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Abstract 

We demonstrate a renormalisation group improved formulation of QCD pertur

bation theory. A t next-to-leading order (NLO) and beyond this permits a direct 

extraction of the QCD dimensional transmutation parameter, A^s that typifies the 

one parameter freedom of the theory in the l imi t of massless quarks. We apply this 

to a variety of experimental data on e +e~ jet observables at N L O . We take into 

consideration data f rom PETRA, PEP, T R I S T A N , SLC and LEP 1 and 2. In this 

procedure there is no need to mention, let alone to arbitrari ly vary, the unphysical 

renormalization scale /x, and one avoids the spurious and meaningless "theoretical 

error" associated w i t h standard as determinations. A n attempt is made to estimate 

the importance of uncalculated next-to-NLO and higher order perturbative correc

tions, and power corrections, by studying the scatter in the values of A^g obtained 

for different observables. 

We also consider large infrared logarithm resummations in these jet observables 

and present results for the particular cases of the four-jet rate to a next-to-leading 

logari thm approximation and the distributions for the four-jet variables, "light hemi

sphere mass" and "narrow jet broadening" to a next-to-next-to-leading logari thm 

approximation in the perturbative expansion. We apply a simple power correction 

to these variables and obtain remarkably good fits to the data. 
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Preface 

Quantum Chromodynamics (QCD) is now well established as the theory of the 

strong interaction. I t was formulated nearly three decades ago to describe the em

pirical properties of the parton constituents of hadrons. The pioneering experiments 

at the Stanford Linear Accelerator Center (SLAC) investigated the deeply inelastic 

electron-proton scattering. Here evidence was found for a scaling property proposed 

by Bjorken [1]. This scaling behaviour could be explained by the counterintuitive 

idea of partons becoming almost free at large momentum transfers. This asymp

totic freedom at large energy was then a fundamental requirement for any theory 

proposing to describe the dynamics of the partons. The only successful candidate 

was the quantised non-Abelian gauge field theory, QCD. The fundamental matter 

fields (quarks) were then associated wi th the parton constituents of hadrons. Ap

plying the gauge principle to QCD in a manner analogous to that of the theory of 

Quantum Electrodynamics (QED), eight charged gauge bosons (gluons) arise due 

to its non-Abelian nature. The gluons may then self-interact, providing a rich and 

complex structure. As with QED, i t is necessary to renormalise the Lagrangian, but 

in this case, the addition of terms arising due to gluon self-interactions causes the 

running coupling to decrease wi th increasing energy. This is the crucial property of 

asymptotic freedom. A consequence of this is the opportunity to apply a perturba-

tive expansion in the coupling, and obtain a reliable approximation at high enough 

energies. Unfortunately the very procedure of renormalisation, that introduces the 

scaling behaviour, gives rise to an unphysical parameter, /x, and an inherent ambi

guity in the perturbative series order by order. 

Furthermore, this perturbative expansion can only be considered for observable 

quantities away f rom the low-energy (long distance) regime. This forbids any at

tempts to probe the "infrared" physics where a complete description of QCD is 

required. We may tentatively describe quantities that draw a distinct line between 

ix 
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the two regimes as long as care is taken in approaching the boundary. Typically 

these w i l l be subject to "large infrared logarithms" that enhance the coupling at 

al l orders of perturbation theory and require resumming to regain control over the 

approximation. 

In this thesis we shall consider both of these aspects of perturbative QCD wi th in 

the framework of electron-positron (e + e~) annihilation. 



Chapter 1 

Introduction to QCD 

1.1 Introduction 

Quantum Chromodynamics (QCD) is the theory of the strong interaction. I t is 

a quantised non-Abelian gauge field theory buil t upon the powerful gauge princi

ple and renormalisability. I t describes the dynamics of quarks, the constituents of 

hadrons, and gluons, the force mediators. When taken wi th the Electroweak (EW) 

theory of Glashow, Salam and Weinberg i t comprises the SU(3) x SU(2) x U ( l ) 

Standard Model of elementary particles. There are many parallels between QCD 

and quantum electrodynamics (QED), the U ( l ) subgroup describing the interac

tions of electrically charged fermions w i t h photons. In fact the Lagrangian of each 

theory is constructed following exactly the same principles. Wha t separates them is 

the underlying gauge group. Where QED obeys an Abelian U ( l ) invariance, Q C D 

abides by a non-Abelian SU(3) invariance. We shall see how this non-commutative 

algebra gives rise to eight colour charged gauge bosons that can self interact i n 

contrast to the solitary neutral photon. The apparent art if icial manner in which 

QCD is combined w i t h E W theory enables us to treat QCD completely separately. 

