
Durham E-Theses

Visualising software in cyberspace

Young, Peter

How to cite:

Young, Peter (1999) Visualising software in cyberspace, Durham theses, Durham University. Available at
Durham E-Theses Online: http://etheses.dur.ac.uk/4363/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4363/
 http://etheses.dur.ac.uk/4363/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Visualising Software in Cyberspace

Peter Young

Ph.D. Thesis

The copyright of tiiis thesis rests
with die author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

Research Institute in Software Evolution

Department of Computer Science

University of Durham

October 1999

1 m 2000

Abstract

The problems of maintaining software systems are well documented. The increasing size and

complexity of modern software serves only to worsen matters. Software maintainers are typically

confronted with very large and very complex software systems, of which they may have little or no

prior knowledge. At this stage they wi l l normally have some maintenance task to perform, though

possibly little indication of where or how to start. They need to investigate and understand the software

to some extent in order to begin maintenance. This understanding process is termed program

comprehension.

There are various theories on program comprehension, many of which put emphasis on the construction

of a mental model of the software within the mind of the maintainer. These same theories hypothesise a

number of techniques employed by the maintainer for the creation and revision of this mental model.

Software visualisation attempts to provide tool support for generating, supplementing and verifying the

maintainer's mental model.

The majority of software visualisations to date have concentrated on producing two dimensional

representations and animations of various aspects of a software system. Very little work has been

performed previously regarding the issues involved in visualising software within a virtual reality

environment. This research represents a significant first step into this exciting field and offers insight

into the problems posed by this new media.

This thesis provides an identification of the possibilities afforded by 3 D graphics for software

visualisation and program comprehension. It begins by defining seven key areas of 3D software

visualisation, followed by the definition of two terms, visualisation and representation. These two terms

provide a conceptual division between a visualisation and the elements of which it is comprised. This

division enables improved discussion of the properties of a 3D visualisation and particularly the

identification of properties that are desirable for a successful visualisation. A number of such desirable

properties are suggested for both visualisations and representations, providing support for the design

and evaluation of a 3D software visualisation system.

Also presented are a number of prototype visualisations, each providing a different approach to the

visualisation of a software system. The prototypes help demonstrate the practicalities and feasibility of

3D software visualisation. Evaluation of these prototypes is performed using a variety of techniques, the

results of which emphasise the fact that there is substantial potential for the application of 3D graphics

and virtual reality to software visualisation.

Acknowledgements

I would not have been able to produce this thesis without the direct help and support of a number of

people. There are also many others who have unwittingly contributed by providing me with an

interesting and enjoyable time throughout my research. For those not named below, I thank you all.

First and foremost, this thesis is dedicated to:

my fiancee Joanne,

my family Brian, Diane and Mark,

my late grand-parents, Don and Peggy,

and my grand-parents, Frans and Louise.

Joanne deserves a further mention for her continued support throughout my years of studying, her

tolerance of my erratic work patterns, and for understanding the pressure I have been under. I wi l l never

be able to fully repay the debt I owe her.

My parents have also provided continual support and inspiration throughout my life. Without their

guidance and desire for me to succeed, I would certainly not have made it this far in academia.

I would like to thank Malcolm Munro for being both an excellent supervisor and a very good friend. His

continual support and desire for me to enjoy whatever I choose to do, has made my stay at Durham an

enjoyable and enlightening experience.

My profound thanks must also go to Joe Wood, Claire Knight, Liz Burd, James Ingham (have you

finished reading it yet?), and my mother for proof reading this thesis and offering comments,

constructive criticism and continual support.

The following should all be read with an implicit smiley :-) Steve 'Shabba' Glover and Alex 'West Ham'

Jones both deserve thanks for tolerating sharing an office with me, though at times I often wonder just

who suffered the most. Little Jimmy Ingham and Pete Biggs deserve a mention for their friendship and

shared enjoyment of multiplayer gaming, without them my productivity would have doubled. Claire

Knight, Liz Burd and Pui-Shan Chan have provided superb support and I wi l l miss our 'discussions' on

the merits of 3D and VR. A l l of the staff and students at the Department of Computer Science have

been excellent colleagues and friends throughout my stay at Durham. Without all of these people, and

the many more who shall remain nameless, my life at university would have been considerably less

enjoyable.

This work was funded by an EPSRC award in conjunction with British Telecommunications Pic, both

of which I owe greatly for the foresight to fund this research. Finally, I wish to thank my examiners,

Marc Roper and Rachel McCrindle, for a friendly, professional and thorough approach to my viva.

Copyright

The copyright of this thesis rests with the author. No quotation from this thesis should be published

without prior written consent. Information derived from this thesis should also be acknowledged.

Declaration

No part of the material provided has previously been submitted by the author for a higher degree in the

University of Durham or in any other University. A l l the work presented here is the sole work of the

author and no-one else.

This research has been documented, in part, within the following publications:

• P. Young and M. Munro, A New View of Call-Graphs for Visualising Code Structure, Technical

Report 03/97, The Centre for Software Maintenance, University of Durham, January 1997.

• P. Young and M. Munro, Visualising Software in Virtual Reality, International Workshop on

Program Comprehension (IWPC'98), pages 19-26, Ischia, Italy, June 1998.

• P. Young and M. Munro, 3D Software Visualisation, 1 s t International Conference on Visual -

Representations and Interpretations (VRI'98), Liverpool, UK, September 1998.

Table of contents

1. Introduction 1

1.1 Research background 1

1.2 Problem statement 3

1.3 Software visualisation in cyberspace 5

1.4 Criteria for success 6

1.5 Thesis structure 6

2. Program comprehension and software visualisation 8

2.1 Introduction 8

2.2 Program comprehension 9

2.2.1 Cognitive Models 9

I . Knowledgebase 10

I I . Mental model 1°

I I I . Assimilation and knowledge acquisition 12

2.2.2 Summary 13

2.3 Software visualisation 14

2.3.1 The need for software visualisation 15

2.3.2 Defining software visualisation 16

2.3.3 The position of software visualisation 18

2.3.4 Taxonomies of software visualisation 20

2.3.5 The current state of research 21

2.3.6 Summary and conclusions 23

2.4 Conclusions 24

3.3D visualisation 26

3.1 Introduction 26

3.2 Virtual environments and VR systems 27

3.2.1 Virtual reality systems 27

3.2.2 Virtual reality software 28

3.2.3 Important factors in VR systems 29

I . Visual realism 29

I I . Latency 30

II I . Presence 30

3.2.4 Types of VR systems 31

I . Window on World (WoW) or Desktop VR 32

I I . Immersive VR 32

I I I . Augmented reality 33

IV. Fish tank VR 33

3.2.5 Summary 33

3.3 Information visualisation 34

3.3.1 Visualisation techniques 34

I . Surface plots 35

I I . Cityscapes 36

II I . Fish-eye views 38

IV. Benediktine space 38

V. Perspective walls 39

VI. Cone trees and cam trees 41

VII. Sphere visualisation 42

VIII. Rooms 43

IX. Emotional icons 44

X. Self-organising graphs 45

XI. Spatial arrangement of data 46

A. Benediktine cyberspace 47

B. Statistical clustering and proximity measures 47

C. Hyper-structures 47

D. Human centred approaches 48

XII. The information cube 48

3.3.2 Research visualisation systems 49

I . Database Visualisations 50

A. AMAZE 50

B. VIRGILIO 51

I I . Populated information terrains (PITs) 53

A. Q-PIT 54

B. BEAD 55

C. VR-VIBE 56

D. LyberWorld 58

E. Vineta 59

I I I . Legibility enhancement 61

A. Districts 63

B. Edges 63

C. Landmarks 63

D. Nodes and paths 64

IV. Hyper-structure visualisation 64

A. Narcissus and Hyperspace 65

B. SHriMP Views 66

C. SemNet 66

D. GraphVisualizer3D 68

V. Information workspace 69

VI. Software visualisation systems 70

ii

A. VOGUE 70

B. VisuaLinda 71

C. Zeus 72

D. PVMTrace 72

VII. Other relevant systems 73

A. FSN 73

B. SeeSoft and SeeDiff 75

3.3.3 Summary 77

3.4 3D Software visualisation 78

3.4.1 Summary 80

3.5 Conclusions 81

4. Visualising software in cyberspace 82

4.1 Introduction 82

4.2 3D Software visualisation 83

4.2.1 Representation 84

4.2.2 Abstraction 84

4.2.3 Navigation 85

4.2.4 Correlation 85

4.2.5 Automation 85

4.2.6 Interaction 86

4.2.7 Scaling 86

4.3 Visualisations and representations 86

4.3.1 Desirable properties of a representation 88

4.3.2 Desirable properties of a visualisation 89

4.4 An example of the concepts involved 92

4.5 Summary 98

5. 3D software visualisation systems 99

5.1 Introduction 99

5.2 Zebedee 99

5.3 CallStax 104

5.4 FileVis 109

5.5 Software City 122

5.6 Summary 128

6. Evaluating the visualisations 130

6.1 Introduction 130

6.2 Evaluation framework 130

6.3 Informal evaluation 131

6.3.1 Zebedee 131

i i i

6.3.2 CallStax 135

6.3.3 FileVis 136

6.3.4 Software city and software cities 138

6.4 Evaluation against the key areas of 3D software visualisation 140

6.4.1 Representation 140

6.4.2 Abstraction 141

6.4.3 Navigation 141

6.4.4 Correlation 142

6.4.5 Automation 143

6.4.6 Interaction 144

6.4.7 Scalability 144

6.5 Evaluation against desirable properties 145

6.5.1 Evaluating the visualisations 146

6.5.2 Evaluating the representations 150

6.6 Cognitive design elements for software exploration 154

6.6.1 Improve program comprehension 156

I . Enhance bottom-up comprehension 156

II . Enhance top-down comprehension 158

III . Integrate bottom-up and top-down approaches 159

6.6.2 Reduce the maintainer's cognitive overhead 159

I . Facilitate navigation 160

I I . Provide orientation cues 161

III . Reduce disorientation 162

6.6.3 Conclusions 163

6.7 Summary 164

7. Conclusions and summary 166

7.1 Introduction 166

7.2 Background 166

7.3 Results 167

7.4 Evaluation against the criteria for success 169

7.5 Insights into 3D software visualisation 172

7.5.1 General 172

7.5.2 Automation 173

7.5.3 Metaphor content 173

7.6 Further work 174

7.7 Closing statement 175

Glossary of abbreviations 177

References 179

iv

List of figures

Chapter 2

Figure 2.1. Scope and inclusion of software visualisation terms 18

Figure 2.2. Revised scope and inclusion of software visualisation terms 19

Chapter 3

Figure 3.1. 3D Surface plot with corresponding data 36

Figure 3.2. A Cityscape visualisation showing a variety of information 37

Figure 3.3. FileWall: An example of a perspective wall 40

Figure 3.4. Example visualisation of a cone tree representing a directory structure 42

Figure 3.5. Sphere visualisation produced using VizNet 43

Figure 3.6. Emotional icons inhabiting a data space 45

Figure 3.7. 3D graph produced using force directed placement algorithm 46

Figure 3.8. An information cube visualisation 49

Figure 3.9. Formation of an AMAZE query 50

Figure 3.10. Virgilio corridor metaphor for selecting band names 51

Figure 3.11. Virgilio room metaphor, showing information on a selected band 52

Figure 3.12. Viewing albums, songs and lyrics in Virgilio 53

Figure 3.13. Q-PIT Visualisation showing multiple users 54

Figure 3.14. Screenshot of BEAD showing an overview (looking down) of a data landscape

constructed from over 500 bibliographic references 55

Figure 3.15. Screenshot of VR-VIBE showing a PIT containing 5 POIs and a number of users 57

Figure 3.16. Screenshot of LyberWorld showing the NavigationCones visualisation 58

Figure 3.17. Screenshot of LyberWorld showing the RelevanceSphere visualisation 59

Figure 3.18. Screenshot of Vineta, showing the galaxy visualisation 60

Figure 3.19. Screenshot of Vineta showing the landscape visualisation 61

Figure 3.20. Screenshot of a Q-PIT visualisation after application of LEADS 62

Figure 3.21. Example of a hyper-structure 65

Figure 3.22. Screenshot of ray-traced output from Narcissus 66

Figure 3.23. SemNet visualisation 67

Figure 3.24. Various views of a network using GraphVisualiser3D 69

Figure 3.25. VOGUE version control management and C++ class browser 71

Figure 3.26. VisuaLinda implemented using VOGUE 72

Figure 3.27. Execution of parallel processes, shown using PVMTrace 73

Figure 3.28. FSN visualisation of a UNIX file store 74

Figure 3.29. The SeeSoft concept showing decreasing magnification 75

Figure 3.30. SeeSoft visualisation of a large software system 76

Figure 3.31. SeeDiff comparison between two source files 77

Chapter 4

Figure 4.1. CallStax visualisation showing a simple directed graph 93

Figure 4.2. Simple 2D directed graph matching the CallStax of Figure 4.1 93

Figure 4.3. Possible representations for use in CallStax 95

Figure 4.4. CallStax visualisation using a different representation 97

Chapter 5

Figure 5.1. Zebedee graph layout 101

Figure 5.2. Zebedee user interface 101

Figure 5.3. Zebedee graph illustrating a variety of node attributes 102

Figure 5.4. Constrained and unconstrained views of a 3D graph 103

Figure 5.5. Improved layout using manual initial placement 103

Figure 5.6. Standard 2D call-graph of a simple program 105

Figure 5.7. 2D CallStax visualisation of the graph shown in Figure 5.6 106

Figure 5.8, CaUStax visualisation shown in 3D. .. 106

Figure 5.9. CallStax revealing further detail on an item of interest 107

Figure 5.10. CallStax visualisation integrated with other views 108

Figure 5.11 Overview of a software system using FileVis 109

Figure 5.12. FileVis integrated web application 110

Figure 5.13. Illustrating a file containing low-detail function representations 111

Figure 5.14. The high-detail function representations appear as the viewer moves closer I l l

Figure 5.15. Another user within a shared visualisation 112

Figure 5.16. Initial entry to the visualisation showing an overview 113

Figure 5.17. Surveying a particular file within the visualisation 114

Figure 5.18. Requesting detailed information about a particular file 115

Figure 5.19. Moving in for a closer look at the functions 116

Figure 5.20. Selecting a function of interest for a more detailed inspection 117

Figure 5.21. Identifying the features of a specific function 118

Figure 5.22. Characteristics of the function 'main' 119

vi

Figure 5.23. Requesting more detailed information on a function 121

Figure 5.24. Overview of Software City 122

Figure 5.25. The 'downtown' area of Software City 123

Figure 5.26. The 'uptown' area of Software City 124

Figure 5.27. One particular city within a Software Cities visualisation 125

Figure 5.28. Illustrating function dependencies within Software Cities 126

Figure 5.29. Visualising the evolution of a software system 127

Chapter 6

Figure 6.1. 2D graph illustrating the difficulties in depth perception 134

Figure 6.2. Overview of the FileVis visualisation 146

Figure 6.3. Low and high detail file visualisations 147

Figure 6.4. High-detail function visualisation 148

Figure 6.5. A number of function identifier representations 151

Figure 6.6. Low and high-detail function representations 152

Figure 6.7. Cognitive design elements for software exploration 155

vi i

List of tables

Table 6-A. Breakdown of File Vis into visualisations and representations 146

Table 6-B. Assessing FileVis against the desirable properties of a visualisation 147

Table 6-C. Assessing the files within FileVis against the desirable properties of a visualisation 148

Table 6-D. Assessing the high-detail functions within FileVis against the desirable properties of a

visualisation 149

Table 6-E. Summary showing strengths and weaknesses of each visualisation 150

Table 6-F. Assessing the files within FileVis against the desirable properties of a representation. .151

Table 6-G. Assessing the file identifiers against the desirable properties of a representation 152

Table 6-H. Assessing the low-detail functions within FileVis against the desirable properties of a

representation 153

Table 6-1. Assessing the high-detail functions within FileVis against the desirable properties of a

representation 153

Table 6-J. Summary showing strengths and weaknesses of each representation 154

vi i i

Chapter 1.

Introduction

1.1 Research background
It is a widely accepted fact that software maintenance consumes the majority of resources within the

software life cycle [Sommerville92, Standish84]. The high cost in time, money and manpower incurred

by maintenance is usually attributed to shortcomings in the design and implementation cycle. A number

of factors such as project deadlines, cost overruns and inexperience often result in hurried, badly written

and badly documented software systems. Such systems pose significant problems during maintenance.

Regardless of the maintenance task being performed, it is highly likely that the maintainer wi l l require

at least some understanding of the code. This understanding often comes from a hard fought battle in

which the maintainer must attempt to rediscover the intentions and design issues behind the code,

typically from scarce resources and, in the worst case, from the source code alone. For this reason,

program comprehension is generally accepted as being the central task within software maintenance.

Visualisation, and more specifically computer generated visualisation, is used widely in almost all areas

of human endeavour, with often significant gains. One example is the field of scientific and data

oriented visualisation which makes extensive use of computer generated images to view complex data

sets and visualise phenomena that are otherwise invisible. Applying visualisation in this manner often

reveals trends and irregularities, which may be missed when looking at the raw data. One area which

does not benefit from visualisation to any large degree is the role of the software engineer or

maintainer. It is strange that the technology, which makes possible1 such a powerful and widely used

tool as visualisation, should benefit so little. The main reason for this lack of useful visualisation in

software engineering is the abstract nature of the information being presented. Software systems are

inherently abstract structures, they are information artefacts and have no physical form or intuitive

appearance. For this reason, software systems are very difficult to visualise.

Various theories of program comprehension put emphasis on the construction of a mental model of the

software within the mind of the maintainer. These same theories hypothesise a number of techniques

employed by the maintainer in the construction of this mental model. Software visualisation attempts to

Computers only make the use of visualisation practical; the technique is not dependent on the technology.

1

Chapter 1 Introduction

provide tool support for generating, supplementing and verifying the maintainor's mental model or
understanding.

The mental models proposed by various researchers in the field of program comprehension have a

commonality in that they are all composed from semantic constructs. These constructs are typically

abstractions, at various levels, of program features. The network formed from these constructs

constitutes the maintainor's understanding and representation of the program. Software visualisation

attempts to provide a mapping from the program code to a visual (and other media) representation,

which matches the maintained mental model as closely as possible. Highlighting and automatically

creating these semantic constructs would remove a great deal of effort from the maintainer, specifically

they would require less time scanning the source code. The field of software visualisation is thus

considered an important area of research within the field of program comprehension.

Software visualisation is concerned with all areas of generating and manipulating these graphical

models. The majority of software visualisation systems to date have concentrated on producing two

dimensional representations and animations of various aspects of a software system. In addition, a

growing area of research is investigating the application of 3D graphics and virtual reality (VR)

technology to software visualisation. This research into 3D software visualisation attempts to address

the problem both in terms of what data to represent and the user's ability to navigate this data. The

former aspect stems from a growing need for more expressive ways to represent the inherently

multidimensional data, facts and relationships that constitute a software system. The latter plays upon

the naturally developed capabilities which humans possess for navigating and interacting within 3D

environments.

Information visualisation (IV) is concerned with the visualisation and representation of semantic

information. Often confused with the field of data visualisation, which represents numeric and scientific

data, information visualisation concentrates on more abstract components that have no inherent visual

representations, for example the structure of a knowledge base or document collection. A significant

amount of research has investigated the application of 3D graphics and VR technology to information

visualisation. Software systems can be considered as simply another collection of abstract data, facts

and relations: as information. With this in mind, it should be possible for techniques and ideas

generated from research into 3D information visualisation to be applied to the visualisation of software

systems.

Virtual reality has received an enormous amount of public attention recently. Along with this attention

have come exaggerated claims, unrealistic expectations, conflicting and imprecise terminology, and a

large degree of uninformed commentary [Gigante93]. Research into VR techniques and systems has

also grown progressively over recent years, with a great many systems being produced. There are a

large number of definitions of the term VR, many of which place emphasis on different aspects of the

reality illusion such as the display, interface, and level of immersion. Purists argue that the goal is to

provide a 'suspension of disbelief, an environment in which the user is not distracted by flaws or

2

Chapter 1 Introduction

inadequacies which point to its artificial nature. A flexible though possibly under-defined view of VR is
given by Adam:

"A combination of various interface technologies that enables a user to intuitively interact

with an immersive and dynamic computer-generated environment." [Adam93]

This definition dilutes the preconception that VR must involve certain technologies such as head-

mounted displays (HMDs), data gloves and tactile feedback systems, allowing a more open

interpretation. The definition also removes one implicit assumption often made from the term VR: that

the goal is to simulate reality. This allows for more creative applications such as the visualisation of

abstract data and the creation of environments which do not adhere to the restrictions of reality.

The term cyberspace was originally coined by William Gibson in his science fiction short story,

Burning Chrome [Gibson93]. A number of researchers have since proposed ideas and suggestions on

how cyberspace could be implemented and on the characteristics of its environment [Benedikt91].

Gibson depicts cyberspace as a populated, global, information abstraction and interaction mechanism in

which all data transactions and operations take place. While Gibson's view is very much fictional and

far beyond the scope of current technologies, the term cyberspace and the notion of abstract data spaces

suit well a marriage between the fields of VR and information (including software) visualisation. VR

deals predominantly with the creation of an illusion of immersion within a realistic, although computer

generated, environment. Conversely, the term cyberspace wil l be taken here as the use of 3D and VR

technologies to represent abstract information: to create an information environment. The illusion of

reality is not a necessary feature here. The data being represented has no physical form or appearance, it

merely has the abstraction and representation given to it by the designer of the cyberspace.

The term cyberspace, as defined in this thesis, describes the use of 3D graphics and virtual reality (VR)

techniques in creating abstract visualisations of semantic information. The goal of this research is to

investigate the process of creating useful software visualisations within cyberspace; to investigate the

application of 3D graphics and VR technology to software visualisation. Visualisation allows us to

endow software with a physical (visual) form, or rather, map it to an artefact which can be mentally

reasoned and manipulated in a similar manner to which humans reason about real world objects. Such a

representation would allow software engineers to make use of all their natural, intuitive reasoning and

perceptual skills to aid in the software maintenance process. It may also be the case that, i f software is

given such a form, then patterns or visual design rules may emerge. Much in the same way that the

properties of a chemical molecule or compound can be derived from structural information, software

quality or structural properties may become apparent from the use of software visualisation.

1.2 Problem statement
Software systems, and in particular the large, highly inter-related information bases that they constitute,

are inherently multidimensional and thus difficult to visualise [Brooks87]. Current software

visualisation systems typically isolate one aspect or view of this information for display, effectively

3

Chapter 1 Introduction

hiding all remaining information. This isolated view generally consists of a large and complex directed
graph, which is displayed on a 2D canvas using one of the many layout algorithms available.
Regardless of the quality of the layout algorithm or viewing technique used, the user is often presented
with an incomprehensible birds-nest graph. Alternatively, they are forced to reduce the amount of
information displayed, thus removing potentially important information from view [Fairchild88]. While
the use of 3D or VR technology cannot immediately solve this problem, it does offer a number of
advantages, for example:

• greater working volume for information presentation (with respect to displayable space);

• focus, context and point of interest managed dynamically by the user's viewpoint on the

information;

• greater flexibility for representation, organisation and presentation of the information.

Although the ful l potential of using three-dimensional views and interaction techniques has not yet been

realised, a number of software systems have been developed to investigate its worth. In general, these

systems do not make ful l use of the 3D graphics or advance software visualisation to any great extent.

The majority simply extend and adapt already established two-dimensional visualisation techniques into

3D. These techniques consist mainly of displaying a graph or network structure showing the

relationships between components in a software system. The visualisations rarely extend beyond the

simple node-link representations evident in almost all software visualisation systems to date. This is not

necessarily a bad thing, graph representations are extremely useful for displaying such relationships and

dependencies. However, the field of software visualisation should not be restricted to solely one view of

a software system, other possibilities must be investigated.

The intention of this research is to investigate the application of 3D graphics and VR technology to the

visualisation of software systems. Graph structures are useful for small collections of information,

however, solutions must still be found to enable the effective management of the large collections of

information which are common to modern software systems. This research wi l l investigate other

representations, visual abstractions and appropriate metaphors which make ful l use of the 3D virtual

environment afforded by cyberspace. The use of graph representations wi l l not be abandoned or

ignored, as these are integral parts of the software structure. Investigation wil l be made into how these

structures or visualisations can be improved, augmented or superseded using more intuitive, truly three-

dimensional representations.

There are a number of facets to this research:

• Identifying which aspects of a software system to display.
Software systems consist of many different components at varying levels of abstraction. These
should be depicted clearly with relationships between components also shown.

• Establishing useful and meaningful representations.
What is the best representation to convey the information clearly, concisely and efficiently?

4

Chapter 1 Introduction

a Investigating the problems of scale.
Meaningful visualisations of both single components and variable size collections of components
are needed.

• Introducing a greater level of flexibility.
Techniques enabling the user to customise and control the visualisation should be investigated.

• Evaluation of visualisations.
A method for evaluating the effectiveness of visualisations produced must also be investigated. At
present there is little empirical evaluation of software visualisation tools.

It is most important not to forget the actual role of software visualisation within this research. The aim

is to provide useful and meaningful visualisations to aid program comprehension or software

maintenance, not simply to produce pretty pictures.

To summarise, the intention of this research is to investigate the application of 3D graphics and VR

technology to the visualisation of software systems. This will include research into new representations,

visual abstractions and appropriate metaphors within the 3D environment. The object of this study is

not to produce a fully functional software visualisation tool, but rather to demonstrate the feasibility and

potential for such a tool. The goal is the identification and evaluation of new visualisations and the

development of a concept demonstrator, which can be used both for the evaluation and discussion of

these visualisations.

1.3 Software visualisation in cyberspace
The research work described within this thesis investigates the application of 3D graphics and VR

technology to software visualisation. Three-dimensional software visualisation is a direct extension of,

and one could say is included, within, the field of software visualisation. A simple assumption could be

made that 3D software visualisation is merely an extension of current 2D visualisation techniques into a

3D environment. Such an assumption would, however, be wrong. The use of 3D graphics and VR

technology provides a completely new working environment, one so different from traditional 2D

interfaces that the capabilities, requirements and issues involved are mostly non-transferable.

3D software visualisation not only draws on some of the goals and ideas of software visualisation, but it

also draws upon other areas such as information visualisation which has seen many research projects

investigating the use of 3D graphics for visualisation. The field of 3D information visualisation

addresses many of the issues involved with large, complex and inherently abstract information

structures, all of these terms being easily used to describe a typical software system.

This research is concerned with the structural visualisation of software systems. Such visualisations

provide a gross overview of a software system, presenting various information on the many constituent

components. One approach is to construct an environment or landscape with features directly related to

the software system. A software engineer is then able to navigate within the software, identifying

important or interesting features merely by surveying his or her surroundings.

5

Chapter 1 Introduction

This research focuses primarily upon single-user software visualisations yet provides occasional insight
and concepts for use within a multi-user environment. Multi-user software visualisations would
constitute a natural extension of this work. Software maintainers rarely work alone, more often they
work as a team. Being able to support a team-orientated approach within these visualisations would be
of great value, but is beyond the scope of this research.

1.4 Criteria for success
The goals of this research span both the theoretical and the practical.

The theoretical aspect investigates the issues associated with 3D software visualisation. The aim is to

identify the key areas of 3D software visualisation, and to investigate what constitutes a good or bad 3D

software visualisation. These factors are considered important for both the design and evaluation of

such visualisations. The criteria for success are therefore:

A. The identification of the key aspects of 3D software visualisation.

B. The development of a framework to assist in both the design and evaluation of a 3D software

visualisation.

The practical aspect of this research involves the production of a number of prototypes, providing

demonstration of the concepts and the practicalities of 3D software visualisation. The success of this

research will not simply be determined by the quality of the visualisations produced, it will be deemed a

success i f it isolates a number of new metaphors or representations for 3D software visualisation.

Whether these visualisations are better than conventional 2D or 3D representations is not the issue,

providing that their relative worth is clearly documented here. Further criteria for success are:

C. Demonstrating the possibility of a move away from traditional graph-based visualisations of

software systems by providing a more intuitive visualisation which makes full use of the additional

flexibility afforded by VR.

D. The representations or abstractions used must be intuitive and easily understandable (with practice).

E. The visualisations should scale up satisfactorily, allowing visualisation of both small programs and

large software systems.

F. A suitable level of automation, or the possibility for automation, must be demonstrated.

An evaluation of this research against these criteria for success is provided in Chapter 7.

1.5 Thesis structure
The remainder of this thesis is structured as follows:

6

Chapter 1 Introduction

Chapter 2 presents a review of research within the fields of program comprehension and software
visualisation. This begins with a synopsis of various program comprehension theories, which attempt to
explain how a software maintainer extracts information from the source code. Following this is a brief
introduction to the field of software visualisation, including a definition of the term software
visualisation and an identification of more specific areas within it.

Chapter 3 focuses on virtual reality systems and 3D information visualisation. The chapter begins with

an introduction to virtual reality systems and an explanation of what software and hardware constitutes

such a system. The primary content of this chapter is an authoritative review of 3D information

visualisation, including both the techniques and various prototype systems developed. This review of

3D information visualisation also contains details of a small number of 3D software visualisation

systems. The content of Chapter 3 is extensive but provides a valuable insight into a relatively new

research field, one very closely related to the subject of this thesis.

Chapter 4 presents the main theoretical work within this thesis, presenting a framework for the

visualisation of software in cyberspace. The chapter begins by identifying seven key areas of 3D

software visualisation. These seven areas must be considered when creating such a visualisation and

provide a basis for describing various qualities of a visualisation. This is followed by a definition of the

two terms, 'visualisation' and 'representation', which provide a framework for improved discussion of

the various properties of a visualisation. The desirable properties of both visualisations and

representations are then presented. These assist both the design and evaluation of a 3D software

visualisation. Finally, the chapter concludes with a detailed example of some of the concepts involved,

with reference to a prototype software visualisation developed within this research.

Chapter 5 presents the results of this research by way of ^ number of prototype visualisations and

concept demonstrators. These prototypes were developed throughout the course of this research,

providing a practical investigation of the various possibilities afforded by 3D software visualisation.

This chapter concentrates purely on a description of the prototypes, leaving the evaluation of their

merits and deficiencies to Chapter 6.

Chapter 6 provides an evaluation of the prototypes described in Chapter 5. This evaluation takes a

variety of forms, including informal discussion, discussion against the seven key areas (identified in

Chapter 4), evaluation against the desirable properties and also evaluation against a framework of

cognitive design elements. All of the concept demonstrators described in Chapter 5 are evaluated in

some form, with a more detailed investigation performed on one particularly well-developed prototype.

Chapter 7 presents a summary and conclusion of this research and evaluates its success against the

criteria defined in Section 1.4.

7

Chapter 2.

Program comprehension and

software visualisation

2.1 Introduction
This chapter presents a review of research in the fields of program comprehension and software

visualisation. Program comprehension is the process of understanding any aspect of the operation of a

software system. This can include understanding the operation of a program, the structure of the system,

the various programming techniques used, or the algorithms involved.

Program comprehension can often be thought of as the overall goal or purpose of software visualisation.

Software visualisation attempts to convey information about a software system with the goal of

imparting some knowledge of the construction, structure and workings of that system onto the

maintainer. Software visualisation is another medium to support the understanding of a software

system.

Section 2.2 presents a review of various program comprehension theories that attempt to explain how a

software engineer extracts information from the source code. Most of these theories are the result of

observational studies in which programmers are presented with a set task. Their actions and

understanding of the software are then documented in various ways. Many of these observational

experiments support the notion that program comprehension is performed using either a top-down or

bottom-up approach. Some researchers [Chan97, Letovsky86a, Mayrhauser94, Mayrhauser95] believe

that the comprehension process takes an opportunistic approach where maintainers will utilise both top-

down and bottom-up techniques as appropriate.

Section 2.3 provides an introduction to the field of software visualisation. Various definitions of

software visualisation are discussed, as are the relationships between specialised areas within the field.

2D software visualisation systems are numerous and have been described to a great extent in other

publications and taxonomies [Chan98, Myers90, Price93, Roman93, Stasko92b, Shu88]. The area of 3D

software visualisation is also introduced, though further discussion on this more specialised area of

software visualisation is provided in Chapter 3.

8

Chapter 2 Program comprehension and software visualisation

2.2 Program comprehension
Program comprehension is widely recognised as the main activity within many software maintenance or

even software development tasks. Particularly within software maintenance activities, program

comprehension is the vital first task of any maintenance, whether it be perfective, adaptive, corrective

or preventative [Mayrhauser95]. Despite being such a key activity, program comprehension has not

received much research activity until relatively recently with work from a number of key authors. This

initial flurry of activity has since receded and, again, research into program comprehension has made

little major progress. The research effort has now distributed over a larger number of related 'spin-off

research areas, software visualisation being one such example.

This section summarises a selection of the key theories developed in program comprehension and

highlights any commonalties between them. Throughout this thesis the term maintainer will be used

wherever possible to describe the person performing the comprehension task. The reason for this choice

over the more popular term programmer is due to the almost total monopoly which software

maintenance has on program comprehension activity. Thus, the term maintainer removes the generality

and places program comprehension within its typical context. Another terminology issue is the use of

the terms cognitive model and mental model. Within this thesis, the term mental model will refer to the

maintainer's internal (mental) representation of the software or results of the comprehension process.

The term cognitive model will refer to the complete set of processes, knowledge, heuristics and mental

model used during program comprehension. Thus it is the cognitive model which is the subject of the

various theories and the focus of this section.

Various theories [Basili82, Brooks77, Brooks83, Letovsky86a, Letovsky86b, Littman86, Robson88,

Shneiderman79, Shneiderman80, Soloway84, Soloway88] differ in detail but share a common structure

on how programs are comprehended. That is, they all subscribe to the idea of a knowledge base, mental

model and some form of assimilation process (each described below). The exact representation and

formation of these components does, however, vary throughout the theories.

2.2.1 Cognitive Models

This section aims to provide an overview of a number of program comprehension theories, highlighting

terminology and key factors from each theory.

Mayrhauser [Mayrhauser95] identifies a commonality between the various program comprehension

theories. This commonality exists in the maintainer's cognitive model, and to some extent in the way

the model is created and maintained. All the comprehension theories agree that the program

comprehension process uses existing knowledge coupled with a comprehension strategy in order to

acquire new knowledge. This combined knowledge should, through a process of additions and

revisions, eventually achieve the required level of understanding of the code. The various

comprehension strategies used in obtaining this new knowledge have a commonality in that they all

9

Chapter 2 Program comprehension and software visualisation

formulate hypotheses which can then be refined, revised or rejected. Formulating and verifying these
hypotheses makes use of both existing knowledge and the newly acquired knowledge.

The three main components in the cognitive model are the knowledge base, mental model and

assimilation process. The knowledge base contains the maintainer's understanding of the domain and

any related fields. The mental model, which is different from the cognitive model, is the maintainer's

internal representation of the program. Finally, the assimilation process is the glue that binds the

knowledge base to the mental model, manipulating both to create and revise hypotheses that can then

be used to update the knowledge base or mental model. The actual processes involved in this

assimilation are the subject of various theories of program comprehension.

The three main components of the cognitive model, which are the knowledge base, mental model and

assimilation process will now be described in greater detail.

I. Knowledge base

The knowledge base consists of both existing knowledge and newly acquired knowledge. This

knowledge will consist of two main types, general knowledge and task-specific knowledge. During the

comprehension process the maintainer will obtain more task-specific knowledge, but may also require

additional general knowledge that will typically be obtained on an 'as-needed' basis. General

knowledge represents information not specifically related to the software itself. Such knowledge could

include experience with programming languages, understanding of the implementation platform, or

even knowledge of the operational domain of the software, for example business rules, control systems

or database systems. Task specific knowledge is directly related with the comprehension task and will

include knowledge such as design information, programming styles used during implementation and the

overall goals of the program.

Existing knowledge and general knowledge are strongly related, with the majority of existing

knowledge being non-task related. However, i f the maintainer has prior knowledge of the program then

the existing knowledge may contain fragments of task-specific information related to the program,

including any mental models of the software. In contrast, new knowledge is oriented more towards task

specific knowledge that is gleaned during the comprehension process. This new knowledge could

include information on control flow, data flow, software structure, implementation details or

programming styles. New knowledge can be obtained at any abstraction level and can range from low

level implementation details to higher level structural information.

II. Mental model

The mental model is the maintainer's internal representation of the program and can be composed of a

number of inter-dependent semantic constructs. The various theories of program comprehension

proposed offer a wide variety of forms for these semantic constructs. Constructs can include text

structures, chunks, plans, hypotheses, conjectures, beacons, and rules of discourse. The mental model is

10

Chapter 2 Program comprehension and software visualisation

continuously updated and amended by the assimilation process. Mayrhauser [Mayrhauser95] identifies
the dynamic process used in creating these semantic constructs as a combination of behaviours such as
strategies, actions, episodes, and processes.

Text structure constructs are formed from the program source code and its structure. In well-presented

or styled code, an initial structure can be derived from the text layout using indentation, comment

blocks or blank areas to identify textual chunks. This initial structure can then be refined further to give

it a more syntactic meaning such as function blocks, iteration blocks, and conditional constructs.

Organisation of text structures within the mental model can include nesting and dependencies. For

example, an iteration block may be nested or contained within a function block, and two function

blocks may be related by a function call.

Chunks are syntactic or semantic abstractions of text structures within the source code. Shneiderman

[Shneiderman80] describes a process in which maintainers abstract portions of the source code (text

structures) into chunks. Collections of these chunks can then be abstracted further into higher level

chunks. Chunks can be constructed from either semantic or syntactic knowledge and need not be fully

understood or identified immediately, being returned to at a later time for revision. It is reasonable to

assume that a chunk formed on the basis of syntactic knowledge, a syntactic chunk, will be revised later

to form a semantic chunk. For example, a syntactic chunk derived from a function block or a nesting

level will be revised later with semantic meaning or purpose, such as a sort algorithm.

Plans, best described by Mayrhauser [Mayrhauser95], are "knowledge elements for developing and

validating expectations, interpretations, and inferences". Plans, otherwise known as cliches or schemas,

are derived from research by Soloway and Ehrlich [Soloway84] that attempted to apply theories from

text comprehension to program comprehension. The notion of plans propose~d by Soloway and Ehrlich

corresponds directly to the notion of schemas in text comprehension, where schemas are "generic

knowledge structures that guide the comprehender's interpretations, inferences, expectations, and

attention when passages are comprehended" [Graesser81]. Similarly, plans in the context of program

comprehension also capture the maintainor's attention during the comprehension process.

Plans can be further categorised into programming plans and domain plans [Mayrhauser95]. A simple

analogy can be drawn between these types of plan and the knowledge contained within the knowledge

base. Programming plans, analogous to task specific knowledge, are plans specific to the task in hand.

They can exist at a variety of abstraction levels, ranging from the low-level program code to the

abstract function of the program as a whole. Domain plans, analogous to general knowledge, are plans

that incorporate all other knowledge of the problem area excluding that contained within the program

plans (i.e. the detail of the software). Domain plans give a general concept of the task and how it can be

completed. These generally exist at a higher level of abstraction than the actual software system.

Hypotheses are introduced by Brooks [Brooks83] suggesting that programmers use an iterative,

hierarchical method of forming, refining and possibly rejecting hypotheses at varying levels of

11

Chapter 2 Program comprehension and software visualisation

abstraction during the comprehension process. Brooks states that the program comprehension process is
complete when the maintainer's mental model contains a complete hierarchy of correct hypotheses.
This hypothesis hierarchy is described as a bridge between various domain levels of the problem, the
complete model thus bridging from the high level "This program is a ..." hypothesis to the low level
hypotheses regarding implementation details.

Letovsky [Letovsky86a] investigates the use of hypotheses further in an experiment involving the study

of maintainers undergoing a given comprehension task. Letovsky refers to hypotheses as conjectures

and describes the mental processes of the maintainers as they create, question and revise these

conjectures. Conjectures are associated with a degree of certainty that affects the way in which they are

revised or discarded at a later stage. The level of certainty can range from a guess to complete certainty.

From the study, Letovsky identifies three main types of conjecture:

• Why conjectures are hypotheses that question design choices, implementation decisions or function

purpose. For example "Why use a bubble sort?";

• How conjectures are hypotheses which attempt to discover the method with which to accomplish a

particular task. For example "How is the array indexed?";

• What conjectures hypothesise classification, for example a variable, function or variable type.

The latter two components of the mental model, beacons and rules of discourse, are described in the

following section.

III. Assimilation and knowledge acquisition

The assimilation process is the method that the maintainer uses in undergoing the comprehension task.

This process makes use of the mental model and the knowledge base, in conjunction with the source

code and any related documentation, to build upon or revise the mental model and thus the maintainer's

understanding of the program. The exact assimilation process used by the maintainer is the subject of a

number of research papers, discussed in greater detail below. A number of methods or processes can be

identified which contribute to the assimilation process and belong to various comprehension theories.

Mayrhauser [Mayrhauser95] classifies these as being dynamic elements of the mental model, however

they appear more fitting as a process by which the mental model is created. Before describing these

processes, two features which aid in facilitating them, beacons and rules of discourse, will be described.

Beacons, first identified by Brooks [Brooks83] then explored further by Wiedenbeck [Wiedenbeck86,

Wiedenbeck91], are recognisable or familiar features within the source code or other forms of (possibly

higher level) knowledge. Beacons thus act as cues to the presence of certain structures or features and

can be used in either the verification or creation of hypotheses. Brooks' well-cited example of a beacon

is the swapping of two variables. This variable swapping could be a beacon for a sorting routine. Even

at a higher level, beacons such as the name of a particular procedure or source module are equally valid

12

Chapter 2 Program comprehension and software visualisation

and useful information. Beacons are used in gaining a higher level of understanding than that in which
the beacon occurs, i.e. abstracting from a code chunk to a process or function.

Rules of discourse, as identified by Soloway and Ehrlich [Soloway84], are rules or conventions within

programming such as code presentation or naming standards. For example one rule of discourse is that a

variable name should usually agree with its function. Rules of discourse set up expectations in the mind

of the maintainer. These expectations can be very powerful, allowing the pre-fetching of knowledge

from long term storage, though they can also be problematic i f discourse rules are violated. Soloway

and Ehrlich [Soloway84] describe an experiment which shows that comprehension performance is

greater for programs which obey the rules of discourse (plan-like programs). Conversely the study also

shows that when the rules of discourse are violated, then comprehension performance is hampered, both

for expert and novice maintainers. This implies that unconventional algorithms, unusual data structures

or unexpected use of a known algorithm as well as unconventional programming styles will render

programs more difficult to comprehend.

Strategies define the sequence of actions performed by a maintainer while following a plan to achieve a

particular goal. Littman et al [Littman86] identify two such strategies, the systematic strategy and the

as-needed strategy. These two strategies are defined within the context of comprehending an entire

program, hence the systematic approach tries to comprehend the program as a whole before any attempt

at maintenance is made. The as-needed approach attempts to localise the comprehension process to only

the areas of the program that must be understood to perform the maintenance task.

Two comprehension mechanisms that are aided by strategies are chunking and cross-referencing. The

chunking process creates new, higher level chunks from lower level structures or chunks. As structures

at the lower level are recognisedlhey are abstracted into a chunk and labelled. These labels can their be

used again in forming new, higher level chunks. An example of the chunking process could be the

formation of the 'bubble sort' chunk from iteration, comparison and variable swapping chunks. Cross-

referencing forms relations between different abstraction levels by mapping program parts to functional

descriptions. Cross-referencing is essential to building a mental representation spanning a number of

abstraction levels.

2.2.2 Summary

This section has summarised a number of key theories developed for program comprehension. These

theories vary significantly, yet all maintain a high level of commonality in the structure of the cognitive

model. This commonality can be summarised in that all theories subscribe to the idea of the cognitive

model being composed of a knowledge base, mental model and assimilation process. The exact

interpretation and composition of each of these components is the subject of the various theories.

It is well known that program comprehension plays a critical role in the majority of software

engineering activities, particularly in software maintenance. The level of program comprehension

13

Chapter 2 Program comprehension and software visualisation

required can vary greatly depending on the task undertaken and the complexity, quality and size of the
target system. Similarly, program comprehension is not limited solely to extracting information from
the source code alone. Any form of system documentation or previous maintenance records are used as
an integral part of the comprehension process, i f available. However, more often than not this
documentation will be inaccurate, inconsistent, incomplete or even non-existent. This leaves the
maintainer with the complex task of attempting to recover not only the operation and structure of the
software system, but many design issues and implicit assumptions made during its implementation. All
this information must be recovered from the source code alone. Clearly this is a non-trivial task.
Program comprehension research is thus vital to discover methods or tools that could aid maintainers to
recover the intentions behind the code.

One point of note which can be derived from this section is that although the actual comprehension

process can be observed, described and predicted, what is really needed are tools to aid or supplant this

process. This aid could affect any or several of the main areas of the cognitive model. Systems or

databases could extend the maintainer's knowledge base. Visualisation or automated program

comprehension tools could enable swifter construction or verification of their mental model.

Sophisticated searching and cross-referencing mechanisms could aid the assimilation process by

integrating other tools. Suffice to say that there is a large scope for automation and computer supported

work in program comprehension tasks, and more generally in software maintenance.

2.3 Software visualisation
Software visualisation is one area of research that is attempting to aid program comprehension and,

more generally, software maintenance. Software visualisation makes use of the fact that the human

brain is adept at processing, manipulating and recognising visual images and structures. Reading text is

a special case of this visual processing, however, this is translated or interpreted at a character, word, or

possibly even phrase level. Such detail is too great and the brain will abstract each character, word or

sentence into an internal meaning or representation. This is described in the program comprehension

literature at a higher level, for example beacons [Brooks83] and chunks [Shneiderman80] are abstract

internal representations of low-level textual structures.

Software visualisation attempts to aid the comprehension process by providing these abstractions in a

visual form, which is hoped will reduce the interpretation load. By presenting the viewer with a

pictorial model of more complex lower-level information, he or she can rapidly generate an initial

mental model of the software and use this as a basis for further investigation. The field of software

visualisation is concerned with all areas of generating and manipulating these graphical models.

