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Abstract 

A recent development in chemical research has been concerned with molecular 

assemblies, and all manner of structural aggregates, leading to the relatively new area of 

supramolecular chemistry. The systems under study are organometallic ion exchangers 

where the structural motif is [(Me3Sn^)4M"(CN)6]«, (M=Fe, Ru, Os...). These 3D 

cyanides are not simply molecular crystals, and their chemistry and topology are more 

reminiscent of inorganic solids. By replacing the bridging unit (MesSn'"^)* with guests 

such as (nPr)4N'*^ and (nBu)4N*, new 3D structures can be engineered, leading to new 

compounds. Tin units show unchanged trigonal bypyramidal coordination upon 

variation of metal (M) , guest size, hindrance by the ligands. Changes in the metal affect 

mainly the isotropic and anisotropic "^Sn shielding parameters. The interplay of the 

electronic nature of the metal(s) and the bonding capacity of the ligands is studied by 

^^Co NMR. Quadrupolar coupling constants and asymmetry parameters show how the 

coordinative bond is sensitive to spatial reorganisation. Shielding calculations for the 

[Me3Sn(CN)2]~ model and for different X-ray structures have been performed to 

reproduce trends in chemical shift changes. Relativity effects have been omitted from 

the computations. This approach had four major aims: (a) to establish the extent to 

which l l^Sn isotropic chemical shifts can be computed by DFT methods with 

acceptable basis sets for model molecular fragments relevant to four selected 

compounds; (b) the computation of the ^^^Sn isotropic chemical shifts for different 

coordination geometries of the CN ligands; (c) the attempt to correlate between 

computed and observed isotropic chemical shifts for four selected compounds; (d) to 

ascertain whether such a correlation can be used to establish the assignment of three 

experimental ^^^Sn shifts in a predictive fashion. 
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Introduction 

Introduction 

Since 1990, studies in organometallic synthesis have led to a new branch of chemistry. 

The idea was based on the concept of building blocks, in which new chemical entities 

could be easily obtained. Group properties of molecules are often different from those 

of individual molecules and therefore offer the prospect of leading to new discoveries 

[1]. This approach is consistent with more general recent developments in chemical 

research, concerned with molecular assemblies, and all manner of structural aggregates, 

leading to the relatively new area of supramolecular solid-state chemistry. In this work, 

new chemical entities, generally considered to be derivatives of the super-Prussian blue, 

with different degrees of modification are considered. From this starting point [2] the 

planning and execution of new crystal structures f rom the constituent molecules was the 

leading philosophy of the Hamburg University group. The assembly of these 

constituents, which is the nucleation and growth of either organometallic polymers or 

molecular crystals, is also one of the most impressive examples of molecular 

recognition. 

The analysis of such new entities and the understanding of their structural-spectroscopic 

features are the aims of this work. Many of the systems under study are organometallic 

ion exchangers where the structural motif is [(Me3Sn^^)4M"(CN)6]oo (M=Fe, Ru, Os...). 

These 3D cyanides are not simply molecular crystals, and their chemistry and topology 

are more reminiscent of inorganic solids such as zeolites. By replacing the unit 

(MesSn^" )̂"^ with guests such as (nPr)4N"' and (nBu)4N"^, new 3D structures can be 

engineered, leading to new compounds. The large variety of nuclei present in such 
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compounds allows a good N M R assessment of the crystal structure along with 

important insight into the dynamics of such systems in the solid state [3]. 

While N M R can easily provide information about the site occupancy in the asymmetric 

unit, information relative to the topological diversity of such building blocks cannot be 

immediately retrieved f rom a single spectrum or f rom a unique single-crystal dataset. A 

wider analysis by correlating X-ray diffraction and N M R data is needed for identifying 

coherence in the structure-spectroscopy relationships. In the process of updating with 

new compounds a pre-existing database, effort has been made in this direction, 

including a computational approach to the understanding of the interplay of the local 

geometry and the "^Sn shielding tensor. 

Furthermore, there is the intriguing possibility of changing the chemical composition 

without changing the distribution of chemical bonds by isoelectronic replacement of one 

or more metal atoms with other metals in the same group. This is the case of cobalt and 

iron cyanide cores, where the interplay of the electronic nature of the metal(s) and 

intermolecular bonding capacity of the ligands is studied by ^^Co NMR, whereas X-ray 

diffraction and/or structure simulation do not discriminate between subtle variations in 

the electronic structure due to host-guest interactions. The quadrupolar coupling 

constant and asymmetry parameters show how the coordinative bond is sensitive to 

spatial reorganisation. Thus, the presence of cobalt provides a valuable tool of structural 

investigation, giving one more nucleus to observe. The quadrupolar parameters are 

found to be very sensitive to the geometry on several bonds away from the ^^Co 

nucleus. 

The number of chemical combinations such as stoichiometry, metal cyanides and guest 

molecules led in the past to a very large variety of compounds. Unfortunately, at this 

stage, not all these variables can be treated as parameters for a wide screening because 
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the variety of compounds available makes a comparison difficult . In fact, such chemical 

diversity, on a scale of about one hundred compounds, cannot be controlled and used as 

a predictive tool Therefore, in our work we had to focus often on a smaller subset of 

compounds in which one or more possible parameters were coherent. In the effort to 

identify other useful search-keys for coherent structural behaviour, we also investigated 

the second-order quadrupolar effect [4] transferred to the tin or to the carbon atoms 

f rom the nitrogen. There is no doubt, in fact, that structural distortion involving the 

cyanide groups affects the lineshape of the cyanides '^C and of the ^'^Sn signals. 

Unfortunately, these phenomena are difficult to examine, and only a systematic '•'C 

enrichment would allow the creation of a wider range of cases. 
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Chapter 1 

1.1 Experimental details 

The experimental work has been undertaken by using three different spectrometers. 

Most of the work was been done at 300 MHz (proton frequency). Additional 

experiments have been done at lower field, 200 MHz, and higher field, 600 MHz 

(proton frequencies). 

Chemagnetics CMX 200 MHz 

The whole system is engineered on a 4.7 T Oxford Instruments magnet which uses 

Chemagnetics probes with a pencil rotor design. The user interface program is Spinsight 

V 3.5.2 [1] , running on a Sun Ultrasparc workstation. Spin rates are controlled by an 

optical-fibre device, which can be adjusted f rom the probe. When long experiments are 

performed, bearing and drive gas pressures are automatically adjusted by the software to 

compensate for random fluctuations so that the spin rate is maintained constant. Two 

amplifiers are in use: American Microwave Technology ( A M T ) broadband 6-220 MHz 

and Creative Electronics (CE) narrowband for proton frequencies, operating in two 

modes, class A/B and class C. Class A/B gives a linear output and it is the mode for 

general use. Class C provides square pulse shapes and its use is generally suggested 

when it is necessary to apply many short pulses in succession, for example in CRAMP 

experiments. The H X probes mainly used in our work are summarized in table 1. 

Tuning 
range 

Rotors drive tips Volume 
Max 

spin rate 
Temp, range 

4 mm 

7.5 mm 

Varian (Chemagnetics) ^'P-'^N 

Varian fChemaenetics) ^'P-'^N 

zirconia. Kel-F 

zirconia. Kel-F or Vespel 

56 Hi. 

800 1̂ 

18 kHz 

7 kHz 

120 to 430 K. 

120 to 430 K 

Table 1. Probe specifications for the CMX-200 spectrometer. 
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Varian VNUYplus 300 MHz 

This spectrometer has a 7.05 T Oxford Instruments magnet. It features an American 

Microwave Technology (AMT) broadband amplifier for the range 6-220 MHz. For the 

proton channel there is a Varian Amplifier. The user interface program is Varian 6.2, 

running on a Sun Ultrasparc5 workstation. Spin rates are controlled by an optical-fibre 

device, which can be adjusted f rom the probes. For long experiments, spin rates can be 

set by a microcomputer separate f rom the main console. The H X probes mainly used in 

our work are summarized in table 2. 

drive max spin 

Tuning ranj le Rotors tips Volume rate Temp, range 

7 mm Doty Scientific ^'P-'^N zirconia Kel -F 300 ml 5.2 kHz 150 to 430 K 

5 mm Doty Scientific ^'P-'^N zirconia Kel -F 150^1 13.5 kHz 150 to 430 K. 

4 mm Varian (Chemagnetics) ^'P-'^N zirconia. Kel -F 56 ml. 18 kHz 120 to 520 K. 

Table 2. Probe specifications for the Varian UNITYp/M5 300MHz. 

CMX Infinity 600 MHz 

Some of the experiments performed on ^^Co were recorded by using the facilities 

situated in Physics Department at Warwick University. This system has a triple-channel 

capability with three separate amplifiers. The set-up is very similar to that of the CMX-

200 at Durham. For our work, we made use of a Chemagnetics H X 3.2 mm probe. Their 

characteristics are comparable with the ones listed for the other probes. The small 

diameter allows spin rates up to 20 kHz. 

Magic angle, recycle delay, and cross polarisation settings. 

Setfing the magic-angle is the first thing to be done for any new high-resolution probe 

and needs to be carried out on a regular basis. For broadband X-channel probes, the 
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magic-angle can be quickly checked. There are a number of advantages in setting the 

angle with the '^Br resonance of microcrystalline KBr. This can be done at low r.f. 

power, within the safe l imit for the probe; one channel is required since no decoupling 

is needed. Moreover, i t does not require much sample. The lines are quite broad (-100 

Hz) so precise shimming is not required although the best results are obtained after 

probe shimming. The aim of the method is to maximise the number of the echoes in the 

rotary echo train in the FID. By monitoring the response of the sample with the 

spectrometer in repetitive, single-pulse mode, the angle can be set. 32 or 64 repetitions 

with a short recycle delay (0.1 s) are used to increase the S/N and to make fine 

adjustment easier. In practice, a first spectrum is obtained, and then the transmitter is 

moved so that the centreband is on resonance. A new FID is acquired and phased. The 

angle is adjusted and a new FID is acquired. This procedure is repeated until the number 

of echoes in the FID is maximised. I f the angle is well set, the echoes should last for at 

least 10 ms. 

The recycle delay is defined as the time between the end of the data acquisition from 

one F ID and the start of the next period of radio-frequency excitation. During this delay, 

the excited sample returns to its equilibrium state. The optimum delay is sample 

dependent and its choice determines the amount of signal detected. A delay too long 

w i l l result in wasted spectrometer time. A delay too short can result in the loss of signal 

through saturation, and caution must be used with very short delays. In general, to 

protect the probe i t is recommended not to exceed a 20% duty cycle. After the first 

excitation, the sample returns to its equilibrium state at a rate l / T j where T i is the spin-

lattice relaxation time-constant. To obtain the f u l l signal after the second excitation, a 

recycle (t) of approximately 5xTi is required. In the case of multiple-component Ti 

behaviour, the recycle delay should be five times the longest T i to obtain accurate 
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reladve intensities. I t can be demonstrated how, for a fixed experiment time, the best 

S/N is achieved by not considering the recycle delay five fimes the T i value but only 

about 1.2 fimes (-70% of the f u l l intensity), i f there is no need for quantitaUve 

measurement. When the T j is not known, the choice is made by arraying the recycle 

delay. I t is T I ( H ) is needed for cross polarizafion experiments (CP), but T i ( X ) for direct 

polarization (DP). 

The experimental condifions were opfimised for each sample by tuning and matching of 

the circuits in order to minimise the reflected power for each channel. This can be done 

directly via software. Pulse calibrafion was checked by connecfing the r f cable going to 

the probe to an oscilloscope by using a 30 dB attenuator. Peak-to-peak voltage can be 

measured in these condifion by shortening the recycle delay and increasing the pulse 

duration. 

The work here presented involved mainly three different nuclei '^C, "^Sn, and ^^Co. For 

all these nuclei, the resonance frequency is quoted in table 3 and it is normally the 

transmitter posifion. A l l the spectra here presented were properiy referenced, the 

standard reference compound for '^C is tetramethylsilane (TMS), for "^Sn it is 

tetramethylfin, while for ^'Co it is a solution 0.26 M in H2O of K3Co(CN)6. In practice, 

a secondary reference compound was used for '^C and "^Sn; adamantane ('•'C) and 

tetracyclohexylfin ("^Sn). Table 3 summarises the features of these nuclei. In fact, the 

primary reference compounds are too volafile. The signals f rom these secondary 

references could easily be seen in only four transients by using a recycle delay between 

4 and 40 seconds. Normally, CP experiments were performed by setting a 90-degree 

pulse (typically 5 p.s) on the proton channel. For each reference and for each sample a 

series of short experiments was performed (normally four transients and between 10 to 

40 seconds of recycle delay) by varying the r . f power on the X channel. The Hartmann-
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Hahn condition was considered to be met when the signal was maximised. The choice 

of the contact time (CT) was a compromise since our samples contained two very 

different carbon environments. Cyanide carbons required long CT whereas for aliphatic 

carbons shorter CT were effective. Normally no more than 5 to 10 ms of CT time were 

chosen to enhance the signals from the cyanide regions. Longer values were in generally 

not recommended as the signal intensity was compromised by the Tip. 

Resonance % Natural Secondary 
Frequency/ MHz Spin Abundance Ref S/ppm 

'̂ C 75.431 1/2 1.1 CH2 line of adamantane 38.4 
"''Sn 111.841 1/2 8.6 (C6H,,)4Sn -97.4 
^̂ Co 7L16 7̂ 2 100 Q.26M K3Co(CN)6 0.0 

Table 3. Features of the studied nuclei. In nature ten different tin isotopes are present, but three of them 
have non-zero nuclear magnetic moments. "^Sn, "^Sn, '"Sn. The last-mendoned, is the one normally 
observed because of its larger natural abundance. 

Sample handling 

Al l the samples were prepared at the University of Hamburg and were already in a 

powder form. Some of them were slightly ground were the crystallite size was too large 

to provide a uniform packing into the rotor. 
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1.2 Cross polarisation. 

Magic Angle Spinning (MAS) spectra of tin were obtained by using cross polarisation 

(CP), though, due to the relatively high abundance of "^Sn, it is often possible also to 

run direct-polarisation experiments. The cross-polarisation experiments performed on 

tin are of the sanie kind as those performed on carbon. Therefore, by setting the 

Hartmann-Hahn condition, transfer of magnetisation from the abundant (H) to the rare 

spin ( '̂̂ Sn) occurs. After that, the acquisition is performed under continuous wave 

proton decoupling. After a waiting time of the usual order of five times the relaxation 

time (Ti) the experiment is repeated. By varying the time during which the two spins 

precess synchronously in the rotating frame (the contact time) the experiment can be 

optimised for maximum intensity. Many explanatory approaches can be found in the 

text books [1,2]. One of the more intuitive is the thermodynamic treatment, (in which a 

large number of spins is treated statistically), though the concept of spin temperature 

can appear slightly misleading. The coupling between these two spin bath and the 

transfer of the magnetisation have been largely investigated in the literature. Two 

modifications of the original cross-polarisation experiment have been used in routine 

analysis of the carbon spectra. 

The Non Quaternary Suppression (NQS) (otherwise known as dipolar dephasing) was 

used in order to obtain complementary data to those from the simple cross-polarisation 

spectrum. In this case, only carbons without directly-bonded protons will appear in the 

spectrum. Assignment of the resonances in solid-state spectra to specific carbons in 

organic molecules will then be easier. The insertion of a period in which the decoupler 

is turned off, before '^C FID acquisition, allows signals arising from protonated carbons 
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to be suppressed. This effect is due to the strong dipolar interacdons that affect 

protonated carbons. The quaternary carbons only affected by weak couplings and so 

they do not lose significant magnetisadon during the time in which these couplings are 

allowed to evolve. The time duration of the off-decoupling period is typically 40 |as. 

After that, quaternary carbon signals therefore still appear in the spectrum. Not all the 

protonated carbons will be suppressed. Typically, methyl groups will remain in the 

spectrum (because of rapid internal rotation), and so will all other carbon giving 

relatively narrow lines. 

Under MAS conditions, the resonance frequency of each crystallite follows a unique 

pathway as the CSA tensor orientation varies under the sample rotadon. Thus, in a 

powder, the individual magnetisation vectors rapidly dephase after the preparation of 

transverse magnetisation. When all the crystaUites come to their original orientations, 

they refocus, giving rise to the rotadonal echoes. The suppression of such rotational 

echoes may be achieved by rotor-synchronised Tt-pulses to cause phase alternation of 

the spinning sidebands, resulting in cancellation when successive spectra are added 

together. Several versions of this sequence have been studied, depending upon the 

number of 7C-pulses and their timing [3]. For our purposes, we used the four-pulses 

TOSS version. 

One of the problems related to the CP of heavy nuclei is the demand on the spin rate 

used to reduce the broadening induced by chemical shift anisotropy (CSA) and dipolar 

couplings. The CSA of such nuclei is normally substantial and, more importandy, 

increases with the magnetic field. Therefore, at high fields, the spin rate required to 

significantly reduce the CSA is large. In such conditions the dipolar coupling, linking 

the abundant nuclei together (homonuclear) and responsible for the magnetisation 

transfer to the rare nuclei (heteronuclear), becomes weakened. In general, spinning 

10 
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above 20 kHz is a difficult mechanical problem, and it also interferes with CP because 
of the heteronuclear dipolar coupling suppression. The spinning rate might not be strong 
enough to eliminate the dipolar couplings but it is sufficient to reduce the efficiency of 
the Hartmann-Hahn conditions. Such conditions are normally fulfilled when the 
strengths of the radiofrequencies on the two channels are identical. The effect of the 
spin rate is to mismatch these two radiofrequencies. However, it can be demonstrated 
that CP efficiency can remain high even when the differences of the r.f. strengths are 
multiples of the spin rate [4]. Therefore, each value of spin rate will feature the best CP 
conditions only for those mismatch values (matching profile). These profiles at very 
high spin rates display fewer efficient matching regions, at multiples of the spin rates, 
and typically the CP-efficiency is almost nil for perfectly matched conditions. 
Unfortunately, it is difficult to achieve stable and reproducible results using mismatched 
CP conditions, since they are strongly dependent on the spin rate. Historically, this was • 
found for adamantane, for which a relatively slow spin rate induces a reduction of the 
CP-efficiency. 

The proton spectra are characterised in the solid-state mainly by dipolar couplings. 

Mobility can reduce the broadenings due to such couplings. Rigid materials exhibit 

broad lines due to the static dipolar couplings, while molecular mobility averages these 

couplings thus reducing the linewidth. In the limit of fast isotropic motion, narrow lines 

will result also for the proton spectrum as found for solution-state experiments. 

Information related to the mobility of different parts of the system can be retrieved by 

wideline separation (WISE) experiments, in which the proton lineshapes are correlated 

with the '^C isotropic chemical shifts (Fig.l). Generally, the proton magnetisation after 

the first 90° pulse is left to evolve for a period tj on the xy plane[2]. 

11 
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Figure 1. WISE pulse sequence scheme. Adapted from ref. [2] 

Examples 

In this study of the cross-polarisation dynamics the rate of the magnetisation transfer 

has not been explored. A few examples are provided here to show on a qualitative basis 

the sources of cross-polarisation for the carbon and tin spectra. Heteronuclear 

correlation spectra can be useful for such investigative purposes. We will compare the 

tin cross-polarisation efficiency with the spin rate in two compounds and we will also 

compare the results with heteronuclear 2D 'H-̂ '̂ C correlation. 

We will compare three compounds featuring different crystal structures. Compound 1, 

[rtPr4N(Me3Sn)2Co(CN)6.H20] is a molecular crystal in which a cobalt cyanide unit is 

cw-coordinated to two MesSn-OHa fragments [5]. Compound 2, 

[CuCN,Me3SnCN.0.5bipy] (bipy = 4,4'-Bipyridine) has a three-dimensional crystalline 

network [6]. Compound 3 [(nPr4N)(Me2Sn (CH2)3 SnMe2)3Co(CN)6 2H2O] is supposed to be 

isostructural with compound 1, in which, however, the two McsSn-OHi groups are linked 

each other by a 'tether' unit, (CH2)3. 

In Compound 1, the source of cross-polarisation for the tin nuclei is mainly the ligands 

bonded to them, typically three methyl groups. In these conditions the flip-flop 

12 
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mechanism act on an average distance of 2.6 A. The dipolar coupling between "^Sn and 
^H is then about 2.5 kHz. The presence of guest molecules such as 
tetrapropylammonium can be regarded as an indirect source of CP. Generally speaking, 
in the structures under study, the tin atoms do not display in fact any nearby hydrogens 
other than the alkyl groups directly bonded to them. The motion of those alkyl groups 
[7] prevents 'steady interactions', and protons from large guest molecules in the cavities 
appear to be at least 4 A away from the tin atom. However, protons from the guest 
molecules should act as cohesive components of the abundant spin behaviour via spin 
diffusion. In this structure, the smallest distance between a proton of the guest molecule 
and the proton bonded to the methyl tin ligand is only three A. 

In Fig. 2 the cross-polarisation efficiency of the tin is examined at various spin rates. It 

is possible to see how the profile is quite flat in the range from 5000 to 10000 Hz. This 

spin rate range is usually adequate to remove the chemical shift anisotropy of the tin and 

to display a useful number of spinning sidebands without compromising the signal-to-

noise ratio. The use of pulse sequences such as variable amplitude cross polarisation or 

the ramped cross polarisation was not explored. 
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Figure 2 Cross polarisation efficiency for [nPr.N(Me3Sn,)Co(CN),.H,0]. Condition: V U S „ P 111.841 
MHz; pw =5 Its; recycle delay 5.0 s; contact time 5 ms; number of transients 5000. 
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1.2 Cross polarisation. 

Considering that the timescale of the CP process is much faster than any Tip process, we 
could conclude it is quite probable that the guest molecule plays an active part in 
maintaining the high cross-polarisation efficiency. 

The sources of cross polarisation in such organometallic systems as compound 2 have 

been also investigated by using 2D techniques such as WISE. In this case, however, we 

focussed our attention on the '^C CP for two compounds in which the crystal 

architecture [7] would allow a more complicated CP environment. Two source of 

protons are available: the methyl groups and the bipyridine interlinking units. The 

asymmetric units of such compounds (Fig. 3) displays one tin atoms, three methyl 

groups, and one of the two rings of the 4,4'bipyridine unit. The (H,H) distances 

involved vary between 2.6 to 4.8 A 

>b>-c/ 3.9 

31 21 11 " 

\ 

- ; o - 3 0 k H z 

5kH2 

\2nmi 

CP from atomalic H 
pcrliaps via spin diffusion 

lOKlIf 

- 2 ) - 3 » «H2 

Figure 3. Top left: Asymmetric unit of compound 2. The proton sources for cross-polarisadon of tin and 
carbon are the aliphatic and aromatic protons. Top right: Proton spectra at various spin rate, Conditions: 
V L ( H ) = 600 MHz; pulse width (pw) =4 fis; recycle delay 5.0 s; number of transients 40, spin rates 5, 10 and 
20 KHz. Bottom: proton bandshapes from a WISE experiment; the aliphatic proton bandshape (on the 
right) is narrower, but composite of a broader component probably coming from the aromatic region (on 
the le f t ) . Conditions: V L ( H ) = 300 MHz; pw, 4 ^s; recycle delay 5.0 s; contact time, 1.0 ms; spin rate 3800 
Hz number of transients 480; spectral width (sw) for the two dimensions are: swl=30 KHz, sw2=500 
kHz, number of increments 48. Al l the scales displayed are 5'H/ppm. 
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1.2 Cross polarisation. 

The WISE experiment allows the separation of two wide proton lines concomitant with 

these two carbon groups. The linewidth is quite large (being about 10 kHz). The proton 

lineshape separated for the methyl groups appears to be a composite of two main 

contributions. The sharp feature is probably arising from the proton methyl groups, 

indicating fast motional averaging. The broadening can be a contribution arising from 

the aromafic protons (of the bipyridine units) via spin diffusion. While distances 

highlighted in Fig. 4 are very similar to the ones listed in the previous example, the 

dynamic behaviour involving the nPr4'̂  and the bipyridine units might not be the same. 

A variable-temperature experiment performed on compound 2 shows how the methyl 

signal does not split into the three expected lines even at -90 °C; neither do the 

bipyridine units display any variation in lineshape. The variable-temperature experiment 

shows how the dynamics in the system are quite fast even at low temperatures. 

Conversely, variable-temperature experiments recorded on compound 3 which show a 

modification of the guest resonances, confirm a slower motion. The WISE experiment 

on 2 confirms the influence of the aromatic protons in keeping the CP efficiency of the 

methyl groups potentially high even at higher spin rates because of the broadening of 

the methyl protons bandshape via spin diffusion. The tin CP efficiency seems to be 

unaffected by increase of the spin rate for this compound. 
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1.2 Cross polarisation. 
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Figure 4. Cross-polarisation efficiency for compound 2. Conditions: VL(Sn)= 111-8 MHz; pw =5 |is; 
recycle delay 5.0 s; contact time 5 ms; number of transients 5000. 

Compound 3, can be considered isostructural to the first compound analysed. This last 

case shows the proton bandshapes to be quite differentiated but they still remain quite 

broad. Narrow lines are found only for the carbon related to the methyl group signals, 

because of their large mobility (Fig. 5). 

s'o ID 31 I I 10 0 -H -H 
" Fl [kHz) 

-30 -40 -SO -60 

Figure 5 WISE experiment for compound 3. Also in this case the proton d^ension rep^sen^ the 
linewidth of the proton spectra in kHz. Conditions: V U H ) = 300 MHz; pw, 4 ^s; recycle delay 5.0 s, contact 
time 1.0 ms spin rate 3800 Hz number of transients 480; spectral width (sw) in the two-dimensions are 
swl=30 kHz, sw2=500 kHz, number of increments 48. 
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1.2 Cross polarisation. 

The co-presence of the tether ligands and the guest molecule provides a large source of 
protons for cross polarisation, and spin diffusion seems to take place quite extensively 
across the lattice as the proton lineshape are quite similar to each other. Only the methyl 
groups appear to be narrower, probably because of the mobility around the C-Sn 
coordination axis. 
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.3 Chemical shift anisotropy and spinning sideband fitting 

1.3 Chemical shift anisotropy and spinning sideband fitting 

Shielding anisotropy is often one of the dominant mechanisms of broadening in solid-

state NMR spectra and it arises from the electrons surrounding the nucleus. This 

interaction is averaged in solution, but in sohds it varies with the molecular orientation 

in the applied magnetic field. The shielding can be described by a tensor (3x3 matrix), 

which is physically related to the sample under observation. One of the more 

informative representations of such a tensor is the diagonal form, which contains only 

the elements on the diagonal. They define the shielding along the principal axis system 

(PAS). These three components (CTXX, ciyy, CT^Z ) characterise the shielding tensor in 

space. The shielding tensor provides a description of how the nucleus experiences a 

shielding which is variable with the direction of the molecule in space. Three (Euler) 

angles are used to define the orientation of the PAS with respect to the crystal or 

molecular frame. More intuitively, Mehring also describes the shielding interaction in 

terms of a shielding surface [1]. In order to quantify the interaction in a condensed 

fashion some parameters are defined as the isotropic shift (cr,.^^), the asymmetry (;;) 

and the anisotropy (Acr). Following the Haeberlen Convention [2]: 

A(7 = o-^-cT,.,„ 

' Acr 

In order to calculate the asymmetry and the anisotropy, the correct hierarchy of the 

components must be used. According with the convention presented here assis the most 
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1.3 Chemical shift anisotropy and spinning sideband fitting 

displaced component from the isotropic value. We will refer in Ch. 4 part 3 also to the 

Herzfeld-Berger notation [3] and a direct comparison of the two conventions will be 

made. The asymmetry parameter can be intuitively related to the above-mentioned 

shielding surface. The appearance of the static spectrum will directiy reflect the 

components related to the shielding tensor in its principal axis system. 

When a sample is under spinning conditions, the orientation of the crystallites changes 

during data acquisition, and they feel an oscillating magnetic field arising from 

shielding. The resonance frequency of a given nucleus is expressed in term of its 

shielding tensor (a^) where the superscript R indicates the orientation of the molecule 

[3]. a*̂  is therefore expressed as the product R(a,P,Y)apAsR''(a,P,Y); R is the Euler 

rotation matrix relating the apAs to the molecular frame. The spatial part of the shielding 

Hamiltonian becomes dependent on the rotor phase i / / - y/^ + Q)^t; and to ^ which is the 

angle formed by the sample rotation axis and the magnetic field. By including the effect 

of the MAS into the spatial part as y / - Wo+f^r^ we will obtain [3]: 

V = - 271 2 

s i n V 

+ 

2siny5cos/? (T,^cos+ CTj" s in^ 

In this case the element Oii refers to the crystallite orientation in the sample, i.e. the 

shielding tensor elements are not expressed in the PAS. For these the following relation 

holds: 

c/^R{apM,PpM^YpM) 

0 0^ 

0 (J22 0 

0 0 0-33 

\ZRF 
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1.3 Chemical shift anisotropy and spinning sideband fitting 

where ttpM, PPM and YPM are the Euler angles relating the PAS of the shielding 
anisotropy with the molecular frame (MF); the subscript PM indicates in fact 
PAS-^MF. We refer also to the laboratory frame (LF) in which ZLF=BO the magnetic 
field direction and the rotor frame (RF), in which zrf is coincident with the spinner axis. 
Many systems of reference can be defined in solid-state NMR to relate the tensor 
orientation. Their use is related to the kind of sample studied: single crystal (crystal 
frame), or polymers (sample director frame) and so on [4]. The quantity (cTĵ a-cr,.̂ o) 
should not be confused with the shielding anisotropy Aa as the latter is defined in the 
PAS. The shielding tensor is considered to be symmetric. In a powder sample all 
orientations are allowed, and by setting the angle p=5A.T the first term of the above 
equation will be zero. The remaining two terms will average to zero only i f the spin rate 
cOr is greater than the shielding anisotropy, and the result will be a spectrum containing a 
single line at the isotropic chemical shift. The FID is a periodic oscillatory function and 
the effect of the spinning speed is to refocus the CSA into sharp echoes in the FID, 
which, once Fourier-transformed (FT), will appear as equally-spaced spinning 
sidebands. As the spinning speed increases, the number of spinning sidebands reduces. 
In the limit of an infinitely fast sample rotation, only the isotropic value of the tensor 
remains. 

Maricq and Waugh [5] first published the original development of the theory behind 

spinning sideband analysis and most of the programs for the spinning sideband fitting 

follow their approach. The goal of these programs is to obtain a description of the 

shielding tensor from the spinning sideband intensities. It is possible to use peak heights 

as intensities. However, this is not convenient unless lines in the spectrum are very 

sharp. In general, the use of the integrals account for small fluctuations of the spin rate, 

whereas the peak heights cannot. One of the key issues of fitting the spinning sidebands 

20 



1.3 Chemical shift anisotropy and spinning sideband fitting 

is accounting for the random orientation of the powder crystallites. It is important to 
simulate the spectrum by correctiy sampling all orientations of the crystallites [6]. Many 
different methods have been implemented e.g. by considering either planar grid points, 
a spherically optimised grid or by pseudo-random sampling of the orientations. A 
survey of these methods can be found in [6,7], where also a comparison of their 
performances is made. 

The aim of the modelling experimental spectrum is to obtain the best-fit shielding 

parameters. Normally, this is assessed as the sum of differences squared (R^). At least 

two algorithms are in use in these programs: the simplex and the Levenberg-Marquardt, 

we did not explore this in. detail. However, the idea is to start from initial guessed 

parameters, and then to vary them in successive steps with R recalculated until a 

convergence criterion is met. Usually this criterion can be a defined value of R̂  or that 

changes on all the parameters for a successive step is smaller than a certain value. In 

order to find the next fitting point closer to the minimum, the gradient of R~ is evaluated 

at each point. The steeper the gradient at the minimum, the smaller the error the 

parameters will be defined. The accuracy and the reliability in the determination of the 

tensor parameters have been studied as a function of the spinning speed [8]. It was 

found that a number of spinning sideband between five to nine is the best for shielding 

tensors having ri<0.2, though it is known that this parameter is poorly defined when it is 

lower than 0.2 [8]. In our studies, we recorded '̂̂ Sn MAS spectra as the increasing of 

the signal intensity greatiy reduced the time required for a good signal to noise ratio 

compared with the acquisition of a static spectrum. For the spinning sideband fitting we 

made use mainly of two programs. The first one is SSB97 [9,10], available in our 

laboratory, which uses the simplex routine for the fitting and an error analysis which is 

performed based on the approach of Olivieri [11]. The other program is the STARS 
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1.3 Chemical shift anisotropy and spinning sideband fitting 

commercial software provided by Varian. The STARS program provides a graphical 

interface that allows several different guessed parameters to be tested before the fitting 

is performed. Within this package, it is possible also to simulate quadrupolar lineshapes, 

either in static or MAS conditions. The original routine for the quadrupolar nuclei was 

derived from the work of Skibsted [12]. For a combination of the quadrupole and CSA 

interactions the spectrum becomes more complicated, and at present STARS [13] does 

not provide a method for fitting an experimental spectrum affected by such interactions. 

However, the simulation of the spectrum is feasible by input of the three Euler angles 

needed to align the CSA principal axis system with the quadrupolar axis system. It is 

not possible to consider such angles as variables in the fitting procedure. The 

calculation of the spectrum can be performed, with STARS, by making use of three 

options [13]: by considering an ideal pulse (providing a pure absorption mode 

lineshape), by considering a finite pulse which provides an exact excitation behaviour in 

terms of intensities and phase distortions, and by considering a 'short' pulse which 

would yield to relative intensities, not reflecting the distortion in the lineshapes. In our 

experiments, we used SSB97 for fitting the CSA patterns and STARS for the 

quadrupolar spectra, for both the central transition and for the spinning sideband 

patterns. However, we tested both programs and they perform equally well, providing 

consistent results. In our systems, no particular differences were found in performing 

any of the three above-mentioned options for describing the pulse simulation. For all the 

samples measured, the spectrometer conditions were stable during the timescale of the 

experiment and the width required of 200 kHz to record a "^Sn spinning sideband 

pattern guarantees a uniform spectral excitation. No evidence of non-uniform spectral 

excitation was found. Due to the rigidity of our systems, no significant molecular 

motions affect the measuremens. 
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1.4 Second-order quadrupolar effects on '^C 

1.4 Second-order quadrupolar effects on ^̂ C 

The second order quadrupolar effect, occurring in spin-'/2 spectra of atoms bonded to 

quadrupolar nuclei, is a very common phenomenon in solid-state MAS NMR. This 

effect has been greatly studied and in most organic molecules arises from '•'C-'V 

systems [1]. The second-order quadrupolar effect changes the spacing between the 

energy levels of the quadrupolar nucleus. These effects are visible in the spin-Va 

spectrum, which shows a multiplet (as in solution) due to scalar isotropic coupling. 

Therefore, as in solution, three lines are expected for coupling with spin-1 nuclei and 

n+\ lines are expected for spin-n/2 quadrupolar nuclei. While the lines of those 

multiplets are evenly spaced in solution, providing an immediate estimation of the 

relevant coupling constant, this does not apply in solid-state spectra. In most of the 

cases when '•'C-''*N is considered, the result is a doublet of intensity ratio 2:1 or 1:2. 

This splitting (the separation between the two peaks) is inversely proportional to the 

magnetic field, whereas the J-coupling (which leads to three lines) is field and isotope 

dependent since the replacing of '"^N with '^N would yeld a doublet [2]. 