The only complication arises in the mass terms of fermion fields. Formally these 

w i l l break global gauge invariance of the Standard Model due to the left and right 

handed components having different gauge quantum numbers. This can be rectified 

through coupling to the Higgs field. In treating QCD separately we are just if ied i n 

neglecting these subtleties and can insert a Dirac mass term 1 

We shall begin by giving a brief introduction to QCD, considering the La-
1Even this shall turn out to be surplus to our needs and typically we shall take the massless 

approximation. 

1 



Chapter 1. Introduction to QCD 2 

grangian 2 and the origin of each of its terms and Feynman rules. Af ter motivat ing 

the perturbative expansion we shall move on to the divergences that arise at each 

order. In particular we shall explore the ideas of renormalisation that w i l l be the 

main focus of this thesis. For a detailed treatment of field theory and in particular 

QCD, see [2, 3, 4], 

1.2 Overview of Quantum Chromodynamics 

1.2.1 The Underlying Gauge Group, SU(3) 

As stated in the previous section, QCD is a quantised gauge field theory based 

on the SU(3) group. I t describes the interactions of spin \ fermion matter fields 

(quarks) w i th spin 1 gauge bosons (gluons) by ascribing the property of colour 

charge. Experimentally these quantum numbers were required to explain the spin 

statistics of various hadrons [5]. Furthermore there are six flavours of quark, namely 

up (u) , down (d), charm (c), strange (s), top (t) and bot tom (b) observed in nature. 

I t suffices to say that wi th in the context of QCD the only difference between them 

is their mass. We indicate approximately these masses in Table 1.1 quoted f rom [6] 

Quark Mass/GeV 
u ~ 0.003 
d ~ 0.006 
s ~ 0.12 
c - 1.5 
b ~ 4.2 
t ~ 175 

Table 1.1: Quark masses 

I n QCD there are three different possible charges and for practical purposes these 

are chosen to take the values of the primary colours (red, green and blue). Each 

quark is then typically ascribed one of three colours. 

A transformation in colour space is then given by 

Qa^q'a = Uab %, 

More precisely the Lagrangian density 

a, b = 1,2,3, (1.1) 



Chapter 1. Introduction to QCD 3 

where Uab is a group element of SU(3) and the qa represent Dirac spinors where 

we have suppressed the spinor indices for clarity. The label a runs over the colour 

degrees of freedom 1, 2, 3 corresponding to red, green and blue. I t is straightforward 

to extend the analysis to a general number of colours, Nc, by considering the group 

SU(NC). The generators of the Lie algebra, T A satisfy the commutation relation 

[TA, TB] = i f A B C T c , A,B,C= 1 ,2, . . . , 7 V C

2 - 1 , (1.2) 

which define f A B C , the structure constants characterising the algebra. The labels, 

A,B,C go f rom 1 , . . . , n , n being the dimension of the Lie algebra (in this case 

n = 8). We can then perform a general unitary local gauge transformation via 

U = exp(-iTA9A{x)), (1.3) 

where 8A(x) is a coordinate dependent parameter. The local gauge principle de

mands that the theory is invariant under the gauge transformation of Equation 

(1.3). In particular when composing the dynamic terms of the matter and gauge 

fields, local gauge invariance must be satisfied. 

