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ABSTRACT 

This thesis investigates the influence of bed material shape on sediment 
transport in gravel-bed rivers. The approach involves a combined series of field and 
laboratory experiments. Magnetic tracing experiments were carried out at three 
experimental sites in two Pennine gravel-bed streams. The specific aim of these 
experiments was to quantify the selective transport of different shapes of coarse river 
gravel and determine their spatial sorting within a natural stream channel. A total of 900 
tracers in three size groups (32- 64 mm, 64-128 mm and greater than 128 mm) and four 
shape classes (spheres, blades, rod and discs) were prepared for each of the three sites. 
In the laboratory, tilting table experiments were carried out to clarify the mechanistic 
behaviour of different particle shapes, sizes and orientations on a variety of artificial and 
naturally formed bed roughnesses. Using strobe-light photography visualisation 
experiments were undertaken with natural and artificially-moulded gravel-size particles 
of differing shape, size and weight in order to investigate the influence of shape on 
settling, grain impact, initial motion and transport paths of gravel-size particles. 

Results of the magnetic tracing experiments showed that there was both size and 
shape selectivity in bedload transport. Preferential movement occurred in the small and 
medium particle size classes with tracers concentrated along the channel thalweg. 
Sphere-shaped particles were transported the greatest distance and in greatest numbers. 
Rods also moved preferentially, while discs showed a lesser degree of transport and 
blades hardly moved at all. 

Results from the tilting table experiments highlight the importance of roundness 
as well as particle form and particle orientation in controlling thresholds of entrainment. 
In terms of size, friction angle was found to depend on the ratio of the diameter of the 
test particle to be moved to that it rests upon (d/D). Shape and orientation were found to 
be important parameters influencing friction angles. On a given bed roughness and for a 
constant size non-spherical test particles showed greater friction angles than spherical 
ones. A very clear difference was found in friction angle distributions between sphere, 
transverse rod and other flat-shaped particles, namely, blades with parallel and 
transverse orientations, disc, and rod with parallel orientations. 

Visualisation experiments indicated that shape is an important particle 
characteristic that has a significant effect on settling rates and also the mode of near bed 
transport. These effects increase with greater particle sizes. The departure of a particle 
from a sphere leads to a decrease in its settling velocity, Experiments, across a range of 
test sizes showed that when compared to a sphere of equivalent weight and density, 
sphere and rod-shaped particles tend to settle the fastest and move by rolling. Discs and 
blades showed slower settling rates and, in most instances, moved by sliding. 
Experiments carried out with irregularly-shaped, natural particles show greater 
variability in settling behaviour and irregular patterns of motion. For every size group, 
sphere and rod shaped particles have lower critical angles of initial motion than blade 
and disc-shapes. Regardless of shape, greater bed roughness, or decreasing particle size 
results in an increase in the critical angle for motion. 
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CHAPTER 1 

1.1 INTRODUCTION 

Construction and operation of major engineering works have seriously affected 

many river systems. Examples include the development and management of water 

resources, navigation, power generation, flood control schemes, land use changes and 

modifications to drainage systems (especially in agriculture and forested areas). Besides 

these, in some areas channels have been dredged and straightened; banks raised and 

protected; natural vegetation removed or changed; channel flow modified; and water 

quality altered. Such changes have had marked effects on river systems and their natural 

dynamics, either causing instability or adversely affecting the ecological and 

environmental characteristics of the channel (Lewin, 1981; Hey et al„ 1982). Ever since 

scientists have become aware of these problems, many researchers, especially 

hydrologists, engineers, and geomorphologists have begun to investigate flow 

hydraulics, channel morphology and dynamics in order to better understand the 

processes and morphology of rivers. 

Sediment transport is an extremely important process in fluvial geomorphology. 

Despite a considerable body of literature on sediment transport, there are still many 

problems in river management arising from the inadequate prediction of sediment 

behavior during flood flows. This is because the mechanisms of entrainment and 

transport of sediment are complex and governed by many categories of variables. Some 

of these variables have been attributed to the composition and arrangement of the 

particles that make up the channel bed (Reid et al, 1997; McEwan, 1999), the 

importance of hydraulic condition and the characteristics of individual moving particles 

(Hassan and Church, 1990; Ferguson and Asworth, 1992). 

Although there have been considerable advances in the understanding of 

transport mechanisms of small-size particles, the measurement and assessment of 

bedload transport still remains an extremely difficult task. Indeed many investigators 

have shown that even for steady discharge, bedload transport rates are unsteady and 

uneven across the stream. Some difficulties are associated with measurement 
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techniques, because existing techniques are relatively few and sometimes unreliable. 

Therefore no single apparatus or procedure, whether it be theoretical or empirical, has 

been universally accepted as completely adequate for the determination of bedload 

discharge. 

Because of the practical difficulties encountered in the direct and indirect 

measurement techniques, some investigators have concentrated on developing a series 

of empirically calibrated bedload equations (Lechalas, 1871; du Boys, 1990; Bagnold, 

1980; Agostino and Lenzi, 1999). Given information, such as stream velocity, discharge 

or stream power and measures of bed material size and sorting, bedload transport rates 

may be calculated rather than directly measured. Some of these equations involve 

prediction of transport rates in terms of excess shear stress above the threshold value at 

which transport starts. Some involve computation of total sediment transport rates rather 

than the bedload alone. However, no theoretical formula has been found to offer a 

completely satisfactory estimation procedure, although in the absence of field 

measurement theoretical data may be the only data available. 

1.2 DEFINITION OF BEDLOAD AND DIFFERENCES BETWEEN COARSE-
BED UPLAND STREAMS AND LOWLAND RIVERS 

The sediment load transported by a stream consists of two parts: solution load 

(dissolved load) and solid load. Solution load that is derived largely from bedrock 

weathering is dispersed throughout the flow. Solid load consists of two types: 

suspended load and bed material load. Suspended load is of fine calibre and includes all 

particles prevented from falling to the channel bed by the upward momentum imparted 

by eddies within turbulent flows (Knighton, 1998). The finest fraction of suspended 

load, consisting of very small clay-sized particles, is termed wash load and is able to 

stay in permanent suspension as long as some flow is maintained. The actual volume of 

wash load moved may be limited by supply, but there is always a supply of bed material 

available for transport according to the capability of the river. Bed material load, on the 

other hand, consists of coarse clastic materials, normally occurring in the channel bed, 

which are sporadically moved, usually along the bed, during high flow events (Church 

and Gilbert, 1975, Gomez, 1991, Reid etal, 1997). 

Two major mechanisms have been identified for clastic sediment movement: (a) 

movement of material in suspension, that is, the weight of the sediment is supported by 
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water currents, and (b) movement of material as bedload, that is by rolling, sliding, or 

skipping along the stream bed (Bagnold, 1966, 1973). The proportions of load vary 

greatly, controlled by climatic and structural factors. For rivers, bedload usually 

amounts to less than 10 percent of total sediment transport. 

Rolling and sliding are primary modes of bedload transport in gravel bed rivers, 

while saltation, in which grains hop over the bed in a series of low trajectories, is largely 

restricted to sand and fine gravel (Knighton, 1998). Once shear stresses just exceed the 

critical level necessary for entrainment, movement will probably occur by sliding or 

rolling of particles. In such circumstances, the submerged weight of the particle is 

largely borne by the bed of the channel (hence the term bedload is used to describe it). 

Depending on flow conditions, during transport material may intermittently lose contact 

with the bed by bouncing. 

Although in most environments, particularly in lowland zones, the bed material 

load is the least important of the three components of transport, in mountainous 

environments, where the supply of coarse material from the slope system is high, it may 

be greater than the combined dissolved and suspended loads (Lane and Borland, 1951; 

Simons and Senturk, 1977; Hayward, 1980; Lauffer and Sommer, 1982; Thompson et 

al, 1992). In general, bedload will rarely include sediment that is finer than 0.1-0.2 mm 

in diameter, because once disturbed these fine particles tend to go directly into 

suspension (Sundborg, 1956). 

Although there is a considerable body of literature on sediment transport in 

lowland rivers, less is known about the pattern of sediment transport in coarse-bed 

upland streams. Studies have shown that there are significant differences between 

upland and lowland gravel-bed rivers (Simons and Simons, 1987). Bathurst (1987) 

stressed that bedload transport rates in mountain rivers are higher than those in lowland 

rivers and the actual mechanisms of bedload transport are poorly understood. Lack of 

understanding is attributed to difficulties in the field measurement of bedload transport 

and associated hydraulic conditions in steep, coarse-bed channels (Carling, 1989). Some 

of these differences are summarised by Newson (1981). He points out several important 

characteristics of mountain and piedmont streams. For example, mountain streams have 

steep channels and side slopes without an intervening floodplain. The dominant bed 

material consists of coarse bedload. Flow resistance is complex and generally controlled 

by large-scale roughness elements and the local characteristics of the bed material (such 

as shape, size and density). Under conditions of steady flow there is a wide scatter in the 
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relationship between hydraulic variables and bedload transport in coarse-bed mountain 

rivers. Several factors have been identified as causing this scatter in the sediment 

transport relationship. These include sedimentological characteristics of the bed (e.g. 

microform bed roughness elements) (Jackson & Beschta, 1982; Parker & Klingeman, 

1982; Hoey, 1989; Reid et al., 1992), the progressive construction of an armour layer 

during waning flood flows (Proffitt and Sutherland, 1983; Gomez, 1983), variable 

cementation of the gravel framework by interstitial matrices (Frostick et al., 1984; 

McEwan, 1999), characteristics of individual moving particles (e.g. size shape, density, 

etc.) (Hassan and Church, 1990) and pool-riffle sequences (Robert, 1990). 

Another important aspect is associated with sediment supply and the energy 

levels of geomorphic processes in mountain streams as compared with their lowland 

counterparts. Newson (1981) points out that due to high residual proportion of coarse-

bed material the majority of sediment transport occurs as bedload. This transport 

requires quite high thresholds of critical tractive velocity, therefore bedload transport is 

restricted largely to periods of flood. Indeed many investigators, such as Davies and 

Pearce (1981), emphasise that sediment supply and transport processes in mountain 

areas are highly episodic. Erosion processes are often accelerated, and sediment supply 

to the stream channels increases, during extreme climatic events or following marked 

changes in land use. Pearce and Watson (1983) also state that the residence time of 

sediment in mountain rivers is on the order of decades or less because the transport 

capacity of steep streams often greatly exceeds the mobility of material under normal or 

even extreme conditions. Newson (1979) indicated that the sensitivity and the quick 

response to erosion processes in uplands rivers means that it is quite usual to study river 

processes over relatively short periods in upland areas, whereas the same processes 

might take a lifetime of research in the lowlands. In addition, Carson and Kirkby (1972) 

and Newson, (1981) have pointed out that the rate of erosion increases with relief and in 

upland streams the amount of transported bedload is higher than in the lowlands. 

1.3 IMPORTANCE OF BEDLOAD TRANSPORT IN UPLAND STREAMS 

Bedload transport in upland streams and rivers has gained the attention of earth 

scientists and engineers for the following reasons: 
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(a) Sustained interest in bedload transport was initiated directly as a consequence of the 

need to determine the quantity of bed material transport in navigable channels (Du 

Boys, 1879; Davis, 1900). 

(b) Bedload transport provides the major process linking channel form and hydraulics. 

Morphological change (including bank erosion) in rivers is largely governed by bedload 

transport (Gomez, 1991). 

(c) Engineering projects require an understanding of sediment movement in rivers or 

channels transporting predominantly coarse-bedload and sand. This is because the 

movement of river bed material as bedload is often responsible for problems associated 

with shifting channels, with loss of reservoir capacity and with local difficulties that 

arise in water abstraction, flooding, loss of agricultural land and navigation (Reid et al., 

1985). 

(d) Bedload material is an important component of ancient geomorphological cycles 

because a significant proportion of the geological column consists of alluvial sandstones 

that contain particles coarser than 0.5 mm in diameter (Meade et al., 1990) hence 

knowledge of bedload processes is important in geological studies. 

More specifically, in the UK, land use changes, such as afforestation, livestock 

changes and engineering constructions in upland areas frequently produce increases in 

bedload transport which, via erosion or sedimentation, can destabilise activities in river 

systems and cause serious problems for river management (Newson, 1979). The decline 

in the use of river gravel for building roads during the last century in Britain has already 

had an impact on bedload channels and Clayton (1951) has indicated that it has been a 

major factor in creating problems of aggradation in some Lake District streams, In some 

areas of Britain, however, commercial extraction of sand and gravel continues and it has 

been estimated, for example, that over 130000 tonnes of material has been removed 

from the upper Clyde (Fleming, cited in Lewin, 1981). 

Although coarse material transport is an important part of many fluvial 

problems, geomorphologists and engineers have only relatively recently attempted to 

examine sediment production and transport processes in coarse-bed rivers in upland 

areas. Transport mechanisms of coarse-bedload in mountain rivers with irregular beds 

are still relatively poorly understood (Ergenzinger and Custer, 1983). 
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1.4 FACTORS AND PROCESSES GOVERNING BEDLOAD TRANSPORT 

Movement of bedload is a complex phenomenon and it is controlled mainly by 

three principal categories of variables and their interactions (Hassan and Church, 1990) 

(Ferguson & Ashworth, 1992; Figure 1) These are sedimentological characteristics of 

the bed (e.g. texture, packing, armouring, bed forms), hydraulic condition of the flow 

(e.g. discharge, velocity, duration), and characteristics of individual moving particles 

(e.g. size, shape, roundness). Figure 1.1 shows interrelationships between form, flow, 

and bedload in gravel-bed rivers and indicates that unsteady discharge through a system 

of highly non-uniform channels with rough beds produces a complicated spatial pattern 

of water velocity that changes over time. The vertical velocity gradient at any point 

determines the shear stress on the bed and this together with sediment availability 

governs the size and amount of bed material that can be moved. Bedload transport either 

maintains the existing size, shape and pattern of channels or alters the morphology by 

scour, f i l l and lateral migration. It may also alter the existing texture and structure of 

bed sediments by selective entrainment and deposition (Ferguson and Ashworth, 1992; 

Figure 1). 

Knighton, (1998) also pointed out variables that influence the process of bed 

material transport. He classified the basic problems in bedload transport studies into two 

groups; (1) to understand the dynamic of material movement and (2) to establish a 

reliable relationship between sediment transport rate and relevant properties of the flow, 

fluid and sediment (Table 1.1). 

Table 1.1 Variables related to bedload transport (After Knighton, 1998) 

Flow properties Fluid properties Sediment properties Others 

Discharge Kinematic viscosity Density Gravity (g) 

Velocity Density Size Planform geometry 
Flow depth Temperature Sorting 

Width Wash load concentration Fall velocity 
Slope 
Resistance 
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The movement of bedload is generally accepted to be the most difficult mode of 

sediment transport to measure. The difficulty arises from the fact that movement occurs 

at relatively high flow velocities when bedload particles are intermittently transported 

by the means of sliding, rolling or skipping along in almost continuous contact with the 

stream bed. Direct measurements are therefore relatively few and possibly unreliable. 

Although there have been many studies concerning the prediction of bed material 

transport rates in coarse-bed channels, most of these do not correspond well with actual 

transport rates (Naden, 1988; Gomez and Church, 1989a). This is because most of these 

studies are based on either a over-simplifying assumptions, such as steady flow, uniform 

bed roughness conditions, approximated or uniform distribution of shear stress in the 

cross profile, or uniform particle shape and size. 

DISCHARGE 
OF RIVER 

hydraulic 
geometry 

CHANNEL] 
FORM 

erosion & 
deposition 

bed 
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transport 

VELOCITY 
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Figure 1.1 Interrelationship amongst form, flow, and sediments in active gravel-bed 
rivers (After Ferguson & Ashworth, 1992). 
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1.5 BEDLOAD SHAPE 

Understanding of transport mechanisms of coarse-bedload in fluvial 

geomorphology has grown considerably in the last two decades as a result of improved 

theoretical comprehension and carefully conducted field and laboratory experiments 

(Wiberg and Smith, 1987; Ashworth and Ferguson, 1989; Gomez, 1991; Carling et al, 

1992). However, these studies have mainly tended to focus on bedload processes: 

equations to model thresholds of bedload movement and bedload transport rates 

(Bagnold, 1941, 1980; Wilcock, 1988; Wilcock and Southard, 1989); bedload sampling 

and measurement methods (Hubbel, 1964; Helley and Smith, 1971; Bathurst, 1987); 

measures of bedload character such as sorting, etc. (e.g. Waddell, 1932; Cailleux, 1947; 

Krumbein, 1941a) bedforms and their dynamics such as riffles, pools, bars, etc. 

Although extensive research has been carried out with regard to different aspects of 

bedload dynamics, it is rather surprising that the importance of bed material shape in 

influencing sediment transport in coarse-bed streams has received little attention. 

Shape is thought to be significant factor because, all other factors being equal, 

the entrainment and hydraulic behavior of a particle depends on its shape, orientation 

and its relative projection above the mean bed level. Changes in dynamic conditions of 

transport, are reflected by changes in the shape-sorting, size and packing of deposits. 

However, despite its importance the exact mechanisms of how shape influences 

sediment transport are not fully understood and there are some conflicting results from 

existing studies. It is therefore timely that a systematic study should be directed at 

improving the understanding of bedload transport mechanisms in terms of particle 

shape. 

1.5.1 Importance of bed material shape in bedload transport studies 

In general, particle shape is analysed for three purposes: (a) to describe 

sedimentary materials, (b) to understand past events and the history of the materials, (c) 

as a basis for measuring present-day processes (Briggs, 1977). 

The importance of shape in sediment transport is demonstrated by the fact that 

shape is one of the three properties that control bedload transport and settling. Shape, 

size and density are of fundamental importance in the hydrodynamic behaviour of the 
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particles. Different conditions of transport produce changes in the size, shape-sorting, 

and packing of deposits. Furthermore, the ratio of surface area to particle volume is 

important in controlling the response of particles to lifting forces, so that particles of 

low sphericity may behave differently from particles of high sphericity during transport. 

King (1966) stated that the analysis of pebble shape and its character is important in 

interpreting the origin of a deposit and may also provide evidence concerning the nature 

of transport. For example the ratio of length to breadth to height can be used to 

determine the probable movement of a pebble by rotation or sliding. Bed material shape 

characteristics, especially angularity or roundness, are particularly important for 

palaeoenvironmental reconstruction. This is because the shape of bed material is related 

to process, transport, degree of weathering (e.g. frost action) and other environmental 

factors. Thus shape may give some significant clues for the correlation and 

differentiation of deposits (Bridgland, 1986). Several studies, including both field and 

laboratory experiments, have shown how different particle shapes exert an influence on 

bedload transport in coarse-bed rivers (e.g. Wentworth, 1919; Krumbein, 1942; Unrug, 

1957; Sneed and Folk, 1958; Bradley et al., 1972; Komar and Li, 1986; Schmidt and 

Ergenzinger, 1992; Carling et al., 1992; Schmidt and Gintz, 1995). Although shape is 

recognised as an important factor in bedload transport, there have been few systematic 

investigations into the transport of different particle forms. Many earlier studies, based 

on laboratory experiments using tumbling barrels, mills or circular flumes, mainly 

focused on effects of abrasion or sorting processes on particles of various shapes and 

sizes (e.g. Daubree 1879; Wentworth 1919; Marshall, 1927, Krumbein, 1941a; 

Rayleigh, 1942, 1944; Sarmiento, 1945; Potter, 1955; Kuenen, 1956; Bradley, 1970; 

Bradley et al., 1972; Moriwaki et al., 1985; Kodama, 1992). Early field investigations 

described the distribution of bed material shape and size characteristics along the long 

profile of streams and rivers (e.g. Plumley, 1948; Unrug, 1957; Sneed & Folk, 1958; 

Bradley, 1970: Bradley et a., 1972; Brierley and Hickin, 1985; Knighton, 1980, 1982; 

Dawson, 1988; Shih and Komar, 1990; Komar and Carling, 1991). Only a few previous 

studies have investigated the hydraulic behaviour of different particle sizes and shapes 

during transport (e.g. Krumbein, 1942; Leopold et al., 1966; Keller, 1970; Laronne and 

Carson, 1976; Carling et al., 1992; Schmidt and Gintz, 1995). Thus until now very few 

systematically collected data sets have been available to show how particle shape 

influences bedload transport. 

i 
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However, more recently the number of investigations into bedload transport 

involving the hydraulic behaviour of various bedload shapes and sizes has increased due 

to the applications of new techniques (e.g. Bunte and Ergenzinger, 1989). Most of these 

studies are either concerned with laboratory measurements and flume experiments (e.g. 

Komar and Reimers, 1978; Komar and Li, 1986; Lee and Komar, 1986; Kirchner et al., 

1990; Buffington et al., 1992; Carling et al., 1992) or field observations (e.g. Schmidt 

and Ergenzinger, 1992; Schmidt and Gintz, 1995). Few of these studies have focused on 

a combined field and laboratory investigation. This is significant, because many 

investigators have pointed out that due to over-simplifying assumptions such as: steady 

flow; uniform bed roughness; uniform distribution of shear stress in the cross profile; 

uniform particle shape, size and packing; most of the laboratory models and 

experiments are often unreliable and the nature of the bedload transport process is not 

fully characterised. Field investigators have also expressed difficulties in obtaining 

accurate data from mountain rivers with irregular beds of coarse material. These facts 

emphasise the need for a systematic study to determine the effect of bed material shape 

on bedload transport in gravel-bed rivers. A study focusing on both laboratory 

measurements as well as field investigations, and combining and comparing the results, 

will provide a better understanding and improve knowledge in this little-studied area. 

Therefore the importance of particle shape in bedload transport in coarse-bed river 

system can be viewed in four contexts relating to the hydrostatic and hydrodynamic 

effects of particle shape: 

1. Particle shape influences the entrainment of individual particles: Particle shape both 

influences the local force field and also the mode of transport (rolling or sliding) 

along with the geometry of the particle-surface pocket relationship (Komar and Li, 

1986). 

2. The interaction of different shaped particles is important in producing microforms 

on the surface of river beds (Reid et al., 1992). 

3. Apart from other factors there is a strong relationship between bed material shape 

and imbricate structures that control particle entrainment. Surface roughness is 

affected by bed configuration (Kirchner et al., 1990; Carling et al., 1992). 
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4. The importance of shape in sediment transport is demonstrated by the fact that shape 

is one of the three properties that control settling. The ratio of surface area to 

particle volume is important in controlling the response of particles to lifting forces, 

so that particles of low sphericity may behave differently from particles of high 

sphericity during transport. 

1.6 AIMS AND OB JECTIVES 

It has been suggested that in order to understand and model the nature of 

bedload transport, the shape and size of particles needs to be investigated in detail. It is 

surprising that, although there have been extensive studies of particle size of bedload 

and bed material, the effects of bed material shape on bedload transport have received 

considerably less attention. This thesis focuses on bed material shape in the bedload 

transport process. The aim of this thesis is to investigate through a series of field and 

laboratory-based experiments, the influence of particle shape on the transport of coarse 

fluvial gravel. The objectives of this study are: 

1. To determine experimentally the influence of particle shape on the dynamics of 

bedload motion. 

2. To determine the travel lengths of particles in different shape and size classes after 

particular flow periods. 

3. To examine the influence of bed topography on travel lengths and transport of 

different shape and size classes. 

4. To determine variability in friction angles and mechanistic behaviour of particles of 

different size, shape, orientation and roundness on beds of varying gravel roughness. 

1.7 THESIS STRUCTURE 

The remainder of this thesis is organised as follows. Chapter 2 focuses on a 

literature review concerning all aspects of bedload shape in bedload transport and also 

importance and use of magnetic tracing techniques in bedload transport studies. Chapter 

3 sets out the research design of the thesis and describes the methods and techniques 

used. Chapter 4 describes the main physical characteristics of the field study sites and 
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catchments where the main fieldwork was carried out. Chapter 5 presents the results of 

the magnetic tracing experiments carried out during a range of storm events in the 

experimental reaches. Chapter 6 explains the results of tilting table experiments of 

measurements of the friction angles of particles of different shape and size, on both 

artificial and naturally-formed gravel stream bed of varying roughness. Chapter 7 gives 

results of photographic visualisation experiments that were carried out with particles of 

various shapes and sizes. Chapter 8 summarises the results of the field and laboratory 

experiments and attempts to integrate the results, and assess the significance of shape, in 

bedload transport studies. 
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CHAPTER 2: REVIEW OF THE INFLUENCE OF BED MATERIAL 

SHAPE ON SEDIMENT TRANSPORT AND TECHNIQUES FOR 

MEASURING COARSE-BEDLOAD TRANSPORT 

2.1 INTRODUCTION 

It is generally known that during bedload transport, sedimentological 

characteristics, hydraulics of flow, and characteristics of the bed material, which are 

mainly size, density and shape (form, roundness, sphericity and flatness) have an 

influence on transport. Studies have shown that the entrainment of a particle sitting on a 

rough bed depends on its shape, size, density, orientation, and relative exposure to the 

incident flow (Sneed and Folk, 1958; Schmidt and Ergenzinger, 1992; Carling et ah, 

1992). Thus in order to understand bedload transport mechanisms in detail, attention 

must be given to the different aspects of bed material characteristics in coarse-bed 

upland rivers. 

A comprehensive review of all aspects of bedload transport is beyond the scope 

of this chapter. Instead the focus will be on how bedload shape influences sediment 

transport and tracer techniques for measuring bedload movement. Firstly bedload shape 

is defined and the importance of bed material shape in bedload transport studies 

considered. This leads to a description of the processes governed by bed material shape. 

Explanation of the parameters describing the shape of particles is given and there is a 

discussion of various shape indices, which include two-dimensional (e.g. angularity, 

elongation and roundness) and three-dimensional (form, sphericity and flatness) shape 

indices. Case studies of laboratory and field experiments on bedload shape are then 

reviewed. The final two sections deal with techniques for tracing bedload transport and 

case studies using tracer techniques in different aspects of bedload transport 

investigations. Methods of tracing using artificial magnetic enhancement, natural 

magnetic tracers and their automatic detection (Pebble Transmitter System (PETSY)) 

are considered. 
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2.2 BEDLOAD SHAPE 

The fundamental properties of sedimentary particles are mineralogical and 

chemical composition, specific gravity, volume or the size of the true nominal diameter, 

sedimentological shape (sometimes the crystallographic form) and the roundness of the 

corners and edges (Wadell, 1935). One important property is shape, which is the 

expression of external morphology, which for some is synonymous with form (Gary et 

al, 1972; Barrett, 1980). However, Sneed and Folk (1958) used the term form 

specifically for overall particle shape, obtained from the measurement of the three 

orthogonal axes, and plotted on a form triangle. 

2.3 FACTORS AND PROCESSES DETERMINING BED MATERIAL SHAPE 

Many investigators have pointed out that the shape of particles is controlled by 

one or more of the following factors (e.g. Krumbein, 1941b; Sneed and Folk, 1958; 

Bridgland, 1986; Gale and Hoare, 1991). 

• The shape of the particles as liberated from the parent rock. 

• Lithology: the physical and chemical character of the particles (e.g. mineralogy, 

chemistry, structure e.t.c). 

• The nature of the sedimentary processes, 

• The period and/or distance of transport, 

• Sorting, 

• Particle size. 

These factors are responsible for some of the wide shape variations between particles of 

essentially similar composition and transportation history (Figure 2.1). 

The influence of the first factor, "shape of the particles as liberated from the 

parent rock", may be illustrated by comparing the effect of different rocks. For example 

highly-jointed rocks may produce angular particles, frequently subcubic in shape; 

highly-cleaved rocks may yield bladed or platy particles; deeply-weathered rocks give 

rise to sub-rounded particles in the form of residual corestones (Gale and Hoare, 1991). 

Smalley (1966) used probability theory to predict that, for a totally isotopic lithology, 

11 % of the particles released from the rock would posses a. b, and c axes of similar 

length, 22 % would be blades and the remaining 67 % would be made up of disc and 

rods. 

Sneed and Folk (1958) found that the most important single factor governing 
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pebble morphology is lithological composition. Particle lithology has a significant 

influence on the shape of the resultant particles. For example after a similar transport 

distance, limestone tends to be soft and soluble and will therefore be rounded rapidly, 

while slates are usually brittle and possess close cleavage planes and are therefore 

angular and platy (Sneed and Folk, 1958; Knighton, 1982; Gale and Hoare, 1991). In 

addition, the initial shape of weathered particles is affected by mineralogy: micas tend 

to platy, feldspars are often tabular, and quartz tends to be equant. 

Term Shape 

Cylindrical 

Discoidal 

Spherical 

Tabular 

Ellipsoidal 

Equant 

Irregular 

Figure 2.1 Descriptive terms applied to particle shape classification. 
(Source: Internet, date of download: 22.02.2000. Title: Particle shape. 
Address: Department of Geological Sciences, University of Saskatchewan, 
114 Science Place, Saskatoon, SK, Canada, STN 5E2). 

The nature of sedimentary processes exerts different influences on particle 

shape. There have been a great number of investigations determining what processes 

that give rise to specific shapes from different environments (e.g. Dobkins and Folk, 

1970; Stratten, 1974; Gale, 1990). A detailed investigation by Dobkins and Folk (1970) 

on the shape of river and beach gravels showed that river gravels have higher mean 
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sphericity values than marine beach gravels. Stratten (1974) and Gale (1990) supported 
Dobkins and Folk's findings stating that mean sphericity of fluvial gravels is between 
0.67 and 0.77, while the range is between 0.53 and 0.64 in beach gravels. Dobkins and 
Folk (1970) also found that modified Wentworth roundness of river gravels is less than 
for low energy beach gravels. 

Boulton (1978) carried out another study on boulder shapes and grain size 

distribution of debris as indicators of transport paths through a glacier. It was found mat 

different modes of glacial transport of gravel result in different particle shape. Plots of 

roundness in contrast with sphericity clearly distinguished between boulders transported 

supraglaciallly and englacially, boulders transported as traction load and boulders found 

in lodgement till (Gale and Hoare, 1991). 

Many investigations have proved that distance of transport has a significant 

influence on bedload shape (e.g. Krumbein, 1941a; Kuenen, 1956; Sneed and Folk, 

1958; Mills, 1979; Knighton, 1980). In particular, there is usually a strong relation 

between particle roundness and its transport distance. With increased distance, particles 

become more abraded and rounded. Water is the most effective transport medium for 

rounding coarse particles. A detailed review on transport distance and bedload 

roundness has been written (Mills, 1979) and also on marine transport (Andel et al, 

1954), beach transport (Grogan, 1945 and Emery, 1960), and glacial transport (Drake, 

1972 and Bergesen, 1973). 

In terms of sorting, certain particle shapes may be preferentially transported and 

deposited. However, shape sorting is more problematic since shape has not been easily 

correlated with entrainment, transport, or deposition. Conflicting evidence exits as to 

whether spherical (Krumbein, 1942; Sneed and Folk, 1958) or platy (Bradley et ah, 

1972) shapes are preferentially transported. Some studies have shown consistent aspects 

of hydraulic behaviour of different shaped particles during transport. Indeed at high 

transport rates some particles become entrained in the water column and hydrodynamic 

effects may become important as particle settle. Sneed and Folk (1958) stated that 

particle settling velocity is governed by the volume of particle, which affects the 

downward force, and surface area of motion, which provides an upward resistive force. 

Thus the sphericity value of a particle may indicate its behaviour during transport. In 

other words high-sphericity particles may settle more rapidly than those of low 

sphericity. For instance, at high flow, assuming equal volume and density, spherical 

particles carried by rivers will have a higher settling velocity and will tend to be 
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deposited rapidly as the velocity of flow decrease, while platy particles will tend to 

remain in temporary suspension and be carried further downstream. On the other hand, 

spherical and rod-like particles will tend to roll along the channel, while discoid and 

bladed particles will tend to remain behind (Krumbein, 1941b; Sneed and Folk, 1958; 

Bradley 1972; Schmidt and Ergenzinger, 1992). 

In terms of particle size, investigations have proved that particles of different 

size have different hydraulic behaviour during fluvial transport. For example, regardless 

of their shape, smaller particles may be transported continuously in suspension rather 

than as bedload. But as particle size increases the effect of particle volume and the 

surface area of particles become important factors that will probably lead to selective 

transport. In other Words particles of different sizes may experience widely differing 

conditions of transport, which may result in their acquiring different shapes or being 

sorted by shape in different ways. Particle size has an important effect on shape change 

(roundness, sphericity) during transport. Although smaller particles are transported 

further downstream, they do not show an equivalent change in shape as does coarser 

material. Larger particles tend to be transported by rolling, sliding or saltating close to 

the bed. This means they are more affected by the abrasion processes which include: 

splitting, crushing, chipping, cracking (superficially), and grinding. On the other hand 

smaller sizes include fragments broken off larger particles (Krumbein 1941a; Kuenen, 

1956). Thus, over an equal distance, particles in the larger size ranges tend to be more 

rounded than those of smaller sizes (Krumbein, 1942; Kuenen, 1956; Bluck, 1969). All 

these factors indicate that, especially in gravel-bed rivers, where a wide range of particle 

sizes exists size must be taken into account in bedload shape studies. Sneed and Folk 

(1958) also indicate that grain size is significantly correlated with sphericity, implying 

that particle behaviour is only consistent over restricted size ranges. 

2.4 PARAMETERS FOR DESCRIBING THE SHAPE OF PARTICLES 

There are many parameters for describing particle shape, but none of these has 

been universally accepted. Confusion appears to exist over what the various parameters 

of shape actually measure and how they are related (Barrett, 1980). Conventionally 

shape is expressed in three main ways (Table 2.1). Form is the measurement of the three 

relative lengths of three major orthogonal axes of a particle. Particles can be classified 
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as spheres, blades, rods and discs (Zingg, 1935), although some other investigators have 
used different classifications (e.g. Wentworth, 1922a; Wadell, 1932; Cailleux, 1947; 
Sneed and Folk, 1958; Benn and Ballantyne., 1993). Sphericity is a measure of how 
equal in length are the three major axes of a particle (Wadell, 1932; Krumbein, 1941b; 
Aschenbrenner, 1956; Sneed and Folk, 1958). Roundness is a measure of the 
smoothness and lack of angularity of a particle's surface (Wentworth, 1919, 1922b; 
Wadell, 1932; Russell and Taylor, 1937; Krumbein, 1941b; Cailleux, 1947; Kuenen, 
1956; Dobkins and Folk, 1970). Although surface texture is characterised as the range 
of features which may be found on the surface of particles (Gale and Hoare, 1991), it is 
often not considered in discussions of shape, since it cannot be easily recognised in the 
projected outline of a particle and it also gives rise to some difficulties in the 
measurement of shape (Whalley, 1972). 

Table 2.1. Main parameters used to characterise different aspects of shape of 
particles. 

Property Parameters 

Elongation and Flatness (Wentworth, 1922a; Zingg, 
Form 1935; Cailleux, 1947) Form ratio (Sneed and Folk, 

1958). 

Sphericity Wadell, 1932; Krumbein, 1941; Sneed and Folk, 1958. 

Roundness 
Wentworth, 1919; Wadell, 1932; Russell and Taylor, 
1937; Krumbein, 1941; Cailleux, 1947; Pettijohn, 
1949; Powers, 1953; Kuenen, 1956; Dobkins and Folk, 
1970; Swan, 1974. 

2.5 SHAPE INDICES 

The purpose of shape indices is to give a single descriptive term or value that 

will define or classify different particles. Many shape indices have been suggested, but 

unfortunately considerable ambiguity has arisen in the literature about the terms used to 

describe them (Briggs, 1977). Briggs (1977) made the distinction between indices 
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related to the two-dimensional shape of a particle and those referring to the three-
dimensional shape. He stated that the main reason for the distinction is that the two-
dimensional shape of a particle is controlled largely by the type and extent of 
weathering and wear during transport, while three-dimensional shape is more closely 
related to the structure of the material. Two-dimensional definitions include roundness, 
angularity and elongation, while three-dimensional ones include form, sphericity and 
flatness (Figure 2.2). 

SHAPE INDICES 

Two-dimensional 
shape 

Three-dimensional 
shape 

Roundness Angularity Elongation Form Sphericity Flatness 

Figure 2.2 A simplified representation of two and three dimensional shape indices 
(Briggs, 1977) 

Many shape studies have shown independence of form, roundness and surface 

texture. A large change in one property may not necessarily affect the other two (e.g. 

Krumbein, 1941a; Sneed and Folk, 1958; Barrett, 1980). Barrett (1980) stated that form, 

roundness and surface texture can be distinguished at least partly because of their 

different scales with respect to particle size, and this feature can also be used to order 

them (Figure 2.3). Thus, he identified form as a first order property that reflects 

variations in the proportions of the particles, while roundness, which is the second order 

property, reflects variations at the corners. In other words, variations superimposed on 

form. Surface texture, which is the third order effect, is superimposed on the corners, 

and is also a property of particle surfaces between corners. 
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Form 

Roundness 

V 
/ 

Surface Texture V 

Figure 2.3. A particle outline (light solid line) with its component elements of form 
(light solid line, two approximations shown), roundness (dashed circles) and texture 
(dotted circles) identified (Redrawn from Barrett (1980). 

The importance of different aspects of particle shape in bedload transport studies 

and various parameters to estimate particular aspects of shape are discussed below. 

Barrett (1980) pointed out that there are at least two properties that parameters should 

have. (1) Each parameter should represent one aspect mat has some physical meaning, 

so that they can be related to the processes that determine particle shape. (2) Each 

should represent a combination of measurements from the same aspect of shape, that is, 

from the same hierarchical level. 

2.6 TWO-DIMENSIONAL SHAPE 

Two-dimensional measurement methods involve the assessment of roundness or 

angularity (Figure 2.1). Using these methods the particle is usually compared with the 

properties of a circle. 

2.6.1 Angularity: 

The irregularity of outline of the particle or its image, essentially the inverse of 

roundness (Briggs, 1977). 
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2.6.2 Elongation 

This parameter is based on ratio of different axes of a particle. Schneiderhohn (1954) 

described the elongation index as the ratio of the greatest width to the greatest length of 

a particle: 

Elongation index: — 
a 

Where b is the length of the intermediate axis and a is the length of the long axis. 

Another method which was described by Folk (1968) based on least projection widths 

(which is the two-dimensional form of a particle when viewed along the a-axis) and 

lengths of a particle. Table 2.2 shows the classes and indices derived by Folk. 

Elongation index: — 
ap 

Where and ap and bp are the least projection length (ap) and b width (bp)of the particle. 

Table 2.2. Elongation classes and indices (After Folk, 1968) 

Elongation classes Elongation indices 

Very equant >0.75 
Equant 0.75 - 0.72 
Subequaht 0.72 - 0.69 
Intermediate 0.69 - 0.66 
Subelongate 0.66 - 0.63 
Elongate 0.63 - 0.60 
Very elongate 0.60 

Briggs (1977) also described the elongation as the ratio between the longest (a) and 
shortest (c) axes of a particle. 

Briggs's elongation index: — 
c 

2.6.3 Roundness 

Roundness is a valuable sedimentological parameter. Along with other shape 

parameters (e.g. sphericity, form), roundness influences the hydrodynamic behaviour of 

a particle and may yield information about transport distances (Diepenbroek et al, 

1992). Roundness is the relationship of the outline or image of the particle to a circle, 

often defined as the ratio between the radius of curvature of the particle and that of an 

inscribed circle (Briggs, 1977). Roundness is usually taken to refer to the curvature of 
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the extremities on a particle. Its measurement is generally carried out in order to 
determine quantitatively the amount of wear undergone by a particle as a result of 
processes operating in a transporting environment (Shakesby, 1980). An increase in 
roundness is an expected consequence of the abrasion sustained by the stone in moving 
downstream, but it does not have much effect on form. On the other hand, a change in 
form significantly affects roundness, because fresh surfaces are exposed, and new 
corners appear. 

2.6.4 Factors affecting roundness 

Many studies have shown that, apart from distance of transport, there are many 

other factors that affect roundness. Shakesby (1980) reviewed some of these factors: 

1) The nature of the particle on leaving its source will affect roundness at the point of 

deposition. 

2) Lithology of a rock is an important factor in determining susceptibility of a particle 

to abrasion (Kuenen, 1956). 

3) The nature of the transporting medium is significant in determining the particle 

roundness. As King and Buckley (1968), Bergesen (1973) and Gregory and 

Cullingford (1974) pointed out, particles in different transporting modes showed 

different roundness characteristics. 

4. The size of a particle at all stages during its transport is an important factor. Particles 

of different sizes respond in different ways to processes acting in the same environment 

(e.g. Zingg, 1935; Russel and Taylor, 1937; Plumley, 1948; Sneed and Folk 1958 and 

Sorby, 1980). 

5. The distance of transport and the effectiveness and duration of processes acting 

during transportation also affect the roundness of a particle, such as chipping caused 

by the impact of a particle against an obstacle. 

2.6.5 Techniques in roundness measurement 

An ideal measurement technique should be both accurate and rapid. Available 

techniques are either accurate but time consuming or rapid but inaccurate and, therefore, 

there is no single technique or apparatus that is capable of fulfilling both aims 

(Shakesby, 1980). Although, many different techniques have been used to assess 

particle roundness (Dobkins and Folk. 1970), these techniques have been traditionally 
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classified into two groups; (1) subjective techniques which generally include (a) visual 
description (b) visual comparison charts and (2) direct measurement techniques. 

Subjective Techniques 

a) Visual description: The operator verbally describes grain morphology from visual 

observation of the grain or grain facsimile. Visual descriptions are subjective and their 

level of efficiency is poor unless there is a specified set of standards for comparison 

(Orford, 1981). Allen (1982) gives a list of British Standard shape descriptions which 

apply to fine sediment. Roundness estimates are not encouraged, as the level of 

efficiency (replication) is low due to subjective assessments, Orford (1981) suggested 

that this type of description should be considered only as a superficial field statement 

when samples are unobtainable for further analysis. Standard verbal description of 

roundness and angularity have been developed by Russel and Taylor (1937), Pettijohn 

(1957) and Schneiderhonn (1954; in Pryor, 1971) (Table 2.3). 
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Table 2.3 Verbal description of roundness/angularity classes, modified from 
Schneiderhohn (1954, in Bridgland, 1986). 

1. Well rounded 
No flat faces, corners or reentrants 
discernible; a uniform convex particle 
outline. 

2. Rounded 
Flat faces nearly absent, with corners all 
gently rounded. Small reentrants absent 
and large reentrants only suggested. 

3. Sub rounded 

Poorly developed flat faces with corners 
well rounded. Few small and gently 
rounded reentrants; large reentrants weakly 
defined. 

4. Sub angular 
Strongly developed flat faces with incipient 
rounding of corners. Small reentrants only 
suggested. 

5. Angular 
Strongly developed faces with sharp 
corners. Sharply defined, large reentrants 
with numerous small reentrants 

6. Very angular 

As 5, but corners and edges very sharp, 
with no discernible blunting. [This class 
was added to the visual charts by Powers 
(1953) (Figure 2.5), although only for sand 
grains. For pebbles it may be reserved for 
frost-fractured and other freshly broken 
particles.] 

b) Visual comparison charts: The operator views the actual grain or grain facsimile 

and compares it to a standard reference. Methods of this type prove to be most popular 

when dealing with fine sediments (<4 mm; b axis) and especially with sand-sized 

material, where direct measurement of particle axes is difficult. 

Roundness analysis using visual comparison charts is less precise than the 

methods of direct measurements. This is because, when using visual comparison charts 
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it is normally impossible to distinguish subtle differences in particle rounding. In this 

method each particle is compared with a set of images and assigned to the particle form 

it most closely corresponds. Although several charts are available (e.g. Russel and 

Taylor, 1937; Pettijohn, 1957; Krumbein and Sloss, 1955), the most widely used are 

those Krumbein's (1941a) visual comparison, Rittenhouse's (1943) sphericity and 

Powers's (1953) roundness comparison charts. These methods of analysis are simple 

and rapid to use. Powers's chart, generally intended for sand grains, is perhaps the most 

frequently used. Powers (1953) included six classes in his chart, having added a new 

class 'very angular' to Russell and Taylor's (1937) five classes of roundness (Figures 

2.4 and 2.5). The data is collected on a ordinal scale, but may be transformed by 

assigning each category a value in an interval scale, thus allowing statistical analysis. 

Powers also made the divisions of his classes intentionally coarser for classes depicting 

more rounded particles^ than fqr those representing angular ones, since he considered 

that the eye can more readily, distinguish differences of roundness when the roundness 

values are low (Shakesby, 1980). 

i , 

ROUNDNESS 

Angular GOO 
Subangular 

Rounded 

Subrounded 

.Well Rounded o 
Figure 2.4 Roundness chart of Russell and Taylor (after Pryor, 1971) 
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ROUNDNESS AND SPHERICITY 

High 
sphericity 

Low 
sphericity 

Very 
angular Angular 

0 0 
Sub 
angular 

A 

Sub 
rounded Rounded 

Well-
rounded 

Figure 2.5 Powers roundness comparison chart. Each roundness class is shown with two 
particles, one with a fairly high sphericity, and one with a rather low sphericity (After 
Powers, 1953). 

Krumbein's chart is based on visual comparison of individual grains with 

silhouettes to determine roundness values. In other words a pebble is compared with 

standard images of known roundness, and a roundness value assigned to it. His 

classification is based on ten sets of standard images, with long axes of about 25mm 

(Figure 2.6). The standard images vary in roundness from 0.1 to 0.9. In this 

classification he also included a set for broken pebbles to indicate effects of breakage on 

roundness. By enlarging or reducing the images photographically, similar sets may be 

made for any size range. This method was criticised by Powers on the basis that the 

method is rather slow and somewhat tedious. This is because divisions between 

Krumbein's ten classes were too fine, making it difficult to decide which roundness 

value to assign to a particle. 

Lees (1964) developed a new method for determining the angularity of particles. 

He considered angularity as not simply the absence of roundness but a distinct concept. 

Lees regarded his chart as representing degrees of angularity rather than roundness but 

the resulting chart is similar to those of Powers and Krumbein. His divisions were based 

on 16 classes, however, this means it is more difficult to decide to which class a particle 

most closely corresponds. On the other hand Reichelt (1961) developed a chart based on 
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Figure 2.6 Pebble imges for visual roundness (Krumbein, 1941b). The images should lie within 
the size range of the particles being measured. If gravels to be examined lie outside the size 
range of the images, the figure should be enlarged or reduced correspondingly. 



only four classes of roundness, but it has not been used by British or North American 

workers, it has mainly been used in Europe (Shakesby, 1980). There is no universally 

accepted visual comparison chart for roundness estimation. 

c) Curvatures estimation methods: Using these methods proportions of particle 

surfaces can be estimated as flat, convex or concave. One of the well known method in 

this area is the Scadeczky-Kardoss curvature estimation method (Sames, 1966). The 

main advantages of this method is that results can be shown directly on a triangular 

graph, and thus allowing small variations between samples to be seen relatively clearly. 

Despite the advantages, disadvantages of the method include its highly subjective 

nature, which permits personal bias to influence the results, and the strong chance that 

the ratios of concave, convex and flat sections will depend more on the rock lithology 

and structure than on environmental processes that effect the particle. 

Table 2.4 Subjective techniques for assessing the roundness of particles 
(revised from Shakesby, 1980) 

References Number of 
classes 

Type of display 

Visual comparison charts 
Krumbein 

(1941) 
10 silhouettes 

Powers 
(1953) 

6 photographs of 
clay models 

Lees 
(1964) 

16 silhouettes 

Reichelt 
(1961) 

4 photographs of particle 

Curvature estimation 
Szadeczky-Kardos 

(1933) 

Direct measurement techniques 

In general, direct measurement techniques are attractive mainly because they 

reduce much of the subjectivity, and thus the possibility of intuitive tendency, which is 

the major problem with visual comparison charts. Apart from some techniques that 

require expensive equipment (e.g. Wadell, Schwarcz and Shane and Wainberg 
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methods), direct measurement techniques are also relatively rapid and can be carried out 
using simple and inexpensive devices e.g. Cailleux (1947) and Wentworth (1919) 
methods (Table 2.5). The operator makes dimension measurements of the actual grain 
or grain facsimile and values are inserted into a roundness formula. 

Techniques for the quantitative determination of roundness may be subdivided 

in to two groups. (1) Those that are theoretically desirable but practically difficult to use 

(e.g. Wadell, 1932; Schwarcz and Shane, 1969; Ehrlich and Weinberg, 1970). (2) Those 

that are less complex and more practical, but the degree of accuracy may be less (e.g. 

Wentworth, 1919; Cailleux, 1947; Dobkins and Folk, 1970; Swan, 1974) (Table 2.5). 

The practicality of the latter four techniques is achieved by sacrificing a degree of 

accuracy in order that measurement in the field of a large number of particles is possible 

within a reasonable period of time (Shakesby, 1980). Virtually all these techniques are 

based on intercept or curvature measurements. The particles are usually viewed in 

outline in each case, although Dobkins and Folk (1970) demonstrated how roundness 

may be obtained three dimensionally (Swan, 1974). 
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Table 2.5 Direct measurement techniques for assessing particle roundness (After 
Shakesby, 1980) 

Reference Formula Definition Remarks 

1) Wadell 

(1932) K 
\.TV 

x 1 J ? 

3̂ 

Judged to be theoretically 
commendable but too tedious for 
use in the field. It is used to provide 
the numerical divisions in 
visual comparison charts of 
Krumbein (1941) and Powers 
(1953). 

2) 

Wentworth 

(1919) 
a 

I / 

i y 
•—-—. 

N. / 
\ 1 

Not often quoted by European 
workers though it resembles very 
closely the technique later proposed 
by CaUleux (1947) 

3) Caileux 

(1947) -^X 1000 
a 

t / 

a — 

The most popular direct 
measurement technique in Europe. 
It has been used by many workers 
(e.g. King and Buckley, 1968; 
King, 1969; McCann and Owens, 
1969; Hollerman, 1971; Dugdale, 
1972; Gregory and Cullingford, 
1974; Qrfold, 1975). 

4) Kuenen 

(1956) -^•X 1000 
b 

\ r n / b 

Kuenen considered that the b-axis 
was a better index of size and less 
influenced by shape than the a-
in Cailleux's formula. 

5) Dobkins & 

Folk (1970) 
rm 

R 

Effectively a measure that 
combines aspects of the techniques 
suggested by Wentworth and 
Wadell. The authors referred to it 
as the "modified Wentworth 
technique" (Hemming, 1965; 
Griffiths, 1967). 

6) Swan 
(1974) 

Swan considered that Wadell's 
technique was "the most 
representative of roundness" but 
that it appeared too complex. As a 
simplification, he suggested 
selection of the two sharpest 
corners (rl and r2) rather than all 
the corners as in Wadell's 
technique 
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One common index (e.g. Wentworth (1919) and Cailleux (1947)) uses the radius 

of curvature of the sharpest corner in the maximum projection plane and divides this 

value by the length of the long axis. This index was originally used by Wentworth 

(1919) (Table 2.5), Wentworth later changed the divisor to the average of the long and 

short diameter of the particle in the plane of projection (Wentworth, 1922a). This 

method was later reinvented and popularised by Cailleux, 1947. Wentworth suggested 

two indices of roundness. His formula of 1922 is given here as: 

2n/D (2.1) 

where ri is the radius of the sharpest curvature and D is the mean diameter of the 

particle, D equalling: 

3-Ja b.c 

Where a, b and c are the length, breadth and thickness of a particle respectively. 

In 1933, he simplified this by eliminating consideration of the third intercept. His 

revised formula is given as: 

rM (2.2) 

where ri is the radius of the sharpest curvature; with R equalling the mean radius of the 

particle which is determined as: 

^ = R (2.3) 
4 

Where a is the longest dimension, and b is the greatest width of the particle at right 

angles to a. 

Wadell expressed roundness as the ratio between the radius r of the sharpest 

corner of the particle and the radius R of the largest inscribed circle, both in the 

maximum projection of the particle. Wadell (1932, 1935) calculated the degree of 

roundness by dividing the mean of the radii of curvature of the corners by the radius of 

the maximum inscribed circle, 

(2.4) 
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where n refers to the number of corners. Wadell (1932) defined a corner as "every such 
part of the outline of an area which has a radius of curvature equal to or less than the 
radius curvature of the maximum inscribed circle of the same area" (Swan, 1974) (Table 
2.5). The measurement of roundness in this way is lengthy and time consuming, 
therefore Krumbein (1941a) produced a chart for visual determination of roundness by 
comparison with pebble images, the roundness of which has been measured by Wadell's 
method. The agreement between both methods of determination is acceptable, when the 
number of pebbles is greater than 25. The values range from 0 to 1, the latter 
representing perfect roundness, whatever the shape may be (Andel, et ai, 1954). 

Cailleux's roundness index is based on measurement of the radius of curvature 

of the sharpest corner of the particle, in the plane of maximum projection. The plane of 

maximum projection is defined by inspection, and the sharpest corner in this plane 

located. The pebble is then placed on a series of concentric semicircles of known radius 

so that the sharpest corner just encloses a semicircle. The radius of the semicircle is the 

radius of curvature of the corner. The length of the longest axis is then 1. (Briggs, 

1977). In reality, most sedimentary particles fall between 0.3 and 0.9. Caulleux's 

rounding index is as follows: 

^ • 1 0 0 0 ( 2 5 ) 

a 

In 1947, Cailleux also used the measurements of the curvature of the second and 

third order indices. He pointed out that these measurements were made in order to 

determine which the sharpest corner really was. Cailleux (1947) also emphasised that 

comparison of roundness, where his formula was employed, was possible only among 

particles of similar sizes (Swan, 1974). According to Blenk (1960), Cailleux's roundness 

index is as good as others that have been proposed subsequently and it has the 

advantage that many studies have made use of it, so results are comparable. The 

measures suggested by Kuenen produce similar values. Therefore it seems reasonable to 

use Cailleux's method for determining the shape of pebbles. Tonnard (1963) also tested 

the various indices proposed to assess the shape of sand and concluded that Cailleux's 

index was the most satisfactory. 

Cailleux's (1947) method has been criticised by Kuenen (1956), Dobkins and 
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Folk (1970), Swan (1974) and Folk (1977). They state that it confuses both roundness 
and form in the same measure. Kuenen modified the Cailleux formula by replacing the 
long axis with the intermediate axis, whereas Dobkins and Folk suggested using the 
largest inscribed circle, and Swan proposed a modification of the Dobkins and Folk 
procedure by averaging the diameters for the two sharpest corners (Barrett, 1980). 
Kuenen's (1956) suggested formula is: 

2n/l (2.6) 

Where ri is the radius of the sharpest curvature as in Wentworth's and Cailleux's 

formula, and T is the largest diameter at right angles to the greatest length. T is 

identifiable as approximately twice Rl of Wadell's formula and more or less the same 

as the width of the particle. 

In terms of pebble shape analysis Dobkins and Folk (1970) promoted a method 

which they called the "Modified Wentworth Index". Their formula is given as: 

This method involves a combination of the measurements proposed by Wentworth and 

Wadell. Dobkins and Folk (1970) also measured only the radius of curvature of the 

sharpest corner (rm) in the a-b plane which eliminated the most tedious aspect of 

Wadell's method. They used the largest inscribed circle because the a-axis may tend to 

be influenced by morphometric properties other than roundness (Shakesby, 1980). 

Dobkins and Folk (1970) suggested that The Modified Wentworth roundness is more 

objective and quantitative than any other procedure for measuring roundness, including 

Wadell's, but in both respects it is no better and no worse. The greatest problem is 

recognising corners. They demonstrated that the sharpest corner provided the best 

measure of roundness, because it best reflects the amount of rounding going on in the 

latest environment. This applies to river pebbles, although in other situations, such as 

beneath glaciers, the level of rounding attained rather than roundness change since the 

last breakage, may be of most interest (Barrrett, 1980). 

Comparison of the Wadell-Krumbein index and Cailleux index shows that both 

techniques give values of 1.0 for spheres, but the Wadell-Krumbein index generally 
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gives higher roundness values than the Cailleux index. Mills (1979) pointed out that this 
difference can be attributed to two factors. First, the diameter of curvature averaged 
over all corners- usually will be greater than the diameter of curvature of the sharpest 
corner. Second, the diameter of the maximum inscribed circle will, in most cases, be 
smaller than the long axis. He also concluded that modifications of the Cailleux index 
employing the intermediate axis or mean axis will decrease the differences between the 
two methods due to the second factor, but not that due to the first. As a result, .using 
different techniques in direct comparison may lead to some difficulties. 

Shakesby (1980) made the following observations concerning measurement of 

curvature of corners on particles. First, corners may approach segments of parabolas or 

hyperbolas rather than a true circle, and thus it may be difficult when considering such 

corners to decide which reference circle offers the closest match. Second, with 

decreasing size and rounding the accuracy-of the technique diminishes (Andel, et ah, 

1954; Whalley, 1972). Third, there is a problem of parallax when comparing the corners 

of particles with the reference circles so that the operator tends to overestimate the value 

of r (Dobkins and Folk, 1970). Fourth, for techniques where the radius of curvature of 

the sharpest or two sharpest corners is needed, not all operators select the same corner to 

measure (Folk, 1972) 

2.7 THREE-DIMENSIONAL SHAPE 

Three-dimensional shape indices generally include measurement of sphericity, 

form, and flatness. Form and sphericity have a direct influence on the hydraulic 

behaviour of particles whereas two dimensional shape such as roundness does not effect 

the behaviour to the same degree. In this respect, three-dimensional shape indices are 

considered an important measure for bedload transport studies. 

2.7.1 Form 

The form of a particle determines its mode of transport, its abrasion, point of 

deposition and its effect on the resulting sedimentary roek (Hemming, 1965). Form is 

the relationship of a particle to a formal shape such as a sphere, disc, rod, cube, or 

prism. Almost all parameters of particle form are based on the longest, intermediate and 

shortest orthogonal axes. The simplest form methods are generally based on direct 

measurement of a particle's three major axes (a, h, and c) taken orthogonally but not 
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necessarily intersecting at the same point (Orford, 1981). Given three axial values, then 
the elements of shape and sphericity can be determined. 

One of the earliest attempts to standardise the classification of particle shape was 

made by Zingg (1935) (Figure 2.7). The Zingg classification is based on ratios of the 

three principal axes; the long (a), intermediate (b) and short (c) axes. The a axis is the 

longest, the b axis is the maximum diameter at right-angles to it, and the c axis is the 

maximum diameter of the third, in a mutually right-angled plane. In Zingg diagram b:a 

is plotted against c:b. In this diagram, four rather distinctive shapes are distinguished by 

following ratios: 

Sphere (Equant) b/a > 0.67 c/b > 0.67 

Blade (Bladed) b/a < 0.67 c/b < 0.67 

Rod (Prolate) b/a < 0.67 c/b > 0.67 

Disc (Tabular) b/a > 0.67 c/b < 0.67 

2/3 

.0 
0.9 Oblate Equant 

or or 0.8 Disk Spheroid 

2/3 
0.6 0.5 I ra 

ra Triaxiai Prolate 
<0 or or 

Blade Blade 

J 1/10 
Acicular 

1/10 0.6 0.8 1.0 Short Axis 
(c/b) Intermediate Axis 

Figure 2.7 Zingg shape classes based on ratios of specific axes and relationship of 
sphericity to the shape classes (From, Krumbein, 1941b, and Brewer, 1964 cited in 
Pryor, 1971). 

On this basis any particle can be assigned to any of these categories relating to a formal 

shape (Briggs, 1977). Zingg's classification scheme, including modifications by 

Krumbein (1941) and Brewer's (1964), is shown in Figure 2.7. Although this approach 
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is popular, Zingg diagrams possess disadvantages that limit its usefulness. The 
advantage of this scheme is that it gives an objective and swift measure of the particle 
form but particles are only assigned to categories, and not given numerical shape values. 
Consequently analysis of shape using the Zingg method provides only nominal data; 
which limits the range of statistical analysis. Another important disadvantage is that b:a 
and c:b ratios are not necessarily the most powerful indices for the characterisation of 
any particular data set. Both may vary little between particle populations that have 
widely differing transport histories (Ballantyne, 1982; Benn and Ballantyne, 1993). 
Indeed, most other shape indices plot on Zingg diagrams as families of curves, 
including the important and useful c:a and (a - b):(a - c) indices. Another disadvantage 
is that almost half of the Zingg diagram is occupied by shapes that are rarely 
represented in naturally occurring particles. This reflects the fact that particle shape 
invariably falls between three extremes and hence is most appropriately represented on 
triangular diagrams (Benn and Ballantyne, 1993). Sneed and Folk (1958) also pointed 
out several similar weaknesses with the Zingg classification chart of particle form. They 
stated that first, there are only four form classes, which makes it inadequate for any 
detailed work. Second, the classes defined by Zingg divide the field of variations very 
unequally (Figure 2.7). Thus, in contrast to Zingg's classification, Sneed and Folk 
(1958) made 10-way division of pebble form that has been used more commonly in 
recent years (Figure 2.8). Their compactness measurement is based on the ratio of c/a, 
which is plotted against elongation in order to give a verbal description of the form of 
the pebble. Where c is the length of the shortest principal axis, b is the length of the 
intermediate principal axis and a is the length of the longest principal axis. These three 
principal axes are mutually perpendicular to each other and determined in the order a-c-
b for any particular pebble. 

a - b 

Sneed and Folk (1958) combined maximum projection sphericity with the 

intercept ratios of c:a and (a - b):(a - c). Thus particle shape in Sneed and Folk 

classification may vary between the three end members, defined in terms of their three 

orthogonal axes on a form triangle. In their proposed triangular diagram, (designed for 
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plotting pebble form) the three poles representing platy, elongated and compact pebbles 

(Figure 2.8). Given the a, b, and c measurements, the location of a point is determined 

by the value of the apex end member-compactness, measured by c/a, and a proportion 

(as ratios 2.8) measured parallel to the base, which divides pebbles into three classes, 

platy, bladed and elongated. The diagram emphasises the fundamental character of these 

shapes, and the way in which they converge on a single type, compact (Barrett, 1980). 

COMPACT 
t.o 

SPHERICITY-FORM L E G E N D 

DIAGRAM FOR 
L'LONG DIAMETER 

PARTICLE SHAPES I = INTERMEDIATE DIAMETER .8 
%- S= SHORT DIAMETER 7 

CB 

a <2 

VP 

.1 .6 *• .8 1.0 
PLATY _LH_ ELONGATED 

L-S 
BLADED 

Figure 2.8. Form triangle showing the relationship of sphericity to form (Redrawn from 
Sneed and Folk, 1958). 

2.7.2 Sphericity 

Although form classification of pebble shapes allocates particles to formal 

categories, the concept of sphericity represents a different aspect of shape. Sphericity 

gives a numerical shape value for each individual particle that enables higher statistical 

analysis to be carried out. In general, sphericity provides a quantitative value illustrating 
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the departure of a body from equidimensionality. Sphericity is the relationship of a 
particle to a sphere, often defined as the ratio between the surface area of the particle 
and that of the inscribed sphere. Sphericity is an important factor producing sorting of 
particles in traction by rolling, because Spherical particles roll faster than non-spherical 
ones. When dealing with bedload particles the sphere may therefore appropriately be 
taken as the standard for comparison. However, when dealing with particle settling 
velocity, the expression of shape must theoretically be seen from another angle, such as 
the area of the grain surface. A sphere has the greatest relative volume with the smallest 
surface area and, therefore, has a great settling velocity than any other shape of the same 
volume and density. Progressively greater departure from spherical shape means 
progressive increase of surface area Without change of volume and, therefore also, a 
decrease of the settling velocity of the solid (Wadell, 1932). 

Some particles may have similar numerical sphericity values, but they may have 

different ratios between their three dimensions, such as one may be a disc and another 

may be a rod (Figure 2.8). For example disc-shaped and rod-like particles may have the 

same sphericity, despite the fact that they have very different shapes and probably will 

have different hydraulic behaviour during transport and deposition (Krumbein, 194,1a). 

Because of these differences the use of sphericity values in bedload studies does not 

always permit the complete evaluation of the influence of shape (Andel et ah, 1954). 

One of the earliest measures of equidimensionality was the Wadell (1934) 

sphericity formula, which is the cube root of the ratio between the actual volume of a 

particle (originally obtained by immersion in water) and the volume of the smallest 

sphere that will just enclose the particle. Wadell expressed the sphere as a reference 

form, and considered that deviations were best represented by ratios of particle volume 

to the volume of the circumscribing sphere (Andel et ah, 1954; Barrett, 1980). 

Wadell's definition of sphericity (\|/) can be shown as follows: 

xp_2 I Volume of the particle (2 9) 
y Volume of the circumscribed sphere 

He expressed the volume of the particle in terms of a sphere that had the same volume; 

the diameter of the corresponding sphere is the " nominal diameter" (d) of the particle. 

On this basis, the volume of the particle is (n/6) S. The volume of the circumscribed 

sphere is based on the longest axis (a) of the particle. Thus, the volume of this sphere is 
•J 

(n/6) a . By substituting these values in the equation above, Wadell's sphericity 
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reduces to the ratio of the nominal diameter of the particle to its longest diameter 

(— T r - T (2.10) 

\(n/6)a3 \a3 a 

Barrett (1980) pointed out that Wadell's sphericity is sensitive to roundness as well as 

form. Therefore Wadeli's sphericity is not a parameter of form alone, but includes a 

.quantity .of roundness, making it a difficult parameter to deal with, conceptually. 

Following Wadell's method, more recent investigations have been based on 

measurements of actual particles or particle projections. These include Krumbein's 

(1941a) "Intercept Sphericity" and Sneed and Folk's (1958) "Maximum Projection 

Sphericity" (Bridgland, 1986). 

Differences between the procedures of Zingg and Wadell for describing particle 

shape were modified by Krumbein (1941a). Krumbein's definition of sphericity can be 

explained as follows: He Used the same basic definition as Wadell, but the volume of 

the particle was expressed in terms of a triaxial ellipsoid having the three diameters, a, 

b, and c, where a >b >c. The volume of such an ellipsoid is expressed {nl6) abc. This 

is because the volume of the circumscribed sphere is still (n/6) a3. Thus, these two 

volumes are substituted as follows: 

v = \{7il6),abc _ 
(7r /6)« 3 ~ \ 

(2.H) 
2 

a 

This equation then is simplified by cubing both sides, to eliminate the radical sign: 

V = ^ (2.12) 
a 

Sneed and Folk (1958) also pointed out that Wadell's measure of 

equidimensionality is not a behavioristic parameter in relation to the dynamics of 

particles under natural conditions. They stated that assuming two spheroids of identical 

volume and identical Wadell number (such as one is a rod measuring 100 x 10 x 10 cm 

and the other a disc of 100 x 100 x 1 cm) the disc is the more inequidimensional of the 

two particles and it would have sliding motion and settle more slowly than the rod in 

water, although they have precisely the same Wadell sphericity values. Thus, they 
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suggest that sphericity of particle should express its behaviour in a fluid. In other words 
a more behavioristic measure of sphericity is obtained by comparing the volume of the 
particle with its maximum projection area i.e., the surface area opposed to the direction 
of motion. Their measurements simply compare the maximum projection area of the 
particle itself (defined as the product of large and intermediate axes) with the maximum 
projection area of a sphere of the same volume as the particle. The maximum projection 
sphericity of a particle is defined as the ratio of the maximum projection area of a 
sphere of the same volume as the particle to maximum projection area of the particle. 

c2 

Maximum Projection Sphericity (\|/p) = \\ (2.13) 
V a-b 

In this formula, the particle is assumed to approximate to a triaxial ellipsoid with axes a 

(long), b (intermediate) and c (small) 

71 
The maximum projection area of the particle is defined as: —(ab) (2.14) 

4 
— ( b ) 

The volume of the particle and also the equivalent sphere is 6 

The general formula for the volume of a sphere is —« Therefore, d =abc and 

the diameter of the equivalent sphere, d, will equal 3 ^ a £ c The maximum projection 

area Of this sphere will equal " ^ ( V ^ 0 ^ ) . The maximum projection sphericity (\j/p) 

then equals: 

— — , which reduces to f-jyT ~ V7T ' ( 2 A 5 ) 

4 

In reality the formula for Sneed and Folk's measure is very close to that of 

intercept sphericity of Krumbein (1941a), which it was designed to replace. The only 

difference is that for maximum projection sphericity the short axis is used as a 

reference, whereas intercept sphericity uses the long axis. Barrett (1980) noted that the 

two formula can be equally valid measures of sphericity from a conceptual point of 
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view and he also stated that the relationship between Sneed and Folk's form triangle and 
maximum projection sphericity is similar to that between Zingg's diagram and intercept 
sphericity. This similarity is attributed to the fact that each of the four methods derives 
from the same basic data (the lengths of the three principal axes). 

Particle settling can at times be an important aspect in the transport of bedload in 

a river. The settling velocities of the particles governing whether they are transported as 

rolling close to the bed, saltation or temporary suspension during the high flow period. 

Several investigators have shown that there is a relationship between sphericity of a 

particle and its settling velocity. The departure of a particle from a spherical shape 

results in a decrease in its settling velocity within a fluid. The more non-spherical the 

particle the greater the departure from the settling velocity of a spherical particle of the 

same weight (Krumbein, 1942; Komar and Reimers, 1978). In order to study the effect 

of Wadell sphericity on both setting velocity and traction transport in a flume, 

Krumbein (1942) conducted a very helpful series of experiments with differing shapes 

(discs, blades, rods and spheres) hand-moulded from concrete mortar. All particles were 

of the same density and same Volume. He found that although there is a wide degree of 

scatter, there is a general correlation^ in that the high-sphericity particles settle more 

rapidly. It was found that all the rod-like particles settle about 6 cm s"1 faster, and the 

discs about 6 cm s"1 slower, than their sphericity values would predict. In his flume 

experiments similar differences were also observed. For example* it was found that disc

shaped particles moved more slowly and rods more rapidly than the predicted values. It 

was also shown that for equal volume and density, "rollers" have faster velocities than 

corresponding discs. Thus Krumbein showed that Wadell's concept of sphericity is 

related to the dynamic behaviour of various shaped particles, but apparently sphericity 

alone is not the only controlling factor. The results from prove that the difference in 

behaviour of rollers and discs is due to an additional factor in shape, not clearly 

included in Wadell sphericity. 

Sneed and Folk (1958) stated that the differences in behaviour of rollers and 

discs are due to the maximum projection plane that Wadell did not include in his 

sphericity determination. In other words they indicated that Wadell sphericity measure 

is not behavioristic, because it takes ho account of the manner in which particles 

actually settle, that is, with the maximum projection plane horizontal. In order to 

compare settling velocity of particles as a function of maximum projection sphericity 

and of Wadell sphericity, Sneed and Folk (1958) used Krumbein's (1942) experimental 
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data and recalculated the lengths of the three axes of each of the modelled forms from 

Krumbein's figure 1. From these data the maximum projection sphericity could be 

computed. Maximum sphericity was then plotted against the settling velocity and 

Wadell sphericity (Figure 2.9), and thus, it was found that the agreement with 

experimental hydraulic data was greatly improved. Comparison of correlation 

coefficient values in settling velocity also showed significant difference between two 

measures (for Wadell measure 0.76 and maximum sphericity measure 0.97). 
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Figure 2.9 Settling velocity of particles as a function of maximum projection 
sphericity (A) and of Wadell sphericity (B) (From Sneed and Folk, 1958). Comparison 
of both plots clearly shows that there is almost perfect correlation between maximum 
projection sphericity and particles settling velocity (r = 0.97), while there is no similar 
correlation with Wadell sphericity (r = 0.76). Thus maximum projection sphericity 
method provides a better representation of the actual hydraulic behaviour of particles 
than that of Wadell's sphericity. 

They also compared: rolling velocities of particles as a function of maximum 

projection sphericity and Wadell sphericity (based on the same data). By plotting 

maximum projection sphericity and of Wadell sphericity data against rolling velocity a 

significant agreement was found between maximum sphericity data and rolling velocity 

of particles (Figure 2.10). In other words maximum projection sphericity gives a much 

better prediction of rolling than Wadell sphericity. 
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Figure 2.10. Comparison of rolling velocity of particles as a function of maximum 
projection sphericity (A) and of Wadell sphericity. (B) The rolling velocity expresses 
the ratio between the speed of a water current (V) and the speed with which a body in 
that current is rolled along the bottom of a flume (v) (After Sneed and Folk, 1958). 

Sneed and Folk (1958) showed that in flume experiments the maximum 

projection sphericity measure showed a much closer correlation with actual hydraulic 

behaviour (Figure 2.10). For rolling velocity, the correlation coefficient with maximum 

projection sphericity was 0.86 as against 0.71 for the Wadell sphericity. Extreme rod

like and extreme disc-like forms fall directly on the same trend line when maximum 

projection sphericity is plotted, compared with their systematic displacement when 

Wadell sphericity is used. It was concluded that correlation coefficients for rolling 

velocity are lower than those for settling velocity because rolling velocity is influenced 

more by sharpness of edges (brick-shaped and cylindrical forms of the same sphericity 

do not have the same reliability). 

Apart from direct measurement techniques, there are also some visual estimation 

charts for determining the sphericity of particles. Owing to their ease of operation, large 

numbers of particles can be quickly classified. Particles are compared with a standard 

visual comparison chart and a decision is made relative to the sphericity classification of 

the particles. Krumbein and Sloss (1955) produced a grain silhouette chart showing four 
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classes of sphericity in combination with five classes of roundness (Figure 2.11). This 
chart enables both sphericity and roundness of particles to be estimated simply and 
speedily. 
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Figure 2.11. Chart for visual estimation of roundness and sphericity, (from Krumbein 
and Sloss, 1955). 

However, this chart has been much criticised in the use of sphericity, because 

the chart is two-dimensional. The instructions should perhaps include the need to rotate 

the particle in directions at 90° of each other and take an average. 

2.7.3 Flatness 

Clast flatness has an important influence on hydraulic behaviour and also on 

mode of motion. There is an inverse relation between the rolling and particle flatness. 

The flatter the particle the more likely it is to move by sliding. Flatness also has a 

significant influence on particle settling velocity (Wilde, 1952; Alger, 1964; 

Romanovskij, 1966; Komar and Reimers, 1978; Baba and Komar, 1981a and 1981b; 

Halllermeier, 1981; Hottovy and Sylvester, 1979). When compared with a sphere of the 

same volume and density, flatter particles settle slower due to a larger cross sectional 

area to volume, and hence higher flow resistance (See Chapter 7). 
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In terms of three-dimensional characterization of a particle, Cailleux (1947), 
following Wentworth (1922a, b), suggested a flatness index which has a very high 
inverse correlation with Sneed and Folk's sphericity (r = " 0.981) (Orford, 1975). Again 
this index is based on the relationship between the three principal axes: 

F = — 1 0 0 (2.16) 
2c 

The index ranges from 100 to infinity. The minimum value relates to a perfectly 

equidimensional particle, and the flatter the particle the higher is the flatness index. This 

is also essentially the inverse of Krumbein's sphericity (Briggs, 1977). 

Differences between roundness and sphericity 

Roundness should not be confused with sphericity. Wadell (1932) pointed out 

mat roundness value gives a summary expression for certain detail characteristic of the 

solid, while the sphericity value expresses the shape. Thus sphericity and roundness 

together express the image of the solid. Sphericity is a measure of the degree to which 

particles are equidimensional. For example a particle may have a maximum degree of 

roundness and still not be a sphere. Conversely a particle (e.g. a perfect cube) may have 

a high degree of sphericity and a low roundness value (Figure 2.12) (Wadell, 1932). 

This is because, as Kuenen (1956) pointed out, the initial shape of particles often has an 

important effect regardless of the rounding accomplished by wear. Similarly a cube has 

the best chance of approximating a sphere as a result of the attrition, whereas a particle 

with a plate or rod-like initial shape has little chance of achieving a spherical form. 



46 

A 
ffl 

m 

M 
8 2 .82 .83 

1 » 
MM i ZtkaBftf. 

• 50 ,52 .48 
.97 .88 .83 

Figure 2.12 Particles of the same sphericity but differing roundness (A), particles of the 

same roundness but of differing sphericity (B) (After Wadell, 1932). The circles around 

the particles facilitate the impression of sphericity. The top and bottom numbers of the 

first particle indicate 0.55 degree of roundness and 0.82 degree of sphericity. The first 

and second particles from the left in the upper row have the same sphericity, but 

different roundness values. The third particles in the top and bottom rows are of the 

same sphericity, but show noticeable difference in sharpness. 

Wadell (1932) described rounding as a special type of disintegration created by 

attrition and solution. Fracturing and chipping destroy or diminish the roundness. 

Krumbein (1941a) also pointed out that roundness is extremely sensitive to abrasion, 

and angular particles change rapidly in their roundness during movement. After the 

initial stages of rounding the process is much slower. Whereas during abrasion, shape is 

relatively stable, and the original form is often reflected in the pebble even after 

considerable wear. Under impact breakages mean shape may change rapidly. 

Wadell (1932) was the first to show that there is a fundamental difference 

between shape and roundness and that these properties are geometrically independent 
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variables. It was stated that roundness was a matter of the sharpness of the corners and 
the edges of a particle, whereas shape has to do with the form of the particle 
independently of the sharpness of its edges. In other words a particle may be perfectly 
spherical in shape but completely angular, or perfectly rounded but far from spherical. 
Indeed although several geometrical solids such as cube, tetrahedron, dedocahedron, 
have different shapes, their corners are equally sharp, thus radius of curvature of the 
corners is zero, In terms of hydraulic behaviour of a particle in a fluid flow, some 
studies have shown that the shape of a particle influences its behaviour during transport 
and deposition. There is a direct relationship between the degree of particle sphericity 
and the velocity at which a particle of a particular volume will roll along a bed or will 
settle in a fluid. The more spherical the particles the more it moves in a rolling mode 
(e.g. Krumbein, 1942; Sneed and Folk, 1958; Bradley et al., 1972; Gale and Hoare, 
1991; Schmidt and Ergenzinger, 1992). Therefore sorting may be controlled partly by 
shape, whereas roundness of a particle does not effect its hydraulic behaviour or settling 
rate as much as sphericity does. In other words it has less effect on sorting or transport 
as compared with sphericity. In essence, influence of roundness on mode of movement 
becomes important for the particles that are more spherical or rod-shaped. A sphere or 
rod-shaped particles with greater roundness value can roll easier than those that are 
more spherical (cube) or cylindrical but less round. Oh the other hand, for flat particles, 
such as blade and disc, roundness has no significant effect on their sliding. Roundness is 
mainly influenced by rigour of wear and distance of transport. As a result it can be 
concluded that the definition of roundness and sphericity are almost independent and it 
is generally assumed that only very great changes in one may effects the other 
(Pettijohn, 1949). Thus, due to its significant influence on the hydraulic behaviour of a 
particle* sphericity is considered the most significant measure for bedload transport 
studies compared to roundness. 