The smallness of J C N and the fact that the "lines" are actually powder patterns makes the 

overall spectrum appear like the above-mentioned 2:1 or 1:2 doublet. These effects, 

featuring the quadrupolar nucleus, are visible in the spin-'/2 spectrum because they are 

transferred through the magnetic dipolar interaction between the two nuclei, which 

depends on the bond distance. However, the splitting is also influenced by the 

anisotropy of the indirect coupling (AJ) which cannot be experimentally distinguished in 

any simple fashion from the dipolar coupling when the J and D tensors are co-axial 

[3,4]. In such cases, the effect of the two interactions may be accounted for by an 

effective dipolar coupling D'=[D-AJ/3]. The relevant hamiltonian will consist of the 
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1.4 Second-order quadrupolar effects on '^C 

Zeeman contribution, the dipolar contribution (responsible for the splitting in the spin 
I = V 2 spectrum) and the quadrupolar hamiltonian (responsible for the shift of the lines 
with respect of the equally spaced situation found in solution-state spectra). Within the 
perturbation treatment the first order quadrupolar effect do not affect the resonance of 
the I = V 2 lines. To second-order, the variation in the energy levels of the S nucleus arises 
from a combined contribution of the dipolar and quadrupolar interactions [1]. Magic-
angle spinning can average the shielding and dipolar interactions, but the quadrupolar 
interaction described to second-order shows a dependence on sin^9cos^9, which cannot 
be averaged to zero by spinning about 54.7°. Therefore, the lines of the l^Vz spectrum 
will display the inhomogeneous broadening typical of the quadrupolar lineshape 
affected by second-order effects. The bandshape will also reflect the asymmetry of the 
electric field gradient at the quadrupolar nucleus. The effect of the J coupling was 
originally neglected because Jiso was expected to be so small as to have a negligible 
effect on the MAS lineshape [5]. For this reason in the 2:1 doublet one line was related 
to m'' 'N=0 and the doubly intense one was related to m(''^N)=±l(Fig.l). If Jjso become 
non-negligible, three lines appear by splitting of the most intense line into two peaks 
separated by 2J. The effect of the Jjso can be quite important to the appearance of the 
spectrum (Fig.l). 
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Ji3,=60Hz Jiso=10Hz Jiso=0 Hz 

Figure 1 Effect of the isotropic indirect coupling on the 1=1/2 spectrum in the case C- N adapted from 
twrenergy levels Lgrams reflect respectively J.o=0 and J . . =60 Hz. Simulated spec ra are 

shown below. The simulation parameters are: v,=75.43 MHz. The quadrupolar coupling constant for *e 
[6]. The two energy levels diagrams reflect respectively 1,0=0 and J,o =60 Hz. Simulated spectra are 

elow. The siiiiuiauvjii ^ j u i c u . ^ w u ^ . . . . , . - - - . . ^ 

nitrogen is: x'^N =+1.5 MHz. The dipolar coupling constant D=1440 Hz (rcN=1.15 A); pEFc-O.O^ Co^ 
linearity of the tensors was 
and 60 Hz. 

assumed as in ref [7]. A 20 Hz gaussian linebroadening was added for Jiso-0 

In addition, the sign of the quadrupolar coupling constant is very important. In fact, it 

can reverse the spectrum appearance. In Fig. 1 the simulations were performed by 

considering a positive quadrupolar coupling constant giving a 1:2 doublet (in the 

frequency domain sense); the opposite (2:1) is found for a negative sign. The shift that 

affects the lines in the spectrum with respect to unperturbed situation (equally spaced) is 

called the second-order shift [8]. As can be seen in Fig.l from the splitting of the energy 

levels, the line positions in the spectrum are shifted in the same way. For coupling to 

spin S=l, the innermost line is always shifted in the opposite direction to those of the 
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1.4 Second-order quadrupolar effects on '^C 

two outermost lines [8]. The formulas that define the positions of the lines in the 
spectrum as a function of the Larmor frequency of the quadrupolar nucleus (vs) are 
directly proportional to the above-mentioned quantity D' . In this case, it is assumed that 
the indirect-coupling and electric field gradient tensors are axially symmetric and that 
the principal axes of such tensors and the dipolar tensor are all coincident. I f these two 
assumption are no longer valid, an angular dependence has to be introduced into the D' 
quantity, in which four angles (aP, P° a\ P̂ ) define the orientations of D and J with 
respect to the EFG of S. 

Av„, = 
3 ZD' 
10 V, 

D" = 

Av„. = 

f 
D 

V V 

3 ZD' 
10 V, 

5(5 + l ) - 3 m -
S(25- l ) 

Dsin^- ;5^cos^a^-^s in^-yS^cos^« ' -3 
AJ 

Dcos^^'^-ycos^-y^^ 

3 XD' 
10 

5 + -
z 

25 

Considering the outermost lines m=±S 

Considering the innermost lines for S=n/2, m-±l/2 

where m identifies the transidon and can be - 1 ; 0; +1 and D" is the appropriate 

correction for the parameter D' . The equation for Av„, can be used to define the position 

of the lines in the muldplets according to the spin S and the m values. The amount and 

the direction of the second-order shift changes for the various lines. For S=l the 

outermost lines shift in the same direction, whereas the innermost shift twice as much 

and in the opposite direcfion. The interplay of all these parameters can be difficult to 

work out immediately from the experimental spectrum. However, some useful 

considerations can be summarised from the perturbation approach. If the bunching of 
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1.4 Second-order quadrupolar effects on '^C 

the lines is at lower frequencies (as in Fig. 1) then the parameter A = (3/lO){zD'/v^)is 
positive. To be positive we have two possibilities: 

X<0 and D'<0 which implies that D and D' will have the same sign, hence |D|<|AJ/3| or, 

X>0 and D'>0 which implies that D and D' will be opposite in sign, hence |D|>|AJ/3 . 

The value of D can be calculated if the intemuclear distance is known from X-ray 

measurements. Then i f the value and the sign of % is known, the value of AJ can be 

obtained [8, 9]. Other parameters whose effect it is important to know from a practical 

point of view are the orientation of the dipolar tensor with respect to the intemuclear 

vector ris. The two angles mentioned before a"̂  and P"̂  can directly affect the splitting. 

It has been shown how the effect of varying the angle by setting a"̂  = 45 degrees is 

quite important for the dipolar splitting [10]. For the common case I = ' / 2 , S=l the size of 

the splitting (assuming D and J colinear) is defined by the function: 

= A : ^ [ ( 3 c o s ' ^"-1)+^ (sin' cos la") 

By increasing (3 ,̂ the splitting of the two components in the doublet will decrease until 

the magic angle (54.7°) is reached. At this point the two lines collapse into one broad 

single peak. For values greater than this value, 54.7°, the positions of the two lines are 

reversed, and when 3^=90° the splitting is half of that found for p°=0°. The effect of aP 

increases as (3° increases, and for ri=0 the splitting is invariant with respect to a"̂ . 

In the systems described here only the two-spin interaction {W/i, S=l) are considered, 

and the simulations performed involved considering only the centreband and not the 

spinning sidebands, by using the program written by Olivieri [10]. 
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1.5 Cobalt spectra. 

1.5 Cobalt spectra. 

The quadrupolar interaction arises from the electrostatic energy existing between the 

nuclear quadrupole moment, eQ, and the electronic charge distribution around the 

nucleus. It can be shown [1] that this interaction can be related to the electric field 

gradient (EFG). This is a tensor interaction and it is possible to express it in the 

principal axis system (PAS) by three components Wxx, Yyy, Wzz that are not necessarily 

coincident with the laboratory frame. Often the magnitude of this interaction is 

expressed in terms of the quadrupolar coupling constant CQ and the nuclear quadrupole 

frequency, VQ. 

h " 21(21-1) 

The component along 'z' axis is: 

eq = Vzz = —f 
dz 

The asymmetry parameter is defined as: 

_ Vxx—Vyy_ where: Vzz > Vyy > Vxx 
Vzz 

Now Vzz has an inverse dependence on r^ (the distance between the nucleus and a point 

charge), suggesting that electric charges closest to the nucleus have the greatest effect in 

determining the electric field gradient. Hence, one might expect that the electrons of the 

atom under study make major contributions to Vzz and lattice effects should be 

negligible [2]. 

The interaction between the electric quadrupole moment and the electric field gradient 

affects the splitting of the nuclear spin energy levels and so can change the NMR 
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lineshape features. Because the EFG is an intrinsic property of the sample, the energy 

levels and the transitions are dependent upon the orientadon of the sample in the 

magnetic field; for polycrystalline specimens this would result in an average over all 

possible orientadons [3]. The derivadon of the quadrupolar Hamiltonian can be found in 

the literature [4]; we simply recall the operational form in which two contributions are 

separated when considering the quadrupolar interaction as a perturbation of the Zeeman 

coupling. When the anisotropic chemical shift interaction is smaller than the 

quadrupolar interaction, an effective Hamiltonian is found for the perturbation: 

Heff=HQ(i )-l-HcS(l )+HQ(2) 

The tensor interactions are often expressed in terms of the irreducible spherical tensor 

representation, A 2 i ^ (X= Q, CS; i=0, ±1, ±2) which are functions of the Euler angles 

needed to relate the PAS of the tensor to the laboratory frame. A full description of 

these components can be found in many textbooks [5]. This second-order quadrupolar 

Hamiltonian shows a dependence involving products of second-rank spherical tensor 

elements (A^2-iA^2i and A^2-2A%2), which cause more complex orientation 

dependence than that of the first-order effects. 

Finally, the fact that HQ^ comes from squaring the quadrupolar interaction implies that 

Ho^^-dtnvtd lineshapes will be affected by a net isotropic quadrupolar shift [6]. Single-

quantum transition frequencies arising from the effective Hamiltonian will be the sum 

of the frequencies arising from the three above-mentioned contributions. 

_ w , wQ(l) + v C S ( l ) Q(2) 

In fact, an important result in this case is that for half-integer nuclei the central 

transition is unaffected to first-order by the quadrupolar interaction, since the transition 
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frequency v^'^', is a function of (2m-l). This is the reason why it is possible to observe 

the central transition NMR signal even if the quadrupolar interaction is very large. 

Moreover, any symmetric multiple quantum transition I=-m to I=+m is unaffected by 

the first-order quadrupolar effect. Second-order contributions affect all the transitions. 

This latter contribution v^'^', scales inversely with the Larmor frequency, thereby 

decreasing the linewidth as the magnetic field increases [7]. The non-central, or satellite 

transitions, are spread out over a range of the order of VQ and their peak heights 

progressively reduce as the quadrupolar interaction increases. With a quadrupolar 

interaction of the order of MHz, it is therefore common to only observe the central 

transition. A very important point is that for half-spin nuclei the centre of gravity of the 

lineshape is shifted by the second-order quadrupolar interaction. For the central 

transition (-Viyi), under the on resonance condition, the second-order quadrupolar shift 

is: 

. - v , = - - ^ 
6v, 

{Acos'8 + Bcos^e + C) 

where V L and V Q are the Larmor and quadrupole frequencies and the parameters A, B, C 

are functions depending on the asymmetry ( T I E F G ) and the Euler angles 0, and (j) relating 

the PAS to the laboratory frame. There is no dependence upon the angle which 

indicates that the choice of the x and >' axes of the Hamiltonian frame is arbitrary [8, 9]. 

The parameters A, B, C have different values, depending whether a static or a MAS 

condition is considered. 
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Static MAS 

^(^) = ^^-ljjcos2<p-^Tl' cos' 20 ^(^) = +—--? ; cos 2 0 - - ^ 77' cos' 2(1) 
16 8 4o 

5 ( ^ ) . ^ i l _ l , ^ , 2 , c o s 2 0 + |r7'cos'20 B(0) = -^ -^ . / ^ -^^cos2^ -^^^ cos'20 

T ^ 3 
C(0) = - ^ + -77' cos 20--77 ' cos' 2(p 

C(0) = +^-^^cos20 + ^77'cos'20 

Whereas for spin-V2 spectra the isotropic position of the peak coincides with the centre 

of mass of the lineshape, for quadrupolar nuclei, the isotropic chemical shift position 

and the centre of mass of the lineshape (broadened by the second-order quadrupolar 

effect) are no longer coincident. [9, 10]. 

The second-order quadrupolar shift can be averaged over the powder orientations by 

using the parameters A, B and C, and an expression for the centre of gravity of the 

spectrum can be derived as a function of the asymmetry parameter T ] E F G - This quantity 

is also defined as quadrupole-induced shift (QIS) [11], intended as the difference 

between the isotropic chemical shift and the centre of mass of the spectrum (Fig. 1). 

30v^ _ 
7(7 + 1 ) - -

, 2 ^ 

1 + ^ 

This quantity is not affected by the experiment performed (MAS or static or VAS) nor 

by internal motion of the sample [12]. 

6 C G 

static 

-200 -300 200 100 0 -100 
. 8 n M H 7 Tin .r - -0 0) The narrowing induced by a infinite spinning 

^ . - , 1 1 r M _ ! i : called the Quadrupolar Induced Shift (QIS). 
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At high field the perturbational effect of the quadrupolar interaction become smaller so 

that both the QIS and the linewidth are reduced [10]. On a more practical basis, the 

overall linewidth of the spectrum can be evaluated as a function of the quadrupolar 

coupling constant and the external field. We recall a practical and useful formula for the 

evaluation of the QIS: 

QlSippm) = Sec - ^iso - " A 

D;= 25000; 6000; 
2511 . 11104 For I = l ; l ; l ; i 

2 2 2 2 49 ' 9 

The central transition is broadened only by the second-order quadrupolar effect and 

shows singularities; their positions have been studied by Baugher [13] within the 

perturbation treatment as a function of V L and T I E F G - In Fig. 2 an example of the effect of 

riEFG on the lineshape and the changes in the positions of the singularities are also 

illustrated. 

n = 1 -0 

n = 0 . 9 

n = o.8 
n = 0 . 7 

r i = 0 . 6 

11 = 0 . 2 

1 ' 1—- 1 
6 0 - 8 0 -1 0 0 

Hgure 2. Simulated static spectra for different asymmetry value. x=12 MHz v , . , = 47.556 MHz. The 

position of the isotropic chemical shift is 0.0 ppm. 
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For polycrystalline or glassy materials, all values of the Euler angles relating the PAS of 
the electric field gradient with the laboratory frame occur randomly. To link the 
lineshape with the positions of its singularities and shoulders we recall that the 
resonance conditions for the crystallites distribution are studied as a surface in which 
the three variables (the resonance frequency V L , and the two Euler angles, 6 and (j)) are 
considered [13, 14]. The positions of the singularities and shoulders in the MAS 
spectrum coincide with saddle points, and maxima or minima of this surface, 
respectively. 

MAS Spectra: experimental considerations. 

Magic-angle spinning is the most used technique in solid-state NMR. The improved 

resolution resulting from removal of the anisotropic broadening arising from chemical 

shift anisotropy is the main reason for this success. In fact, the term (3cos^0-l), which 

leads to broadening of the spectrum, will make the time-dependent Hamiltonian 

contribution average to zero when the sample is spun at the angle P=54° 44*8" with 

respect to B Q . Generally, a high spin-rate is recommended in order to completely 

average the CSA interaction. In this way, the central transition lineshape will only be 

affected by the second-order quadrupolar effect. At slow spin-rates the interplay 

between the CSA and EFG tensors might affect both the shapes and the intensities of 

the spinning sideband manifold, depending on the relative orientation of the two tensors 

defined by the three angles: u, v, w. A complete simulation of the spectrum would then 

take into account eight parameters: CSA, r|csA, 5iso, %, ^EFG, U, V, W ; (Fig.3). In more 

general cases the analysis of the spectra is even more demanding, since all anisotropic 

interactions, i.e. CSA, dipole-dipole and quadrupolar, each with their own specific 
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principal values and orientations with respect to the molecular frame, can be 
simultaneously present [15]. 

.uojUuLiUil 

. . uuULUl l i l l 1JULJLULU.X 

Tl=I.O 1 
Ti=0.8 

uJXUl i l . . IjUUUuUuUjĵ  

m 

wm 
Ti=0.6 

UiijjULUjLuL^ 
Ti=0.4 . .UULUOll l l 

l i l iku juUuuu^ 
Ti=0.2 

n=o.o 

u j u a j j l l i 

l i i l i i L u 
(j)=90 v|;=90 z=90 

(])=0 v|;=90 x=90 

. . . . 1 . ILUUUUDJLU 

m 

^.ujuLimuuu^^ 

$=01|/=0 x=90 

MMJLUUU 
,(,=0 >t;=0 x=0 
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I ' I 

4000 2000 0 
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— I ' 1 I ^ 
-2000 -4000 4000 2000 

1 ' -T ' 1 ' 1 
0 -2000 -4000 
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Figure 3. Simulated MAS spectra. The simulation was performed by using the software STARS [25]. The 
interplay between the CSA and E F G is shown, a) for different TICSA values, b) for different CSA 
orientations in the PAS of the EFG. The bottom spectra in a) and b) are the same: 5C=-l-62 MHz, 
T1EFG=0.99, 5iso=357 ppm, VL(CO)=142.331 MHz. In both cases, simulations were performed using a 
Chemical Shift Anisotropy of 1000 ppm; in b) TICSA is kept constant and equal to zero. 

Fully cancelling the quadrupolar Hamiltonian requires spinning the sample at two 

different angles. These two angles solve respectively the second P2(cos0) and fourth 

P4(cos9) Legendre polynomials that appear in the full quadrupolar Hamiltonian. 

The central transition frequency for a powder pattern during MAS will be given by the 

sum of four terms [6]. 

vim, 9) = vll + v^Q' (m)Po (cos 6) + (v, w)C[ {m)P, (cos 6) + vf (v, w)C', (m)P, (cos d) 

The first two are the isotropic resonance frequencies due to the chemical shift 

interaction and the quadrupolar interaction. They do not have any dependence upon the 
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I 

powder orientation. The other two terms are functions of the (v, w) angles, which 
represent the orientation of a given crystallite in the rotor frame. These terms provide 
the frequency distribution reflected in the Legendre polynomials of second and fourth 
rank. 

Rank 

Spin Transition 
(m, m-1) Zero (C„) Second (C,) Fourth (C,) 

3/2 1/2 3 24 54 Po(cos6') = l 

3/2 3/2 -9 0 -42 
P2(cos6') = i ( 3 c o s ' 6 ' - l ) 

5/2 1/2 8 64 144 
P2(cos6') = i ( 3 c o s ' 6 ' - l ) 

5/2 3/2 6 120 228 P, (cos6") - -(35 cos' 61 - 30cos? 61 -1- 3) 
8 5/2 5/2 -50 -40 -300 

P, (cos6") - -(35 cos' 61 - 30cos? 61 -1- 3) 
8 

7/2 1/2 15 120 270 
C ' o ( m ) = 2m[7(7 + l ) - 3 m ' ] 7/2 3/2 27 288 606 C ' o ( m ) = 2m[7(7 + l ) - 3 m ' ] 

7/2 5/2 -15 240 330 C ' 2 ( m ) = 2m[87(7 +1) - 1 2 m ' - 3] 

C ' 4 ( m ) = 2 m [ 1 8 7 ( / + 1 ) - 3 4 / n ' - 5 ] 
7/2 7/2 -147 -168 -966 

C ' 2 ( m ) = 2m[87(7 +1) - 1 2 m ' - 3] 

C ' 4 ( m ) = 2 m [ 1 8 7 ( / + 1 ) - 3 4 / n ' - 5 ] 9/2 1/2 24 192 432 

C ' 2 ( m ) = 2m[87(7 +1) - 1 2 m ' - 3] 

C ' 4 ( m ) = 2 m [ 1 8 7 ( / + 1 ) - 3 4 / n ' - 5 ] 

9/2 3/2 54 504 1092 

9/2 5/2 30 600 1140 

9/2 7/2 -84 336 168 
9/2 9/2 -324 -432 -2232 

Tab.l Legendre's polynomials and coefficients. Values are listed for half-integer nuclei, from [6]. 

The transition frequency is also affected by the corresponding coefficients for the zero, 

second and fourth ranks listed in Tab. 1. Shielding and dipolar anisotropics are solely 

scaled by P2(cos6)and are therefore susceptible to averaging by MAS. The second-

order nature of HQ^ introduces a new, P4(cos6), term. Although the individual P2 and 

P4 polynomials that scale the spectral broadenings can be zeroed at particular choices of 

the spinning axis, no single value can remove them simultaneously (Fig. 4) . 
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e/degrees 

Figure 4. Orientation dependence of the two Legendre polynomials. They define the line broadening of 
central transition quadrupolar patterns. The positions of their non-coincident roots demonstrate the 
inability of 0 = 54.7° (magic angle) to average all broadenings. 

Keeping in mind these considerations as well as the need for a good reproduction of the 

quadrupolar lineshape, we will present some practical consideration in order to obtain 

correct ^^Co spectra; however, these general considerations should be taken into account 

for all half-integer quadrupolar nuclei. A pulse of duration Tp applied exactly on 

resonance produces a resultant magnetic field orthogonal to B Q in the rotating frame, 

which causes a coherent oscillation of the magnetisation such that it is tipped by an 

anglea^ =yByTp away from the direction defined by B Q . In choosing the pulse 

excitation, the strength of the RF field employed will greatly affect the appearance of 

the spectrum. Three different situations might be listed; in the first case a non-selective 

excitation is obtained when V R F » V Q , for which the central transition will behave like a 

spin-V2 nucleus, showing a sinusoidal modulation with respect to the pulse duration. The 

opposite situation is V R F « V Q ; in this case the modulation frequency as a function of the 

excitation pulse duration is multiplied by a factor l+Vi, (the Raby factor), the maximum 

achievable intensity is diminished by the same factor [16]. An intermediate situation is 

found when the RF field is comparable with the quadrupole frequency V Q ; this will 

cause more complicated (not sinusoidal) excitation behaviour. Two formulae might be 

quoted in order to plot the excitation profile as a function of the pulse duration (Fig.5). 
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Sir,)-
3(1 + 1/2) 
41(1 + 1) 

sin(VT^) 

37(7-Hi) 
sin[(7 + l / 2 ) v ^ ^ r p ] 

In the limit V R F » V Q 

In the limit V R F « V Q 

1 = 5 / 2 

0.1 0.2 0.3 0:4 
V,-Tp 

0.5 

Figure 5. Pulse response of half-integer quadrupolar nuclei for different V Q / V R F ratios; y-axis display the 
signal intensity, reproduced from ref. [10]. 

The linear response regime is fulfilled only for short pulses [10]. These two formulae 

share the first initial rise where the sm(x) ~ x approximation is valid. In practice, these 

considerations will call for very short pulses. From a practical point of view, measuring 

the n/2 pulse duration for a liquid sample, t'"'n/2, and then applying the following simple 

relation will determine the pulse duration for a selective 7i/2 pulse, ^-^2, for a central 

transition [17]: 

t nil 
Jig 

t nil 
7-1-1/2 

In principle, a selective pulse may be achieved for arbitrarily small % by reducing the 

RF field strength. However, other external interactions such as chemical shift anisotropy 

impose a lower limit on the pulse strength, sometimes rendering a central transition 

impossible for small %, (Fig.6). In the case of sites with different quadrupolar coupling 
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constants, an appropriate pulse duration should be used to get equal intensities for each 
site independently from the quadrupolar coupling constant. 

/ 

Figure 6. Three cases explained in the text are here illustrated; a: V^^ » VQ • b: V^^ ~ ; c: 

^RF « • Shaded region displays the excitation profile. 

As the spectrum is produced by Fourier transformation of a time-domain signal (the free 

induction decay, FID), distortions can occur for the broad lines that can be encountered 

for quadrupolar nuclei in solids, because of non-uniform excitation of the spectrum. If 

the signal bandwidth is larger than the detection bandwidth, several spectra may be 

registered at different transmitter offsets and then co-added to produce the desired 

undistorted spectrum [4]. Another important parameter that should be taken into 

account for proper setting of the pulses is the delay before acquisition. The recycle 

delay and the pre-acquisition delay must be set properly in order to avoid distortions in 

the lineshape [10]. Efficient relaxation generally occurs when there is a spin interaction 

(such as the quadrupole interaction) and the appropriate mobility. In that case, 

transitions can take place which eventually restore the equilibrium populations of the 

spin energy levels with the time constant known as the spin-lattice relaxation time (TO 

[10]. Even i f one is usually interested in the relative intensities in the spectrum, setting 

the experiment in order to collect the full intensity might become crucial for half-integer 

nuclei. In fact, it would not be possible to exclude the presence of sites with such large 
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quadrupolar coupling constants as to be broadened beyond detection. The FID signal for 
broad lines is usually characterised by a very fast decay. Hence the pre-acquisition delay 
should be set as short as possible in order to avoid any loss of data points which may 
corrupt the spectral lineshape. 

MQMAS pulse sequence. 

In this part, we will summarise some of the principles of this technique we employed in 

order to check the site multiplicity of cobalt nuclei. Since the two Legendre polynomials 

cannot be solved by spinning at the same (magic) angle, in the past at least two 

techniques using double-angle rotation were performed: Double Angle Rotation (DOR) 

and Dynamic Angle Spinning (DAS). The first (DOR) involves rotating the sample at 

one angle while encapsulated it in another container spinning at another angle. The DAS 

experiment [18] uses a 2D NMR acquisition during whose evolution times {ti,t2) the 

sample undergoes spinning about two different angles {Oi, O2). Multiple-quantum 

magic-angle spinning techniques relies on the ability of refocusing of second-order 

quadrupolar anisotropics via echo formation according with the ratio of the two 

coefficients C'2 and CV 

hecho 
CM :0 

The result is a two-dimensional spectrum. The MAS dimension is related to a second 

dimension in which second-order quadrupolar effects are completely removed. Its 

success stands in the ability of providing multiple sites resolution in which also 

information on the quadrupolar parameter are maintained in the MAS dimension. and 

C' 
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Two-pulse sequence. 

This experiment was designed by Frydman and Hartwood in 1995 [20]. This original 

two-pulse experimental method suffers from two weak points: the dispersive signal and 

the lack of efficient coherence conversion (Fig. 7). 

3Q SQ 

() 
- - I 

Figure 7. Pulse scheme and coherence pathways for the two-pulse experiment. An example of the phase 
list used for selection of the triple-quantum coherence is 3Q: 0°, 60°, 120°, 180°, 240°, 300°; SQ: 0°; 
receiver (during t2) 0°, 180°, 0°, 180°, 0°, 180°, [10]. 

This results in distorted or difficult-to-phase lineshapes and the signal-to-noise ratio is 

not great. In order to circumvent these weaknesses, many different modifications of the 

original experiment have been issued, and this is still a very active area of research. 

However, the original idea still remains unchanged and, among the different 

modifications now available (Z-filter, Split-tl, . . . ) , the simplest two-pulse experiments 

are the more robust and reliable for a very wide range of applications. The key feature 

of these experiments is that the rank 1=4 anisotropic broadening is refocused when the 

ratio of the durations of the single- and triple-quantum coherence evolution periods 

equals the magnitude of the MQMAS ratio, defined as the ratio C4(3Q)/C4(1Q) for the 

nucleus under study (-7/9; 19/12; 101/45 for 1=3/2; 5/2; 7/2). The two-pulse experiment 

is based on the triple-quantum formation via the first pulse and then its conversion into 

detectable single-quantum coherence (Fig. 7). It represents a relatively easy experiment 

to set, having only two pulses and the dwell time in the second dimension to set. It is 
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generally accepted that the first pulse, which generates undetectable 3Q coherence, has 
to be the strongest available, and a careful calibration of the second pulse, which 
provides conversion into detectable, IQ, coherence, gives an undistorted lineshape. 
There are two different changes in coherence order associated with the echo and 
antiecho pathways, respectively |Ap|=2 and |Ap|=3. Hence, the efficiency in the 
conversion upon different flip angles would be different for the two pathways and for 
different ratios between the quadrupolar frequency Vq and the Larraor frequency. When 
the quadrupolar frequency is much larger than the Larmor frequency, the two signal 
intensities obtained from the two pathways are equal for a flip angle of 90 degrees (as in 
liquid samples). Experimentally, the easiest way to determine the best flip angle is to 
compare for a range of flip angles the heights of the time domain echoes or the 
frequency domain peaks. Generally, it appears that |Ap|=2 is more efficient than (Ap|=4 
[21]. It is experimentally found that is not very important for the two pathways to be 
combined with the same intensity. In fact, the degrees of dispersive signal start to 
become significant only when the ratio of the amplitudes is very different from unity 
[21]. It is also useful to always optimise the pulse sequence on the actual sample under 
study; spectrometer stability and short pulses might affect the S/N even with very small 
variations in their timing. An important part of this experiment is the pulse that converts 
the triple-quantum into single-quantum coherence of the central transition. From the 
practical stand point, the optimisation of the pulse should start for the second 
convergence pulse and then to the first one to enhance the 3Q formation. 
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Phase cycling 

In addition to the phase list needed for selection of the triple-quantum coherence, 

MQMAS methods can be classified on the basis of how they combine the two different 

coherence-transfer pathways. In general, they are amplitude modulated or phase 

modulated. In the first case the collection of both coherence-transfer pathways leads to 

an amplitude modulated signal [23, 23]. In the second case, in order to obtain pure 

absorption lineshape signals arising from the echo and antiecho, the pathways are 

separated and [19] two phase cycles are used to produce two signals that are linear 

combinations of the echo and antiecho pathways. The coherence transfer will follow the 

path p=0^3—>-l and p=0—>-3^-l. The selection of the echo and antiecho pathways is 

accomplished taking into account that the receiver can only detect coherences at -1 and 

by using the pulse relationship: ^R=-3(^I+4^2, where (|)r is the receiver phase, while 

and ^2 the phases of the two pulses. 

Processing. 

The raw data collected during an MQMAS experiment consists of a series of FID 

signals. Each FID has been acquired with a different value of t l (the delay between 

pulses). At the end, due to the long time t l occurring between the two pulses, the last 

FID signals will have a very small intensity. The processing requires in principle a 

Fourier transformation in the two time domains. A saturated water solution of 

K3Co(CN)6 is used to set the zero ppm position in the second dimension (MAS 

dimension). The zero ppm position in the first dimension corresponding to t l (isotropic 

dimension) can be determined because the frequency in the centre of both dimensions is 

the carrier frequency. Therefore, the zero position has the same ppm offset from the 
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centre as the zero ppm position in the MAS dimension. In this way also the isotropic 
dimension can be referenced (Fig. 8). 

Appm 

§ Oppm 

Oppm 

Carrier frequency 
at centre of SW 

MAS dimension v, 

Figure 8. The reference position in the two dimensions features the same offset from the carrier 
frequency, at the centre of both spectral widths (indicated as SW). 

In the case of the two-pulse sequence; shearing also needs to be applied, as illustrated 

in Fig. 9 after the first FT transformation (12) in the mixed time-frequency domain. The 

shearing transformation consists of an exponential multiplication applied along the 

second ( V 2 ) dimension (just FT transformed) for each row of acquisition in the second 

dimension ( t l domain), and technically, it can be defined as a first-order phase 

correction in the t l domain. This will generate well-aligned lineshapes alongside the V2 

dimension where the isotropic and anisotropic information is stored. 

SXt\v,)^exp[iv,t,\C!(m,)\/C',(l/2)] S(t„v,) 

Generally a shearing transformation provides the 2D sheared spectrum which allows the 

observation of an isotropic spectrum by simple projection. In the isotropic dimension, 
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all Static anisotropic contributions being removed, the projected spectrum consists of 
narrow spinning sidebands. 

2DVT 

shearing 

10 V2 ( iswaniio, kHz) 

Exp[iV2tild{ini)l/c5(l/2)] 1 

10 V 2 ( k H i ) 10 10 V j a H u fO 

Figure 9. Schematic representation of the processing procedure for the simple two-pulses experiment 
[24]. 

At the end of the processing, only the isotropic dimension will be displayed in Vi. 

In our study of polycrystalline materials, MQMAS has been used only to confirm the 

site multiplicity in such cases in which MAS spectra were not clear. However, these 

experiments can provide much other useful information which we did not explore, such 

as the spinning sideband patterns in the MQ dimension, which still form an active area 

of research, and the distribution of chemical shift and quadrupolar interactions. In fact, 

most of our cobalt spectra feature an almost pure quadrupolar lineshape, in which the 

chemical shift contribution is almost negligible. 
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Chapter 2 
2.1 Computational details 

Introduction. 

Computational chemistry provides a theoretical approach to investigate physico-

chemical properties of different kinds of systems. With the recent improvements of 

computational facilities, it has been possible to extend such theoretical predictions to 

systems which are increasingly complicated and large. The theoretical prediction of the 

NMR properties is an active area of research, and many different models have been 

developed. This section, will show some key points that need to be considered in order 

to use a computational package such Gaussian94 and Gaussian98 [1]. 

Within ab-initio methods, the basis is the Schrodinger equation, which provides the 

quantum mechanical description of any system by calculating the kinetic and potential 

contributions to the overall energy by a wavefunction. It is not possible to find an exact 

solution for more than two interacting particles. Therefore, a lot of effort has been made 

to extend the feasibility to larger systems by using several approximations. Within the 

Hartree-Fock level some of these are the time-independent approach, the use of 

truncated basis sets, the Bom-Oppenheimer approximation, the representation of an 

exact wavefunction by a single Slater determinant and the variational principle [2]. 

Moreover, wavefunctions considered as combinations of molecular orbitals in HF 

theory neglect electron spin. Only one electron is assumed for each molecular orbital. 

However, most of the calculations must consider doubly occupied orbitals holding two 

electrons of opposite spin. The wavefunction is then expressed as a determinant (Slater 
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Determinant) in which each row contains all the possible assignments of electron '/' to 
all the orbital-spin combinations. This representation of the exact wavefunction by a 
single Slater determinant represents a drastic approximation. HF theory, due to the 
variational approach and by the use of a single determinant, does not, finally, account 
for electron correlation, and this might result in unrealistic ground state energies [3]. 
Two important quantities related to the exact computation of the energy need to be 
recalled at this point: the exchange energy and the correlation energy. 

Exchange energy 

The exchange energy is introduced in the Hartree-Fock energy expression. This term 

enters in to the potential energy computation. This considers the energy variation of the 

overall HF wavefunction that arises when pairs of parallel (aa or p(3) spins are both 

inverted (e.g. from aa to PP). Hence, its operator, by acting on the orthonormal spin 

orbital function, has a nil contribution for coupled spin pairs, in agreement with the 

antisymmetry of the quantum mechanical wavefunction [2,3]. 

Correlation energy 

As pointed out before, a single Slater determinant provides only an approximate 

wavefunction and, in spite of the fact that it may capture a significant portion of any-

electron systems it fail to reproduce an exact wavefunction. The energy computed by 

HF is always larger than the exact ground state energy EQ. The sum of the correlation 

energy and the relativistic energy is the difference between these quantities (EHF-EQ). 

Two kinds of correlation can be described, dynamical and non-dynamical. The first 

arises from the relative motion of the electrons. In fact HF does not account for 

instantaneous electron-electron repulsion. The non-dynamical, or static correlation is 

related to the fact that the ground state computed is not unique and other Slater 
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determinants might provide comparable energies. The exchange-correlation energies 
become even more important for molecules containing double bonds due to the 
electron-electron interaction or excited states. The computing of the nuclear shielding is 
affected by the computation of the energy, as it is the second derivative of the energy 
with respect to the magnetic field and to the magnetic momentum of the considered 
nucleus. Hence, the electron correlation might affect the evaluation of the shielding 
tensor [3, 4]. 

Density functional theory 

Computational methods based on Density Functional Theory (DFT) use a physical 

observable, the electron density, as a fundamental quantity to model the exchange-

correlation energy. The original idea is that from an accurate computation of the 

electron density all the molecular properties can be derived. Hohenberg and Kohn 

postulated this theorem in 1965 [3]. More recently, DFT has been developed as a major 

tool for shielding calculations. The practical utility of this method, compared to ab-

initio methods, is that correlation is intrinsically included in the exchange-correlation 

energy functional used, and once the functional is chosen, there are only basis-set levels 

to choose for describing the electron density. However, the level of electron correlation 

in the DFT method is not a variable choice and, despite the efficiency in incorporating 

correlation, the results depend upon the functional used [5]. At the moment this is 

considered to be an efficient post-Hartree Fock method as it accounts for the exchange 

correlation energy but it is still less expensive in computer terms than other approaches 

such as Configuration Interaction or M0ller-Plesset perturbation theory. Moreover, DFT 

is useful in modelling the shielding tensor parameters since it circumvents the problem 

related to the electron correlation via the general functional of the electronic density for 
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the exchange correlation energy. In this approach, the overall energy is expressed as a 
sum of a kinetic energy term, potential energy term, a coulomb term and a fourth term 
accounting for the exchange-correlation energy (Exc) 

EDFr= T[p]+V[p]-H[p]+Exc[p]. 

An analytical expression for this last term accounting for both the exchange and 

correlation effects is unknown, and these two effects are always considered together in a 

unique term, Exc- In modelling the molecular properties via DFT the choice of one 

functional or another is actually the choice of a different way to represent only the last 

quantity, the exchange-correlation energy Exc- Many different functionals have been 

developed so far in attempts to correctiy account for the exchange- correlation energy. 

These functionals can be separated into three main categories: LDA, GGA, and Hybrid 

Functionals [4]. 

LDA (Local Density Approximation) assumes that the electron density can be treated as 

a uniform electron gas, or equivalentiy that the density is a slowly varying function. In a 

more general case, separated electron densities are computed for open shell systems 

(Local Spin Density Approximation, LSDA) whereas for closed-shell systems (singlet 

states) LDA coincides with LSDA. In general, LDA functionals tend to underestimate 

the exchange energy, creating errors that might be more important than the correlation 

energy. [4]. 

Popular modifications to the LDA approach are the Gradient Corrected or Gradient 

Generalised Approximations (GGA). These functionals contain exchange and 

correlation parts as a function of the electron density and its gradient. To build a GGA 

functional we therefore combine these two parts. Among the most widely used 
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exchange parts, are PBE [6] and B86 [7]. The corresponding correlation counterparts 
are the very popular LYP [8] and P86 [9]. PW91 [10], and P [1 i ] which contain already 
both exchange and correlation contributions. The combination of those two 
contributions is necessary to perform the calculations correctly. 

Hybrid functionals represent the exchange-correlation energy expression as a 

combination of many parameters. In general, they always include a part of "exact" 

Hartree-Fock exchange (since in the HF theory the formalism of the exchange operator 

is known), plus a part of LDA exchange, and gradient correction terms. This last-

mentioned, with three parameters, is the formulation B3LYP [12]. The three 

contributions are weighted by three parameters, which are determined through fitting 

experimental data in order to parametrise for instance B3LYP, via the atomisation and 

ionisation energies, as well as the proton affinities on a test set of molecules [12], The 

formulation of the above mentioned hybrid functionals is very general. The amount of 

the different contributions changes for each hybrid functional. Many packages 

nowadays provide an easy way to create various combinations to access promptly 

almost any kind of functional [13]. 

