReST. The section is broken down to

correspond to the activities identified in the scenario presented in Figure 8.1. The

final prototype of ReST performed the automated portions of the activities as

designed. The results of each activity were correct and as expected. Any

additional tests performed using ReST are discussed in the appropriate sub

section of this section.

8.4.1 Index Document Excerpt
The underlying purpose for performing the indexing of a document excerpt was

to demonstrate and test the indexing fianctionality of ReST. The sample data used

in the test and demonstration was a file containing excerpts taken fi-om the British

Steel high-level design document "Expert Roll Design" [SML98]. The sample

file was indexed and produced an index of 47 unique terms and their individual

fi-equency counts. The results of the indexing are contained in Figure 8.2.

117

Surrogate Term Frequency
iSML101-ts bstp -j;
SML101-ts centre line 1i
SML101-ts choke 1!
|SML101-ts collars i |
SML101-ts corner 1|
SML101-ts crown 1|
SMLlOl-ts crown radius 1!
SML101-ts crown surface 1:
SML101-ts diagonal 1;
iSML101-ts dimensions 3;
SML101-ts elongation 1!
SML101-ts expansion 1;
SML101-ts fillet 1;
SML101-ts finishing pass 1i
SML101-ts finishing pass profile 11

|SML101-ts foot line 2:
|SML101-ts gap 11
SML101-ts head 1!
SML101-ts hot 1i
SML101-ts hot internal head height 11
SML101-ts identification 1!
SML101-ts limit 2
SML101-ts lines 1
SML101-ts loop 1
SML101-ts machined 2;
SML101-ts main dimensions 1|
SML101-ts meeting point 1|
SML101-ts mill spring 1
SML101-ts non line 1

open flange 2
SML101-ts parameters 2
SML101-ts pass 3
SML101-ts pass centre line 1;
SML101-ts pass profiles • 1i
SMLlOl-ts Ditch line 3;

pitch line intercepts 1
SML101-ts point r
iSML101-ts radius ii
|SML101-ts requirements 1:
SML101-ts roll 4:
SML101-ts series 1i
SML101-ts sharp dimensions 1:
SML101-ts spread 1
SML101-ts starts 11

SML101-ts toe line I j

SML101-ts top roll 2;
SML101-ts undercut 1;

Figure 8.2 Resulting Index

118

The resulting index was as expected. Appendix C contains a copy of the sample

file with the index terms underlined. As can be seen in Appendix C, those terms

that are imderlined are present in the asset's automated index and the fi-equency

counts concur.

Indexing of high-level design documents proved the success of the indexing

functionality and the use of the stoplist to segregate terms. However, subsequent

testing not included in the demonstration showed that the indexing functionality

was not robust enough to handle the HTML design document. An excerpt fi-om

an HTML design document was indexed. The excerpt from this document can be

found in Appendix B. The indexing process failed and no index was constructed.

A term being constructed during indexing became too large for the process to

handle. Further review of the document showed that the stoplist was not useful in

helping to segregate terms. In the high-level design documents the stoplist is

applied to help locate the start and end of terms. In the HTML document it would

have been better to use the HTML mark-up language as indicators for the start

and end of terms. The investigation of the failure revealed that it is necessary to

perform a more in-depth review of not only the asset's format but also the terms

contained in the design documents prior to developing a working version of

ReST. This review provided the insight necessary to make the correct

modifications to the current indexing functionality i.e. exploit the HTML mark

up language to locate terms contained in HTML design documents.

8.4.2 Initial Quality Assessment of Index Terms
The underlying purpose for performing the automated initial quality assessment

of the index terms was to demonstrate and test the functionality in ReST that

identifies terms contained in an asset that are not as yet defined in the domain

knowledge base, the thesaurus. In addition, it was performed to demonstrate that

preferred and defined terms in an asset could be automatically identified.

The initial quality assessment of the index terms is performed automatically at

the request of a Reuser. ReST uses the thesaurus in conjunction with an asset's

119

index of terms to separate and list the preferred terms, the defined terms, and the

terms not as yet defined in the thesaurus.

The automated initial quality assessment performed as expected and resulted in

the identification of five preferred terms, nine defmed terms, and thirty-three

undefined terms. The five preferred terms are listed in figure 8.3. The nine

defined terms are listed in figure 8.4.

Preferred Term "Frequency
e longa ton 1

finishing p a s s 1

head 1

open flange 2

s p r e a d 1

Figure 8.3 Preferred Index Terms

^ * Defined Term Frei|uency
col lars 1
diagonal 1
finishing p a s s profile 1
g a p 1
mill spring 1
p a s s 3

pitch line 3
roll A

top roll 2

Figure 8.4 Defined Index Terms

8.4.3 Reclassify the Index Terms
The underlying purpose for performing the manual reclassification of the index

terms was to demonstrate and test how a Reuser could accompUsh domain

analysis while performing component-based reuse. Reclassifying the index terms

requires the Reuser to select each term and then choose the category for

reclassification. The reclassification of terms to search terms has the effect of

constructing a surrogate used in component-based reuse. Terms chosen to be

included in the surrogate do not necessarily reflect the contents of the asset, as

they would do in a true working environment. The chosen terms were selected to

120

demonstrate and test the fimctions surrounding the construction of a surrogate.

This fimctionality includes checking to see i f a search term is already in the

surrogate. I f it is, then the term is not copied into the surrogate and the surrogate

term's firequency count is increased by the amount held in the search term's

fi-equency count. I f not, then the term and firequency count are copied into the

surrogate. In addition, search terms that are not preferred terms are uplifted to

their preferred term before inclusion in the surrogate. The preferred and defined

terms selected to be search terms are contained in Figure 8.5.

Surrogate Term '^Frequ^ency- Preferred Term
SMLIOI-ts diagonal 1 diagonal rolling i
SML101-ts elongation 1 elongation
SML101-ts finishing pass 1 finishing pass
SMLIOI-ts finishing pass profile 1 finishing pass
SML101-ts pass 3 finishing pass i

Figure 8.5 Terms Selected to be Search Terms

ReST performed this reclassification as expected. The surrogate is comprised of

three search terms. A l l three terms are defined as preferred terms in the thesaurus

contained in ReST. The search term 'diagonal rolling' has a fi-equency count of 1.

The search term was initially classified as the defined term 'diagonal' with a

firequency count of 1. The defined term was automatically uplifted to its related

preferred term before inclusion in the surrogate. The search term 'elongation'

has a frequency count of 1. The search term was initially classified as a preferred

term. The term was not changed prior to its inclusion in the surrogate. The search

term 'finishing pass' has a frequency count of five. The term 'finishing pass' was

initially classified as a preferred term with a frequency count of 1. The terms

'finishing pass profile' and 'pass' with frequency counts 1 and 3 respectively

were initially classified as defined terms. The terms were uplifted to their

preferred term 'finishing pass' prior to their inclusion in the surrogate. As the

preferred term 'finishing pass' can appear only once in a surrogate the three

frequency counts were added together (1+1+3) and a frequency count of 5 is

stored as part of the surrogate. The surrogate for the 'asset' used in testing is

illustrated in Figure 8.6.

121

Search Term FrequenGi
diagonal rolling 1

elongation 1

finishing p a s s 5

Figure 8.6 Asset's Surrogate

The remaining preferred and defined terms were reclassified as internal stoplist

terms. During the demonstration, the concept of an internal stoplist was difficult

for one of the British Steel designers to comprehend. In the discussion generated

at this part in the formal demonstration it became apparent that the names

"internal stoplist" and "stoplist" were being confused and a more meaningful

name for the "internal stoplist" needs to be found, perhaps 'temporary stoplist' or

'disregarded terms'.

The term 'bstp' was initially classified as an undefined term and was reclassified

as a stoplist candidate as a means of demonstiating how a Reuser could

contribute to the domain analysis and maintenance of the stoplist. The term

'centre line' was initially classified as an undefined term and was reclassified as a

thesaurus candidate. The reclassification of a term as a thesaurus candidate

required the Reuser to manually enter a proposed definition, which was taken

from the glossary.

The manual reclassification of the index terms successfully demonstrated the

concepts behind increasing domain imderstanding by allowing reusers to select

the terms, definitions and relationships with which to populate the thesaurus,

while establishing the need for domain knowledge before the terms, definitions

and relationships are included in the thesaurus.