2.8 OTHER TECHNIQUES IN GRAIN SHAPE ANALYSIS 

Over the last two decades there have been great advances in shape determination 

technology due to the development of the of automatic image analysers and associated 

computer software. Advances in video-picture capture and digital transformation as well 

as in the data storage and memory have increased speed and accuracy of shape 

measurements. Allen (1981) reviews some of the specific methods of automatic and 
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semi-automatic grain counting, which enable shape indices to be generated from particle 

size data collected rapidly from large grain samples. 

2.8.1 Image analysis techniques 

Most of the image analyses techniques decompose the video picture into an 

array of picture elements (pixels), each one of which records a digital value related to 

the grey scale registered at each pixel. By setting a grey-scale threshold that identifies a 

two tone range (black and white), each picture element can then be set to 1 or 0 

depending on whether or not the particle's image overlies that particular position. In this 

way the outline of the particle can be detected at the boundary between 1 and 0 in the 

picture elements (Orford and Whalley, 1983). Pye (1994a) pointed out that most of 

automated image analyses techniques have been based on two-dimensional images. 

Basically, once the grain outlines are digitised and converted to a series of x, y 

coordinates. These data are then analysed using techniques such as Fourier analysis 

(Ehrlich and Weinberg, 1970; Ehrlich, et al., 1974,1980; Mazzullo et al., 1986, 1992) 

and fractal analysis (Mandelbrot, 1967, 1977; Orford and Whalley, 1983, 1991; Clark, 

1981,1987; Diepenbroek, et al., 1992). 

2.8.2 Fourier analyses 

In Fourier analyses, the maximum projected grain profile is compartmentalised 

into a series of standard shape components that converge to reproduce the natural grain 

shape. The grain perimeter is expressed as Fourier series expansion of the grain radius 

as a function of the polar angle about the centre of gravity of the grain; 

R(0) = R« + Rn cos(«0 - 9„) 

where R„ is the harmonic amplitude, 6 is the polar angle, Rq the grain radius, n the 

harmonic number, and 0 n is the phase angle. The lower order harmonics (1-5) reflects 

the broad form characteristics of the grain, while the higher order harmonics (usually up 

to 23) provide information about the grain roundness and, to a limited extent, surface 

texture. Data may be presented graphically by plotting the frequency of occurrences as a 

function of each harmonic amplitude. The interval boundaries in these shape-frequency 

histograms are then defined by the maximum entropy concept, and the most informative 

harmonics identified by relative entropy analyses (Pye, 1994a). 

Results of two-dimensional Fourier grain-shape analysis have been shown to be 
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influenced by preferred grain orientation but these- techniques have, been applied 
successfully in a wide range of provenance and sediment transport studies (e.g. 
Mazzullo et al., 1983, 1986; Kennedy and Enrich, 1985; Dowdeswell et al, 1985; 
Haines and Mazzullo, 1988; Diepenbroek, et al., 1992). Pye (1994a) pointed out that 
difficulties appear when grain outlines show a very high degree of irregularity, such as 
in the case of highly weathered or diagenetically altered grains. In these circumstances, 
fractal analyses may provide a more suitable alternative (Orford and Whalley, 1983, 
1991; Kennedy and Lin, 1991). Boon et al (1982) stressed that use of Fourier 
coefficients as a means of identifying scale components of form is a technique of 
considerable importance to form studies. 

Most of the previous conventional roundness determination methods have failed 

to separate the influence of sphericity from roundness and, consequently, a systematic 

error is introduced in the higher roundness grades. An increase in elongation or 

eccentricity of the ellipsoid results in a decrease of the corresponding roundness values. 

Using a Fourier analyses method which is called "Closed-form Fourier analyses" 

(which was originally developed by Ehrlich and Weinberg (1970)) Diepenbroek, et al 

(1992) were able to avoid this error by relating the roundness of a given particle to the 

best inscribed ellipsoid. The method basically evaluates the curvatures of the complete 

outline of a particle and takes the position of these curvatures on the particle surface 

into account. Diepenbroek, et al (1992) stated that tests on more than 30000 fluvial and 

coastal gravel clasts proved the reliability and sensitivity of the method. Even small 

roundness changes during transport along short mountain rivers were detected by the 

method. 

2.8.3 Fractal dimension 

Fractals provide an alternative integrated index of form which is appropriate for 

any regular or irregular particle (Mandelbrot, 1982; Orford and Whalley, 1983). 

Although Mandelbrot regards the fractal dimension as being singular for any particle, 

some investigators (e.g. Kaye,1978; Orford and Whalley, 1983; Whalley and Orford, 

1983) showed that natural and artificial particles may have three fractal dimensions: 

structural and textural values that reflects the two major scales of edge variation 

appropriate to macro-form and edge texture respectively, and an overall fractal value 

that integrates all scale changes of form. 
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2.9 CASE STUDIES ON BEDLOAD SHAPE AND SIZE 

Although there is a considerably body of literature on bedload transport in 

gravel-bed rivers, there have been relatively few studies investigating the effects of bed 

material shape on bedload transport. Many previous investigations concentrated on the 

effects of abrasion, selective entrainment, grain pivoting and friction angles, and 

downstream changes in bed material shape (roundness, sphericity, etc.). Far less is 

known about the hydraulic behaviour of different shape of particles during bedload 

transport. Much of the existing work on shape selective transport is based on laboratory 

experiments and thus there is a lack of field-based studies. The scope of the following 

section is to summarise the laboratory and field studies that have investigated the 

influence of bedload shape and size on bedload transport in gravel bed rivers. In 

considering laboratory experiments, friction angle measurements based on mechanistic 

behaviour of particles in relation to particle shape, size and bed roughness are discussed. 

Field based studies, on the other hand, summarise downstream changes in bed material 

shape (roundness, sphericity, flatness) and influence of shape on bedlbad transport 

dynamics. 

2.9.1 Laboratory experiments 

Many early laboratory experiments concentrated on the effects of abrasion and 

sorting processes on bedload shape and size, (e.g. Daubree 1879; Wentworth 1919; 

Marshall, 1927, Krumbein, 1941a; Rayleigh, 1942, 1944; Sarmiento, 1945; Potter, 

1955; Kuenen, 1956; Bradley, 1970; Bradley et al., 1972; Moriwaki et al., 1985; 

Kodama, 1992); In addition to the abrasion processes, several attempts have been made 

to describe the physics of bedload transport. For example, some laboratory studies have 

examined selective entrainment in relation to particle size and shape on various bed 

roughnesses. The laboratory or flume-based approaches are justified because of 

complexity of the field setting. Streambed roughness varies from place to place within a 

given channel due to (a) differences in shape, size, roundness, mineralogical particle 

composition, surface texture and orientation of a individual bed material; (b) local 

hydraulic conditions (e.g. discharge, velocity) and; (c) sedimentological characteristics 

of the bed (e.g. texture, packing, armouring, bed forms). Thus, the combined affects of 

these factors results in at a point-to-point variation in the processes that control the 
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critical shear stress of each individual grain (Kirchner et al, 1990). A second difficulty 
is that the movement of bedload is accepted to be the most difficult mode of sediment 
transport to measure. The difficulty arises from the fact that movement occurs at 
relatively high flow velocities when bedload particles are intermittently transported by 
the means of sliding, rolling or skipping along in almost continuous contact with the 
streambed. Because of these difficulties, direct measurements of bedload movement are 
still relatively few. 

Friction angle measurements 

One of the most important problems in describing the physics of bedload 

transport involves constructing a force balance for individual grains on a rough bed. 

There are two significant factors mat affect the force balance. These are the friction 

angle and the relative protrusion of the grain above the bed (figure 2.13). The first factor 

indicates the resistance to movement of the particle by the flow, while the second factor 

affects exposure to the flow (Kirchner et al., 1990). Studies have shown that variability 

in friction angles and relative grain protrusion above a given bed affect critical shear 

stress, the relative mobility, selective entrainment of different sediment sizes (Komar 

and Li, 1986, 1988) and the mechanics of bedload transport (Iseya and Ikeda, 1987; 

Whiting et al., 1988). It has been clearly demonstrated by several investigators that both 

grain protrusion and friction angle vary with the shape, size, and orientation of the 

individual particles, as well as the shape, size, orientation, and packing arrangement of 

the particles comprising the local bed (Kirchner et ah, 1990). 

Friction angles have been measured by several investigators and it has been 

stated that the mechanics of grain movement from a bed of mixed sediment involves a 

consideration of the pivoting of the grain about its contact point with an underlying 

grain (White, 1940; Bagnold, 1941; Slingerland, 1977; Komar and Wang, 1984; Li and 

Komar, 1986; Komar and Li , 1986). Initiation of movement occurs as the drag force of 

the flowing fluid, tipping the grain out of its resting position, exceeds the particle's 

weight. This threshold process mainly depends on the magnitude of the pivoting angle 

of the particle (Li and Komar, 1986) (Figure 2.13). Although some investigators have 

equated this pivoting angle to the angle of repose, which is about 33° for sand-sized 

sediments (Shields, 1936; Allen, 1969, 1982; Carrigy, 1970), in coarse-bed rivers, 

because of the various grain shape and sizes, it is impossible to determine a standard 

pivoting angle representing all bed material. Where this has been attempted, friction 
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angle measurements were restricted to uniform sand-sized, sphere-shaped particles (e.g. 
Chepil, 1959; Miller and Byrne, 1966). Recent investigations (e.g. Li and Komar, 1986) 
have shown that for a similar size range, friction angles measured with different test 
particles showed great variance. Compared to ellipsoid and angular particles, sphere-
shaped test particles showed lower friction angles on beds of varying roughness. This is 
because particles of different shape have different contact point with the underlying bed 
roughness elements. Another factor is that in many of the earlier experiments, 
artificially-formed, uniform bed roughnesses were used. However, the bed roughness of 
a coarse-bed river varies from place to place within a given channel reach (Hoey, 1992). 
Due to this spatial variation, on a natural bed roughness different friction angle 
measurements would be expected. 
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Figure 2.13 Schematic two-dimensional diagram showing the dependence of the 
pivoting angle on the relationship between the size of a spherical particle (D) and the 
size of the particles on which it rests (K). P is the pivot point (After Pye, 1994) 

Several investigators have shown how the pivoting angle will differ for the 

various particle shapes and sizes within a bed of mixed grains. The pivoting angle 

depends on the ratio of the diameter of the grain to be moved to those it rests upon; The 
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larger the ratio, the smaller the value of the pivoting angle and the more easily the grain 

can be pivoted out of position during entrainment (Li and Komar, 1986) (Figure 2; 13). 

This dependency in pivoting angle has been noted as a significant factor in the selective 

entrainment of gravel in rivers (Slingerland, 1977; Komar and Wang, 1984). 

Previous friction angle measurements 

Most of the earlier friction angle measurements were carried out for a variety of 

gravel surfaces whose grains were arranged by various artificial means, rather than by 

the action of flowing water. The majority of these measurements also illustrated the 

influence of particle size on the friction angle. For example, Eagleson and Dean (1961) 

made a series of friction angle experiments; to determine the threshold of particle 

movement. Friction angles for a spheres of different size resting on two beds of uniform 

natural sands (one 1.83 mm and the other 0.79 mm in diameter) were measured. Their 

experiments mainly based on various relative roughness values (D/K ratios), where K is 

the bed-particle diameter and D is the diameter of the single particle resting on the bed. 

It was found that the average friction angle (O) decreased with increasing D/K. (Figure 

2.13). They also compared their measurements with the theoretical relationship for the 

pivoting angle of a sphere of diameter D resting on a bed of uniform size K. 

tan O = , y (2.17) 
( D / K ) 2 + 2 ( D / K ) - -

In order to achieve this comparison the bed grains were arranged into equilateral 

triangles as in the cannon-ball tetrahedron: the volume of the y coefficient depends on 

whether the upper grain pivots directly over the top of a base particle (y = 2/-J3) or 

through the lower saddle between two base particles (y = 1/V3). Equation 2.17 predicts 

that pivoting angle decrease with increasing D/K value but the measurements of 

Eagleson and Dean showed poor agreement with this theoretical relationship. The 

average values of friction angles ((p) were found about 10-20° larger than theoretically 

expected from the geometry of a regular triangular packing of uniform spheres. In other 

words the data fell parallel to the predicted curve, but were systematically displaced to 

higher values. For the special case of uniform grains (D/K-l) , this equation predicts 

that pivoting angle is 35° for grain-top rotation and 19.5° for saddle rotation, on the 
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order of the angle of repose; the measurements of Eagleson and Dean gave pivoting 
angle equal to 50°. 

Miller and Byrne (1966) also studied the dependence of the pivoting angle on 

relative roughness. Their measurements were carried out with sand-sized spheres, with 

natural beach sands, and with crushed angular quartzite sand. Using a binocular 

microscope, individual grains pivoting out from fixed grains, were observed. It was 

found that the measurements with spheres agreed with the data of Eagleson and Dean 

(1961), but not with the theoretical equation. Thus Miller and Byrne (1966) proposed an 

empirical relationship to describe the mean friction angle. 

<D= a <P / ? r >~ P (2.18) 

Where a is a coefficient which changes with grain shape (shape parameter), P depends 

on the effects of sorting of the bed grains (sorting parameter) and K is the average 

diameter of the bed grain (Miller and Bryne, 1966). Fitting equation 2.18 to the 

measurements on uniformly sized and poorly sorted beds of spheres, a positive 

relationship was found between the degree of sorting and P coefficient, while the a 

coefficient was found relatively insensitive to sorting. By using equation 2.18, it was 

found that the measured pivoting angles were significantly greater than the angle of 

repose or avalanche angle of 509 for spheres of uniform size, 61° for the natural beach-

sand and 70° for the crushed quartzite sand. Using typical bed particles as test grains, 

<£> and DIK were compared for three beds of various grain shape but almost identical 

size distributions. It was found mat although a was sensitive to shape, the same 

sensitivity was not observed for p. In other words there is an inverse relation between 

values of a (and thus O) and sphericity and roundness, but a similar relation is not true 

for p. 

Eagleson and Dean's (1961) and Miller and Byrne's (1966) studies were mainly 

limited to sand-sized grains, spheres, and natural sands. Although these studies, to some 

extent, demonstrate how the friction angle is affected by grain size (D/K) and grain 

shape, they were not able to clarify fully why the measured angles are significantly 

greater than the angle of repose and why average values of O were larger than the 

theoretically expected relationship (equation 2.17). In order to have a clear idea of the 

dependency of size and shape on the friction angle it also seems reasonable that the 

effect of these parameters should be investigated on a bed of natural mixed sediment 
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rather than uniform grain size and shape. This may be an important factor in selective 
grain entrainment. 

Li and Komar (1986) attempted to resolve these uncertainties, and provide an 

improved assesment of how grain pivoting depends on grain shape (reliability and 

angularity); relative roughness and on factors such as imbrication. The major focus of 

their study involved pivoting angle measurements for natural pebbles. The 

measurements were, carried out on gravel-size particles. For the experiments naturally 

formed gravel-sized spheres and angular crushed basalt pebbles were used. 

The experiments undertaken with spheres provided a direct test of theoretical 

equation (2.17) and it was found that although the data also,depart systematically from 

the theoretical equation (2.17) (a similar relationship»as discussed previously), the 

maximum departure is at most 3r4° and average close to 1°. This is much lower than 

studies of Eagleson and Dean (1961) and Miller and Byrne (1966) that depart by about 

10-20°. Thus unlike the previous experiments with sand-sized spheres, large gravel-

sized spheres showed reasonable agreement with the theoretical equation (2.17) for the 

dependence of O on D/K. 

Effect of grain shape on friction angle 

Li and Komar (1986) carried out further experiments with ellipsoidal gravel to 

analyse the effects of particle shape and size on pivoting angles. In these experiments 

the grains were placed with their long axes transverse to the slope and small axes 

perpendicular. It was shown that apart from grain size there is also a significant 

relationship between grain shape and O. In other words friction angle was found to 

depend on grain shape, particularly on the D</Db ratio of axial diameters (ratio of the 

particle shortest axis D c to its intermediate axis Db). In relation to a particle's Dc/Db 

ratio different motions occurred during the experiments. The flatter ellipsoidal pebbles 

moved by sliding rather than pivoting and roiling. Sliding grains also tend to show 

higher <t>, while the rolling grains had lower values. Differences in motion were 

dependent on Dc/Db, or in other words the grain's ability to roll or slide. Thus it was 

shown that as Dc/Db increases (towards a circular cross-section) <I> decreases and 

particle tends to roll (pivoting occurs), whereas sliding occurs at low Dc/Db values. 

Using the ellipsoidal grains Li and Komar clearly showed that pivoting angle depended 

on grain shape as well as on grain size. No relation was found between the pivoting 

angle and particle elongation Db/Da (D a is the longest axis of particle). 
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EffecTs;of particle imbrication and orientation on friction angle 

Several investigators (e.g. Church and Gilbert, 1975; Lafonrie and Carson, 1976; 

Petts, 1983; Li and Komar, 1986; Hassan and Reid, 1990) have clearly shown that as 

well as particle shape' arid size, pebble imbrication^ wmcn is primarily related to pebble 

shape:, also controls particle entrainment (Laronne and Carson, 1976; Li and Komar, 

1986; Gomez, 1991). On a gravel bed the stable resting position of a particle depends on 

its shape and also on the concentration of gravels in the bed. It is generally accepted that 

there is a close link between bed material shape and imbrication, leading to spatial and 

temporal variability in the pattern of bedioad transport, even during near constant flow 

conditions (Larpnne and Carson, 1976; Gomez, 1991), 

Ihibrication in gravel-bed channels is known as One' of the controlling factors in 

bedload transport. Gravels in streams tend to imbricate, especially i f the grains are 

relatively flat. Particles in discontinuous transport as part of the bedload present the 

greatest resistance to movement when tilted upstream (Larpnne and Carson, 1976; 

Gomez, 1991). Most particles will also tend to be oriented with their long axis parallel 

to current, minimising the cross-section presented to the current and increasing stability. 

Thus, imbrication develops in response to the flow of water impinging on the bed 

particles. Orientation of the plane of maximum projection to dip upstream was found the 

most stable position for closely packed particles because the force of the flow presses 

the particle to the bed. Petts (1983), however, pointed out some aspects of the 

mechanisms of imbrication development in terms of pebble shape. He stated that 

"imbrication is particularly well developed by disc-shaped particles transported as bed-

load and sufficiently well sorted to permit the particles to come out into contact with 

each other to become imbricated". 

Li and Komar (1986) carried out several experiftients to investigate the effect of 

imbrication on grain pivoting and entrainment. They used ellipsoidal pebbles in order to 

develop imbrication. Two experiments were carried out. All measurements were made 

with the pebbles in a grain-top pivoting arrangement. In the first experiment pebbles 

were arranged parallel to the slope, while in the second experiment, the same pebbles 

were placed in an imbricated pattern with a 23° dip and the measurements were 

repeated. It was shown that <D values increased when the pebbles were in an imbricated 

situation. Li and Komar (1986) clearly demonstrated that imbrication (mainly because 

of flatter shaped bed material) creates a very different geometry for grain pivoting and 

movement. This must be considered as a important factor in studies of the effect of 
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particle shape on O angles and entrainment. 
Experiments with angular gravel have shown that friction angles are greater than 

for smooth, ellipsoidal pebbles and spheres (Li and Komar, 1986). This was due to the 

interlocking of angular grains. 

Friction angle experiments with "natural" beds 

These experiments discussed so far have demonstrated the dependence of 

friction angle affected on many factors^ including grain shape, relative grain size (D/K) 

and bed grain-packing arrangements. However, none of the studies have been based on 

naturally formed fluvial gravel surfaces. Previous friction angle studies (e.g. Miller and 

Byrne, 1966; Li and Komar, 1986) were limited to artificially manufactured surfaces. 

More recently investigators have begun to investigate the friction angle properties of 

water-worked, flume-based or natural streambed surfaces with a variety of grain shapes 

and sizes. The surface topography of natural water-worked sediments is complex and 

friction angles, grain protrusion and estimated critical shear stress will therefore vary 

widely among individual grains, even for a narrow range of grain shapes and sizes of a 

natural bed. Individual grains may vary greatly in their entrainability, depending on 

their exact location on the bed (Kirchner et al., 1990). On natural beds, with more 

complex structural arrangements, interlocking of irregular-shaped particles and impacts 

of mobile particles on static bed particles may also be very important for initial motion 

(McEwan et al., 1999). As Kirchner et al (1990) observed, artificial beds have looser 

packing arrangements with many pore spaces that are large enough to trap small and 

medium grains. However, with water-worked natural beds, because of active transport, 

such pores would trap grains and thus close themselves and smooth the surface. 

Kirchner et al (1990) presented some of the first measurements of friction angles 

and grain protrusion distributions for water-worked sediments. Results, based on a 

flume study, compared unworked and water-worked beds. These comparisons clearly 

show that the friction angle distributions of the two surfaces differed greatly. Friction 

angles measured on the unworked bed were significantly greater than those for the 

water-worked bed. Differences increase with decreasing test grain size. The difference 

was mainly attributed to grain packing geometry. In addition, Kirchner et al (1990) also 

determined two main factors causing variability on the water-worked surface. First, a 

water-worked mixed-grain surface is characterised not by a single friction angle, but by 

a wide distribution of friction angles due to the local variability in the pocket geometry 
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and from variation in the shape and orientation of individual test grains. Secondly, as 
with previous studies, there is a very significant inverse relation between the D/K ratio 
(ratio of test grain size to the median bed grain size) and measured friction angles. 
Kirchner et al (1990) were able to show the critical shear stress of a single grain size on 
a rough bed is not a single value, but instead a probability distribution which becomes 
broader with decreasing grain size and increasing bed roughness. 

Comparison of unworked and water-worked beds also showed that even when 

grain shape and sorting are held constant, variations in packing geometry can create 

significant differences in friction angles (Kirchner et al., 1990). On the other hand, by 

controlling for both grain packing geometry and sorting, Li and Komar (1986) found 

that particles of different shape had a different influence on friction angle. These two 

studies clearly suggest that more experimentation is required to better understand the 

relationship between different grain shapes and friction angles. Following Kirchner et al 

(1990), Dietrich and Kirchner (1992) presented the first friction angle data from 

naturally-formed gravel streambeds. These data showed a dependency of friction angle 

on degree of surface sorting. Similar to the previous studies, it was found there was an 

inverse relationship between friction angle and relative grain size, and lower friction 

angles are associated with poorer sorting. In addition, the probability distributions of 

critical shear stress for different grain sizes on a given bed surface showed a common 

origin, but otherwise a divergence with larger grains having narrower and lower ranges 

of critical shear stresses. 

Kirchner et al (1990) and Dietrich and Kirchner (1992) made several important 

points about mechanistic behaviour of particles on natural bed surfaces but the effect of 

different particle shapes on the friction angle has been somewhat neglected. Particle 

shape must also be considered in friction angle measurements. 

In a series of experiments with a recirculating glass-walled flume, Carling et al 

(1992) examined the initial motion of particles of similar weight but different shape and 

orientation on three beds of differing roughness. They demonstrated that for a particular 

size range, particle shape and orientation on a given bed roughness are as important as is 

the mass of the particle (defined by weight or diameter) in determining initial motion. In 

these experiments, three artificial stable bed roughnesses were used with three sizes of 

particle (16-32 mm, 40-64 mm, and 125-250 mm). Four concrete well-rounded particles 

of similar weight (1 kg) and density (2.69) were compared. These test particles were a 

rod, an ellipse, a disc, and a spheroid. Three particle orientations were considered; long 
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axis parallel to flow, transverse and oblique. The entrainment characteristics of a sphere 
and a cuboid of similar weight (2.4 kg) and density (2.65) were also compared on 
various bed roughness types. 

In terms of the mode of initial motion, particles of different shape and 

orientation showed different hydraulic behaviour. On the smoothest bed the ellipse and 

rod placed parallel or oblique to the flow, swivelled to a transverse attitude before 

rolling out of place. Sphere-shaped particles were entrained in all orientations. Rolling 

about the a axis was commonly observed, and was the main mode of transport for all 

shapes. At the highest velocities, disc, could roll about any of the three axes or slide. On 

the smoothest bed the most stable position was for an ellipse was with the a axis 

positioned parallel to the flow, while the least stable was the rod, positioned transverse 

to the flow. These experiments clearly demonstrated that particle orientation is as 

important as particle shape and relative mass in dictating the critical threshold of 

motion. Orientation alters the cross-sectional area of the particle that is exposed to main 

stream-line and to a lesser extent affects particle stability with regard to the contact 

points of the particle with underlying particles. Because of their movement by rolling as 

well as sliding, rod-shaped pebbles commonly have their a axis orientated perpendicular 

to streamflow. A rod-shaped pebble may become lodged at one end so that it swings 

round to become orientated parallel to the current. Such particles in isolation in a mixed 

sand and gravel bed, however will, be rolled around their longer axis and arranged 

perpendicular to the flow direction. Once a pebble has come to rest on the stream bed a 

circular depression is excavated at its upstream end whilst the deposition of material on 

the downcurrent side supports the downstream end. Eventually the pebble becomes 

tilted at low angle < 20° and dips upstream in a position of equilibrium, with its a-axis 

remaining more-or-less horizontal. The threshold shear velocity for the parallel rod was 

found to be more than double that for the transverse rod. 

Increasing the bed roughness result in moving the pivot points further apart and 

provided an opportunity for the test particles to take-up more stable rest positions. Thus, 

pivot angles increase. On the smoothest bed the parallel rod was the most stable, while 

on the rougher bed it was the parallel ellipse. On rougher beds oblique particles tended 

to become less stable and easily rolled to a transverse orientation. The typical mode of 

movement for the sphere was rolling. Comparison of the entrainment characteristics of a 

sphere and a cuboid of similar weight demonstrated that the cuboid-shaped particle 

moved at a higher shear velocity than the sphere. On smooth bed site sphere was very 
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unstable but stability increased with increasing roughness. However, because cuboid 
particles did not sit in the col between the bed particles, but tended to bridge across the 
gap and sit on the top of the bed particles, differences between critical values for sphere 
and cube decreased with increasing bed roughness (Carling et al., 1992). 

On the roughest bed Carling et al (1992) found that shortening the c axes of test 

particles caused the initiation of imbrication that also enhanced bed stability. Only rods 

were observed to be entrained from any orientation without imbrication occurring, while 

spheroids rotated into an imbricated position before entrainment. In contrast to smooth 

and intermediate bed roughnesses on the roughest bed oblique particles required lower 

threshold values than the parallel and transverse particles. 

Carling at al (1992) showed that variation in particle shape, orientation and 

different bed roughness are important factors for the initial motion of bedload. The 

potential for a particle to become imbricated was found primarily to depend on the test 

particle shape and size with respect to roughness of the bed material. They also stated 

that, even in a laboratory situation, there could be a wide range of critical flow 

conditions for a particle of given size due to variations in bed material shape, 

orientation, and also bed roughness. However, on natural beds, with more complex 

structural arrangements, interlocking of irregular-shaped particles and the impacts of 

mobile particles on static bed particles such variability would be even greater. They 

concluded that variation in the size range of particles entrained for given flow condition 

would depend primarily on particle size, shape, and packing arrangement of the bed 

materials. 

In terms of particle travel velocities on beds of varying roughness, it was found 

that particles with different shapes responded differently. On the smoothest bed all 

particles moved close to the bed primarily by rolling, but rods move faster and tended to 

twist about obstacles and achieve greater acceleration as the end of the rod protrudes 

into the higher velocity flow. On rougher beds, peak velocities increased as particles 

began to bounce into higher velocity flow. As a result, selective transport became more 

significant among different shapes of particles. Oblate and flat particles move more 

easily (possibly with enhanced lifting) and directly over the roughness elements, while 

the spheroids meander around obstacles and thus lengthen the transport path. Transport 

of spheroid-shaped particles on the rougher beds was retarded by the roughness of the 

bed more than for any of the other shapes. The decreasing orders of transportation (fast 

to slow) were found to be disc, rod, ellipse, and spheroid. 
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Work by Meland and Norman (1966), and Steidtmann (1982) also found that 

sphere-shaped particles on a very rough bed in high-velocity flows show different 

hydraulic behaviour than at low velocities. The relative movement (velocity) decreases 

as the bed is roughened. Francis (1973) stated that different bed roughness and flow 

velocities control the hydraulic behaviour of particles. He pointed out that on a rough 

bed, spheres meander around obstacles at low flows and thus extend their transport 

paths, however, at higher flows they may shorten their transport paths and increase their 

velocity by bouncing or rebounding. Investigators such as Krumbein (1942) and Meland 

and Norman (1969) noted that, due to rolling, spheres can move easily even at low flow 

velocity on a bed with low roughness, while oblate particles do not. In high velocity 

flow and over rough beds, flat particles outrun sphere or rod-shaped particles (Bradley, 

1972; Johansson, 1976). 

These laboratory experiments have demonstrated that as well as factors such as 

pebble size and bed structures (e.g. imbrication), variations in pebble shape and 

orientation for a given bed roughness are important in controlling bedload transport. 

However, results from laboratory experiments are different from the naturally formed 

gravel beds. Several investigators (e.g. Laronne and Carson, 1976; Schmidt and 

Ergenzinger, 1992) have pointed out the influence of river bed morphology on bedload 

transport which Carling et al (1992) did not consider in their experiments. In fact, using 

different shapes of particle in their field experiments, Schmidt and Ergenzinger (1992) 

found that although particle shape has an absolute influence on transport length, most 

laboratory studies do not consider bed morphology (e.g pool-riffle, sinuosity) which 

also has a significant controlling effect on particle initiation motion and transport. It was 

found that the critical unit discharges along the river are dependent significantly on river 

bed (pool-riffle, bar, etc.) morphology. For example, in steps, bedload needs higher unit 

discharges to be entrained. Once entrained, the transport of bedload is stochastic in 

nature and single particle transport is controlled by the step lengths and the duration of 

rest periods. Thus they concluded that spatial variability is one of the main factors in 

gravel bed rivers and must be taken into account in bedload transport studies. 

Therefore laboratory studies (flume-based and mechanical analysis) can shed 

light on only some bedload transport mechanisms. They cannot represent the exact 

nature of bedload transport mechanism. Thus in order to better understand actual 

mechanisms, laboratory results must be integrated with field based experiments. 
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2.9.2 Field studies 

In terms of particle shape, early field studies generally focused on factors and 

processes that influence changes in bed material character in a downstream direction 

(e.g. Sneed and Folk, 1958; Bradley, 1972; Knighton, 1980-1982). However, in recent 

years, due to advances in tracer techniques, there have been several field-based studies 

which have considerably enhanced understanding of particle shape on transport 

mechanisms of coarse bedload (Ergenzinger and Schmidt, 1990; Schmidt and 

Ergenzinger, 1992; Schmidt and Gintz, 1995). 

Field studies based on downstream changes in bed material shape (roundness, 
sphericity, flatness). 

The downstream variation of bed-material characteristics observed at any one 

time reflects the cumulative impact of many processes and events which have operated 

over an indefinite time period (Knighton, 1980). The factors and processes responsible, 

which have been considered by many authors (e.g. Wentworth, 1919; Krumbein, 1941b; 

Sneed and Folk, 1958; Bradley et al., 1972; Mills, 1979; Knighton, 1980, 1982; 

Kodama, 1992; Hoey and Ferguson, 1994; Ferguson et al., 1998) are summarised 

below: 

a) Lithological factors that affect the initial shape and size of bedload particles, their 

ease and pattern of breakage and their resistance to abrasion. 

b) Bedload source factors, including the range of sources and calibre of material 

supplied, the downstream pattern of inputs and their spatiotemporal variability. 

c) River channel processes, including sorting, abrasion and breakage. 

d) The influence of tributary inputs on the bed material characteristics of the main 

stream. 

e) Flow variables. 

f) Inherited geomorphological characteristics of a catchment (e.g. slope). 

An early study undertaken by Unrug (1957) investigated size and shape 

variation in granite boulders and pebbles along the Dunajec River, Tatra Mountains 

(Poland). High rates of size reduction were attributed to the combined effect of abrasion 

and selective transport enhanced in the lower reaches due to the low gradient. In terms 

of particle shape, it was found that mean sphericity and roundness first increased along 
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the upper and middle river course but then decreased in the lower river section. It was 
concluded that the initial high rate of increase in sphericity and roundness resulted from 
transport of pebbles within the steep Tatra stream valleys over a distance of 8 km. The 
decrease of mean sphericity and roundness along the lower river course was attributed 
to the action of sorting controlled by shape, rather than pebble breakage or abrasion. 
Pebble sphericity was found to be inversely proportional to size. 

Sneed and Folk (1958) studied the effect of transportation on roundness, 

sphericity and form of pebbles derived from three rock types of markedly different 

physical properties (quartz, chert, and limestone) along the Colorado River. They found 

that pebble size has a greater effect on sphericity and form than 320 km of fluvial 

transportation. Large pebbles of limestone retain low sphericity (produced by the 

bedding of the limestone) and show no significant change with distance. In contrast, 

quartz and chert pebbles are of similar sphericity and form near the source, regardless of 

size. However, because large and small sizes wear by different mechanisms, there is 

increasing divergence in sphericity and form between large and small quartz and chert 

pebbles as they are carried farther from their source. In short, it was shown that 

sphericity depends most importantly on the inherent abrasional properties of the 

different rock types. It is a function of size as well as distance, and is little affected by 

selective sorting. In terms of pebble roundness it was found that quartz rounds markedly 

downstream for 432 km but then appears to approach an asymptotic limiting roundness. 

Chert shows no significant change in roundness between upstream and midstream 

because of the continuing supply of fresh chert along the river course. At the 

downstream stations, however, roundness increases significantly. In contrast, there is no 

statistically significant change in roundness of limestone particles. 

Mills (1979) attempted to provide tentative answers to the question of how rock 

particles become more rounded as they are carried downstream. He analysed data from 

several studies of downstream change in pebble roundness by computing simple 

correlation coefficients and regression equations for the relationship between distance 

and roundness for individual streams. In 20 out of 30 cases examined, there were 

statistically significant downstream increases in roundness. In 13 of these 20 cases the 

downstream change was described better by logarithmic or semi logarithmic functions 

than by linear ones. He also found that in terms of downstream changes in roundness the 

slopes tend to be steepest for limestone, flattest for quartz, and intermediate in steepness 

for other lithologies. He attributed differences between studies not only to lithological 
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factors, but also to: (a) operator variance and the use of different techniques by different 
studies, (b) differing initial values of roundness of bedload source material and (c) 
variability in initial roundness of inputs along stream channels. 

Knighton (1982), argued that the shape and size of bed material observed at any 

one time and place depends on two sets of factors: (1) the characteristics of the initial 

input, which are strongly related to the bedrock, lithology and structure; and (2) the 

nature and rate of subsequent modifications to that input, either in place or during 

transport. He argued that because the flow conditions that influence the rate of 

movement vary with distance downstream, systematic changes in the size and shape of 

bed material can be expected in that direction. 

It was generally found that for gravel-bed rivers, grain size decreases and 

roundness increases in a downstream direction. Many investigators (e.g. Krumbein, 

1941a; Kuenen, 1956; Pettrjohn, 1957; Knighton, 1982, Parker, 1991a, b; Hoey and 

Ferguson 1994; Ferguson et al., 1998) have attributed both grain size reduction and the 

increase in roundness to a combination of two important processes: (a) abrasion and (b) 

sorting, in which finer grains are preferentially transported further downstream. 

Knighton (1982) investigated longitudinal changes in the size and shape 

characteristics of the River Neo, a fifth-order stream in north Derbyshire and found 

three regimes in which different processes are dominant. 

1) Abrasion and size sorting in the headwater area. 

2) Shape and size sorting in the middle reaches. 

3) Sorting and breakage towards the downstream end of the stream. 

He acknowledged also that these processes are interrupted by tributary inflows, the 

main effects of which are to increase grain size and flatness below junctions. 

As a part of size-selectivity experiments in gravel bed rivers, Ashworth and 

Ferguson (1989) examined downstream changes in bed material size in A l t Dubhaig 

River Feshie and Lyngsdalselva (Norway). They found a strong downstream size fining 

in all the three rivers. This size decrease was attributed to a strong size selectivity rather 

than abrasion processes. 

Field studies based on examining the influence of particle shape on bedload 
transport 

There have been relatively few field-based investigations on the influence of 

particle shape on bedload transport (e.g. Bradley et al., 1972; Ashworth and Ferguson, 
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1989; Gintz and Schmidt, 1991). 

One of the earliest studies was carried out by Lane and Carlson (1954), who 

analysed bed material shape and weight in the beds of Colorado drainage canals. They 

found that pebbles were sorted by both size and shape. In a given sample of bed pebbles 

the disc-shaped pebbles had substantially smaller volumes than the more spherical 

pebbles. This indicated that spherical pebbles rolled more easily and were more easily 

set in motion than disc-shaped pebbles, which tended to assume more stable, imbricated 

orientations on the bed. Comparisons showed that on the average the discs are of the 

same suspectibility to movement as spheres that have weights 2.5 times as large. 

In order to study the transport velocity of particles of various shapes, Pashinskiy 

(1964) carried out a series of experiments in a natural stream in the Psezuapse River on 

the southwestern slopes of the Main Caucasian mountains. For these experiments, 

particles of various shapes were used, namely, spherical, elliptical, flattened, prismatic 

and angular. It was found that the particles with regular shapes, approaching a sphere 

and an ellipsoid, had the straightest course of movement. The course of movement of a 

particle of prismatic and angular shape frequently had the appearance of a winding or a 

zig-zag line. The strongly flattened well-worn particle was found to have a trajectory 

with an angular loop-like form. In terms of velocity of movement and of saltation 

velocity, it was noted that particles of equal size and of different shapes are relatively 

different. Spherical and elliptical particles are streamlined better than angular particles 

Bradley et al (1972) studied coarse sediment transport by flood flows of the 

Knik River, Alaska. They found that the size and elongation of bed material are both 

exponential functions of distance travelled in the events. In terms of shape sorting, they 

found that platy particles outrun all others* because they are light and travel more easily 

in suspension; elongated particles outrun lighter, more compact particles, apparently 

because of the way they wobble as they move. It was also found that coarse particle size 

decreases by 87 percent and the quartz and greywaeke particles become progressively 

more elongated downstream. They attributed the downvalley changes in size and shape 

of coarse gravel mainly to sorting processes, but aided by frost-splitting. 

Ashworth and Ferguson (1989) investigated weight shape and size selectivity of 

bedload using over 3700 painted pebbles in the several reaches of two streams in the 

Scottish Highlands, (Allt Dubhaig and River Feshie) and Norway (Lyngsdalselva). In 

terms of weight selectivity, The results clearly showed unequal mobility of different 

size, weight and shape of bedload. In eight of the nine reaches, where tracers had been 
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introduced, distance moved by the tracers varied inversely with weight. In terms of 
shape, it was also found that, despite a considerable variation in results, a statistically 
significant relation was found between tracers sphericity and transport distances. In 
other word, spherical particles moved further than flat ones. The influence of particle 
size on entrainment showed that for sizes coarser than the local D50 moved indicated a 
clear decrease in mobility with increasing particle size. 

Schmidt and Ergenzinger (1992) and Schmidt and Gintz (1995) examined the 

effect of different particle shapes and their resistance to transport and erosion using 

artificial magnetic tracers in the Lainbach, a steep-pool mountain river in Bavaria, 

Southern Germany. 480 artificial cobbles of nearly constant weight (950-1000g) were 

measured and classified into 4 shape categories, compact bladed (CB), very bladed 

(VB), very elongated (VE) and very platy (VP). A sample of 120 artificial pebbles, each 

consisting of four samples of 30 per shape-group, were inserted into different positions, 

in the river bed, such as secondary pool, gravel bars upstream of large blocks, shallow 

channel in a step, and a gravel bar near the river bank. Results showed that there is no 

significant shape selectivity in controlling travel length in the small size group, while in 

the coarser particle classes there is strong shape selectivity. Spheres and in some 

instances the elongated (rods) particles have the greatest travel length and the highest 

probability of entrainment, whereas platy pebbles (discs) showed the greatest resistance 

to entrainment. However, they observed that particle shape selectivity is important for 

only small and moderate flood events. For large magnitude floods, shape selectivity was 

not significant. 

In terms of the influence of particle weight on transport distance, a considerable 

amount of scatter was noted in the correlation between weight (size) and travel distance. 

The small particles were observed to have lower transported distance than that of larger 

particles due to hiding effects. Small particles were trapped behind large boulders or in 

the interstices between cobbles and boulders. By using the radio-tracer technique they 

also obtained some detailed information on the nature of bedload transport in terms of 

the step-pool system. Particles in the pools were determined to have the highest 

probability of entrainment and these sites were also determined to be the most favoured 

locations for deposition. 

As a part of a bedload tracing experiments, Stott and Sawyer (1998) investigated 

travel distances and weight loss of 228 magnetically tagged bedload particles over a two-

year period . In terms of travel rates of four shape classes, they found that rod and 
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spheres-shaped particles had greatest mean travel rates of 0.18±0.09 and 0.18±0.15 m 
dayrespectively, while discs and blades showed lower mean travel distances 0.11 ±0.03 
and 0.10±0.03 m day "'. The difference between the mean travel rate of discs and rods 
and also blades and rods were statistically significant. The higher mean travel distances 
of rods and spheres was attributed to the fact that their shape make them more suited to 
rolling and, once in motion they are less likely to be deposited due to imbrication and 
bed armouring. 

Hassan et al (1999) investigated the transport of gravel in an ephemeral sandbed 

river, the Metsemotlhaba in southern Botswana, over a five year period using magnetic 

particles of pebble and cobble size. The Tracers were transported in two major flow 

events of equivalent transported. In the first flow event mean distance of tracers was 

837m at a mean burial depth of 0.40m, while in the second events the mean distance of 

movement was 263m at a mean burial depth of 0.39m. The distribution of distance of 

movement was determined to be asymmetrical in the first flow event, when the tracer 

started from a surface location, but was monotonic thereafter. The tracers moved in the 

low and transitional flow regimes. Burial depth distribution followed the gamma model. 

In contrast to earlier studies (e.g Bradley et al., 1972; Ashworth and Ferguson, 1989; 

Schmidt and Gintz (1995) it was found that longitudinal transport of tracers is 

independent of particle shape and size, and strongly skewed with respect to distance. 

2.10 TECHNIQUES FOR MEASURING BEDLOAD TRANSPORT 

The movement of bedload is generally accepted to be the most difficult mode of 

sediment transport to measure. The difficulty arises from the fact that movement occurs 

at relatively high flow velocities and bedload particles move intermittently. Available 

measurements are relatively few. Traditionally two basic methods have been used in 

measuring bedload transport in coarse-bed streams. These are trapping and tracing 

techniques. Most of bedload measurements have been made by using direct bedload 

traps. These samplers may be classified into several types according to their underlying 

principle. Some of these are: box or basket samplers (Ehrenberger, 1932; Mulhofer, 

1933; Nesper, 1937; and Swiss Federal Authority, 1939), Pan or Tray samplers 

(Shamov, 1935), Slot or Pit samplers (Federal Inter-Agency River Basin Committee, 

1949; Helley and Smith, 1971; Reid et al., 1980), Pressure-Difference samplers (Federal 

Inter-Agency River committee, 1940), Vortex-tube (Taconni and Billi, 1987), Pressure-
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pad (Reid et ai, 1980), Automatic recording of water and coarse sediment discharge 

(Lenzi et ai, 1999), Conveyor-belt traps (Emmet, 1980a). These samplers have been 

used in order to determine bedload transport rate, yield or obtain continuous 

measurement of bedload discharge. 

2.10.1 Tracer Techniques 

In gravel-bed rivers, tracer programs were started in the early 1960s (Takayama, 

1965) in attempts to assess bedload transport. Tracer studies have focused on the 

relation between distance of movement and particle size (e.g. Keller, 1970; Schick and 

Sharon, 1974; Butler, 1977; Carling, 1987; Ashworth and Ferguson, 1989) or on 

examining the influence of sedimentological characteristics on the movement of 

individual particles (Laronne and Carson, 1976; Brayshaw, Frostick and Reid, 1983). In 

recent years techniques of coarse sediment tracing have advanced remarkable and have 

been widely used in many areas (e.g. the littoral and fluvial environments) to investigate 

geomorphological change (Hassan et ai, 1991; Schmidt and Ergenzinger, 1992; Hassan 

and Church, 1992). Sear et al (1998) classified the progressive increase in complexity of 

the scientific objectives of coarse sediment tracing into four main areas of research. 

These are: 

• Estimation of sediment transport rates and volumes 

• Analysis of flow competence 

• Spatial analysis of sediment transfer processes 

• Real time measurements of particle motion. 

In terms of bedload transport, experimental studies have shown that using tracers 

and tagged bed material can provide useful and detailed information on bedload 

transport processes in coarse-bed streams (Crickmore, 1967; Bunte and Ergenzinger, 

1989; Schmidt and Ergenzinger, 1992). To understand the transport mechanisms of 

coarse-bedload in a upland streams depends on the efficient field monitoring of 

individual transport distances of discrete particles and of particle populations over a 

given time period (Nelson and Coakley, 1974; Gomez 1991). Many investigators have 

proved mat tracer methods give valuable information on erosion, mechanisms of 

transport and deposition. Quantification of the amount of bedload transported and 

bedload transport rates are also possible. With careful field observations even the path, 

the velocity and the motion of particle can be detected (Schmidt and Ergenzinger, 

1992). 
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Surface marking - stone painting method 

Tracer techniques have commonly consisted of painting pebbles or cobbles. The 

most common and inexpensive method of labelling has always been the painting or 

numbering of individual particles (Leopold, Emmet and Myrick, 1966; Laronne and 

Carson, 1976; Leopold and Emmet, 1981; Thorne and Lewin, 1982; Frostick and Reid, 

1982). With careful resurvey, painted particles are able to provide valuable information 

on the proportion of particles that have or have not been transported. But they provide 

little data that pinpoint the actual incidence of motion during a flood wave. The major 

problem encountered using these methods is that particles are relocated by each 

transporting event not only over large areas of the channel bed, but also throughout the 

depth of the scour layer, therefore despite the great potential of the method, it is limited 

to the channel bed surface. Consequently the rate of recovery is generally low and it 

decreases with particle size and the number of flood events (Table 2.6). Table 2.6 shows 

that there is a positive relation between particle size and recovery rate. It also shows that 

the studies using magnetic or iron tracer particles have higher recovery rates than those 

that used painting stones. 

Some of the earliest field experiments with the painted pebbles and cobbles were 

undertaken by Leopold in the United States and by Takayama in Japan 35 years ago 

(Hassan et al 1984). These studies have been followed by the studies of Leopold et al., 

(1964); Takayama (some studies) (1965), Leopold et al (1966), Ritter (1967), Helley 

(1969), Schick (1970), Wilcock (1971), Milhous (1972), Laronne and Carson (1976), 

and Froehlich (1982). In most of these studies data were limited to the surface exposed 

particles only. Therefore in many of these studies the recovery rate is low and the 

recovered particles do not represent the entire sample. 

Because of the limitation mentioned above there was a growing awareness of the 

need for more sophisticated measurement techniques. Although radioactive tracers have 

been used to good effort, these methods do not comply with the present legislation on 

environmental protection. An alternative, the introduction of the magnetic tracers using 

both natural magnetic material and cobbles with implanted magnetic cores (Ergenzinger 

and Conrady, 1982) has offered new possibilities. Studies which used magnetically 

tagged particles provideinformation on both buried particles and exposed ones, recovery 

rates are high. Tracers are detected either by a special magnetometer after transport 

(Arkell et al 1983 and Hassan et al. 1984) or the transit of the tracered material across a 
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coil system in the bed. This is measured by means of Faraday principle (Ergenzinger 

and Custer, 1983; Reid et al 1984). Ergenzinger et al (1989) pointed out that using this 

procedure, detailed studies of the time dependency of transport are feasible, and these 

techniques are especially appropriate at sites containing naturally magnetic pebbles. 
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Table 2.6 Examples of the field-based bedload tracing experiments carried out with 
various tracing techniques. 

Researcher Site 
Tracing 
method 

Size of 
particles 

used (nun) 

Recovery rate 
of particles 
moved (%) 

Number 
of 

events 
Nir, 1964 Nahal Zin iron nails 52-240 4.4 1 

Schick 
(Per. com) 
Schick and 

Sharon 1964 

Nahal Yael 

Nahal Yael 

Nahal Yael 

paint 

paint 

paint 

70-201 

pebbles 

pebbles 

46.5 

64 

57 

1 

1 

2 

Nahal Yael paint pebbles 16 4 

Nahal Yael paint 32-512 10.5 1 

Nahal Yael paint 32-512 2.5 10 

Takayama 1965 

Nahal Yael 

Nahal Yael 

Hayakawa 

paint 

paint 

paint 

pebbles and 
cobbles 

pebbles and 
cobbles 
20-150 

52 

44 

10 

1 

1 

3 

Hayakawa paint 20-150 23.3 4 

Fukogawa paint 20-150 21 2 

Fukogawa paint 20-150 27 4 

Okawa paint 20-150 39.6 3 

Okawa paint 20-150 31.9 4 

Leopold et al. 
1966 

Morning 
Walk Walsh 

paint 75-125 38 1 

Morning 
Walk Walsh 

paint 75-125 0 1 

Morning 
Walk Walsh 

paint 75-125 16 5 

Slope Wash 
tributary 

paint 75-150 88 5 

Slope Wash 
tributary 

paint 75-150 78 2 

Gunshot 
Arroyo 

paint 75-150 53 3 

Gunshot 
Arroyo 

paint 75-150 18 4 

Gunshot 
Arroyo 

paint 75-150 15 1 

Keller, 1970 Dry Creek 
Calif 

paint gravel and 
pebbles 

48.5 

Slaymaker 1972 Nant 
Calefwr 

paint cobbles 85-100 

Slaymaker 1972 Nanty 
Grader 9A 

paint cobbles 85-100 -— 

by (Hassan 
etal, 1984) 

Continued overleaf 
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Slaymaker 1972 Nanty paint cobbles 85-100 
Grader 9B 

Laronne 1973 Seale's paint 06-250 05 
Brook 
Canada 

Laronne and Seale's paint 4-256 5 1 
Carson 1976 Brook 

Canada 
Butler, 1977 Horse Creek metal 34-116 35 1 

strips 
Aikelletal. 1983 Plynlimon paramag 5.6-22.4 63 1 

netic 
Hassan, 1983 Nahal metal and 45-180 30.9 2 

Hebron paint 
Hassan, 1983 Nahal metal and 45-180 33.8 2 

Hebron paint 
Ashworth, 1989 Alt Dubhaig paint 24-147 66 

Ashworth 1989 Alt Dubhaig paint 26-238 68 

Ashworth 1989 Alt Dubhaig paint 24-153 76 

Ashworth 1989 Alt Dubhaig paint 24-170 61 

Ashworth 1989 Alt Dubhaig paint 24-135 89 

Ashworth 1989 Feshie paint 25-171 40 

Ashworth 1989 Feshie paint 24-136 84 

Ashworth 1989 Lynsdalselva paint 90-170 26 

Ashworth 1989 Lynsdalselva paint 35-200 89 

Carling, P. Carl Beck paint 15-130 98 by (Hassan 
(pers. Com) and Church, 

1992) 
Carling, P. Great paint 15-130 78 by (Hassan 
(pers.Com) Eggleshope and Church, 

1992) 
Taconni et al., Virginio paint 16-128 5-9 
1990 Creek 
Hassan etal 1991 Nahal Magnet 30-180 80 1 4 sites 

Hebron 
Nahal Magnet 30-180 93 1 4 sites 

Hebron 
Nahal Magnet 30-180 93 1 4 sites 

Hebron 

Nahal Og Magnet 30-180 56 1 1 sites 

Nahal Og Magnet 30-180 55 1 1 sites 

Schmidt and Lainbach iron tracer 50-170 92 1 
Ergenzinger 1992 

— Lainbach iron tracer 50-170 74 2 

— Lainbach iron tracer 50-170 17 3 

— Lainbach Magnet 950-1000g 93 2 
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There have been several different methods and techniques for tracing bedload. These 
methods may be broadly classified into four groups. 

1) Individual natural pebbles are traced in three different ways, such as iron cores, 

magnetic cores and self emitting radio systems (Hassan et al., 1984; Schimid and 

Ergenzinger 1992). 

2) Individual artificially manufactured pebbles are traced either by adding fine particles 

of tracers to a matrix of concrete or implanting traceable of self emitting items (radio) 

into the particles. 

3) A bulk sample of natural gravel is artificially traced by magnetic enhancement 

(Oldfield etal, 1981) 

4) Natural gravels traced by high magnetic content and high iron content. 

There have also been various methods of detection. These include; the position 

of the pebble or gravels after a flood event (see Hassan et al., 1984), the passage of 

pebbles or gravels through the cross-section during a flood event (Reid et al., 1984) and 

the path, the velocity and motion of pebble during the flood event (Schmidt and 

Ergenzinger, 1992). 

Many investigators have shown that using individual tracer pebbles or cobbles 

can give important information on bedload transport. Such as; (1) the travel lengths of 

individual particles, (2) the influence of particle shape, weight and size on travel length 

and transport probability, (3) selectivity of transport of equal mobility, (4) spatial 

distribution of particles from point source (5) positions of sedimentation (Hassan et al., 

1984; Bunte and Ergenzinger, 1989; Schmidt and Ergenzinger, 1992), (6) particle 

position within the river morphology (riffle, pool, thalweg, lateral position, bars) (Bunte 

and Ergenzinger, 1989; Schmidt and Ergenzinger, 1992). 

The most common method of tracing individual particles and detecting them 

after transport event has been to use a sample of pebbles or cobbles. The basic technique 

is to drill a hole into each individual particle. The tracer (iron or magnet) is then inserted 

and secured with epoxy. The particle is usually painted to distinguish it from other 

pebbles on the river channel. Depending on the aim of the experiment, particles are 

placed into the river channel in different locations. Following an individual flood or 

flood events tracer particles are relocated in the channel with hand held detectors. 

Although the particles exposed on the river bottom are easily found, those which are 

buried at different depth in the river sediment or which are swept far out of reach are 
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sometime very difficult and time consuming to recover. 

Iron Tracer Technique 

Many investigators (e.g. Schmidt and Ergenzinger, 1992) have used iron core 

tracers but the biggest disadvantage in using this method is the low recovery rate of 

particles after transport (Table 2.6). In highly populated areas the possibility of scrap 

metals (e.g. wire or bottle cap) in the channel may cause confusion. Bunte and 

Ergenzinger (1989) pointed out that the vertical range of the metal detector in the river 

sediment is limited to a depth of some tenths of a meter. Thus to increase the recovery 

rate the signal made by the metal detector should be as large as possible. 

Magnetic tracers 

One of the earliest attempts to use magnetic tracer techniques was initiated by 

Nir, (1964). He coated concrete cobbles with iron oxides, but the low sensitivity of the 

metal detector used and very small sample size resulted in practically no finds beneath 

the bed surface. Following Nir, Butler, (1977) marked cobbles with metal strips and 

relocated them using a metal detector in field. This method significantly improved the 

recovery rate of cobbles as compared with marked rocks. His method was simply to tag 

the cobbles by wrapping an aluminium strip around the centre and wiring it in place. 

The magnetic tracer technique was first developed by Ergenzinger and Conrady 

(1982) and used in cobbles for monitoring bedload transport in 1980 at Fiumara 

Buonamieo in Calabria, southern Italy. The aim of the investigation was to determine 

the initiation of cobble transport. The basic technique was to drill granitic cobbles with 

an average width of 55 mm, and insert a bar magnet inside them. Using 100 magnetic-

tracers the starting conditions of cobbles transport in Buonamico were determined. 

Ergenzinger and Custer (1982) noted that due to continuous input of magnetic cobbles 

during the floods, the determination of the transportation rate of cobbles with this 

technique is quite expensive and time-consuming. 

The magnetic tracer technique has been successfully applied by Hassan et al 

(1984). The important advantage of using magnetic tracers in bedload transport 

investigations is the enhanced recovery rates of magnetised tracers (Table 2.6). Another 

advantage of using this method is that there are few other magnetic objects that can 

cause confusion. Using this method also expands the range of detection and even allows 
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the investigator to find pebbles that have been buried deeply within the riverbed. This 
method also allows the differentiation between several kinds of magnetic intensities, 
thus offering scope for a variety of tracers. Hassan et al (1984) found that the recovery 
rate of pebbles tagged with ceramic magnets was 93 %, and 53 % of all the pebbles 
retrieved were discovered below the channel surface (Table 2.6). 

2.10.2 Artificial magnetic enhancement of particle and detection after the flood 

Generally no single technique has been developed for tracing the movement of 

the full size range of stream bedload. Methods used tend to be most successful for the 

coarsest material (painting pebbles, magnetic tracing, iron tracing, e.t.c). This is because 

it can be very difficult to dril and insert a magnet into a clast which is smaller than 32 

mm in b axis. Preparing tracers and detecting them after floods is very time consuming 

and limits the number of particles used. Using a strong heat source to magnetise 

particles may partially overcome these limitations. Magnetic enhancement can be used 

on the full range of bedload. 

Laboratory heat treatment of natural rock alters mineralogical properties and 

produces a characteristic magnetisation that can be used as a simple and persistent 

tracer. Oldfield et al (1981) first developed artificially magnetic enhancement. They 

pointed out that the main advantage of the artificially magnetic enhancement method is 

mat a bulk sample containing all grain sizes present in the stream can easily be 

artificially magnetised, thus being representative for all the material sizes. By 

comparing the percentage of traced material in the original sample with the sample 

taken after the transport event the amount of material transported can be quantified. 

Oldfield et al (1981) pointed out that natural magnetic enhancements occur in 

soils on a wide range of bedrocks including limestone, granites, shales and sandstones. 

The artificial magnetic enhancement tracing method may consequently be expected to 

be applicable to many localities. In their study magnetite and hematite were grown in 

naturally paramagnetic mudstones and slates by rapid heating in air to 900°C and 

quenching. They found that the mineralogical changes of the magnetic grains are 

complex and depend on many interrelated variables. However they developed a very 

simple but effective heat treatment procedure that optimises the enhancement of 

magnetic susceptibility and permits practical hydrological field experiments to be 

performed. They also pointed out that apart from bedload movement studies, the 

artificial magnetic enhancement method could also be useful in studying other 
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sedimentological processes such as movement of sand waves and the silting of 
harbours. 

Arkell et al (1983) developed an artificial magnetic enhancement technique to 

investigate sediment transport, from the uplands into the piedmont zone, and from shoal 

to shoal in upland central Wales. The technique, based on the enhancement of the 

magnetic susceptibility of the natural bedload, provides an effective tracer, which can be 

detected in low concentration and in all particle size ranges. They used Optimal 

laboratory treatment (as explained in Oldfield et a., 1981) to achieve the maximum 

possible enhancement of the magnetic susceptibility for large amounts of all sizes of 

material. They noted that from uniformly low values (varying between 0.07 and 0.14 x 

10 m kg"), heat treatment is capable of producing enhancement in the Plynlimon 

shales up to a factor of 300. Within the same reach different magnetic signatures could 

also be actuated in the same material for use as different tracers, by altering the range of 

magnetic variables used. After floods they traced the magnetic material in the stream 

using a search coil and compared results with bedload material caught in a trap. 

Hassan et al (1984) pointed out that the disadvantages of using this 

method is it is limited by the need to haul particles to an industrial furnace, the high rate 

of breakages and the requisite of using pebbles with a sufficient iron content. 

2.10.3 In-siru determination of bedload transport of natural and tagged tracers 

In natural channels the motion of bed particles can not easily be observed due to 

the turbidity of water and discharge. Existing methods such as labelled (painted) 

particles (Leopold et a., 1964), or magnetic tracers (Ergenzinger and Condrady, 1982) 

only provide flood-by-flood or gross seasonal changes in the movement of individual 

particles and did not provide any indication of the nature of the bedload movement 

(Reid et al., 1984). Although, some flume studies have been able to examine these 

parameters, extrapolation of the results to natural rivers is difficult. The importance of 

tracking particles has led to the development of many different techniques with varying 

degrees of success and applicability. 

This method was first developed by Ergenzinger and Conrady (1982) and used 

to test the first continuous in situ observation of the passage of naturally magnetic 

coarse material bedload transport (Ergenzinger and Custer, 1982, 1983) in a high energy 

mountain river Montana, USA. The technical design of this method is as follows: 

"According to the Faraday Inductive Principle a voltage peak is induced when a 
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magnet passes over a coil (copper windings on a iron core). Several sets of coils are 
inserted into a detector block, which is installed into the bottom of the river reaching 
from one bank to the other. The signals induced by the magnetic particles passing over 
the detector block are amplified, filtered, and recorded with spatial electronic devices. 
This measuring device works automatically and produces a continuous, spatially and 
temporally high-resolution record. The analysis of this raw data give new insight into 
the processes influencing coarse-bedload transport, such as bed material supply 
dependency, time series analysis of the bedload pulses" (Bunte and Ergenzinger, 1989, 
P 88) . 

The advantage of using this method is that without any disturbance an unlimited 

number of real bedload particles can be observed in situ. This method can also be 

applied to any size of river channel without restriction, although the method is 

expensive and requires considerable electronic expertise. A Further disadvantage of this 

method is the difficulty of calibrating the signal induced by the magnetic pebbles 

passing over the detector block. Since the size of the signal may depend on many 

parameters, such as magnetic content, velocity, magnetic orientation and height above 

the detector. Thus the calibration of the number of signals registered can only be done 

by statistical means or by comparison with bedload samples taken simultaneously. 

Other difficulties are also associated with the tuning of the electronics and the noise-

reduction (Bunte and Ergenzinger, 1989). 

In order to analyse the practicalities of detecting the transport of naturally 

magnetic cobbles and pebbles on a stream bed, some observations were carried out by 

Ergenzinger and Custer (1982) in the region near Bozeman, Montana. To test the 

method Squaw Creek stream was chosen as the monitoring site, draining the andesitic 

volcanic terrace of the Gallatin Range, Gallatin County, Montana. The basic idea behind 

the detector was simple. When a permanent magnet passes over an iron-cored coil of 

wire, a measurable electrical current is generated. A detector consists of four wire coils 

wrapped around 1 m long, 2.00 cm diameter iron bar. 

The detector was constructed at a log sill in the bed of Squaw Creek, and during 

a flood in May 1981 the detector recorded the passage of the magnetic particles larger 

than 32 mm. Extrapolation of the data allowed estimation of total bedload transport. 

Based on the composition of an unvegateted gravel bar upstream of the detector and on 

measurement of tributary during the flood, bedload accounted for approximately 66 % 

of the solid material leaving the drainage basin. Ergenzinger and Custer stressed the 
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method was widely applicable, because many coarse-bed streams probably contain 
material at least as magnetic as the andesitic rock in Squaw Creek. 

In order to provide clear information about the actual movement of bed particles 

Reid et al (1984) developed an electronic sensing device for permanent installation in 

the bed of Turkey Brook, Enfield Chase north of London. This device is capable of 

continuously monitoring the passage of artificial pebbles labelled with a ferruginous 

material. The sensor provides a continuous record of bedload movement and acts in the 

same fashion as a conventional metal detector and consists of two elongate unscreened 

coils. The transmitting coil acts as a search head and is heterodyned with a reference 

frequency in the receiving coil. Both coils are fully balanced over the entire length of 

the sensor. During bedload transport the movement of particles labelled with 

ferruginous material over the sensor distorts the magnetic field and produces a change 

in the inductance of the coils. The signal is detected, amplified and demodulated to 

produce a change in DC voltage that can be permanently recorded the strip chart of a 

suitable potentiometric recorder. The system is designed for automatic operation and is 

achieved by circuit-closure in a mercury tilt-switch that is attached to a float-controlled 

arm housed in a stilling well (Reid et al., 1984). 

Reid et al (1984) stressed the primary reason for developing the "Birkbeck 

sensor" was an evaluation of the effects of the mutual interference of neighbouring bed 

particles on initiation motion and transport rates. Particular attention has been given to 

the small-scale bedform (pebble clusters) which are said to be widespread and 

occupying about 10 % of the channel floor in stream ranging widely in particle lithology 

(Brayshaw, 1983). 

Reid et al (1984) pointed out that the sensor can be made to any length within 

practical bounds and can be used in conjunction with companion unitSj providing 

suitably different output frequencies are chosen. The sensor also functions 

independently of water depth and can therefore be used on deep flows providing that 

installation is technically feasible. Another advantage of mis system is the automatic 

detection of the passage of traced particles, as it is compared with other methods. In 

other words it integrates the possibility of working with individual pebbles, allowing for 

example, certain position of erosion or deposition to be traced. 

Although early discoveries by Ergenzinger and Custer, (1983) and Reid et al 

(1984) have made important advances in the determining the timing and nature of 

coarse-bedload transport, none of these studies was able to determine the travel length 
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and travel distances. Furthermore these techniques had several disadvantages. For 
example installation of these devices is always a problem, and also both methods 
require the burial of a detector rod in the streambed which limits the application to sites 
with relatively stable channels and to small streams. Devices are expensive, and 
transportation of these device is not practical. 

Recently Lenzi et al (1999) developed a new device which is based on 

continuous automatic recording of water and coarse sediment transport. The device 

operates by separating bedload from water discharge and fine sediment and 

subsequently measuring the two solid components. The separation is obtained by means 

of an inclined grid: coarse material, exceeding 20 mm, slides over the grid and 

accumulates in a storage area where its volume is measured by ultrasonic sensor fitted 

to an overhead travelling crane. Later they modified the recording system by replacing 

the moving crane by a fixed frame with several ultrasonic sensor which improved the 

recording of the volume of coarse bedload at closer intervals (less then 10 min). Using 

this device Lenzi et al (1999) could relate bedload transport to particular floods. 

2.10.4 Pebble Transmitter system (PETSY) 

Edward et al (1988) developed and successfully used a radio transmitter to track 

and locate coarse sediments through a highly mobile, braided river system, the Toklat 

River, a glacier-fed river located in Denali National Park in central Alaska. They 

developed radio transmitting equipment that was already used by biologist in tracking 

fish and game animals. The transmitters are hermetically sealed, including batteries and 

internal antennas, and transmit a signal pulse at a specified frequency and time interval. 

They used two type of transmitters for their study, the standard transmitter that emits a 

signal continuously at a single frequency and time interval, and the motion-sensor-

equipped transmitter that also emits a signal at a single frequency but with a time 

interval that changes depending on whether the particle is in motion or at rest. 

Frequencies and time intervals of the signal are user specified for both type of 

transmitters. Transmitter life dependent on the transmitting interval and the size of the 

battery in the self contained transmitter unit. 

A hole was drilled in the selected cobbles with special water lubricated coring 

bit and transmitters were inserted inside and fixed with epoxy. The cobbles were painted 

to aid in recovery at the end of field season. 

A portable receiver and digital signal processor were used in conjunction with an 
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"H" pattern directional antenna to locate the radio equipped rocks. By rotating the 

antenna and observing the signal strength they determined the signal direction. Location 

of the radio-equipped rock could be determined by moving along an established 

baseline and determining the point where signal direction was perpendicular to the 

baseline. During periods of a high flow and turbid water conditions, they were able to 

successfully track and locate five radio-implanted rocks that travelled greater than 1500 

m in 8 days through a highly mobile, braided river system. This technique demonstrated 

the travel path, travel distance and time of travel of individual particles with a size range 

of 39 to 64mm. Flood stages and particle burial did not affect the measurements. 

Edward et al (1988) concluded that the technique they used may be applicable during 

most flow conditions and to all streams types moving large size sediment particles. 

A pebble transmitter system was also developed by Ergenzinger et al (1989) for 

studying coarse material erosion, transport, and deposition. This pebble transmitter 

system was first tested at the Lainbach station in Bavaria (Figure 2.14). 
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Figure 2.14 Sketch of the Pebble-Transmitter System (PETSY) (After 
Ergenzinger et al., 1989) 

The basic system consists of a transmitter, an antenna, and a data logger. The 

system operates at a frequency of 150 MHz and the 2 m waves can be received in and 

outside the water. The system also has three different antennas as stationary, mobile and 

search detection (Figure 2.14). The stationary antenna system is installed along one 

bank of the channel to follow movement of the tracer stones. The connections between 

the antennas and the receiver are changed manually. The mobile antenna is mounted on 

a tripod and is carried along the river in order to maintain contact with the emitting 
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cobble. Thus it is possible to trace the position of the radio cobble within a range of 

about a 100 metreŝ  even below a cover of more than 60 cm of sediment. Using the 

special search antenna it is possible to determine the point directly above the tracer 

cobble and to retrieve it quite easily. It is pointed out that this tracing procedure is 

considerably simpler and more effective than magnetic tracing, but it is very expensive. 

First results of pebble: transmitter system were obtained at Lainbach Station in 

Bavaria. The device also gives a precise information on the transition between gliding 

and rolling and ;vicaversa; The first results demonstrated that, under natural condition; 

the differentiation of-initial? entrainment does not primarily depend on primarily 

difference of the size, form or weight-rof*the material; :but much more on the lateral 

distribution ofvelocities and shear stresses in theicross-section. Thus Ergenzinger et al 

(1989, 1992),,Bunte and Ergenzinger, (1989) .concluded that PETSY is suitable for 

detailed investigationofbedload transport ofcoarse sediment̂  including: conditions for 

initial movement, travel;velocity and position;of deposition of an individual particle and 

types of movement of particles. The technique is also applicable to material as fine; as 

about 63 mm; When implanted into, artificial material the size can be reduced even 

further. In addition, travel velocities over short time intervals can be measured even 

more precisely by a stationary antenna system controlled by a computerised logger. 

Using the result of PETSY it will be easier to test and calibrate bed load functions. 

Unfortunately, the number of radio pebbles is limited by cost. 

Although there have been great advances in the development of new tracer 

techniques and their successful application to the bedload transport investigations, there 

is still only limited field data related to coarse material transport. 

2.11 CASE STUDIES USING TRACER TECHNIQUES FOR PARTICLES IN 
GRAVEL BED RIVERS: K E Y FINDINGS AND RECOVERY RATES 

Table 2.6 summarises some characteristics of the field based studies undertaken 

using various coarse sediment tracing techniques. Results indicate that over time 

recovery rate of particles have tended to increase probably due to increasing 

sophistication of techniques. The Table also shows that studies carried out with 

magnetic tracer have a greater recovery rate than those using painted pebbles or cobbles. 

There tends to be an inverse relation between the recovery rate of particles moved and 

the number of events. Although generalisations are difficult Schick and Sharon (1964), 

using painted stones had the lowest recovery rate: with the-greatest number of ; events, 
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while Hassan et al (1991) and Schmidt and Ergenzinger (1992) using the magnetic 
tracers had the greater percentage of recovery rate with a smaller number of event. 

One of the earliest attempts to use magnetic tracer techniques was initiated by 

Nir, (1964). The purpose of his investigation was to trace the movement of individual 

cobbles from selected sites of entrainment to their site of deposition after one flood 

season in Horse Creek a tributary of the Green River, which flows east out of the 

Wyoming Range in western Wyoming. It was concluded that this method could be used 

under water as deep as 1.2 m and tagged cobbles were detected after burial to depths of 

20 cm. In this study it was concluded that 35 % of magnetic tagged particles were 

recovered after one flood season. 61% of stones had been retrieved from burial. The 

average particle size ranged from 34 to 116 mm (b-axis) (Table 2.6). Almost 95 % of 

the tagged stones moved and the distance transported was ranged from 0 to 420 m. No 

clear relationship was found between particle size and distance transported; the distance 

of transport was related to the position of particles at the time of entrainment. 

Susceptibility to burial seems to be related to both particle size and position at the time 

of entrainment. 

Laronne and Carson (1976) observed movement of labelled bed material to 

understand particle mobility and transport processes along a 600 m stretch of Seales 

Brook a small tributary of the North River Quebec. Several thousand natural bed 

particles ranging 4-256 mm in diameter were collected from the study river and then 

classified into four different size groups and painted with various spray-paint colors. 

The material was reintroduced into the river channel. It was observed that most of the 

smaller introduced particles immediately disappeared between and underneath cobbles 

and boulders The percentage remaining on the surface increased with particle size but 

particle stability decreased. They pointed out that the transportation of the labelled bed 

material was probably uncharacteristic of the behaviour of the bed material of the 

surface layer as a whole and that initiation of motion of the labelled particles occurred 

prior to that of their in situ counterparts. This indicated that the first flood is 

uncharacteristic of general movements. Because of this, it was concluded that it would 

not be entirely appropriate to attempt a calculation of actual bed load rates based on the 

distances of travel of the tagged material. It was also found that the percentage recovery 

decreased markedly with a decrease in particle size, ranging from 100 % for the coarsest 

cobble groups to 0.5-1.0 percentage for fine pebbles. This decrease in recovery rate was 

shown to be the result of selective burial processes. The only strong relationship found 
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was an inverse logarithmic correlation between distance of transport and weight of 
particle, which is similar to Leopold et al. (1966) and Keller (1970) who found either no 
relationship. They also found that particle mobility was greatest for material in open-
infilled structures and smallest for sediment in tight structural arrangements, and that 
local bed slope affected both particle entrainment and accumulation. 

Use of magnetically enhanced natural bedload as a tracer has significantly 

improved results, in many areas, especially where forest fires are common and the 

persistence of fired-induced magnetic minerals are abundant. For example the 

investigations done by Rummery et al (1979) and Rummery (1981) after the major 

forest fire in the Gwydyr Forest of North Wales in 1976 showed the possibility of the 

assessment of downstream movement of material derived from the fired areas by 

carrying out magnetic measurement on sediment samples. 

Since 1980, more detailed assessments of the magnetic tracing technique have 

been carried out, examining sediment transport system in eroding forest ditches and in 

larger reaches downstream from experimental catchments. Arkell et al (1983) used a 

new magnetic technique to study sediment transport, from the uplands into the piedmont 

zone, and from shoal to shoal in upland central Wales. The detail of technique is 

explained in section 2.10.2. The analysis showed that there was a poor relation between 

bedload transport rates and discharge. They concluded that bedload transport is not 

solely a function of current hydraulic conditions but also of the channel history, which 

determines the condition of supply of bedload material and its availability to transport. 

It was also concluded that in order to distinguish between supply and transport 

mechanisms the magnetic tracer technique provides a means of tracing the site of 

erosion and deposition. 

The first use of a magnetic device for monitoring bedload transport using 

artificial magnetic tracers in cobbles was undertaken by Ergenzinger and Conrady 

(1982) in 1980 at Fiumara Buonamico in Calabria / southern Italy. The aim of the 

investigation was to determine the initiation of cobble transport. The basic technique 

was to drill granitic cobbles with an average width of 55 mm, and insert a bar magnet 

inside them. Using 100 magnetic-tracers the starting conditions of cobbles transport in 

Buonamico were detennined. Ergenzinger and Custer (1982) pointed out that due to 

continuous input of magnetic cobbles during the floods, the determination of the 

transportation rate of cobbles with this technique is quite expensive and time-

consuming. 
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Hassan et al (1991) used several hundred (450) magnetically tagged cobbles and 
pebbles to examine distributions of distance of bedload particle movement in natural 
stream channels with unsteady flow. The study was carried out at two sites: Nahal 
Hebron in the Negev Desert, and Nahal Og, in the Judean Desert, magnetically tagged 
particles (the method of tagging particles is explained in Hassan et al., 1984) which 
ranged between 100-3700g in weight and between 30 and 180 mm in size (b-axis) with 
a median of 80 mm were placed on the stream bed in Nahal Hebron. The compound 
poisson model of Einstein-Hubbel-Sayre and a simple gamma function model were 
compared with observed distribution of moved particles, and of all particles. It was 
found that both model fit the data reasonably well for small mean displacements, but 
notably misfits occurred in an event with large mean displacement. They also found mat 
when mean particle travel distance approached the scale of bar spacing, trapping in the 
bars interrupts particle progress and the dispersion process. The data remain very noisy, 
so definitive discrimination of suitable models will require trials with more than 103 

particles. 

During flow events the mean burial depth (m) changed between 0.15-0.20 and 

mean recovery rate changed (percentage) between 80-90 % in Nahal Hebron and 0.15-

0.22 m and 55-56 % respectively for Nahal Og (Table 2.6). On the basis of the results, 

the authors suggest that in gravel-bed streams, the movement of relatively large 

particles can be described by either model in small event, but the movement becomes 

more complex in large events either because of a complex hydrography, or particle 

trapping by major established bed forms. The distributions are, in effect, models only of 

the local dispersion of sediments. 

Hassan and Church (1992) attempted to determine relation between the mean 

distance of movement observed after a flow event, the event magnitude and the relation 

between the virtual rate of travel (which is calculated using total time for which the flow 

is larger than the needed to initiate particle movement) and the magnitude of the 

sediment mobilising event. The first relation is related to particle entrainment, 

transportation, and sedimentation. 