The following sections review various literature regarding software visualisation and highlight specific

points of interest. This begins with an identification of the need for software visualisation, reiterating

some of the issues that were briefly mentioned in Chapter 1. Section 2.3.2 then addresses the definition

of the terms related to this research field and in particular definition of the term software visualisation

14

Chapter 2 Program comprehension and software visualisation

itself. Following this, Section 2.3.3 provides a discussion of the role that software visualisation plays
within software maintenance and program comprehension. A review of the current state of research in
software visualisation is provided in Section 2.3.5, including a brief look at various systems developed.
This includes an introduction to the more specific area of three-dimensional software visualisation,
which is expanded with a detailed review of current systems utilising 3D graphics in Chapter 3.

2.3.1 The need for software visualisation

It is an acknowledged fact that software maintenance consumes the majority of resources within the

software lifecycle [Sommerville92, Standish84]. Another fact is that program comprehension plays the

major role in any maintenance activity [Mayrhauser95, Oman90]. Whether the activity is adaptive,

perfective, preventative or corrective, all require an understanding of the software system to some

extent. The task of gaining this understanding falls under the broad scope of program comprehension.

Problems and deficiencies within the software development process often result in software systems that

are badly designed, badly implemented, and possibly worst of all, badly documented. Flaws in design

and implementation do cause problems, however, i f these flaws or processes are properly documented,

then steps can be taken to correct or work around them. By contrast, i f the documentation is lacking in

any respect then such flaws can go unnoticed and cause severe difficulties during maintenance. Even

well designed and implemented code can prove a problem i f not correctly documented. Maintainers

must then attempt to discover the design intentions behind the implemented system, in the worst case

from the source code alone.

Unfortunately, problems with system documentation are widespread. Time constraints imposed upon

projects often result in rushed implementations, with documentation receiving a low priority. As a

result, documentation is often non-existent, incomplete, inaccurate, or worst of all, misleading. For this

reason, program comprehension is often limited to discovering an understanding of a system from the

source code and any scant documentation. Various theories of program comprehension put emphasis on

the construction of a mental model of the software within the mind of the maintainer (see Section 2.2).

Theories on the construction of this mental model hypothesise various techniques employed by

maintainers in extracting information from the program source code. Software visualisation attempts to

provide tool support for generating this mental model or understanding.

The mental models proposed by various researchers in the field of program comprehension have a

commonality in that they all are composed from semantic constructs. These constructs are typically

abstractions, at various levels, of program features. The network formed from these constructs

constitutes the maintainers understanding and representation of the program. Software visualisation

attempts to provide a mapping from the program code to a visual (and other media) representation that

matches the maintainer's mental model as closely as possible. Highlighting and automatically creating

these semantic constructs would remove a great deal of effort from the maintainer, specifically they

15

Chapter 2 Program comprehension and software visualisation

would require less time spent on scanning the source code. The field of software visualisation is thus
considered an important area of research within the general field of program comprehension.

Roman and Cox [Roman92] highlight a number of arguments often used in advocating the need for

software visualisation. These arguments include: the importance of imagery in human communication;

the speed with which humans can track and identify visual patterns; the expressive potential of a visual

vocabulary that exploits multiple dimensions; and the inherent power of abstraction within visual

representations. The credibility of such arguments is often underlined with reference to the success of

graphical representations in areas such as human computer interfaces, scientific data visualisation and

information visualisation.

2.3.2 Defining software visualisation

Despite being an established field of research, software visualisation is still not a well-defined term and

lacks any concrete definition or meaning. Many researchers have proposed definitions, though the

majority of these definitions contradict one another or offer varying levels of detail, scope and

abstraction. At present the term 'software visualisation' is generally used to encompass almost all forms

of visualisation concerned with representing any aspect of a software system. A number of more

specialised areas have evolved under the guise of software visualisation, areas such as algorithm

animation, data visualisation and code visualisation. These areas are also subject to varying definitions

and scope of field. To compound matters, the actual term software visualisation is often used as being

synonymous to program visualisation, computation visualisation and code visualisation.

A vast number of definitions and descriptions related to software visualisation are given in the

literature, a large selection of these are presented below. This list is intentionally long, to illustrate the

variety of definitions and interpretations offered.

• Program visualisation uses graphics to illustrate some aspect of the program or its run-time

execution, where the program is specified in a conventional, textual manner. [Myers90]

• Software visualisation is the use of the crafts of typography, graphic design, animation and

cinematography with modern human-computer interaction technology to facilitate both the human

understanding and effective use of computer software. [Price93]

• Program visualisation deals with graphical presentation, monitoring and exploration of programs

expressed in textual form. [Roman92]

• Program visualisation is a mapping, or transformation, of a program to a graphical representation.

[Roman93]

• Software visualisation describes systems that use visual (and other) media to enhance one

programmer's understanding of another's work (or his own). [Domingue92]

16

Chapter 2 Program comprehension and software visualisation

• Program visualisation is a sub-set of the area known as software visualisation - the use of graphics
and animation to visually describe and illustrate software and its function. [Jerding94]

• Visualisation is the process of creating and manipulating a visual image which allows a mental

picture of some situation or phenomenon to be formed. These images can either be static or

dynamic and need not necessarily be graphical in nature, this allows the possibility of images

comprising of symbolic constructs. [Watson95]

• Software visualisation is the use of visualisation and animation techniques to help people

understand the characteristics and executions of computer programs. [Muthukumarasamy95]

• Program visualisation is the representation of source code, and other documents, in a graphical

manner. [Kings95]

• Software visualisation illustrates computer processes and data in addition to regular programs,

while program visualisation illustrates data structures, program state and program code.

Computation visualisation encompasses both software and hardware views. [Stasko92a]

It can be seen from the above definitions and descriptions that the field of software visualisation is

diverse, with research interests in many different directions. One commonality evident in the majority

of definitions is the emphasis on visual representations. The term software visualisation or program

visualisation is generally read as incorporating exclusively graphic representations. This, however, is

misleading and overly restrictive. Software visualisation should allow for representations other than

purely graphical. It is not unreasonable to foresee visualisation tools which make use of other available

human senses, in particular hearing and touch. Price et al redefine their use of the term visualisation to

include such flexibility, as "the power or process of forming a mental picture or vision of something not

actually present to the sight" [Price93].

One of the major differences between various definitions such as those given above, is their specificity.

Almost all of the definitions and descriptions are too specific in one aspect or another. Some definitions

imply that visualisation must incorporate solely graphics or a particular media, whereas others state the

use of specific techniques or systems. Furthermore, many of the definitions omit the purpose of

software visualisation - what the intended goal is. The definition of the term software visualisation as

used throughout this thesis will be:

"Enhancing or aiding the understanding of a software system using visual

representations and other media."

This provides a universal definition lacking any specificity for implementation techniques or media

used. Also avoided is any mention of how that understanding is gained or how it is aided, thus allowing

for a variety of comprehension models to be addressed. Finally, this definition encapsulates the general

intention and meaning of the majority of definitions that have already been proposed.

17

Chapter 2

2.3.3 The position of software visualisation
Identifying the position of software visualisation with respect to other fields and more specific sub-

fields has been suggested by a number of authors [Price93, Stasko92a, Stasko92b, Myers90]. Price et al

[Price93] view software visualisation as a field which encompasses the two distinct areas of program

visualisation (including visual programming) and algorithm animation. Stasko [Stasko92a] proposes the

field of computation visualisation which includes both software and hardware views. Fields

encompassed by the topic of software visualisation are identified by Price et al, resulting in the

structure shown in Figure 2.1. This structure does, however, pose some questions.

Software
Visualisation

Algorithm
Visualisation

Program
Visualisation

Static Algorithm
Visualisation

Algorithm
Animation

Code
Animation

Visual
Programming

Data
Animation

Static Code
Visualisation

Static Data
Visualisation

Figure 2.1. Scope and inclusion of software visualisation terms.

Equivalent to Figure 1 in [Price93].

Visual programming, as defined by Roman and Cox, is "concerned with graphical specification of

computer programs" [Roman92] and does not apply to the current onslaught of so-called visual

languages such as Visual C++, Visual Basic, VisualAge and Visual Objects. These systems provide

little more than a unified GUI (graphical user interface) to conventional program development tools

[Najork95]. Price et al identify the term program visualisation as including the field of visual

programming. This notion is in contradiction to other views that consider program visualisation and

visual programming as disparate fields [Roman93, Myers90]. Myers even states, "Program

Visualisation is an entirely different concept from visual programming" [Myers90]. Conversely, it is not

unreasonable to argue that, in order to create a visual programming environment, you must first be able

to visualise programs, hence program visualisation. This argument is open to interpretation. One

discrepancy, however, appears in the classification by Price et al in which the field of algorithm

animation is not included as part of program visualisation. It seems unreasonable to make such a

distinction in one case and not in the other.

18

Chapter 2 Program comprehension and software visualisation

Further, Price et al describe program visualisation as being composed of both static and dynamic code

and data visualisations, whereas visual programming is concerned only with static visualisations. Again,

this point is open to debate. While visual programming is concerned with the creation or visual

implementation of programs, this process should not be restricted purely to static visualisations. One

simple argument is that debugging and tracing of code is considered an integral part of programming,

and in a visual sense the only way in which the execution or tracing can be presented is through

animated visualisations. Another argument is that we cannot constrain the visual programming

paradigm to purely static or even graphic visualisations. A visual programming-by-example paradigm

could be imagined in which the programmer specifies operations by manipulating the graphical

interface in a dynamic fashion; by providing an example. For example, copying or moving data within

memory, this being achieved by dragging or moving appropriate areas within the visualisation.

The arguments posed above offer constructive criticism to the classification of definitions within

software visualisation. The validity of these arguments does however hinge upon the reader's

interpretation of the terms and their scope. Figure 2.1 above illustrates the scope of these terms as

described by Price et al. Similarly, Figure 2.2 below shows a revised classification of these terms which

incorporates the arguments mentioned above. In addition to the field of software visualisation, the term

computation visualisation is introduced by Stasko [Stasko92a] as including both software and hardware

views. This is incorporated in Figure 2.2.

r
Hardware

Visualisation

Algorithm
Visualisation

Static Algorithm
Visualisation

Algorithm
Animation

Computation
Visualisation

Software
Visualisation

Program
Visualisation

Code
Animation

Data
Animation

Visual
Programming

Static Code
Visualisation

Static Data
Visualisation

Figure 2.2. Revised scope and inclusion of software visualisation terms.

A brief description of each of these fields is now given.

19

Chapter 2 Program comprehension and software visualisation

e Computation visualisation
Computation visualisation is the use of computer graphics to explain, illustrate and show how

computer hardware and software function. [Stasko92a]

• Software visualisation

Software visualisation describes systems that use visual (and other) media to enhance or aid

comprehension of software systems.

• Program visualisation

Program visualisation is the representation of source code and other documents to enhance

understanding of an existing software system.

• Visual programming

Visual programming is the use of graphical representations to specify and implement computer

software.

• Algorithm visualisation (Static and Dynamic)

Algorithm visualisation concentrates on the representation and animation of the abstract operation

of software algorithms.

• Static and dynamic code visualisation

Concentrates on illustrating the actual program code, either by enhancing its textual appearance

[HU193] or by representing it in a more abstract form.

• Static and dynamic data visualisation

Concentrates on visualising the data defined and manipulated within the software.

2.3.4 Taxonomies of software visualisation

Several taxonomies have been applied to software visualisation systems. These taxonomies vary to the

same extent as the definitions in that several possible classification systems are presented, but no one

method can be identified as being most appropriate. There are two taxonomies predominant in the field,

an early taxonomy by Myers [Myers90] and a more recent taxonomy by Price et at [Price93]. Myers'

taxonomy classifies systems along two main axes: the data they present, such as code, data or algorithm

visualisations; and whether the visualisations are dynamic or static. While this taxonomy covers some

of the important characteristics of a software visualisation system, it does not provide any scope for

evaluating the effectiveness, usability, applicability or quality of systems. Price et ai address this to a

greater extent in their taxonomy.

Price et al categorise systems in a more systematic manner and attempt to structure the taxonomy to

allow flexibility for future expansion and revision. Their taxonomy is based upon a hierarchical

structure of classifications, which allows simple addition of new categories. The top level of this

20

Chapter 2 Program comprehension and software visualisation

hierarchy is based on a very general model of software containing six categories: scope, content, form,
method, interaction and effectiveness.

Other taxonomies exist, again using a different set of classifications. One such taxonomy is by Stasko

and Patterson [Stasko92b] and introduces scaled dimensions into a four-category taxonomy. These

categories cover aspect, abstractness, animation and automation. Another such taxonomy by Roman

and Cox [Roman92] initially identified systems using the categories of scope, abstraction, specification

method and technique. This initial taxonomy was refined further [Roman93] with the category

''technique'1 being replaced with the two categories of interface and presentation. Roman and Cox view

software visualisation as a mapping from programs to graphical representations, with the categories of

the taxonomy representing aspects of this mapping [Roman92]. The scope covers what aspects of the

program are visualised. Abstraction and specification method cover the actual visualisation process:

what information is conveyed and how it is constructed. Finally, interface and presentation {technique

in earlier work) cover the actual graphical representation: how it is used to convey the information.

This section serves to highlight the lack of any consensus between researchers as to what aspects

characterise a software visualisation system. This reinforces the view that software visualisation, and

particularly 3D software visualisation, remains a relatively new area of research.

2.3.5 The current state of research

Current research into software visualisation is diverse, with activity in all areas of the subject. Initially

the main research thrust was in developing algorithm visualisation frameworks and systems. These

systems were used predominantly for teaching algorithm design and analysis and were not typically

used as general-purpose tools. Another favourite topic within software visualisation is its application to

program debugging and execution tracing, particularly within imperative languages. More recently, an

increase in research has been directed towards structural or macroscopic visualisations of code. These

visualisations concentrate on a large-scale view of the code and typical examples are function call

graphs, control flow graphs and file dependencies. In addition, there is a very active research interest in

the visualisation of parallel programs, though generally concentrating on their execution behaviour

[PVMTrace99, Koike99, Miller93, Kraemer93].

Algorithm visualisation research concentrates on producing meaningful and insightful visualisations

and animations to aid understanding of algorithm operation. Generally these visualisations are not

produced automatically and require an animator to design a suitable representation for each algorithm.

The majority of algorithm animation frameworks created rely on the animator to instrument the

algorithm implementation at critical points with additional calls to the animation environment or to a

log file generator. This information is then used either during execution or post-mortem, respectively, to

drive the animation. Many systems have been developed for algorithm animation, a large number of

which are described in various taxonomies [Price93, Myers90, Roman93]. Such systems include

BALSA; Balsa-II; Zeus; TANGO; Polka-3D; and ANIM.

21

Chapter 2 Program comprehension and software visualisation

Visual debugging is not generally accepted as a separate topic of program visualisation though there are
a large number of systems that use visualisation as a primary aid to debugging. Many of these systems
are confined to tracing the execution of imperative languages, however, various other languages and
paradigms are also covered. The majority of these systems operate automatically; i.e. they do not need
manual intervention to obtain the program information. This is generally obtained using one of two
methods. One method provides an interpreter base in which the target program is 'executed' thus
allowing the visualiser access to all information regarding the program and its execution. Alternatively
the visualiser will automatically instrument the target source code with calls to the visualiser, or with
statements which output information to a log file for post-mortem analysis. Again, these systems are
described and classified within the various taxonomies. Such systems include Pascal Genie; UWPI;
TPM; Pavane; LogoMedia; CentreLine ObjectCentre (Saber-C++); ZStep 94 [Lieberman95, Fry95];
and PVMTrace.

Structural visualisations concentrate mainly on large scale or macroscopic views of the source code.

These views typically consist of visualising dependencies between the various components that make

up a software system. Components such as variables, classes, functions, methods, files and modules are

displayed to produce the stereotypical views of call-graphs, control-flow graphs, module dependencies

and data dependencies. The key factor of these views being their inherent graph structure. These graphs

are often very large and difficult to display effectively. Such systems are not covered in current

taxonomies, though they could be easily incorporated by the various taxonomic criteria. Examples of

these systems include SMARTsystem; McCabe; Logiscope [Meekel88]; SNiFF; Rigi [Storey95];

Narcissus [Hendley95b]; GraphLog [Consens92]; SemNet [Fairchild88]; and GraphVisualiser3D

[GV3D99].

The majority of software visualisation systems to date have concentrated on producing two dimensional

representations and animations of various aspects of a software system. In addition, a growing area of

research is investigating the application of 3D graphics and virtual environment technology to software

visualisation. Research into 3D software visualisation attempts to address the problem in terms of what

data to represent, how to represent it, and the user's ability to navigate this data. The former aspects

stem from a growing need for more expressive powers to represent the inherently multidimensional

data, facts and relationships which constitute a software system. The latter plays upon the naturally

developed capabilities of humans for navigating and interacting within three-dimensional environments.

Software systems, and in particular the large, highly inter-related information bases that they constitute,

are inherently multidimensional and thus difficult to visualise [Brooks87]. Software visualisation

systems typically isolate one aspect or view of this information for display, effectively hiding all

remaining information from view. This isolated view generally consists of a large and complex directed

graph which is displayed on a two dimensional canvas using one of the many layout algorithms

developed within the field of graph layout. Regardless of the quality of the layout algorithm or viewing

technique used (such as fisheye), the user is typically presented with an incomprehensible birds-nest

graph or must reduce the amount of information displayed thus removing potentially important

22

Chapter 2 Program comprehension and software visualisation

information from view [Fairchild88]. While the use of 3D or virtual environment technology cannot

immediately solve this problem, it does offer a number of advantages. Advantages such as: greater

working volume for information presentation; focus, context and point of interest are managed

dynamically by the user's viewpoint on the information; and greater flexibility with representation,

organisation and presentation of the information. These arguments do not in themselves justify 3D as

superior to 2D representations, however they do highlight possibilities for advances in software

visualisation using 3D graphics.

2.3.6 Summary and conclusions

This section has described the current state of software visualisation research and provided a brief

introduction to the rapidly developing field of 3D software visualisation (discussed further in Chapter

3). Particular attention has been paid to the definition of software visualisation and related topics; its

application to software maintenance; and to the current state and direction of research effort. There are

a number of conclusions that can be made:

• The field of software visualisation is still not clearly defined.

As yet, there is still no common consensus on the definition of software visualisation and other related

terms. Worse still, many of the terms are used within different context and are often interchanged, such

as software visualisation and program visualisation. A firm definition of the terms within the field of

software visualisation is needed to enable meaningful and unambiguous discussion. A definition of the

various terms as interpreted within this thesis has been provided.

• The scope and range of current software visualisation systems is too small.

At present, software visualisation systems concentrate only on small, 'toy' programs, with few

exceptions. For software visualisation to become a viable tool, widely accepted within the software

maintenance community, then it must address the needs of industrial applications. The majority of

techniques available in the software visualisation arsenal tend to fail when applied to large, industrial

strength applications. It may not be possible to devise generic techniques that would apply to both small

and large programs. In such a case, more research is needed to investigate the development and in

particular, the integration of separate techniques. There is a need for industrial tools that are capable of

being applied to real-world problems.

• There is a current lack of, and need for, empirical evaluations of software visualisation

systems.

A large number of software visualisation systems have already been produced, the majority of which

are research prototypes. At present there is no empirical method for evaluating the effectiveness or

worth of particular systems. Similarly, other than the existing taxonomies for classifying systems, there

is no empirical method for comparison between systems. There is little point devising new

23

Chapter 2 Program comprehension and software visualisation

visualisations without the ability to determine if they provide any improvement, or even without
knowledge of what makes a good or bad visualisation.

• An improved level of automation and integration is required.

Many of the software visualisation systems developed rely heavily on user interaction and aid in

generating the visualisations. This aid can be provided at various levels, from instrumenting or pre­

paring source code to defining and creating the actual visualisation itself. There is a definite need for a

greater level of automation to increase user acceptance of such tools. Similarly, integration of

visualisation tools within the software development environment is an important goal. Only when these

two areas have been addressed more thoroughly will we begin to see visualisations become more

common place. The effort required in visualising software (source code) should not greatly exceed that

required to compile and execute it.

• Research must address the need of users of the visualisations.

Software visualisation research needs to take a more detailed look at what the user actually wants to

see, and how they would like to see it. At present, many systems produce wonderful, interesting

pictures or animations that, while looking very impressive, provide little information of value to the

user. Alternatively they present information which could often be obtained through more conventional

approaches, imparting a lower overhead cost in computing resources or time. Similarly, the information

they present may be clearer or more immediately identified when obtained from other sources.

Research needs to concentrate on how the technology can aid the user, rather than creating merely

'pretty pictures'.

Regardless of the above comments, it seems safe to assume that research and interest into software

visualisation will continue to grow. As hardware technology improves and prices continue to fall, the

overheads of creating visualisations will become less of a concern. Software visualisation has great

potential to provide useful, time-saving support to the software maintenance (and possibly

development) process. Whether or not this potential is realised remains uncertain, though the deciding

factor will undoubtedly be its acceptance by industry.

2.4 Conclusions
This chapter has presented a literature review of two distinct research areas, program comprehension

and software visualisation. The findings of this chapter can be summarised as follows:

• There are many theories and models for program comprehension though little consensus as to

which theory is most representative of the program comprehension process.

• Most program comprehension theories subscribe to the notion of a cognitive model which is

composed of a knowledge base, mental model and assimilation process.

24

Chapter 2 Program comprehension and software visualisation

• Several researchers suggest an integrated program comprehension process in which the maintainer
selects a particular strategy on an as-needed basis. The research presented within this thesis is
based upon the notion of this integrated approach to program comprehension.

• Software visualisation is a large and well-established research field, though the more specific area

of 3D software visualisation is relatively new.

• There is much variety in the terminology used and little consensus as to the definition of software

visualisation. A definition of software visualisation is provided, as viewed within this thesis.

• There are many unresolved issues within software visualisation, providing a broad scope for future

research.

• Software visualisation is currently limited to a small set of views upon a software system. There is

a need to explore new techniques and new views for visualising software systems.

The following chapter focuses in detail on various aspects of 3D visualisation. This includes an

introduction to virtual reality and a comprehensive review of 3D information visualisation research,

concluding with a brief overview of 3D software visualisation research.

25

Chapter 3.

3D visualisation

3.1 Introduction
This chapter presents a review of 3D visualisation systems and provides an introduction and explanation

of the various aspects involved in a virtual reality system. The major part of this chapter describes 3D

information visualisation, both the techniques developed in this area and the large variety of prototype

systems created. Information visualisation is viewed here as encompassing 3D software visualisation,

the main topic of this thesis. Information visualisation attempts to provide a means of identifying

trends, generalities and anomalies within large information stores. The goal is also to provide a unique

and efficient means of navigating, querying and working within these large information stores.

Similarly with software visualisation, a software system merely represents a specific form of

information collection. Software visualisation attempts to convey information about a software system

with the goal of imparting some knowledge of the construction, structure and workings of that system to

a software maintainer. The parallels between information visualisation and software visualisation are so

great that both types of system are described side by side in Section 3.3.2.

This chapter is concerned with 3D visualisation, both information visualisation and software

visualisation, and to a lesser extent the enabling technology, namely virtual reality. Virtual reality is a

term used widely to describe almost any form of 3D graphical system. While the use of the term VR

may often be inappropriate, it is sufficiently broad to encompass many of the systems described here

and is directly relevant to the focus of this thesis. Section 3.2 provides an explanation of the term virtual

reality and defines what software and equipment constitute a virtual reality system. Factors important to

a VR system are also described, along with a brief look at the large variety of different types of VR

system.

Section 3.3 introduces the field of 3D information visualisation and describes a variety of visualisation

techniques and research systems that have been developed to aid human comprehension of large

information systems. Also incorporated within this review of systems are a number of 3D software

visualisation prototypes. It is believed that software visualisation is essentially a more specific form of

information visualisation, the systems described here using many of the same techniques and with

similar goals to that of pure information visualisation systems. Finally, Section 3.4 describes the more

specific area of 3D software visualisation with reference to the systems described in Section 3.3.2.

26

Chapter 3 3D visualisation

The goal of this chapter is to provide an introduction to virtual reality and 3D visualisation. Section 3.2
aims to provide an unambiguous view of virtual reality and to clarify any preconceptions of the term or
the technology. Section 3.3 highlights a closely related field which has received considerable research
attention, and which promises to provide usable techniques that may also be applicable to the subject of
this thesis, 3D software visualisation. Overall, this chapter provides a broad look at a variety of
visualisation techniques and prototypes, highlighting the possibilities afforded by 3D visualisation and
attempting to disprove any preconception that the use of 3D graphics is merely a gimmick.

3.2 Virtual environments and VR systems
The term Virtual Reality (VR) has been used (or misused) widely to refer to almost any form of

computer graphics and interaction. There are numerous definitions of the term virtual reality and

contention as to what a VR system actually is. Many people view VR as an attempt at modelling the

real world as believably as possible, others see it merely as an advanced form of human-computer

interface. Certain views suggest that a true VR system must include paraphernalia such as head-

mounted displays (HMDs), tactile feedback gloves, and full body suits. This suggests that the interface

to the world is what characterises a VR system, whereas other views deem the actual 3D environment,

level of interaction and the degree of presence to be of more importance. Regardless of these views,

everyone generally accepts VR for what it is; a system for providing an interactive exploration of a

three dimensional virtual environment. A large number of professionals in the field have opted for the

term Virtual Environment as it carries less of the hype and expectations which VR has been associated

with.

In the early days of VR research the technology was rare and expensive meaning that only the dedicated

researchers or companies with a realistic practical application of the technology were developing

systems. Things have improved greatly over recent years with computer hardware becoming

increasingly more powerful while steadily becoming more affordable. Systems capable of running a VR

application are now commonly available within people's homes and in the everyday workplace.

Increasingly, companies are investigating what VR has to offer them and how they can put the

technology into practice. Research into VR systems and applications of VR is now widespread.

3.2.1 Virtual reality systems

Computer graphics is now a well-established field and is used in countless applications and situations.

The research presented in this thesis concentrates on 3D computer graphics, a more specialised yet still

extremely widespread area. Computer aided design (CAD) systems originally led the way with 3D

graphics. These systems allowed 3D models of real-world objects to be constructed as geometric

descriptions of their structure. By supplying other information such as the position, size, colour and

orientation of these objects it is possible to render realistic images of a product before any real-world

prototype has been built. The implications of this, from an industrial point of view, are incredible

savings during product development as ideas and designs can be constructed and evaluated in a fraction

27

Chapter 3

of the time and cost of building an actual prototype,
research and engineering applications.

3D visualisation

CAD is now a vital tool within a large number of

Virtual environments are based on similar principals to CAD systems. A database is used to store the

geometric representation of the objects within the V E . A graphics engine constructs an image of the

scene, which can be viewed from any angle or position, and displays the image in a 2D form as if

looking through a camera. The term used for creating this image is rendering. Rendering a 3D scene is

a complex and time consuming process. In order to produce a moderately detailed scene it was often

necessary to wait for several minutes or even hours for a single image. Hardware and software have

progressed a great deal and it is now possible to produce realistic images in a fraction of a second. This

is what made VR possible, being able to generate several images per second means that a user can

control the viewpoint or camera and explore the virtual world in real-time.

There will always be a trade-off between realism and interactivity. The more realistic a scene must

appear then the longer it will take to render and the slower the virtual environment will update. This

again produces two different opinions on what a virtual reality system's goals should be. Some people

believe that a virtual reality system must look real, requiring the most detailed images possible. Other

people believe that it is the fluidity and responsiveness of the 3 D environment that provides the key to a

VR system. Both these approaches are valid, but in terms of computer graphics they are mutually

exclusive. Incredibly detailed images will make the V E appear more realistic, but movement through

the environment will be slow and cumbersome, detracting from the experience. On the other hand, less

detailed scenes will appear false and artificial, but movement through the environment will be smooth

and responsive giving a heightened sense of immersion and presence.

3.2.2 Virtual reality software

There are a vast number of different software packages allowing users to either experience virtual

worlds, or even to create and edit them. The majority of professional VR packages offer the same basic

functionality, allowing a world to be created from any number of 3D objects which can be arbitrarily

defined using either graphic primitives or specific face sets (collections of 2D facets which comprise a

3D object). These packages also offer total freedom in viewing the virtual world from any conceivable

position and orientation. Different systems merely offer additional features, perform certain operations

better, give improved performance or image quality, etc. A more interesting development of 3D

graphics engines and immersive environments has occurred in the computer games industry. Regardless

of the stigma of computer games within the serious research community, it is undeniable that they offer

some of the most immersive, usable and engrossing virtual environments - how would they be so

successful and popular otherwise?

The majority of VR systems produced are commercial applications designed to allow rapid creation and

exploration of a virtual world. These systems are typically extremely flexible and allow a great deal of

control and detail to be designed into a virtual world. Such systems are designed to cater for the widest

28

Chapter 3 3D visualisation

possible range of uses and are thus extremely generic in nature. On the opposite scale of development
within the range of virtual reality systems are computer games.

Computer games have developed greatly over the past decade with a strong focus towards incorporating

3D graphics in almost every modern title. Computer games are often dismissed by the VR community

due to their focus on entertainment and lack of any apparent research value. This has changed recently

with the advent of more powerful, flexible and imaginative game engines. Such engines are beginning

to encroach on areas previously dominated by dedicated VR systems. Research has already explored the

possibilities afforded by a game engine for information visualisation [Knight98].

3.2.3 Important factors in VR systems

There are many factors attributing to a realistic and believable virtual environment, three of the more

important factors are described briefly here. These three factors are visual realism, latency and

presence. Other factors important to a VR system include image resolution, frame rate, interaction,

believability and immersion.

I. Visual realism

The level of realism in a scene aids considerably in making a believable environment. Ray tracer and

professional animation systems produce incredibly realistic images, such as those used in special effects

for movie production. Some of the best applications of this technology result in the viewer not noticing

any transition or discrepancies between real footage and computer generated effects. Providing this

level of detail and sophistication is extremely complex and requires a great deal of rendering time.

More and more advanced features are slowly appearing in virtual environments though it will still be a

long time before they reach the same quality which current computer animation can provide.

Visual realism can be increased or affected in numerous ways. One of the most obvious and common

methods for increasing visual realism is to increase the polygon count within a virtual environment.

Objects within the V E are created from a discrete number of polygons. The majority of VR systems use

polygonal facets to create all objects within the V E , even curved surfaces such as a sphere or cylinder.

By increasing the number of polygons used to represent an object, the level of detail is increased and

objects begin to appear less geometrical. This has a similar effect to increasing the resolution of a 2D

graphical image, detail is increased and the granularity of the image is reduced.

Another popular and extremely effective technique is to map detailed and realistic textures onto the

facets of an object. The greater the number, resolution and variety of textures used then the more

realistic an object will appear. Obviously this implies correct application and use of texture. Poor and

thoughtless use of texture can also be detrimental to visual realism. Finally, there are numerous

algorithms and techniques that address areas such as shading, lighting and shadows. Applying such

algorithms to a virtual world may increase visual realism greatly. Unfortunately, while there are many

techniques that can be applied to increase visual realism, almost all of these come at the cost of

29

Chapter 3 3D visualisation

increased rendering time. Increasing visual realism will invariably increase rendering time and have
adverse effects on other aspects of the virtual environment. The only solution here is to increase
available computing power.

II. Latency

Latency is probably one of the most important aspects of a virtual reality system which must be

addressed to make the environment not only more realistic, but simply tolerable. Latency, frequently

referred to as lag, is the delay induced by the various components of a VR system between a user's

inputs and the corresponding response from the system in the form of a change in the display. As

latency increases, a user's senses become increasingly confused as their actions become more and more

delayed. Chronic cases can even result in simulator sickness, a recognised medical problem associated

with virtual environments [Vince95]. Latency must be kept to a minimum in order to create a usable

VR system.

Although latency is undeniably a major problem for virtual environments, humans are often very adept

at coping with its affects and adapting their use of the environment to compensate. For this reason,

small amounts of latency are acceptable. There are two main types of latency: fixed and variable. Fixed

latency refers to a consistent delay between user action and virtual world reaction. This delay is often

due to physical delays in the virtual reality system and will remain reasonably steady throughout. This

form of latency can be most easily compensated for by the user, even up to relatively high levels.

Variable latency is more problematic and refers to unpredictable bursts of lag, varying amounts of

latency and even sudden pauses in the virtual reality system. Variable latency most often occurs in

networked virtual environments due to the unpredictable nature of the network performance. Another

cause of variable latency is often scene complexity. When moving the viewpoint from a scene of

relatively low complexity to a high complexity scene, there is a dramatically increased load on the

graphics system. This load will result in variations in frame rate possibly leading to perceived latency

(or actual latency in extreme cases). However, the increased load on the graphics system will reduce the

amount of computing power available for other important systems such as input sampling or the

simulation engine, this can result in actual and large increases in latency.

Due to the physical limits of computing equipment VR systems will always experience some degree of

latency, minimising the amount and type of latency is the key to a successful virtual environment.

Keeping fixed latency as low as practical and reducing the effects of variable latency is an important

goal and a critical design issue for VR systems and worlds.

III. Presence

The overall goal of optimising and balancing each of the properties of a VR system is to provide the

user with a heightened sense of presence within the virtual world. The terms presence, immersion and

believability are often mentioned when describing virtual environments and the sensations associated

with their use. Presence is a sense of having a position, orientation and representation within a virtual

30

Chapter 3 3D visualisation

world. It is the sense of being involved in a world and belonging as part of that world. Presence refers to
the user's virtual representation and not to the user themselves. Immersion, on the other hand, is a
feeling that the user himself or herself is immersed bodily within a virtual world. Finally believability is
a sense that what the user sees constitutes a believable environment. To some extent it is the ability to
believe that the virtual environment is representative of a real environment. The dependencies and
relationships between these terms are often argued or confused by researchers, their defmitions and
interpretations being very subjective.

It is sometimes argued that presence and immersion are in fact the same, or that to create a sense of

presence or immersion then the environment must be believable. Believability is also argued to be

dependant on visual realism and also to the extent at which a virtual world mimics the real world.

Fantastic settings used within a virtual world are often deemed to defeat believability. In this thesis it is

thought that the terms presence, believability and immersion are each discrete measures of the

experience a user has when interacting with a virtual environment. While there is undeniably some

relationship and dependency between these terms, it is believed there are no prerequisites that one

implies the other or that one requires another. These relationships are also very subjective, with each

user having a very different experience of their interaction with a virtual world. Some people find it

easier to suspend belief than others do. Similarly some users are capable of mentally sustaining a sense

of presence within two locations simultaneously - the virtual world and real life. Those that cannot,

may limit their feeling of presence to the real world or to the virtual world, giving two extremes of

immersion.

It is the opinion of this research that the level of presence is by far the most important of these three

attributes. Immersion can be improved greatly by the use of novel interface technologies. Believability

is so highly subjective that it becomes excessively hard to cater for in the design of a virtual world. The

level of presence, however, is the basic necessity for navigating and interacting with a virtual

environment. A feeling of presence is what puts the user into the virtual world. Presence can be

accentuated in various ways though the most important provision is that of a body or avatar for the user.

In the same way that we relate to our real world environment, which is fashioned about our stature and

nature, the user will relate to his or her virtual environment with similar expectations.

3.2.4 Types of VR systems

Virtual reality systems can be classified into three main groups depending on their primary medium.

These are graphical, textual and non-visual [Dieberger94]. This research is concerned only with

graphical virtual environments and for the purpose of this research all reference to the term virtual

reality or VR in subsequent chapters will imply a graphical virtual environment.

Graphical virtual environments, as the name implies, incorporate some form of visual display to

produce a graphical image of the user's view from within the virtual world. These systems require little

imagination on the part of the user because a concrete and recognisable image of the virtual world is

31

Chapter 3 3D visualisation

displayed. The only imagination necessary is to be able to suspend a feeling of disbelief and to put aside
the knowledge that the environment is false. This involves recognising objects for what they represent
and not merely how they appear. This is necessary because most objects in a virtual environment will
only be roughly similar to real world objects, and often will appear far from life-like. This is, however,
only a limitation of current technology.

There are a number of different classifications of graphical VR system, based mainly on the interface

methods used. A number of these are described in detail here. The purpose of highlighting these

different forms of VR system is to illustrate that VR is not dependent on any one form of technology or

any particular input and output devices. Virtual reality is a hardware independent concept, contrary to

the popular public view which considers the term virtual reality to be synonymous with head-mounted

display goggles and novel interaction techniques.

I. Window on World (WoW) or Desktop VR

One of the most common and accessible forms of virtual reality is Desktop VR or Window on World

(WoW) systems. These systems do not rely on any specialist input or output devices in order to use

them. Typically a standard computer mouse and monitor is sufficient. The user interacts with the virtual

world by use of a controller such as a mouse, keyboard, joystick or other specialised device. Visual

feedback is provided by the computer monitor which acts as a window looking into the virtual world.

Computer games are a prime example of a common and successful application of desktop VR.

A quote by Ivan Sutherland in his 1965 research paper highlights the goals of this approach. "One must

look at a display screen as a window through which one beholds a virtual world. The challenge to

computer graphics is to make the picture in the window look real, sound real and the objects act real."

[Sutherland65]

II. Immersive VR

The goal of most virtual reality systems is to completely immerse the user within a synthetic

environment, to make them feel a part of that environment. In order to exploit this to maximum effect

the user must be effectively cut off from the real world and instead have a presence and viewpoint

within the virtual world. Such a VR system is referred to as immersive VR. Current technology usually

involves a head-mounted display (HMD) which provides visual and auditory feedback. It is possible to

have varying degrees of immersion within a virtual world, this being achieved by concentrating on

simulating only certain senses or actions. For example a HMD may provide only visual stimuli, leaving

the user audibly aware of their real-world surroundings.

A 'cave' environment is another example of an immersive system, but one that does not use a HMD. A

cave environment refers to a room which uses multiple, large projectors to display the appropriate

viewpoints on each wall of the room. The user, or users, enter this room and navigate the virtual world

using various control systems provided. They are able to look freely around the virtual world by simply

32

Chapter 3 3D visualisation

looking in the appropriate direction within the room. One important difference between using a HMD
and using a cave system is that the latter can be a directly shared experience. Several users can be
present within the cave room and interact directly with each other, though having only a single
representation within the virtual environment. If using a HMD system each user would only be aware of
other users via a graphical representation of them, such as an avatar. This has obvious implications for
group working and communication within virtual environments.

III. Augmented reality

Augmented or mixed reality systems provide a middle ground between a non-immersive and fully

immersive VR system. AR systems overlay computer generated information over the user's view of the

real world, without completely occluding it. This allows the user to operate within the real world while

receiving computer generated information, often relevant to their current task, location or activity

within the real world.

The most common example of an AR system is the head-up display (HUD) used widely in modern

military aircraft. This superimposes flight data such as altitude, air speed, attitude or targeting

information upon the pilot's field of view. There are many possible applications of AR systems with the

potential to be extremely useful. In addition, such systems will probably be more acceptable and

desirable than fully immersive or desktop VR systems, due to their integration with the real world. AR

has a great potential in the rapidly developing strive for creating a portable office.

IV. Fish tank VR

This phrase is used to describe a hybrid system incorporating a standard desktop VR system with a

stereoscopic viewing and head tracking mechanism. The system uses L C D shutter glasses to provide

stereoscopic images and a head tracker that monitors the user's point of view on the computer screen.

As the user moves his or her head, the screen display updates to show the new perspective. This allows

the user to look either side of objects and to move their head in order to gain additional depth cues. This

system provides a far superior viewing experience than normal desktop VR. The stereoscopic images

provide heightened depth awareness and an improved three-dimensional view. More importantly

providing head tracking allows the effects of motion parallax as the user moves his or her head, greatly

increasing comprehension of three dimensional scenes [Ware94].

3.2.5 Summary

This section has provided an introduction to the field of virtual reality and detailed some of the

important aspects of a VR system. The goal of this section was to clarify the meaning of the term

virtual reality and to dispel any preconceptions of the technology required to create a virtual

environment.

33

Chapter 3 3D visualisation

To summarise, virtual reality is not dependent on any particular technology and may even be
independent of computer graphics. Textual and non-visual environments may also be described as
providing a virtual reality, yet these are far from the public conception of a virtual reality system, which
typically includes novel interface technology and realistic imagery. The research work presented in this
thesis concentrates on the use of graphical virtual environments in a typical desktop configuration. The
goal is not to investigate the technology of virtual reality, but to see how the concept of virtual reality
can be used to aid software visualisation.

3.3 Information visualisation
This section describes a variety of 3D information visualisation techniques and research systems that

have been developed to aid the human comprehension of large information systems. This section is split

into two distinct parts. The first part (3.3.1) describes the techniques currently available for displaying

various forms of information using 3D graphics. The second part (3.3.2) goes on to describe a number

of prototype or research visualisation systems and provide a brief summary of the abilities of each.

Finally, the section draws to a close with some conclusions on the systems and techniques described

and an explanation of the possible application of such technology to software visualisation. Throughout

this section comment will be made as to the suitability or potential for any techniques or aspects of a

visualisation to be applied to 3D software visualisation.

Also mentioned below are a number of 3D software visualisation systems. It is the author's opinion that

software visualisation can be considered a more specialised area within the general scope of

information visualisation. Software systems are essentially information artefacts, they consist entirely of

information objects with relationships and dependencies between these objects. The goal of software

visualisation is to impart some knowledge of the structure, operation and meaning of this information

artefact. These are goals almost identical to that of information visualisation. It is therefore sensible to

include such systems alongside more general information visualisation systems. Section 3.4 provides a

general overview of the software visualisation systems described here.

3.3.1 Visualisation techniques

This section describes a variety of information visualisation techniques that are used in many 3D

information visualisation systems. These techniques range from the familiar data presentation of surface

plots and 3D bar charts through to the creation of abstract data spaces and the behaviour of objects

within them.

The techniques described here can be classified as belonging roughly to one of three groups: mappings;

presentation techniques; and dynamic visualisation techniques. Each of the techniques listed below is

described within this chapter.

34

Chapter 3 3D visualisation

Surface plots, cityscapes, Benediktine space and spatial arrangement can all be classified as mappings
from the data domain to the visualisation space. These techniques all use some aspect, property or value
of the data items to produce a mapping to objects within the visualisation.

Perspective walls, cone trees, cam trees and rooms may be classed as information presentation

techniques. These visualisations concentrate on the appearance, accessibility and usability of the data

and aim to provide a user friendly and intuitive interface.

Finally, fish-eye views, emotional icons and self organising graphs may all be described as dynamic

information visualisation techniques. These techniques endow the visualisations with behaviour and

dynamic properties, allowing the visualisations to respond automatically to changes in the data or to the

actions of the user.

This classification system only serves to provide some gross collation of the various techniques

described. There is some degree of overlap between these categories and the classification of a

technique is somewhat subjective.

The following sections describe in detail each of the techniques mentioned above.

I. Surface plots

One of the most familiar extensions from standard 2D graphs is the 3D surface plot. Surface plots are

constructed by plotting data triples onto the three co-ordinate axes X, Y and Z. Typically the data will

consist of two standard sets which have a regular structure, e.g. days of the week and time of day, and

one actual data value for example wind strength. The two regular sets are normally plotted on the

horizontal axes X and Z with the variable data being plotted as height in the Y axis. The set of points

thus formed are netted into a mesh or surface which is often colour coded to indicate height variations.

The resulting visualisation resembles a landscape that can be easily interpreted to identify features such

as patterns or irregularities.

An example of a 3D surface plot is shown in Figure 3.1 below. The data set describes the number of

users connecting to a particular server over the course of 24 hours, split into 2-hour time bands. An

additional dimension is added by describing the same data over seven days. This data is then plotted

onto the 3D surface plot shown in Figure 3.1. Immediately it allows the viewer to spot any particular

trends or abnormalities in the data, requiring considerably less mental effort than interpreting the data

values in the table. Trends such as the small peak in lunchtime use midweek, the much higher server

use on weekday evenings, and the steadily higher server use on weekends become readily apparent,

even on this very small data set.

35

Chapter 3 3D visualisation

12am 2am 4am 6am 8am 10am 12pm 2pm 4pm 6pm 8pm 10pm
2am 4am 6am 8am 10am 12pm 2pm 4pm 6pm 8pm 10pm 12am

Monday 20 13 0 0 10 25 50 10 12 243 302 289
Tuesday 60 2 0 1 7 20 49 15 15 230 271 266
Wednesday 63 3 1 0 11 27 57 11 11 233 280 290
Thursday 60 1 0 0 8 18 44 13 25 280 330 300
Fiiday 55 2 0 0 12 30 69 23 30 293 297 275
Saturday 88 20 5 2 4 40 120 143 220 413 449 353
Sunday 103 25 12 3 3 32 104 154 254 402 411 301

Server Usage

H a a k c r mi mr+rr

• 400-450 J i l l !

• 350-400 35C

• 300-350
• 250-300 :;:.

• 200-250

• 150-200 1S«

• 100-150
• 50-100 5"

• 0-50
F r i d a y

i Muri-lay

1

Figure 3.1. 3D Surface plot with corresponding data.

Surface plots are specifically designed for the visualisation of quantitative, typically numerical

information. Software systems contain a substantial amount of such information, and in particular the

analysis of a software system will often result in the generation of a large amount and variety of metric

information. Surface plots provide an efficient and understandable technique for visualising such

information.

II. Cityscapes

The term Cityscape is used within this thesis to describe two different visualisation techniques, though

both sharing a common theme. The actual term is used in both cases to describe a visualisation with an

appearance resembling the skyline, shape and form of a real-world city. The characteristics being

regular sized towers of varying height, placed within close proximity of one another and often in a very

regular pattern.

The term 'Cityscape' is used here to describe what is effectively an extension to 3D bar charts and a

variation on surface plots. Cityscapes are created in a similar fashion to the surface plots by mapping

scalar data values onto the height of 3D vertical bars or blocks, the blocks being placed on a uniform

36

Chapter 3 3D visualisation

2D horizontal plane. The resulting visualisation can be thought of as a more granular representation of
the surface plot. The cityscape demonstration [Walker93] developed at British Telecommunications
research labs includes additional features to provide further information on the data set and allow
simple comparison of results. One feature projects the minimum, average and maximum values for each
row and column in the 2D plane (i.e. X and Z axes) onto the end walls of the cityscape. Another feature
allows the addition of a variable transparency 'sheet' to be placed at a specified height in the cityscape.
The transparent sheet highlights blocks or data values that exceed the desired height, allowing instant
identification and comparison between these data values.

An example of such a cityscape visualisation is shown in Figure 3.2. This particular example uses the

same data set as shown in the 3D surface plot example of Figure 3.1. The maximum, minimum and

average values for each row and column of the data are projected onto the side walls. A transparent

selection field is also shown, highlighting any data with a value equal to or greater than 50. Due to the

transparent nature of this selection plane, data items not fitting this criterion are still visible, providing a

context for the results. Finally, a selected data item is shown with the average values for its row and

column being extended to provide some context with neighbouring data.