1.2.2 The Q C D Lagrangian 

Building upon gauge invariance and utilising Lorentz invariance we obtain the Q C D 

Lagrangian which we may break down as follows, 

^ Q C D = ^quark + ^gluon + ^gauge-fixing + ^ghost - (^-^) 

Creating a dynamic quark term that satisfies gauge invariance we obtain 

N, 

£ q u a r k = Yl ( ^ ( ^ ^ - m U Qb) f • (1-5) 
/=i 

w i t h Nf copies corresponding to each quark flavour. The gamma matrices are de

fined in the usual way and satisfy the Cl i f ford algebra ({7^, 7"} = Zg^)- To preserve 

gauge invariance we are required to define a covariant derivative in exactly the 

same way as QED, 

D» = d» + igTAAA, (1.6) 



Chapter 1. Introduction to QCD 4 

which can be wr i t t en in component form as 

(D,U = d»5ab + igTa

A

bAt. (1.7) 

I n doing so we have necessarily introduced eight gauge fields, AA that correspond 

to the gluons. Since the quarks live in the fundamental representation, we have 

additionally introduced the corresponding generators, T^b. 

Analogous to QED the dynamics of the gauge bosons are incorporated through 

the gauge field strength term, 

^gluon = _ 4 ^ 4 F»v> (!-8) 

where 

K = d ^ - d»< - %lABCAlAc

v. (1.9) 

A crucial aspect of non-Abelian gauge theories is the presence of the last term in 

Equation (1.9) that w i l l give rise to gluon self interactions. Later we shall see how as 

a consequence of this, we obtain the desirable property of asymptotic freedom. We 

also note that f r o m gauge invariance requirements the coupling strength is universal, 

i.e. there is only one coupling (g) needed to describe all QCD interactions. This 

would now seem to be adequate to describe the strong interaction but as w i t h Q E D 

we are forced to include a gauge fixing term. This is needed to eliminate two 

unphysical degrees of freedom of the gauge boson. In imposing gauge invariance the 

gluon fields at tain the f u l l freedom of the gauge transformation, thereby needing 

additional constraints to be placed upon i t before the free gluon Green's funct ion 

can be inverted to give the propagator, 

^gauge-fixing = ~ ^ ) • (1-10) 

This fo rm of gauge fixing defines a covariant gauge. I t has the benefit of preserving 

Lorentz invariance at the expense of needing unphysical ghost fields. This is most 

easily seen wi th in the Fadeev-Popov quantisation of gauge fields by application of 

the path integral formalism. I n composing the generating functional for the gluon 

field we are required to fix the gauge and in doing so introduce a change in the 

invariant measure. According to the exact choice of gauge fixing method this can 

introduce a term that looks like the gluon field (spin 1) but anti-commutes. This 
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then restores gauge invariance and unitar i ty at every order of the coupling by clearly 

unphysical fields. £ represents the gauge parameter which can be defined arbi trar i ly 

since all physical quantities must not depend upon i t . Two popular choices are the 

Feynman gauge (£ = 1) and Landau gauge (£ = 0). I t is also possible to perform 

axial gauge fixing whereby rather than specifying the derivative of the gluon field, 

the product wi th an arbitrary four vector is taken. As such i t manifestly breaks 

Lorentz invariance but has the benefit of being able to quantise the gluon field 

without the need for ghosts. This class of physical gauges are particularly useful 

for resummation calculations enabling a direct interpretation of parton probabilities 

[7]. Since we choose to work in a covariant gauge we must include the ghost term, 

^ghost = VA(-d»DtB)r,B. (1.11) 

where the r]A are the ghost fields and the covariant derivative now includes the 

representation of T A in the adjoint representation, ( T A ) B C = — i f A B C . 

Throughout perturbative QCD calculations, the generators, T\ appear in various 

combinations. We w i l l f ind i t beneficial to define the group invariants or Casimirs, 

Tp, Cp and CA- We begin by normalising the trace 

tv(TATB) = TF5AB (1.12) 

where TF is commonly taken to be 1/2. This then gives for the fundamental repre

sentation 

( N ° - X \ N2 — 1 
CFNc = tv[Y,TATA\ => CF = ^-— (1.13) 

and for the adjoint representation 

CA 5 C D = f A B C f A B D CA = NC (1.14) 

1.2.3 The Feynman Rules 

W i t h the Lagrangian defined we can calculate the Green's functions of QCD and 

hence obtain the Feynman rules. We begin by separating the Lagrangian into a free 

term f rom field bilinears and an interaction term f rom the rest. The free term is 

exactly solvable giving the propagators of the theory. Working in momentum space 
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(i.e. da = —ipa) we can consider the one particle irreducible (1PI) Green's function, 

r ( r u , n F ) ( p ) where nA(nF) is the number of external gluons(quarks). We find for the 

leading term to the quark 2-point function, 

r%2)(p) = -z6ab(t-m), (1.15) 

where the slash notation denotes contraction of a four vector w i t h a gamma matr ix , 

1> — liiV*1- Inverting this we obtain the free quark propagator Aab(p), 

Aab(p) = - -Sab, (1.16) 

Here we have used the ie prescription to ensure causality. I t enforces the correct 

time ordering of fields in integrals over p°. 