They pointed out that mean distance of movement, irrespective of grain size, is 

weakly correlated with stream power, especially near the threshold of movement. The 

reasons for the weak correlation were attributed the variable effects of bed structure, 

varying magnitudes of sediment mobilising events, and sampling problems. They found 

that grain size itself is of marginal significance. They also calculated virtual rate of 
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travel using total time for which the flow is larger than that needed to initiate particle 
movement. However, this also bears a weak relation to the excess stream power over the 
period. They stressed that better results are obtained by relating the virtual rate of travel 
to the first peak of the flow event only. Thus this indicates that seeding of the tagged 
particles dominates the observations in the initial flow events. 

Schmidt and Ergenzinger (1992) investigated bedload entrainment, travel 

lengths, step lengths, rest periods using passive (iron, magnetic) and active (radio) tracer 

techniques in the Lainbach catchment in the Bavarian forealps of Munich-Germany. 

Particles with iron cores were used as passive tracers and they were to be detected after 

floods with a metal or magnet detector. They pointed out that these techniques permit 

the determination of the cumulative travel lengths covered by the stones in the course of 

a flood and they also provide good information on the spatial distribution of particles. 

In order to investigate the influence of weight and grain size on travel length and 

spatial distribution from point sources after floods events iron tracer (FETT= 

Ferruginous Tracer Technique) was used. The study period consisted of moderate floods 

of the summer of 1988 and 1989. The cumulative travel distances of the tracer were 

recorded after each flood event. 128 cobbles with iron tracer were inserted into the 

Lainbach channel, along 600 m reach. The iron cobbles also covered all shape 

categories. During the measuring season of 1988 eight flood events were observed. 

During searches tracers were identified and their position of each was mapped. It was 

found that the results from the first effective flood after emplacement were different 

from those of later floods. This difference was attributed to the uniform starting attitude 

of tracers. Although the percentage recovery rates found were low for floods 4 and 8(17 

%), it was satisfactory after floods 2 (92 %) and 3 (74 %) as compared for the figures of 

experiments with painted stones in Hassan et al (1984) (Table 2.7). 

Table 2.7 Recovery rates and transport lengths of the transported iron tracers (source 
Schmidt and Ergenzinger., 1992) 

1 2 4~^8 
Flood number min-max.-mean min-max.-mean min-max.-mean 

74 17 

1 204 33 38 670 220 

5 343 47 44 763 274 

Recovery rate % of 
total sample 

Travel length (m) 5 141 15 

Total travel length (m) 5 141 15 
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The iron tracer measurements indicated a tendency of size-selective transport of 
coarse-bedload, although there is also a reasonable amount of scatter in the correlation 
between size and travel distance. The scatter was attributed to the effect of different 
position in the channel bed. They also investigated effect of particle shape on transport 
distance and transport probability which is explained in the previous section. Pebble 
transmitter system (PETSY) was used (e.g. Ergenzinger et al., 1989; Schmidt and 
Ergenzinger,, 1990) in order to investigate measurement of entrainment, step lengths, 
and rest periods of transported pebbles and cobbles. A transmitter combined with a 
battery of 30 mm long, diameter of 16 mm was installed into holes drilled into natural 8 
cobbles. With the stationary antenna system along the experimental reach the 
entrainment and the movements of the pebbles are observed continuously on a high 
level of temporal and spatial resolution during six floods in summer 1988-1989. 

Schimidt and Ergenzinger (1992) concluded that the radio tracer experiments 

showed a wide range of critical entrainment values for the observed cobbles. Thus the 

entrainment of pebble or cobble can not be described by a single deterministic approach, 

since the local velocities, shear stresses, and bed properties are unknown. It was also 

found that in the step-pool system of the Lainbach River the material lying in the pools 

has the greatest chance of being entrained and transported. The pools are also the most 

likely locations of deposition. Thus influence of bed morphology on bedload transport is 

clearly demonstrated. 

Using a radio tracers technique and manual sampling Busskamp and Hasholt (1996) 

studied coarse-bedload transport in a glacial valley, sermilik, south east Greenland. 

They found that during the period of investigation the bedload transport was low 

indicating that glacial valley acts as a sink for coarse particles released by fluvio-glacial 

erosion. Coarse sediments on the surface of the delta flat seem to be remnants from 

earlier phases of sedimentation. 

Ferguson et al. (1998) carried out a series of integrated field, laboratory and 

modelling studies to investigate downstream fining of river gravels. As a part of their 

investigation, 1460 magnetic tracer pebbles were used in different section along the Allt 

Dubhaig, situated in the central part of Scottish Highlands. The main aim of this 

experiment was to investigate to what extent long-term dispersion of particles of 

differing size was size selective. Tracer searches were carried out at intervals during 

1991-1993. Although it was a long-term experiment and also the large proportion of 

buried tracers, the recovery rate of magnetic tracers was very high (75%), compared to 
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paint-only coarse tracers. The results from these experiments showed that there is a 
clear tendency for travel distances to decrease downstream and coarse tracers to move 
less distance. Thus, the tracer experiments clearly showed mat downstream decrease in 
bed material size is due primarily to sorting rather than abrasion processes. 

2.12 SUMMARY 

The present literature review has explained the factors and processes that 

determine particle shape. These factors are parent rock, chemical and mineralogical 

composition of the rock, the strength of abrasion processes to which it is exposed during 

the transport and the post-depositional processes. 

Analysis of particle morphology usually involves the description of the two and 

three-dimensional properties of pebbles. Two-dimensional measurements, generally, 

involve the determination of roundness, elongation and angularity, while three-

dimensional measures are based on determination of form, sphericity and flatness. This 

literature review also shows the complexities involved in pebble morphology analysis. 

There are many parameters and indices for describing the shape of a particle and none 

of these has been universally accepted. Despite being very time consuming direct 

measurement of pebble shape is recommended because this provides lower operator 

error, and a choice of statistical analysis. The ultimate choice of methodology depends 

on the consideration of a number of factors. Pryor (1971) expressed these factors as (a) 

size of particles to be described, (b) amount of available sample, (c) parameters desired 

to be used for a particular problem, (d) in duration-state of sample material, (e) 

parameters obtainable from sample material, (f) desired complexity of parameters, (g) 

availability of special equipment, (h) expense in time and money. However, 

comparative studies have proven that the most appropriate measures of shape are 

Krumbein's (1941) "Intercept Sphericity" and Sneed and Folk's "Maximum Projection 

Sphericity" due to their closest correlation to the hydraulic behaviour of particles. 

Beside geometric and visual comparison methods, studies have also shown that 

with the development of automatic image analysers and associated computer software, 

there has been a great advance in the accuracy and speed of particle shape 

measurements. 

The present review has shown that the number of investigations on the influence 

of particle shape on bedload transport are relatively few. A limitation with most of these 
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studies is that they are either concerned with laboratory measurements, flume 

experiments or field observations. Few of these studies have focused on a combined 

field and laboratory investigation. Research on the influence of particle shape on 

bedload transport has recently increased due to the applications of new techniques (e.g. 

Bunte and Ergenzinger, 1989). 

Successful application of new techniques (e.g. Magnetic Tracer Technique 

(MATT), Pebble Transmitter system (PETSY)) have led to deeper insight into the 

processes of particle behaviour in various aspects of bedload transport in gravel bed 

rivers. Existing studies have shown that beside other factors, entrainment and hydraulic 

behaviour of a particle depends on particle shape, orientation, and its relative projection 

above the mean bed. Spherical particles have been found to move in a rolling mode and 

settle much faster than those of particles that are flat which move in a sliding mode and 

tend to have lower settling velocity. Several studies have demonstrated that the 

influence of shape on the hydraulic behaviour of particles is affected by variation and 

complexity of bed roughness. However, despite its importance, the exact mechanisms of 

how shape influences sediment transport is still not completely understood and there is 

some conflict among the existing studies. Indeed the literature reviewed here is 

somewhat confusing on the subject of the significance of particle form on bedload 

transport behaviour. For example, some studies have shown that, equant particles are 

entrained more easily than others (Helley, 1969), while some investigators (e.g. 

Krumbein 1942) noted, once in motion, elongated particles move faster than equant 

ones. Meland and Norman (1969), on the other hand, suggest there is only a poor 

correlation between shape and bedload transport. Bradley et al (1972) results indicate 

that disc-like particles are more mobile than the spheroid (compact) ones. However, 

recent studies carried out with new magnetic tracer techniques (Bunte and Ergenzinger, 

1989; Schmidt and Ergenzinger, 1992; Schmidt and Gintz, 1995) and laboratory 

experiments (e.g. Carling et al., 1992) have shown that spherical and rod shape particles 

are the least stable and move longer transport distances than flat ones. All these facts 

clearly highlight the need for a further systematic study to determine the effect of bed 

material shape on bedload transport in gravel-bed rivers. 
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CHAPTER 3: R E S E A R C H DESIGN AND METHODOLOGY 

3.1 SCOPE OF CHAPTER 

This chapter defines the aims of the present research and describes the methods 

used to achieve these aims. This includes consideration of the research methods for 

measuring particle size and shape. The procedures and techniques used in river flow 

measurements are described. Field methods used to survey the channel, bed material 

roughness and bed material sampling at the three experimental sites are explained. 

Methods used in tilting-table experiments are described. The final section explains the 

photographic visualisation experiments. 

3.2 AIMS AND RESEARCH DESIGN 

The aim of this study is to investigate the influence of particle shape on bedload 

transport in coarse-bed rivers. The research design adopted to achieve these aims is 

shown in Figure 3.1. The main elements of the design are as follows. 

1 The methods used to measure particle size and shape are described in detail in 

Section 3.3. 

2 River flows were measured to define discharge during the fieldwork period in order 

that bedload process results could be related to discharge history (Section 3.4). 

3 Transport of different shapes of coarse river gravel and their sorting in two upland 

gravel rivers were investigated using magnetic tracing experiments (Section 3.5) 

4 Boundary conditions of the three experimental reaches were determined by 

surveying the cross-sectional geometry, bed topography, and measuring the size and 

shape characteristics of the bed material (Section 3.6). 

5 A series of tilting table experiments were carried out to measure the friction angles 

of particle of different shape and size of particles on various bed roughnesses 

(Section 3.7). 

6 The dynamics of bedload motion were assessed through a series of particle 

visualisation (photographic) experiments (Section 3.8). 



90 

Magnetic tracing 
experiments 

• Travel distances: size and shape 
• Burial-depths 

Transport rates 
Sites of deposition 

Field 
investigations - Sediment trapping 

• Character ofbedload transported 
by shape and size 
with magnetic 

River flow 
• Velocity area gauging 
• Flow-stage ctetenranation 
• River discharge data 

Boundary conditions 
of the experimental 
reaches 

• Measurement of channel shape, 
bed material roughness, shape 
and size of bed material 

Visualisation 
experiments 

Particle collision experiments 
with particles of different shape 
and size 

Laboratory 
Exr^rirnents 

Tilting table 
experiments 

Contact and critical pivoting angles 
of different shape and sizes of 
particles on beds of differing 
roughness 

Figure 3.1 Experimental design for the present study 
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3.3 METHODS OF MEASURING PARTICLE SIZE AND SHAPE 

3.3.1 Particle size analysis 

In order to describe particle size, direct and indirect measurement techniques 

were used. Material from the reach-based sampling program was classified using the 

Wentworth size classification. 

Material < 32 mm was sieved into five size classes, while the coarse particles 

(>32 mm) were classified on the basis of their b (intermediate) axes into seven sizes 

using a shape box (Shakesby, 1989) and template caliper (Table 3.1). 

Table 3.1 Size classes determined by sieving and 
the direct measurement of the surface and sub
surface bed material 

Sieving 
(mm) 

Direct measurement (mm) 
(Shape box and template 

calliper) 
<2.0 32.0 - 45.3 

2.0 - 4.0 45.3 - 64.0 
4.0 - 8.0 64.0 - 90.5 
8.0 - 16.0 90.5 -128.0 

16.0 - 32.0 128.0 -181.0 
181 -256 

>256 

For each particle greater than 32 mm, a, b, and c axes were measured using the shape 

box (Shakesby, 1989), the clast was weighed and the results were recorded. 

3.3.2 Particle form 

In order to standardise the classification of particle shape the Zingg 

classification of particle form was used (Figure 3.2). Using the data on a, b and c axes of 

coarse particle, b/a and c/b ratios were calculated and used to classify particles as 

spheres, discs, rods and blades (Zingg, 1935). However, In order to produce four 

distinct shape classes, particles plotting close to the shape boundaries as shown in 

Figure 3.2 (Standard Zingg limitation) were not used in the experiments, instead, limits 



92 

of the ratios of b/a and c/b for the different shape of magnetic tracers were rearranged 
using the criteria below. 

Zingg standard ratios 

Sphere : b/a > 0.67 - c/b > 0.67 

Disc : b/a > 0.67 - c/b < 0.67 

Rod : b/a < 0.67 -- c/b > 0.67 

Blade : b/a < 0.67 -- c/b < 0.67 

New limited ratios arranged for the 
present magnetic tracers 

Sphere: b/a > 0.70 -- c/b > 0.70 

Disc : b/a > 0.70 - c/b < 0.60 

Rod: : b/a < 0.60 -- c/b > 0.70 

Blade : b/a < 0.60 -- c/b < 0.60 

Where b/a = the ratio of the intermediate axis to long axis and c/b = the ratio of the 

short axis to the intermediate axis (Figure 3.2, for further detail of the technique see also 

Chapter 2) 

B L A D E 

Figure 3.2. The Zingg classification of particle form. (The dashed 
frames show the shape boundaries arranged for the magnetic tracers). 

3.3.3 Roundness 

Cailleux's roundness index (Cailleux, 1947) was used to determine the 

roundness values of the particles. According to this method the radius of the sharpest 

corner of the particles is measured in the maximum projection plane. The particle is 

then placed over a series of concentric semicircles of known radius to determine which 

of the circumferences best matches the curve of the sharpest corner. The radius of this 



93 

semicircle is the radius of curvature of the corner (Figure 3.3). The length of the longest 
axis is then measured, and a value for roundness calculated from the formula: 

(3.1) 

fl = (2r/a)1000 

where r is the radius of curvature of the sharpest corner and a is the length of the longest 

axis. This measure produces values ranging from 0 to 1000, where a perfect disc or 

Sphere-shaped particle has an index of 1000 (Briggs, 1977). 

6 5 4 3 2 1 0 1 2 3 4 5 

Figure 3.3 Concentric circles used to measure radius curvature in Cailleux's roundness 
index. 

3.3.4 Flatness 

Cailleux's flatness index was used to define the flatness values of particles 

(Cailleux 1947). This index is based on the relationship between the three primary axes 

of a particle and is determined using the formula: 

(3.2) 
F=((a+Z>)/2c)-100 

where a is the longest axis of the particle, b is the intermediate axis of the particle and c 

is the shortest axis of the particle. The index ranges from 100 to infinity. The minimum 

value relates to a perfectly equidimensional particle. The flatter the particle the higher is 

the flatness index (Briggs 1977). 
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3.3.5 Sphericity 

Krumbein's sphericity index was used to determine the sphericity of particles in 

each size group (Krumbein, (1941b). Although the Zingg classification of particle form 

gives an objective and rapid measure of particle form, it does not give a numerical 

measure of shape. Krumbein's sphericity is given by the following formula: 

where a, b and c are the long, intermediate and short particle axes as previously defined. 

Sphericity values range from a minimum of 0 to a maximum of 1, where 1 indicates a 

perfect sphere. Krumbein's measure of sphericity produces a single value for each 

particle. 

3.4 STREAMFLOW MEASUREMENTS AND TECHNIQUES 

Discharge is gauged on Trout Beck (NY 759 336) approximately 400 m upstream 

of the confluence with the River Tees (NY 762 338). The site consists of a compound 

Crump weir, established in 1971 (Figure 3.4). A full flow record is not available due to 

operating difficulties in the 1980s. Since 1991 the site has been run and maintained by 

the National Rivers Authority (now the Environment Agency) and the discharge data is 

recorded at 15 minute intervals. Based on the criteria explained by Herschy (1999), a 

second site in a straight reach of uniform cross-section was established in November 

1997 on the upper Tees (NY 755 339) to provide an estimate of the discharge just 

upstream of the experimental reach. This consisted of Campbell CR10X data logger 

connected to a Druck pressure transducer (Figure 3.4). The site is powered by a 12-volt 

battery connected to a solar panel. Flow stage is recorded every 15 minutes in line with 

the Environment Agency procedures used at Trout Beck. The river at this second 

gauging site is relatively straight and for the majority of the stream cross-section flows 

over bedrock. Using the velocity-area method and following the procedures detailed by 

Herschy (1999) discharge measurements were made at a range of river flow stages in 

order to construct a stage-discharge-rating curve. 

Gauging of the flow at these two upper sites provided a means of estimating the 

discharge at the lower Tees site below the confluence (See Figures 4.4 and 4.5 in 

Chapter 4). 

(3.3) 

be 
a 



Figure 3.4 Campbell CRIOX data logger connected to a Druck pressure transducer 
for continuous river stage record on upper Tees (Top), and Compound Crump weir 
and discharge gauging station on Trout Beck (Bottom). 
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3.4.1 The Stage-Discharge Curve 

Herschey (1999) states the most important part of a velocity-area current meter 

station is the stage-discharge relation. The rating curve for the Upper Tees station is 

shown in Figure 3.5. At this site station control is stable over a wide range of stages. 

Sedimentation is minimal and aquatic vegetation is largely absent. The cross-section 

varies relatively smoothly and the same boundary roughness conditions apply. Minor 

problems with icing are encountered in the winter months but over the period of 

monitoring this has not affected more than a few days of record. Observations over 

three years confirm that the hydraulics of the site have changed little during this time. 

Simple stage discharge relationships can be expressed by the equation: 

Q = C h n 

Where Q is discharge, h is stage and C a constant. If Q is not zero when h = 0, then a 

stage correction factor (z), the value of the stage at zero flow, must be added 

Q = C (h + z)n 

This equation can be transformed into logarithms: 

logQ = logC + nlog (h + z) 

This is the equation for a straight line of the form: 

y = C + mx 

where m is the gradient of the line and C is the point of intersection of the line with the 

y axis. This can be shown graphically by plotting discharge measurements on log-log 

graph paper. An equation can be fitted to the data using least-squares regression 

techniques. Normally discharge would be plotted as the dependent variable on the y 

axis, however tradition dictates that this is plotted on the x axis. However Q is retained 

as the dependent variable and the regression equation fitted with (h + z) as the 

independent variable. The value z (stage at zero flow) is derived by trial and error 

(WMO, 1980). The 'correct' value of z is the value which, makes the stage-discharge 

relationship plot as a straight line on log-log graph paper. It should be thought of as an 

'effective' zero rather than the point at which the channel goes dry (Gordon et al., 

1992). 

The relationship for the Upper Tees rated section is shown in Figure 3.5. The relation 

plots as a straight line passing through zero and the rating equation is: 

Q = 14.328 h 1 7 2 8 7 
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Because of the difficulties of obtaining velocity measurements at high stages 

extrapolation of the stage discharge relationship to estimate flood flows is inevitable. In 

the present case velocity measurements had to be made by wading. Thus the highest 

gauged flow is approximately 3.6 m 3 s1. This was less than the Bankfull stage for the 

rated section. Because the rating curve plots as a straight line on log-log paper with 

minimal scatter (R2 0.989) it may be extrapolated to higher stages. Shaw (1994) 

cautions such extrapolations if they exceed 20% of the largest gauged discharge and 

cannot be checked by other methods. However, Bovee and Milhous (1978) demonstrate 

that developing a stage-discharge relationship using only three points when extrapolated 

within the range of 40 to 250% of the calibration flow produced more reliable results 

than Manning's Equation. 

1) 

0:1 0) 
O) 
3 
CO 

0. )1 0.1 

1 1 0.01 

Discharge (m3 s"1) 

Figure 3.5 Upper Tees rating curve 

3.5 MAGNETIC TRACING EXPERIMENTS 

The magnetic tracing experiments were carried out on a gravel-bed stream 

system at the Moor House National Nature Reserve. Three experimental sites were 

selected, two on the River Tees (lower and upper sites), and one on Trout Beck. 

Detailed information on the main physical characteristics of the two study catchments is 

given in Chapter 4. 

A total of 900 tracers were prepared for each of the three sites. The size range of 

the tracers was between 32 mm and approximately 256 mm (b axis). Three size classes 
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are defined: 32-64 mm, 64-128mm and >128 mm (Table 3.2). The methods used to 
determine bedload size and shape (form, sphericity, roundness, and flatness) are 
described in detail in section 3.3 of this chapter. The particles were classified on the 
basis of their 'b' (intermediate) axis. Particles are restricted to sizes greater than 32 mm 
because of a combination of practical and experimental considerations. Practical 
limitations in the use of magnetic tracers require a relatively large particle so that a 
magnet can be inserted. For each particle, the a, b, and c axes were measured using a 
particle shape box (Shakesby, 1989). Clasts were weighed and the results recorded. In 
each of the smaller size classes 400 tracers were prepared. In the larger size class, 
because of their lower mobility, only 100 tracers were used (Figure 3.6). Within each 
size class equal proportions of different shaped particles were included. Careful 
screening of the particles on the basis of the Zingg (1935) shape classification produced 
four distinct shape classes: spheres, blades rod and discs. Particles plotting close to the 
shape boundaries shown in Figure 3.2 were not used in the experiment. 

Table 3.2 Details of bed material tracers and site characteristics at the three 
experimental reaches 

Colour Number of stones in Experiment Mean Slope Bed 
Site of tracer each size class of start bankfull of material 

tracer (mm) date channel channel size (mm) 
width 

32-64 64-128 >128 D 5 0 - D 9 0 

400 100 26.11,1997 20.0 0.0006 57.0 99.6 

400 100 10.12.1997 25.0 0.003 80.7 121.6 

400 100 26.11.1997 12.7 0.0095 97.4 181.0 

Particles were drilled and a small RDAL 00029 ferromagnetic magnet was 

placed inside. The sizes of the magnets inserted into the particles were 20-mm length 

and 6 mm diameter. Each magnet was sealed in place using silicon gel then the whole 

particle was painted with masonry paint and labelled with an identification number. All 

tracer particles were measured (a, b, c axes) in order to provide an identification if the 

Upper Tees 
NY 758 339 

Lower Tees 
NY 762 338 

Trout Beck 
NY 759 336 

White 400 

Orange 400 

Yellow 400 
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paint labels were erased. The great advantage of using magnetic tracers is that they can 
be relocated even if buried; covered in algae, hidden in murky water or the tracer paint 
is removed by abrasion (Schick et al., 1988). A background and discussion of the 
methods of the magnetic tracing experiments and bedload transport is given in Chapter 
Two. 

Experimental reach 

900 
particles 

size classification 
(mm) 

400 
I 

32-64 

400 

64-128 

1(|)0 

>128 

sphere (100) 
blade (100) 
rod (100) 
disc (100) 

sphere (100) 
blade (100) 
rod (100) 
disc (100) 

sphere (25) 
blade (25) 
rod (25) 
disc (25) 

Figure 3.6 Experimental design for magnetic tracing experiments at each experimental 
reach. 

The tracers were placed on the bed in a 3 m wide strip band 2 to 3 m in from the left and 

right banks across the width of the channel (Figure 3.7). Tracers were 'seeded' 

randomly into the stream channels in November / December 1997 and allowed to find 

their own settling position. 
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Upper T e e s 

Lower T e e s 

Trout Beck 

0 3 m 1 m 

Figure 3.7 The geometry of the cross-sections where magnetic tracers were 
introduced into the stream channels at three experimental sites. (The sections where 
tracers were placed are shown between the bands in each cross-section). 

Sites were visited weekly to gauge movement and, where noticeable movement 

had occurred, the sites were resurveyed as soon as discharge conditions permitted 

(Figure 3.8). The position of each tracer was measured and mapped with reference to a 

series of monumented pegs set-out along the banks adjacent to the experimental 

reaches. The position of individual tracer particles was surveyed using two methods: 

tape survey and EDM survey. Movements less than 3 m from the start line were not 

included in the analysis. At the outset it was decided that it would not be possible in the 

initial experiments to visit the sites after every flood, therefore bedload movement 

events could not be related to individual floods. However as the main interest is the 

relative movement between different shape classes, this was not seen a major drawback. 

The magnetic tracers had a similar lithology to the natural bed material in the 

three experimental reaches. The range of particle sizes, determined by surface sampling 

of all particles from 1 m 2 (Wolman, 1954), show that the tracers were similar in size to 

the resident coarse material. Although there were equal numbers of the tracers in the 

four shape classes, the natural bed material tended to show a greater number of disc

shaped particles, reflecting the dominance of sandstone lithologies in the natural bed 

material (Table 3.3). 



Figure 3.8 Searching for magnetic tracers at the Upper Tees Site. A magnetic 
locator was used during all searches. 
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Table 3.3 Comparison between the proportions (percentages) of different shaped 
particles in the 'natural' bed material and tracer material at three experimental reaches. 

Tracer site Bed 
material 

Sphere Blade Rod Disc 

Upper Tees Natural 
Tracer 

32.2 
25.0 

12.2 
25.0 

12.1 
25.0 

43.4 
25.0 

Lower Tees Natural 
Tracer 

23.2 
25.0 

16.3 
25.0 

13.6 
25.0 

46.9 
25.0 

Trout Beck Natural 22.6 14.9 15.8 46.7 Trout Beck Tracer 25.0 25.0 25.0 25.0 

Comparison of the size and shape characteristics of magnetic tracers used in the 
field experiments 

According to research aims, both shape and size properties of the test particles 

needed to be replicated at each site. Thus size and shape characteristics of magnetic 

tracers used at the three experimental sites are compared in Appendix 1 in order to 

determine similarity between the three sites. The Appendix 1 first examines and 

compares mean particle size and weight in three size groups and for four shape classes 

at the three sites (sections A1.2 and A1.3). It considers b/a (the ratio of the intermediate 

axis of a particle to its longest axis) and c/b (the ratio of the shortest axes of a particle to 

its intermediate axis) ratios of the test particles (Section A1.4 and section A1.5). The 

degree of roundness of the tracers are examined and compared (section A 1.6). The final 

two sections (A 1.7 and A 1.8) summarise sphericity and flatness properties of the tracers 

in respect to their importance on the hydraulic behavior of a particle during transport. In 

each section mean values and frequency distributions of the particles are examined and 

compared statistically to determine whether there is a significant difference between the 

different sites. Because of the nature of this work this is placed on appendix of the rear 

of the thesis. A brief summary of the principal findings is given below. 

1) In terms of particle size, despite some small differences, the three sites show 

very similar mean size and also frequency distributions (Figures A 1.1 and A 1.2) 

Generally the three sites have very similar mean weight distributions (Figure A1.3), 

although the Lower Tees site has slightly lower mean weight than the other sites. The 

greater mean weight of rods and sphere-shaped particles in the medium and large size 
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groups at almost each site is attributed to the size classification method which, 
regardless of shape, is based on the diameter of the "b" axes of each particle. In other 
words, length and thickness of particles were not taken into consideration. Thus for 
similar sizes, shape of the particles consistently influences the weights and this is more 
pronounced at larger sizes. In each shape class, mean differences in weight between 
medium and large size groups at all three sites were found to be significantly greater 
than that between small and medium size groups (Table A 1.4). Mean weights of the 
particles in all three size groups are lower at the Lower Tees site but increase gradually 
towards Trout Beck and Upper Tees. Except for disc-shaped particles in the small and 
medium large group, sphere, blade and rod-shaped-particles have similar frequency 
distribution in size at the three sites (Figure A 1.4). 

2) In terms of b/a and c/b ratios of particles, comparisons have shown that the 

three sites have similar means and frequency distributions within each size group and 

also for the four shape classes (Tables A 1.5 and A 1.7). Mean b/a ratios vary between 

0.68 (Lower Tees) and 0.67 (Trout Beck and Upper Tees sites). 

3) In all three size groups, mean roundness values at the three sites vary between 

300 and 400. There is a small difference between the Trout Beck and Upper Tees sites 

but the difference increase between the Lower Tees, Trout Beck and the Upper Tees site 

(Table A 1.9, Figure A 1.9). In each size group, sphere and disc-shaped particles have 

greater mean roundness values than rods and blades. At the Lower Tees site mean 

roundness values are, in decreasing order, sphere, disc, blade and rod respectively. At 

the Trout Beck and Upper Tees sites the orders is sphere, disc, rod and blade. Except in 

the medium size group, comparisons proved that the three sites have very similar shape 

distributions and therefore there is no statistically significant difference between them in 

small and large size groups (Table A 1.10) 

4) The sphericity of the three sites varies between 0.59 and 0.62 (Table A l . l l ) . 

Not surprisingly, within each size group sphere-shaped particles always have greatest 

mean sphericity values (0.84 and 0.86), while blade-shaped have the lowest value (0.30) 

(Figure A l . l l ) . For all the three size groups at Lower Tees and Trout Beck sites the 

order of increasing mean sphericity values is blade, rod, discs and sphere. The Upper 

Tees site also shows a similar trend, except for the medium size group, in which disc

shaped particles have a lower mean value than rod-shaped particles. 

5) All the three sites have very uniform mean flatness values, which vary from 

265 (Lower Tees) to 267 (Table AL13, Figure A1.13). Not surprisingly, blade-shaped 
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particles have the greatest mean flatness values while sphere shaped-particles have 
lowest values. No statistically significant difference was found between the three sites 
within each size group in sphere, rod and disc-shaped particles (Table A 1.14). 

Overall, all three sites in all three size group show very similar size and shape 

distributions. 

3.6 CHARACTERISTICS OF THE THREE EXPERIMENTAL REACHES: 
RIVER CHANNEL GEOMETRY, BED MATERIAL ROUGHNESS, AND 
CHARACTERISTICS OF THE BED MATERIAL. 

In order to determine the boundary conditions of the experimental sites 

topographic and bed material size and shape characteristics of the experimental sites 

were measured. 

3.6.1 Topographic methods 

The planform geometry of the channels was mapped at each experimental site 

with reference to a series of pegs set out along the banks adjacent to the experimental 

reaches (Figure 4.4 In Chapter 4). In addition, at each experimental reach, the cross-

sectional geometry of 10 monumented cross sections were surveyed using levelling. 

Cross-sections were spaced approximately 15 metres apart along the channel. Results of 

measurement are shown in Chapter 4. 

3.6.2 Measuring bed material roughness and sampling of surface and sub-surface 
bed material 

Downstream changes of bed material roughness and surface/sub-surface bed 

material characteristics were measured in the experimental reaches. At each cross-

section, sampling sites were selected to satisfy four conditions: 

• lack of evidence of artificial disturbance of bed material 

• absence of thick vegetation covering the bed surface which would indicate that bed 

material had not moved in several years 

• bare gravel surfaces were sampled (where possible, upstream parts of bars were 

selected as sampling site because they contains the coarsest gravel and exhibits little 

sorting (Kodama, 1992). 
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Five sampling sections, 30 m apart, were surveyed at each reach. The Wolffian 

(1954) bulk sampling procedure was used. In each section a i m 2 quadrat was placed on 

the selected section of channel bed. Bed material roughness was measured in the 

downstream and transverse (to the flow) directions using a pin (roughness) frame 

(Figure 3.9). Pins were spaced at 20 mm intervals and the typical precision in vertical 

measurements was +/- 2 mm. Al l exposed bed material within the quadrat was 

collected, weighed and measured to determine its size and shape characteristics. Bias 

correction was applied using the method described in Fripp abd Diplas (1993). Two 

photographs of the sampling sections were taken one before and one after the sampling 

(See Chapter 4). After removing all surface material, a volumetric sample of the sub

surface bed material was taken. Sampled material was then weighed and sieved to 

determine the particle size distribution. Enough material was sampled to ensure that the 

weight of the largest particle was not more than 2 % of the total weight of the sampled 

material (Kodama, 1992). 

f 

Figure 3.9 The pin (roughness) frame used to measure bed material roughness The 
example shows the frame deployed at the Upper Tees site in a transverse orientation. 
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3.7 TILTING TABLE EXPERIMENT 

Introduction 

The critical angle of particle motion has been previously described by several 

terms: pivoting angle, friction angle and the angle of sliding friction. Some earlier 

investigators pointed out that both particle pivoting and friction angle varies with the 

shape, size, and orientation of the individual particles, as well as the shape, size, 

orientation, and packing arrangement of the particles comprising the local bed (for 

detail see Chapter 2). The objective of this experiment is to examine the mechanical 

processes of entrainment, based on the analysis of friction and pivoting angles of 

particles in various shape and size classes. The lower the friction angles the easier the 

particle is to entrain. It is assumed that, due to their better rolling capability, sphere and 

rod shaped particles would entrain at lower friction angles than those that are flat shaped 

(e.g. disc and blade). The outcome of the tilting table experiments will be related to the 

field observations to provide some important information in explaining why some 

tracers have moved longer transport distances than the others in the study reaches. 

The test particles used for the present experiments were in various shape and 

size classes. Two sets of experiments were designed to test this objective: experiments 

on artificially-formed bed roughness and experiments on naturally formed bed 

roughness. The experimental design for the tilting table experiments is shown in Figure 

3.10. 

Test Particles 

Three 
sizes (mm) 

Four 
shapes 

32-64,64-128 
>128 

i 
Two 

orientations 

Sphere, Blade 
Rod, Disc 

Bed 
Roughness 1 

Bed 
Roughness 2 

Transverse 
Parallel 

Bed 
Roughness 3 

Bed 
Roughness 4 Natural bed 

Figure 3.10 Experimental design for the tilting table experiments 



107 

3.7.1 Tilting table experiments on artificially formed bed roughness 

Sets of experiments were carried out using four artificially-made bed roughness 

plates. Four metal plates ( lm 2 ) were used as base plates for four different bed 

roughnesses. Figure 3.11 shows one of the artificially formed bed roughness plates 

(Roughness 4)(for detail see Chapter 6). The roughness was formed using natural coarse 

gravel of various shape and size. On each base plate the size of the bed particles (base 

pebbles) was limited to a specific grain size range (Table 3.4). The base pebbles were 

secured to the base plates with a silicon sealant. 

Table 3.4 The grain size characteristics of the four bed 
roughnesses. 

Bed Size of the base grains 
Roughness type (b axis) 

Roughness 1 8 - 11.2 mm 

Roughness 2 16 -22 .4 mm 

Roughness 3 32 - 48.0 mm 

Roughness 4 64 - 96.0 mm 

The test grains used to determine friction angles, on each of the bed roughnesses, 

included both artificially-moulded particles as well as some naturally-formed pebbles. 

Three test grain sizes were used: b axes; 24, 48 and 96 mm. The size and shape 

characteristics of the test particles used for different tilting experiments are given in 

Chapter 6. 

3.7.2 Tilting table experiments on naturally formed undisturbed bed roughness 

In order to measure the friction angle on a bed that is composed of naturally 

formed fluvial gravel, undisturbed samples of the bed surface were obtained from one of 

the study streams by applying a thin epoxy resin to areas approximately l m 2 . The 

hardened rigid surfaces of the bed were excavated and brought into the laboratory and 

rebedded in a sand tray (See Chapter 6). In order to provide strength, the sample was 

mounted in a wooded frame. Particular attention was paid to maintain natural grain 

geometry and texture during the sampling processes. This is why a thin epoxy resin was 

used to provide a suitably strong, low viscosity adhesive that did not f i l l the natural pore 
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surfaces and also alter markedly the natural grain texture of the sampled surfaces. The 
bed surface was sampled from a she representative of the experimental sites. At the 
selected experimental site (Trout Beck) the sample was chosen within an area of 
consistent bed texture. A wire frame was thrown onto the bed while looking away. The 
frame was placed parallel to flow direction, and sampling of extreme bed topography 
(bar fronts, etc.) was avoided. 

ii 

Figure 3.11 One of the artificially-made bed roughness plates. The example shows a 
tilted metal base plate on which natural coarse gravels (b axes in 64-96 mm size range) 
were secured. 
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A random sampling method, which is similar to that of Wolman (1954), was 

used in order to determine grain shape and size of sampled bed, as explained in 

Buffington et al (1992). Particle size of the excavated bed surface was determined 

randomly lowering a hand-held needle (while looking away) onto the surface and 

measuring the selected particle's apparent longest; intermediate and shortest axes with a 

caliper. Sampling was limited to particles greater than 8 mm. The sampled bed surface 

was periodically rotated to ensure random particle selection and a total of 100 particles 

were measured. A tilting apparatus was developed on which the sampled bed was 

mounted on a tilting board, which was hinged at one end Onto a base-board (Figure 

3.12). A clinometer was fixed onto the tilting board. The board was tilted by raising it at 

1° intervals. Test particles were randomly placed on to the sampled bed. The raising and 

lowering movement of the tilting board was operated by a sensitive winding mechanism 

(Figure 3.12). 

Following the methodology of Miller & Byrne (1966) and Buffington et al 

(1992), within each size category, particles friction angles were measured by placing 

selected particles (which had different shapes) on the sampled bed and tilting in the 

downstream direction until the particles moved out their pockets (Figure 3.11 and 

Chapter 6). Thus the angle of tilt of the bed at this point was the friction angle for the 

grain of interest. The test particles used to measure friction angles on each bed were 

made using art clay and natural stones. Details of the size and shape characteristics of 

the test particles used in the experiments are given in Chapter six. 
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3.8 VISUALISATION O F P A R T I C L E MOTION: S T R O B E PHOTOGRAPHY 

Introduction 

Shape, size and density are fundamental properties controlling the hydrodynamic 

behaviour of sediment particles. Grain shape can play a significant role in bedload 

transport processes by controlling the nature of particle settling and near-bed motion. 

The aim of these experiments is to investigate the influence of grain shape on settling; 

grain impact; initial motion and transport of gravel-size particles. These experimental 

results cannot be directly related to the actual field observation, though they do provide 

important information on the hydrodynamic behaviour of sediment transport. This may 

help explain the mechanism of selective sediment transport in gravel bed river. 

A series of visualisation experiments were deigned to examine collision and 

hydraulic behavior of particles of various shape and size in water. The experiments were 

carried out in a 10 litre rectangular tank. The method follows Schmeeckle (1998). The 

setup of the experiment is shown in Figure 3.13. 

PLAN VIEW 

Tank 

Mirror 

Landing 
surface 

Strobe 

Camera 

SIDE VIEW 

Mirror 

TANK Strobe 

Figure 3.13 Plan and side views of the experimental apparatus used to take strobed 
photographs of particle collisions with an inclined plane in water. 
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Particles were dropped onto a 5 mm thick glass plate. The angle of the plate 

could be inclined. A 35 mm camera with a 35-70 zoom lens (set at 35 mm) was used. A 

strobe light was directed at the subject at right angles to the camera, and a mirror was 

placed opposite the strobe with the subject in between. This configuration meant the 

particles received strobe lighting from two directions. The strobe rate was adjustable 

with a maximum 250 flashes per second. The back of the tank, opposite the camera, was 

covered with a piece of black cotton material in order to have clear definition of the 

particles during movement (Figure 3.13). 

The camera shutter was kept open for the duration of each particle drop and 

collision in order to observe multiple images of the particle before and after impact on a 

single frame of f i lm. The pattern of each particle were caught on a single frame of fi lm. 

The f i lm was used was 400 ISO black and white negative f i lm which was uprated to 

3200 ISO. 

3.9 CONCLUSION 

The purpose of the magnetic tracing experiments was to investigate the impact 

of particle shape and size on the travel lengths of transported sediment. Further to this 

the influence of bed topography in regard of sediment transported was also considered. 

These results collectively illustrate the impact different particle size and shape has on 

transport lengths, though fail to provide an explanation for the observed behaviour. To 

seek some explanation experimentation with a tilting table and visualisation tank was 

performed. The tilting table determined the variability in the mechanistic behaviour of 

particles according to their differing shape, size, and orientation, on different bed 

roughnesses. The visualisation experiment explained the influence of particle shape, 

size, and density on the dynamics of bedload motion, i.e. settling velocity; transport 

velocity; and the collective mode of particle movement. 
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C H A P T E R 4: T H E S T U D Y C A T C H M E N T A N D R E G I O N 

4.1 G E N E R A L DESCRIPTION OF T H E STUDY A R E A 

The main field experiments were undertaken in two coarse-gravel-bed streams 

in the North Pennines (Figure 4.1). The North Pennines are an area of upland moorland, 

located at the northern end of the Pennine chain. Most of the area lies above 450 m O.D. 

with the highest point being the summit of Cross Fell at 893 m O.D. To the North, the 

area is bounded by the Tyne Gap (Stublick Fault) and to the South by the Staimore 

Trough (Lunedale Fault). To the West the Pennine Fault produces a large western 

sloping escarpment. To the East the block is tilted under the Durham Coalfield 

(Warburton, 1998). 

The area is generally characterized by an upland landscape of high, open and 

exposed plateaux and broad ridges which support moorland and montane habitats with 

few trees. Large expanses of blanket bog overlie mineral soils that have developed on 

glacial, solifluction and alluvial materials. Sheep graze the whole area. The North 

Pennines area is an area of Outstanding Natural Beauty and regarded by many as 

England's last wilderness (Warburton, 1998). 

4.2 G E O L O G Y R E L I E F AND DRAINAGE 

4.2.1 Geology 

The solid geology of the Northern Pennines is dominated by rocks of the Carboniferous, 

consisting mainly of alternating shales, limestones, sandstones, grits and coal. The 

lithology and structure of the region has been described in detail by Johnson and 

Dunham (1963), Johnson and Hickling (1970) Taylor et al (1971) Burgess and Wadge 

(1974) and Dunham (1990). The solid rocks range in age from Ordovician, which 

comprises Borrowdale Volcanics and Skiddaw Slates, to Triassic. The classic 

Carboniferous stratigraphy of Lower Carboniferous Limestones, Millstone Grit and 

Coal measures is no longer favoured by modern geologists (Duff and Smith, 1992). 
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Preferred terms are the Dinantian and Silesian (Figure 4.2). Following the Caledonian 
orogen, the main geological structures of the region developed in Northern England. 
These structures are characterized by the 'block and trough system'. The Weardale 
granite of post Silurian age (400 Ma) occurs as a batholith beneath the area and has 
been responsible for regional deformation and the gentle eastward dip of the Alston 
block (Bott, 1967). 

During a Permo-Carbomferous intrusive episode the famous dolerites of the 

Great Whin Sill were deposited. This period was accompained by crustal movement 

resulting in the development of the Pennine fault scrap at the western edge of the Alston 

block. Mineralisation of mainly Carboniferous rocks during the early Permian deposited 

the base metals and minerals (zinc, and iron with smaller quantities of lead copper, 

silver and cobalt) which have made metal mining in the North Pennines so famous. 

Although the mining period began in Roman times, until the 17 th century mining 

production was restricted to small-scale operations. However, improved mining 

techniques in the mid 17 th century revolutionised production, leading to a peak in 

activity in the early 1860s to the 1880s before finally petering out in the early 20 t h 

century. The legacy of mining has left an enormous impact on the local landscape 

(Warburton, 1998). 

The most recent solid geology of the area is characterized by the deposition of 

Permian and Triassic sedimentary rocks. Continued earth movements throughout the 

Triassic, intra-Jurassic and Teritary resulted in complex regional fault movement in the 

area. Finally, the youngest extensive sediments are associated with the glaciogenic 

sediments of the last major glaciation (Late Devensian). Holocene alluvium and 

colluvium locally mantle the valleys and slopes. 

Geomorphological development of the river drainage systems in the region is 

strongly controlled by the geology and structure. For example, easterly drainage of the 

region's major river systems is influenced by the eastwards dip of the Alston Block. On 

a more local scale outcrops of the Great Whin Sill have a strong influence over many 

surface forms. High Force on the River Tees in Upper Teesdale plunges 22 m over the 

sill. At this point the Whin Sill is 9 m thick and overlies Carboniferous shale and 

limestone. Erosion of the shale has resulted in the collapse of the Sill and headwards 

recession of the waterfall (Goudie and Gardner, 1985). 
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Figure 4.2 Regional geological map showing the location of the study area (After, 
Warburton, 1998) 
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4.2.2 Glaciation 

The North Pennines have relatively widespread evidence of glacial deposits and 

erosion. Abundance of meltwater channels and the evidence of glacial plucking on the 

peaks of the summit ridge of the pennines at Cross Fell and Little Dun Fell shows that 

even the highest ground in the region was over-ridden by ice at the maximum advance 

of the Quaternary ice sheets (Peel, 1949; Bradshaw, 1976). During the Late glacial the 

North Pennines did not support an extensive ice cover but a range of periglacial 

landforms developed on the summits. Locally small glaciers (e.g. escarpment glaciers) 

may have developed in localities which favoured northeast orientation and deposition of 

blown snow (Mitchell, 1991; Wilson and Clark, 1995). 

4.3 C L I M A T E AND H Y D R O L O G Y 

Although there is an extreme paucity of data for upland climates, especially in 

terms of primary meteorological and climatological data in Britain, the climate at Moor 

House has been comparatively well documented. Daily meteorological observations, 

measurements of rainfall rate, continuous river flow and discharge gauging (on the 

Trout Beck) soil temperature, evaporation, sunshine, radiation and wind speed are 

available during a greater part of the last three decades. 

In general, the North Pennines has an upland maritime climate that is 

characterized by cool, cloudy and wet conditions, due to the high altitude and proximity 

to the sea (Manley, 1942, 1943; Simithson, 1985). Rainfall is very high and increases 

with altitude across the region. High wind, heavy precipitation (2000 mm) and winter 

snows are the main characteristics of the climate in the area. In winter snow can lie for 

up to two months and frost action is relatively effective on bare surfaces (Warburton, 

1998; Table 4.1). 
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Table 4.1 Some of the observed climate characteristics in Moor House (NY 757 328, 

556 m) (After Warburton, 1998). 

Environmental Value Note 
Variables 
Annual mean max °C 8.3 1953-1978 

Annual mean min °C 1.9 1953-1978 

Frost days per year 81 

Annual ppt. mm 2010 1941-1970 

Precipitation days 247 1956-1979 

Daily total max. mm 104.6 January 1977 

Snow fall days 61 1953-1978 

Fog days 52 Visibility <1 km at 0.900h 

In general, the climatic, topography and vegetational factors of the area combine 

to produce very high runoff. Upland rivers have flashy flow regimes when compared to 

lowland rivers. This is due to the steeps slopes, high precipitation, impermeable geology 

and soils and also high drainage densities in upland catchments. In general, the annual 

cycle follows a typical pattern with higher runoff during the winter months, while lower 

flows occur in summer months. Figure 4.3 shows rainfall and runoff during the period 

of October 1994 - October 1999 for the Trout Beck catchment and indicates a highly 

efficient catchment with very high rainfall : runoff ratios. A main characteristic of 

Pennine rivers is their flashy nature and the importance of snowmelt in generating 

runoff (Archer, 1989, 1992). High runoff is generated by connective storms heavy 

rainfall and / or rapid snowmelt events. 

4.4 V E G E T A T I O N AND SOILS 

The flora and vegetation of upper Teesdale and Moor House are probably more 

widely known than that of any other area in Britain. The typical present-day mantle of 

vegetation is made up of ling heather (Calluna vulgaris), cotton grass (Eriophorum spp) 

and Sphagnum moss together with other bog plants. Currently the main land cover types 

are extensive blanket and valleys bogs (Sphagnum moss), heather and cotton grass 

moors, with dry heath, acid grassland and bracken on the drier slopes. Sub-alpine 
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grasslands occur on the highest summits. Land use is mainly sheep farming with some 
grouse shooting and beef farming (Warburton, 1998). 

During the early and middle Post-glacial (Mesolithic and Neolithic periods) 

small-scale clearance of the woodland was initiated. Peat started to replace woodland 

some 3800 years ago in Upper Teesdale. The pace of woodland clearance continued 

throughout the Bronze Age and Iron Age and by Roman times the majority of the 

Pennine uplands was probably cleared of forest (Taylor et al., 1971; Pounder, 1989). 

Climate fluctuations and land-use changes during the Holocene have led to periods of 

instability. 

Mining used to be the main economic activity in the early 19 th Century. 

Although it is difficult to assess fully the effect of mining, it is comparatively easy to 

see the evidence of such activities in the area. Studies (e.g. Macklin and Rose, 1986; 

Macklin, 1997) have shown that mining and degradation of the blanket bog by changing 

land-use practices have had a major influence on the hillslopes, drainage and sediment 

supply to river systems. The legacy of this period is still very evident in the landscape 

today. Macklin pointed out that following the last glaciation, Holocene river 

development has responded to declining sediment supply and isostatic readjustment. 

Deforestation and metal mining have led to changes in the general trend of alluviation 

and in places partial valley infilling (Macklin, 1997). Periodic storms cause major 

changes to upland fluvial environments in terms of both slope and channel sediment 

systems (Carting, 1986). 

Soils of the Pennine uplands are strongly influenced by relief, drainage and 

parent material. Because of the wet and cool climate, waterlogged soils are widespread 

and as a result of these the characteristics the peat deposits of the region have formed. 

Indeed, organic soils, in the form of hill-peat deposits, which strongly influence the 

hydrology, are dominant in the area. In the past, it was believed that the presence of 

peat deposits reduces flood intensity and sustains baseflow in streams during periods of 

low precipitation. However, recent studies have shown that peat is highly productive of 

runoff and generates little baseflow (Burt et al., 1998). Blanket peat (pH 3.0 to 4.2) is 

widespread in wet areas (blanket bogs and valley bogs) as are peaty podzols and peaty 

gley soils (pH 3.5 to 4.5). On better-drained areas and slopes, fell-top podzols and 

brown earths occur (Johnson and Dunham, 1963). Apart from organic soils, Johnson 

and Dunham (1963) distinguished six major mineral soil divisions, all derived from 

carboniferous parent material. These soils are; gleys, podsols, brown earths, red-brown 
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limestone soils, skeletal soils, soil complexes and solifluxion soil. 

4.5 E X P E R I M E N T A L SITES 

The main field experiments were carried out in two coarse gravel-bed streams in 

the Moor House National Nature Reserve in the Northern Pennines. The experimental 

sites consisted of two on the River Tees, designated the Lower (NY 762 338), and 

Upper sites, and one on Trout Beck (NY 759 336) The Trout Beck joins the River Tees 

between the Upper and Lower Tees sites (Figure 4.4) 

These streams were chosen as study sites for six main reasons: 

1. Little is known of sediment transport mechanisms in small upland streams. 

However, upland channels are important, because they constitute a significant part 

of the total drainage network and are important in erosion and sediment transport 

processes in upland areas (Klein, 1976). Small headwater streams contribute 

significant amounts of eroded material to main channels, and are frequently the first 

parts of the fluvial system to show a response to inadequate land management 

(Newson 1980; Carling 1983). 

2. The analysis of gravel samples, and visual inspection of channel patterns (gravel 

bedload, high gradients and pool-riffle sequences), suggest that these streams are 

typical of many other small streams of upland areas. 

3. The streams are small enough to allow detailed observations and measurement of 

the movement of individual bed particles and pebble-sized clasts. 

4. The stream channels represent a typical character of wide and shallow upland 

streams, which become almost dry in the summer months, thus enabling sampling of 

the surface material. However, flood flows are common. 

5. There is no evidence of recent artificial disturbance of bed material. 

6. Most of the year there is easy access to the sites (Figure 4.1) and one of the sites 

(Trout Beck) is gauged by the Environmental Agency. 

Table 4.2 shows the main hydrologic and catchment properties of these streams. 
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Table 4.2 Main physical characteristics of the study streams. 

Name of Catchment Dominant Mean channel Mean channel Drainage Surfacegrain 
stream area (km2) bedrock width at the slope at the density size (mm) 

lithology experimental experimental (km/km'2) 
sites (m) sites (m) (D50) (D90) 

Trout 
Beck 

Upper 
Tees 

Lower 
Tees 

11.6 
Sandstone 
limestone 

Shale 
Sandstone 

15.6 Limestone 

27.2 
Sandstone 
Limestone 

11.30 

19.40 

22.10 

0.0095 

0.0006 

0.003 

3.57 97.4 181.0 

3.15 57.0 99.6 

3.15 80.7 121.6 

4.5.1 Trout Beck 

The Trout Beck is a headwater tributary of the River Tees. It drains from the 

south-west to north-east from the Cross Fell area of the North Pennines (Figure 4.5). 

The catchment covers an area of 11.6 km2 and rises to 848m altitude. The Trout Beck 

catchment lies in Moor House National Nature Reserve, which is managed by English 

Nature. The south of the catchment is formed by the hills of Dufton Fell (768 m), and 

Knock Fell (794 m), whilst in the west it is formed by Great Dun Fell (848 m). The 

northern edge is defined by Milburn Forest and Hard Hill (678 m). The eastern edge 

runs from the northern slopes of Dufton Fell along the margin of roughsike down to the 

confluence with the Tees at Trout Beck foot (Figure 4.5). 

The Trout Beck catchment is characterized by an upland area dissected by a 

main valley, which contains a coarse-bed wandering stream. The catchment is about 6 

km long and the altitude ranges from 848 m at Great Dun Fell (head of the catchment) 

to 630 m at the confluence of the River Tees (Figure 4.6). Drainage density is high by 

British standards and it increases markedly towards the headwater zone, probably due to 

a combination of high relief, higher rainfall and the impermeability of the rock in the 

area of superficial till deposits. In addition, the existence of some artificial drainage 

grips and mining leads also contributes to the higher drainage density. Towards the 

headwater reach, well-developed gullies have produced particularly high densities. In 

the lower reaches a large tributary (Moss Burn) joins the main stream from its southern 

side (Figures 4.5 and 4.6). 
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Figure 4.6. Longitudinal profile of the Trout Beck and also its 
major tributaries (Based on : 1: 25000 Ordnance Survey Map, 
Outdoor Leisure '31', 1995) 

The longitudinal profile of the Trout Beck is concave in shape. (Figure 4.6). The 

river falls about 200m in its first 2.5 km where the channel is narrow and has steep side 

slopes. In the lower reaches the channel gradient falls gradually and the channel pattern 

follows a wandering course. The average channel gradient is 0.0095m at the 

experimental reach (Figure 4.5). 

4.5.2 River Tees 

The Tees, which has a total 2400 km 2 catchment area rises in the Cross Fell area 

but drains to the southeast through Cow Green reservoir out onto the Tees lowland 

where it diverts east then northeast to join the sea south of Hartlepool. 

Two reaches of the Tees were chosen as the experimental sites. One 

approximately 100 metres below the confluence with Trout Beck and the other 

approximately 400 upstream of the confluence. The catchment area of the River Tees is 

15.6 km 2 (from the upper Tees experimental reach) and it drains Cross Fell, Great Dun 

Fell, Hard Hill and Knock Fell. The catchment is 7.5 km long and altitude ranges from 

893 m at Cross Fell to 630 m at the confluence with Trout Beck (Figure 4,7). The north 

the catchment is formed by Round Hill (685 m), and Crossgill Head (615 m). In the 

west it is bounded by Cross Fell (893m), in the south by Little Dun Fell (842 m), Great 
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Dun Fell (848 m) and Hard Hill (678 m). The eastern boundary runs by the summit of 
Round Hill (686 m) and the south western slopes of Belbaver Rigg (Figure 4.5). The 
longitudinal profile of the River Tees is a concave shape. The river falls about 150 m in 
its first 1.5 km where the channel is narrow and has steep side slopes, and then its 
gradient decreases slowly (Figure 4.7). The channel pattern contains many bends, 
separated by straight sections which seldom exceed 200 m in length. The average 
channel gradient at the experimental sites is very low ( 0.0006m at the Upper Tees and 
0.003m at the Lower Tees). Drainage density of the catchment is high by British 
standards (3.15 km km"2) and it increases markedly towards the headwater zone, due to 
high relief, higher rainfall and impermeability of the lithology. On the right bank many 
tributaries join the channel and the intensity of gullies increase towards the headwater 
zone (Figure 4.5). In the study reach the river bed material consists of sandstone pebbles 
and cobbles forming a framework, the interstices of which are filled by a matrix of finer 
sediments. The overall pattern is of a wandering, coarse-bed stream. 

800 

750 

^ 700 
E, 
£ 650 
O) 
"5 
1 600 

550 

500 I ' ' ' ' L — ' ' ' ' 1 1 1 1 1 I I I I I I -I I 1 1 1 1 
o m m m m L n m i o m m i n m m i o m m 

t " ^ f ~ - r ^ - h - i ^ - h - r - ~ h - r ^ N h ~ f - - r - v r " - r ^ 
c o c o o o c o r o c o c o c Q o o c o c o o o T O o o r o 

* - i - C \ I C \ J C 0 C 0 ' < f r ' f r W W < O < O I ^ 

Distance from the head of catchment (m) 

Figure 4.7 Longitudinal profile of the Upper Tees and also its 
major tributaries (Based on : 1: 25000 Ordnance Survey Map, 
Outdoor Leisure '31', 1995). 
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4.6 MAIN PHYSICAL CHARACTERISTICS OF THE STUDY REACHES 

The analysis of gravel samples, and visual comparison of channel characteristics 

(gravel bedload, high gradients in the upstream reaches, wide and shallow channel 

shapes and crudely developed pool-riffle sequences) suggest that the two study streams 

are typical of many other small streams of upland areas in the U.K. Comparison of 

Trout Beck and the Tees shows similar concave longitudinal profiles with average 

gradients between 0.04 and 0.03 (Table 4.2 and Figures 4.6 and 4.7). Drainage densities 

are generally high by British standards and vary between 3.15-km km"2 for the River 

Tees and 3.57 km km"2 for Trout Beck (Figure 4.5). Sampled bed material in the study 

reaches consists mainly of sandstone (95 %) and smaller quantities of shale and 

limestone (5 %). 

4.6.1 Channel shape 

The velocity of a stream is primarily influenced by cross-sectional form, channel 

roughness and gradient. In other words, the bedload transport efficiency of a channel 

depends, in part, on the distribution of shear stress and velocity, both of which vary 

with channel shape and bed roughness. Several studies have shown that there is a link 

between channel shape and its transport capability (Hooke, 1995; Park, 1995; Lane and 

Richards, 1995; Jong and Ergenzinger, 1995). For example, in narrow, deep channels 

the velocity gradient is highest close to the edges. Thus in such a channel there will be 

a higher rate of shear near the banks than on the bed. On the other hand, a wide, 

shallow channel has a higher velocity gradient and a greater rate of shear near the bed 

than the channel sides, which aids entrainment and transport of bedload (Morisawa, 

1968; Pitty, 1971; Gregory, 1977,1979a and 1979b; Ferguson, 1981). 

Measured cross-sections at each site show a wide-shallow channel form which is 

typical of many upland streams. Figures 4.8, 4.9 and 4.10). The increasing rank of the 

mean channel widths is 10.3 m, 19.4 m and 22.1 at the Trout Beck, Upper Tees and 

Lower Tees sites respectively. Lower standard deviation values for the channel widths 

at Trout Beck (1.33) and Upper Tees (2.00) indicate that the Trout Beck and Upper 

Tees reaches have a very uniform cross-section changes downstream, while Lower Tees 

exhibits a relatively wide variation (8.39) (Table 4.3). As significant indicators of 

channel efficiencies, the lower width-depth ratio and also greater hydraulic radius at 
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Figure 4.8 Downstream changes in cross-section profiles of the Lower Tees site in 
August 1998. 
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Figure 4.9 Downstream changes in cross-section profiles of Trout Beck, in August 1998. 
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Figure 4.10 Downstream changes in cross-section profiles of Upper Tees, in August 1998. 
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Table 4.3 Bankfull stream-channel geometry of Lower Tees, Trout Beck and Upper Tees 
Upper Tees 

Cross Width Depth Wetted Cross- Hydraulic Width- Max depth 
sections (m) (m) perimeter section radius depth (m) 

(m) area (m2) ratio 
1 17 0.25 17 4.3 0.25 68.0 0.76 
2 18.5 0.22 14 4.1 0.29 84.1 0.82 
3 17.5 0.23 10 4.0 0.40 76.1 0.75 
4 17 0.17 16 2.9 0.18 100.0 0.51 
5 18 0.22 17 4.0 0.23 81.8 0.4 
6 22 0.40 21 8.8 0.42 55.0 0.57 
7 22.5 0.39 21.5 8.8 0.41 57.7 0.58 
8 21 0.43 19.5 9.0 0.46 48.8 0.59 
9 20 0.34 19.5 6.8 0.35 58.8 0,59 
10 20 0.37 20 7.4 0.37 54.1 0.53 

Mean 19.4 0.30 17.6 6.0 0.34 68.4 0.61 
Standard 2.0 0.09 Deviation 2.0 0.09 3.6 2.4 0.09 16.5 0.13 

Lower Tees 
Cross Width Depth Wetted Cross- Hydraulic Width- Max depth 

sections (m) (m) perimeter section radius depth (m) 
(m) area (m2) ratio 

1 21.0 0.35 21.0 7.4 0.35 60.0 0.53 
2 18.5 0.41 18.0 7.6 0.42 45.1 0.59 
3 15.0 0.58 15.0 8.7 0.58 25.9 0.86 
4 16.5 0.5 15.5 8.3 0.53 33.0 0.78 
5 16.0 0.73 16.0 11.7 0.73 21.9 1.03 
6 17.0 0.56 15.5 9.5 0.61 30.4 0.99 
7 18.5 0.34 18.5 6,3 0.34 54.4 0.57 
8 23.5 0.39 21.5 9.2 0.43 60.3 0.58 
9 37.5 0.49 36.5 18.4 0.50 76.5 0.86 
10 37.0 0.40 35.0 14.8 0.42 92.5 1.2 

Mean 22.1 0.48 21.3 10.2 0.49 50.0 0.80 
Standard 
Deviation 

8.39 0.12 7.98 3.77 0.12 23.11 0.23 

Trout Beck 
Cross Width Depth Wetted Cross- Hydraulic Width-depth Max depth 

sections (m) (m) perimeter section radius ratio (m) 
(m) area (m2) 

(m) 

1 12.2 0.46 9.8 5.6 0.57 26.5 0.79 
2 10.8 0.82 9.8 8.8 0.90 1.3.1 1.23 
3 10.0 0.79 9.5 7.9 0.83 12.6 1.12 
4 9.1 0.45 8.4 4 > 0.48 20.1 0.76 
5 8.7 0.36 8.2 3.1 0.38 24.2 0.61 
6 9.3 0.35 9.0 3.2 0.36 26.4 0.51 
7. 10.3 0.2 9.9 2.1 0.21 51.3 0.43 
8 9.4 0.59 9.3 5.5 0.60 15.9 0.88 
9 10.6 0.64 9.7 6.8 0.70 16.6 0.97 
10 12.7 0.39 11,8 5.0 0.42 32.6 0.66 

Mean 10.3 0.51 9.5 5.2 0.55 23.9 0.8 
Standard 
Deviation 1.33" 0.20 1.00 2.17 0.22 11.61 0.26 
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Trout Beck indicate greater stream competence to transport its channel load if other 
factors are held equal for the three experimental reaches. In other words, greater wetted 
perimeters, and width-depth ratios and also smaller hydraulic radius values at the Upper 
and Lower Tees sites may (if discharge is held constant) lead to a decrease of the 
availability of the streams energy to transport its bedload when compared to Trout Beck 
(Table 4.3). Indeed comparison of the parameter as shown in Table 4.3 indicates that 
river channels at the experimental sites of Upper and Lower Tees exhibit relatively 
shallower channel form, which results in greater friction and a reduced velocity (Figures 
4.8 and 4.10). Whereas, the Trout Beck site tends to have a smaller amount of water in 
its cross-section contact with wetted perimeter, which creates less friction, and allows 
greater velocity. 

At the Trout Beck site almost all cross-sections have greater deeps than the other 

sites. The increasing order of mean depth is 0.30, 0.48 and 0.51 m for Upper Tees, 

Lower Tees and Trout Beck. All sites do not show regular downstream changes in 

depth. 

4.6.2 Bed material roughness 

Many investigators have shown that surface roughness in gravel-bed channels is 

one of the important factors controlling bedload transport (Laronne and Carson, 1976; 

Hassan and Reid, 1990). Indeed, apart from other factors and processes (e.g. size and 

shape of individual particles, bed armouring, flow characteristics, etc.) the entrainment 

of individual particles depends also on their relative exposure to the current which is 

largely controlled by size and shape of the riverbed roughness elements. Thus the 

character of bed roughness must be examined in order to better understand the 

mechanisms of bedload transport. 

Bed material roughness was measured at five cross-sections in each of the three 

experimental reaches using a pin frame. Examples of sites where bed material 

roughness was measured are shown in Figures 4.11, 4.12, and 4.13. Detail of the 

measurement techniques is also explained in Chapter 3. In terms of downstream 

changes of the roughness patterns, the Lower and Upper Tees sites have similar bed 

material roughness, while the Trout Beck has slightly rougher channel bed elements 

(Figures 4.14, 4.15, 4.16 and Table 4.4). On the other hand there is no regular variation 

in terms of transverse patterns of roughness distributions between the three sites. 



Figure 4.11 Cross-section 10 where bed roughness measurement, surface (above), and 
sub-surface (below) bed material sampling was carried out at the Lower Tees (Looking 
downstream). 
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Figure 4.12 Cross-section 3 where bed roughness measurement, surface (above), 
and sub-surface (below) bed material sampling was carried out at the Trout Beck 
(Looking downstream). 
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Figure 4.13 Cross-section 7 where bed roughness measurement, surface (above), 
and sub-surface (below) bed material sampling was carried out at the Upper Tees 
(Looking downstream). 
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Figure 4.14 Downstream changes of bed material roughness at the 
Lower Tees site. 
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Figure 4.15 Downstream changes of bed material roughness at the 
Trout Beck site. 
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Figure 4.16 Downsream changes of bed roughness at the 
Upper Tees site. 
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Statistical comparison of the three sites also implies a statistically significant 
difference between the patterns of roughness distribution of bed material in the 
downstream direction, while there are no similar patterns of roughnesses distributions 
transverse to the channel. The calculated Values of F (for an Anova Single test) is 8.77 
for downstream patterns, which is greater than critical values (3.88) at the 0.005 of the 
chosen significance level, while it is only 0.48 for transverse roughness pattern with the 
same critical value of F. Mean standard deviations, both transverse and downstream 
directions, vary between 18.2-22.4 mm at the Upper Tees site, and 30.5-26.4 mm at the 
Trout Beck site. 

Among the three sites, in the downstream direction Upper Tees shows the lowest 

bed roughness patterns (hence low standard deviations) at almost every cross-section, 

but a similar pattern is not true for the transverse direction (Table 4.4). Table 4.5 shows 

the mean bed material size (D50 and D90) and mean standard deviation values of both 

transverse and downstream patterns of roughness distributions for the three 

experimental sites and indicates that there tends to be a positive relation between 

downstream pattern of bed roughness (hence high standard deviation) and D50, and even 

more noticeably, D90.There is no similar relation for the transverse patterns of bed 

roughness and D50 and D90. 

Table 4.4 Standard deviations of the elevation of bed roughness (mm) in 
downstream and transverse directions at Lower Tees, Trout Beck and Upper 
Tees. 

Lower Tees Trout Beck Upper Tees 
Cross- Down Trans Down Trans Down Trans
section stream verse stream verse stream verse 

1 20.8 50.2 30.4 30.6 20.0 30.1 
3 20.3 20.7 30.5 20.6 20.4 20.7 
5 20.5 20.0 40.7 30.7 10.6 20.3 
7 20.6 40.0 30.4 30.1 20.0 20.0 
9 30.5 20.0 20.5 20.2 20.1 209 

Mean 22.5 30.2 30.5 26.4 18.2 22.4 
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Tables 4.5 Relationship between bed material size (D50 and Dgo) and 
standard deviations of the elevation of bed roughness in downstream 
and transverse directions at the three experimental reaches. 

Downstream Transverse 

D 5 0 (mm) D9o (mm) 
Size St. Dev. Size St. Dev. 

Lower Tees 80.7 20.8 121.6 30.2 
Trout Beck 97.7 30.5 181.0 30.0 

Upper Tees 57.0 20.0 99.6 20.6 

4.6.3 Bed material size 

Surface and fine sub-surface sediment were sampled and analyzed at five 

locations for each of the three experimental sites in order to measure downstream 

changes in surface and sub-surface bed material size (Figure 4.11, 4.12 and 4.13). The 

Wolman (1954) bulk sampling procedure, outlined in Chapter 3, was used. Sampled 

surface bed material was classified into seven size categories and both cumulative 

frequency distributions as well as D50 and D90 were determined for each sample together 

with overall mean values for each reach. 

Figure 4.17 shows particle size frequency distributions of surface and sub

surface bed material (in weight) for five samples at the three experimental reaches. 

Figure 4.18 shows the cumulative percentage of surface bed material particle size 

distributions for the same sites. Figures 4.17 and 4.18 indicate that, overall, the three 

sites have similar percentage weight of surface and sub-surface bed material size 

distribution patterns. In fact all cross-sections demonstrate the most typical features of a 

gravel river bed which is a relatively coarse surface cover in comparison with the 

gravel/sand mixture beneath (Church et al, 1987). This greater percentage of coarse size 

bed material in the surface material and abundance of finer in the subsurface material at 

almost each experimental site may indicate the existence of a typical bed armouring 

structure developed by coarse material (Figures, 4.11, 4.12, 4.13, and Figure 4.17). 

Indeed, Figure 4.17 indicates that the greater percentage of surface bed material (in 

weight) is coarser than the 45.3-64 mm size range and the majority is distributed with 

the 64 to 181 mm size range, while for the sub-surface material the greater percentage 

of the particles is distributed below the 45.5-64 mm size range. On the other hand, 

frequency distributions of the number of particles 
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Figure 4.17 Size distributions of surface and sub-surface bed material for five samples at 
the three experimental sites on the River Tees and Trout Beck (size indicated: upper limit 
of category; e.g. 32 indicates 16-32 mm class). 
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Figure 4.18 Cumulative percentage of particle size distributions for surface and sub-surface 
bed material at the three experimental sites. Note: Five lines in the upper 6 graphs show five 

sites (cross-sections) for each site. 
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of surface bed material are different than that of distributed in weight. Figure 4.19 
shows that the number of particles increases noticeably between 45.3 and 90.5 mm for 
almost each cross-section at the three experimental reaches and the frequencies tend to 
decrease above and below this size range. It also shows that, except two crossections at 
the Upper Tees site, at each experimental reach the greatest number of particles is 
distributed between 45.3 and 64 mm. 

Table 4.6 shows the results of the particle size analysis of the bed material at the 

three experimental reaches and indicates that there is no consistent difference between 

the cross-sections at each site. However, comparison of the three sites indicates that 

sampled surface bed material size in the Trout Beck reach is greater than at the other 

sites. There is a lack of coarse size material >181 mm size at the Upper and also the 

Lower Tees sites, while it was recorded in many crossections of the Trout Beck. The 

decreasing order of particle size (both D50 and D90) is Trout Beck (57.0 and 181.0), 

Lower Tees (80.7 and 121.6) and Upper Tees (57.0 and 99.6) respectively (Table 4.6). 

Figures 4.17 and Figure 4.18 show that in the Trout Beck, there is a wide range of size 

distribution of surface bed material, which indicates a slightly poorer sorted bed 

material. This probably reflects inputs of freshly eroded bedrock from the local channel 

perimeter. 

Table 4.6. Downstream changes in particle size distributions of the surface bed material 
sampled in three experimental reaches (Cs. indicates the cross-sections where bed 
material was sampled). 

Cs. 1 Cs. 3 Cs. 5 Cs. 7 Cs. 9 Mean 
D50 D90 P50 D90 D50 D90 D50 D90 D50 D90 D50 D90 

Upper 

Tees 58 110 60 110 53 80 54 98 60 100 57.0 99.6 

Lower 

Tees 70 120 95 140 69 110 60 150 55 88 80.7 121.6 

Trout 
Beck 78 165 70 160 94 160 125 200 120 220 97.4 181.0 

In terms of sub-surface bed material size, Figures 4.17 and 4.18 indicate that 

sub-surface bed material at almost every experimental site tends to have a relatively 

wide size range and also even distributions in comparison with surface material. Much 

of the sub-surface bed material is distributed below 90.5 mm size. Table 4.7 shows that 
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Figure 4.19 Size distributions of surface-bed material for five samples at the three 
experimental sites on the River Tees and Trout Beck, (size indicated = upper limit of 
category; e.g. 64 indicates 45.3-64 mm class) 
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D50 varies between 14 and 88 mm at the Lower Tees site, 10 and 48 mm at the Trout 
Beck site and 23-43 mm at the Upper Tees site. Despite considerable variation in D50 
between the cross-sections at each site, D90 shows relatively small ranges (Table 4.7). 
At the Lower Tees site D90 varies between 80 and 95 mm, at Trout Beck 45-115 and at 
the Upper Tees site 52-78 mm. However, Mean D50 varies between 28 at the Upper 
Tees /Trout Beck and 38 mm at the Lower Tees sites, while mean D90 varies between 68 
mm (Upper Tees) and 120 (Lower Tees). Figure 4.17 also show that at each site there is 
a noticeably sharp increase in the percentage weight of particles > 32 mm, while other 
size ranges have lower percentages. 

Table 4.7 Downstream changes in particle size distributions of the sub-surface bed 
material sampled in three experimental reaches (Cs. indicates the cross-sections 
where bed material was sampled). 

Cs. 1 Cs. 3 Cs. 5 Cs. 7 Cs. 9 Mean 
D50 D90 D50 D90 D50 D90 D50 D90 D50 D90 D50 D90 

Lower ^ 9 Q g g 9 Q 2 g g Q 2 g g g 3 g 9 5 3 g n Q 

Tees 

Beck 4 1 1 1 5 2 8 8 2 4 8 1 1 5 1 0 4 5 1 7 1 0 0 2 8 1 1 0 

i ! p p e r 28 58 23 72 23 72 43 78 27 52 28 68 Tees 

4.6.4 Bed material shape 

The main lithology of the two catchments is well-bedded (flaggy) sandstone, 

which results in a dominance of platy, discoidal particles. Figures 4.20, 4.2land Table 

4.8 clearly show that the natural bed material (>32 mm size group) at each of the 

experimental sites tends to show a greater number of disc-shaped particles, reflecting 

the sedimentary nature of many of the local lithologies. The decreasing order of 

frequency for shapes, overall, is disc, sphere, rod and blade (Table 4.8). Figure 4.21 also 

shows that, in the natural particles, there are greater number of particles close to the 

shape boundaries. This contrasts with the magnetic tracers where there are very distinct 

gaps between the shape boundaries. Details of the methods of determination of particle 

shape (form, roundness, sphericity, and flatness) are explained in Chapter 3. 
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three experimental sites. 
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Table 4.8 Percentage bed material shapes in the surface 
bed material of >32 mm size at the three experimental sites 

Lower Tees Trout Beck Upper Tees 
Total 940 690 838 
sample % % % 

Sphere 32.2 22.6 23.2 
Blade 12.2 14.9 16.3 
Rod 12.8 15.8 13.6 
Disc 43.4 46.7 46.9 

Table 4.9 gives details of the percentage of spheres, blades, rods and discs of 

>32 mm size group at the five cross-sections along each of the experimental sites. 

Figure 4.21 shows the percentage of the four shape classes for each of the sites and 

indicates that, overall; the three sites have very similar shape distributions. Discs are the 

most common shapes in each cross-section at each site. Disc frequencies at most of the 

cross-sections (except Cross-section 9 at Upper Tees) exceed 40 % of the total particles 

(Table 4.8). The frequencies of discs are 41-47 %, 41-53 % and 36-47 % for the Lower 

Tees, Trout Beck and the Upper Tees sites respectively. After discs, spheres are the 

second most frequent shape: 19-27 % (Lower Tees), 18-27 % (Trout Beck) and 26-42 % 

(Upper Tees). Both blades and rods are of lower frequency but very similar in 

proportion at almost every cross-section along the reaches (Figure 4.21). 

Table 4.9 Mean particle roundness, sphericity, flatness and weight for the three 
experimental sites. (S: sphere, B: blade, R: rod, D: disc, M: mean) 

Upper Tees Lower Tees Trout Beck 
S B R D M S B R D M S B R D M 

Round-

n e s s 260 163 183 212 243 238 106 147 204 211 196 115 145 188 191 

Spheri-

^ | t y 0.79 0.59 0.66 0.68 0.71 0.81 0.53 0.65 0.68 0.68 0.78 0.55 0.63 0.68 0.67 

Flat 
n e g s 194 292 170 254 203 148 267 173 267 232 150 317 176 276 234 

Weight 
(rX 258 254 216 238 241 452 356 379 419 401 747 628 494 546 604 
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Figure 4.21 Classification of particle shape of sampled bed material at 
the three experimental sites (based on Zingg 1935). 
Note: The frames with red dashes show the shape boundaries of the magnetic 
stones. 
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Table 4.9 shows the mean roundness, sphericity and flatness of the sampled bed 
material at the three experimental sites for the four shape classes and all particles 
collectively. It indicates that mean roundness of the four shape classes at theUpper Tees 
site tends to be greater than at the other sites. The decreasing order of mean roundness 
is 205, 174 and 161 at the Upper Tees, Lower Tees and Trout Beck sites respectively. 
At the Upper Tees site, particles in each shape class have greater mean roundness 
values than at the other sites. Statistical comparisons show that there is significant 
differences in mean roundness of spheres, blade and disc-shaped particles between the 
three sites, while there is no significant difference between the rods from the three sites 
(Table 4.10). In terms of sphericity and flatness distributions, Table 4.10 shows that 
there is no statistically significant differences between mean sphericity of the sphere-
shaped particles between the three sites, although differences are significant for blade, 
rod and disc-shaped particles. In terms of their mean flatness, sphere and rod-shaped 
particles show no significant difference between the three sites, while differences are 
significant for blade and discs. 

Table 4.9 indicates that despite a similarity in bed material mean weights 

between the Upper and Lower Tees, bed material at the Trout Beck site tends to be 

much heavier than at the other sites in almost each shape group. Table 4.10 also 

indicates that there are some statistical differences between the three sites for the 

distributions of all shapes, but the extent of differences increases for sphere and disc 

shaped particles. The increasing order of rank is rod, blade, sphere and disc. 