In the testing of the prototype for ReST as in the formal demonsfration the

remaining undefined terms were not reclassified. However, it should be noted

that in an actual working environment it is expected that all the undefined terms

be reclassified thereby increasing the thesaurus population and the size of the

stoplist. As no domain expertise was applied when reclassifying the terms, there

was little point in demonstrating reclassification any further.

122

The need for domain expertise to compile the stoplist and populate the thesaurus

is an underlying premise of this thesis. Examining the list of undefined terms

identified during the formal demonsfration can further corroborate this premise.

Figure 8.7 contains the listing of the undefined terms and their frequency count.

Undefined Term Frequency
bstp 1;
centre line 1
choke
corner 1|
crown i;
crown radius 1
crown surface 1
dimensions
expansion 1;
fillet 1
foot line
jhot 1i
hot internal head height 1!
identification
limit
lines ii
loop i;
machined
main dimensions ii
meeting point
non line 1
parameters

Ipass centre line 1;
pass profiles 1-

i pitch line intercepts 1;
point "•1

radius 1
requirements 1;
series 1;
sharp dimensions 1
starts I j
toe line 1'
undercut 1;

Figure 8.7 Undefined Terms

Only one term "centre line" is included in the glossary. No other complete term

is defined in the glossary. There are terms that are partially defined in the

123

glossary e.g. "toe" from the undefined term "toe line" and "profiles" from the

undefined term "pass profiles". Without domain expertise it is impossible to

know whether the undefined terms have meaning in the domain, or are nonsense

terms resulting from a flaw in either the indexing fimction or the stoplist.

8.4.4 Submit the Quality Assessment
At the end of the reclassification of the index terms the terms were classified as

follows:

0 preferred terms

0 defined terms

31 undefined terms

9 internal stoplist terms

1 stoplist candidate

1 thesaurus candidate

3 search terms (the surrogate)

The assessment was submitted and a subsequent recovery of the quality report

associated with the particular 'asset' (sample data file) showed the classifications,

as expected, had remained unchanged.

The filing of the quality assessment provided an opportunity to discuss how the

automated portion of the index classification could be used to improve the quality

of the assets being developed. The quality assessment could be used to show

developers the quality of the terms that are contained in an asset before it is

included in the reuse library or even complete. This would allow them the

opportunity to improve the quality of the terms by replacing undefined terms with

terms contained in the thesaurus or replacing defined terms with their preferred

term found in the thesaurus.

8,4.5 Reject Stoplist Candidate
The underlying purpose for reviewing the Stoplist Candidates is to test the

automated fiinctionality of the tasks involved and to demonsfrate those tasks

where direct intervention by a domain expert is needed. The Stoplist Candidates

124

are brought to the screen and the Librarian decides whether to approve or reject

candidates. In the scenario above the candidate was rejected. As expected, the

candidate was deleted from the stoplist candidates' table, the number of stoplist

candidates was reduced by one and the stoplist remained unchanged. When a

stoplist candidate is approved, the number of stoplist candidates is reduced by

one and the stoplist is modified to include the approved term. This functionality

was tested but not included in the demonstration. The results of the test were as

expected.

8.4.6 Accept Thesaurus Candidate
The underlying purpose for reviewing the Thesaurus Candidates is to test the

automated functionality of the tasks involved and to demonstrate those areas

where direct intervention by a domain expert is necessary. The Thesaurus

Candidates are brought to the screen for a Maintainer to review and then decide

whether to approve or reject the candidates. In the scenario above (Figure 8.1) the

candidate was approved. The thesaurus was brought on to screen and the

candidate was added to the thesaurus as a preferred term. The total number of

preferred terms held in the thesaurus was increased to forty-five. This

modification was performed manually to demonstrate the lack of automation

useful in populating and maintaining a thesaurus.

The largest issue raised for discussion during the formal demonsfration of the

prototype focused on the difficulty in defining a community acceptable standard.

Before a term can be defined as a preferred term in the thesaurus it is deemed

necessary for the term to be accepted by the reuser community as a 'standard'

term. This requires not only the insight of domain experts but also the agreement

of the reuser community. The roll designers attending the demonsfration were

pessimistic about the possibility of achieving a standard. It was not resolved,

whether this was due to difficulty in getting the reuser community to empower a

group of one or more domain experts to set a standard or the amount of effort it

would require to establish a standard or a combination of these two factors.

125

8.4.7 Review Thesaurus
The underlying purpose for reviewing the Thesaurus was to demonstrate the type

of domain knowledge that could be stored in a thesaurus and how that knowledge

could be used. The review of the thesaurus during the demonstration also allowed

for a discussion of the concepts and rationale behind the use of a thesaurus,

including an explanation of the various relationships between the terms contained

in the thesaurus.

The equivalence relationship between mill specific terms, a relationship unique to

British Steel, was emphasised in the demonstration. A search was initiated to find

the term 'depth', which is defined as a Scunthorpe term, as well as a preferred

term. As expected the term was located. The thesaurus entry can be seen in

Figure 8.8.

^ MiciosofI Access

File Edit View Insert Format Records lools Window Help

- (?1
S Thesauius MEl

Preferied jdepth

Definition

Broader Term j

Narrowei Term

Scope Note The deptli of an H beam is the same as the width of an
I beam. The terminology is mill dependent

Related Term depths, widths

Scunthorpe depth

Date Created j 10/08/9912:39:00 Deated By [d ^ s S f

Dates Modified I ModiTiedBy

In Use F

Teeside] width

Top Term I T

Bottom Term F"

Search Close

Record; H | i 7 > I >l \>*[of 44

Form View

start PgUniversityo.. . £ ^ M i c i o t o f t . . . Microsoft-. ^ M i c r o s o f t E . . . untitled• Pa... |t;{i-=B!El<P 14:10

Figure 8.8 A Screen Shot of the Thesaurus in ReST

The Scunthorpe term "depth" was specifically chosen for the demonstration to

illustrate how a thesaurus could be used to help overcome specific domain

understanding problems, such as the difficulty of understanding the terminology

126

used in documents written using terminology specific to a single mill. The

definition for "depth" was not written by a domain expert and is not found in the

glossary.

8.4.8 Search Surrogates for Specific Terms
The remaining two activities were used to demonsfrate the search functionality of

the prototype. An extra surrogate for an asset named "Primary Roll Design" was

constructed solely for the search test. The preferred terms were randomly selected

from an index of a sample data file based on the document "Notes on Designing

Primary Rolls with One Beam Shape Forming Pass" [ORD99]. The exception to

the random selection was the term "finishing pass", which was included in the

surrogate to demonsfrate the location of more than one surrogate for a single

search query.

The demonsfration showed how potentially reusable assets could be located via a

search of the surrogates. Search queries were comprised of a single preferred

term. As surrogates are comprised of preferred terms, it is necessary for the

search queries to contain only preferred terms. The preferred term selected for

each search query was a term that was defined in the thesaurus as a preferred

term and one of the terms contained in at least one surrogate. The search terms

were found in one or more surrogates and each surrogate contained the unique

identifier of the appropriate asset.

The demonsfration included using the thesaurus to locate the preferred term for

the non-preferred term "diagonal". This was done to demonsfrate how the

thesaurus could be used to help reusers define the terms to be included in a search

query. This also generated discussion on using the thesaurus to vary the possible

searches. For example, using a broader term to widen the search space and

potentially increase the number of surrogates found to satisfy the search query.

The results of the activities were as expected. The terms used in the search

queries were chosen because they were known to be present in one or more

127

surrogates. The surrogates located as a result of the searching were correct as

regards the search queries defined.

8.5 Summary

This chapter contains the details of the testing and evaluation of the final

prototype of ReST. Testing and evaluation was based around the performance of

a scenario, a series of tasks to be performed to accompHsh a body of work,

illustrated in Figure 8.1.

When the scenario was enacted the functionality of the final prototype of ReST

performed as expected. One area of concern was the indexmg mechanism.

Additional testing proved that more analysis of the various design documents'

format and content is needed before the indexing functionality could be

implemented in a work environment.

The scenario was also enacted during a formal demonstration of the final

prototype of ReST. It was demonstrated that ReST has in place fundamental

mechanisms that wi l l allow reusers to practice component-based reuse while

performing on-going domain analysis. It was shown that ReST provides the

support necessary to index text assets; determine the quality of the terms

contained in assets; and aid with the selection of terms to populate the thesaurus.

Also demonstrated was how a thesaurus can be used to support domain

understanding and aid with component-based reuse by helping reusers to define

surrogates and search for potentially reusable assets.