Similarly we can obtain the gluon and ghost propagators by inverting the cor

responding 2-point functions. The interactions are obtained by expanding the in 

teraction term perturbatively in the coupling. This w i l l be permissible on condition 

that the coupling is a reasonably small number. We can now extend this to the 

analysis of a particular transition amplitude by breaking i t down into a combination 

of freely propagating particles, interaction vertices and external legs. In this way we 

can generate a perturbative expansion of the transition matr ix element for any given 

process bearing in mind the t ime ordering of fields, etc. [2]. Fortunately there exists 

a shorthand manner to incorporate all necessary conditions via the application of 

Feynman diagrams and rules. These are given below. 

1. Draw all topologically distinct diagrams corresponding to the required in i t ia l 

and final state to a given order of the coupling. 

2. Assign a factor to each vertex, propagator and external leg as given in Tables 

1.2 and 1.3 

3. Wri te down the factors in order of the flow of colour charge. 

4. M u l t i p l y by -1 for every fermion or ghost loop. 

5. M u l t i p l y by -1 for every anti-fermion connected f rom in i t ia l through final state 

6. Ensure momentum is conserved at every vertex 

7. Integrate over all loop momenta wi th a measure of f d 4 £ / (27r ) 4 
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8. Multiply by a factor of 1/n! for a loop of n identical gluons 

The external fermion legs (straight lines) are given by Dirac spinors (u(p),u(p): v(p),v(p)) 

and external gluons (springy lines) by their polarisation vectors (e^*)). Ghosts are 

represented by the dashed lines. In most cases we can take the simplification of 

zero quark masses. This is permissible away from quark mass thresholds by the 

decoupling theorem [8]. We therefore only need be concerned with the number of 

active flavours at a given scale. 

Incoming Particles Incoming Particles 

u(p) 
P 

v(p) 
P 

c»(p) 
p 

Outging Particles 

u(p) 

v(p) 
P 

e^(p) 
P 

Table 1.2: The QCD Feynman rules in momentum space for incoming and outgoing 
particles. Al l particles are assumed to have momentum p going from left to right 
and color charge flows in the direction of the arrow. 
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Propagators 

P 
i(^> + m) 5 a b 

p2 — m2 + it 

A, n O5OT0tftf^ B, v — 
P p2 + it pz + It 

A - B -< 
P p2 + %t 

Vertex Factors 

- g f A B C [(P1-P2W 

+ ( P 3 - P l ) V ] 

(where P\+Pi+Pz = 0) 

gfABCP» 

B,v 

D,a 

-ig2 [fACEjBDE^Ugpa _ 
rADE fBCE\np.v gpo 

+ fAVEfBVE[gi 

eABE fCDE _|_ jABE jCUE^gfiPgVd _ gUCTgVp^ 

Table 1.3: The propagator and vertex factors for Feynman rules in momentum space. 
Al l particles are assumed to have momentum p and the flow of charge is indicated 
by the arrow 
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1.3 Renormalisation 

In this section we shall address the problems of divergences in the theory. There 

are two distinct kinds that arise when performing a calculation within perturbative 

QCD, namely the infrared (IR) and ultraviolet (UV) divergences. We will be par

ticularly interested in the latter which necessitate the procedure of renormalisation 

and give rise to some of the problems this thesis attempts to address. We shall 

commence though with a consideration of IR divergences. 

1.3.1 Infrared Divergences 

This form of divergence arises in the presence of massless gauge fields. I t enters 

into perturbative QCD calculations when a radiated gluon becomes either soft or 

collinear with the emitting parton. Furthermore, when taking the massless approx

imation for quarks we must consider additional collinear singularities from a gluon 

splitting into a qq pair. Perturbative treatment fails to describe this low energy 

behaviour. Cancellations of this divergence from real gluon emission occur at every 

order of perturbation theory for inclusive quantities by incorporating virtual gluon 

corrections. This is because in the infrared limit these states are indistinguishable. 