As we saw, the major appeal of DFT in many areas of chemistry and physics is the 

explicit inclusion of electron correlation via the exchange-correlation functional at a 

comparable cost to an HF treatment. However, it is well known there is yet no universal 

functional that works uniformly well for all shielding calculations. In fact, the 

functionals presently in use do not provide the correct asymptotic behaviour in the 

immediate vicinity of the nucleus and are therefore intrinsically deficient for calculating 

magnetic properties that involve the <r"^> operators [5]. Therefore, their extensive use 

and the relative success in helping experimentalists stems from the ability to predict 

differences in shielding (chemical shift) rather than being used for predicting absolute 

53 



2.1 Computational details 

shielding values. The chemical shift of a sample nucleus is therefore computed as the 
difference between the shielding of the reference compound and that of the compound 
under study. 

Ssample~^reference " ^sample 

The shielding tensor, defined as the second derivative of the electron energy with 

respect to the magnetic field B and the magnetic angular momentum // of the nucleus 

under study, is a second-order property. 

^ dBdju 

The nuclear shielding is a phenomenon arising because the presence of a magnetic field 

perturbs the electron wavefunctions and the energies of the atom or the molecule. The 

shielding can be considered as a sum of a diamagnetic (large and positive) and 

paramagnetic (negative) contributions and it is a second-rank (nine component) tensor 

[14]. The diamagnetic term arises only from the electronic ground state of the molecule. 

The paramagnetic term is related to the coupling between occupied and virtual orbitals 

induced by the external magnetic field. For this reason it is the more difficult to 

evaluate. The shielding tensor can be decomposed into two terms, which are 

respectively symmetric and antisymmetric. From the experimental point of view, the 

antisymmetric part of the tensor is not observable. The dependence of the shielding 

tensor upon the HOMO-LUMO gap has been studied for instance for carbon monoxide 

[15] and for '̂ 'P systems [16], where an inverse dependence with respect to the gap 

between occupied, and virtual orbitals has been outiined. 
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Electrons surrounding the nuclei interact with an external magnetic field, giving rise to 
an induced current. This induced current can be divided into the diamagnetic and 
paramagnetic contributions. These will create also an induced magnetic field, which 
might increase or decrease the external magnetic field. This phenomenon is the basis of 
the magnetic shielding featuring all the active nuclides. The evaluation of the tensorial 
quantity presents difficulties related to its second-order nature and to the gauge 
invariance problem. The usual way to tackle such an equation is by employing 
stationary perturbation theory. In the conventional Hartree-Fock approach, this leads to 
the coupled perturbed HF equations, describing the linear response of the molecular 
orbital of the ground state to the external perturbation. The Hohemberg-Kohn theorem 
has been postulated in the absence of a magnetic field, and some attempt to include 
exchange-correlation function-field dependency has been made, considering the 
dependence of the electron correlation upon the current density induced by the external 
field. However, it has been found that the current-dependent contribution is very small 
and does not improve the results so far [17,18]. A special attempt aimed to reduce 
systematic errors in this field and to introduce implicitiy a current dependence is the 
Sum-Over-States Density Functional Perturbation Theory (SOS-DFPT) technique 
implemented by Malkin [19], in which an ad hoc correction term has been introduced. 
However, this latter approach was criticised for lack of rigour and currentiy is only 
available in the deMon program. 

Shielding theory 

At this point, it is useful to recall some formulae for the computation of the shielding 

tensor. As recalled above shielding is the second derivative of the energy with respect to 

the magnetic field B and the magnetic momentum \x of the nucleus under study and it is 
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a second-order property. The energy of a magnetic dipole in a magnetic field is fact 
proportional to the effective field, as shown by: 

E=-|i-Beff with Beff=-aB and |Ll = yhmj 

Beff is expressing the effective field experienced by the nuclei accounting for the 

shielding effect of the electrons. The magnetic field can be expressed as a vector 

potential A, a quantity related to the first by B=rotA. This relation, while defining 

uniquely B by knowing A, does not provide the opposite. Two different choices of 

origin would give two alternative values of A at any point in space, while the field B is 

of course independent of the arbitrarily chosen origin. Many vector potentials give rise 

to the same magnetic field and there is no unique definition for the choice of A. This 

feature is the key point of the gauge problem. The system can then be described in its 

Hamiltonian form by replacing the linear momentum p with the quantity p+eA, related 

to the vector potential. 

H^°'=(l/2me)p^+V becomes: H=(l/2me)p^+V + (e/me)A-p+(e^/2me)A^ 

This last equation contains three terms; the zero, first and second-order terms needed for 

the shielding computation. The overall hamiltonian expression can be written as: 

The solutions of H °̂̂  represent the eigenfunctions in the absence of magnetic field, and 

can be considered unperturbed. 
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The perturbation theoretical treatment assumes that the zero-order wave function is 
known, including a set of the wavefunctions of the excited states. The first-order 
perturbed wave function is expressed as a linear combination of these known states. 
This approach was introduced by Ramsey to understand the shielding of a non-
spherically symmetric nucleus. I f the wave function yJ^ is known, the first term of the 
expression of £̂ ^̂  can be easily calculated. This term accounts for the diamagnetic part 
of the shielding and is responsible for the actual reducfion of the external magnetic 
field. On the other hand, the paramagnetic contribufion, with opposite sign compared to 
the diamagnetic term, is related to the wavefunction ij/ and depends on the excited 
states of the molecule. This approach leads to the formalism for the term in which 
zero labels the ground state and n one of the excited states: 

=< 01 H » 10 > , ^ < 0 | t f " ' l - . x » | H " ' | 0 > , 

These two terms have an dependence, so the electron density closest to the nucleus 

has the most effect. The difficulty in computing second orders properties arises from the 

need to take into account in principle all the excited states. Moreover, from this 

approach the two contributions (diamagnefic and paramagnetic) become relatively large 

in magnitude even for small molecules. These quantities are affected by errors due to 

the uncertainty in the evaluation of excited states. Therefore the shielding which is the 

difference between these quanUties, might deviate significantly from the experimental 

values. 

The second problem related to the computation of the shielding properties is the gauge 

origin. This is the origin of the vector potential A inserted into the Hamiltonian 
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expression and not fixed a priori. An infinitely large basis set must be used in order to 
obtain results invariant with respect to the choice of the origin of the vector potential. In 
the limit of a very large basis set the problem could become almost negligible but the 
computational cost will be too high. Another way to overcome the problem is to 
generate atomic orbitals, which already have the gauge factors. This leads to the 
common approach of Gauge Including Atomic Orbitals (GIAO) [20]. In practice the 
usual (real) atomic orbitals (j)n are multiplied for an imaginary expression of the vector 
potential 

¥n=(l>n^^V\.ielh{\)r]. 

I f the complex pre-factor of the orbitals is not considered, one obtains additional 

contributions to the kinetic energy, which depend on the distances between the orbitals 

and the origin of the vector potential. I f we were to use infinite size basis sets, this 

contribution would vanish over the sum of all states, but the truncation of the basis sets 

is actually the reason there is the gauge problem. There are other techniques to achieve 

gauge invariance. The most important of these apply gauge factors not to atomic 

orbitals but to localised molecular orbitals (IGLO, independent gauge for localised 

orbitals [21], LORG [22], localised orbital-local origin, and SOLO, second order 

LORG). IGLO can be mentioned by its advantage of separating the shielding effect of 

inner shells, bonds, and lone pairs separately. Finally, the IGAIM [23] method 

(individual gauges for atoms in molecules), uses the calculation of molecular current 

density distributions. The IGAIM method amounts to constructing the induced current-

density distribution of a molecule from its constituent atoms. In our studies we have 

applied only the GIAO [4] method, which has the advantage of converging fastest. 

58 



2.1 Computational details 

better than LORG or IGLO, though deep investigations of the performance of these 
models were not undertaken. 
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2.2 Review of applications. 

Many nuclei have been studied using shielding calculations; however light and first-row 

atoms are the most usually studied. In case of the proton its total chemical shift range 

spans only some ten ppm and solvent effects can be comparable to the range of 

chemical shift itself. Carbon-13 computations reveal that LDA cannot be recommended 

since in general deviations are higher than in the HF case- for both diamagnetic and 

paramagnetic components, while the GGA BLYP and hybrid B3LYP perform better 

and almost at the same accuracy. In the case of '^O both GGA and hybrid type seem to 

be insufficient to yield reliable results, and the conventional MP2 turns out to be still 

superior. Surveys of the benchmark calculations can be found in [3] which, using 

comparably large basis sets drew all these conclusions. Very often basis sets used are 

the Pople-style [4]; they are coded with two series of numbers recalling respectively the 

core electron shell description and the structure of the valence shell in two or more parts 

(split-valence basis sets). 6-3IG basis-set indicates therefore a core shell of six 

Gaussian-Type Orbitals (GTO) while the valence is split into two parts having three and 

one GTOs respectively. Typically, sets of polarized triple-zeta quality (in which the 

number of basis functions is three times the minimum requirement) are employed, such 

as the 6-311-(-G(d,p) which also includes diffuse functions on the non-hydrogen atoms 

[24]. The polarization functions must also be included in the basis-set choice as proved 

in studying ^̂ F [25]. In that case the sensitivity to basis-set deficiencies has been 

demonstrated to be higher for the anisotropy than for the isotropic average shielding. 

Because of the gauge problem and the importance of accurately describing the 

surroundings of the nucleus, calculated shielding values can only benefit by those 

relatively large basis sets [4,26]. Furthermore, the paramagnetic term is dependent on 
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the choice of gauge origin and on the virtual states. In general, we recall that the 
shielding tensor is sensitive to the chemical surroundings and is affected also by the 
accuracy with which the electron density far from the nucleus is reproduced. Hence, a 
good description of the valence shell of the atoms is required. Only large basis sets 
(double or triple zeta) with polarisation and diffuse functions can be flexible enough for 
such purposes. The use of locally dense basis sets would allow requirements to be met 
for the atom under study, by modelling the surroundings with a small basis sets. Several 
successful examples are available [27, 28]; however, the use of a mixed basis set must 
be done only after careful consideration [4] in order to avoid artifacts, particularly for 
bonded atoms with substantially different numbers of valence electrons. Alternatively, a 
great reduction of computation can be obtained by replacing the surrounding atoms by 
point charges, [29,30]. This approach however must be also carefully tested for systems 
in which intermolecular effects can influence the shielding as in crystal systems 
featuring stacked molecular layers or hydrogen-bond networks. The effect of the basis 
set on the nucleus of interest and on its ligands will be investigated herein by an 
assessment of '̂ ^Sn shielding calculations. Density functional methods become 
particularly useful when it comes to large systems, due to their computational 
efficiency, or to species which contains heavier elements, such as transition-metal 
compounds, whereas for small molecules containing only light elements DFT does not 
represent a major breaktrough. However, for heavy nuclei, other error sources as 
relativistic effects might become very important, because of the larger number of 
electrons and spin-orbit coupling. It is important to point out that, i f instead of absolute 
shielding, relative chemical shifts are considered, the effects of relativity are attenuated. 
In fact, these effects come mainly from core electrons, whose properties change only 
littie when going from one molecular environment to another. Hence, they largely 
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cancel when relative shifts are considered. Qualitative trends in chemical shift can 
therefore be reproduced with non-relativistic calculations for elements such as 4d 
transition metals. In such cases the correlation between computed and experimental 
chemical shifts is no longer linear [31,32]. These effects become very important for 
heavy atoms bonded to for example halogens. The deviation of the experimental results 
increases, for instance, from fluorine to iodine. In the case of "^Sn the same trend has 
been found, showing also how for ligands such as a proton these effects are negligible. 
One way to treat relativistic effects may be the use of the effective core potential (ECPs) 
[33, 34] developed by Hay and Wadt [35], or by considering the chemical bonding 
chiefly due to valence electrons. (Frozen-Core approximation) in which the core 
electrons can be excluded from the variational procedure [36]. In general, shielding 
calculations for heavy nuclei are also more difficult because of the lack of extensive and 
accurate absolute shielding scales for these atoms. ^̂ Se [37] and ^'Ga have been studied 
extensively by DFT as well as ^̂ Co [38]. For a survey of the DFT results on heavy 
atoms, see ref. [3]. In the literature many examples can be found in which for heavy 
atoms, hybrid functionals are found to perform much better than GGA, which tends to 
significantiy underestimate the chemical shift. These good performances are not 
completely understood [3]. In general, a careful calibration of the available functionals 
on metal chemical shifts must precede any serious investigation. 
The shielding value experimentally observed during measurement is also a consequence 
of an averaging over the different nuclear configurations the molecule can sample 
within the time of the NMR measurement. However, accounting for rovibrational 
effects can be useful only when the calculations already provides very good results. In 
such a case the shielding surface [39] describes changes in the geometry of the 
molecule. In principle, calculations for single molecules should always be compared 
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with gas-phase experimental data, or at least with a series of data obtained in solution in 
order to evaluate any solvent effects. Only after having assessed the performances of the 
model, the results can be compared with solid-state measurement in an attempt to 
account for solid-state effects. Other sources of deviation between calculated and 
experimental chemical shifts are the intermolecular interactions which can increase the 
difference from the shielding computed on a single molecule in the gas-phase and the 
value related to a solid-state system. 
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2.3 DFT Applications on ^̂ Ŝn magnetic shielding calculations. 

Introduction 

With recent improvements in both methodology and hardware, chemical shift 

calculations in systems involving a large number of basis functions are now tractable. It 

is therefore possible to investigate the properties of moderately large molecules involving 

many atoms and/or heavy nuclei. However, investigations concerning '"Sn nuclei are still 

very uncommon in the literature, in contrast to the case for lighter nuclei such as first row 

elements. 

In most cases studied, chemical shift computations are concerned with small molecules, 

for which the availability of an absolute shielding scale provides the basis for an 

assessment of adequate gauge theories. Confidence in the calculations should stem not 

only from the experimental measurement of relative shielding but also in the 

determination of absolute shielding values obtained from molecular-beam studies and 

gas-phase NMR [1]. 

A comparison between theory and experiment is made possible when at least one 

molecule containing the nucleus of interest has its absolute shielding value measured [2]. 

Unfortunately, for most of the heavier elements, particularly for the transition metals, 

absolute shielding scales are not yet available. Our '"Sn investigations are based on the 

absolute shielding scale determined by A. Laaksonen and R. E. Wasylishen [1]. In this 

study the scale was determined by following two different approaches. The first method 

consisted of using the relaxation time for SnH4 in the gas phase and the 'H spin-rotation 

constant derived from molecular-beam studies. The second makes use of molecular 

dynamics simulations and relaxation times in the solution state. 
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In this work, values for the absolute *'̂ Sn shielding in SnH4 and Sn(CH3)4 are computed, 
and these are compared to those recentiy published. Then a series of model compounds 
has been tested in order to assess the goodness of the chemical shift prediction using the 
method that showed the best results in predicting the absolute shielding scale. The 
approach followed for the calculations is to use DFT methods, and different functionals 
have been tested. We believe this approach is useful since DFT can provide a good trade
off between performance and computational cost, which for some of the molecules is, 
however, still high. 

Nuclear shielding calculations do require an accurate description of the overall electron 

density surrounding the nucleus. A high-quality basis is essential for the achievement of 

good correlation with experimental data. In fact, the basis set should be flexible enough 

to describe accurately variations of the shielding components (diamagnetic and 

paramagnetic) with different chemical environments. For a description of the basis set 

requirements see [3, 6]. 

The majority of molecular electronic structure calculations are carried out with CGTO 

(contracted GTO, Gaussian type orbitals), which describe the core AOs with a single 

contraction and provide two or more functions per valence AO. This approach gives rise 

to split valence (SV) or triple zeta valence (TZP) basis sets. For heavier atoms, ECPs 

(effective core potentials) are usually employed [4] to describe the inner shells, providing 

a significative reduction of the computational cost and the approximate accounting of 

relativistic effects [5]. However, these latter basis sets might not be the ideal approach in 

the description of the shielding properties. 

Furthermore, the importance, of the basis set has been recently emphasised by De Dios 

[6] for particular cases in which for "^Sn calculations different results were obtained 
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depending on the basis set used [7,8]. Generally, the best results are obtained by making 
use of the largest feasible basis set. 

The basis sets used here are either defined in terms of the number of primitives and 

contractions for a certain element as (..)/[..]. This nomenclature can be explained with an 

example: (7,4)/[3,2] indicates a basis set in which seven GTOs of s type and 4 GTOs of p 

type are contracted to 3s and 2p. This nomenclature will be used as well as the more 

common one employed in G94 (e.g. 3-21G ect...). 

Tetramethyl tin: Sn (CH3)4, the reference compound. 

Effect of geometry 

This compound is commonly used as reference for the '"Sn chemical shift scale. A 

complete screening of its behaviour is needed in order both to assess better the 

computational cost on larger systems and to get close to the experimental value. 

The first screening made was based on two different geometries, one available in the 

literature [1,2] and the other from our own geometry optimisation with quite small basis 

sets (3-21G* for Sn and 6-31G* for the ligands). 

The X-ray data provide [1] a molecular structure in which one of the four C-Sn bonds is 

slightly shorter than the others (2.102 A versus 2.138). Since this difference presumably 

arise from a packing effect, we use in our calculations a symmetric molecule with 2.138 

A for all C-Sn bond lengths. Our optimisation differs from that derived from X-ray data 

mainly for the Sn-C bond length, which is 0.047 A longer while, the C-H bond is in 

reasonable agreement with the literature values. 
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Sn CandH ' ^ d (ppm) P (ppra) (ppm) Geom. ref. cpu time 

TZV TZVPP (t) 5090 -2410 2680 t 48h 22' 

TZV TZVPP(t) 5090 -2426 2664 [1] 48h 22' 

TZV TZVPPCt) 5090 -2414 2659 [2] 48h 22' 

TZV 6-311++g(3df,2pd) 5082 -2484 2598 t 22h 30' 

TZV 6-311++g(3df,2pd) 5083 -2496 2587 [1] 22h 30' 

TZV 6-311++g(3df,2pd) 5083 -2500 2582 [2] 22h 30' 

Experiment 2180±200 

Geometry parameters (A) ref: [1] t [2] 

Sn-C 2.149 2.185 2.138 

C-H 1.084 1.085 1.084 

Table 1: Influence of different geometries on the calculated absolute shielding values for the reference 
compound Sn(CH3)4. f indicates our geometry, optimised with (HF 3-2IG* on Sn and 6-3IG* on C,H). 
{%) indicates the TZPP basis has been set only for C atoms, whereas H atoms are computed with 6-
311+G(d,p). The basis set used on Sn atom is TZV . 

The geometry effect has been controlled by using two different basis set environments 

(table 1). In one case the large TZVPP was set for C atoms while 6-311-(-G(d,p) was set 

on H atoms. In fact the main difference in these three geometries (Tab. 1) lies in the C-

Sn bonds. In the other case the same basis set was chosen for both C and H atoms. In 

all cases the same triple-zeta valence basis set has been applied on tin atoms. The results 

obtained show how these geometric differences in general do not substantially affect the 

absolute shielding. The large basis set on the C atoms does not provide a value 

significantiy closer to the experiment while the smaller 6-311-i-G(d,p)seems to do so. 

Also, the computational cost of 48 hours would make the use of TZVPP even more 

prohibitive for larger molecules. Further optimisation of the geometry is not warranted. 
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Effect of Sn basis sets 

The dependence of the absolute shielding value upon the Sn basis set has been examined 

for tin at the HF level. The '̂̂ Sn basis set was progressively increased in size until no 

noticeable changes were observed in the calculated shielding. This basis set 'saturation' 

should in principle also provide information about the electron correlation requirement. 

The IGLO-III basis set were used on the ligands (C and H atoms). This choice is made 

because of the the relative small size, and the generally well-assessed performance 

quality, and to make straightforward the comparison with literature values. For the tin 

atom the performed tests span over a range of ten to nineteen's' functions [5,9] and the 

results are showed in table 2. In general, one disadvantage of energy-optimised basis sets 

is that they primarily depend on the wave function in the region of the inner shell 

electrons because Is electrons account for a large part of the total energy. However 

chemical properties depend mainly on the valence electrons, and many properties like 

polarizability depend on the wave functions' 'tail' (far from the nucleus) which is 

energetically unimportant. Shielding constants arise from two contributions: the 

diamagnetic (related to the free rotation of electrons about the nucleus) and the 

paramagnetic (which refers to the hindrance to this rotation caused by other electrons and 

nuclei in the molecule). The paramagnetic term is generally more difficult to quantify as 

it involves the electronic excited states, which can only be described by a very large 

number of gaussian functions, so an ample set of unoccupied or virtual orbitals are 

needed for a proper description of the excited states. However it is this contribution that 

is expected to be the major cause of variation in shielding between different molecules. 

From these considerations a good description for the valence electrons seems to be an 

important requirement for quantify correctiy the shielding tensor. It is found in the 

literature that including orbitals up to 3d for first-row hydrides and, whilst 4d and 5d sets 
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are necessary for second row hydrides [12]. Because of the large size of the tin atom 

under study any investigation that makes use of a small basis set should be avoided; for 

completeness in our screening we increased the basis set size up to 9d uncontracted 

functions using a triple zeta valence basis set [5]. Small basis sets such Ahlrichs 

Coulomb Fitting [9c, 9d] does not provide convergence in the SCF calculations when 

IGLO-III basis sets are used for the ligands. Since the difference in the absolute shielding 

between using TZV or IGLO-II (used by deDios [2] ) is only 3% (table. 2) of the 

absolute shielding, the choice between the two basis does not seem particularly critical. 

Considering that our goal would be an investigation over a bigger range of tin-

containing molecules we chose the TZV basis set as giving good trade-off between time 

consumption and results. The time required is already significant given that more than 

one hour of cpu was used for a five non-hydrogen atoms system. The diamagnetic part 

does not seem to be particularly affected by the size of the basis set used when at least 15 

's' functions were employed. Conversely, the paramagnetic term, more difficult to 

evaluate, is very sensitive to the size and the contraction of the basis set used. 

Sn Basis Set ref. Contracted Function '̂̂  ^ basis funct. cpu time 

DCF [9b] (10s,5p,5d)/ [5,5] 
CppmJ 

4649 
—Cppm)— 

-895 
Cppm) 
3754 47 264 lh03' 

3-21G [9e] (15s,12p,6d)/ [6s,5p,2d] 5062 -925 4137 33 251 Ih 13' 

SV [5] (17sl3p8d)/[6s5p2d] 5074 -1335 3739 32 270 lh2r 

DZVP [9b] (18s,14p,9d)/[6s,5p,3d] 5088 -2011 3077 9 251 lh22' 

TZV [5] (19sl5p9d)/[8s7p5d] 5081 -2179 2902 3 274 lh40' 

IGLO-II [1] (12sllp7d2f) 2823 0 

Experiment 2180±200 

Table 2. Saturation test on the tin atom performed at the HF level. C and H are computed with IGLO-III 
basis sets.The results are compared with calculation performed in [1] using an IGLO-II basis set. 
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Effect of the basis sets of the Ugands 

The effect of the Ugands' basis sets has been measured at the HF level by increasing the 

ligand basis set size. In comparison to the experimental values, all the calculations show 

considerably discrepancies (table. 3). Moreover, there are no big variations between 

results from the different basis sets used. However, the computational cost can be 

dramatically reduced by making use of the less demanding basis sets. Using IGLO-III 

basis sets does not provide any better result and also is very expensive in comparison to 

6-311G. For this reason the screening of a larger set of molecules should be performed 

with the cheaper GTO. In this way a useful comparison with experimental results could 

still be expected, though without in general a perfect reproduction of the absolute 

shielding values. As expected, adding polarisation functions gives a slightly worse 

shielding value when using the small 6-3IG set. Moreover the value given by TZVPP 

having two polarisation functions is less accurate. Apparendy, the 6-31IG results seems 

to be quite promising since they differ by only 3.6% far from those of IGLO-III basis 

sets, but with a very low computational cost. In fact it is possible to see how reproducing 

the results of IGLO-III is very demanding in terms of computational cost. 

Ligands 
basis sets 

Ref. Contracted Functions 
(ppm) —Cppm)— 

a 
(ppm)— 

Var% 
vs. exp 

basis 
funct. 

Cpu 
time. 

6-3 I G [11a] (10s,4p) /[3s,2p] 5088 -2150 2938 34.8 114 44' 

6-31G* [10b] (10s,4p,ld)/[3s,2p,ld] 5089 -2148 2941 34.9 134 54' 

6-3IIG [lib] (lls,5p)/[4s,3p] 5086 -2161 2925 34.2 142 34' 

6-311-i-G (12s,6p,ld)/[5s,4p,ld] -i- diff f. on C 5081 -2157 2923 34.1 158 49' 

6-311++G As above + diffuse f. on C & H 5081 -2156 2925 34.2 170 Ih 10' 

6-3ll+G{d,p) As above + pol. F. on C, (d) & H, (p) 5082 -2160 2922 34.0 214 3h 19' 

IGLO-III [lOe] (12s,6p,3d,lf)/[5s,4p,3d,lf] 5081 -2175 2906 33.3 314 5h22' 

6-311-(-i-g(3df,2pd) [lid] (12s,8p)/[7s,2p] 5090 -2181 2909 33.4 390 21h48' 

TZPP (t) [lie] (8s6p5d3flg)/[8s6p4d3flg] 5089 -2129 2960 35.8 430 48h 22' 

I G L O - I I I 

Experiment 

[1] 2823 

2180±200 

29.5 

Table 3. Testing the size of the ligands' basis sets at the H F level with T Z V basis sets on the tin atom. 
The results are compared with calculation performed in [1] using I G L O - I I basis sets on tin.($)TZPP basis 
has been set only for C atoms, H atoms are computed with 6-311+G(d,p). 

72 



2.3 D F T Applications on "^Sn magnetic shielding calculations. 

The effect of different methods 

Different DFT methods were compared with different basis sets, and their effects are 

displayed in table 4. LDA in combination with IGLO-III basis sets apparently provides 

the closer values to experiment for the reference compound. However, for all the 

methods investigated there is a overestimation of the shielding, making the difference 

between calculated and experimental values still outside the error margin. 

6-31G 
O (ppm) 

6-31IG 
<̂  (ppm) 

I G L O - I I I 
<7 (ppm) 

S C F 2938 2925 2902 

B 3 L Y P 2626 2609 2577 

Becke88(B) 2553 2537 2510 

B L Y P 2538 2522 2486 

BPW86 2552 2536 2503 

BPW91 2556 2541 2509 

L D A 2494 2474 2442 

S O S - D F P T - I G L O [1] 2523 

Experiment 2180±200 

Table 4. Testing different functional? with three basis sets. "^Sn is described by TZPP basis set [5]. 

.The LDA results for this closed shell molecule may be fortuitous since this method in 

general underestimates the exchange energy, providing errors that are larger than the 

whole correlation energy. This might cause an overestimation of the electron correlation 

and consequently also of the bond strengths [16]. Al l the other tested functionals provide 

an average reduction of the absolute shielding of about 400 ppm with respect to the SCF 

results. GGA (Becke88) and hybrid methods do not provide impressive differences in the 

calculated results despite definitely important improvement over the LDA 

approximation. Therefore, the crucial importance of the exchange functional in 
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describing transition metals chemical shifts does not seem to be particularly important for 

'"Sn. In fact, the literature reports tremendous underestimation of the chemical shift of 

"Fe and ''Co by compounds by 'pure' GGA functionals [17] but '"Sn shifts seem here to 

be generally overestimated. The popular B3LYP hybrid is often referred to as one of the 

most successfully applied [18] also in transition metals' since it appears to overcome the 

underestimation of obtained with pure density functionals. Our calculations show 

instead how it performs at the same level as other hybrids, behaviour also found in the 

literature for substituent effect on ^'V compounds [18]. 

Result and discussion 

Some of the best computation methods found for the compounds Sn(H4) and Sn(CH3)4 

were tested on a bigger range of molecules. The goal of this process is to evaluate the 

ability to calculate chemical shifts with varying of the surrounding ligands. Sixteen 

tetraorganotin derivatives have been investigated and compared with experimental data. 

Geometries were optimised using 3-2IG* on Sn and 6-3IG* on C and H at SCF level. 

The calculated values were converted by applying the relation Ŝ p̂|̂ =â f-â ^̂ pî , for which 

the reference compound (CH3)4Sn was submitted to the same calculations. 

B3LYP has been successfully used so far for a very wide range of molecules; it is 

generally recommended for testing molecular properties when heavy atoms are present 

[20]. We therefore tested this functional with different basis sets. By comparison the 

results obtained with BLYP and LSDA are also shown. 

The fundamental question regarding non-protonic chemical shifts is their response to 

electron withdrawal. In fact it is expected that the nucleus will become more shielded as 

the electron-releasing power of substituent groups increases, and the chemical shift 

should move progressively to low frequency. So far, experimental data for the heavier 
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metals present a confusing picture whenever drastic changes of electronegativity in the 
ligands are imposed. In our attempt to correlate experiment with theoretical prediction, 
we will confine our discussion to systems in which electron demand is smoothly varied. 
The range of chemical shifts spanned by these compounds is quite small when 
compared with the overall chemical shift range of this nucleus. However, by comparing 
suitably chosen pairs of data it is possible to estimate how these calculations are able to 
predict the effect of substituting a saturated carbon atom for a hydrogen atom at 
positions a, (3 or y to tin. When possible experimental neat-liquid values were used for 
comparison with calculations, this choice presents the advantage of a more 
homogeneous dataset, since not all these compounds are soluble in the same solvent at 
the same concentration. The drawback is that intermolecular interactions can affect the 
shift values; however, they may be generally quite small because of the low dipole 
moments of these molecules. Table 5 shows the results obtained with the popular 
B3LYP protocol using four different basis sets on the ligands (C and H) while the tin 
basis set is the previously assessed TZV [5]. The use of a basis set with polarisation 
functions 6-3Il-i-G(d,p) on carbon and hydrogen, also tested by Cheeseman and co
workers [21], shows less accurate values and with a slightly larger standard deviation of 
error and mean absolute error. However, the most remarkable difference is that the best 
set-up for the calculations appears to be the B3LYP/6-311G. In fact, in spite of the fact 
that overall correlations using 6-3IG and IGLO-III are also good, the other statistical 
parameters appear to be less satisfactory. This implies also a significant reduction of the 
computational cost between the use of IGLO-III and 6-311G. 
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Compound 

Exp. 
Values 

5(ppm) 
B3LYP 5(pp„,) B L Y P 5, (ppm) 

LSDA 

S(ppin) 

6-3 I G 6-31 I G 6-31 1-HG 6-3ll+G(d,p) I G L O - I I I 6-31 I G 6-311+G I G L O - I U 

1 Me4Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 (Me3)3SnH -104.5 -119.70 -106.27 -114.86 -119.08 -102.65 -112.05 -120.94 -149.43 

3 EuSn -6.70 -5.50 -3.39 4.97 -1.86 -4.06 -7.64 0.79 -7.38 

4 NPr4Sn -16.80 -19.04 -18.56 -10.82 -20.20 -16.49 -23.75 -16.37 -25.01 

5 IPuSn -43.90 -57.16 -60.47 -61.06 -64.58 -63.02 -69.86 -71.82 -93.07 

6 NBUiSn -12.00 -17.08 -13.59 10.84 1.62 -18.30 -19.03 8.65 -26.81 

7 MejSnCEt) 5.90 -9.82 -0.07 4.35 2.29 -0.60 -1.10 3.10 -1.55 

8 Me3Sn(«Pr) -1.96 -13.64 -4.36 1.59 -1.15 -3.93 -5.76 0.18 -6.02 

9 MejSnC/Pr) 9.90 -5.63 2.40 7.11 3.39 0.53 0.46 4.93 -1.28 

10 Me3Sn(«Bu) -0.55 -13.20 -2.98 1.51 -1.51 -4.11 -4.38 -0.37 -6.10 

11 Me3Sn(iBu) 3.30 ¥ -7.80 0.20 5.41 1.26 -3.47 -2.17 2.67 -6.31 

12 Me3Sn(/Bu) 19.50 4.23 11.70 15.30 11.24 7.29 9.68 13.01 5.77 

13 Me3Sn(CH=CH,) -40.00 -41.21 -35.98 -40.11 -42.54 -39.62 -40.89 -46.18 -42.50 

14 Me3Sn(CCH) -68.10 t -90.71 -83.46 -80.20 -80.03 -89.43 -93.34 -91.89 -97.17 

15 Me3Sn(Ph) -30.30 -35.33 -30.58 -26.79 -30.76 -43.86 -35.52 -32.33 -48.32 

16 MesSn-cyclo-CeHii -1.70 -12.15 -2.13 6.12 2.31 -8.77 -4.50 -26.49 -12.02 

0.981 0.986 0.975 0.965 0.973 0.982 0.960 0.974 

Slope 1.042 1.031 1.137 1.128 1.021 1.096 1.182 1.332 

mean abs 
10.55 4.95 7.19 6.55 7.53 8.13 9.80 15.29 

err 

St. dev err 6.32 5.02 6.49 6.04 6.52 7.58 9.98 14.66 

max err 22.61 16.57 22.84 20.68 21.33 25.96 27.92 49.17 

Table 5. B 3 L Y P shielding calculations. are calculated vs. neat liquid values, central colum values are 

used for the correlations. However in some cases literature data [15 a,b] provide more than one value, (t) 

from benzene solution [15a]. (t)from C H 2 C I 2 solution; (¥) from CgDg solution. 

The overall data confirm the linear trend of the Sn chemical shifts experimentally found 

when ligands are not particularly electronegative. U-shaped dependence is expected 

whenever electronegative ligands such as halogen are involved. In these latter conditions 

the relativistic effect becomes significant, as pointed out by H. Kaneko et al. [14], who 

showed how spin-orbit (SO) effects of the ligands change the chemical shift in the series 
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SnX^ (X=halogen). Moreover, the SO effect on the absolute shielding of SnH^ was 
calculated to be negligible. 

It is experimentally found that tin chemical shifts behave in a manner similar to those for 

carbon-13 and for heavier nuclei where a, P-substitution produces a high-frequency shift, 

but y-substitution gives rise to a low-frequency shift [15]. The substitution of the last 

hydrogen with a methyl group in MejSnH provides a shift of -104.5 (A6a) ppm with to 

respect the reference; our calculations are in agreement with experiment when B3LYP/6-

31 IG is employed. The additivity of (3-substitutions (A5p) is illustrated by the series 

(Me3)4Sn; (Me3)3Sn(Et); (Me3)3Sn(/Pr); (Me3)3Sn(rBu). The correlation for this subset is 

illustrated in table 6. For instance, A5p for the substitution (MCjSnCHj MejSnCH^CHj 

) is found to be about 5 ppm (average for different solvents) and 5.9 ppm on the neat 

liquid used here for the correlation compared. The best calculated value of 4.351 ppm for 

A5(3 is in reasonable agreement with experiments done in 25% v/v CH^Cl^; -1-4.2 ppm [15]. 

The overall correlation for this subset is quite good with B3LYP (R' =0.999), which is 

slightly more accurate than with BLYP (R' =0.990) when the 6-311-i-G basis set is 

applied in both cases. The values of the slopes indicate an underestimation of these shift 

effects, even for the best correlated dataset (B3LYP/6-311-I-G) which, consistently, shows 

a slope closer to one. IGLO-III results again do not match the quality from the other basis 

sets, providing more scattered results. 
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P-sustitution 
effect 

B3LYP6(ppn,) BLYP5(ppn,) LSDA 5(ppm) 

Exp. 6-31G 6-31 IG 6-311+G 6-31H-G(d,p) IGLO-III 6-31 IG 6-311-I-G IGLO-III 

Me4Sn 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Me3Sn(Et) 5.9 -9.822 -0.071 4.351 2.286 -0.598 -1.101 3.097 -1.555 

Me3Sn(iPR) 9.9 -5.632 2.401 7.106 3.393 0.525 0.459 4.929 -1.282 

Me3Sn(rBu) 19.5 4.231 11.700 15.295 11.245 7.286 9.684 13.008 5.766 

Slope 

0.446 

0.337 

0.930 

0.634 

0.999 

0.785 

0.974 

0.581 

0.884 

0.397 

0.872 

0.531 

0.990 

0.670 

0.769 

0.321 

Table 6. The P-substitution effect. 

Increasing the chain length provides visible effects in the series: (Me3)4Sn; (Me3)3Sn(Et); 

(Me3)3Sn(nPr); (Me3)3Sn(nBu). The calculations show in general less accuracy in 

predicting these variations, and apparently the use of polarisation functions improves the 

goodness of the results more than the diffuse function can do (6-311+G(d,p) table 7). 

The experiments predict that the effect on A6y (Me3SnCH2CH3 Me3SnCH2CH2CH3) 

would be about -t-6.5 ppm. In almost none of the calculations done this effect seems to be 

satisfactory predicted. In fact the best correlated dataset predicts only about +3.5 ppm 

for the shift. The slopes of these data indicate again an underestimation of the effect 

induced by methyl groups when substituted for H atoms in all cases. Again, the slope and 

are consistently improving together for all the tested basis sets in B3LYP. The LSDAs 

slope value of 0.487 probably arises from cancellation of errors, since its R' is only 

0.542. 