I / /

Figure 3.2. A City scape visualisation showing a variety of information.

As with surface plots, cityscape visualisations are designed to present predominantly numerical

information. Such a visualisation would provide a suitable and intuitive display of numerical software

information, for example software metrics.

37

Chapter 3

ill. Fish-eye views

3D visualisation

The name given to this particular technique is taken from the similar effect produced by a very wide-

angle 'fish-eye' lens. The fish-eye lens distorts the view so that objects close to the centre of the lens

are magnified greatly, this magnification drops rapidly the further the objects are from the centre of the

lens. This view results in objects that are at the centre of attention being shown in the greatest detail and

with maximum emphasis, whereas objects on the periphery are shown with less emphasis. This allows

objects of interest to be studied in detail, while still maintaining a notion of context or position with

respect to other objects.

Fisheye views were originally investigated by Furnas [Furnas86], but have since received more

attention and widespread use. The original views have been extended to give more control over the

layout and to take into account the overall information structure [Sakar92].

The use of fish-eye techniques could prove to be useful in visualising large graphs. The technique will

allow nodes of interest to be brought 'closer' to the viewer thus displaying greater detail while other

nodes are moved further from the viewer and displayed in lesser detail. This provides the ability for the

viewer to concentrate on the nodes of interest while still maintaining a view of these nodes' position

within the whole graph structure.

Software systems are often visualised using a graph-based technique. Such graphs rapidly become very

large and complex as the size of the visualised system increases, often resulting in a tightly cluttered

graph structure. The use of fish-eye views can aid exploration of such graph structures by distorting the

space around the viewer's focus, effectively spacing out the graph to provide a clearer view of the

structure. The rest of the graphs structure remains visible at the periphery of the users view, thus

providing some context for their focus of interest. An example of the use of fish-eye views is

demonstrated by the Rigi reverse engineering tool [Storey95].

IV. Benediktine space

Benediktine space is a term that arose from Michael Benedikt's research into the structure of

cyberspace [Benedikt°l]. Benedikt put forward the notion that attributes of an object may be mapped

onto intrinsic and extrinsic spatial dimensions. Extrinsic dimensions specify a point within space, for

example a set of Cartesian co-ordinates. Intrinsic dimensions specify object attributes such as size,

shape, colour, texture, etc. An example of a Benediktine space could be to map an attribute such as

student names onto an extrinsic dimension such as the x-axis and their exam marks to another extrinsic

dimension, such as the y-axis. The class of degree that a student received could then be mapped onto an

intrinsic dimension such as shape. Other intrinsic dimensions could then be used to encode other

relevant information. By doing so we create an information space in which the very structure and

position of objects provides insight into the data.

38

Chapter 3 3D visualisation

Benedikt also proposed two rules for cyberspace, the principles of exclusion and maximal exclusion.
These rules attempt to clarify the positioning of data and in particular to avoid 'crowding' of data items.
The principle of exclusion essentially ensures that no two data items can exist in the same location
within space, i.e. their extrinsic dimensions must be different. This is stated as:

"Two non-identical objects having the same extrinsic dimensions and dimension values, whether at the

same time, or including time as an extrinsic dimension from the outset, is forbidden, no matter what

other comparisons may be made between their intrinsic dimensions and values."

The Principle of Maximal Exclusion expands upon the Principle of Exclusion by ensuring different data

items are separated as much as possible, thus avoiding confusion produced by cluttering of objects. This

is stated as:

"Given any N-dimensional state of a phenomenon, and all the values - actual and possible - on those N-

dimensions, choose as extrinsic dimensions - as "space and time" - that set of (two, three, or four)

dimensions that will minimise the number of violations of the Principle of Exclusion."

While this notion of intrinsic dimensions, extrinsic dimensions, exclusion and maximal exclusion may

seem straightforward and common sense, it is still very convenient to be able to refer to objects within

3D space as having intrinsic and extrinsic dimensions. This work by Benedikt provides some clarity and

a common frame of reference for describing object properties, within any form of 3D visualisation.

V. Perspective walls

Perspective walls [Mackinlay91] are a technique for viewing and navigating large, linearly structured

information, allowing the viewer to focus on a particular area while Itill maintaining some notion of

location or context. Perspective walls have some similarity to the fisheye views in that they allow a

particular area of information to be viewed in detail while information close to this is still visible in

lesser detail thus giving an idea of position and orientation within the data.

The two strategies previously used to display large volumes of information were the space strategy and

the time strategy. The space strategy used layout techniques and graphical design to maximise a single

display area, presenting as much information as possible. This technique suffered from information

overload in that so much information was presented that extracting any detail became harder. The time

strategy took the principle of breaking the information structure into a number of separate views, only

one of which could be displayed at any one time. This allows the viewer to switch between the views

and focus on particular information as needed. The problem suffered by this view was that it was easy

to become lost within the data as no overall view or cues to the current location are provided.

The perspective wall addresses the above problems by effectively extending the time strategy with

contextual cues. The perspective wall folds the linear structure of the information in 3D space, for

example forming a cylindrical shell with the data mapped onto the interior or exterior surface (other

configurations are possible). A single section of the data may be viewed in detail at any one time, with

39

Chapter 3 3D visualisation

adjacent sections being folded back on either side of the view to give cues to the position of the current
section. On moving between sections the wall would rotate smoothly to bring the next section to the
centre of the view.

An example of a perspective wall is shown in Figure 3.3. The linear information structure, in this case a

syntax highlighted source code file, is displayed on the exterior surface of a horizontal cylinder.

Controls are available to spin the cylinder to bring any 'page' to the front. Contextual clues to the

position within the linear structure are also available as a vertical slide bar and also as a colour coded

strip running along the left edge of the cylinder. The currently selected page, or facet of the cylinder,

would be in clear view to the user. The neighbouring pages are also within view to a lesser extent, thus

providing some additional context to the location of the current page.

Figure 3.3. FileWall: An example of a perspective wall.

The perspective wall, cone trees, cam trees and 3D-Rooms (described below) are the result of research

into an integrated information visualizer [Card91, Clarkson91] at the Xerox Palo Alto Research Centre

(Xerox PARC).

Within software systems there is a large variety of information which can often only be displayed

within a two-dimensional view. It is inevitable that for some aspects of a software system it will be

inappropriate to radically change the way in which the information is presented. One such example is

the presentation of the program source code. This is such a fundamental aspect of the software that any

40

Chapter 3 3D visualisation

form of display, other than the standard 2D textual view, would inevitably inhibit comprehension
performance or present an excessive learning step. Perspective walls allow the presentation of 2D
information seamlessly within a 3D environment, this would be particularly suitable for the display of
source code files and other inherently 2D information within a 3D software visualisation.

VI. Cone trees and cam trees

Cone trees [Robertson91] are a three-dimensional extension to the more familiar 2D hierarchical tree

structures. Cam trees are identical to cone trees except that they grow horizontally as opposed to

vertically. The aim of cone trees is to allow a greater amount of information to be navigated and

displayed in an intuitive manner and also to shift some of the cognitive load of comprehending the

structure to the human perceptual system.

Cone trees are constructed by placing the root node of the tree at the apex of a translucent cone,

positioned near the top of the display. All child nodes are then distributed at equal distances along the

perimeter of the cone. This process is repeated for every node in the hierarchy. The base diameter of the

cones is reduced at each level as the hierarchy descends in order to ensure sufficient space to

accommodate all further leaf nodes.

The original cone and cam tree visualisations produced at Xerox PARC enabled the tree to be rotated

smoothly to bring any particular node into focus. The smooth animation was found to be critical in

maintaining the viewer's cognitive model of the structure. Sudden changes in orientation of the tree

would require a significant amount of time to reorient the user's cognitive model.

Figure 3.4 shows a large example of a cone tree structure. Figure 3.16, appearing on page 58, illustrates

a earn tree visualisation in which the tree grows horizontally from left to right. This often provides a

much more intuitive and useful structure. Cam trees have the added benefit that textual labels flow

nicely along the length of the tree, providing a much more compact and readable structure than cone

trees.

41

Chapter 3 3D visualisation

1

I

Figure 3.4. Example visualisation of a cone tree representing a directory structure.

Image courtesy of Dave Snowdon, Nottingham University.

Software systems contain a high degree of relationships between various components, for example

function calls, file inclusion, class hierarchies and data dependencies. These relationships can be

displayed using a graph-based visualisation, depicting each component and the relationships between

them. Often these graphs will be predominantly hierarchical and the use of cone or cam trees would

provide an intuitive depiction of their structure within a 3D environment.

VII. Sphere visualisation

The sphere visualisation is described by Fairchild et al [Fairchild93] as a 3D version of the

predominantly two-dimensional perspective wall. The sphere visualisation is used within the VizNet

visualisation system to view associative relationships between multimedia objects and a selected object

of interest (OOI). Objects are mapped onto the surface of a sphere with highly related objects placed

close to the OOI. Unrelated objects are displayed further from the OOI and thus become less visible as

they move round to the opposite side of the sphere. This provides a natural fisheye view which

emphasises objects of interest and de-emphasises less relevant objects.

The information is presented on the surface of a number of nested spheres. This provides a mechanism

for representing different levels of information. The OOI is displayed on the outermost sphere with

objects directly related to it fanning out around the surface of the sphere. Objects indirectly related to

the OOI are considered lower level objects and are displayed on spheres nested within the outer sphere.

The colour of the spheres becomes darker with increasing depth of nesting to give the user visual cues

to their current location within the visualisation. Navigation through the visualisation is facilitated by

rotating the sphere to bring nodes of interest into view and by traversing links to lower level spheres.

42

Chapter 3 3D visualisation

i

V

Figure 3.5. Sphere visualisation produced using VizNet.

Image courtesy of Kim Fairchild, Institute of Systems Science, National University of Singapore.

Software systems are comprised of a large variety of objects with various types of relationship between

them [Chan98]. The sphere visualisation might provide a suitable form of display to highlight the

various relationships with respect to a particular object of interest to the user. The visualisation would

allow the user to traverse this network of relationships, moving their interest from one software object

to another.

VIII. Rooms

The '3D-Rooms' metaphor is a three-dimensional counterpart to the desktop metaphor commonly

encountered in computing today. 3D-Rooms were developed at Xerox PARC as part of their integrated

information workspace and are a 3D extension to the original concept of 2D Rooms. 2D Rooms

[Card87, Henderson86] built upon the notion of a multiple desktop workspace by adding features such

as the ability to share the same objects between different workspaces, to overview the workspaces and

also to load and save workspaces. Rooms allow another way for users to structure and organise their

work by allocating certain tasks to certain rooms and moving between different rooms as needed.

Within each room there will be a variety of information sources depending on the type of task allocated

to a particular room. 3D objects may be present which represent, for example, documents or

applications. The walls of the room may also contain information in a more conventional 2D manner,

effectively using the walls as 2D displays.

The various rooms in an information complex such as this are connected via a number of doors. Doors

lead from one room directly to another and, leaving a room by the back door, will return you to the

previous room you were in. A necessary navigational aid for these structures is the provision of an

43

Chapter 3 3D visualisation

overview or floor plan of the rooms, including some indication to the content or tasks of the individual
rooms. This allows the user to quickly move between unrelated rooms or tasks without having to go via
a number of other rooms. One further useful addition to the rooms metaphor is the notion of pockets
which allow the user to 'carry' information or objects between rooms or keep important items close at
hand.

The 3D rooms metaphor does not provide any direct technique for the visualisation of software systems.

It is predominantly an organisational metaphor, providing a unified interface and an understandable

structure to a variety of other visualisations. Software visualisation is a complex problem and it is

extremely unlikely that a single visualisation could cater for the needs of all its users. Software

visualisation can not, and should not, be restricted solely to one view upon a software system. The use

of the 3D rooms metaphor could provide a suitable way of bringing together the various specific

software visualisations required by the user, amalgamating them into a single system with a unified

interface.

IX. Emotional icons

Emotional icons [Walker95], taken within the context of a 3D data world, are objects that adopt varying

behaviours in response to the presence of a user or possibly other icons. The aim of emotional icons is

to make the use of the data world a more interactive, dynamic and individual experience. Emotional

icons may respond to the presence or proximity of a user within the environment, their behaviour

possibly being dependent on the profile of the user or their current activities and interests. Icons could

possibly advance towards or retreat from the user, grow, shrink, animate or change their appearance all

dependent on the relevance or importance of the data they represent to the current user. Icons could also

respond to me proximity of other icons, those representing information of a similar nature may move

together whereas dissimilar icons may move further apart. Emotional icons could provide a big step

towards creating a 'living' data environment, one that responds to individual users in order to maximise

the benefit of their time within the environment. Figure 3.6 provides an example of a 3D visualisation

which is inhabited by emotional icons. Unfortunately emotional icons are predominantly interactive and

rely heavily on animation, both of which cannot be represented within a static image.

The concept behind emotional icons and the notion of user profiles would prove a powerful and useful

technique within software visualisation. Software maintainers will always have varying interests which

are dependant on a number of issues such as the specific task they are trying to perform and the nature

of the software system they are working on. By specifying these interests when creating a personal or

task-oriented user profile then the visualisation can adapt to meet the specific needs of the maintainer.

A software visualisation could be created as a dynamic environment which reacts to the presence and

interests of individual users. Objects which are unrelated to a particular maintenance task could move

away from the user, thus providing clarity and increased focus on objects which are of possible

importance. There is a great deal of scope for the inclusion of such techniques, to some degree, into

almost any form of 3D software visualisation.

44

Chapter 3 3D visualisation

Figure 3.6. Emotional icons inhabiting a data space.

Image courtesy of Graham Walker, British Telecommunications Pic.

X. Self-organising graphs

Self-organising graphs typically refer to a particular technique used in automatically laying out graphs.

Conventional layout techniques involve a function or routine that attempts to perform a suitable layout

on a given graph while aiming to satisfy a number of aesthetic criteria or heuristics. Self-organising

graphs allow the graph itself to perform the layout by modelling it as an initially unstable physical

system and allowing the system to settle into a stable equilibrium. There is no need for the graph

behaviour to accurately model an actual physical system, allowing the implementation of models

geared towards different criteria such as efficiency, speed, accuracy and aesthetics.

The first application of this method to graph layout was by Eades [Eades84] and was named the spring-

embedder. Eades' work evolved from a VLSI (Very large-scale integrated circuit) layout technique

termed force-directed placement (FDP) [Quinn79] and has since seen a large number of improvements,

modifications and similar algorithms. Graph layouts produced using such methods are often very

satisfactory and aesthetically pleasing. Examples of the application of a force-directed placement

algorithm to a large number of graphs can be found in work by Fruchterman and Reingold

[Fruchterman91].

Eades' system was modelled around a network of rings and springs. The vertices of the graph

represented the rings, and the edges represented the springs. The springs modelled did not obey Hooke's

law, contrary to what you would expect from a physical spring. When extended past their natural length

they exert an attractive force proportional to the length of extension. When compressed past their

natural length they exert a repulsive force, again proportional to the length of the compression. This

network begins in an unstable or high-energy state and, over a number of iterations, the forces within

the system will attempt to reach an equilibrium or minimum energy level. Once this more stable state is

achieved the layout is complete.

45

Chapter 3 3D visualisation

nput i_ inca]_w i [i _cb

\

met In ad v r t i x l ' i w Laxl

i i m c a l i r a]<ica]

\
« • w i n cb Up Ml

p»Jrt-_w k< cb m v a b i (r i i y
"L buKV

mti_Liiii»ati_[i nwjMian_Ui_KpK«
. -

u p « i _ i f K * l i a f _ w JIILLI

ncnblM half m l

«IVB wjti c b HT-MLSniitbTiuu. m u b u s y rr. »j] v,' ;;; cb

K » / C I I vria cb

/

H T M I . G I U I U KHCI d_m i j 1 m a m a *

Figure 3.7. 3D graph produced using force directed placement algorithm.

This technique is often used in the display of large hyper-structures, which are highly connected graphs

of interacting components. Examples of such structures are program call graphs, control-flow graphs

and hypertext document relationships. The FDP technique is easily expanded into three-dimensional

space producing very interesting and often optimal graph structures. The provision of an additional

dimension allows much greater freedom for the simulated physical system to find a minimum energy

state. Examples of the practical application of such algorithms within 3D information visualisation can

be found in a number of research papers [Chalmers95, Hendley95a, Kings95]. Figure 3.7 shows a

simple 3D graph, the layout being determined using an FDP algorithm. Another example of such a

layout can be seen in Figure 3.21 on page 65. Figure 3.21 shows a large graph, the layout of which is

the result of applying a force-directed placement algorithm, similar to the Eades' technique described

above.

The possible application to software visualisation is in the visualisation of relationships between

software components such as files, functions, classes and data objects.

XI. Spatial arrangement of data

By mapping data attributes to various intrinsic and extrinsic dimensions of 3D objects we begin to

define the nature of the 3D environment as a whole. The shape, form and population of that

environment will be described by the information we are visualising, in effect the information becomes

the 3D environment. When discussing such visualisations, mention is often made of the information

terrain or the information landscape. These terms refer to the data-dependent nature of the

environment, as it is the information itself that defines the terrain of this environment.

46

Chapter 3 3D visualisation

A key problem faced when creating an information terrain is in defining a useful mapping from the data
itself to a corresponding representation and location within the virtual environment (intrinsic and
extrinsic dimensions). The requirement of this process is to create a spatial configuration from which
the properties of data items within the information terrain and the relationships between them can be
readily interpreted, simply from their position and presentation. Within the research of Populated
Information Terrains (PITs), the following four approaches were investigated [Colebourne94,
Benford94a, Benford94b].

A. Benediktine cyberspace

As mentioned in Section IV, Benediktine cyberspace is created by mapping data attributes onto the

intrinsic and extrinsic dimensions of the corresponding 3D object. This method would involve

generating a schema for the database to be visualised in order to determine which data attributes are

mapped to the intrinsic and extrinsic dimensions of the visual representation. In this case the issue of

spatial arrangement is of little concern as this will be defined by the appropriate data values. However,

certain steps must still be taken to ensure best use of the space available and to provide the most

desirable information terrain. A desirable information terrain, in this case, refers to an understandable

and easily navigable environment. The principles of exclusion and maximum exclusion, mentioned

previously, attempt to provide some support for this.

An example application of a Benediktine space is Q-PIT, which is described further in Section 3.3.2.

B. Statistical clustering and proximity measures

Statistical methods can be used to analyse database contents in an attempt to group items according to

some measure of their semantic proximity. For example the contents of a document store could be

grouped corresponding to matching keywords. Analysis performed on these information stores typically

result in a number of 'scores' for documents, which can then be used to create a suitable mapping into

Benediktine space. The closer together objects are semantically, then the closer they will be within the

information terrain. Systems adopting this approach include V I B E [01sen93] and BEAD [Chalmers92],

though the original idea of VIBE has been developed further and extended into three dimensions to

produce VR-VIBE [Benford95]. Clustering is often a very subjective approach due to the number of

possible interpretations of 'close', both semantically within the information and also graphically within

the visualisation. For example, two objects within a visualisation could be described as being close if

they were positioned only a short distance apart. The same two objects could also be described as being

close if they were positioned far apart, but had a very similar appearance.

C. Hyper-structures

Hyper-structures are created from information stores consisting of a variety of data objects, with any

number or arrangement of explicit relationships between them. An example of a hyper-structure could

be formed from the document structure within hypertext systems such as the World Wide Web. Another

47

Chapter 3 3D visualisation

example is the dependency graph formed from components within a software system, such as a function
call-graph. These structures are typically viewed using 3D extensions to standard graph drawing
algorithms, or by more inherently three-dimensional visualisations such as fish-eye views, cone trees or
perspective walls. An example of a 3D graph depicting a hyper-structure is shown in Figure 3.21, on
page 65.

D. Human centred approaches

This approach is typically not suitable for automatic generation of visualisations and often relies on the

user or system designer to create appropriate representations of the data to be visualised. The technique

lends itself to the notion of abstract real-world metaphors such as cities, buildings and rooms within

which the user navigates the data through more familiar surroundings. The problem with this approach

is that the generation of such metaphors is time-consuming and difficult. Creating an abstract

environment such as this, which matches both the user's conception of these real-world surroundings

and appropriate structure and representation of the data being visualised, is not an easy task.

While such an approach has obvious benefits, in particular the familiarity of the environment to the user

(through the use of real-world metaphors), encoding information into a strong metaphor-based

environment is particularly difficult. This is especially so if attempting to avoid breaking any metaphors

used. The benefit of using metaphors is almost completely negated if these metaphors can occasionally

be broken within the environment, thus destroying the user's expectations. Ideally, a visualisation

should aim to strike a careful balance between the use of metaphor and the use of more abstract

constructs. Metaphors are useful for encouraging comprehension of the environment and the

information contained within it, whereas abstract constructs are useful for actually encoding

information and offering maximum flexibility for the display of that information. Visualisations that

make use of very strong metaphors are often very simplistic, as visualisations, providing nothing more

than an alternative access to information which could be more efficiently retrieved using more standard

interfaces.

An example of a system that makes use of very strong real-world metaphors is VTRGILIO [Levialdi95].

VIRGILIO uses the notion of corridors, elevators, rooms, filing cabinets, books, and various other

appropriate real-world objects in order to display information retrieved from a database query.

XII. The information cube

The information cube is a technique developed by Rekimoto and Green [Rekimoto93] to visualise

hierarchical information using nested translucent cubes. The information cube is loosely based upon the

2D tree-map visualisations of Johnson and Shneiderman [Johnson91, Shneiderman91]. Tree maps

visualise hierarchical information in a rectangular 2D display using a space-filling approach to

maximise display usage. The available display space is partitioned into a number of rectangular

bounding boxes, which represent the tree structure. Parent items are subdivided into boxes that

represent their children, and so on. Facilities are provided for the user to interact with the visualisation

48

Chapter 3 3D visualisation

and specify the presentation of both structural and content information, for example varying the 'depth'
of information or it's colour. Information within the display can be given a degree of interest or measure
of importance, resulting in it being allocated a greater proportion of available display space.

The information cube technique effectively extends 2D tree maps into 3D. Hierarchical information is

presented as nested translucent cubes, with the level of transparency varied to control the 'depth' of the

visualisation and hence the amount of information presented. Transparency and shading is the main

technique used to control the information content of the cube visualisations. This transparency allows

the user to view the content of the cubes and their children, while gradually hiding inner information as

it becomes less relevant (to the current focus). Without this reduction in presented information the

visualisation would become too complex to understand. A title is attached to the surface of each cube.

Leaf nodes, which contain no further nested cubes, are represented as 2D tiles with the title presented

on the surface. Cubes may contain arbitrary information and are not restricted to containing only further

cubes. Other 3D visualisations or information may also be presented within the cube structure.

ft

Figure 3.8. An information cube visualisation.

Image from Jun Rekimoto's web page, Sony Computer Science Laboratory Inc.

Software systems are typically comprised from a hierarchy of objects such as files, classes, methods and

data objects. The relationships within this hierarchy can often be described as a 'contains' relation; files

contain classes, classes contain methods, and classes also contain data objects. The use of transparency

and similar techniques to the information cube could be used to highlight these relationships within

software systems.

3.3.2 Research visualisation systems

The previous section described various techniques used within 3D information visualisation. This

section describes a number of information visualisation systems that make use of these techniques. The

majority of these systems are prototypes or concept demonstrators and, as such, their merits or

operation can only be assessed from their associated publications. This section aims to serve as a

49

Chapter 3 3D visualisation

synopsis of the publications describing these systems, and to provide insight into the possibilities
afforded by 3D visualisation. The wide variety of visualisation systems presented in this section
illustrates the scope of the field and also highlights the potential for applying similar visualisation
techniques to 3D software visualisation.

This section provides a varied sample of 3D information visualisation systems. While there are many

other systems which have not been included here [Walker93, Walker95, Kings95], this section aims to

provide a sample of the diversity of visualisation techniques used and the various approaches adopted

by researchers.

I. Database Visualisations

A. AMAZE

AMAZE [Boyle93, Benford94a] is a three-dimensional visual query language, created at Aberdeen

University specifically for the complex analysis of protein structural data. AMAZE was developed as

the next logical step in a series of advances to the existing database interface. AMAZE allows users to

visually construct a query within the 3D environment then explore the resulting data sets in the same

environment. The user constructs a query by interacting with a three dimensional representation of the

schema. The completed query is passed to the remote database for evaluation and the resulting data is

displayed as a set of 3D objects which the user can investigate further for additional information.

The AMAZE interface uses a mixture of 2D and 3D to provide an extension rather than a replacement

for the more typical, and often more appropriate, 2D windowing interface. 3D environments used in the

system are supported within separate windows and navigated with a conventional mouse.

Figure 3.9. Formation of an A M A Z E query.

Image courtesy of John Boyle, Aberdeen University.

A session using the AMAZE interface would begin with the user navigating the 3D schema then

attaching queries to relevant entity classes and adding constraints by way of a dialogue box. The user

50

Chapter 3 3D visualisation

can build up a more complex query by navigating to a number of interesting entity classes and placing
queries on each. An example of an AMAZE query is shown in Figure 3.9. Results from the query are
represented within the 'Result Maze', which the user can explore through the 3D interface. The result
maze is constructed by grouping resulting instances of the same entity class into sets then colour coding
these sets. Each instance within a set is represented as a single 3D cube, except for the case in which
there are a very large number of instances - these being represented as an abstract group object. Finally,
to view a particular instance, the user selects that instance causing an appropriate external viewer to
display the data.

B. VIRGILIO

The Virgilio project [Levialdi95] addresses the issues of automatic metaphor generation for use in

visualising database query results using a virtual environment. The project concentrates mainly on the

display of database results containing multimedia information. The project members define a

theoretical framework for determining whether a possible metaphor is suitable for displaying the results

of a given query, and more specifically, if that metaphor is structurally sound. By adopting a virtual

environment and 3D visualisation for display of the results, Virgilio hopes to allow users to easily

explore deeply structured chunks of information using a familiar and intuitive suite of appropriate

metaphors.

The Virgilio system aims to provide a general-purpose interface for information visualisation by using

dynamic metaphor generation. One of the most important aspects of this approach is that the system

must choose the best and most suitable metaphor from the many possibilities. In order to decide what is

a good metaphor for any particular user of the system, the notion of a user profile is necessary.

Figure 3.10. Virgilio corridor metaphor for selecting band names.

51

Chapter 3 3D visualisation

The Virgilio prototype system uses the Virtual Reality Modelling Language, VRML, to produce 3D
scenarios representing the query results. Users can then navigate and explore this environment and the
objects contained within it, and by doing so they are navigating and exploring the query result data.
Information is embedded in the many visual details provided by the virtual world metaphor, meaning
that no specific learning is required to interact with the visualisation.

5

I 1

Figure 3.11. Virgilio room metaphor, showing information on a selected band.

Figure 3.10, Figure 3.11, and Figure 3.12 illustrate a portion of a Virgilio visualisation and exploration

scenario. The scenario is based upon a music database containing information such as songs, lyrics,

albums and artists. The visualisation generated has selected a 'rooms' metaphor and has structured the

information into a virtual building. Initially the user is presented with the external view of the building.

On entering the building they can progress through the foyer, which contains decorative features

pertaining to the nature of the database, and enter the elevator. Each floor in the building represents a

style of music such as classic, rock, pop and jazz. The user indicates their interest by selecting the

corresponding button in the elevator.

On exiting the elevator (Figure 3.10) the user is presented with a corridor, which corresponds to various

bands that have produced music in this particular category. Information on the category of music

selected is shown on a floorboard just outside the elevator, and a banner indicating the category is

displayed. Each door along the corridor leads to a room pertaining to one artist or group, with the room

label being clearly visible from the corridor.

On entering a particular room (Figure 3.11) the user is presented with a variety of information on this

particular artist or group. Within the room is a set of cabinets containing drawers, each of which

correspond to a CD or Album produced by the group. Again, opening these drawers (Figure 3.12a)

leads to further, more detailed information on each of the tracks of that album.

52

Chapter 3 3D visualisation

I I . ,

(a) (b)

Figure 3.12. Viewing albums, songs and lyrics in Virgilio.

The Virgilio system also attempts to reduce the cognitive load of users as they refine or expand queries.

The system wi l l attempt to accommodate new information in a seamless way, using redundant visual

objects. For example, i f the user refines the query to display the lyrics of a particular song, the system

displays this information by presenting a book on a previously empty table (Figure 3.12b). The aim here

is to minimise the amount of change within the environment, for a corresponding change within the

query, thus minimising disorientation and the need to reiearn the visualisation structure.

II. Populated information terrains (PITs)

The concept of a Populated Information Terrain (PIT) aims to provide a useful database or information

visualisation by taking key ideas from the fields of computer supported co-operative work (CSCW),

virtual reality and database technology. The definition of a PIT is taken as a virtual data space that may

be inhabited by multiple users [Colebourne94, Benford94b]. The philosophy behind PITs is that they

should support people to work co-operatively within data as opposed to merely with data. Possible

applications of PITs can apply to any form of information store, for example: library catalogues; large

hypertext systems such as the World Wide Web; or even large software systems through an appropriate

set of visual abstractions.

PITs were developed in response to a lack of sufficient support for co-operative work and information

browsing within current information stores. The lack of support for information browsing is addressed

by the use of virtual reality to create a rich data environment in which the user can navigate and explore

freely. VR provides the capabilities for the user to become immersed within the data and to explore and

interact with it while making ful l use of his or her perceptual and intuitive skills. Co-operative work is

supported in PITs by populating the virtual data environment with users. This allows users of the PIT to

be aware of the presence and actions of other users within the same PIT and the ability to communicate

with them, irrespective of their physical location. This awareness of other users enables a true sharing

53

Chapter 3 3D visualisation

of information. A user interested in a particular subject area may question other users browsing the
same information or even ask directions to relevant data.

A. Q-PIT

Q-PIT [Benford94b] is a prototype implementation of a populated information terrain, following the

Benediktine approach. Q-PIT is implemented using the World ToolKit virtual reality library and is

capable of processing and displaying a simple database of named tuples. Q-PIT allows the display,

querying and manipulation of the database within the three dimensional environment, in addition to

allowing this environment to be shared by multiple users.

Within Q-PIT, attributes of the data to be visualised are mapped onto the extrinsic and intrinsic

dimensions of the 3D representations. The extrinsic dimensions used are the X, Y and Z co-ordinate

axes, while intrinsic dimensions supported are shape, height and angular velocity. Users within Q-PIT

are embodied as monoliths - tall, thin cuboids each allocated a different colour to represent their

identity. Users are aware of the presence of other users within the same PIT and can obtain information

on them or open a communication channel with them.

Manipulation of the underlying data in Q-PIT is provided via a number of methods. The user may either

select a single data item via its 3D representation or they may issue a query, resulting in all matching

data items being highlighted. The actual data in the tuple can be modified by selecting an object then

using a textual interface to modify the fields. Once altered, changes to either intrinsic or extrinsic

attributes are reflected immediately in the visualisation, the latter of which results in a smooth transition

between positions.

Figure 3.13. Q-PIT Visualisation showing multiple users.

54

Chapter 3 3D visualisation

Figure 3.13 shows a Q-PIT visualisation containing several users and a number of data items. In this
version of Q-PIT, the representation of the users has been refined to provide a more human appearance,
though more importantly it provides a better impression of the orientation and focus of interest of each
user. Data items are also visible with textual labels appended. Several of the data items are shown to be
selected, possibly by a user or the result of a query. The spherical mesh surrounding a data item
indicates this selection.

B. BEAD

BEAD [Chalmers92] is a 3D document visualisation system that makes use of the DIVE toolkit and

Visualiser to produce a multiparticipant environment. BEAD utilises a variant of the force-directed

placement algorithm to arrange document representations within 3D space, the end result forming an

information terrain. The layout algorithm is driven with a document similarity metric and strives to

produce a terrain in which closely related or similar documents are grouped physically close together.

This metric is based on word co-occurrence, i.e. a measure of the number of words occurring in both

documents. Similar documents are attracted towards each other, whereas dissimilar documents wil l

repel each other i f they are too close together.

Figure 3.14. Screenshot of BEAD showing an overview (looking down) of a data landscape

constructed from over 500 bibliographic references.

Image courtesy of Mathew Chalmers, Union Bank of Switzerland.

55

Chapter 3 3D visualisation

An important point of note in the development of BEAD is that the original system attempted to match
the physical distances between documents as closely as possible to the similarity metric. This was
facilitated by allowing the document nodes to move freely within three dimensions, thus creating a ball
or cloud-like shape. It was found that the visual complexity of such structures and the inherent problems
of navigation within them were too great. Development of BEAD then took on a more two-dimensional
aspect, with the document nodes being forced to form a flatter terrain, though still with some degree of
vertical movement. The document nodes are then meshed together by polygonal shapes, the resulting
visualisation resembling an island with an undulating terrain.

Multiple users may populate the virtual environment or data landscape produced by BEAD. Users are

represented as T-shaped figures constructed of two cuboids, with a further two cuboids to represent

eyes. This allows other users to see exactly how a user is orientated and in which direction they are

looking. Users can interact with the data by either selecting specific objects or by performing searches,

resulting in matching documents being highlighted. By browsing the overall data terrain certain features

may become apparent such as dense areas and rough terrain, again providing additional information on

the similarity between documents. If a document is highlighted in a search then it is possible that

documents close to it, but not highlighted, may also be of some interest due to their high similarity.

Inherent in the layout algorithm is a tendency for documents, which are only slightly related to the main

theme, to be pushed towards the shores of the island. Geographical features such as the shoreline,

densely clustered areas, and rough areas allow the users to build up a notion of how to navigate the

information and where to find information of most value.

C. VR-VIBE

VR-VIBE is a virtual reality extension to the original two-dimensional VIBE system and enables the 3D

visualisation of large document collections. The original VIBE system [01sen93] was developed at the

University of Pittsburgh and provided users with a 2D visualisation of a collection of documents. This

visualisation gives users an overview of the documents they are interested in with respect to the whole

collection. The visualisations in V I B E are constructed by defining a set of 'Points of Interest' (POIs)

containing keywords which will be used as a basis for the query. A full-text search is performed on the

document collection and each document is scored for relevance to each POL The visualisation is

constructed by distributing the POIs evenly on a 2D plane then placing the document icons between the

POIs with respect to their relevance to each POL For example, with two POIs A and B, a document

may have a relevance score of four to POI A and a score of three to POI B. This document could then

be placed at a ratio of 4/7th of the distance along the line joining A and B, thus showing the proportion

of relevance attributed to each POI.

VR-VIBE exploits 3D visualisation techniques to tackle the problems of display crowding and also

allow the possibility of larger numbers of POIs to be used. The document positioning technique used in

VIBE is simply extended into three dimensions with VR-VIBE and is essentially the same. VR-VIBE

offers two slightly different layout methods. One method is very similar to the VIBE layout and

56

Chapter 3 3D visualisation

constrains the nodes to a 2D plane when organising their position between POIs. A vertical

displacement is then introduced to each object to represent their degree of relevance. The second

method (Figure 3.15) allows the objects to be positioned at any point in 3D space, within the confines

of the POIs. Intrinsic dimensions of each object, for example colour, are exploited to indicate selection

and also to emphasise relevance. The colour of a document object serves as an indication as to the level

of relevance to POIs. This allows distinction between two documents, which are both equally relevant

to two POIs, however the actual scores may be different. For example a document with scores of three

and three would be coloured differently to one with scores eight and eight. Object shape is also used to

distinguish between the documents, POIs and the users. These are represented respectively as cuboids,

octahedrons and 'blockies' (similar to Q-PIT users).

Figure 3.15. Screenshot of V R - V I B E showing a PIT containing 5 POIs and a number of users.

Image courtesy of Dave Snowdon, Nottingham University.

VR-VIBE allows users to navigate freely through the information structure, select documents, perform

queries, apply filtering or request additional information. A high degree of interaction is supported

through the 3D interface and users are able to add POIs, switch POIs on or o f f to try different

configurations, and even move POIs to see which documents are pulled along after them. Users may

also define a number of viewpoints within the visualisation and switch between them at wi l l . This

allows comparison of different views on the information and also aids in navigation by providing a set

of reference points that can be quickly returned to. Finally, as with Q-PIT, VR-VIBE supports multiple

users within the same visualisation, each aware of the presence and actions of each other.

57

Chapter 3 3D visualisation

D. LyberWorld

LyberWorld [Hemmje93, Hemmje94] is a prototype information retrieval user interface which aims to

make ful l use of the advantages afforded by 3D graphics. LyberWorld concentrates on the visualisation

of an abstract information space, Fulltext, and providing a user interface for the retrieval system

INQUERY. The visualisations used in LyberWorld aim to provide an intuitive and natural interface to

enable efficient searching and browsing within this abstract information space. The goal of LyberWorld

is to provide a tight coupling between the graphical model of the information space (the visualisations)

and the cognitive spatial model maintained by the user. I f such a coupling exists then the visualisations

should aid the user in exploring and querying the database, navigating and orientating themselves

within the data, and judging the relevance and context of query results.

The information within LyberWorld is modelled as a network of documents and terms. The

relationships in this network are formed by a measure of the relevance between these document and

term nodes. Two main visualisations are used within LyberWorld, the NavigationCone and the

RelevanceSphere. NavigationCones provide a visualisation of the retrieval history, i.e. the extent to

which the data space has been explored and the query paths travelled through the data. The

RelevanceSphere provides a display of the retrieved documents and their relevance to each of the

search terms in the query. Additionally, the RelevanceSphere provides a visual indication of document

clustering, highlighting documents that possibly belong to a closely related subject area.

• i t - *

Figure 3.16. Screenshot of LyberWorld showing the NavigationCones visualisation.

Image courtesy of Matthias Hemmje,

German National Research Centre for Computer Science (GMD).

LyberWorld incorporates the RelevanceSphere visualisation to aid in judging the relevance of items

within the result space. The RelevanceSphere attempts to tackle the ambiguity problem associated with

visualisations such as VIBE and VR-VIBE. This ambiguity occurs because a particular point in space

within a VIBE visualisation can be attributed to a number of relevance ratios to different points of

interest. This problem is described by Hemmje et al [Hemmje94] and also by Benford et al

[Benford95]. The RelevanceSphere addresses this problem by transforming the network into a spatial

58

Chapter 3 3D visualisation

visualisation that displays the relevance path lengths while still maintaining the numerical proportions.
This approach allows path lengths to be easily compared with one another.

Figure 3.17. Screenshot of LyberWorld showing the RelevanceSphere visualisation.

Image courtesy of Matthias Hemmje,

German National Research Center for Computer Science (GMD).

The use of three-dimensional space to contain the document and term nodes leads to both advantages

and disadvantages in the case of the RelevanceSphere. The main advantage is that the added display

volume and thus increased spatial freedom reduces the probability of unclear positioning of document

nodes, although it is still possible for ambiguity to arise. One problem encountered, typical in many 3D

visualisations, is the reliance on the user's perception of depth. When viewing a static 2D image of a 3D

structure it is often hard to judge depth, size and positioning. The RelevanceSphere deals with this

problem by allowing the user to rotate the sphere freely and examine the visualisation from any angle.

Additional features allowing the user to interact with the RelevanceSphere are provided. These facilities

provide methods of investigating and manipulating the result space. Users may alter parameters such as

the document density, term attraction and scaling of the visualisation [Hemmje94]. This interaction is

an important contributor to increasing the user's understanding of the query results and the structure of

the visualisation.

E. Vineta

Vineta is a prototype information visualisation system developed by Uwe Krohn [Krohn96a,

Krohn96b]. Vineta allows the visualisation, browsing and querying of large bibliographic data without

resorting to typing and revising keyword based queries. Similar to VR-VIBE, LyberWorld, and BEAD

visualisations, Vineta presents documents and terms as graphical objects within a three-dimensional

space, the 'navigation space' [Krohn96b]. The positioning of these objects within that space encodes

the semantic relevance between documents, terms and the user's interests. Vineta differs greatly from

other visualisations in one distinct area, that is, the number of dimensions or terms it can present.

Systems such as VR-VIBE are limited by the number of terms or points of interest (POIs) they can

present simultaneously. Vineta applies techniques from multivariate analysis and numerical linear

algebra for mapping documents and terms into the three-dimensional navigation space. This allows the

59

Chapter 3 3D visualisation

visualisation of much larger term sets or POIs by providing a mapping from the multidimensional
document space into the 3D navigation space.

Vineta is built upon the premise that navigation through an information space can be an effective means

of retrieving information of interest. Krohn states that informational navigation is strongly connected

with the human intuitive comprehension of abstract facts by means of analogies with familiar concepts

such as location or motion. Vineta uses spatial proximity to represent semantic similarity between

objects (i.e. documents). As with previously described systems, the notion of similar documents is

emphasised by placing them physically close together within the information space, whereas dissimilar

documents are placed further apart.

Vineta has employed two main metaphors for producing visualisations, the galaxy metaphor and the

landscape metaphor. The landscape metaphor has superseded the galaxy metaphor in the final

implementation of Vineta, proving more intuitive and easier to comprehend.

The galaxy metaphor represents the navigation space as a galaxy of stars. Documents are presented as

fixed stars while terms are presented as 'shooting stars'. Semantic similarity is encoded in the galaxy

metaphor by the proximity of the stars, i.e. similar documents and terms are grouped closely together.

link network

Figure 3.18. Screenshot of Vineta, showing the galaxy visualisation.

Image courtesy of Uwe Krohn, University of Durham.

The landscape metaphor represents the navigation space as a flat, textured surface containing flowers

with stems and petals. The textured surface of the landscape helps to give the viewer an indication of

60

Chapter 3 3D visualisation

the depth or distance of the documents (flowers). The inclusion of this ground plane was encouraged by
the study of ecological optics which emphasises that perception of objects should never be considered
apart from a textured ground surface [Krohn96b]. Flowers nearer to the user's viewpoint are of more
relevance to the initial query than flowers further from the viewpoint. The stems of the flowers aid the
user by extrapolating the flower's position onto the ground plane. The direction and colour of petals on
the flowers represent the search terms and their relevance to each document.

Figure 3.18 shows an image of the Vineta galaxy display. Terms are represented as arrows while

documents are presented as spheres. Figure 3.19 shows an image of the Vineta prototype, demonstrating

the landscape metaphor. It can be seen from this image that the introduction of the ground plane helps

greatly in determining the relative positions of the documents (i.e. the flowers). In both visualisations,

documents closer to the user's viewpoint are of more relevance to their overall interests.

Searching Information in typer
i

Figure 3.19. Screenshot of Vineta showing the landscape visualisation.

Image courtesy of Uwe Krohn, University of Durham.

III. Legibility enhancement

Research into legibility enhancement attempts to aid navigation through large virtual information

spaces by applying principles from the more physical area of city planning. The legibility of an urban

environment is judged by the ease with which inhabitants can develop a cognitive model of their

surroundings over time, thus aiding their navigation through the environment. It has been argued that

the legibility of urban environments can be improved greatly by careful design of certain key features.

This section wil l concentrate on research performed at Nottingham University into the application of

legibility features to 3D information visualisations [Ingram95a, Ingram95b].

61

Chapter 3 3D visualisation

L^J T i _

Figure 3.20. Screenshot of a Q-PIT visualisation after application of L E A D S .

Image courtesy of Rob Ingram, Nottingham University.

The legibility of an environment relies on the ease with which an inhabitant can construct a cognitive

model or internal representation of the environment. These cognitive models can be classified into two

categories, linear and spatial. Linear models are based upon movement through the environment and

observation of features enroute. Spatial models represent an overall model of some area of the

environment which can be mentally manipulated and updated with information gained from linear

models.

In 'The Image of the City' [Lynch60], Lynch identifies five major elements which are used in

constructing cognitive models of an urban environment. These elements were identified as a result of an

experiment in which inhabitants of various cities were questioned on the city they resided in.

Information was gained using various techniques such as interviews, written descriptions of routes

through the city or by drawing maps. These five features are described here in addition to how they are

applied to information visualisations by Ingram and Benford [Ingram95a]. The system developed at

Nottingham is named LEADS (LEgibility for Abstract Data Spaces) and implements a number of

algorithms to structure data according to these key features. Figure 3.20 shows a Q-PIT visualisation

after the application of LEADS enhancement features. Prior to application, the environment consisted

of simple geometrical objects representing data items. The LEADS system preserves the extrinsic

dimensions of the data items, but modifies intrinsic attributes such as colour and shape to create

districts. Other LEADS features such as paths, edges and landmarks are clearly visible and impart a

greatly increased sense of structure to the visualisation.

62

Chapter 3

A. Districts

3D visualisation

Districts are distinct areas within an environment, which can be abstracted into a single entity. Such

areas must usually contain some form of commonality or character in order to be considered as a whole.

Districts can be identifiable in a real world sense, for example by the nature of the buildings within

them. An example of two districts could be a residential district and a commercial district; both are

distinct abstractions of the buildings within each district.

Identifying districts within an abstract data space is a process of determining similarity and dissimilarity

between data items. This process is fairly complicated when attempting to create a general method

applicable to a wide range of data spaces. The LEADS system employs cluster analysis techniques to

identify areas of similarity, then groups all data items belonging to a particular area. The actual display

of districts within the virtual environment is fairly arbitrary, the requirements being that the data items

within a district appear similar and that districts as a whole should appear sufficiently different. One

possible representation would be to colour all data items within a district with a particular colour, each

district then having a different colour. A similar approach could be taken using the shape of data

representations.

B. Edges

Edges are features of an environment which provide distinctive borders to districts, or act as linear

divisions. Examples of edges are rivers and motorways, though the latter may serve a dual purpose, as

an edge to pedestrians or as a path to motorists. Because edges serve as boundary features it makes

sense to position them at intersections between districts within the abstract data space. Research

performed while developing the LEADS system identified- three possible methods for defining

appropriate edges. These will be briefly described here.

The first method, also the selected method for LEADS due to complexity and efficiency reasons, is to

identify the two nearest data items between districts. An edge can then be defined between these two

points and orientated accordingly. This method is extremely primitive but also allows very fast

identification of edges. The second method is to identify the hull or bounding region which completely

encloses a district. This hull can then be rendered as the edge. Finally, the third method involves

identifying the hull surrounding two districts then creating an edge by interpolating the points along

adjoining edges of the districts. Unfortunately, the latter two methods are computationally expensive.