The infrared divergences are therefore intimately linked with the integration of the 

matrix elements over the phase space. The theorem of Kinoshita, Lee and Nauen-

berg [9], ensures that these IR divergences cancel out in the physical cross sections 

if the degeneracy of the states is introduced. This safeguards fully inclusive observ-

ables, but semi-inclusive and exclusive observables have a restricted phase space. As 

such it is of paramount importance to ensure that the quantity is infrared safe. i.e. 

it is unchanged by the inclusion of an extra parton in the limit that it becomes soft 

and/or collinear. This can be formulated for an observable, A that depends on an 

arbitrary number of external particles with three-momentum, p as 

A( . . . , P i , . . . ) = A( . . . , P j + p k , . . . ) (1.17) 
I R limit 

where a particle with momentum pj has branched into two with momenta pj and 

p k . The IR limit is when one or both of the collinear condition (pj || p k ) and 

soft condition ( |pj | , | p k | —» 0) holds. Clearly this requires the definition of the 

observable to be linear in the three-momentum. In restricting the phase space, we 
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(a) (b) (c) 

Figure 1.1: (a) and (b) represent IR divergent contributions to the LO total cross 
section from real gluon emission and (c) represents the IR diverent conrtibution to 
the LO total cross section from a virtual gluon 

become sensitive to the cancellation of the IR divergences. This manifests itself as 

logarithms of the cut in phase space. We shall see later how this gives rise to the 

problem of large kinematic logarithms in perturbation theory which requires the use 

of resummation techniques to be overcome. 

A simple illustration of the cancellation of IR divergences is that occurring in 

e+e~—>• hadrons at order as. The diagrams with IR divergences are given in Figure 

1.1. In order to cancel the IR divergences we must integrate each separate matrix 

element over the correct phase space. We find that the qqg partons' matrix element 

becomes singular as the emitted gluon becomes soft, and then additionally as it be

comes collinear with the direction of the quark emitter. These singular terms exactly 

cancel with the divergence that arises when integrating over the loop momentum in 

the virtual contribution in Figure 1.1(c). Therefore when taking the sum of 

the result is finite. To actually perform the calculation we need to regulate the 

singularity in a precise manner. There are a number of different regularisation 

procedures, each with their own benefits. Before considering them we shall explore 

the UV divergences. 

1.3.2 Ultraviolet Divergences 

Ultraviolet divergences go straight to the heart of the theory and therefore can 

threaten its very existence. Treating these divergences requires the procedure of 

renormalisation without which a theory is of limited use. Proof of the renormalis-

ability of gauge theories [10] has enabled physical calculations to be performed in 

perturbation theory. Problems first arise at the one loop level when the loop mo

menta is taken to infinity. Unlike with the infrared case there are no cancellations of 

@hadrons — ^0 d V t 2 \ M q Q Q19 (1.18) 
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V 
0% 

p-e 

Figure 1.2: The quark self energy part, 

these divergences. The crucial step is in realising that these divergences correspond 

exactly to shifts in the parameters of the action and hence Lagrangian. Realising 

that these parameters are not physical we trade their finiteness for that of the one 

loop contribution by shifting them by the amount needed to remove the UV diver

gence. This procedure can be repeated for all orders in perturbation theory. I t is 

best illustrated with an example. We consider the most simple diagram containing 

an UV divergence, the quark self energy part obtained from the amputated 2-point 

quark Green's function by the relation T^2\p) = —i5ab(^ — m + i$E(p)) 

Using the Feynman rules and taking the massless quark limit we find 

This is clearly logarithmically divergent but to know by how much to shift the 

Lagrangian parameters requires, once again, a procedure for regularisation. 

1.3.3 Regularisation 

The aim of regularisation is to control the divergence of integrals in a mathematically 

precise manner such that the nature of the singularity is parameterised. There are 

numerous ways of regularising the divergence. Each one has its own merits but must 

somehow break a symmetry of the Lagrangian. 

The simplest method (cut o f f ) is to impose a large momentum cutoff by hand. 