78 



2.3 D F T Applications on '"Sn magnetic shielding calculations. 

Chain effect B 3 L Y P ' B L Y P L S D A 
Exp. 6-31G 6-31 IG 6-311-i-G 6-311-i-i-G 6-311-i-G(d,p) IGLO-m 6-31 IG 6-31H-G IGLO-III 

Me4Sn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MejSnCEt) 5.90 -9.82 -0.07 4.35 4.86 2.29 -0.60 -1.10 3.10 -1.56 

MejSnCnPr) -1.96 -13.64 -4.36 1.59 4.81 -1.15 -3.93 -5.76 0.18 -6.02 

MejSnCnBu) -0.55 -13.20 -2.98 1.51 6.34 -1.51 -4.11 -4.38 -0.37 -6.10 

A5 Et/nPr 7.86 3.82 4.29 2.76 0.05 3.44 3.33 4.66 2.92 4.46 

A5 nPr/nBu 2.51 26.84 7.34 -3.10 -11.15 2.66 8.04 10.14 0.19 12.12 

0.108 0.71 0.817 0.077 0.948 0.611 0.594 0.942 0.542 

Slope 0.197 0.445 0.427 0.061 0.468 0.381 0.464 0.434 0.487 

Table 7. The effect of increasing the chain length. 

The bond-order effect has been considered as well by comparing three compounds and 

the reference (table 8). In general, the overall correlation seems to be quite good. The 

two hybrid functionals seem to perform mostly at the same level of quality and provide 

a little overestimation of these differences. The 6-3IIG basis set with B3LYP provides 

the closest slope to the unity; the value is M i l . 

A5 (Me3Sn(Et) Me3Sn(CH=CH2)) is experimentally found to be about -44.1 ppm 

(average for 25% v/v CH2CI2, CeDg, and CCI4 solutions) and 

A5 (Me3Sn(CH=CH2)^Me3Sn(CCH)) is about 29 ppm (same average). Different 

results are obtained when the double/triple bond variation is investigated. Me3Sn(CCH) 

is in general more shielded in our calculations than found in the experiments. However 

only data from CH2CI2 (-68.1 ppm) and THF/CeDe (-70.1 ppm) [15b] solutions are 

available, and no other values for the chemical shift dependence on the solvent are to be 

found in the literature. 
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Bond-effect Exp. B 3 L Y P B L Y P L S D A 

6-3 I G 6-31 IG 6-311+G 6-311-i-G(d,p) IGLO-III 6-31 IG 6-311+G IGLO-III 

Me4Sn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Me3Sn(Et) 5.9 -9.8 -0.1 4.4 2.3 -0.6 -1.1 3.1 -1.6 

M e 3 S n ( C H - C H 2 ) -40.0 -41.2 -36.0 -40.1 -42.5 -39.6 -40.9 -46.2 -42.5 

Me3Sn(CCH) -68.1 -90.7 -83.5 -80.2 -80.0 -89.4 -93.3 -91.9 -97.2 

A5 Single/double -44.1 31.4 35.9 44.5 44.8 39.0 39.8 49.3 40.9 

A5 Double/triple 28.1 49.5 47.5 40.1 37.5 49.8 52.4 45.7 54.7 

0.969 0.982 0.996 0.997 0.983 0.982 0.995 0.981 

Slope 1.133 1.111 1.128 1.118 1.191 1.237 1.277 1.284 

Table 8. The effect of the bond order. 

The last dataset (table 9) is used to consider how the symmetric substitution affects the 

chemical shift. These data show that calculated values are more overestimated than for 

the other datasets analysed. Increasing the basis-set size (between 6-3IG and 6-3IIG) 

does not change significantly the correlations, which stay reasonably good. Instead the 

amount of overestimation of the shift effects increases. BLYP provides the best R̂  

value. However, the amount of overestimation is significantly bigger than with B3LYP. 

The overestimation increases when 6-311-i-G is employed instead of 6-31 IG by about 

80%. 

Symmetric 
Substitution 

Exp. B3LYP5(ppn,) B L Y P 5 (ppm) LSDA 5(ppm) 

Me^Sn 0.0 
6-3 IG 

0.0 
6-3IIG 

0.0 
6-311+G 

0.0 
6-311+G(d,p) 

0.0 
IGLO-III 

0.0 
6-31 IG 

0.0 
6-311+G 

0.0 
IGLO-III 

0.0 

Et.Sn -6.7 -5.5 -3.4 5.0 -1.9 -4.1 -7.6 0.8 -7.4 

iPr.Sn -43.9 -57.2 -60.5 -61.1 -64.6 -63.0 -69.9 -71.8 -93.1 

nPr^Sn -16.8 -19.0 -18.6 -10.8 -20.2 -16.5 -23.7 -16.4 -25.0 

nBu.Sn -12.0 -17.1 -13.6 10.8 1.6 -18.3 -19.0 8.6 -26.8 

0.996 0.995 0.925 0.962 0.988 0.998 0.939 0.990 

Slope 1.321 1.431 1.590 1.598 1.471 1.614 1.818 2.162 

Table 9. The effect of isotropic substitution. 
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2.3 D F T Applications on "^Sn magnetic shielding calculations. 

Conclusion. 

The prediction of tin chemical shifts for tetraorganotin derivatives have been tested on 

different DFT methods. The calculations show how, despite the lack of accuracy in 

predicting absolute shielding, the general trend is quite close to experimental results. 

The difference in the values obtained with SCF and DFT methods is quite large, 

displaying how correlaton effects are important. Saturation of the tin basis set, despite 

being performed as suggested by the literature, has been stopped at the TZV level. A 

larger basis set could be tested in the future, perhaps achieving a further level of 

saturation. Among the different methods tested, B3LYP and BLYP seem to be the most 

reliable when coupled with medium/large basis sets such as 6-311-i-G with polarization 

functions, a-substitution results are well predicted, and other local effects such as P 

substitution, bond-order effects and isotropic substitution provide quite good 

correlations. Nevertheless, the effect of increasing the chain length is always 

underestimated-though it greatly benefits from a larger basis sets [S, 23] in term of 

correlation with experimental data. This mismatch between experiment and calculations 

is not immediately clear and could in principle be addressed by factors such as variation 

in experimental conditions. For the simple case of (Me)3SnEt five different chemical 

shifts are found in the literature: +5.9 neat liquid; -2.7 (±0.1) neat liquid; -1-3.0 (±0.1) 

CCU; +3.0 (±0.1) 30% benzene and +4.2 (±0.1) 25% v/v CH2CI2 [15]. Contributions 

arising from intermolecular interactions and internal motions are present: for H4Sn the 

shift between gas and liquid phase is found to be 74 ppm [2], however these effects are 

expected to be less important for other tetraorganotin derivatives. This latter effect 

could be particularly important for larger molecules where the fluxional behaviour 

might average the geometry to a value slightly different from the equilibrium geometry. 
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2.3 DFT Applications on Sn magnetic shielding calculations. 

As an example of the correlations found chart 1 displays the results obtained for B3LYP 
hybrid function with a 6-33IG basis set with respect to the experimental values. 

BLYP/6-3I1G: Comparison With Exp. Values 
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Chart. 1. An example of the correlation with experimental (neat liquid) results. 
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3.1 Calculations and spectroscopy on trimethyltin cyanide 

Chapter 3 

3.1 Calculations and spectroscopy on trimethyltin cyanide 

Introduction. 

Trimethyltin cyanide in the solid state forms orthorhombic crystals in space group Cmcm 

with a= 9.96, b=11.96, c =6.06 A. The X -ray crystal structure is known [1] and it 

consists of planar units of (CH3)3Sn groups with symmetry close to Dsn stacked in 

linear chains. Trigonal bipyramidal Sn units are linked along the CN coordination axis. 

Cyanide groups are disposed on both sides of the (CH3)3Sn groups (Figure 1). 

0. 

1 

17s,r.& 

Figure 1. Crystal structure of (Me)3SnCN. Linear chains are cleariy visible. C and N positions are not 
discriminated in the original X-ray determination where cyano groups orientation are considered 
averaged. H atoms are omitted for clarity. 
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3.1 Calculations and spectroscopy on trimethyltin cyanide 

However, the x-ray investigation was unable to distinguish between N and C atoms of 
the cyanide groups, so that the investigators could not determine whether the system 
was ordered or disordered. Moreover, these are clearly at least two possible ordered 
system: type (1): [CN-Sn-CN-Sn-CN-] and type (2) [CN-Sn-NC-Sn-CN-Sn-NC]-. The 
interatomic distances are: Sn-C (methyl) 2.16±0.03 A, Sn-C (or N) is 2.49 ±0.02 A, and 
C-N is 1.09±0.03 A. 

^ '̂Sn spectrum 

The "^Sn MAS spectrum shows only one centreband with a nearly axially symmetric 

tensor; the isotropic shift is -143 ppm; anisotropy -327 ppm; asymmetry 0.17 (averages 

of two measurements giving: Ao -330 and -325 ppm; r\ 0.23 and 0.11 respectively). 

The lines are quite broad, having a line width of about 840 Hz (Figure 2). The spectrum 

immediately shows that the system is not disordered and that the chains have tin atoms 

coordinated by the carbon of a cyanide group on one side and nitrogen on the other. The 

alternative possibility described above would yield to two widely separated tin signals. 

2 9 0 0 0 - 3 0 0 0 0 -31 000 

0 

m E X P 

— o — G a l e 

D iff 

400 200 -200 -400 -600 
—T"-

-4 
ppm ss b order 

Figure 2. The "'Sn spectrum of solid trimethyltin cyanide. Experimental conditions: VL(Sn) 111.841 
MHz, contact time 1.0 ms, recycle delay 30 s, acq. time 5.1 jxs, spin rate 7000 Hz. Top: experimental 
spectrum, middle: simulation. Inset: linewidth reported for the most intense sideband (Hz scale). Right: 
the pattern of the experimental spinning sideband intensities is reported with the ones calculated and their 
difference. 
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3.1 Calculations and spectroscopy on trimethyltin cyanide 

DFT results. 

The principal interest in this old crystal structure stems from the ambiguity in the 

determination of the positions of the N and C atoms of the cyano groups. The distance 

between different chains is 5.94 A (measured as the Sn-Sn distance), and the distance 

between carbons of the nearest methyl groups is 4.36 A. Therefore we can assume that 

no important interactions are taking place between these chains and that major solid-

state effects arise from the linearly coordinated atoms in the chains. This crystal 

structure seems to represent a valid example for testing shielding tensor calculation in 

controlling the solid state effects by increasing the chain length. In this study the 

molecular fragments involved will be denoted by the number of tin atoms present. All 

the tin atoms are coordinated with cyano groups on both sides and, i f not specified, the 

CN coordination is intended 'sequential' (type (I ) , above). Hence the "monomer" will 

be the unit: CN-Sn(CH3)3-CN. 

Density Functional Theory methods have been used to compute the ^^^Sn isotropic 

chemical shifts using B3LYP hybrid functionals [2] with relatively large basis sets. 

For the ligands atoms (C,N,0 and H) 6-31I-i-G(d,p) [3] basis sets were used; which 

may be described as (I2s,6p,Id)/[5s,4p,Id] with polarization functions on C, N,0 (d) 

and H, (p). The basis set used for the tin atom was a triple zeta valence [4] which is 

(19sl5p9d) / [8s7p5d]. The calculations performed on the monomer show, as expected, 

quite different shielding values for the three possible ways of coordinating two CN 

groups. The results obtained by these calculations are listed in Table 1. There is a 

significant difference between the cyano group coordinated via both C and N atoms or 

via two N or two C atoms. These values were obtained by subtracting from the absolute 

shift of the reference (2629 ppm for Sn(CH3)4) the absolute shift of the compound. 
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3.1 Calculations and spectroscopy on trimethyltin cyanide 

These preliminary results show how the difference in 5iso between I I and I I I is very 
large, about 150 ppm. 

5iso 
ppm 

Aa 
ppm 

I CN-Sn-CN -228 -391 0.03 

I I CN-Sn-NC -144 -327 0.05 

I I I NC-Sn-CN -294 -437 0.05 

Table 1. Shielding values obtained for the calculations performed on the monomeric unit for three 
different arrangements of the ligands. 

The differences between 6iso(I) and 5iso(II) is about 75 ppm whereas between 5iso(II) 

and 6iso(III) it is 66 ppm (about 8400 and 7400 Hz at 111.841 MHz respectively); 

These values are well outside of the linewidth experimentally recorded. However, these 

values do not take into account any solid-state effect, being related only to monomeric 

units. 

One of the purposes of this work was to be to test the effect of a sequential order of CN 

groups along the chain, versus a series of symmetrically coordinated tin environments 

like (II) and (III). In this latter case, cyano groups in alternated order within longer 

chains might give rise to apparently only one distinguishable tin site. In other words, on 

increasing the size of such chains, the difference between the two values (-144 and -294 

ppm ) might reduce substantially, or, conversely (and more probably), remain as two 

very different values. On the other hand, a chain in which the orientation of the cyano 

group is sequential might confirm the presence of only one site. For these reasons, two 

tests were performed, considering firstly an ordered structure in which the cyano groups 

were sequentially coordinated, and then another structure in which they were 

symmetrically coordinated as in cases I I and I I I of Table 1. The charts in Figure 3 show 

the results obtained from such approach. Starting from the monomer the size of the 
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3.1 Calculations and spectroscopy on trimethyltin cyanide 

chain was increased symmetrically with respect to the central tin atom. The data were 
obtained for fragments having 1,3,5,7 and 9 tin atoms. The x-axis in Figure 3 represents 
the position of the tin atom in the chain. The label zero defines the central position. The 
y-axis displays the isotropic chemical shift. In one case all the CN groups are oriented 
in the same way, whereas in the other they are alternated, so that the chains become a 
sequence of environments I I and I I I . The order of the ligands from left to right in Figure 
3 (top) is NC-Sn-NC. In Figure 3 (bottom) the central unit is CN-Sn-NC. 

-i6o'-^'Sn5,^„/ppm 

-180 H 

-200-

-220 H 

-240- —r-
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—r-
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-> 1 
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-2 
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Figure 3. The isotropic chemical shift for the tin atom is reported (y-axis in ppm) with respect to its 
position along the chain. The central tin atom is labelled with zero. Above: Results obtained by cyano 
groups with all the same orientation symmetric positions with respect to the centre show slightly different 
values (see text). Bottom: the cyano groups are alternated; CN-Sn-NC and NC-Sn-CN. 

It appears clearly in the second case (bottom in Figure 3) that the resonances for the two 

tin environments remain well separated. Increasing the chain length does not seem to 

reduce the difference between them. The situation in the other case is different. The 

central tin atom increases its isotropic chemical shift from -227 ppm (monomer) up to -

171 ppm, and the outer tin atoms seem to follow the same trend as the chain increases 
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3.1 Calculations and spectroscopy on trimethyltin cyanide 

the length. From five to nine tin atoms, the chains displays a flat region involving all the 

inner tin atoms. This region is not however completely flat. In the longer chain, with 

nine tin atoms, the chemical shift of the inner five atoms slightly vary from -170 to -

175 ppm. However, this 5-ppm difference corresponds to only about 560 Hz in the 

experimental spectrum, which is within the experimental linewidth. This drift arises 

from the effect of the lack of asymmetry in the chain arising from the outermost NC or 

CN groups. In fact, the negative label represents those tin atoms who experience the 

effect of the longest chain via the N atom, whereas the ones positively labelled are 

receiving the effect of the longest chain via C coordination. This effect also explain the 

difference in the isotropic chemical shifts of the outermost tin atoms. The isotropic 

chemical shift of the central tin atom follows an asymptotic trend (Figure 4), which 

shows that the nearest atoms account for the largest effect. In fact, 83% of the overall 

chemical shift variation is accomplished passing from the monomer to the trimer. 

Moreover, a similar trend is also found for the outer tin atoms and this is a further proof 

of the single isotropic value achievable with infinite length, according with a single tin 

site in the crystal structure and a single resonance in the spectrum. 

-170-

-180-

in -190 • 

-200 H 

5 -210 

P -220 

-230 H 

12.3% 

83 .3% 

3.3% 
1.2% 

y=a-bc'' 
Data: Data1_B Model: Asymptotid 

= 0.99343 

a -170.49497 ±1.22638 
b 113.91315 ±5.31038 
c 0.5 ±0 

— I — . — I — • — I — ' — I — ' — I — ' — r 
3 4 5 6 7 8 

number of tin atoms in the chain 

10 

Figure 4. The isotropic chemical shift variation for the central tin atom is shown for an increasing number 
of tin atoms in the chain. The best fit is obtained with an asymptotic curve. The percentage values 
indicates the variation in chemical shift passing from the monomer to the longest chain. 
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3.1 Calculations and spectroscopy on trimethyltin cyanide 

Further investigation of the shielding tensor in the sequential arrangement can be made 

by examining the trends of the anisotropy, the asymmetry, and the single components, 

cfxx, CTyy, Qzz (Flgurc 5). The behaviour of all these parameters resembles closely that of 

the isotropic chemical shift, rising up to a limit, which is almost completely 

accomplished when the fragment has only five tin atoms. The asymmetry, which is 

small, fluctuates a little, showing maxima and minima in alternated positions for 

different fragments. One possible explanation for this can be found also in looking to 

Cfxx, cTyy, Ozz- Thcy actually show small differences along the chain, which would 

become amplified when converted into the asymmetry. The coordinative angles along 

the chain of the N atom and the C atom are in fact different (Figure 1), 178.56 and 

179.17 degrees (assignment not known), which can explain the small differences, 

generating the fluctuating trend shown in Figure 5. This fluctuation is however, very 

small, being confined between 0.05 and 0.07, which is much lower that the detected 

value of 0.23. 

O 5 
— • • - 3 

A 1 n 
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tin atom order 

Figure 5. Above: Individual tensor components. Bottom: isotropic shift, anisotropy and asymmetry. 
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3.1 Calculations and spectroscopy on trimethyltin cyanide 

Calculations can also show the nuclear quadrupolar coupling constant (NQCC) at the 

nitrogen atoms varies along the chain. As found for the shielding tensor, the EFG tensor 

(of which the quadrupolar coupling constant is a function) quickly approaches a single 

value. In fact, the same trend found for the NQCC is also reported for the single tensor 

components (qzz, qyy and qxx) . As shown in Figure 6, the extremes of the chains show 

very different values. N bonded to the tin has a NQCC of only -1.45 MHz whereas end-

side N atoms have -2.62 MHz. As expected, in the longest chain the two inner N atoms 

show almost the same values; -1.81 and -1.82 MHz. A corresponding trend is found for 

the asymmetry in the electric field gradient, which converges towards the value of 

0.0023, i.e. it is very close to zero for all the cases considered here. 
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Figure 6. Nitrogen quadrupolar coupling constant as a function of the chain length. Negative numbers on 
the X-axis indicated the direction toward the N atom end-side, which shows the largest quadrupolar 
coupling constants. 

The tensor characterisation can be concluded by giving the mutual orientation of the 

CSA and EFG tensors in this system. Due to the imperfect alignment along the chain 

(Figure 1) the tensor responsible for shielding of the tin atom, and the EFG (which 

affects the '^C spectrum), would not be completely co-linear, though the deviation from 

92 



3.1 Calculations and spectroscopy on trimethyltin cyanide 

complete coaxiality would be rather small. From the computation information is 
obtained about the tensor represented in the molecular frame. By diagonalisation of 
such nine-component tensors the three principal components which feature the NMR 
spectra are found. Such components contain the same information, only expressed in 
their Principal Axis System (PAS). The matrix which operates the diagonalisation will 
provide the orientation between the PAS and the molecular frame (know as Standard 
Orientation in Gaussian98, Figure 7). By geometrical considerations it is possible to 
work out the orientation of the internuclear vectors (C-N) within the Gaussian system of 
coordinates, and then the PAS orientation with respect to the intemuclear vector. In our 
model the standard orientation displays the chain as parallel to the x-axis, and the 
methyl groups lying on planes parallel to yz. 

Figure 7. Standard Orientation of the chain within the molecular frame generated by Gaussian98. Methyl 
groups are lying parallel to the yz planes. 

We consider the central monomer unit in the largest chain which contains the limiting 

values found in the calculations (Figure 7). In order to define the tensor position, the 

orientation of the intemuclear vectors in the Molecular Frame (MF) must first be found. 

In Table 2, section A, the orientation of the internuclear vectors within the MF are 
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given. Section B provides instead the tensor orientation in the MF system; it is possible 
to see how the orientations reflect the small geometrical distortion. Section C gives the 
tensor orientation with respect to the corresponding internuclear vectors. While the EFG 
tensors have directions coincident with the y and z planes, this is not the case for the 
CSA tensor, for which, because of the shielding effect of the methyl groups, the two 
remaining components form angles of 65.94 and 114.39 degrees with respect to the y 
and z planes. Having obtained all the data related to the relevant tensors present in the 
model the NMR spectrum of '^C nuclei affected by a neighbouring bonded nitrogen 
can be simulated. A vast literature [5,6,7] is available on this matter, since these 
phenomena have been studied for many different samples, including results for 
organometallic cyanides such as the ones of this study. By using the approach of 
Olivieri [8] we can simulate the lineshape of the carbon nuclei involved in the cyano 
group. 

A vs. M F N4-C3 (degrees) Sn2-N8 (degrees) N8-C9 (degrees) 

0.16 178.82 0.16 

PB 89.88 88.77 89.88 

YB 90.05 90.04 90.05 

B vs. MF EFG(N4) CSA (Sn2) EFG(N8) 

ax 180.09 0.81 180.09 

1̂  180.09 65.94 180.09 

YT 0.00 114.39 0.00 

C TVS. B EFG(N4) CSA (Sn2) EFG(N8) 

179.93 -178.01 179.93 

P ° 90.21 -22.84 90.21 

Table 2. A: Angles giving the orientation of the internuclear vectors within the Molecular Frame (MF). B: 
Tensor (PAS) orientation within the MF. C: Tensor (PAS) orientation with respect to the intemuclear 
vectors. 

The simulation performed takes into account the values found for the orientation of the 

''^N EFG tensor with respect to the internuclear vector linking the two atoms. The 
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3.1 Calculations and spectroscopy on trimethyltin cyanide 

simulations were performed on the summation of the spinning sideband manifold, this 
condition reflecting the infinite spinning speed conditions. The value As is estimated 
from the spectrum to be 50 Hz. Considering the parameters calculated by Gaussian98 
(table 2) the value of AJ can be calculated as well. As is negative and the quadrupolar 
coupling constant is negative. Therefore the value for D ' must be positive and the 
expression (D- AJ/3) has to be positive. Being positive D (obtained from the C-N X-ray 
distance) and being D' 2018 Hz, AJ is found to be 998 Hz. The simulation with these 
parameters is shown in figure 8. 

- 1 1 1 1 1 r 1 1 1 1 — I 1 1 1 1 i — ' T 

140 135 130 

Figure 8. Simulation of the '^C cyanide signal, centreband position as a summation of all the spinning 
sidebands. Experimental conditions: contact time 1.0 ms; recycle delay 30 s,. acq. time 20 ms, spin rate 
4000 Hz, number of repetitions: 1916. The data used for simulation the spectrum were previously 
obtained by DFT calculations and are the following: JC=-1.81 MHz; TIEFG = 0.0023; P ° = 90.21°, 
a°=179.93°, D=1686 Hz, J= 100 Hz., AJ= 998 Hz The linebroadening applied for matching purposes is 
170 Hz. 

95 



3.1 Calculations and spectroscopy on trimethyltin cyanide 

In Figure 8 are also visible the three signals arising from the J coupling with the ' ' ' N . 
Their lineshapes are a powder patterns reflecting the asymmetry of the EFG at the spin 
1 nucleus. This lineshape has been simulated by using WinSolids [9]. 

^^C spectrum. 

Finally, to complete the theoretical and spectroscopic characterisation the chemical 

shift tensor of the cyanide signal is analysed. The original spectrum and the simulation 

are showed in Figure 9. This spectrum has been obtained from a '^C- enriched sample. 

The presence of only one cyanide centreband is in agreement with the finding of only 

one kind of tin group. The pattern shows a nearly axially symmetric shielding tensor. 

The tensor parameters obtained by the fitting of the spinning sideband intensities are in 

agreement with the results found with the theoretical calculations from CN-Sn-NC 

model. The anisotropy is 326 ppm from the fitting and 350 ppm from DFT results. The 

asymmetry is larger than the one found with DFT; 0.240 as compared to 0.05. The 

isotropic chemical shift, calculated as the centre of mass of the doublet at 135.3 and 

133.4 ppm, is 134.7 ppm. In this case too the results found for the DFT calculations are 

encouraging. Using the shielding value for TMS (the reference compound for carbon 

shifts), namely 182.5 ppm, and subtracting of the shielding of the inner carbon atoms 

53.6 or 53.4 gives 128.9 and 129.1 ppm, giving deviations from the experimental value 

of 6.3 and 5.3 ppm respectively. 
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— d i l l 

100 -200 -4 400 300 200 1 00 
ssb order ppm 

Figure 9. Left: Cyanides '^C spectrum of trimethyltin cyanide. Experimental conditions: VL(C)=75.43 
MHz, contact time 1.0 ms; recycle delay 30 s, acq. time 20 ms, spin rate 4000 Hz. Right: the pattern of 
the experimental spinning sideband intensities is reported, with those calculated and their difference. 

Conclusions. 

The investigations performed on this model compound provide a useful assessment of 

the DFT performance in the solid state. The simple crystal structure based on well-

separated linear chains allows the description of the NMR parameters by neglecting the 

interaction between the chains without loss of significance. The results arising from the 

tin shielding confirm the presence of a perfectly ordered disposition of the cyanide 

groups coordinating the Sn(CH3)3 units. In fact, the calculations demonstrated how two 

different environments would be present in the spectrum i f the symmetric coordination 

of the CN groups would be present. The solid-state effect seems to be important for the 

tin shielding tensor. The DFT calculations provide an asymptotic trend, in which the 

longest chain of nine tin atoms seems to represent already the final value. Due to the 

very demanding computational cost, it is unfortunately not possible to increase sensibly 

(e.g. >9 tin atoms) the chain length in order to fully assess the asymptotic limit. If, 

however the difference between the isotropic shift obtained with seven and nine tin 
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atoms is reliable, it can be concluded that the limit has already been reached. In this 
case, the difference of 30 ppm between our calculated value (-171 ppm) and the 
experimental one (-143 ppm) might be explained in terms of extra effects that are not 
completely evaluated with the B3LYP hybrid functional (e.g. by relativity 
contributions). Because of the linear chains the nature of the coordinative bond to the tin 
atoms might have a contribution of electron delocalisation in which the CN bond and 
the SnC (or SnN) bonds are not purely triple and single bonds. The way this would 
affect the shielding might not be taken in to account by the hybrid functional here 
employed. In support of this hypothesis, a comparison between the cyanide chains and 
the CO molecule should then be made. In this molecule a strong electron correlation 
prevents a proper computation of the shielding tensor [iO]. By using B3LYP on CO a 
'•'C chemical shift value of 211.3 ppm it has been calculated with an absolute error of 
17.2 ppm with respect to the experimental value, 194.1 ppm [11]. However, this has 
pointed out the good trade off between accuracy and cost with respect to MP2, 
prohibitively expensive for our investigation. A further point that could benefit from a 
longer chain is the drift of the isotropic chemical shift in the inner tin atoms that might 
disappear for longer chains. The electric field gradient evaluated at the nitrogen atoms 
provides a trend which is highly compatible with the finding related to the shielding 
effect. Also the quadrupolar coupling constant at the nitrogen atom (-1.81 MHz) appear 
to be quite reasonable. Simulation of the cyano lineshapes provides a test of the 
computational results. This confirms the sign of the quadrupolar coupling constant, and 
the overall match seems satisfactory. However, the experimental lineshape that has been 
simulated (Figure 8) is quite broad and not highly featured. For this reason an even 
more restricted match with the experiment would leave some uncertainty on the 
goodness of the parameter used. 
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3.2 Molecular crystals: computation on two isomers of 
[(Me3Sn),Co(CN),.2H,0] 

Introduction 

The two fragments analysed by DFT as described in this section can be considered to 

form the asymmetric units of the two respective crystal systems. The actual asymmetric 

units (Fig. 1, Ch. 4.2) each contain also a guest molecule but we are not interested in 

modelling it. We will focus our attention on the organometallic fragments. It is 

important to note that these two systems can be considered to be molecular crystals; in 

fact, they do not feature infinite three-dimensional chains as in other compounds [1]. 

These cis and trans-isomtrs may allow another useful attempt for the application of 

DFT to organometallic systems. In our discussion, we will refer to the cis isomer by 

using the symbol 3a(c) and we will use 3a(t) for the trans isomer. 

Our attention will be focused mainly on the reproduction of the tin spectra of those units 

(Fig 7 Ch 4.2). The calculations on both fragments have been performed by using 

B3LYP hybrid functional with three different basis sets: for tin TZV, [2], for cobalt 6-

31G*, and 6-311-i-G(d,p) for carbon, nitrogen oxygen and hydrogen. Both molecules are 

anions with a formal charge of - 1 . The geometries used in both cases were taken from 

single crystal studies [3]. Al l the tin chemical shifts value have been obtained by 

difference between computed absolute shieldings: aref-asampie-

Simulation of NMR parameters 

The tin spectra of those compounds should reflect the asymmetric unit, containing in 

both cases two tin atoms. However, only for 3a(c) two well-separated tin sites are found 
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from the spectrum. Conversely, the "^Sn spectrum of 3a(t) displays only a single 

centreband peak. The reproduction of the chemical shift tensor parameters and their 

comparison with the values experimentally found is summarised in table. 1. 

Siso (ppm) 
exp calc 

Aa (ppm) 

exp calc 
11 

exp calc 

3a(c) -61.0 -91.3 
-75.0 -99.9 

-335.9 -257.1 
-333.6 -258.9 

0.00 0.17 
0.00 0.26 

3a(t) 
-79.0 -68.8 

-72.2 
-361.0 -267.6 

-263.1 
0.40 0.20 

0.14 
Table. 1 Experimental and calculated chemical shift parameters for 3a(c) and 3a(t) 

The isotropic chemical shift seems to deviate more in the case of 3a(c), in which both 

sites appear more shielded by about 30 ppm from experimental values. The shielding 

difference between the two sites is slightly smaller than found experimentally. The case 

of 3a(t) seems to be more favourable. The deviation from the experimentally found 

isotropic values (-79.0) is smaller for both the tin sites. More significantly, the 

separation of the two computed isotropic chemical shifts (394 Hz) is within the 

experimental linewidth (543 Hz at 111.841 MHz). The deviation from the experimental 

chemical shift is only 10 and 6 ppm respectively, so the computation can be considered 

reasonably consistent with the experiment. 

It is possible to calculated the second order shift from the ' '̂ Sn spectrum and it can be 

compared with the results of the computation performed. The following lineshape 

simulations have been performed by using WinSolids [4]. 

In this case the second order shift (A) is positive, the grouping of the lines happens at 

lower frequency. According with [5], this would pose some restriction of the relative 

sign of D, D' and the quadrupolar coupling constant (x) of the nitrogen with its 

asynnmetry (TIEFG)- From the spectrum the two shifts appear to be 7±1 Hz and 11±1 Hz 
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respectively. By applying the formula A=-3/10(xD7vs) two quadrupolar coupling 
constant are obtained: 1.78 and 2.80 MHz for the sites at -61 and -74 ppm respectively. 
The second order shift (As) has been calculated from the experimental spectrum under 
the assumptions that a) the anisotropy of the J coupling (AJ) can be neglected (D=D' 
=258.3 Hz from the X-ray distance), and b) all the interaction are co-linear: 
PASEFG=PASD; wich implie a ° and P° both zero. With these assumption however the 
simulated spectra are in reasonable agreement with the experiment and for the two sites 
at -61 and -75 ppm it is found % =1.98 and 3.05 MHz respectively. 
By DFT, the computation of the electric field gradient on the nitrogen atom enable the 
determination of the values of %, its sign and also TIEFG. Moreover, the orientation of the 
P A S of the electric field gradient (PASEFG) in the molecular frame can be obtained, 
therefore the orientation of the PASEFG with respect to the intemuclear vector Sn-N can 
be calculated obtaining two angles called aP, P° [6]. Other important tensor orientations 
such as the dipolar tensor and the J tensor are not obtained by our computation or 
separately by experimental determinations. However, their mutual colinearity alongside 
with the colinearity with the intemuclear Sn-N vector can be generally assumed. 
Therefore, the parameters obtained from the computation are: %, T̂ EFG, OP, From the 
formula [7]: 

S(5 + l ) - 3 m ' (3 cos' - 1 + 77 sin' y^'' cos la""). 
si2S-l) 

By considering all the values now available the magnitude of D' and therefore AJ are 

determined. The simulations are displayed in figure 1, where two different cases were 

considered to compare the results. In the first case A ) the simplest approach has been 

considered. By supposing an unknown structure all the tensors were considered coaxial. 
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This would lead to the value of % , which is 1.8 and 2.8 MHz for the two sites at -61 and 
-75 ppm respectively. In the second case B) the information coming from the X-ray (D) 
and Gaussian98 are instead used. 

3a(c) 6iso(ppm) A (Hz) X(MHz) X(MHz) TIEFG 

EXP EXP G98 G98 
3a(t) 5iso EXP 

(ppm) 

a°=121.0 
-61 7±1 1.98 -0.745 0.023 

p'^=89.6 

a^=154.2 
-79 

p°=87.6 

oP=ni.Q 
-75 11±1 3.05 -0.750 0.023 

P°=89.0 

a°=94.6 
-79 

p°=90.6 

Table 2. Comparison between calculated and experiments parameters for the two compounds, x EXP 
indicates the value calculated by neglecting the value of AJ and the colinearity of all the interactions (D=-258 Hz). 
For clarity, all the values refer to the experimental isotropic chemical shift positions. 

From the X-ray, the value of D is calculated and therefore also an estimation of AJ is 

made possible. However, the calculation also provides the values for a*̂  and P"̂ , which 

are not zero. These two angles define the orientation of the electric field gradient with 

respect to the intemuclear vector Sn-N. The quadrupolar-coupling constant for the 

nitrogen for both sites, appears to be only -0.745 and -0.750 MHz. The new simulation 

seems to provide a better agreement with the experiment. The fitting performed with the 

case A) can be easily improved by changing the two parameters % and D but does not 

provide information on the two angles aP and P"̂  neither on AJ. 

It is important to note how the values indirectiy obtained from AJ might be affected by 

large uncertainty since they only appear in the computation of D' divided by 3. Also the 

measurement of As might be inaccurate leading to errors also in the estimation of the 

quadrupolar coupling constant. This seems to be the case for the second site, at -75 

ppm. 

103 



3.2 Molecular crystals: computation on two isomers of [(Me3Sn)2Co(CN)6.2H20] 

(>iso=-60.9 ppm 
-/=1.98 MHz 
D=-258.3 Hz 
aD=0 
pD=0 
J= 119.6 Hz 

5iso=-74.8 ppm 
•/=3.05 MHz 
D=-258.3 Hz 
aD=0 
pD=0 
J=l28.6Hz 
11 =0,0 

EFG 

-55 -60 -65 -70 -75 -80 

6iso=-60.9 
aD=l21.0 
pD=89.0 
X=-0.745 MHz 
D=-258.3 Hz 
J=119.6 Hz 
AJ=2826 Hz 

G98 results 

11 ^=0.023 
'efg 

-55 -do -65 

8iso=-74.8 
aD=121.0 
pD=89 
7=-0.750 MHz 
D=-258.3Hz 
J=128.6 Hz 
AJ=4045 Hz 

G98 results 

-70 -75 

Figure 1. Simulation of the "^Sn centreband lineshapes of compound 3a(c). DFT calculations were 
obtained with Gaussian98, providing the values of %, TIEFG, OC°, and P°. Dipolar coupling has been 
computed according to the Sn-N distance (2.324 A), obtained from single-crystal X-ray results. 80 Hz 
Lorentzian linebroadening was applied for all the cases. A ) Simulation assuming PASEFG coincident with 
P A S D hence D=D' =258 Hz. B) simulation by using the values from Gaussian 98 computations. 

The simulation o f the tin lineshape of 3a(t) has been performed, accounting of the 

nitrogen effects computed by DFT. No second order shift is not visible in the spectrum 

as it features only a singlet centreband. Therefore, it is also impossible to estimate the 

value of A. The isotropic chemical shifts of the two sites were set symmetrically with 

respect to the experimental position (-79.0 ppm). The best description of the lineshape 

has been obtained by setting the two isotropic chemical shift positions to -78.1 and -

79.6 ppm with a Jiso of 122 Hz. This seems to suggest that also the calculated separation 

between the two sites (~ 3.5 ppm) is overestimated. The lineshape obtained reflects 

closely the uniqueness o f the experimental single peak (Fig.2). 
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fiiso=-79.6 
( i D = i M . l 7 
|)D=87.82 
Z=-0.756MH2 
D=-258.3 Hz 
J=122 
<iJ=0 

,=0.01 

Siso=-78.1 
uiD=94.61 
(1D=90.62 
y=-0. /68 MHZ 
D=-258.3 Hz 
J=122 
, , , , , , ,=0.02 

br / ppm 

Figure 2. Simulation of the "'Sn centreband lineshape of compound 3a(t). DFT calculations were 
obtained with Gaussian98, providing the values of %, TIEFG. and P°. Dipolar coupling has been 
computed according with the Sn-N distance (2.324 A), obtained from single-crystal X-ray results. 80 Hz 
Lorentzian linebroadening was applied. By using a much larger Lorentzian linebroadening a single 
lineshape appears. However, the linewidth remains larger than the experimental one. 