Table 4.10 Statistical comparison (F - test) of the three sites in terms 
of natural bed material roundness, sphericity, flatness and weight. (The 
critical value of F at the 0.05 level for roundness, sphericity, flatness and 
weight is 3.01). 

Roundness Sphericity Flatness Weight 

Sphere 6.31 1.70 1.13 12.41 
Blade 11.89 5.68 4.08 7.34 
Rod 2.39 4.41 1.99 4.46 
Disc 15.38 3.06 4.76 14.21 
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Comparison of natural bed material sampled at the three sites and the magnetic 
tracers used for the experiments shows that there are some differences in mean 
roundness, sphericity, flatness and weight of particles. At almost every experimental 
site and within each shape group (except small sized blade-shaped bed material at the 
Upper Tees site, and medium sized rods at the Lower Tees site, which have slightly 
greater mean roundness values) the magnetic tracers have greater mean roundness than 
that of natural bed material and the differences become almost double in both sphere 
and disc-shape particles (Tables 4.11, 4.12 and 4.13). At each site, the differences 
between the mean roundness of natural bed' material and the magnetic tracers for each 
of the size groups in sphere and disc-shaped particles are greater than for the other 
shapes. These differences also tend to increase from the Lower Tees to the Upper Tees 
and the Trout Beck sites respectively. For the rod and blade-shaped particles, however, 
the differences in roundness diminish noticeably both in the small and medium size 
groups and also in the mean of the three sized groups. 

For sphericity and flatness, sphere-shaped magnetic tracers have greater 

sphericity and hence lower flatness values than the natural bed material for all three size 

groups. Higher sphericity and roundness of sphere-shaped magnetic tracers may 

promote greater rolling capability than the natural bed material. The lower sphericity 

and higher flatness values of the blade and disc-shaped magnetic particles also indicates 

that they have a relatively flatter and more discoidal shape than the natural particles 

(Tables 4.11, 4.12 and 4.13). These flat particles may then be less prone to rolling than 

natural material. 

In terms of weight, Tables 4.11, 4.12 and 4.13 show that there are smaller 

differences between the mean weight of natural bed material sampled and the magnetic 

tracers in the small and medium size groups and there is also a lack of larger size 

particles in natural bed material at the three sites. Overall, in magnetic tracers there 

tends to be an increase in mean particle weight as compared with the natural bed 

material within all shape classes and in small and medium size groups at all the sites. 

For example, at the Upper and Lower Tees sites, differences between the mean weights 

of magnetic tracers and bed material are less in disc-shaped particles in the small and 

medium size groups, while the greatest values are in rod-shaped class. The increasing 

order of difference between the mean weight of magnetic tracers and natural bed 

material is disc, blade, sphere and rod for the small and medium size group, whereas in 

the large size, it is disc, sphere, rod and blade respectively. However, a similar 
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distribution is not true for the Trout Beck (Table 4.13), where the mean weights of 
natural bed material are greater than the magnetic tracers in the medium and large size 
groups of the sphere-shaped class, in the medium size of blades and also in the large 
size of disc-shaped particles. In the small size group, on the other hand, disc, sphere, 
blade, and rod-shaped magnetic tracers have greater mean weights than that of natural 
ones and the increasing rank of the differences is disc, sphere, blade, and rod for the 
small size group. For the Trout Beck, however, in the large size group, spheres and 
discs in the natural material have greater mean weight than that of magnetic tracers, 
while the mean weight of blade-shaped magnetic tracers is greater than natural blades. 
There are not enough rods among the natural particles for comparison to be made for 
this shape class. 

In general, at all the sites rod-shaped particles, in both the magnetic tracers and 

natural bed material, tend to be heavier than the other sites shape classes. The possible 

reason is that, despite their similar b axes, within each size group, the rod-shaped 

particles have thicker c axes and also the a axes of rods tend to be longer than for other 

shapes. 

Despite their similar size range at all the sites, within almost each size group, 

mean weights of magnetic tracers tend to be greater than that of the natural particles. 

The possible reason might be attributed to the fact that, within each size range, b axes of 

the magnetic tracer are slightly greater than that of natural ones. Another reason is that 

rod and blade-shaped magnetic tracers are of well-defined shape and therefore they 

have longer a axes, while in the natural particles this is not always the case (see 

Appendix 1). 
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CHAPTER 5: MAGNETIC TRACING EXPERIMENTS: RESULTS 

FROM THE THREE EXPERIMENTAL SITES. 

5.1 INTRODUCTION 

This chapter presents the results of an experiment designed to investigate the 

influence of bed material shape on bedload transport in two gravel-bed rivers, (River 

Tees and Trout Beck). As described in Chapter 3, river flow and bedload movements 

were monitored from 24 November 1997 to 24 September 1999. This chapter firstly 

analyses river flow and discharge and relates it to magnetic tracer movement during the 

fieldwork period (Section 5.2). Section 5.3 presents the results collected from five field 

surveys. General downstream patterns of tracer movements are discussed in Section 5.4. 

The influence of shape (sphericity, roundness) and size (a, b, c axes and weight) 

parameters of the magnetic tracers on transport distance is tested statistically in Section 

5.5. Section 5.6 discusses missing and buried tracers at the three experimental sites for 

the different survey periods and also for the entire period of study. The spatial 

distribution of magnetic tracers in river channels at the three experimental sites is 

summarised in section 5.7. Section 5.8 examines the size and shape characteristics of 

trapped bedload collected in the Trout Beck sediment trap and sampled river bed 

material and compares these results with the magnetic tracing experiments. Finally, the 

key points raised by the experiment are discussed and summarised in section 5.9. 

5.2 RIVER FLOW DURING THE MONITORING PERIOD 

Figures 5.1 shows 15 minute time series estimates for the monitoring period 

(November 1997 to September 1999) at the Trout Beck, the Upper Tees and Lower 

Tees sites. As explained in Chapter 3, gauging of the flow at these two sites provides a 

means of estimating the discharge at the Lower Tees site just below the confluence. The 

sum of the two upstream discharges provided a reasonable estimate of the discharge at 

the Lower Tees site (Figure 5.1). In general, for most of the period, mean discharge 

values for the Upper Tees appear to be greater than Trout Beck due to its larger 

catchment area (15.6 km2) when compared with the Trout Beck (11.4 km2). 
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Discharge in the Trout Beck and River Tees catchments is of a flashy nature, typical of 

upland river regimes. High runoff is generated by both convective storms and heavy 

rainfall / rapid snowmeh events which tend to responsible for the major floods in the 

area (Newson, 1989), Figure 5.2 shows the mean monthly discharge distributions for 

1998 and 1999 periods and it indicates that annual cycle of discharge for the two 

catchments follows a typical pattern with higher runoff during the winter months and 

lower flows in the summer months. Indeed, the contrast between discharge in the very 

rainy months of December through March and the drier months of May and August is 

very clear. 

1998-1999 average 

2.5 

1.5 ! 1.0 

Month 

•Trout Beck jlUpper Tees B Lower Tees 

Figure 5.2 Monthly mean discharge for the average of 1998 and 1999 years at the Upper 
Tees, Trout Beck and Lower Tees Catchments. 

Figure 5.3 summarises river flow between the tracer surveys and further 

demonstrates the rivers are very flashy and that there were numerous storm peaks and 

high flow periods. Figure 5.3 also shows that, in general despite its smaller catchment 

area (11.4 km2) the size of peak flows at Trout Beck are noticeable greater than the 

Upper Tees site (15.6 km2). Thus, during the period November 26* 1997 to July 6* 

1999 at Trout Beck there were 44 storm peaks exceeding 5 m 3 s"1,11 exceeding 10 m 3 s" 

\ and 3 exceeding 15 m 3 s4, while at the Upper Tees catchment there were only 21 

storm peaks exceeding 5 m 3 s"1 and there was no flow greater than 10 mV1 (Table 5.1). 

At the Lower Tees she, however, the number of storm peaks increased significantly due 

to tike combined discharge of the two tributaries, such as 59 storm peaks exceeding 
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5 m 3 s"1, 29 exceeding 10 m 3 s"1, and 16 exceeding 15 ra3 s"1. The highest three recorded 
flows at Trout Beck site were 21.4 m 3 s"1, 19.90 m 3 s"\ and 14.29 m 3 s"1, while at Upper 
Tees the rank is 9.99 m 3 s"1, 8.67 m 3 s"1 and 7.77 m 3 s"1 (Table 5.1 and Figure 5.3). 
The timing of flood peaks is broadly synchronous between the two catchments and 
travel times from the two gauging sites to the confluence were approximately equal. 

Table 5.1 Storm peaks during the magnetic tracer monitoring. Periods between 
individual survey at Trout Beck, the Upper Tees and the Lower Tees are shown. (T.B. 
Trout Beck, U.T. Upper Tees, L.T. Lower Tees) 

26 November-19 December 1997 19 December 1997-18 March 1998 

Discharge 
m 3 s 1 

T.B. U.T. L.T. Discharge 
nrV 1 

T.B. U.T. L.T. 

5-10 5 1 7 5-10 4 1 3 

10-15 1 0 0 10-15 1 0 3 

>15 0 0 1 >15 0 0 1 

18 March-21 August 1998 21 August-24 September 

Discharge T.B U.T L.T Discharge 
m 3 s " 1 

T.B U.T L.T 

5-10 14 3 10 5-10 4 3 6 

10-15 2 0 10 10-15 1 0 3 

>15 0 0 2 >15 1 0 2 

24 September 1998-6 July 1999 All periods 

Discharge 
m 3 s" 1 

T.B U.T L T Discharge 
nr s 1 

T.B U.T L.T 

5-10 17 13 33 5-10 44 21 59 

10-15 6 0 13 10-15 11 0 29 

>15 2 0 10 >15 3 0 16 

5.2.1 Initiation of bedload transport 

The initial movement of a clast on a coarse bed river is a complex phenomena 

which is controlled by many factors. These factors depend on particle physical 

properties (e.g. particle size, shape, density and structure arrangement); 

sedimentological characteristics of the bed (e.g. texture, packing, armouring, bed forms) 

and local hydraulic conditions of the flow (e.g. discharge, velocity, duration) (Naden, 
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1988; Hoey, 1989; Gomez and Church, 1989). Knighton (1998) identified two sets 

factors that are largely responsible for the observed large variations in the threshold of 

initial motion of coarse particles (Table 5.2). 

Table 5.2 Factors producing scatter about threshold of the initiation of particle 
movement (after Knighton, 1998 and Naden, 1988) 
Flow conditions Bed-material characteristics 
Definition of the entrainment threshold Degree of exposure or relative protrusion 

of grains 

Use of average shear stress or velocity Pivoting angles 

Spatial variability of shear Imbrication or clustering of particles 
stress or velocity over the bed 

Irregularity of turbulent eddying Degree of packing 

Grain shape 
Channel size Grain size distribution or relative size 

Microtopography 

The initiation of transport is very difficult to predict. The flow intensity 

controlling initial particle movement and eventual transport is measured by shear stress, 

velocity or stream power (Richards, 1982). Given the variations explained above, even 

within a uniformly rough portion of a stream bed, there are point-to-point variations in 

the factors that control the critical shear stress of each individual grain (Kirchner, 1990). 

Carson and Griffiths (1987) stated that spatial variation in particle size together with 

effects of bed forms on local flow conditions, render mean channel parameters for 

predicting bedload transport somewhat meaningless in many rivers. 

Particles are entrained in reaches in which bed shear stress and velocity vary 

over very short distances due to local variations in channel slope, size and shape 

characteristics of bed material and also bed packing arrangements. Thus it is difficult to 

determine a critical discharge which represents initial transport of the bed material for 

the whole stream. In the present study, there is no local hydraulic information available 

at the three sites. Reach-based estimates of mean and peak discharge, shear stress and 

stream power for the three sites are shown in Table 5.3. 
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Table 5.3 Reaeh-based estimates of discharge (Q) , shear stress ( t = e.g.R.S) and 
stream power (Q = e.g.Q.S) values for the three experimental reaches. 

Sites 
Unit 

mean Q 
m s 

Unit 
peak Q 
m 2 s 1 

Stream Stream 
power for power for 
mean Q max. Q 

(fl) CO) 

Shear 
Stress 

Upper Tees 0.058 0.970 0.0045 0.0588 0.0020 

Lower Tees 0.103 2.851 0.0421 0.8804 0.0144 

Trout Beck 0.064 2.062 0.0614 1.9797 0.0512 

Flow characteristics at the three experimental reaches vary considerably. 

Discharge is highest at the Lower Tees site, while means are relatively similar at the 

Trout Beck and Upper Tees sites. Peak discharges are much greater at Trout Beck than 

the Upper Tees. Stream power and shear stress also show marked variations. The lowest 

values are for the Lower Tees site which has a virtually flat (reach) long profile. Trout 

Beck has the highest values. This mainly reflects differences in stream channel slope of 

the three reaches. 

There are several bedload discharge equations which are appropriate to 

mountain rivers with coarse sediment (e.g. Shields, 1936; Meyer-Peter and Muller, 

1948; Schoklitsch, 1969; Ackers and White, 1973; Mizuyama, 1977; Bagnold, 1980 and 

Smart, 1984). Although Shields, (1936) equation is considered the most common 

approach to prediction of the critical conditions for bedload movement, it was found to 

be less suitable because of practical difficulties associated with the dependency on 

depth. This is because, depth is a variable that it is difficult to measure accurately in 

steep rough flows. An alternative to the Shields equation is a discharge-based equation 

(critical water discharge), such as the Sehoklitsch (1962) equation. Bathurst et al (1987) 

stated that initiation of bedload transport could be best predicted by the Schoklitsch 

approach modified to allow for the effect of non-uniform sediment size distribution. 

However, for sediments with a wide size distribution, the initiation of transport may not 

involve movement of all available sediment sizes. Nevertheless in a test of several 

bedload transport equations, Bathurst et al (1987) and later Agostino and Lenzi (1999) 

demonstrated that the Schoklitsch approach was most suited to mountain rivers of the 

type similar to the present study sites. 
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In order to predict initiation of bedload transport for each of the experimental 
sites, water discharges were converted into unit discharges and a critical discharge 
calculated using the Schoklitsch (1962) equation (Bathurst et al, 1987). 

(5.1) 

qc = 0 . 2 6 ^ - 1 ^ 

where qc is the critical unit water discharge (m2 s"1) at which bedload transport begins; 

ps is the density of sediment (2.65); p density of water (1.0); D40 is size of particle 

median axis for which 40 percent of the sediment is finer (m); S is channel slope. 

This equation was used because; discharge data are readily available for the study sites 

and it has been shown to be appropriate for coarse-bed, mountain streams (Bathurst et 

al, 1987). 

The critical unit water discharge determined for the Upper Tees, Lower Tees and Trout 

Beck sites are 40.77 m 2 s"1, 6.32 m 2 s"1 and 3.34 m 2 s"1 respectively. 

Table 5.4 The greatest unit discharges recorded (m2 s"1) during the monitoring 
period at the three experimental reaches 

Survey 
period 

Trout Beck Upper Tees Lower Tees 

1 1.335 (0.00) 0.297 (0.01) 0.851 (0.13) 

2 1.176 (0.35) 0.401 (0.01) 0.891 (0.14) 

3 1.387 (0.42) 0.377 (0.01) 0.933 (0.15) 
4 2.062 (0.62) 0.447 (0.01) 1.354 (0.21) 
5 1.933 0.58) 0.970 (0.02) 2.851 (0.45) 

(The values in bracket show unit discharges as a ratio of the critical discharge 
for each site). 

Comparison of the peak unit discharges (Table 5.4) and the critical discharge 

values for each of the experimental sites shows that, despite observed tracer movements 

at all three sites, in none of the survey periods do unit discharges exceed the critical 

discharge values. This suggests that either the Sehoklitseh approach is a poor predictor 

of bedload transport or sporadic bedload transport is occurring below the critical value 
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for 'whole-bed' disturbance. Observations suggest that the situation over the monitoring 
period is best described by low transport rates over a fairly static bed. Transport of 
particles at discharges less than the critical value are to be expected because locally the 
flow will be sufficient to entrain some bed material due to higher than average flow 
strength or bed material configurations are suited to local entrainment. 
The inherent imprecision of bedload transport equations to predict threshold of gravel 
transport steams from a number of factors (Naden, 1988). These include: 

• Flume data used to evaluate the performance of the Schoklitsch's equation. These 

may not reflect actual conditions of entrainment in coarse-bed river channels. 

• Average reach slopes used for the calculation critical discharge do not reflect local 

conditions. 

• Tracers used for the experiments sit on a static bed and do not integrate well with 

natural bed material. This is not the situation for which Schoklitsch's equation was 

developed, e.g. grain exposure is greater for tracer clasts than the general bed 

material. 

• The critical discharge figures determined here represent bulk transport rates rather 

than single particle movements. 

5.2.2 Relation between discharge and the mean transport distance of the magnetic 
tracers 

The mean transport distances of the magnetic tracers in relation to discharge 

during each of the survey periods are shown in Figure 5.4. Figure 5.4 suggests that, at 

the three experimental sites the relation between mean discharge and the mean transport 

distance of the magnetic tracers for each survey period is weak. For example, although 

mean discharge values at the three experimental sites were the highest between the 

period of 26 November-19 December, the mean transport distances were less. On the 

other hand Figure 5.4 clearly shows that at each of the experimental sites, mere is a 

much stronger positive relation between peak flow and mean transport distances. 



165 

Trout Beck Trout Beck 

5 10 15 20 

Peak discharge (m3 s-1) 

Upper Tees 

25 

10 15 20 25 30 

Peak discharge (m3 s-1) 

Lower Tees 

5 10 15 20 25 30 35 

Peak discharge (m3 s-1) 

0.2 0.4 0.6 0.8 1 1.2 
Mean discharge (m3 s-1) 

Upper Tees 

0.5 1 1.5 
Mean discharge (m3 s-1) 

Lower Tees 

0.5 1 1.5 
Mean discharge (m3 s-1) 

Figure 5.4 Relationship between peak and mean flow and mean transport distances of 
tracers for individual survery period at the three experimental sites. 
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5.3 RESULTS AND ANALYSIS OF MAGNETIC TRACING EXPERIMENTS 
AT THE THREE EXPERIMENTAL SITES 

To assess the influence of bed material shape and size on transport of coarse 

river gravels a series of magnetic tracing experiments were set-up at three experimental 

reaches at the Moor House National Reserve. 2700 magnetic (coloured) stones of 

differing shape, size and weight were introduced at three stream cross-sections in three 

experimental reaches. (Figures 5.5 and 5.6). The size and shape characteristics (e.g. 

sphericity, flatness, and roundness) of the magnetic particles are given in Appendix 1. 

The experimental design and site characteristics of the three experimental reaches have 

been explained in detail in Chapters 3 and 4. 

Table 5.5 Dates of magnetic stone surveys and the history of movement at the three 
sites. 

Survey Date Upper Tees Lower Tees Trout Beck 

1. December 
No tracers 1997 + No tracers + 

1. March 
1998 + + 

2. August 
1998 + + + 

4. Septembe 
r + + + 

1998 
5. July 

1999 + + + 

+: Movement —: No movement 

During the monitoring period (November 1997 to September 1999), tracers were 

resurveyed when noticeable movement had occurred, During resurvey particles were 

mapped in place. Only when identification was difficult particles were removed from 

the bed. These 'disturbed' particles were placed back in their pockets after 

measurement. The transport distances and the new locations of the tracers at the three 

sites were documented on five occasions between 18th December 1997 and 6st July 

1999. Movement of the tracers during the whole monitoring period and the survey dates 

at the three experimental sites are shown in Table 5.5. Tracers were introduced at the 
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; 

Figure 54 Crogg-gectioa at Upper Tees (NY 758 339) where white magnetic 
tracers were placed. Flow is from left to right 
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Lower Tees site 10 December 1997. Discharge over the survey period is shown for each 

of the experimental sites in Figure 5.3. 

In the following sections transport distances of tracers are presented as 'mean 

transport distance' which is the mean transport distance of all tracers moved up to that 

date, and 'period mean transport distance' which indicates the mean transport distances 

for all mobile tracers in a given period. Although some of the earlier studies (e.g. 

Hassan and Church, 1992) also worked out 'virtual rate of travel distances' which is 

based on using total time for which flow is larger than that needed to initiate clasts 

movement, in the present study this is not calculated. This is because, due to lack of 

information on local flow conditions at any of the sites a single critical discharge value 

could not be determined. 

5.3.1 First survey (Period of record: 26th November-^"1 December 1997) 

During this period, the mean flows were 1.00 m 3 s"1 at Trout Beck and 0.98 m 3 s" 
1 at Upper Tees. The peak flow was 13.74 m 3 s"1 at Trout Beck, while at Upper Tees it 

was 5.76 m 3 s"1. 

Upper Tees 

Of die total sample of 900 magnetic tracers, only 15 individual stones were 

recorded to have moved at the Upper Tees site (Table A2.1 and Figure 5.7). This 

constitutes less than 2 % of the total sample at the site. Most of the transported particles 

remained close to the starting point. The mean distance moved for all particles was 5.9 

m. None of the particles were buried or disappeared during this period. The majority of 

the mobile tracers were in the medium size group (6 small, 8 medium and 1 large size 

group). In the sphere shaped group, a total of 8 stones moved (2 small, 5 medium, and 1 

large) with a mean distance of 6.5 m. In the rod shaped class a total of 5 stones moved, 

(2 small and 3 medium), with a mean distance of 4.5m, while there was no movement 

for the large sized rods. There was no significant difference between the mean transport 

distances of small and medium size rods. In the disc group, only two stones moved, one 

small sized disc moved 7.8 m, and one medium sized disc moved 5.8 m (Table A2.1 

and Figure 5.7). 
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Figure 5,7 Percentage and mean distances of transported particles for the period of 26*1 

November-IS"1 December 1997 at Upper Tees, Lower Tees and Trout Beck (S: sphere, 
B: blade, R: rod, D: disc). 
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Trout Beck 

At Trout Beck a total of 134 stones moved during the period (66 small, 57 

medium and 11 large), representing 15% of the 900 magnetic stones (Table A2.1 and 

Figure 5.7). The mean distance moved for all the moved particles was 12.6m. Small 

sized particles constitute the greatest number of tracers moved. Overall, sphere-shaped 

particles constituted the largest group of stones moved, and had the greatest transport 

distances. There was no movement for blade-shaped particles (Table A2.1). The greatest 

observed movement was 62.4m by a medium sphere. In the sphere-shaped group, a total 

of 72 stones moved (53.7 % of the total stones moved) with a mean distance of 14.8m 

(Table A2.1). 29 of the mobile particles were in the small group and 39 in the medium 

size groups while only 4 large stones moved. Rod-shaped clasts represented the second 

longest mean transport distance. A total of 39 (29.1% of the total) moved with a mean 

transport distance of 9.8 m. Although there was no great difference between the number 

of particles moved and mean distances moved by the small and medium rods, both the 

number of particles transported and the mean transport distance decrease noticeably 

with the large sized rods (Table A2.1 and Figure 5.7). In the disc-shaped class a total of 

22 stones (16.4 %) moved with a mean transport distance of 10.2m. Table A2.1 

indicates that 19 (86.4 %) of the transported stones were small-sized discs, which 

moved the longest mean transport distance (10.9m). 

5.3.2 Second survey (Period of record: 19th December 1997-18th March 1998) 

Upper Tees 

During this period the mean flow was 0.91m3 s"1 and peak flow was 7.78 m 3 s"1. 

A total of 43 magnetic tracers representing 4.8 % of the total number were mapped. 

The mean distance moved for all particles was 15.6 m. The greatest observed movement 

was 93.5m by a medium sphere. Table A2.2 and Figure 5.8 show what appears to be a 

decrease in both the number of particles transported and also their mean transport 

distance as particle size increases. An exception are the medium size sphere-shaped 

particles in which both the number of particles and their mean transport distances are 

greater than that of the small size group. 

In terms of shape, there is a similar distribution to the previous period. Sphere-

shaped particles show a greater increase both in the number of tracers transported and 

also their mean transport distances, while there is no movement in the blade-shaped 
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Figure 5.8 Percentage and mean distances of transported particles for the period of 19 
December 1997-18 March 1998 at Upper Tees, Lower Tees and Trout Beck (S: sphere, 
B: blade, R: rod, D: disc). 
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class and less movement of the disc-shaped particles (Table A2.2). Overall, regardless 
of size, the mean distances moved by all spheres, rods and discs for this period were 
19.4m, 11.5m and 10.6m respectively. 

Trout Beck 

During this period (between first and second surveys) mean and peak flows were 

0.79 m 3 s"1 and 12.12 m 3 s"1 respectively. However Table 5.1 shows that there were also 

5 peak flows vary between 5m3 s"1 and 10m3 s"1. Up to the present survey, 177 tracers 

moved and the mean distance transported was 15.5m. The longest distance moved was 

127 m by a medium sphere* In terms of size, there is a noticeable decrease both in the 

number of the tracers transported and also their mean transport distances in the large 

size group. In terms of shape, sphere-shaped particles constitute the greatest percentage 

of particles transported and show the longest mean distance. Blade-shaped particles 

show the least (Table A2.2). Within each shape class most of the particles moved were 

in the small and medium size group and there is a noticeable decrease in the mean 

transport distances in the large size group. In the disc shaped class, however, many of 

the particles moved were in the small size group and there is a noticeable decrease in 

numbers moved as particle size increases. In the blade shaped class only three particles 

moved all the small size group, with a mean transport distance of only 6.8m (Figure 

5.8). 

Lower Tees 

The Period mean and peak flows were 1.70 m 3 s"1 and peak 19.68 m 3 s"1 

respectively. Other recorded number peak flows during the period were; three between 

5 and 10m3 s"1, and three between 10 and 15 m 3 s"1. 

During this period a total of 230 (25.5 %) out of the 900 tracers were recorded to 

have moved. The mean distance moved for the particles was 10.4 m. The maximum 

distance moved was 74.1m by a small rod. Both the number of tracers transported and 

their mean transport distance tends to increase in the small and medium size groups, 

while it is noticeably less in the large size group (Table A2.2). 

Sphere and rod-shaped tracers have the longest mean transport distance and also 

the greatest number of transported particles (Table A2.2 and Figure 5.8). In the sphere-

shaped class a total of 78 tracers moved with a mean transport distance of 13.1m. The 

numbers of tracers moved and also their mean transport distances are very similar for 
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both the small and medium size of spheres, but in the large sized group spheres have 
lower values. There is a similar pattern for rod-shaped particles. For example the 
number of rods moved are almost equal (33 and 34) in small and medium sized groups, 
while, it becomes less in the large rods (Table A2.2). The total number of discs moved 
was 65 with a mean transport distance of 9.4m. The small sized group dominates these 
moved. This is different from spheres and rods where the number of small and medium 
sized particles moved is similar. The small sized discs also have the greatest mean 
transport distances than that of the medium and large sizes (Table A2.2). A total of 17 
particles moved in the blade-shaped group with mean transport distance of 3.37 m, 
which is the smallest numbers of particles moved and shortest movement when 
compared to the other shapes. 

5.3.3 Third survey (Period of record: 18 March - 21 August 1998) 

Upper Tees 

During this period (between surveys 2 and 3) the mean flow was 0.59 m 3 s"1 and 

only three peak flows were recorded greater than 5m3 s"1 with a highest level of 6.33 m 3 

s"1 (Table 5.1). Little movement was recorded for this period and none of the stones 

were lost or buried. 

The number of particles moved up to the present survey was 51, which 

constitute 5.6 % of the total number of tracers at the site. There were no great 

differences between the mean distance transported (15.6m) or the longest distance 

moved (medium sphere, 93.7 m) between this and the previous survey. 

In terms of shape, Table A2.3 and Figure 5.9 show that in common with earlier 

surveys, sphere-shaped particles demonstrate the greatest frequency of transport and 

mean transport distances. In decreasing order of importance the percentage of tracers 

transported and their mean transport distance are 54.9 % /18.3m for spheres, 29.4 % 

/12.9m for rods, and 13.7 % /9.0m for discs. In the blade class only 1 small particle 

moved 25.8m. 

Trout Beck 

During this period mean flow was 0.51m3 s"1. A total of 16 storm peaks, 14 were 

greater than 5 m 3 s"1 and two were between 10m and 15 m 3 s"1 were recorded with a 

peak flow of 14.29 m 3 s"1 which is slightly greater than that of previous period (Table 

5.1). 
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Figure 5.9 Percentage and mean distances of transported particles for the period of 18 March-21 
August 1998 at Upper Tees, Lower Tees and Trout Beck (S: sphere, B: blade, R: rod, D: disc). 
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Up to this survey, the total numbers of magnetic tracers moved were 238, which 

is 26.4% of the total tracers at the site. The mean distance moved for all the particles 

was 24.9m. The greatest observed movement was 116.5 m by a medium sphere. The 

numbers of tracers transported are 127, 90 and 21 for the small, medium and large size 

groups respectively. The mean transport distances for the small and medium size groups 

are almost the same (18.6m and 18.8m), while it is only 11.7m for the large size group 

(Table A2.3). 

In terms of shape, the pattern is similar to that observed in the previous surveys, 

that is the numbers are greater for the sphere, rod and disc-shaped classes than for the 

blade class (Table A2.3). In decreasing order of importance is sphere, rod, disc and 

blade shapes. Similar to the other sites, sphere-shaped particles show the greatest mean 

transport distances than the other shapes (Figure 5.9). 

Lower Tees 

During this period, mean flow was 1.09 m 3 s"1 and in total 22 storm peaks were 

recorded with the highest value being 20.62 m 3 s"1 (Table 5.1). 

Up to the present survey the cumulative number of particles moved was 335 (37 

%) of the total at the site. The mean distance moved for all particles was 13.4 m. The 

maximum distance moved was 106 m by a small sphere. Similar to earlier surveys, both 

the number of transported tracers and their mean transport distance tends to increase in 

the small and medium size group, while it is noticeably less in the large size group 

(Figure 5.9, Table A2.3). 

In terms of shape, sphere and rod-shaped tracers appear to have the longest mean 

transport distance and also the greatest number of stones transported (Figure 5.9). The 

percentage of the number of tracers and also their mean transport distances in the four 

shape classes during this period are 32.5% (19.9 m), 31.6% (11.2 m), 26.6% (10.8 m), 

and 9.3% (6.9 m) for the spheres, rods, discs and blades respectively (Table A2.3). 

5.3.4 Fourth survey (21st August 1998 - 24th September 1998 

Despite lower mean flow discharges, the highest peak discharges were recorded 

at the Trout Beck and Lower Tees sites. It was the most important period for tracers 

movement and tracer loss. 
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Upper Tees 
o 1 

During this period the mean flow was 0.55m s" and three storm peaks were recorded 

with a maximum of 8.67m3 s"1 (Table 5.1 and Figure 5.3). 

In the present survey, 190 (21.1%) out of the 900 tracers Were recorded to have 

moved (Table A2.4). The mean distance transported by all the relocated particles was 

15.9 m. The longest distance moved was 120 m by a medium size sphere. In terms of 

size, there is an increase in both the number of tracers transported and also their mean 

transport distance in the small and medium size group, while there are only a few 

movements in the large size group. 

In general, there is a similar distribution to the previous survey. Sphere-shaped 

particles show the greatest number of tracers transported (81) and the largest mean 

transport distance (19 m). In common with the earlier surveys, rod-shaped particles 

show the second most important movements both in the number of tracers moved (60) 

and mean transport distance (14.4m), while disc and blade-shaped particles are 38-

13.9m and ll-8.7m respectively. During this period the maximum mean transport 

distance (22 m) and greatest number of tracers moved (41) were in the medium size 

sphere group, while the least number and the shortest transport distances were recorded 

in the large blade group (1 stone moved 8.4m) and the large disc group (1 stone moved 

4.5m). Sphere-shaped tracers showed the longest maximum transport distance compared 

to the other shapes in the medium and large size groups, whereas in the small size group 

small rods had the longest transport distances (Figure 5.10, Table A2.4). 

Over the period, 86 particles, many of which were in small size group (small 65, 

21 medium), could not be relocated. The percentage distribution of the missing stones in 

four shape classes is %33.2, %30.2, %29.1 and %2.3 for disc, blade, sphere and rod 

respectively. Only 4 stones were found to be buried, with a mean depth of 7.5 cm. 

Trout Beck 

During this period mean flow was 0.55 m s* and six peak storms were recorded with a 

maximum of 21.24m3 s'1 (Table 5.1 and Figure 5.3). 

In the present survey, the total number of tracers moved was 413 (45.9%) The 

distributions are similar to the patterns recorded at other sites. The mean distance 

transported for all the tracers was 24.9m. The longest distance moved was 159.9 m by a 

medium sized sphere. In terms of size, there is a noticeable increase both in the number 

of tracers transported and their mean transport distance in almost every size group 
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(Table A2.4). The decreasing order of the mean transport distances is 28.2m, 24.1m and 

15.1m for the small, medium and large size groups respectively (Table A2.4). 

Regardless of size, sphere-shaped particles show an overall increase both in the number 

of tracers transported (154) and also their mean transport distances (38 m). Rod-shaped 

particles show the second greatest movements both in terms of the number of tracers 

(125) moved and their mean transport distances (21.3m), while the distribution for the 

disc and blade-shaped particles is 86 moved/16.6m and 51/6.7m respectively (Table 

A2.4, Figure 5.10). During this period the maximum mean transport distance (45.2m) 

and the greatest number of tracers moved (154) were from the small sphere group, while 

large blades represented the least number of tracers moved (6), and the shortest 

transport distances were shown in the medium blade class (6.0m) and large disc class 

(6.9m). Sphere-shaped tracers have the longest mean maximum transport distances in 

each of the size groups (Figure 5.10). For this period the decreasing order of the mean 

transport distances of particles of different shapes in the small size group is 45.2m, 

25.5m, 20.5m, and 7.4m for spheres, rods, discs, and blades respectively. For the 

medium and large size groups, despite a decrease in the mean distance, the order is 

similar, while for largest sizes the rank order is 24.2m for spheres, 14.6m for rods, 7.4m 

for blades, and 6.9m for the discs. 

Lower Tees 

During this period mean flow was 1.10 m 3 s"1 and 11 peak storms were recorded 

with a maximum discharge of 29.37m3 s"1 which was the largest discharge recorded 

during the monitoring period (Table 5.1 and Figure 5.3). 

In the present survey a total of 506 (56.2%) out of the 900 tracers were recorded 

to have moved. 141 tracers disappeared, many of which were in small size group (115 

small, 25 medium and 1 in large size group), could not be located. The mean distance 

moved for all the particles was 21.9 m. The maximum distance moved was 131.8m for a 

small sphere. In contrast to the previous survey, medium sized tracers constitute the 

greatest percentage of tracers moved (small 40.1%, medium 51.6%, and large 8.3%). 

However, despite having the greater number of particles transported, the mean transport 

distance of the medium sized group was less than that for the smaller sizes e.g. for the 

small, medium and large size particles transport distances is 25.5m, 20.3m, and 13.8m 

respectively (Figure 5.10, Table A2.4). 
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Figure 5.10 Percentage and mean distances of transported particles for the period of 21 August-24 
September 1998 at Upper Tees, Lower Tees and Trout Beck (S: sphere, B: blade, R: rod, D: disc). 
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In terms of shape, the sphere, rod and disc-shaped tracers show noticeably 

longer mean transport distances and greater number of transported particles than the 

blade-shaped particles (Figure 5.10). Mean transport distances for spheres, rods, discs 

and blades are 29.0m, 20.9m, 19.3m, and 13.3m respectively. Similar to earlier surveys 

in each size group, sphere-shaped particles show the greatest mean transport distances, 

while blades show the least (Figure 5.10). In the small and large size groups, the 

decreasing order of the mean transport distances is spheres, discs, rods and blades, 

while in the medium size group the rank is sphere, rod, disc and blade (Table A2.4). 

5.3.5 Final survey (24 September 1998 -11 July.1999) 

During this period, overall 1221 tracers moved at the three experimental reaches. 

It was the longest and second most important period for tracer movement. In general, 

little transport was observed at Upper Tees, while at Trout Beck and Lower Tees 

noticeable movements were recorded (Table A2.5 and Figure 5.11). 

Upper Tees 

Mean flow for the final survey was 0.84 m 3 s"1 with a peak value of 9.99m3 s"\ 

Total number of tracers moved up to date is 203 and 97 tracers disappeared. The mean 

distance transported by all relocated particles was 17.2 m. The longest distance moved 

was 146 m by a small rod. The number of medium sized particles transported was 

slightly greater than the small ones, while it decreases significantly in the large size 

groups. 

In terms of shape, spheres comprise the greatest percentage of number of 

transported particles and the longest mean transport distance, while blade-shape 

particles show the least transport (Figure 5.11). The rank order for the number of 

particles transported and also their mean transport distances is 82 (20.7 m) for spheres, 

68 (16.4 m) for rods, 40 (14.2 m) for discs, and 13 (9.0 m) for blade (Table A2.5). In 

each shape class, most of the particles moved were in the medium and small size groups 

(Table A2.5). However, despite less number of movements, the mean transport distance 

of spheres in the medium size group is slightly greater than mat of the small sizes. In the 

disc shaped class, however, many of the particles moved were in the medium size group 

and there was only one particle in the large size group. The total number of discs moved 

and mean transport distances for the medium and small size discs are 24/13.8m and 
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Figure 5.11 Percentage and mean distances of transported particles for the period of 24 
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B: Made. R: rod, D: cflsc). 
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15/15.6m respectively (Table A2.5). In the blade shaped class, a total of 13 tracers 

moved, 7/9.0m small, 5/8.9m medium size and l/8.5m large. 

Trout Beck 

During this period mean flow was 0.69 m 3 s"1 which a total 25 storm peaks (17 

between 5 and 10 m 3 s'1, 6 between 10-15 m 3 s"1 and 2 greater than 15 m 3 s"1) were 

recorded. The maximum flow was 19.91m3 s"1 (Table 5.1 and Figure 5.3). 

In the whole 429 (48%) out of the 900 tracers were recorded to have moved up 

to date. Altogether, 206 particles could not be found and 110 particles were buried. 

Most of the particles disappeared (73.7%) and buried (63.6%) were in small size group. 

Mean depth of burial was 7.3 cm. 

The mean distance moved for the particles was 36.8m compared with 17.2m at 

Upper Tees and 45.3m at Lower Tees. The greatest observed movement was 399m by a 

small rod. The number of particles moved in the medium size group is greater than that 

of small and large size group (small size: 167, medium size: 204 and large size: 58). 

However, particles in the small sized tracers moved further downstream. The mean 

transport distances for the small and medium size groups were 47.8m and 32.6m 

respectively, while it is only 19.6m for the large size group. 

In terms of shape, the patterns are generally similar to those observed in the 

previous surveys. In other words, both the numbers of tracers moved and also measured 

mean transport distances tend to be greater in the sphere, rod and to some extent in disc

shaped classes than the blade-shaped class (Table A2.5 and Figure 5.11). For the period, 

sphere-shaped particles show greater mean transport distances than the other shapes. 

The mean transport distance for spheres is 56.6m, while it is 31.1m for rods, 20.8m for 

discs, and 7.9m for blades. In the sphere and rod shape classes most of the particles 

transported are in the small and medium size groups. Comparison of the four shapes 

clearly indicates that spheres within all size groups move in greater numbers and the 

longest mean transport distances. 

Lower Tees 

During this period mean flow was 1.53 m 3 s"1. In total 56 storm peaks were 

recorded. Of the 56 storms peaks, 33 were between 5-10 m 3 s"113 were between 10-15 

m 3 s"1 and 10 of them were >15 m 3 s"1. The highest peak flow was 29.37 m 3 s"1 which 

was similar to the peak flow recorded in previous period (Table 5.1 and Figure 5.3). 
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In the present survey, the total number of tracers moved was 589 (65.4%) out of 
the 900 and 140 have not moved at all. In total 171 particles disappeared and 121 
particles were buried. Many of the particles which disappeared (71.3%) and buried 
(48.7%) were in the small sized group. In general the burial depths were shallow. The 
mean of burial was 8.5 cm. The cumulative mean distance moved for all the particles 
was 45.3m which is the greatest distance at the three sites. The maximum distance 
moved was 361 m was by a medium rod (the longest movement recorded during the 
monitoring period). Similar patterns of movement still persist. In other words, the 
number of transported tracers and their mean transport distance tends to increase in the 
small and medium size group of particles, while it is noticeably less in the large size 
group (Figure 5.11, Table A2.5). 

5.4 GENERAL PATTERNS OF MOVEMENT 

5.4.1 Size-shape and distance of travel of magnetic tracers at the three sites 

For the entire monitoring period, the cumulative mean transport distance and the 

survey period mean transport distances are shown in Figure 5.12. The greatest total 

mean transport distance are in the Lower Tees, while the Upper Tees has the smallest. 

Total mean transport distance of the tracers at Lower Tees site is almost three times 

greater than the Upper Tees. There is little variation in mean transport values between 

the different surveys at Upper Tees. For example, there is virtually no change between 

survey periods of 2, 3, 4 (15.6 m:15.6 m:15.9 m) and little change between surveys 4 

and 5 (16m: 17m) at Upper Tees. Indeed, the total difference in mean transport distance 

between Surveys 2 and final survey is only 1.6 m at Upper Tees, while it is 21.3 m at 

Trout Beck and 34.9 m at Lower Tees. Lower total mean transport at Upper Tees might 

be attributed to lower bankfull discharges (See Chapter 4). In contrast transport 

distances at Trout Beck and Lower Tees are much greater. There is a gradual increase in 

the total mean transport distance from one survey to another with an exception between 

surveys 3 and 4 where mere is little variation. The ratio of reach based shear stress to 

the critical shear stress (T/T 5 O) at the Upper Tees, Lower Tees and the Trout Beck sites 

are 0.042, 0.214 and 0.640 respectively. The lower value of T/T50 ratios at the Upper and 

Lower Tees sites indicate a relatively stable bed conditions, when compared to the Trout 

Beck reach. 
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Figure 5.12 Cumulative and survey period mean transport distances of tracers 
during the fieldwork period at the Upper Tees, Trout Beck and the Lower Tees 
sites. 
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Table 5.6 Number of particles moved and mean transport distances for the five surveys 
at the three experimental reaches. 

UPPER TEES 
Survey Mean Standard Max Total Sphere Blade Rod Disc 

Distance 
(m) 

deviation Distance moved 
(m) n m n m n m n m 

1 5.9 2.2 10 15 53 -6.5 0.0 33-•4.8 13 -6.8 

2 14.4 17.7 93.4 40 55- 12.8 0.0 35- 14.9 10 -9.8 

3 5 5.0 93.8 30 52 -6.3 0.0 35-•4.0 14 -2.9 

4 13.1 13.0 70.3 170 41 -14.8 6 - 8.7 33- 11.6 37-• 13.0 

5 9.1 10.2 101 107 29 -9.2 5-6.1 29- 12.6 21 -5.6 

TROUT BECK 
1 12.6 10.7 62.4 134 54 -14.8 2 - 3.3 29- 14.1 16 -10.2 

2 9.6 11.8 70.4 154 5-•12.4 2 - 5.7 27-•6.8 21 -6.9 

3 10.0 11.5 90 201 51 -12.4 4- 5.9 24-•7.5 21 -8.0 

4 18.7 22.7 145 390 37 -27.7 12 -6.4 30- 16.1 21 -13.7 

5 26.2 35.8 181 360 39 -40.0 12 -7.5 29- 18.9 20 -21.7 

LOWER TEES 
1 

2 10.4 9.2 74.1 230 34 -33.9 10 -7.4 33 -7.9 26 -6.8 

3 9.4 13.6 106 290 31 -14.9 10 -4.3 29 -7.9 28 -6.8 

4 17.0 16.2 106 464 29 -20.7 12 -12.4 31 - 16.8 28- 15.4 

5 33.1 40.9 362 544 29 -46.5 14 -16.8 29- 29.0 27- 32.5 
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In terms of mean transport distances for tracers moving in the period between 
surveys, Figure 5.12 and Table 5.6 indicate that at the Upper Tees site there is 
considerable small variation in movement between the period of surveys. At Trout Beck 
and the Lower Tees sites period mean transport distances with the exception of the first 
survey tend to increase from one survey to another 

At all sites, of the 1221 tracers which were transported 74.4% moved between 3-

50 m, 15.8% between 50-100m, 8.6% between 100-200 m, 1.1% between 200-300, 

0.1% in excess of 300 m. 

5.4.2 Comparison plots of tracer distributions based on Sneed and Folk Shape 
classification 

Magnetic tracer classes were originally selected on the basis of a Zingg plot but 

it is now more widely recognised that the Sneed and Folk ternary diagram should be 

adopted as a standard because variations in particle shape can be shown less bias (Benn 

and Ballantyne 1993). Plotting follows a modified Sneed and Folk method as described 

prepared by Hockey (1970). This involves a simple revision of the original co-ordinate 

system with die right axis plotted as an inverse (1 - (b/a)). 

Figure 5.13 shows comparison plots of tracer clasts distributions of the whole tracer set 

and those recorded ''as moved" after the 5 t h survey. The density of points illustrates the 

intensity of transport at the three sites. Upper plots show the four classes of tracers used 

in the experiments at each site. In Sneed and Folk terms they are equivalent to the Zingg 

classes as follows. 

Sphere - Compact 

Disc - Platy, very platy 

Rod - Elongates 

Blade - Very bladed 

The pattern of transport portrayed in the density of points is very clear: compacts > 

elongates > platy > blades. 

Figures 14.a, b and c show the relation between scaled particle size and scaled transport 

distance. The scaling procedures follow the method and rationale outlined by Hassan 

and Church (1992) and Church and Hassan (1992). Briefly, particle size was scaled by 
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dividing size by the median b axis diameter of the subsurface bed material. Distance 
was scaled using the mean distance of the median size group of the surface material. For 
instance, tracer movement data were grouped into half phi 1/2 (0) classes. The mean 
transport distance was then calculated for the half phi class containing the D50 surface 
grain-size (Table 5.7). Data plotted for the three sites, and divided into shape classes, 
are shown in Figure 5.14a, b and c. 

Table 5. 7. Scaled distance values [D50 surface values] 
For the three experimental sites (Church and Hassan, 1992). 
Values are in (m). 

Survey Upper Trout Lower 

No: Tees Beck Tees 

1 5.9 14.9 -

2 11.1 20 9.8 

3 12.1 22.7 13.5 

4 15 23.3 22.7 

5 16.4 29.3 48.9 

In general, the plots show a tremendous scatter of points. Careful examination 

show that particles can be differentiated by shape corresponding to different plotting 

zones. Spheres and rods plot towards the top right of the diagram and blades towards 

the bottom. Although, there is no distinct trend in the data and there is very little 

evidence of size-selective displacements, few elasts plot in the top right hand of the 

scatter suggesting larger particles are less frequently transported. This conclusion does 

not fully support the general relation proposed by Church and Hassan (1992). Analysis 

of transport distance by size show a slight tendency for size selective transport (Tables 

A2.1-A2.5). However, it should be remembered that the data used by Church and 

Hassan (1992) was highly averaged and therefore much more "collapsed". 

5.4.3 Shape distribution of the total number of tracers moved and mean transport 
distances during the monitoring period 

Figure 5.15 shows the variation in the total number of tracers moved and also 

their total mean transport distances for four shape classes. This generally indicates that 

the number of sphere and rod-shaped particles transported are greater than blade and 

disc-shaped particles. Furthermore the numbers tend to increase noticeably from one 
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Figure 5.15 Total number of tracers moved through five survey periods and mean transport 
distances of four shape classes during the monitoring period at the three experimental sites. 
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survey to another. At the Upper Tees site and Trout Beck for each survey in decreasing 
order of importance the number of tracers transported in various shapes is sphere, rod, 
disc and blade. At Lower Tees the order is same for the surveys 1, 2 and 3 but for the 
surveys 4 and 5 the number of rods is slightly greater than spheres. 

At each site, the number of blade-shaped particles transported are much less. In 

terms of total mean transport distances, Figure 5.15 shows spheres represent the greatest 

total mean transport distances, while blades show the least distances, except the final 

survey at Lower Tees where disc-shaped particles have slightly longer total mean 

transport distance (Figure 5.15). The total mean transport distances for the sphere, rod 

and disc-shaped particles tend to increase from one survey period to another at the three 

sites but this is not always true for blades (e.g. Upper Tees and Trout Beck). The 

increase in mean transport distance between surveys is noticeable greater for sphere-

shaped particles than other shapes. At the Upper Tees for the first three surveys mere is 

no movement. 

5.4.4 Shape distributions of the number of tracers moved and mean transport 
distances for the tracers moved in period between surveys. 

Figure 5.16 and Table 5,6 show variations in the total number and mean 

transport distances of tracers of differing shapes moved in the period between surveys 

(period mean transport distances) during the monitoring period and results indicate a 

similar pattern to the total mean transport distances. In general, there tends to be a 

gradual increase in both the number of particles moved and also the mean transport 

distances from one survey to another. At each site the majority of particles moved and 

the longest mean transport distances measured were in surveys 4 and 5 respectively 

(Figure 5.16 and Table 5.6). Figure 5.16 also shows that at the Upper Tees, differences 

between the mean transport distances of various shapes are smaller than at the other 

sites. 

5.4.5 Frequency of movement of tracer clasts at the three experimental sites 

Figure 5.17 shows the frequency of movement for the tracers at the three 

experimental reaches. A value of zero indicates no movement during the monitoring 

period a value of 5 indicates the tracer was recorded "as moved" after each survey. In 

general, tracers at Upper Tees show rather lower frequency of movement (in both 

different sizes and shape groups), while the Lower Tees shows the greatest frequency of 
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movement. In terms of frequency of the number of movement for the particles of 
various size, Figure 5.17 indicates that, within each size group, there is a noticeable 
decline in total numbers as the frequency of movement increases at each site. The 
proportion of unmoved particles is greatest at Upper Tees. 

In term of shape, Figure 5.17 indicates that there is a considerable variation in 

the frequency of movement in the different shape classes. Difference in particle shape 

appears to have greater influence on frequency of movement than particle size. Among 

the unmoved tracers blade and disc-shaped particles represent the greatest percentage 

compared to spheres and discs. In general, sphere and rod-shaped particles tend to have 

the greatest frequency of movement, while blades and discs constitute the least. At 

Upper Tees, spheres represent the greatest percentage of the particles that moved 1, 2 

and 3 times. At Trout Beck for each survey number of movement for sphere and rod-

shaped particles is greater than disc and blades, while blades represent the less 

percentage. At the Lower Tees, however, percentage of the number of discs and blades 

is greater for particles that have move once, while spheres and rods represent the 

greatest percentage in the particles that moved 2, 3, and 4 times. 

5.5 STATISTICAL ANALYSES 

5.5.1 Multiple regression analysis: factors affecting travel distance of tracers, 

The results of regression and multiple regression analyses are presented in 

Tables 5.9 and 5.10. Data were analysed for each of the experimental sites separately. 

Table A 1.15 summarises shape and size characteristics of the data used in the analysis. 

Some variables were Log 10 transformed so that their distributions were normalised. For 

each of the experimental sites, correlations between tracers shape, size parameters and 

transport distances were calculated (Table 5.9). Several regression models were 

developed using the parameters, listed in Table 5.8. Model parameters were selected so 

that they were independent and problems of intercorrelation were avoided. 
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Table 5.8 Variables of size and shape used in the analyses. 

Variable Units Formula 

a-axis mm — 

b-axis mm — 

c-axis mm — 

Weight (g) 
Krumbein Roundness — R = (2r/a)xl000 

Sphericity — ^bcla2 

5.5.2 Correlation of distance traveled with size and shape variables 

Correlation of distance travelled with size and shape variables at the three sites 

for each survey are presented in Table 5.9. The data were loglO transformed before each 

coefficient was calculated. Data from each site were analysed separately. 

In general the results of regression and multiple regression analysis show similar 

patterns at the Lower Tees and Trout Beck sites. At the Upper Tees site correlations 

between the independent variables and transport distance are relatively weak due to 

lower transport rates (Tables 5.9). Correlation values for each of the individual 

parameters show that both particle a-axis and Krumbein sphericity are the most useful 

predictors of transport distance. The c-axis measurements at Lower Tees and Trout 

Beck sites showed no significant correlation with distance (Table 5.9). 

Table 5.9 also shows that, in general, correlation between individual predictors 

and transport distance tends to become stronger over time. At the Upper Tees there is no 

statistical significant correlation between any of the variables and tracer transport 

distances for the first three surveys. However for the surveys 4 and 5 both sphericity 

and flatness show significant correlations with distance. Correlations between the 

independent variables and transport distance are consistently more significant at the 

Lower Tees and Trout Beck sites. This suggests that the influence of the predictors tend 

to become stronger with distance at these sites. 

At each site there tends to be a negative correlation between transport distance 

and particle weight, flatness, a and b axes, while other parameters such as sphericity and 

roundness ratios show positive correlations with distance. 
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These trends are expected given our knowledge of transport processes. This is 

because, these parameters influence particle rolling. The greater the sphericity, 

roundness, and c/b ratio the more particles move in a rolling mode. Flatness, weight, a 

and b axes of particles show significant but negative correlations with transport 

distance. A particle with a long axis, greater size/weight and platy-shape is expected to 

have greater resistance to movement. Therefore they tend to be more stable compared to 

particle which are light, more equant and round, or flat but light. 

5.5.3 Multiple regression results 

Multiple regression analyses are based on total distances transported by all 

moved tracers during the all monitoring period. Only moved tracers were considered for 

the analyses. Results (Multiple R) at Trout Beck show a greater percentage of the 

variation in transport distance is explained by the regression models (Table 5.10). The 

combination of the three independent variables that represent the greatest explanation of 

the variance at Trout Beck and Upper Tees are c-axis, roundness and weight with a 

50.3% and 27.5% respectively. An alternative model involving a-axis, roundness and 

weight provides a similar level of explanation at the Lower Tees site (33.4%). 

Overall, the results of the multiple regression analysis clearly indicate that, 

together with roundness and weight, particle c-axis, and sphericity (at Trout Beck and 

Upper Tees) have the greatest correlation with transport distance. A-axis is also in some 

cases well correlated with distance but b-axis showed poor correlation with distance at 

the three sites (Table 5.10). Although the correlation between the c-axis and transport 

distance is low, the multiple regression model shows that the c-axis is important along 

with other parameters. Although particle c and a -axes are related to particle size and are 

statistically independent, in terms of sediment transport, axial dimensions and shape 

parameters can not be isolated. As it is explained in Chapter two and also demonstrated 

with the Tilting table experiments, the mode of particles movement is strongly 

controlled by the c/b ratio of a particles, the greater the c/b ratio the more likely particle 

rolls. Particles with greater c/b ratio are considered either sphere or rod-shaped 

depending on a-axis. As a result, except for the influence of weight, which is related to 

size, axial dimensions (a, b and c-axes) should also be considered as part of shape 

parameters; In general, the level of explanation involving these models is generally low. 

Several others significant factors such as local flow conditions and bed roughness are 

not included in the models. 
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Table 5.10 Multiple regression analysis: factors affecting transport distance (Log 
10 distance) of magnetic tracers at Lower Tees. 

Parameters 
(Model structure) 

Multiple F F Standard N 
R ratio significance Deviation 

Model 1: Distance: a-axis, 
roundness, weight 

Model 2: Distance: b-axis, 
roundness, weight 

Lower Tees 

33.4 24.6 5.24E-14 0.437 590 

23.9 11.8 1.53E-07 0.450 590 

Model 3: Distance: c-axis, 
roundness, weight 

Model 4: Distance: 
sphericity, roundness, weight 

Model 1: Distance: a-axis, 
roundness, weight 

Model 2: Distance: b-axis, 
roundness, weight 

Model 3: Distance: c-axis, 
roundness, weight 

Model 4: Distance: 
sphericity, roundness, weight 

Model 1: Distance: a-axis, 
roundness, weight 

Model 2: Distance: b-axis, 
roundness, weight 

33.1 24.1 9.96E-15 0.437 590 

29.1 18.1 

Trout Beck 

44.6 35.1 

49.9 44.7 

Upper Tees 

21.4 3.2 

3.12E-11 0.444 590 

2.48E-20 0.464 429 

42.4 31.3 3.27E-18 0.469 429 

50.3 48.0 9.87E-27 0.447 429 

3.78E-25 0.451 429 

11.5 0.9 

0.025 

0.442 

0.892 203 

0.907 203 

Model 3: Distance: c-axis, 
roundness, weight 27.5 5.4 0.001 0.878 203 

Model 4: Distance: 
sphericity, roundness, weight 25.0 4.4 0.005 0.885 203 
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5.6 MISSING AND BURIED TRACERS 

There were no tracers recorded as missing during survey periods 1 and 2 at the 

three experimental sites due to low movement rates. Most of the particles moved 

remained close to the starting lines and on the surface of the bed. 

5.6.1 Third and fourth surveys 

Up to survey 3, a total of, 133 particles could not be located (Lower Tees, 98 

and Trout Beck, 35). No particles were observed to be missing at Upper Tees site. 

Considering the two sites, there tends to be a noticeable increase in the numbers missing 

with decreasing particle size: small size group (99), medium size (34) but there are no 

missing stones in the large sizes. 

Up to survey 3, a total of, 97 particles were found to be buried at the Trout Beck 

site (54) and Lower Tees (43) with a mean depth of burial the same at both sites (8.2 

cm). At each site, there tends to be an inverse relation between the particle size and the 

number of buried stones. The majority of the buried particles are in the small size group 

(53%) which tends to decrease in the medium (35.7%) and large size groups (11.2%). 

Up to survey 4, the total number of tracers that could not be relocated has risen 

to 328 at the three sites, 86 at Upper Tees, 101 Trout Beck and 141 Lower Tees. The 

greatest percentage of the missing particles and the greatest numbers of buried particles 

were in small size group and there tends to be a noticeable decrease with size. In terms 

of shape, the number of missing particles in the rod-shaped class is always less than the 

other shapes. 

Altogether 120 particles were found to have been buried at various depths at the three 

experimental sites. In decreasing order the number of burial particles is 83 at Lower 

Tees, 33 at Trout Beck and 4 at Upper Tees. The mean burial depths for the Upper Tees, 

Trout Beck and the Lower Tees sites were 7.5, 5.2 and 6.4 cm respectively. At the 

Lower Tees site and at Trout Beck the number of buried particles tend to be greatest in 

the small and medium size groups, while at the Upper Tees there were only 4 buried 

particles (three of medium size and one of large size). 
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5.6.2 Final Survey 

Altogether 474 magnetic tracers, which represent 17.5 % of the total tracers 

(2700) at the three sites, had disappeared during the monitoring period. The percentage 

of the missing stones was 10.8% at the Upper Tees, 22.9% at Trout Beck and 19.0% at 

the Lower Tees. The small disappearance rate at Upper Tees may be the result of the 

low number and shorter distances of tracer movement. On the other hand, the greater 

loss at Trout Beck and the Lower Tees may be the result of deeper-burial and greater 

and longer transport distances. Over the entire period and for the three sites combined, 

the percentage of missing particles in the small size group, is much greater than the 

medium and large size groups (73.2%). A similar distribution is also true for each 

experimental site; %75.3 at Upper Tees, %70.5 at Lower Tees and %73.8 (Table 5.11). 

In terms of shape, the number of missing particles is greatest in the blade and 

disc-shaped categories than for spheres and rods (150 blade, 132 in discs, 121 in sphere 

and 70 in rods). Decreasing order of loss at the Trout Beck site is 67 blades, 59 discs, 48 

spheres and 32 rods, while the order at the Lower Tees is 55 blades, 43 spheres, 37 discs 

and 36 rods. At the Upper Tees site, rods represent the smallest number of missing (3), 

while the distribution is 28, 30 and 36 for blade, sphere and disc-shaped tracers 

respectively. (Table 5.11). 

In total, 241 magnetic tracers were found to have been buried (10 Trout Beck, 

110 Trout Beck and 121 Lower Tees). There is a similar pattern of distribution to the 

previous surveys in terms of the number of buried particles and also their mean depth. 

The maximum burial depths are 22cm, 20cm and 10cm at the Trout Beck, Lower Tees 

and the Upper Tees sites respectively. The number of buried tracer increases with 

decreasing size at each site (Table 5.12 and Figure 5.18). In general numbers buried 

tend to increase in the finer sized tracers (133 small, 100 medium and 10 large size). 

During the whole monitoring period, the Lower Tees shows the greatest number of 

particles buried (121), while there were 110 buried particles at Trout Beck and only 10 

at the Upper Tees. Table 5.12 also shows that there tends to be a slight increase in the 

mean depth of particles with particle size. In increasing rank, at the Lower Tees, is 6.3 

cm, 6.4 cm and 8.1 cm for small, medium and large size group respectively. There is a 

similar pattern at the Trout Beck (5.2 cm small, 6.5 cm medium and 8.3 cm large size 

groups). A slight positive relation exist between depth of burial and particle sphericity 

at the Lower Tees and the Trout Beck sites (Figure 5.18). 
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Figure 5.18 Relationship between tracer flatness, b-axis and burial depths, at the three 
experimental sites for the final survey. 
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5.7 SPATIAL DISTRIBUTION OF MAGNETIC TRACERS IN RIVER 
CHANNELS AT THE TROUT BECK, UPPER TEES AND LOWER TEES 
SITES 

Figures 5.19, 5.20 and 5.21 show the spatial distribution of magnetic tracers for 

different survey periods at the three experimental reaches. These surveys have been 

selected to show the general patterns of the tracers. Full details of survey dates and 

travel distances can be found in the previous sections of this chapter. Results are plotted 

in terms of shape class of the tracer particles and size. Only particles, which have 

moved greater than 3 meters beyond the start line, are considered. This corresponds to 

approximately 23% of Upper Tees tracers, 65% of Lower Tees tracers and 48% of the 

Trout Beck tracers. Originally 900 tracers were introduced at each site. The large 

numbers of tracers involved allow detailed appreciation of the movement patterns. 

Previous studies (e.g. Laronne and Duncan, 1992; Hassan et ai, 1999) often do not 

include enough tracers for such patterns to be clearly described. 

Comparison of the general spatial patterns of tracer distribution at the three 

experimental sites shows tracers at the Trout Beck and the Lower Tees sites are 

distributed more extensively than at the Upper Tees site. However, tracer densities tend 

to decrease with distance transported at the Trout Beck and the Lower Tees sites, while 

at the Upper Tees site the distribution is more patchy. 

Between the start line and section 3 the majority of the tracers are distributed fairly 

evenly across the channels both at the Trout Beck and Lower Tees sites. Beyond 

Section 3 the tracers become concentrated along the line of the main thalweg which is 

close to the right bank at both sites. Comparison with the channel cross-section 

geometry (Figure 4.9) shows mat the dispersion of the tracers at the Trout Beck is 

clearly concentrated in the deeper channel sections (Figure 5.19, between Sections 3 and 

8). At the Lower Tees site tracers are concentrated towards the right bank (Figure 5.20). 

However, the cause of this spatial distribution is rather different than for Trout Beck. 

This is because, during higher flows the main current between sections 2 and 3 is 

diverted from left bank towards the right bank. Tracer distributions beyond section 9 at 

Trout Beck and beyond section 7 at the Lower Tees site tend to be more dispersed due 

to shallower depths as the channel widths increase (Figure 5.19 and 5.20). A closer 

examination shows that, for the final survey, widths of the tracers distribution across the 

channel at the Trout Beck site are approximately 7m between sections 2 and 3, less than 
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4 m at section 4, 5m between sections 5 and 6, around 3m between sections 6 and 7, and 
6m at section 8. Lower Tees tracers reflect a similar pattern to Trout Beck but the 
distribution at each section is noticeable wider. For example, in common with Trout 
Beck, the distribution is even across the channel between sections 2 and 3, but beyond 
section 3, it tend to be thinner and more sparse. Beyond section 3, there are hardly any 
tracers along the left bank. Between sections 3 and 4, average tracers width is 
approximately 8m, between sections 4 and 5 it is 6.5m, at section 6 it reaches 9m and 
between sections 7, 8 and 9 distribution is relatively sparse and average width for the 
distribution increases up to 12m. 

Compared to the other sites, the tracer distribution is more patchy at the Upper 

Tees site. However, Figure 5.19 shows that for the first survey period (26 November-19 

December 1997) there were only 16 tracer movements and all of them were distributed 

between three meters of the starting line and section 1. For the second survey period 

(19-December 1997-18 March 1998), although the maximum extent of distribution 

increased up to section 5, the majority of tracers were concentrated below section 2. The 

final survey shows two main groups of tracer deposition, one between starting line and 

section 2 and the other is between sections 2 and 3. There are no tracers between sites 3 

and 4. Although there are some tracers beyond Section 3 the density of tracers declines 

noticeably and there are no tracers beyond section 7. In contrast to the other sites the 

main thalweg at the Upper Tees is close to the centre of the channel. 

In general, the uneven distributions of the tracers across the channel suggest that 

bedload transport at the three experimental sites is rather intermittent and the whole bed 

is quite stable. In other words, tracers are moving over a fairly 'static' bed. 

In terms of size, it is clear that there is preferential movement of the small and 

medium size classes. Although some large particles moved, the majority of the transport 

is confined to the first 30 metres downstream (Figures 5.19, 5.20 and 5.21). The general 

pattern, at the three experimental sites, shows a decrease in the frequency of movement 

with distance down the channel. In terms of shape Figures 5.19, 5.20 and 5.21 clearly 

show that spheres-and rods-shaped particles are transported by far the greatest distance. 

Discs show a lesser degree of transport compared to spheres and rods and blade-shaped 

particles appear to have moved the shortest distances and in the least numbers. Indeed, 

Figure 5.19, 5.20 and 5.21 clearly show that there is a significant decrease in the 

number of disc and blade-shaped tracers with distance downstream at each of the 

experimental sites. 



210 

5.7.1 The distribution of tracer displacement at the Upper Tees, Lower Tees and 
Trout Beck sites. 

Figure 5.22 shows tracer displacements for each site after each survey. Data are 

scaled by dividing the distance moved by each individual particle in each event by the 

mean distance of each event. Histogram classes correspond to 0.25 intervals of the 

mean. Total frequencies are shown to convey the different magnitude of tracer 

movements between surveys. This method of plotting is similar to Hassan and Church's 

(1992). Figure 5.22 clearly shows the data are highly skewed. Event distributions are 

fairly irregular with some secondary peaks and very long tails with some particles 

moving up to 8 times the mean. 

The form of these distributions has prompted some workers (e.g. Hassan and 

Church, 1992) to fit Gamma or Einstein-Hubbell-Sayre models to the observed data. 

Generally such models fit the distribution reasonably well for small displacements. 

However for larger displacements, where morphological elements in the channel (bars, 

bends, etc.) start to influence sedimentation patterns, the models tend to become 

unstable. 

Figure 5.23 shows three graphs that demonstrate the goodness of fit a simple 

Gamma model to the observed displacement data. These Gamma quartile-quartile plots 

have been used previously to demonstrate the applicability of this type of model to 

observed data (Cox, 1992). All three plots show some correspondence with gamma 

model. However beyond a certain distance the model fit is poor. The explanation of this 

is that over greater distances towards the tail of the distribution, where tracers are fewer, 

spatial sorting exerts a stronger influence. For example at the Upper Tees site beyond 60 

m the model fit is poor at the Lower Tees site, the model fit is better over a larger range 

of displacements but eventually at around 120m the pattern starts to breaks down. 
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Figure 5.23 Goodness of fit of a simple Gamma model to the observed displacement 

data for the Upper Tees, Lower Tees and the Trout Beck sites. Final survey results. 
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5.8 COMPARISON OF THE SIZE AND SHAPE CHARACTERISTICS OF 
TROUT BECK TRAPPED (TRANSPORTED) BEDLOAD AND RIVER 
SAMPLED BED MATERIAL 

In the experimental reaches bed material is coarse and poorly sorted in size and 

shape. Therefore, shape characteristics of the natural bed material are assumed to be 

somehow different than the magnetic tracers used for the field experiments. In terms of 

size, small size bedload is expected to be transported selectively compared to larger size 

coarse material. Spheres and rod-like particles are also assumed to be transported more 

easily. In order to test these hypotheses the nature of trapped bedload was compared 

with surface bed material sampled in the Trout Beck reach. The bed material is 

generally similar upstream and downstream of the Trout Beck weir which acts as a 

partial bedload trap (Warburton and Evans, 1998). However, the trap is not 100 % 

efficient so some finer components of the bedload are assumed to pass through. Thus, 

because of this limitation grain-size distributions are biased. Bedload was sampled 

twice, on two different occasions, 20 December 1997 and 30 August 1999, from behind 

the weir. Bulk samples of 97.6 kg and 90.4 kg were collected from the centre of the 

stilling pond. 

Table 5.13 Mean size and shape properties of Trout Beck trapped bedload and sampled 
(five samples) surface bed material. 

A 
axi 
s 

B 
axis 

C 
axis 

Radius 
of 

curvature 

b/a c/b Cailleux 
Round 
Ness 

Krumbein 
Spheri 

city 

Cailleux 
Flatness 

Mean 
weight 

(g) 
Bed 
material 9.6 7.0 4.0 0.8 0.74 0.60 188.6 0.67 237.3 640.5 

Trap 
sample 1 7.1 5.3 3.3 0.8 0.77 0.64 221.8 0.71 202.3 218.0 

Trap 
sample 2 7.0 5.3 3.2 0.8 0.77 0.62 242.4 0.70 230.2 267.2 

Table 5.13 compares the mean size and shape characteristics of trapped bedload 

and bed material sampled (5 samples) from the Trout Beck reach. Results show the 

sampled bed material is greater in size, and more angular than the trapped bedload. The 

mean values of a, b and e axes, weight of the bed material are greater than the trapped-

bedload. On the other hand, compared to sampled bed material, roundness and 

sphericity of the trapped-bedload tend to be greater (Table 5.13). Figure 5.24 shows 
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normal and cumulative percentage distributions of bed material and trapped bedload. In 
the transported material most of the particles are in the smaller size range. For example, 
73.8 % of material is greater than 64 mm in the bed material, while it is only 56.3 % for 
Trap sample 1,57.3 % for Trap sample 2. However, D50 sizes are very similar. 

Statistical comparison of size and shape characteristics of bed material and 

trapped bedload are shown in Table 5.14. This clearly demonstrates that, within each 

shape class, there are statistical significant differences between weight and the a, b, and 

c axes of particles between the trapped bedload and sampled bed material. Indeed, in all 

shape class, particles in the trapped-bedload are lighter in weight and also smaller in 

size (a, b, and c axes) than the sampled bed material (Table 5.13). 

Table 5.14 Statistical comparison of mean size and shape characteristics of 
bed material of Trout Beck with bedload trapped at the same site. 

Parameters Sphere Blade Rod Disc 

a-axis -4.00 -6.00 -1.65 -6.01 

b-axis -3.59 -6.27 -2.02 -5.89 

c-axis -3.16 -4.39 -2.30 -4.31 

Radius -0.81 -0.94 0.01 -0.77 

b/a 
ratio 2.80 -0.65 0.29 1.70 

c/b 
ratio 1.75 0.90 -0.30 1.56 

Roundness 1.53 1.48 0.28 3.88 

Sphericity 3.37 0.39 0.13 2.38 

Flatness -2.67 -1.10 0.77 -1.62 

Weight -3.12 -4.61 -2.98 -4.45 

(The critical values of 'T ' at the 0.05 significant level is 1.97 .The values 
shown in bold indicate a statistical significant difference between the 
compared parameters) 
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Figure 5.24 Cumulative percentage (A) and normal size distributions 
(by weight) of sampled-bed material and trapped-bedload (B) at Trout Beck 
(size indicated = upper limit of class; e.g. 4 indicates 2-4 mm size range). 
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5.8.1 Shape 

Figure 5.25 and Table 5.15 show particle shape distributions of trapped bedload 

and sampled bed material in the monitoring reach. Although discs-shaped particles 

dominate the shape distribution both in the bed material and trapped-bedload, the 

frequency of sphere-shaped particles in the trapped material is noticeable greater than 

the bed material. Table 5.15 and Figure 5.25 C also suggest that regardless of size, blade 

and rod-shaped particles are under-represented in the trapped material. A similar, but 

less marked, tendency is also evident for discs. 

Table 5.15 Shape distributions of the trapped-bedload 
and sampled bed material at Trout Beck 

Shape 
classes 

Bed 
material 

Trap 1 Trap 2 

Sphere 21.9 31.2 32.1 

Blade 15.4 9.8 10.4 

Rod 15.7 13.9 11.6 

Disc 47.0 45.1 45.8 

Table 5.16 compares the shape of transported particles and reach material by 

size category and indicates that disc-shaped particles are most important in each size 

group and become increasingly dominant with greater size. It also shows that rods, 

spheres and blades are more frequent than discs in the small and medium size 

categories. As particle size increases, the number of particles in each shapes class 

decrease both in the bed material and also in transported material. Comparison of bed 

material and trapped material indicates that spheres are over-represented in the small 

and medium size group. Disc-shaped particles, on the other hand, tend to be over-

represented in the larger, and to some extend, in the medium size groups, while they are 

under-represented in the smaller size ranges (Table 5.15). 
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Figure 5.25 Shape distributions of sampled bed material and trapped bedload 
in three size groups and the three size groups combined at the Trout Beck site. 



218 

Table 5.16 Size-frequency distributions of trapped material and bed material in 
three size groups and four shape classes at Trout Beck 

Trapped- material Bed material 

Size 
(mm) 16-64 64-128 >128 Total Size 

(mm) 16-64 64-128 >128 Total 

166 41 1 95 50 11 
Sphere (31.6) (33.1) (9.1) 208 Sphere (23.2 (22.3) (19.6) 156 

59 7 0 54 42 7 
Blade (11.2) (5.6) (0.0) 66 Blade (13.2) (18.8) (12.5) 103 

75 11 0 82 25 2 
Rod (14.3) (8.9) (0.0) 86 Rod (20.0) (11.2) (3.6) 109 

Disc 
225 

(42.9) 
65 

(52.4) 
10 

(90.9) 
300 Disc 

179 
(43.7) 

107 
(47.8) 

36 
(64.3) 

322 

Total 525 124 11 660 Total 410 224 56 690 

Note: Values in brackets show percentage of distribution 

Table 5.17 Mean roundness, sphericity, and flatness in different size class of 
trapped material and bed material at Trout Beck. 

Trapped material Bed material 

Size (mm) 16-64 64-128 >128 16-64 64-128 >128 

Roundness 235 211 170 207 171 147 

Sphericity 0.70 0.72 0.68 0.67 0.67 0.68 
Flatness 212 208 321 224 247 261 

Table 5.17 summarises mean roundness, sphericity and flatness of transported and bed 

material in 16-64, 64-128 and >128 mm size groups at Trout Beck. Mean roundness 

values of trapped-material in each size group tend to be higher than the bed material. 

There tends to be a decrease in roundness with size both in the transported material and 

bed material. Mean sphericity values for all size categories are low for both transported 

material bed material as compared to magnetic tracers. However, Table 5.17 shows that 

mean sphericities of transported particles within in each size group tend to be greater 

than those of the bed material. Table 5.17 shows that, except for the large size group, 

mean flatness of trapped particles in the small and medium size groups is slightly lower 
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than the bed material. There is no consistent variation of flatness with size in the 
transported material, while in the bed material particle flatness increases slightly with 
size. 

Table 5.14 shows that there is no statistical significant difference in the 

roundness of sphere, blade and rod-like particles between the trapped bedload and the 

sampled bed material. Disc-like particles in the trapped bedload are more round and 

spherical than bed material. Sphere-like particles in the trapped bedload are more 

spherical compared to the bed material, while there is no statistical significant 

differences between sphericity of blade and rod-like-particles of the trapped bedload 

and the sampled bedload. Overall comparison of trapped bedload and sampled bed 

material suggests that particles in the trapped bedload are more spherical, and rounded 

(sphere and disc-like particles), lower in weight and smaller in size (for each shape 

class) when compared to the bed material (Table 5.14). 

5.8.2 Comparison of trapped transported material, resident material and 
magnetic tracers 

Table 5.18 shows that, in the trapped material the majority of particles (almost 

80%) fell in less than 64mm size category, while in the bed material the distribution is 

more even. 

In terms of shape, the number of transported magnetic tracers are greater in 

number and moved the longest mean transport distances in the sphere class. In the 

trapped-material, spheres are also over-represented compared to the sampled bed 

material. 

In general, natural bed material in Trout Beck is for less uniform in shape than 

the magnetic tracers. Figure 5.26 shows Zingg diagrams of the shape of all trapped 

material, sampled bed material and magnetic tracers used for the experiment at Trout 

Beck. It can be seen that very few particles in both the bed material and also the trapped 

material tracers are "true" spheres, blades, rods and discs (which would plot in the 

extreme corners of the Zingg diagrams). Many of the spheres and discs were blocky in 

nature due to their sandstone lithology. Although, magnetic tracers are naturally formed 

in shape, geometrically they are closer to perfect sphere, blade, rod and discs compared 

to natural bed material. This is because, particles plotting close to the shape boundaries 

were not used for the experiments (in order to make four distinct shape classes on the 

basis of Zingg (1935) shape classification). 
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Figure 5.27 compares the natural bed and tracer material at Trout Beck using the 
alternative Sneed and Folk plots. Shape distributions of the bed material, tracer 
population, transported bed material (collected in a sediment trap) and the transported 
tracers. 

In terms of Trout Beck bed material, all tracers fall at the extremes of the natural 

bed material shape distribution. The greatest frequencies of natural bed material are 

compact blades and bladed classes. The focus is in the centre of the ternary diagram. 

Therefore natural shapes tend to be underestimated in the tracers used. Nevertheless 

there are some examples of all tracers shapes in the natural bed material. In the Trout 

Beck trapped material, the range of shapes is very similar to the bed material shapes, 

although there is a slight tendency for more compact shapes to be more frequent in the 

transported material. 