One matter arising from the demonstration was the need to establish the means of

deciding when a domain term was a standard term and therefore a candidate for

inclusion in the thesaurus as a preferred term. Problems arise because of the

effort required to establish a standard and the difficulty in getting a sanctioned

group to define the standard.

The scenarios proved an adequate means of testing and evaluating ReST. The

scenarios provided the means to determine i f the prototype performed as expected

128

and promoted discussion during the formal presentation. However, testing would

have been more comprehensive i f there had been a larger pool of sample files and

more access to domain experts. A larger number of files would have allowed for

testing the recall and precision of the search fiinctionality and a more rigorous

examination of the indexing functionality. Access to domain experts for the

development of realistic test data and assistance determining the expected results

would have increased confidence in both the indexing mechanism and the

thesaurus. The overall usefulness of ReST in the practice of reuse and ongoing

domain analysis would require a full implementation of a working version of

ReST and a measured study of several years.

129

Chapter 9 Conclusions

9.1 Objectives of the Chapter

This chapter provides the summation and evaluation of the research and work

undertaken for this thesis. Section 9.2 provides a summary of the previous

chapters of the thesis. Section 9.3 discusses the success of the research and the

prototype type based on the criteria for success outlined in Section 1.3 of Chapter

1. Section 9.4 provides an evaluation of the thesis as a whole. Section 9.5

provides a general discussion of possible further work on the prototype ReST and

the research area in general. Section 9.6 provides the summary for this chapter.

9.2 Synopsis of Work
This work began with an investigation into the general research areas of this

thesis: software reuse and domain analysis as it pertains to software reuse within

software engineering. Chapter 2 contains the results of a literature survey on

reuse within software engineering. This included an examination of the literature

relating to component-based reuse, generative reuse and the effects of domain

analysis on both types of reuse. The focus of the research was then narrowed to

an investigation into the effects of a changing domain on the evolution of support

for component-based reuse and domain analysis and on the application of

software reuse support to another engmeering discipline. Chapter 3 contains the

results of the more focused literature survey and includes an examination of the

literature relating to component-based reuse library, and the development and

maintenance of a thesaurus as a mean to capture and share the domain

terminology.

British Steel's move from a decentralised roll design environment to a centralised

design environment provided the domain in which to investigate the potential of

applying software engineering reuse and domain analysis techniques to another

engineering discipline's design process. Chapter 4 contains an analysis of British

Steel's roll design domain. This analysis showed that British Steel's roll design

commimity's need to reuse roll design artefacts, and capture and share an

130

understanding of the domain terminology was comparable to software

engineering concepts of component-based reuse within an evolving domain.

A prototype, ReST (Reuse Support Tool) was developed to demonstrate how

software engineering reuse and domairi analysis techniques could be used in

British Steel's roll design process to improve the following:

• the roll design process,

• the quality of the design documents, and

• the roll design community's ability to capture and share domain

knowledge.

The prototype was developed to demonstrate the basis for evolving the software

tool support for a component-based reuse library and a thesaurus to hold and

display the associated domain terminology.

The requirements specification for ReST is contained in Chapter 5. An initial

analysis of the roll design domain led to the development of an initial set of

requirements and the development of the first pass of the prototype. An

evaluation of the prototype and further analysis of the roll design domain led to a

final set of requirements for ReST. These requirements provided the foundation

for all further work on the prototype.

The final prototype of ReST was designed using dataflow diagrams and entity-

relationship diagrams. Chapter 6 contains the design details of ReST. Dataflow

diagrams were used to discover and show the entities, data, and processing that

comprise ReST. As the prototype was used as a simple functioning model of a

potentially more complex implementation, the use of dataflow diagrams proved

sufficient for locating the major entities, the key processes, and the elementary

data for input to and output fi-om ReST. Entity-relationships diagrams were used

to show the key relationships between the entities that comprise ReST. To clarify

the relationships and make the diagrams easier to interpret an entity-relationship

diagram was provided for each of the three external entities illustrated in the

dataflow diagrams i.e. for the Reuser, the Librarian and the Maintainer. For

131

completeness a single entity-relationship containing all entities and all

relationships was also included. The entity-relationship diagrams proved to be a

useful means to demonstrate the different tasks that can be performed by users of

ReST and to introduce the concept that the level of domain expertise required

varied in accordance with the task to be performed.

The implementation details of ReST are contained in Chapter 7. The fmal

implementation was a functioning prototype that satisfied the final requirements

specification detailed in Chapter 5 and was developed on the foundations

established in the design detailed in Chapter 6.

Chapter 8 contains the details and results of the evaluation of ReST. The

prototype, ReST, was evaluated using scenarios. The scenarios provided a list of

tasks that a reuser could perform while using ReST. The scenarios were designed

to demonstrate the prototype's competence in performing reuse support while

accommodating increased domain knowledge through changes to the knowledge

about the domain terminology. The scenarios proved an adequate mean of testing

and evaluating ReST. The scenarios were used to show that the prototype

performed as expected and fulfilled the requirements stated in Chapter 5. During

the formal presentation the prototype proved to be a useful device for

encouraging a discussion on the underlying concepts of the thesaurus, particularly

the need for the application of domain expertise when developing and

maintaining a thesaurus.

9.3 Criteria for Success

This research was primarily an examination of the proposal that a thesaurus

developed as part of a reuse support environment to define domain terms and

their relationships can evolve as knowledge of the domain expands through reuse,

and that increased understand of the domain wil l reveal more opportunities for

reuse. In addition, this research aimed to demonstrate that specific software reuse

techniques can be applied to support reuse in another engineering discipline,

specifically, British Steel's roll design process.

132

There were three specific criteria for success for this body of work. Each of these

criteria wi l l be restated and discussed in section 9.3.1 to 9.3.3.

9.3.1 Criterion One
An investigation into software reuse and domain analysis as it

applies to software reuse.

This criterion is satisfied by the hterature survey contained in Chapter 2. The

literature survey covers both software reuse and domain analysis as it pertains to

software reuse. The investigation of software reuse focuses on component-based

reuse. Assets and the means to realise them are also discussed. In addition, the

survey includes an examination of generative reuse and of the proposition that the

practise of component-based reuse will help reusers achieve sufficient domain

understanding to move, over time, from component-based reuse to the more

advantageous generative reuse.

9.3.2 Criterion Two
An investigation into software tool support for software reuse and

domain analysis, which will support the evolution of the domain

that must be reflected in software reuse. The focus will be on

supporting the evolution of a component-based reuse library and

the associated domain terminology.

This criterion is satisfied by the literature survey contained in Chapter 3. The

literature survey concentrated on the support environment necessary for

successful component-based reuse. It gives a detailed examination of the reuse

library; and includes descriptions of the methods used to store, search, and

retrieve potentially reusable components. Also included, are the results of a

detailed examination of the concepts behind the development and maintenance of

a thesaurus; and a description of how a thesaurus can be used as part of a

software support environment to aid with both domain knowledge acquisition and

sharing, and software reuse.

133

9.3.3 Criterion Three
Development of a prototype of a reuse environment that will

support component-based reuse and will include a thesaurus that

will evolve as the domain understanding is increased. The

prototype will be developed for the roll design community at

British Steel.

This criterion is satisfied by the development of the prototj'pe, an evolving reuse

support environment, entitled Reuse Support Tool or ReST. Even though reuse is

a concept familiar in software engineering the use of ReST is evaluated in terms

of its applicability to another engineering domain namely the British Steel's roll

design community. The progression of the development and evaluation of ReST

is contained in Chapters 4 through 8. The prototype ReST does provide the

mechanisms necessary to support component-based reuse of roll design assets

and concurrent domain analysis of the roll design domain terminology.

The prototype of ReST is used to demonstrate the functionality needed to support

roll designers at British Steel in their aim to improve: the roll design process; the

quality of the roll design assets; their understanding of the domain; and their

sharing of domain knowledge. This thesis proposes that the way to improve the

roll design process is to provide the means for designers to reuse design assets.

The prototype for ReST provides the required mechanisms to support: the

defining of an asset's surrogate; storage of surrogates in a reuse library; and

searching of the surrogates of potentially reusable assets.

The prototype for ReST also provides the mechanisms necessary to aid with

improving the quality of roll design assets. ReST provides an automated process

that indexes an asset, producing a list of the unique terms contained in the asset.