The cyanide region of the ^̂ C spectrum for compound 3a(c) is difficult to examine 

experimentally, because of the low signal-to-noise ratio and because of the coupling 

with both the cobalt and nitrogen, which induce a large number of peaks. However, at 

least three different kinds of signal might be expected, each arising from two cyanide 

carbons. In fact, in 3a(c) of the six cyanide carbons two are bonded to the tin bridging 

units, the other two are in trans-configuration to them and two are vertically coordinated 

to the plane defined by the tin bridging units. Calculations on 3a(c) display these 

differences. 
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220 210 200 190 180 170 160 

/ 0 
220 210 200 190 

5(. /ppm 

180 170 160 

Figure 3. spectrum of 3a(t) and 3a(c), cyanide region. Conditions: VL(C) 50.33 MHz, pw 7 |as; 
contact time, 10 pis; acq. time, 102.4 [i& recycle delay, 4.0 s; number of repetitions, 2000. 

DFT results on 3a(c) shows that cobalt-terminal cyanides differ by only about 10 ppm 

f rom each other (c=147.5 and b=i3S ppm in Figure 3), whereas cyanides bonded to tin 

are far more deshielded (<3=193.5 ppm) and display larger anisotropies (276 ppm vs. 238 

and 231 ppm). In case of 3a(t) only two groups of signals are found: 186 ppm (a) for 

the tin-bonded cyanides and 140 ppm (b) for the remaining four equatorial terminal 

cyanides. The experimental spectra. Fig. 3 show relatively large bandshapes that cover a 

range of 30 ppm between 175 and 205 ppm. For both compounds, it is really difficult to 

f ind the number of sites present. The experimental position seems to be in agreement 

with the non-terminal (a) cyanide ligands (186 and 193 ppm respectively for 3a(c) and 

3a(t)) however; the lack of any signal between 140 and 150 ppm makes the overall 

results suspicious. Proton-carbon estimated distances in 3a(c) and 3a(t) are very similar 

for all the cyanides carbon (-3.5 A) whether considering the Sn(CH3)3 protons or the 

guest molecules ones. Thermal ellipsoids involving the guest molecule in 3a(c) and 

3a(t) are very different suggesting large degrees of freedom only in 3a(c) but not in 
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3a(t). This might reduce the cross polarisation efficiency of the terminal (b and c) 
explaining also the poorer S/N in 3a(c). Nevertheless, there is no direct way to exclude 
the presence of the terminal cyanide in the bandshapes in figure 3. In literature [8] for 
compound [(nBu4N)o.5(Me3Sn)3.5Fe(CN)6.H20] three values are quoted for the four 
cyanides: 196 ppm (bonded to H2O), 178 and 170 ppm (terminal cyanides). It appears 
f rom this values how the computed values for the terrioinal cyanides appear to be too 
shielded though some influence of the cobalt nucleus can be expected. 

Discussion 

Using the method previously assessed, the prediction of the tin chemical shifts of these 

two compounds has been performed. Whereas the prediction in 3a(t) seems to be more 

accurate, larger deviations are found for the isomer 3a(c). These results cannot be 

explained by simply using geometrical considerations regarding the coordination 

environment around the tin atom. Unfortunately, it is not feasible to assess the role of 

hydrogen bonding by expanding the calculation to a larger fragment. However, the role 

of the hydrogen bond seems to be quite weak. By comparison with the results found for 

trimethyl tin cyanide fCN-Sn-CNJ„ we could conclude that the lack in the description of 

electron correlation might affect the chemical shift computation of fragment such as 

CN-Sn-0H2. This hypothesis is also compatible with the underestimation of the 

chemical shift for the terminal cyanides, whereas the values found for the bridged 

cyanides seems closer to the experimental results. Simulation of second order 

quadrupolar effects are showing how important the effects of the interplay of the 

parameters involved can be in determining the correct Hneshape. In the case of 3a(c) a 

certain degree of uncertainty is affecting the value of AJ, whereas in the case of 3a(t) 

the experimental value for A cannot be determined directly f rom the spectrum as a 

single line appears, therefore the uncertainty in our fi t t ing is even larger. For 3a(c) the 
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comparison between the two simulations shows how the fitting is possible for many 
different couple of % and D ' values. The computed angles P° and a ° might at least 
provide help in reducing the number different combinations. It is important to note that, 
i f the measurement of D can be inaccurate, also the computed values might depend on 
the method used, and the basis set. 
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3.3 Coordinative tin environments in structurally related materials 

Trigonal bypyramidal tin has been a flexible building block in the synthesis of a large 

variety of organometallic cyanide complexes. The structural characterisation of such 

materials, joint ly performed by X-ray crystallography and solid-state NMR, showed 

how the coordinative environment of this nucleus maintains its chemical identity even 

with some significant geometrical rearrangement of the lattice. However, whether it 

forms a terminal chain block, or whether it is a proper bridging unit between two 

M(CN)6 groups, the units of the Sn(CH3)3'*" fragment do not change the geometrical 

trigonal planar environment. In this chapter, we wi l l start with a survey of the 

geometrical parameters for a series of crystal structures. By DFT calculations on the 

appropriate fragments, we w i l l try to understand how some properties change with a 

distortion of the two axial ligands. Then we w i l l consider a restricted family of such 

compounds in which the tin properties seems to correlate with the structural and 

chemical rearrangements. 

Distribution of geometries in the building fragment Me3Sn(NC). 

In comparing the available structures, we can start by looking at how the geometrical 

environment of the trimethyltin cyanide varies. The selected parameters are the 

distances- in the cyano bonds, the distances in the Sn-N bonds and the angles formed 

along the Sn-N-C directors. These last parameters are very important since they can 

indirectly provide an estimate of the distortion in the molecular framework. The 

distribution of the CN.distances is visualised in Figure 1 for all the compared structures. 
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The code names refer to the Cambridge Structural Database since this is the most 
powerful tool for retrieving structures. A list for the correspondence with the number, 
the chemical formula, and the bibliographic reference is provided in the appendix. As 
can be see in Figure 1, also a statistical distribution of this parameter is also reported. 
The CN bonds span f rom a minimum value of 1.120A to a maximum of 1.215 A and the 
average distance is 1.152 A. The standard deviation of 0.02 Angstrom indicates that this 
parameter is not particularly affected by structural reorganisation nor by changing the 
nature of the octahedral by coordinated metal. The minimum and the maximum values 
belong to two different compounds: (7) and (4); having formula 
[CuCN,Me3SnCN,0.5bpy] (bpy = 4,4'-bipyridiney and [{n-Bu4N)3Sn}3Fe(CN)6], with 
refcodes N U M R U I and TIPDAX respectively. Th core metal is different, copper with 
tetrahedral coordination in the case of the short b 'nd and octahedral iron in the other 
(Figure 2). 

1.3 

< 

1.2 

1.1 

a v e r a g e 
a 

MIN 1.120 
M A X 1.215 

1.152 
0 .02 

-

\ 

/ \. 
\ 

-̂̂ ^ \ 

.10 1 4 a 1.20 \2t 
C-N disia nces distribution (Angsirom) 

I ' ' I ' I 
25 30 

Struc ture 
40 50 

Figure 1. Statistical distribution of the CN distances. CCSD refcodes are quoted. The numbers refer to the 
tin bridging units present in the asymmetric unit. 

I t is also important to note how another structure (6, refcode VAGQUP) having the 

formula: [{n-Bu4N)3Sn}3Fe(CN)6 H2O] has a large distribution of slightiy different 
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distances, spanning between 1.124 and 1.190 Angstrom. The asymmetric unit is quite 
complex, showing three guest molecules and eight tin atoms belonging to the 
framework. 

Figure 2. Asymmetric units of the two structures showing the minimum and the maximum cyano 
distances. Left: (7; NUMRUI) Cl -Nl has the shortest and Right: (4;TIPDAX) , C14-N3 has the largest 
value. 

The Sn-N distance represents another important parameter not only because of the 

comparison between numerical values but also for comparison of the number of 

different distances quoted for the asymmetric units. Together with the number of 

different CN distances, the number of Sn-N distances determines how many asymmetric 

N-Sn-N fragments are present in each structure. Sn-N distances are quite large, with an 

average value o f 2.318 A (Figure 3). The standard deviation is larger than the one found 

for C-N bonds, indicating how this bond might be more affected by spatial 

reorganisation than the cyano bond. The same compound (4; TIPDAX) that contains the 

largest distances (Sn4-N5) also contains a very short one: 2.19 Angstrom for Sn2-N2, 

(Figure 2). This value is very close to the shortest found (2.16 Angstrom for Snl-N2) 

for the compound (2) (whose formula is [(Me3Sn)4Fe(CN)6 dioxane"H20]; the recode is 
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VETDUT) . We can now examine the occurrence of asymmetric tin environments in 
each structure. In other words, we would like to see if , for a given set of C-N and Sn-N 
distances, the tin environments are symmetric or not. For example, the first three 
structures listed in Figures 1 and 3 contain the same number of CN groups and tin 
atoms. We might conclude that the C-N-Sn-N-C environments must be symmetric. 

2.6 

2.2 

average 2.313 
a 0.060 
MIN 2.16 
MAX 2.483 

20 
Structure 

25 
— I 

40 

Figure 3 Statistical distribution of the Sn-N distances. CCSD refcodes are quoted. The numbers refer to 
the tin bridging units present in the asymmetric unit. 

However, some of the structures show in the asymmetric units a number of C-N 

distances different f rom the number of Sn-N distances. Compound (6), whose formula 

is [{n-Bu4N)3Sn}3Fe(CN)6 H2O] (refcode: VAGQUP) has eighteen different CN bonds 

but only nine different Sn-N bonds. This seems to indicate how all the N-Sn-N 

environments, are asymmetric (Figure 4). In the asymmetric units, only three tin atoms 

are fu l ly coordinated to CN units (Snl , Sn2 Sn3). The others appear either 

uncoordinated or coordinate with the oxygen. For all those three, the tin environment is 

asymmetric, i.e. there are different CN and Sn-N distances on the two sides of the tin 

atom. 
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C41 Ni7 Si!2 NS C 

© © C33 N9 

Sn6 

Figure 4. Asymmetric unit of (6). Three guest molecules have been omitted for clarity as well as the 
methyl groups bonded to the tin. 

Angle distributions. 

The situation for the C-N-Sn angles presents a larger variety of environments. The 

smaller angles are found for the structure of compound (4) but in many other structures 

such angles are not far away from the minimum values of 134.05 degrees. The standard 

deviation of this parameter is quite large, being 11.58 degrees. Values of 180 degrees 

are quite rarely observed; they are found in (3) and in (7), for only one of the two 

coordinated C N groups. It is important to mention also, how another parameter might be 

subject to structural reorientation. In fact, quite interestingly at least in one structure the 

angle M - C - N (M= octahedral metal) is found to be different f rom 180 degrees as 

expected for this kind of bond. Compound (8), M=Co, shows two tin resonances in 

accordance with the crystal structure and one cobalt site with a very asymmetric EFG 

tensor (Ti=0.99). I t shows in fact three different M-C-N angles: 160.99, 171.53, 165.86 

degrees. 
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The distribution of N-Sn-N angles (Figure 5b) is closely clustered around 180 degrees 
as expected for a tbp-configured environment. In fact, the standard deviation is in this 
case only 2.47 degrees. However, compound (8), whose formula is [(Me3Sn)3Co(CN)6] 
(refcode DOMPUQIO), shows again a higher degree of distortion for site number 2, 
whereas the situation for (6) looks more ideal. 
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Figure 5. Angle distribution for Sn-N-C (5a) and N-Sn-N (5b) parameters. 

The second more distorted structures belong to compound (3), site 1, with a N-Sn-N 

angle of 173.82 degrees. A general comment about these measured parameters can be 
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now made. The analysis of the axial director (C-N-Sn-N-C) of the tbp tin bridging units 
shows quite a large variation, particularly when compared to the rearrangement of the 
three equatorial methyl groups. The axial bond, whether involving water molecules or 
CN units, is always rather long. The distribution of CN and Sn-N distances seems to be 
quite narrow, demonstrating how the bond involving these atoms does not vary 
dramatically in these compounds. Conversely, the distribution in the angles seems to 
vary more freely. In addition, all the geometrical parameters examined here are also 
acting, in the different structures, as independent parameters. In fact, any attempt to 
relate bond angles and distances fails dramatically to show any sensible correlation 
between, e.g., the variation of Sn-N and C-N distances. This consideration seems to be 
compatible with an Sn-N bond with quite low degrees of covalence. This could explain 
why the CN and Sn-N distances vary independenUy and, owing to the electrostatic 
characterof the interaction between Sn(CH3)3"^ and M(CN)6, the angles would also vary 
independentiy, being driven more by an overall charge balance in the lattice rather than 
a local interaction. The N M R analysis of the "^Sn shielding tensor would then mainly 
show how the coordinative angle of the two axial ligands would provide significant 
changes. In practice, however, such kind of analysis cannot be undertaken i f the crystal 
structure is unknown. In fact, the goal is to assess the geometrical dependence of the 
chemical shift in a series of related compounds. 

Iron-based compounds. 

We start our investigation by taking into consideration a family of iron-based 

compounds. These compounds show different stoichiometrics, different guests, and 

different chemical shift parameters. We believe that a discussion on a small number of 

carefully chosen compounds would be useful; hence, we start to discuss four 
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compounds first. Those compounds are homologues of anhydrous [(Me3Sn)4Fe(CN)6] 
and are the water coordinated (1), the water and dioxane compound (2); the Cp2Co'̂  
guest compound (3), and the compound having tetrabutylammonium (4), (Table 1). 

Formula refcode Site 5/ppm Comments 

[(Me3Sn)4Fe(CN)6.2H20] KIYWOE 1 
Sn2 -138 more shielded than -29 ppm: 

[(Me3Sn)4Fe(CN)6.2H20] KIYWOE 1 
Snl -29 water coordinated 

[(Me3Sn)4Fe(CN)6dioxane-2H20] VETDUT 
Sn2 -136 more shielded than -73 ppm: 

[(Me3Sn)4Fe(CN)6dioxane-2H20] VETDUT 2 
Snl -73 water + dioxane coordinated 

[(Cp2Co)(Me3Sn)3Fe(CN)6] 
YUTGEZ 3 

Sn2 -189 
Linear chain alternating Sn and Fe 
units. Shielding effect. 

Snl -139 Similar geometry to Sn2 (1). 

Sn? -141 ? 

Sn2 6 water coordinated 
[(nBu4N)o.5 (Me3Sn)3.5Fe(CN)6 H2O] TIPDAX 4 Sn? -164 ? 

Sn? -106 ? 

Table 1. Compounds analysed. For compound (4), there is no immediate way to assign the resonances to 
the correspondent fragment geometries, (see text). 

Compounds numbers (1) and (2) are characterised in the crystal structure by having 

similar environments in which one of the two tin sites are coordinated to a water 

molecule via the oxygen atom. It can be commonly accepted that a shift toward higher 

frequency would be induced by such coordination. Thus, it is reasonable to assign the 

resonance at -29 ppm to the site Snl (in the asymmetric unit) whereas -138 ppm must 

belong to Sn2 (bridging unit bonded to two CN groups). By analogy, we can discuss the 

assignment of compound (2), considering the resonance found at -73 ppm to arise also 

f rom the water-coordinated site as well. Considering compound 3 (CP2C0'*' guest 

compound), we found a different situation. The crystal structure displays two 

environments. While one bridging unit is found to be in a local arrangement with degree 

of distortion compatible with the ones previously found, the other unit is part of infinite 
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linear chains in which the coordinative angle of the two-cyano groups is nearly 180 
degrees. (Figure 6). 

r 

Figure 6. Crystal structure of (3). Left: the linear chain with very regular geometry justifies the 
assignment to -189 ppm. Right: by comparison the distortion of the other tin site is evident in the 
equatorial plane of the Fe(CN)6 unit. 

We can associate this latter geometry to the experimentally found -189 ppm signal for 

three reasons. First, i t can be expected that linear chains connecting tin bridging units 

and Fe(CN)6 units would provide a strong shift to low frequency with respect to chains 

having various degrees of distortion. Second, this arrangement is unique in this dataset 

of nearly homologous crystal structures. Third, the geometry found for the other tin site 

is rnore compatible with the ones previously found in compounds (1) and (2). Hence, 

we could assign the almost linear arrangement to -189 ppm and the remaining one to -

139 ppm. I f we now compare the geometrical arrangements for the three geometries 

assigned to similar chemical shifts on a purely experimental base, we realise how 

actually these geometries are significantly different f rom the crystallographic point of 

view (Figure 7 and Table 2). 
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Figure 7. Different coordinative geometries for the compounds listed in table 2 (below). 

CCSD Comp. 
REFCODE Number Fragment 

Angles (degrees) 
C-N-Sn N-Sn-N/O Sn-N-C CN-NC(*) 

Distances (A) 
C-N N-Sn Sn-N/O N-C 

KIYWOE 1 

KIYWOE 

C I NI Snl 01 

C2 N2 Sn2 N2 C2 

141.76 178.89 

155.37 178.72 155.37 -84.8 

1.159 2.281. 2.351 

1.16 2.321 2.321 1.16 

VETDUT 2 

VETDUT 

C2 N2 Snl 01 

C3 N3 Sn2 Nl CI 

157.4 177.22 

159.21 177.32 148.18 -73.4 

1.168 2.16 2,451 

1,144 2,284 2,375 1.137 

Y U T G E Z 3 

Y U T G E Z 

C I Nl Snl N3 C3 

C2 N2 Sn2 N2 C2 

148.51 173.82 134.52 -131.2 

173.12 176.74 173.12 126.6 

1.172 2.304 2,362 1,153 

1.149 2.302 2,302 1,149 

TIPDAX 4 

TIPDAX 

TIPDAX 

TIPDAX 

C12 Nl Snl Nl C12 

C13 N2 Sn2 01 

C14 N3 Sn3 N6 C17 

C15 N4 Sn4 N5 C16 

147.83 177.88 147,83 92.4 

135.7 174.12 

156,91 176.18 155.94 22.0 

155.55 177.6 134.05 135.5 

1,215 2,316 2.316 1.160 

1.175 2,190 2,670 

1.176 2.282 2.483 1.144 

1.151 2.263 2.483 1,159 

Table 2. For better comparison, the geometrical parameters are here listed for the fragments displayed in 
Figure 7. (*) is the dihedral angle between the two cyano groups. 
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From these findings, it appears then how these fragments might have the same chemical 
shift values (or with a very small difference) when the two coordinative angles of the 
cyano groups are symmetrically or antisymmetrically arranged as Snl (2); Sn2 (1) and 
Snl (3). 

Calculations on model compounds. 

Using DFT methods, we can model the behaviour of the chemical shift variation upon 

the coordinative angle and thus we can check i f , when the latter is varied symmetrically 

or antisymmetrically, different variations in the chemical shift are induced. Using 

hybrid functionals (B3LYP) and relatively large basis sets (6-311+G(d,p) on the ligands 

and T Z V on the tin) we found that the isotropic chemical shift does not vary differently 

for the antisymmetric and symmetric distortions. By comparison, we found how varying 

a single coordinative angle would induce an even smaller chemical shift variation 

(Figure 8). The model used for these calculations was taken f rom the original crystal 

structure of trimethyltin cyanide [11] which structure consists of planar units of 

(CH3)3Sn groups with symmetry closer to Dsn stacked in linear chains. The interatomic 

distances Sn-C (methyl) is 2.16±0.03 A, Sn-C (or N) is 2.49 ±0.02 A, and C-N is 

1.09±0.03 A. The coordinative angles of the cyano groups are slightly less than 180 

degrees (178.56). Those angles have been varied between 130 and 180 degrees. The 

remaining part of the crystal structure has been used without any further variations. 
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Figure 8. Isotropic chemical shift variation with respect to the variation of the coordinative angle the of 
the CN groups. The trends or the symmetric and antisymmetric plots are coincident. 

It is possible to see from Figure 8 that the calculated trend for double angle distortions 

are superimposed. This would allow one to conclude that the local tin geometry of 

Snl(2), which is symmetric, would provide a chemical shift similar to those geometries 

with antisymmetric arrangements. A more detailed investigation should then take into 

account the other tensor parameters (Aa, r)) as well as the individual tensor components. 

Furthermore, the water-coordinated fragment should be studied for comparison 

purposes. Four cases are studied in which the coordinative bond Sn-N has the same 

length of 2.301(6) Angstrom. The analysis of the tensor parameters is presented in 

Figures 9 and 10 where four cases are presented; the single CN variation (1), the CN 

variation in the water-coordinated compound (2) the symmetric (3) and the 

antisymmetric (4) variation for both the CN groups. Al l the tensor parameters show 

coincident trends for the doubly distorted fragment whether the distortion is symmetric 

or antisymmetric. The isotropic shift varies by about 50 ppm between 130 and 180 

degrees for (3) and (4) but only about 30 ppm for (1) and (2). Having the water 

coordinated does not change the isotropic shift trend between 130 and 180 degrees but 
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only cause a offset of the two curves. The changes in the chemical shift anisotropy are 
about 30 ppm and they are coincident for (3) and (4). Test (1) and (2) (figure 9) still 
provides very close trends with a change of 15 and 19 ppm respectively. In percent, the 
isotropic shift from the reference is much more affected than the anisotropy. 
Interestingly the asymmetry parameter starts from a very low value and when the 
coordinative CN angles are both 180 degrees the value found is 0.12 for all the range of 
angles explored. The water-coordinated compound (2) display the same kind of trend as 
(1) only affected by an offset of about 206 ppm, which is constant between 130 and 180 
degrees. The offset in the anisotropy between (1) and (2) is varying from 168 to 165 
ppm in the range considered. In looking at the tensor components axx, ayy, azz, 
(Figure 10) small differences between (2) and (3) appear between 130 and 150 degrees. 
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Figure 9. Comparison between the shielding parameters for the four cases studied; as reported in the 
legend: T single CN angle variation; • CN variation in the water coordinated compound, A symmetric 
variation of the two CN groups, • asymmetric variation of the two CN groups. Left: isotropic chemical 
shift, the top plot refers to the water coordinated compound. Centre: Anisotropy trend, the top plot refers 
to the water coordinated compound. Right: Asymmetry. The bottom plots refers to the doubly Cyano 
coordinated compounds. For the isotropic shift and the anisotropy the trend related to a symmetric or 
antisymmetric variation are almost superimposed 
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Figure 10. Variation of the tensor components for the four cases studied. The symmetric and 
antisymmetric variations are almost coincident. 

It is important to note how a coordinative angle of 130 degrees or smaller is almost 

never found experimentally, at least in the dataset of structures here considered. 

Applications to real geometries. 

These findings are encouraging and enable us to undertake more investigations on the 

real geometries found for the fragments in the structures of compounds (1-4). We now 

have in fact seven local geometries associated with known experimental values. 

However, we cannot assign the remaining 3 local geometries with their respective 

chemical shifts positions. Figure 1. In calculating the chemical shifts for the seven 

fragments already assigned, we found a linear correlation with the experimental 

chemical shift (Figure 11). Despite the offset between calculated and experimental 

values, these calculations predict with good accuracy the relative differences between 

the various fragments. The linear correlation shows a slope of 0.72, which is cleariy less 

than the ideal value of one. The calculations performed on the other three geometries 

would allow the determination of the chemical shift assignment by making use of the 
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linear correlation previously found. The three computed chemical shifts are the -112; -
141 and -157 ppm, not far away from the experimental data of -106; -140 and -164 
ppm. Despite the differences of 6 ppm we can still recognise which geometry would 
give a certain experimental chemical shift. 
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Figure 11. Calculations performed on seven different fragments provide a linear correlation, using which 
the remaining three local geometries of compound (4) (in the chart: S n l J V ; Sn3_IV and Sn4_IV) were 
assigned. 

Metal effect on tin chemical shift properties. 

The results found are quite clearly addressing the shielding tensor as a local property at 

the nuclear site. In fact, the simple model applied reproduces quite closely the isotropic 

shielding. However, the anisotropics are not reproduced with a unique trend. As it is 

possible to see in Figure 12 at least two, different regions in which data correlate 

linearly can be found. 
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Figure 12. the correlation between experimental and calculated chemical shift anisotropics is not easily 
rationalised. 

One group of well correlated data involves sites Snl(I) Sn2(IV) Sn2(II) and Sn2(III), 

this is correlating very well since R^=0.99, the slope is 0.87. The other well related 

subset is Sn3(IV), Snl(III) Sn4(IV) and Snl(II); in that case R^=0.92 the slope is 0.73. 

The remaining two position Snl(IV) and Sn2(II) features the shortest distances CN, 

Table 2. In both subsets, no correlations with any of the geometrical parameters 

reported in Table 2 and the experimental anisotropics were found. This seems to 

demonstrate how the anisotropy is more sensitive to long range lattice reorganisation 

which has not been taken into account by computing the small unit (CN)-Sn-(NC). 

Another explanation might be found in either the limitation of the theoretical approach 

or errors in the experimental derivation of the parameters. The effect of the metal is in 

this case neglected as all the compounds belong to the same iron-based core. However, 

the transition metal also scales the shielding properties, as found experimentally in a 

series of isostructural compounds in which both isotropic and anisotropy scale 

progressively as the number of electron increases, Fe(26); Rh(44); Os(76). The trend 
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found (Figure 13) is in both cases toward lower frequency (lower ppm, more shielding) 

but while the sites located at about -100 ppm are only weakly affected (the slope is 

0.64) the sites at about +40 ppm are more sensitive to this changes, giving a slope of 

about 1.77. 
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Figure 13. Scaling effect on the experimental shielding properties of the tin nucleus for three different 
transition metals. M(CN)5 scales the shielding at the tin nucleus according to the increased number of 
electrons in the metal atom. 

Despite the crystal structures being available for none of these three compounds, these 

dependences could be explained at least based on different Sn-N bond distances 

between the sites 1 and 2. In addition, because of the trends found in Figure 9 and 10 we 

could guess that the more shielded site, lying at about -100 ppm, might have 

geometrical coordination closer to the typical 'tbp' (with the two cyano bond linearly 

coordinated around the N-Sn-N director). Unfortunately, it is not possible to complete 

the series of Co, Rh, Ir since the Ir-based compound apparently cannot be synthesised. 
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Further insight into the effect played by the transition metal can be obtained by 
comparing the shielding properties of [(Me3Sn)3Co(CN)6] with its homologues 
[(Me3Sn)3Fe(CN)6] [(Me3Sn)3Ru(CN)6]. The NMR results are listed in Table 3. A 
difference of 30 (Co); 33 (Fe) and 34.1 ppm (Ru) is found between the two tin sites for 
the three compounds. Owing to the isostructurality of those three compounds, we can 
study the effect of the different metals. Replacing the cobalt provides a shift to higher 
frequency (shielding effect) for both the resonances. However, the anisotropy for the 
high frequency peak remain unaffected. 

6iso/ppm Aa/ppm X-ray 

(Me3Sn)3Fe(CN)6 -105 -314 0.23 No 

-72 -341 0.26 

(Me3Sn)3Co(CN)6 -118 -360 0.20 Yes 

-88 -341 0.16 

(Me3Sn)3Ru(CN)6 -119.5 -362 0.36 No 

-85.4 -342 0.00 

Table 3. Shielding parameter variation for different transition metal cyanides. 

The shifts induced by the cobalt atom, changes in magnitude for the two sites, 

demonstrating how this effect is probably sensitive to the local geometry. The two tin 

sites in the cobalt compound at -88 and -118 ppm are in intensity ratio 2:1 (Figure 14). 

^ ^ 'i^ 

^ — f - ^ © ^ f - - % ) 
0<: Snl 1 Sn2 I Sn3 

Figure 14. Different geometrical arrangements for [(Me3Sn)3Co(CN)6]. These three crystallographically 
different sites are compatible with two resonances at -88 (Sn2 and Sn3) and -118 (Snl) ppm. 
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The Snl site shows the more regular tbp configuration since the C-N-Sn angles are 
171.07 and 172.25 degrees. Sites Sn2 and Sn3 are symmetrically distorted with a 
common angle of 159 degrees. (159.22 for Sn3, and 159.48 for Sn2). Assigning Snl to 
-118 ppm would be consistent both with the geometrical uniqueness and with the 
theoretical findings of a shielding effect that increases as the linear coordination 
approaches to the ideal value of 180 degrees. 

Conclusion 

Tin bridging units in this system are affected in their shielding properties by the local 

geometry and by the transition metal. The effect of the local geometry has been assessed 

by considering the variation of the coordinative angle of the axial ligands to the tin 

atom. The trend shows how, approaching perfect trigonal bypyramidal geometry, the tin 

atom becomes as expected more shielded. The same trend is found when the 

coordinative bond is varied simultaneously in antisymmetric or symmetric fashions. The 

effect of having a water molecule coordinated instead of the CN group provides a 

scaling toward higher frequency of the isotropic shielding without providing a different 

trend. Properties such as the anisotropy and the asymmetry behave in the same manner 

for the four cases studied. The consequence is that the shielding properties of this 

fragment cannot help in discriminating the mutual arrangement of the two-cyano groups 

axially bonded to the tin since they would have the same values. In addition, the 

asymmetry parameter remains very low (below 0.2) for all the cases studied; the 

differences found in the trends are often too small to be accurately verified with routine 

spinning sideband analysis. The effect of the transition metal has been considered only 

in comparing isostructures and their experimental values. It is found to be significant, 
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providing an average variation on the anisotropy of up to of 30-40 ppm; with some 
exceptions such as (]VIe3Sn)4W(CN)8. The isotropic shift varies to a different extent 
depending upon the region in which the resonances are found. As showed in Figure 12, 
sites found at higher frequency are more affected by the metal than those more shielded 
(typically around -100 ppm). Once more this effect seems to be unaffected by the 
coordination number of the transition metal, as showed in Table 4. 

N Siso (ppm) ACT (ppm) 

1 (Me3Sn)4 Ru(CN)6 46 -184 0.30 

2 (Me3Sn)4 Os(CN)6 32 -210 0.29 

3 (Me3Sn)3 Fe(CN)6 26 -219 0.23 

4 (Me3Sn)3 Rh(CN)6 -72 -341 0.26 

5 (Me3Sn)3 Co(CN)6 -85 -338 0.00 

6 (Me3Sn)4 Os(CN)6 -88 -341 0.16 

7 (Me3Sn)4 Ru(CN)6 -94 -338 0.11 

8 (Me3Sn)3 Fe(CN)6 -97 -340 0.22 

9 (Me3Sn)4 Fe(CN)6 -105 -314 0.23 

10 (Me3Sn)4 Mo(CN)8 -109 -378 0.21 

11 (Me3Sn)4 W (CN)8 -110 -372 0.00 

12 (Me3Sn)3 Co(CN)6 -111 -443 0.06 

13 (Me3Sn)3 Rh(CN)6 -118 -360 0.20 

14 (Me3Sn)4 Fe(CN)6 -120 -362 0.36 

Table 4. Experimental values found for related compounds. M(CN)8 systems cannot however be 
considered isostructural. 

From the calculations, and the experimental values collected on many different 

compounds we could conclude that the shielding tensor strongly retains its axial 

symmetry regardless of the neighbouring atoms arrangements, the transition metal 

involved, and the guest present in the lattice. These finding are compatible with an 

electrostatic interaction between the electropositive Sn(CH3)3 group and the 

electronegative M(CN)6 group where the driving force is the balance of such 

electrostatic interactions surrounding the negative M(CN)6. Finally, we would like to 
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point out how it is experimentally difficult, at present, to correlate the isotropic shift 
with the anisotropy. We are still not in the position to determine i f the tin environment 
is simultaneously affecting both parameters. In fact, for the series of compounds listed 
in Table 4 there is only a rough correlation, which heavily relies on the isotructural 
compounds 1, 2, 3, examined before. In the Figure 15, part a, the overall correlation is 
shown. While the position of [(Me3Sn)3Fe(CN)6], labelled as 3Fe6,- looks rather 
suspicious, it is clear how the compound based on M(CN)8 clearly scatter from the 
trend. In Figure 15b, all the compounds containing M(CN)6 units whose chemical shift 
span from -120 to -70 ppm, show very close anisotropics values, which vary only about 
the 10% of the maximum anisotropy. 
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Figure 15. The isotropic shift and the anisotropy are roughly linearly correlated for different transition 
metals, though this relationship relies heavily on points 1,2 and 3. Part (a): the overall plot is shown, part 
(b): enlarged view of the inset in (a) the label refer to the number of tin bridging units, the core metal and 
its coordinative number, hence 3Fe6 stands for [(Me3Sn)3Fe(CN)6]. 

From the analysis of figure 15, despite the scattering of the data, it can be concluded 

that the coordinative number of the core metal plays a very strong role in shaping the tin 

shielding tensor, particularly M(CN)8 related compound differs in the anisotropy, and 
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asymmetry, rather than in the isotropic shift. The number of tin bridging units affects 
the tin shielding tensor because of the structural changes involved. For iron based 
compounds there is a big difference in the isotropic shift and not in the anisotropy. 
While the opposite seems to happen for Rh-based compounds in at least one case. A 
single crystal analysis for these compounds would at this point definitely help in 
understanding these relationships. 

Appendix: List of the compound studied, with References. 

The numbers in bold are the compound numbers referred in the text. The capital name is 

the CCSD refcode, quoted in figures 1, 3, 5 and in the text. For each structure, the 

bibliographic reference is provided. 

1 KIYWOE: [(Me3Sn)4Fe(CN)6 2H20]. 

U. Behrens, A. K. Brimah, R. D. Fischer/. Organomet.Chem., 411, 325, (1991) 

2 VETDUT: [(Me3Sn)4Fe(CN)6-2H20C4H802]. 

M. Adam, A. K. Brimah, R. D. Fischer, Li Xing-Fu. Inorg.Chem., 29, 1595, 

(1990). 

3 YUTGEZ: [Cp2Co(Me3Sn)3Fe(CN)6]. 

P. Schwarz, E. Siebel, R. D. Fischer, D. C. Apperley, N. A. Davies, R. K. Harris. 

Angew. Chem., Int. Ed. Engl, 34, 1197, (1995) 

4 TIPDAX: [(Bu4N)i/2(Me3Sn)i.5Fe(CN)6.H20]. 
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P.Schwarz, S.EUer, E.Siebel, T.M.Soliman, R.D.Fischer, D.C.Apperley, N.A.Davies, 
R.K.Harris. Angew. Chem., Int. Ed. Engl., 35, 1525, (1996). 

5 TINDUP: [(Ph3Sn)3Fe(CN)6,H202CH3CN] . 

Jian Lu, W. T. A. Harrison, A. J. Jacobson. Inorg. Chem., 35, 4271,(1996). 

6 VAGQUP: [{n-Bu4N)3Sn}3Fe(CN)6 H2O]. 

P.Schwarz, E.Siebel, R.D.Fischer, N.A.Davies, D.C.Apperley, R.K.Harris. 

Chemistry-A European Journal, 4, 919, (1998) 

7 NUMRUI: [CuCN,Me3SnCN,o.5bpy] (bpy) 4,4'-Bipyridine). 

A.M.A.Ibrahim, E.Siebel, R.D.Fischer. Inorg. Chem, 37,3521, (1998) 

8 DOMPUQIO: [(Me3Sn)3Co(CN)6] 

U. Behrens, A. K. Brimah, T. M Soliman, R. D. Fischer, D. C. Apperley, N. A. 

Davies,R.K. Harris. Organometallics, 11, 1718, (1992). 

9 GIZXUI: [{n-Bu4N)3Sn}3Fe(CN)6] 

Tianyan Niu, Jian Lu, Xiqu Wang, J. D. Korp, A. J. Jacobson. Inorg.Chem., 37, 5324, 

(1998). 

10 GIZYAP: [{n-Bu4N)3Sn}3Co(CN)6] 

Tianyan Niu, Jian Lu, Xiqu Wang, J. D. Korp, A. J. Jacobson. Inorg. Chem., 37, 5324, 

(1998) 
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Chapter 4 
4.1 Nomenclature 

This chapter summarises in three parts the results published by joint work with 

Hamburg University in the N M R crystallography field. The work is based on the 

synthesis and X-ray analysis (by Hamburg) and N M R (University of Durham) 

characterization of crystalline solid samples. 

Two papers are summarized and, for clarity, the compounds herein are given, in a single 

table (Table A). In order to give a unique view the convention listed in Table A, second 

column, w i l l be used, since in the two papers there were two different conventions. The 

codes used in the literature are reported in the two last columns of table A. Moreover, 

the numerical code refers to the Durham laboratory Database. Code numbers 3-5 refer 

to the size of the guest cation (3=nPr; 4=nBu; 5=nPen). Letters a, b, c, refer to the core 

metal employed (a=Co, b=Fe, c=Ir). Suffices (t) and (c) indicate the cis- and trans-

isomers, respectively. The asterisk (*) shows the presence of R4P instead of R4N. The 

letter T indicates the presence of a different tin ligand unit, namely 

[Me2Sn(CH2)SnMe2] (also called 'tether') instead of the normal unit (Me3Sn). 

Compound 1, [(Me3Sn)4Fe(CN)6, refers to the reaction path highlighted in Eq. (1) part 

1. The primed symbols indicate that the synthesis has been carried out by co-

precipitation, as shown in Eq. (3) part 1, whereas all the other compounds have been 

obtained by following the exchange reaction pathway, given by Eq. (2), part 1. 