In terms of transported tracers, differences in the density of points between 

various shapes are very clear. The majority of transported tracers are in the compact and 

rod shapes. Conversely platy (disc) and blades are poorly represented. The numbers of 

rods in the transported tracers are greater but these are not well-represented in the 

natural bed material (Figure 5.27). 

Table 5.19 shows shape characteristics of bed material, trapped bedload and the 

magnetic tracers used in the experiment. Higher b/a and c/b axes ratios and also greater 

roundness and sphericity values indicate that, particles in the sphere-shaped group of the 

magnetic tracers are more spherical and round than the bed material and trapped 

material. Blade shaped-particles, in trapped and bed material have greater c/b axis ratio 

than magnetic tracers used for the experiments. This suggests that blades in both bed 

and trapped material are more marginal to rod shape, compared to magnetic tracers. 

Likewise, many of the rods and blades in bed material and trapped material are 

"marginal" characterised by high b/a axes tending towards sphere and disc respectively 

(Table 5.19). The higher c/b ratios in disc-shaped particles in bed and trapped material 

also indicates that they are marginal to sphere shape, while discs in magnetic tracers 

tend to be flat. 
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Figure 5.26 Shape distributions of the trapped-bedload, sampled bed 
material and magnetic tracers in the monitoring site of Trout Beck. 
(Distributions based on Zingg classification of particle form). 
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Table 5.20 Statistical comparison of mean shape parameters of 
Trout Beck bed material /trapped bedload and the magnetic tracers 
used for the field experiments at the Trout Beck site. 

Sphere Blade Rod Disc 

Radius -21.33 12.07 -18.08 -19.16 

b/a 
ratio -9.79 12.34 14.1 -10.41 

c/b 
ratio -6.98 9.66 -0.51 18.68 

Roundness -24.74 -6.98 -8.68 -20.42 

Sphericity -12.96 15.27 13.05 4.84 

Flatness 9.86 -8.88 -6.51 -7.77 

(The critical values of T ' at the 0.05 significant level is 1.97. 
The values shown in bold indicate a statistical significant 
difference between the compared parameters) 

Table 5.20 compares mean shape characteristics of bed material /trapped bedload and 

the magnetic tracers used for the field experiments at the Trout Beck site and indicates 

that, within each shape class, the natural bed material is significantly different than the 

magnetic tracers. For example, compared to the magnetic tracers, sphere-like particles 

in natural bed material are relatively angular (low roundness) and less spherical. Blade-

rod-and disc-like particles are less rounded but more spherical than those in magnetic 

tracers. This indicates that blade and rod-like particles in the bed material are 

"marginal" tending towards sphere and disc shapes respectively. 

5.9 DISCUSSION AND CONCLUSION 

5.9.1 River flow and magnetic tracer transport distances 

This sub-section examines the relationship between the magnetic tracers 

transport distances and river flow during the monitoring period. 

River flow was only competent to transport magnetic tracers in the Trout Beck, 

and the River Tees during winter storm peaks. The river flow in the two catchments is 

very flashy and numerous storm peaks were recorded during the monitoring period 
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(Figures 5.1 and 5.3). The flashy nature of the river reflects the relative impermeability 
of the rocks, and superficial till deposits and soils, which, together with high relief, lead 
to high and quick responses of streamflow to heavy rainfall. Compared to the Upper 
Tees catchment, the greater size of peak flows at Trout Beck is due to its larger 
catchment area and also channel shape (Table 5.1 and also see Chapter 4). The fact that 
tracers were transported for only very short periods at the two rivers is a typical 
characteristics of gravel bed rivers and it is also in accordance with previous bedload 
studies in similar environments (e.g. Newson, 1981; Gintz, et ah, 1996). 

It was found that peak flow discharge and also its duration has an important 

influence on both the number of tracers and also their transport distances. Both the 

numbers of tracers and also their transport distances increased with peak flow discharge 

rather than mean flow at the three experimental reaches 

Flow characteristics show considerable variation between the three sites. 

However, because of lack of local hydraulic information available at the three 

experimental sites, reach-based estimates of mean and peak discharge, shear stress and 

stream power could only be estimated. Results showed a big variation in flow 

characteristics between the three sites (Table 5.3). As expected the highest discharge 

values were recorded at the Lower Tees site. Although, mean discharge values are 

similar at the Trout Beck and Upper Tees, peak discharges are much greater at Trout 

Beck than the Upper Tees. Stream power and shear stress also show marked variations 

(Table 5.3). The lowest values were at the Lower Tees site due to its relatively flat long 

profile (Table 5.3). 

The Schoklitsch (1962) equation was used to predict critical discharges for 

initiation of bedload transport at the three sites due to its applicability to coarse-bed 

rivers. However, results showed that, despite observed tracer movements, for none of 

the survey periods unit discharges exceed the critical discharge values at all three sites 

(Table 5.4). This suggests that Schoklitsch approach, to predict the critical discharge for 

bedload transport is either not applicable to the present river or sporadic bedload 

transport is occurring below the critical value for 'whole-bed' disturbance. The situation 

over the monitoring period is best described by "low transport rates over a fairly static 

bed". Transport of particles at discharges less than the critical value are to be expected 

because locally the flow will be sufficient to entrain some bed material due to higher 

than average flow strength or bed material configurations suited to entrainment. 

These results indicate that in coarse-bed rivers prediction of critical discharges 
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for bedload transport is difficult. This is because in such rivers, flow resistance is 
complex and generally controlled by many factors (e.g. spatial variation in large and 
small scale bed roughness elements, and local characteristics of the bed material 
Characteristics; shape, size and density). Some investigators (e.g Naden, 1988; Carling, 
1989; Hoey, 1989, Ferguson and Ashworth, 1992 and Knighton, 1998) also found a 
strong interrelationship amongst form, flow and bedload transport in gravel bed rivers 
and adressed some factors that lead to scatter and uncertainties in the initiation of 
bedload movement. 

5.9.2 Tracer movement 

In terms of tracer movement at the three sites, a gradual increase was determined 

in the total mean transport distances from one survey period to another at the Lower 

Tees and Trout Beck, while there was no great variation at the Upper Tees (Figure 5.12 

and Table 5.6). Overall, tracers at the Lower Tees and Trout Beck were transported 

further (mean transport distances 45.3m and 36.8 m respectively) and also moved more 

frequently (Figure 5.17) than the Upper Tees site (17.2 m). Despite their similar mean 

discharge values (Figure 5.3), tracers at the Trout Beck site moved more in number and 

also further downstream compared to the Upper Tees site due to very different peak 

discharge values (Figure 5.3). This is because channel at the Trout Beck site is relatively 

narrow and deep (hence higher bankfull discharge), while it is wide and shallow at the 

Upper Tees site (see Chapter 4). 

Results of magnetic tracing experiments showed that both size and shape 

selectivity occurs at the three experimental reaches. In terms of size, preferential 

movement occurred in the finer particle size classes with tracers located along the 

channel thalweg moving the greatest distance (Figures 5.19, 5.20, 5.21). The smaller 

particles were transported farthest, compared with medium and large size clasts (Table 

5.6, Figures 5.28a, b and c and Figure 5.29). However, the relation between scaled 

particles size and scaled transport distances showed only a slight evidence of size-

selectivity, compared to the influence of shape (Figure 5.14a, b and c). 
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As with size, a similar consistent relation was observed between tracer weight 
and transport distances in each shape class. Although there were some differences 
between the three sites, the similar patterns of weight and transport distance occur for 
all three experimental reaches (Figure 5.30). 

Statistical comparisons showed that along with the other factors, size has a 

significant influence on particle transport distance (Tables 5.9 and 5.10). The findings 

of Ashworth and Ferguson (1989), Schmidt & Ergenzinger (1995) and also Ferguson et 

al (1998) are somewhat similar to those of the present study. Schmidt & Ergenzinger 

(1995) investigated bedload transport with active (radio) and passive (iron, magnetic) 

tracers in a step-pool mountain river and found that among coarse pebbles transport 

lengths of the 500g tracers are significantly longer than those of the 2000g tracers. 

However, they also found that the trend does not remain for the much smaller particles. 

For example, the small lOOg particles had much lower maximum transport lengths 

because they were trapped behind large boulders or interstices between cobbles and 

boulders. The field experiments of Ferguson et al (1998), carried out with 1460 tracer 

pebbles in the Allt Dubhaig, also proved that smaller size tracers moved far greater 

distances downstream than coarser tracers. 

Although small size tracers moved longer mean transport distances than the 

medium and large size groups, percentage of the number of tracers moved by size 

showed that number of tracers moved in the medium size group are greater (49.8%) 

than the small (41.5%) and large (32.5%). This suggests that bedload entrainment in the 

study reach may be to some extent conforming to the 'equal mobility' pattern proposed 

by Parker et al (1982) and Andrews (1983) for streams with mixed calibre beds. The 

possible explanation for this distribution might be that, compared to larger size 

particles, entrainment of small size particles in a rough bed is more difficult due to 

hiding effect by larger size bed material roughness elements (Carson and Griffiths 

1987). However, once they are entrained, due to their lower weights, they might be 

picked up into a temporary suspension and transported further downstream, while the 

larger ones may move close to the channel bed either in a rolling or sliding mode 

depending of their shape and also the character of bed roughness elements. Results of 

tilting table experiments also demonstrated that, on a rough bed, regardless of their 

shape, small size test particles moved at relatively greater friction angles than those of 

larger ones (Chapter 6). In addition, some studies (e.g. Komar and Li, 1986; Naden, 

1987; Wiberg and Smith, 1987) also pointed out that the particle which are coarser than 
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average particles size of bed material tend to move easier, while entrainment is more 
difficult for those that are finer than average size of bed material due to the protrusion 
and hiding effects of bed roughness elements and also bed packing arrangements and 
pivoting angles. However, when the comparison is made between medium and large, it 
was found that, in both percentage of the number of tracers and also frequency of 
movement decrease in large size group at each of the experimental site (Figure 5.17). 
This is probably large size particles (> 128mm) are very heavy to entrain at most of the 
time, though they protrude into die flow compared to surrounding small size particles. 
Indeed, there is no greater difference between the small and medium size groups in both 
weight and also size, while difference increases for size group tracers. 

In terms of shape, in general, all shapes showed a decrease in distance and 

frequency of transport as size increases (Figure 5.28a, b, c). It was found that, regardless 

of size, sphere, rod and to some extend disc-shaped tracers have been transported by far 

the greater distances and also more in number, while blades moved least (Tables A2.1-

A2.5). Results have clearly shown that within each size group spheres and to some 

extent rods travelled much longer distances than similar-sized disc and blades (Figure 

5.28a, b, c). The reason why the spheres and to some extend rods have longer mean 

transport distances but discs and blades do not, may be that, because spheres and rods 

are largely rolled rather than lifted, the rate at which spheres are moved by rolling is 

more directly related to the flow. 

Correlation and multiple regression have been partially successful in explaining 

influence of the shape and shape parameters on particle transport distances (Tables 5.9, 

5.10). Multiple regression has shown that level of explanation of the influence of shape 

and size factors on transport distances was generally low. This indicates that several 

other factors such as local flow conditions, variations in channel gradient, local bed 

structures bed material roughness should be included in the models. Indeed, multiple 

regression was able to explain the influence of the existing shape and size parameters, 

by a maximum of 27.5%, 33.4% and 49.9% of the variation in transport distances at 

Upper Tees, Lower Tees and Trout Beck respectively. 

In correlation analyses the least useful predictor was particle c axis which was not 

statistically significant in either experimental site, whereas particle a axis and Krumbein 

sphericity were both found to be the most significant predictors affecting transport 

distances (Table 5.9). Based on the results of the multiple regression analysis it was 

found that, together with roundness and weight, particle c-axis, and sphericity have the 
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greatest correlation with transport distance. A-axis also is, to some extent, well 
correlated with distance but b-axis showed poor correlation with distance at the three 
sites (Table 5.9). 

Although the correlation between the c-axis and transport distance is low, multiple 

regression models showed that the c-axis is important along with other parameters sites. 

Although particle c and a -axes are related to particle size and they are considered to be 

statistically independent, in terms of sediment transport, axial dimensions and shape 

parameters can not be isolated as it is explained in Chapter 2 and also demonstrated 

with friction angle measurements (Chapter 6). 

5.93 Missing and buried tracers 

Based on the results, a positive relation was found between the number of 

missing particles and the frequency of particles moved. Altogether 474 magnetic 

tracers, which represent 17.5 % of the total tracers (2700) at the three sites, have 

disappeared during the whole monitoring period. In general the number of the missing 

stones is the least (97) at the Upper Tees and greater at Trout Beck (206) and the Lower 

Tees (171) (Table 5.11). 

The low disappearance rate at Upper Tees may be the result of the low number 

and shorter distances of tracer movement. On the other hand, the greater loss at Trout 

Beck and Lower Tees may be the result of deeper-burial, by mixture of coarse and fine 

material, and greater rate and longer transport distances (Table 5.12). As expected, the 

rate of missing and burial increased with length of period, during which tracers was not 

surveyed (e.g. between surveys 3 and 4) and also sizes of event occurred (e.g. between 

surveys 4 and 5) (Table 5.21). 

Table 5.21 Number of missing tracers during the monitoring 
period at the three experimental reaches. 

Surveys 
Upper 
Tees 

Lower 
Tees 

Trout 
Beck Total 

Up to Survey 3 0 133 35 168 

3 - 4 86 8 66 160 

4 - 5 11 30 105 146 

Total 97 171 206 474 
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Over the entire monitoring period, more small sized tracers were lost. Indeed, at 
each of the experimental site, the percentage of missing particles in the small size group, 
is much greater than the medium and large size groups (75.3%at Upper Tees, 70.5% at 
Lower Tees and 73.8% at Trout Beck (Table 5.11). The greater percentage of missing 
stones in the small size tracers might be attributed to their easy transportable capability 
and also greater rate of burial compared to larger tracers. 

In terms of shape, the number of missing particles is greater in the blade and disc

shaped categories than for spheres and rods. The decreasing order for the missing 

particles are in 150 blade, 132 in discs, 121 in sphere and 70 in rods -shaped particles 

(Table 5.11). The possible reason why the flat shaped tracers had the greatest missing 

rate is probably that because of their less transport rate they might have been buried by 

the more active bed material. 

Burial depths of tracers may provide some vital information to predict the evidence of 

the depth of active layer in a coarse-bed river. Combined with the three sites, in total, 

238 magnetic tracers were found to have been buried with a mean depth of 7.8cm 

(Table 5.12). The maximum burial depths were -22cm (Lower Tees), -20cm Trout 

Beck) and, 10cm (Upper Tees). These values are relatively small compared to other 

studies (e.g. Ferguson et al, 1998 found 45cm). As similar to the missing tracers and 

probably for similar reasons, an inverse relation exists between the numbers of buried 

tracers and particle size (133 small, 100 medium and 10 large) (Table 5.12 and Figure 

5.18). An inverse relation found between flatness and tracer burial depth. The more 

flatter the particles the lower the burial depth (Figure 5.18). 

The greateer number of burial tracers at Lower Tees (121) and to some extent at the 

Trout Beck site (110) might be the result of high rate of bed bedload transport at these 

sites, or abundance of loose, mixed calibre material that might have buried the magnetic 

tracers. 

5.9.4 Size and shape of trapped bedload compared with resident reach material in 
the monitoring reach 

Size: Assuming that the trapped-bedload is reasonably indicative of the size 

characteristics of bedload transport in Trout Beck River, size composition of trapped-

bedload particles at the monitoring reach appeared to be smaller than the bed material. 

In the trapped-bedload the majority of the particles are in the smaller size ranges (Table 

5.13 and Figure 5.24). This may indicate a degree of size selectivity, as found by other 
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coarse bedload studies (Li and Komar, 1986; Ashworth and Ferguson, 1989; Komar and 
Shin, 1992 and Ferguson et al, 1998). Another possible reason might be that smaller 
particles might be transported on average greater distances than larger particles leading 
to their greater representation in the trapped bedload. 

Shape: To some extent shape composition of the trapped bedload and how it varies 

between the different size fractions simply reflects lithological control. The dominant 

sandstone lithology in the Trout Beck catchment tends to produce large tabular, flat 

slabs, which result in the dominance of flat particles in the cobble fraction of the reach 

material. 

Disc-like particles are more common in both sampled bed material and also in 

the trapped bedload, while blade-and rod-like particles represent the lower percentages 

respectively (Figure 5.25 and Tables 5.15 and 5.16). Although sphere-like particles have 

the second in importance both in the trapped bedload and in the sampled bed material, 

the ratio is much smaller when compared to discs. It is also clear that as clast size 

increases the percentage of disc-like particles increases markedly which is similar with 

the size distribution of sampled material in the experimental reach (Table 5.16). The 

reason for the greater frequency of discs in the larger size clasts might be attributed to 

the effect of bedrock structure on clast shape. Comparison of trapped-bedload and bed 

material clearly shows that, except in the small size group where disc-like particles are 

under-represented, within all size groups of the trapped-bedload, sphere-and disc-like 

particles are more common, while blade-and rod-like particles are-under represented. A 

possible explanation for the over-representation of disc-and sphere-like particles in the 

trapped-bedload might be the higher rolling capability of sphere-shaped clasts due to 

their greater sphericity. Comparison indicated that disc-like particles in the trapped 

bedload are more spherical, more rounded in shape and also are lighter in weight and as 

well as smaller in size (a, b, and c axes) than those in the sampled bed material (Table 

5.17). Indeed Table 5.14 clearly shows that, in contrast to other shapes, there is a 

statistical significant difference in the degrees of roundness, sphericity size and weight 

of discs-like particles between the trapped-bedload and sampled bed material. Thus, 

compared to the sampled bed material, greater sphericity and roundness of discs in the 

trapped material and also their smaller size/weight suggests that, these particles might 

have been rolled due to their marginal shapes (sphere-like particle forms) (Sneed et al., 

1958; Ashworth & Ferguson., 1989; Schmidt & Gintz., 1995). In terms of blade-and 
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rod-like particles, Table 5.14 shows that although blade-and rod-like particles (as 
similar to disc-like particles) are significantly smaller in size and also light in weight 
than those of in the sampled bed material (Table 5.14), they are still under-represented 
in the trapped bedload. The reason might be attributed to their lower sphericity and 
roundness degree. In other words, despite their small size and less weight, blade-and 
rod-like particles were not as mobile as disc-like particles due to their angularity. This 
highlights the importance of sphericity and to some extent roundness on particle 
transport. Statistical comparisons also suggested that there is no statistical difference in 
the sphericty and roundness degrees of blade-and rod-like particles between the trapped-
bedload and sampled bed material. 

Comparison of magnetic tracers and trapped-bedload suggested that, although 

sphere-and disc-like particles in the natural bed material are transported preferentially, 

influence of size selectivity in the trapped material is stronger than shape selectivity 

when compared to the magnetic tracers. There are several reasons that might be 

attributed to this difference. First of all, the natural particles in the experimental reach 

deviate from an ideal shape which will reduce the influence of shape on transport. As it 

was demonstrated in Chapter 7, small differences in shape produce fairly large 

differences in hydrodynamic behaviour. Secondly, natural bed material in Trout Beck is 

a less uniform in shape (Figure 5.26). In both the bed material and trapped material, few 

particles are "true" spheres, blades, rods or discs. Many of the sphere-and disc-like 

particles were blocky. Although, magnetic tracers are naturally formed in shape, 

geometrically they are closer to a perfect sphere, blade, rod and disc compared to 

natural bed material. 

Comparison indicates that in the Trout Beck bed material, clasts fall at the 

extremes of the natural bed material shape distribution. Natural bed material shapes are 

dominated by compact blades - bladed forms. Therefore some natural shapes are 

underestimated in the tracers used (Figure 5.27). Nevertheless there are some examples 

of all tracers shapes in the natural bed material. Comparison also clearly suggests that 

within each shape class, most of the trapped-bedload and sampled bed material have 

relatively low roundness values than the magnetic tracers. The possible reasons for this 

might include; the short course of travel by the bedload material in the Trout Beck 

catchment as compared with other rivers and the discontinuous inputs of fresh angular 

material along the channel. Sphericity of sphere-like particles in the Trout Beck is 

relatively low and less rounded compared to the magnetic tracers, suggesting that the 
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upland position of the Trout Beck is not sufficient to result in spherical clasts through 
abrasion. Another reason for the low sphericity values of the bed material is the 
sandstone Iithology, which leads to flat clasts that are also resistant to abrasion 
compared with many other lithologies (e.g. limestone, shale). (Table 5.19 in trapped 
section). Blade-like particles in trapped bedload and bed material have greater c/b axis 
ratio, suggesting blades in both bed and trapped material are more marginal to rod-like 
shape. Likewise, many of the rods and blades in bed material and trapped material are 
"marginal" characterized by high b/a axes tending towards sphere and disc respectively 
(Table 5.19). The disc-like particles in bed and trapped material were also found to be 
more marginal to sphere shape due to their higher c/b ratios. 

These differences are assumed to be important factors in bedload transport 

studies because, in gravel bed rivers, natural bed material shape deviates considerably 

from the ideal shapes and hence may not conform to models established for sphere* 

blade, rod and disc settling and transport. In other words, these variations in shape may 

lead to fairly large differences in hydrodynamic behaviour of particles. This is because, 

as it is shown in chapter 7, there is a direct relationship between sphericity and the 

velocity at which a particle of a particular volume will settle in a fluid or roll along a 

bed. Settling and transport velocities of irregular-shaped natural particles were found to 

be significantly different from artificial and natural particles with ideal shapes, Thus, no 

simple pattern of settling arid transport velocities was found between particles of 

irregular shapes and to some extent size (Figures 7.23, 7.24 and 7.25). The experiments 

carried put with magnetic tracers of ideal shapes do not directly represent actual particle 

motion in a natural channel. Nevertheless they are a useful starting point for the 

systematic investigation of this general problem. 
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C H A P T E R 6: V A R I A B I L I T Y I N F R I C T I O N A N G L E S A N D T H E 
M E C H A N I S T I C B E H A V I O U R O F P A R T I C L E S O F D I F F E R I N G 
S I Z E A N D S H A P E , O N B E D S O F V A R Y I N G G R A V E L 
R O U G H N E S S . 

6.1 SCOPE OF CHAPTER 

This chapter presents the results of the tilting table experiments designed to 

investigate the variability in friction angles and the mechanistic behaviour of particles of 

differing size and shape, on beds of varying gravel roughness. An introduction outlining 

the importance of selective entrainment of grains of differing size and shape from a 

natural sedimentary deposit is given. Some common terms associated with the 

experiments and a broad objective of the chapter are described. Sections 6.3 and 6.4 

describe variability of friction angle in relation to particle size, shape and orientation on 

four different bed roughness types. Variability in friction angles measured with particles 

of equal weight but different shapes and also with natural particles of different shapes 

and orientations is discussed in Sections 6.5 and 6.6 respectively. Sections 6.7 and 6.8 

discuss the friction angles measured on a naturally formed river bed with particles of 

differing size, shape and orientation. Variability in friction angles measured with the 

particles of equal weight but varying shape on a naturally formed river bed is discussed 

in Section 6.9. Section 6.10 examines friction angles of natural particles of varying 

shape measured on the natural bed. The effect of particle roundness on friction angle is 

examined in Section 6.11. Finally, the key points raised by the experiments are 

discussed and summarised in Section 6.12 

6.2 INTRODUCTION 

In bedload transport selective entrainment of grains of differing size and shape 

from a natural sedimentary deposit is an important process (Sneed and Folk, 1958; 

Meland and Normand, 1969; Li and Komar, 1986; Carling et al, 1992; Hassan and 

Church, 1992). However, despite much research, the mechanisms of selective 

entrainment are still incompletely understood (White and Day, 1982, Komar, 1987; 
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Naden, 1988; Gomez and Church, 1989; Schmidt and Ergenzinger, 1992; Schmidt and 
Gintz, 1995). Many bedload transport studies have shown that there are complex 
interactions which occur between channel sediments and streamflow (Hoey, 1992; 
Ferguson and Ashworth, 1992). These complexities suggest observations of flow 
dynamics and sediment transport must be, at least partly, based on either laboratory 
experiments or flume studies (Kirchner et al., 1990; Carling et al., 1992). Several 
investigations have been based on grain friction and pivoting analysis as functions of 
grain size, shape (reliability and angularity), and factors such as imbrication (White, 
1940; Miller and Byrne, 1966; Komar and Wang, 1984; Li and Komar, 1986; Kirchner 
et al., 1990; Buffington etal, 1992; Dietrich and Kirchner, 1992). 

Before considering the objectives of this chapter it is worthwhile briefly 

outlining some common terms associated with this kind of study. The Friction angle is 

the angle of repose, which expresses the resistance of a grain to removal by the 

interlocking friction in a sediment between individual grains and the flow. There is a 

relationship between critical boundary shear stress of a particle, its friction angle and the 

relative protrusion of grains on bed surfaces (Kirchner, et al., 1990). Generally, friction 

angle distributions are expressed as a function of test grain size, median bed grain size, 

and a bed sorting parameter. Friction angles decrease with increasing grain size relative 

to the median bed grain size, and are a systematic function of sorting, with lower 

friction angles associated with poorer sorting (Buffington et al., 1992). In contrast, the 

pivoting angle relates to the contact point of a particle with an underlying grain. The 

first movement occurring when the moment of force exerted by the flowing fluid 

exceeds the moment of the particle's weight force. Particle pivoting angles have an 

important effect on the threshold of movement. Pivoting angles of a specific particle 

depend on size, shape and imbrication. With uniform grain sizes, the pivoting angle and 

thus entrainment depend on grain shape, grain 'rollability' (as determined by the c/b 

axial diameter ratio) and angularity, which produces grain interlocking. Measurements 

have shown that there is an inverse relationship between pivoting angle and entrainment 

threshold. Because of interlocking of the particles which inhibits movement, angular 

particles have greater pivoting angles than rounded sphere-shaped particles (Komar and 

Li. 1986). 

The broad objective of this chapter is to examine the processes of selective 

particle entrainment, based on an analysis of particle friction angles. Results of friction 

angle measurements are presented for particles of various shapes, size and orientation 
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on a variety of artificially and naturally formed bed roughnesses. The experimental 
design and measurement techniques for the tilting table experiments are briefly 
explained here and in Chapter 3. 

Briefly, four metal plates (lm 2) were used as base plates for four different bed 

roughnesses. The roughness was formed using naturally formed coarse gravel of various 

shape and size. On each base plate the size of the bed particles (base pebbles) was 

limited to a specific grain size range (Table 6.1). The base pebbles were secured to the 

base plates with silicon cement (Figure 6.1). 

Table 6.1 Grain size distributions of the four bed 
roughnesses. 

Bed Size of the base grains 
Roughness type (b axis) 
Roughness 1 8 - 11.2 mm 

Roughness 2 16 - 22.4 mm 

Roughness 3 32 - 48 mm 

Roughness 4 64 - 96 mm 

The test grains used in the friction angle experiments were either artificially-formed 

using artificial or naturally formed coarse gravel. Three test grain sizes were classified 

in terms of their b (intermediate) axes; 24, 48 and 96 mm (Table 6.2). The test particles 

were of the following shapes: sphere, blade, rod, and disc. For each test particle, 

measurements were repeated 50 times on each of the four bed roughness types. For 

example on roughness 1: 50 measurements was made for the sphere, 50 for the blade in 

a transverse orientation, and another 50 in a parallel orientation blade. Similarly, 50 

parallel for rod, and another 50 for transverse rod and 50 for disc-shaped particles. 



Figure 6.1. The ted roughness types used in the fttetton angle exptrfnients. Particle 
htm varies with the size of the roughness elements. 
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6.3 VARIABILITY OF FRICTION ANGLE IN RELATION TO PARTICLE 

SIZE AND BED ROUGHNESS. 

Table 6.2 Mean friction angles and standard deviations measured for three 
size groups on four bed roughness. 

Bed Test grain size (b-axis) 

Roughness type 24 mm 48 mm 96 mm 

Roughness 1 49 (0.2) 39 (8.9) 33 (7.4) 

Roughness 2 50 (11.0) 44 (9.8) 34 (8.6) 

Roughness 3 55 (12.0) 44 (10.5) 37 (9.9) 

Roughness 4 70 (11.6) 54 (10.0) 44 (9.3) 

Note: The first figure in each row is the friction angle (degrees) and the second 
is standard deviation (brackets). 

The size of the test particles and the results of the measurements for the tilting 

table experiments are shown in Table 6.2. Mean friction angles for each test size group 

were calculated by summing all the measurements regardless of any shape and 

orientation differences, then dividing by the number of measurements. Table 6.2 and 

Figure 6.2 indicate that, in general, there is an inverse relation between mean friction 

angle and test particle size. For the smallest test particles on almost each bed roughness 

type the measured mean friction angles are much greater than those of the medium and 

large sized particles. (Figure 6.2 and Table 6.2). Friction angles increase as bed 

roughness increases for all test particles but the increase is more noticeable for the small 

sizes. 
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Roughness 1 Roughness 2 Roughness 3 
Test particte size 

• Small • Medium & Large 

Figure 6.2 Mean friction angles measured for the three test clast sizes 
on four bed roughness types 

Although there are consistent differences in friction angles between the different 

sizes and roughness types, the size of these differences varies in magnitude. Table 6.2 

shows that differences between roughnesses 1 and 2 and also between roughnesses 2 

and 3 are only 1° and 5° for small size test particles, 5° and 0° for medium size test 

particles and 1° and 3P for the large size test particles, but differences increases 

noticeably up to 15° for small, 10° for medium and 7° for large size test particles 

between the roughnesses 3 and 4. These differences must result in both a greater 

increase in bed material roughness and also a variation in particle packing geometry of 

Roughness 4. Indeed, visual inspection of the roughness surfaces (Figure 6.1) shows 

that because of increasing bed grain size and better sorting there are many pockets that 

are large enough to trap small and medium test particles. Given the large grain size of 

bed roughness 4 there is a marked decrease in the ratio of test grain size to bed grain 

size. 

On each bed roughness type, measurements have shown that there is a 

noticeable relation between friction angle and d/D ratio. In other words, regardless of 

test particle shape, friction angle depends on the ratio of test grain size (d) to those over 
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which it is pivoting (D). The smaller the ratio of d/D, the greater friction angles at which 
test particles move. Figure 6.3 also shows that on each bed roughness type, friction 
angles increase as the ratio of test grain size to bed mean particle size decreases. 
The greatest friction angles tend to correspond with the lowest ratios of d/D. 

Figure 6.3 indicates that, over all the bed roughness types, there tends to be a 

slight decrease in standard deviation values with increased d/D ratios. This indicates 

that smaller grains have a large range of friction angle distributions. As test particle size 

increases (hence increased d/D ratio) the standard deviation value decreases (Table 6.2) 

The small-size test particles show no great difference in standard deviation values 

between various bed roughnesses. The range varies between 10.2 and 12. Measurements 

with medium-and large-size test particles, however, show that standard deviation tends 

to decrease as the test particle size increases on lower roughness beds. Standard 

deviation ranges between 8.9 (on Roughness 1) and 10.5 (on Roughness 4) for medium-

size test particles and the ratio is 7.4 (on Roughness 1) and 9.9 (on Roughness 4) for the 

large size test particles (Table 6.2). This indicates that, due to their greater d/D ratios, 

the larger grains move easily at a small range of low friction angles on less rough beds. 

Table 6.3 Mean friction angles and the d/D ratios measured for three test size groups 
on four bed roughness. 

Bed 
Roughness type 

24 mm 

Test grain size (b-axis) 

48 mm 96 mm 
Roughness 1 2.5 (49) 5.0 (39) 10.0 (33) 

Roughness 2 1.25 (50) 2.5 (44) 5.0 (34) 

Roughness 3 0.6 (55) 1.2 (44) 2.4 (37) 

Roughness 4 0.3 (70) 0.6 (54) 1.2 (44) 

Note: The first values in each row represent the d/D ratio and the second is friction 
angle (degrees). 
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6.4 VARIABILITY OF FRICTION ANGLE IN RELATION TO PARTICLE 
SIZE, SHAPE AND ORIENTATION ON FOUR DIFFERENT BED 
ROUGHNESS TYPES 

Table 6.4 generally shows that, regardless of shape, there tends to be an inverse 

relationship between particle size and friction angle. Mean friction angles decrease with 

particle size and the differences tend to be greater for spheres and rods with a transverse 

orientation than for blades any orientation. 

In terms of shape, for all test sizes, sphere-and rod-shaped particles with 

transverse orientations have lower mean friction angles on all bed roughness types. 

Discs, blades (regardless of orientation) and rods with a parallel orientation have greater 

friction angles. This indicates that apart from particle size, shape and orientation also 

have very significant influences on friction angles (Table 6.4). Spheres and discs have 

no preferred orientation and hence no significant difference in friction angles in 

different positions; however rods and blades can move at very different friction angles 

when placed in parallel or transverse orientations (Figure 6.4 and Table 6.4). 

Table 6.5 shows the statistical significance of friction angles measured with 

various shape/orientations of test particles in three size groups on four bed roughness 

types. Generally there is no significant differences in measured friction angles between 

blades (regardless of orientation), discs and parallel rods. A similar relation is also true 

between spheres and transverse-rods on virtually all bed roughnesses. However, 

differences are significant between blades, discs, parallel-rods, spheres, and transverse-

rods. Particles with low c/b ratios tend to move at similar friction angles. Differences in 

friction angles tend to be important between the particles that have different ratios of c/b 

axes, such as between spheres and blades or between transverse-rods and discs or 

blades. Table 6.4 also shows that differences in friction angles between various shapes 

are less significant for small-sized particles on the roughest bed. This tends to be more 

important as bed roughness decreases or test particle-size increases. 

On the smoothest bed and with the smallest test particles, the test particles 

moving at the lowest friction angles were spheres and rods positioned transverse to the 

slope, while the most stable particles were blades (regardless orientation), parallel rods 

and discs. For the smallest test particles the differences in mean friction angles between 
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Table ,6.5, Statistical significance of friction angles measured with various shape/orientation of test 
particles in three size groups on four bed roughness types. 
(critical value of "t" at the 0.05 significance level is 1.98 for each of the experiments. S: sphere, 

B: blade, R: rod, D: disc, P: parallel orientation, T: transverse orientation.). Bold type shows 
significant values 

ROUGHNESS 1 
Small size Medium size Large size 

PB TB PR TR D PB TB PR TR D PB TB PR TR . D 
S 9.10 5.60 7.80 3.40 8.20 

PB —- 3.20 1.40 12.90 1.50 
TB 1.96 9.12 1.96 
PR —, . . . . . . . . 11.54 o.05 
T R .... .... .... .... 1 « 

S 9.94 9.15 9.14 1.62 15.40 
PB —- 0.68 1.15 10.69 3.37 
TB — - 0.43 9.91 4.12 
PR . . . . .... . . . . 9.94 4.75 
TR —- —- . . . . . . . . 16.10 

S 11.04 10.73 13.23 2.60 12.65 
PB —r 1.44 4.10 14.44 4.96 
TB —- — 2.38 13.38 3.44 
PR . . . . . . . . . . . . 15.98 1.34 

TR - -— 14.77 

ROUGHNESS 2 
Small size Medium size Large size 

PB TB PR TR D PB TB PR TR D PB TB PR TR D 
S 6.05 1.98 3.40 2.91 4.68 

PB —- 4.66 2.74 9.62 0.80 
TB — —- 1.72 5.21 3.24 
PR . . „ 6.68 1.66 
TR - - —- —- 7.79 

S 13.3 10.1 8.20 2.13 14.59 
PB — 3.22 5.38 14.66 1.37 
TB -— —- 2.09 11.53 2.32 
PR . . . . . . . . . . . . 9.81 4.84 
TR — - — 16.03 

S 12.72 10.88 12.51 0.34 11.71 
PB —- 0.54 1.44 13.75 0.21 
TB —- —- 0.74 11.64 0.32 
PR -- 13.80 1.14 
TR - -— —- 12.57 

ROUGHNESS 3 
. Small size Medium size Large size 

PB TB PR TR D PB TB PR TR D PB TB PR TR D 
S 3.31 2.81 1.94 2.57 3.44 
PB — 0.20 1.94 6.37 0.58 
TB — —- 1.41 5.53 0.70 
PR - — 5.14 2.21 
TR —- -- • -— 6.15 

S 6.07 5.70 5.26 0.98 7.72 
PB — 0.60 1.51 8.03 077 
TB —- —- 0.90 7.76 1.50 
PR —- 7.59 2.65 
TR —- — —- 10.72 

S 4.85 6.24 6.52 1.55 8.30 
PB —- 1.15 1.51 3.82 4.10 
TB - 0.40 5.32 3.24 
PR - —- 5.64 2.87 
TR - - — 7,62 

ROUGHNESS 4 
Small size Medium size Large size 

PB TB PR TR D PB TB PR TR D PB TB PR TR D 
S 2.17 0.88 2.38 4.14 4.26 

PB —- 1.45 5.66 ,7.17 2.77 
TB 4.00 5.74 4.14 
PR — 2.46 8.39 
TR ~ , — — — 9.50 

S 5.93 6.91 5.76 3.20 7.46 
PB ----- 0.10 0.37 8.72 2.07 
TB - 0.53 10.07 2.17 
PR — 8.67 2.47 
TR — —- —- 9.93 

S 6.28 7.24 8.61 1.22 10.5 
PB —- 0.47 0.61 7.13 2.14 
TB -- 0.10 8.14 1.71 
PR —- — — 9.68 1.83 

'•TR — —- 11.52 
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spheres, rods (with transverse orientation) and blades (with every orientation) and discs 
are greater on the smoothest bed. For example, the mean friction angles (on Roughness 
1) for transverse rods and spheres are scarcely more than half those for blades (in any 
orientation), parallel rods and discs. However, as bed roughness increases, there is a 
general increase in the mean friction angle for all shapes, but the difference in mean 
friction angles between the various shapes decreases (Table 6.4). In other words, 
increasing the roughness provides an increasingly stable base for all test grains. This is 
because an increase in bed roughness results in a greater spacing of pivot points, which 
creates a more stable resting position for the test particles. Although there is always a 
greater difference in friction angle between the parallel and transverse orientation in rod 
shapes, the relative difference decreases as bed roughness increases. For the small test 
particles on the smoothest bed (Roughness 1), parallel blades have the greatest friction 
angle (58°), and in decreasing order the other shapes are: 55° for both parallel rods and 
discs, 51° for transverse blades, 39° for spheres and 33° for the transverse rods (Table 
6.4). On Roughness type 4, however, discs have the greatest friction angle (81°) and the 
decreasing order is 75° and 72° for parallel and transverse blades respectively, 69° 
spheres, 63° parallel rods and 58° transverse rods. 

For the medium size test grains, Tables 6.4, 6.6 and Figure 6.4 show that for 

most shapes, friction angles are lower than those for the smaller-sized test grains on 

each of the bed roughness types. On almost all the bed roughnesses discs are the most 

stable, with the highest friction angles, whereas transverse rods and spheres are the least 

stable shapes. As with the small test grains, the medium-sized particles show only small 

differences between blades (parallel and transverse orientation), parallel rods and discs. 

Friction angles for these shapes are always greater than for spheres and transverse rods, 

but differences diminish as bed roughness increases. Transverse rods tend to have the 

lowest friction angles on each bed roughness, while spheres are a close second. 

Measurements with large-sized test particles show that friction angles for all 

particles are smaller than those measured with small and medium-sized test particles 

(Table 6.4 and Figure 6.4). In other words, particles in all shape classes on every bed 

roughness start to move at lower friction angles. Measurements with spheres and rods 

show very low friction angles, which are very different from the other shapes on 

roughnesses 1 and 2. However, as Figure 6.4 and Table 6.4 show, the difference in 

friction angle between particles of different shape and orientation decreases as the bed 

roughens. On the smoothest bed (roughness 1), rods with transverse orientation (19°) 
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and spheres (22°) have the lowest friction angles and the increasing rank order for 
parallel blades, transverse blades parallel rods and discs is 35°, 37°, 41 Q and 44° 
respectively. Measured friction angles are not very different between roughness 1 and 
roughness 2 for spheres and transverse rods but differences increase for parallel and 
transverse blades, as well as for parallel rods (Tables 6.4, 6.5 and Figure 6.4). On 
roughness 3 and roughness 4 spheres and transverse rods have the lowest mean friction 
angles but differences between other shapes decrease in comparison the roughnesses 1 
and 2. 

Friction angle distributions for the various test particles at different orientations 

on different bed roughnesses are shown in Table A3.1. The results confirm that spheres 

and transverse rod-shaped particles tend to move at the lowest friction angles. 

Especially on the smoothest bed (roughness 1), cumulative friction angle distributions 

systematically steepen with increasing particle size for transverse rods and spheres 

(Figure 6.5). Figure 6.6 shows the friction angle distributions for particles with different 

shapes and orientations on various bed roughnesses. Both Figures 6.5 and 6.6 indicate 

that differences in friction angle distributions between various shapes (especially in the 

small size group) tend to decrease as bed roughness increases. Figure 6.6 also indicates 

that transverse rod and sphere-shaped particles predominantly move over a smaller 

range of friction angles, while blade and disc-shaped particles have much wider 

distributions. 

The standard deviations for the friction angles measured for different shapes 

averaged on four bed roughnesses are shown in Table 6.6. For the small-size test 

particles on roughness 1, there is no significant difference in the standard deviations 

between the different shapes. Standard deviations vary from 7.9 (transverse rod) to 11.3 

(parallel blade). On all the other bed roughnesses small-sized spheres and transverse-

rods have the greatest standard deviations and this increases as bed roughness increases. 

In rank order for spheres the standard deviation is 13, 14 and 15 for roughnesses 2, 3 

and 4, while for transverse rods the order is 12, 12.7 and 13.5 for roughnesses 2,4 and 3 

respectively. These results indicate that, for the smallest test particles, spheres and rods 

with transverse orientations have a relatively large range of friction angles as bed 

roughness increases. On the other hand, there is no similar systematic variation in 

standard deviation for parallel and transverse blades or parallel rods and discs on the 

same bed roughnesses. Thus spheres have the highest standard deviations while parallel 

rod have the lowest. Large standard deviations in the spheres and transverse-*ods arise 
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Test clast size (b: 24 mm) 
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• Roughness 1 - Roughness 2 * Roughness 3 • Roughness 4 

Figure 6.4 Mean friction angles measured for different shape/orientation of 
particles in three test size groups on four bed roughnesses. (S: sphere, 
B: blade, R: rod, D: disc, P:^parallel orientation, T: transverse orientation.). 
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because spheres and transverse particles sit easily into the cols between the bed base 
particles. The depth of these cols varies spatially on the base depending mainly on the 
sorting of the bed material. I f the bed is formed with artificial large-scale unsorted 
grains, rather than being highly sorted (uniform size bed grains), the cols between the 
base particles would probably be deeper. Thus because of poor sorting of the bed 
material, small-sized sphere-shaped particles may sit in large and deep cols which 
requires a relatively high friction angle for entrainment. In other places, i f the sphere is 
large enough to bridge the cols, a low friction angle results. On the other hand both 
transverse and parallel rods, as well as discs cannot easily sit in the cols between the 
particles, and largely bridge across the gap (because of their large projection surface) 
and hence sit on top of the bed particles. Thus friction angle measurements with flat 
particles (low c/b ratio) lead to a lower range of standard deviation values but greater 
friction angles. 

For medium-sized test particles, spheres and transverse rods have lower standard 

deviations on every bed roughness types when compared with the small test particles 

(Table 6.6). On almost all roughness types, except for discs on roughness 2 and 4, there 

is no significant variation between blades (with every orientation), parallel rods and 

discs (Figure 6.6). 

In general, large-sized test particles show lower standard deviation values on bed 

roughness 1 than those of small and medium size test particles. Transverse-rods and 

spheres have the lowest standard deviations. As with small and medium test particles 

there is an increase in standard deviation as bed roughness increases (except roughness 

3). These measurements also demonstrate that, on small bed roughnesses, large 

transverse rods and spheres have very steep and uniform friction angle distributions, but 

me uniformity of the distribution decreases with increasing bed roughness (Figures 6.5, 

6.6.and Table A3.1). Blades in both orientations, parallel rods and disc-shaped particles, 

on the other hand, have generally larger standard deviations and there is also no 

systematic variation between different bed roughnesses. (Figure 6.6 and Table 6.6). For 

large size test particles* transverse rods have the lowest standard deviation on 

Roughness 1 (4.9), which is also the lowest value among the three size ranges of test 

particles, while discs have the greatest (13.2). 



258 

6.5 VARIABILITY IN FRICTION ANGLES OF PARTICLES OF EQUAL 
WEIGHT BUT VARYING SHAPE AND ORIENTATIONS ON BEDS OF 
DIFFERENT ROUGHNESS. 

Many earlier experiments on friction angles concentrated mainly on the 

importance of particle size in relation to different bed roughnesses (Kirchner et ai, 

1990; Buffington et at, 1992). Although i t was found that friction angles decrease with 

increasing relative grain size, it was also discovered that there was a large scatter in the 

results. In the measurements undertaken here the effect of particle weight is 

standardised and the investigation focused on how particles of equal mass but different 

shape affect friction angles. Although the weight of a particle has no bearing on its 

mechanistic behaviour in tilting table experiments, it is important in fluvial 

environments. Standardising the mass of a particle reduces the degree of freedom when 

forming differing shaped particles. 

For the experiment, four artificially made particles of similar weight (750 g) 

were compared. These were of sphere, blade, rod and disc shapes. Dimensions of the 

test particles are given in Table 6.7. Each particle was placed randomly on the bed. Two 

particle orientations were considered; long axis parallel to and transverse to the slope. 

As similar to the previous experiments, measurements were repeated 50 times for each 

of the test particles on each of the four bed roughness types. 

Table 6.7 The tri-axial dimensions (cm) and weights (g) of the test 
particles (equal weight in four shape classes) used for the experiment. 

Shape a-axis b-axis c-axis Weight 

Sphere 8.6 8.6 8.6 750 g 

Blade 16.0 6.8 3.0 750 g 

Rod 11.4 6.0 6.0 750 g 

Disc 10.0 10.0 3.4 750 g 

The results show that, in general, spheres and transverse rod-shaped particles 

have the lowest mean friction angles on almost every bed roughness (Table 6.8). Mean 

friction angles tend to increase towards the roughest bed for each particle shape. On bed 

roughness 1 the mean friction angle for parallel-rods is almost double that for transverse 

rods. This difference decreases slightly as the bed roughens (Table 6.8 and Figure 6;7). 

On the other hand, parallel and transverse blades do not show a similar difference. 
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Table 6.8 Mean friction angle distributions of test particles with equal weight but six 
shape/orientation classes on the four different bed roughnesses 

Bed roughness SHAPE AND ORIENTATION 
S B.T B.P R.T R.P D 

Roughness 1 19.4 40.3 34.6 19.9 40.6 38.7 

Roughness 2 22.3 37.9 41.7 25.2 42.8 39.9 

Roughness 3 27.8 42.3 40.2 28.2 47.6 43.4 

Roughness 4 33.2 52.9 48.0 34.9 54.4 51.2 

Mean 25.7 43.4 41.1 27.1 46.4 43.3 

B.T : Blade with transverse orientation B.P: Blade with parallel orientation 
R.T: Rod with transverse orientation R.P: Rod with parallel orientation 
S: Sphere D: Disc 

Table 6.9 shows the results of statistical comparisons of friction angles measured 

with the test particles. Results indicate that, on almost all bed roughness types, statistical 

differences in mean friction angles are less between blades with parallel and transverse 

orientations, parallel-rods and discs. However, differences tend to become more 

significant between spheres, transverse-rods and blades (regardless of orientation) 

parallel rods, and discs. 

Table 6.9 Statistical comparison of friction angles measured with test particles that have 
equal weight but various shape/orientation on four bed roughness types, (critical value 
of "t" at the 0.05 is 1.98 for each measurements. The values shown in bold indicate a 
statistically significant difference between the compared shapes/orientations). 

Roughness 1 Roughness 2 

PB TB PR TR D PB TB PR TR D 

s 15.58 14.24 21.00 0.57 12.83 S 8.96 13.36 11.44 2.36 9.31 

PB — 3.69 5.38 14.76 2.60 PB » 2.11 2.32 7.74 0.93 

TB — — 0.20 13.77 0.82 TB — 0.54 12.03 0.91 

PR — — — 20.12 1.19 PR 10.19 1.26 

TR — — 12.39 TR — 8.03 

Roughness 3 Roughness 4 

PB TB PR TR D PB TB PR TR D 

S 6.53 8.57 12.09 0.37 8.25 S 9.42 13.50 15.00 1.34 11.00 

PB — 0.97 3.49 6.59 1.38 PB —- 2.79 3.71 7.94 1.69 

TB — — 2.75 8.81 0.51 TB 0.92 11.70 0.91 

PR — . . . . 12.60 2.00 PR 13.05 1.77 

TR — — 8.40 TR — 9.53 
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Figure 6.7 and Table 6.9 show that there are no major difference in mean friction 
angles between transverse-blades, parallel-rods and discs on roughness 1. On 
roughnesses 2, 3 and 4 (with the exception of transverse blades), mean friction angles 
increase for all shapes and orientations (Figure 6.7 and Tables 6.8 and 6.9). 

T e s t part ic les (equal weight: 750 g) 

100 

© 
c 
CO 
c 
o 
o 
E 
c 
(0 
© 

R.T R.P B.T 
Shapes 

B P 

• Roughness 1 Q Roughness 2 A Roughness 3 •» Roughness 4 

Figure 6.7 Mean friction angles for particles of various shapes but equal weights. 

(S: sphere, B.T: Blade in transverse orientation, B.P: blade with parallel orientation, 
R.T: rod with transverse orientation, R.P: rod with parallel orientation, D: disc) 

There are no major differences between mean friction angles on bed roughnesses 

1 and 2 for discs, parallel rods and spheres, but differences increase for parallel-blades 

and transverse-rods. The increasing order of the average friction angle over all the bed 

roughnesses is 25.7° for spheres, 27.1° for transverse rods, 41.1° for parallel blades, 

43.3° for discs, 43.4° for transverse blades and 46.4° for transverse rods. These results 

indicate that spheres and transverse rods have relatively low mean friction angles on 

most bed roughnesses. As a controlling factor, orientation has a significant influence on 

mean friction angle for rod-shaped particles. Rods with transverse orientation have 

noticeably lower mean friction angles. However, a similar relationship does not exist 

between transverse and parallel blades. The effect of orientation on meari friction angle 

decreases as bed roughness increases for blade-shaped particles, but this is not true for 
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rod-shapes. The distributions of the friction angle of the tilting table tests for particles of 
equal weight but different shapes and orientations on various bed roughnesses are 
shown in Figures 6.7, 6.8 and also in Table A3.2. 

Particles of all shapes and orientations placed on Roughness 1 tend to have a 

relatively low range of friction angles and low standard deviations (Appendix 8 and 

Table 6.10). Spheres and rod-shaped particles tend to have lower friction angles and 

distributions are clustered around the mean (Figure 6.8). Figures 6.8, 6.9 and Table 

A3.2 show that there is an inverse relation between the friction angle of spheres and 

transverse-rods and bed roughness. On Roughness 1, spheres and transverse-rods have 

noticeably lower friction angles and have more uniform friction angle distributions. 

They have lower standard deviation values than the other shapes and, hence, their 

cumulative friction angle distributions are relatively steep. However, on rougher beds 

(especially on the roughest bed) there tends to be a decrease in the uniformity of friction 

angle distributions (Table 6.10 and Figure 6.9). Figure 6.8 shows that despite a very 

similar distribution between spheres and transverse rods on almost every bed roughness, 

distributions are not similar for other shapes of test particle with various orientations. 

These differences in friction angle distribution between parallel and transverse blades, 

parallel rods and disc-shaped particles lead to an irregular variation in standard 

deviation values from one roughness to another. 

Table 6.10. The standard deviations of the friction angle distributions of the test 
particles with equal weight, six various shapes/orientations on four different bed 
roughnesses. 

Bed Roughness SHAPES WITH VARIOUS ORIENTATIONS 

S B.T B.P R.T R.P D 

Roughness 1 4.3 9.5 5.4 4.5 5.7 9.8 

Roughness 2 6.6 10.1 7.9 5.6 10.8 11.6 

Roughness 3 6.7 11.7 9.92 5.4 9.5 11.6 

Roughness 4 5.9 9.3 8.4 6.9 8.0 9.9 

Mean 5.9 7.9 10.1 5.6 8.5 10.7 

B.T : Blade with transverse orientation B.P: Blade with parallel orientation 
R.T: Rod with transverse orientation R.P: Rod with parallel orientation 
S: Sphere D: Disc 
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6.6 VARIABILITY OF FRICTION ANGLES WITH NATURAL PARTICLES 
OF DIFFERENT SHAPES AND ORIENTATIONS ON DIFFERENT BED 
ROUGHNESSES. 

In the previous section friction angles were measured using artificially-formed 

test-particles that had symmetrical shapes. In general, it was found that friction angles 

were strongly dependent on particle shape, particle orientation, size and also roughness 

characteristics of the bed. In this section natural pebble-sized particles are used to 

determine the friction angles for the same experiments just undertaken. The aim of 

using natural pebbles is to determine whether they would give results similar to those 

obtained from the earlier experiments with artificially-formed test particles. However, it 

is important to note that shapes of the natural test particles used in these experiments are 

not similar to those that are transported in the study rivers. In other words, natural 

gravel carried by the Trout Beck is less uniform in shape (See Chapters 4 and 5). 

Therefore very little of the natural bed material is in the form of "true" spheres, blades, 

rods and discs. Thus most of the blades and rods are "marginal", tending towards 

spheres and disc, respectively. Many of the spheres and discs are also blocky in nature. 

Although the particles used in these experiments are naturally formed, geometrically 

they are much closer to perfect spheres, blades, rods and discs than is usual in natural 

bed material. Therefore, their hydraulic behaviour and friction angles are assumed to be 

different from the natural bed material at the three study sites. 

Four natural sandstone pebbles (b-axis 72-84 mm) were used for the 

measurements. These particles had shapes approximating to a sphere, a blade, a rod and 

a disc. The dimensions of the particles are given in Table 6.11. 

Table 6.11. The tri-axial dimensions (cm) and weights (g) of 
the natural test particles used for the experiment. 

Shape a-axis b-axis c-axis Weight (g) 

Sphere 8.4 8.0 7.7 736.0 

Blade 28.7 7.2 3.6 727.0 

Rod 26.0 7.2 7.0 1175.0 

Disc 10.0 8.4 2.8 378.0 
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Table 6.12 and Figure 6.10 shows the mean friction angles of the natural test particles 

for the four bed roughness types. In general, all shapes have lower mean friction angles 

on bed Roughness 1. Friction angles increase as bed roughness increases which is 

similar to the previous experiments. 

Table 6.12. Mean friction angles (in degrees) of the natural test particles in various 
shape classes on four different bed roughnesses. 

Bed SHAPES AND ORIENTATIONS 

roughness S B.T B.P R.T R.P D 

Roughness 1 20 40 35 24 39 39 

Roughness 2 27 46 40 30 39 44 

Roughness 3 28 53 43 35 46 47 

Roughness 4 34 55 50 36 54 58 

Mean 27.3 48.5 42 31.3 44.5 47.0 

The difference in mean friction angles between the Roughness 1 and the 

roughest bed (Roughness 4) are 14° for the sphere, 15° both for the blade in parallel and 

transverse orientation and for the parallel-oriented rod, 17° for the transverse rod and 

19° for the disc-shaped particle. Comparison of the mean friction angles measured with 

artificial particles of equal weight but different shapes and natural particles of different 

shapes and weight indicate that, except for the naturally formed rod in a parallel 

orientation, mean friction angles of the natural test particles were greater than the 

artificial. Except on bed Roughness 1, the mean friction angles recorded with natural 

particles were slightly greater than those with artificial particles of equal weight (Table 

6.8 and Table 6.12). 
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Natural test particles (b: 72-84 mm) 

R.T R.P B.T B.P 
Shapes 

• Roughness 1 • Roughness 2 A Roughness 3 •Roughness 4 

Figure 6.10. Mean friction angles o f natural particles o f various shapes. 

(S: sphere, B.T: Blade in transverse orientation, B.P: blade in parallel 
orientation, R.T: blade in transverse orientation, R.P: rod in parallel 
orientation, D: disc). 

As with the earlier measurements, spheres and transverse rods have the lowest 

mean friction angles on almost every bed roughness. In terms o f the effect of orientation 

on mean friction angle, Table 6.12 and Figure 6.10 show that particle orientation is as 

important as particle shape and size. There is always a large and therefore statistically 

significant difference between parallel and transverse orientations of rods on every bed 

roughness (Table 6.13). 

The results of the tilting tests are listed in Table A3.3. Figure 6.11 indicates that 

on Roughness 1 all particles move over a small range o f friction angles and therefore 

have lower standard deviations (Table 6.14). Hence, the cumulative friction angle 

distributions are relatively steep (Figure 6.12). The range of friction angles increases as 

bed roughness increases (Figure 6.11 and Table A3.3). 
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Table 6.13 Statistical comparison of friction angles measured with natural test particles 
of various shapes and orientations on four bed roughness types. Critical value of "t" at 
the 0.05 level is 1.98 for each measurement. (The values shown in bold indicate a 
statistically significant difference between the compared shapes/orientations). 

Roughness 1 Roughness 2 
PB TB PR TR D PB TB PR TR D 

s 18.54 17.21 15.42 4.60 15.56 S 10.44 14.07 8.03 2.62 12.26 
PB — 3.92 2.82 12.62 3.32 PB — 4.62 0.88 6.48 2.77 
TB — —- 0.71 13.02 0.20 TB - 4.84 10.66 1.71 
PR — 11.52 0.47 PR — 5.23 3.23 
TR — 11.77 TR — — 8.96 

Roughness 3 Roughness 4 
PB TB PR TR D PB TB PR TR D 

S 7.91 13.43 11.36 4.27 11.21 S 10.46 12.38 16.10 1.77 15.40 
PB — 5.00 1.83 4.79 2.41 PB — 2.10 2.28 8.48 4.01 
TB — -— 3.66 10.65 2.87 TB — —- 0.25 10.42 1.72 
PR — 8.03 0.79 PR 13.06 2.38 
TR 8.10 TR — — 13.11 

(S: sphere, B.T: Blade in transverse orientation, B.P: blade in parallel orientation, 
R.T: blade in transverse orientation, R.P: rod in parallel orientation, D: disc). 

In common with the previous experiments, Table 6.14 shows that there are 

statistically significant differences between blades (regardless of orientation), parallel-

rods, discs and spheres and also transverse rods but these differences decrease 

noticeably among blades (with both orientations), parallel rods and discs and a similar 

pattern is also true between transverse-rods and spheres. Table 6.16 also shows that, 

although, there is no significant difference between transverse and parallel rods, 

differences are relatively constant and significant between transverse rod and parallel 

rod on almost every bed roughness. 
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Table 6.14 The standard deviations of the friction angle distributions of the natural test 
particles in four shape classes on four different bed roughnesses 

Bed roughness SHAPES WITH VARIOUS ORIENTATIONS 

S B.T B P R.T R.P D 

Roughness 1 4.5 6.7 3.8 4.9 7.3 7.6 

Roughness 2 6.5 7.4 6.2 7.5 8.3 7.4 

Roughness 3 7.7 10.3 10.1 6.5 7.7 9.1 

Roughness 4 6.3 10.2 9.5 7.4 6.4 9.2 

Mean 6.3 8.7 7.4 6.6 7.4 8.3 

(S: sphere, B.T: Blade in transverse orientation, B.P: blade in parallel orientation,R.T: 
blade in transverse orientation, R.P: rod in parallel orientation, D: disc). 

6.7 VARIABILITY OF FRICTION ANGLES IN RELATION TO PARTICLE 
SIZE AND SHAPE ON A NATURALLY FORMED RIVER BED 

Many early friction angle measurements were carried out on artificially-formed 

bed roughnesses, which differ from natural river beds. For example, Kirchner et al 

(1990) found that the surface topography of a water-worked bed is complex and 

therefore friction angle and particle protrusion vary widely among individual grains, 

even for a single grain size on a single bed. Comparison of unworked and water-worked 

surfaces clearly showed that the friction angle distributions of the two surfaces are very 

different. Friction angles measured on the unworked bed were found to be significantly 

greater than those for the water-worked bed. These differences increased with 

decreasing test grain size due mainly to the variations in grain packing geometry, local 

variability in the pocket geometry and grain protrusion (Kirehner et al., 1990). 

Following the use by Kirchner et al (1990) of flume-made surfaces, Dietrich and 

Kirchner (1992) presented the first friction angle data from the naturally-formed gravel 

surfaces of a streambed (For further details see Chapter 2). Although these earlier 

studies have done much to advance the understanding of the relationship between 

friction angle and particle size on natural bed surfaces, it is surprising that the effect of 

different particle shape on friction angle has not been investigated. In other words, the 

results obtained from these studies did not fully characterise the nature of the particle 

motion. This is because variations in friction angle distributions were expressed only as 

a function of test grain size, median bed grain size, and a bed sorting parameter. This 
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suggests that, in order to understand better the mechanisms of the particle motion, apart 
from other factors, the relationship between different grain shape and friction angles 
also needs to be investigated on a naturally-formed bed. 

Thus the aim of this section is to measure the variability in friction angles in 

relation to particle shape and size on a bed that is composed of naturally-formed fluvial 

gravels. In order to achieve this an undisturbed sample of the bed surface 

(approximately lm 2) was collected from the Trout Beck experimental site. In common 

with Buffington et al (1992) method, the sampled bed was rebedded in a pebble and 

resin mixture, which was then mounted securely on a tilting table. The detail of the 

sampling method is explained in Chapter 3. The surface particle size of the bed surface 

was determined by applying Wolman's (1954) sampling method (See Chapter 3). 

Sampling was limited to particles greater than 8 mm. Figure 6.13 shows the grain size 

distribution of the sampled bed and Figure 6.14 is a photograph of the bed. The median 

particle size of the bed is 63 mm (D 5 0), while D90 is 103 mm, indicating a relatively 

poorly sorted gravel. The photograph shows that the surface of the bed is different from 

the artificially-formed bed roughnesses in terms of packing and the degree of infilling of 

grain pockets by fines (Figure 6.14). Packing of grains tends to vary noticeably due to 

spatial differences in grain-size distribution. Using this natural bed the same series of 

friction angles experiments as described in section 6.1 were carried out. The same set of 

test particles (both artificial and natural) were used. Due to the heavy weight of the 

natural bed sample and the nature of the tilting table, angles greater than 70° could not 

be measured on this test surface. 
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Figure 6.13 Cumulative percentage size distribution of the sampled natural bed. 
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Figure 6.14 The undisturbed natural channel bed used to determine friction angles for 
particles of various shape, orientation, size and weight Several of which are illustrated). 
Flow direction is from top to bottom of the picture. The field of view is approximately 
65 cm across. From left to right axis of the large rod in the right ofthe photo is 96 mm 
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6.8 VARIABILITY OF FRICTION ANGLE IN RELATION TO PARTICLE 

SIZE AND SHAPE ON A NATURALLY-FORMED BED 

Table 6.15 Mean friction angle and standard deviation distributions for particles of 
various shapes and orientation in the three size groups for experiments with the natural 
bed. Note: values in brackets represent standard deviations for each shape. 

Test Shape and orientation 
Particles 
(b-axis) S B.T B.P R.T R.P P Mean 
24 mm 66 (9.2) 64 (8.2) 65 (7.2) 54 (7.6) 56 (7.2) 68 (3.7) 62.1 (7.2) 

48 mm 51 (11.0) 57 (7.5) 56 (9.3) 49 (10.9) 58 (6.4) 59 (10.0) 55.0 (9.1) 

96 mm 35 (7.5) 58 (8.9) 59 (7.2) 39 (10.0) 54 (7.4) 58 (8.5) 51.0 (8.3) 

Mean 50.6 59.7 60 47.3 56 61.7 

(S: sphere, B.T: blade in transverse orientation, B.P: blade in parallel orientation, R.T: 
rod in transverse orientation, R.P: rod in parallel orientation, D: disc) 

The results of the tilting tests are summarised in Table 6.15. In general there is a 

similar trend between the results of mean friction angle distributions measured on 

artificially-formed bed roughnesses and those from the natural bed. 

In terms of size, Table 6.15 and Figure 6.15 indicate that, regardless of shape, there is 

the expected inverse relation between the mean friction angle and the test particle size. 

These results indicate that, in general, the mean friction angles measured on the natural 

bed are similar to those measured on artificially-formed bed roughnesses. However, 

measurements on roughnesses 1, 2 and 3 exhibit smaller mean values for most of the 

test particles (see Table 6.2). As with the previous experiments carried out on 

artificially-formed bed roughnesses, there is a greater difference between the mean 

friction angles of small and large spheres and also small and large transverse-rods in 

comparison with other shapes. In all size groups, spheres and rods with transverse 

orientation are the least stable particles (Table 6.15 and Figure 6.15). Table 6.16 shows 

a statistical comparison of the mean friction angles of particles of various shapes and 

size on the natural bed and indicates a relatively similar pattern of distribution to the 

previous friction angle measurements carried out on artificially-formed bed 

roughnesses. 
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Figure 6.15 Mean friction angles for the different shapes and orientations of particles 
in the three size groups on the naturally formed bed (S: sphere, T.B: transverse blade, 
P.B: parallel blade, T.R: transverse rod, P.R: parallel rod, D: disc). 
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Table 6.16 Statistical significance of friction angles measured with various shapes and 
orientations of test particles of the three size groups on the natural bed. Note: The values 
shown in bold indicate a statistically significant difference between the compared 
shapes/orientations, (critical value of "t" at the 0.05 significance level is 1.98 for each 
measurements). 

NATURAL BED 

Small size (24 mm) Medium size (48 mm) Large size (96 mm) 
PB TB PR TR D PB TB PR TR D PB TB PR TR D 

s 0.90 1.27 6.3 7.10 1.70 2.30 3.20 3.90 1.10 3.40 15.90 13.90 12.90 2.30 14.10 
PB — 0.50 6.10 7.10 3.40 . . . . 0.80 1.50 3.50 1.30 — 0.20 2.80 10.80 0.50 
TB — — 5.30 6.20 3.60 . . . . — 0.70 4.50 0.60 — . . . . 2.30 9.80 0.20 
PR . . . . — — 1.10 11.10 — — — 5.30 0.10 — — — 8.50 2.10 
TR — — — — 12.0 — — — 4.50 — — . . . . — 9.80 

Comparisons of the mean friction angles measured on the natural bed and on 

artificially-formed bed roughnesses indicate some significant differences. Mean friction 

angles measured with small, medium and large test particles on the natural bed tend to 

be greater than those measured on artificially-formed roughnesses 1, 2 and 3 and the 

differences increase with decreasing bed roughness. However, differences between the 

mean friction angles on the natural bed and on roughness 4 and also, to some extent, on 

roughness 3 decline noticeably for each test particle compared to the other roughness 

types (Figure 6.16). Table 6.17 compares (statistically) mean friction angles measured 

on the natural bed and on artificially-formed beds and indicates that for almost every 

size group, differences for spheres and rods (with transverse orientation) are not 

statistically significant between the natural bed and roughness 4, but it tends to increase 

significantly as bed roughness decreases. However, there is no similar consistent 

variation for the other shapes. For example, for the small-sized test particles there is no 

significant difference in mean friction angles measured with parallel rods between the 

natural bed and roughnesses 1, 2 and 3, while it become significant on roughness 4. 

There is also some degree of irregular variation for transverse and parallel blades, and 

for discs. With medium-and large-sized test particles, differences in mean friction 

angles measured on the natural and artificial bed roughnesses tend to decrease as bed 

roughness increases for each shape of test particles. 



Test clast size (b: 24 mm) 

Test clast size (b: 48 mm) 
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Figure 6.16 Mean friction angle distribution for the test particles of different 
shapes and sizes on natural and artificially-formed bed roughnesses. 
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Table 6.17 Statistical comparison of mean friction angles measured on the natural bed 
and on artificially-formed bed roughnesses 1, 2, 3 and 4 for test particles of various 
shape/orientation classes and the three size group. 

Small size (24 mm) Medium size (48 mm) Large size (96 mm) 

R.1 R.2 R.3 R.4 R.1 R.2 R.3 R.4 R.1 R.2 R.3 R.4 

s 14.2 9.45 6.33 1.36 S 14.30 10.68 7.21 2.62 S 9.98 10.58 4.69 0.59 

TB 6.5 7.77 2.40 4.03 TB 7.70 3.70 4.57 0.36 TB 12.2 8.53 10.59 4.97 

PB 3.20 3.70 3.14 5.66 PB 5.67 0.81 2.76 0.87 PB 17.51 9.63 12.51 5.80 

TR 13.3 7.91 4.55 1.92 TR 13.54 10.94 8.46 4.24 TR 12.69 11.97 5.26 3.85 

PR 0.81 1.40 0.08 4.69 PR 9.66 7.35 7.20 0.83 PR 8.32 9.68 8.62 3.79 

D 8.85 6.58 4.11 7.35 D 3.50 1.92 3.50 1.81 D 7.24 8.45 5.21 3.52 

(S: sphere, B.T: transverse blade, B.P: parallel blade, R.1 f: transverse rod, P.R: parallel 
rod, D: disc, R: roughness) 

Figures 6.17, 6.18 and Table A3.4 show normal and cumulative friction angle 

distributions for the three test grain sizes and six shapes/orientations. Comparison of 

Figures 6.17 and 6.6 indicates that for the small-sized test particles, the range of the 

friction angle distributions measured on artificially-formed bed roughnesses tends to be 

greater than for those measured on the natural bed and differences increasing with 

increase bed roughnesses. The ranges of distributions tend to be smaller with 

increasingly large test particles for the artificially-formed bed roughnesses. On the 

natural bed, however, mean friction angles measured with medium-and large-sized test 

particles show a wider range of distributions for almost all shapes (Table A3.4). Indeed, 

comparison of Tables 6.6 and 6.15 clearly shows that on artificially-formed bed 

roughnesses standard deviation values of all shapes in the small size group are much 

greater than those measured on the natural bed and the differences tend to increase with 

increasing in bed roughness. Sphere-and to some extent transverse rod ŝhaped test 

particles on both natural (for small and medium test particles) and artificial (for small 

test particles) beds show the greatest standard deviation values and hence the largest 

range of distributions. For the medium-sized test particles distributions for spheres, 

parallel blades, transverse rods and discs tend to be wider on the natural bed, while on 

artificially-formed beds the mean standard deviation values for small- and medium-

sized test particles tend to decrease. 
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Figure 6.17 Friction angle distributions for the test particles of different 
shapes and size on natural bed roughness (Note: The frequency value 
at 70° represents the proportion of immobile particles). 
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Figure 6.18 Cumulative friction angle distributions for test particles bed of 
different shape and orientation in three size groups on the natural bed. 
(Note: Where the cumulative frequency curves fail to reach 100 % at a 
tilting angle of 70°, the percentage remaining represents that of the 
immobile particle). 
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Comparison of Figure 6.5 and 6.18 suggest that on both natural and artificially-formed 
bed roughnesses, for the small size group, differences between the cumulative friction 
angle distributions for the particles of various shapes are smaller than for those 
measured with medium-and large-sized test particles. As the size of test particles 
increases and becomes greater than the size of bed roughness elements, spheres and 
transverse rod shows relatively lower range of friction angle distributions compared to 
other shapes /orientations. This suggests that the influence of shape on friction angle 
tends to increase with increasing d/D ratio. 

6.9 VARIABILITY IN FRICTION ANGLES OF ARTIFICIAL PARTICLES 
OF EQUAL WEIGHT BUT VARYING SHAPE AND ORIENTATIONS ON A 
NATURALLY FORMED (RIVER) BED. 

This sub-section summarises the results of measurements that aimed to 

investigate how particles of equal mass but different shape affect friction angles on a 

natural river bed. The measurements are also compared with previous findings to 

determine whether there is any difference between friction angles measured on artificial 

bed roughnesses and those measured on natural river bed. The same set of test particles, 

as used on the artificially formed bed roughness, were used. Thus, four test particles 

with similar weight (750 g) were compared for the experiments. Dimensions of the test 

particles (sphere, blade, rod and disc shapes) are given in Table 6.7. As with previous 

experiments, two particle orientations were considered; long axis parallel to and 

transverse to the slope. Measurements were repeated 50 times for each of the test 

particles on natural river bed. 

Table 6.18 Mean friction angles and standard deviations for particles of equal 
weight in six shape/orientation classes on the natural bed. 

Shape and orientation 

Test 
particles 

S B.T B.P R.T R.P D Mean 

Friction 
angle (°) 44 55 57 47 59 62 54.0 

Standard 
deviation 10 8 11 11 8 8 9.3 
(S: sphere, B.T: blade in transverse orientation, B.P: blade in parallel orientation, 
R.T: rod in transverse orientation, R.P: rod in parallel orientation, D: disc) 
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The friction angles show a strong dependence on particle shape and orientation. As 

previously, spheres and transverse rods show similar but lower mean friction angles 

than the other shapes, while discs exhibit the most stable behaviour with the greatest 

friction angles (Table 6.18). Spheres, transverse rods and parallel blades also represent 

greater standard deviation values, indicating a wider range of distribution compared to 

the other shapes (Table A3.5). Comparison of Tables 6.8 and 6.18 shows that mean 

friction angles measured on the natural bed show greater values than those of measured 

on artificially-formed bed roughnesses and the extent of difference increases with 

decreasing test particle size (hence decreasing d/D ratio). Comparison of Figures 6.8 

and 6.19 also suggests that mean friction angles on the natural bed have a greater range 

of distributions and are also more irregular compared to those measured on artificially-

formed beds roughnesses. Although the natural test particles (especially the disc and the 

rod) were of different in weight, unlike the test particle with equal weights, there is a 

noticeable similarity between the mean friction angle distributions of the two groups of 

particles. Mean friction angles measured with particles of equal weight, except 

transverse blades and discs, are slightly greater than those measured with natural test 

particles (Table 6.18 and 6.20). 

Table 6.19 Statistical comparison of friction angles measured with particles 
of equal weight in various shape/orientation classes on the natural bed (critical 
value of "t" at the 0.05 is 1.98 for each measurements). 

PB TB PR TR D 

s 5.90 5.40 8.00 1.40 7.48 

PB — 1.10 1.17 4.23 2.82 

TB — — 2.62 3.59 4.58 

PR — 5.92 1.99 

TR —- 7.48 

Table 6.19 exhibits statistical comparison of friction angles measured with 

particles of equal weight in various shape/orientation classes on the natural bed. In 

general mere is a similar pattern of distribution to the previous experiments; there is no 

significant difference between sphere and transverse rods. There is also no difference 

between parallel rods and discs or between parallel blades and parallel rods, while there 
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Figure 6.19 Normal (A) and Cumulative (B) frequency distributions of friction 
angles measured with test particles of equal weight in various shapes on the 
natural test bed. 
(Note: Where the cumulative frequency curves fail to reach 100 % at a tilting angle of 
70°, the percentage remaining represents that of the immobile particles). 
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is some degree of statistical difference for the other shapes. However, comparison of 
Table 6.9 and 6.19 suggests that the extent of the difference tends to be smaller than 
those measured on artificially-formed bed roughnesses. 

6.10 VARIABILITY IN FRICTION ANGLES OF NATURAL PARTICLES OF 
VARYING SHAPE AND ORIENTATIONS ON THE NATURAL BED 

In this section, Variability of friction angles for naturally formed test particles of 

different shapes is examined based on measurements ori the sampled natural bed. In 

common with previous measurements* results reveal a strong dependence of mean 

friction angle on particle shape and orientation. The results of mean friction angles for 

each shape are shown in Table 6.20. Table 6.20 and Figure 6.20 demonstrate a strong 

tendency for spheres and transverse rods to have lower mean ;friction angles than the 

other shapes and orientations. Table 6.21 shows that there is no statistically significant 

difference between spheres and transverse rods, parallel blades and parallel rods, and 

also parallel blades and transverse rods. Table 6.21 also shows that the extent of the 

significance varies noticeably, between the particles of various shapes and orientations. 

Comparisons of Table 6.20 and Table 6.12 indicate that the mean friction angles for the 

naturally-shaped test particles measured on the natural bed are relatively greater than 

those measured on artificially-formed bed roughnesses and that the differences increase 

with decreasing bed roughness, 

Table 6.20 Mean friction angles and standard deviations for naturally-formed 
test particles of various shapes and orientations on the natural bed. 

Shape and orientation 

Test 
particles S B.T B.P R.T R.P D Mean 

Friction 
angle (°) 42 56 49 45 52 64 51,3 

Standard 
deviation 12 7 7 12 12 8 9.7 
(S: sphere, B.T: blade in transverse orientation, B.P: blade in parallel orientation, 
R.T: rod in transverse orientation, R.P: rod in parallel orientation, D: disc) 
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Figure 6.20 Mean friction angles for natural test particles of different shape and 
orientation on the naturally formed bed. Error bars show the extent of standard 
deviations for the test particles. (S: sphere, B.T: transverse blade, B.P: parallel blade, 
R.T: transverse rod, P.R: parallel rod, D: disc). 

Table 6.21 Statistical comparison of friction angles measured with 
natural stones in various shape/orientation classes on the natural bed. 

PB TB PR TR D 

s 3.09 6.80 3.89 0.89 10.78 

PB — 5.11 1.58 1.99 10.55 

TB — — 2.24 5.67 5.53 

PR — — — 2.96 6.40 

TR — — — — 9.62 

Note: The values shown in bold indicate a statistically significant 
difference between the compared shapes/orientations, (critical value 
of "t" at the 0.05 level is 1.98 for each measurements). 