C. Landmarks

Landmarks are static and easily recognisable features of the environment, which can be used to give a

sense of location and bearing. Within urban environments, examples of landmarks could include

distinctive buildings or structures. One pre-requisite of landmarks, both within the urban environment

and the data space, is that they remain relatively static in position. This is not a simple task when

63

Chapter 3 3D visualisation

considering a possibly changing data environment, so it is reasonable to assume that the position of
landmarks may vary slightly from time to time.

Again, three methods were evaluated for inclusion in LEADS and will be described briefly. The first

method defines the landmarks at the centroid or geometric centre of districts. While simple to

implement, this method was rejected, as it does not cater for the size or density of districts. Landmarks

could be easily obscured by dense regions of data, and landmarks may possibly be more meaningful if

placed external to districts.

The second method places landmarks at intersections between three or more districts by simply

identifying the midpoint of the closest data items between adjacent districts. These landmarks would

then give an indication to clusters of districts and would probably serve as a better navigation aid.

Finally, the third method is a slight variant of the second in that the landmarks are placed by

triangulation between the centroids of any groups of three adjacent districts. This method produces

roughly the same number of landmarks as the second method, though it should result in a more stable

positioning as it relies on the average position of data within a district and not just any one data item.

D. Nodes and paths

Paths represent well-travelled routes through an environment, the key factor for the creation and

maintenance of a path being that people actually use it. It is proposed by Ingram and Benford that paths

should be composed of links between nodes, which represent individual objects within the visualisation.

The construction of these nodes and paths will rely on two stages. The first stage will assume no initial

access to the data space and will attempt to define nodes and paths as data items which are likely to be

accessed frequently. This will work on the basic assumption that more frequently accessed data will

possibly be items at intersections between districts and also at the centre of districts. The former

assumes that these items will be seen as the most similar items between two districts. The latter

assumes that the centre items will be most typical of the information content of a district.

The second stage relies on the recording of usage information within the data space, such as which

nodes are accessed and in which order they are accessed. This information can then be used to gradually

construct new nodes and paths, with old and disused nodes and paths possibly fading over time. Metrics

such as the frequency of access of a data item could be used to identify nodes, whereas the frequency

with which two data items are accessed successively could be used to define paths. Finally, the aim is to

produce two forms of path, major and minor, which will indicate the popularity of various routes.

IV. Hyper-structure visualisation

As mentioned previously, hyper-structures are formed by typically large information stores with an

arbitrary number and configuration of explicit relationships or links between data items. Examples of

such structures are extremely common within software visualisation, in particular dependency graphs. A

more immediate and recognisable example is the graph formed from document stores in hypermedia

64

Chapter 3 3D visualisation

systems where the documents and the links between them form the hyper-structure. The inherent
complexity and arbitrary arrangement of such structures make visualisation an extremely difficult task.
Hyper-structures representing even relatively simple data sets can quickly clutter the visualisation and
rapidly deteriorate usefulness.

Several visualisation systems have been developed to offer some form of visualisation of these complex

structures, the majority of which opting to use self-organising graph layout techniques as described

earlier. Several of these systems are discussed here.

A. Narcissus and Hyperspace

Narcissus [Hendley95b] is an information visualisation system, developed at the University of

Birmingham, for creating 3D visualisations of hyper-structures with a particular application towards

software visualisation. One of the proposed applications of Narcissus is in visualising software structure

by displaying the dependencies between various components within a system. Hyperspace [Wood95] is

an extension of the research into the Narcissus information visualisation system and concentrates on the

visualisation of hypertext document stores, specifically HTML WWW pages readable using NCSA

Mosaic. The system makes use of the Mosaic WWW browser API for data collection, i.e. fetching

pages from remote locations. The Mosaic browser is also used to display pages selected from within the

visualisation.

Figure 3.21. Example of a hyper-structure.

Image courtesy of Dave Snowdon, Nottingham University.

The visualisations in both Hyperspace and Narcissus are created as wireframe 3D graphs with the pages

represented as spherical nodes and the links as directed edges. Layout of the graph is performed using a

self-organising technique, with new nodes introduced to the structure being placed randomly. Problems

65

Chapter 3 3D visualisation

with this form of visualisation are that the structure and appearance of the model produced by the graph
may change greatly when a new node or link is introduced. This is compounded by the fact that
visualisations of the same structure may be inconsistent between runs. This effectively destroys the
user's cognitive model of the structure thus requiring frequent re-orientation as the graph is updated.

•
Figure 3.22. Screenshot of ray-traced output from Narcissus.

Image obtained from Birmingham University WWW presentation.

B. SHriMP Views

SHriMP (Simple Hierarchical Multi-Perspective views) [Storey95] is a tool for visualising large graphs

and hyper-structures and is geared towards such graphs within software systems. SHriMP is

incorporated within the Rigi reverse engineering system and aims to provide an overview of software

structure allowing both detailed views while still maintaining a notion of positioning or context within

the graph structure. SHriMP employs both nested graph and fisheye techniques to provide both

abstraction and focusing of detail as necessary.

Nested graphs [Harel88] are a technique used to abstract information from complex graphs in an

attempt to clarify their structure yet also enable the detail to be viewed when necessary. Nested graphs

are based on the notion that nodes and arcs within the graph may be either atomic or composite.

Composite nodes are a single node abstraction of any number of child nodes. Similarly, composite arcs

may represent any number of child arcs. The use of such a technique allows graph structures,

particularly hierarchies to be simplified greatly, enabling the user to select additional detail on areas of

interest.

C. SemNet

SemNet [Fairchild88] is a research prototype developed to advance understanding of the complex

relationships and structures of large, arbitrary knowledge bases (Figure 3.23). The aim of SemNet was

66

Chapter 3 3D visualisation

not to provide a solution for this general problem, but rather to explore the application of 3D
visualisation techniques and to investigate the specifics of the problem. The main problem addressed by
SemNet is how to present large knowledge bases to enable improved or more efficient comprehension.
Fairchild and Poltrock hypothesise that for comprehension of a knowledge base, a user must recognise:

• the identity and meaning of individual elements;

• the relative position of elements within a hierarchical context;

• the explicit relationships between elements.

Knowledge bases represent information about relationships between objects or records. Fairchild and

Poltrock believe that graphical representations offer an effective way of communicating such

relationships. This, coupled with the high level of visual processing and spatial reasoning capable in the

human brain, makes 3D representations a good candidate for such a task.

Figure 3.23. SemNet visualisation.

Image courtesy of Kim Fairchild, Institute of Systems Science, National University of Singapore.

Fairchild and Poltrock are quick to point out that simply using a graphical representation does not

immediately solve the problems inherent with exploring, manipulating, understanding and modifying

large knowledge bases. Very large knowledge bases simply become very large directed graphs! This

highlights an important need for reducing the visual complexity of the graphical representations, a need

that is also addressed in SemNet.

Graph layout and information hiding within SemNet is debated by Fairchild and Poltrock. A number of

methods are described with their advantages and disadvantages noted. The authors agree that the

67

Chapter 3 3D visualisation

positioning of knowledge elements within the visualisation can greatly affect comprehension of the

knowledge base structure. Layout of the visualisation in SemNet can be performed using one of two

methods:

• The application which is providing the knowledge base can assign positions to the elements using

semantic information which is not available to SemNet;

• Alternatively, SemNet can perform layout using a number of heuristics designed to bring highly

related elements closer together while moving unrelated elements further apart. As the semantic

meaning of the elements are not available to SemNet, the layout algorithm uses the number of

interconnections between nodes as a measure of their relatedness. Thus, highly interconnected

nodes are placed much closer together than unconnected nodes.

Information hiding in SemNet is provided both by the inherent perspective based reduction in detail due

to distancing in the 3D display, and also by application of additional fish-eye techniques. The former

method is apparent if proximity-based positioning has been used. Objects that are unrelated to the

current user interest will be further from the viewpoint, hence reduced in detail and size. This provides

a fish-eye view based purely on three-dimensional perspective. This was combined with a cluster-based

fish-eye view that attempts to reduce the complexity of the graph while still maintaining the context of

the overall structure. This technique assigns elements within similar areas of 3D space to clusters, with

neighbouring clusters being assigned to higher level clusters. The technique is similar to the nested

graphs of Harel [Harel88]. Using these clusters, only knowledge elements close to the viewpoint are

displayed individually, at further distances only the clusters are visible.

D. GraphVisualizer3D

GraphVisualizer3D (GV3D) [Ware93, GV3D99] is a prototype visualisation system developed at the

University of New Brunswick and shown in Figure 3.24. The system has recently been developed into a

commercial application by Nvision Software Systems Inc. and renamed to NestedVision3D. The name

GraphVisualiser3D or GV3D will be used to describe the system here. The aim of GV3D is to utilise

3D visualisations and virtual environment technology to provide a more readable and comprehensible

graph visualisation. The project is aimed at displaying predominantly directed graphs, though the focus

of the development has been to visualise software structures. The structures in this case are component

relationships within object oriented C++ programs. Examples cited are software module dependencies,

software usage, and inheritance relations. Ware et al [Ware93] describe the design issues and

architecture of GV3D and include details of empirical evaluations performed on the system, which

include an investigation into various interfaces and interaction techniques.

Ware et al investigate the use of a number of different interaction techniques both for inclusion in the

GV3D project [Ware93] and also as a separate study [Ware94]. The study evaluated the occurrence of

errors in a graph comprehension task in which the subjects were restricted to using a number of

different interaction techniques. The results of the study highlight an important decrease in errors, thus

68

Chapter 3 3D visualisation

an increase in graph cognition, when a combination of viewpoint manipulation techniques and a
stereoscopic display is used. The study also confirmed previous research indicating that the use of
viewpoint manipulation alone was more effective than a stereoscopic display alone. These results
highlight the importance of the virtual environment interface in producing useable and useful
visualisations.

GV3D draws on a number of ideas from SemNet and is hinged upon the same concepts, however,

GV3D aims to improve upon SemNet in a number of ways. One area of divergence is a shift from the

predominantly automatic node placement of SemNet to the more manual oriented placement of GV3D.

Ware et al believe that the most important heuristic for graph layout is semantic clustering: grouping

nodes with respect to their semantic meaning as opposed to their position within the graph structure.

The authors state that it is unreasonable to expect current layout algorithms to achieve more than a first

approximation to the layout of software entities in space. The reason being that good layout is based

greatly upon the high level semantics of the nodes, this cannot be formalised or automated at present.

The graph layout used in GV3D is based upon elementary layout algorithms but supplemented by

extensive manipulation and interaction techniques.

Similar to SemNet, GV3D also includes the notion of composite nodes and arcs [Harel88]. This

technique allows reduction of the visual complexity of a graph structure by representing similar nodes

and arcs as a single composite node or arc (the measure of similarity is arbitrary). These composite

nodes can then be collapsed or expanded (opened or closed) as needed, depending on the focus of the

viewer. GV3D copes with composite nodes by performing an identical layout on the sub-graph enclosed

in the composite node. The composite node is then scaled to completely enclose the sub-graph, for this

reason the node size cannot be used to display attributes. Opening or expanding a node results in the

contents being displayed.

•
1

•
1

2
(a) (b) (c) (d)

Figure 3.24 (a-d). Various views of a network using GraphVisualiser3D.

Images courtesy of Glenn Franck, University of New Brunswick.

V. Information workspace

The information workspace or information visualiser is a concept demonstrator designed at the Xerox

Palo Alto Research Centre (PARC) and is aimed at providing a more cost efficient workplace with

respect to information access. The information visualiser was targeted to be the successor to the desktop

metaphor, taking ful l advantage of 3D graphics and modern computing power to produce an intuitive

69

Chapter 3 3D visualisation

and effective interface. Research at PARC has investigated the cost structure of information retrieval
[Card91] within the workplace and oriented the information visualiser towards maximising effective
organisation of information and minimising retrieval cost.

Research into the information visualiser has lead to the development of a number of new

representations and visual metaphors for information display. These new visualisations include cone

trees, cam trees, perspective walls and 3D rooms, all of which were described previously in Section

3.3.1. The information visualiser is based primarily around the 3D rooms metaphor with rooms

containing visualisations appropriate to the data contained within them. The information visualiser

incorporates all of the features of rooms as described earlier, including the ability to display an

overview of all rooms in use. The user is also permitted to manipulate the contents of the rooms from

the overview, though in considerably less detail.

Navigation through the rooms is provided by the users' viewpoint being embodied in a virtual human,

allowing independently controlled motion and viewpoint orientation, similar to a human walking while

looking around. Interaction with objects within rooms is facilitated by either selecting an object to

examine, or by giving a gesture indicating the operation to perform. Objects or the viewpoint may be

moved towards one another by selecting an object of interest and moving towards it, or moving it

towards you. The speed of movement is logarithmic with separation, ensuring maximal control over

positioning and also that the object and viewpoint do not collide. Many items within the information

visualiser respond to gestures. Gestures are performed using rapid movement of the mouse in distinct

paths, for example flicking the mouse in one direction or tracing a check mark or cross. Gestures allow

an easy method of performing simple commands without releasing the mouse or requiring banks of

function icons.

VI. Software visualisation systems

This section describes a number of 3D visualisation systems that are all targeted predominantly at

software visualisations.

A VOGUE

VOGUE is a visualisation system developed at Koike Labs, which provides a framework for creating

3D software visualisations. VOGUE concentrates on the concept of integrating a number of 2D views to

create a more powerful 3D visualisation. This system has been applied in a number of different

visualisation scenarios:

• as a software visualisation of parallel Linda programs;

• as a version control and module management visualisation;

• as a C++ class library browser.

70

Chapter 3 3D visualisation

VOGUE is used in creating a 3D visualisation that integrates version control and module management,
an example of which is shown in Figure 3.25(a). The visualisation creates a two dimensional tree from
the module dependencies at each revision. This set of 2D trees are then placed in series along the Z axis
of the display space, with the most recent revision placed at the front. Relationships between source
code modules are visible both between different versions of the same module through time, and as
compilation dependencies between modules for each revision.

The 3D class library browser implemented using VOGUE, shown in Figure 3.25(b), integrates two sets

of information concerned with class inheritance hierarchies. The first set concerns the actual inheritance

hierarchy and depicts which classes are derived from other classes. The second set of information shows

the methods belonging to particular classes. These two sets are integrated into a single 3D visualisation

to provide immediate indication of which method is actually executed when called from any particular

class. By shifting viewpoint orientation the programmer can obtain a display of either data set, or view

both sets and any dependencies between them. This clarifies the problem by reducing the need to

mentally integrate both sets of information.

%

(»)

\
(b)

Figure 3.25 (a, b). V O G U E version control management and C++ class browser.

Images courtesy of Hideki Koike, Koike Labs, University of Electro-Communications, Tokyo.

B. VisuaLinda

VisuaLinda is a program visualisation system developed at Koike Labs which uses 3D visualisations to

clarify the operation of parallel programs [Koike99]. VisuaLinda is built upon the VOGUE visualisation

system.

VisuaLinda utilises 3D graphics to visualise the execution of parallel processes, an example of which is

shown in Figure 3.26. This allows the programmers to view both the relationships between processes

and a time flow of the processes simultaneously. Messages between individual processes can also be

seen over time.

71

Chapter 3 3D visualisation

Figure 3.26. VisuaLinda implemented using V O G U E .

Image courtesy of Hideki Koike, Koike Labs, University of Electro-Communications, Tokyo.

C. Zeus

Zeus forms the latest in a series of algorithm animation systems developed at Brown University and the

Digital Equipment Corporation. BALSA and BALSA-II were considered as the first major interactive

software visualisation systems. This early system (BALSA) was used widely as an aid to teaching

algorithm design and analysis and allows students to interactively view animations prepared by a

lecturer. Functions such as stop, play, pause, speed control and direction control are provided. Zeus

offers a number of enhancements over these earlier systems, in particular the use of colour, sound and,

more interestingly, 3D graphics.

Brown and Najork [Brown93] describe a variety of 3D graphics techniques for algorithm animation.

These techniques are highlighted by examples created using Zeus. Constructing animations within Zeus

relies on the animator identifying critical areas within the algorithm code, such as data manipulation,

conditional evaluation or procedure calls. These areas are then instrumented with calls to the Zeus

'interesting event' manager. During execution of the algorithm these interesting events wi l l be reported

to Zeus, which wil l then forward them on to any interested views. The views must be predefined and

designed to respond appropriately to events in the code. During the visualisation the user is still able to

alter various aspects of a view by changing its associated control panel. This allows both generic

parameters, such as lighting level, and view-specific parameters to be changed.

D. PVMTrace

PVMTrace [PVMTrace 0 0] is a visualisation system developed at the University of New Brunswick,

concerned with the visualisation of parallel processes with an emphasis on debugging (Figure 3.27).

72

Chapter 3 3D visualisation

Understanding and debugging complex sequential programs is often very difficult, this problem grows
drastically when trying to understand the execution of communicating parallel processes. There is a
need for good tools to aid the understanding of such programs, and visualisation promises to provide an
effective communication medium between the execution data and the programmer.

PVMTrace concentrates on visualising parallel programs that are running on PVM. PVM is a library

which simulates a parallel computer by running processes on multiple workstations in a network. The

project investigates different visualisations and representations for presenting the execution of parallel

processes and messages between them. Particular attention is given to the application of three-

dimensional animated visualisations.

Figure 3.27. Execution of parallel processes, shown using PVMTrace.

Image courtesy of Glenn Frank, University of New Brunswick.

VII. Other relevant systems

This section describes two visualisation systems which do not fall into any of the categories of systems

described above but which are deemed relevant and have provided inspiration during the course of this

research.

A. FSN

FSN, pronounced 'Fusion', is a file system navigator developed by Silicon Graphics as a fun and freely

available utility to demonstrate their 3D graphics hardware. One claim to fame is that it starred in the

blockbuster f i lm Jurassic Park. FSN makes use of the landscape metaphor to visualise the structure of a

73

Chapter 3 3D visualisation

UNIX file store and was originally intended as an investigation into information landscape navigation.
The essentially hierarchical information is presented as a tree of nodes and paths on the surface of the
landscape or ground plane. The root of the tree begins closest to the user with the branches receding
into the distance, away from the user's viewpoint.

Each directory within the tree is represented as a pedestal. The height of this pedestal represents the

combined size of the files contained within that directory. These directory pedestals are connected by

paths or links, which can be traversed to manoeuvre within the file structure. Files within each directory

are represented by boxes, placed in a grid, on top of the directory pedestal. Each box is adorned with a

graphical image mapped onto its top surface, which is an iconic representation of the file type. The

height of these file boxes represents their size, whereas the colour of the boxes represents the age of the

file. The use of this information encoding coupled with the landscape metaphor means it is easy to

identify prominent features such as large files or directories. These features can then act as landmarks

or points of reference within the visualisation.

P R T H el Xc ock

Figure 3.28. FSN visualisation of a UNIX file store.

Image courtesy of Joel Tesler, Silicon Graphics.

FSN is a fully-fledged file manager in that it not only allows the visualisation of the file structure, but

also allows manipulation of the contents. Various operations may be performed on the files such as

74

Chapter 3 3D visualisation

copying or moving them. Additionally, certain files may be edited or viewed using appropriate external
applications depending on the file type. Selection of files is performed by an effective 'spot-light'
facility, which highlights the selected file, as shown in Figure 3.28.

B. SeeSoft and SeeDiff

SeeSoft and SeeDiff [Ball96, Burkwald98] are both entirely 2D visualisations and as such do not

technically belong alongside the other visualisations described within this chapter. Their inclusion is

warranted as an example of how an extremely effective and powerful visualisation can be created from

the most simple of concepts. The nature of these visualisations also lends itself to some of the concepts

described further in this thesis, necessitating their inclusion here. The two visualisations differ slightly

in that one (SeeSoft) is purely a software visualisation system, whereas the other (SeeDiff) has more

wide-ranging applications.

The basic concept of SeeSoft is to present the source code of a very large software system in its entirety

allowing identification of interesting areas followed by detailed inspection. The key factors used in this

visualisation are text formatting, colour coding using some metric, and proficient use of magnification

and scaling. The visualisation begins in a bottom-up fashion by presenting a standard text editor

showing a small section of the program source code. The indentation and formatting of the code are all

preserved. Each line of the code is colour coded with some metric, in this case it is the age of each

particular line. Recently modified lines are given warmer colours such as red, whereas an older

unmodified section of code would be given a cooler colour such as blue.

i f (skip)
i

f p r i n t f (prn_stream, "\033J%e, skip) ;
!

/ * Copy the gjan l i n e s • /
lent = gdev_rpri_copy_gean_liri.es (pdev, i n ,
i f (lent < 8 » i n v mult)
{ / * Pad with l i n e s of zeros * /

memsettin + l e n t » l i n e _ s i z e , 0,
i n _ s i z e - l ent * l i n e _ a i z e) ;

i f (y_9pin_high)
\ / * S h u f f l e the sean l i n e s » /

byte *p;
I n t i ;
s t a t i e eonst ehar index [] =
! 0, 8, 16, 1, 9, 17,

2, 10, 18 , 3, 11, 19,
4, 12 ,20, 5, 13, 31,
6, 14, 22, 7, I S , 23

Figure 3.29. The SeeSoft concept showing decreasing magnification.

Individual images courtesy of Thomas Ball, Bell Labs.

This view of the code is then shrunk by effectively 'zooming out' from the source code while

preserving both colour information and text formatting (Figure 3.29). More of the source file becomes

visible, and it is possible to gain some context of the surroundings of the original section of code. By

75

http://gdev_rpri_copy_gean_liri.es

Chapter 3 3D visualisation

reducing the code further so that each character of the text is represented by a single coloured pixel, we
are able to see the entire source file. This final view enables us to see the structure and indentation of
the code, thus identifying common sections or nesting. It also allows the immediate identification of
'hotspots' within the code which are receiving a considerable amount of attention and revision. In
contrast, it is possible to identify more stable areas of code which are receiving little change during the
current phase of development.

The SeeSoft application takes this final view of code and tiles it across the application window,

showing all the files within the system on one screen. Figure 3.30 shows a SeeSoft visualisation of a

15,000 line software module which is comprised of 52 files. Using this overview, it is possible to

immediately identify patterns within the development.

F i l f l S t a t i s t i c . T i s v O p t i o n s K s l p

mel.c. line 408 of 834 •

Figure 3.30. SeeSoft visualisation of a large software system.

Image courtesy of Thomas Ball, Bell Labs.

SeeDiff is a different application based on the same concept. D i f f is a Unix-developed tool for

comparing the differences between two similar files. Its primary use within a programming context is to

identify the changes made between subsequent versions of a software system. SeeDiff uses a similar

concept to SeeSoft, by providing an overview of large text files. Colour coding in this case is used to

identify lines which have been added, removed, modified or which remain unchanged.

76

Chapter 3 3D visualisation

I app.okf/sre/seesoft/seeview.c -> tst.ofd/src/seesoft/seeview.c: 32 * Q

F i l e Search Options Help

if (GetColumnState(foc->flle) —
SetGlassLineAndHeight(part

else If (GetColumnState(foc->f1l
SetGlassUneAnd H e i qht (p art

break;

}
case BROWSER GONE:

SetGlassLineAndHeight(part
else

SetGlassLineAndHPight(part
break;

}
case BROWSER_PREV_FILE:

MoveToFile(part,*(int *)data ,-1)
break;

case BROWSER_NEXT_FILE:
MoveToFile(part,*(int ")data,1);
ores

case BROWSER_GONE:

Figure 3.31. SeeDiff comparison between two source files.

Image courtesy of Thomas Ball, Bell Labs.

Figure 3.31 shows the SeeDiff application comparing two versions of a source code file. Both the

detailed text of a section of the file and an overview of the entire file are available. By surveying the

overview image, it is immediately apparent where the majority of changes have been made and what

type of changes these are. This overview can then be used as an index for specifying which sections of

code to examine in detail. In Figure 3.31, deleted lines are shown in red, inserted lines are shown in

green, modified lines are shown in yellow, and any unchanged lines are shown in light grey. In order to

maintain synchronisation between the files, dark grey lines are inserted to match either new or deleted

lines in the opposite file.

3.3.3 Summary

This section has presented a number of information visualisation techniques and research systems. It is

clear from the variety of these techniques that general information visualisation is particularly difficult.

One problem of considerable importance is the generation of abstract representations which both hide

the underlying complexity while offering a simple and recognisable graphical representation, i.e. a

meaningful abstraction. This problem wil l prove a great hurdle in the acceptance and widespread use of

information visualisation systems. This may be circumvented, to some extent, by producing more

specialised visualisations, meaningful primarily to their intended information domain. This helps by

limiting the variety of information to be visualised, though the problem still exists of creating suitable

abstractions for this information.

Information visualisation techniques should play a useful role in the field of software visualisation.

Software systems are not physical entities as such, they have no physical form and exist only as

77

Chapter 3 3D visualisation

information; they are information artefacts. This highlights the problem mentioned above, that of
creating meaningful visual representations or abstractions. Creating abstractions for software
components and their dependencies is not an easy task. The sheer size and complexity of the abstract
structures created within software places them beyond the cognitive ability of a single human. The goal
of software visualisation will thus be to allow users to browse and navigate these software structures
freely and to identify and extract the information they require quickly. Co-operative work and
interaction should also provide a major benefit to such systems, allowing teams of engineers to work on
a particular software system and be aware of the actions of their colleagues.

In any case, it is clear that research into information visualisation will continue to be of great interest in

the future. The need for techniques and systems developing from this research will increase as the

amount of available on-line information grows increasingly rapidly. It is already hard enough to fmd

files of relevance in one's own disk space, buried within the myriad of directories, old documents and

temporary files. Without regular cleaning and restructuring this problem will worsen over time,

unfortunately globally available information does not often undergo such maintenance. Sometimes

when it does, this maintenance itself causes problems due to users of the information not being notified

of changes. The situation will inevitably deteriorate, as the task of maintaining or regulating this

information is immense and possibly infeasible. Research into techniques to help cope with this

problem rather than cure it will thus be of great relevance, information visualisation is one such

technique.

3.4 3D Software visualisation
The previous section provided detailed descriptions of a large number of 3D information visualisation

techniques and prototype systems. Among these were a number of software visualisation systems such

as Narcissus, SemNet, Rigi, GV3D, Vogue, VisuaLinda, Zeus, and PVMTrace. These systems all utilise

3D graphics in an attempt to provide an understandable picture of some aspect of a software system or

computer program. In general these systems do not make full use of the 3D graphics available or

advance software visualisation to any great extent. The majority simply extend and adapt already

established two dimensional visualisation techniques into 3D [Brown93, Reiss94]. An example of this is

highlighted by Brown and Najork [Brown93] who describe a variety of 3D graphics techniques for

algorithm animation. They describe three fundamental uses of 3D:

• for providing additional information or attributes about objects which are intrinsically two

dimensional;

• for uniting multiple views;

• and for providing an execution history.

These techniques take little advantage of the additional dimension provided by VR and merely offer

'window dressing' on existing techniques. They do, however, provide useful additional information

78

Chapter 3 3D visualisation

such as the execution history or extended attributes, though these could be facilitated in other ways such
as animation or annotations respectively.

Similarly, 3D structural visualisation systems such as Rigi [Storey95], Narcissus and GV3D merely

offer simple extensions of 2D graph techniques into 3D. While the use of 3D in these circumstances

does provide a new view on the software structure, the complexity and ease of comprehension remains

relatively unaffected and in some cases is worsened [Young97]. For visualisations to effectively make

use of the advantages afforded by 3D graphics and virtual reality, they must be designed specifically for

this environment. In some circumstances it makes sense to incorporate well established 2D techniques

or to adapt and extend these techniques, however, in most cases, completely new techniques for

viewing a software system within a VR environment must be developed. Until recently there has been

very little research dedicated towards exploring software systems within a virtual reality environment

[Knight98, Knight99, Young97, Young98a, Young98b]. This is possibly because the required hardware

and software have only recently become widely available, but may also be due to the difficult nature of

the problem and the lack of any research foundation to base further research on. This thesis attempts to

tackle this problem from the latter point, by providing both a theoretical and practical foundation upon

which further research work may be based.

There are numerous different types of software visualisation each of which concentrate on providing

information or aiding with one particular area of program comprehension. While some software

visualisation systems may concentrate on the dynamics of program execution, others may provide

insight into the structure of a software system or the dependencies within the code. A number of

different types of software visualisation are mentioned here:

• Source code visualisations.

Such visualisations produce a picture from the source code text itself. By displaying indentation

and line structure, and providing an overview of the source code, it is possible for experienced

programmers to identify interesting sections. If this picture is overlaid with colour coding

presenting some other aspect, for example changes to code or the age of code, then the display

becomes even more powerful. Systems such as SeeSoft and SeeDiff provide a good example of this

approach.

• Software dynamics visualisation.

These systems concentrate on visualising the dynamics of program execution, for example

execution traces, memory manipulation and evaluation of conditional statements. Such

visualisations are useful in explaining or understanding algorithms such as sort routines. Being able

to visualise the process of the algorithm, the conditional execution and the way in which the data is

manipulated in memory provides an excellent insight into its operation. Systems such as Balsa,

Zeus and Tango [Price93] have already provided experimental evidence of the worth of such

visualisations, particularly within a teaching environment.

79

Chapter 3 3D visualisation

• Software structure visualisation.
Software structure visualisations concentrate mainly on the gross features of a software system,

often with a view to understanding the structure of large-scale software systems. These will

concentrate on objects such as the source code files, system components, software objects,

functional sections of code, etc. The aim of such a system is to produce an overall picture of the

software at a high level of abstraction allowing a software engineer to browse areas of interest or

identify any interesting features. Such visualisations will incorporate various information about the

software system depending on the intended use of the visualisation and the needs of the engineer.

One such application provides a large-scale view of a multimillion-line software system,

highlighting any date fields with a view to estimating Y2K impact [Burkwald98].

• Parallel execution modelling.

Systems such as Pavane and VisuaLinda provide a visualisation of message passing between

parallel threads within a concurrent program. Such systems are notoriously difficult to understand

and debug due to their non-sequential and often distributed nature. By providing a visualisation of

the message passing it is hoped that a clearer understanding of the interaction and dependencies

between these processes can be formed.

These generalisations represent only a small subset of the wide range of possible applications of

software visualisation. It is obvious from these sample applications that many visualisations will be

diverse and difficult to integrate into a single, general purpose visualisation of a software system. As

such, it proves sensible to identify the aim and purpose of a particular visualisation prior to beginning

research or development.

3.4.1 Summary

This section has presented a brief description of 3D software visualisation. A number of 3D software

visualisation systems have been described earlier in Section 3.3.2.

Four types of software visualisation were described here. These were source code visualisations,

software dynamics visualisations, software structure visualisations and parallel execution modelling.

While far from exhaustive, these four types of software visualisation provide an indication of the

variety of possible aspects of a software system that may be visualised.

The main point presented in Section 3.4 is that there is currently very little research work investigating

the application of 3D graphics and VR technology to software visualisation. The majority of software

visualisation systems which do utilise 3D graphics often simply extend existing 2D visualisation

techniques. While such an approach does offer some benefits, there is a lack of investigation into the

full possibilities afforded by virtual reality. In particular, there are currently no techniques or

frameworks available to aid either the design or evaluation of 3D software visualisations. As previously

stated, there is little point devising new visualisations without the ability to determine if they provide

80

Chapter 3 3D visualisation

any improvement over existing visualisations, or even without knowledge of what makes a good or bad
visualisation.

3.5 Conclusions
This chapter has provided an introduction to virtual reality systems and an authoritative and

comprehensive review of 3D information visualisation. 3D software visualisation has also been

presented as a more specific subset of information visualisation. It is apparent that research into the

application of virtual environments for exploring large information systems is receiving a great deal of

interest. The current trend towards distributed collaborative working has also been addressed by many

research projects investigating the issues involved for collaborative work within virtual environments.

A marriage of these two research threads promises great potential for progress and for the increased

acceptance of virtual reality systems within the workplace.

While there has been a great deal of research investigating the application of 3D graphics to

information visualisation, software visualisation has received considerably less attention. This is most

probably due to the more specialist nature of software visualisation, essentially a form of information

visualisation, but is also attributable to the extremely complex visualisation problems posed by most

software systems. The majority of software visualisation systems developed have concentrated on well-

established 2D techniques such as directed graphs and textual metrics information [Burd96]. Some

software visualisation systems have explored the use of 3D graphics but most have simply used an

extension of existing 2D techniques within the 3D environment.

The main issues raised in this chapter are:

• Virtual reality is a concept that is not dependent on any particular technology or implementation.

• 3D information visualisation is a large and growing area of research which addresses very similar

issues to those of 3D software visualisation.

• 3D software visualisation is currently a small and relatively new field with little existing research

work upon which to build. Most systems developed simply extend existing 2D techniques into 3D,

taking little advantage of the full power and flexibility of virtual reality.

• Techniques derived from the field of 3D information visualisation may be of direct use within

software visualisation or may simply offer inspiration and guidance in the creation of 3D software

visualisations.

Chapter 2 and Chapter 3 constitute a comprehensive review of the literature within the key research

fields relevant to the work presented in this thesis. The remainder of this thesis focuses on the

visualisation of software systems within a virtual reality environment, presenting the original research

work of this thesis.

81

Chapter 4.

Visualising software in

cyberspace

4.1 Introduction
Chapters 2 and 3 provided a review of the literature and research fields relevant to this research. The

following chapters present the theory, results and evaluation of the subsequent research work

performed.

There are a number of conclusions that can be drawn from the previous chapters. Chapter 2 highlighted

the large variety of program comprehension models proposed and the lack of any consensus as to which

model is most accurate. A number of researchers propose an integrated approach to program

comprehension where the maintainer will utilise various program comprehension models, including top-

down and bottom-up, in an as-needed manner [Chan98, Mayrhauser95]. It is clear that providing

support for this integrated comprehension model will prove most productive, enabling the maintainer to

utilise whichever comprehension strategy they prefer or the task demands. Chapter 2 also highlighted

the fact that the majority of software visualisation systems currently utilise only a small and limited set

of visualisation techniques and metaphors. Exploration of the possibilities afforded by now well-

established technologies, such as 3D graphics and virtual reality, are particularly lacking.

Chapter 3 provided an authoritative review of 3D information visualisation systems, a research area

which is keen to exploit the possible benefits of new technology. Information visualisation draws many

parallels with software visualisation, both of which are concerned with the display of abstract

information entities. Many of the techniques developed within each field should prove transferable.

While 3D information visualisation has received considerable attention, work on 3D software

visualisation has been slow to develop. One stumbling block is the lack of any guidelines for the design

and evaluation of 3D software visualisation systems, and the absence of any research to provide insight

and foundation for this new field. The research presented in this thesis attempts to address this

deficiency and provide a significant first-step towards effective 3D software visualisation.

This chapter begins by identifying seven key areas of 3D software visualisation. These seven areas must

each be considered when creating such a visualisation and provide a basis for describing the various

qualities of a visualisation. Section 4.3 introduces the concept of visualisations and representations.

82

Chapter 4 Visualising software in cyberspace

This provides a framework for discussing the various properties of a visualisation by providing a

conceptual division of entities within it. This is followed by a description of the desirable properties of

visualisations and representations. These properties act as both design guidelines and also a framework

for evaluation. Finally, Section 4.4 presents an example of some of the concepts involved. This is

provided with reference to a prototype software visualisation in which two differing representations are

used. A description of how each representation addresses the desirable properties is made, providing an

illustration of some of the issues and pitfalls involved.

4.2 3D Software visualisation
The field of 3D software visualisation is still very much in its infancy. Whilst software visualisation in

general is reasonably well developed, it offers very little support for the issues involved in creating a

software visualisation within a virtual environment. At present there are no guidelines for creating a 3D

software visualisation, or even what aspects should be considered. 3D information visualisation and

database visualisation has received more attention in this respect with several papers identifying some

of the issues involved [Kennedy96, Wiss98a, Wiss98b, Wiss98c]. The first step of this research is to

identify the main areas of 3D software visualisation which must be considered when creating such a

system.

This research identifies seven key areas that must be considered when designing 3D software

visualisations. These seven areas were derived from attempting to describe the aspects of 3D

information visualisation systems and software visualisation systems while considering the needs and

goals of software visualisation. There may be additional key areas which are identified for more

specific aspects of software visualisation, though the seven areas identified here are believed to provide

a core framework which is applicable to any 3D software visualisation.

The seven areas described here, are general in scope, but are of fundamental importance within 3D

software visualisation. Application of these areas could also be made to the more general field of 3D

information visualisation for which limited guidelines and methods of evaluation have already been

defined. The seven key areas identified here are: representation; abstraction; navigation; correlation;

automation; interaction and scaling. Careful consideration must be made as to how a new visualisation

will address each of these points in order to create a well-balanced and usable visualisation.

The research presented in this thesis is focused primarily upon single-user software visualisations yet

still provides insight and concepts for use within a multi-user environment. Multi-user software

visualisations would be a natural extension of this work. Software maintainers rarely work alone, more

often they work as a team. Being able to support a team-orientated approach within these visualisations

would be of great value, but is beyond the scope of this research. If the visualisation was to be a shared,

multi-user virtual environment then several other key areas must also be introduced in addition to the

seven presented here. As this research is concerned primarily with single user visualisations these

83

Chapter 4 Visualising software in cyberspace

additional areas have not been investigated fully. Such areas would include issues such as
communication, co-operation, impact and accessibility.

The seven areas described here are intended as a purely qualitative framework for identifying aspects

which should be considered during the design of a 3D software visualisation. While no attempt has been

made to provide any form of quantitative measurement of these areas, they could possibly provide the

basis for such a framework through future research. The seven areas are intended here to provide some

overall structure to the design process and to direct the thoughts of the designer to areas which are

believed to be important for 3D software visualisation.

The seven key areas of 3D software visualisation are now described individually.

4.2.1 Representation

This is concerned with how the various components of the software system are shown graphically and

also how information about these components can be encoded into the graphical representation. This is

arguably one of the most important aspects of a visualisation, and careful decisions must be made. The

graphical representations used will determine the overall structure and feel of a visualisation and could

make the difference between an intuitive and highly useful visualisation or a confusing and off-putting

one. Design factors here will impact on all the other key areas and vice versa.

The issues of visualisations and representations (Section 4.3) are of great relevance here. Finding a

suitable balance of properties within an appropriate visual representation is a particularly hard task.

Section 4.3 describes the desirable properties of both visualisations and representations, illustrating the

difficult compromises which must bemade in order to achieve an effective visualisation;

4.2.2 Abstraction

One of the main aims of software visualisation is to abstract information away from the low-level

detail, for example the source code, and present it as a more useful higher level representation. In

deciding the level of abstraction to be used, we must determine what information will be presented and

also in how much detail to present it. The level of abstraction implemented will greatly affect how, and

for what tasks the visualisation tool itself will be used.

A visualisation that displays information at a very high level, for example showing the distribution of

files within a system, will be of little use for debugging a localised problem within a particular section

of code. Similarly, a visualisation displaying detailed information on a single function would be

unsuitable for learning the overall structure of the software system and dependencies within it. Ideally a

visualisation should support a dynamic change in the level of abstraction and amount of detail

presented, dependent on the user's interests and needs.

84

Chapter 4 Visualising software in cyberspace

4.2.3 Navigation
Information sources such as document collections and particularly software systems are typically very

large. It follows that the visualisation of such information will also tend to be large. Additionally,

virtual environments enable us to submerge the user within the visualisation effectively creating an

information terrain or information environment around them. It is important that users can easily

navigate their way through the visualisation without becoming lost or disorientated. Features such as

signposts, landmarks, paths and districts all aid in creating a legible environment.

Navigation is a wide ranging term which includes the legibility of the environment but is also

concerned with tools which may aid navigation such as maps, bookmarks and teleports. These are

perhaps more suited to the category of interaction.

4.2.4 Correlation

Visualisations represent another view of a software system or information store. They present additional

information on the system and, more specifically, they do not replace the information already available.

It is important to be able to link the visualisations in with other forms of information, for example the

source code or documentation in the case of software systems. Providing a readily understandable

correlation between the visualisation and the underlying information is vital i f the visualisation is to be

of any use. The actual changes made to software occur at the code level so relationships between the

objects in the visualisation and actual points in the source code must be clearly visible or easily

accessible.

4.2.5 Automation

An important point to consider when designing information visualisations is to what extent the creation

of the visualisation is automated. It is necessary to determine how much of the visualisation is

generated automatically and how much control the user has over the process or the result. The goal of

software visualisation is to aid the understanding of software systems. Often this understanding is best

obtained by practical exercises. Allowing the user to 'build' the visualisation while investigating areas

of the software system may prove more intellectually profitable than fully automating the process with

the user then gaining their understanding from the completed visualisation. A similar analogy can be

made to the process of making notes on the content of a technical paper or journal article. A greater

understanding of the content of the paper would result from creating the notes or annotations oneself

rather than being given a pre-written set of notes. Conversely, the pre-written notes are of benefit as

they reduce the amount of time and effort necessary to understand the salient points of the paper.

There are many other automation issues such as the use of layout algorithms or heuristics, legibility and

resilience to change. The latter of these is particularly important when considering automatically

generated visualisations. When changes are made to the underlying software system, it is imperative

that the new visualisation changes as little as necessary in order to reflect this. This resilience to change

85

Chapter 4 Visualising software in cyberspace

is necessary in order to maintain the user's mental model of both the software and the visualisation. If
the structure and layout of the visualisation were to change drastically then the user would need to
relearn and explore the environment each time. This is clearly counterproductive.

4.2.6 Interaction

Creating a suitable visualisation is only one part of the problem. Complex visualisations will inevitably

require some form of interaction with the user. This interaction may be no more complex than

navigating the visualisation or, in contrast, performing some complex data mining using visual query

techniques [Boyle93]. Consideration must be made as to how the user will interact with the

visualisation and how they can manipulate its contents or build upon it with higher-level semantic

information.

The subject of interaction also covers any virtual tools that may be used in the environment for various

purposes. For example, a map, a virtual display screen (for displaying documentation, source code

listings, etc.), or editing tools for customising or annotating the visualisation.

Aspects such as the control technique used to move around the environment or to interact with objects

are easily overlooked when creating a visualisation or virtual environment, yet they exist at such a

fundamental level that the success or failure of the system may well depend on them. A poor control

system can lead to a steep learning curve in order to use the visualisation. Coupled with the more

complex and unfamiliar 3D environment this can often create a very off-putting and even unusable

visualisation. Control systems should be intuitive yet powerful, catering for both novice and expert

users.

4.2.7 Scaling

Software systems vary in size and complexity, from relatively simple programs to large multimillion

line real-time systems. It is important to consider how a software visualisation will be able to adapt to

the differing scale and complexity of software systems. This ties in heavily with the issue of abstraction

mentioned previously. The level of abstraction used dictates what level of detail is shown in the code.

Smaller systems will inevitably require a lower level of abstraction as the amount of information

gleaned from high-level overviews will be of little use. However, in larger systems the use of high-level

overviews will be more of a necessity in order to gain some notion of context and structure.

4.3 Visualisations and representations
In order to create or evaluate a 3D visualisation we must first identify desirable properties which are

important for a visualisation to be effective. In order to derive these desirable properties it is necessary

to redefine the concept of a visualisation into two distinct levels. These levels have been termed

'visualisations' and 'representations'. The properties and goals of each division vary sufficiently to

warrant such a distinction. These two terms are defined as follows:

8 6

Chapter 4

• Representation:
A graphical (and other media) depiction of a single component.

Visualising software in cyberspace

• Visualisation:
A collection or configuration of individual representations (and other information)

which comprise a higher level component.

Effectively, representations are the graphical symbols used in a visualisation to depict each of its sub­

components. For example, in a typical graph such as a call-graph or control-flow graph, the graph itself

is the visualisation while the nodes and arcs are the representations. These terms are, however,

interchangeable and they depend greatly on the level of abstraction and amount of detail being

presented. A graphical object can be both a representation within one context and a visualisation within

another. For example, i f a node in a function call-graph provided further information on the structure or

qualities of the function it represented. In the context of the software system (i.e. the graph) it is a

representation, whereas in the context of the function (i.e. the node) it is a visualisation of further

information on that function. In such cases we must consider carefully the structure and properties of

the object both as a visualisation and as a representation and also in the transition between these

distinctions.

Note that the term 'visualisation' has merely been redefined to provide a more specific meaning and to

include the concept of a representation. Often the term 'software visualisation' is used to describe an

entire visualisation system which incorporates both a visualisation and other ancillary information or

views. This thesis will also use this interpretation of the term 'software visualisation' and will reserve

the terms visualisation and representation to refer to the actual graphical aspect of a software

visualisation system.

The desirable properties of both visualisations and representations are now discussed. These properties

are intended both as guidelines for the design of a new 3D visualisation and also for use within a

framework for evaluating an existing visualisation. These desirable properties were derived from a

series of investigations, by creating simple visualisations and identifying the rational behind the design

issues and decisions involved. The desirable properties identified here do not represent an exhaustive

list and there will no doubt be many other desirable properties which are relevant to more specific

software visualisations. The properties described here represent a core set which will be applicable to

the majority of software visualisations and which demonstrate the different nature of visualisations and

representations.

Visualisations and representations have been defined as two distinct but highly related concepts. Each

has different properties and goals, many of which are mutually exclusive. In order to create a well-

balanced visualisation it is necessary to achieve an effective compromise between these conflicting

properties. It is also useful to identify the critical properties within a particular visualisation or

representation. While all desirable properties are indeed relevant at all times, the presence of conflict

between certain properties necessitates a bias towards one particular property. This bias will be

87

Chapter 4 Visualising software in cyberspace

dependent largely on the nature of the visualisation or representation and should be identified where
possible.

4.3.1 Desirable properties of a representation
As previously defined, the term representation refers to the depiction of a single component, typically

within a group of such components which constitute a visualisation. The majority of visualisations will

consist of a number (often a large number) of representations or groups of representations. For this

reason, the main purpose of a representation is to present a component as an individual item, hence

something must set it apart and show it as unique within a sea of other similar representations. This is

only one desirable property of a representation, a more comprehensive list of other such properties

follows. Several of these properties are mutually exclusive thus a good representation will achieve a

suitable compromise between them. It should be noted that this list of properties is by no means

exhaustive. The properties described here are illustrative of the core aspects of a representation

although additional properties may be identified to cater for more specific aspects, for example the

issues involved with multi-user, shared software visualisations.

• Individuality

Representations of different components should appear differently. Also, representations of

identical components, which are displayed in the same context, should appear identical. For

example, in a standard function call-graph, it is typically a combination of the textual node label

and node position which make a representation unique.

• Distinctive appearance

Differing representations should appear as contrasting as possible. Representations should be easily

recognisable as being either identical or dissimilar, even when in a large visualisation. This

property contradicts with that of low visual complexity. To create a distinctive appearance among

many representations you must increase the visual complexity of the representation.