This contravenes both translational and gauge invariance, rendering it useless for 

gauge theories. 

A more sophisticated method is that of Pauli Villars. Here a fictitious mass 

is introduced to alter the propagator by m 2 l l f c 2 —• m^-k2 ~ M 2-fc 2 ' isolating the 

d 4 / / 1 
(2TT) 4 (p + t y p 

(1.19) 

For large momentum this can be rewritten as 

d 4 

/ D ! 7 1 ell 
2?r4 (p + eye2 w £ 4 

—>00 

(1.20) 
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divergence as M —v oo. This respects Lorentz and translational invariance and to a 

certain degree gauge invariance, only breaking down in massive Yang Mills theories. 

It is also possible to regulate the integrals by discretising space-time and placing 

it on a lattice. Now divergences are controlled by the lattice spacing which corre

sponds to a momentum cut off. This breaks Lorentz and translational invariance 

although it is the only method to permit a non-perturbative treatment. 

Lastly we shall consider dimensional regularisation. This has the desirable prop

erties of maintaining Lorentz and gauge invariance in addition to regulating the IR 

divergences mentioned earlier. I t treats the number of dimensions as a parameter 

(D = 4 — 2e) and thus enables the integral to become finite by reducing the number, 

i.e. e > 0. Then by analytical continuation back to 4 dimensions, all divergences 

are isolated by the parameter e. Based on these properties we shall consider this 

method. 

A subtlety occurs when we consider the dimensionality of the Lagrangian. In 

order to keep the correct dimension of the fields and a dimensionless coupling, we 

are forced to put a massive constant, in by hand giving, 

twr^h^- <L21) 

in order to maintain a dimensionless coupling, g. 

Going back to the example of the quark self energy part we obtain, 

S(P) = ~j£yCF Q - 1E + ln(4*) + 1 - In ( j p ) + 0 (e ) ) , (1.22) 

where 7# = 0.57721... is the Euler-Mascheroni constant. The divergence is now 

parameterised as a pole in e and we must investigate ways of eliminating it . 

1.3.4 Renormalisation 

We stated earlier that one loop divergences are essentially equivalent to a shift in 

the Lagrangian parameters. Therefore to renormalise the theory we can introduce 

counterterms in the Lagrangian that generate contributions of equal divergence but 

opposite sign. This is performed by a redefinition of the fields 

qB = Zl/2q, A"B = Zl,2A», VB = Zl/2rj, (1.23) 
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and parameters 

g f l = Z g / u e g , £ B = Z 3 £ , mB = Zmm, (1.24) 

within the Lagrangian. The Z2, Z3, Z3, Zg and Zm

3 multiply the physical fields and 

parameters to give the bare quantities (subscript B) found in the Lagrangian. The 

divergences will then be isolated through the Z renormalisation constants. We note 

that a theory is termed renormalisable if all UV divergences can be removed by the 

introduction of a finite number of renormalisation constants. By substituting for 

bare terms in the Lagrangian we can generate the appropriate counterterms. For 

example the quark term becomes 

qB (i-fdp + ig-fTAA$B) qB = 

+ 
+ 

q{ip)q (1.25) 

(Z2-l)qM)q 

(SZgZ2Zl/2-l)gqTArA*q. 

The first term is exactly the same as in the unrenormalised Lagrangian but 

now we see two extra counterterms arising. Proceeding in a similar manner all 

propagators and interaction vertices will acquire similar terms. 

Returning to the quark self energy part, we can see that the relevant counterterm 

is (Z2 - l)q(i$) q, resulting in E(p) = E(p) B + {Z2 - 1). 

We are now free to subtract off the divergence in the bare self energy with Z2. 

Exactly how much to subtract off is not dictated, merely that the divergence is 

removed. We are at liberty to choose the finite part as we wish. In addition, the 

parameter //, required to give the correct dimensionality, is also completely arbitrary. 