However, in order to avoid an over-elaborate notation, compounds such as 3a(t) and 

3a(t)* that have been obtained by co-precipitation do not show the prime index. 
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code Formula 
X-ray Ist 2nd 

1 1 [(Me3Sn)4Fe(CN)6]a, 

Anhydrous super-Prussian-Blue derivatives (*) 

a [(Me3Sn)3Co(CN)6.zH20] 

b [(Me3Sn)3Fe(CN)6.zH20] 

c [(Me3Sn)3lr(CN)6.zH20] 

2 Generic codes for host-guest systems 

2a [(R4N)(Me3Sn)3Co(CN)6 zHjO] 2a 

2b [(R4N)(Me3Sn)3Fe(CN)6 ZH2O] 2b 

2c [(R4N)(Me3Sn)3lr(CN)6 ZH2O] 2c 

3 Compounds based on (nPr4E) guest E=N or P; indicated by (*) 

3 [(Me3Sn)3lr(CN)6 2H2O] 3 

3aT [(nPr4N)(Me2Sn (CH2)3 SnMe2)3Co(CN)6 2H2O] 186 4a 

3a(c) cw-[(nPr4N)(Me3Sn)3Co(CN)6 2H2O] 127 3a la(8) 

3a(t) ;ran5-[(nPr4N)(Me3Sn)3Co(CN)6 2H2O] 128 3a* la 

3a(t)* fran5-[(nPr4P)(Me3Sn)3Co(CN)6 2H2O] 171 / la-P 

3c [(nPr4N)(Me3Sn)3lr(CN)6 2H2O] 183 3a 

3c* [(nPr4P)[(Me3Sn)2 Ir(CN)6 2H2O] 184 3a-P 

4 Compounds based on (nBu4N) 

4a/4a' [(nBu4N)(Me3Sn)2Co(CN)6.H20] 63 4a/4a' lb 

4aT [(nBu4N(Me2Sn(CH2)SnMe2)3Co(CN)6.H20] 

4b/4b' [(nBu4N)(Me3Sn)2Fe(CN)6.H20] ^ (4b) 4b/4b' 

4c [(nBu4N)(Me3Sn)2lr(CN)6.mH20] 185 3b 

5 Compounds based on (nPen4N) 

5a [(nPen4N)(Me3Sn)2Co(CN)6.0.5H2O] 129 5a 5a 

5b [(nPen4N)(Me3Sn)2Fe(CN)6.0.5H2O] 

5c [(nPen4N)(Me3Sn)2lr(CN)6.0.5H2O] 

Table A. List of the compounds analysed in the following sections. The compounds are named with the 
codes listed in column 2. The last two columns refer to the codes used in the published papers. 
Compounds called 3aT and 4aT are featured by the 'tether' (Me2Sn (CH2) SnMe2) instead of having the 
usual (McsSn) unit. The (*) indicate the presence of the tetralkylphosphonium cation in place of 
tetralkylammonium. Primed homologues (as 4a') indicated the co-precipitation synthetic pathway. (*) 
R=alkyl; z=0-2 water molecules. 

The cobalt spectra of these compounds will be extensively considered in the apposite 

section. 
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Introduction. 

Quaternary ammonium ions are essential for the synthesis of many zeolites by playing 

the role of structure-directing "templates" [1], although calcined zeolites deprived of the 

initially encapsulated ammonium ions are usually of major interest. Polymeric metal 

cyanides may likewise adopt numerous two- or three-dimensional (2D or 3D) 

framework structures [2], and hetero(hi)metallic polymeric cyanides may even share 

several characteristic properties with zeolites. A rapidly increasing number of cyanide-

based host/guest systems containing inter alia tetraalkylammonium guest ions [3-9] has 

been obtained, in close analogy to "as-synthesized" zeolites, in aqueous media from 

salt-like and molecular precursors, of the final constituents of the anticipated host/guest 

systems. In contrast to most zeolites, however, these products are chemically too 

unstable to survive an appropriate calcination procedure. On the other hand, several 

inidally R4N-free cyanide-based frameworks may readily be transformed, just by 

suspension in aqueous solutions of R4N"̂  salts, into still- polymeric R4N-containing 

derivatives, although one particular component of the initial framework is extruded [9]. 

Another way of enriching in R4N'̂  ions is through the formal uptake of (R4N)0H by a 

polymer from aqueous solution. In contrast to the simple exchange of a H"̂  or H30'̂  

guest ion by an RAN'^ competitor, some initially R4N-free metal cyanides may in fact 

incorporate an OH" ion into the host framework, and concomitantly the R4N'̂  ion into a 

likewise-available cavity [8]. In the present work, two new examples of exchange-based 

remodeling reactions involving the attack of R4N"̂  ions on polymeric super-Prussmn-

Blue systems [(Me3Sn)3M(CN)6] [10] will be described and compared with the results 
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of corresponding co-precipitation experiments. Particular attention will be focused here 
on the surprisingly different structure-directing properties of the closely related 
tetraalkylammonium ions R4N"' with R=methyl (Me), ethyl (Et), n-propyl (nPr), n-butyl 
(nBu) [9] and n-pentyl (nPen). These ions can be considered as individually reacting 
synthons, and within the context of "supramolecular interactions" based on 
"noncovalent" bonds between the host and the guest they are seen to become 
increasingly more important because of their structure directing role. 

Preparation of polymeric R4N-containing metal cyanides involving {M(CN)6} 

Building Blocks. 

The layered coordination polymer [(Me3Sn)4Fe(CN)6] 1 which contains per formula unit 

two rran^-oriented, terminal CNSnMCj groups [13, 14] is known to exchange exactly 

one MejSn"^ unit by, e.g., one Et̂ N'*' ion [12], but only half a MejSn"^ equivalent by the 

corresponding amount of nBu^N* ions (along with one HjO molecule) [6]: 

[(Me3Sn)4Fe(CN)6]+ xR4N-' Ii20> [(R4N),(Me3Sn)4./e(CN)6 • yH20]+ xMe^Sn aq̂  (1) 

R=Et;x=1.0,y-0 (la) 

R=nBu: x=0.5, y=l (lb) 

The driving force of both reactions is most probably the tendency of the two-

tetracoordinate tin atoms of 1 to adopt also pentacoordination. Actually, both of the 

sparingly soluble products and the dissolved MesSn.aq"̂  ion in Eq. (1) involve trigonal 

bipyramidal (tbp) MeaSn derivates, the two axial ligands being here NC and/or OH2. On 

the other hand, the more recently reported [8] reaction according to Eq. (2) is devoid of 

any change of the coordination number of the Sn atoms: 
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[(Me3Sn)3M(CN) J+ R^N^ W [(R^N)(Me3Sn)2M(CN)^ zHfi] + MCjSn^q^ (2) 
(insoluble) (insoluble) 

3-5 (R=«Pr, «Bu [9], «Pen; 7=0-2). M=Co 2a 

M=Fe 2b 

At first sight, two of the six coordinative N ^ S n bonds present per formula unit of 2a/b 

[11] are substituted by two coordinative O—*Sn bonds (i.e. in MesSn.aq" )̂, although the 

O—>Sn bond seems to be energetically less favourable than the CN—>Sn bond. The 

superiority of the CN-^Sn bond can be estimated by the facile and spontaneous 

precipitation of 2 [11] from solutions containing both McsSn.aq" ,̂ and [M(CN)6]^' ions 

(in the absence of nPr4N*, nBu4N*, and nPen4N'̂ ions). 

Interestingly, in the presence of the larger R4N" îons co-precipitation (i.e. R>Et) leads to 

the R4N-containing products 3-5 of Eq. (3), while in the presence of any of the smaller 

ions Me4N'̂  and Et4N* exclusively the 5Mper-Prussian-blue derivative 2 results [8]: 

R4N^ + MejSn-aq-'" + MCCN)^'^-HoO [(R4N)(Me3Sn)2Fe(CN)f, • zH^O] (3) 

(R=nPr, z=2, nBu, z - l [ 9 ] ,nPen, M=Co or Fe, z=0.5). 

Since all three MesSn units of 2 are intrinsic constituents of its infinite 3D framework 

[11], reactions according to Eq. (2) are more appropriate examples of the "exchange 

type" than those according to Eq. (1). In the latter case, which is not considered further, 

the leaving MesSn"̂  ion has just been anchored to the basic framework of 1 via one 

CN^Sn bond [11]. In the following sections, the crystal structures of the two new 

exchange products 3a(c) (R=nPr, M=Co, z=2) and 5b (R=nPen, M=Fe, z=0.5) and of 

the co-precipitation product 3a(t) will be presented and compared with the results of 

multinuclear high-resolution CPMAS solid-state magnetic resonance studies of 

3a(c)/3a(t), 4a [9], and 5a. 
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Crystal structures of 3a(c) and 3a(t). 

The structural identity of 4a with its homologues 4a', 4b, and 4b' has been successfully 

deduced from combined powder X-ray diffractometry (XRD), CPMAS NMR 

spectroscopy and the single-crystal X-ray study of 4b [8]. The structural investigation 

made on 3a(c) and 3a(t) reveals how those two structures have significantly different 

crystal structures and solid-state NMR spectra, although elemental analyses leave no 

doubt about the existence of two isomeric species. Selected crystal and refinement 

parameters of 3a(c) and 3a(t) are included in Table 2, and relevant bond distances and 

angles of the two isomers are listed in Tables 3 and 4. The asymmetric units of the 

anionic components of 3a(c) and 3a(t) are depicted in Fig. 1. In contrast to the initial 

assumption, four of the potentially more favourable coordinative N ^ S n bonds are 

replaced by O^Sn bonds during the formation of 3a(c) from 2a, see Eq.(2). 

0(3) 
S n 1 F 

) o^^U^m%^ 3a(c) %) Q) 3a(t) 

Figure 1. Asymmetric units . In case of 3a(c), only the labelled part is the asymmetric unit. 

The asymmetric units of 3a(c) and 3a(t) contain, moreover, one nPr4N"̂  ion each, with 

four crystallographically nonequivalent «-propyl groups. The nPr4N'̂  ion of 3a(c), In 

contrast to 3a(t), is disordered. In fact, its central nitrogen atom (N4) adopts two slightly 

different positions (N4"'N4' distance: 1.16(3) A). Actually, 3a(c) contains the m -

isomer of the rran^-configured [Co(CN)4(CNSnMe30H2)2]' anion present in the lattice 
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of 3a(t). While in 3a(t) only one of the two oxygen atoms is disordered, two different 
sets of tin-bonded methyl carbon atoms (designated as A and B) are found in the 
structure of 3a(c). While the C(Me)-Sn-0 and C(Me)-Sn-N angles of 3a(c) scatter more 
closely around 90 degrees, the methyl carbon atoms of set A are bent away from the 
oxygen atom (towards the nitrogen atom Nl ) , whereas the carbon atoms of the other set 
(B) are bent towards the oxygen atom (Table 3). Somewhat surprisingly, this evidence 
of potential disorder is not accompanied by alternative positions of any of the adjacent 
non-hydrogen atoms. Most of the interatomic distances and bond angles of 3a(c) and 
3a(t) are quite similar and compare quite well with corresponding data reported for 4b 
[8]. 

The supramolecular architectures of the two isomers 3a(c) and 3a(t) have in common 

that, in striking contrast to the structures of, e.g., 2 [11] and 4b [8], extended [M-CN-E-

NC] chains are absent. Instead, adjacent cis (or rran5-)-configured 

[Co(CN)4(CNSnMe30H2)2]" ions are interconnected by significant 0-H2""NC hydrogen 

bonds to infinite, negatively charged 3D frameworks. For each isomer, four distinct 0-

H'"NC bonds are found per formula unit. Some more visualization with respect to the 

hydrogen bonds and the positions of the encapsulated nPr4N'̂  ions of 3a(c) are given in 

Figures. 2 and 3. For both 3a(c) and 3a(t), as in the structure of 4b [8], a-CH2 distances 

are found to be short enough to suggest also significant C-H""NC hydrogen bonding 

between a-CH2 groups of the lUN"^ ion and (exclusively) terminal cyanide N atoms in 

the 3D frameworks. 
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Figure 2. Views down b (a) and c (b), respectively, of fragments of 3a(c). Faint straight lines indicate 
O.. .H^N hydrogen bonds. 

Figure 3. (a) Perspective along a (horizontal axis: b), and (b) along c (horizontal axis: a) of 3a(t), 
indicating O...H2N hydrogen bonds as faint straight lines. 

Interestingly, isomer 3a(c) with cw-configured {Co(CN)4(CNSn)2} fragments displays 

hydrogen bonds slightly shorter for both O-H'-'NC and C-H-'NC than 3a(t). The two 

C-H-N interactions C7-N3 and C10-N2, with 3.13(3) and 3.17(4) A, respectively, 

belong to the shortest C-H'"NC bonds so far known. For instance, Desiraju et al. have 
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reported [13] distances of 3.471(4) and 3.516(6) A for the C-R-NC interactions in a 2D 
"polymeric" 1,3,5-tricyanobenzene. The presence in 3a(c) and 3a(t) of less 
conventional C-H'"NC hydrogen bonds is probably also responsible for the almost non-
disordered nature of their nPr4N'̂  guest ions. 

Crystal structure of 5b 

According to elemental analyses and XRD studies, apparently isostructural products of 

the composition [(nPen4N)(Me3Sn)2M(CN)6 0.5-H2O] with M=Co (5a) and Fe (5b) were 

obtained both by MeaSn exchange, Eq. (2), and by co-precipitation, Eq. (3). However, 

single crystals suitable for crystallographic X-ray studies could so far be obtained only 

for 5b. The asymmetric unit of 5b, Fig. 4, which also presents the atomic numbering 

scheme, reveals that this supramolecular structure involves (i) infinite [M-CN-Sn-NC] 

chains, but (ii) no tin-coordinated water molecules, (iii) two crystallographically 

nonequivalent {Fe(CN)6} units (with two terminal CN ligands each) (iv) two 

nonequivalent nPen4N"̂  ions, and (v) only two n-pentyl groups with disordered methyl 

ends: in Fig. 4, CA(25/26) and CB(25/26). 
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Sn(4) 

o - d f — ° 
- — _ 

CA(26I 
Sn(2) / ^ . - o n , ^ yr- CA(22) 

NA CA125) 

N(51) 
NI661 

CB(43) ( f , 

C B ( 4 5 ) ^ « s » / \ _ 0(11 
®jfCBm) CB(14) 

CBI26) - "(32) 

CB(25) 

Figure 4. Asymmetric unit of 5b. Only the cyanide N atoms N55, N56, N65, and N66 are terminal. 
Moreover, Snl, Sn2, Sn3, and Sn4 carry three crystallographically different methyl groups each. For the 
Sn-N connectivities in total see Table 3. The second number in the designation of each n-pentyl carbon 
refers to its position (i.e. l=a, 2-P>, etc.). 

This type of structure differs totally from those of 3a(c) and 3a(t) and in some respects 

from that of 4b. In contrast to 3a(c)/(t) and 4b, where each Co/Fe atom carries four and 

three terminal cyanide ligands, each Fe atom of 5b involves no more than two cis-

oriented CN ligands that are not coordinated to a tin atom. The values of all C(Me)-Sn-

N angles of 5b scatter closely around 90 degrees, and none of the N-Sn-N angles 

deviates notably from 180 degrees. Moreover, all Sn-N bond distances adopt values 

very close to 2.31 A, whereas all Sn-N-C angles are notably smaller than 180 degrees 

and vary significantly. This feature and the cw-orientation of the two non-bridging CN 

ligands are compatible with a r/zree-dimensional expansion of the negatively charged, 

polymeric framework. Both the nPen4N"̂  ions and the H2O molecules are encapsulated 

in suitable cavities of this 3D framework. In contrast to 3a(c), 3a(t), and 4b, the H2O 

guest molecule of 5b is anchored only via 0-H'"'N hydrogen bonds to the N65 atoms of 

two different chains. The 0'"N65 distances of 5b (Fig. 4) are notably longer than the 

0" 'N distances found in 3a(c), 3a(t), and 4b, where the H atoms should be better 

activated ("acidified") for bridging owing to concomitant H2O—>Sn coordination. As 
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usual [8], nitrogen atoms of terminal cyanide ligands are exclusively involved and the 
shortest distances result mostly from interactions with a-CH2 groups. Most of the 
positive charge of a R4N"̂  ion is usually distributed over its a-CHi groups (rendering 
these hydrogen atoms particularly "acid"), although from a steric point of view the |3-, 
Y", and 6-CH2 groups should approach relevant atoms of adjacent anions more readily. 

Multinuclear (̂ ^G, ^̂ N, "'Sn) soIid-State magnetic resonances studies of 3a(c). 

A collection of all NMR data of relevance for 3a(c) is given, along with corresponding 

surveys for 3a(t) and 5a, in Table 1. The NMR results appear to reflect the disorder, of 

the tin-bonded methyl carbon atoms of the cw-configured [Co(CN)4(CNSnMe30H2)2]' 

anion of 3a(c) (vide supra) more clearly than the crystallographic findings. Thus, two 

distinct ''^Sn centrebands appear. Fig. 7 each of which could be attributed to a tin atom 

associated with one of the two sets of methyl carbon atoms found crystallographically. 

In the '^C NMR spectrum (Fig. 5), these two sets of methyl carbon atoms give rise to 

two equally intense singlets at 5c = 1.2 and 2.2 ppm accompanied by weak satellite 

doublets due to the presence of '̂̂ Sn and "^Sn nuclei. 
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Environment/ Samples 

Nucleus Position 3a(c) (ppm) 3a(t) (ppm) 5(a)(ppm) 

"^Sn MejSn -75= -79 -106 
-61" -124 

-129 

CN'= -95 -92 -73 
-98 -78 

-125.0 -120, 123 
-125.4 -124,125 

R4N -308 -309 -309 
-310 

CN ca. 130'' ca.lSO" ca. 136,121 

a-CHj 60.1 ca. 61' 59,58 

I3-CH2 . 15.8 16.5 31 to 28 

Y-CH3/2 12.5 13.6, 12.4 24 to 20 
11.6, 11.0 

8-CH2 24 to 20 

e-CH3 17 to 15 

MejSn 2.2̂  
1.2« caO.5' 1.2", 0.7" 

Co -8 -46 0.5", 0.3" 
-91' 

a |JsnN|=170 Hz (for 15N) from measurements on a 15N-enriched sample. 
b |JsnN|=134 Hz (for 15N) from measurements on a 15N-enriched sample. 
c The relative integrated intensities of the three bands are 55:20:25 

(i.e., within experimental error of 3:1:1), with the last mentioned representing the 
doublet at 5n=-125.0/ -125.4 ppm. 

d Complex multiplet. 
e Broad singlet. 
/ |Js„cN554Hz. 
g |Js„c|=546Hz. 
h |Jsnc|=ca. 570 Hz for each site. 

(• Broad singlet band centre (true chemical shift will be influenced by second-order 

quadrupolar effects). 

Table 1. NMR parameters for compound 3a(c), 3a(t) and 5a. 

The appearance of just two '^C(Me) signals at room temperature, in spite of the 

existence of six crystallographically nonequivalent methyl carbon atoms, is explained 

by rapid rotation of the two different MesSn groups about their N-Sn-0 axes. According 

143 



4.2 Examples of NMR crystallography; application to structural analysis 

to earlier findings [8, 17], this kind of motion has a low activation barrier, as no splitting 
of the '^C resonances was observed for 3a(c) down to a temperature of -80°C. 

5c /PPm 

18,0 16.5 15.0 13.5 12.0 10.5 9.0 

5c/PPm 

Figure 5. Carbon-13 NMR spectra obtained by cross-polarization with flip-back. Conditions: VL(cp75.43 
MHz. 3a(c): Contact time, 3.00 ms; acquisition time, 89.6 ms; recycle delay, 2.0 s; spin rate, 4800 Hz; 
number of transients, 332. 3a(t): Contact time, 1.00 ms; acquisition time, 60.2 ms; recycle delay, 5.0 s; 
spin rate, 4000 Hz; number of transients, 11376. Same conditions were applied in the VT experiment on 
3a(c), (right). Temperature in °C are quoted next to each spectrum; number of transients is varying 
between 3 and 4000. 

The disorder of the MesSn groups is, moreover, reflected by the clear doublet character 

of one of the three expected (in view of the asymmetric unit of 3a(c); see Fig. 1) '^N 

resonances, see Fig. 6 and Table 1. Indeed, the relative intensities visible in Fig. 6 

suggest that the peak at 5n -95 ppm has a composite bandshape, with the total intensity 

for one nitrogen site together with a doublet component for a second site (with its 

companion at 5n -99 ppm). Two '^N resonances appear in the spectral range 

characteristic of virtually non-bridging CN ligands [8], while the quasi-doublet is found 

at lower frequency, which would correspond well with an assignment to tin-coordinated 

(i.e. bridging) CN ligands. The 6('^^Sn) data match well with the '̂̂ Sn chemical shift 

values reported for tbp-configured N-Sn(Me3)-0 fragments in negatively charged 

frameworks [8]. 
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r 
-60 

1 ' \—' r 
-70 -80 -90 -100 -110 

6 \̂ppm 
-120 -130 -140 

Figure 6. Nitrogen-15 NMR spectra of compounds 3a(c) and 5a (centrebands only) obtained by cross-
polarization with flip-back. Conditions: Vl(N)=30.42 MHz, 3a(c): Contact time, 20.0 ms; acquisition time, 
100.2 ms; recycle delay, 5.0 s; spin rate, 4000 Hz; number of transients, 11,364. 5a: Contact time, 10.0 
ms; acquisition time, 80.0 ms; recycle delay, 2.0 s; spin rate 4500 Hz; number of transients, 36620. 

Each signal is split into an unsymmetrical triplet, clearly indicating coupling to a single 

'"^N nucleus (thus confirming the existence of an N-Sn-0 fragment). The unsymmetrical 

nature of the triplet arises from the well-known second-order effects of coupling to a 

quadrupolar (7=1) nucleus [14]. Similarly, '̂̂ Sn quintets have been observed in the 

spectrum of 2a, which contains N-Sn(Me3)-N fragments [12]. On the other hand, a 

sample of 3a(c) with '^N-enriched cyanide ligands (98%) displayed two "^Sn doublets 

(see insert of Fig. 7), in accordance with 7=1/2 for the '^N nucleus. As usual, the large 

electric quadrupole moment of the ^̂ Co nucleus prevents the resolution of the cyanide 

'^C resonance into the expected three to four signals; thus, some fine structure is visible 

for 3a(c) enriched in '^N, but it cannot be fully interpreted. 
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300 200 100 0 -100 -200 -300 

Figure. 7. Tin-119 NMR spectra obtained by cross polarization with flip-back. Centrebands are shown by 
asterisks. See the inset region for an enlarged view of the centrebands for 3a(c) with 15N enriched (98%) 
CN'ligands. Conditions: VL(Sn)=l 11.841 MHz, 3a(c): Contact time, 10.0 ms; acquisition time, 20.0 ms; 
recycle delay, 5.0 s; spin rate, 7680 Hz; number of transients, 65536. 3a(t): Contact time, 1.0 ms; 
acquisition time, 20.0 ms; recycle delay, 5.0 s; spin rate, 9940 Hz; number of transients, 32768. 5a: 
Contact time, lO.O ms; acquisition time, 9.9 ms; recycle delay, 2.0 s; spin rate, 9830 Hz; number of 
transients, 12440. 

From these results, we can conclude that the solid-state NMR results undoubtedly 

confirm that two nonequivalent MesSn fragments are reality, no matter whether they are 

arranged in a more regular or a random order. 
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Multinuclear (^^C, ^̂ N, "'Sn) solid-state magnetic resonance spectra of 3a(t). 

As far as the ^^N and '^C resonances of the nPr4N''" ion and the cyanide carbon atoms 

are concerned, the spectra of 3a(t) and 3a(c) do not differ significantly. Only the (y-) 

methyl carbon atoms of 3a(t) display, in good agreement with the asymmetric unit, four 

distinct lines (Table 1). Although the asymmetric unit predicts for the fran^-configured 

anion of 3a(t) more "^Sn-, ^^N-, and "̂'C-resonances than for the cw-isomer, the reverse 

is found experimentally, suggesting for the trans case some "molecular" mobility rapid 

on the NMR time scale. Instead of two '̂̂ Sn, six '^N, and two '•'C signals (for rapidly 

rotating MesSn units), respectively, each nucleus gives rise to no more than one signal. 

However, it is clear that the effective local symmetry is higher than the crystallography 

suggests, especially in the presence of MesSn rotation, so the experimental observations 

are not surprising. As for 3a(c), the "^Sn centreband for 3a(t) is found in the 5-range 

characteristic of tbp-configured N-Sn(Me3)-0 fragments in a negatively charged 

framework [9]. The only cyanide '^N signal to be discriminated from the rather noisy 

base line appears at relatively high frequency, where the four crystallographically 

nonequivalent, terminal cyanide '^N nuclei should resonate. However, no signal 

characteristic of Sn-coordinated (i.e., bridging) nitrogen is found, at least for the 

presently available sample unenriched in '^N. The methyl '̂ C signal is comparatively 

broad, unsymmetrical. 

Multinuclear (^^C, ^̂ N, ̂ 'Co, "'Sn) solid-state magnetic resonance spectra of 5a. 

In excellent agreement with the crystal structure of this host/guest assembly, only "^Sn 

resonances typical of N-Sn(Me3)-N fragments (with 5-values more negative than -100 

ppm) are found (Fig. 5). They are, however, devoid of any multiplet patterns. Likewise, 
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^^N resonances with 5-values typical of both bridging and terminal cyanide N atoms 
occur (Fig. 6). Interestingly, as expected owing to the absence of Sn<—O-H" NC 
hydrogen bonds in 5b, the terminal '^N nuclei of 5a resonate at higher frequencies (-
75±3 ppm) than the likewise virtually terminal '^N nuclei of 3a(c) and 3a(t) (-95±3 
ppm). The latter nitrogen atoms are in fact involved in notable Sn<—0-H-NC bonding 
(vide supra). A corresponding rafionale for the discrimination of the '^N shifts had 
already emerged for 4a [9]. Two sharp ^^N resonances appear around -309 ppm for 5a, 
in good agreement with the presence of two crystallographically nonequivalent nPr4N* 
ions. Instead of four (asymmetric unit), only three ^̂ Ŝn lines are found, although the 
line at -124 ppm seems to be twice as intense as each of the other two singlets. In fact in 
order to benefit by a better signal to noise the most intense lineshape of the "^Sn 
spectrum of 5a has been deconvolved; within the experimental error the intensity ratio 
1:2:1 can be assumed. 

Model: Lorentzian bandshape 

Chi"2 = 22.53502 
R"2 = 0.9868 

yO -15.92866 ±0.18402 

xc1 -192.09307 ±0 
A1 636.75196 tO 

X02 -209.9 ±0 
A2 1323.2055 ±13.26619 

xc3 -215.5 ±0 
A3 580.54287 ±11.636 

-140 -160 -180 -220 
— I — 
-240 -260 

Figure 8. Deconvolution of the most intense line in the "'Sn spectrum of 5a. Within the experimental 
error the intensity ratio can be considered as 1:2:1. The legend displays the position of the lines in ppm 
(xcl, xc2,xc3) and the ir areas (Al , A2, A3). YO indicates the offset of the baseline. Errors for peak 2 and 
3 (-209.9 and -215.5 ppm) but not for the first peak as its area and position were kept fixed. 
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Likewise, only two '^N signals (instead of four) appear around -75 ppm and only four 
(instead of eight) around -122 ppm. However, the signal at -73 ppm is about three times 
as intense as the signal at -78 ppm, and each of the lines at -124 and -123 ppm is 
notably more intense than, e.g., the well-isolated signal at -120 ppm (see Fig. 6). An 
overlapping of certain lines is not unreasonable, since e.g. for the atoms, N51 and N61 
equal Sn-N distances and very similar Sn-N-C angles are found (Table 2). 

Snl-Cli 2.104(4)-2.113(4) N51-Snl-N61 179.41(9) 

Sn2-C2i 2.114(4)-2.122(4) N62-Sn2-N63 178.78(13) 

Sn3-C3i 2.109(4)-2.122(4) N52-Sn3-N53 177.52(12) 

Sn4-C4i 2.111(4)-2.115(5) N54-Sn4-N64 179.63(14) 

Snl-N51 2.329(3) Snl-N51-C51 147.7(3) 

Snl-N61 2.329(3) Snl-N61-C61 152.8(3) 

Sn2-N62 2.294(3) Sn2-N62-C62 161.2(3) 

Sn2-N63 2.341(3) Sn2-N63-C63 162.4(3) 

Sn3-N52 2.329(3) Sn3-N52-C52 170.2(3) 

Sn3-N53 2.306(3) Sn3-N53-C53 153.2(3) 

Sn4-N64 2.313(3) Sn4-N64-C64 161.4(3) 

Sn4-N54 2.309(3) Sn4-N54-C54 161.9(3) 

Table 2. Selected interatomic distances (A ) and angles (°) of 5b. For i=l-3, the Sn-C distances are 
maximum and minimum values 

Although the crystal structure of 5b involves two nonequivalent Fe atoms, the ^̂ Co 

NMR spectrum of its homologue 5a displays only one, albeit extremely broad, 

resonance centred at -91 ppm. The '^C NMR spectrum of 5a displays four centrebands 

between 1.3 and 0.2 ppm, which could be assigned to the four nonequivalent Me^Sn 

groups present, provided that, as usual, rapid rotation about the N-Sn-N axes takes 

place. Two slightly unsymmetrical centrebands of different intensifies at 136 and 121 

ppm can be correlated with cyanide carbon atoms of terminal and bridging CN ligands, 

respecfively. Four signals of different intensifies between 15.5 and 16.5 ppm can be 

ascribed to the eight nonequivalent e-carbon atoms (terminal methyl groups) of the two 

«Pen4N"^ ions. One rather broad resonance between 20 and 24 ppm (with no more than 
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four distinct peaks) is probably due to the y- and 5-CH2 carbon atoms, and a likewise 
.broad resonance between 28 and 31 ppm (with four distinct peaks) to the P-CH2 
carbons. The methylene carbon atoms resonate between 56 and 62 ppm (two distinct 
peaks and several shoulders). 

Conclusion 

Simple quaternary ammonium ions RjN"^ with R=nPT, nBu [9] and «Pen have turned 

out to be very efficient cleavage agents, and concomitant "structure directors", 

respectively, for the preparation of the host/guest systems [(R4N)(Me3Sn)2 M(CN)6 

•ZH2O] according to Eq (2). In contrast, RjN"^ ions with R=Me and Et do not react with 

2. Another unexpected feature is the very different structure-directing behaviour of 

nPr4N"^ and nPen4N"'' ions. While the former is able to generate two isomeric 3D 

frameworks containing only Sn<—0H2'"NC connecting units, the latter admits 

exclusively the formation of infinite [M-CN-Sn-NC] chains. Interestingly, the nBu4N'̂  

ion has been shown [9] to lead to the particularly complex 3D framework 4b involving 

both Sn<—0H2'"NC connectors and infinite chains. On the other hand, the two so far 

unprecedented isomeric [Co(CN)4(CNSnMe30H2)2]" anions present in 3a(c) and 3a(t) 

seem to owe their stabilization essentially to the formation of the specific 3D 

frameworks described above. Moreover the presence of terminal cyanide ligands is 

important for an anchoring of the H2O and lUN"'' guests via hydrogen bonding. A survey 

of the variety of reaction products resulting according to Eqs. (2) and (3) with the 

different RjN"'' ion is given in Table 3. 
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Prod. [M-CN-Sn-NC] Sn 0H2..NC No. of terminal 

R N X z chains present bridges present 
CN ligands 

per M Comment 
Me 2 0 0 Yes No 0 a 
Et 2 0 0 Yes No 0 a 
nPr 3(c) 1 2 No Yes 4 b 
nPr 3(t) 1 2 • No Yes 4 c 
nBu 4 1 1 Yes Yes 3 d,e 
nPen 5 1 0.5 Yes No 2 f 
nHex 6 0 0 Yes No 0 a 

Tab. 3. Structural Variation of a [(R4N)x(Me3Sn)3_xM(CN)6 zHjO] Assembly versus the length of the 
Group R present. 

a) Exclusive formation (or persistence) of 2=[(Me3Sn)3M(CN)6]. b) As isomer 3a with cis-
[Co(CN)4(CNSnMe30H2)2]' anion, c) As isomer 3a(t) with trans-[Co(CN)4(CNSnMe30H2)2]' anion, d) 
With both finite and infinite [M-CN-Sn-NC] chains, e) Various kinds of S n ^ 0 H 2 • •CN2CN hydrogen 
bridges are present, f) 3D-framework with channels of nanometer}sized (ca. 1x2 nm) cross section. 

The combination of X-ray crystallography and multinuclear CPMAS solid state NMR 

spectroscopy has proved to be very helpful as in earlier studies [5, 7-9]. The mutual 

support of these two techniques enables to draw significant conclusions for the 

elucidation of the structure and reactivity of these compounds. Actually, the presence of 

[Co-CN-Sn(Me3)-NC] chains, and the absence of MeaSn̂ —OH2 bonds, in the 

architecture of 5b had been correctly deduced before the X-ray crystallographic results 

were available. 
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4.3 Examples of NMR crystallography; effect of R̂ P and Ir replacement 
Introduction. 

While alkaline and alkaline earth metal ions may readily be recognized by tailor-made 

acceptors such as coronands and cryptands [1], possibilities of selectively recognizing 

tetraalkylammonium ions, R^N"̂ , have remained more limited. Apart from several 

molecular receptors [2], polymeric frameworks such as zeolites are likely to function as 

specific hosts of distinct R4N"̂  (and R4P*) ions, too, particularly when these cations are 

adopted as templates during the synthesis of zeolites [3]. Coordination polymers of the 

super-Prussian-Blue type [(Me3Sn)3 M(CN)6]= ^„[{|i-CNSn(Me3)NC}3] with M=Fe and 

Co [5] may undergo facile cation exchange according to Eq. (1) in part 1 providing 

different water-containing structures with R=n-propyl (nPr), n-butyl (nBu), and n-pentyl 

(nPen), [7,8]. Coordinative H20^Sn and CN—>Sn interactions, as well as 0H2"'NC and 

eventually even weak CH2'"NC hydrogen bonds, appear to be responsible for the 

generation of the various structural designs. Most interestingly, only the rtPr4N'^ ion was 

found to completely abandon the very common motif of infinite or finite [M-CN-Sn-

NC]n chains [8]. A subtle tuning of the basic building blocks R4E'', [M(CN)6]^", and 

MesSn* may affect the concerted structure-directing influence of the various weak 

modes of interaction, and the present study is extended particularly toward the related 

building blocks nPr4P'*' and [Ir(CN)6]^", respectively. Moreover, the starting polymer 

[(Me3Sn)3Co(CN)6] [1] was complemented by its slightly modified derivative 

[{Me2Sn(CH2)3SnMe2}i,5 Co(CN)6] [4], where the tin atoms are tied pairwise together 

by a trimethylene bridge [8]. Although most of the products could, in principle, be 

prepared both according to Eq. (1) and by co-precipitation, 
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R4N* + MesSn-aq-" [M(CN)6]^' H2O ^ [(R4N)(Me3Sn)2M(CN)6-zH20] i (2) 

the two routes lead in a few cases to nonequivalent products, which will be specified 

more clearly in the next sections. 

Preparation and general properties of c, 3c, 4c, 5c, 3a(t)*, 3c*, 3aT, and 4b. 

The anhydrous ^wper-Prussian-Blue derivative c (M=Ir) was obtained in the same way 

as its homologues a (M=Co), and b (M=Fe), and its solubility in water is higher than 

that of a. Moreover, c redissolve completely in solutions of the salts M B A N I or Et4NCl 

whereas a and b remain completely unchanged [7, 8]. The X-ray powder diffractogram 

(XRD) of c resembles strongly the XRDs of a and b, manifesting that again infinite [-Ir-

CN-Sn-NC}] chains constitute a corresponding 3-D framework for c as known for a [6, 

11]. Compounds 3c and 3c* (poorly soluble) are obtained from a suspension of c in 

aqueous solutions of nPr4NCl. Correspondingly, 4c could also be obtained from c and 

nBu4NBr. Compound 3a(t)* (M=Co) was also prepared by using the nPr4P'̂  The 

chemical compositions of 3a(t)*, 3a, 3c*, 4c, and 5c were established by elemental 

analysis and ' H NMR spectroscopy in D20/NaOD solution. Compound [ R 4 E 

{Me3Sn(CH2)3Sn(Me)2)Co(CN)6], a derivative of a with the tether ligand [8], reacts 

almost quantitatively with nPr4NCl to 3aT. By co-precipitation also 4aT=[(nBu4N) 

{Me2Sn(CH2)3SnMe2}Co(CN)6'2H20] was obtained. The vibrational frequencies adopt 

values intermediate between those of a and c (involving M=CN->Sn bridges) and of 

K3[M(CN)6] (M=Co or Ir), respectively (with terminal CN ligands only). 
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X-ray powder diffractometric (XRD) studies. 

All the new supramolecular assemblies studied except 4b and 3a(t)* gave rise to 

sausfactory XRDs with numerous pronounced and sharp reflections. The experimental 

XRD of 3c resembles strongly its simulated diffraction pattern (Fig.l), based upon data 

from the successful single-crystal X-ray study of this compound (vide infra). This 

excellent coincidence qualifies the polycrystalline (bulk) material of 3c also for a 

promising solid-state NMR study in taking here the crystallographically determined 

asymmetric unit fully for granted. It is also found how 3c and 3a(c) are providing very 

close powder XRD patterns (Fig.l) 3c is in fact found to be practically isostructural 

with 3a(c) (vide infra). Fig. 2 reveals that the experimental XRD of 3a(t)* resembles 

only fainfly that of co-precipitated 3a(t). However, notably better agreement is found 

for the two simulated XRDs, reflecting the fact that 3a(t)* and 3a(t) are actually 

isostructural (vide infra). 

s^iulated 

3c 

3c 
simulated 

26 

Figure 1. Comparison of the experimental and simulated X R D s of 3c with the simulated X R D of 3a(c). 