• High information content

Representations should provide as much information as possible about the component. The problem

here is that as the information content is increased, inevitably the visual complexity will also

increase. A high information content can also be either supportive or detrimental to providing a

distinctive appearance. Components with widely varying properties will tend towards being

distinctive purely from the encoding of these properties in the representation. However, for

components with similar properties then the implicit higher visual complexity and similar features

can often overpower the distinctive features of the representation.

• Low visual complexity

Representations should not be visually over-complicated. This is beneficial both to the performance

of the visualisation system and also to the user's comprehension of the information encoded in the

representation. Additionally, to achieve a distinctive appearance the representation should maintain

88

Chapter 4 Visualising software in cyberspace

as little visual complexity as possible. There must be a trade-off as to whether we can expect the
user to distinguish between a small number of complex representations and a larger number of
simple representations.

• Scalability of visual complexity and information content

Mechanisms would be desirable for reducing or increasing the amount of information presented or

the visual complexity of representations, depending on the context in which they are used. This

would allow both detailed displays of a small number of components, giving maximum

information, as well as overviews of large component collections that would display less

information about the individual components.

• Flexibility for integration into visualisations

This is a very important issue which affects both the representations and the visualisations in which

they are used. Benedikt [Benedikt91] proposed that representations or objects contained both

intrinsic and extrinsic dimensions that could be used for encoding information. Extrinsic

dimensions include properties such as position and motion. Intrinsic dimensions include properties

such as size, shape, colour and angular velocity. As a representation makes use of more intrinsic

dimensions it becomes less flexible for integration into a visualisation. Using up resources such as

colour, shape, and particularly size to encode information reduces the scope for providing

information within the visualisation.

For example, colour may be desirable for differentiating between different classes or groups of

components within a visualisation. However, i f the representations for the components have already

been assigned colours (as an intrinsic dimension) to represent other information then colour cannot

easily be used by the visualisation. The size of representations is also very important. Irregular or

variable sized representations will be harder to position, group and view within the visualisation.

For example, i f a representation uses its size to encode some information and the visualisation uses

the positional depth of the representations to encode other information. Confusion will occur when

differentiating between a component being near or big, and far or small.

• Suitability for automation

Another important aspect of any visualisation or representation is it's ability to be automatically

generated relatively easily. The majority of useful visualisations will be generated by an automatic

process with some degree of user intervention. Features such as irregular shapes or variable sized

representations can often hinder or complicate this process. Representations should therefore be

designed with automation in mind.

4.3.2 Desirable properties of a visualisation
As previously defined, the term visualisation refers to the depiction of a collection or configuration of

individual representations, and other information, which comprise a higher level component. The

majority of visualisations will often consist of a large number of representations. The purpose of a

89

Chapter 4 Visualising software in cyberspace

visualisation is to present these representations in an orderly and structured sense, providing
supplemental information on categories, collections and trends between these representations.

The following list highlights some important qualities that must be considered when designing a

visualisation. As with the desirable properties of representations, many of these qualities are mutually

exclusive and compromise must be made.

• Simple navigation with minimum disorientation

Visualisations should be designed with the user in mind. As the user will be 'submerged' within the

data, it will be necessary to structure the visualisation and add features to aid them in navigating

through the visualisation. The goal here is for the user to become familiar with the information

terrain and to reduce the chance of becoming lost. Techniques developed and highlighted in the

LEADS project (Legibility Enhancement for Abstract Data Spaces) [Ingram95b] may be applicable

here. These include the generation of features such as landmarks, districts and edges that have been

proven to aid navigation through urban environments [Lynch60].

• High information content

Visualisations should present as much information as possible without overwhelming the user.

Again, there must be a trade-off between high information content and a low visual complexity.

Both are desirable yet contradictory.

• Low visual complexity, should be well structured

The structural complexity of a visualisation will undoubtedly be dependent on the complexity of

the information presented, however, effort should be made to reduce the visual complexity of the

visualisations. A well-structured data terrain should also result in a more understandable layout and

easier navigation within the visualisation.

• Varying levels of detail

The level of detail, information content and type of information presented should vary to cater for

the user's interests. For example, when a user first enters the visualisation their first expectation

will be to see the visualised system in its entirety. Once they have familiarised themselves with the

overall structure they will then begin investigating areas of interest in detail. The visualisation

should support this change in interest and provide increasing detail and information as the user

moves towards a component or expresses an interest in a component.

• Resilience to change

Small additions or changes to the information content of the visualisation or shifts in the user's

interests should not result in major differences in the visualisation. Major changes such as a full

repositioning of representations will result in the user becoming disorientated and having to re-

learn the structure of the environment.

9 0

Chapter 4 Visualising software in cyberspace

• Effective use of visual metaphors
Metaphors introduce familiar concepts to the user of the visualisations and provide a good starting

point for gaining an understanding of the visualisation. The emphasis here is on the effective use of

metaphor within the visualisation, this does not mean that metaphor use is always beneficial.

Strong metaphors can often produce more problems than benefits. Using a strong real-world

metaphor will constrain the visualisation to displaying certain information in a particular way and

may be over-restrictive for adding additional features. Often the information to be visualised will

not ' f i t ' into the metaphor chosen, leading to the option of excluding that particular information or

violating the metaphor in order to include it. The latter of these choices is undesirable, breaking a

strong metaphor will often only confuse the user and lead to a doubt of the integrity of other

metaphors in the visualisation. This clearly negates many of the benefits provided by the use of

metaphor.

A further issue with the use of strong metaphors is that they require some level of domain

knowledge for the metaphor used. For example, a geographical based metaphor may require some

implicit understanding of geography. A selected metaphor should be representative of widely

familiar concepts and should be mindful of the level of domain knowledge required.

• Approachable user interface

The user interface to the visualisations should be flexible enough to provide intuitive navigation

and control, yet should not discourage the user or introduce any unnecessary overheads. For

example, while fully immersive hardware may be of great advantage in using the visualisations, it

would prove more practical to use standard hardware and interfaces, i.e. a computer monitor and

suitable input device such as a mouse.

The software interface should take advantage of well-established user interface techniques and

strong, well-developed UI metaphors. For example, the use of a button symbol or object to indicate

something which can be pressed. Simply changing the appearance of the mouse pointer over

objects that may be interacted with is immensely useful, a technique used to great advantage in web

browsers. Users will often scan a page using the mouse pointer, searching for links to other pages

or information. Coupling this feature with a status bar or pop-up labels giving a description of the

interaction or link provides a very powerful mechanism for exploration.

• Integration with other information sources

Visualisations provide a different viewpoint on the information they are presenting, in most cases

they cannot entirely replace that information. It is desirable to be able to correlate between the

visualisations and the original information, or other views on it. For example, visualisations of a

software module structure could be linked to the actual source code of that module. Providing this

integration realises very powerful exploration and querying techniques, allowing the user to

selectively use the view that provides them with the most useful or intuitive information at any

point.

91

Chapter 4 Visualising software in cyberspace

• Effective use of interaction
Visualisations can benefit greatly by allowing the users to interact with them in various ways. This

provides mechanisms for gaining more information and also helps maintain interest. Interaction

goes further than simply providing 'click here' links within the visualisation, it extends to include

the various control methods, navigation techniques and movement modes within the visualisation.

• Suitability for automation

As with the representations, a good level of automation is required in order to make the

visualisations of any practical worth. Many of the visualisations described later in this thesis have

been created by hand but have all been designed with automation in mind. The process of their

creation has included repetitive procedures using regular sized objects and placing. Everything in

the visualisations lends itself towards a completely automatic generation. As full automation is

often the end goal of many prototype systems, it is obvious that features of the visualisation should

be designed with this in mind.

4.4 An example of the concepts involved
The previous discussion of the desirable properties of both visualisations and representations led to the

identification of many dependencies and conflicts between these properties. A simple example of how

these desirable properties apply to a 3D visualisation is now given to illustrate some of the issues

involved. The example visualisation used here is the CallStax visualisation, the exact details of which

are discussed in Chapter 5. This section concentrates on the selection of suitable representations for use

within the CallStax visualisation. This section makes no attempt to describe the reasoning behind the

CallStax visualisation or the advantages it offers over the standard 2D graph, which, in this simple

example, is obviduslylhore intuitive to understand. Full details and evaluation of CallStax are made in

Chapters 5 and 6.

CallStax is intended as a 3D equivalent of the familiar 2D directed graph, incorporating many benefits

for use within a 3D visualisation. Essentially the paths within a directed graph are represented as

vertical stacks with each block in a stack representing a node of the graph. The paths through the graph

flow vertically from the bottom of the stack to the top. Identical blocks within the visualisation

represent the same node in the 2D graph. Figure 4.1 shows a CallStax visualisation of a simple directed

graph. In this case all of the dark blue blocks represent a single node in the graph, all of the light blue

blocks represent another single node, and so on. A correlation can be made with the original 2D

directed graph shown in Figure 4.2. Node colouring is maintained between these two figures to allow

comparison, with the exception of the grey nodes. The pyramidal object visible in Figure 4.1 represents

the recursive call within the function 'qsort'.

92

Chapter 4 Visualising software in cyberspace

Figure 4.1. CallStax visualisation showing a simple directed graph.

The representations here (the blocks) use colour to provide both individuality and distinctive

appearance. It becomes apparent for even a moderately larger graph that the range of discretely

identifiable colours available is woefully inadequate. A better representation must be found in order for

this visualisation to be useful. The example given here will concentrate on a representation which aims

to satisfy the desirable properties important to the CallStax visualisation. Evaluation of the CallStax

visualisation is not made at this stage but is provided later in Chapter 6. This example will concentrate

on providing a description of the issues involved.

main

CP: writelines readlines qsort

printf getline alloc strcmp strcpy swap

I
getchar

Figure 4.2. Simple 2D directed graph matching the CallStax of Figure 4.1.

Before discussing the alternative representation, mention should be made as to how the current

representation (a coloured box) addresses the desirable properties, and what are the critical properties of

a representation for use within CallStax. CallStax relies heavily on the identification of identical

representations within the visualisation. CallStax also places a strong reliance on the dimensions of its

representations with the necessity that they should be easily identifiable from any perspective. These

demands are reflected in the desirable properties deemed critical for a representation used within

9 3

Chapter 4 Visualising software in cyberspace

CallStax. These three critical properties are individuality, distinctive appearance, and flexibility for
integration into the visualisation.

• Individuality

Different components must appear different and identical components must appear identical. This

is the fundamental basis of the CallStax visualisation and is critically important. In small scale

CallStax visualisations this is achieved using box colour. There are essentially an infinite number

of different colours that can be produced by modem graphics systems (16.9 million) so, in theory,

individuality is not a problem. However, in practice the human eye can only discern between a

relatively small number of these colours.

• Distinctive appearance

Different representations must appear as contrasting as possible. Again, in this small scale CallStax

example, this is achieved by selecting contrasting colours. However, the supply of contrasting

colours is relatively low and would be easily exhausted when visualising any medium-size graph.

• High information content

Although not necessary in the case of CallStax, any form of information content is desirable. The

only information required of CallStax is provided by the visualisation - i.e. the structure of the

graph. The representations used here provide no information content.

• Low visual complexity

This is easily achieved by the simple nature of the coloured boxes. They have an absolute

minimum visual complexity.

• Scalability of visual complexityand information content

The coloured boxes provide no scaleable complexity or information content, however they could be

used as a low-detail, low-information representation within a sequence of other representations.

Such an arrangement would provide a low-detail representation when viewing from a distance, thus

reducing visual complexity and display crowding. This would then be replaced with a higher-detail

representation as the user approaches, thus providing greater information content.

• Flexibility for integration into visualisations

Representations must be flexible for integration into a visualisation. The demands of the CallStax

visualisation are considerably strict in this respect. CallStax relies on a fixed size representation

regardless of perspective. The blocks used perform well in this respect.

• Suitability for automation

Again, this suitability is easily achieved by this simple representation. The exact dimensions of the

representation are fixed, there is no information to encode, and they only require a unique colour to

be assigned to them.

9 4

Chapter 4 Visualising software in cyberspace

To summarise, the coloured boxes perform well as representations in the properties of flexibility for

integration, low visual complexity and suitability for automation. They perform poorly (in a large-scale

sense) in the properties of individuality, distinctive appearance and high information content. Two of

the properties they perform poorly in are critical to the CallStax visualisation, namely individuality and

distinctive appearance.

These desirable properties, and in particular the critical properties, were considered for providing an

alternative representation for use within CallStax. One possible solution is shown in Figure 4.3. A

description of how the desirable properties relate to this particular representation will also be made.

Each representation shown in Figure 4.3 corresponds to a single function within a small software

program. It was decided to incorporate some aspects of each function into the representation in order to

help provide a distinctive appearance while simultaneously increasing the information content. A

circular base was selected to help maintain perspective with the information provided in the

representation, and to satisfy the visualisation prerequisite of a fixed size representation. Information

encoded into the visualisation includes:

• An indication of the function structure and control flow - (feature A in Figure 4.3).

• A pie-chart showing a breakdown of the number of lines of code, comment and blank lines within

the function - (feature B).

• Bar charts showing two complexity metrics for the function. These were also selected to provide a

fixed height to the representation and to help maintain depth and perspective - (feature C).

• A 4-segment repeated colour code surrounding the lower portion of the base. This provides a

feature which is guaranteed to be unique between representations of very similar functions.

Assignment of this colour code is arbitrary - (feature D).

(c)

H

i

Figure 4.3. Possible representations for use in CallStax.

95

Chapter 4 Visualising software in cyberspace

By comparing the new representations with reference to the same set of desirable properties it can be
seen that they provide a substantial improvement in most areas.

• Individuality

The individuality is much improved with each representation being guaranteed a unique appearance

due to the 4-segment colour code on the base. This is augmented by the inclusion of structural and

metric information providing each representation with an appearance that matches its

corresponding function.

• Distinctive appearance

The distinctive appearance remains good when viewing a small collection of these representations.

The high degree of individuality aids this somewhat. The distinctive appearance is also

predominantly dependant on the extent to which the individual functions differ in structure, size

and complexity. This could be compromised in larger software systems.

• High information content

Information content is much improved with the representation providing insight into the structure,

control flow and complexity of the function.

• Low visual complexity

The representation is visually complex as a result of the need for individuality, distinctive

appearance and increased information content.

• Scalability of visual complexity and information content

The new representation provides no scaleable complexity or information content, however it could

be used as a high-detail, high-information representation within a sequence of other representations.

• Flexibility for integration into visualisations

Flexibility for integration remains high with the representation maintaining a fixed size and

containing reference features that provide good depth perspective. The colour scheme of the pie-

chart base remains unallocated so is available for use by the visualisation (it is the relative shading

of pie sections that is important, not the overall colour).

• Suitability for automation

Suitability for automation remains good. The representation contains fixed dimensions and

allocation of features. Information encoded in the representation is well defined.

It can be seen from the above analysis that the new representations improve upon this set of desirable

properties in almost all cases. The only exception is the increased visual complexity, which suffers as a

result of the strong need for individuality and distinctive appearance. On first impression this appears to

be a successful representation for use within CallStax, however, including the representation as shown

in Figure 4.4 provides evidence to the contrary. Figure 4.4 shows the same CallStax visualisation as

9 6

Chapter 4 Visualising software in cyberspace

seen in Figure 4.1 but with the alternative representation. Library functions are shown as simple grey
diamonds.

Figure 4.4. CallStax visualisation using a different representation.

It is apparent from Figure 4.4 that the increased visual complexity of the representation compromises its

distinctive appearance. The predominantly transparent nature of the representation was initially thought

of as beneficial by reducing background occlusion and allowing more of the visualisation to be seen

from any one point. This feature compounds the effects of increased visual complexity making the

representations hard to separate visually.

Although the new representation in its current form is of marginal use, modification to address the

problem of high visual complexity could accentuate the beneficial features of the representation. By

studying Figure 4.4 closely it becomes apparent that there is a technique to 'reading' the visualisation

and it is possible to identify similar and dissimilar representations quickly, for example by

concentrating on the base of each visualisation. However, such techniques would only be effective in

the case of a single scene in which items for comparison are both visible. The high visual complexity of

the representation would render comparison between two objects, that are not simultaneously visible,

very difficult indeed. By combining the original simplicity of the coloured cubes with the added

benefits of this new representation, for example by colour-encoding the base of the representation, its

usefulness can be greatly improved.

This example has shown that the desirable properties are particularly important when designing either a

visualisation or representation. It has also shown that effective compromise between the properties is

essential for a visualisation or representation to be successful. Perhaps the most important point raised

is that even if most of the desirable properties have been addressed, any one property can lead to a

representation being successful or unsuccessful depending on the context in which it is used. This

9 7

Chapter 4 Visualising software in cyberspace

highlights the need for a strong correlation between the development of the representations and the
visualisations, and that identification of the key factors and appropriate compromises must be made.

4.5 Summary
This chapter has presented the main thrust of the research work within this thesis. Seven key areas of

software visualisation have been identified, providing a framework of important issues which must be

considered when creating a 3D software visualisation. The notion of visualisations and representations

has also been introduced. This distinction provides a mechanism for facilitating meaningful discussion

of 3D software visualisation systems, and indeed many other forms of 3D visualisation. Further to this,

the division of visualisations and representations enables us to evaluate the desirable properties of each

and to understand the issues and conflicts between the two. This is particularly evident when

considering an object within a visualisation from two different perspectives, both as a representation

and a visualisation.

This chapter has identified a set of desirable properties for visualisations and representations. These

properties are useful both as a reference during the design of a 3D software visualisation, but also as a

method of evaluation for existing visualisations. This evaluation is described further in Chapter 6.

Finally, an example visualisation utilising two very different representations has been presented,

concluding with a discussion of how each representation addresses the various desirable properties.

The following chapter presents the results of practical application of this research work. These results

take the form of concept demonstrators, each used to explore the issues involved within 3D software

visualisation. Chapter 6 provides an evaluation of these concept demonstrators, using the desirable

properties as aT framework for assessing both the visualisations themselves and the representations they

contain.

9 8

Chapter 5.

3D software visualisation systems

5.1 Introduction
Chapter 4 introduced the ideas which form the basis of this research work, in particular the notion of

visualisations, representations and the desirable properties associated with each. This chapter will

introduce a number of prototype visualisations and concept demonstrators, developed throughout this

research in order to explore the various possibilities afforded by 3D software visualisation. Each of the

visualisations described here, except for Zebedee, was designed with constant referral to the desirable

properties. Due to the conflicting nature of many of these properties it is interesting to see how each

visualisation addresses these issues and what bias, i f any, is selected towards one particular property.

This assessment is made in the following chapter. Chapter 6 provides an evaluation of the prototype

systems presented here and, in particular, uses the desirable properties as the basis for an evaluation

framework. This framework is then used to evaluate, in detail, one of the visualisations described here.

While most of the research presented within this chapter is applicable in general to both 3D information

visualisation and all forms of 3D software visualisation, the actual goals of this research work are more

specific. This research is concerned with the structural visualisation of software systems. Such

visualisations provide a gross overview of a software system, giving a variety of information on the

many constituent components. A software engineer is able to navigate within the software, identifying

important or interesting features merely by surveying his or her surroundings. Once areas of interest are

identified the software engineer is then able to move in for a closer look and is provided with increased

levels of detail. Each of the concept visualisations described here was developed with the primary goal

of supporting this sort of structural view.

This chapter concentrates purely on a description of the concept demonstrators. Evaluation of the

effectiveness of these visualisations, and the issues involved in their creation are described in Chapter 6.

Chapter 6 also provides a detailed evaluation of one of these visualisations, including its associated

representations, against the desirable properties identified in Chapter 4.

5.2 Zebedee
Zebedee represents the first prototype system developed from this research. The goal was to recreate an

existing two-dimensional software visualisation technique within a 3D environment and to explore any

benefits, limitations and issues involved. Zebedee allowed an exploration of the issues involved with

9 9

Chapter 5 3D software visualisation systems

3D software visualisation. Such issues include visualisation of complex data and structure, automatic
generation of visualisations and navigation within a 3D environment. Zebedee is an extension of the
hyper-structure visualisations described in Chapter 3.

Zebedee provides a 3D visualisation of the directed graph formed from function call relationships, a

common and well used 2D software visualisation often referred to as a call-graph. Zebedee derives its

name from the force-directed placement (FDP) algorithm employed for layout. The FDP algorithm

effectively simulates a physical system in which nodes and links exert forces, moulding the graph in an

attempt to form a stable system. This stable system often results in an aesthetically pleasing graph

layout, the algorithm being particularly suited to the additional freedom available within 3D space.

Zebedee produces a standard graph within the 3D environment, consisting of nodes that represent

functions within a software system and links corresponding to the calls between these functions. The

layout of the nodes is completely arbitrary and is determined by the FDP algorithm [Fruchterman91].

This algorithm models the nodes as free-moving spheres that possess a repulsive charge towards other

nodes. Adjacent nodes will repel each other with a force inversely proportional to their separation, so

the closer two nodes are together then the stronger the force will be trying to separate them further.

Each link acts as a spring connecting two nodes. These have the effect of pushing or pulling nodes

depending on the extension of the spring. Each spring has a predetermined natural length. I f two linked

nodes are further apart than this natural length then the spring is stretched and it will exert a force,

proportional to its extension, trying to pull the nodes together. If, however, the nodes are closer together

than the natural length then the spring will be compressed and have the effect of pushing the two nodes

apart (in addition to the repulsive charge between the nodes). Graph layout is performed by providing

the nodes with some arbitrary initial placement, followed by a number of iterations of the physical

model. The graph will eventually settle into a minimum energy state (provided damping is present to

inhibit oscillations). This final layout is generally very acceptable with nodes positioned at suitable

distances, though there are occasional problems that become particularly evident with complex graph

structures.

Figure 5.1 shows an example of a small function call-graph displayed using the Zebedee FDP layout

algorithm. The ability to manoeuvre within the 3D environment and to examine it from different angles

contributes greatly to comprehension of the structure. The simple 2D screenshots displayed here are not

capable of imparting a true sense of depth resulting in portions of the graph appearing closely packed,

whereas in the reality of the 3D visualisation they are well spaced.

100

Chapter 5 3D software visualisation systems

41

(H I R n « C < < l i » Hoc

11 >B loo

Figure 5.1. Zebedee graph layout.

Figure 5.2 shows a basic user interface for Zebedee. This includes two cameras in addition to the main

view window. These cameras enable tracking of the user's position within the visualisation and help

provide a constant frame of reference for location and orientation. Other features of the interface allow

the user to hide node labels to reduce visual clutter, collapse or expand levels of the graph hierarchy, or

traverse links within the graph automatically by simply selecting a destination node.

f flBCO ''X X laor

Figure 5.2. Zebedee user interface.

101

Chapter 5 3D software visualisation systems

Various features of the visualisation were experimented with, including altering the properties of the
representations within Zebedee, i.e. the nodes and the links. Various attributes were altered such as size,
colour, animation and rotation, as illustrated in Figure 5.3. Additionally, a number of different
approaches to the graph layout were applied in order to improve the structural clarity of the graph. One
such modification to the graph layout in Zebedee involves constraining node movement to a set of 2D
horizontal planes within the virtual environment. Another approach involves maintaining the original
FDP algorithm but providing hierarchical information by colouring nodes depending on their
hierarchical level within the graph structure.

- i i ,< i

• i

Figure 5.3. Zebedee graph illustrating a variety of node attributes.

Figure 5.4(a) shows the call-graph generated from a source code module of a large-scale software

application. The top-level nodes can be immediately identified by their bright yellow appearance. Three

distinct clusters are also apparent, with two of them sharing a number of common functions. Figure

5.4(b) shows the same graph but with an imposed vertical hierarchy. Nodes are given an initial vertical

position dependent on their position within the function hierarchy. The FDP algorithm is then applied

with the nodes constrained to move only within their allocated horizontal plane. Again it is obvious that

there are three main clusters within the graph, however it is now easier to identify the two common

clusters and the nodes which are shared between them.

102

Chapter 5 3D software visualisation systems

5

(a) (b)

Figure 5.4. Constrained and unconstrained views of a 3D graph.

One problem with the FDP algorithm used within Zebedee is that the final node placement is strongly

dependent on the initial node placement before application of the algorithm. In all the examples shown

previously the initial node placement has simply been random, which often results in some undesirable

features, particularly when nodes become 'trapped' in unsuitable areas of the graph. This can happen

when a node is isolated on the far side of a large cluster of nodes. The combined repulsive force of the

cluster is so great that it overpowers the attractive force of the link, which is trying to bring the stranded

node through. This has the effect of pulling the graph together. By providing a rough initial placement,

which basically ensures that closely related nodes are placed in reasonable proximity of one another, it

is possible to provide a superior final layout.

(a) (b)

Figure 5.5. Improved layout using manual initial placement.

Figure 5.5(a) shows a rough manual placement of nodes grouping closely related nodes together and

ensuring minimum crossing of links. The layout positions are predominantly two-dimensional with a

very small variation in the third dimension to allow the nodes to spread evenly in all directions. Figure

5.5(b) illustrates the resultant graph after application of the FDP algorithm. Comparing this with the

same graph shown in Figure 5.4(a) illustrates the improvement in structural clarity.

103

Chapter 5 3D software visualisation systems

To summarise, Zebedee provides a 3D graph visualisation, an extension of a well-established two-
dimensional software visualisation technique. Within software visualisation and program
comprehension the function call-graph is commonly used as a tool for understanding software structure
and dependencies. Zebedee supports the visualisation of this structure within a 3D environment, with a
view to incorporate this information into a more general, large-scale 3D visualisation of a software
system such as File Vis, described in Section 5.4.

5.3 C a l l S t a x

CallStax attempts to move away from the standard visualisation of call-graph structures, i.e. a network

consisting of nodes and arcs, as depicted by Zebedee. CallStax makes full use of the extra dimension

afforded by cyberspace to maximise the amount of information available and the flexibility for

displaying and interacting with that information. Development of Zebedee highlighted a number of

problems inherent in visualising large, complex graph structures (such as function call-graphs) within a

3D environment. CallStax attempts to address some of these issues by providing a unique method of

viewing the graph structure that is specifically designed for integration into a 3D visualisation

environment.

It is not generally the number of components within a function call-graph which complicates the

visualisation, rather it is the typically much larger set of relationships between these components.

Simple operations that we may wish to perform on these graphs, such as grouping particular nodes or

finding an acceptable layout, are complicated by the large set of arcs following these nodes wherever

placed. CallStax attempts to reduce the complexity overhead that these explicit relationships place on

the visualisation, by making them implicit. This effectively reduces the complexity of the visualisation

but increases the cognitive load on the user, as they then have to reconstruct these relationships

mentally. The benefit of such an approach depends on which is more mentally demanding to the user,

attempting to decipher the relationships from a complex visualisation or attempting to reconstruct the

relationships from a simpler visualisation. CallStax assumes that the latter will prove more profitable.

CallStax takes a different view on visualising the network of call relations within a software system. 2D

visualisations of call-graphs generally visualise the call relations as a network or graph. That is, each

component is represented as a single node in the graph and the relationships between components are

drawn as arcs between the corresponding nodes. There is no redundancy in this system. Each entity or

relationship within the software has exactly one representation in the call-graph. CallStax takes a

different approach in that it visualises the paths through the graph rather than the graph as a network.

CallStax visualises each possible path through a program as a stack of individual function

representations, in the simplest case as coloured cubes. Each of these cubes represents a particular

component or function and identical representations or cubes represent the same component. The base

function (e.g. main) resides at the bottom of the stack, with the functions called along a particular path

stacked above it. In order to create the CallStax visualisation, the call-graph must be structured as a

104

Chapter 5 3D software visualisation systems

hierarchical tree. Unfortunately, almost all software does not have a tree-structured call-graph, making
it necessary to transform the more typical network into a tree prior to visualisation. This transformation
is performed by introducing redundancy into the graph, duplicating nodes to remove links between
branches of the tree. A similar approach is adopted in the ConeTree and CamTree visualisations
described in Chapter 3. The NavigationCones within LyberWorld introduce duplicate nodes and hidden
links to produce a tree structure. CallStax introduces duplicate nodes but with visible, implicit links
between them.

A CallStax visualisation of a typical software system wil l result in a large number of stacks, each

positioned arbitrarily throughout the 3D environment. In order to make any use of this information it is

necessary to provide facilities for querying and exploring the information presented. The basic

technique used in CallStax allows the user to select a particular function, or cube, as their current focus

of interest. Once selected, all of the stacks in the visualisation wi l l move vertically to align all

occurrences of that function within all stacks into a horizontal plane. Any stacks which do not contain

that function fall a set distance below the horizontal plane, thus moving them from the immediate

attention of the user yet leaving them visible to maintain a notion of context in the results. Optionally,

these deselected stacks may be hidden from view completely to allow greater focus on the stacks of

interest.

The following example illustrates the construction of a CallStax visualisation using a simple program as

the basis. Figure 5.6 shows a standard 2D call-graph of a simple program which reads in lines of text,

performs a lexicographical sort, then outputs the ordered lines. The nodes on the graph have been

coloured to show the main functions belonging to the program, whereas the plain black-bordered nodes

represent library functions called by the program. The CallStax visualisation is constructed by

generating a number of stacks of function representations, each stack corresponding to a single path

through the call-graph. Figure 5.7 shows a 2D representation of these stacks. The path represented by

each stack begins at the lowest function ('main' in the case of these stacks) and proceeds upwards, the

deeper the call nesting then the taller the stack.

wntelines readlines

strcmp swap getline alloc

getchar

Figure 5.6. Standard 2D call-graph of a simple program.

As can be seen from the stacks shown in Figure 5.7, the CallStax visualisation contains the same

information presented in the standard call-graph of Figure 5.6. The main difference between these

105

Chapter 5 3D software visualisation systems

visualisations is the manner in which that information is communicated to the viewer. It can be seen
from the 2D CallStax shown in Figure 5.7 that the use of 2D makes for a very space inefficient display.
Stacks as we would imagine them are inherently three-dimensional structures, they have a variable
height and typically a uniform surface area at each level. Figure 5.8 shows the same CallStax
visualisation but shown in a 3D perspective view using a virtual reality application.

swap strcmp

qsort qsort qsort printf .
main main main main

getchar

printf strcpy alloc getline

1 writelines I | readlines | | readlines | | readlines |

main | main | main main

Figure 5.7. 2D CallStax visualisation of the graph shown in Figure 5.6.

Figure 5.8 shows the stacks in a position where the user has expressed an interest in the function qsort.

The stacks have aligned themselves with all occurrences of qsort on the same horizontal plane. This

'selection plane' is visible as a translucent mesh. A l l stacks that do not contain an occurrence of qsort

have receded to the bottom of the view. These stacks are still visible to give the user some notion of

context when reviewing the results. Similarly, the selection mesh contains holes corresponding to the

deselected stacks. This aids users in relating the deselected stacks to their corresponding positions

within the currently selected stacks. From looking at the currently selected stacks, it can be easily seen

which functions call qsort, and which functions are called by qsort. Additionally, its depth within the

call hierarchy can be rapidly found from the stack which extends the furthest down from the selection

plane.

•

1j
Figure 5.8. CallStax visualisation shown in 3D.

106

Chapter 5 3D software visualisation systems

Function call information provides only a superficial view of the software being visualised. When a
particular area of interest is located it is often desirable to retrieve further information on that area.
CallStax implements this functionality in two ways. Firstly the user can move closer to an item of
interest, e.g. a function. As they approach it the original basic representation of the function wil l change
to a more detailed visualisation of the component and its properties (Figure 5.9). The representation
shown here displays simple structural and metric information about the function. Secondly, CallStax
can be integrated with other information sources such as the source code, metrics information, profiling
information or other visualisations.

Hi

I w
5 U P E B 5 C A P E

V I S C A P E

Figure 5.9. CallStax revealing further detail on an item of interest.

The more detailed function representations shown in Figure 5.9 are revealed as the user approaches one

of the stacks. Each of these representations displays metric data and simple structural information about

the function. The metric details are represented by the two vertical bars displaying the McCabe

complexity and Lines Of Code (LOC) metrics [Fenton91, Fenton97] as a percentage of the maximum

values within this program. The base of each representation shows a pie chart indicating the distribution

of lines of code, comment lines and blank lines within each function. Finally, the coloured planes are a

crude depiction of the control structure of the function. The more complex the control structure then the

more complex this visual arrangement wi l l become. A quick comparison can be made between the two

representations apparent in Figure 5.9. The function swap is represented at the top of the stack with

qsort below it, it is easy to see the relative complexity and structure of these two functions. These

representations were described previously in Section 4.4.

107

Chapter 5 3D software visualisation systems

Also shown in Figure 5.9 is a simple control set allowing the user to control the visualisation itself, their
movement through it and their viewpoint on it. In this simple case, users can specify whether or not
deselected stacks remain visible and they can toggle text labels on or off. Other controls governing
movement and viewpoint orientation are also provided.

An important feature of software visualisation systems is the ability to correlate or integrate the

information they present with other forms of information on the system, such as the source code,

documentation or other visualisations. In the case of CallStax this integration is provided via existing

web technology which allows a rich multimedia presentation. Figure 5.10 shows the CallStax

visualisation integrated into a web presentation. In this example a syntax highlighted source code

window and 2D call graph are also available. The user may navigate between windows by selecting

appropriate areas with the mouse. For example, selecting a function in the CallStax window wil l

automatically position the source code at the corresponding function definition. Similarly, selecting

functions from within the source code or 2D call-graph wil l result in the CallStax aligning to that

function.

M M M) Hon Smmch fnxf Ft.; Ml
[3] Gti d w-t

I ' ' N

fart

if

S I \ i i

i T
• M i

V I S C A P E

Figure 5.10. CallStax visualisation integrated with other views.

It is important to remember that the CallStax visualisation is not intended to be a single software

visualisation in itself. CallStax was designed to provide a method for reproducing the dependency

information shown by standard graphs, but in a form that allows for easier integration into a larger 3D

visualisation. This property was the main driving influence behind the nature of the CallStax

visualisation; it must provide maximum flexibility for integration into other visualisations.

108

Chapter 5

5.4 F i l e V i s

3D software visualisation systems

The File Visualisation (FileVis) is a prototype visualisation aimed at providing a high level overview of

a software system's structure (Figure 5.11). The goal of this visualisation is to allow a maintainer to

familiarise himself or herself with the software and identify any important or interesting areas before

they commence their maintenance work. It is often the case that the maintainer wi l l have no previous

experience with the software system on which they must work. First contact with the system involves a

high degree of learning, during which the maintainer must understand as much as possible about the

system as a whole before beginning work on a specific area. Visualisations such as FileVis attempt to

support this learning process by providing a more intuitive and easily accessible method for browsing

and investigating various aspects of a large software system. The software system is no longer an

abstract mass of files and information, it has become something tangible, you can see the software. The

overall structure and feel of FileVis is similar to that of FSN, described in Chapter 3.

As well as the 3D visualisation, FileVis is an integrated WWW presentation consisting of three main

frames or windows, illustrated in Figure 5.12. The primary frame contains the actual 3D visualisation

itself along with a button-bar of pre-set camera positions. The remaining two frames are used to display

any other information which is currently relevant in the 3D visualisation. Virtual environments are

typically not very effective at displaying textual information, hence the 3D visualisation simply

displays any detailed information in these HTML frames. One frame is reserved for displaying

information on currently selected objects in the 3D world (top left frame), while the other is used to

display the relevant section of the source code files for selected objects (bottom left frame). This

integrated approach supports close correlation between the 3D software visualisation and the software

system it represents. This provides the maintainer with mechanisms to explore the software system in

an as-needed manner, using whichever interface is appropriate at the time.

* « 1 m i ? \1T
H I

Figure 5.11 Overview of a software system using FileVis.

109

Chapter 5 3D software visualisation systems

Eh t* 50
Jol»l

Si*

General

Defined in He : # • il

Declared in rU« : * • i! h

Parameter typei : etas
Return type : ."aitat a

Statistics

Function Lreakdewn Source lines % of pres.

I t M
eat c a n t a t a

(i n f i l e j

C a l l a t a a l d a t a baae - NULL, ' c a i a a t a heaa - HULL

V I S C A P E : o u c t , end , f argument, group T..J.
char l e t c e : -«• •

d i e chat 'section, type 'veciebi - i - -
Bar record lBAX CAL LINE4-11

U n f i l e

error i n opening XLl i vs' i n t;u.
(NULL

Figure 5.12. FileVis integrated web application.

FileVis is a prototype visualisation based around the C programming language. As the name implies,

FileVis is structured around the various C source code files within a software system and the contents of

those files. Each file is represented within the virtual environment as a flat, coloured box or platform.

The nature and syntax of the C language dictates much of the form and concepts used in FileVis. As

such, there are two main types of file, definition files (' . c ') and declaration files (' . h ') . These two file

types are indicated by a glyph (the 3D equivalent of a graphical icon) in the bottom right corner of each

file platform. A spherical glyph indicates a definition file and a cylindrical glyph indicates a declaration

file. Files with the same name (i.e. ' t e s t . c' and ' t e s t . h ') are both coloured identically to indicate

their relationship. The declarations in ' t e s t . h ' should (though not necessarily) match the definitions

in ' t e s t . c'.

A CallStax visualisation, which uses the file glyph representations, is constructed in the centre of the

visualisation to show the dependencies between the various files. Selecting any of the glyphs in the

CallStax or a glyph on a file platform results in the CallStax aligning themselves accordingly. From this

it can be seen which files include other files or libraries, and also which files are shared through the

system. Additionally, selecting any files in this manner results in detailed information on that file being

displayed in one of the HTML frames, and the file contents displayed in the other. This information

includes hypertext links between each of the frames and the 3D world allowing the user to browse the

software system using a variety of techniques.

In its current state FileVis shows only the function definitions within each of the files. As such, only the

definition files (. c) are populated whereas the declaration files (. h) do not contain any further

110

Chapter 5 3D software visualisation systems

information. Upon each file platform are a number of blocks representing each of the functions defined
within that file. These function representations have two levels of detail, as the user approaches a
particular file or function they switch from a low-detail to high-detail representation which gives more
information on the function definition. This has the effect of minimising screen clutter and information
overload when viewing from a distance, but more importantly it emphasises the main characteristics of
the function of interest by reducing the number of functions visible. Figure 5.13 and Figure 5.14
illustrate a high-detail and low-detail view of the functions within a particular file.

t t
Figure 5.13. Illustrating a file containing low-detail function representations.

J

t

Figure 5.14. The high-detail function representations appear as the viewer moves closer.

The function representations are split into two versions, one low-detail for distance viewing and one

high-detail for closer inspection. The low-detail representation emphasises only two characteristics of

the function, its length and relative complexity (Figure 5.13). This is represented as a featureless block

of fixed base dimensions. The height of the block represents the length of the function, in lines of code,

while the colour of the block represents the function's relative complexity with respect to all other

functions in the program. The complexity is shown as a colour scale from deep blue to bright red

depicting low to high complexity. Using these simple attributes it is possible to quickly assess the

111

Chapter 5 3D software visualisation systems

distribution of functions within the software system. Long or highly complex functions or files can be
identified quickly by simply surveying the visualisation landscape.

As the user's viewpoint moves towards a particular function representation, at a certain threshold the

low-detail tower wi l l be replaced with a similar sized high-detail representation (Figure 5.14). This

high-detail representation consists of a number of different information items or attributes related to

that function. This includes various metrics such as complexity and a breakdown of the lines of code,

comment and blank lines in the function. Additionally a simplified representation of the function's

control structure and textual structure is provided.

3

Figure 5.15. Another user within a shared visualisation.

The FileVis prototype was constructed as a predominantly single-user visualisation system. While such

a system is of obvious advantage in a single-user capacity, possibly the greatest potential for the

application of 3D graphics to software visualisation is the capability for shared, multi-user

environments. Within such environments maintainers would be able to explore the software system

while being aware of the actions and interests of other users or colleagues. Multi-user visualisations

have tremendous potential for supporting software maintenance and software engineering activities,

although the large range of issues involved are beyond the scope of this thesis.

FileVis provides a basic exploration into one aspect of multi-user visualisations, that of presence within

the visualisation. In order to have a presence or, more specifically, an awareness of other users within a

shared environment, each user must be represented graphically in some manner. FileVis represents

users as large eyeball objects, indicating each user's current position and orientation. An example of

such a representation is shown in Figure 5.15. Users also possess a toolkit containing a variety of

options and actions, represented as 3D graphical objects. The currently selected toolkit is visible for all

users, hovering in front of their vision. Within FileVis this consists of options to hide sections of the

112

Chapter 5 3D software visualisation systems

visualisation, toggle textual labels, and alter the current movement mode. In a more complex
visualisation environment the tools currently selected by a user may be representative of their task
within the visualisation. With the toolkit of each user visible to others, it becomes possible to identify
the interests and actions of users, possibly aiding co-operative working and user interaction.

The following scenario represents a typical use of FileVis, taking the user from initial entry into the

visualisation through to a more focused examination of a particular aspect of the software system it

represents. The images displayed within this scenario concentrate on the individual frames within the

FileVis integrated application. It should be remembered that all the views shown are available within a

particular frame, with the user able to select what information is displayed in each frame. This enables

the user to survey various aspects of the software system simultaneously.

Figure 5.16 shows the initial viewpoint as the user enters the visualisation. This view shows the

software landscape in its entirety from a distant perspective. The user is able to immediately survey the

structure of the source code files within the system. At this point the two textual display frames simply

show a brief introduction to the visualisation and an explanation of their function, which is to display

detailed information on the objects within the visualisation and the underlying source code for these

objects. From this distant viewpoint the user can already gain a feel for the structure of the software

system, identifying areas within the system containing long or complex code, extensive functionality or

small scale utility functions. Simple measures such as the size of the software system, the number of

files and functions it contains, and the distribution of functionality, are all intuitively available.

m 0 X
Figure 5.16. Initial entry to the visualisation showing an overview.

In this scenario the user has identified a feature of interest and is opting to concentrate on a densely

populated file containing a number of small, simple functions. This file is shown as the boxed area in

Figure 5.16. The user then moves towards this file for a closer inspection of its contents, as shown in

Figure 5.17. As the file is approached the user becomes aware of the individual function identifiers.

These are shown as coloured, patterned, cubic glyphs positioned above each function representation.

113

Chapter 5 3D software visualisation systems

These identifiers provide the primary means of correlation between functions in the 3D visualisation
and any corresponding reference to these functions within the detailed documentation. The colour of the
border on each identifier matches the colour of the file platform, thus aiding rapid identification of a
function within the 3D environment by allowing the user to immediately narrow their search field to
within one file. Also visible is the file identifier, represented as a coloured sphere in the bottom right
corner of the file platform. This serves much the same purpose as the function identifiers, providing
correlation with the detailed system information. By browsing the CallStax structure in the centre of the
visualisation the user can immediately identify this file's relationship within the software structure.

mm

|

Figure 5.17. Surveying a particular file within the visualisation.

At this point the user decides to call up more detailed information regarding this particular file.

Touching the spherical file identifier with the input controller results in a detailed synopsis of the file

being displayed in the top left frame of the visualisation. The contents of this file are shown in Figure

5.18. Provided here are a variety of metrics describing this particular file, many of which are also

available in a graphical form within the 3D visualisation. This display provides the actual numbers

behind the graphical features of the visualisation. Extensive use of the function and file identifiers

provides good correlation between the various views of the software system.

Presented within this detailed file view are a number of statistics and details regarding this particular

source code file. These details include: files included or imported; files that include or import this file;

functions defined within this file; functions called from within this file; and finally some statistics and

metrics regarding the contents of this file. For each function identified, a brief summary of its properties

are provided. This allows the maintainer to glean important overview information without having to

delve deeply into function details. I f desired, a hypertext link wi l l provide the user with detailed

information on a particular function, while also highlighting its location within the 3D visualisation.

114

Chapter 5 3D software visualisation systems

^ c « t c

Ohjertrype Program File

FUei I n c l u d e d

n> File Functions Lmes A v j v<G> Avj. v<G>

11 » | 3B • 1

Inc luded I n F i l n

I D F U . FiUKtnmi L m h A v f r<G> A r t r (G)

Statistics

Total Average Average

v|G) I 42 | 3.8 • 1

Fmc Length 1300 27 • 1

Nora Function

File Length 325

F w i r t i o u s M m d

Fuii.-Hon I D
Nam v

CJb (1)
Length v<g)% Length %

• , 2 14 1 I I 1 •
-

, 2 14

new ;a ldata [• | calc 1 | 1 40 1 «

c l ear ca ldata | # j c.al c
1 | 2 16 1 I I 1

• bui ld caldata j f) | ralr 1 1.5 75 H | B B * » i

cr int 9*1 | # | -alf 1 | 2

1 i 1

16

in

i > • 1

n«* decldata ! • u u

1 1 1

1 ' 1

IV
21 j - ! , ,

u u

1 1 1

1 ' 1

IV
21

c l ear dacidata | • r.alc 1 ! 2 13 i ita i r.alc 1 ! 2 13

sues t l tute ra ldata j # • ! 7 42 • 'r™ • ! 7 42

o n a i n a l deciacat ion j • j raj r
' I ' 41 • M 1 • DEint decidaia # ai / 1 | 2 12 1 it 1

F i D i r t l a t u C a l l e d F r o m T h i s F i l e

II) Fruit-tmn m Defined m Nrm C a b v<g) Length Length • ;

- J ua l loc • Itdlibh 2 N/A N/A

Length • ;

J tree 0 stdUbh 9 N/A N/A

Length • ;

» t o t • stdtb h 3 N / A j N/A

Length • ;

-a -) i s M B - • rtoSoh 1 N/A N/A

Length • ;

3 | i j j a n t » stcao.b 2 N/A N/A

Length • ;

fc lost* • stdioh 1 N/A N/A

Length • ;

rt in'. £ stckoh 12 N/A N/A

Length • ;

S i r e * * stnngh 7 N/A N/A

Length • ;

^ write error • gene i I I 1 1 1 — 1
^ | ntalloc acting | # « ° c

7 | 3 j 17
1 I

^ | 9IE1IKI | #

a** 1 1 A
esB-i 8 i 2 | 16 *=>

TV 1 . 1 - . - S I 11. J

. • I S i l . ' a ids ' : .\
-• (At

cat:
1 1 2 1 14

1 | 2 j 16
\ |

-• (At
cat:

1 1 2 1 14

1 | 2 j 16
•If) | nftw caidata J 4 c j I c 2 | 1 | 40 • 1

9 j pyiny^eai j •
e i c 1 1 2 ! 16 1 1 • ' " 1

0 L a I L q c decldataj • UU 1 i 1 | 10 1 1 • 1
t | - l e a r dec 1 Ja ta | # c i c 1 | 2 | 13 1 I I !
9 | nevdec lda ta J • 8 1 21 1 1 • 1
0 lt.t_Jt:£ ld»r a • «u 1 | 2 [12 1 ! • 1

Figure 5.18. Requesting detailed information about a particular file.