Using the thesaurus contained in ReST each index term is then automatically

given a quality category. A quality report is presented to reusers that identifies

not only the number of terms an asset contains but also the number of standard

terms, non-standard terms, and undefined terms used in the asset. This allows the

roll designers to judge the quaUty of the terms used in the asset. For completeness

134

ReST also allows a roll designer to review all the terms in an asset that fall into

the specific categories.

The prototype for ReST provides the mechanisms necessary for recording

reusers' increased understanding of the domain terminology that occurs as the

reuser practises component-based reuse using ReST. This mechanism is a

thesaurus that suppHes the means to standardise the domain terminology, define

the domain terms, and define the relationships between the terms. The thesaurus

is comprised of only those terms that have been found during the indexing of the

assets. As each asset is indexed, the terms categorised as undefined are identified

by reusers and entered into the thesaurus by domain experts. The understanding

of domain terminology increases as the numbers of potentially reusable assets'

surrogates are added to the reuse library.

9.4 Evaluation
The prototype for ReST supports the results of the literature survey into software

reuse presented in this thesis. Specifically it supports the concepts pertaining to

component-based reuse libraries and the use of a thesaurus for capturing and

sharing the understanding of specific domain terminology. ReST was developed

for British Steel's roll design community to illustrate that software reuse support

is applicable to engineering disciplines other than software engineering. ReST

was successfully evaluated in this domain using scenarios based on the tasks roll

designers would perform to achieve reuse of roll design assets. The evaluation

clearly demonstrates that the roll design conmiunity could use ReST when

performing reuse of roll design assets. The evaluation clearly demonstrated that

domain experts must contribute to the development and maintenance of a domain

specific thesaurus.

Discussions during the formal presentation demonstrating ReST identified a

problem area not covered in this thesis. The problem is the difficulty in

establishing which of the domain terms are industry standard terms and therefore

candidates for inclusion in the thesaurus as preferred terms. The problem occurs

because in real-world situations immense effort is required to establish a standard

135

terminology and the complexity of getting a group to define the standard that has

been sanctioned by the community to do so.

9.5 Further Work

This section contains an overview of possible further work on the support

environment ReST and in the research areas explored in this thesis.

9.5.1 Further Work on ReST
The most obvious piece of further work on ReST would be to construct a fuller

implementation of ReST and measure its use in a real-world working

environment.

A fuller implementation of ReST would require the following:

• An increase in the robustness of the indexing functionality ateady

available in the prototype for ReST;

• The extension of the search fimctionality; and

• The means to support domain experts responsible for the maintenance of

the thesaurus.

To increase the robustness of the indexing functionality in ReST there needs to be

further analysis of both the content and format of the roll design assets. This

analysis would provide the domain knowledge necessary to. ensure the indexing

function provided indices for all roll design assets that contained natural

language.

The search fimctionality in ReST needs to be extended to include fimctionality

that would allow multiple term searches with Boolean delimiters, and to provide

the means to exploit the structure of the thesaurus. For example, extending a

search area by automating the means to use broader terms instead of those

already contained in the search query. It may prove useful to provide ReST with

the functionality necessary to automatically uplift search terms to their preferred

term value in much the same way the defined terms are uplifted to preferred

terms during surrogate definition.

136

To ensure the continuing relevance and use of the thesaurus metrics need to be

developed that wi l l measure the use of terms when defining surrogates and search

queries. There needs to be an automated way to track and report on the use of

terms to assist domain experts in maintaining the thesaiuns.

A more comprehensive evaluation of ReST is needed. A much larger pool of

sample files and greater access to domain experts are necessary to provide a more

informed judgement of ReST.

A larger number of files would allow measuring of the recall and precision of the

search functionality and a more rigorous examination of the indexing

functionality. It would also be useful to test ReST using full sized assets and

surrogates to ensure that it performs in a time that would satisfy the potential

users.

Greater access to domain experts would provide the domain knowledge necessary

for the development of realistic test data. Domain experts could also be used to

assist in determining the expected results, which would increase the level of

confidence in the indexing mechanism and the usefuhiess of the thesaurus as a

tool for collecting and sharing domain knowledge.

Prior to measuring an actual implementation of ReST's use in a real-world

environment it would be necessary to investigate the metrics that are used in

reuse and domain analysis. The research would need to lead to the identification

of those metrics that could be used to indicate the success or failiire of ReST in

the practise of reuse and ongoing domain analysis.

9.5.2 Further Research
In this thesis it has been suggested that the practice of component-based reuse

wi l l help achieve sufficient domain knowledge to enable the practice of

generative reuse. To be able to judge whether or not this proposition holds would

require a much more extensive investigation into generative reuse than provided

by this thesis.

137

This research into generative reuse would need to provide a more in-depth

understanding of what constitutes successful generative reuse and details on how

the success is measured. There would need to be a detailed examination of how

generative reuse is intended to work and of the tools and techniques needed to

support the performance of generative reuse.

Also of interest would be an investigation into whether or not the change to

generative reuse would have an effect on the domain knowledge and how it is

captured and shared.

9.6 Summary

The general research areas of this thesis are software reuse and domain analysis

as it pertains to software reuse. The main focus of this thesis is an investigation

into the effects of a changing domain on the evolution of support for component-

based reuse and domain analysis and on the application of software reuse support

to another engineering discipline.

The research in this thesis has been substantiated by the development of the

prototype Reuse Support Tool (ReST). ReST is a reuse support environment

developed to explore the effects of a changing domain on the evolution of support

for component-based reuse and domain analysis. ReST confirmed that it is

possible for the support tools for component-based reuse to evolve as the

execution of reuse increases the understanding of the domain. The proposal that

the techniques and tools of software reuse are applicable to engineering domains

other than software engineering has been validated by the successful trial

application of ReST with roll designers in British Steel.

138

Appendix A Indexing Program

An indexing program w r i t t e n i n P e r l , adapted from Lariry Wall's
Programming P e r l [WAL96], by James Ingham B.Sc. of the U n i v e r s i t y
of Durham Department of Computer Science and then by Janet Lavery
B.Sc.

! / u s r / l o c a l / b i n / p e r l

$FileInName=shift(®ARGV);
$FileOutName=shift(®ARGV);

T h i s has been adapted by James Ingham then Janet Lavery from
L a r r y Wall's #Programming P e r l p39
$/ = ""; # Enable Paragraph mode
$*=!;

Now read each paragraph and s p l i t i n t o words. Record each
i n s t a n c e of a word i n the %wordcount a s s o c i a t i v e a r r a y
open (INFILE, "< $FileInName") || d i e "Can't open f i l e
$FileInName \n";
open (OUTFILE,"> $FileOutName") || die "Can't open f i l e
$FileOutName \n";
wh i l e (<INFILE>){

s/-\n//g; # Dehyphenate hyphenations
tr/A-Z/a-z/; # C a n o n i c a l i z e to lowercase
t r / a - z A - a / / c s ; # Change non-alphas to s i n g l e space
©words = split(/\W*\s+\W*/, $ _) ;
fore a c h $word (©words) {

$wordcount{$word}++; #increment a r r a y entry
}

}
c l o s e INFILE;

Now p r i n t out a l l the e n t r i e s i n the %wordcount a r r a y .
Get the word and the frequency and p r i n t them to FileOutName
i n c l u d e the column headings needed f o r Access 97
p r i n t OUTFILE "term,freguency\r\n";
f o r e a c h $word (s o r t keys(%wordcount)) {

$wordsum=$wordcount{$word} ;
p r i n t OUTFILE "$word,$wordsum\r\n";

In
c l o s e OUTFILE;

139

Appendix B Sample Data Files

B.1 Expert Roll Design
E x c e r p t taken from "Expert R o l l Design" [SML98]

F i l e Ref. SML 101-ts
1st A p r i l 1998

Expert R o l l Design

Summary: BSTP's r o l l design process can be considered as a s e r i e s
of s t a g e s . The process s t a r t s w ith the i d e n t i f i c a t i o n of the
s e c t i o n parameters, as s p e c i f i e d by the Customer, from these the
f i n i s h i n g pass p r o f i l e can be e s t a b l i s h e d using expansion
c o e f f i c i e n t s to modify these s e c t i o n parameters. The pass
p r o f i l e s f o r the diagonal passes F3 to R4 are then e s t a b l i s h e d by
a four loop approach. F i r s t the main dimensions f o r each pass are
e s t a b l i s h e d , then the sharp dimensions (i . e . those dimensions
r e q u i r e d f o r the c o n s t r u c t i o n l i n e s) , then the f u l l dimensions
(i . e . the dimensions of the non-line components) and then check
mechanism. T h i s check mechanism i s based on two c r i t e r i a
e l o n g a t i o n and choke.