26 values are expressed in degrees. 
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a 3a(t) 

3a(l)* 

3a(t)* 
simulated 

3a(t) 
• Simulated 

2 0 

Figure 2. Comparison of the experimental X R D s of co-precipitated 3a(t) (a) and 3a(t)* (b) with the 
simulated X R D s of 3a(t)* (c) and co-precipitated 3a(t) (d) respectively. 29 values are expressed in 
degrees. 

However, the experimental XRDs of both compounds indicate some deficiencies for the 

bulk samples. It has been shown earlier [8] that some "amendment" of the simulated 

XRD of co-precipitated 3a(t) is in principle possible, provided that e.g. a preferred 

orientation of the crystallites in the bulk material can be accounted for. The 

experimental XRDs of 4c (R=«Bu) and 5c(R-nFen) show very little similarities to the 

simulated XRDs of 4b [6] and 5b [7]. Instead, the pattern of 4c resembles somewhat 

more that of 3c (see Fig. 1). It would, however, be premature to draw here any more 

distinct conclusion at this point. In view of the excellent quality of the XRD of bulk 4c, 

this sample may be expected to be a promising candidate for multinuclear CP MAS 

solid-state NMR studies. The multinuclear solid-state NMR spectra of diamagnetic 4a, 

which have already been investigated in great detail [7], offer helpful guidelines for a 

structure-oriented NMR study of 4c. In Fig. 3, the experimental XRD of co-precipitated 
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3aT is compared with the simulated XRDs of 3c and 3a(c) [8]. During the XRD 
simulation of 3a, all positions of Ir atoms were also replaced by the lighter Co atoms. In 
principle, all three diffractograms resemble each other, suggesting for 3aT a crystal 
structure similar to those found for 3a(c) [8] and 3c. 

3c 
'vk 

10 
2 0 

Figure 3. Comparison of the experimental X R D of 3aT (obtained by co-precipitation; top) with the 
simulated X R D s of 3c (b) and 3a(c) (c). Curve (b) was calculated for M=Co (see the text). 20 values are 
expressed in degrees. 

Although the trimethylene tether of 3aT, which holds its Me2Sn units pairwise together, 

must be considered as an additional structure-directing factor, the comparatively "light" 

additional CH2 and CH3 fragments present in derivatives of the tethered compounds are, 

according to a Rietveld analysis of the host/guest system [(Et4N)(Me3Sn)3Fe(CN)6] 

[10], unlikely to generate pronounced, additional reflections. A closer inspection of the 

three XRDs in Fig. 3 reveal how 3aT is closely similar to (modified) 3c than to 3a(t), 

the diffractogram of which was still simulated for the initially evaluated space group 
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P2i2i2 [8]. However, according to our crystallographic results for 3c (vide infra), this 
space group might be abandoned in favour of P2i2i2i. Finally, a comparison of the 
experimental XRD of 4aT with the simulated diffractogram of 4a [7] reveals 
immediately that, probably owing to the presence of the trimethylene tether, the rather 
complicated supramolecular architecture of 4a and 4b cannot be realized in 4aT. Thus, 
4b contains three chemically nonequivalent Me3Sn fragments in distinct positions of the 
lattice [7]. 

Crystal structures of 3c and 3a(t)*. 

The results of the crystallographic studies of single crystals of 3c and 3a(t)* confirm the 

earlier findings [8], according to which, in the presence of R4E* ions with R=n-propyl, 

the primary building blocks Me3Sn'̂ , [M(CN)6]''", and H2O afford negatively charged 

molecular units of the type [M(CN)4(CNSnMe3)'OH2)2]', which assemble to infinite 

frameworks exclusively via 0-H""NC hydrogen bonds. The resulting 2-D or 3-D 

frameworks incorporate the nPr4E"̂  guest ions quite specifically. Compound 3c, like 

3a(c), contains [8] anionic metal complexes with two cw-configured CNSn(Me3)OH2 

ligands per iridium centre, while 3a(t)* represents the corresponding rran^-isomer with 

M=Co (Figs. 4 and 5). Some of the most relevant crystal and refinement parameters of 

3c and 3a(t)* are collected in Table 1, and selected interatomic distances and bond 

angles, respectively, of 3c and 3a(t)* are listed in Tables 2 and 3. 

3a(t)* 3c 
Empirical formula C24H5oN602PCoSn2 C24H5oN702lrSn2 
Formula weight 781.98 898.29 
Crystal system Orthorhombic Orthorhombic 
a(A) 18.811 11.2369(2) 
b(A) 18.9278(2) 15.07290(10) 
c(A) 20.3692(2) 21.8015(2) 
V 7252.47(10) 

Q 
3692.58(8) 
4. 

L 
Space group 

0 
Pbca P2i2i2i 

T(K) 173(2) 173(2) 
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Table 1. Crystallographic parameters for 3a(t)* and 3(c) 

S n l - N l 2.332(5) Sn l -C7 2.123(5) 

Sn2-N2 2.347(5) Sn l -C8 2.123(6) 
Sn l -01 2.286(3) S n l - C 9 2.120(6) 
Sn2-02 2.275(3) 

Sn2-C10 2.076(9) 
01...N3 2.647(6) S n 2 - C l l 2.055(8) 
01...N6 2.6689(7) Sn2-C12 2.095(8) 
02...N4 2.776(5) 
02...N5 2.715(6) C16...N3 3.532(7) 

C22...N5 3.555(8) 
C13...N5 3.603(8) 

S n l - N l - C l 164.6(4) C20...N4 3.691(8) 
Sn2-N2-C2 151.4(4) 
N l - S n l - 0 1 177.08(16) 
N2-Sn2-02 177.69(15) N l - S n l C 7 94.1(2) 

N l - S n l - C 8 90.9(2) 

Snl-01. . .N3 108.88(17) N l - S n l - C 9 91.9(2) 

Snl-01. . .N6 113.67(19) N2-Sn2-C10 90.8(3) 
Sn2-02...N4 128.0(2) N 2 -Sn2 -C l l 91.6(3) 
Sn2-02...N5 117.53(18) N2-Sn2-C12 89.0(3) 

Table 2. Selected interatomic distances (A) and angles (°) of 3a (dotted lines refer to potential O - HjN 
and C • H2N hydrogen bonds, respectively, considering here only C2N distances < 3.80 A). 

S n l - N l ' 2.2988(17) Sn l -C7 2.120(2) 

Sn2-N2 2.3444(17) Snl -C8 2.111(2) 

S n l - O I 2.291(10) Snl -C9 2.109(2) 

S n l - 0 3 2.293(10) Sn2-C10 2.118(2) 

Sn2-02 2.2775(15) S n 2 - C l l 2.120(2) 
Sn2-C12 2.125(2) 

012N4 2.777(9) 
012N5 2.777(9) C22...N4 3.404(3)a 

032N4 2.733(10) C14...N3 3.433(3) 

032N5 2.751(10) C13...N5 3.435(3)a 

022N3 2.750(2) C23...N4 3.500(3) 

022N6 2.698(3) C16...N3 3.516(3)a 
C15...N3 3.540(3) 

S n I - N l - C l 167.50(17) C19...N4 3.630(3)a 

Sn2-N2-C2 176.56(18) C24...N4 3.697(3) 

N l - S n l - 0 1 173.89(17) CI6. . .N6 3.708(3)a 

N l - S n l - 0 3 172.7(2) C24...N5 3.709(3) 

N2-Sn2-02 175.34(7) 
N l - S n l - C 7 91.45(9) 

01-H-H4 158(4) N l - S n l - C 8 90.65(9) 

01-H-N5 167(3) N l - S n l - C 9 91.52(9) 

03-H-N4 154(4) N2-Sn2-C10 90.46(8) 

03-H-N5 158(3) N2-Sn2-Cl l 90.43(8) 

02-H-N3 176(3) N2-Sn2-C12 92.07(9) 

02-H-N6 162(4) 

Table 3. Selected interatomic distances (A) and angles (°) of 3a (dotted lines refer to potential O-H ' N 
and C ' H N hydrogen bonds, respectively, considering here only C' N distances < 3.80 A). 
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In contrast to numerous other host/guest systems containing R4N"̂  ions [4,5], the nPr4E'̂  

guests of 3c and 3a(t)* are not disordered. The asymmetric units of 3c and 3a(t)* are 

shown in Figs. 4a and 5a. The {Ir(CNSn(Me3)OH2)2}fragment of 3c is, like that of its 

cobalt homologue 3a(c) [8], V-shaped (Cl-Ir-C2 angle: 88.12(19)°). However, while the 

methyl groups of the fragment with M=Co were found to be disordered [8], a 

corresponding disorder can strictly be ruled out for M=Ir [3c]. Only the rotational 

ellipsoids of the three-methyl carbon atoms of Sn(2) turn out to be somewhat more 

expanded than those of Sn(l) (Fig. 4a), which feature might reflect some faint 

disposition for disorder. Al l tin-bonded methyl carbon atoms of 3c are bent almost 

negligibly toward the oxygen atom, while for 3a(c) a more pronounced bending toward 

the oxygen and the nitrogen atoms was observed. 

C)18( 

(hi 

N(4) 

N(2) „ . 

c m r W * ^ C(7) 
] C , 1 0 , 

0(2) 

"1 / 

Figure 4. Asymmetric unit (a) and supramolecular architecture (b) of 3c. Faint lines symbolize 0 - H " N,C 
hydrogen bonds, larger light gray spheres representing tin atoms (methyl groups have been omitted) and 
N(7) is the centre of a «Pr4N'^ ion. 

Interestingly, the solid-state NMR results reported for the '̂̂ Sn and methyl '̂ C nuclei 

of 3a(c) would be fully consistent with the asymmetric unit of 3c, but not with that of 
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3a(t). In view of this fact, the space group P2i2i2i also for compound 3a(t) should no 
longer be ruled out, in spite of the absence of several appropriate reflections [8]. O-
H'"NC hydrogen bonds corresponding to those found for 3a(c) [8] interlink all cis-
[Ir(CN)4(CNSnMe30H2)2]" anions to infinite, puckered layers, between which the 
nPr4N'*' guest ions are incorporated (Fig. 4b). Interestingly, the three shortest C' N 
distances of 3c originate from a-CH2 groups of the guest cation and are likely to reflect 

C-H-NC hydrogen bonds (Table 2). 

cm 

am ast 
CI23I K3I 

cm ant 

Figure 5. Asymmetric unit (a) and supramolecular architecture (b) of 3a(t)*. 

However, in length they exceed the shortest C"'N contacts of 3a(c) (3.13-3.17 A) [8] 

considerably. Nevertheless, the nPr4N"̂  cation of 3c is, in contrast to that of 3a(c), not 

disordered. The trans-[Co(CN)4(CNSnMe3)OH2)2]' ions of 3a(t)* and co-precipitated 
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3a(t) [8] are even more similar in shape, and also in their geometrical parameters (Table 
3), than the corresponding cw-configured anions of 3c and 3a(c). As in the structure of 
co-precipitated 3a(t), the only disordered non-hydrogen atom of 3a(t)* is 0(1), which 
belongs to one of the two Sn-coordinated water molecules. As in 3c, all four terminal 
cyanide ligands of 3a(t)* are involved in 0-H""NC hydrogen bonds with 02-H"'N 
distances between 2.689 and 2.754 A (Table 3). Because of three of the four hydrogen 
bonds to be expected per formula unit, well-ordered, puckered layers result. These 
layers are, moreover, held together by the fourth hydrogen bond (i.e. 0(2)-H""N(3), thus 
affording a veritable 3-D framework (Fig. 5b). The disorder of the oxygen atoms 0(1) 
and 0(3), which is observed both for 3a(t)* and co-precipitated 3a(t), might be essential 
to guarantee optimal intralayer hydrogen bonding with all of the terminal cyanide 
ligands. The nPr4P'*" guest ions are encapsulated between adjacent layers. Less 
conventional are notably weaker C-H"'N hydrogen bonds that are, again, likely to be 
responsible for the lack of any disorder of the organic cation, although the shortest C""N 
distances found for 3a(t)* exceed 3.40 A (Table 3). At least two of the a - C H 2 groups of 
the nPr4P'̂  ion could be weakly anchored to cyanide N atoms. A closer comparison of 
the relevant C'"N distances of 3a(t)* with those of 3a(t) [8] suggests that the 
intraframework fixation of the nPr4P'̂  ion resembles that of the nPr4N'̂  ion (in co-
precipitated 3a(t)). Up to now, very little is known about "unconventional" C-H'"X 
hydrogen bonds involving RA?^ instead of R4N'̂  ions as a C-H source [12]. According to 
a recent evaluation by Desiraju et al. [13], C-H"'N hydrogen bonds with C'"N distances 
of up to at least 3.75 A may in fact be of relevance for the generation of supramolecular 
assemblies (provided that the H atom belongs to an aromatic hydrocarbon). On the other 
hand, C-H...0 hydrogen bonds as short as 3.2 A (C""0) have most recently been 
suspected to foster protein folding [14]. 
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Multlnuclear (^^C, ^^P, ^̂ Ŝn) solid-state magnetic resonance spectra of 3a(t)*, 3c, 

4c, 3c*, and 3aT. 

Important information regarding structural features can also be deduced from the 

CPMAS "^Sn NMR spectra (Fig. 8). Including sideband distributions, the '̂̂ Sn spectra 

of the iridium systems containing propylammonium and phosphonium cations (3c and 

3c*) are very similar and resemble the already reported spectrum [8] of the cobalt 

analogue 3a(c). The spectrum of 3a(c) also looks like that of its derivative 3aT, where 

tin atoms are held together pairwise by trimethylene tethers. Al l these four compounds 

display two centrebands (between -60 and -80 ppm), with isotropic chemical shifts 

characteristic of trigonal bipyramidal {CNSn(Me3)OH2) fragments [7] best attributable 

to the two nonequivalent, cw-oriented CNSnR3"OH2 ligands of a Cô "̂  (3a(c), 3aT) or an 

Ir̂ '*" (3c, 3c*) ion. For 3a(c) [7] and 3c, this arrangement has been confirmed by X-ray 

crystallography. The two centrebands of 3a(c) were resolved into multiplets, giving rise 

to two different coupling parameters |Ĵ ^̂ Sn, ''̂ N] and, in the case of '^N-enrichment, to 

two different |J '̂̂ Sn, '^N| values [7]. In the other cases, the somewhat larger line widths 

(380-580 Hz) may obscure such a fine structure. While from its X-ray study [7] the 

MesSn groups of 3a(c) were found to be apparently crystallographically equivalent, but 

disordered, those of 3c (and probably of 3c*, too) are definitely nonequivalent, but 

undoubtedly devoid of any disorder. Of course, the NMR information makes it quite 

clear that there are actually nonequivalent MesSn groups in 3a(c) also. Taking for 

granted that the MesSn units of 3a(c) are just disordered in the two environments, the 

similarity of all four compounds in their '̂̂ Sn shifts (Table 4) is somewhat surprising. 

The ''^Sn spectrum of the iridium compound containing tetrabutylammonium cations 

(4c; Fig. 6) differs notably from that of its cobalt homologue 4a (Fig. 6, top), which 
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contains up to five centrebands at very different chemical shifts [6]. In contrast, the 
spectrum of 4c resembles those of 3a(c), 3c, and 3c*, but with a significantly smaller 
chemical shift difference between the two tin sites. These findings support the doubts 
about the isostructural architecture of 4c on the one hand and of 4a and 4b on the other, 
which have already been suggested in view of the XRD of 4c. The "^Sn spectrum of the 
cobalt compound containing Pr4P"̂  cations (3a(t)*) resembles strongly that of co-
precipitated 3a(t) [8]. According to single-crystal X-ray crystallography, these two 
solids are in fact isostructural and involve two nonequivalent, trans-configured 
CNSnMes 'OHi ligands. Although the "^Sn spectrum of 3a(t)* exceeds that of 3a(t) in 
quality, again only one centreband appears. The isotropic chemical shift agrees with that 
expected for CNSnMe30H2 fragments (3a(t)*: -78 ppm). The apparent absence of a 
second "^Sn resonance (as required by the asymmetric unit; see Fig. 5) may arise from 
an accidental near-degeneracy. Alternatively, it may support the suggestion [8] that at 
room temperature rapid (on the NMR time scale) interchange of Sn(I) and Sn(2) (in 
each compound) might take place. In the case of co-precipitated 3a(t), only one '^N 
cyanide signal was detected instead of the six expected lines. Actually, six 
crystallographically nonequivalent N atoms were found in the asymmetric units of both 
3a(t)* and 3a(t) [8]. Moreover, the modest quality of the XRDs of bulk 3a(t)* and co-
precipitated 3a(t) (Fig. 2) might reflect some NMR-relevant deficiencies of the samples. 
According to the literature [15], an unstrained trimethylene bridge connecting two tin 
atoms requires a Sn"'Sn separation of about 6.15 A. A systematic examination of the 
crystal structures of 3c and 3a(t)* in view of such Sn'"Sn distances reveals that the most 
favourable location for the (CH2)3 tether would be within each {cis-M(CN)4(CNSnMe3 
) O H 2 ) 2 } fragment of 3c, according to Fig. 7. Inter-fragment tethering would, in 
principle, also be possible within the crystal lattices of 3a(t)* and 3a, but only if 
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accompanied by some more constraint. The appearance of two "^Sn centrebands for 
3aT indicates a non-negligible lack of symmetry for the tether, which might just reflect 
the inequivalence of the two c/j'-oriented CNSnR3'OH2 ligands. 

i 3 r ' cv,!ft^ , ^ "'Sn shifts 
C SnittS (ppm) 

(ppm) 

MeaSn R4N/R4P CN McaSn^ 
3a(t) ca. 0.5 ca61(a-CH2) ca. 130" -79 

16.5 (p-CH,) 
13.6, 12.4,11.6 
11.0(Y-CH3) 

3a(c) "^-[(nPr4N)(Me3Sn)3Co(CN), 2.2 60.1 (a-CH,) ca 130" -61 
2H2UJ 

1.2 15.8(P-CH2) -75 
12.5, 11.5 (Y-CH3) 

3a(t)*' '•""ifa"P'^^^^^'^^"^^^°™ 1.2= 22.3(a-CH2) -77 
2H2OJ 

5.5' 16.4 (P-CH2/Y-CH3) ca. 130 

4a [(nBu4N)(Me3Sn)2Co(CN)6.H20] 1.9, 1.6" ca 59' (a-CH2) 120 to 145 21.5 

1.5, 1.4" 24.9 (P-CH2) (B.B.) ranges: 

ca20''(Y-CH2) -66 to-73" 

-0.2 ca 14" (5-CH3) -105 to-123" 
3c [(nPr4N)(Me3Sn)3lr(CN)6 2H2O] 1.8 60.0 (a-CH2) ca. lOO" -61.6 

1.2 I5.9(p-CH2) -76.6 
12.2, 11.2d(Y-CH3) 

3c* [(nPr4P)[(Me3Sn)2 Ir(CN)6] 2H2O] 2.1 17.0(a-CH2) Range: -56 
1.6 15.7dP-CH2/Y-CH3 99 to 115 -75 

4c [(nBu4N)(Me3Sn)2lr(CN)6.mH20] 2.1 59.5,58.6,57.8 (a-CH2) Range: -64.2 
1.3 24.8,23.7,22.6,21.4 100 to 112-67.8 

20.4, 19.5,19.1, 16.4 
15.6, 12.9 (P/Y-CH2, S-CH3) 

3aT [(nBu4N)(Me3Sn)2lr(CN)6.2H20] 3.2 60.0 (a-CH,) 130" -62 
0.6 16.3,15.5d(P-CH2) -77 
-1.7 13.5, 12.2; 
23.3^ 11.4(Y-CH3) 

For comparison: '^C resonances of nPr4PBr in D2O (in ppm): 19.90(d), 14.87(s) 
^ 14.66(d) 5(^'P) of 3a(t)*: 30.6 ppm, 3c*: 34.2 ppm, (nPr4PBr in D2O: 32.29 ppm). 

b Complex structure 

c Weak 

d Shoulder 

e T w o overlapping lines 

f Probably of the (CH2)3 tether 
| j " ' S n , ' ^ C | values between 530 and 540 H z (for co-precipitated, 3a(c) ,3a(t), 3c, 3c*, 

^ and 4c) . 

Table 4. NMR parameters. Symbol B . B . mean Broad Band; symbol ^ indicate the resonance span of the 
range (120^45 mean from 120 to 145 ppm). 
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Figure 6. "^Sn CPMAS spectra (including spinning sideband distributions) of (a) 3a(c), 3a(t) (by co-
precipitation), 3a(t)* and 4a, and (b) 3c, 3c*, 4c, and 3aT. Centrebands are shown by asterisks. All the 
spectra were recorded at ambient probe temperature using cross-polarization from protons with flipback. 
Conditions: VL(Sn)=l 11.841 MHz(3a(c)) Contact time, 10.0 ms; acquisition time, 20.0 ms; recycle delay, 
5.0 s; spin rate, 7680 Hz; number of transients, 65536. (3a(t) (by co-precipitation)) Contact time, 1.0 ms; 
acquisition time, 20.0 ms; recycle delay, 5.0 s; spin rate, 9940 Hz; number of transients, 32768. (3a(t)*) 
Contact time, 1.0 ms; acquisition time, 3.0 ms; recycle delay, 5.0 s; spin rate, 8240 Hz; number of 
transients, 8856. (4a) Contact time, 1.0 ms; acquisition time, 9.9 ms; recycle delay, 2.0 s; spin rate, 12220 
Hz; number of transients, 29500. (3a) Contact time, 5.0 ms; acquisition time, 5.0 ms; recycle delay, 2.0 s; 
spin rate, 3760 Hz; number of transients, 2000. (3c*) Contact time, 4.5 ms; acquisition time, 5.0 ms; 
recycle delay, 2.0 s; spin rate, 7700 Hz; number of transients, 31744. (4c) Contact time, 5.0 ms; 
acquisition time, 5.0 ms; recycle delay, 2.0 s; spin rate, 5000 Hz; number of transients, 28404. (3aT) 
Contact time, 4.5 ms; acquisition time, 5.0 ms; recycle delay, 2.0 s; spin rate, 9220 Hz; number of 
transients, 384. 
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Figure 7. Depiction of the most reasonable location of the trimethylene tether in compound 3aT. 

The ^̂ Ŝn shielding tensor parameters obtained by spinning sideband analysis of the 

spectra for 3a(t)*, 3c, 3c*, 4c, and 3aT are very consistent and will be discussed in the 

third part of this chapter. The anisotropies range between -309 and -347 ppm and the 

asymmetries lie around 0.1 (except for 3aT, which has somewhat higher values), 

implying zero within experimental error. While the •''P NMR spectra of 3a(t)* and 3c* 

show just one singlet each (see footnote a of Table 4), in accordance with the 

asymmetric unit of the former, the '•̂ C spectra (see Fig. 8) are unusual in that the n-

propyl resonances of the latter sample give rise to just one broad signal at 17 ppm, with 

a low-frequency shoulder, whereas for 3a(t)* two separate, but likewise broad, bands 

appear (the crystallographic nonequivalence of the four alkyl groups not giving any 

definitive extra splitting). Moreover, instead of the two expected methyl carbon 

resonances (of the two different, rapidly rotating MesSn groups), only one extremely 

weak signal appears in the spectrum of 3a(t)* at a chemical shift of around 1 ppm 

(along with one slightly stronger peak at 6 ppm). In the '^C spectrum of nPr4PBr 

dissolved in D2O, two '̂'C doublets (a- and P-CH2) and one singlet (Y-CH3) occur 

between 22 and 14 ppm (see Table 4). The '^C NMR spectrum of the Ir-containing 
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homologue 3c* of 3a(t)* displays two pronounced singlets close to 2 ppm 
(corresponding to two rotating MeaSn groups), and there are two or three signals 
between 100 and 115 ppm (cyanide carbons). In contrast to 3a(t)*, the '^C spectrum of 
the nPr4N'̂ -containing homologue 3c of 3c* behaves in a more regular fashion in that 
sufficiently intense resonances appear for all four different types of carbon atom present 
in this assembly. Again, two methyl singlets indicate the presence of two different, 
rapidly rotating Me3Sn groups; while in disagreement with the asymmetric unit only 
one a-CH2 singlet and one (3-CH2 singlet appear (though in both cases the lines are 
broad). However, the corresponding Y-CH3 singlet carries a weak shoulder. A complex 
series of signals appears in the cyanide carbon range. The '^C spectrum of compound 
3aT, which contains a trimethylene tether between each pair of tin atoms, displays in 
principle all of the resonances expected (Table 4). The three quasi-singlets found around 
zero ppm (the central one of which is about twice as intense as the two others and may 
have an incipient splitting) must be ascribed to the four nonequivalent, rigidly tin-
bonded methyl groups. According to our earlier findings [9], the broad signal centered 
at 23.3 ppm is most likely due to the three carbon atoms of the trimethylene tether. The 
remaining signal groups may then, in close analogy to those of e.g. 3c, be readily 
assigned to the a-, P-, and y-carbon atoms of the n-propyl units, with some clear 
splitting of the y resonance. 
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Figure 8. '^C CPMAS spectra, recorded at Vl(C)=75.4 MHz (except for compound 3a, for which 50.3 MHz 
was used) and ambient probe temperature, for the same collection of samples as that considered in Fig. 6. 
Flipback of the proton magnetization was employed following signal acquisition. The spectral ranges A, 
B, and C are those for tin-coordinated alkyl groups, the alkyl carbons of the R4E'̂  ion (except the carbons 
in region C), and for the a-CH2 of the R4N* group, respectively. Conditions: (la) Contact time, 3.00 ms; 
acquisition time, 89.6 ms; recycle delay, 2.0 s; spin rate, 4800 Hz; number of transients, 332. 3a(t) (co-
precipitated)) Contact time, 1.00 ms; acquisition time, 60.2 ms; recycle delay, 5.0 s; spin rate, 4000 Hz; 
number of transients, 11376. (3a(t)*) Contact time, 1.0 ms; acquisition time, 80.0 ms; recycle delay, 3.0 
s; spin rate, 3460 Hz; number of transients, 17064. (4a) Contact time, 9.0 ms; acquisition time, 80.0 ms; 
recycle delay, 1.0 s; spin rate, 4720 Hz; number of transients, 55000. (3c) Contact time, 8.0 ms; 
acquisition time, 102.4 ms; recycle delay, 2.0 s; spin rate, 4000 Hz; number of transients, 40000. (3c*) 
Contact time, 5.0 ms; acquisition time, 100.0 ms; recycle delay, 2.0. s; spin rate, 4300 Hz; number of 
transients, 5682. (4c) Contact time, 3.0 ms; acquisition time, 100.0 ms; recycle delay, 1.5 s; spin rate, 
4300 Hz; number of transients, 2444. (3aT) Contact time, 5.5 ms; acquisition time, 50.0 ms; recycle 
delay, 2.0 s; spin rate, 8950 Hz; number of transients, 8810. 
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The '•̂ C spectrum of compound 4c confirms the suggestion that this assembly cannot be 
isostructural with 4b and 3aT (vide supra) as its resonances for the tin-bonded methyl 
groups differ significantly from those of 4a. In contrast, this resonance pattern of 4c 
resembles strongly those of 3c and 3c*. The remaining part of the '•̂ C spectrum of 4c 
(except that for the cyanide carbons) seems to reflect one comparatively "tightly" 
anchored nBu4N'̂  ion with four crystallographically nonequivalent butyl groups since 
approximately four individual signals may be detected for the a-, p-, y-, and 5-carbon 
atoms, respectively (counting two notably intense signals twice). Precise assignment of 
the p-, y-, and 6-resonances is difficult, however. Reports on '•'C CPMAS NMR studies 
of as-prepared zeolites with nPr4N'̂  guests are still rather scarce. 

Conclusions 

The sohd-state NMR results (in particular for the nuclei '̂ ^Sn and ^'P) complement the 

X-ray diffraction results in that: 

(a) throughout, the presence of just one singular species per bulk sample is indicated. 

(b) The absence of any "^Sn centreband for 6 < -90 ppm (as typical for trans-

Me3Sn(NC)2) fragments) strongly suggests that all samples studied here are devoid of { 

M-CN-Sn-N-C] chains. Thus, even the nBu4N"̂  ion seems to initiate a total cleavage of 

the 3-D framework of 3 (Ir based compounds), although 1 (Co) and 2 (Fe) are reported 

to withstand a cleavage by this ion at least partially [6]. 

(c) Representatives of type 3a and 3c, respectively, with two either cis- or trans-

oriented CNSn(Me3)OH2 ligands may readily be distinguished by their "^Sn spectra. 

(d) The striking similarity of the NMR spectra of 3a(c) and 3c suggests that the 

structural analysis of the former is probably based upon an incomplete manifold of 

reflections. 
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(e) A l l NMR results for 3aT (including those for '^C) favour the view that this assembly 
is also isostructural with 3c, involving again two cw-oriented and (CH2)3-interlinked 
CNSn(R3)OH2 ligands. 

(f) Bulk samples displaying unsatisfactory XRDs also tend to yield more truncated 

NMR results (e.g. 3a(t)* and co-precipitated 3a(t)). A reverse situation holds e.g. for 

4c. 

The results described in the present contribution thus confirm and generalize the earlier 

findings [7], according to which rtPr4N'^ ions will behave as "efficient" cleaving agents 

of MesSn-containing super-Prussian-Blue systems, and are even capable of generating 

two isomers of the composition [(Pr4N)(Me3Sn)2M(CN)6)2H20] devoid of any [M-CN-

Sn-NC] chains. In contrast, assemblies of the different types [ (R4E )x (Me3Sn)4. 

xFe"(CN)6" 2H2O] with R=nPr have been found to differ significantly in their 

stoichiometry for E=N (x~1.0) and E=P x~0.47), respectively [16]. Replacement of Co 

by Ir in the [M(CN)6]^' building block leads to generally isostructural, but less insoluble, 

homologues, implying on the other hand the advantage that single crystals suitable for 

X-ray studies are more readily accessible. As the [Ir(CN)6]^" ion seems to afford, unlike 

its [Co(CN)6]^' homologue, structurally quite similar assemblies with both nPr4E"^ and 

nBu4N"^ ions, only the combination of the building blocks [Co(CN)6]^", {MesSn}" ,̂ and 

H2O (1:3:2) leads at present to the structurally most versatile manifold of 

supramolecular assemblies. This interesting feature may be compared with 

"supramolecular recognition" in its commonly understood meaning. The formation of 

precipitates consisting exclusively of one discrete species and never of any mixture of 

different assemblies, in all cases so far studied deserves particular attention. According 

to all present experience, a (M-CN-^SnMes) fragment may add almost equally well 

another cyanide ion or a water molecule. Some significant tuning of this "ambivalency" 
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seems to be initiated in the presence of R4E* ions. Mainly, but probably not exclusively, 
for steric reasons, the supramolecular architecture of the lUE^-containing assembly 
varies significantly with the length of the alkyl group R [7]. Although R4E"̂  ions seem to 
promote M-CN-Sn(Me3)^OH2-CN-M bridging in favour of M-CN-Sn(Me3)-NC-M 
linkages, some examples of R4E"̂ -free coordination polymers involving the former 
bonding mode are also known [17]. It should, finally, be recalled that the appreciable 
water content of "real" Prussian blue is also due to the formation of FeIII-0H2""NC-FeII 
interactions (the N atom being here, moreover, coordinated to another Fe(III) centre 
[18 ] . 
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4.4 Tensor analysis and structural correlations. 

Introduction. 

In this last part, more detailed comments are made on the '̂̂ Sn shielding tensor 

parameters for the compounds discussed in the previous two sections. All the data have 

been collected by fitting the spinning sideband manifolds by mainly using the program 

SSB97 [1], which provides also an estimation of the error in the determination of these 

parameters. This program follows the Haeberlen Convention [ 2 ] for which the shielding 

tensor parameters are labelled as following: 033-aiso>|Oii-<7iso| >|(722-<7iso, these 

components represent the three singularities on the static spectrum. By indicating the 

shielding with On we refers to the referenced values On- Gref. It is also useful to quote 

these numbers on the chemical shift scale as in Fig.l. The conversion of On into 5ii must 

maintain the orientation of the spectrum in both scales (shielding and chemical shift). 

The relation used to transform these shielding components into the chemical shift 

components on the spectrum is following the convention (Sn > 822 > 833) [ 5 ] , and it is in 

agreement with all the expressions used by Herzfeld and Berger [3], as for the 

parameters K and Q. 611= -033-, 822= -O22; 833= -On. The anisotropy quoted in table 1 is 

calculated from the Hasberlen convention Aa=a33-Oiso as the maximum displacement 

from the isotropic shielding. The Herzfeld-Berger analysis [3] will be used in order to 

compare the goodness of spinning sideband fitting as a function of two parameters \i 

and K, that reflect the shielding tensor parameters. For this purpose, we used a dedicated 

program [4]. In the Herzfeld-Berger notation [3], a tensor is described by three 

parameters, which are combinations of the principal components in the standard 

notation (Fig.l). 
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c 5 n = - a 33 8 2 2 = - a 22 § 3 3 = - a 11 

Figure 1. Shielding tensor parameters. A: Herzfeld-Berger conventions [3] for the quantities a and Q on 
the spectrum. B: Hasberlen convention for labelling the tensor components on the shielding scale; the 033-
Giso corresponds to the anisotropy Ao quoted in table 1. C: labelling correspondence between G\\ and ?>\\ 
accordingly with both references [3] and [5]. The positions 5iso and Giso are coincident, their values are 
identical in modulus and have opposite sign. The relations in C transform the output values of the 
program SSB97 from shielding to chemical shift using the standard convention (Sn > 622 > 833). 

5iso = (5ll + 6 22 + § 3 3 ) / 3 isotropic value 

Q = 5 , 1 - 533 (t2>0) span 

K = 3(522 - 5iso) / ^2; skew (-1 <= K <= +1) 

K = (2522 - 5 u-533)/( 6 l l - 533) 

H = Q * VL/spin rate where V l is the spectrometer frequency 

The isotropic value, i.e. the centre of gravity, is the average value of the principal 

components (5iso). The span, describes the maximum width of the powder pattern (Q). 

The skew of the tensor is related to the physical insight of a prolate (K=-hl) or an oblate 

(K=-1) ellipsoid representing an axially symmetric shielding tensor [3, 5]. As indicated, 

178 



4.4 Tensor analysis and structural correlations. 

K is given by 3a / Q, where 0=822 - 8iso, (Fig.l). Depending on the position of 822 with 
respect to 8jso, the sign is either positive or negative. I f 822 equals 8iso, the skew is zero. 
In the case of an axially symmetric tensor, 822 equals either Su or 833 and a = Q / 3. 
Hence, the skew is ±1. The parameter | j , is related to the span of a tensor by: |.t = Q * SF 
/ spinning rate, were SF is the spectrometer frequency. The relations with the standard 
convention are: 

822 = Siso + K Q / 3 833 = (3 Siso - 822 - Q ) / 2 811 = 3 Siso - 822 - S33 

The overall formalism of the Herzfeld-Berger analysis can be found in [ 3 ] . Starting 

from the precession frequency of a given spin, as a function of the CSA tensor, the free 

induction decay is expressed as a complex function of the tensor components, and the 

Euler angles (relating the molecular frame to the principal axis system of the shielding 

tensor). The Fourier transform of such complex function will provide the central 

resonance (at the isotropic chemical shift position) and a series of spinning sideband 

spaced by the value of the spinning speed in Hz. The intensities of the spinning 

sideband are expressed by an integral function which need to be numerically integrated 

in the range 0, 27i for the Euler angles a and p. The integration is performed for various 

values of the shielding components and the isotropic value until the best agreement with 

the experiment is found. In order to efficiently cover the full range of chemical shift 

parameters the results are displayed as a function of the parameter j i and K that are 

expressions of the shielding tensor parameters, in fact | i is spinning rate dependent and 

K is related to the 'shape' of the tensor. The iterative refinement of the starting guess is 

achieved via the Marquardt-Levenberg non-linear least squares fitting procedure. The 

use of the Herzfeld-Berger analysis provides a useful graphical way to evaluate the 

179 



4.4 Tensor analysis and structural correlations. 

goodness of the parameters determination. The intensity ratios sideband-to-centreband 
expected from the computation are plotted in a map as a function of \x and K . For each 
manifold there are as many maps as spinning sidebands. The lines corresponding to the 
experimentally measured ratios sideband-to-centreband intensities (WIo) obtained from 
the various maps are plotted in one graph (ssb plot). These lines intersect in one point 
from which the values of | i and K are determined. For all the compounds analysed we 
will not present all the maps for each spinning sideband order. Two kinds of plot will be 
used instead here; in both cases, the x-axis represents the parameter |Li and the y-axis 
represent the parameter K . The rms plot provides, for different values of [i and K , a 
contour map of the root mean square of the fitting for a series of \x and K values. The 
other plot we will use is the spinning sideband plot (ssb plot) which shows all the 
sideband-to-centreband ratio curves intersecting in the single point for a couple of p. and 
K values as mentioned above. In general, owing to experimental errors, and in the 
evaluation of the spinning sideband intensities, the lines might not all intersect at one 
point. The degree of the dispersion given by the rms plot gives a measure of the 
uncertainty in p, and K . The comparison of such plots might help in assessing on 
qualitative basis how much two tensors could be considered identical. Ideally, the 
contour lines for all spinning sidebands should intersect in one unique point. This 
unique point would correspond to the correct |a., K parameters for this particular 
chemical shift tensor. In less ideal cases, the intersection of all contours might not be as 
clear. The spread of contours and their intersections gives a good visual indication of 
the quality of the data. The absolute error in the integrated intensities has been 
quantified by evaluating ten different regions of noise each containing at least the same 
number of data points used for integrating a spinning sideband in the spectrum. The 
average standard deviation has been taken as error estimation. All these error values 
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turn out to be very small, because the signal to noise ratio was very favourable in the 
cases studied. However, other sources of errors might be present and remain 
undetermined. For instance, the error induced by incorrect phasing is not easy to 
quantify since the true phasing values are unknown. 