While one of the 2D frames displays the detailed information and statistics shown in Figure 5.18, the

other frame presents the actual source code of the file. The source code is formatted with the inclusion

of hypertext links to both defined and called functions, and also to other included files. These hypertext

115

Chapter 5 3D software visualisation systems

links take the user to detailed information on each function or file, and also highlight the location of
these objects within the 3D visualisation. I f the object selected is a function, the source code window
wi l l change to reflect the code of this function. The entire file in which the function is defined is
displayed, with all code lightly greyed out except for the selected function. This provides focus on the
function of interest while still maintaining contextual information in the surrounding source code. There
is also scope for providing additional features such as syntax highlighting, colouring code blocks to
match the visual representation, or displaying the graphical function identifiers within the code.

Satisfied that this particular file is of interest to the user, they may then move closer within the virtual

environment to acquire more overview information on the contents of the file. As they approach the

file, low-detail function representations 'open' to provide a more detailed display of the code structure

and various metrics for each function defined within this file. Moving closer still, the colourful function

identifiers shrink in size (shown for the two functions furthest right, Figure 5.19). This feature is

provided to minimise occlusion of details by these identifiers, making them both clearly visible from a

distance but remaining unobtrusive at close range.

r 4 »

*• T I
Figure 5.19. Moving in for a closer look at the functions.

Viewing these more detailed function representations draws the user's interest towards the relatively

large and more complex function shown towards the rear of this file. The user selects this particular

function for closer inspection by touching the function identifier with the input controller. This results

in the function representation slowly rising above the file platform, while simultaneously a large arrow

moves overhead to indicate the selection, shown in Figure 5.20. This feature provides a readily

identifiable locator of selected objects within the 3D world. This is particularly important i f the user

selects an object, say a function, from within one of the detailed 2D information frames. In this case the

corresponding object may be located at any point within the 3D visualisation, and not necessarily within

116

Chapter 5 3D software visualisation systems

view. Simply moving the user's viewpoint towards this object would be disorientating and may destroy
any notion of location or context. The large arrow allows the user to immediately identify the location
of a selected object without having to move position within the 3D environment. Coupling this
identification feature with 3D positional audio cues would provide a very powerful location mechanism
for objects which may be out of immediate sight.

'fi

n

Figure 5.20. Selecting a function of interest for a more detailed inspection.

The detailed function representations provide, at a glance, a variety of information concerning a

particular function. This information includes details of the code structure and a number of software

metrics. Figure 5.21 shows the particular function in which the user has expressed an interest. A number

of features of this representation and the information they encode wil l now be identified.

Firstly by glancing at the overall size, shape and construction of the representation and comparing it

against others within the same file, it can quickly be summised that this function is both the longest and

most complex within this file. The colour of the representation base provides a good backup to this

assumption, its slightly off-blue appearance indicating that this function has a moderately low

complexity with reference to the system as a whole, but is certainly not the lowest. The back-board of

the representation indicates that this function contains predominently code-filled lines with a small

number of blank lines and, perhaps most importantly, it contains no comment lines indicating a lack of

any additional design or operational information. Extensive comments within software code can often

considerably aid understanding. The lack of any comments in this particular example indicates that the

maintainer must extract all information from the program code, a potentially lengthy and complex

process. The four small bars give an indication of a number of software complexity metrics, providing

mostly relativistic information with respect to other functions. The blue/red coloured bar placed

horizontally on the function base indicates that this function has undergone a number of revisions. This

117

Chapter 5 3D software visualisation systems

bar spins about its vertical axis, the rate of turn being proportional to the number of revisions made. In

this case the rate of turn is low indicating that the function has undergone only a small number of

revisions.

height of the function representation is representative of the length of the function, measured in lines of

code. Each vertical plane represents a source code block and its scope within the function. As the level

of scope nesting increases, additional nested code blocks are presented horizontally displaced. The type

of each particular code block is represented by the colour of the vertical plane. The bottom level scope,

i.e. the function block, is shown as a light brown plane. Function calls are indicated by either yellow

sections, or dark brown sections which represent calls to library functions. Looping code blocks, such as

'while', 'do', or ' for ' loops, are shown as blue planes. Similarly, conditional sections of code are shown

as green planes which represent the condition-true code (' i f block) and red planes which represent the

condition-false code ('else' block). Finally, function return statements are shown as pink blocks. The

principles behind this structure are somewhat similar to those of SeeSoft and SeeDiff, described in

Chapter 3. The aim is to provide a gross, high-level overview of detailed textual information,

maintaining structure and encoding additional attributes.

Using this simple yet effective representation, it is possible to gain an understanding of the function

code structure. A number of features can be readily identified from the example shown in Figure 5.21.

m
Figure 5.21. Identifying the features of a specific function.

The centrepiece of the high detail function representation provides an overview of the code structure

within the function. This is presented as a compound structure of coloured vertical planes. The ful l

118

Chapter 5 3D software visualisation systems

This function consists of two main parts, the first is a simple conditional test which may result in an
early return from the routine, the second is a large loop structure. The loop structure contains within it
another smaller loop which, in turn, contains a structured set of conditional statements and an even
smaller loop. Within the middle loop there are no function calls, other than library calls, indicating the
processing of some internal or globally available data. Following this loop are a large number of
sequential function calls, followed by a number of smaller conditional statements containing additional
calls. While the information obtained from this view is very simplistic, it does provide an overview of
the function, imparting some of its characteristics in an easily readable and uncluttered format. Using
this information it is already possible to form assumptions regarding the role of this function.
Additionally, the structural insight provided is also valuable when viewing the detailed source code
itself, which may be considerably complex and formatted in an unstructured manner.

Figure 5.22. Characteristics of the function 'main'.

Figure 5.22 illustrates the properties of a function more familiar to C/C++ programmers, the function

'main'. This function acts as the starting point or entry point to a program. Any command-line options

passed to the program on execution are received as parameters to this function. By examining the

function representation shown in Figure 5.22 it is possible to identify some common features which are

characteristic of the function 'main'. The first noticeable feature is the relatively high complexity

metric, shown as both the purple base colour and the high vertical bars. Also of note is the fact that this

119

Chapter 5 3D software visualisation systems

function contains only a small number of comment lines, and the rapidly rotating 'change' bar indicates
it has received a large number of revisions.

While the metric information is of interest, the representation of the function structure may perhaps

provide the most information. There is a very large, regular structure of conditional statements within a

loop at the beginning of the function. An experienced programmer could instantly identify this

structure, making a fairly accurate assumption as to its function. In this example, that particular section

of code is responsible for processing any command-line arguments passed to the program. The loop

advances through an array of command-line parameters checking each element against a list of

allowable parameters and executing an appropriate function when a match is found. The flat section

below this large structure can also be identified as the initialisation and cleanup phase of the program.

This section executes the various steps of the program by calling the appropriate functions in sequence

before finally exiting. The representation shown in Figure 5.22 could be described as being

characteristic of the function 'main'. It is this 'character' of functions, files and even whole software

systems which can only be provided by software visualisation. The ability to quickly identify such

characteristics enables users to focus their attention quickly on areas of potential interest. This ability is

one of the most powerful assets which software visualisation can provide.

Returning to the scenario, selecting the function of interest (as shown in Figure 5.20) results in the

topmost 2D frame displaying detailed information on the function while the lower 2D frame presents

the relevant source code. Figure 5.23, on the following page, shows the detailed function information.

Included within this information are details of where this function is declared and defined; various

statistics and software metrics; a list of other functions which are called from within this one; and

finally a list of functions which call this particular function. Again, for each other function identified, a

brief-summary of its properties arid a hypertext link to both detailed information on the function, and

also highlighting its location within the 3D visualisation are provided.

This example has illustrated a typical usage of FileVis, highlighting how the user can efficiently gain

information on the structure and details of a software system. FileVis supports multiple views on the

software system, providing detailed, contextual and overview information. The user is able to utilise an

as-needed approach to program comprehension, selecting whichever view provides the most relevant

information during exploration of the software system. Armed with this knowledge the user can quickly

identify areas of interest or sections of the software system that may present potential maintenance

problems.

120

Chapter 5 3D software visualisation systems

build caldata

Object type Function

General

Defined m file # cal.c

Declared in file : • cal.h

Parameter typei char*
Return type CalData

Statistics

Function breakdown Source lines % of prog. max.

Code: 67

Comment: o oo%) I

Code + comment: ? no%) 1

Blank: l 1

8 ? % pmm i
Total length 75 46.3% 1

v(G) ev(G) iv(G) pv(G)

Complexity 15 6 7 1

% of program max 31 9% 18 2 % 29.2 % 100%

Deviation from mean +7.9 +1.6 +3.3 0

Functions Called

ID Function ID Defined in Num
Calls v(g) Length v<g) % Length 0 •

d

f open • • stdto.h 1 N / A N/A

d fscant • stdioh 2 N/A N/A

a t o i • rtdlib.h 3 N/A N/A

Id fc lose • stdto.h 1 N/A N/A

wri te error • gen c 1 1 5 | II 1

+ sc r ip s t r i n g • gen c 8 2 16 1 I I 1 + • gen c 8 2 16

new caldata • cal c 2 1 40 1 I B 1 • cal c 2 1 40

Functions Called From

ID Function ID Defined in Num Calls v<g) Length v(g) % Length %

main • convert c 1 29 129

Figure 5.23. Requesting more detailed information on a function.

121

Chapter 5 3D software visualisation systems

5.5 Software City
The previous visualisations described within this chapter, Zebedee, CallStax, and FileVis, have all

concentrated on a very abstract visualisation of a software system. Software City (SoftCity) is a

visualisation which attempts to utilise the power of metaphor by matching the information to a

metaphor as opposed to matching the metaphor to the information. Visualisations such as FileVis create

an information environment based loosely on a particular metaphor, for example, FileVis utilises a

weak, city metaphor with files representing cities or districts and functions representing the buildings

within those districts. In contrast, SoftCity takes the reverse approach by using a realistic metaphor and

mapping the information onto it.

SoftCity is an information city containing buildings, streets, districts and people. These artefacts all

appear as they should, within the limitations of the virtual environment. Information is mapped onto

various properties of these artefacts to create the structure of the city. For example, in SoftCity each

building corresponds to a particular source code file. Each floor within that building represents a

function defined within the corresponding file. This simple mapping allows the creation of all the

buildings in the city, ranging from small single-storey buildings to giant multi-storey towers.

The primary objective of SoftCity is to present information about the evolution of a software system,

showing how the system grows and changes over time. As with the other visualisations described

previously, SoftCity is aimed at providing predominantly structural information, and in this case

concentrates on a simplistic overview of the file and function structure.

Figure 5.24. Overview of Software City.

Further information must be introduced in order to provide the city with some character and structure,

as opposed to a simple arrangement of buildings. In SoftCity, the windows on each storey of a building

represent the revisions made to that function. Rather, the absence of, or damage to a window marks a

single revision to the corresponding function. In this respect, the floor of a building with two windows

either boarded up or broken corresponds to a function that has received two revisions. Additionally, the

122

Chapter 5 3D software visualisation systems

age of a function is determined by the brickwork used to construct the corresponding floor in that

building. True to life, the foundations of a building represent the oldest parts. Subsequently, i f during

later maintenance of the software system some new functions are added, then these floors wi l l be built

upon the corresponding building in a more modern brickwork. A quick glance at a particular building

provides valuable information as to how the corresponding file has changed with time. Figure 5.24

shows an overview of SoftCity. In this image the detail has been reduced to emphasise the variations in

function age. The oldest code is shown as light grey, with additions represented chronologically from

dark brown through to salmon pink. With full detail selected, these simplistic colours are replaced by a

more realistic brick texture with the windows also visible.

FSN, described in Chapter 3, uses a similar approach by colouring file representations within its weak,

city metaphor to indicate age. Similar to File Vis, FSN is still a predominantly abstract visualisation and

the colour-age relationship is not immediately obvious. Within SoftCity the strong, real-world metaphor

enables the user to immediately assume that buildings which appear older represent older code. This is

also a strong reminder of why metaphors should not be violated, resulting in false expectations.

11

•

• i t

Ii

H i

Figure 5.25. The 'downtown' area of Software City.

In order to provide filtering, grouping and classification it is possible to divide the city area into a

number of districts according to some criteria. As a simple example, SoftCity is divided into two

distinct sections, 'downtown' which is west of the river and 'uptown', east of the river. Any files

(buildings) which have received greater than a certain number of revisions are placed in the downtown

area. Both areas have distinct qualities. The downtown area appears run-down with many boarded and

broken windows (Figure 5.25), whereas the uptown area appears relatively unscathed (Figure 5.26).

This metaphor can be extended further by assuming that code within the downtown area wil l also be

'run-down' and typically in the worst condition, having received the most maintenance, bug-fixes,

updates and tweaks. In this particular example it is assumed that maintenance performed on a software

system is potentially troublesome, leading to degradation of the system structure. The reverse may be

true, with maintenance actually improving the structure and quality of the code, for example by adding

123

Chapter 5 3D software visualisation systems

comments and documenting the code. It is apparent that the metaphor could easily be extended to
represent this, as well as encoding a variety of other information.

ii

Figure 5.26. The 'uptown' area of Software City.

The original concept of Software City was extended further to provide a more scalable visualisation

with scope for visualising an entire software system within an understandable, realistic metaphor. The

SoftCity visualisation was adapted to provide a similar information structure to that of FileVis. This

adaptation involved a shift in the information mapping. In the original SoftCity a building was

representative of a file within the software system, and the floors of each building corresponded to

functions defined within that file. Within the new mapping, an entire city is representative of a source

code file and the buildings within each city are the functions defined within that file. This mapping

corresponds closely to the file and function representations within FileVis. An extension of this real-

world metaphor would see a collection of cities (files), for example a country or continent, as a

visualisation of an entire program. The metaphor could be extended even further to show collections of

programs which make up one particular application or software system, collections of these systems

residing on a single platform, and further still. This new visualisation wil l be referred to as Software

Cities, or SoftCities, to reflect its more global metaphor and to provide distinction from the original

concept.

A SoftCities visualisation is created through a fully automatic process. The visualisation program takes

as input, files which describe the software system to be visualised over a number of revisions. The

program then processes these files and generates a number of VRML (Virtual Reality Modelling

Language) worlds, one visualisation for each revision of the software. These visualisations may then be

explored using any VRML compliant browser. The primary goal of SoftCities is to visualise how the

structure of a software system evolves, thus, many of its features are geared towards visualising change.

The cities within SoftCities are represented by a circular base upon which the buildings are placed. This

circular base grows to accommodate the size of the city. Each building is shown within the visualisation

using two levels of detail. The first level of detail is provided for distance viewing and consists of a

124

Chapter 5 3D software visualisation systems

plain, grey tower. Above each tower hovers a small coloured cube, providing a visual cue to the
complexity of the function that building represents, in a similar fashion to the FileVis function
representations. Future enhancements to SoftCities could replace this cube with a function identifier,
similar to those incorporated into FileVis. The reduced-detail building also provides a significant
performance increase and helps minimise visual clutter. The high-detail buildings are shown with a
textured surface, providing a more realistic appearance. Again, a coloured cube is visible above each
building to indicate its relative complexity. This is now coupled with the colour of the building roof
matching the visual complexity measure. A tall spire resides within the centre of each city. This
provides a visual aid to navigation and easy identification of a city centre, while its colour indicates the
average complexity of functions within that city. Such a feature provides a distinctive landmark, one of
the legibility enhancement features identified in Chapter 3. Figure 5.27 illustrates a number of cities
placed arbitrarily within the virtual environment, one of which is shown in high detail.

M l

Figure 5.27. One particular city within a Software Cities visualisation.

Buildings are initially placed within one of four quadrants of the city dependant on the values of two

metrics, in this case Lines of Code (LOC) and the McCabe Cyclomatic complexity metric. Using this

method, long functions are placed in the northern half of the city and short functions in the southern

half. This is then divided further so that complex functions are to the east with low-complexity

functions to the west. Once a building is placed it cannot be moved in future visualisations of the

system. This results in the structure of the city remaining intact and functions, which change drastically,

may be noticeable as being uncharacteristic of a particular quadrant.

As previously mentioned, the aim of SoftCities is to visualise how the structure of a software system

evolves over a number of revisions. Whereas the original SoftCity prototype viewed change as having a

detrimental effect, SoftCities presents it as a positive action. In this way, code which remains

unchanged over a number of revisions wi l l be seen to visibly age and appear dirty. Once maintenance is

performed on such code its corresponding representation wil l appear clean again. This simple model

125

Chapter 5 3D software visualisation systems

provides information on those areas of a software system which are receiving maintenance effort, while
also highlighting areas that remain stable and unchanged. Within the high-detail visualisations this
information is shown as a visible dirtying of the building texture with age and neglect. This can be
observed in Figure 5.27, in which the central building has a visibly dirtier appearance than its
neighbours.

Further to this model of software age, the texture and style of brick used to create a particular building

reflects at which stage in the software's life this particular function was added. With each new revision

any functions added are constructed using a different style of brick. The low detail representations

simply show this as a change in the colour brightness, a light grey illustrating a recently added function

whereas a gradually darkening colour shows increased age. This allows immediate assessment of where

and when additional functionality has been added. Similar to the addition of functions, new files added

to the visualisation are illustrated by their bright base, which gradually darkens with age. In order to aid

rapid recognition of areas that have received some degree of activity since the last revision, a thin layer

of 'smog' develops above any such cities. A number of these features are visible in Figure 5.28, such as

the newly created file towards the front of the image, a number of recently maintained functions to the

centre and rear, and smog layers indicating areas of activity.

In order to show how a particular function is modified between revisions, the corresponding buildings

wi l l change in size. This is visible as either construction work, indicating an increase in the length of

the function since the previous revision, or as demolition work indicating a decrease in the function

length. In both cases, the visualisation clearly shows the previous and new length of each function.

Figure 5.27 illustrates a function that has increased in length since the last revision. The previous height

of the building is apparent, with the construction framework extending to show the new height.

Figure 5.28. Illustrating function dependencies within Software Cities.

126

Chapter 5 3D software visualisation systems

Figure 5.28 illustrates the primary means of identifying dependencies between the functions represented
in SoftCities. Selecting a particular function with the input controller immediately highlights other
functions within the visualisation that either call or are called from the selected function. Functions
which call this particular function are highlighted red, whereas functions which are called from this
function are shown in green. This is also coupled with red and green lines connecting the file containing
the currently selected function to other files containing related functions. This feature immediately
highlights any related files and draws the attention of the user to these areas, removing any need to
search the visualisation for dependencies.

On selecting a particular function the building representation becomes translucent. This feature can be

activated permanently for any number of buildings, allowing a selective filtering-out of uninteresting

functions, while still maintaining a slight visual presence. This is particularly useful for removing

unnecessary clutter from the display. Figure 5.28 shows a selected function near the bottom of the

image. Three dependencies are highlighted. One function is called within the same file, another is

called from within a file near the top of the image. Also, this selected function is only called from one

other function, which is highlighted red in an adjacent city.

(a)

(b)

0"' j i

(c)

Figure 5.29. Visualising the evolution of a software system.

127

Chapter 5 3D software visualisation systems

SoftCities is designed to provide insight into how the structure of a software system changes over a
number of revisions. Figure 5.29 illustrates this change by showing three revisions of a particular
software system. Figure 5.29(a) shows the first version of the system released. In this visualisation all
aspects of the software are new, hence every file and function is shown in the same light-grey colour,
and each city has a smog layer above it. It is apparent that the software system consists of 11 source
code files of varying sizes. Figure 5.29(b) shows a later release of the system. It can be seen that the
functions and files within the system have aged, becoming visibly darker in colour. In this first revision,
a number of new functions and a completely new file have been added to the software system. These
are identified by their much lighter appearance and can be quickly spotted by examining the cities with
a smog layer, indicating recent change. One city at the far left and rear of the image has an associated
smog layer, yet no new functions are visible. This indicates that some change has been made to the
existing functions within that file. In order to see the details of this change the user would have to move
in towards that city for a closer look at the high-detail representations. Figure 5.29(c) shows a second
revision to the software system. Again, a new file is added to the system, with another new function
added to an existing file. Several files have also received changes to existing functions. Also noticeable
is how all the functions have aged visibly, yet the additions made in the first revision are still clearly
discernible from the original parts of the system.

Two similar visualisations have been presented within this section, SoftCity and SoftCities. Both have a

strong metaphorical basis, making good use of an understandable, realistic metaphor and mapping the

characteristics of a software system onto it. Both systems are specifically targeted towards visualising

the structural evolution of a software system.

5.6 Summary
This chapter has described a number of prototype visualisations and concept demonstrators that have

been developed throughout the course of this research. The emphasis within this chapter was solely to

describe the systems, leaving evaluation of their effectiveness and assessment of any strengths or

weaknesses to the following chapter. The five visualisations described here are Zebedee, CallStax,

FileVis, SoftCity and SoftCities. Each of these visualisations presents a different view of a software

system. Zebedee and CallStax both provide different techniques for visualising graph structures and

dependency information, while FileVis, SoftCity and SoftCities concentrate on providing more global,

structural visualisations of whole software systems. SoftCity and SoftCities provide additional

information highlighting the structural evolution of a software system.

Each of the visualisations described within this chapter makes full use of the 3D environment afforded

by cyberspace. The subject of automation was considered to be of great importance throughout the

development of these visualisations, each of which is designed to be as unproblematic as possible to

generate automatically. Two of the visualisations, Zebedee and SoftCities, are already generated using

an automatic process, which takes as input a number of relevant facts about a software system,

providing a degree of language independence.

128

Chapter 5 3D software visualisation systems

The following chapter provides an evaluation of some of the visualisations and representations
presented here, using a variety of evaluation techniques, including the desirable properties identified in
Chapter 4 as a framework for this evaluation. Each of the visualisations described here is also assessed
in an informal discussion regarding their relative merits and weaknesses.

129

Chapter 6.

Evaluating the visualisations

6.1 Introduction
Chapter 4 presented the heart of this research work, including an identification of seven key areas of 3D

software visualisation, a definition of visualisations and representations, and the desirable properties of

visualisations and representations. Chapter 5 presented the results of this research by way of the concept

demonstrators. These were developed to explore the issues raised in Chapter 4 and to better understand

the practical aspects of 3D software visualisation. This chapter presents an evaluation of the concept

demonstrators described in Chapter 5 using a number of methods.

6.2 Evaluation framework
Evaluation of the visualisations described in Chapter 5 will take a number of forms. Due to the detailed

and lengthy nature of the evaluation presented here, as well as the variety of evaluation techniques

used, this evaluation will concentrate predominantly on the FileVis visualisation. A more informal

evaluation and discussion of the merits and deficiencies of the other visualisations will also be made.

FileVis has been selected for detailed evaluation because it represents the most complete software

exploration tool developed within this research. It has been integrated with other views of the software

system and endowed with correlation facilities between these views. It also provides the most varied

detail of the visualised software system, enabling the user to delve deeply from a high level overview to

detailed statistics and source code. FileVis is considered to embody the essence of this research and a

detailed evaluation of FileVis will prove most representative of what this work hopes to achieve.

Section 6.3 presents an informal evaluation of each visualisation described within Chapter 5. This

informal evaluation is presented as a discussion of the various merits and deficiencies which were

identified within each visualisation during the course of this research. The goal of Section 6.3 is to

provide an understanding of the issues involved with each of the visualisations produced.

Section 6.4 describes each of the visualisations from Chapter 5 with reference to the seven key areas of

3D software visualisation. A discussion of how each visualisation applies to these key areas is then

presented.

130

Chapter 6 Evaluating the visualisations

The desirable properties of visualisations and representations introduced in Chapter 4 can be used as

both guidelines for the development of 3D software visualisations, and also as a framework for

evaluation of an existing visualisation. The FileVis visualisation was constructed with these guidelines

in mind. Some desirable properties are in direct conflict with each other meaning that a great deal of

compromise must be made in order to produce a well-balanced visualisation. By now evaluating various

aspects of FileVis against the desirable properties it becomes apparent where compromise was made

and which aspects suffered as a consequence. Section 6.5 provides an evaluation of various constituent

visualisations and representations within FileVis, against the desirable properties of visualisations and

representations.

Finally, in Section 6.6 an evaluation will be made against a hierarchy of cognitive design elements

proposed by Storey et al [Storey97]. The authors describe a hierarchy of cognitive issues which can be

used to guide or evaluate the design of software exploration and comprehension tools. This evaluation

will be performed predominantly against the FileVis visualisation, but with reference to other

visualisations within this research as appropriate. Whereas the other forms of evaluation described here

are concerned with the suitability of a visualisation as a graphical model, the cognitive design elements

provide a better indication of suitability as a tool for program comprehension.

The inclusion of this additional evaluation adds weight to the argument that the visualisations presented

in this thesis, or more specifically FileVis, present a viable tool for program comprehension. The other

evaluations presented within this chapter are based upon the seven key areas and desirable properties

described in Chapter 4. While these provide a suitable evaluation framework for the visualisations, it

should be remembered that the majority of visualisations were designed and developed with reference

to these key areas and desirable properties. Provision of an external evaluation framework, such as the

cognitive design elements of Storey et al, adds credibility to the overall evaluation and provides an

impartial assessment of FileVis.

The rich combination of evaluations presented within this chapter provide a good indication to the

suitability of each visualisation as both a software visualisation and also as a program comprehension

tool. Focus is made upon the FileVis visualisation to provide a detailed analysis of a software

visualisation tool developed from this research, while also investigating the various merits of other

visualisations described here.

6.3 Informal evaluation
This section provides an informal evaluation and discussion of the merits and deficiencies of each

visualisation described in Chapter 5.

6.3.1 Zebedee

Zebedee provides a 3D visualisation of the directed graph formed from function call relationships.

While Zebedee performs well as a stand-alone visualisation of graph structures, it is not intended to be

131

Chapter 6 Evaluating the visualisations

used as the sole visualisation of a software system. Zebedee supports the visualisation of these

structures with a view to incorporate this information into a more general, large-scale 3D visualisation

of a software system. The primary goal during the development of Zebedee was to investigate the direct

migration of an existing software visualisation technique into a 3D virtual environment. Zebedee served

this purpose well and highlighted a number of issues with this approach.

When applied to relatively small graphs it was found that the force-directed placement (FDP) algorithm

produced interesting and readily understandable graph structures. The resulting visualisation is of

indeterminate size and aspect but can be readily scaled within the virtual environment to any desired

size and aspect. The representations used within the visualisation are basic placeholders, providing little

or no information on the software artefacts they represent. This is of little concern as the primary

interest here is the visualisation and not the representations used within it.

The unconstrained nature of the layout algorithm was often found to produce some interesting results.

Clusters, groups and formations of nodes can be found in the resulting visualisation, which perhaps map

to some structural attribute of the software system. Although software has no inherent shape or colour, a

graph can be drawn in such a way that it communicates key characteristics of the software [Storey97].

For example, a graph containing a large number of crossing links gives the impression of increased

complexity. It is possible that the nature and structure of the graphs produced using Zebedee may

impart some feeling as to the nature of the underlying software system. Structural aspects of the graph

such as large clusters of leaf nodes or complex, tightly interconnected sections, and isolated branches

all provide clues as to the structure of the software. Such benefits are unfortunately countered by

problems also inherent in the layout algorithm that tend to complicate the graph structure, leading to

apparently tightly coupled areas which, in reality, were not interconnected. This is perhaps due to the

complex and tightly connected structure of most call-graphs. The FDP algorithm may be of use in

visualising other forms of program relationships which contain natural clusters within their structure,

such as class and method relations.

As with almost any graph-based visualisation, Zebedee soon runs into problems as the size and

complexity of the software system to be visualised increases. Even some small-scale programs contain

horrendously complicated calling structures resulting in complex graphs with a high number of

relationships between nodes. Such structures cause problems for the layout algorithm. Tightly coupled

function groups tend to bunch together forming tight, complex clusters. Very rapidly the structure of the

graph deteriorates to the point where it becomes incomprehensible. Often the 3D nature of the graph

would contribute to its apparent complexity, depending on the location and orientation of the user.

Links, which appear to cross from one viewpoint, can be seen as clearly separated from another. This

necessitates the user to explore the graph structure thoroughly by interacting with the visualisation and

navigating through it.

This leads on to another problem, inherent with 3D visualisation, which becomes readily apparent when

navigating within Zebedee. The VR system used to implement the visualisation allows a full range of

132

Chapter 6 Evaluating the visualisations

movement, providing six degrees of freedom (3 translation and 3 rotation axes). This effectively means
the user can assume any orientation they desire within the environment, enabling them to view the
structure from any feasible position. This is itself a powerful feature allowing the user to explore the
visualisation as they see fit, however, it also provides great potential for disorientation within the
visualisation. Without any fixed landmarks or features within the graph visualisation it becomes very
difficult to maintain a notion of location or orientation within the structure. Zebedee has, by default, a
distant horizon that provides limited attitude information. Removing this horizon presents a greater
sensation of freedom to explore the graph structure but also incurs a cost in increased disorientation.
The provision of orientation and navigation cues must be considered i f incorporating Zebedee into a
larger visualisation.

Investigation was made into altering the properties of the representations within Zebedee, i.e. the nodes

and the links. Additional attributes of the nodes included size, colour, animation and rotation. Each of

these was found to provide a powerful means of presenting additional information and particularly for

drawing the attention of the user, i f used sparingly throughout the visualisation. Spinning or

distinctively coloured nodes were instantly noticeable and commanded the user's attention. Altering the

size of the nodes, however, presents additional problems with depth perception and was found to be

detrimental to understanding the structure of the graph. It proved extremely difficult to differentiate

between the distance of a node, and its size, thereby destroying any instinctive assumptions on the 3D

structure and inducing disorientation. Providing fixed depth cues, such as a bounding cage surrounding

each node, would alleviate such problems but would inevitably clutter the display further.

Various different approaches to the graph layout were addressed in order to improve the meaning of the

information presented and also to improve the structure of the graph. The freedom of the 3D FDP

layout was found to produce particularly interesting graph structures, leading to readily apparent

features of the visualisation such as clustered collections of leaf nodes and densely packed areas of high

connectivity. Coupling this with hierarchical information by shading or colouring the nodes, so the top-

level functions would appear brightest and the leaf nodes darkest, provided excellent additional

structural information. This colouring provides a starting point for the visualisation allowing the user to

quickly identify paths through the structure. Other techniques investigated the use of constraints upon

node movement within the visualisation, and also the provision of some initial manual node placement

to aid the FDP algorithm.

Possibly the biggest problem with the Zebedee visualisation in its current form is the lack of any static

visual references to be used as positional aids and, more importantly, as depth cues. Without a static

reference point it becomes very difficult to judge depth perception accurately, hindering the

comprehension of a 3D structure such as the graphs presented in Section 5.2. This can be illustrated

clearly using the graph shown in Figure 6.1. This graph is similar to Figure 5.5(b) as it is based on the

same initial manual node placement, the difference is that this graph is purely two-dimensional in

structure. The entire graph exists on a single vertical plane within the 3D environment. By inspecting

the cluster on the left-hand side of the visualisation, first impressions would indicate that the structure is

133

Chapter 6 Evaluating the visualisations

in fact 3-dimensional. This is due to the viewer perceiving that the many links emanating from this
single node are all of approximately the same length. The assumption is made that the variation in
length is due to the nodes being nearer or further from view. In fact, the nodes are all in the same 2D
plane but the significantly shorter links give the impression of 3D. These illusions, while difficult to
avoid, should be minimised within 3D visualisations by providing static reference objects as depth cues
and carefully structuring the environment to avoid potential confusion.

Figure 6.1. 2D graph illustrating the difficulties in depth perception

To summarise, Zebedee was used to examine the direct integration of an established 2D software

visualisation technique into a 3D environment. It was found that the FDP algorithm provided an

effective placement solution within the 3D space when a suitable rudimentary initial layout was

provided, or when the graph structure was conducive to clustering. By viewing the 3D graph structure it

was possible to identify various features which correspond to structural features within the software

system. Graph complexity presents the biggest challenge, with large and complex graph structures

resulting in large, complex and unintelligible visualisations. It became apparent that the Zebedee

visualisation is only suitable for small-scale graph structures and that inherent problems necessitate a

more dedicated visualisation of this information within the 3D environment. This necessity was

addressed by developing the CallStax visualisation. Zebedee does, however, represent a useable

visualisation of small graph structures, capable as a stand-alone visualisation but developed primarily

for incorporation into a more comprehensive 3D visualisation.

It was found that as with any graph presentation technique, the layout algorithm used provides the

dominant characteristics of the visualisation and contributes greatly to the ease or difficulty with which

the structure can be understood. The application of 3D graphics does, however, provide a new medium

134

Chapter 6 Evaluating the visualisations

within which the layout algorithm can express structure. This was found to reduce visual complexity in
some instances while complicating comprehension in others.

6.3.2 CallStax

The goal of CallStax was to provide a method for displaying graph structures within a 3D environment,

which would offer maximum flexibility for integration into other 3D visualisations. The aim was to

move away from the standard node-link representation of graphs and provide a visualisation that makes

full use of the extra dimension afforded by cyberspace. CallStax succeeds in providing a unique

solution to the problems of representing graph structures within a 3D environment. There are a number

of benefits associated with CallStax, as well as a number of problems. These will both be discussed

here.

The greatest advantage of using CallStax is that the individual stacks have no explicit connections

between them, making them extremely flexible for placement or grouping within a visualisation. The

need for good layout, while still necessary, becomes a less important issue. In a typical graph structure,

relations are shown as explicit connections between nodes. These explicit relations become extremely

restrictive when attempting to position the nodes of a graph within the visualisation. For example, when

wanting to move a semantically related group of nodes together, the large set of explicit relations to

other parts of the graph structure become a hindrance. Simply removing these additional relations

deprives the maintainer of valuable structural information. The individual stacks within a CallStax

visualisation contain only implicit, visual relationships meaning they can be positioned arbitrarily

within the 3D environment without loss of information or complication of the visualisation.

Other benefits of the CallStax visualisation include:

• The base dimensions of each stack are identical, thus aiding automation and placement. This also

provides a fixed frame of reference to aid in perception of distance and size. This offers maximum

flexibility for integration into another 3D software visualisation.

• Information on the position of a node within the graph hierarchy is readily available from observing

the height of the stack.

• An entire path through a graph is shown within each stack. This has potential for quickly

identifying the possible impact of any changes to a function within that path.

• CallStax effectively provides a collection of discrete graphical slices into the structure of a

software system.

• The scale of the system under scrutiny does not adversely affect the visualisation to the same extent

as in a standard graph.

135

Chapter 6 Evaluating the visualisations

• The method of interaction provides a useful filtering mechanism, focusing the visualisation on
information directly relevant to the user's current interests while still retaining context with other
deselected stacks.

Unfortunately, the additional flexibility of CallStax comes at a price. The implicit relationships between

duplicate representations of functions are reliant solely on the visual appearance of those functions. The

representations used must therefore concentrate on being unique and distinctive. It is relatively easy to

fashion such properties in the case of a small visualisation but it becomes very difficult when a large

number of distinct functions are present. Within a standard call-graph, it is the node position and the

node label that provide the unique and distinctive representation, CallStax can rely on neither of these

(though a label can provide a unique identity within a small collection of stacks). Section 4.4

highlighted the complications involved with selecting a suitable representation.

The two properties, individuality and distinctive appearance, are so critical within CallStax that the

representations should be designed to support only those, i f necessary at the sacrifice of displaying any

other information. In order to provide more detailed information on each representation, multiple levels

of detail should be incorporated, triggered either by proximity or by user selection. This would provide

a good compromise allowing the CallStax to work effectively while still providing more detail as

needed by the user. An example of using varying levels of detail for the function representations is

shown in Figure 5.9. At a distance the representations used in the stacks remain extremely simple and

concentrate solely on the two properties of individuality and distinctive appearance. By moving in

closer to a stack of interest, these representations 'open up' to display more detailed information on

each item.

To summarise, CallStax represents a completely new view of graph'structures, designed to fully utilise

the additional benefits of a 3D environment. The visualisation is intended to provide maximum

flexibility for integration into other 3D visualisations and succeeds admirably in this respect. By far the

biggest problem with the CallStax visualisation is in the selection of suitable representations for use

within it. This is a non-trivial task, but is one that can be overcome by judicious selection of shapes,

colours and textures for use in representations, and the thoughtful grouping and positioning of stacks.

As with any visualisation of graph structure, it is inevitable that there will be an upper limit to the size

of the graph it is possible to visualise. CallStax succeeds in reducing the graphical clutter inherent in

such large structures.

6.3.3 FileVis

FileVis represents a prototype visualisation system aimed at providing a high-level overview of

software structure. The goal was to represent the system structure and static relationships in their

entirety, allowing the user to gain both overview information then delve deeper for specific details. The

intention was to produce a software landscape, in which the user's surroundings provided clues as to the

136

Chapter 6 Evaluating the visualisations

nature of the underlying software, allowing the user to explore it freely using a variety of interrogation
techniques.

CallStax presented a relatively simple scenario in identifying the various visualisations and

representations used within it. The necessary desirable properties were easily identifiable from the

outset, enabling them to be designed into the CallStax visualisation. FileVis offers a much more

complicated scenario in which, at each level, the various components must be considered as both

visualisations and representations. A careful balance must be struck between the desirable properties of

both. An evaluation of how the various components of FileVis apply to each of the desirable properties,

both as visualisations and representations, is described in Section 6.4.

FileVis has a number of beneficial features as a software visualisation. Most notable is that it provides

an instantly accessible overview of the software system file and function structure. On entering the

visualisation, a user can gain an immediate impression of the nature of the software system by simply

surveying the landscape of the visualisation. Every feature of the visualisation provides some form of

information or metric about the software.

The various representations used within FileVis have minimum explicit connections, allowing greater

flexibility for positioning and layout. The prototype described in Chapter 5 used an arbitrary layout,

however, more meaningful collections of files and functions could be created by a more sophisticated

system. Additionally, the lack of explicit connections between any of the files or functions enables the

user to position or group these units as they see fit, allowing them to impart some semantic structure to

the visualisation.

The varying levels of detail used provide a clear overview while stilL supporting focus of interest to

obtain more detailed information. The user is able to quickly identify features of interest then move in

closer for a more detailed look. As they approach, program units such as the function representations

expand to provide more information. Similarly, as the user moves away, they reduce in detail to

decrease the amount of visual clutter in view. This dynamic focus maximises the information content

given to the user by ensuring that only the most relevant information is visible at any time.

Integration with standard 2D windows, by way of HTML frames, provides views on the underlying

code for the system, and highly detailed information which is difficult to present within the 3D

environment. Additionally, these alternative views allow the user to explore the software using a variety

of techniques at their discretion. This approach supports the use of both top-down and bottom-up

comprehension models in an as-needed manner. It provides support for the integrated comprehension

models proposed by Mayrhauser and Chan [Mayrhauser95, Chan98].

Movement within FileVis is supported by the use of multiple cameras. These cameras allow the user to

effectively 'bookmark' their position within the visualisation by leaving a camera in place. The user is

able to swap between camera units at will, as well as selecting some pre-defined viewpoints displaying

key aspects or popular positions within the visualisation. For example, one predefined viewpoint

137

Chapter 6 Evaluating the visualisations

positions the user at his or her original point of entry to the visualisation enabling them to return to a
familiar point i f they become disorientated or lost. In the current implementation of these camera units
the user may exercise some control over the movement technique used.

The biggest deficiency of FileVis is the current lack of information regarding the function calling

structure. This information could be presented using an additional CallStax structure, which would

make use of the coloured function identifiers. A further deficiency is the lack of any strong metaphors

to guide the user towards interpretation of the visualisation. The information presented is very abstract

and it is unclear what each aspect of the visualisation represents without prior instruction. Similarly it is

not obvious which aspects of the visualisation can be interacted with. The VR system does provide

some support for this by altering the mouse pointer over objects to signify they can be activated. The

user should be able to identify such objects more easily, without the need to search for them.

Another major deficiency with FileVis is the fact that all high-detail function representations face in

one direction. While such an approach helps by providing a common format to the visualisation, it

means that a user approaching from the wrong direction must circumnavigate a file to view its contents

clearly. The low-detail function representations are omni-directional but are ordered with the largest

representations towards the rear of each file platform. This essentially occludes any smaller function

representations i f the user is viewing the platform from the rear. A much better solution would be to

allow the function or file representations to pivot about their vertical axis, orientating themselves to

face the user at all times. This would allow the user to view any file or function in detail while still

maintaining a useful view of the rest of the visualisation. Such an approach would have further

implications in the case of multi-user, shared visualisations, and may actually be inappropriate.

To summarise, FileVis is an information-rich visualisation which provides both an overview of, and

detailed information on, the structural aspects of a software system. The user is able to make use of a

variety of exploration techniques, enabling him or her to freely browse the software system and

investigate any aspect of interest. FileVis supports an as-needed, integrated program comprehension

model.

6.3.4 Software city and software cities

Software City is a visualisation which attempts to utilise the power of metaphor in creating a readily

understandable information environment. Visualisations such as Zebedee, CallStax and FileVis

concentrate on very abstract representations of the software system. SoftCity encodes information about

the software system onto realistic and identifiable real-world metaphors in an attempt to aid user

understanding of the visualisation. Section 5.5 in Chapter 5 describes two variations of the software city

visualisation, SoftCity and SoftCities. Both use a similar metaphor but encode information onto the

metaphor in a different manner. Both visualisations are designed to visualise structural change within a

software system over a number of revisions. To avoid confusion, the merits and deficiencies of these

two visualisations will be described in turn. To reiterate, Software City (referred to as SoftCity) and

138

Chapter 6 Evaluating the visualisations

Software Cities (referred to as SoftCities) are different visualisations which share a commonality in the
metaphor used. SoftCity will be described first, followed by SoftCities.

SoftCity represents the files of a software system as buildings within a city, the individual floors of

these buildings represent functions within those files. Revisions made to a function are represented as a

deterioration in the appearance of a building floor, function age is illustrated by the brick texture used

in its construction.

The metaphor used within SoftCity is easily identifiable, although the exact mapping of features within

the visualisation to features of the software system requires some initial explanation. Once this mapping

is understood, the evolution of the software structure can be related to the changing state of the software

city. Other aspects of this metaphor can be extrapolated to provide further information on the

characteristics of the software system. For example, the segregation of the city into districts provides

other contextual clues. SoftCity is divided into two districts, downtown and uptown. Downtown

contains all the files that have received significant change and revision, while uptown contains

relatively unscathed files and functions. This simple feature already provides an indication of the

quality of code which a maintainer is likely to encounter within the files of each district.

Although the SoftCity visualisation does provide information on the evolution of software structure,

perhaps the biggest deficiency is the lack of any substantial detailed information. The real-world

metaphor used leaves little flexibility for encoding software information, providing only a very basic set

of details. The fact that such a concrete metaphor is used also restricts the nature of the visualisation.

Metaphors are very effective tools for visualisation, but only remain so as long as the user's

expectations are not violated. Breaking a metaphor can destroy any benefits gained from their use,

adversely affecting comprehension of the visualisation. This restriction makes incorporation of

additional information particularly difficult.

The SoftCities visualisation applies information about the software system to the city metaphor in a

slightly different manner. Files within the software system are shown as cities within the visualisation,

with the functions defined within each file shown as the buildings of the city. SoftCities attempts to find

a suitable compromise between the use of realistic metaphors and the flexibility of a more abstract

visualisation. This is achieved by providing a realistic metaphor as a basis for the visualisation and

introducing more abstract features as necessary, without breaking strong metaphors. This enables

further information on the software to be incorporated, such as metric information and function call

relations.

SoftCities provides a more complete picture of how software structure changes over time. The

visualisation supports the display of incremental changes over a number of revisions to the software, as

well as highlighting the location and nature of these changes. The visualisation supports varied levels of

detail, reducing the visual complexity and information content when viewing from a distance. During

this distance viewing the most salient features of the visualisation are visible. Software age and change

information is presented at this stage, providing an overview of how the software system as a whole has

139

Chapter 6 Evaluating the visualisations

changed. When moving in closer towards areas of interest the detail level is increased, providing
specific information on the changes.

All of the visualisations and representations presented within this thesis have been designed with ease

of automation as a primary factor. SoftCities is one visualisation in which automatic generation has

actually been implemented, Zebedee being the other. It demonstrates that automatic generation of these

visualisations is a realistic goal. The generation process takes as input a set of program facts and

relations, providing a more language independent implementation. A similar automation process could

be developed for File Vis.

To summarise, SoftCity and SoftCities present a more metaphor-orientated software visualisation. As

with the original SoftCity, SoftCities lacks somewhat in the extent of the information provided when

compared to more abstract and information-rich visualisations such as FileVis. The focus of the

information presented is different to that of FileVis. SoftCity and SoftCities are geared towards

visualising change whereas FileVis is not. Both succeed in utilising a strong, realistic metaphor which

provides an understandable and identifiable impression of the software system.

6.4 Evaluation against the key areas of 3D
software visualisation
This section will evaluate how each of the visualisations described in Chapter 5 addresses the seven key

areas of software visualisation. These seven areas were identified in Chapter 4 as representation,

abstraction, navigation, correlation, automation, interaction and scalability.

6.4.1 Representation

The representation of the software structure within Zebedee is a relatively simple node-link graph

structure. This structure moulds the nature of the visualisation to provide a graphically explicit

representation of relationships within the software. The size, complexity and structure of the

visualisation are all unknown factors, depending entirely on the input data and the layout algorithm

used. The representations used within this visualisation are necessarily plain, providing only limited

additional information. The lack of fixed depth cues within the visualisation, and the need to understand

the 3D structure necessitate minimal visual complexity.

CallStax provides the same information presented in Zebedee but in a completely different manner, one

more suited for inclusion within other 3D visualisations. The representation of relations in CallStax is in

complete contrast to the explicit relations shown in Zebedee, using predominantly implicit

relationships. The dependence on easy identification of these implicit relationships places very strict

design guidelines on the representations used within CallStax. This reduces the information content of

the visualisation to show purely relational information.