Despite their lower mean values, sphere and rod shapes show a wider range of 

distributions compared to other shapes (Figure 6.21 and Table A3.6). The range of 

friction angles varies between 30° and >70° for spheres and transverse rods, while it is 

between 40° and >70° for blades with either orientation, parallel rods and discs. Spheres 

and rods, therefore, show rather greater standard deviations than on the artificially-
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Figure 6.21 Normal (A) and Cumulative (B) frequency distributions of friction angles 
measured with the naturally formed test particles in various shapes on the natural bed. 
(Note: Where the cumulative frequency curves fail to reach 100 % at a tilting angle of 
70°, the percentage remaining represents that of the immobile particles). 
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formed bed roughnesses, probably due to the greater variability of surface packing 

arrangement (poor sorting) of the natural bed, which may strongly influence friction 

angle distributions (Table 6.14 and 6.20) 

6.11 EFFECT OF PARTICLE ROUNDNESS ON FRICTION ANGLE 

The effect of particle roundness on friction angle on various bed rougnesses was 

evaluated with particles of equal size (b-axis) but different roundness values. The size, 

shape and roundness characteristics of the test particles are given in Table 6.22. Five 

experiments were carried out on five different bed roughnesses. For each experiment, 

ten artificial concrete particles with various roundness values in two shape classes were 

compared. These were a well-rounded sphere, a rounded sphere, a sub-angular sphere, 

an angular sphere and a cube. In the rod-shaped class the test particles were a well-

rounded rod, a rounded rod, a sub-angular rod an angular rod, and a very angular rod 

(Table 6.22). Each particle was placed randomly on the bed. Two particle orientations 

were considered for the rod; long axis parallel to slope, and long axis transverse. The 

experiments were repeated 50 times for each of the four bed roughnesses and on the 

natural bed. 

Table 6.22 The tri-axial dimensions (cm), shape and roundness characteristics of the 
artificial test particles used for the experiment. 

Shape and a-axis b-axis c-axis Radius Cailleux Krurnbein 
angularity roundness sphericity 

Sphere (very rounded) 4.8 4.8 4.8 2.4 1000 1.00 

Sphere (round) 4.8 4.8 4,8 1.8 750 1.00 

Sphere (sub- angular) 4.8 4.8 4.8 1.2 500 1.00 

Sphere (angular) 4.8 4.8 4.8 0.6 250 1.00 
Sphere (cube) 4.8 4.8 4.8 0.1 42 1.00 

Rod (very round) 9.6 4.8 4.8 4.8 1000 0.63 
Rod (round) 9.6 4.8 4.8 3.6 750 0.63 

Rod (sub-angular) 9.6 4.8 4.8 2.4 500 0.63 
Rod (angular) 9.6 4.8 4.8 0.1 250 0.63 

Rod (very angular) 9.6 4.8 4.8 0.1 21 0.63 
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Observations on Bed Roughness 1 show that rolling was the dominant mode of 

movement for the well-rounded sphere-and rod-shaped particles placed in transverse 

positions. The cube sometimes slid or rolled. On the other hand, rod-shaped particles 

placed in parallel orientations moved by sliding regardless of their roundness values. 

Well-rounded spheres and rods in transverse orientations tended to move at very low 

friction angles. Table 6.23 and Figure 6.22 show that, in general, there is a positive 

relation between the mean friction angles of test particles (regardless of their degree of 

roundness) and increasing the bed roughness for spheres and transverse rods. When bed 

roughness increases, particles tend to move at higher friction angles regardless of their 

roundness. Although there are clear differences in the mean friction angles between the 

well-rounded sphere and the cube and also between the well-rounded transverse-rod and 

the angular rod on Rougnesses 1 and 2, these differences tend to decrease as bed 

roughness increases (Table 6.23 and Figure 6.22). This indicates that the effect of 

particle roundness on friction angle diminishes as bed roughness increases. 

On Bed Roughness 1 there is a noticeable difference in friction angles between 

the test particles of various roundness. The rank order of the differences for sphere-

shaped particles is 22.8° for the very round sphere, 25° for the round sphere, 26.6° for 

the sub-angular sphere, 31.6° for the angular sphere and 34.6° for the cube. For the rod-

shaped particles the order is also 19.5° for the well rounded-rod, 22.2° for the rounded 

rod, 24.9° for the sub-rounded rod, 28.3° for the angular rod and 34.2° for very angular 

rod. Although there is a similar ranking in friction angles on the bed roughness 2, 

differences between particles of different roundness diminishes on roughnesses 3 and 4 

and there tends to be no systematic variation between different roundness types (Tables 

6.23 and Figure 6.22). There is also a similar pattern for rod-shaped particles of various 

roundness values with transverse orientation. Indeed, although there is a great difference 

between the lowest and highest friction angle values on Roughness 1, it decreases 

distinctly towards Roughness 4. 

Despite its poor size sorting and complex bed packing geometry, the natural bed 

shows some relation between test particle roundness and mean friction angle. Table 6.23 

indicates that, despite its greater roughness (similar to bed roughness 4) there tends to 

be an inverse relation between mean friction angles and particle roundness for spheres 

and transverse rods. This is contrary to the results measured on artificially-formed beds 

where differences between test particles of various roughness decrease with increasing 
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Figure 6.22 The distribution of mean friction angles in five ranges of roundness 
of sphere and rod-shaped particles on five bed roughnesses. 
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C: cube, Rou: bed roughness). 
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bed roughness. Very rounded sphere-and rod-shaped test particles exhibit the lowest 
mean friction values (sphere: 37.8° and rod: 36.7°) but it tends to increase with 
decreasing particle roundness (sphere 47° and transverse rod: 48.9°). However, there is 
no similar pattern for rod-shaped test particles with parallel orientation for any of the 
bed roughness types. 

Friction angles of the test spheres and rods as percentiles on different bed 

roughness types are shown in Table A3.7. Figure 6.23 also demonstrates the cumulative 

frequency of the mean friction angles of spheres and rods (both transverse and parallel 

orientation) with different roundness values on various bed roughness types. They 

indicate that on roughnesses 1 and 2, sphere-and transverse rod-shaped test particles 

with greater roundness move over a small range of friction angles and there tends to be 

an increase in the range of friction angles with a decrease in test particle roundness. On 

the other hand, on roughnesses 3, 4 and also on the natural bed, there is a general 

increase in the range of the distribution of friction angles. Differences between the 

friction angles of test particles of various shapes diminish with increasing bed roughness 

for the artificially-formed bed roughnesses (Table A3.7). However, there is still a 

decrease in friction angles for particles that have greater roundness. 

Indeed, Table 6.24 indicates that the extent of statistical differences between 

particles of various roundness tends to decrease with increasing roughness of 

artificially-formed beds. On the natural bed, however, there are still statistically 

significant differences between the particles of various roundness value in the case of 

both spheres and transverse rods. 

Comparison of rod ŝhaped particles (rounded, sub-angular and angular rods) in 

transverse and parallel orientations on the four artificial bed roughnesses indicates that 

there is no statistically significant variation between the five roundness types on most 

bed roughnesses with particles of parallel orientation (Table 6.24). However, for the 

transverse rods (as explained above) there is some degree of statistical difference 

between the five roundness types on roughnesses 1 and 2, on the natural bed and also, to 

a lesser degree, roughnesses 3 and 4. 
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Table 6.24. Statistical comparison of friction angles measured with sphere-and rod-
shaped particles of equal size but different roundness values on four bed roughness 
types (critical value of "F' (Anova) at the 0.05 level is 2.40 for each measurement). 

Bed Sphere Transverse-rod Parallel-rod 
Roughness (very round/round/sub- (very round/round/sub- (very round/round/sub-

round/angular/cube) round/angular/very round/angular/very 
angular) angular) 

Roughness 1 

Roughness 2 

Roughness 3 

Roughness 4 

Natural bed 

55.812 

4.012 

0.709 

1.366 

4.390 

83.424 

13.038 

2.684 

2.998 

7.941 

1.789 

0.041 

0.765 

0.573 

1.757 

The frequencies of the friction angles for spheres and transverse rods of various 

roundnesses tend to increase with bed roughnesses. The differences are greatest on the 

natural bed. Table 6.25 shows that there tends to be a similar increase in the standard 

deviations of test particles as bed roughness increases with differences becoming 

greatest on the natural bed. 

6.12 DISCUSSION AND CONCLUSION 

The entrainment of a particle by a flowing fluid mainly depends on the balance 

of the forces acting on the particle and on its pivoting or friction angle. This friction 

angle strictly depends on the particles contact point with the underlying grains. As 

several studies have shown, the degree of contact of a particle is controlled by many 

factors, such as grain size and bed sorting parameter, test grain shape and orientation, as 

well as the size, shape, orientation and packing arrangement of the grains constituting 

the local bed surface (Komar and Li . 1986; Kirchner et al., 1990; Carting et al., 1992). 

As briefly explained in the introduction to this chapter and also in the review in 

Chapter 2, many earlier studies expressed friction angle mainly as a function of test 

grain size, median bed grain-size or bed sorting parameters. Only a few investigations 

(e.g. Komar and Li, 1986; Kirchner et al., 1990) have pointed out the importance of 

particle shape (form, roundness) on its friction angle. 
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In terms of size, friction angle measurements showed reasonable agreement with 

previous experiments. Figure 6.24 and Table 6.26 summarise results of all the friction 

angle measurements carried out with particles of various sizes, weight and shapes 

(natural and artificial) on various bed roughnesses and indicate that the friction angle for 

any shape class depends on the ratio of test grain size (d) to the size of those over which 

it is pivoting (D). The smaller the ratio of d/D, the greater the friction angles at which 

test particles moved. Friction angles decreased with increasing particle size (hence 

greater d/D ratio) relative to the median bed particle size. With increasing bed 

roughness, small-size test particles tended to have a larger standard deviations, whereas 

as the size of test particles increased or bed roughnesses decreased, test particle started 

to move in a smaller range of friction angles, hence yielding lower standard deviations. 

These findings, in general, show reasonable agreement with previous experiments (e.g. 

Miller and Byrne, 1966; Li and Komar, 1986). Using sphere-shaped test particles (steel 

ball bearings and glass marbles ranging in diameter from 0.23 to 3.77 cm), Li and 

Komar also found that pivoting angles is a function of d/D ratio, the greater the d/D 

ratio with the lesser the pivoting angle (See Figure 2 in Li and Komar 1986). 

In terms of shape, it was found that on a given bed roughness and for a constant 

size, the friction depends on particle shape and orientation. For all measurements, non-

spherical test particles showed greater friction angles than spherical ones. For almost all 

the measurements, a very clear difference was found in both mean friction angle and 

also friction angle distributions between spheres-and transverse rods-and all other flat-

shaped particles, namely, blades with parallel and transverse orientations, discs, and 

rods with parallel orientations (Figures 6.24, 6.25 and Table 6.26). Measurements 

undertaken in three size groups of artificially-formed particles, natural particles, and 

particles with equal weight but various shapes, all clearly showed that spheres and 

transverse rod-shaped particles tend to have lower friction angles than blades (with 

parallel and transverse orientation), rods (with parallel orientation) and discs. Results 

showed that, across the range of particles tested, spherical particles tended to have lower 

critical friction angles. Departure from a spherical form leads to an increase in grain 

stability (Figure 6.23, 24 and Table 6.26). These findings are similar to Li and Komar's 

(1986) results. Li and Komar (1986) measured pivoting angles for uniform sizes of 

spheres, ellipsoids and angular particles and found that pivoting angles measured with 

ellipsoid and angular particles are significantly greater than for spheres. 
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Figure 6.24 Summary of all the friction angle measurements carried out with particles of various sizes, 
weights and shapes (natural and artificial) on various bed roughnesses. The curves fitted follow the 
general emprical relationship discussed by Li and Komar (1986). The form of the equation is as follows: 

O = e (d/D ) f 

where O is the friction angle, d being the diameter of the pivoting test particle and D is the diameter 
of the base grains and e and / are coefficients. 
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Thus they also found that, apart from size, pivoting angles depend on grain shape, 
particularly on the ratio of the shortest to the intermediate axis (c/b ratio). (See Figures 
3,4 and 5 in Li and Komar, 1986). 

The reason why spheres and transverse rod-shaped particles always have lower 

friction angles is attributed to the fact that spherical particles (with a higher degree of 

roundness) always have greater rolling capability, while other shaped-particles are more 

likely to slide. This is expected given the lc/b ratio', the ratio of the smallest to the 

intermediate axial diameters. Flatter particles move by sliding rather than by pivoting 

and rolling. Thus sliding particles, in most instances, tended to show higher friction 

angles, while rolling grains have lower values. As some investigators have already 

illustrated (Komar and Li, 1986; Carling et al., 1992), these variations in particle 

behaviour are thought to relate to critical shear stress, relative mobility and selective 

entertainment in a flowing fluid. 

All measurements showed that particle orientation has a significant influence on 

friction angle. Rods placed in a parallel position tend to have friction angles, that were 

almost double than for transverse-rods (Figure 6.25 and Table 6.26). A similar relation 

was not observed between parallel and transverse blades. Transversely orientated rods 

always roll out of place at low friction angles, while blades in every orientation, rods in 

parallel orientations and discs tend to slide at relatively high friction angles. This 

indicates that the c/b ratio of a particle also has an important effect on its movement. 

Particles with a high c/b, ratio, well-rounded and in a transverse orientation tend to have 

lower friction angles than in parallel orientations with a lower c/b ratios. It was also 

observed that the effect of particle orientation on friction angle tends to decreases as bed 

roughness increases. Although there is no very clear and regular difference in mean 

friction angle values between parallel and transverse blades, measurements undertaken 

with natural particles and particles of equal weight showed that parallel blades on most 

bed roughnesses tend to have lower friction angles than those of transverse blades 

(Figure 6.25 and Table 6.26). The reason might be that, on an inclined surface, blades 

with a parallel orientation may have fewer obstructions with the underlying bed material 

and hence lower friction, while in a transverse orientation the contact area of the particle 

across the bed may prevent it from being entrained. In other words, the parallel blade 

has less contact area across the inclined bed and this results in easier sliding. 

Measurements show that as bed roughness increases the difference between 

various shapes tends to diminish (Figure 6.25 and Table 6.27). This is especially 
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Table 6.26 Summary of the friction angles measurements carried out with 
particles of various shapes and sizes on artificial and naturally formed bed 
roughnesses. 

On artificially formed bed roughnesses 
S B.T B.P R.T R.P D 

Small size test particle (b: 24 mm) 
Roughness 1 39 51 58 33 55 55 

Roughness 2 45 50 58 38 53 57 

Roughness 3 51 59 59 44 55 60 

Roughness 4 69 72 75 58 63 81 

Medium size test particle (b: 48 mm) 
Roughness 1 27 43 44 25 42 52 

Roughness 2 30 50 58 27 46 55 

Roughness 3 35 48 50 33 46 52 

Roughness 4 46 58 58 41 57 63 
Large! size test particle (b: 96 mm) 

Roughness 1 22 37 35 19 41 44 
Roughness 2 20 41 42 20 39 41 
Roughness 3 27 39 37 30 40 46 
Roughness 4 34 48 47 33 48 52 

Test Particles with equal weight 
Roughness 1 19.4 40.3 34.6 19.9 40.6 38.7 
Roughness 2 22.3 37.9 41,7 25.2 42.8 39.9 

Roughness 3 27.8 42.3 40.2 28.2 47.6 43.4 

Roughness 4 33.2 52.9 48 34.9 54.4 51.2 

Natural test particles 
Roughness 1 20 40 35 24 39 39 
Roughness 2 27 46 40 30 39 44 

Roughness 3 28 53 43 35 46 47 

Roughness 4 34 55 50 36 54 58 

On a natural bed 
Test particle size g 

(b axis) B.T B.P R.T R.P D 

Small (24 mm) 66 64 65 54 56 68 

Medium (48mm) 51 57 56 49 58 59 

Large (96mm) 35 58 59 39 54 58 
Natural test 
particles 42 56 49 45 52 64 

Particles with 
equal weight 44 55 57 47 59 62 
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Figure 6.25 Summary of the friction angles measurements carried out with particles of 
various shape and size on artificial and naturally formed bed roughnesses. 
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obvious for spheres and transverse rods. On the smoothest bed, spheres and transverse 
rods tends to move at relatively lower friction angles, but as roughness increases they 
entrain at higher friction angles. There is no similar relationship for flat particles. The 
reason might be the fact that the sphere and transverse rods tend to sit more easily in the 
pockets between the adjacent particles as bed roughness increases. Flat-shaped particles 
bridge the grains and do not sit in a stable position. 

In terms of particle roundness, the experiments showed that on the smoother 

artificial beds, highly rounded particles tended to have lower friction angles than those 

of more angular particles. Measurements also showed that, on artificially-formed beds, 

as bed roughness increases the effect of particle roundness on friction angle becomes 

less important. However, measurements carried out on a natural bed indicate that, 

despite its heterogeneous mixture of particle sizes and shapes (which leads to a varying 

grain packing geometry, and also complex bed roughness elements), there is still an 

inverse relation between test particle roundness and mean friction angle. This result 

does not support the above suggestion mat the effect of particle roundness on mean 

friction angle diminishes with increasing bed roughness. The possible reason for this 

difference might be attributed to the fact that artificial and naturally formed beds have 

relatively different structures in terms of grain packing geometry, size, shape and 

sorting etc (Komar & Li, 1986; Kirchner et al., 1990 and Dietrich & Kirchner, 1992). 

Artificially-formed beds (such as Roundnesses 3 and 4) have looser packing 

arrangements with many pore spaces (Compare Figures 6.1 and 6.14). This is because 

they were made with very uniform particles in size and shape (Figure 6.1). For the 

naturally formed bed, on the other hand, during normal sediment transport events such 

large pores between the large size particles of the bed is filled with smaller sized 

sediment which results in a smooth surface on which particles with greater roundness 

may move more easily. 

Consequently, it has been found that particle friction angle depends on (and 

varies with) many factors. These are shape, size, orientation and roundness of test 

particles, degree of bed roughness and its packing arrangement. It was also found that, 

although the measurements showed some degree of similarity in mean friction angles on 

artificial and naturally formed beds, large variations in size, shape, bed packing 

arrangements of the natural bed (which exhibit a point to point spatial variation) have 

rather different control on the distribution friction angles. 
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The main findings for the friction angle measurements are as follow: 

1. In terms of size, the friction angle for any shape class depends on the ratio of the 

test grain size (d) to the size of those over which it pivots. The greater the ratio 

the lower the friction angles at which particle start to move. 

2. In terms of shape, on a given bed roughness and for a constant size, the friction 

angle depends on sediment shape and orientation. Sphere and rods with a 

transverse orientation moved at lower friction angles relative to flat-shaped 

particles, (blades in any orientation, parallel-rods and discs). Departure from a 

spherical form leads to an increase in grain stability. 

3. Measurements taken with rod-shaped particles showed that orientation has a 

significant influence on friction angle. Rods in a parallel orientation to the slope 

tend to be much more stable than those placed in a transverse orientation. 

4. An inverse relation was observed between bed roughness and test particle shape. 

As bed roughness increases differences between Various shapes as well as 

various orientations tends to diminish. 

5. Observations showed that on smoother bed roughnesses, particles with greater 

roundness tend to move at relatively lower friction angles. However, as bed 

roughness increase the influence of particle roundness on initial movement 

decreases. 
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CHAPTER 7: THE INFLUENCE OF PARTICLE SHAPE ON 
BEBLOAB TRANSPORT DYNAMICS - VISUALISATION 
EXPERIMENTS 

7.1 SCOPE OF CHAPTER 

This chapter presents the results of the visualisation experiments designed to 

investigate the influence of particle shape on bedload transport. First, it begins with an 

introduction outlying the importance of shape, size and weight on the hydraulic 

(dynamic) behaviour of sediment during transport. This includes; particle settling 

velocity, the angle of repose, the importance of shape and experimental investigations of 

particle motions. Section 7.3 describes settling and transport velocities of particles of 

various shapes. Influence of artificial particles of differing shape and size on settling 

and transport velocities are presented in section 7.4. Section 7.5 examines changes in 

settling and transport velocities of particles of different shape in relation to weight. 

Settling velocities of the natural particles is discussed in section 7.6. Settling and 

transport velocities of irregular shaped natural particles are presented in section 7.7. 

Initial motion and movement of particles of varying shape on bed of varying roughness 

is discusses in section 7.8. Finally, the key points raised by the experiments are 

discussed and summarised in section 7.9. 

7.2 INTRODUCTION 

Several studies have shown that particle shape, size and weight are important 

properties affecting the hydraulic behaviour of sediment during transport and deposition 

(e.g. Lane, 1938; McNown and Malaika, 1950; Allen, 1969; Carrigy, 1970; Komar and 

Reimers, 1978; Hallermeier, 1981; Willetts and Rice, 1983; Li and Komar, 1992a, b). 

Particles entrained from a bed are transported by the flow in a variety of ways, 

depending on their shape, size and density, as well as the viscosity and velocity of the 

transporting fluid. Generally three modes of transport have been described for coarse 

gravel particles in water. These are sliding, rolling and saltation. During sliding, 
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particles remain in continuous contact with the bed, although they may tip-up or down 
slightly during travel. A rolling particle turns continuously about a flow-transverse axis, 
while remaining essentially in contact with the bed. Saltation involves the progressive 
forward movement of a particle in a series of short intermittent jumps along the channel 
bed. Saltation continues as long as the flow is turbulent enough to lift particles and carry 
them downstream. However, as Abbot and Francis (1977) pointed out there is no sharp 
division between the three modes of particle motion. In stronger flows the three modes 
will occur simultaneously. 

The purpose of this chapter is to examine the influence of shape on settling, 

grain impact and motion of gravel-size particles. 

7.3 PARTICLE SETTLING VELOCITY AND ANGLE OF REPOSE: THE 
IMPORTANCE OF SHAPE 

The hydraulic behaviour of a particle is significantly influenced by its settling or 

fall velocity. The settling velocity of a particle depends on the shape, size, and density 

of the individual particle; on the concentration of particles in the fluid; on the fluid 

viscosity; and on the turbulence intensity. For a particle to settle at all, it must have a 

higher mean density than the fluid in which it is immersed (Pye, 1994a). 

Studies have shown mat, with particles of constant density, apart from size, 

which is considered the most important factor, shape is significant in controlling the 

settling velocity. Settling velocity of low sphericity sand-size particles has been found 

to be much lower than those of spheres. In general, the greater the departure of a particle 

from a spherical shape, the greater is the reduction in its settling velocity and the more 

irregular its motion during settling (Wadell, 1934; Komar and Reimers, 1978; Baba and 

Komar, 1981a, 1981b; Hallermeier, 1981; Cui et al, 1983; Pye, 1994b). Although 

settling is not a highly significant aspect of transport of coarse size particles in gravel-

bed rivers, since most of the time, movement occurs by sliding or rolling, such material 

may intermittently lose contact with the bed and may be temporarily suspended. In high 

flow events sliding and rolling are disturbed by vertical particle movements. Under 

these circumstances, flat-shaped particles may easily be lifted up as a result of 

increasing velocity and turbulence, and may spend a longer time away from the bed 

{saltation) and, as a result, be transported further downstream. Spherical particles would 

(if lifted) settle more easily and move downstream in a rolling mode. Therefore for 
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coarse-size material differences in the settling velocities of individual particles may be 

controlled by shape. Particles of similar size but different shape or the same shape but 

different size may show quite different settling behaviour (Komar and Reimers, 1978; 

Allen, 1985). Experimental studies have shown that the effect of shape on settling 

velocities diminishes with decreasing particle size. Pye (1994b) attributed this 

relationship to the fact that at large Reynolds numbers (equation 7.1), the greater 

relative magnitude of surface irregularities causes the particles to spin, tumble, and rock 

to a greater degree, shedding turbulent eddies, that deflect the trajectory of the grain and 

reduce its overall terminal settling velocity. 

(7.1) 

Where Rp is particle Reynolds number, v/> fall velocity, d: diameter of the 

particle, p: density of the water, fi: dynamic viscosity (Dingman, 1984) 

Experimental studies have shown that variations in particle form have a greater 

influence than particle surface texture or roundness on settling rates in both air and 

water. Of particular significance appears to be the degree of particle flatness. Flatness is 

an important shape characteristics that has an influence across a wide particle-size 

range, although the effect is greater for larger grains (Wilde, 1952; Alger, 1964; 

Romanovskij, 1966; Komar and Reimers, 1978; Baba and Komar, 1981; Halllermeier, 

1981; Hottovy and Sylvester, 1979). These studies generally demonstrate that, when 

compared with a sphere of the same volume and density, the flatter the particle, the 

slower the settling. This can be explained partly by the large cross sectional area 

(measured perpendicular to the flow direction) of a strongly flattened particle to its 

volume, and hence higher flow resistance. Another reason is that the highly curved 

edges of such particles result in flow separation at much lower Reynolds numbers than 

in the case of more spherical particles. As a result, strong flattening may induce 

instabilities in the settling of a particle, which will cause rotation, tumbling and 

oscillation so that the settling velocity of the particle will decrease (Stringham and Guy, 

1969; Allen, 1985). Middleton and Southard (1978) pointed out that the same kinds of 

flow regimes as developed around spheres, can be developed around many shapes, but 

the details of motion and the exact values of drag coefficients and of the Reynolds 

numbers for the transition from one regime to another differ between shapes. At high 
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Reynolds numbers, values for drag coefficients (Cd) vary from less than 0.1 for well 
streamlined shapes to more than 1.0 for flat discs transverse to the flow. They also noted 
that settling of non-spherical particles is quite complicated and therefore it cannot be 
represented by a single diagram of the drag coefficient and Reynolds number. In other 
words, for particles of irregular shape, there is no simple relationship between the laws 
of resistance and laws of settling due to the following factors (Middleton and Southard, 
1978): 

1. Differences in orientation of the particle may results in variation in 

resistance relative to the flow. 

2. A varying sequence of orientations may be assumed by a settling particle, 

with the pattern of fall determined not only by the Reynolds number but also 

by the moment of inertia of the particle. 

3. Non-spherical particles are unlikely to settle along a straight vertical path, 

instead, they tend to adopt a side-to-side oscillating type of motion. A 

particle does not usually show a steady motion and its drag coefficient 

continually changes with changes in orientation. Thus a simple equation of 

drag and gravity forces is not possible. 

The response of a disc-shaped particle to the force moment produced by form 

drag is attributed to the moment of inertia (Middleton and Southard (1978) and four 

different responses were identified by Willmarth et al (1964) and Stringham et al 

(1969). These are; 

1. Steady flat fall; with the disc oriented normal to the flow. This takes place at 

Reynolds numbers less than 100, when the viscous forces are large enough 

to damp out the oscillations that tend to be produced by the pressure 

moment. 

2. Regular oscillation fall: about a position normal to the flow, with little 

deviation of the settling disc from a straight vertical line of fall. 

3. Glide-tumble: this is a pattern of fall in which the disc swings from side to 

side as is falls, and assumes a high angle to the vertical, or actually tumbles 

over, at the end of each swing. 

4. Tumble fall: during the falling stage, the disc continuously tumbles end-

over-end, and moves along a path that is almost straight but oblique to the 

vertical. 

Figure 7.1 shows examples of the last three of these fall patterns. 
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Figure 7.1 Settling patterns of a disc (Middleton and Southard, 1978, pp 4.9). (A) 
Reqular oscillation pattern; (B) Glide-tumble pattern; (C) Tumble pattern. 

The influence of particle roundness on settling velocity has not been thoroughly 

investigated, probably due to the difficulty in defining an adequate rounding coefficient 

(Goossens, 1987). However, it has been demonstrated that roundness and surface 

texture variations have less effect on settling velocity than does overall grain form 

(Goldbery and Richardson, 1989). The most important effect of roundness on settling is 

that the flow will separate easily at sharp protuberances on the particle surface, so that 

the flow around same particles will become turbulent even at relatively low velocities. 

This induces a high fluid resistance and consequently a lower settling velocity of the 

particle, (eg. Wilson and Huang (1979)). 

In order to determine any changes in rate of settling due to particle roundness 

and particle surface texture, a series of settling velocity measurements were carried out 

by Garnett (1966). The effect of particle roundness was found to be substantial and 

variations in particle roundness have the greatest influence on settling velocity. Sharp-

edged discs had fall velocities 8-28 % lower than well-rounded discs, with the partly 

rounded discs falling at an intermediate rate. For particles having a high shape value 

(e.g. cylinders), the presence of sharp edges reduced the settling velocity by 12-21 % of 
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the rate of fall of well-rounded cylinders. With the other particle properties held 
constant, three different surface textures for both discs and spheres had only a minor 
influence on settling velocity. 

Goossens (1987) investigated the combined effect of particle flattening and 

rounding on the terminal fall velocity. His investigation was based mainly on Dietrich's 

(1982) compilation of the experimental data obtained by 18 previous authors who 

characterised their particles using the Corey shape factor and the Folk-Powers 

roundness index. It was found that the combined effect of flattening and roundness is 

greater than that of either characteristic in isolation, and that the nature of the effects is 

broadly similar in both air and water. For larger sized particles, however, it was found 

that the effect of rounding is of greater significance, although it was still secondary to 

the importance of particle flattening. 

7 A EXPERIMENTAL INVESTIGATIONS OF PARTICLE MOTIONS 

Particle motion on a natural bed is dependent on many factors. The factors 

include size, shape and to some extent surface characteristics of particles, as well as 

size, shape and roughness characteristics of the channel bed. These factors have been 

shown to have significant effects on test particles friction or pivoting angles. Indeed, the 

friction angle of a particle depends on its size, median bed grain size, and the degree of 

bed sorting. Earlier studies (eg. Komar and Li. 1986; Buffington et al., 1992) have 

shown that friction angles decrease with increasing grain size relative to the median bed 

grain size, and are a systematic function of sorting, with lower friction angles associated 

with poorer sorting (See Chapter 6). Pivoting angle, on the other hand, is related to the 

contact point of a particle with an underlying grain, which is also dependent on the 

shape and size of test particles and also size, shape and imbrication of underlying bed 

material. Particle pivoting angles have an important effect on the threshold of 

movement (more detail see Chapters 2 and 6). 

As well as settling velocity, when other parameters are held constant (similar 

size, form and density), the roundness of particles has been found to be significant in 

controlling their entrainment and transport. For example, a single perfectly rounded 

sphere on a flat surface is much more easily entrained and kept in motion by a fluid than 

a highly angular particle of equivalent weight. Li and Komar (1986) and Komar and Li 

(1988) clearly showed (for uniform-sized particles) that angular particles of crushed 
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gravel have larger pivoting angles than either spherical particles or ellipsoids of the 

same size (See Chapter 2). The difference in pivoting angle between the angular and 

more rounded particles was found to greater with increasing grain size (Pye, 1994b). 

As part of the present study a series of yisulatisation experiments were carried 

out with natural and artificially moulded gravel-size particles. Two sets of experiments 

were undertaken in a 10 litre, water-filled rectangular tank. Figure 7.2 shows the 

experimental design. 

For the first set of experiments, particles were dropped, through water, onto a 

30° inclined, smooth glass plate, which is adopted as standard from the literature 

(Schmeeckle, 1988) . A camera mounted outside the tank, normal to the sloping glass, 

recorded the fall and movement of each particle. A strobe light (strobe rate 25 flashes / 

second) was mounted orthogonal to the camera. By keeping the camera shutter open for 

the duration of each particle drop multiple images of the particle could be recorded on 

the same frame of film (for detail of the technique see Chapter 3). Settling velocities, 

rebound angles and trajectory paths were measured from the photographs by plotting 

successive centres of mass of the particle. Figure 7.3 illustrates the schematic, settling 

and transport paths of a particle from the point of release to the point of transport 

cessation. Despite some irregularities due to variations in particles shapes, settling 

velocity of a particle tends to be vertical, while transport velocity is parallel to the plane. 

Sloping glass ^ 
plate Settling path 

ebound 
height 

Point of transport 
cessation 

Transport path 

Figure 7.3 A typical settling and transport path of a particle 
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The aim of the experiment as: To determine settling and transport velocities of 
artificial and natural particles of differing shapes and size; and to determine the changes 
in settling and transport velocities of artificial particles of different shape in relation to 
weight. 

A second set of experiments, using the same set-up as the first but this time 

investigating the initial motion of particles of various shapes and sizes, was undertaken 

on two beds of differing roughness. Each bed was tilted until the test particle moved 

from its pocket of origin. Strobe-light photographs were taken at the initiation of 

motion. This method was developed from work undertaken by Schmeeckle, (1998). 

7.5 SETTLING AND TRANSPORT VELOCITIES OF PARTICLE OF 
VARIOUS SHAPE. 

Settling velocities of four particle shapes were measured for artificially-moulded 

and natural particles. 

Table 7.1 The tri-axial dimensions (mm) and weights (g) of artificial particles used for 
the settling velocity experiments. 

Shape A B C Roundness Sphericity Corey Shape Weight 
class axis axis axis Factor (CSF) GO 

Sphere 10.0 10.0 10.0 1000 1.00 1.0 0.85 

Blade 20.0 10.0 2.0 100 0.37 0.1 0.69 

Rod 20.0 10.0 10.0 200 0.63 0.7 2.41 
Disc 10.0 10.0 2.0 600 0.58 0.2 0.27 

Corey Shape Factor = 
£j H Note: D a , D b and D c show long, intermediate and short axes of a 

J ] ) jF)̂ ~ particle respectively. 

Settling and transport velocities of artificial particles of similar b-axis size but varying 

shapes (sphere, blade, rod, disc) were measured. The three axes and weights of each of 

these particles are given in Table 7.1. The density of the artificial particles was 

approximately 1.48. For each shape 10 measurements of settling velocity and transport 

velocities were taken to determine a mean and standard deviation. Figure 7.4 

summarises the settling and transport paths of four artificial grain shapes and the paths 

overlaid using the point of impact of the particles with the glass plate as a common 

reference position. Characteristics movement patterns can be observed: 
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BLADE SPHERE 

DISC ROD 

Figure 7.4 Summary of particle settling and transport paths for four particle shapes in 
water striking a glass surface inclined at 30° degrees. The same experiment was 
replicated ten times for each particle. The dotted line shows the division between 
settling and transport paths. 
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Sphere - Falls steadily during settling. Because of high speed of impact sphere shows a 

large rebound followed by a smooth rolling motion. 

Rod - Shows a steady fall with some rotation. Rebound is minimal and transport is by 

relatively smooth rolling with the long axis transverse to the slope. 

Blade - Settling paths are highly variable, often showing a glide and tumble motion. 

Although impact angles are highly variable rebound is negligible. Transport is variable 

but usually follows an oscillatory sequence of 'collapse,-slide-lift-stall-collapse-slide' 

with the long axis transverse to the slope. 

Disc - Disc tend to follow either a regular oscillatory settling path or a glide and tumble 

motion. There is little rebound on impact and transport follows a similar pattern to the 

blade with occasional 'on edge' rolling. 

Figures 7.5, 7.6, 7.7, and 7.8 are typical strobe-light photographs of sphere, 

blade, rod, and disc-shaped particles. Four replicate runs are shown for each shape class. 

Spheres and rod-shaped particles generally tend to settle in a more uniform fashion, 

despite a slight initial increase in rate of settling (Figures 7.5). All the tests in Figure 7.5 

showed almost the same settling velocity and uniform settling trajectories. After the 

initial impact on the base plate the sphere tends to rebound slightly and then rolls 

downslope. However, the velocities of rolling slightly increase as the particle rolls 

further. Figure 7.6 shows that, except for experiment 4, which shows a slightly greater 

settling velocity, the rod also showed very uniform settling. In each image the rod tends 

to settle with its a axis transverse to the slope and to roll with the same orientation. 

There is little rebound after the initial impact and the rod tends to roll and accelerate 

with downslope distance. 

Blade and disc shapes, however, showed a more complex and irregular hydraulic 

behaviour depending on their orientation. In general, for blade and disc-shaped particles 

(Figures 7.4, 7.7 and 7.8) the settling paths tended to be much longer and irregular than 

for the rod and sphere shapes. Settling velocities are greatest when the test particle falls 

in a vertical orientation, whereas in a horizontal orientation, particles tend to move 

laterally, leading to a slower settling velocity. In Figure 7.7 the paths made by the 

movements of the four blades show some degree of irregular settling. For example, in 

the initial part of the settling path (Photograph 1), the blade tends to fall in a horizontal 

plane and then stall. It then began to fall in a vertical plane with an increased settling 

rate. Before hitting the slope it again turns in a horizontal plane. 
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Fie ure 7.5 Strobe-light photographs of sphere particle striking a glass surface inclined at 
30 degrees in water. The same experiment was replicated 10 times. These photographs 
show four examples. The strobe rate was set at 25 flashes per second. 
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Figure 7.6 Strobe-light photographs of rod particle striking a glass surface inclined at 
30° degrees in water. The same experiment was replicated 10 times. These photographs 
show four examples. The strobe rate was set at 25 flashes per second. 
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Mgiuire 7.7. Strobe-light photographs of Made particle striking a glass surface inclined at 
•J egrees ra water. The same expenraesit was replicated 10 toss. These photographs show 
four examples. The strobe rate was set at 25 flashes per se 



Fi|ure 7.8 Strobe-light photographs of disc particle striking a glass surface inclined at 
30 degrees in water. The same experiment was replicated 10 times. These photographs 
show four examples. The strobe rate was set at 25 flashes per second. 
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After the initial impact with the glass plate it tends to accelerate in a sliding mode and 
then stall by standing on its vertical plane with its long axis transverse to the slope. 
Following a short movement in a vertical plane the particle collapsed on its horizontal 
plane and accelerated again, which result in a second vertical motion in the lower part of 
slope, after which it collapses again. Photograph 2 on the other hand reflects an initial 
increase in settling velocity due to a fall in a vertical plane. In die middle of the settling 
path, the particle reorientates itself in a horizontal plane, which results in a momentary 
stop, and then it turns on a vertical plane leading to increased settling velocity. Before 
its impact with the glass plate, the particle reorientates itself and hits the base slope at a low 
angle. This gentle impact on the slope initially caused a slow dbwnslope sliding but then 
the particle accelerated until lift in a vertical plane was generated, resulting in a 
momentarily stall, then collapse again on the horizontal plane and acceleration 
downslope in a sliding mode. Photographs 3 and 4 in Figure 7.7 also show similar 
settling and transport velocity patterns to photographs 1 and 2. 

Discs show similar hydraulic settling behaviour to blades. Discs tend to change 

orientation from a vertical position to horizontal or from horizontal to vertical, which 

results in differential settling rates (Figure 7.8). As the larger surface area of a particle 

turns to a horizontal position, the contact area of the water column with the particle 

surface increases and this leads to a greater resistance which results in lower settling 

velocity. Whereas a fall with vertical plane minimises the resistance which leads to an 

increase in settling velocity. For instance, comparison of photographs 1 and 3 and 2 and 

4 in Figure 7.8 reveal very different settling velocities due to differences in particle 

orientation. In photographs 1 and 3, the particle was falling in a horizontal plane over 

most of its settling path, resulting in rather slow settling, while in photographs 2 and 4 

movement was generally in the vertical plane, resulting in faster settling. In terms of the 

settling trajectories, Figures7.7 and 7.8 also show that sinuous settling paths occur if a 

particle is in a horizontal position, whereas in a vertical downward movement, particle 

settling paths seem to be relatively straight. 

Detailed analysis of Figures 7.7 and 7.8 indicates variability in settling rate. For 

example, in Figure 7.7, photograph 1 in the upper section of the settling path, there are 

only three images where particle orientation is vertical and settling is rapid, while for 

the middle section of the path, the number of images increases to six (revealing lower 

settling velocity) where the particle tends to twist in a horizontal plane. In the lower 

section, the settling velocity decreases again and the number of images increases to 
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seven because of the horizontal settling orientation. Similar settling patterns also exist 
for photographs 2 and 4. Subsequent to an initial increase in settling, the disc twisted to 
a horizontal position and thus stopped momentarily. In the latest stage of settling, the 
disc again twisted to a vertical position, which resulted in an increase in settling 
velocity. 

In terms of mode of movement and the observed transporting velocities on the 

smooth base plate, the experiments show that sphere and rod-shaped particles move in a 

rolling mode. After the initial impact, the sphere tended to rebound slightly and then 

move down in a uniform rolling mode. For rod there was little rebound and it tends to 

roll with the long axis transverse to the base plate (Figures 7.4, 7.5 and 7.6). Discs and 

blades showed little rebound after, regardless of the orientation of strike. However, 

discs and blades move in an irregular sliding mode. Figures 7.7 and 7.8 show that after 

initial contact with the sloping plate, particles accelerated down the slope and then 

became elevated from the plate, finally resettling on to the plate again. This cycle of 

slide and lift appeares to be repeated along the slope (Figure 7.4). 

Table A4.1 shows the settling and transport velocities of individual particles for 

each shape class and also their mean and standard deviation values. Figure 7.9 shows 

the mean settling velocities of particles of different shapes. Both Figure 7.9 and Table 

A4.1 indicate that particle flatness has an important influence on the settling velocity. 

The more the particles are flattened, the slower they will settle compared with spheres 

and rods of the same size and density. Indeed, sphere-and rod-shaped particles tend to 

have greater mean settling velocities than blades and discs, which have relatively 

similar mean values. The increasing order of the rank is 14.6 cm s"1 for discs, 16.8 cm s"1 

for blades, 29.4 cm s"1 for rods, and 37.0 cm s"1 for spheres. Table A4.1 indicates that 

sphere-and rod-shaped particles tend to settle faster and also have fairly uniform settling 

velocities. Blades and discs settle more slowly and show relatively large scatter around 

their mean values. 
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Figure 7.9 Settling and transport velocities of artificial particles of 
sphere, blade rod and disc shapes with b-axes 10 mm. 

In terms of particle transport velocity, Table A4.1 and Figure 7.9 show that, 

despite fester mean settling velocity for spheres and rods than for blade-and disc-shaped 

test particles, a similar pattern in the mean transport velocities does not emerge. Mean 

transporting velocities are much lower than the settling velocities of spheres, blades, and 

rods (Table A4.1 and Figure 7.9). For sphere-shaped particles, transport velocities vary 

between 13.3 cm s"' and 14.3 cm s"1 with a standard deviation value of 0.6. For rods the 

velocity varies between 10 cm s"1 and 13.3 cm s"1 with a standard deviation value of 0.9. 

Differences between the individual transport velocities varied between 10 and 12.5 for 

blade and disc with a standard deviation value of 0.9. After the collision with the base 

plate, blade-shaped particles did not move for two measurements. For the disc shapes in 

four out of the 10 experiments test particles did not move after impact. 

7.6 SETTLING AND TRANSPORT VELOCITIES OF ARTIFICIAL 
PARTICLES OF DIFFERING SHAPE AND SIZE 

In order to investigate the influence of particle shape and size on settling 

velocity, form of movement (rolling or sliding) and trajectory paths a series of 

experiments were carried out with artificially-moulded gravel-size particles. The test 

particles were arranged in three size groups in terms of their intermediate axes (b-axis): 
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5 mm small, 10 mm medium and 15mm. The tri-axial dimensions (mm), weights (g) 
and shape properties of the particles are summarised in Table 7.2. Individual particles 
were dropped twice, through water, onto an 30° inclined smooth glass plate. 

Table 7.2 Summary of the tri-axial dimensions (mm), weights (g) and shape properties 
of test particles in three size groups 

A B C Radius Round 
ness 

Sphericity Flatness Weight 

Small size 
Sphere 5 5 5 2.5 1000 1.00 100 0.14 
Blade 10 5 1 2.5 500 0.37 750 0.14 
Rod 10 5 5 2.5 500 0.63 150 0.29 
Disc 5 5 1 2.5 1000 0.58 500 0.09 

Medium size 
Sphere 10 10 10 5 1000 1.00 100 0.85 
Blade 20 10 2 2.5 250 0.37 750 0.69 

Rod 20 10 10 2.5 250 0.63 150 2.41 

Disc 10 10 2 5 1000 0.58 500 0.27 

Large size 
Sphere 10.5 15 10.5 5 952 1.00 100 2.50 

Blade 30.4 15 3 2.5 164 0.32 682 2.19 

Rod 30 15 10.5 2.5 167 0.50 193 6.60 

Disc 10.5 15 2 5 952 0.58 525 0.71 

Figures 7.10, 7.11 and 7.12 are typical strobe-light photographs of the particles in the 

different shape classes and in the three size groups. After the initial collision with the 

glass plate there was no substantial rebound except for a small degree of rebound for 

spheres. Blade and disc-shaped particles showed the most complex settling modes, 

while spheres and rods show more consistent patterns. Table 7.3 contains the relevant 

settling and transport velocity information taken from each photograph. Table 7.3 and 

Figure 7.13 show that, in common with previous experiments, in each size group, 

sphere-and rod-shaped particles tend to have faster mean settling velocities than discs 

and blades. In the small size group, the average settling velocities are 28.6 cm s~\ 22.5 

cm s"1, 12.2 cm s"1 and 11.9 cm s"1 for sphere rod, disc, and blade respectively. In the 

medium size group again rods and spheres show faster mean settling velocites; 30.6 cm 

s"1 for spheres, 34.3 cm s 1 for rods, 12.6 cm s"1 for blades, and 11.8 cm s"1 for discs, 
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Figure 7.10 Strobe-light photographs of small sized sphere, blade, rod and disc particles 
striking a glass surface inclined at 30° degrees in water. The same experiment was 
replicated twice for each particle. These photographs show four examples. The strobe 
rate was set at 25 flashes per second. 
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Figure 7.11 Strete-ligti; ptatograplfos of snedimn sized spfeine, Made, rod ami disc particles 
striking a glass surface inclined at 30° degrees in water. The same experimerat was 
seplieated twice for emh parti©!©. These photographs stow four examples. Ill® strobe rate 
was set at 25 flashes per second. 
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Figure 7.12 Strobe-light photographs of large sized sphere, blade, rod and disc particles 
striking a glass surface inclined at 30° degrees in water. The same experiment was 
replicated twice for each particle, These photographs show four examples. The strobe 
rate was set at 25 flashes per second. 
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while in the large size group the rank is also 34.3 cm s"1 for both spheres and rods, 14.4 
cm s"1 for blades and 12.6 cm s"1 for discs. For almost all shape classes (Table 7.3) there 
is an increase in the settling velocity with particle size. The increasing rate of mean 
settling velocity for sphere-shaped particles is greater than blade and disc. In the small 
medium and large size groups it varies between 28.6, 30.6 and 34.3 respectively for 
spheres, while for rods the variation is between 22.5 (small size) and 34.3 (large size). 
There is a similar trend for blades, 11.9-14.4, and discs, 12.2-12.6. 

Table 7.3 Summary of mean settling and transport velocities of test particles in three 
size groups. (S:sliding, R:rolling) 

Shape Settling Transport velocity (Settling velocity/ Mode of 
velocity 
em s"1 

cm s"1 transport velocity) transport 

Small 
Sphere 28.6 11.8 2.42 R 
Sphere 28.6 12.5 2.29 R 
Blade 13.3 10.0 1.33 S 
Blade 10.5 No movement S 
Rod 20.0 10.5 1.90 R 
Rod 25.0 9.1 2.75 R 
Disc 12.5 10.5 1.19 S 
Disc 11.8 7.1 1.66 S 

Mean 18.8 10.2 1.84 
Medium 

Sphere 28.6 15.4 1.86 R 
Sphere 33.3 14.3 2.33 R 
Blade 11.8 10.5 1.12 S 
Blade 13.3 15.4 0.86 S 
Rod 28.6 11.8 2.42 R 
Rod 40.0 9.5 4.21 R 
Disc 11.8 9.5 1.24 S 
Disc 11.8 10.5 1.12 S 

Mean 22.4 12.1 1.85 
Large 

Sphere 28.6 15.4 1.86 R 
Sphere 40.0 16.7 2.40 R 
Blade 13.3 14.3 0.93 S 
Blade 15.4 13.3 1.16 S 
Rod 40.0 12.5 3.20 R 
Rod 28.6 11.8 2.42 R 
Disc 11.8 12.5 0.94 S 
Disc 13.3 11.1 1.20 S 

Mean 23.9 13.4 1.78 
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Figure 7.13 Settling and transport velocities of particles of the 
four shape classes in three size groups. 
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In terms of transport velocities, it appears that, regardless of shape, velocities 

tend to increase slightly with size (Table 7.3). Figure 7.13 shows small differences 

between settling and transport velocities of blade-and disc-shaped particles, with greater 

differences for rod-and sphere-shaped particles in each size group. The ratio of settling 

velocities to transport velocities indicates the importance of settling to transport. Within 

almost every size group settling velocities for sphere and rod-shaped particles are 

noticeable greater than that of blades and discs. The reason might be attributed to two 

factors. Sphere-and rod-shaped in each size group tend to be of greater weight, which 

leads to faster settling, and have smaller projection areas compared to discs and blades. 

Ratios of settling velocities to transport velocities are greater in sphere-and rod-

shaped particles in each size group (Table 7.3). The greater rates indicate greater 

settling velocities compared to transport velocities. Table 7.3 shows that, within each 

size group, blade-and disc-shaped particles tend to have rather lower ratios than the 

sphere and rod-shaped particles. This indicates that differences between settling and 

transport velocities for blades and disc-shaped particles are smaller compared to the 

sphere-and rod-shaped particles. However, there is no indication that ratios of settling 

velocity to transport velocities vary regularly with size. 

7.7 CHANGES IN SETTLING AND TRANSPORT VELOCITIES OF 
PARTICLES OF DIFFERENT SHAPE IN RELATION TO WEIGHT 

In the previous section test particles within each size group differed in weight 

(Table 7.2). Sphere-and rod-shaped particles tend to be heavier than blades and discs 

due to their greater c axes. In this section, a series of experiments were carried out with 

artificially-moulded gravel-size particles in order to determine changes in settling and 

transport velocities of different particle shapes in relation to weight. The dependence of 

settling velocity is clearly demonstrated in settling equations such as Stokes Low. 

Particles were classified into three weight classes, In each class particles were prepared 

using wet clay of equal weight. However, on drying resultant weights showed some 

slight differences. Therefore, in each group test particles were of approximately equal 

weight but differed in shape. The tri-axial dimensions (mm), weights (g) and shape 

properties of each particle are summarised in Table 7.4. Methods followed those of the 

previous experiments. 
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Table 7.4 Summary of the tri-axial dimensions (mm), weights (g) and shape properties 
of test particles in three weight groups. 

A B C Radius Round Spheri Flatness Weight 
axis axis axis ness city 

Small group 
Sphere 10 10 10 5.0 1000 1.00 100 0.94 
Blade 28 10 2 2.5 179 0.29 950 1.00 
Rod 17 7 7 5.0 588 0.55 171 0.98 
Disc 16 16 3 2.5 313 0.57 533 0.99 

Medium group 
Sphere 13 13 13 5.0 769 1.00 100 2.38 
Blade 41 12 3 2.5 122 0.28 883 2.73 
Rod 26 9 9 5.0 385 0.49 194 2.58 
Disc 25 25 3 2.5 200 0.49 833 2.66 

Large group 
Sphere 17 17 17 8.0 941 1.00 100 3.91 
Blade 54 16 3 2.5 93 0.25 1167 4.38 
Rod 29 11 11 6.0 414 0.52 182 4.18 
Disc 32 32 3 2.5 156 0.45 1067 4.10 

Figures 7.14, 7.15 and 7.16 show the typical strobe-light photographs taken of 

the particles in different shape classes in three weight groups and indicate a similar 

pattern of settling and transport velocities determined with particles in the three size 

groups. Table 7.5 and Figure 7.17 shows that, despite their similar weights, mean 

settling velocities of the sphere-and rod-shaped particles are noticeable greater than 

discs and blades in almost each weight group. Regardless of shape, mean settling 

velocities tend to slightly increase with weight. The increasing rank of the mean settling 

velocities is 29.5 cm s"1, 31.7 cm s"1 and 33.3 cm s"1 for small, large and medium size 

groups respectively (Table 7.5). Within each weight group, spheres tend to show the 

fastest settling velocities, while discs, except in the small group, show the slowest rates. 

The decreasing order of settling velocities in the small group is sphere, rod, disc and 

blade, while for the medium and large size groups the ranks are sphere, rod, blade and 

disc (Table 7.5). Within each weight group spheres have relatively uniform vertical 

settling trajectories, while rods show similar settling velocities but with slightly more 

rotation about their long axis. Discs and blades on the other hand exhibit slower, more 

irregular modes of settling depending on their orientation. 
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Figure 7.14 Strobe-light photographs of smallest weight of sphere, blade, rod and disc 
particles striking a glass surface inclined at 30° degrees in water. The same experiment 
was replicated two times for each particle. These photographs show four examples. The 
strobe rate was set at 25 flashes per second. 
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Figure 7.15 Strobe-light photographs of the medium weight class of sphere, blade, rod and 
disc particles striking a glass surface inclined at 30° degrees in water. The same experiment 
was replicated two times for each particle. These photographs show four examples. The 
strobe rate was set at 25 flashes per second. 
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Figure 7.16 Strobe-light photographs of the heaviest weight of sphere, blade, rod and 
disc particles striking a glass surface inclined at 30° degrees in water. The same 
experiment was replicated two times for each particle. These photographs show four 
examples. The strobe rate was set at 25 flashes per second. 
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Figure 7.17 Settling and transport velocities of particles of the 
four shape classes in three weight groups. 
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Table 7.5 Summary of the mean settling and transport velocities of test particles in three 
weight groups (R: rolling, S: sliding mode). 

Settling Transport (Settling vel./ Mode of 
Shape velocity 

cm s"1 

Velocity 
cm s"1 

transport vel.) transport velocity 
cm s"1 

Velocity 
cm s"1 

Smal l 
Sphere 50.0 18.2 2.74 R 
Sphere 50.0 18.2 2.74 R 
Blade 14.3 14.3 1.00 S 
Blade 11.8 12.5 0.94 S 
Rod 33.3 11.8 2.82 R 
Rod 40.0 12.5 3.20 R 
Disc 18.2 13.3 1.36 S 
Disc 18.2 11.1 1.63 S 

Mean 29.5 14.0 
Medium 

2.10 

Sphere 50.0 15.4 3.25 R 
Sphere 66.7 20.0 3.34 R 
Blade 14.3 5.0 2.86 S 
Blade 20.0 12.5 1.60 S 
Rod 33.3 14.3 2.33 R 
Rod 50.0 22.2 2.25 R 
Disc 15.4 12.5 1.23 S 
Disc 16.7 13.3 1.26 S 

Mean 33.3 14.4 
Large 

2.31 

Sphere 50.0 16.7 2.99 R 
Sphere 50.0 18.2 2.75 R 
Blade 20.0 11.8 1.69 S 
Blade 25.0 28.6 0.87 S 
Rod 50.0 14.3 3.50 R 
Rod 28.6 15.4 1.86 R 
Disc 14.3 11.8 1.21 S 
Disc 15.4 13.3 1.16 S 

Mean 31.7 16.2 1.96 

7.8 SETTLING VELOCITIES OF THE NATURAL PARTICLES 

Settling velocities of four particle shapes (sphere, blade, rod, disc) were 

measured for natural particles. The three axes and weights of each of these particles are 

given in Table 7.6. Density for the natural (sandstone) particles is 2.41. The same set of 

experiments as those described in Section 8.4 were repeated for the natural particles. 

Behaviour between the two sets of experiments cannot be compared directly due to 

difference in particle density. 
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Table 7.6 The tri-axial dimensions (mm) and weights (g) of natural particles used for 
the settling velocity experiments. 

Size A B C Roundness Sphericity Corey Shape Weight 
(mm) axis axis axis Factor (CSF) GO 

Sphere 10.5 10.3 10.3 952 0.99 1.0 3.34 

Blade 20.9 9.0 3.5 96 0.42 0.3 1.64 

Rod 20.4 10.0 10.0 196 0.62 0.7 3.83 

Disc 10.2 10.2 3.0 392 0.67 0.3 0.67 

In general, sphere-and rod-shaped particles produced a similar pattern of settling 

and transport velocities (rolling) to the artificial particles. Blade-and disc-shaped 

particles, on the other hand, exhibited more uniform and relatively shorter settling paths 

as compared to those measured with artificially formed particle shapes. Figures 7.18, 

7.19, 7.20, and 7.21 are typical strobe-light photographs of natural gravel sphere, blade, 

rod, and disc-shaped particles. Figure 7.18 shows that sphere-shaped particles have a 

relatively consistent pattern of settling. After the initial impact with the glass plate both 

the rebound height and also damping distances of the natural sphere tended to be greater 

than for artificial ones probably due to the greater density of natural the particles. 

Photograph 1 in Figure 7.18 shows the settling velocity of a natural sphere that is 

slightly greater than photographs 2, 3 and 4, which show higher rebound and longer 

damping distance. The Rod showed a similar pattern of settling to the sphere but for the 

rod there was little rebound and a shorter damping distance (Figure 7.20). In Figure 

7.20, (photographs 1 and 2) the rod hit the base plate with its long axis in a vertical 

plane which caused a small rebound, and then it reoriented itself with the long axis 

transverse to the slope. In Photograph 3, however, damping distance seems to be much 

longer than the others, While there is no rebound for photograph 4. In each experiment, 

the rolling velocity of the rod tended to increase slightly downslope. 

With few exceptions (photograph 2 in Figure 7.19 and photograph 4 in Figure 

7.21), natural blade and disc-shaped particles settle in relatively straight, vertical paths 

that are more constant than with the artificial particles. However, in relation to transport 

velocity, similar patterns of motion between artificial and natural particles were 

observed. The blade in Figure 7.19 (photographs land 4), shows a straight vertical line 

of fall with its long axis in a vertical plane. Photograph 3 also exhibits a straight line of 
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Figure 7.18 Strobe-light photographs of a natural sphere striking a glass surface inclined 
at 30 degrees. The same experiment was replicated 10 times in water. These photographs 
show four examples. The strobe rate was set at 25 flashes per second. 
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Figure 7.19 Strobe-light photographs of a natural blade striking a glass surface inclined 
at 30° degrees. The same experiment was replicated 10 times in water. These 
photographs show four examples. The strobe rate was set at 25 flashes per second. 
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Figure 7.20 Strobe-light photographs of a natural rod striking a glass surface inclined at 
30 degrees. The same experiment was replicated 10 times in water. These photographs 
show four examples. The strobe rate was set at 25 flashes per second. 
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fall but its maximum projection area parallel to the slope, which caused a relatively 
slow settling rate. Photograph 2, on the other hand, exhibits a different pattern of 
settling in which the bladed continuously rumbled end-over-end and moves along a path 
that was almost straight but oblique to the vertical. In terms of transport, except for 
photograph 2, each image shows similar pattern of movement. Following the initial 
impact the blade with its long axis transverse to the slope, accelerates with a sliding 
mode, which then leads to an elevation of the particle in a vertical plane (which result in 
a decrease in transport velocity). It then collapses onto a horizontal plane and slides 
again. This irregular pattern of movement with varying sequence of orientation is 
repeated downslope. The blade in Photograph 2, on the other hand, slid at an almost 
constant velocity with its long axis parallel to the slope. This indicates that blades 
sliding downslope with long axes transverse to slope tend to accelerate. This 
acceleration forces the blade to elevate and changes its orientation from the horizontal 
to the vertical plane or from vertical to a horizontal plane which leads to irregularity in 
transport. On the other hand, a blade moving downslope with its long axis parallel to 
slope shows a relatively consistent sliding mode of movement along the slope. 
(Photograph 2 in Figure 7.19). 

The natural disc (except in Photograph 1 in Figure 7.21) shows a relatively 

straight and vertical pattern of fall that is noticeably different from the artificial 

particles. However, comparison of the four images in Figure 7.21 indicates that, despite 

their straight settling path, the difference between the four settling velocities is mainly 

due to variation in particle orientation. For example, in Photograph 1 reveals that there 

was an initial increase in settling velocity of the disc falling in a vertical plane. It then 

turned in a horizontal plane, which caused a decrease in settling velocity. Finally it 

began its vertical fall again with an increase in settling velocity. After the first impact on 

the glass plate, it accelerated with a sliding motion until it lifted and then collapsed 

again in a horizontal plane. It then accelerated again in a sliding mode and a second 

elevation took place. Photograph 2 reveals the disc falling in a vertical plane along the 

whole settling path, resulting in a rather greater settling velocity than the other images, 

while in Photograph 3 its falling in its maximum projection plane horizontal to flow 

along the whole settling path mat led to a rather slow settling velocity. Photograph 4 

represent a pattern of fall in which the disc settled in a vertical plane and moved along a 

straight path that was oblique to the vertical. Both photographs 3 and 4 show a 

consistent sliding mode of movement in which the disc tended to accelerate with 
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downslope distance. A close examination of the four images indicates that i f the particle 

impacted on the base plate with a vertical plane it tended to jump (photograph 2) or 

accelerate immediately after the landing, which then led to an elevation in the upper 

slope (photograph 1). On the other hand, i f the landing took place in a horizontal plane, 

the particle tended to slide along most of the slope and accelerate towards the bottom of 

the slope. 

100 n 

80 

60 

40 

20 

0 -I 1 1 1 

Sphere Rod Blade Disc 

• Settling velocity —Transport velocity 

Figure 7.22 Settling and transport velocities of natural particles of sphere, blade, 
rod and disc with b-axes varying between 9.0 and 10.2mm. 

Settling and transport velocities for the natural sphere-blade-rod-and disc-shaped 

particles are shown in Table A4.2. In general, the settling velocity of natural particles is 

similar to those measured for artificial ones, e.g. higher settling velocities for sphere-

and rod-shaped particles, lower values for disc-and blade-shaped particles. However, 

natural particles tend to settle much faster due to their greater density (2.41) than the 

artificial particles used (1.48). Mean settling velocities vary between 68.8 cm s"1 

(sphere) and 23.4 cm s'1 (disc). Again, sphere-and rod-shaped particles show greater 

settling velocities. The increasing order of the mean velocities are 23.4, 31.4, 48.1 and 

68.8 cm s'1 for disc-blade-rod-and sphere-shaped particles respectively (Figure 7.22 and 

Table A4.2). 

The settling and transport velocities of individual particles within each shape 

class and their mean and standard deviation values (Table A4.2) indicate that settling 

velocities, for individual sphere-and rod-shaped particles tend to be greater, and more 
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consistent than for blade-and disc-shaped particles. For sphere-shaped particles, settling 
velocity is very uniform (68.8 cm s"1) with a standard deviation of 11. It changes 
between 34.4 cm s"1 and 68.8 cm s"1 for rod-shaped particles with a standard deviation of 
48.1. For blades, however, settling velocities are much greater and vary between 15.3 
cm s"1 and 68.6 cm s"1 with a standard deviations of 14.6. Discs, on the other hand, 
shows less variation between the individual measurement (19.6-22.9 cm s"1) with a 
small standard deviation of 4.1 (Table A4.2). 

In terms of particle transport velocity, the pattern is similar to the artificial 

particles, with is no great variation between different shapes. Table A4.2 and Figure 

7.22 show that, on a 30° inclined smooth base plate, mean transport velocities tend to 

decrease from sphere (27.5 cm s"1) to rod (20.9 cm s"1), blade (20.2 cm s"1) and disc 

(16.1 cm s"1) respectively. However, for a given distance, mean transporting velocities 

are much lower than that of settling velocities for all shape classes and the difference 

becomes greatest for sphere-shaped particles, while it is smallest for discs (Table A4.2 

and Figure 7.22). For spheres, rolling velocities vary between 25.0 cm s"1 and 28.6 cm s" 
1 (standard deviation 1.7), while for rods it varies between 20.0 cm s"1 and 22.2 cm s"1 

with a standard deviation value of 1.1. On the other hand, as with artificial particles, the 

differences between the individual measurements tend to increase for the blade (16.7-

28.6 cm s"1) and disc, (12.5-20.0 cm s"1). Greater standard deviation in transport 

velocities of blade and disc-shaped particles (both from the tilting table experiments and 

the photograph visualisation evidence) result because variations in particle orientation 

have a significant effect on settling rate and the nature of the particle transport velocity. 

Comparison of artificial and natural particles within the same size range and same shape 

class showed that density has an important influence on particle settling velocity and 

hence Reynolds number. Natural particles are greater in density than artificial particles. 

This leads to higher settling rates and hence greater Reynolds number values for natural 

particles, while artificial particles settle have small Reynolds number (Table A4.1 and 

Table A4.2). Mean Reynolds number for the settling velocity of natural particles is 

almost twice (6188) that of the artificial particles (3700). 
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7.9 SETTLING AND TRANSPORT VELOCITIES OF IRREGULAR SHAPED 
NATURAL PARTICLES 

Although it is well known that the settling velocity of a particle is strongly 

dependent on its shape (McNown and Malaika, 1950; Graf, 1971; Komar and Rentiers, 

1978; Baba and Komar, 1981; Dietrich, 1982) there have been few studies investigating 

the settling velocities of natural particles with irregular shapes. These are appreciably 

different from ideal shapes such as spheres, ellipsoids and cubes (Goossens, 1987). 

Indeed, most natural particles do not have regular geometrical shapes. The purpose of 

this section is to examine the settling and transport velocity of irregular shape natural 

particles in the 4-8 mm and 8-16 mm size groups. 

Natural (irregularly shaped) particles were selected in two two size ranges 4-8 

mm and 8-16 mm. The test particles were taken from Trout Beck (Chapter 3). In each 

size group 10 particles Were randomly selected from a total sample of 100. The reasons 

for choosing these size ranges were ease of measurement (measuring the three axial 

diameters of a pebble is much easier and accurate than on a sand grain) and also these 

ranges were most commonly transported in floods at the experimental sites. It was also 

assumed that much smaller size ranges would reduce the effect of particle shape on 

settling and transport velocities. Sandstone particles with an average density of 2.41g 

cm" were used. The tri-axial dimensions (mm), weights (g) and shape properties of each 

particle are summarised in Table 7.7 and Figure 7.23. Each particle within the two size 

groups was dropped twice through water, onto a 30° inclined, smooth glass plate. 

Settling velocity, form of movement (rolling or sliding) and trajectory paths were 

measured from the photographs. 

Figures 7.24 and 7.25 are typical strobe-light photographs of the two size groups 

settling in water. In terms of settling velocities, the experiments show that mere is no 

simple pattern of settling and transport velocities between the particles of various shapes 

and size. However, in common with the earlier experiments Table 7.8 and Figure 7.26 

show that sphere and rod-like particles tend to settle slightly faster than blade-like and 

disc-like particles. Mean settling velocity of the large particles (42.2 cm s"1) is 

noticeable greater than the small size group (30.7 cm s"1). High standard deviation 

values for the large size particles indicate that differences between the settling velocities 

of various shapes is greater than in the small size group. This may also imply a positive 

relation between the particle size and the influence of shape on settling velocity. In 

other words, as particle size increases, differences between the settling velocity of 
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Figure 7.23 Shape distribution of naturally formed irregular particles, 
based on Zingg (1932) classification of particle form. Note: Size of 
symbols indicates relative settling velocities. 
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Table 7.8 Summary of settling and transport velocity experiments carried out with 
natural test particles in two size groups. (Values in italics indicate the particles settling 
in vertical plane. S: sliding mode, R: rolling mode). 

Stone 
No: 

Settling 
velocity 
(cm s"1) 

Transport 
velocity 
(cm s'1) 

Mode of 
transport 

Shape 

1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 
10 
10 

Mean 
Standard D. 

1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 
10 
10 

Mean 
Standard D. 

27.5 
34.4 
22.9 
22.9 
22.9 
45.8 
22.9 
22.9 
22.9 
22.9 
34.4 
34.4 
27.5 
34.4 
34.4 
45.8 
34.4 
27.5 
27.5 
45.8 

30.7 
8.1 

27.5 
27.5 
68.8 
45.8 
34.4 
34.4 
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various shapes tends to be greater. In the small size group, mean settling velocities vary 
between 40.1 and 34.0 cm s"1 for rods and spheres respectively, while for disc-like and 
blade-like particles it is 26.9 and 27.8 cm s"1. In the large size group, there tends to be an 
increase in mean settling velocities for almost all shapes. Mean settling velocities are 
57.3 for sphere and rod-like, 43.3 for blade-like and 28.8 cm s"1 for disc-like particles. 
Table 7.8 also indicates that particles falling in a vertical plane have relatively greater 
settling velocities than those falling in a horizontal plane. Differences in the mean 
settling velocities between spheres, blades and discs, tend to be smaller in the 4-8 mm 
size man the 8-16 mm size. 

In common with earlier findings, sphere-and rod-like particles followed more 

vertical settling paths and had greater settling velocities than blade-and disc-like 

particles, which tended to settle in the horizontal plane (Figure 7.26). In the small size 

group, disc (photograph 1) and blade particles (photograph 2) have lower settling 

velocities than spheres (photographs 3, 5 and 6) and rods (photograph 4). Despite the 

difference between their weights, discs (0.39g) and blades (0.64g) had similar settling 

velocities. However, the greater projection area of the blade and horizontal settling 

plane increase the drag force and thus prevent it from settling rapidly. A similar relation 

may also be found between spheres of different weights. The weights of the spheres in 

photographs 5 and 6 are 0.23g and 0.86g respectively, although they have the same 

settling velocity. The reason is probably mat the sphere weighing 0.23g had a greater 

sphericity value (0.77) than the sphere weighing 0.86g (0.69). The particle with greater 

sphericity is expected to settle faster due to less drag. Although sphere-like particles in 

Photograph 5 and 6 (in Figure 7.24) have the same settling velocity values (27.5 cm s"1), 

the rod-like particle in photograph 4 has a noticeable greater settling velocity. The 

reason might be attributed to the fact that this rod-like particle, for much of its settling 

path, fell in a vertical plane, thus reducing drag. 

In the large size group (Figure 7.25), rod-like particles show greater settling 

velocity and more vertical settling paths. However, comparison of blade and disc-like 

particles indicates that these particles (photographs 1 and 4) settled much faster and 

have straighter paths than well-formed blades (in photograph 2) and discs (in 

photograph 5). The reason is that maximum projection areas of the blade in photograph 

2 and the disc in photograph 5 are greater than the blade in photograph 1 and the disc in 

Photograph 4. 
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Figure 7 24 Strobe-light photographs of 4-8 mm size natural particles striking a glass surface 
inclined at 30° degrees. The same experiment was replicated twice for each particle. These 
photographs show six examples. The strobe rate was set at 25 flashes per second. 
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Figure 7.25 Strobe-light photographs of 8-16 mm size natural particles striking a glass 
surface inclined at 30° degrees. The same experiment was replicated two times in water. 
These photographs show six examples The strobe rate was set at 25 flashes per second. 
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In terms of the mode of movement and the transport velocities, Table 7.8 shows 

that mean transport velocity for large size particles (regardless of shape) is much greater 

than the mean small size group (13.9 cm s"1 small and 19.1 cm s"1 large size groups). 

However, lower standard deviations in each size group indicate that there is no greater 

variation between the transport velocities of different shapes. In contrast to the previous 

experiments carried out With uniform-shaped particles, in which rod-and sphere-shaped 

particles moved in rolling modes, most of the irregularly-shaped natural test particles 

exhibited a sliding mode of movement rather that rolling. For example, although they 

are expected to roll, in Figure 7.24 (photographs 4, and 6) and Figure 7.25 of 

(photographs 3 and 6), sphere-and rod-like particles moved in a sliding mode. The 

reason might be attributed to their rather lower sphericty and roundness values. For 

example the spheres in Figure 7.24 (Photographs 3 and 5) move in a rolling mode 

because of their greater roundness and sphericity degrees and hence lower flatness, 

while in Figure 7.25 the rod (Photograph 4) and sphere (Photograph 6) tend to move in 

a sliding mode, but occasionally change to rolling mode, probably due to their lower 

sphericity and roundness values (Table 7.7). This highlights the fact that apart from 

particle form (eg. sphere, rod, blade and disc), other shape properties (eg. degree of 

sphericity, roundness, flatness etc.) have also significant influence on the hydraulic 

behaviour of particles. Even small variations in these shape parameters result in 

significant differences in transport mechanisms. 

7.10 INITIAL MOTION AND MOVEMENT OF PARTICLESS OF VARIOUS 
SHAPE ON BED OF VARYING ROUGHNESS. 

A series of experiments were undertaken using four test grain shapes to 

investigate (a) how critical friction angle depends on grain shape and the relative size of 

the pivoting grain relative to the underlying roughness and (b) the mode of movement of 

artificial particles of various shape on two different bed roughnesses. 

Four artificial particles with different shapes but the same size range (b-axis) 

were placed on beds with different forms of roughness elements. Size, shape and weight 

characteristics of each particle are given in Table 7.1. Two bed roughnesses were 

formed by attaching glass rods of different diameters (7 and 14 mm) across the sloping 

glass plate. With the test particle in place, the beds were tilted until the test particle 
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moved from its pocket of origin. For each of the test particles five measurements were 

taken. For blade-and rod-shaped test particles, five measurements with transverse 

orientation and five with parallel orientation were collected. Table 7.9 summarises the 

results of these experiments. 

Table 7.9 Critical pivoting angles (in degrees) measured with artificial test particles in 
four shape classes on two bed roughnesses (T: transverse orientation, P: parallel 
orientation). 

Roughness 1 (7 mm) Roughness 2 (14 mm) 
Measu Sphere Blade Blade Rod Rod Disc Sphere Blade Blade Rod Rod Disc 
rement T P T P T P T P 

No: 
1 29 35 39 28 29 34 37 60 46 44 42 51 
2 28 43 36 30 27 36 34 60 38 45 41 58 
3 29 39 38 29 32 36 38 57 47 45 43 57 
4 27 32 38 34 33 35 39 53 46 44 36 61 
5 27 42 41 32 32 41 38 64 40 43 52 60 

Mean 28 38.2 38.4 30.6 30.6 36.4 37.2 58.8 43.4 44.2 42.8 57.4 
St.Dev. 1.00 4.66 1.82 2.41 2.51 2.70 1.92 4.09 4.10 0.84 5.81 3.91 

The results of the measurements are shown in Figures 7.27, 7.28, 7.29 and in 

Table 7.9. In general, on all bed roughnesses, sphere-and rod-shaped particles showed a 

lower pivoting angle and thus a low threshold value for entrainment. Table 7.9 shows 

that as bed roughness increases the critical friction angle also increases for particle of all 

shapes. The differences in the mean friction angles between the two roughnesses 

(Roughness 1 to Roughness 2) are 9.2 for spheres, 12.8 for blades, 12.9 for rods and 

21.0 for disc-shaped particles (Table 7.9). 

The mode of movement for the artificial particles of various shapes on two 

different bed roughnesses (7 and 14 mm) are shown in Figures 7.30 and 7.31. Settling 

and transport paths for the sphere and rod were very similar on both roughnesses. 

Rebound after initial impact was negligible and the particles moved by rolling. 

However, on the 14 mm roughness surface, movement was a little more irregular with 

fluctuations in velocity as the particles passed over the underlying pockets. The disc and 

blade, on the other hand, showed a very different pattern of movement (Figures 7.30 

and 7.31). They settled along a regular oscillatory path. On the 7 mm roughness surface 

the disc and blade impacted at an angle of approximately 45°, then they collapsed and 

began to slide. The particles accelerated until there was sufficient lift to allow them to 

climb from the bed. The particles then 'stalled', collapsed and began sliding again 

(Figure 7.31). On the 14 mm roughness* these particles impacted on their edges rotated 
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Figure 7.28 Initial motion of sphere, blade, rod and disc particles on 14 mm roughness 
elements inclined at different degrees. The same experiment was replicated five times in 
water. These photographs show four examples. The strobe rate was 25 flashes per second. 



60 

^ 50 

c 

> 30 -

20 

352 

7 mm roughness 

• • 

• • 

T 1 1 1 1 

S R.T R.P B.T B.P D 
Shape 

60 

°_ 50 
© 
o> c a 

14 mm roughness 

40 -

o i 30 

20 

• ; 

• • • 

• 

s R.T R.P B.T B.P 
1 

D 
Shape 

Figure 7.29 Angles of initial motion for particles of various shapes and 
orientation on two diffrent bed roughness. (T: transverse, P: parallel 
orientation) 



353 

f, 

• 

a . • 

8 
J.' 

Figure 7.30 Strobe-light photographs of sphere, blade, rod and disc particles striking a 7 
mm roughness element inclined at 30° degrees in water. The same experiment was 
replicated five times for each particle. These photographs show four examples. The 
strobe rate was at 25 flashes per second. 
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Figure 7.31 Strobe-light photographs of sphere, blade, rod and disc particles striking a 14 
mm roughness element inclined at 30° degrees in water. The same experiment was 
replicated five times for each particle. These photographs show four examples. The strobe 
rate was at 25 flashes per second. 
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and began to slide. However, the first pocket the disc encountered immediately stopped 
it. The leading edge of the grain abutted against the upstream face of the roughness 
element and motion ceased (Figures 7.30 and 7.31). At 30° the slope is well below the 
critical friction angle for this particle and roughness (57°). The blades exhibited a 
similar movement pattern to that on the 7 mm roughness surface. It accelerated in a 
sliding mode, stalled, collapsed and began sliding again. 

Comparison of these results to the findings of friction table experiments 

(Chapter 6) indicate some similarities. Both experiments show that particles transverse 

to the slope tend to entrain at lower slope angles than those of parallel orientation. There 

is an inverse relation between bed roughness and initial motion of particles and this 

relation tend to be stronger for sphere-shaped particles. Both experiments have showed 

that sphere-and rod-shaped particles tend to entrain at lower pivoting angle than discs 

and blades and the most frequent mode of movement is rolling for spheres and rods 

(transverse to the slope), whereas for discs and blades it is sliding 

7.11 DISCUSSION AND CONCLUSION 

This investigation has focussed on the influence of the particle shape, size and 

orientation on the mode of motion and threshold entrainment conditions, based on 

visualisation experiments. 

The nature of settling is a function of particle mass, size, shape and orientation. 