E t c .

5. Determination of F i n i s h i n g Pass

5.1 P l a c e hot s e c t i o n i n pass.

5.2 E s t a b l i s h P i t c h l i n e : Rotate the s e c t i o n through 1.5 (
around a point on the

c e n t r e - l i n e at 2/3 of the hot i n t e r n a l head height (from
crown) .

5.3 Extend foot l i n e up by 5/8", t h i s i s the l i m i t of the
bottom r o l l and forms.an open

fl a n g e .

5.4 Extend the toe l i n e a c r o s s the foot l i n e , t h i s i s the l i m i t
of the top r o l l .

NB. These r u l e s governing the meeting point at the open
flange are f o r pass

design only and do not address the requirements f o r
c o l l a r s .

5.5 E s t a b l i s h where the p i t c h l i n e i n t e r c e p t s the crown r a d i u s ,
c o n s i d e r t h i s to be the

pass c e n t r e - l i n e .

5.6 To a l l o w f o r a m i l l s p r i n g of 7/32" e s t a b l i s h a gap of 1/8"
between the top r o l l and

the p i t c h l i n e and 3/32" between the bottom r o l l and the
p i t c h l i n e .

5.7 Use the s m a l l e s t r a d i u s which can be adequately machined to
f i l l e t the corner.

140

NB. The head should be machined with undercut at the
crown s u r f a c e to allow

f o r any e x c e s s i v e spread.

E t c .

B.2 Notes on Designing Primary Rolls...
E x c e r p t taken from "Notes on Designing Primary R o l l s with One
Beam Shape Forming Pass" [ORD99]

NOTES ON DESINGING PRIMARY ROLLS
WITH ONE BEAM SHAPE FORMING PASS

The procedure and reasoning f o r the c a l c u l a t i o n of each element
i n the c o m p i l a t i o n of a r o l l p r o f i l e i s given with reference to
the diagram i n appendix 1.
The most s i g n i f i c a n t f a c t to a p p r e c i a t e i s that the beam shape i s
not i d e n t i c a l to the r o l l p r o f i l e , with a s i n g l e forming pass
t h i s holds t r u e whether the i n i t i a l input i s ingot, bloom or
s l a b .
I n d r a f t i n g the web down to an appropriate s i z e both sideways
spread and e l o n g a t i o n occur, t h i s causes the shape web width to
be wider than the r o l l web width and the shape flange t h i c k n e s s
to be t h i n n e r and i n some cases s h o r t e r than the r o l l flange. The
d i f f e r e n c e between beam shape and the r o l l shape i s r e f e r r e d to
as u n d e r f i l l i n g .
I t f o l l o w s t h a t having c a l c u l a t e d the bewn shape required,
allowances f o r u n d e r f i l l i n g must be made to determine the r o l l
p r o f i l e dimensions.
Where b a r r e l space f o r two forming passes i s a v a i l a b l e the f i r s t
p ass can be t a i l o r e d to s u i t the second pass. I n t h i s event the
d i f f e r e n c e between r o l l p r o f i l e and the shape p r o f i l e i s
n e g l i g i b l e p r o v i d i n g the web d r a f t i n g i s l i g h t .

T h i s p rovides the b a s i s f o r the shape width c a l c u l a t i o n s and f o r
t h i s e x e r c i s e i t i s assumed to be known from c a l c u l a t i o n s
i n i t i a t e d from the s e c t i o n standard.
Shape web- width (Sa)
The aim i s to provide a shape of s u i t a b l e web width which w i l l
f i t c e n t r a l and smoothly onto the roughing r o l l s . I f the shape
width i s too narrow the roughing r o l l corners w i l l cut i n t o the
shape c o r n e r s pushing m a t e r i a l down towards the web causing a lap
to form which w i l l subsequently be evident on the f i n i s h e d
s e c t i o n . I f the shape width i s too wide i t may not c e n t r a l i s e
c o r r e c t l y onto the roughing r o l l s and the i n t e r n a l flange p r o f i l e
can be too wide at the toes.
Nominal s e c t i o n Y4dk4. - Nominal s e c t i o n ®i,id&:i;
3 00 & over under 3 00.

A Primary r o l l flange length (Ph)
T h i s should be the same as the f i n i s h e d s e c t i o n flange length
c a l c u l a t e d i n the hot c o n d i t i o n . Thus the edger work on the
f l a n g e toes i n the beam m i l l i s kept to minimum being confined to
c o n t r o l l i n g the spread generated by d r a f t i n g the flange t h i c k n e s s
i n the u n i v e r s a l m i l l .
I n the l a t t e r stages of d r a f t i n g down a t h i n web of a wide beam
shape and p a r t i c u l a r l y those with long flanges the elongation of

141

the web p u l l s away the flange length. While the shape at 100 web
may f i l l and r o l l on the flange toes i f i t i s f u r t h e r d r a f t e d
down to say 60 web the flange shortens. To allow f o r t h i s the
f l a n g e l e n g t h i n the r o l l must be longer than t h a t r e q u i r e d on
the shape.
A l l s e c t i o n depths e 1 000 > 700 @ , , f " S e c t i o n depths under 700
> 500 w i t h
s e c t i o n widths 3 00 & above
S e c t i o n depths under 700 > 500 with s e c t i o n widths under 300
A l l s e c t i o n depths under 500
Flange u n d e r f i l l (u)
1 Ph= h X 1.01 +5% 1
) Ph= hx 1.01
See e a r l i e r comments. The wider the shape web width and the
longer the flange the g r e a t e r w i l l be the value f o r u.
S e c t i o n depths 1 000 > 700 S e c t i o n depths under 700 > 500
S e c t i o n depths under 500
Primar-v r o l l web width (Pa)
U=
U= U =
(Sa X 0.02) + (Ph X 0.15) (Sa X 0.02) + (Ph x 0.08) (Sa

X 0.02) + (Ph X 0.03)
Having determined the r e q u i r e d web width of the shape the
u n d e r f i l l can be deducted to ob t a i n the r o l l web width.
Pa = Sa - 2u
Flange t a p e r s
n
du
0 0
I n s i d e f l a n g e
Toe t a p e r
Outside flange
et = 15 degrees - T h i s i s a compromise between having a taper
g r e a t enough to minimise value u and small enough to l o c a t e the
i n t e r n a l flange toes onto the roughing r o l l s ,
p = same as the edger flange toe taper 3 - j t i 0
,5e 0 r e
0 = 8 degrees - T h i s allows recovery of the r o l l width with
d r e s s i n g while not p r e s e n t i n g too great a taper to the U.B.M
v e r t i c a l r o l l s .
(2)

1
Shape f l a n g e t h i c k n e s s (Sf)
Bearing i n mind t h a t a beam shape i s r e q u i r e d to r o l l s e v e r a l
weights w i t h adjustment to the web t h i c k n e s s a compromise web
t h i c k n e s s i s n e c e s s a r y . G e n e r a l l y the aim i s to provide a beam
shape w i t h the same flange 1 web r a t i o as the f i n i s h e d s e c t i o n
p l u s a f a c t o r which w i l l ensure s l i g h t l y g r e a t e r d r a f t i n g on the
f l a n g e s i n the U.B.M keeping the t h i n n e r web i n t e n s i o n to
prevent b u c k l i n g .
Choose a s e c t i o n weight midway i n the r e q u i r e d range, use the web
t h i c k n e s s to e s t a b l i s h a r a t i o . Add a f a c t o r f o r e x t r a flange
d r a f t i n g and u s i n g a nominal shape web of 60 c a l c u l a t e the
d e s i r e d shape flange t h i c k n e s s
Sf 60 X s e c t i o n flange t h i c k n e s s a +3 %
s e c t i o n web t h i c k n e s s a
R o l l flange t h i c k n e s s a (Rf
Taking i n t o account the u n d e r f i l l i n g p r e v i o u s l y explained
Rf = Sf +u
Corner laybacks