140

Chapter 6 Evaluating the visualisations

FileVis uses a weak, city metaphor in its representation of software structure. The visualisation utilises
very abstract representations to maximise information content. Every feature and aspect of FileVis
encodes some form of information about the underlying software system. The overall structure of
FileVis provides an information landscape, submerging the user within the software system. This is the
intended use of FileVis, as an environment representative of the software system within which the user
can explore and query any aspects of interest. The abstract and information-rich nature of the
visualisation creates a colourful and surreal world with basic concepts of use which, although not
obvious, can be easily understood.

SoftCity and SoftCities use a metaphor-rich representation, mapping the information from a software

system to the attributes of a realistic city structure within the visualisation. This use of strong,

identifiable metaphors provides both advantages and disadvantages. The strong metaphors ease

understanding of the concepts involved in the visualisation while also restricting the amount and type of

information which can be encoded into the visualisation. Both of these visualisations create a realistic

environment with simple, understandable concepts but provide a relatively small amount of information

on the software system.

6.4.2 Abstraction

The visualisations presented in Chapter 5 can be split into two categories of abstraction. Zebedee and

CallStax both abstract various structural relationships of a software system into a graph. This

information is then presented in two distinctly different formats. The remaining visualisations, FileVis,

SoftCity and SoftCities all abstract structural information about the software using gross software

objects such as files, functions and lines of code as the basis. The visualisations are structured around

these software objects, encoding additional information such as software metrics and revision

information into the various representations. All of the visualisations here present a gross overview of

software structure, a view which the maintainer is unable to obtain himself or herself from the source

code alone.

6.4.3 Navigation

Zebedee is very lacking in the provision of navigation features. The visualisation produces complex

network structures within 3D space, structures which have no explicit orientation. Despite this, there are

very little navigation cues to aid comprehension of this structure or to reduce disorientation. The only

feature present to provide any cue to orientation is a horizon. Textual labels are also available, but due

to the nature of the VR system used in the implementation, these rotate so that they are correctly

readable regardless of user orientation or position. Additionally, there are no depth cues present within

the visualisation to aid comprehension of the graph structure. Again, the text labels do not scale with

distance so provide no assistance and only serve to clutter and obscure the display as more become

visible.

141

Chapter 6 Evaluating the visualisations

CallStax also lacks any navigation cues but was intended as a component within a larger visualisation,
which would presumably support navigation itself. Some features are available in a pure CallStax
visualisation, such as the translucent selection plane. This provides a form of horizon, acting as an
orientation cue. It also helps to provide contextual information for deselected stacks by containing holes
within which the stacks will fit. The selection plane also aids in depth perception of distant stacks,
enabling the user to ascertain more easily their vertical position.

FileVis provides navigational assistance in a number of ways. The overall structure of the visualisation

is as a number of distributed platforms, upon which reside a varied collection of function

representations. Each file platform is distinctively coloured with an identifier to provide a definitively

unique appearance. These platforms each have very different and individual characteristics, behaving as

landmarks in their own right. The structure and distribution of these platforms is in a logical hub

formation, with the main files positioned in the centre of the hub. The centre of the hub is also a highly

visible and recognisable structure containing a number of CallStax representations. This provides a

central landmark to which the user can return at any time. Further navigation features are provided such

as the multiple cameras and pre-set camera positions. These allow the user to return to a known location

from any point within the visualisation. One such camera position provides an overhead view of the

visualisation, essentially acting as a map, which the user can switch to at any point and observe their

current position within the visualisation from a third person perspective.

SoftCity and SoftCities also provide additional navigation features. In a similar manner to FileVis, the

cities within these visualisations have certain characteristics which can be identified and recognised.

These characteristics are, however, not as distinct as those in FileVis. Within SoftCity, navigation is

aided by the structure of the visualisation, which is divided into two very different districts. The

division-is also reinforced by the image of a river and bridge, providing directional and positional cues

within the visualisation and acting as a combined central landmark, path and edge. SoftCities does not

have any such navigation features between cities, but within each city the buildings are split into four

districts with an instantly identifiable and visible central landmark at the junction of these districts.

District boundaries are also regularly placed and easily identifiable when crossed.

6.4.4 Correlation

Both Zebedee and CallStax were implemented into a prototype system which provides correlation with

other views and information on the software system. These systems use a web interface similar to that

shown for FileVis. The three frames of the interface contain the 3D visualisation, the syntax highlighted

source code for the software, and an equivalent 2D function call-graph. Interaction within these

interfaces is bi-directional allowing both the selection of relevant ID information from the 3D

visualisation, and the identification of software objects within the 3D visualisation when selected from

another source.

142

Chapter 6 Evaluating the visualisations

FileVis provides the highest degree of correlation within the visualisations presented here. The web-
based interface provides integration with a number of 2D views on the software system. Again, this
interaction is bi-directional allowing the user to browse the software system using whichever view suits
at any stage. The web-based prototypes of Zebedee and CallStax provide relatively limited correlation
by simply allowing the user to select objects in one window and have them appear in another, there is
very little visual correlation. FileVis provides additional correlation by using the function and file
identifiers as a visual link between the different views on the software system. 2D images of the 3D
identifiers are used extensively alongside any mention of a software object which appears in the 3D
visualisation. This allows the user to quickly identify any relationships and to help tighten the
integration between the different software views. This graphical correlation is complimented by the
provision of links between software objects in each view, allowing exploration of the software system
through a multitude of routes.

SoftCity and SoftCities both provide no correlation with other information sources. The automatic

generation of SoftCities currently only deals with generation of the 3D visualisation. It would be

possible to introduce links between the visualisation and other information sources, as demonstrated in

the other visualisations presented here. The strong metaphor-based nature of these visualisations does,

however, hinder graphical correlation as in FileVis, due to the similar appearance of many of the

representations. Function identifiers, again as demonstrated in FileVis, could be introduced to help.

6.4.5 Automation

Zebedee and SoftCities represent the only two visualisations within this research for which automatic

generation has been implemented. A simple automatic generation of CallStax was also implemented to

demonstrate its potential, but was not developed further. Both FileVis and SoftCity were developed

with the capability for automatic generation a high priority. SoftCities does in fact represent the

automation of SoftCity, while advancing the design of the visualisation in the process.

Each of these visualisations was created with features designed specifically to ease automatic

generation. Features such as regular sized, and regular spaced representations aid in producing a

suitable layout. Aspects of FileVis such as the colour scale indicating complexity and the structural

image of the code all have clearly defined limits and relationships to the software system and

surrounding representations.

As well as providing ease of automation, these visualisations are also designed to be as flexible as

possible with minimum explicit connections. This allows the user to alter aspects of the visualisation

manually with little impact on its structure or graphical complexity. Files and functions within FileVis

can be easily rearranged and grouped to provide more semantic meaning. The goal is to use automation

to provide a rough framework for the visualisation, such as FileVis in its current state, then allow the

user to manipulate this as she explores, providing a deeper semantic meaning which is extremely hard

to encapsulate automatically.

143

Chapter 6

6.4.6 Interaction

Evaluating the visualisations

The visualisation systems described in Chapter 5 all provide very little interaction, although many have

been designed to support future enhancements. The exception to this is CallStax in which simple

interaction plays a vital aspect in the understanding of the underlying graph structure. The user can

select any object within the CallStax resulting in the corresponding stacks aligning vertically. This

provides an interactive method for querying the visualisation through a very simplistic interface. Other

virtual tools are also available as a floating toolbar in front of the user's viewpoint, allowing the user to

alter various aspects of the visualisation. FileVis, Zebedee and SoftCities also provide simple

interaction by way of clicking and selecting objects within the visualisation and other related

information. As mentioned previously, visualisations such as FileVis and CallStax have very few

explicit relationships between software objects. This provides significant freedom allowing the user to

position and group objects manually, imparting some semantic information into the visualisation.

Support of features such as annotating, highlighting and editing visualisation contents would prove

advantageous, but are not currently implemented.

6.4.7 Scalability

All of the visualisations described within Chapter S are designed to visualise medium to large scale

software systems. The actual suitability of each visualisation to this task is somewhat different.

Zebedee provides an effective visualisation of 3D graph structures, however, its effectiveness reduces

with increased graph size. The visualisation becomes increasingly visually complex due to the high

number of explicit relations visible. This is a problem shared with more traditional 2D graphs. With

small to medium sized graphs, Zebedee provides a very effective and intuitive visualisation of their

structure.

CallStax attempts to alleviate some of the problems associated with large graph structures by greatly

reducing the number of explicit relations. This solution is effective in reducing graphical complexity,

however, for large systems the mental load of identifying identical representations distributed through

3D space becomes much greater. The provision of a filtering and query mechanism aids greatly in this

respect, allowing the user to quickly identify identical representations and their neighbours. In theory,

CallStax is able to cope with very large graph structures, however the size and number of stacks also

grows very rapidly. Similarly the number of individual and distinctive representations needed becomes

greater. As identified earlier, the creation of such representations is particularly difficult within large

systems.

FileVis provides perhaps the most scalable visualisation described here. The lack of any explicit

relationships between software objects, and the simple mapping from software system to visualisation

provides plenty of scope for expansion. The biggest issue to address would be the layout of the various

files and functions, though as already mentioned it is hoped that this layout would only need to be

144

Chapter 6 Evaluating the visualisations

simple, being manipulated manually by the user as they begin to understand the system. Although the
file platforms use distinct colours to aid their identity, there is sufficient scope for using various patterns
to maintain this distinctive appearance. In short, FileVis should support scalability from small to large
scale software systems. Additionally, the ability to move smoothly from a low-detail overview to a
high-detail specific view of the software system provides scalability within the visualisation. This
makes FileVis particularly suitable for visualising any size of software system.

SoftCity and SoftCities maintain some of the advantages of FileVis, enabling increased size of the

software system to be visualised. It should be noted that both SoftCity and SoftCities view the system at

a fixed level of abstraction. It is not possible to move in for a detailed view of a function structure, as in

FileVis. For this reason, both SoftCity and SoftCities would be of little value for visualising small

software systems. SoftCities excels in its ability to be applied to very large software systems and

highlight the location and details of any change over successive revisions of the software.

6.5 Evaluation against desirable properties
This section presents a more detailed evaluation of the various visualisations and representations within

FileVis. The desirable properties described in Chapter 4 are used as a framework for the evaluation,

assessing how each aspect of the visualisations and representations addresses these properties. This

evaluation is intentionally qualitative, giving only an impression of the strengths and weaknesses of a

particular visualisation or representation. The applicability of a particular representation or visualisation

is entirely subjective and dependent on the context of use. It would therefore be inappropriate for an

evaluation to give a definitive statement as to whether a visualisation or representation is suitable or

not. The wider picture must be considered. This evaluation against the desirable properties aims to

allow such a subjective assessment to be made.

Within the FileVis visualisation as a whole there are many individual visualisations and representations,

particularly as some must be considered from both viewpoints. A small set of each is selected for

evaluation, concentrating on the most prominent visualisations and representations that provide a

representative sample of FileVis as a whole. The various components within FileVis must first be

identified as being either visualisations or representations, or indeed a mixture of both dependent on

context. Table 6-A lists all the visualisations within FileVis, showing the corresponding representations

used within each.

The set selected for evaluation includes the FileVis, files and high-detail function visualisations, and

also the Files, file identifiers, high-detail and low-detail function representations. These seven items

represent a good cross-section of the visualisations and representations used within FileVis. An

evaluation will be made as to how each of these visualisations and representations addresses the

desirable properties.

145

Chapter 6 Evaluating the visualisations

Visualisation Representations
FileVis Files

Functions (high + low detail)
CallStax

Files Functions (high + low detail)
File identifier

Functions (low detail) Function tower
Function identifier

Functions (high detail) Control structure
Complexity measures
Revision measure
Function identifier
Back plane
Ground plane

CallStax Individual stacks
Function blocks

Table 6-A. Breakdown of FUeVis into visualisations and representations.

6.5.1 Evaluating the visualisations
Table 6-B, Table 6-C, and Table 6-D list each of the desirable properties of visualisations against the

three visualisations selected from FileVis. Within these tables, short descriptions of the suitability of a

visualisation to each of the desirable properties are given. These are then summarised in Table 6-E to

provide a simple assessment and comparison of the strengths and weaknesses possessed by each

visualisation.

f x
Figure 6.2. Overview of the FileVis visualisation.

Figure 6.2 provides an overview picture of FileVis. The visualisation displays the files, functions and

source code structure of a software system, as well as a collection of software metrics. Table 6-B

provides an assessment of how FileVis addresses each of the desirable properties of a visualisation.

146

Chapter 6 Evaluating the visualisations

Properties FileVis
Simple navigation with
minimal disorientation

Layout is simple, but could prove complex for larger systems. Labelling of
filenames would be an advantage. The visualisation remains planar to
remove the need for extensive vertical navigation. Hub structure with easily
identifiable central feature aids navigation. A loss of context occurs when
viewing rearward files and functions due to their fixed orientation.

High information
content

FileVis provides a reasonably high amount of 'at-a-glance' information. All
the files within the system are apparent, including the information in the files
visualisations. Other information such as the file dependencies is also readily
available. Function distribution, length and complexity is intuitively
readable.

Low visual complexity;
well structured.

Visual complexity is fairly high but is scaled depending on viewer interests.
Information clutter is kept to a minimum. Structure is dependent on layout,
which in this case is a logical, hub formation.

Varying levels of detail Features such as the CallStax can be adjusted to vary detail levels. Function
representations also vary in detail automatically depending on viewer
interests.

Resilience to change This is dependent greatly on the layout algorithm used. The lack of explicit
connections between representations provides flexibility in positioning,
enabling greater resilience to effects of change. The current layout provides
poor resilience.

Good use of visual
metaphors

Use of metaphor is limited, with a lack of any real-world metaphors. The
information is readily interpreted after initial instruction.

Approachable user
interface

The interface is dependent on the VR package used. In this case the control
method is very effective with practice. Additional tool support is provided
allowing the user to vary the control method. FileVis makes use of a web-
browser interface providing a common and well understood front end.

Integration with other
information sources

The visualisation is integrated well with a variety of textual information on
the software system. Integration is bi-directional, allowing the user to
explore the software using whichever interface is preferable at any stage.

Good use of interaction Interaction is limited to selection of objects for additional information.

Suitability for
automation

All aspects have been designed to enable automatic generation. All features
have a regular, procedural construction with layout being the only issue.
Layout is also eased due to the lack of explicit connections between objects.

Table 6-B. Assessing FileVis against the desirable properties of a visualisation.

Figure 6.3. Low and high detail file visualisations.

147

Chapter 6 Evaluating the visualisations

Figure 6.3 shows examples of a low and high-detail file visualisation. This consists of a file platform
with identifier, which is then populated with a number of function representations. The function
representations switch between low-detail (left) and high-detail (right) depending on viewer proximity.
Table 6-C provides an evaluation of the file visualisation against the desirable properties of a
visualisation.

Properties Files
Simple navigation with
minimal disorientation

A very simple layout is used for the placement of functions, although one
undesirable feature is that the position of functions may vary over versions of
the software system. The layout in the prototype is arbitrary and a more
appropriate scheme could be implemented. Labelling of functions would
provide a big aid to identification. The file identifier provides a visible, fixed
landmark.

High information
content

The files show a great deal of information, which is readily apparent. This
mainly concerns details of the functions within that file.

Low visual complexity;
well structured.

At a greater viewing distance the files are low in visual complexity and readily
interpreted. At closer distances visual complexity increases greatly, possibly
leading to confusion. The population of the files is well structured.

Varying levels of detail The function representations vary in detail, which play a predominant role in
the visual complexity of the file visualisations.

Resilience to change The files are not resilient to change. The current layout positions function
representations depending on function length (height). Any changes may affect
their positioning which may prove disorientating. Again, this is a layout issue.

Good use of visual
metaphors

The files visualisation with low-detail function representations are based upon a
'bar-chart' metaphor which is readily understood.

Approachable user
interface

Not Applicable. (Covered by FileVis as a whole).

Integration with other
information sources

Not Applicable. (Covered by FileVis as a whole).

Good use of interaction Interaction is limited to the selection of functions and files which provides
additional information. This is presented in the 2D HTML frames.

Suitability for
automation

All aspects have been designed to enable automatic generation, including
regular structures and placement.

Table 6-C. Assessing the files within FileVis against the desirable properties of a visualisation.

Figure 6.4. High-detail function visualisation.

148

Chapter 6 Evaluating the visualisations

Figure 6.4 illustrates a single high-detail function visualisation, similar to those populating the file
platform shown in Figure 6.3. This visualisation provides information on the function code structure,
textual structure, complexity metrics and number of revisions. Table 6-D provides an assessment of
how the high-detail function visualisation addresses the desirable properties of a visualisation.

Properties Functions (high detail)
Simple navigation with
minimal disorientation

Navigation is not an issue here, as the function visualisations are not meant
to be explored internally.

High information
content

A reasonable amount of statistical information regarding the function is
instantly available. This is more of an overview than a detailed visualisation
of the function code. Information content is relatively high.

Low visual complexity;
well structured.

Static features lead to instantly recognisable and interpreted information.
The code structure aspect of the visualisation is, however, cluttered and
therefore harder to interpret. Visual complexity is relatively high.

Varying levels of detail The high detail visualisation does not vary any further in detail. However, it
is replaced entirely with a low-detail representation as the viewer moves
away.

Resilience to change Change in the visualisation is linked directly to changes in the function code.
No unnecessary instability is introduced. Resilience to change is high.

Good use of visual
metaphors

The high detail function visualisation is not based upon any metaphors. Only
the metric bars present a readily understood metaphor - that of a bar chart.

Approachable user
interface

Not Applicable. (Covered by File Vis as a whole).

Integration with other
information sources

Not Applicable. (Covered by File Vis as a whole)

Good use of
interaction

Interaction is limited to the selection of functions, providing additional
information in the 2D HTML frames.

Suitability for
automation

All aspects have been designed to support automatic generation. All
structures are of predeterminate size and are regularly placed.

Table 6-D. Assessing the high-detail functions within File Vis against the desirable properties of a

visualisation.

The evaluations given in Table 6-B, Table 6-C and Table 6-D can be summarised to provide a simple

overview of how each of the visualisations rates against the desirable properties. This summary is

shown in Table 6-E. The summary uses a subjective scale, which indicates how well each visualisation

addresses a particular property. I f a property is not applicable, or is related to some other visualisation

or representation then this is also stated. The subjective scale rates each visualisation or representation

against the desirable properties using one of four grades: excellent, good, fair or poor.

149

Chapter 6 Evaluating the visualisations

Properties FileVis Files Functions (high
Detail)

Simple navigation with
minimal disorientation

Good Good Not Applicable

High information content Good Good Good
Low visual complexity; well Good Excellent to Poor Fair
structured. (low and high

detail functions)
Varying levels of detail Good Good Not Applicable
Resilience to change Poor Poor Good
Good use of visual metaphors Poor Good Poor
Approachable user interface Fair Not Applicable Not Applicable
Integration with other Good Covered by Covered by
information sources FileVis FileVis
Good use of interaction Poor Poor Poor
Suitability for automation Good Good Good

Table 6-E. Summary showing strengths and weaknesses of each visualisation.

It is apparent from examining Table 6-E that the three visualisations selected perform well against the

desirable properties and have a mixed coverage of essential areas. One area that lets down both FileVis

and the Files visualisation is their resilience to change. In both cases though, this is dependent on the

layout algorithm used and, in this prototype system, the layout used was exceptionally simple. Selection

of a different layout criterion or maintaining object positions between revisions of the visualisations

would help considerably. The intention of the visualisation is to support manual placement by the user,

enabling them to position and group software objects with some higher-level semantic meaning which

is difficult to capture using automatic layout algorithms. In such an instance, the initial layout algorithm

used need only be simplistic.

One area of note is the very poor support for interaction throughout the three visualisations. Interaction

in the FileVis prototype is provided by a simple 'click here' interface. Further development of FileVis

would need to address this deficiency and introduce deeper interaction techniques, including features

such as user annotation and manipulation of the visualisation. In general, the visualisations perform

well in addressing the desirable properties. Important deficiencies have also been highlighted.

6.5.2 Evaluating the representations

Evaluation of how the four representations selected address the desirable properties of a representation

are given in Table 6-F, Table 6-G, Table 6-H and Table 6-1. Within these tables, short descriptions of

the suitability of a representation to each of the desirable properties are given. These are then

summarised in Table 6-J to provide a simple assessment and comparison of the strengths and

weaknesses possessed by each representation.

Figure 6.3, on page 147, provides an example of a low and high-detail file representation. An

assessment of how these representations address each of the desirable properties of a representation is

given in Table 6-F.

150

Chapter 6 Evaluating the visualisations

Properties Files
Individuality Attributes such as the representation's colour, size, identifier, number of

functions and profile of the functions aid individuality. The file
identifier and location provide absolute individuality. Providing a
textual label with the file name would prove beneficial

Distinctive appearance All the features mentioned above make for a distinctive appearance.
Additionally, the files derive character from their structure and contents.

High information content The representation embodies a high amount of information regarding
the functions within the file. This is particularly the case when viewed
with the high-detail function representations.

Low visual complexity Complexity is low when low-detail functions are present, but suffers
from increased complexity with high-detail functions.

Scalability of visual
complexity and
information content

No scalability of the file representation itself. Detail control is provided
by the function representations. However, when viewed as one
representation, this feature provides the files with a very scalable nature.

Flexibility for integration
into visualisations

Positional freedom is preserved, however, all intrinsic dimensions are
used leaving little room for encoding additional information in the
visualisation. The overall size of the representation is also variable.

Suitability for automation Designed to support automation through regular sized and placed
constructs.

Table 6-F. Assessing the files within File Vis against the desirable properties of a representation.

Figure 6.5. A number of function identifier representations.

Figure 6.5 illustrates a number of function identifiers which are used extensively throughout the FileVis

visualisation. Each function in the software system is assigned a unique function representation, this

representation is then used within both the 3D visualisation and the 2D documentation to provide a

correlation between the different views. Each identifier consists of a cube with a patterned face and

coloured border. The colour of the border matches the file in which the function is defined. The pattern

and colour of the face is assigned to be unique to a particular function when combined with the border

colour. Table 6-G provides an assessment of how the function identifiers address each of the desirable

properties of a representation.

151

Chapter 6 Evaluating the visualisations

Properties Function Identifiers

Individuality Each representation is guaranteed to be unique from all others. This
unique identity is provided by a coloured, patterned face and a coloured
cube border. Individuality could be enhanced further by provision of a
text label with the function name.

Distinctive appearance Function identifiers appear distinctive due to the variety of patterns and
colours used. Distinctive appearance is occasionally compromised with
certain similar colours or patterns between identifiers.

High information content Information content is minimal. The only information provided is an
indication as to which file a function belongs to, by virtue of the
coloured cube border. Information content is intentionally low to
minimise visual complexity.

Low visual complexity Visual complexity is low. Function representations consist of two
elements - a patterned face and a coloured border.

Scalability of visual
complexity and
information content

There is no scalability of visual complexity or information content. This
could be supported in future by providing textual function labels as the
user approaches, removing them as they withdraw to reduce visual
clutter.

Flexibility for integration
into visualisations

Flexibility is very good with the identifiers having a fixed size and a
simple shape. Several intrinsic dimensions remain unused allowing the
visualisation to encode further information as necessary.

Suitability for automation Suitability for automation is good, again the fixed size and shape aid in
this respect. The patterns and colours are selected from a predefined
library, requiring a 1 to 1 mapping to functions to ensure individuality.

Table 6-G. Assessing the file identifiers against the desirable properties of a representation.

Figure 6.6. Low and high-detail function representations.

Figure 6.6 shows a low and high-detail function representation. The low-detail representation (left)

provides only very basic information on the function, such as relative complexity, length and a unique

identifier. The high-detail representation (right) provides considerably more detail, including further

metrics and a view of the function code structure. Table 6-H and Table 6-1 provide an assessment of

how each of these representations addresses the desirable properties of a representation.

152

Chapter 6 Evaluating the visualisations

Properties Functions (low detail)
Individuality Only the function identifier offers true individuality. Height and colour

of the tower are of little help.

Distinctive appearance Appearance is not distinctive. Function identifiers are unique but may
possibly appear similar without a closer inspection.

High information content Information content is intentionally very low. This serves to provide
only the most salient information when the user is gaining an overview
of the software system.

Low visual complexity Visual complexity is intentionally very low to minimise visual clutter
within large collections of similar representations

Scalability of visual
complexity and
information content

Switching between high and low-detail function representations within
the visualisation provides scalability of visual complexity and
information content.

Flexibility for integration
into visualisations

Positional freedom is preserved. Base dimensions are fixed, aiding
placement and grouping. Height is variable, which may prove
restrictive. Overall, flexibility for integration is good.

Suitability for automation Designed to support automation through a simplistic structure.

Table 6-H. Assessing the low-detail functions within File Vis against the desirable properties of a

representation.

Properties Functions (high detail)
Individuality Only the function identifier and code structure offer true individuality.

All other features may be similar between representations.

Distinctive appearance Appearance is not distinctive. Function identifiers are unique but may
possibly appear similar without a closer inspection. The function
structure helps to provide character to each function, often aiding in
providing a distinctive and memorable appearance.

High information content High information content about each function is available, including a
variety of software metrics and details of the function code structure.

Low visual complexity Visual complexity is fairly high, although the majority of features are
well structured and clearly interpretable.

Scalability of visual
complexity and
information content

Switching between high and low-detail function representations within
the visualisation provides scalability of visual complexity and
information content.

Flexibility for integration
into visualisations

Positional freedom is preserved. Base dimensions are fixed, aiding
placement and grouping. Height is variable, which may prove
restrictive. Overall, flexibility for integration is good.

Suitability for automation Designed to support automation through a clear structure with regular
sized and shaped objects.

Table 6-1. Assessing the high-detail functions within File Vis against the desirable properties of a

representation.

The information presented in Table 6-F, Table 6-G, Table 6-H and Table 6-1 can be summarised to

provide an overview of how each of the representations compare against the desirable properties. Table

6-J provides this overview and enables the identification of the strengths and weaknesses of each

representation, as well as highlighting how related representations compliment each other. This

summary uses the same subjective scale as previously mentioned while evaluating the visualisations.

153

Chapter 6 Evaluating the visualisations

Properties Files Function Functions Functions
Identifier (LD) (HD)

Individuality Excellent Excellent Excellent
(via identifier)

Excellent
(via identifier)

Distinctive appearance Good Fair Poor Fan-
High information content Good Poor Poor Good
Low visual complexity Good to poor

(varies)
Good Excellent Fair

Scalability of visual
complexity and
information content

Good
(high and low
detail function

representations)

Poor Good
(linked to high
detail version)

Good
(linked to low
detail version)

Flexibility for integration
into visualisations

Poor Good Fair Fair

Suitability for automation Good Good Good Good

Table 6-J. Summary showing strengths and weaknesses of each representation.

It can be observed from Table 6-J that in general, each of the representations performs very well,

though all have a number of weaknesses and deficiencies. Of particular interest is how the low-detail

and high-detail function representations compliment each other's strengths and weaknesses. This is

particularly evident for the properties of distinctive appearance, high information content and low

visual complexity. This enables the visualisation to provide the optimum amount of information to the

user at each stage. When gaining an overview, low-detail representations are used and information

content is reduced to present only the most salient details, while visual complexity is reduced to

minimise display clutter. When focussing on a particular item of interest then high-detail

representations are used thereby providing maximum information content when visual complexity is

less critical due to the low number of representations on screen.

Also of note is that the function identifier is present in each of the other three representations. The sole

purpose of the function identifier is to provide individuality. This individuality is then imparted onto the

other visualisations in which it is used.

6.6 Cognitive design elements for software
exploration
Storey et al [Storey97] present a hierarchy of cognitive design elements which are applicable to the

design and evaluation of what they call 'Software Exploration' tools. Software exploration tools are

described by the authors as tools which " . . . provide graphical representations of software structures

linked to textual views of the program source code and documentation". There is a clear relationship

with the research work produced within this thesis. The goal of the work here is to produce structural

visualisations of software systems while providing a strong correlation with existing information and

documentation on each system. The prototype visualisation FileVis, described in Chapter 5, epitomises

these goals in the development of a software exploration tool.

154

Chapter 6 Evaluating the visualisations

This section wil l evaluate how the FileVis visualisation addresses these cognitive design elements,
providing evaluation of its suitability as a software exploration tool. The other methods of evaluation
described in earlier sections are all concerned with evaluating the attributes of a visualisation, and not
necessarily as a tool to aid program comprehension. The following evaluation attempts to address this
shortcoming by evaluating against a set of cognitive design elements, which are specifically aimed at
program comprehension. Although the main subject of this evaluation is the FileVis visualisation,
occasional reference wil l also be made as to how certain cognitive elements apply to the other
visualisations described in Chapter 5, where relevant.

Cognitive
Design
Elements

Enhance bottom-up
comprehension

Indicate syntactic and semantic
' relations between software objects

Reduce the effect of delocalised
' plans

E l

E2

improve program Enhance top-down
comprehension comprehension

Integrate bottom-up and
top-down comprehension

. Provide abstraction mechanisms E3

Support goal-directed, hypothesis-
" driven comprehension E4

Provide an adequate overview of
' the system architecture at various

levels of abstraction

Facilitate
navigation

Reduce the maintainer's Provide
cognitive overhead orientation cues

\
Reduce
disorientation

Support the construction of multiple
' mental models

- Cross-reference mental models

Provide directional navigation

. Support arbitrary navigation

Provide navigation between mental
" models .

Indicate the maintainer's current
' focus

Display the path that led to the
' current focus

Indicate options for reaching new
nodes

E6

E7

E8

E9

E lp

E l l

E12

E13

Reduce additional effort for user-
interface adjustment *

- Provide effective presentation styles E1S

Figure 6.7. Cognitive design elements for software exploration.

The cognitive design elements are organised into two branches, the first o f which deals with improving

program comprehension while the second is concerned with reducing the maintainer's cognitive

overhead. Figure 6.7 shows the hierarchy of cognitive design elements. Under the first branch, 'Improve

Program Comprehension', the intention is to capture the essential processes of the various

comprehension strategies. Cognitive design elements E l to E7 fall under this remit. The second branch,

'Reduce the Maintainer's Cognitive Overhead', addresses the cognitive issues of a maintainer while

browsing and navigating a visualisation of the program structure. Cognitive design elements E8 to E l 5

155

Chapter 6 Evaluating the visualisations

are considered within this branch. This hierarchy of cognitive issues, E l to E l 5, is derived through an
examination of the various cognitive models of program comprehension which were discussed in
Chapter 2. Each of the cognitive issues wi l l now be described in detail, with reference to their
applicability to this research.

6.6.1 Improve program comprehension

It is argued that the comprehension strategy employed by a maintainer is dependent on a variety of

factors governed by the experience of the maintainer, the software system under scrutiny and the type

of maintenance task undertaken. It would be advantageous for a software exploration tool to support a

wide range of comprehension activities and models. Presented below is a list o f cognitive design

elements extracted from various program comprehension strategies (Chapter 2) and discussed by Storey

et al [Storey97], then further investigated by Chan [Chan98].

I. Enhance bottom-up comprehension

Storey et al argue that a bottom-up comprehension involves reading program statements and constructs

and chunking them into higher level abstractions. This is repeated until an overall understanding of a

program is obtained. Bottom-up comprehension involves three main activities:

• Identifying program items, such as variables, statements, functions, files and the relationships

between them.

• Browsing code in delocalised plans.

• Building abstractions (through chunking)~from lower level items.

A software exploration tool to assist in bottom-up comprehension should address these three activities.

Each of these activities is addressed in cognitive elements E l to E3, which are described in greater

detail here.

E1. Indicate syntactic and semantic relations between software

objects

Storey et al suggest that the syntactic and semantic relationships are essential during a bottom-up

comprehension. The syntactic relation can be derived from the source code by systematically

identifying a set of program units. The semantic relation can be attained by an analysis of the

relationships between these program units.

Both syntactic and semantic relationships are highlighted in FileVis and the other visualisations. Within

File Vis, syntactic relations shown include identification of various program components such as files,

functions, and various types of code block, such as loops and conditional statements. The relationships

156

Chapter 6 Evaluating the visualisations

between these objects are shown both explicitly and implicitly. The provision of various software
metrics enables hypotheses to be drawn about the function of, and semantic relationships between,
various program components.

E2. Reduce the effect of delocalised plans

A delocalised plan results from the fragmentation of source code related to a particular algorithm or

program plan. Reading fragments of code belonging to a delocalised plan can be cumbersome, requiring

frequent switching between files which may lead to a feeling of disorientation. Static tools such as

program slicing, whether graphical or as the result of some filtering, can help identify code belonging to

a delocalised plan.

Only FileVis and CallStax provide any comprehension support for delocalised plans. In general, the

visualisations are aimed at static, structural visualisation and do not contain the necessary detail

required to view program plans. CallStax does, however, provide a slicing mechanism for

understanding program paths. This information can aid the user in identifying the possible location of

delocalised plan segments, as well as providing probable impact paths for any change. Additionally, the

coloured function structure shown in FileVis enables an overview of the key components of a function

code to be viewed. This enables the identification of possible plan components and beacons, such as

loops and conditional statements. Certain plans can be identified visually using this aid, enabling a

more focused investigation of the source code.

E3. Provide abstraction mechanisms

Storey et ctl believe that the process of building hierarchical abstractions from low level software

objects is the most difficult task during bottom-up comprehension. Facilities should be available to

allow the maintainer to create their own abstractions and label and document them to reflect their

meaning. One possible technique would be to allow the aggregation of low-level program components

into a higher level abstraction.

Software abstraction is provided directly in visualisations such as FileVis, which provide a direct,

scalable visual abstraction of the software structure, from low-level software objects such as lines of

code through to high-level objects such as files and the system itself. None of the visualisations

described in this research support user interaction such as annotation or manipulation of the

visualisation structure, although FileVis and CallStax are designed to support such enhancements.

These visualisations possess minimum explicit relationships between software objects, enabling a vastly

greater flexibility for placement and grouping. Other features such as annotation would prove a very

powerful comprehension tool and could be integrated into these visualisations relatively easily.

157

Chapter 6 Evaluating the visualisations

II. Enhance top-down comprehension

Storey et al believe that top-down comprehension requires application domain knowledge or previous

exposure to the software system. The maintainer formulates hypotheses then reads the code in a depth-

first manner to verify or reject these hypotheses. Support for top-down comprehension can be provided

by:

• Supporting the recording of hypotheses and linking them to relevant parts of the program, as well

as supporting the refinement of hypotheses.

• Providing overviews of the software system allowing the maintainer to explore its structure in a

top-down manner.

Cognitive elements E4 and E5, which support top-down comprehension, are described in more detail

below.

E4. Support goal-directed, hypothesis-driven comprehension

A software exploration tool should provide the capability to create, record and relate hypotheses or

annotations to specific parts of the software system. As well as providing support for hypothesis

verification such annotations would prove invaluable during future maintenance or for co-operation and

communication between maintainers.

None of the visualisations described in this research support user interaction such as annotation of the

visualisation structure. The multiple cameras used within FileVis do allow a maintainer to effectively

explore a number of different routes through the software, swapping between these views as necessary.

This enables the user to 'bookmark' their position and explore a particular hypothesis, with the ability

to observe this point of divergence and to jump back to it at any time.

E5. Provide an adequate overview of the system architecture at

various levels of abstraction

To explore programs top-down, access to the software architecture should be provided at various levels

of abstraction. This allows the maintainer to systematically explore the program structures in a top-

down fashion.

Visualisations such as FileVis and SoftCities directly support top-down exploration of a software

system. The user is initially presented with an overview of the entire software system and is able to

delve deeper to lower levels of abstraction, obtaining more specific information as they progress. At

each stage of the visualisation it is apparent at what level of abstraction the user is currently at, and

what the possible opportunities are for moving further in.

158

Chapter 6 Evaluating the visualisations

111. Integrate bottom-up and top-down approaches

Storey et al acknowledge that a maintainer wi l l create and switch between various mental models

during the course of comprehension. Relationships such as control flow, data flow and function

abstractions are believed to be the key to the creation of these mental models. These relationships can

be illustrated using a graph model. The integration of bottom-up and top-down approaches can be

facilitated by supporting the construction and integration of various different views on the software

system.

E6. Support the construction of multiple mental models

Storey et al state that not only do mental models differ in context and level of abstraction, but they also

differ from one maintainer to another. Support should be given for the construction of multiple mental

models. The authors suggest that various mental models of a program may be represented by using a

multitude of both textual and graphical views on a software system.

FileVis provides excellent support for multiple views, and so multiple mental models, of a particular

software system. The 3D visualisation in FileVis is just one of these views and is supported by detailed

textual information on various software objects. The software visualisation can be explored using any of

the views presented enabling the user to effectively move between mental models as needed.

E7. Cross-reference mental models

Maintainers frequently switch from one model to another in the course of comprehension. Storey et al

believe that these switches are often the result of a maintainer mentally cross-referencing different

mental models. This activity can be facilitated by supporting the cross-referencing of the corresponding

representations between various views on the software system.

As mentioned above, FileVis provides excellent support for exploration of a software system using a

multitude of mental models, both top-down and bottom-up. This support is provided by different views

on the software system, both graphical and textual. These views are cross-referenced using graphical

identifiers which provide visual relationships between objects in each view. Additionally, the user is

able to interact with and interrogate the visualisation to explicitly highlight any relationships between

views.

6.6.2 Reduce the maintainer's cognitive overhead

Storey et al agree that when comprehending large software systems, the maintainer's cognitive

overhead increases rapidly. Visualisation tools are often supplied in an effort to reduce this cognitive

overhead. In order to be successful, visualisation tools must provide good navigation facilities,

meaningful orientation cues, and be effective in presenting the information so that it can contribute to

159

Chapter 6 Evaluating the visualisations

program comprehension. Storey et al refer to each of the above terms in the following context.
Navigation provides the facilities to go from one place to another. Orientation cues show the user where
they are currently, how they got there and how to go somewhere else. Effective presentation techniques
are used to alleviate the effects of displaying large, overwhelming amounts of information.

I. Facilitate navigation

Large software systems wi l l invariably result in large software visualisations. When exploring large

software systems, it is important that a maintainer is equipped with the appropriate facilities to ease

navigation through the vast amount of information presented. Storey et al suggest that navigation

facilities should include mechanisms for browsing source code, program documentation, graphical

views of software structure and documented mental models of the program. Cognitive elements E8 to

E10 address the issues of navigation and are described below.

E8. Provide directional navigation

Storey et al describe directional navigation as mechanisms for reading source code and program

documentation sequentially, browsing the software using data-flow and control-flow relationships,

traversing software structure in hierarchical abstractions and by following user-defined program or

application dependent links.

FileVis makes use of web-browser technology to implement a prototype software exploration tool. This

technology provides built-in aids for browsing text documents such as source code and program

information. The glue that binds together the various views of a software system is provided by a

proliferation of hypertext links. The user is able to move smoothly from document to document,

document to visualisation and visualisation to document. At each stage the user is made aware of the

possible options for navigation, with hypertext links visibly highlighted and graphical icons in the text

illustrating a relationship to the 3D visualisation.

E9. Support arbitrary navigation

Arbitrary navigation is supported by allowing a maintainer to navigate to locations not necessarily

reachable by following an application or user-defined link.

Arbitrary navigation is supported in FileVis primarily using the 3D visualisation window. Through this

interface the user is able to view the entire software system and navigate freely to any point within it.

There are no fixed links or paths to follow, the user has complete freedom to choose their route and

destination. The information-rich environment of FileVis provides sufficient information for a user to

decide which aspects of the software system to investigate. Further arbitrary navigation is supported in

the textual source code window. When a program object such as a function is selected, the source code

window displays the corresponding source file positioned at the beginning of the function code. The

160

Chapter 6 Evaluating the visualisations

function code is highlighted with a darker text colour, but the user is able to freely browse the
remainder of the source file and follow links within other functions as they desire.

E10. Provide navigation between mental models

The key to successful comprehension is believed to be the ability to navigate smoothly between various

mental models. In the context of a software exploration tool, this equates to a smooth navigation and

correlation between various views on the software system. Storey et dl argue that this is a non-trivial

problem as there may be one-to-many and many-to-one links from one model to another.

As previously mentioned, FileVis directly supports the creation of multiple mental models through

multiple views on a software system. Both implicit and explicit relationships between these views are

available and the user is constantly made aware of possible navigation paths through and between

views. Graphical identifiers support correlation between the various views.

Orientation cues are described as indications to the maintainer as to where they are currently exploring

within the software structure, how and why they are there, and how to move to a different focus or

interest.

During comprehension and depending on the task at hand, a maintainer may be interested in viewing

source code for a function; examining a diagram that describes some of theprogram's functionality or

browsing a set of documentation. The focus of interest may be fragmented as the maintainer tries to

understand non-local interactions in the code. Storey et al believe that the use of judicious orientation

cues can reinforce the maintainer's sense of focus and orientation. Indicating the maintainer's current

focus requires both showing the artefacts that are of immediate interest, but also displaying context for

those artefacts.

Both focus and context are highlighted well within FileVis. The 3D visualisation allows the user to

select any amount of contextual information by simply positioning themselves at different distances

from an object, thereby providing more or less background information surrounding the object. The

centre of the viewpoint acts as a point of focus for the user, much the same as the centre of one's

eyesight provides indication of interest in the real world. This simple concept of focus is backed up by

the user being able to select program objects and have them visually highlighted. They can then explore

surrounding, contextual information while having a positive indication of their original interest. Also,

within the detailed textual information display of currently selected objects, any links to related objects

are presented alongside summary information. This enables the user to gain some initial insight into the

linked object and judge whether or not it warrants further investigation.

II. Provide orientation cues

E11. Indicate the maintainor's current focus

161

Chapter 6 Evaluating the visualisations

E12. Show the path that led to the current focus

Recording why a maintainer is interested in a particular program object may be very important. Often,

the reason for inspecting a particular item may be the result of verifying a hypothesis, or because the

item is known to be critical to the maintenance task. The maintainer should be supported with facilities

to show the sequence of actions or the direction taken to reach the current focus.

Displaying the path which led to the current focus is considerably more difficult to support within a 3D

environment in which the user has total freedom. The only support provided by FileVis is the ability to

move between multiple camera views and use these to 'bookmark' points along a path through the

visualisation. The textual documents do not provide any support for viewing the path taken through

them, although the web-browser provides a 'history' feature enabling the user to step back through the

set of documentation viewed.

E13. Indicate the options for reaching new nodes

Given that a user is at a certain point in the exploration of a software system, this design element

addresses not which facilities are available for further exploration, but rather how the user is made

aware of these facilities. Further navigation options should be clearly identified.

Within the 3D visualisation of FileVis, the user is always aware of the possible options for exploration.

Objects within the visualisation can be browsed and explored by simply moving towards them. Objects

which can be selected for more detail using the textual windows are provided with a graphical

identifier. Selecting this identifier displays more detailed information in the textual windows. Within

the textual windows the possibilities for navigation are shown, with hypertext links visibly highlighted

and graphical icons in the text illustrating a relationship to the 3D visualisation.

III. Reduce disorientation

The problem of disorientation is a major issue when exploring a large information space or large

software visualisation. Storey et al suggest that disorientation can be alleviated by removing some of

the unnecessary cognitive overheads resulting from poorly designed user interfaces, and by making use

of specialised graphical views for presenting large amounts of information.

E14. Reduce additional effort for user-interface adjustment

Poorly designed interfaces wi l l induce extra overhead. Available functionality should be visible and

relevant and should not impede the more cognitively challenging task of understanding a program.

Significant cognitive overhead may be introduced due to the disorientation caused by switching

between different mental models or views on the software system.

162

Chapter 6 Evaluating the visualisations

FileVis makes use of web-browser technology for implementing the interface to the software

exploration tool. This provides users with an instantly recognisable interface and familiar methods for

navigating through the documentation and views on the software system. The 3D visualisation does,

however, present a vastly different interface to that with which most users wi l l be accustomed.

Navigation through the virtual environment becomes natural with practice but wi l l almost certainly lead

to some disorientation on first use. The move between different views of the software system is

intentionally smooth, with various views visible at any time.

For complex graphical representations, automatic layout algorithms are often used to display the

representations in a more readable manner. Although software has no inherent shape or colour, a graph

can be produced in such a way that it communicates key characteristics about the software.

The presentation style used is consistent throughout the FileVis prototype and is presented in a clear,

well-structured manner. The source code is formatted and indented clearly, with the possibility for

including syntax highlighting at a later stage. Detailed displays of information on selected software

objects are consistently formatted and presented in a structured form. The 3D visualisation is also well

structured and contains minimal graphic clutter.

It can be seen from the previous discussion that FileVis performs well against the cognitive design

elements. In particular, it directly supports elements E l , E5 to E l l , E13 and El5. These elements

include support for top-down comprehension, bottom-up comprehension, construction of multiple

mental models, navigation and orientation. Elements E3 and E4 are only weakly supported by FileVis

but are integral within the visualisation design, enabling them to be supported relatively easily with

future development. These elements address aspects of user-defined abstractions, manipulation and

annotation of the visualisation, and are not currently supported by the limited interaction provided in

The only elements which would be inherently difficult to support or address within FileVis are E2, E12

and E14. Element E2 is concerned with reducing the effect of delocalised plans which would require

considerably more low-level detail within the visualisation. Element E12 requires the visualisation to

show the path which led to the user's current focus. This is a particularly difficult feature to implement

within a 3D environment in which the user has complete navigational freedom. Displaying a history of

visualisation elements investigated by the user could provide some support, as well as a history of

hyperlinks followed within the textual views. Finally, element E14 is concerned with reducing the

additional effort for user-interface adjustment. Although FileVis does use the common and identifiable

interface of a web browser, there wi l l always be a relatively steep learning curve required for navigation

E15. Provide effective presentation styles

6.6.3 Conclusions

FileVis.

163

Chapter 6 Evaluating the visualisations

within the 3D virtual environment. Such navigation is relatively intuitive with practice but presents a
significant challenge to the unfamiliar user.

It can be seen from the above summary that FileVis performs well against the cognitive design elements

proposed by Storey et al. These design elements are intended to evaluate the effectiveness of a software

exploration tool, specifically for the purpose of program comprehension. The evaluation presented in

this section provides an initial indication that FileVis is suitable as a software exploration tool to aid

program comprehension. Experimental evaluation of FileVis as a program comprehension tool would

prove an interesting extension to this research work, with a particular focus on the limitations of the 3D

environment and the interface familiarisation time required.