Experiments have shown that there are some fundamental differences in settling 

velocities and the pattern of settling trajectories between particles of various shape 

classes (Figure 7.4 and Figure 7.32). First of all, spheres and rods exhibited more 

uniform settling patterns and modes of movement. Spheres settled vertically in a very 

uniform fashion, whereas rods also showed similar settling with slightly more rotation 

about their axes (Figure 7.4). Blade and disc shapes, however, showed a more complex 

and irregular hydraulic behaviour. For blade- and disc-shaped particles the settling paths 

are much longer and irregular (sinuous) than for the rod and sphere shapes. (Figure 7.4). 

An important control upon settling behaviour is particle settling orientation. A 

particle with its maximum projection area horizontal to the water tends to settle more 

slowly than a particle with its long axis inclined at a 90° to the flow. This differential 

settling velocity reflects differences in resistance to settling. Discs showed similar 

hydraulic settling behaviour to blades. For most of the observations, blade-and disc-
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shaped test particles tended to change their orientation from a vertical position to 
horizontal or from horizontal to vertical, which resulted in different settling rates. As the 
larger surface area of a particle turns to a horizontal position, the contact area of the 
water column with the particle surface increase and this leads to a greater resistance 
which results in lower settling velocity. Whereas a downward movement with a vertical 
orientation was found to minimise resistance, leading to an increase in settling velocity. 
Settling tended to be slower when disc and blade particle were in a horizontal 
orientation, whereas in a vertical downward movement, particle settling paths seemed to 
be relatively straight and settling velocity greater. It has been shown that as a particle 
settles and changes orientation, the rate of settling will also vary. Settling in a vertical 
orientation tended to be faster than settling with the maximum projection area parallel to 
the base. Spheres and rods settle along more uniform paths. 

In terms of the settling paths, it has been demonstrated that, in common with the 

findings of Willmarth et al (1964) and Stringham et al (1969) some disc-and blade-

shaped particles showed an irregular oscillation during settling. Disc and blade-shaped 

particles exhibited a glide-tumble-like settling pattern in which they swung from side to 

side as they settled (Figure 7.4, 7.7 and 7.8). Tumble settling was also observed as flat-

shaped particles continuously tumbled end over end, and moved along a path that was 

straight but oblique to the vertical. 

In terms of mean transport velocity and the mode of transport, experiments 

showed that show that, in general, mean transporting velocities are much lower than the 

settling velocities of spheres, blades, and rods (Tables A4.1, A4.2 and Figure 7.32). 

Despite faster mean settling velocity for spheres and rods than for blade-and disc-

shaped test particles, a similar clear difference in the mean transport velocities between 

various shapes does not exist. In relation to the mode of transport, it was observed that 

the initial impact of a particle with the sloping plate (inclined at 30° from horizontal) 

produces two distinct sets of behaviours. First spheres impact the plate and bounce off, 

whereas, discs and blades hit the slope plate in a more gentle way and then begin to 

slide down the slope. Spheres always rebound and rods sometimes rebound, but blades 

and discs do not. This might be attributed to the fact that spheres and rods offer less 

resistance during settling because of their smaller surface areas therefore impact the 

plate at a greater velocity. Following the initial impact the velocity of movement along 

the sloping plate was almost constant for rods and spheres, whereas discs and blades 

tended to accelerate. 
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The mode of movement down the slope is again a function of particle shape. For 
most of the experiments, spheres exhibited a uniform rolling mode with close contact 
with the bed. Similarly rods rolled down the slope with their long axes transverse to the 
slope. Discs and blades moved mostly in a sliding but more complex movement during 
their transport. 

7.11.1 Comparison of artificial and natural particles with various shapes 

It has been found that general patterns of motion for natural particles are similar 

to those identified earlier with artificial particles. There is little difference between the 

movement of spheres and rods, while blades and discs show greater differences, 

particularly in settling. The motion of natural grains appeared to be more complex and 

less hydrodynamically predictable. Small differences in shape produce fairly large 

differences in hydrodynamic behaviour. Comparison of the settling and transport 

velocities of natural particles indicated that spheres settle faster, followed by rods, 

blades and discs (Figure 7.22 and Table A4.2). Although there are much smaller 

differences, transport velocities follow a similar pattern. It was found that the transport 

velocity of a particular grain is always less than its settling velocity, often by a factor of 

two or three. The implications for sediment transport are interesting. Lower transport 

velocities mean slower movement at the bed. Rolling is faster than sliding. However, 

slower settling velocities do not equate directly with lower transport rate as a particle 

once entrained may remain in the upper flow profile longer and as a consequence step 

length may be greater. 

In terms of settling and transport velocities of irregular-shaped natural particles, 

experiments have shown some significant differences between artificial and natural 

particles with ideal shapes. In general, no simple pattern of settling and transport 

velocities was found between particles of irregular shapes and to some extent size 

(Figures 7.24, 7.25 and 7.26). Particles with angular shapes are observed to show a 

greater variability in settling behaviour and irregular patterns of motion. This is an 

important factor in bedload transport studies because, in gravel bed rivers, natural bed 

material shape deviates considerably from the ideal shape type and hence may not 

conform to models established for sphere, blade, rod and disc settling and transport 

(Figure 7.23). This suggests that, despite some indications about the settling and 

transport mechanisms of particles of various shape and size, the experiments carried out 
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here with artificial and natural particles of ideal shapes do not directly represent actual 

particle motion in a natural channel. However, some general trends appear to be valid. 

The more spherical the shape the faster it settles. Departure from a spherical form leads 

to a decrease in settling velocity. The sphere and rod-like particles tend to settle faster 

and move by rolling, while disc and blade-like particles tend to show slower settling 

rates and, in most instances, move by sliding mode. 

7.11.2 Friction (Pivot) Angle Measurements 

Generally, sphere-and rod-shaped particles were found to have noticeably lower 

friction angles than blade and disc shapes. The orientation of elongate particles (rods 

and blades) has an influence on the friction angle. As bed roughness increases the 

critical friction angle also increases. Differences in friction angles between the two 

roughness types are greatest for blades (transverse orientation) and discs (Table 7.9). 

This is because the intermediate axes (10 mm) of these grains tends to lodge in the 

pockets of the 14 mm roughness elements and the small a axis inhibits pivoting out of 

the pocket. However, a blade moving in parallel orientation (long axis 20 mm) 'bridges' 

the roughness elements and has a friction angle similar to the 7 mm roughness type. In 

both cases movement is by sliding. Thus, it was found that, overall, the initial motion of 

a particle is controlled by its dimensions, relative grain-size and the mechanism of 

movement (pivoting or sliding). Spherical particles have a more irregular movement 

pattern on the coarser bed. On the 14 mm roughness, after initial movement, the grain 

tends to 'pivot and drop' from pocket to pocket. 

7.11.3 Settling and Transport on Rough Beds 

In terms of settling and transport on different bed roughnesses, comparisons of 

the behaviour of the particles of various shapes showed some distinct differences. 

Spheres and rods showed very similar settling and transport paths on both roughnesses 

(7 and 14 mm), although on the 14 mm roughness transport was a little more irregular 

with fluctuations in velocity as the particle passed over the underlying pockets. The 

discs and blades showed a Very different pattern of movement by settling along a 

regular oscillatory path. Subsequent to the initial impact on the 7 and 14 mm 

roughnesses, discs and blades tended to collapse and begin to slide. The particles 

accelerated until there was sufficient lift to allow them to climb from the bed (Figure 

7.30, 7.31). 
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These experiments have clarified some aspects of the hydraulic behaviour of 
particles (in different shape and size characteristics) that cannot be observed directly in 
the field. However, these observations cannot directly be related to bedload transport 
mechanisms in a stream for the following reasons: 

Firstly, in a coarse-gravel channel, flow resistance is more complex and 

generally controlled by large-scale roughness elements and the local characteristics of 

the bed material. Even under a steady flow there is a wide scatter in the relationship 

between hydraulic variables and bedload transport. The roughness elements also have 

very complex arrangements depending on the size and shape characteristics of bed 

material, local bed gradient and flow conditions. Thus particles moving over these beds 

may have relatively complex hydraulic behaviour compared with those on a relatively 

smooth bed with constant gradient. The present experiments was carried out on a 

relatively constant slope (30°) with no roughness. Although two settling and transport 

experiments were also carried out on rough beds, they cannot directly represent natural 

gravel bed roughnesses, since they were made up with uniform sized (7 mm and 14 

mm) roughness elements. When the test particles were released onto inclined plates 

(either smooth or with roughened slopes) they tended to roll or slide continuously 

depending on particle shape, due to the constant and high gradient of slope. Spheres and 

rods generally tended to move in a smooth rolling motion, while transport for the blades 

and discs usually varied with an oscillatory sequence of collapse-slide-lift-stall-

collapse-slide with long axis transverse to the slope. As earlier studies (e.g. Hassan and 

Church, 1992) have demonstrated, the movement of coarse particles in a gravel bed is 

not continuous, but instead consists of a series of step and rest periods due to complex 

bed roughness elements, local flow condition and variation in channel gradient. 

Secondly, in terms of shape and size characteristics of test particles, it was clear 

there were some clear differences between the test particles used for the present 

experiments and natural particles moving in a natural river channel. Most of the test 

particles used (both artificial and natural) for the present experiments were 

geometrically 'ideal' shapes, whereas in a gravel-bed river, bed material (in most cases) 

will not include 'true' spheres, blades, rods and discs (which would plot in the extreme 

corners of the Zingg diagram). In other words, in a natural gravel bed river many of the 

spheres and rods are very blocky with rather lower roundness values, while blades and 

discs are rather thicker with high c/b axis ratios and tending towards equant diameters. 

Thus, as it was shown in the experiments carried out with irregular shaped natural 
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particles, particles with irregular shapes (typical of a natural stream channel) probably 

do not have similar hydraulic behaviour to those demonstrated here with ideal shapes. 

Finally, a major control on the settling behaviour is particle density. The experiments 

carried out with artificial test particles may not truly represent actual settling rates. This 

is because, as shown with natural particles, natural particles tend to settle much faster 

than the artificial particles due to their greater density. 

7.11.4 Implications for bedload transport 

Although the results of these experiments cannot be directly related to the actual 

stream channels, they may shed light into some problems encountered in sediment 

transport mechanisms in gravel bed rivers. 

One of the findings of the present study is that particle shape has an important 

influence on its hydraulic behaviour. Experiments have proved that settling and 

transport velocities are predominantly controlled by particle shape, orientation, size and 

to some extent density. Sphere-and rod-shaped particles tend to settle faster than the 

other shapes (Figure 7.32). It was also found that, apart from shape, the velocity of 

settling increases with size and density. Within the same size-and shape-ranges particles 

with greater density tend to settle much faster than those of with lower density. 

In a gravel-bed river channel the majority of particles are irregular in shape 

rather than geometrically ideal shapes. The present study clearly showed that particles 

with irregular shape have very complicated hydraulic behaviour. In other words they do 

not settle or move in a way in which an ideal shaped particle of natural or artificial form 

behaves. However, although irregular shaped particles in a natural channel do not have 

similar hydraulic behaves to those with ideal shape, their proximity to any ideal shape 

(either spherical or flat) indicates their type of hydraulic behaviour. In other word, a 

sphere-like particle tends to have a hydraulic motion similar to a well-formed sphere. 

Along with the high roundness degree, the more spherical the particles the faster it 

settles or rolls on a surface. Similarly, depending on its proximity to perfect flat-shaped 

particles, blade and disc-like particles tend to settle rather more slowly and move in a 

sliding mode. 

The present study also showed that increased irregularity of particle shape, such 

as blocky sphere and rod-like particles with low roundness, or disc and blade-like 

particles with greater c/b ratio, may diminish the influence of shape on hydraulic 

behaviour. In this case the effect of size becomes the dominant factor on particle 



362 

transport phenomena. It was also found that the influence of particle shape on both 
settling and transport mode increases with increasing size. 

The experiments here demonstrated that the degree of bed roughness and 

channel gradient has a significant influence on the initial motion of a particle and also 

its hydraulic behaviour. For a given size, shape and density, the entrainment of a 

particle sitting on a bed depends on the degree of bed roughness and also local channel 

bed gradient. In the light of the present experiments it is likely that, on a rougher river 

bed,; the initial motion of all particle and also their movement will be retarded by the 

bed roughness elements. It has been shown that as the bed is roughened, particles begin 

to move at relatively greater friction angles. 

Finally, the proportion of time a particle spends in settling or transport mode is 

critical in determining the transport rate. Size and shape are crucial in governing this. In 

the field natural particles will tend (dependent in size) to spend a greater proportion of 

their transport history in "transport mode" rather than in "settling" or indeed "lift" 

modes. Therefore, differences in transport velocities are probably more important than 

settling velocities. Furthermore in natural bedload transport, when multiple particles are 

in motion, the Whole process is completed by inter-particle collisions and local near-bed 

turbulence (SchmeecMe, 1988). However, following the dispersion of particles in the 

channel, the shape and size selectivity (sorting) becomes importance factors. 
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CHAPTER 8: SUMMARY AND CONCLUSIONS 

8.1 INTRODUCTION 

The aim of this study was to investigate the influence of bed material shape on 

bedload transport in coarse-bed rivers. A combined field and laboratory approach was 

adopted. A series of magnetic tracing experiments were undertaken in three 

experimental reaches on River Tees and Trout Beck, North Pennines, U.K. In the 

laboratory pebble friction angle measurements and particle visualisation experiments 

were carried out. The empirical results of this work form the main body of this thesis. 

The following main objectives were investigated: 

1. To determine experimentally, the influence of particle shape on the dynamics of 

bedload motion. 

2. To determine the travel lengths of particles in different shape and size classes after 

particular flow periods. 

3. To examine the influence of bed topography on travel lengths and transport of 

different shape and size classes. 

4. To determine variability in friction angle and mechanistic behaviour of particles of 

different size, shape, orientation and roundness on beds of varying gravel roughness. 

This chapter summarises the main findings of this thesis and makes links between the 

different methods of investigation. A synthesis of the main findings is presented, 

followed by discussion of the limitations of this work. A final section outlines 

suggestions for further study. 
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8.2 INFLUENCE OF PARTICLE SHAPE ON THE DYNAMICS OF BEDLOAD 
MOTION. 

Experiments have clearly shown that the hydrodynamic behaviour of a particle 

is strongly related to its shape. Visualisation experiments demonstrate that shape is an 

important particle characteristic which has a fundamental influence on settling rates and 

the mode of near-bed transport. Settling patterns and modes of movement of sphere-

and rod-shaped particles are relatively simple. Sphere-shaped particles have a steady fall 

during settling, a large rebound on impact with the bed, followed by a relatively smooth 

rolling motion. Rods also exhibited a steady fall with some rotation. However, rebound 

is minimal and near-bed movement is dominated by a rolling mode (with long axis 

transverse to the slope). Discs and blades, on the other hand, show much greater 

variability often showing 'glide and tumble motion'. Following impact on the bed both 

types of particle show negligible rebound (section 7.5). Mode of transport for blades is 

variable but follows an oscillatory sequence of 'eollapse-slide-lift-stall-collapse-slide' 

with the long axis transverse to the slope. Discs showed either a regular oscillatory 

settling path or a glide and tumble motion. Although occasionally, discs move by edge 

rolling, the mode of transport is generally similar to the blade (section 7.5, Figure 7.4). 

Apart from shape, particle orientation produced variation in settling behaviour. 

Experiments demonstrate that settling tends to be slower when disc and blade particles 

were in a horizontal orientation, whereas in a vertical position, particle settling paths 

seemed to be relatively straight and settling velocity was greater (Figures 7.7, 7.8, 7.10 

and 7.12). This differential settling velocity reflects different resistance to settling. 

Blade- and disc-shaped test particles tend to change their orientation from a vertical 

position to horizontal or from horizontal to vertical, which results in different settling 

rates. It has been shown that as a particle settles and changes orientation, the rate of 

settling also varies. 

In general, settling and transport velocities of natural particles show a similar 

pattern of settling to those of artificial particles (spheres settle fastest, followed by rods, 

blades and discs) (Figures 7.18-7.22 and Table A4.2) but particle density was found to 

be an important factor influencing settling rate. Natural particles in all shapes always 

showed greater settling velocities than the artificial particles (section 7.8). 
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Compared to the very distinct settling velocities, differences in near-bed 

transport velocities of the four shapes were found to be much smaller although 

velocities variations follow a similar pattern. The transport velocity of a particular grain 

is always less than its settling velocity, often by a factor of two or three (section 7.9). 

On a smooth bed, particles moving in rolling mode (e.g sphere and rod) tended to have 

a faster transport velocity than those sliding (Figures 7.30 and 7.31). However, slower 

settling velocities do not equate directly with lower transport rate as a particle once 

entrained may remain in the upper flow profile longer and as a consequence the step 

length may be greater. On a rougher bed, on the other hand, spherical particles tend to 

move around bed roughness elements (section 7.9). 

Although, similar patterns of settling and transport motion were determined 

between the geometrically-perfect artificial shapes and natural particles, experiments 

carried out with irregular-shaped natural particles showed more complex and less 

hydrodynamically predictable settling and transport motions (section 7.8). In other 

words, no simple pattern of settling and transport velocities were found between 

particles of irregular shapes and to some extent size (Figures 7.24, 7.25 and 7.26). 

Particles with angular shapes showed a greater variability in settling behaviour and 

irregular patterns of motion. This is an important factor in bedload transport studies 

because, as it is mentioned above, in gravel-bed rivers, natural bed material shape 

deviates considerably from ideal shape types hence may not conform to simple models 

established for sphere, blade, rod and disc (Figure 7.2). This finding suggests that, 

despite some indications about the settling and transport mechanisms of particles of 

various shape and size, the experiments carried out here with artificial and natural 

particles of ideal shapes do not directly represent actual particle motion in a natural 

channel (e.g. particle collisions have not been considered as part of the transport 

mechanics). However, some general trends appear to be valid. The more spherical the 

shape the faster it settles. Departure from a spherical form leads to a decrease in settling 

velocity. The sphere and rod-like particles tend to settle faster and move by rolling, 

while disc and blade-like particles tend to show slower settling rates and, in most 

instances, move by sliding mode. 
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8.3 MAGNETIC TRACING FIELD EXPERIMENTS - TRAVEL LENGTHS 

The field experiments provided the opportunity to test the influence of particle 

shape and size on transport distance on two coarse-bed rivers. Results of the magnetic 

tracing experiments showed evidence of both size and shape selectivity. Preferential 

movement occurred in the finer (32-64 mm) particle size classes with tracers located 

along the channel thalweg moving the greatest distance (Figures, 5.19, 5.21). The 

majority of the large particles (>128 mm) moved only shorter distances. Generally, all 

shapes showed a decrease in distance and frequency of transport as size increased 

(Figures, 5.17 and 5.28a, b, c). Results indicate that although there were some 

differences in transport distances between the three experimental reaches due to the 

local bed topography and variations in flow, similar patterns of size and transport 

distance occurred for all three reaches (Figure 5.29 and Tables A2.1-A2.5). 

Differentiating between weight, size and shape revealed some consistent patterns in 

transport (Figures 5.30). It was also found that differences between the mean transport 

distances of tracers tend to become smaller, as size decreases. This indicates that 

influence of shape on particle transport distance tend to less importance in the finer size 

(32-64 mm) particles, while in the coarser particle classes (64-128 mm and >128 mm) 

clast transport distances were more strongly shape-selective. These finding are similar 

to those of Schmidt and Gintz (1995). 

In terms of shape, during virtually all survey periods, sphere-shaped particles 

were transported the greatest distance and in greatest numbers. Rods and discs also 

moved preferentially but blades moved only short transport distances (Figures 5.28a, b, 

c and Table 5.6). These patterns were consistent over the monitoring period. Similar 

experiments by Schmidt and Ergenzinger (1992), Carling et al (1992), Schmidt and 

Gintz (1995) and Stott and Sawyer (1998) also concur with present results, although 

particle shapes do not correspond exactly between experiments. 

The relationship between the scaled tracer size and scaled transport distance 

indicates that, despite a large scatter in the results at the three experimental sites, sphere 

and rod-shaped tracers had longer transport distances compared to discs and blades. In 

terms of size, only slight evidence of size-selective displacements were observed. Small 

size tracers moved slightly longer transport distances than the medium sized groups 

(Figure 5.14a, b and e). 
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Although the present magnetic tracing experiments have yielded valuable 
information on shape and size selectivity, the shapes of the tracers were deliberately 
selected. However, in coarse-bed rivers, natural bed material shape deviate considerably 
from ideal shapes and does not comply exactly to sphere, blade, rod and disc-shaped 
particles. In many natural settings variability in particle form is less pronounced and 
patterns of downstream changes in particle shapes are not apparent (Huddart, 1994). 

Analysis of trapped-bedload and sampled bed material gave some important 

insights into the transport of natural bedload at Trout Beck experimental reach. In 

general, compared to the results of magnetic tracers, much stronger size selectivity was 

apparent and, to some extent, shape selective transport. Small particles in the trapped 

bedload were over-represented compared to bed material (Table 5.16). Disc- and, to 

some extent, sphere-like particles were found to be more common in both sampled bed 

material and also in the trapped bedload. Blade- and rod-like particles were found in the 

smallest proportions (Figure 5.25 and Table 5.16). It is also clear that as elast size 

increases the percentage of disc-like particles also increase. The reason for the greater 

frequency of discs in the larger size clasts was attributed to the influence of bedrock 

structure (sandstone) on initial clast shape. Compared to the sampled bed material, 

sphere- and disc-like particles were over-represented, while blade- and rod-like particles 

were under-represented in the trapped-bedload (Table 5.16). Statistical comparisons 

also showed that sphere and disc-like particles in the trapped bedload are significantly 

more spherical, rounder and smaller in size when compared to sampled bed material 

(Table 5.14). This suggested that, due to their greater sphericity and roundness, as well 

as their smaller size/weight, sphere- and disc-like particles in the trapped-bedload were 

potentially more mobile. Indeed, discs found in the trapped bedload tended to be more 

spherical. Although blade- and rod-like particles in the trapped bedload are smaller in 

size (thus lighter in weight) than those in the sampled bed material, they are still under-

represented when compared to this material (Table 5.14). This suggests, apart from size, 

other characteristics of particles such as sphericity and roundness should also be taken 

into account. In other words, the lower transport capability of blade- and rod-like 

particles in the trapped bedload is attributed to their lower sphericity and roundness. 

This highlights the importance of sphericity and to some extent roundness on particle 

transport. Indeed comparisons also showed that blade- and rod-like particles have 

relatively lower sphericity and roundness values than sphere and disc-like particles both 

in the sampled bed material and also in the trapped bedload (Table 5.19). It was also 
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found that there is no statistical difference in the sphericty and roundness of blade- and 
rod-like particles between the trapped-bedload and sampled bed material (Table 5.14). 

Results of correlation and multiple regression analyses have been partially 

successful in explaining the influence of shape on particle transport (Tables 5.9, 5.10). 

Multiple regression, incorporation shape and size parameters, explained a maximum of 

27.5%, 33.4% and 49.9% of the variance in transport distance at Upper Tees, Lower 

Tees and Trout Beck sites respectively. Results of the multiple regression analysis 

showed that at each experimental site, roundness, weight, particle c-axis and sphericity 

were most highly correlated with transport distance. A-axis is also well correlated with 

distance but b-axis showed poor correlation with distance at the three sites (Table 5.9). 

Results of the correlation versus distance analysis showed that particle a-axis and 

sphericity also were the most significant predictors affecting transport distances, while 

the least useful predictor was particle e-axis (Table 5.9). 

In general, although sphere- and disc-like particles in the natural bed material 

are transported preferentially, the influence of size selectivity in the trapped material 

was found to be stronger than shape when compared to the magnetic tracing results. The 

reason for this difference is that the natural particles in the experimental reach deviate 

from ideal shapes and show much less shape variability than the tracer material. Both in 

Sneed and Folk plots and Zingg graphs distinct differences between shape distributions 

of natural bed material and the magnetic tracers are seen. On a Sneed and Folk graph, 

the majority of the natural bed material clusters in the centre of ternary diagram (Figures 

5.26 and 5.27). Conversely these are the exact shapes which are underestimated in the 

tracers. 

Because tracer roundness differed from natural bed material, tilting table 

experiments, carried out with particles of various sizes on different bed roughnesses 

were used to investigate this influence on particle initial motion. Experiments showed a 

slightly lower friction angle with increasing roundness (Table 6.23, Figures 6.22 and 

6.23). However, the influence of particle roundness tends to decrease with increasing 

bed roughness relative to test particles (Table 6.23). 
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8.4 INFLUENCE OF BED TOPOGRAPHY ON TRAVEL LENGTHS AND 
TRANSPORT OF DD7FERENT SHAPE AND SIZE CLASSES. 

Spatial patterns of tracer distribution at the three experimental sites showed a 

strong relation between the channel geometry and paths of tracer movement. At Trout 

Beck and the Lower Tees sites the majority of tracers movement was concentrated 

along the line of the main thalweg where the channel is deeper and velocity highest 

(Figur 5.19, 20 and 21). Although a general pattern of movement could be observed, the 

distribution also reflected several random variations. Thus, apart from shape, size and 

density of particle, the exact location in the channel is also thought to be an important 

factor in determining transport. In other words, the location of particles (e.g. how close 

to thalweg, imbricated or buried) before or after particular flow events has an important 

influence on whether or not particles move and over what distance. This is highlighted 

by the fact that, apart from longitudinal distribution, the importance of lateral sorting of 

tracers should also be considered. Hoey (1992) has pointed out the necessity of spatial 

sorting in studying of the movement of single grains, and stated that in addition to 

longitudinal and vertical sorting, planimetric sorting should also to be considered. He 

suggests that planimetric sorting (cross-channel sorting) may result in some particles 

being transferred into areas of the bed that are relatively more or less active than the 

mean during the course of an event. 

Scaled tracer displacements, which were determined by dividing the distance 

moved by each individual particle in each event by the mean distance of each event, 

showed that event distributions are highly skewed with some secondary peaks. It has 

been shown previously that both Einstein-Hubbell-Syre and Gamma model fit the 

distributions reasonably well for small displacements but for larger displacements the 

models tend to become unstable due to the possible effects of morphological elements 

(spatial sorting) in the channel (Figures 5.22 and 5.23). This is shown at all three 

experimental sites (See also section 5.7). 

The relation between the scaled mean particle size and scaled distance for the 

means of the data demonstrates shape selectivity at each of the sites. Particle size was 

scaled by dividing mean size of whole the tracers by the median (b axis) diameter of the 

surface bed material (D/D50). Mean travel distance was scaled by dividing mean 

distance of each shape class by the mean distance of all tracers which is equal to median 

diameter of the surface bed material (LDSO surface)- Spheres always plot on top (greatest 
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transport distances) followed by rods and discs and finally blades. Sizes of transported 
material differ at the three sites (Figure 8.1). At the Lower Tees site D and D 5 0 are very 
similar, at Upper Tees D> D 5 0 , while at the Trout Beck D<Dso- This suggests an 
interesting hypothesis: where tracer size is greater than the bed material size, shape 
effects are less pronounced. Where tracer size is less than bed material size shape is 
more important. This suggests that differentiation between shape would be greatest at 
the Trout Beck site and least at the Upper Tees. These results somewhat contradict the 
findings from the friction angle measurements in which the influence of particle shape 
on friction angle decreased with increase of test particle size relative to the bed 
roughness elements (d/D ratio). In other words, on less rough surfaces, differences 
between the friction angles of various shapes tended to be much clearer than those 
measured on rather rough surfaces (See Chapter six). Results from tracing experiments 
also showed that differences between the transport distances of various shapes tends to 
increase with increasing tracer sizes. This also suggests that shape selectivity becomes 
stronger with increasing particle size. This apparent contradiction may be resolved 
because the magnitude of the differences between d/D or D/D50 differ for the different 
experimental datasets. 

Particles of various size and shape showed different movements on various bed 

roughnesses. Both in the tilting table experiments and also the visualisation experiments 

it was demonstrated that, on a smooth bed, following the initial movements, test 

particles tended to roll or slide (depending on their shape) continuously, following a 

relatively straight path. On the smooth bed sphere- and rod-shaped particles move faster 

(rolling) than blade-and disc shaped (sliding) particles. On rougher beds, the motion of 

spheres is retarded by the bed roughness elements. Spheres tend to follow irregular 

paths, meandering around obstacles, which leads to lengthening of transport paths. 

Discs-and blade-shaped particles moved by a sliding over the roughness elements. 

These findings are similar to those of Carling et al, (1992). Experiments, on the two 

roughness types (Figures 7.27 and 7.28) show that the spherical particle have more 

irregular movement patterns on coarser beds. On the 14 mm roughness, after initial 

movement, the grain tends to 'pivot and drop' from pocket to pocket (See section 7.10). 
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8.5 VARIABILITY IN FRICTION ANGLES AND THE MECHANISTIC 
BEHAVIOUR OF PARTICLES OF DIFFERENT SIZE, SHAPE, 
ORIENTATION AND ROUNDNESS ON BEDS OF VARYING GRAVEL 
ROUGHNESS. 

Based on the measured friction angles, it was clearly demonstrated that particle 

mobility depends on interaction between the test grain size, shape (form and roundness) 

and character of bed roughness elements (size, shape, sorting) over which it moves. 

Regardless of shape, results showed that friction angle depends on the ratio of test grain 

size (d) to the size of those over which it is pivoting (D). The smaller the ratio of d/D, 

the greater the friction angles at which test particles moved. Friction angles decreased 

with increasing particle size (hence greater d/D ratio) relative to the median bed particle 

size (Table 6.3 and Figures 6.3 and 6.24). The dependence of friction angle on the ratio 

of test particle size to those it rests is important in an assessment of selective 

entrainment of grains from a bed of mixed sizes, which is typical of coarse bed rivers. 

These findings, in general, show reasonable agreement with previous experiments (e.g. 

Miller and Byrne, 1966 Komar and Li, 1986; Kirchner et al, 1990). 

In terms of shape, both the tilting table experiments and visualisation 

experiments show that shape, orientation and to some extent, particle roundness has a 

significant influence on particle friction angles. An inverse relation was found between 

particle sphericity and friction angle. For almost all the measurements, statistically 

significant differences were found between friction angle of spheres, transverse rods and 

all other flat-shaped particles, namely, blades with parallel and transverse orientations, 

discs, and rods with parallel orientations (Chapter six). Departure from a spherical form 

led to an increase in grain stability (Figure 25 and Table 6.26). Across the full range of 

test particle sizes, spheres and transverse rod-shaped particles tended to move at 

relatively lower friction angles due to their easy rolling capability. Sliding particles such 

as blades, rods (with parallel orientation) and discs, in most instances, tended to show 

higher friction angles. 

These results clearly indicate that reliability of a particle is an important factor 

on its hydrodynamic behaviour. Spherical particles (with a higher degree of roundness) 

always have greater rolling capability, which is primarily related to the lc/b ratio', (the 

ratio of the smallest to the intermediate axial diameters). The greater the c/b ratio, the 

smaller the value of the friction angle and the more easily the particle can be pivoted out 

of position during entrainment. Flatter particles, on the other hand, moved by sliding 
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rather than pivoting and rolling due to a lower c/b ratio. Such variations in particle 
behaviour have been shown to relate to critical shear stress, relative mobility and 
selective entertainment in a coarse bed rivers (Komar and Li , 1986; Carling et al., 
1992). 

As with shape, particle orientation showed a significant influence on the 

observed friction angle. Rods (with a high c/b ratio and well-rounded) placed in a 

parallel position (long axis parallel to slope) always moved at relatively higher friction 

angles than that of placed in transverse orientation (long axis transverse to slope) 

(Figure 6.25 and Table 6.26). A similar relation was not observed between parallel and 

transverse blades because of its lower c/b ratio. However, the influence of particle 

orientation on friction angle tends to decrease as bed roughness increases. Although a 

slight difference was still observed between the parallel and transverse blades 

orientation, in which parallel blades on most bed roughnesses tend to have lower 

friction angles than those of transverse blades (Figure 6.25 and Table 6.26), it was not 

consistent in all measurements. 

Results also indicate that on less rough beds, sphere and transverse-rods moved 

at relatively lower friction angles compared to blade-and disc-shaped particles, the 

differences between spheres, transverse-rods and blades and discs tend to decrease on 

rougher beds (Figure 6.25 and Table 6.26). A similar relation is not true for flat 

particles. This is because, sphere and transverse rods tend to sit more easily in the 

pockets between the adjacent particles as bed roughness increases. Flat-shaped particles 

bridge the grains and do not sit in a stable position (Komar and Li , 1986; Carling et al., 

1992). 

For sphere and rod-shaped particles, the degree of particle roundness has been 

found to be important factor influencing initial motion of a particle. On smoother beds, 

highly rounded particles tended to be more mobile than those of more angular particles, 

while the influence of particle roundness on initial movement tended to be less 

important with increasing bed roughness. Surprisingly, on the natural bed, which is 

relatively rough, more rounded test particles still tended to move at lower friction 

angles. Results, measured on the natural bed, do not conform with the findings above. 

The effect of particle roundness on initial motion does not diminish with increasing bed 

roughness. The most likely reason for this difference is attributed to the fact that 

artificial and naturally formed beds have different structures (e.g. grain packing 
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geometry, size, shape and sorting etc) (see Figures 6.1 and 6.14 and section 6.8) (Komar 

& Li, 1986; Kirchner et al, 1990 and Dietrich & Kirchner, 1992). 

8.6 AN OVERALL SUMMARY 

Tables 8.1, 8.2 and 8.3 compile the results from the separate field and laboratory 

experiments. An attempt is made to standardise the results by reporting 'relative' 

values. In each case results are reported relative to those of the sphere. For example, in 

terms of the field tracer experiments, relative values of mean and maximum transport 

distance of the blade, rod and disc-shaped tracers are compared to spheres. Smaller 

values indicate lower mean and maximum transport distances relative to the sphere, 

while greater values indicate longer transport distances. Blade and disc-shaped tracers 

show relatively low values, while rods have very similar values to spheres with some 

values are even greater than spheres. Compared to Upper Tees, relative differences in 

the mean transport distances between the four shapes (especially between blade and the 

other shapes) are greater at the Trout Beck and Lower Tees (Table 8.1). This indicates 

that selective transportation between four shapes tends to be greater with increasing 

mean transport distance. In general, relative differences between the four shapes are 

greater at Trout Beck site, while it tends to be smaller at Lower Tees and Upper Tees 

respectively (Table 8.1). The possible reasons are probably lesser transport distances at 

the Upper Tees and influence of bed morphological elements (wide and shallow 

channel, pool, bars etc.) at the Lower Tees site. In terms of maximum transport 

distances, rod-shaped particles show the greatest values, while blades are least at the 

Upper and the lower Tees site. Discs also show larger values than spheres and blades at 

Lower Tees (Table 8.1). 

Comparison of transported bedload and sampled bed material using the 

enrichment factor, indicates that sphere-shaped particles are over-represented in the 

trapped bedload, while discs, rods and blades are consequently under-represented in 

decreasing proportions (Table 8.1). 
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Table 8.1 Overall summary of the results from the field experiments 

Magnetic tracing 
experiments Sphere Blade Rod Disc 

Upper Tees 20.7 m 0.43 0.79 0.68 
Mean transport 

distances Lower Tees 62.7 m 0.35 0.66 0.68 

Trout Beck 56.6 m 0.14 0.55 0.37 

Upper Tees 127.1m 0.16 1.15 0.91 
Maximum transport 

distances Lower Tees 239.4m 0.43 1.51 1.10 

Trout Beck 243m 0.12 0.72 0.66 
Transported bedload 

enrichment factor 
compared to 

sampled bedload 
Trout Beck 1.31 0.64 0.79 0.93 

In terms of tilting table experiments, differences between the measured friction 

angles of test particles of various shapes are calculated relative to the spheres. The 

smaller values indicate lower friction angles at which particles move (Table 8.2). Most 

of the measurements indicate that, relative to sphere-shaped test particles, disc, blades 

(both transverse and parallel orientation) and parallel rods show noticeable greater 

values, while values for transverse-rods tend to be lower. However, Table 8.2 also show 

that differences between relative values of various shapes tend to decrease with 

increasing bed roughness. 

Results of the visualisation experiments carried out with all test particles (both 

artificial and natural) and in each size group showed that relative to sphere, blade and 

disc-shaped particles have lower values (hence lower settling velocity), while values for 

rods for most of the measurements are similar to sphere or slightly greater (Table 8.3). 

Despite clear differences in settling values of various shapes and orientations, relative 

values between the transport velocities are highly similar. 

Results (from both field and laboratory experiments) demonstrated that spherical 

or rod-shaped particles are more mobile and transported longer transport distances than 

flat shaped particles, namely, blades and to some extent discs. Table 8.4 summarises 

mobility of particles of different shapes based on field and laboratory experiments and 
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Table 8.2 Overall summary of the results from the tilting table experiments. 

Tilting table experiments 

Sphere 
(degrees °) 

Blade 
T P 

Rod 
T P 

Disc 

Roundness 1 39 1.31 1.49 0.84 1.41 1.41 

Artificial test particles 
Roundness 2 45 1.11 1.29 0.84 1.18 1.27 

In small size Roundness 3 51 1.16 1.16 0.86 1,10 1.18 
Roundness 4 69 1.10 1.10 0.84 0.91 1.17 
Natural bed 66 0.96 0.98 0.81 0.84 1.03 

Artificial test particles 
In medium size 

Roundness 1 
Roundness 2 
Roundness 3 
Roundness 4 
Natural bed 

27 
30 
35 
46 
51 

1.59 1.63 
1.67 1.93 
1.37 1.43 
1.26 1.26 
1.12 1.10 

0.92 1.56 
0.90 1.53 
0.94 1.31 
0.89 1.24 
0.96 1.14 

1.93 
1.83 
1.49 
1.37 
1.16 

Artificial test particles 
in large size 

Roundness 1 
Roundness 2 
Roundness 3 
Roundness 4 
Natural bed 

22 
20 
27 
34 
35 

1.69 1.59 
2.05 2.10 
1.44 1.37 
1.41 1.38 
1.66 1.69 

0.86 1.86 
1.00 1.95 
1.11 1.48 
0.97 1.41 
1.11 1.54 

2.00 
2.05 
1.70 
1.52 
1.71 

Test particles in 
equal weight but 
different shape 

classes 

Roundness 1 
Roundness 2 
Roundness 3 
Roundness 4 
Natural bed 

19 
22 
28 
33 
44 

2.11 1.84 
1.73 1.91 
1.50 1.43 
1.61 1.45 
1.25 1.30 

1.10 2.16 
1.14 1.95 
1.00 1.71 
1.10 1.64 
1.10 1.34 

2.10 
1.82 
1.54 
1.55 
1.41 

Natural 
test particles 

Roundness 1 
Roundness 2 
Roundness 3 
Roundness 4 
Natural bed 

20 
27 
28 
34 
42 

2.00 1.75 
1.70 1.48 
1.89 1.54 
1.62 1.47 
1.33 1.17 

1.20 
1.48 
1.25 
1.10 
1.10 

1.95 
1.44 
1.64 
1.59 
1.24 

1.95 
1.62 
1.69 
1.71 
1.53 

(T: transverse, P: parallel orientations. Values in italics indicate a parallel orientation) 
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Table 8.3 Overall summary of the results from the visualisation experiments. Values 
shown in the 'sphere' column are velocities in cm s"1. All other row values are relative to 
this. 

Test VISUALISATION EXPERIMENTS 
particles Sphere Blade Rod Disc 

Artificial test particles Settling 
transport 

37.0 
13.4 

0.45 
0.87 

0.79 
0.87 

0.39 
0.84 

Natural test particles Settling 
transport 

61.9 
27.5 

0.51 
0.73 

0.78 
0.76 

0.39 
0.59 

Small Settling 
transport 

28.6 
12.0 

0.42 
0.42 

0.79 
1.22 

0.43 
0.72 

Test particles in 
three size group Medium Settling 

transport 
31.0 
14.9 

0.42 
0.87 

1.10 
0.72 

0.38 
0.67 

Large Settling 
transport 

34.3 
16.1 

0.42 
0.86 

1.00 
0.76 

0.38 
0.73 

Test particles in 
three weight 

groups 

Small 

Medium 

Settling 
transport 
Settling 
transport 

50.0 
18.2 
58.4 
17.7 

0.28 
0.74 
0.29 
0.49 

0.73 
0.67 
0.71 
1.03 

0.36 
0.67 
0.28 
0.73 

Large Settling 
transport 

50.0 
17.5 

0.45 
1.15 

0.79 
0.85 

0.30 
0.72 

Sphere-like Blade-like Rod-like Disc-like 

Irregular-shaped 
Small Settling 

transport 
34.3 
13.9 

0.81 
1.05 

1.17 
0.96 

0.83 
0.91 

natural particles Large Settling 
transport 

57.0 
20.0 

0.80 
0.98 

1.00 
1.04 

0.50 
0.89 
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clearly indicates that for almost each experiment, sphere and rod-shaped particles are 

less stable than discs and blades. Overall, results from both field and laboratory 

experiments showed that shape is one of the fundamental properties controlling 

hydrodynamic behaviour of sediment particles. Thus, particle shape can play a 

significant role in bedload transport processes by controlling the nature of near-bed 

motion. 

Table 8.4 Mobility of particles of different shapes determined from field and laboratory 
experiments. Note: The sizes of circles represent the rank order of particle mobility not 
the magnitude or significance of the differences. The greater the size the more easily a 
particle is moved, transported or settles. 

Experiments 
Sphere Rod Disc Blade 

Magnetic 
Tracing 

Mean transport 
distance O o O o 

experiment Maximum transport 
distance O o O o 

Transported 
bedload 

Enrichment factor 
compared to sampled 

bedload o o O o 

Tilting table 
experiments 

Friction angle 
measurements o O 0 o 

Visualisation 

Settling 
velocity o o o o 

experiments Transport 
velocity o o o o 

o : Most easily moved O O o: Least easily moved 
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8.7 LIMITATIONS OF THE STUDY 

1. An important limitation of the present experimental design relates to the division of 

the tracers into arbitrary shape classes. Natural bed material generally shows a 

continuous range of size and shapes. However, by categorising bed particles into sphere, 

blade, rod and disc shapes, a lot of information on the precise size and shape of the 

tracer distribution is lost. Restricting tracers to discrete shape classes has meant that 

some of the shapes in the natural bed material have not been represented. Nevertheless 

categorisation of shape is inevitable given the problems of assigning a single class to 

describe particle form. 

2. In the present study, the separation between the small and medium size groups was 

not as great as between the medium and the larger size group. For example, the means 

of the small and medium size groups of tracers at the Lower Tees site are 52mm, 87mm 

respectively, while it is 147mm for the large size group. A similar division is also true 

for the other sites. This is one of the reasons that differences between the small and 

medium size groups are smaller in both number of tracers transported and also mean 

transport distance at the experimental sites. This is important because as Schmidt and 

Gintz (1995) also found, the influence of weight on lengths of magnetic tracers becomes 

statistically significant only when classes of major differences in weight are compared. 

3. Despite their similar lithology and density, the roundness values of tracers used for 

the field experiments were significantly greater than the natural bed material at the three 

experimental sites (Chapter 4, Table 5.19, 5.20). As some of the earlier investigators 

demonstrated (e.g. L i and Komar, 1986; Komar and L i , 1986; Carling et ai, 1992) 

particles with greater roundness are more mobile than those with lower roundness 

values (see Chapter 6). 

4. Variations in sediment transport dynamics could not easily be related to discharge 

due to lack of detailed local hydraulic information and limited direct observations. 

Although, the Schoklitsch (1962) equation was used to predict critical discharges for 

initiation of bedload transport, the results were far from a satisfactory. The large errors 

in this method probably reflect to the effects of wide sediment size range, bed 

armouring, variations in local channel slope, etc. These factors can result in bedload 

discharge varying over an order of magnitude or more for a given set of estimates of 

flow conditions (Klingeman and Bmmett, 1982; O'Leary, and Beschta, 1981; Swanson, 

etal, 1982; Hoey, 1989). 
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5. As the experiment progressed, identification numbers of some tracers were partly or 
completely washed away. This led to some difficulty in identifying individual tracers 
despite having information about the three axes of each. 

6. In each survey period the position of tracers were measured using tape measures with 

reference to a series of monumented section set out along the banks adjacent to the 

experimental sites (Chapter 3). During windy conditions the accuracy of the 

measurements was reduced due to difficulties with the tape. Typical accuracies were +/-

3 cm over 5 m, +/- 5 to 8 cm over 10 m and +/-10-15 cm over 15 m. 

7. Despite some important limitations, the visualisation experiments clearly 

demonstrated significant differences in the hydrodynamic behaviour of particles due to 

variance in shape, size and density. However, these experiments do not represent the 

exact mechanisms by which particles settle or move in a gravel-bed channel. This is 

because, all the experiments were carried out in a water-filled rectangular tank in which 

the water was static. The angle of the sloping glass plate was kept constant (30°) for 

most of the experiments and sloping surface was smooth. In a two-dimensional 

experiment particle behaviour, is visualised in X, Y space. The third dimension Z was 

largely ignored. This introduces some variability in the results. Although two different 

bed surfaces were formed using two types of glass rod oriented across the sloping glass, 

these roughness types do not exactly represent an actual river bed. This is because in 

coarse-bed mountain rivers flow is relatively turbulent and flow velocity varies spatially 

due to local variation of bed roughness elements, channel slope, and cross-section 

geometry. Therefore in a coarse-bed river, settling and transport mechanisms of a 

particle of any shape, are assumed to be much more complex than those observed in 

visualisation experiments. 

8. In terms of the friction table experiments, the range of d/D values was too restricted. 

The majority of the measurements were carried out with coarse size test particles. In a 

natural stream bed, however, there is a large range in the particle size distribution which 

is a typical characteristic of many gravel-bed rivers. The lower range of d/D may lead to 

an overestimate the importance of hiding factors which is thought to have significant 

influence on equal mobility of transport in gravel bed rivers (Parker and Klingeman, 

1982; Parker et al, 1982). 

9. Another important limitation for the present study is that the majority of the friction 

angle measurements were carried out on artificial bed roughness sheets which were 

formed with uniform, well-sorted particle sizes. However the surfaces of natural river 



381 

bed are very different from the artificially-formed bed roughnesses in terms of then-

packing and the degree of infilling of grain pockets by fines. Packing of grains and also 

the roughnesses of a stream bed tend to vary noticeably due to spatial differences in 

grain-size distribution (Hoey, 1989, 1992; Kirchner, 1990; 1992; Buffington et al., 

1992; Carling et al., 1992). These differences between the artificial and naturally 

formed beds are thought to affect initial motion, relative mobility and selective 

entraiment of different particles. 

8.8 FURTHER WORK AND RESEARCH 

Although the present investigation was specific to the Upper Tees and Trout 

Beck catchments bedload transport system, the implications are more widely applicable 

to coarse-bed rivers. From this project several further research objectives can be 

identified: 

1. The present study demonstrated that apart from particle size, shape also has important 

influence on bedload transport in gravel-bed rivers. However, the magnetic tracers used 

for the present study were deliberately selected. Whereas, as mentioned in earlier 

sections, in coarsened rivers natural bed material deviates considerably from ideal 

shapes and does not comply exactly to sphere, blade, rod and disc-shaped particles. The 

majority of earlier studies (e.g. Carling et al., 1992; Schmidt and Ergenzinger, 1992; 

Schmidt and Gintz, 1995) used Well-shaped artificial or natural tracers. Thus a similar 

field investigation based on bed material with a wide natural range of shape and size 

may give important information on how clast shape and size of transported bedload 

varies during a range of storm events. 

2. Gravel-bed rivers generally have rough beds and the bed morphology varies 

considerably. Although the influence of bed roughness on the initial motion of particles 

of various shape and size has been investigated using friction angle measurements, 

further is required to assess influence of bed morphology (e.g. step-pool systems, bars) 

on initial motion, travel lengths and transport of different shape and size classes (Hassan 

and Church, 1990; Hassan and Reid, 1990; Ergenzinger and Schmidt, 1990; Schmidt 

and Ergenzinger, 1992). 

3. At the outset of the present study it was decided that it would not be possible in the 

initial experiments to visit the sites after every flood, therefore bedload movement 
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events could not be related to individual floods, instead the main interest was on the 
relative movement between different shape classes. In a future experiment, it would be 
important to relate mean transport of clasts of various shape and size to individual 
floods. This would enable virtual transport rates to be calculated (Hassan and Church, 
1992; Hassans all, 1992). 

4. Although both the tilting table and visualisation experiments have highlighted several 

important aspects of shape and size on initial motion, a series of flume experiments is 

required to determine how critical shear stress interacts with natural particles Of 

different shapes and sizes over different bed roughnesses. Using the results of flume 

experiments a range of threshold values for various combination of shape, orientation 

and bed roughness could be determined. In addition, flume experiments also give 

further visual information on how the hydraulic behaviour of a particles Varies during 

transport (Carting al., 1992). 

5. It has been pointed out that, that compared to spherical forms, flat-shaped particles 

are easily lifted and transported in temporary suspension. The lifting mechanisms, 

probability of lifting over various bed roughness types and also in different flow 

conditions need to be investigated in further detail in a flume study (Carting et al., 

1992). 

6. Using a pit trap across a stream channel, shape and size characteristics of natural 

trapped bedload may be determined and the percentages of particles in each size and 

shape groups may be compared to river discharges and also natural surface bed material 

adjacent to the trap. A more rigorous sampling programme could be established to 

better investigate such a relationship (Ashworth and Ferguson, 1989; Ferguson et al., 

1998). 

7. Finally, the empirical results provided in these experiments and from the field 

observations could also be used to develop a model to simulate shape effects in bedload 

transport. Using appropriate empirical values the relative importance of particle shape at 

entrainment and in the transport process could be conceptualised and a simple model 

developed. This would provide a further means of uniting the various threads of 

research presented in this thesis. 
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APPENDIX 1: SIZE AND SHAPE CHARACTERISTICS OF 

MAGNETIC TRACERS USED IN THE FIELD EXPERIMENTS. 

A l . l INTRODUCTION 

The purpose of this Appendix is to compare the shape and size properties of the 

magnetic tracers used in the field experiments. The chapter first examines and compares 

mean particle size and weight in three size groups and for four shape classes at the three 

sites (sections 2 and 3). It then deals mainly with b/a (the ratio of the intermediate axis 

of a particle to its longest axis) and c/b (the ratio of the shortest axes of a particle to its 

intermediate axis) ratios of the test particles respectively (Section 4 and section 5). For 

each site, the degree of roundness of the tracers are examined and compared (sections 

6). The final two sections (7 and 8) summarize sphericity and flatness properties of the 

tracers in respect to their importance on the hydraulic behavior of a particle during 

transport. In each section mean values and frequency distributions of the particles are 

examined and compared statistically to determine whether there is a significant 

difference between the different sites. Table A 1.15A, B and C provides a detailed 

summary of the size and shape characteristics of the magnetic tracers used at the three 

sites. Summary statistics are presented for each size and shape class. 

A1.2 M E A N PARTICLE SIZE (b-axis) 

In order to replicate similar conditions at each of the experimental stations it was 

decided to equalize b axes for 3 sizes in all shape classes. In terms of their b axes, 

tracers were classified into three size ranges (32-64, 64-128, and > 128mm). This section 

tests whether similar conditions were achieved at the three sites. 
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Figure A l . 1. Mean distributions of b axis in three size categories for four 
shape classes at the Upper Tees, Trout Beck and the Lower Tees. 

Mean particle sizes (b-axes) at the three sites vary between 8.9 cm and 9.6 cm. 

Figure A l . l indicates an overall similarity between the three sites. There is no greater 

difference between the mean size o f particles of four shape classes in small size groups. 

The distributions vary between 5.1 and 5.8 cm. Mean size of disc-shaped particles is 

slightly greater than other shapes at Lower Tees and Trout Beck sites, while at the 

Upper Tees site the four shapes have very similar mean values in all size groups. In the 

small size group, at all three sites, rod-shaped particles have the lowest value (5.0 cm at 

Trout Beck), while discs have greatest mean value (5.8 cm at the Trout Beck and Upper 

Tees sites). In the medium size group, the distribution varies between 7.3 mm (rods at 

the Lower Tees) and 10.7 mm (discs at Trout Beck) (Table A l 1), Lower Tees and 

Trout Beck sites, disc and rod-shaped particles have similar distribution. Table A l . l 

shows that at the Lower Tees and Trout Beck discs have the greatest mean value, and 

rods have the lowest value, while at the Upper Tees site differences between the four 

shape classes decrease. In the large size group, however, the variation between the four 

shape classes is relatively small at all the three sites. It varies between 13.4 cm (rod at 

Lower Tees) and 19.9 cm (sphere at Upper Tees). 
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Comparison of the three sites shows that there is some degree of statistical difference in 
the mean b axis values of four shape groups in all shape classes, but the difference 
increases slightly in the medium size (the lowest value is 7.3 cm for the rods at Trout 
Beck and the highest value is 10.7 cm for the discs at Trout Beck) (Tables A l . l , A. 1.2 
and Figure A l . l ) . 

Table A l . l . Mean particle size (b axis) distribution in three size groups for four 
shape classes at three sites 

Small (32-64 mm) Medium (64-128 mm) Large (>128 mm) 

L.T T.B U.T L.T T.B U.T L.T T.B U.T 

Sphere 5.2 5.3 5.3 8.8 8.2 7.9 14.2 14.8 14.9 
Blade 5.1 5.5 5.3 8.3 7.9 8.1 13.8 14.3 14.5 

Rod 5.1 5.0 5.2 7.7 8.0 9.0 13.4 14.7 14.5 

Disc 5.3 5.8 5.8 10.0 10.7 8.5 14.9 14.7 14.2 

Note: L.T: Lower Tees, U.T: Upper Tees, T.B: Trout Beck 

In terms of particle size distributions, in general, Figure A 1.2 and Table A 1.15 

show that, in small size group, particles of all shapes are negatively skewed with 

different degrees of kurtosis. This indicates that at each site and in the small size group 

(32-64 mm), the majority of particles are larger than the mean value. However, in the 

medium size group (64-128 mm), except for disc-shaped clasts, distributions are 

positively-skewed, indicating that majority of the particles are distributed between 7.0 

and 10.0 cm. In the large size group, distributions at all the three sites show a tendency 

to positive skewness, but many classes are fairly normal. The majority of the particles 

have b axis values between 13.0 and 17.0 cm. (Figure A1.2 and Table A1.15). 

Analysis of variance (ANOVA) techniques were used to investigate variability 

in the tracer sets. The sample variance is separated into two components of within-

sample and between-sample variance, and compared using the F-test. Statistical 

comparisons of the three sites show that frequency distributions of sphere-shaped 

classes are quite similar and also statistically there is no significant difference between 

them in the small and large size groups (Table A1.2 and Figure A1.2). However, in the 

medium size class the differences between the three sites increase. This is because the 

Lower Tees site has greater mean value and also shows a larger standard deviation value 

(hence larger variation) than Trout Beck and Upper Tees. In the large size, there is some 
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irregularity in the frequency distributions of sphere-shaped particles, but this is not 

statistically significant (Table A1.2). 

Table A 1.2 Calculated values of F (F-ratio test) for the comparison 
of size-frequency distributions of four shape classes, three size 
groups at the three sites. 

SHAPES Small size Medium size Large size 
(32-64 mm) (64-128) mm (>128mm) 

SPHERE 1.71 11.57 2.02 

BLADE 8.02 3.01 3.36 

ROD 2.58 25.47 9.28 

DISC 30.94 52.43 0.70 

(Note: The critical values of F at the 0.01 significance level 
for small and medium size groups is 7.07 and for large size 
group is 7.61. The values shown in bold indicate a statistical 
significant difference between the compared parameters.) 

In terms of blade-shaped particles, however, Table A 1.2 shows that mere is a 

slightly significant difference between the frequency distribution of three sites in the 

small size group. However, both Figure A 1.2 and Table A 1.15 indicate that this 

difference is due probably to Lower Tees having a greater mean value and higher 

standard deviation than the other sites. In the medium and large-sizes of blades, 

however, there is no significant difference between the three sites (Table A1.2). 

For rod-shaped particles, Figure A 1.2 and Table A 1.2 show that there is no 

significant difference between the three sites in the small size group, but in the medium 

and large size groups the similarity decreases significantly between sites (Table A 1.2). 

In the medium size group the Upper Tees site shows a very different frequency 

distribution than Lower Tees and Trout Beck sites. Although the three sites have 

positively-skewed frequency distributions, the degree of skewness is less for the Upper 

Tees site. This implies that the size (b value) of the particles in the distribution at Upper 

Tees is greater than the other sites (Figure A1.2). For the large size, the Trout Beck and 

Upper Tees sites have almost normal frequency distributions with lower positive-

skewness, lower kurtosis (platykurtic) and high standard deviation value. This indicates 

that they have a relatively wide range of size distributions in comparison with the Lower 
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Tees site, which has a lower standard deviation with relatively positive skewness (Table 
A1.15). 

In the case of disc-shaped particles, Table A 1.2 and Figure A 1.2 show that for 

the small and medium size groups differences between the three sites are highly 

significant compared to that of larger size group. In the small size group, Trout Beck 

and Upper Tees sites show a high degree of negative skewness, while the Lower Tees 

shows almost normal distributions with lower degree of negative skewness and kurtosis. 

The Lower Tees also has a greater standard deviation than the other sites (Table A1.15). 

These differences indicate that variations in size at the Lower Tees site are greater than 

at Trout Beck and Upper Tees sites. It also signifies that at the Lower Tees site, the 

majority of the particles in the distribution have smaller b axes than Trout Beck and 

Upper Tees sites (Figure A1.2). In the medium size, at the Lower Tees and Trout Beck 

sites distributions are relatively flat, while the Upper Tees has highly positively-skewed 

distribution. Both relatively flat size distributions and hence high standard deviations 

values at the Lower Tees and Trout Beck sites clearly indicates that they have very wide 

spread of sizes around their mean values. In the large size group (Table A1.2) there is 

no significant difference between the three sites, though Upper Tees has a very high 

{leptokurtic) degree of kurtosis indicating that most of the particles are distributed 

around the mean. 

A1.3 W E I G H T 

Beside other factors particle weight is considered to be an important influence 

on the dynamic behaviour of a particle during transport and deposition. Within the same 

shape class (especially for flat particles), difference in particles weight may be 

important in that lighter particles tend to be lifted and transported further downstream 

by turbulent flow than heavier ones, which move close to the bed in a rolling or sliding. 

Lighter particles also have lower settling velocities than those of heavier ones. 
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Figure A l .3. Mean weight distribution of clasts in three size groups for four shape 
classes at the Lower Tees, Trout Beck and the Upper Tees sites. 

Generally, the three sites have very similar mean weight distributions (Figure 

A1.3). In all three size groups together mean weight values of the three sites vary 

between 1588 (Lower Tees) and 1862 grams (Upper Tees) Overall, there are no very 

significant differences in mean weight values between the Trout Beck and the Upper 

Tees, but it increases greatly between Lower Tees, Trout Beck and the Upper Tees sites 

(Table A1.3). In each shape class differences in mean weight between the medium and 

large size groups at all three sites are significantly greater than those between the small 

and medium size groups. At all three sites for the small size group, the differences in the 

distributions of mean weight values between the four shape classes are very small, but 

differences increase noticeably with particle size (Table A1.3). This is because, 

regardless o f shape, size classification was based on the diameter of the "b" axes of each 

particle. In other words, length and thickness of particles were not taken into 

consideration Thus for similar sizes, shape consistently influences the weights and this 

is more pronounced at larger sizes. Figure A1.3 shows that although it is not very 

significant in the small size group rod-shaped particles in the medium and large size 

groups at all three sites always have greater mean values. Disc shaped particles, on the 

other hand, have the lowest mean values, while blade and sphere shapes have very 

similar values at all three sites. The decreasing order of the mean weight distributions 

for the medium and large size groups is rod, sphere, blade and disc at each she. 
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Table A 1.3 Mean weights of the four shape classes in three size groups at the Lower 
Tees, Trout Beck and the Upper Tees sites. 

Lower Tees Trout Beck Upper Tees 
S M L Mean S M L Mean S M L Mean 

Sphere 207 968 3556 1577 209 764 4108 1694 222 708 4657 1862 

Blade 191 798 3365 1451 233 657 3939 1610 265 687 4158 1703 

Rod 387 1275 5522 2395 400 1391 7145 2979 402 1773 7175 3117 

Disc 110 669 2007 929 140 794 1855 930 147 418 1734 766 

Mean 224 927 3612 1588 246 902 4262 1803 259 897 4431 1862 

Note: S: small size, M : medium size, L: large size 

Figure A 1.4 shows that there are no major differences between the three sites in 

the frequency distributions of the weights of the particles within the three size groups. In 

the small size group distributions are very similar and also relatively symmetrical with 

lower degrees of skeweness and kurtosis. This indicates that distributions are clustered 

around their means, and tend to be normal. In the medium size group, however, the three 

sites show positive skeweness and slightly greater kurtosis. In the large size group the 

three sites show some irregular variations, and lower values of skeweness and kurtosis. 

Sphere-shaped particles show no major differences between the three sites in three size 

groups (Table A 1.4). In general, in the small and medium size groups distributions are 

more symmetrical and also peaky compared with large size group. This indicates that 

distributions tend to be relatively normal. In the small size group Lower Tees and Trout 

Beck have very similar means (207.3 and 208.6), and lower standard deviations (89.8 

and 82.7), while the Upper Tees shows a slightly greater mean (221.7) and standard 

deviation (110.3) values with a higher positively skeweness (Table A1.15c). In the 

medium size group all sites tend to be very similar in the sense they have similar degree 

of positive skewnesses and kurtosis indicating relatively peaked distributions. In the 

large size group, however, distributions are remarkably flat, indicating wide but irregular 

distributions around the means. The higher standard deviation values also clearly suggest 

that there is a wide spread of values in weight for each site. 

In terms of blade shaped particles, Table A1.4 and Figure A 1.4 show that, 

except for the Lower Tees in the small size group, there is no statistically significant 

difference between the sites in the three size groups. In the small size group, slight 
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kurtosis and minor positive skewness values at the Lower Tees site shows that the 
distributions of the particles cluster less around their mean Value, while Trout Beck and 
the Upper Tees cluster more and are positively skewed and show a greater degree of 
kurtosis. In the medium size group at all three sites, distributions are similar with 
positive skewness and kurtosis values indicating that the weight of most particles is 
lower than the mean. In the large size group, the three sites have positive kurtosis and 
skewness values reflecting very wide but irregular frequency distributions, which are 
similar to these of sphere-shaped particles in the same size group. The higher standard 
deviation values of each distribution also suggests that there is a wide spread of values 
in weight for each site (Table A1.15). 

Rod-shaped particles show no statistically significant differences between the 

three sites in the small and large size groups (Table A1.3). In the small size group, the 

Trout Beck and Upper Tees sites show very similar normal distributions with a lower 

degree of kurtosis and smaller standard deviation values, while Lower Tees has slightly 

higher positive kurtosis and skewness with longer tails (hence higher standard 

deviation). This indicates that the distribution of the particles by weight at the Lower 

Tees site is more dispersed than at the other sites (Figure A1.3 and Table A1.15). In the 

medium size group, however, all the sites show a greater degree of positive skewness 

and kurtosis. A slight statistical difference between the three sites is due probably to the 

fact that Upper Tees has greater mean values than the other sites. Although the three 

sites have positive skewness and kurtosis distributions, The Lower Tees has very high 

kurtosis which indicates that distributions cluster more around mean value and have 

shorter tails than at the other sites. 

There is no significant difference between the three sites in the large size group 

and all sites have irregular frequency distributions. The Lower Tees and Trout Beck 

sites have comparable positive kurtosis, indicating a wider distribution than at the Upper 

Tees site. 

In general, in all size groups, disc-shaped particles can be considered similar in 

the sense that they have a more symmetrical and a similar peaky (leptokurtic) frequency 

distribution as compared with other shapes (Figure A 1.4). Table A 1.4 shows that, 

except for the large size group, there are statistically significant differences between the 

three sites in the small and medium size groups. In the small size group all sites have 

almost normal frequency distributions with lower standard deviations and less kurtosis 

(Table A 1.15). Statistically significant differences between the three sites might be 
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attributed to the fact that the Lower Tees has a lower mean and slightly wider 

distribution (slightly higher kurtosis) than the other sites (Table A1.15). In the medium 

size group, however, difference between the three sites occur because the Upper Tees 

site has a lower mean, higher positive-skewness and greater kurtosis (hence wider) than 

Lower Tees and Trout Beck. The Lower Tees and Trout Beck tend to be very similar in 

the sense that they have similar mean value and kurtosis. 

Table A 1.4 Calculated values of F (F ratio test) for comparison 
of size frequency distributions of weight for four shape classes 
in three size groups at the Lower Tees, Trout Beck and the 
Upper Tees sites. 

SHAPES 
WEIGHT (g) 

Small Medium Large 

SPHERE 0.22 9.90 4.60 

BLADE 14.88 3.97 2.46 

ROD 0.20 9.88 6.86 

DISC 22.49 37.13 1.15 

(The critical values of F at the 0.01 significance level for 
small and medium size groups is 7.07 and for large size 
group is 7.61. The values shown in bold indicate a 
statistical significant difference between the compared 
parameters) 

A1.4 b/a R A T I O 

The determination of the shape of a particle is conventionally based on the 

measurement of the three prime axes: the a (long), b (intermediate) and c (short) axes. 

From these three axes b/a and c/b ratios are determined. Using these ratios the shape of 

a particle is determined (e.g. form, sphericity,) (Krumbein, 1941). The b/a ratios 

(together with c/b ratio) can be used to calculate the degree of the sphericity of a 

particle, which is fundamentally important in both mode of transport (sliding, rolling 

etc.) and as well as settling velocity of a particle in a fluid flow (Sneed and Folk, 1958). 

The surface area of a particle depends on its b/a ratio (the ratio of the intermediate axis 

to the long axis). A particle with a greater b/a ratio and a lower c/b ratio tends have a 

relatively flat shape and therefore moves in a sliding mode. Flat-shaped particles also 
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tend to settle slowly compared to spherical ones. The b/a ratio of a particle also affects 

resting position (orientation) and imbrication. Apart from other factors such as shape 

and size, particle orientation is also considered to be one of the important controlling 

factors in the initial motion and the entrainment of a particle sitting on various beds. 

Investigations have shown that particles with low b/a ratios (either rod or blade shaped-

particles), placed parallel to the flow, have threshold shear velocities nearly double 

those for the transverse situation (Carting et al., 1992). Particle with a high b/a ratio and 

low c/b ratio tend to take-up an imbricated position more easily than spherical ones. 

Table A l .5 Mean b/a ratios of four shape classes in three size groups at the Lower Tees, 
Trout Beck and the Upper Tees sites. 

Lower Tees Trout Beck Upper Tees 
S M L Mean S M L Mean S M L Mean 

Sphere 0.85 0.86 0.88 0.86 0.87 0.86 0.84 0.86 0.87 0.87 0.85 0.86 

Blade 0.50 0.52 0.53 0.52 0.48 0.52 0.51 0.50 0.44 0.52 0.52 0.49 

Rod 0.45 0.44 0.50 0.46 0.42 0.46 0.51 0.46 0.44 0.48 0.53 0.48 

Disc 0.85 0.86 0.88 0.86 0.85 0.84 0.88 0.86 0.83 0.84 0.86 0.84 

Mean 0.66 0.67 0.70 0.68 0.66 0.67 0.69 0.67 0.65 0.68 0.69 0.67 

Note: S: small size, M: medium size, L: large size 

1 Trout Beck Upper fees • 1 
0.8 

0.6 

I 
32-64 84-128 >128 32-64 64-128 >128 32-64 64-128 >128 

Grain size class (mm) 

•Sphere • Blade B l B o j J •_QiS£ 

Figure A l .5 Mean distribution of b/a ratio of clasts in three size groups 
for four shape classes at the Lower Tees, Trout Beck and the Upper Tees sites. 
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Table A 1.5 and Figure A 1.5 show that there is little difference in mean b/a ratio 

among three sites (Lower Tees, 0.68; the Trout Beck and Upper Tees sites, 0.67). 

Within each size group and at each site, sphere-and disc-shaped particles have greater 

mean b/a ratios than blade-and rod-shaped particles. 

Sphere-shaped particles at the three sites have the same b/a ratio, while in the 

blade-shaped category the ratios decrease from the Lower Tees to the Upper Tees. This 

indicates that the projected area of the blade-shaped particles tends to decrease from the 

Lower Tees to the Upper Tees, which affect their mode of transport (increasing settling 

velocity and imbrication). For rod-shaped particles, Lower Tees and Trout Beck have 

same ratio which is slightly smaller than for the Upper Tees. The disc-shaped particles 

show a similar distribution to the rod-shaped-particles at all three sites. 

Table A 1.6 Comparison of frequency distributions of b/a ratios 
in four shape classes and in three size groups at the three sites 

SHAPES Small Medium Large 

SPHERE 
F 
P 

2.47 
0.086 

0.76 
0.468 

2.45 
0.093 

BLADE 
F 
P 

18.6 
2.28E-08 

0.18 
0.827 

0.76 
0.471 

ROD 
F 
P 

5.32 
0.005 

7.03 
0.000 

1.66 
0.197 

DISC F 
P 

4.54 
0.011 

1.63 
0.198 

0.47 
0.627 

(The critical values of F at the 0.01 significance level for 
small and medium size groups is 7.07 and for large size 

group is 7.61. The values shown in bold indicate a statistical 
significant difference between the compared parameters) 

Frequency distributions of sphere-shaped particles in all size groups are very 

similar and there is no statistically significant difference between the three sites (Table 

A1.6). Indeed, except for Trout Beck in the small size group, which has a moderate 

degree of peakiness (mesokurtic), within each size group, all sites show greater similarity 

with a common negative degree of kurtosis (platykurtic), indicating wide distribution of 

b/a ratios around the means (Table A 1.15 and Figure A 1.6). Except for Trout Beck and 

the Upper Tees sites in the small size group, positive-skewness is common at all sites in 
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the three size groups, showing that the b/a ratio of the majority of the particles is smaller 
than the mean. In the blade-shaped particles, all sites have negatively-skewed and also 
some irregular (bi-modal) distributions. However, Table A 1.6 shows that there is no 
major difference between the three sites in both the medium and the large size groups. In 
the small size group, however, Table A 1.15 shows that, in terms of their mean, median 
and mode values, there is a significant difference between the three sites. The Lower 
Tees and Trout Beck sites have very similar mean, mode and median values and within 
each site there is no major differences between these values. On the other hand, the 
Upper Tees has a lower mean value than The Lower Tees and Trout Beck sites and there 
is also a significant difference between mean, median and mode values. This indicates 
that, although the average value for b/a ratio at Upper Tees is 0.44, the most frequently 
occurring b/a ratio value in the distribution is 0.50 and thus the Upper Tees has a wider 
frequency distribution than the Lower Tees and Trout Beck. 

For the rod-shaped particles, Table A1.6 indicates that there is no statistical 

difference for all size groups between the three sites. In the small size group all sites 

show negatively-skewed distributions, indicating that most frequently occurring b/a ratio 

values within each distribution greater than their mean value. The mean values of the b/a 

ratios are 0.42, 0.44 and 0.45 for the Trout Beck, Upper Tees and Lower Tees sites 

respectively (Table A1.5). The Lower Tees and Trout Beck sites tend to have wider and 

relatively flat (platykurtic) distributions, while the Upper Tees has a moderate degree of 

peakiness with a lower standard deviation (Table A 1.15 and Figure A 1.6). In the medium 

size group, means of the b/a ratios tend to increase from Lower Tees (0.44) to Upper 

Tees (0.48). All sites have some degree of negative kurtossis, which indicate relatively 

flat distributions. The Trout Beck and Upper Tees sites show negative skewness, while 

the Lower Tees shows positive skeweness but an irregular frequency distribution. This 

indicates that b/a ratios Trout Beck and Upper Tees tend to be greater than at the Lower 

Tees site (Figure A 1.6). In the large size group, however, Table A 1.6 reveals no 

significant difference between the three sites. Small standard deviations indicate that 

distributions are clustered around the means (Table A1.15). 

In terms of disc-shaped particles, at all sites all three size groups have very 

similar distributions and there is no statistically difference between them. Figure A 1.6 

and Table A 1.15 clearly show mat all sites have somewhat flatter and wider frequency 

distributions when compared to the other shape categories. Table A1.6 reveals that there 

is no statistically significant difference between the three sites in the medium size 
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category. 

A1.5 c/b RATIO 

The ratio of particle short axis "c" to intermediate axis "b" describes the degree 

of flattening which influences significantly a particle's rolling or sliding capability 

(Krumbein, 1942; Sneed and Folk, 1958; Carling et al, 1992). There is a positive 

relationship between particle c/b ratio and rolling capability. Particles with a low c/b 

ratio tend to slide, whereas those with high c/b ratios tend to roll in a fluid flow. 

Therefore the c/b ratio is an important factor for the hydraulic behavior of a particle and 

should be examined in bedload studies. 

Table A1.7. Mean C/B ratios of the four shape classes in three size groups at the Lower 
Tees, Trout Beck and the Upper Tees sites. 

Lower Tees Trout Beck Upper Tees 
S M L Mean S M L Mean S M L Mean 

Sphere 0.84 0.85 0.81 0.83 0.84 0.84 0.84 0.84 0.85 0.85 0.87 0.86 
Blade 0.40 0.41 0.41 0.41 0.37 0.37 0.42 0.39 0.37 0.34 0.42 0.38 
Rod 0.84 0.82 0.80 0.82 0.83 0.83 0.82 0.83 0.85 0.80 0.81 0.82 
Disc 0.40 0.37 0.36 0.38 0.38 0.33 0.33 0.35 0.4 0.35 0.33 0.36 
Mean 0.62 0.61 0.60 0.61 0.61 0.59 0.60 0.60 0.62 0.59 0.61 0.60 

Note: S: small size, M: medium size, L: large size 

Figure A1.7, Tables A 1.7 and A1.8 show that there is no significant difference in mean 

c/b ratios between the three sites (the Lower Tees site, 0.61; Trout Beck and Upper Tees 

sites, 0.60). Not surprisingly, within each size group and at each site, sphere-and rod-

shaped particles always have greater mean c/b ratio than blade and disc-shaped particles 

(Table A 1,7). In terms of sphere-shaped particles at the Lower Tees site, it is clear that 

there is no significant difference between the mean c/b ratio of the small and medium 

size groups but mean ratios are slightly smaller in the large size group. This may 

indicate that the larger size sphere-shaped particles tend to have less rolling capability 

than that of small and medium size groups due to their more irregular shape. 
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Figure A1.7 Mean distribution of c/b ratio of c lasts in three size groups for 
four shape classes at the Lower Tees, Trout Beck and the Upper Tees sites. 

For blade-shaped particles, the three size groups have exactly the same mean 

values at the Lower Tees she but at the Trout Beck and Upper Tees sites the largest 

sized particles have greater mean c/b ratio than the smaller and median size group of 

blades. For rod-shaped particles the small size groups have greater mean b/a ratios. This 

suggests that particles in the small size groups can roll more easily than those of the 

larger sizes. Disc-shaped particles show greater c/b ratios in the small size group and as 

particle size increases the c/b decreases gradually. Decreasing c/b ratio of a particle 

primarily affects its weight. In other words particles with lower c/b ratio are generally 

lighter than those with higher c/b ratios. Several investigators have pointed out that disc

shaped particles with a low c/b ratio but high b/a ratio, which makes them lighter, can 

preferably be lifted and transported further downstream than other shaped particles 

(Bradley etal, 1972). 
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Table A 1.8 Comparison frequency distributions of c/b ratios in 
the four shape classes and in the three size groups at three sites 

SHAPES Small 
c/b ratio 

Medium Large 

SPHERE 
F 
P 

1.39 
0.25 

0.45 
0.640 

3.51 
0.034 

BLADE 
F 
P 

5.28 
0.005 

12.01 
9.59E-06 

0.45 
0.639 

ROD 
F 
P 

2.06 
0.129 

3.50 
0.031 

0.64 
0.530 

DISC F 
P 

1.66 
0.191 

7.43 
0.000 

1.92 
0.155 

The critical values of F at the 0.01 significance level for 
small and medium size groups is 7.07 and for large size 
group is 7.61. The values shown in bold indicate a statistical 
significant difference between the compared parameters) 

The frequency distributions of sphere-shaped particles in all size groups show 

similarity between the three sites (Figure A 1.8 and Table A 1.8). Although there is no 

significant statistical difference between the three sites, in the large size group, the three 

sites show some minor differences. The Lower Tees site has a bi-modal distribution, 

while Trout Beck tends to have a normal distribution with a low standard deviation and a 

slight positive skew. The Upper Tees site has a negatively-skewed distribution, 

indicating that the majority of particles have greater c/b ratio than the mean. For blade-

shaped particles, there is no statistical difference between the three sites in small and 

large size groups. In the small size group, all sites have positive skewness and a 

relatively flat (platykurtic) distribution. For the large size group, the Trout Beck and 

Upper Tees sits show rather flat, slightly bi-modal distributions, while the Lower Tees is 

very peaky and negatively skewed (Figure A1.8). In the medium size group, there is 

statistical difference between the three sites. Despite their similar skewnsses, the three 

sites show some degree of differences in their kurtosis degrees* The Lower Tees shows a 

very platykurtic distribution compared to the other sites (Table A1.15). 

In the rod-shaped clasts, the common similarity between the three sites is that all 

sites have relatively flat distributions in all size classes. However, in the large sizes the 

flatness of the distribution decreases in a way similar to the distributions of sphere and 
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blade-shaped particles. Nevertheless, Table A1.8 indicates that there are no statistically 
significant differences between the three sites in the various size groups. 

In the small and medium size groups, all disc-shaped particles show wide 

platykurtic distributions, which are similar to those of rod-shaped particles. There are no 

significant differences among them (Figure A1.8 and Table A1.8). In large size group 

there is no statistically significant difference between the three sites, but Figure A l .8 and 

Table A1.15 indicate that Lower Tees has very low kurtosis with a negatively skewed 

distribution, while Trout Beck and the Upper Tees have positively-skewed distributions. 