142

These are intended to produce a smoother corner when the web i s
d r a f t e d by reducing the stepping e f f e c t as the web spreads
sideways. To some extent i t a l s o helps c e n t r a l i s e the i n i t i a l
e n t r y of stock.
A l l s e c t i o n s
S e c t i o n width 300 & above S e c t i o n width under 300
k= M= M=
Pa x 0.22 1 0
6
Web 1 layback r a d i i (r4)
k above 50 -
k 50 and below
r4 = r4 =
500
200
Web 1 flang e corner r a d i i (r3)
Corner r a d i i on roughing r o l l 35 & above Corner r a d i i on roughing
r o l l under 35
r3 = 55 r3 = 45
Web below c o l l a r s (z)
T h i s determines the minimum web t h i c k n e s s which can be obtained
from the r o l l s , g i v i n g due c o n s i d e r a t i o n to m i l l s p r i n g and the
minimum screw s e t t i n g a v a i l a b l e . For s p e c i a l s e c t i o n s r e q u i r i n g
only a t h i c k web i t may be deeper to improve stock entry i n t o the
pass, but t h i s a l s o reduces the r o l l diameter at the flange toes
hence weakening the r o l l .
G e n e r a l l y z = 15
(3)

Flange toe r a d i i (r l & rZ)
From a r o l l s t r e n g t h point of view these should be as big as
p r a c t i c a b l e c o n s i s t e n t with o b t a i n i n g sharp corners on the
f i n i s h e d s e c t i o n .
G e n e r a l l y : -
S e c t i o n widths 200 & above s e c t i o n widths under 200
C o l l a r c o r n e r s
r i Sc r2 =25 r l t r2 = 20
To reduce the r i s k of in t r o d u c i n g grooves which w i l l develop i n t o
l a p s on the outer f l a n g e s a layback i s used. I t i s a l s o u s e f u l
f o r g u i d ing the bar i n t o the pass..
S e c t i o n width 200 & above S e c t i o n width below 200
A l l s e c t i o n s A l l s e c t i o n s A l l s e c t i o n s
Former pass depth (Fd)
X = X =
y =
r7 = rS =
D i s t a n c e from c o l l a r to flange toe.
A l l s e c t i o n s
Fd=
10
6
so
25 300
Ph + z

EDGING & SPREADER PASSES
The s l a b i s d r a f t e d down i n s e v e r a l edging passes the f i n a l one
being r e f e r r e d to as the spreader.
While the standard requirement i n beams from s l a b s r o l l i n g i s f o r
two edging passes, and one spreader the 225 t h i c k s l a b i s b e t t e r

143

d r a f t e d i n t h r e e edging passes as t h i s a f f o r d s g r e a t e r s t a b i l i t y
and subsequently the s l a b i s l e s s l i k e l y to l e a n during d r a f t i n g .
E x c e p t i o n a l l y f o r s m a l l e r beams where too much flange formation
can be a problem the two edging passes and one spreader system i s
used w i t h a 225 t h i c k s l a b .
The o v e r a l l r o l l design can be d i v i d e d i n t o three types :•-
A)
B)
C)
Two edgers and a spreader f o r a l l s e c t i o n s r o l l e d from a 250
t h i c k s l a b .
Three edgers and a spreader f o r the l a r g e r beams r o l l e d from a
225 t h i c k s l a b .
Two edgers and a spreader f o r the s m a l l e r beams r o l l e d from a 225
t h i c k s l a b ,
The d i v i s i o n of s e c t i o n s i z e s & r o l l design types are d e t a i l e d i n
below :-
Design type & pass i d e n t i t y
S l a b T h i c k n e s s
Design Type
250
225
225
A
B
c
S e c t i o n
Depths 1000 > 800
Depths 762 > 200 -
w i t h widths below 320 Depths 762 > 400 -
w i t h widths 254 & over Depths under 400 > 250- with widths under
300 Depths 610 > 250 -
w i t h widths under 3 00
Pass I d e n t i t y
PIA P2A P3A
PIB P2B P3B P4B
PIC P2C P3C
For p r i n c i p l e pass dimensions see Appendix 3.
Given the d e s i g n type and pass i d e n t i t y from the t a b l e most of
the dimensions r e q u i r e d are predetermined i n Appendix 3.
The o n l y adjustments to the standard pass design being the
spreader width the pass depths and corner laybacks.
5)

e.3 LX_DEL_FLANGE_GUIDE

E x c e r p t taken from "LX_DEL_FLANGE_GUIDE.classes'

Text only HTML mark-up language not included.

TEST
Mining L i b r a r y : LX_DEL_FLANGE_GUIDE
Generated by: dcs on 4/12/1999 13:07
PARTS
DESIGN_GUIDE_LINES
BOTT0M_R0LL_CL
CRAMP_HEIGHT
GUIDE_NOSE_CENTRE_HOR
GUIDE NOSE CENTRE VER

144

PASS_CL
ROLL_CL
DESIGN_GUIDE_TEXT
BTM_ROLL_CL_TEXT
CRAMP_HEIGHT_OFFSET_TEXT
DIMENSION
DIiyiENSION_AB
PAS S_CLEARANCE_TEXT
PASS_CL_TEXT
ROLL_CL_TEXT
SMALLE S T_ROLL_FLANGE_RAD
FINISHED_GUIDE
FILLET_ABC
FILLET_BCD
FILLET_CDE
FILLET_DEF
FILLET_EFG
EILLET_JKL
GUIDE_NOSE_ARC
LAB_TIP_FILLET
FINISHED_GUIDE_PROFILE
FIN_LINE_AB
FIN_LINE_BC
FIN_LINE_CD
FIN_LINE_DE
FIN_LINE_EF
FIN_LINE_FG
FIN_LINE_JK
FIN_LINE_KL
GUIDE
GUIDE_CONSTRUCTION
ROLL
ROUGH_GUIDE
EXTRUDED_GUIDE
LINE_AB
LINE_BC
LINE_CD
LINE_DE
LINE_EF
LINE_FG
LINE_GH
LINE_HI
L I N E _ I J
LINE_JK
LINE_KL
T I P _ F I L L E T

ASSEMBLIES
GUIDES
GUIDE_DESIGN_CALCULATION
GUIDE_DESIGN_SYSTEM

LX DEL FLANGE GUIDE INDEX

145

LX_DEL_FLANGE_GUIDE.classes

Text w i t h HTML mark-up language included.

<HTML><HEAD><TITLE>Class hierarchy of hbrary
LX_DEL_FLANGE_GUIDE<^TITLEx/HEAD><B0DY><H2 ALIGN=CENTER>TEST
</H2>
<P ALIGN=LEFT> Mining Library: LX_DEL_FLANGE_GUIDE

Generated by: dcs on 4/12/1999 13:07 </P>
<PxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#PARTS
"TARGET="ATTRIBUTES"> PARTS </P>
<DLxDD><Ahref^"LX_DEL_FLANGE_GUIDE_attributes.html#DESIGN_GUIDE_LINES
"TARGET="ATTRIBUTES"> DESIGN_GUIDE_LINES
<DL><DD><Ahref="LX_DEL_FLANGE_GUIDE_attributes.html#BOTTOM_ROLL_CL
"TARGET="ATTRIBUTES"> BOTTOM_ROLL_CL
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#CRAMP_HEIGHT
"TARGET="ATTRIBUTES"> CRAMPHEIGHT
</DD><DDxA
href="LX_DEL_FLANGE_GUIDE_attributes.html#GUIDE_NOSE_CENTRE_HOR
"TARGET="ATTRIBUTES"> GUIDE_NOSE_CENTRE_HOR
< / D D x D D x A
href="LX_DEL_FLANGE_GUIDE_attributes.html#GUIDE_NOSE_CENTRE_VER
"TARGET="ATTRIBUTES"> GUIDE_NOSE_CENTRE_VER
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#PASS_CL
"TARGET="ATTRIBUTES"> PASS_CL
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#ROLL_CL
"TARGET="ATTRIBUTES"> ROLL_CL
< / D D x / D L X D D x D D x A
href="LX_DEL_FLANGE_GUIDE_attributes.html#DESIGN_GUIDE_TEXT
"TARGET="ATTRIBUTES"> DESIGN_GUIDE_TEXT
<DLxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#BTM_ROLL_CL_TEXT
"TARGET="ATTRIBUTES"> BTMROLLCLTEXT
< / D D x D D x A
href="LX_DEL_FLANGE_GUroE_attributes.html#CRAMP_HEIGHT_OFFSET_TEXT
"TARGET="ATTRIBUTES"> CRAMP_HEIGHT_OFFSET_TEXT
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#DIMENSION
"TARGET="ATTRIBUTES"> DIMENSION
<DLxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#DIMENSION_AB
"TARGET="ATTRIBUTES"> DIMENSION_AB
< / D D x / D L x / D D x D D x A
href="LX_DEL_FLANGE_GUIDE_attributes.html#PASS_CLEARANCE_TEXT
"TARGET="ATTRIBUTES"> PASS_CLEARANCE_TEXT
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.htnil#PASS_CL_TEXT
"TARGET="ATTRIBUTES"> PASS_CL_TEXT
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#ROLL_CL_TEXT
"TARGET="ATTRIBUTES"> ROLL_CL_TEXT
< / D D x D D x A
href="LX_DEL_FLANGE_GUIDE_attributes.html#SMALLEST_ROLL_FLANGE_RAD
"TARGET="ATTRIBUTES"> SMALLEST_ROLL_FLANGE_RAD
< / D D x / D L x / D D x D D x A
href="LX_DEL_FLANGE_GUIDE_attributes.html#FINISHED_GUIDE
"TARGET="ATTRIBUTES"> FINISHED_GUIDE
< D L x D D x A href="LX_DEL_FLANGE_GUIDE_attributes.htnil#FILLET_ABC
"TARGET="ATTRIBUTES"> FILLET_ABC
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#FILLET_BCD
"TARGET="ATTRIBUTES"> FILLET_BCD
</DDxDDxAhref-"LX_DEL_FLANGE_GUIDE_attributes.htnil#FILLET_CDE
"TARGET="ATTRIBUTES"> FILLET CDE