Correlation of the shielding tensor parameters. 

The results of the spinning sideband analysis for the seven compounds studied are given 

in table 1. It is possible to conclude that all these compounds maintain tensor axiality, 

though the errors in the determination of the asymmetry parameter are quite high, as 

expected for any nearly axially symmetric shielding tensor. Thus, all the 833 values are 

much larger than the other two, which are very often very similar. In addition, the error 

affecting the 833 parameter is sensibly smaller than for the other components. Keeping 

in mind the goal of structural correlation of this work, these parameters will first be 

compared for isostructural compounds. The first example is between compounds having 

the same core metal (cobalt) but different guests. The compounds involved are 3a(t) and 

3a(t)*. Many comments have been made about the poor quality of the X-ray powder 

data of compound 3a(t). Indeed, the "^Sn spectrum is also not of great quality. By 

comparison, of the rms plots obtained from the spinning sideband manifolds of 3a(t) 

and 3a(t)*, we can estimate the similarity of the two shielding tensors. 
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127 3a(c) -61.0 -335.9 1.2 0.0 0.05 229.0 7.6 228.4 7.6 -275.1 12 
-75.0 -333.6 1.0 0.0 0.04 241.6 6.7 241.2 6.7 -259.0 i.O 

128 3a(t) -79.0 -361.0 8.4 0.4 0.02 3 2 8.3 6.4 1 90.3 3.7 -2 82.2 8.4 

171 3a(t)* -77.0 -348.9 3.3 0.0 0.05 251.5 9.6 251.5 9.6 -271.8 3.3 

183 3c -61.6 -388.7 5.3 0.0 o.08 2 56.2 ii.3 255.7 14.0 -327.1 4.3 
-76.6 -380.0 6.4 0.0 0.07 271.6 io.3 27i.6 14.2 -303.4 6.9 

, 0 . 1 * s f i O -321 8 4 3 0.0 0.08 216.6 14.1 216.6 14.1 -265.7 4.5 

jsl -322.5 5 ; 9 0 , L 3 i i _ 2 3 5 , L 3 ^ ^ 

185 4c -67.8 .355.2 1.3 0.1 0.01 266.6 2.8 224.3 2.7 -287.3 1.3 

186 3aT -67 0 -319.0 2.5 0.0 0.05 229.1 8.2 228.1 8.2 -249.8 2.5 
62 -320 3.2 0.0 0.06 215.1 7.9 214.1 7.9 -261.1 2.4 

Table 1 - S n shielding tensor parameters and related errors on the right of each column^ All these data 
L v f b en ob^ ned by Lning spinning sideband simulations with SSB97. The quantity ' - " - a : . In 

Ld'torel̂ ^^^^^^^^ 
822=-CT22, 8 3 3 = - c J u . AUc the values are expressed in ppm. 

It is possible to see from the two comparative rms plots (Fig.2) that compound 3a(t) has 

very similar tensor parameters to the those for 3a(t)* indicating how the two 

environments that define the shielding tensor of the tin atoms are, within experimental 

error, almost identical. 

3a(t)» 

z. not of the rms surface for 3a(t) and 3a(t)*. Within experimental error, the ^-J'^ji^y J ^ ' / ; 
tensors is marked. For both cases the ^ coordinated is the same. The uncertamty .s mostly due to the 
coordinated k , because of the less localised minimum in 3a(t). 

Figure 2. Plot i 
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The asymmetry parameter evaluated for 3a(t) (being 0.4) is consistently larger than 
expected by considering the isostructurality with 3a(t)*. Big differences are also found 
between 5ii and 6 2 2 of the two tensors. However, in view the structural analysis and the 
large number of cases of nearly axial symmetry of the fragments [CN(Me3Sn)NC] we 
can conclude that ri=0.4 is unrealistic. The rms map seems to support this hypothesis. In 
fact in both cases the minimum is found within a contour plot delimiting the 0.03 rms 
value, but the area delimited in the case of 3a(t) is larger for 3a(t)* and, most 
importantly, that area does not exclude higher p values (smaller asymmetry) for 3a(t). It 
is almost certain that the origin of the discrepancies in the comparison of ri3a(t) and 
1133(1)* is the larger error in the estimation of intensities and the smaller number of 
sidebands for 3a(t). The relatively bad quality of the NMR spectrum reflects to some 
extent the bad quality of the X-ray powder pattern. Another quite important comparison 
can be made between isostructural compounds having different core metal, 3a(c) (cobalt 
based) and 3c (iridium based). 
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K 3c 

0.07 

/ / COS 

1.-/ / . . . 
20 » 30 0 

exp-cBic 

Figure 3. Top: Plot of the rms surface for 3a(c) and 3c. In both cases only one the site at -61 (3a(c)) and -
61.6 ppm (3c) has been considered. Within experimental error, the similarity of the two tensors can be 
considered. The better quality of the spectrum of 3a(c) allows a more close definition of the parameter K, 
related to the asymmetry. Bottom: spinning sideband simulations for both compounds. The error bars 
indicate in 3a(c) are twenty times the standard deviation of the noise, whereas in 3c they indicate the 
standard deviation of the noise. 

The isostructurality can be accepted on the basis of experimental and simulated X-ray 

powder patterns. However, in view of the almost identical isotropic chemical shift, we 

can analyse to what extent the metal might affect the other tensor parameters. In the 

case of 3c the rms surface has a very localized minimum but, as the contour plot shows, 

it is within 0.03, whereas in 3a(c) the minimum is found within 0.01 (Fis 3). Probably 

due to the large number of spinning sidebands in 3c the spectrum could not be properly 

simulated as in 3a(c) and the uncertainty in the determination of the parameters seems 

to be larger. This last point is also clear from Table I , where the errors related to the 3c 

parameters are almost twice as large as for 3a(c). Nevertheless, these two tensors can 

still be consistently considered to be very similar. The anisotropy is larger for 3c than 
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for 3a(c). This difference might be genuine in view of the trend found for isostructural 
compounds having the formula [(Me3Sn)4M(CN)6]ac with M=(Fe, Ru, Os). 
The parameters of 3a(c) and 3aT, the tethered compound, may also be compared. It has 
been pointed out how these two compounds might be very similar or also isostructural 
because of the structure-directing effect of the tether ligands which link the two tin 
atoms together. The tin spectrum of the latter compound shows (as for 3a(c)) two 
different sites. The difference between these two spectra resides in the lineshape of the 
spinning sidebands. In the case of 3aT the two sites seem to form a doublet since the 
peaks are merged at the base (Fig. 4). In fact, a better deconvolution of the central 
pseudo-doublet is obtained by using Lorentzian Uneshapes. Gaussian lineshapes do not 
describe properly the internal part of the pseudo doublet. This extra broadening might 
arise from a slow motion of the tin atoms caused by motion of the tether ligand; this 
point of view might be regarded as a further proof of isostructurality between 3aT and 
3a(c). 

CM^ =4.17811 
RJ = 0,97789 

±0.12698 
±0.03636 

yO 42.65028 
xcl -61.70601 
Wl 6.4 ±0 
A1 413.7838 
xc2 -76.4 ±0 
w2 -5.2 ±0 
A2 -411.67896 ±4.28199 

±4.3731 

-120 -100 -80 -60 -40 -20 

ppm 

Figure 4 Deconvolution of the centreband of the '"Sn spectrum of 3aT. Lorentzian iineshapes better 
describe the extra broadening at the base. The depicted molecule shows how potentially the motion of the 
tether ligand might induce motion in the two tin atoms. 
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This feature is not present instead in the lineshape of 3a(c) in which the peaks are very 
well separated. Tensor parameters for 3aT are again very similar to those of 3a(c) and 
the rms plots again confirm that. Fig ^ shows the overlap of the two rms maps for 3aT 
and 3a(c). Despite the differences in the S/N ratio of the two spectra, these maps are 
extremely similar. The size of the two areas within 0.01 rms are small but different. The 
larger area of 3aT might confirm that the tether ligand still allows some motional 
averaging of the 6 1 1 and 8 2 2 components of the shielding tensor. However, the motion is 
not so free as in case of the methyl groups for 3a(c) 

Figure 5. rms surfaces for 3aT (bold lines) and 3a(c) thin lines. The two maps are very similar. Contours 
at 1.0 rms are coincident and very close contours are found for all the other rms values. Both maps are 
referred to one tin site; -61 ppm for 3a(c) and -62 ppm for 3aT. 

Unfortunately, these data are not enough to make any hypothesis on the kind of motion 

involved, which turns out to be probably quite complex. All the compounds so far 

considered seem to retain the axiality of the tin shielding tensor. This feature has 

already been recalled on many occasions and the computational resuUs confirm that. 

From the chemical point of view we could conclude the structural reorganizations 

occurring in these compounds maintain unaffected the tensor properties, therefore also 

the nature of the coordinative bond to the tin would remain unaffected. As a last 
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example of this behaviour we would compare compound l [(Me3Sn)4Fe(CN)6] and its 
derivative, not yet mentioned, [(Pt(NH3)4)o.5(Me3Sn)3Fe(CN)6], IPt. These compounds 
maintain the isotropic shift position of both sites at 46 and -108 ppm, (Fig.6). The same 
sites are also found in other compounds that appear to be a mixture of the pure 1 and 
host-guest systems. We would like to compare the two pure compounds 1 and IPt in 
order to conclude this analysis and to see to what extent these tin environments might be 
considered different or not. Unfortunately, single-crystal X-ray data are unavailable for 
this compound. 

45.6 

-108.8 

1 

U i A J ' 

600 400 200 -200 -400 
—1 % 
-600 

ppm 

Figure 6. "'Sn spectrum of IPt. Two very different tin sites are visible. Experimental conditions: contact 
time 3.5 ms; recycle delay 2 s; acquisition time 3.0 lis; spin rate 10250 Hz. In case of the derivative IPt 
the lines are broader. This is prevents slow spin rate experiments. 

For the site at 46 ppm the determination of the tensor parameters seems to be quite 

difficult. In fact, the site at 46 ppm shows only a few spinning sidebands for both 

compounds and in the case of the derivative IPt experiments made at slow spin rate 

prevent a proper assessment of the sideband intensities since the lineshapes of the two 

sites start to merge. By using the analysis of the spinning sidebands we can conclude 

that the two tensors appear to be identical with, in both cases low asymmetry 
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parameters. The sites at -108 ppm show very close rms surfaces plots. The rms plots 
show differences in the | i values, but in both cases the values of K are almost identical 

addition, the profile of the mtersec.ions m the ssb plots ,s very 

stafilar (Fig 7). Shnilarities that are ™ r e s t r ^ g are also found for the plots related to 

and equal to one. In 

the peaks at 46 ppm where the intersections 
provide a neater plot for both samples 1 and 

of the same quaUty since in the case of IPt 
IPt (Fig 8). Minima on the rms plot are not 

the region within 0.006 rms are two instead of one and very small (i i 8). 

T 108.8 ppm 
108.8 ppm 

108.8 ppm 

found at^l08.8 ppm for compounds I and^lPl. The rms plot (lefl) 
Figure 7. Comparison plots for the î'= »;""" ;• - fc. J^showing a'more complicated pattern than 1 Pt. 

S,;:Se lalre^oS — — 

In both cases the axiality of the tensor is as usual retained. The site at 46 ppm shows. 

however, a relatively small anisotropy, which is 198 and 223 ppm for IPt and 1 

respectively. Such a difference might arise either by the eflfect of the guest or because of 

the broader lines found in IPt. 
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46 ppm 

25 30 0 

46 ppm 

46 ppm 

r m p S l e .he minimum found fo, compound 1. Right, the ssb plots .,e almost ,den„cal. 

Within experimental error, these two tin sites can also be considered isostructural in 

terms of the local tin geometries. The introduction of a big guest like Pt(NH3)4 by ionic 

exchange and the loss of one bridging unit does not change the chemical environment of 

the tin sites because the isotropic shift would probably be affected. 

Conclusion 

The evidence is probably not enough to consider compounds 1 and IPt isostructural in 

terms of their space group, since the tensor parameters are affected only by neighboring 

atoms; in principle a new space group can arise by spatial reorganization of the bridging 

units [CN-(Me3Sn)-NC] without a significant change in the local geometry in the 

surroundings of the tin nucleus. This is actually the original idea behind this "building 

blocks" chemistry, using geometrically known fragments to create a great variety of 

compounds. Whether the use of only two type of fragments having tbp, [CN-(Me3Sn)-
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NC], and Dsh, [M(CN)6] symmetries would provide a only certain type of lattice is 
probably too premature to be affirmed by looking either at the NMR or at the X-ray 
data. It is intuitive that local geometries might exclude certain kinds of point groups in 
the lattice but at the moment it is not possible to map these changes completely since 
the single-crystal data for the anhydrous compounds [(Me3Sn)4M(CN)6] are still 
unknown and the introduction of different guests obviously increasing the potential 
degrees of freedom toward new lattice geometries. 
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Chapter 5 

5.1 Cobalt spectra 

Introduction. 

In this chapter, we present a detailed analysis of the spectral properties of some cobalt 

crystalline materials. For most of these samples, the multinuclear studies were already 

presented in the previous chapter. In all cases MQMAS spectra were performed, 

however we will present here only the most significant. Lineshape analysis has been 

performed in all cases. Whenever the iterative fitting was not possible, the lineshape 

was simply simulated. Spectral properties are critically assessed by comparison with the 

structural data. A l l the spectra were recorded at ambient probe temperature. 

Studied samples. 

3a(t) [(nPr4N)(Me3Sn)2Co(CN)6. 2H2O] 

The crystal structure and other spectroscopic features have been discussed already (Ch. 

3 Part 2). The ^^Co MAS spectrum provides a typically quadrupolar lineshape. The 

simulated spectrum optimised with a least squares procedure using STARS Software 

provides the following values for the quadrupolar interaction: %=13.2 MHz and 

r|EFG=0.0. 5iso=-43.7 ppm. The static lineshape has also been fitted at the same field 

strength. However, while the quadrupolar parameters are the same the chemical shift 
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position is found to be at -55.99 ppm. This shift could arise from a heating effect in 
spinning the sample at 10 kHz. The perfect match with the experiment is then obtained 
by adding a line broadening which has the main effect of increasing the intensity of the 
saddle region of the lineshape. 

Lb=2000 

Lb=1250 

Lb=0 

experiment | \ ^ | ^ 

1000 500 0 
ppm 

-500 
1 

-1000 500 250 0 -250 
ppm • 

n ' 1 
-500 -750 

Figure 1. Left: Static lineshape simulation of 3a(t). Conditions: VL(c„r71.132 MHz; pw=1.0 |,is; recycle 
delay=0 5 s • sw=1000 KHz. Right: Experimental (top); and simulated (bottom) MAS spectra of 128. 
Exp conditions: Vo=71.132; pw=1.0 ^s; sw=l*10'̂  Hz; recycle delay -0.5 s.; spin-rate:. 10040 Hz 

The simulated spectrum is in very good agreement with the experimental MAS 

lineshape. The asymmetry parameter, which is zero, is in agreement with the axial 

arrangement at the cobalt site in this molecular crystal. In the asymmetric unit the 

octahedral symmetry at the cobalt site is evident. The overall symmetry of the fragment 

has a mirror plane along the Sn-Co-Sn direction, coincident with the Co-N(5) director. 

Deviations from a perfectly symmetric environment for the cobalt can be evaluated 

from the crystal structure [1,2]. For this purpose, it might be useful to correlate the 

geometry information about the cobalt site along the three directions of the cyano 

bonds, which are the sources of the electric field gradient. The main component of the 

electric field gradient can be expected to lie along the direction of the N(l)-Co-N(2) 
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bonds. The orthorhombic space group Pbca of this compound implicitly has three 2] 
screw axes due to the presence of the three mutually perpendicular glide planes. In 
addition, nine inversion centres are generated per units cells. Since the cobalt atom does 
not lie on these centres T I E F G is not zero but, due arrangement of the local ligands which 
is very probably very small and unlike to be readily measurable. The MAS spectrum 
recorded at 600 MHz shows a narrower band as expected. The lineshape deviates from 
ideality as shown in Fig. 2 where the simulated lineshape does not fit completely the 
pattern. The reason for this mismatch, which is not visible at lower field, might the 
presence of an impurity visible in the spectrum recorded at' 200 MHz. Fig. 2 (right). 
Other sources of mismatch in this lineshape might be the magic angle setting but also 
the CSA, since at higher field might affect the lineshape more heavily than a second 
order broadening which scales inversely with respect to the magnetic field. 

experiment . 

simulation 

0 1500 1000 500 

ppm 

0 -500 :1000 -1500 -200C 

ppm 

Figure 2. Left: MAS spectrum of 3a(t) recorded at 600 MHz. The lineshape is somehow more difficult to 
simulate correctly than at 200 MHz. Also in this case line broadening improves the fitting. Conditions: 
VL(CO)=142.39 MHZ; pw=1.0 jxs; recycle delay=0.5 s.; sw=l MHz, number of transient 10000. Right: 
MAS spectra recorded at 200 MHz. Top: Experiment; the arrow indicate the extra feature probably due 
to the presence of an impurity. Bottom: simulated lineshape. Conditions: VL(CO)=47.556 MHz; pw=1.0 |is; 
recycle delay=0.5 s.; sw=l MHz number of transients 10000. 
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3a(c) [(nPr4N)(Me3Sn)2Co(CN)6. 2H2O] 

This compound contains the cw-isomer of the rraw^-configured 

[Co(CN)4(CNSnMe30H2)2] anion present in the lattice of 3a(t). While in 3a(t) only one 

of the two oxygen atoms is disordered, two different sets of fin-bonded methyl carbon 

atoms (designated as A and B) are found in the structure of 127. Most of the interatomic 

distances and bond angles of 3a(c) and 3a(t) are quite similar. The space group is 

P2i2i2 i.e. less symmetric than for 3a(t). The spectrum recorded at 300 MHz shows a 

T1EFG=0.57 and a quadrupolar coupling constant of 8.10 MHz, obtained by fitting. The 

isotropic chemical shift is 8.4 ppm. 

The value of the asymmetry parameter can be readily explained by the local 

arrangement of the cobalt site. For this c/s-isomer the three components of the EFG are 

differentiated than for the rran^-homologue, providing a distinctly non-axially 

symmetric tensor. 

The spectrum recorded at 300 MHz shows a nearly ideal lineshape, in which all the 

singularities are visible. The fitting provides a simulated spectrum in close match with 

the experiment. The spectrum at 600 MHz also shows a compatible lineshape. The 

spectral width used in that case is one megahertz, being quite close to the technical limit 

for a proper digitization of the spectrum. These findings should confirm how in this case 

the central transition is mostiy affected by the quadrupolar Hamiltonian and no other 

significant interaction are present, such as the CSA (Fig. 3). 
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Figure 3. ^̂ Co Spectra of 3a(c) Left: spectrum (above) recorded at 300 MHz and simulation (bottom). 
Conditions: VL(CO)=71.132; pw=1.0 jas; sw=l MHz; recycle delay ==0.5 s.; spin-rate=9840 Hz; number of 
transient^MO^ Right: full spectrum recorded at 600. Conditions: VL(Cor 142.39 MHz; pw=:0.5 [is; recycle 
delay=0.5 s.; sw=lT0^ Hz; number of transient=4096. The intensity of the central transition has been cut 
at about one fifth of the full intensity. 

The Spectrum of the ^^N 98% enriched homologue shows a fine quadrupolar pattern in 

which non-substantial differences are found on the central transition. Surprisingly the 

spectrum at 600 MHz shows quite clearly the presence of a second peak, which is 

clearly an impurity not visible in the unenriched sample (Fig. 4). 
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Figure 4. Spectra of 3a(c), '̂ N 98% enriched. Right: spectrum recorded at 600 MHz. Conditions: 
VL(CO)=142.39 MHz; pw=0.5 ^s; recycle delay=0.5 s.; sw=l MHz; number of transients=4096. The full 
spinning sideband is showed in the upper-left inset. Comparison between simulation and experiment is 
provided in the upper-right inset. The spectral width used in that case is one megahertz being quite close 
to the technical limit for a proper digitisation of the spectrum. 

At 600 MHz in this case the spinning sideband manifold is compatible with the 

spectrum recorded at 300 MHz. The iterative fitting of this spectrum represent a quite 

hard task because the number of variables to be taken in to account for the main site and 

for the impurity. For this reason, we present here a simulated spectrum in which only 

the two quadrupolar coupling constants were left free to change. Despite the truncation 

of the main site manifold the agreement with the low field experiment in noticeable. 

The simulation with a quadrupolar coupling constant of 8.0 MHz and a asymmetry of 

0.6 provide a quite satisfactory agreement. The second site, probably arising from an 

impurity was not well reproduced (See Fig. 6 up-right inset). Interestingly each spinning 

sideband in the simulated spectrum shows a splitting not directly observed though the 

spinning sideband appear to be asymmetrically broadened by a compatible amount. As 
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already mentioned, an isotopic effect was found for this compound in the tin spectrum. 
Isotopic effects appear as a shift on the ppm scale due to a different shielding effect 
experienced by the nucleus under study from different isotopes. Cobalt spectra of the 
enriched and unenriched compound were run at 200 MHz, in exactly the same 
conditions (Fig. 5). The shift found is about 5 ppm as shows in the figure, where also it 
appear how the impurity peak is more intense in the enriched homologue with respect to 
the main central transition. 

210.6 

N 98% eimched 

400 
-1 ' 1 

0 ppm -200 -400 

Figure 5. Spectra of 3a(c) and his homologue '̂ N 98% enriched. The two spectra were run the same day 
in the same experimental conditions: VL(CO)=47.559366 M H Z ; pw==0.5 ^s; recycle delay=0.5 s.; sw^MO^ 
Hz; number of transient=32768. 

Referring this phenomenon to the chemical shift measured at 300 MHz, found to be 8.4 

ppm the shift due to '^N enrichment should bring it to 14.2 ppm. 

3a(t)* [(nPr4P)(Me3Sn)2Co(CN)6. 2H2O] 

This compound is expected to be isostructural to 3a(t). The tin spectrum previously 

recorded match with the crystallographic data. From the cobalt spectra recorded at 300 

and 600 MHz it appears that also in this case the asymmetry parameter is very small, 
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I1EFG=0.15 (Fig. 6). The fitted spectrum shows a lineshape which is consistent with the 
experimental, and the spectrum recorded at 600 MHz shows a compatible manifold of 
spinning sidebands. Also, in this case however the spectral width used at 600 MHz is 
one megahertz, insufficient to display the full spinning sideband manifold. The 
quadrupolar coupling constant %=12.5 MHz is about one megahertz smaller than the one 
found for the homologue 3a(t). 

exper imett t A 1 

V 

600 400 200 0 -200 -400 -600 

ppm 

T ' 1 — 
-800 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 

Figure 6. Spectra of 3a(t)*. Left: spectrum (above) recorded at 300 MHz and simulation (bottom). 
Conditions: VL(CO)=71.132 M H Z ; pw=1.0 pLs; sw=l MHz; recycle delay =0.5 s.; spin-rate=9840 Hz; 
number of transient=MO*. Right: spectrum recorded at 600 MHz. Conditions: VL(CO)=142.331MHZ; 
pw=0.5 |is; recycle delay:=0.5 s.;, sw=l MHz; number of transient=4096. The intensity of the central 
transition has been cut at about one fifth of the full intensity. The spectral with used in that case is one 
megahertz being quite close to the technical limit for a proper digitisation of the spectrum. 

4a [(nBu4N)(Me3Sn)2Co(CN)6 H2O] 

This compound is supposed to be isostructural with the paramagnetic iron homologue 

[3]. The tin spectrums of 4a can be considered to be in agreement with the asymmetric 

unit, where eight tin atoms are present. The cobalt spectrum at 600 MHz shows at least 

198 



5.1 Cobalt spectra 

two distinct resonances, though the lineshape does not seem typically quadrupolar. The 
lineshape shows second order broadening, but the simulation does not properly describe 
some of the singularities. Interestingly, the two sites do not have the same intensity. The 
peak at higher frequency is found to be about twice as intense as the low frequency 
bandshape. This intensity ratio in agreement with the asymmetric unit (of the 
isostructural 4b) in which three core metal sites are expected (Fig.7). In fact, two of 
them belong to the same chain, and hence those sites are likely to be responsible for the 
higher frequency bandshape, which is more intense (intensity ratio of the two peaks is 
2.2:1). Al l the three core metals appear to be equatorially coordinated to three tin 
bridging units. From the simulation of the lineshapes (Fig. 8, left), we were able to 
estimate the quadrupolar parameters, though a certain degree of uncertainty still remains 
due to the imperfect match of the simulated lineshapes. 

A 

Fe, >'l 

\ 
"iP 02 

f 

Figure 7. A, asymmetric unit of 4b; the three guest molecules have been omitted. B, Chain 1, feamring all 
'in chain' bridging tin units interlinking Fel atoms. C, chain 2, in which the two core metals are Fe2 and 
Fe3, both of them having water-coordinated side tin units. The arrows indicate the link with chain 1. The 
similarity of the Fe2 and Fe3 sites can justify the intensity ratio (about 2:1) of the two cobalt sites in 4a. 
In the asymmetric unit eight different tin sites are found, in agreement with the NMR findings [1]. 
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The two sites feature very similar parameters: 
Site 1 6iso= 7 ppm; %=12.2 MHz; TIEFG=0.4 
Site 2 6iso=-43 ppm; x=10.0; MHz; r|EFG= 0.4 

We consider the quadrupolar parameters to be very similar. However, the isotropic 

position is very different. In the crystal structure three different chains fM-CN-Sn-NC-

M^ can be identified. Chain 1 interlinks all the Fel atoms almost linearly. This chain is 

linked to chain I I , containing Fe2 and Fe3 via one tin bridging unit for each Fel atom. 

Chain I I features two iron unit (Fe2 and Fe3) having one water-coordinated tin units as 

end chain. Hence, each core metal coordinates equatorially to three tin atoms. While for 

Fe2 and Fe3 one of such tin atoms is water coordinated, for Fel they are all 'in chain'. 

These considerations match with the cobalt sites of compound 4a: the bandshape at -43 

ppm belong to Col (chain 1), whereas the doubly intense bandshape at 7 ppm is coming 

from chain two (Co2 and Co3), being more deshielded because of the water 

coordination of the tin units. 
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100 -100 -200 

J}. 

Figure 8. ^'Co spectra of compound 4a. Left, spectrum recorded at 600 MHz with, superimposed, the 
lineshape simulation. The experimental lineshape does not show clearly the two singularities reproduced 
by the simulation. Conditions: VL(CO)=142.39 M H Z ; pw^O.l |.is; recycle delay=0.5 s.; sw2=l MHz; number 
of transient= 16400. Right, 3QMAS spectrum (two pulses) recorded at 300 MHz. The Simulations do not 
reproduce completely the singularities in the two sites. Conditions: VL(CO)=71.132 M H Z ; pw:=1.2 î s; 
recycle delay=0.5 s.; sw=l MHz; number of transients=8000, number of increments: 48, swl 400= kHz. 

The MQMAS spectrum at 300 MHz does not allow any better resolution in search of 

other sites. The lineshape in the MAS dimension is, however, compatible with the two 

sites found at higher field (Fig. 8, right). 

5a [(nPen4N)(Me3Sn)2Co(CN)6.0.5H2O] 

Multinuclear magnetic resonance determinations showed multiple sites (see Ch. 4.1) for 

tin and carbon. The single crystal determination of the iron homologue 5b [1] shows 

two core metal sites, one, with three bridging units equatorially coordinated, and the 

other having only two cis-coordinated bridging units (as reported in Fig. 4 Ch.4.1). 

The MAS cobalt spectrum is characterized by a single lineshape. However, the static 

lineshape shows a more complicated pattern. With increasingly high spin rates the static 

lineshape collapses into a single, almost featureless, peak at about -130 ppm, with a 

linewidth of about 1400 Hz (between ^ 0 and -175 ppm). The narrowing of the 
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lineshape with the raising of the spin rate (Fig. 9, right) seems to suggest that the 
lineshape is mainly affected by the chemical shift anisotropy, and that only small 
quadrupolar coupling constants are instead present. For these reasons, we tried to 
simulate the static lineshape with two sites (in agreement with single-crystal studies of 
5b) and the agreement seems satisfactory (Fig. 9 left). The two sites describing the 
experimental spectrum feature the following parameters (obtained by trial-and-error 
simulation with the program WinSolids): 

Site 1: 5iso=-80 ppm; Aa=-470 ppm; T1CSA=0.35; X=5.5; M H Z •nEFG=0.5 

Site 2: 5iso=-120 ppm; Aa=630 ppm; T1CSA=0.15; %=1.0; M H Z TIEFG= 0.3 

Site 1 is responsible of the two small singularities {b and c on Fig 9), whereas site 2 

describes the sharp feature on the left side (a) of the experimental lineshape. In this case 

the CSA and EFG tensors were presumed to be coaxial. The bandshape so obtained is 

highly compatible with the experiment. Al l the singularities appear to be reproduced. 

Moreover, there seems to be not site symmetry on the iron sites. Small discrepancies 

might arise from distortions in the experimental lineshape, or by presence of impurities. 
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Figure 9. '^Co spectra of 5a. Left, variable spinning rate measurements (the spinrate quoted is in Hz). 
Left: Deconvolution of the static lineshape. Conditions: VL,C„)=47.556 MHz; pw=1.0 |is; recycle 
delay=0.5 s.; sw=l MHz number of transients, 12000 for the static and 12 kHz cases; between 7 and 9000 
for the different spin rates. The linebroadening applied on the simulations was 90 Hz. 

MQMAS experiments have been performed on this sample at 300 MHz. The two-

dimensional spectrum shows a quite broad peak in the MAS dimension, in which no 

features of a quadrupolar coupling pattern are evident, and in the isotropic dimension, 

while the spinning sidebands can be resolved, no other information can be retrieved 

about the site multiplicity (Fig. 10). As a further test of the compatibility for these 

parameters with the spectrum, we perform a WinSolids simulation of the MAS 

spectrum these two sites for the spin rate of 12000 Hz. In agreement with the 

experimental spectrum, a single lineshape was obtained, demonstrating at least how all 

the parameters used with the simulation are consistent with the effect induced by the 

spin rate. The two sites were, moreover, impossible to separate even by MQMAS. 
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Figure 10. 3QMAS spectrum of 5a. Conditions: VL(CO)=71.132 M H Z ; pw=2.0 [is; recycle delay^O.l s.; 
sw=:l MHz; number of transient=2520, number of increments: 96, swl= 320 kHz. 

laN [(Me3Sn)3Co(CN)6]N02 

No crystallographic data are available for this compound, which is however the 

structural homologue of (Me3Sn)3Co(CN)6 la [4] after exposure to NO2 gas for testing 

is coordination reactivity against this molecule (Fig. 11). However, no structural 

changes were noticed from the NMR spectra, neither evidence of NO2 coordination 

were found. Despite the asymmetric units shows two cobalt sites only one resonance is 

found, multinuclear NMR results confirm the presence of three geometrically different 

chains since three ^^N resonances, whereas "^Sn spectra shows two Hues in ratio 2:1. 
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5>, ^^>.—^) 

Figure 11. Coordinative environment of laN. One cobalt sites three tin, and three nitrogen sites are 
present in the asymmetric unit. 

The MQMAS spectrum of laN confirm the presence of a single site in the crystal 

structure. 

The small peak found in the MQMAS experiment is most probably arising from an 

impurity. A small quadrupolar coupling constant is confirmed both at low and high 

field. Relevant MAS spectra were recorded at 300 and 600 MHz. In both cases the 

quadrupolar coupling constant and the asymmetry parameter has been confirmed at the 

same value of x=l-62 MHz and r|EFG=0.99 by analysis of the full spinning sideband 

manifold. In the case of 600 MHz spectra, simulations were also performed to compare 

the spinning sideband intensity distribution for different asymmetry parameters (Fig. 12, 

right). In the various simulations performed when the asymmetry considered was below 

0.5 the intensity distributions of the spinning sideband manifold showed more clearly 

the singularities induced by the satellite transitions. 
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Figure 12. Left: Simulation of satellite transition manifold, at 600 MHz. Right Simulation of the same 
spectrum changing asymmetry parameter. Conditions: VL(CO)=142.331 M H Z ; pw=1.0 |as; sw=l MHz; 
recycle delay =0.5 s.; spin-rate=21000 Hz; number of transient=8192. 

The results are in agreement with the coordinative environment of the isotructural 

compound l a and with lower field measurements. A three-dimensional network features 

the structure of this compound as previously observed analysing ''^Sn resonance where 

the chains were differentiated by multinuclear MAS [4]. This environment seems 

consistently responsible for the high level of asymmetry of the electric field gradient at 

the cobalt site in both compounds l a and laN. 
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Conclusion 

^̂ Co is a very sensitive nucleus regarding the coordinative environment in these 

polymers. The quadrupolar coupling constant and the asymmetry parameter are 

changing significantly upon the different crystal structures. For example, the two 

isomers, 3a(c) and 3a(t) (along with 3a(t)*) are readily identified by their cobalt 

spectra. Moreover, compound laN, completely coordinated to six tin bridging units is 

showing the highest level of asymmetry in the electric field gradient tensor and the 

smallest quadrupole coupling constant. Other compounds, despite showing more 

complicated bandshape still provide useful complementary information to confirm their 

structure. Compound 4a might deserve some more study in order to understand the 

structures from the cobalt spectra. However, the little information retrievable from the 

MAS spectrum can be useful for drawing some conclusion. Compound 5a, as well 

seems to be very interesting, in fact it appear having an interesting interplay between 

chemical shift and electric field gradient tensors. Unfortunately, the direct match with 

the crystal structure of the iron homologue is not so clear as in the case of 4a. Despite 

the simulation of 5a by considering small quadrupolar coupling constant and a 

significant CSA contribution become compatible with the narrowing induced by the 

spin rate, these results might be somehow speculative. It is unfortunate that 

improvements in the resolution of the site multiplicity for this compound are now 

unavailable. Nevertheless, the result coming from sample 4a are useful along with their 

structures when compared with 3a(c), 3a(t), and laN. In our study, we did not present 

data from compound 3aT, the supposedly tethered-homologue of 3a(c), as the quality of 

the spectrum was quite bad and unsuitable for an accurate parameters determination. It 

is important however to remind that its quadrupole coupling constant seems to 

significantly deviate from the one of 3a(c). 
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For comparison, table 1 summarises the quadrupolar parameters of these compounds. 
We consider compound 5a deserving more studies before to usefully comparative. For 
completeness we measured also the parameters for K3Co(CN)6. A high number of tin 
units seems to increase the asymmetry in the EFG tensor; though this would be better 
confirmed by analysing a hypothetical sample with three units not equatorially 
coordinated. The quadrupole coupling constant shows also that the coordinative 
geometry is very important. The differences found between the quadrupole coupling 
constant .of 3a(t) and 3a(t)* might be due to the quality of the spectra however, it is also 
useful to remind that in another study on the static powder patterns of cobalamines and 
cobaloximines Frydman [5] pointed out how different crystallization conditions affected 
considerably the quadrupole coupling constant. Unfortunately, no structural 
rearrangements were characterized for such complexes. 

n° of tin units X r|EFG 

laN 6 1.62 0.99 
K3Co(CN)6 none 7.11 0.77 

3a(c) 2-cis 8.1 0.57 
4a 3-e^ 12.2 0.4 

3-eq 10 0.4 
3a(t) 2-trans 13.2 0 

5a 3-eq 5.5 0.5 
2-cis 1 0.3 

Table 1. Summary of the parameter for the different compounds. Compound 5a is kept separated since we 
believe in the speculative nature of these data. 

These data are unfortunately not enough to drawn complete conclusion for the cobalt 

response toward structural rearrangements as they cover a too narrow range of cases. 

Nevertheless, this last part dedicated to the cobalt spectroscopy would confirm some 

useful points. 
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1) Accordingly with the multinuclear NMR analysis cobalt and iron seems to be 
completely interchangeable within the lattice, as well as nPr4N and nPr4P. 

2) While tin sites in these compounds displays changes that might be somehow difficult 

to quantify (as related to the spinning sideband analysis), larger differences seems to 

feature the cobalt nuclei. 

3) The structural rearrangements involving these compounds are taking place relatively 

far away from the cobalt site. This direct response to a three-bond range variation is 

quite remarkable. It is very unfortunate that a larger range of data (and crystal 

structures) is not yet available. 

4) The use of MQMAS might become very important to assess the spin multiplicity of 

compounds such as 4a and 5a. In such cases the experiment performed at higher field 

were not good enough to improve the amount of information already available. 
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