6.7 Summary
This chapter has presented an evaluation of the prototype visualisations developed within this research

and described in Chapter 5. The evaluation has taken a number of forms, ranging from an informal

discussion of the pros and cons of each visualisation, through to a more formal evaluation of FileVis

against the desirable properties identified within this research. In order to provide evaluation of the

prototypes as program comprehension tools, a further evaluation of FileVis was performed against a

framework of cognitive design elements identified by Storey et al [Storey97].

Chapter 2 highlighted the need for both an evaluation framework and design guidelines to aid the

effective application of software visualisation. In order to evaluate 3D visualisations and

representations, this research has proposed an evaluation framework based upon the desirable properties

identified in Chapter 4. This framework was used to evaluate the FileVis visualisation. It was found that

FileVis performed well against this evaluation, focusing on a number of specific properties while

providing broad support for many of the other desirable properties. It is also apparent from the

evaluation that the different components of FileVis must behave both as visualisations and

representations depending on their context. Chapter 4 highlighted the fact that, in such circumstances, it

is necessary to find a good compromise between the desirable properties of each. It is evident from the

evaluation that FileVis manages to achieve this compromise. The visualisations and representations of

FileVis often displayed a bias towards certain desirable properties, but were paired so as to compliment

the strengths and weaknesses of each other.

The informal evaluation (section 6.3) illustrates that the visualisations developed within this research

each address different issues within the field of 3D software visualisation. This approach has provided a

wide range of possible models for future visualisations and identified the benefits and possible pitfalls

of each approach. The FileVis visualisation was highlighted as a particularly well-developed software

visualisation, being subjected to a number of different evaluation techniques to arrive at this conclusion.

The use of a framework of cognitive design elements establishes the suitability of FileVis as a software

exploration tool. This showed the visualisation supporting a variety of program comprehension models

164

Chapter 6 Evaluating the visualisations

and enabling the user to obtain maximum information by exploring the software system using
whichever technique proves most profitable at each stage.

Finally, this chapter has also highlighted the usefulness of the desirable properties, as an evaluation

framework for assessing the strengths and weaknesses of visualisations and representations. This

evaluation enables an objective assessment of properties which a visualisation or representation should

support, though the overall suitability of a particular visualisation or representation is very subjective

and dependent on the context of use. Considering the desirable properties does, however, allow the

identification of particular strengths or deficiencies within a software visualisation thus enabling more

focused improvement and modifications.

The following chapter provides the conclusions drawn from this research work and evaluates it against

the criteria for success identified in Chapter 1.

165

Chapter 7.

Conclusions and summary

7.1 Introduction
This chapter presents a summary of this thesis and evaluates the success of the research work against

the criteria defined in Chapter 1. Possibilities for further work and future directions are also discussed.

The following section presents a review of the background of this work, summarising the introduction

from Chapter 1.

7.2 Background
Visualisation provides a powerful analytical tool to aid understanding of complex systems, particularly

enabling the identification of features, patterns and irregularities within such systems. Software systems

are inherently abstract structures; they are information artefacts and have no physical form or intuitive

appearance. For this reason, software systems are very difficult to visualise. Various theories of

program comprehension put emphasis on the construction of a mental model of the software within the

mind of the maintainer. These same theories hypothesise a number of techniques employed by the

maintainer in the construction of this mental model. Software visualisation attempts to provide tool

support for generating, supplementing and verifying this mental model or understanding.

Software visualisation is concerned with all aspects of generating and manipulating graphical models of

a software system. Most software visualisation systems concentrate on producing two-dimensional

representations and animations of some aspect of a software system. This research investigates the

application of 3D graphics and virtual reality technology to software visualisation. The use of 3D

addresses a growing need for more expressive powers to represent the inherently multidimensional data,

facts and relationships, which constitute a software system. Humans possess naturally developed

capabilities for navigating and interacting within three-dimensional environments. This research aims to

maximise utilisation of such skills by creating software landscapes and immersing the user within them.

Software landscapes are detailed, information-rich virtual environments in which the characteristics and

attributes of a software system are mapped directly to features of the virtual world.

The field of information visualisation is concerned with the visualisation and representation of semantic

information, in particular, large document collections and other such information structures.

Information visualisation, as opposed to data visualisation, concentrates on the visualisation of more

abstract components that have no inherent visual representations. A significant amount of research has

166

Chapter 7 Conclusions and summary

investigated the application of 3D graphics and VR technology to information visualisation, as
documented in Chapter 3. Software systems can be considered as simply another collection of abstract
data, files, facts and relations; essentially as information. Techniques and ideas generated from research
into 3D information visualisation can be applied to the visualisation of software systems. Similarly,
techniques and ideas identified within this research should be of interest to the more general field of 3D
information visualisation.

The full potential of using three dimensional views and interaction techniques is far from being

realised, however, a number of software visualisation systems have been developed to investigate its

worth, as described in Chapter 3. In general, these systems do not make full use of the 3D environment

or advance software visualisation to any great extent. The majority simply extend and adapt already

established 2D visualisation techniques into 3D. Such techniques consist mainly of displaying a graph

or network structure showing the relationships between components in a software system. These

visualisations rarely extend beyond the simple node-link representations evident in almost all software

visualisation systems to date. The field of software visualisation should not be restricted to solely one

view of a software system, other possibilities must be investigated and the goal of this research is to do

just that.

This research provides an investigation into the application of 3D graphics and VR technology to the

visualisation of software systems. The goal of this research is to investigate other representations, visual

abstractions and appropriate metaphors, which make full use of the 3D virtual environment afforded by

cyberspace. Two aspects are addressed, the first being a theoretical look at the important issues of a

visualisation and what properties define a good or bad visualisation. The second aspect provides a

practical investigation of possible visualisation scenarios by discussing and evaluating a number of

prototype software visualisation systems created throughout the course of this research.

The following section provides a discussion of the work presented within this thesis, identifying what

was accomplished. This is followed by an evaluation of this research work against the criteria for

success defined in Chapter 1. Finally, possibilities for further work and future directions of this research

are identified.

7.3 Results
The overall aim of this thesis is to investigate the application of 3D graphics and VR technology to

software visualisation, identifying new representations, visual abstractions and appropriate metaphors

which make full use of the 3D environment afforded by cyberspace. The work described within this

thesis succeeds in accomplishing this goal by providing both a theoretical and practical contribution.

Chapter 4 introduced the main theoretical work of this thesis. This described seven key areas of 3D

software visualisation. These seven areas identify essential issues that must be considered when

contemplating the design or evaluation of a 3D software visualisation. Definition of these areas

167

Chapter 7 Conclusions and summary

provides an important categorisation of the issues involved and allows more meaningful discussion and
comparison of visualisations.

A further step was to redefine the notion of a visualisation into two discrete concepts, visualisations and

representations, providing a definition of each term. This division is particularly important and aids

considerably in the creation, evaluation and discussion of a 3D software visualisation, or in fact any 3D

visualisation. The division essentially creates two concepts, the notion of a visualisation, which entails a

collection of visualisation objects (representations), and a representation, which corresponds to a single

object within the visualisation. This provides a framework for discussing the desirable features of both

visualisations and representations, including the context of use for each and the transition between these

two states.

Finally, identification of the desirable properties of both visualisations and representations was made,

enabling identification of what constitutes good or bad features within a 3D software visualisation.

These desirable properties provide a framework for the design of a visualisation but also allow a

qualitative evaluation of an existing visualisation. Although the use of these properties does not allow

for a definitive assessment of the quality or suitability of a visualisation as a whole, it does provide

substantial insight into the strengths and weaknesses of a visualisation and highlights any predisposition

towards a particular aspect of the visualisation. As an aid to design, these desirable properties provide a

focus on important aspects of the visualisation, enabling the designer to plan a visualisation, which

accentuates appropriate aspects while achieving a good compromise with other properties.

Chapter 5 presented the results and practical aspects of this research work by way of a number of

visualisation prototypes and concept demonstrators. These prototypes add weight to the more

theoretical work described above as well as providing a visible introduction as to what a 3D software

visualisation may look like, the various options available and the issues involved. The prototypes

presented address a number of issues with 3D software visualisation, including: the need to present

strong relational information in an unobtrusive manner; the use of strong or weak metaphorical content;

and the creation of an integrated visualisation which incorporates strong correlation to detailed

documentation.

Chapter 6 provided an evaluation of these prototype visualisations using a variety of different

approaches. This evaluation included an informal discussion of the visualisations presented and a more

detailed evaluation of one particular visualisation. This detailed evaluation was performed using the

desirable properties identified in Chapter 4 followed by evaluation against a framework of cognitive

design elements. The evaluation illustrated the relative merits and deficiencies of each visualisation and

identified that there are substantial benefits in the use of virtual reality for software visualisation.

The results of this thesis can be summarised as follows:

• Illustration of the possibilities afforded by 3D graphics for software visualisation and program

comprehension.

168

Chapter 7 Conclusions and summary

• Definition of seven key areas of 3D software visualisation, namely: representation, abstraction,
navigation, correlation, automation, interaction and scalability.

• Definition of the two terms, visualisation and representation, providing a distinct division within

the concept of a software visualisation and enabling improved discussion of inherent properties.

• Identification of desirable properties for both visualisations and representations, providing support

for the design and evaluation of a 3D software visualisation system.

• Development of a variety of prototype visualisations, each providing a different approach to the

visualisation of software information. These prototypes also demonstrate the practicalities and

feasibility of 3D software visualisation.

• Evaluation of these prototypes using a variety of evaluation techniques, thus providing a wide

picture as to the merits and possibilities afforded by 3D software visualisation.

The following section will evaluate this research as a whole against the criteria for success defined in

Chapter 1.

7.4 Evaluation against the criteria for success
The criteria for success, defined in Chapter 1, are reiterated here in addition to a brief evaluation of how

this research has addressed each criterion. Criteria A and B are concerned primarily with the theoretical

aspects of this research, while criteria C through F are concerned more with the practical aspects and

the prototype visualisations produced.

A. Identification of the key aspects of 3D software visualisation.

The research work described in Chapter 4 explicitly defines seven key areas of 3D software

visualisation. These areas have intentionally high-level descriptions but provide focus on aspects of

3D software visualisation, which are important when designing such systems. Further to this,

definition of the terms visualisation and representation are presented, providing a conceptual

division between the components of a visualisation. This division aids more focused discussion of

the properties and features of a 3D visualisation, and helps to identify properties that are important

in the creation of a successful 3D software visualisation.

B. Development of a framework to aid in both the design and evaluation of a 3D software

visualisation.

The distinction between the concepts of a visualisation and a representation allow for a more

detailed analysis of what constitutes a good or bad visualisation. This research has identified a

number of desirable properties, which are conducive to a good visualisation. These desirable

properties can be used as an aid to the design of new visualisations, but also as a framework for

169

Chapter 7 Conclusions and summary

evaluation of an existing visualisation. As an evaluation framework, the desirable properties cannot
provide a definitive statement of whether a visualisation is good or not. They can, however, provide
an objective view as to the strengths and weaknesses of a particular visualisation and identification
of any compromise made between properties.

C . Demonstration of the possibility for a move away from traditional graph-based visualisations of

software systems, providing a more intuitive visualisation, which makes full use of the additional

flexibility afforded by VR.

This research has identified a need for visualisations that make full use of a virtual environment,

and has demonstrated the practicality and feasibility of such an approach by way of a number of

concept demonstrators. These prototype visualisations address a number of possible views on

software information, ranging from an alternative and more flexible visualisation of graph

structures, through to the construction of a full software landscape within which the user is

submerged. Further investigation has also addressed the use of strong, real-world metaphors within

these visualisations and identified issues involved with such an approach. The prototypes have

demonstrated a definite possibility for dedicated 3D software visualisations, as well as highlighting

many of the gains to be made through such an approach. Evaluation of File Vis against the cognitive

design elements, E l to E l 5 , has shown that it is possible to create a viable tool to aid program

comprehension using 3D graphics and virtual reality.

D. The representations or abstractions used must be intuitive and easily understandable (with

practice).

The visualisations demonstrated within Chapter 5 all incorporate simple and often familiar

concepts. Each visualisation is relatively easy to understand and use after only a short time spent

with interface familiarisation (between different visualisations). The amount of information

presented within each visualisation varies greatly. For example, FileVis provides an abstract,

information-rich view of a software system, whereas SoftCities provides a more realistic metaphor-

based approach with consequently lower information content. The full visualisation system

demonstrated in FileVis makes use of a web-browser interface, providing a well known and

intuitive front-end to the visualisation system. The use of a virtual reality system does, however,

present a significant problem with interface familiarisation in general. As mentioned above, once

familiar with the VR system, the interface varies little between visualisations. A new user to the

VR system will, however, require some time learning the new interface and movement techniques,

and will undoubtedly suffer frequent disorientation until proficient with the system.2

2 This, however, is a problem associated with most VR systems.

170

Chapter 7 Conclusions and summary

E . The visualisations should scale up satisfactorily, allowing visualisation of both small programs and
large software systems.

The prototype visualisations described in this thesis are predominantly handcrafted concept

demonstrations. As such, it has not been possible to physically test the visualisations with large-

scale software systems. The exception to this being Zebedee and SoftCities, which are both

automatically generated visualisations. These have each been tested with medium-size software

systems, up to approximately 25,000 lines of code, containing over 400 functions. Zebedee

performed poorly, with the complexity of the visualisation increasing rapidly with the size of the

software system or graph structure. SoftCities performed well, providing a visual indication to

software evolution and areas of change between revisions. FileVis, although handcrafted, was

designed specifically to view large-scale software systems and should cope reasonably well.

F . A suitable level of automation, or the possibility for automation, must be demonstrated.

As previously mentioned, the prototype visualisations demonstrated in Chapter 5 are predominantly

handcrafted, however, each was designed expressly with capabilities and features to aid automation

of the process. Zebedee and SoftCities are visualisations in which this automatic generation is

actually implemented and provides a suitable demonstration of the feasibility of such an approach.

Other visualisations include features, such as regularly sized and placed representations, which are

conducive to automatic generation. One of the desirable properties identified in Chapter 4

highlights the issue of automation; each of the visualisations presented here addresses this property

well.

From the above evaluation, it can be seen that this research has successfully addressed all of the criteria

that were defined at the beginning of the project. The only weak areas which did not receive as much

attention as originally planned are the issues of scale and automation, defined in criteria E and F. These

two issues are closely related, because, to fully investigate the issues of scale it is necessary to visualise

large-scale software systems. Unfortunately, this is not feasible unless the visualisations are generated

through some automatic process. Creating a prototype visualisation that is fully automated, such as

Software Cities, is a time consuming and limiting task. It was decided that the research effort was more

profitably spent by investigating a wider variety of visualisation techniques, necessitating the manual

creation of a number of prototype visualisations. The author believes that this approach has provided a

broader insight into the possibilities of 3D software visualisation, while still having consideration for

the issues of automation and scale.

171

Chapter 7 Conclusions and summary

7.5 Insights into 3D software visualisation
Throughout the course of this research, and in particular through the identification of the desirable

properties and development of the concept demonstrators, various lessons have been learnt and

observations noted. While many of these are not of direct relevance to the focus of this thesis, they are

nevertheless useful insights into aspects of 3D software visualisation. This section highlights a number

of these insights, referring, where possible, to the relevant pages of this thesis where these observations

have been mentioned.

To reiterate, many of the statements listed here are simply observations and insights, they have not been

experimentally or formally derived. The majority of these insights have been identified elsewhere

within this thesis, this section simply serves as an amalgamation and focus of these points. The points

listed below have been loosely grouped into three categories: general, automation and metaphor

content.

7.5.1 General

• Within software systems there is a large variety of information which can often only be displayed

within a two-dimensional view. It is inevitable that for some aspects of a software system it will be

inappropriate to radically change the way in which the information is presented (Page 40).

• There are many possible visualisations for the numerous different aspects of a software system.

There will inevitably be a high level of diversity, which will make it difficult to integrate these

disparate views into a single, general-purpose visualisation of a software system (Page 80).

• Virtual environments are currently not very effective at displaying textual information (Page 109).

• 3D positional audio cues would provide a very powerful location mechanism for objects that may

be out of immediate sight. These would aid considerably in directing the user's attention (Page

117).

• Software visualisation provides software objects with a visual, and often characteristic, appearance.

The ability to identify such characteristics enables users to focus their attention quickly on areas of

potential interest. This ability is one of the most powerful assets which software visualisation can

provide (Page 120).

o The use of motion or rotation, if used sparingly, is particularly useful for highlighting objects and

for commanding the user's attention (Page 133).

• Altering the dimensions of spatially distributed representations is not recommended unless

accompanied by some static reference point, such as a ground plane. Doing so presents additional

problems with depth perception and proves detrimental to understanding the structure of a

172

Chapter 7 Conclusions and summary

visualisation. It becomes extremely difficult to differentiate between the distance of a
representation, and its size, thereby destroying any instinctive assumptions on the 3D structure and
inducing disorientation (Page 133).

The ability to manoeuvre within the 3D environment and to examine it from different angles

contributes greatly to the comprehension of the structure (Page 100). Static images and screenshots

of 3D visualisations cannot convey this ability.

5.2 Automation

Allowing the user to 'build' the visualisation while investigating areas of the software system may

prove more intellectually profitable than fully automating the process with the user then gaining

their understanding from the completed visualisation (Page 85).

The goal should be to use automation to provide a rough framework for the visualisation, and then

allow the user to manipulate this as he or she explores, providing a deeper semantic meaning which

is extremely hard to encapsulate automatically (Page 143).

A lack of explicit connections between representations enables the user to position or group them

freely, as they see fit, allowing them to impart some semantic structure to the visualisation. (Page

137).

The layout algorithm used provides the dominant characteristics of the visualisation and contributes

greatly to the ease or difficulty with which the structure can be understood (Page 134).

Automatic clustering is often a very subjective approach due to the. number of possible

interpretations of 'close', both semantically within the information and also graphically within the

visualisation (Page 47).

When changes are made to the underlying software system, it is imperative that the new

visualisation changes as little as necessary in order to reflect this (Page 85).

5.3 Metaphor content

Metaphors are very effective tools for visualisation, but only remain so as long as the user's

expectations are not violated. Breaking a metaphor can destroy any benefits gained from their use,

adversely affecting comprehension of the visualisation. This restriction makes incorporation of

additional information particularly difficult (Page 139).

Metaphors are useful for encouraging comprehension of the environment and the information

contained within it, whereas abstract constructs are useful for actually encoding information and

offering maximum flexibility for the display of that information (Page 48). Using a strong real-

173

Chapter 7 Conclusions and summary

world metaphor will constrain the visualisation to displaying certain information in a particular
way and may be over-restrictive for adding additional features (Page 91).

• Regardless of whether the visualisation is abstract or metaphor-based, there will always be a

necessity to explain how the information is mapped onto the features of the visualisation. It is

unlikely that a visualisation can be created which requires no initial instruction, regardless of the

metaphor used.

• There may be many cases in which the mapping from software features to a metaphor will present

problematic decisions. For example, the choice of viewing maintenance as a constructive or

destructive activity. Different maintainers will have different views and expectations, making one

choice of metaphor less appropriate than another (Page 123). There are inevitably a large number

of metaphors which should be avoided due to conflicting individual interpretations of those

metaphors, identification of such metaphors will not be easy.

• Ideally, a visualisation should aim to strike a careful balance between the use of metaphor and the

use of more abstract constructs (Page 48).

7.6 Further work
The theoretical and practical work presented within this thesis has provided a framework for further

investigation into the issues of 3D software visualisation. This research work has illustrated a definite

need for further investigation into this potentially profitable area (in terms of program comprehension

and software maintenance tasks), and has demonstrated the potential of such an approach. There are a

number of future directions which could be investigated, this research providing a basis for such

investigation. Several possibilities for further work will be highlighted here.

This research has essentially provided a first-step into the field of 3D software visualisation, that is,

where the user is effectively immersed within the structure of a software system. At present the work

here has concentrated purely on static, structural views of a software system and primarily considered

single-user visualisations. Further work could investigate the issues involved with presenting more

detailed or dynamic views of software operation. Details such as data usage, memory allocation,

concurrent process interaction, and simple cross-referencing are all candidates for inclusion in the

visualisation model.

There are many issues involved in the use of multi-user virtual environments. Such environments have

obvious advantages within software maintenance, where it is typical for teams of software engineers to

be closely involved in a project. Often the individuals within a project are geographically dispersed.

Allowing shared use and interaction with a software visualisation and providing sophisticated

communication features between users has the potential to be of great value. In the case of shared

virtual environments, tools should be created to allow communication between users and other, more

passive features such as identification of users. Even simple information is useful, such as the location

174

Chapter 7 Conclusions and summary

of a particular user, what they are currently looking at, and what action they are performing. There are
many other issues involved with shared visualisations, the most difficult of which will be the provision
of consistency throughout the visualisation, while still allowing users to exert some control over the
structure and nature of the visualisation.

A further analysis of potential user tasks within a 3D software visualisation should be performed.

Identification of these tasks, the requirements of the users and the possibilities for providing support

within the visualisation are all important issues. During the course of this research a number of user

tasks were identified. Further investigation and support for these tasks would be a logical progression of

this work. The tasks identified were browsing, searching, interrogation, communication, modification,

manipulation, customisation and annotation.

The visualisations demonstrated within this thesis all present relatively small software systems. There

are many issues involved with the visualisation of significantly larger software systems; the seven key

areas identified in Chapter 4 still being relevant here. The prototypes discussed in Chapter 5 address the

areas of representation, abstraction, correlation, automation and scaling to a large degree, however the

areas of navigation and interaction have received considerably less attention. These areas should be

addressed in future work. Navigation is particularly important for the visualisation of large software

systems, while good interaction is necessary in the development of virtual tools and usable visualisation

systems.

Finally, in order to create usable 3D software visualisations, a comprehensive range of tools for use

within this environment must be provided. It is foolish to assume that all standard views of software

systems can be completely replaced using virtual reality. As mentioned earlier, software visualisations

will not replace traditional views of software, they will work best as a supplement to those views. The

goal should be to produce systems that require as little diverted attention from the user as possible. In

other words, the fewer occasions in which the user must disengage from the 3D environment to consult

information within another view, the better. In order to support this desire we must develop virtual tools

for use within cyberspace which allow the user to access information, navigate within the visualisation,

or even communicate with other users of a shared environment. Identification of the user's needs and

methods for supporting these needs within the virtual environment would provide a valuable extension

to this work.

7.7 Closing statement
This research has provided a valuable first-step towards the visualisation of software in cyberspace.

Several essential issues in the design and evaluation of 3D software visualisations have been identified,

from both a theoretical and a practical perspective. This research has shown that the application of 3D

graphics and VR technology to software visualisation is not only possible, but also worthy of further

study.

175

Chapter 7 Conclusions and summary

This research has succeeded in its goal, which was to investigate the application of 3D graphics and VR
technology to the visualisation of software systems, and to identify new representations, visual
abstractions and appropriate metaphors for use within the 3D environment.

176

Glossary of abbreviations

Abbrev­

iation

Meaning Description or relevant section / page

(where applicable)

2D Two-dimensional

3D Three-dimensional

API Application program

interface

The interface (calling conventions) by which an application

program accesses operating system and other services.

AR Augmented reality Section 3.2.4, "Types of VR systems", page 31.

CAD Computer aided design Section 3.2.1, "Virtual reality systems", page 26.

CD Compact disc An optically read, digital storage medium.

C S C W Computer supported co­

operative working

Software tools and technology to support groups of people

working together on a project, often geographically distributed.

FDP Force-directed placement Section 3.3.1, "Self-organising graphs", page 43.

GUI Graphical user interface The use of pictures rather than just words to represent the input

and output of a program.

HMD Head-mounted display Section 3.2.4, "Immersive VR", page 31.

H T M L Hyper-text mark-up

language

A hypertext document format used upon the World-wide web.

IV Information visualisation Section 3.3, "Information visualisation", page 32.

L C D Liquid-crystal display An electro-optical device used to display digits, characters or

images. Commonly used within head-mounted display

interfaces for VR systems.

L E A D S Legibility for abstract data

spaces

Section 3.3.2, "Legibility enhancement", page 60.

L O C Lines of code A software metric often used as an indication to the size of a

software system.

OOI Object of interest Section 3.3.1, "Sphere visualisation", page 41.

PIT Populated information

terrain

Section 3.3.2, "Populated information terrains (PITs)", page 51.

POI Point of interest Section 3.3.2, "VR-VIBE", page 55.

177

User interface

Virtual environment

Virtual reality

Virtual reality modelling

language

Window on world

World-wide web

The aspects of a computer system or program which can be

seen (or heard or otherwise perceived) by the human user, and

the commands and mechanisms the user uses to control its

operation and input data.

Section 3.2, "Virtual environments and VR systems", page 26.

Section 3.2, "Virtual environments and VR systems", page 26.

A specification for the design and implementation of a

platform-independent language for virtual reality scene

description.

Section 3.2.4, "Window on World (WoW) or Desktop VR",

page 31.

An Internet, client-server, hypertext distributed information

retrieval system which originated from the CERN High-Energy

Physics laboratories in Geneva, Switzerland.

178

References

[Adam93] J.A. Adam, Virtual Reality Is For Real, IEEE Spectrum, Vol. 30, No. 10, pages 22-29,

October 1993.

[Ball96] T. Ball and S.G. Eick, Software Visualisation in the Large, IEEE Computer, Vol. 29,

No. 4, pages 33-43, April 1996.

[Basili82] V.R. Basili and H.D. Mills, Understanding and Documenting Programs, IEEE

Transactions on Software Engineering, Vol. SE-8, No. 3, pages 270-283, March 1982.

[Benedikt91] M. Benedikt, Cyberspace: Some Proposals, In Cyberspace: First Steps, MIT Press,

pages 273-302, 1991.

[Benford94a] S. Benford et al, Experience of using 3D graphics in database visualisation,

Computing Department, Lancaster University, October 1994.

[Benford94b] S. Benford and J . Mariani, Populated Information Terrains: Virtual Environments for

Sharing Data, Research report CSCW/4/1994, Centre for Research in CSCW, Lancaster

University, 1994.

[Benford95] S. Benford, D. Snowdon, C . Greenhalgh, R. Ingram, I . Knox and C . Brown, VR-

VIBE: A Virtual Environment for Co-operative Information Retrieval, Eurographics'95,

30th August - 1st September, Maastricht, The Netherlands, pages 349-360, 1995.

[Boyle93] J . Boyle, S. Leishman, J . Fothergill and P. Gray, Development of a Visual Query

Language, Aberdeen University, 1993.

[Brooks77] R. Brooks, Towards a theory of the cognitive processes in computer programming,

International Journal of Man-Machine Studies, Vol. 9, No. 6, pages 737-742, 1977.

[Brooks83] R. Brooks, Towards a Theory of the Comprehension of Computer Programs,

International Journal of Man-Machine Studies, Vol. 18, No. 6, pages 543-554, 1983.

[Brooks87] F.P. Brooks Jr., No Silver Bullet: Essence and Accidents of Software Engineering,

IEEE Computer, No. 20, pages 10-19, 1987.

[Brown93] M.H. Brown and M.A. Najork, Algorithm Animation Using 3D Interactive Graphics,

DIGITAL, Systems Research Center, September 1993.

[Burd96] E . L . Burd, P.S. Chan, I.M.M. Duncan, M. Munro and P. Young, Improving Visual

Representations of Code, Technical Report 10/96, Centre for Software Maintenance,

University of Durham, February 1996.

[Burkwald98] S.K. Burkwald, S.G. Eick, K.D. Rivard and J.D. Pyrce, Visualizing Year 2000

Program Changes, 6 t h International Workshop on Program Comprehension (IWPC'98),

pages 13-18, Ischia, Italy, June 1998.

179

[Card87] S.K. Card and A .H. Henderson Jr. , A multiple virtual workspace interface to support

user task switching, Proceedings of the CHI+GI 1987 (Toronto, April 5-7). ACM, New

York, pages 53-59, 1987.

[Card91] S.K. Card, G.G. Robertson and J.D. Mackinlay, The Information Visualizer: An

Information Workspace, Xerox Palo Alto Research Center, Palo Alto, California, 1991.

[Chalmers92] M. Chalmers and P. Chitson, Bead: Explorations in Information Visualisation,

Proceedings of SIGIR'92, published as a special issue of SIGIR forum, ACM Press,

pages 330-337, June 1992.

[Chalmers95] M. Chalmers, Design perspectives in visualising complex information, In Proceedings

of ffTP 3rd Visual Databases Conference, Lausanne, Switerland, March 1995.

[Chan97] P.S. Chan and M. Munro, PUI: A Tool to Support Program Understanding, In

Proceedings of the IEEE 5* International Workshop on Program Comprehension,

Dearborn, Michigan, IEEE Computer Society Press, pages 192-198, May 28-30, 1997.

[Chan98] P.S. Chan, Support for an Integrated Approach to program Understanding: An

Application of Software Visualisation, Ph.D. Thesis, Centre for Software Maintenance,

Department of Computer Science, University of Durham, May 1998.

[Clarkson91] M.A. Clarkson, An Easier Interface, BYTE, February 1991.

[Colebourne94] A. Colebourne et al, Populated Information Terrains: supporting the cooperative

browsing of on-line information, Research report CSCW/13/1994, Centre for Research

in CSCW, Lancaster University, 1994.

[Consens92] M. Consens, A. Mendelzon and A. Ryman, Visualizing and Querying Software

Structures, 14th International Conference of Software Engineering ICSE'92,

Melbourne, Australia. May 11-15, 1992.

[Dieberger94] A. Dieberger, Navigation in Textual Virtual Environments using a City Metaphor, PhD

Thesis, Vienna University of Technology, November 1994.

[Dorningue92] J . Domingue, B.A. Price and M. Eisenstadt, A Framework for Describing and

Implementing Software Visualization Systems, In Proceedings of Graphics Interface'92,

Vancouver, Canada, pages 53-60, May 1992.

[Eades84] P. Eades, A hueristic for graph drawing, Congressus Numerantium, 42, pages 149-160,

1984.

[Fairchild88] K .M. Fairchild, S.E. Poltrock and G.W. Furnas, Semnet: Three-dimensional Graphic

Representations of Large Knowledge Bases, in "Cognitive Science and Its Applications

for Human-Computer Interaction", Fairlawn, NJ: Lawrence Erlbaum Associates, 1988.

[Fairchild93] K .M. Fairchild, Information Management Using Virtual Reality-Based Visualizations,

in "Virtual Reality: Applications and Explorations", Alan Wexelblat (ed.), Academic

Press Professional, Cambridge, MA, ISBN 0-12-745045-9, pages 45-74, 1993.

180

[Fenton91] N.E. Fenton, Software metrics: A rigorous approach, Chapman and Hall Publishers,

1991.

[Fenton97] N.E. Fenton and S.L. Pfleeger, Software metrics: A rigorous and practical approach,

Thomson Computer Press, 1997.

[Fruchterman91] T.M.J. Fruchterman and E .M. Reingold, Graph Drawing by Force-Directed

Placement, Software Practice and Experience, Vol 2, Part 11, November 1991.

[Fry95] C . Fry and H . Lieberman, Programming as Driving : Unsafe at any Speed?,

Demonstration, ACM Conference on Computers and Human Interface [CHI-95],

Denver, April 1995.

[Furnas86] G.W. Furnas, Generalized fisheye views, In Proceedings of the ACM SIGCHI '86

Conference on Human Factors in Computing Systems, pages 16-23, 1986.

[Gibson93] W. Gibson, Burning Chrome, reprinted in Burning Chrome, HarperCollins Science

Fiction & Fantasy, ISBN 0-586-07461-9, 1993.

[Gigante93] M.A. Gigante, Virtual Reality: Definition, History and Applications, in Virtual Reality

Systems, Academic Press Ltd., pages 3-14, 1993.

[Graesser81] A .C. Graesser, Prose Comprehension Beyond the Word, New York: Springer-Verlag,

1981.

[GV3D99] The Graph VisualizerSD Project, On-Line project overview, University of New

Brunswick, Last visited July 1999. http://www.omg.unb.ca/hci/proiects/gv3d/

[Henderson86] D.A. Henderson and S.K. Card, Rooms: The use of multiple virtual workspaces to

reduce spatial contention in a window-based graphical user interface, ACM

Transactions on Graphics 5, 3 July, 1986.

[Harel88] D. Harel, On visual formalisms, Communications of the ACM, 31(5), May 1988.

[Hemmje93] M. Hemmje, A 3D Based User Interface for Information Retrieval Systems, In:

Proceedings of IEEE Visualization '93, Workshop on Database Issues for Data

Visualization, San Jose, California, October 25-29, 1993.

[Hemmje94] M. Hemmje, C . Kunkel and A. Willet, LyberWorld - A Visualization User Interface

Supporting Fulltext Retrieval, In: Proceedings of A C M SIGIR '94, Dublin, July 3-6,

1994.

[Hendley95a] R. Hendley and N. Drew, Visualisation of complex systems, School of Computer

Science, University of Birmingham, 1995.

[Hendley95b] R . J . Hendley, N.S. Drew, A.M. Wood and R. Beale, Narcissus: Visualising

Information, University of Birmingham, 1995.

[Hill93] W.C. Hill and J.D. Hollan, History-Enriched Source Code, Computer Graphics and

Interactive Media Research Group, Bell Communications Research, Submitted to ACM

UIST'93, 1993.

181

http://www.omg.unb.ca/hci/proiects/gv3d/

[Ingram95a] R. Ingrain and S. Benford, Legibility Enhancement for Information Visualisation,

Proceedings of Visualization '95, Atlanta, Georgia, October 30 - November 3, 1995.

[Ingram95b] R . J . Ingram, Legibility Enhancement For Information Visualisation, PhD Thesis,

Department of Computer Science, University of Nottingham, September 1995.

[Jerding94] D.F. Jerding and J .T. Stasko, Using Visualisation to Foster Object-Orientated

Program Understanding, GVU Center, College of Computing, Georgia Institute of

Technology, Technical Report GIT-GVU-94-33, July 1994.

[Johnson91] B. Johnson and B. Shneiderman, Treemaps: A space-filling approach to the

visualization of hierarchical information structures, In Proceedings of the 2nd

International IEEE Visualization Conference, San Diego, pages 284-291, October 1994.

[Kennedy96] J.B. Kennedy, K . J . Mitchell, P.J. Barclay, Describing and Characterising

Visualisations, in proceedings of 3 r d FADIVA Workshop, Gubbio, Italy, 1996.

[Kings95] N.J. Kings, Software Visualisation, Report for the Corporate Research Programme,

British Telecommunications, 1995.

[Knight98] C.R. Knight and M. Munro, Using An Existing Game Engine to Facilite Multi-User

Software Visualisation, Workshop on System Aspects of Sharing a Virtual

Environment, Collaborative Virtual Environments (CVE'98), Manchester, UK, June

1998.

[Knight99] C.R. Knight and M. Munro. Comprehension withfinj Virtual Environment

Visualisations. To appear in Proceedings of the IEEE 7 t h International Workshop on

Program Comprehension, Pittsburgh, PA, May 1999.

[Koike99] Koike Labs, VisuaLinda: 3D Visualisation of Parallel Linda Programs, On-Line

Project Abstract, Koike Labs, University of Electro-Communications in Tokyo, Last

visited July 1999. http://www.vogue.is.uec.ac.ip/

[Kraemer93] E . Kraemer and J .T. Stasko, The Visualisation of Parallel Systems: An Overview,

Journal of Parallel and Distributed Computing (18), pages 105-117, 1993.

[Krohn96a] U. Krohn, VINETA: Navigation Through Virtual Information Spaces, in " A V I :

Advanced Visual Interfaces", Ed. T. Cartaci, Gubbio, Italy, ACM, 1996.

[Krohn96b] U. Krohn, Visualization for Retrieval of Scientific and Technical Information, PhD.

Dissertation, 1996.

[Levialdi95] S. Levialdi, A. Massari and L . Saladini, VIRGILIO - Virtual Metaphors for Database

Exploration, FADIVA 2 Workshop, Glasgow, UK, July 1995.

[Letovsky86a] S. Letovsky, Cognitive Processes in Program Comprehension, Empirical Studies of

Programmers, Albex, Norwood NJ, pages 58-79, 1986.

[Letovsky86b] S. Letovsky and E . Soloway, Delocalized Plans and Program Comprehension, IEEE

Software, Vol. 19, No. 3, pages 41-48, May 1986.

182

http://www.vogue.is.uec.ac.ip/

[Lieberman95] H. Lieberman and C . Fry, Bridging the Gulf Between Code and Behaviour in

Programming, A C M Conference on Computers and Human Interface [CHI-95],

Denver, April 1995.

[Littman86] D.C. Littman, J . Pinto, S. Letovsky and E . Soloway, Mental Models and Software

Maintenance, Empirical Studies of Programmers, Albex, Norwood NJ, pages 80-98,

1986.

[Lynch60] K . Lynch, The Image of the City, M.I.T. Press 1960.

[Mackinlay91] J.D. Mackinlay, S. Card and G.G. Robertson, Perspective Wall: Detail and Context

Smoothly Integrated, In Proceedings of the ACM SIGCHI '91 Conference on Human

Factors in Computing Systems, pages 173-179, New Orleans, LA, USA, April 1991.

[Mayrhauser94] A. von Mayrhauser and A .M. Vans, Dynamic Code Cognitive Behaviours For Large

Scale Code, Proceedings of the IEEE 3 r d International Workshop on Program

Comprehension, Berlin, Germany, March 29-31, IEEE Computer Society Press, pages

9-18, 1994.

[Mayrhauser95] A. von Mayrhauser and A .M. Vans, Program Comprehension During Software

Maintenance and Evolution, IEEE Computer, Vol. 28, No. 8, pages 44-55, August

1995.

[Meekel88] J . Meekel and M. Viala, Logiscope : A Tool For Maintenance, Proceedings of

ICSM'88, pages 328-334, 1988.

[Miller93] B.P. Miller, What to Draw? When to Draw? An Essay on Parallel Program

Visualisation, Journal of Parallel and Distributed Computing (18), pages 258-264,

1993.

[Muthukumarasamy95]

J . Muthukumarasamy and J .T. Stasko, Visualising Program Executions on Large

Data Sets Using Semantic Zooming, GVU Center, College of Computing, Georgia

Institute of Technology, Technical Report GIT-GVU-95-02, 1995.

[Myers90] B .A. Myers, Taxonomies of Visual Programming and Program Visualisation, Journal

of Visual Languages and Computing, (1), pages 97-123, 1990.

[Najork95] M. Najork, Visual Programming in 3D, Dr. Dobb's Journal, No. 237, pages 18-31,

December 1995.

[01sen93] K . A . Olsen, R.R. Korfhage, K .M. Sochats, M.B. Spring and J . G . Williams,

Visualisation of a Document Collection: The VIBE System, Information Processing and

Management, Vol. 29, No. 1, pages 69-81, Pergamon Press Ltd, 1993.

[Oman90] P. Oman, Maintenance Tools, IEEE Software, Vol. 23, No. 3, pages 59-65, May 1990.

[Price93] B .A. Price, R.M. Baeker and I.S. Small, A Principled Taxonomy of Software

Visualisation, Journal of Visual Languages and Computing, No. 4, pages 211-266,

1993.

183

[PVMTrace99] The PVMTrace project, On-Line thesis proposal, University of New Brunswick, Last

visited July 1999. http://www.ome.unb.ca/hci/projects/hci-pvmtrace.htrnl

[Quinn79] N. Quinn and M. Breur, A force directed component placement procedure for printed

circuit boards, IEEE Transactions on Circuits and Systems, CAS-26, (6), pages 377-

388, 1979.

[Reiss94] S.P. Reiss, 3-D Visualization of Program Information, In proceedings of GD'94:

DIMACS international workshop on graph drawing, pages 12-24, Princeton, New

Jersey, USA, October 1994.

[Rekimoto93] J . Rekimoto and M. Green, The Information Cube: Using Transparencty in 3D

Information Visualization, Proceedings of the Third Annual Workshop on Information

Technologies & Systems (WITS'93), pages 125-132, 1993.

[Robertson91] G.G. Robertson, J.D. Mackinlay and S. Card, Cone Trees: Animated 3D

Visualizations of Hierarchical Information, Proceedings of the A C M SIGCHI '91

Conference on Human Factors in Computing Systems, pages 189-194, New Orleans,

LA, USA, April 1991.

[Robson88] D.J. Robson, K . H . Bennett, B.J. Cornelius and M. Munro, Approaches to Program

Comprehension, Computer Science Technical Report 11/88, University of Durham,

1988.

[Roman92] G . Roman and K . C . Cox, Program Visualization: The Art of Mapping Programs to

Pictures, Department of Computer Science, Washington University, 1992.

[Roman93] G . Roman and K . C . Cox, A Taxonomy of Program Visualisation Systems, IEEE

Computer, December 1993.

[Sakar92] M. Sakar and M.H. Brown, Graphical fisheye views of graphs, In proceedings of the

ACM CHI '92, pages 83-91, May 3-7, 1992.

[Shneiderman79] B. Shneiderman and R. Mayer, Syntactic / Semantic Interactions in Programmer

Behaviour: A Model and Experimental Results, International Journal of Computer and

Information Sciences, Vol. 8, No. 3, pages 219-238, 1979.

[Shneiderman80] B. Shneiderman, Software Psychology, Cambridge MA: Winthrop Publishers Inc.,

1980.

[Shneiderman91]B. Shneiderman, Tree Visualization with Tree-maps: A 2-d space-filling approach,

Department of Computer Science and HCI Laboratory, University of Maryland, June

1991.

[Shu88] N.C. Shu, Visual Programming, Van Nostrand Reinhold, New York, 1988.

[Soloway84] E . Soloway and K. Ehrlich, Empirical Studies of Programming Knowledge, IEEE

Transactions on Software Engineering, Vol. SE-10, No. 5, pages 595-609, September

1984.

184

http://www.ome.unb.ca/hci/projects/hci-pvmtrace.htrnl

[Soloway88] E . Soloway, B. Adelson and K Ehrlich, Knowledge and Processes in the

Comprehension of Computer Programs, in "The Nature of Expertise", M . Chi, R.

Glaser, and M . Farr (eds.),A. Lawrence Erlbaum Associates, Hillside, NJ, pages 129-

152, 1988.

[Sommerville92] I . Sommerville, Software Engineering, Fourth Edition, Addison-Wesley publishers,

1992.

[Standish84] T.A. Standish, An essay on Software Reuse, IEEE transactions on Software

Engineering, Vol. SE-10, No. 5, pages 494-497, September 1984.

[Stasko92a] J .T. Stasko, Three-Dimensional Computation Visualisation, GVU Center, College of

Computing, Georgia Institute of Technology, Technical Report GIT-GVU-92-20, 1992.

[Stasko92b] J .T. Stasko and C . Patterson, Understanding and characterizing software

visualisation systems, Proceedings of the IEEE 1992 workshop on Visual Languages,

Seattle, Washington, pages 3-10, 1992.

[Storey95] M-A.D. Storey and H.A. Miiller, Manipulating and Documenting Software Structures

Using SHriMP Views, In Proceedings of the ICSM '95 conference on Software

Maintenance, Opio (Nice), France, October 17-20, pages 275-284, 1995.

[Storey97] M-A.D. Storey, F.D. Rracchia and H.A. Miiller, Cognitive Design Elements to

Support the Construction of a Mental Model during Software Visualisation,

Proceedings of the IEEE 5 t h International Workshop on Program Comprehension,

Dearborn, Michigan, May 28-30, IEEE Computer Society Press, pages 17-28, 1997.

[Sutherland65] I . Sutherland, The Ultimate Display, Proceedings of the International Federation of

Information Processing Congress, pages 506-508, 1965.

[Vince95] J . Vince, Virtual Reality Systems, Addison-Wesley publishers, 1995.

[Walker93] G.R. Walker, P.A. Rea, S. Whalley, M. Hinds and N.J. Kings, Visualisation of

telecommunications network data, BT Technology Journal, Vol. 11, No. 4, pages 54-63,

October 1993.

[Walker95] G. Walker, Challenges in Information Visualisation, British Telecommunications

Engineering Journal, Vol. 14, pages 17-25, April 1995.

[Ware93] C . Ware, D. Hui and G. Franck, Visualizing Object Oriented Software in Three

Dimensions, In proceedings of CASCON '93 (IBM Centre for Advanced Studies), pages

612-620, Toronto, Ontario, Canada, October 1993.

[Ware94] C . Ware and G. Franck, Viewing a Graph in a Virtual Reality Display is Three Times

as Good as a 2D Diagram, In 1994 IEEE Conference on Visual Languages, pages 182-

183, St. Louis, Missouri, USA, October 1994.

[Watson95] A.B. Watson and J .T. Buchanan, Towards Supporting Software Maintenance with

Visualisation Techniques, Technical Report R5, University of Strathclyde, 1995.

185

[Wiedenbeck86] S. Wiedenbeck, Processes in Computer Program Comprehension, Empirical Studies of

Programmers, Albex, Norwood NJ, pages 48-57, 1986.

[Wiedenbeck91] S. Wiedenbeck, The Initial Stage of Program Comprehension, International Journal of

Man-Machine Studies, Vol. 35, No. 4, pages 517-540, 1991.

[Wiss98a] U. Wiss and D.A. Carr, An Empirical Study of Task Support in 3D Information

Visualizations, Technical report 1998:31, Lulea University of Technology, 1998.

[Wiss98b] U. Wiss, D.A. Carr and H. Jonsson, Evaluating Three-Dimensional Information

Visualization Designs: A Case Study of Threee Designs, in proceedings of IEEE

Conference on Information Visualization, IV'98, London, England, July 1998.

[Wiss98c] U. Wiss and D.A. Carr, A Cognitive Classification Framework for 3-Dimensional

Information Visualization, Technical report 1998:04, Lulea University of Technology,

1998.

[Wood95] A.M. Wood, N.S. Drew, R. Beale and R . J . Hendley, Hyperspace: Web Browsing with

Visualisation, In Third International World-Wide Web Conference Poster Proceedings,

pages 21-25, Darmstadt, Germany, April , 1995.

[Young97] P. Young and M. Munro, A New View of Call-Graphs for Visualising Code Structure,

Technical Report 03/97, Centre for Software Maintenance, University of Durham,

January 1997.

[Young98a] P. Young and M. Munro, Visualising Software in Virtual Reality, 6 t h International

Workshop on Program Comprehension (IWPC'98), pages 19-26, Ischia, Italy, June

1998.

[Young98b] P. Young and M. Munro, 3D Software Visualisation, l s l International Conference on

Visual Representations and Interpretations (VRI'98), Liverpool, UK, September 1998.

186