This indicates that at the Lower Tees site there is a wide distribution of c/b ratios around 

their mean and most of the ratios are between 0.20 and 0.55. On the other hand at the 

Trout Beck and Upper Tees sites it varies between 0.25 and 0.60 and distributions of c/b 

ratios are more clustered around their means. 

A1.6 ROUNDNESS 

Roundness is the relationship of the outline or image of the particle to a circle, 

often defined as the ratio between the radius of curvature of the particle and that of an 

inscribed circle (Briggs, 1977). Roundness relates to the sharpness of the corners and 

the edges of a particle. In a fluid flow and between the similar shapes, particles with 

high roundness are said to have a greater rolling potential than those of low roundness. 

A comprehensive review of roundness, including the means by which roundness values 

are determined, is given in Chapter 2. 

800 
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Figure A l .9 Mean roundness distributions of particles in the three size groups and 
for the four shape classes at the Lower Tees, Trout Beck and the tipper Tees sites. 
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In all three-size groups, mean roundness values at the three sites vary between 

322 (Lower Tees) and 392 (Trout Beck). There is a small difference between the Trout 

Beck and Upper Tees sites, but an even greater difference between these sites and the 

Upper Tees. Figure A 1.9 shows the roundness distributions of particles in three size 

groups for four shape classes at the three sites. This shows that within each size group, 

sphere-and disc-shaped particles have greater mean roundness values than rods and 

blades. In general, The decreasing order of mean roundness values at the Lower Tees 

site are spheres, discs, blades and rods respectively. At the Trout Beck Upper Tees sites 

the order is spheres, discs, rods and blades (Table A1..9). Figure A1.9 and Table ALIO 

also suggest that, although there is no significant difference in the mean roundness 

values between sphere-and disc-shaped particles within each size group for three sites, 

the differences increases noticeably between sphere and the other-shaped particles. 

Table A 1.9 also reveals that there is no pattern to changes in the mean roundness values 

between rod and blade-shape particles from one size group to another, though spheres 

and discs in the small size group always have greater mean values than the medium and 

large sizes. This is particularly important for sphere-shaped particles. Because particles 

with higher roundness in the small size group may roll much more easily man larger 

ones that have lower roundness and therefore irregular shape. 

Table A 1.9. Mean roundness values for four shapes in the three size groups at the 
Lower Tees, Trout Beck and the Upper Tees sites. 

s 
Lower Tees 

M L Mea 
n 

Trout Beck 
S M L Mean S 

Upper Tees 
M L Mea 

n 
Sphere 537 439 468 481 626 601 465 564 553 550 435 513 
Blade 238 158 260 219 211 211 254 225 173 189 248 203 
Rod 214 127 279 207 252 273 266 264 212 293 282 262 
Disc 554 239 453 415 531 481 531 514 568 578 488 545 
Mean 386 241 365 331 405 392 379 392 377 403 363 381 

Note: S: small size, M: medium size, L: large size. 

Frequency distributions of roundness show some irregularities with different 

degree of skewness and kurtosis in the three sizes and four shape classes at the sites 
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(Figure ALIO). In general, sphere and disc-shaped particles in each size group and at all 

sites show wider roundness distributions (hence lower kurtosis) than blade and rod-

shaped particles (Figure ALIO). This implies that particles are not very similar in terms 

of their roundness and, therefore, even within one size range, mere would be some 

differences in mode of movement due to variations in roundness of particles. At all 

three sites and for all three size categories, blade and rod-shaped particles have lower 

roundness values and also lower standard deviations than discs and spheres. This 

indicates that roundness values of blade and rod-shaped particles are closely distributed 

around die mean (Table AL15) and that such particles tend to move in a sliding mode 

due to low roundness. 

Table ALIO Calculated values of F (the F ratio test) for comparison 
of three means in roundness for four shape classes and in three 

SHAPES Small Medium Large 

SPHERE 
F 
P 

6.63 
0.001 

18.52 
2.63E-0.8 

0.33 
0.722 

BLADE 
F 
P 

13.04 
3.71 E-06 

8.06 
0.000 

0.07 
0.932 

ROD 
F 
P 

4.08 
0.017 

69.24 
2.07E-25 

0.15 
0.855 

DISC F 
P 

0.95 
0.387 

79.02 
3.03E-28 

1.21 
0.301 

(The critical values of F at the 0.01 significance level for 
small and medium size groups is 7.07 and for large size 
group is 7.61. The values shown in bold indicate a statistical 
significant difference between the compared parameters) 

Table ALIO reveals that, except blade-shaped particles in the small size group, 

there is no statistically significant difference between the three sites in small and large 

size groups. Sphere-shaped particles in almost each size group show somewhat irregular 

roundness distributions. Despite a similar distribution in the small size group, in the 

medium size, Lower Tees shows a highly positively skewed distribution, while Trout 

Beck has negative skewness and Upper Tees shows a wide but normal distributions. 

This distributions indicate that due to its positively skewness particles at the Lower Tees 

site are less rounded than the other sites, while at the Upper Tees site, because of 

negative skeweness, they are more rounded (Figure ALIO and Table A1.9). 
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In the larger size group the three sites have relatively similar distributions and 
therefore there is no statistically significant difference between the three sites (Table 
A 1.10). Median values of the distributions vary between 434 (Upper Tees) and 497 
(Lower Tees), indicating that most of the particles have roundness values around 400 
despite their wider distributions at the three sites (Figure ALIO and Table A 1.9). 

In terms of blade-shaped particles, Figure ALIO shows that, generally, at all the 

sites frequency distributions are narrower and more peaked than those of sphere and 

disc-shaped particles. Narrower ranges of distributions imply that particles in each of 

the distributions have very similar roundness values. They also all have positively-

skewed distributions with different degrees ranging from 0.18 (Upper Tees) to 0.88 

(Lower Tees) (Table A1.15), which indicate lower roundness values than those of 

negative skewness. Comparison of the three sites indicates that, in the small and 

medium size groups, there are statistically significant differences between the three 

sites. In the small size group, Upper Tees shows a very high degree of kurtosis 

(leptocurtic), while The Lower Tees and Trout Beck sites have comparable distributions 

with a moderate degree of kurtosis (mesokurtic). These various distributions signify that 

The Lower Tees and Trout Beck sites have relatively large range roundness 

distributions (between <100 and >700), while at Upper Tees the range is relatively 

narrow (between 100 and 400) and most of the particles are clustered around their mean 

(Figure ALIO). In the medium-size blade class, however, a significant difference 

between the three sites is probably due to different standard deviations (Table A 1.15). 

Most of the particles are distributed between a range of 200 and 300 roundness (Figure 

ALIO). Table ALIO also shows no significant differences between three sites in the 

large size, though Figure ALIO reveals some dissimilarity between the distributions of 

three sites. The Lower Tees tends to have greater positive skeweness as compared to 

Trout Beck and Upper Tees, while Trout Beck has an almost normal distribution and the 

Upper Tees shows an almost bi-modal distribution. 

Frequency distributions of rod-shaped particles in the medium-size group show 

large differences in roundness between the three sites. In the small and large size 

classes, however, there is no statistical a difference (Table ALIO). In the medium size 

groups, the Lower Tees has a higher positive-skew than Trout Beck and Upper Tees. 

This indicates that at the Lower Tees site the majority of the particles in the distribution 

have lower roundness values than the mean value. On the other hand, Trout Beck and 

Upper Tees show similar distribution with lower kurtosis and greater standard 
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deviations (Figure ALIO and Table A1.15). 
In terms of disc-shaped particles, Table ALIO and Figure ALIO show that, 

despite small differences in the mean roundness values as well as similar frequency 

distributions among the three sites in the small size group, variations between the three 

sites are more significant in the medium size group. In the medium size group the 

Lower Tees site shows a low mean roundness, high kurtosis and strong positively 

skewed frequency distribution when compared to Trout Beck and Upper Tees. In the 

large size group, the distributions tend to be uneven with varying degrees of skeweness 

and kurtosis Table ALIO and Figure ALIO). 

A1.7 SPHERICITY 

The reliability of a particle is primarily related to its degree of sphericity and 

roundness. Spherical particles tend to roll faster than non^spherical ones (e.g. Krumbein, 

1942b; Sneed and Folk, 1958). The greater the departure of a particle from a spherical 

shape, the greater is the reduction in its rolling capability and the more irregular is its 

motion during transport (Komar and Reimers, 1978, Pye, 1994). Sphericity also has an 

important influence on particle settling velocity. Particles with higher sphericity settle 

more rapidly (Wadell, 1932). The possible range in sphericity values varies from 0 for a 

perfectly flat disc to 1 for a perfect sphere (Krumbein, 1941; Sneed and Folk, 1958). 

The more the departure from a spherical shape the lower its sphericity values. However, 

in nature it is very difficult to find a perfect sphere with a value 1.0 (for more detail see 

Chapter 2). 

For the three size groups, regardless of shape, mean sphericity values vary 

between 0.59 and 0.62 at the three sites (Table A L U ) . Generally, small and medium 

size particles tend to have greater mean sphericity values than the larger ones. In terms 

of shape, not surprisingly, within each size group sphere-shaped particles always have 

greater mean sphericity values, while disc and blade-shaped tracers have the lowest 

values (Figure A L U , Table A L U ) . Mean sphericity values are very similar and vary 

between 0.84 and 0.86 in the sphere-shaped particles in all size groups at the three sites. 

Large size spheres, at Trout Beck and Lower Tees have slightly lover sphericity values 

than that those of small and medium size. With blade-shaped particles the lowest value 

is 0.30 at the Upper Tees site in the large size group and the highest value is 0.48 at 

Lower Tees in the small size group. At Lower Tees and Trout Beck sites particles in 
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large size groups have greater mean sphericity values than that of small and medium 
size groups. For the rod-shaped particles, regardless of size, the Upper Tees has greater 
mean sphericity values (0.58) than the Lower Tees and Trout Beck sites, which have the 
same sphericity (0.56). There tends to be an increase in sphericity as particle size 
increase at all the sites (Table A L U ) . This indicates that particles in the large size 
group tend to roll easier than those of smaller one. For disc-shaped particles, however, 
regardless of shape, ranges of mean sphericity vary between 0.58 (Upper Tees) and 0.65 
(Upper Tees). Lower Tees and Trout Beck sites show much greater mean sphericity 
values (0.65 and 0.63) than the Upper Tees site (0.58). This implies that particles at 
Lower Tees and Trout Beck sites may have greater rolling capability than at the Upper 
Tees site. In general, at each of the sites small discs are slightly more spherical than 
those of larger sizes. (Table A L U ) . For all the three size groups at Lower Tees and 
Trout Beck sites the increasing orders of mean sphericity values are blade, rod, discs 
and sphere. Upper Tees also shows a similar trend, except for the medium size group in 
which disc-shaped particles have a lower mean value than rod-shaped particles. 

1 
Upper Tees Trout Beck Lower Tees 

0.8 

a 0.6 
„ 

I 

• 

32-64 64-128 >128 32-64 64-128 >128 32-64 64-128 >128 
Mean grain size (mm) 

• Sphere • Blade • Rod • Disc 

Figure A l . 11 Mean sphericity distributions of clasts in three size groups and for four 
shape classes at the Lower Tees, Trout Beck and Upper Tees sites. 
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Table A L U . Mean sphericity values of four shape classes in three size groups 
separately and three sizes group all together at Lower Tees, Trout Beck and Upper Tees 
sites. 

Lower Tees Trout Beck Upper Tees 
S M L Mean S M L Mean S M L Mean 

Sphere 0.84 0.85 0.86 0.85 0.85 0.85 0.84 0.85 0.86 0.86 0.85 0.86 
Blade 0.46 0.36 0.48 0.43 0.44 0.46 0.47 0.46 0.41 0.35 0.30 0.35 
Rod 0.55 0,54 0.59 0.56 0.52 0.56 0.60 0.56 0.55 0.57 0.61 0.58 
Disc 0.66 0.65 0.65 0.65 0.65 0.61 0.63 0.63 0.65 0.48 0.62 0.58 
Mean 0.63 0.60 0.65 0.62 0.62 0.62 0.64 0.62 0.62 0.57 0.60 0.59 

Note: S: small size, M: medium size , L: large size. 

Table A L U shows that, in general, there is no major difference between three 

sites in the mean sphericity values of sphere-and rod-shaped particles, while in the 

blade-shaped it varies between 0.35 and 0.46 and for disc-shaped the range is 0.58 and 

65. Table A 1.12 and Figure A 1.12 show that frequency distributions of sphere-shaped 

particles in each size group at all three sites are virtually the same at each site. Small 

differences in the mean and medium values indicate that they have normal or bell-

shaped distributions (Table A1.15). 

Table A1.12. Comparison of sphericity frequency distributions 
in four shape classes for three size groups at three sites 

SHAPES Small 
Sphericity 

Medium Large 

SPHERE 
F 
P 

3.18 
0.043 

1.18 
0.308 

0.99 
0.373 

BLADE 
F 27.57 225.92 280.45 

BLADE P 1.04E-11 2.28E-60 1.04E-34 

ROD 
F 6.49 5.69 1.51 ROD P 0.001 0.003 0.227 

DISC F 1.12 220.88 1.93 DISC P 0.327 1.7E-59 0.152 
(The critical values of F at the O.Olsignifieance level for 
small and medium size groups is 7.07 and for large size 
group is 7.61. The values shown in bold indicate a statistical 
significant difference between the compared parameters) 
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For blade-shaped particles the difference between the three sites shows much greater 
variation both within size groups as well as between size groups. In the small size class 
there is statistically significant difference in the frequency distribution of the three sites 
(Table A 1.12). Though the Trout Beck and Upper Tees sites show almost normal 
distributions, the Lower Tees site shows a slightly negatively skewed distribution 
indicating a slightly greater mean sphericity value than the other sites. However, for the 
medium size particles, marked differences occur between the three sites. Although there 
is no major difference between the Lower Tees and Upper Tees sites, it increases 
significantly between Trout Beck and the Lower and Upper Tees sites. With a negative 
skewness, Trout Beck shows a greater mean sphericity (0.46) and thus represents a 
significant difference in the frequency distribution in comparison with the Lower Tees 
and Upper Tees sites which have similar distributions and mean values of (X36 and 0.35 
respectively (Table A 1.11 and Figure A 1.11). For the large size blade-shaped particles 
there is also a major difference between the three sites. This is because the three sites 
have different degrees of skewness, indicating different ranges of sphericity values. 
Indeed, Figure A 1.12 and Table A L U reveal that though the Lower Tees and Trout 
Beck sites have very similar frequency distributions (the range varies between 0.40 and 
0.55) and also similar mean sphericity values (Lower Tees: 0.48 and Trout Beck: 0.47), 
Upper Tees shows a relatively lower mean sphericity value (0.30) and also a lower range 
of sphericity values (0.30). 

The frequency distributions of rod-shaped particles, in all three size groups, have 

similar distributions, which are wider than for sphere and blade particles. Comparison of 

the three sites indicates there is no major statistical differences between the three sites in 

all size groups. Disc-shaped particles (Figure A 1.12) show frequency distributions which 

have a high degree of kurtosis (leptokurtic distributions) (Table A 1.15). However, in the 

medium size group, Upper Tees has a much lower mean sphericity and a very peaked 

(leptocurtic) frequency distribution (Table A 1.11). This may indicate that the particles at 

Upper Tees may have less rolling capability than the other sites. 
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A1.8 FLATNESS 

Flatness is conventionally based on the relationship between the three primary 

axes of a particle and ranges from 100 to infinity. The minimum value relates to a 

perfectly equidimensional particle, and the flatter the particle the higher is the flatness 

index. This is also essentially the inverse of Krumbein's sphericity (Briggs, 1977). 

Comparison of Tables Al . l l Al.and 13 clearly show that in almost each size 

group flatness index has a very high inverse correlation with sphericity. Not 

surprisingly, there is a strong inverse relationship between a particle's rolling capability 

and its flatness value. The flatter a particle is the more likely the particle will be to slide, 

instead of roll. In addition, many investigators have already examined the influence of 

the flattening on the settling velocity of a particle (see Chapter 7). These studies have 

clearly shown that the more particles are flattened, the slower they will settle compared 

with a sphere of the same volume and density. 

600 
Lower Tees Upper Trout Beck Tees 

m 
500 

400 

300 
c 
j 200 

100 

• 

32-64 64- >128 32-64 64- >128 32-64 64- >128 
128 128 128 

Grain size dees (mm) 

• Sphere • Blade BRod • Disc 

Figure Al . 13 Mean flatness distributions of the tracers for the three sites. 
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Table A1.13. Mean flatness values of four shape classes in three size groups at the 
Upper Tees, Lower Tees and Trout Beck. 

Lower Tees Trout Beck Upper Tees 
S M L Mean S M L Mean S M L Mean 

Sphere 131 129 132 131 130 130 131 130 127 128 127 127 
Blade 396 523 365 428 441 427 370 413 480 453 359 431 
Rod 198 205 191 198 212 195 182 197 197 197 180 192 
Disc 288. 

5 313 313 304 300 350 334 328 287 328 338 318 
Mean 253 293 251 265 271 276 254 267 273 277 251 267 

Note: S: small size, M: medium size, L: large size. 

Generally, the three sites have very similar mean flatness values, which vary 

from 265 (Lower Tees) to 267 (Trout Beck and Upper Tees) (Table A 1.13). Figure 

A 1.13 shows that, except for blade-shaped particles at Lower Tees, all shapes have 

similar mean flatness values for the three size groups. At each site blade-shaped 

particles have the greatest flatness values, while, not surprisingly, sphere-shaped have 

the lowest flatness. In rank order flatness increases from sphere, rod, disc through blade-

shapes. Although it is not very important for the sphere and rod shaped-particles, mean 

flatness values of blade and disc-shaped particles in the small and medium size groups 

varies. As particle size increases the mean flatness decreases for blade-shaped particles 

and the difference between blades and discs also decreases (Figure A1.13). 

Table A1.14. Comparison in frequency distributions of flatness 
in four shape classes for three size groups at three Sites 

SHAPES 
Small 

Flatness 
Medium Large 

S P H E R E 

Li. Q. 

2.30 
0.102 

0.75 
0.472 

1,43 
0.245 

BLADE F 16.25 14.37 0.14 BLADE 
P 1.98E-07 1.1E-06 0.87 

ROD F 6.05 2.81 1.32 ROD 
P 0.002 0.062 0.273 

DISC F 1.65 5.70 1.01 DISC P 0.194 0.004 0.366 
(The critical values of F at the 0.01 significance level for 
small and medium size groups is 7.07 and for large size 
group is 7.61. The values shown in bold indicate a statistical 
significant difference between the compared parameters) 
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Figure A1.14 shows that sphere and rod shaped-particles always have very 

symmetrical leptokurtic normal frequency distributions, whereas blade and disc-shaped 

particles have relatively 'flat' distributions, In the sphere and rod shaped groups most of 

the particles are distributed mainly between 100 and 300 flatness values, while for blade 

and disc shape groups the ranges vary between 100 and 1000 (Figure A1.14). 

Table A 1.14 shows that there is no statistically significant difference between 

the three sites within each size group in the sphere, rod and disc-shaped categories. For 

the sphere and rod-shaped particles almost all sites have relatively normal frequency 

distributions with low standard deviations (Table A 1.15). For the disc-shaped particles, 

however, the standard deviation values increase. In terms of blade-shaped-particles, 

Figure A 1.14 clearly shows that all sites have very wide distributions in all three size 

groups. Table A1.14 also indicates that there are statistically significant differences 

between the sites in the small and medium size categories. It is clear in Figure A 1.14 

and Table A 1.15 that as particle size increases, the differences between the mode and 

mean decreases (lower lesser standard deviation) and the distribution becomes 

narrower. 
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Table A 1.15a. Summary of the size and shape characteristics of magnetic tracers used at 
the.Lpwer Tees site. „ .. , 

j 
Number of clasts: 100 * 

5RHEBE 
2;64 mm .. . 

a?axis b-axis c-axis Radius b/a c/b Round
ness 

Spheri
city 

Flat 
ness 

Weight 
(g) 

Mean 6.16 5.20 4.397 1̂ 65 . 0.85. 0.84 537 0.84 131 207 
median 6.20 5.35 4.40 c 1.50" 0.85 0.84" 566^ 0.84 130 197 
mode 6.40 6:00 4.00" 2=00 0.86 0.79 351, #N/A 136 87 
skewness -0.15 -0.32 -0.09. 0.27 0.06- , 0.13 -0:18 0.19 0,1 0:2 
Kurtosis -0.48 -1.28 -0.8f -0r72 -0.60 -0.91 -0.96 -0.24 -0.4 -0.9 
Sth. Dev. 1.06 0.86 0.83 0.64 0.06 0.08 185.0 0.05 12.2 89.8 

Number of clasts: 100 64-128 mm 
Mean 10.39 8.88 7.51 2.30 0.86 0.85 439 0.85 129 968 
median 10:20 8.70 7.30 2:00 0:85 0.85 379 0.86 127 822 
mode. 9.80 8.70 7.40 2.00 0.84 0:87 625 0.88 1434 587 
skewness 0.62 0!68 0.83 0.88 0.06 -0.29 0.58 0:06 0.4 . 1.5 
Kurtosis 0.08 -0.12 0.48- 0.15 -1.03 -0.71 -0.59 -0.69 -0.4 2.,1 
Stn. Dev. 1.85 1.57 1.36 1.20 0.08 0.08 205.7 0.05'' 12.8 540.4 

Number ol 'iclasts: 25,- >128;mm 
Mean 16.26 14.25 11.57 3.85 0.88 0.81 468 0:86 132 3556 
median ,16.10 14.10 11.40 4.00 0.88 o;8o 497 0186 129 3451 
mode. 16.20 13.30 11.id 4.50 Q.86 0.86 #N/A #N/A #N/A #N/A 
skewness 0i53 0.31 0:48 -0.49 0.37 -0.07 -0.65 0:30 0.1 110 
Kurtosis 0.12 -0.20 -Q;42 -0..10 -1.01 0.31 -1.25 -1.2 0.5 
Stn. Dev. 2.04 1.32 1.34 1,59 0.06 0.06 178.2 0.04 9.1 1179.0 

BLADE 
Number of clasts: 100 32 64 mm 

a-axis b-axis c-axis Radius b/a C/b Round-
ness 

Spheri
city 

Flat-
ness 

Weight 
(9) 

Mean 10.65 5.14 2.06 1,19 0,50 040 238 0.46 396 191 
median 10.40 5;30 2.00 1.10 0:51 0.40 229 0.47 376 177 
mode iffSO 5:60 2.00 1:00 0.50 0,30 182> #N/A.. 375 150 
skewhess Q.73 ,0.47 056 -0:15 -0.64 6.27 0:28 -0.37 016: ' 0 1 
Kurtosis 022 -d;91 0,00 -0.47 -0:32 -0:92 0:11 -0.65 -0,4 -0.3 
SthtiDev, 2^2: 0.81 0*9 0.47 0:075- 0:09 107.7 0.05 94:4 100:1 

Number of clasts: 100 64-128smm 
Mean 16.39 8]39 3.37 1.28 0.52 0.41 158 0:36 522 7,98 
median 15.80 .8:00 3/30 1.00 0:53 0.|9 151 0,36 505 653 
mode' 13;00f 7-;20~ 2:00 1:00 0j56 0:58 133 0>38; "400 1096 
skewness 0.91 I0j6| $3.1 0.74 o;pi 0,15 0=56 -0:37; i : i . 1:5; 
Kurtosis i.18. -0:42 -0:57 0:02 4:53 . -0:97 -0.07 -0.44 2.0 
Stn. Dev. 3:32 1.43 0.99 0.81 0.07 0.12 93:6 0,04 166.6 437.1 

Number of ciasts: 25 >128rhm 
Mean 26:50 13:80 5.60 3.40 0.53 0.41 260 Q.4'8 365 3365 
median 26.10 13;50 5.60 3.00 0.50 0:40 222 0;50 360 3J66 
mode 25.00 12.80 5.50 2.50 #N/A 0.39 #N/A #N/A #N/A #N/A 
skewness 1.42 1.28 -0.02 0.50 -0.89 -0.54 0.88 -0.91 1,0 2;2 
Kurtosis 2.92 1.72 1.62 -0.50 2.00 0.01 0.30 2.19 0.4 7.4: 
Stft.-Dev. . .3;36 . 0.99 0,66 1.50 0:05 0:05 124.9" 0:03- 50:5 116170 

Continued overleaf 



418 

ROD 
Number of clasts: 100 32-64 mm 

a-axis b-axis c-axis Radius b/a c/b Round
ness 

Spheri
city 

Flat
ness 

Weight 
(g) 

Mean 11.73 5.10 4.29 1.15 0.45 0.84 214 0.55 198 387 
median 11.00 5.20 4.20 1.00 0.45 0.84 193 0.55 195 369 
mode 11.00 5.00 4.20 1.00 0.50 0.78 273 0.68 172 234 
skewness 1.26 -0.51 0.17 0.52 -0.16 0.93 0.53 0.08 0.8 1.4 
Kurtosis 2.42 -0.53 0.04 -0.38 -0.10 3.41 -0.38 0.77 1.4 3.9 
Stn. Dev. 3.25 0.82 0.77 0.68 0.08 0.09 137.0 0.08 36.4 210.4 

Number of clasts: 100 64-128 mm 
Mean 17.96 7.73 6.36 1.09 0.44 0.82 127 0.54 205 1275 
median 18.00 7.40 6.10 0.75 0.44 0.82 88 0.54 198 1052 
mode 20.00 6.40 6.00 0.50 0.40 0.92 176 0.52 195 829 
skewness 0.46 1.20 1.31 1.57 0.25 -0.25 1.50 0.01 1.2 2.7 
Kurtosis 0.15 1.52 3.21 2.44 -0.36 0.04 2.15 -0.09 1.7 11.7 
Stn. Dev. 3.55 1.19 1.18 0.98 0.08 0.09 115.4 0.07 35.1 723.8 

Number of clasts: 25 >128 mm 
Mean 27.10 13.44 10.73 3.67 0.50 0.80 279 0.59 191 5521 
median 26.00 13.20 10.40 3.50 0.50 0.78 248 0.58 190 5289 
mode 26.40 12.80 9.50 5.50 0.50 0.78 468 #N/A #N/A 5784 
skewness 1.04 1.66 0.60 0.09 -0;36 0.63 0.40 0.00 0.1 1.8 
Kurtosis 0.51 3.81 -0.60 -1.62 -0.98 -0.03 -1.25 -1.01 -0.6 4.0 
Stn. Dev. 3.63 0.69 1.25 1.77 0.07 0,07 149.3 0.07 28.7 1100.9 

DISC 
Number of clasts: 100 32-64 mm 

a-axis b-axis c-axis Radiu 
s b/a c/b Round

ness 
Spheri

city 
Flat
ness 

Weight 
(g) 

Mean 6.31 5.37 2.13 1.75 0.85 0.40 554 0.66 288 110 
median 6.20 5.35 2.00 1.80 0.85 0.38 563 0.65 290 103 
mode 6.20 5.30 1,80 2,00 0.79 0.38 625 #N/A 300 92 
skewness 0.32 -0.41 0.57 -0.08 0.45 0.53 -0.09 0.69 0.3 0.8 
Kurtosis -0.32 -0.38 -0.06 -0.59 0.71 -0.56 -0.55 0.77 -0.6 0.4 
Stn. Dev. 0.74 0:62 0.53 0,62 0.07 0.09 190.4 0.06 63.2 42.5 

Number of clasts: 100 64-128 mm 
Mean 11.75 10.02 3.69 1.35 0.86 0.37 239 0,65 313 669 
median 11.85 10.00 3.55 1.00 0.88 0.35 194 0.64 312 586 
mode 13.00 10.00 4.00 1.00 0.70 0.31 189 #N/A 349 #N/A 
skewness 0.34 -0.21 0.58 1.35 -0.46 0.43 1.40 0.17 0.7 0.9 
Kurtosis 0.00 -1.07 -0.24 1.56 -0.64 -0.65 1.82 -0.33 0.8 0.5 
Stn. Dev. 2.25 1.69 1,05 0.99 0.08 0.10 182.3 0.07 85.6 359.7 

Number of clasts: 25 >128 mm 
Mean 16.98 14.94 5.31 3.83 0.88 0.36 453 0.65 313 2007 
median 16.50 14.30 5.60 4.00 0.87 0.37 510 0.66 291 1763 
mode 16.20 12.90 3.50 1,50 #N/A #N/A #N/A #N/A #N/A #N/A 
skewness 0.23 0.70 -0.03 -0.35 0.08 -0.33 -0.25 -0.45 1.1 1.2 
Kurtosis -0.75 -0.65 -0.80 -1.19 -1.25 -0.72 -1,07 -0.63 0.8 0.5 
Stn. Dev. 1.46 1.58 1.07 1.79 0.07 0.07 215.4 0.06 74.0 603.1 
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Table A1.15b. Summary of the size and shape characteristics of magnetic tracers used at 
the Trout Beck site. 

SPHERE 
Number ofclasts: 100 32-64 mm 

a-axls b-axis c-axis Radius b/a c/b Round
ness 

Spheri
city 

Flat
ness 

Weight 
(fl) 

Mean 6.15 5.30 4.44 1.91 0.87 0.84 626 0.85 130 209 
median 6.00 5.40 4.40 2.00 0.87 0.83 633 0.85 132 201 
mode 5.40 6.00 4.00 2.00 0.89 0.80 741 #N/A 138 156 
skewness 0.18 -0.34 0.51 -0.10 -0.32 0.29 -0.24 0.09 -0.07 0.7 
Kurtosis -0.41 -0.85 -0.19 -0.67 0.07 -0.81 -0.56 -0.19 -0.72 0.3 
Stn. Dev. 0.85 0.65 0.70 0.55 0.06 0.07 170.4 0.04 11.05 82.7 

Number of clasts: 100 64-128 mm 
Mean 9.57 8.22 6.89 2.90 0.86 0.84 601 0.85 130 764 
median 9.35 8.00 6.70 3.00 0.85 0.84 628 0.85 129 657 
mode 8.20 8.00 6.00 3.00 0.83 0.90 610 0.82 136 461 
skewness 0.52 0.43 0.75 0.22 0.07 0.14 -0.35 0.10 0.34 1.3 
Kurtosis -0.61 -1.01 0.17 -0.46 -0.64 -0.82 -0.42 -0.58 0.02 1.1 
Stn. Dev. 1.59 1.29 1.16 1.13 0.07 0.08 193.2 0.05 11.27 379.5 

9.57 8.22 6.89 2.90 0.86 0.84 601 0.85 130 764 
Number of clasts: 25 >128 mm 
Mean 17.66 14.80 12.45 4.05 0.84 0.84 464.51 0.84 131 4108 
median 17.10 15.00 12.20 4.00 0.82 0.83 484.85 0.83 129 4027 
mode 16.30 15.20 12.00 4.50 #N/A #N/A 674.85 #N/A #N/A #N/A 
skewness 0.88 0.00 0.89 -0.51 0.40 0.46 -0.35 0.47 0.13 0.7 
Kurtosis -0.42 -0.77 0.45 -0.15 -1.04 -0.26 -0.29 0.60 0.13 0.8 
Stn. Dev. 1.56 1.15 1.30 1.29 0.06 0.07 158.5 0.04 10,68 925.0 

Number of clasts: 100 C 
BLADE 
12-64 mm 

a-axis b-axis c-axis Radius b/a c/b Round
ness 

Spheri
city 

Flat
ness 

Weight 
(g) 

Mean 11.59 5.53 2.05 1.20 0.48 0.37 211 0.44 441 233 
median 11.20 5.60 2.00 1.00 0.48 0.36 200 0.44 421 215 
mode 11.20 6.20 1.80 1.00 0.50 0,50 196 #N/A 450 170 
skewness 0.92 -0.55 0.65 0.19 -0.14 0.44 0.50 0.01 0.67 1.1 
Kurtosis 0.96 -0.50 0.12 -0.27 -0.71 -0.20 0.25 -0.80 0.20 1.4 
Stn. Dev. 1.59 0.58 0.53 0.51 0i07 0.09 98.0 0.05 104.13 86.1 

Number of clasts: 100 64-128 mm 
Mean 15.70 7.95 2.92 1.61 0.52 0.37 211 0.46 427 1311 
median 15.30 7.70 2.80 1.50 0.53 0.36 195 0.46 405 1297 
mode 13.00 6.60 2.60 1.00 0.57 0.27 185 #N/A 375 798 
Skewness 1.08 0.84 0.40 0.75 -0.70 0.39 0.33 -0.26 0.83 2.1 
Kurtosis 1.03 -0.03 -0.38 0.65 -0.39 -0,49 -0.67 -0.30 0.26 12.1 
Stn. Dev. 3.27 1.14 0,80 0.79 0.06 0.09 101.3 0.05 107.0 741.0 

Number of clasts: 25 >128 mm 
Mean 28.53 14.35 6.08 3.55 0.51 0.42 254 0.47 370 3939 
median 28.30 14.30 6.00 3.50 0.51 0.43 250 0.48 352 3723 
mode 30.60 13.00 6.10 2.00 #N/A 0.36 294 #N/A #N/A #N/A 
skewness 0.20 0.65 -0.26 0.12 -0.49 -0.34 0.21 -0.46 2.31 0.9 
Kurtosis -1.26 -0.09 1.05 -0.83 -0.13 0.51 -0.50 0.22 8.05 1.8 
Stn. Dev. 3.74 1.15 1.32 ; 1,41 0.05 0.09 106.8 0.04 96.9 1490.5 

Continued overleaf 
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ROD 
Number of clasts: 100 32-64 mm 

a-axis b-axis c-axis Radius b/a c/b Round
ness 

Spheri
city 

Flat
ness 

Weight 
(g) 

Mean 12.27 5.01 4.14 1.49 0.42 0.83 252 0.52 212 400 
median 12.00 5.00 4.05 1.50 0.41 0.82 243 0.52 205 368 
mode 10.20 5.00 4.00 1.50 0.50 0.80 224 #N/A 192 247 
skewness 0.69 -0.41 0.10 -0.43 -0.12 0.24 -0.04 -0.25 0.87 0.8 
Kurtosis 0.03 -0.55 -0.80 0.04 -0.91 -0.87 -0.19 -0.69 0.86 0.4 
Stn. Dev. 2.51 0.74 0.72 0.54 0.07 0.08 102.1 0.06 34.72 172.0 

Number of clasts: 100 64-128 mm 
Mean 17.53 7.95 6.60 2.32 0.46 0.83 273 0.56 195 1391 
median 16.40 7.60 6.40 2.25 0.47 0.83 265 0.56 189 1108 
mode 13.40 7.20 5.40 2.00 0.44 0.71 253 0.54 200 649 
skewness 0.83 1.20 0.74 0.51 -0.23 0.23 0.10 -0.34 0.56 1.9 
Kurtosis 0.02 0.77 -0.14 0.19 -0.51 -1.01 -0.91 -0.48 -0.52 4.0 
Stn. Dev. 3.96 1.36 1.36 0.94 0.06 0.09 113.1 0.05 27.7 863.6 

Number of clasts: 25 >128 mm 
Mean 28.90 14.71 12.06 3.80 0.51 0.82 265 0.60 182.22 7144.6 
median 29.60 14.90 12.00 4.00 0.52 0.81 258 0.60 180.00 7489.0 
mode 34.50 13.50 14.00 4.50 #N/A 0.74 250 #N/A 179.17 #N/A 
skewness 0.03 0.19 0.12 -0.73 -0.10 0.27 -0.38 -0.11 0.66 0.2 
Kurtosis -0.88 -1.03 -0.31 0.47 -0.81 -0.72 -0.21 -0.52 0.75 -0.9 
Stn. Dev. 3.68 1.36 1.39 1.26 0.05 0.07 93.6 0.05 21.97 2073.4 

DISC 
Number of clasts: 100 32-64 mm 

a-axis b-axis c-axis Radius b/a C/b Round
ness 

Spheri
city 

Flat
ness 

Weight 
(g) 

Mean 6.84 5.80 2.20 1.82 0.85 0.38 531 0.65 301 140 
median 6.90 5.80 2.10 2.00 0.86 0.36 571 0.65 300 136 
mode 7.20 6.30 2.00 2.50 0.90 0.39 694 0.68 300 101 
skewness 0.21 -0.67 0.84 -0.31 -0.04 0.74 -0.37 0.54 0.18 0.6 
Kurtosis -0.14 -0.23 0.30 -1.07 -0.73 -0.03 -1.02 0.01 -0.44 -0.3 
Stn. Dev. 0.71 0.42 0.53 0.78 0.07 0.09 221.9 0.06 65.0 46.6 

Number of clasts: 100 64-128 mm 
Mean 12.87 10.74 3.52 3.10 0.84 0.33 481 0.61 350 794 
median 13.00 11.10 3.35 3.00 0.84 0.33 511 0.61 342 795 
mode 13.40 12.00 3.70 4.50 0.94 0.33 672 0.55 360 1149 
skewness -0.33 -0.86 0.43 -0.06 0.14 0.29 -0.30 -0.06 0.88 0.2 
Kurtosis 0.25 0.10 -0.84 -1.06 -0.80 -0.41 -0.94 -0.36 1.31 -0.7 
Stn. Dev. 2.05 1.49 0.90 1.43 0.08 0.07 203.8 0.06 78.1 318.6 

Number of clasts: 25 >128 mm 
Mean 16.80 14.76 4.90 4.46 0.88 0.33 531 0.63 334 1855 
median 16.30 14.30 5.00 4.50 0.88 0.33 537 0.63 323 1643 
mode 16.10 12.80 5.50 5.00 0.87 #N/A 435 #N/A #N/A #N/A 
skewness 1.11 1.17 0.11 0.12 -0.30 -0.32 0.31 0.11 2.05 1.7 
Kurtosis 1.56 1.87 0.63 -0.88 0.14 0.53. -0.22 0.70 6.45 2.9 
Stn. Dev. 1.89 1.68 0.99 1.22 0.07 0.07 135.51 0.05 76.50 676.9 
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Table A 1.15c. Summary of the size and shape characteristics of magnetic tracers used at 
the Upper Tees site. 

•SPHERE 
Number of clasts: .100 32;64rnm 

a-axis b-axis c-axis Radius b/a c/b Rounds 
ness. 

Spheri
city 

Flat
ness 

Weight 
{g)v 

Mean 6,24 5.39 4.60: \. 1.72 0.87 0:85 553 - 0.86 127 222 
median 6:30 5,40 4.60 i:75: 6.88 6.85' -561 0.86 127- 213 
mode 6&Q 6.20 5:00]; 2.00 0;94 0:93- 606- 0.89 125 145 
skewness 0,06 -0.38 o m -0.06 -037 -6.23 0=11 0.26 0.18 3.'1 
Kurtosis -0.27 -0.69 -0,65. -0.86 -0.70 #80 -0.72 -0.41 -0:32 -0.7 
Sth. Dev. 0:81 0.67 0.69 0:62 0-07 6:08 199.9" 0.05 11.33 110.3 

Number of clasts: 100 64-128 mm 
Mean 9M 7i98 6.79 2:48 0.87 0,85 550 0.86 128 708 
median 8195 7;65 6.60 2,50 0:87 0J85 536 0:86 127 579 
mode . 8.60 7:00 6.00 2:60„ 0.95 0,81 . 500 #N/A 125 787 
skewness 0.62 0:86 0.47 • 0!36 -6:07 -0:01 6,00 -6.16 0.24 1.2 
Ku rtosTs -S 6:04 0;18 -6.54 -6.56 -0.63, -6:90 -0,93 -0.25 -6:42 1.3 
Stn. Dev. 1.49 1,25 1.24, 0.79 0.06 0.08 177,3 6:05 12142 361,0 

Nurfiberofclasis: 25 ,. >128 mn 1 
Mean 17.72: 14;99 12,94 3.78 6:85 0,87 435 0:85 127 4657 
median 17.60 15.10 1'3:oo 4,60 0.86 0:89 452 6:84 123 4398 
molll" 14.60 15.30 13.10 4.00 o:89 #N?A #MA #N/A #N/A #N/A 
skewness -0-22 0:69 0.34 0:24 012 -0:71 o;id 0,25 0:9,8 0:8 
KultQiil -0:92 : 0:05 -0(54 0.13 -1.31 -6155 -0:84. -0:79 -0:26 0:0 
Stri; Dev. 2.20 1.56 1.63 1.16 6:67 0:09 146:6 0.Q5 12:9 1295.7 

BLADE 
Number of clasts: 1.00 32-64 mm 

a-axis b-axis c-axis Radius b/a c/b Round
ness 

Spheri
city 

Flat-•am* • ness 
Weight 

(g) 
Mean 12:67 5,39 1.97 1,08 0.44 0.37 173 6.41. 480. 265; 
rnê ian 12.45 5.55 2,00 1,66 0.45 0.36 170 6;41 ' 471 247: 
mode 13.00 6.00 2:06 0.50 0,36 154 0,41 465 398 
skewness 0:87 -0.55 6:60 0.52 -0:28 6135 0:55 0:09 0:38 1:0 
Kurtosis 1.09 -0,66 i.o;i 0.28 -0.55 -6.38 1.22 -0.42 -0:68 1,1 
SHOiy: 2:08^ 0.69 0*7 0:35 0.68 0:09 56:9 0.05' l i 1/1 99,8 

Number of clasts: 100 64-128mm 
Mean 15.91 8.18 2,78 1.46 0:52 0.34 189 0.35 453 687 
median 15.30 7.85 2.65 1.30 0.53 0.33 164 0.36 m 579 
mode 14*60 7.80- 2.20 1.00 0:50 0:40 287 0:37 "483" 774 
skewness 0.48 0:74 0.70 1.00 -0.63 0.66 0:60 -0.17 0.77 1,3 
Kurtosis -0:28 -0.08 0.01 1.09 0.12 0.41 -.0:55 0.09 0.43 1.1 
Stn. Dev. 2.76 1.21 0.70 0.67 0.06 0.68 88.1 0.03 106:79 342.8 

Number of clasts: 25 >128 mm 
Mean 28:12 14.50 6.11 3.47 0.52 0:42 248 0.30! 359 4158 
median 27.80- 14:50 6.30 3,50 0,53 0.45 259' 0.30 343 3759 
mode 27.00 . 13;70 5.10 2.00 #N/A #N/A 259 0:30 #N/A #N/A 
skewness 0:95 0.42 -0.03 0.11 -0.92 -0:03 0.-18 -0,60 0:60 1.1, 
Kurtosis 1.79 -0.27 -1.55 -1.12 0.99 -1,35 -1.05 1.82 -0.73 0.4 
Stn; Dev. 2:65 0:92 1.14 1&1 0:05 0:08 109.3 0:01 63:3- 124474 

Continued overleaf 
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ROD 
Number of clasts: 100 32-64 mm 

a-axis b-axis c-axis Radius b/a c/b Roundr 
ness 

Spheri
city 

Flat-
_ hess 

Weight 
(g) 

Mean 12.08 5.25 4.45 1.24 0:44 0.85 212 0.55 197 402 
median 11.80 5.40 4.40 1,30 0.45 0.84: 205 0.5& 191 376 
mode 11.80 4.80 4.60 1.50 0.38 0.83 200 0.58 175 451 
skewness 0.57 -0.38 • 0.22 0.27 -0.32 0.02 0.38 ; -0.69 1.23 0.7 
Kurtosis 0.30 : -0.80 -0.31 -0.50 0.03 -Jl.06 -0.53 0.34 1,45 0.4 
Stn. Dev. 2:18 0.70 0.69 ; 0.49 0.06 0.08' 90.0 : 0.05: 30.18 161.9 

r • 

Number of clasts: 100 64-128 mm 
Mead 18.97 8.96 7.15 2.71 0.48 0.80 293 0.57 197 1773 
median 18.40 8.70 7.00 2.50 0.49 0.78 296 0.57 197 1540 
mode 14.00 8.40 6.20 2.50 0.50 0.75 217 #N/A 186 #N/A 
skewness 0.59 0.72 0.90 -0.30 -0.37 0.78 0.00 -0;39 0.52 1,7 
Kurtosis -0.33 0.04 1.26 1.02 -0.59 0.04 0.10 -0.62 0.0 3.9 
Stn. Dev. 3.76 1.33 1.14 0.81 0.07 0.07 98,3 0.06 29.6 892.3 

• 

Number of clasts:'25 >128 mm 
Mean 27.57 14.59 11.88 3.82 J3-53_ 0.81 282. 0.61 180 7175 
median 26.70 14.30 11.90 4.00 0.55 0.79 291 0.63 182 7108 
mode 25.50 13.50 12.20 3-50 0.59 0.81 #N/A #N/A #N/A #N/A 
skewness 1.04 0.44 0.39 -0.56 -0.75 0.36 -0.64 -0.57 0.51 0.4 
Kurtosis 0.94 -0.75 -0.73 0.51 -0.10 -0.79 0.80 -0.53 -0.50 -1.0 
Stn. Dev. 3.59 1.31 1.74 0.98 0.06 0.08 77.8 0;06 26.9 2080,8 

Number of clasts: 100 ; 
DISC 

32-64 mm 
a-axis b-axis c-axis Radius b/a C/b Round

ness 
Spheri

city 
Flatn
ess 

Weight 
(a) 

Mean 7.16 5;87 2.35 2:03 0,83 0.40 568 0.65 287 147 
median 7.20 6.00 2.40 2:00 0,82 0.40 585 0.65 278 147 
mode 7140 6.20 2.40 2.50 0.79 0.33 714 0.71 225 143 
skewness -0.15 -1.07 0.25 -0.69 0.38 0.33 -0.50 -0.01 0.49 6.2 
Kurtosis -0.24 0.88 -0.35 0.01 -0;68 -0.41 0.07 -0.46 -0.37 02 
Stn. Dev. 0.76 0.37 0:44 0.54 0:07 0:07 150.8 0.05 53.31 35.0 

Number of clasts: 100 64-128 mm 
Mean 10.17 8.55 2:98 2.94 0.84 0:35 578 0.48 328 418 
median 9.80 8.10 2.95 3.00 0.83 0.35 625 0:48 312 354 
mode 9.80 8.00 3.40 3,00 0.80 0:33 625 0.53 375 353 
skewness 1.38 1.08 0,70 -0.14 0.27 0.12 -0.76 0.00 0.87 1.9 
Kurtosis 2.36; 0.54 1.69 0.15 0.65 -0.19 0.17 0,45 1.10 3.4 
Stn. Dev. 1.82 ' 1.44 0.76 1.16 0.08 0.07 201.7 0.04 70.81 256.0 

Number of clasts: 25 >128 mm 
Mean 16.83 14.42 4.69 4.05 0.86 0.33 488 0.62 338 1734 
median 16.70 13.70 4.60 4.10 0.85 0.32 479 0.62 352 1590 
mode 16.70 13.50 4.30 4.50 0:96 #N/A #N/A #N/A #N/A #N/A 
skewness 0:37 1.19 0.96 -0.06 0.07 0.95 -0.18 0.37 -0.76 1;1 
Kurtosis -0.55 0:59 1.1:9 0.39 -1.41 0.82 -0:33 -0.86 -0.25 0.9 
Stn. Dev. 2.16 1,48 0.74 1.3583 0.085 0.04 168.8 0.04 38.7 630.0 



423 

O 
C/5 

ce 

H 
H 

S! 
o 
« 
u 
H 
U 
H 

o 

o 

i 
O 

U 
38 

T ) 

C f l 
1/1 
03 

C/5 

N 

ID 

ff 

<L) 
N 
CO 

a 
i 

.s ^ 
u 
N 

CO <U J3 (J 

£ | 

§ ft 

! 
o 

"8 t: o 

I 

ON 
ON 

i 
u 

ON 

I 
> o 

2 

bp 'C eg u 

e » 

! 
60 
c 

l-l 

<u 
1 
3 
C 

I 
o 

B o-
00 P 
—i 5b 

s! 1 
1 1 

o> 

u 
(0 
S 

CO 

o 
DC 

CO 

CO 
"O 
CO 
s 

(0 

2. 
co 

a< 

(0 

a a> 
h- 2 

CO 

CM 

in 

oo 

CM 

00 

CO 

I f ) 

CO 
CO c o 
CO 
o c 

CO 
CO 
c 
o 
to 
o c 

co 
CD c o 
to o c 

co d) c 
G 
to 
o c 

CO 
CO c o 
CO 
o c 

CO co 

2 
0) o> 
a. 5 
5- o 

CM "fr 
CM CM 

CM CO 

CD O 
T - CM 

oo 5 
CO CO 

h- CD 

CM o 
00 
I f ) 

O) CO 00 ^ 
O) CM 
CM 00 

a> 
oo 

00 
4-1 _ 
11 

c© 
"D 
>< 
CO 

o 
(0 

o 

co •a 
co 

m 

2 
a 
V) 

CO 

CO 

CD 
O) 

cri 

CO 

= CO 
< CO 

00 
i f i 

00 

5 2 

I f ) 

(0 

0) 

CO 

< o 

CO CO 
CD 3-c o 
co 
o c 

CM 
CO 
CO 

CM 
d 

CO 
® 00 
o 1^ 
to „ o <N c ^ 

O) 
d 

CO 
® CO 
O i f ) 
CO 
o 0 0 

c d 

d 

CO 
CO 

CO 
CD 
c 
o o 
to 
o 

oS 

00 
d 

CM 
O) 

CO 
I f ) 

00 
O) 

r>-
O) 

CO 
CO 

o c o 
oo 

o 
00 

o CO 00 
lO 00 o 
CO 

CO CO 
CD CO 

cd 

to
n CM d to
n 

CM CO 
o CO 00 

CO c CO 
00 I f ) CO 
CO I f ) 

CO CO 

pe
r 

Te
 

CO 
$ ro

ut
 B

ex
 

er
ag

e 

a. o ro
ut

 B
ex

 

> 3 - 1 < 



424 

• a 
u 
00 <U oo 

u 
oo 
0) 
8-

X ! oo 

, p 

N 

ff 

u 
N 

1 
N 

w 

00 
Os 
ON 

1 
5 
00 

« r-
«J ON 

• O ON 5 
C <-> I 
23 B S « 
fa u 
oo Q 
!3 5 
0 ON 

S *H 

« ow 
«J O •a 

1 "5 
n oo 

om c 
2 • § 

1 1 
§ a 
j I 
B oo 
§ & 

<D 

U 
CO 

CO 

O 
cc 

CO 

0) 
"O 
CO 
ffi 

(0 

CD . 
£ 
Q. 
CO ' 

CO 

_ 2 
«8 
i— 2 

5J 
to 

to 

CO 
CM 

in 

CO 

CO 
CD 

CD 
Q. 
Q. 

m m 

_ o ^ 
CO CM 

CO CM 

•t— CO O) 
v- CO - i -

O T - O 

O CO o 

O O CO 

T - CO 

in 
CO 

00 T T 

CO 
CD 
CD 

I -
CD 

o 

o 
CD 

oo 

p 

CO 00 ~ 

O i- T - CM 

CM 

^ O CO 
CM v CO N 

w N r « 
r t o i n J_ 

CO CO T — 

CM 
CO 

CO 
CO 

<r» o O i- 0 0 CM 

CO 

00 

CO 00 g 
s oo J° 

CO CO 
CD 

in 
00 

o o co r- m 
CM i-

as 
o t— 

C/i 

E l 

H 
•a 

o 
CO 

T3 
O 
OC 

0) 
« 

m 

2 
CD 

a 
CO 

5 
CO 

(0 

< 

- I 

CO 

CO 

o 
•"ST 

CO T — CM 
CD 

CO DC CO 

CO q 
d CD — 

o CO 
d CO 

00 CO CD 
CO iri CO 

CO CO 
00 CM* 

in 
CD 

o m CO 
d oS 

CD 
in 00 d 

CO 00 in 
CO oS CO oS T — 

o "t 00 
d r-" CO 

o r>. o 
d in d 

o o o 
o CO d 

o CD 00 
d CO CO 

r-
a> 00 d 

T ~ CM 

00 m CD 
CO in CM 

CM CD CO 
• 

CM CM 

00 CO CO 
in CD 

T — ' » — 

CO CO 
its 

. X 
O 

kt Be
 

add ow
e 

ro
ut

 

3 _j 

CO 

< T - T -

o 
d 

co 
in 

in 
T -

oo 
d 

CM 
00 

00 
CD 

CO 

"ST 
CO 

iri 
CD 
iri 

co 
oo 
r>* 

co 
d 

CD 

in 

CO 
CD 

2 
< 



425 

1 J 

CO 

o 

CO 

5 2 

CO 

a 
(0 

CO 

_ 2 

CO 

CO o 
CO g 

CO CO 
CO 

. o> 

o 

in 

CM £ 

m co i- o 

o m m 

o r>. 

i- CM 

O £ 

T - CO 

op o> 
CM O 

o> o in 

- 8 

_ m 

m 
cd 

co 
2 

CD 

CM 

CD O 

CO 

CM 

CD 

in 

CM CD CD 

CM 

in 

CO 

CO CM 
m 

o 
CD 

CD £• CO 00 

CD 

oo CO 
CM 00 

co i n 
CM CO 

o 
CO 

1 - O T -

CD 

CO 

CM 
LO 
CM 

O 
CM 

CO 
m CM 

CD 
o 

00 <tf 
CO CM 
CM CO 

CO CO 

0 CD ±± -= 
Q. > 3 co 

3 

o 
CO 

o 
tc 

a> 
« 
ffi 

£ 
£ a <0 

2 
CO 

CO in m 
CO 
CD 

CD 
o 

CD 

M
S CO 

CO M
S 

o 
CD 10

.8
 

13
.2

 

11
.6

 

O o 
CO 

00 
LO 

CD 

s in 
CD CO 

CO 13
.0

 

14
.8

 

14
.8

 

14
.8

 

< CD 
CM 

CM CD 
CM 

o 
CM 

T — 1 

_ l o CD 
co 10

.7
 

LO 

in 
LO 11

.9
 

12
.6

 

11
.7

 

CO 
CO 11

.9
 

13
.9

 

13
.0

 

CO 

= co 
< 00 

CO 
CO 

CD 

CO 

o O in 
00 

o O o o 
CO CO 

o -r- LO CD 
cd LO 

CO 
LO o CD CM 
CM 00 O) CD 

co 

a. 
3 

CD 

CD 

CM 
CO 

00 h» 
in 
T - CM 

CO 

o 

rs 
CM 
CM 

o 
" i f 

CM 

m 
CM 
It 
o 
a> 
CO *-> 3 
p 



426 

N 

ff 

N 

a 
3 

6 

1 

2 B 
§ & 
& C/5 
to 
& « 

O 3 

3 1 

5 © 
<*-> "2 2 -8 I & 

| 3 ^ 

* 1 
6 1 
6 
a 3 

C/3 o. 
3 

a 
0) 
N 

CD CO o> 
E « CO 

o> CO 
a> w 

3 S 
CO 

o> 
E £ 
l i 
s o 

M
S 

SS
 

M
S 

o -J 
(0 

(0 

(0 

0) 
re 
m 

CO 

a 

CO 

£ 2i 

51 
CO 

00 
CO 

a> 
CO 

CO 
00 CO 

CO 
CM 

T -
cn | v 

o 
CM | V 

CO 
CM 

«* 

CO I f ) 
CM 
CO 
T — 

o 
CO 

w 
i f ) 

I f ) 
CM 

o 

CO CD 
T ~ 

I f ) o 

CO 
CM 

i f ) 
IV CO 

CD 
i f ) 

CO CO 
CD 

"* 

s 00 CO 
CM 

CM CO CD 

w CD 
CO 

CO 
CM CO 

i f ) CO 
CM 

CD 
"* 

CO 
CO 

I f ) 
00 
00 
CO 

o CO 
CO 

5-
CO 

h» 
I f ) 
00 

CM o 
CM 

o 
CO 

CO 
i f ) 

I f ) 
I f ) 

CO 

o o> CO o 
I f ) 

CO 

5 
CD 
O 

CO CO 
CD <D 
0) .2 

8. | a 5 

O 

m 

O 
CO 

5 

£ 3 
i 8 
•s c 

"D 

U 
CO 

O 

0) 

CD 

a 
CO 

CD 

CO 

CO 

CO 

CO 

CO 

CO 
CO 
CD 

if) 

O 
r v 

CO 

CO 

00 CD 
T - ' CD 
CO lO 

2 co 2 

CD CO 
CO CD 

00 
rv" 

00 CM 
CO* I f ) 

rv 
fv" If) 
i- CM 

-tf CD 

2- CM 
CM 
CO 

CM 
CM 

00 I f ) 

CM 

r-v co 
CO CO 

1 -

cd co 
o 
if) 

00 CM 
CO T -

CD CD 
T - CM 

CVJ » 

O CM 
CM CO 
CM CM 

if) 
T - CO 

d) <D a 5 
D - I 

CD 

CO 

O ) 
CD 

CM 
CM 

I f ) 
O 
CM 

CO 

CM 

CO 

CM 
CD 

I f ) 
CM 

CO 

O 
CO 

•<* 

00 
co 

00 CM 

CM 

lO 
CO 

CM 
i f ) 

CO CO ^ J I 8 
K- I— £0 

3 
O 

rv 

CM 
CM 

oo 
CD 

00 
CM 

CD 

CO 
CM 
CM 

O 

CM 
| v 

CD 

m 
d co 

CM 
CO 
CD 
CM 

CO 

(0 
0) 
O) 

S 
a> 
> 

< 



<L> 

-a 
oo 
« 
oo 

BO 
<a 
o 
00 

u 
X ! 
oo 

oo 
(U 

XS 

3 

a 
1 
'8 
a, x 

i 

8 

I 1 

.a 
oo 

a 

N 
00 

-a a 
oo 

66 
22 

•5 os 
Os 

€ o (X 
oo 
c 

£ 

.2 5? 
<u 

i—> 

i 
00 
OS 
O N 
i — I 

1 

O 

& 

3 
G 

3 
C O 

</-> 

< 
I D 

1 

T 3 
O 

"S 

2 
•a 
I 
I 
two 
c 

T 3 
oo 
O , 
3 ' 

§> 
<u 
N 

i s 

i f 
2 Q 

u 
(0 

0) 

CO 

0) 

(0 

CO 

2 . a> 
a 
co: 

CO 

- 12 

co 

CO 
CO 
CO 11

6.
5 

a
s 

00 CO 

o 
CO 0 0 

i n 
CO 
CM 

o o 
CM 

CM o 
CO CO 

LO 
CO 

i n CO CD 
CM 

CO 
CO 

CO 
CO 

CO 

CO 

r - CO 
CM 

O ) 

LO 
CM 

CM 
CO o 

r » 
I s -
T — 

CO 
CO 

O) 
CO 

CM 
m 

CO CM 
CO 

CM 
m 

*-
l O CO 

CM 
O ) 
CO 

h » i n 
CO 

CM 
CM s 

CM 
CO 

CM 
h - w 

CO o 
CM h » 

T f 

CO 
CO 

CO LO 
CO CO 

CO CD 
o CO 
CM LO 

CO CO 
CO CD 
CD CD 

h - H 
h_ 

CD CD 
Q . 
Q . o 

Z > - 1 

CM I -
0 0 T -

CM 

m 
m 

CD 
CM 

CO 
i n 

CM 
CM 

o 
CD 

CD 

2 « 

2 CO 

u 
CO 

•o o 

CD 
CO 
m 

CD 
Q. 

CO 

B 
CO 

CO 

CO 

CO 

CO 

CM CO 0 0 
LO CO 

CO 

CO CO CO 

CO 0 0 
CM CM d CO 

CM CO 

m m 
d CD CD 

0 0 CM CO CO 

CO CM CD CO 
' r~ CO CM 

CO O CO 0 0 

i r i CD CO CO 
i n 

CO T - ; 

CO 
•<t CO CO 

r - 0 0 CO o 

m CD d 
CM CM 

CO c o 
CM CD i r i d 
^ ™ CO CM CO 

CO CM CO 

d d CM d 
CM m Ti

o CO e n o 
CD CM CO 

CM 

i n CO CD 

CO i r i CO 

CD h - o 
CO CO CD 

CM 

O 0 0 o 
CD CO CD 

*~ 
N- CO o 

d CM CO CM 
CM CO m i n 

h ~ CO 0 0 CO 
CD d i r i CO 
T ~ CO CM CM 

h ~ CO CM CO 

CO CO CO 
CM CO i n i n 

CM •<t CO o 

CO 
T — CO m 

CO 
CD 
CD I -i_ 
CD 
Q . 
Q . 3 

CO 
CD 
CD 

CD 

Q 

a 
CD 

C O 
«•-"» 
3 

p 

CO 
CD 
O ) 

2 
I 



428 

i/_ 

I 
o 

o 
H 

U 

fa 

o 
H 

5 

O O H 

~ .2 
a 

=9 
ja <o 
3 co 
O *-i 
« u 
s «« 
° a 

J £ 

3 7. o S 
"3 • • 

I t 
<o o 
& 4 — ' 

• i—l 

9_ 

3 o 

G « 
- S ° « 
C «g 

to o 
I - I 

a * 
O 4J 

"2 

'•3 05 

.1 8 Q 
o 8 «u 

S o 
o 2 ~ 
u -n <D 
6 p jo £ 
| 3 s 
^ PQ S3 
CO CH CO 

< _ § • § 

ui = tr 
no E _ 
H * ^ 
b. N tr 
X _ o. 
a m ai 
3 .E 

K a> CO 

o o ~ - p o c o u > - - r « 
- - CM 

P O r - ^ t P m P P O 
i - (1 r 

O O - C T C O P P C O C M P 
CM T-

O O O T - W T t O ) T - T - O J 

O P O C M C M C O h - C Q O O 

ooooocM- f - fCMOO 
- - eg 

O O T - C O - - C O C M O O O 

o o w c o - t c o p p o p 
eg *-

P P O O I - . I - _ > C M C M 

0 0 0 - - - _ - t h - 0 0 

• P P p T - C O r > - C O U . - - p 
.SO. - - - - - -

"Z i_oooo<_>eoa .cooo 
• - CM •"-
O ) CD 

o p o p c a c o p c o c o N 

o o e o e o o e O 
o o o o o o o o o 

o p o c o o o e g h - h - o o 

0 0 ~ - < - I O C M - - 0 0 
T- CM T-

O O C V J I - O T J - C O O O O 

, _ . O P C a O . I - - - P O P O 

. = 
® O P C M C O h - C D - t C O P O 

| _ O O O - 1 - 0 > - O C O C O P P 

a> CO 
P T - I O C O O - - P O P P 

i - CM i -

o o o o o o o o o o 
o o o o o o o o o o 
i - c M n « i f l < o N e a o > T -

o o - - i r > o > c o a . - - o o 

P O - - C O P - - I I . P O P 
0. r N r 

o o e o o Q o o e O 
e o o o o o o e o o 

o o c o c o o w c M t - o o 

o o o > - - c M t - - - - O P P 
0. CM f -

„ r r 
" C M 
2 •• ° ; » i 
£ N • 
£ 5 co 

o o ^. 
CC m to 

T - N C 0 O . - | " C 0 C O P P 

P O - - 0 > h - - f O > 0 0 

_ o - - r - . c o i n - - p o o o 
t H —- CM 
CO CC 

-r 
o o o m c M c o m t A o o 

m 
P r - m i O C O C O C O P P P O C M i - r ~ C M h ~ T - P P 

O O T C O C M O T - l O O O t t P I O W C M » - U > * - O P P _ _ _ _ _ to _ _ _ _ _ _ 
a> a> 

I - CO H O T 

_. O - J - I O O J C M O O O O O 
fc (- CM ~" 
CO (E 

P P I O C O C M - t - - O P O 
(SQ, T- T- T-

c o P P P i n c o c M O O P 

i h - • CM r-

5>co 

~ 0 0 > h ~ C O - f C M P O O P 

H CO 
o o o o e o o o O 
o o o o o o o o o 
N n « i D < D h a a < -

O P O C . C Q C O h - C » P P 

O D O O o o o e e O 
o o o o o o o o o o 

O O P C M C T C M C M T - O O 
T- CM < -

a o e o o o e o o o 
o o o o o o o o o o 

o o < o c M u . c o - r o p p 
CM - -

O O P C O N C M L O O O O 

N - t ^ ° 
O CM CC 

C O O C O C M U I C M P P P 

•C « CO 

e « h 
CC O) co 

O P P P O C O h - P P 
r W r 

o - o i ^ f o i n - o o 
T- CM 

01 
01 
f- CO 

P O f - c M - r o - c o o o o 

0 _ O O e O C M O O < M _ - ) 0 0 0 

I -
I— C M T - — - — - L O O O O O O 

<0 • —• CM 
•* oc 
io n o o p - f c o c n c o c o o o 
a • *" ,_ 

(0 CD 
C P P P - - - 1 - C 0 C 0 - - O O 
; H - - - - - -
O CO 
•JJ O I O T - O J _ . - - P O P P 
O CM - • 
h- CO 

P P t - h - O O h - T - O O P 
CM 

I - T - 0 > < O C M O O P P P O 
» • CM r-
o> Q_ 
ai „ p p i n o i o i - r c o p p p 

_ J • -1- - -
» CD 
c p p c a c o c o i o t o o o p 
CO I - CM 
t_ 
OB CD 

CO 

o o o o e e o o O 
o o o o o o o o o NPITKIHISIOCli-

o o < o < o o - t - f o o 
CM - f CM 

o o o o o o o o o O 
o o o o o o o o o o 

O O O t O T f O O O O O 
Q T- CM -r CM 

(0 CM 

POCM-rOCMCMOP 
T - CM CM "t 

CMCMCMCMCMOPOP 
co in - -

a P P P c o c o o i i o p p p 
• T - -r i - CM 

E ( _ O C M C M - t C M O O O O O 
„ N O * -

C O C M C M C O O O O O O O 
CM CM 

o o o o o o o o o o 
O O O O O O O O O O 
r M B i f U I K I S C S B r 

p p - tCM-rCM < O C M O P 
Q " f CM CM 

n P O U J - r C O C M P P P P 
. II) - M 

E i _ O t O C M C M O O O O O O 
• (D CO 

O P C O O C M C O - t O P 
CM CM CO r-

O O C D C O O - f O C M O O 
n n - -

CO CD 

3 ._: I - <= 

O ) 
« o 
CO CO 

O C D C O O C O O O O O 
• * CM CM 

C M C M C O C M - r C M O O P 
r- - f CM T-

c ^ o o c o c o o - r - r o o p 
„ . - - CM • * 
i _ CO 
o> 

O O C M C O P O O P P P 

•• _ O O C M C O O C M O P O P 
® ° : CM co * -
M CD 
c . p o o - r c o c o c M P P P 

* . O C O P C M P P O O O P 

o o o o o o o o O 
O O O O O O O O O 

N n « » i o N a a i < -

o o o o o o o o o O 
O O O O O O O O O O 
T - c M c o - t i n c o r ^ f l o o i T -

o o o o o o o o o O 
o o o o o o o o o o 
T - C M C O - t l O C O h - C O O l T -



429 

Table A3.2 Friction angle frequency distributions for the test particles of equal weight 
but differing shapes/orientations on various bed roughnesses. 

Roughness 1 Roughness 2 

Friction S B.T B.P R.T R.P D Friction S B.T B.P R.T R.P D 
angle (<p) angle (<p) 

10° 0 0 0 0 0 0 10° 0 0 0 0 0 0 
20° 31 0 0 27 0 0 20° 8 0 1 2 0 0 
30° 19 6 6 22 1 11 30° 26 7 5 31 2 5 
40° 0 24 38 1 27 20 40° 15 14 26 16 10 19 
50° 0 12 4 0 19 14 50° 1 22 10 1 17 13 
50° 0 6 2 0 3 2 50° 0 5 3 0 16 7 
70° 0 2 0 0 0 3 70° 0 2 4 0 5 6 
80° 0 0 0 0 0 0 80° 0 0 1 0 0 0 
90° 0 0 0 0 0 0 90° 0 0 0 0 0 0 

Roughness 3 Roughness 4 
Friction S B.T B. R.T R.P D Friction S B.T B.P R.T R.P D 

angle (<p) P angle (<p) 
10° 0 0 0 0 0 0 10° 0 0 0 0 0 0 
20° 22 0 0 9 0 0 20° 1 0 0 0 0 0 
30° 21 2 15 32 6 10 30° 16 0 1 15 0 0 
40° 7 19 15 9 19 23 40° 28 1 7 26 2 7 
50° 0 23 13 0 9 7 50° 5 22 24 7 11 16 
50° 0 5 6 0 16 6 50° 0 17 15 2 26 17 
70° 0 1 1 0 0 3 70° 0 9 2 0 11 10 
80° 0 0 0 0 0 1 80° 0 1 0 0 0 0 
90° 0 0 0 0 0 0 90° 0 0 1 0 0 0 
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Table A3.3 Friction angle frequency distributions for natural test particles of four 
different shapes on various bed roughnesses. 

Roughness 1 Roughness 2 
Friction S B.T B.P R.T R.P D Friction S B.T B.P R.T R. D 
angle angle P 

10° 0 0 0 0 0 0 10° 0 0 0 0 0 0 
20° 27 0 0 11 0 0 20° 9 0 0 4 0 0 
30° 22 4 3 33 3 7 30° 27 1 2 20 7 0 
40° 1 22 45 6 30 21 40° 12 9 30 20 26 18 
50° 0 21 2 0 14 20 50° 2 26 16 6 14 25 
50° 0 3 0 0 3 1 50° 0 11 2 0 2 5 
70° 0 0 0 0 0 1 70° 0 3 0 0 1 2 
80° 0 0 0 0 0 0 80° 0 0 0 0 0 0 
90° 0 0 0 0 0 0 90° 0 0 0 0 0 0 

Roughness 3 Roughness 4 
Friction s B.T B.P R.T R.P D Friction S B.T B.P R.T R.P D 
angle angle 

10° 0 0 0 0 0 0 10° 0 0 0 0 0 0 
20° 7 0 0 0 0 0 20° 2 0 0 0 0 0 
30° 23 0 2 13 2 2 30° 14 0 0 11 0 0 
40° 17 4 24 29 6 4 40° 30 3 5 25 1 0 
50° 3 18 18 8 25 32 50° 4 19 27 14 12 12 
50° 0 16 1 0 16 8 50° 0 13 10 0 31 22 
70° 0 8 4 0 1 3 70° 0 12 7 0 6 12 
80° 0 4 1 0 0 1 80° 0 2 0 0 0 4 
90° 0 0 0 0 0 0 90° 0 1 1 0 0 0 

(S: sphere, B.T: Blade in transverse orientation, B.P: blade in parallel orientation, 
R.T: blade in transverse orientation, R.P: rod in parallel orientation, D: disc). 
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Table A3.5 Friction angle distributions for particles of equal weights 
in six shapes/orientation classes on the reconstructed natural bed 

Friction 
angle 

S B.T B.P R.T R.P D 

10° 0 0 0 0 0 0 

20° 0 0 0 0 0 0 

30° 8 0 0 4 0 0 

40° 22 2 6 22 0 0 

50° 48 30 28 30 14 12 

60° 16 48 26 26 42 30 

>70° 6 20 40 18 44 58 

Table A3.6 Friction angle distributions for naturally-formed test 
particles in six shapes/orientation classes on the reconstructed 
natural bed. 

Friction 
angle 

S B.T B.P R.T R.P D 

tdu 0 0 0 0 0 0 

20° 1 0 0 0 0 0 

30° 6 0 0 5 0 0 

40° 19 1 5 17 10 0 

5p° 8 9 28 16 15 2 

60° 11 28 12 5 8 14 

>70° 5 12 5 7 17 34 
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APPENDIX 4: RESULTS OF PHOTOHGRAPHIC VISUALISATION 
EXPERIMENTS FOR ARTIFICIAL AND NATURAL PARTICLES 

Table A4.1 Results of settling and transport velocities experiments carried out 
with artificial test particles in four shape classes. Note: W 0: fall velocity, D: 
medium axis of particle, V: Kinematic viscosity. (R: rolling mode, S sliding 
mode) 

Photo 
No 

Shape 
of test 
particle 

Settling 
Velocity 
cms'1 

Reynolds 
Number 
(Wo D/V) 

Transport 
velocity 

on bed cm s"1 

Reynolds 
Number 
(Wo D/VO 

Dominant 
mode of 

Transport 
15 Sphere 33.3 3333 13.3 1333 R 
16 Sphere 33.3 3333 14.3 1429 R 
17 Sphere 33.3 3333 12.5 1250 R 
18 Sphere 33.3 3333 13.3 1333 R 
19 Sphere 33.3 3333 13.3 1333 R 
20 Sphere 40.0 4000 13.3 1333 R 
21 Sphere 40.0 4000 13.3 1333 R 
22 Sphere 33.3 3333 12.5 1250 R 
23 Sphere 40.0 4000 13.3 1333 R 
24 Sphere 50.0 5000 14.3 1429 R 

Mean 37.0 3700 13.4 1336 R 
S. Dev. 5.5 0.6 

27 Blade 12.5 1250 11.8 1176 S 
28 Blade 11.8 1176 12.5 1250 S 
29 Blade 13.3 1333 12.5 1250 S 
30 Blade 15.4 1538 12.5 1250 S 
31 Blade 15.4 1538 11.1 1111 S 
32 Blade 13.3 1333 10.0 1000 S 
33 Blade 13.3 1333 11.8 1176 S 
34 Blade 18.2 1818 - - S 
35 Blade 40.0 4000 9.1 909 S 
36 Blade 14.3 1429 - - S 

Mean 16.8 1675 11.7 1144 
S. Dev. 8.4 0.9 

1 Rod 28.6 2857 12.5 1250 R 
2 Rod 33.3 3333 11.8 1176 R 
3 Rod 28.6 2857 13.3 1333 R 
4 Rod 40.0 4000 11.1 1111 R 
5 Rod 28.6 2857 11.1 1111 R 
6 Rod 33.3 3333 11.8 1176 R 
7 Rod 28.6 2857 10.0 1000 R 
8 Rod 22.2 2222 10.5 1053 R 
9 Rod 22.2 2222 12.5 1250 R 
10 Rod 28.6 2857 11.8 1176 R 

Mean 29.4 2940 11.6 1164 
S. Dev. 5.3 0.9 

11 Disc 13.3 1333 10.0 1000 S 
12 Disc 13.3 1333 11.1 1111 S 
13 Disc 25.0 2500 10.0 1000 S 
14 Disc 13.3 1333 - - S 
15 Disc 13.3 1333 11.1 1111 S 
16 Disc 14.3 1429 - - S 
17 Disc 12.5 1250 11.8 1176 S 
19 Disc 13.3 1333 12.5 1250 S 
20 Disc 14.3 1429 11.1 1111 S 
21 Disc 13.3 1333 11.8 1176 S 

Mean Disc 14.6 1461 11,2 1117 S 
S. Dev. Disc 3.7 0.9 
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Table A4.2 Results of settling and transport velocities experiments carried out with 
natural particles in four shape classes. (W 0: fall velocity, D: medium axis of particle, 
V: Kinematic viscosity) 

Photo Shape Settling Reynolds Transport Reynolds Dominant 
No of test particle velocity Number 

(Wo D/V) 
velocity Number 

(Wo D/V) 
mode of 

transport 
1 Sphere 68.8 6§7S 25.0 2500 R 
2 Sphere 68.8 6875 28.6 2857 R 
3 Sphere 68.8 6875 28.6 2857 R 
4 Sphere 68.8 6875 28.6 2857 R 
5 Sphere 45.8 4583 28.6 2857 R 
6 Sphere 68.8 6875 28.6 2857 R 
7 Sphere 45.8 4583 25.0 2500 R 
8 Sphere 68.8 6875 25.0 2500 R 
9 Sphere 45.8 4583 28.6 2857 R 
10 Sphere 68.8 6875 28.6 2857 R 

Mean 61.9 6188 27.5 2750 
Stn. Dev. 11.1 1.7 

11 Blade 22.9 2292 20.0 2000 S 
12 Blade 34.4 3438 25.0 2500 S 
13 Blade 15.3 1528 28.6 2857 S 
14 Blade 22.9 2292 18.2 1818 S 
15 Blade 34.4 3438 16.7 1667 S 
16 Blade 27.5 2750 16.7 1667 S 
17 Blade 27.5 2750 20.0 2000 S 
18 Blade 68.8 6875 18.2 1818 s 
19 Blade 34.4 3438 16.7 1667 S 
20 Blade 22.9 2292 22.2 2222 S 

Mean 31.1 3109 20.2 2022 
Stn. Dev. 14.6 4.0 

22 Rod 34.4 3438 22.2 2222 R 
23 Rod 68.8 6875 22.2 2222 R 
24 Rod 34.4 3438 20.0 2000 R 
25 Rod 45.8 4583 20.0 2000 R 
26 Rod 45.8 4583 22.2 2222 R 
27 Rod 45.8 4583 20.0 2000 R 
28 Rod 45.8 4583 22.2 2222 R 
29 Rod 68.8 6875 20.0 2000 R 
30 Rod 45.8 4583 20.0 2000 R 
31 Rod 45.8 4583 20.0 2000 R 

Mean 48.1 4813 20.9 2089 
Stn. Dev. 11.8 1.1 

33 Disc 22.9 2292 18.2 1818 S 
34 Disc 19.6 1964 14.3 1429 S 
35 Disc 22.9 2292 18.2 1818 S 
36 Disc 22.9 2292 13.3 1333 S 
1 Disc 22.9 2292 18.2 1818 S 
2 Disc 22.9 2292 15.4 1538 S 
3 Disc 22.9 2292 12.5 1250 S 
4 Disc 34.4 3438 15.4 1538 S 
6 Disc 19.6 1964 15.4 1538 S 
7 Disc 22.9 2292 20.0 2000 S 

Mean 23.4 2341 16.1 1608 
Stn. Dev. 4.1 2.4 
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