146

</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.htinl#FILLET_DEF
"TARGET="ATTRIBUTES"> FILLET_DEF
</DDxDD><Ahref="LX_DEL_FLANGE_GUIDE_attributes.html#FILLET_EFG
"TARGET="ATTRIBUTES"> FILLET_EFG
</DDxDD><Ahref="LX_DEL_FLANGE_GUIDE_attributes.html#FILLET_JKL
"TARGET="ATTRIBUTES"> FILLETJKL
</DDxDD><Ahref="LX_DEL_FLANGE_GUIDE_attributes.html#GUIDE_NOSE_ARC
"TARGET="ATTRIBUTES"> GUIDE_NOSE_ARC
</DD><DDxAhref="LX_DEL_FLANGE_GUE)E_attributes.html#LAB_TIP_FILLET
"TARGET="ATTRIBUTES"> LAB_TIP_FILLET
</DD></DLx/DDxDDxA
href="LX_DEL_FLANGE_GUIDE_attributes.html#FINISHED_GUIDE_PROFILE
"TARGET="ATTRIBUTES"> FINISHED_GUIDE_PROFILE
<DLxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#FIN_LINE_AB
"TARGET="ATTRIBUTES"> FIN_LINE_AB
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#FIN_LINE_BC
"TARGET="ATTRIBUTES"> FIN_LINE_BC
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#FIN_LINE_CD
"TARGET="ATTRIBUTES"> FIN_LINE_CD
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.htmI#FIN_LINE_DE
"TARGET="ATTRIBUTES"> FIN_LINE_DE
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.htinl#FIN_LESIE_EF
"TARGET="ATTRIBUTES"> FIN_LINE_EF
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#FIN_LINE_FG
"TARGET="ATTRIBUTES"> FIN_LINE_FG
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#FIN_LINE_JK
"TARGET="ATTRIBUTES"> FIN_LINE_JK
</DDxDDxAhref=''LX_DEL_FLANGE_GUIDE_attributes.html#FIN_LINE_KL
"TARGET="ATTRIBUTES"> FIN_LINE_KL
</DDx/DL></DDxDDxAhref='TX_DEL_FLANGE_GUIDE_attributes.html#GUIDE
"TARGET="ATTRIBUTES"> GUIDE
< / D D x D D x A
href="LX_DEL_FLANGE_GUIDE_attributes.html#GUroE_CONSTRUCTION
"TARGET="ATTRIBUTES"> GUIDE_CONSTRUCTION
< / D D x D D x A href="LX_DEL_FLANGE_GUIDE_attributes.html#ROLL
"TARGET="ATTRIBUTES"> ROLL
</DDxDDxAhref="LX_DEL_FLANGE_GUE)E_attributes.html#ROUGH_GUIDE
"TARGET="ATTRIBUTES"> ROUGH_GUroE
<DLxDDxAhref="LX_DEL_FLANGE_GUroE_attributes.html#EXTRUDED_GUIDE
"TARGET="ATTRIBUTES"> EXTRUDED_GUIDE
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#LINE_AB
"TARGET="ATTRIBUTES"> LINE_AB
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#LINE_BC
"TARGET="ATTRIBUTES"> LINE_BC
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#LINE_CD
"TARGET="ATTRIBUTES"> LINE_CD
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#LINE_DE
"TARGET="ATTRIBUTES"> LINE_DE
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#LINE_EF
"TARGET="ATTRIBUTES"> LINE_EF
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#LINE_FG
"TARGET="ATTRIBUTES"> LINE_FG
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#LINE_GH
"TARGET="ATTRIBUTES"> LINE_GH
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#LINE_HI
"TARGET="ATTRIBUTES"> LINE_HI
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#LINE_IJ
"TARGET="ATTRIBUTES"> LINEJJ
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#LINE_JK
"TARGET="ATTRIBUTES"> LINE JK

147

</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#LINE_KL
"TARGET="ATTRIBUTES"> LINE_KL
</DDxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#TIP_FILLET
"TARGET="ATTRIBUTES"> TIP_FILLET
< /DDx/DLx/DDx/DLxHRxP><A
href="LX_DEL_FLANGE_GUIDE_attributes.html#ASSEMBLIES
"TARGET="ATTRIBUTES"> ASSEMBLIES </P>
<DLxDDxAhref="LX_DEL_FLANGE_GUIDE_attributes.html#GUIDES
"TARGET="ATTRIBUTES"> GUIDES
< / D D x D D x A
href="LX_DEL_FLANGE_GUIDE_attributes.html#GUIDE_DESIGN_CALCULATION
"TARGET="ATTRIBUTES"> GUIDE_DESIGN_CALCULATION
< / D D x D D x A
href="LX_DEL_FLANGE_GUIDE_attributes.html#GUIDE_DESIGN_SYSTEM
"TARGET="ATTRIBUTES"> GUIDE_DESIGN_SYSTEM
< / D D x / D L x H R x P x A
href="LX_DEL_FLANGE_GUIDE_attributes.html#LX_DEL_FLANGE_GUIDE_INDEX
"TARGET="ATTRIBUTES"> LX_DEL_FLANGE_GUIDE_INDEX </P> •
<HRx/BODY> </HTML>

148

Appendix C Comparison Test Data
E x c e r p t taken from "Expert R o l l Design" [SML9 8]
Phrases u n d e r l i n e d i n t h i s copy of the excerpt were manually-
l o c a t e d and are to be used i n the e v a l u a t i o n of the indexing
f u n c t i o n a l i t y of the prototype f o r ReST.

F i l e Ref. SML 101-ts
1st A p r i l 1998

Exper t R o l l Design

Summary: BSTP's r o l l design process can be considered as a s e r i e s
of s t a g e s . The process s t a r t s with the i d e n t i f i c a t i o n of the
s e c t i o n parameters. as s p e c i f i e d by the Customer, from these the
f i n i s h i n g pass p r o f i l e can be e s t a b l i s h e d using expansion
c o e f f i c i e n t s to modify these s e c t i o n parameters. The pass
p r o f i l e s f o r the diagonal passes F3 to R4 are then e s t a b l i s h e d by
a four loop approach. F i r s t the main dimensions f o r each pass are
e s t a b l i s h e d , then the sharp dimensions (i . e . those dimensions
r e q u i r e d f o r the c o n s t r u c t i o n l i n e s) , then the f u l l dimensions
(i . e . the dimensions of the non-line components) and then check
mechanism. T h i s check mechanism i s based on two c r i t e r i a
e l o n g a t i o n and choke.

E t c .

5. Determination of F i n i s h i n g Pass

5.1 P l a c e hot s e c t i o n i n pass.

5.2 E s t a b l i s h P i t c h l i n e : Rotate the s e c t i o n through 1.5 (
around a p o i n t on the c e n t r e - l i n e a t 2/3 of the hot i n t e r n a l head
h e i g h t (from crown) . -

5.3 Extend foot l i n e up by 5/8", t h i s i s the l i m i t of the
bottom r o l l and forms an open flange.

5.4 Extend the toe l i n e a c r o s s the foot l i n e , t h i s i s the l i m i t
of the top r o l l .

NB. These r u l e s governing the meeting point a t the open
fl a n g e are f o r pass design only and do not address the
requirements f o r c o l l a r s .

5.5 E s t a b l i s h where the p i t c h l i n e i n t e r c e p t s the crown r a d i u s .
c o n s i d e r t h i s to be the pass c e n t r e - l i n e .

5.6 To a l l o w f o r a m i l l s p r i n g of 7/32" e s t a b l i s h a gap of 1/8"
between the top r o l l and the p i t c h l i n e and 3/32" between the
bottom r o l l and the p i t c h l i n e .

5.7 Use the s m a l l e s t r a d i u s which can be adequately machined to
f i l l e t the corner.

NB. The head should be machined with undercut at the
crown s u r f a c e to allow f o r any e x c e s s i v e spread.
E t c .

149

References

AIT72 Jean Aitchison and Alan Gilchrist, Thesaunis Construction A Practical
Manual, Aslib, 1972.

ARA91 Guillermo Arango and Ruben Prieto-Diaz, Domain Analysis Concepts
and Research Directions. In Domain Analysis and Software Systems
Modelling, IEEE Computer Society Press, 1991.

BAS97 Paul G. Bassett, Framing Software Reuse: Lessons from the Real
World, Prentice Hall PTR, 1997.

BIG98 Ted J. Biggerstaff, A perspective of generative reuse. In Annals of
Software Engineering, Vol. 5, pp. 349-414, September 1998.

BR095 Frederick P. Brooks, JR., The Mythical Man-Month Essays on Software
Engineering, Anniversary Edition, Addison-Wesley Publishing
Company, 1995.

BS97 Glossary of Roll Design Terms, provided by British Steel. Dated 29
January 1997

CHA99 B. Chandrasekaran, John R. Josephson and V. Richard Benjamins, What
Are Ontologies, and Why Do We Need Them?. In IEEE Intelligent
Systems, Vol. 14, No. 1, January/February 1999.

DOW99 Downtime, Imperial measures strike back. In Computer Weekly, 7
October 1999.

FRA94 William B. Frakes and Thomas P. Pole, An Empirical Study of
Representation Methods for Reusable Software components. In IEEE
Transactions on Software Engineering, Vol. 20, No. 8, August 1994.

GEN97 W. Morven Gentleman, Effective Use of COTS (Commercial-Off-the-
Shelf) Software Components in Long Lived Systems. In Proceedings of
the 1997 International Conference on Software Engineering, IEEE
Computer Society Press, 1997.

HAL91 Patrick Hall and Comelia Boldyreff, Chapter 41 of Software Engineer's
Reference Book, edited by John A. McDermit, Butterworth -
Heinemann Ltd., 1991

HEN94 Scott Henninger, Using Iterative Refmement to Find Reusable Software.
In IEEE Software, September 1994.

IS02788 International Standard ISO 2788 - Documentation - Guidelines for the
establishment and development of monolingual thesauri. Second
edition, 1986-11-15.

JAR95 Stan Jarzabek, From reuse library experiences to application generation
architecture. In ACM SIGSOFT Software Engineering Notes Special
Issue Proceedings of the Symposium on Software Reusability, eds.
Mansur Samadzadeh and Mansour Zand, August 1995.

KEL97 F. Kelledy and A.F. Smeaton, Automatic Phrase Recognition and
Extraction from Text. In Information Retrieval Research Proceedings of
the 19th Annual BCS-IRSG CoUoquim on IR Research, April 1997.

KIE98 D. Kiely, Are Components the Future of Software? In Computer,
February 1998.

KRU93 I . Kruzela, Successfiil Management Structures for Reuse. In P. Walton
and N. Maiden, editors, Integrated Software Reuse: Management and
Techniques, Ashgate Publishing Limited, 1993.

MCP93 Dr. P. McPariand, Application Templates: Reusable Design. In P.
Walton and N. Maiden, editors. Integrated Software Reuse:
Management and Techniques, Ashgate Publishing Limited, 1993

MIL94 Hafedh Mile, et al.. Practitioner and SoftClass: A Comparative Study of
Two Software Reuse Research Projects. In Journal of Systems
Software, No. 25, pp. 147 - 170, 1994.

MIL97 Hafedh Mili, Estell Ah-Ki, Robert Godin and Hamid Mcheick, Another
nail to the coffin of faceted controUed-vocabulary component
classification and retrieval. In Software Engineering Notes, Vol. 22, No.
3, Proceedings of the ACM SIGSOFT 1997 Symposium on Software
Reusability, ed. Mehdi T. Harandi, May 1997.

150

MIL98 A. Mili, R. Mili, and R.T. Mittermeir, A survey of software reuse
libraries. In Annals of Software Engineering, Vol. 5, pp. 349-414,
September 1998.

NEI89 James M. Neighbors, DRACO: A Method for Engineering Reusable
Software Systems. In Software Reusability, Volume 1 Concepts and
Models, eds. Ted J. Biggerstaff and Alan J. Perhs, ACM Press, 1989.

ORD99 D. Ord, Notes on Designing Prunary Rolls with One Beam Shape
Forming Pass. British Steel, Intemal Document, 17"" June 1999.

ORN93 Stephen B. Ombum and Richard J. LeBlanc, JR., Building, Modifying,
and Usmg Component Generators. In Proceedings 15th International
Conference On Software Engineering, May 17-21, 1993, IEEE
Computer Society Press, 1993.

POU97 J.S. Poulin, Measuring Software Reuse Principles, Practices and
Economic Models, Addison Wesley Longman, Inc., 1997.

PRE97 Roger S. Pressman, Software Engineering A Practitioner's Approach,
Forth Edition, Adapted by Darrel Ince, MaGraw-Hill, 1997.

PRI89 R. Prieto-Diaz, Classification of Reusable Modules. In Software
Reusability Volume 1 Concepts and Models, eds. Ted J. Biggerstaff and
Alan J. Perils, ACM Press, 1989.

PRI91 R. Prieto-Diaz, Domain Analysis For Reusability. In Domain Analysis
and Software Systems Modelling, IEEE Computer Society Press, 1991.

RAD90 Roy Rada, Maintaming Thesauri and Metathesauri. In Int. Classif 17,
No. 3/4, 1990.

REI97 Donald J. Reifer, Practical Software Reuse Strategies for Introducing
Reuse Concepts in Your Organization, John Wiley & Sons, Inc., 1997.

SML98 SML 101 -ts, Expert Roll Design. British Steel Intemal Document, 1"
April 1998.

SNE98 Harry M. Sneed, Measuring Reusability of Legacy Software Systems. In
Software Process-Improvement and Practice Vol. 4, pp. 43 - 48, 1998.

SOM96 Ian Sommerville, Software Engineering, Fifth Edition, Addison-Wesley
Publishing Company Inc., 1996.

SWA99 William Swartout and Austin Tate, Ontologies. In IEEE Intelligent
Systems, Vol. 14, No. 1, January/February 1999.

THI97 Scott Thibauh and Charies Consel, A Framework for AppUcation
Generator Design. In Software Engineering Notes, Vol. 22, No. 3,
Proceedings of the ACM SIGSOFT 1997 Symposium on Software
Reusability, ed. Mehdi T. Harandi, May 1997.

VAL99 Andre Valente, Thomas Russ, Robert MacGregor, and William
Swartout, Building and (Re)Using an Ontology of Air Campaign
Planning. In IEEE Intelligent Systems, Vol. 14, No. 1, January/February
1999.

WAL96 Larry Wall, Tom Christinasen, and Randal L. Schwartz with Stephen
Potter, Programming Peri, Second Edition. O'Reilly & Associates Inc.,
1996.

WAS95 Micheal Wasmund, The Spin-Off Illusion: Reuse Is Not a By-product.
In ACM SIGSOFT Software Engineering Notes Special Issue
Proceedings of the Symposium on Software Reusability, eds. Mansur
Samadzadeh and Mansour Zand, August 1995.

ZAN97 Zand Mansour, Reuse R&D: Is it on the right Track, Introduction and
organisational issues. In Software Engineering Notes, Vol. 22, No. 3,
Proceedings of the ACM SIGSOFT 1997 Symposium on Software
Reusability, ed. Mehdi T. Harandi, May 1997.

151