A prescription for how much of the finite part is to be removed in addition to a choice 

for fj, is termed the renormalisation scheme (RS). We shall explore the problems 

associated with this in the next chapter, 

1.3.5 The Renormalisation Group Equation 

I t is clear that the multiplicative renormalisation procedure above can be applied 

directly to any amputated 1PI Green's function such as the quark self energy part, 
3 For the sake of conformity, we have adopted the usual conventions for labelling the Z's 
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E(p). In doing so we obtain a renormalised version that will in general depend on a 

particular value of // and the chosen finite subtraction. Since we are free to choose 

these values we can obtain an answer using two different schemes (unbarred and 

barred), 

£(p) = Z s E ( p ) B , E(p) = % E ( p ) B . (1.26) 

As the renormalisation constants will contain exactly the same divergences we can 

relate E(p) to E(p) by a finite renormalisation, 

£(p) = z£ (p ) . (1.27) 

Here z is finite in the limit e —> 0. This constitutes what is known as the renormal

isation group. The strength of this extends beyond perturbation theory, holding as 

an exact property of the theory. This can be expressed analytically in terms of the 

renormalisation group equation (RGE), utilising the independence of the bare 1PI 

Green's function on the choice of renormalisation scheme, 

^ = 0. (1.28) 
d/i 

Yet again ignoring quark masses and working in the Feynman gauge we obtain, 

r%A'nF\ki,Pj,t,g) = ( Z a ) - " - / 2 ^ ) - ^ / ^ ^ ^ ^ , ^ , ^ ) ^ ^ ) , / . ) , (1.29) 

for n-A gluons with momenta k{ and nF quarks with momenta pj. Differentiating 

with respect to fi we get 

+ ~ riAlAig) ~ nFlF(g) + S(g)^j r ( " - ^ ( A : , , p J , e U ) , g ^ ) ^ ) = 0, 

(1.30) 

where 

H dZ3 

, 7Mg) = 
g e ' ' " V b ; 2Z 3 dfi & c ' ' r v o / 2Z2 dfi 

, n H dZ2 

> 7F(g) 

(1.31) 

Now we shall see a very important property due to the renormalisation group, 

namely that of a running coupling in Green's functions. For simplicity we consider 
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a dimensionless Green's function with no external legs, G(pi, g(/J,), / / ) , and suppress 

the dependence on the gauge parameter. Equation (1.30) then gives 

+ ^(g)^) Wpi.gM,/*) = 0, (1.32) 

where we have introduced a dimensionless scaling parameter t. Since G is dimen

sionless we may write 

G{Pie\ g(n), n) = T ( ^ - ^ e

2 \ g { ^ , (1.33) 

G{pitg(iK-%^-t) = r ( ^ ^ M r i ) • (1-34) 

Changing variable A = \ie~l and utilising the equality of Equations (1.33) and (1.34) 

we can write 

^ G f e e 4 , <?(//),//) = (A^ + ^ ) G{3ne\g{n\v) = 0. (1.35) 

Combining with Equation (1.32) to eliminate the d/d/j, term we arrive at 

( - A ^ + 0 ( g ) ^ ) G ( p 2 e f , ^ ) , f j ) = 0. (1.36) 

This is an homogeneous partial differential equation of order one and may be solved 

by introducing the running coupling constant g(A) defined at a renormalisation scale 

A, 

A f f = /3(g(A)), g(A = 0) = g. (1.37) 

This result holds true when we go to a dimensionful Green's function and demon

strates that the dependence of the coupling on \x can be freely interchanged with 

the energy scale A. In this way a dimensionless observable inherits all of its energy 

dependence from the coupling through the RGE. We shall discuss this in more detail 

in Chapter 2. 

1.3.6 The Running Coupling, ^-Function Equation and 
Asymptotic Freedom 

We have just seen how the coupling constant is really a running parameter dependent 

on the energy as dictated by the QCD ^-function . In practical calculations it has 

become usual to define the strong coupling constant 

r2 
as = (1.38) 

47T 
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and as a result we obtain a slightly altered /^-function 

da (u2) 
^—fyu? = ^ a s ) = ~ / W ~ A <*2 - & < * * + . . . , (1-39) 

where 

H Q - 2Nf 17CA

2 - bCANf - 3CFNf 

A > - j 2 ^ — . A = ( L 4 ° ) 

In fact there are numerous conventions in defining the /3-function of QCD with 

coefficients differing by factors of 2 and n depending on whether the coupling is 

differentiated with respect to fi2 or \x or whether to include factors of 7r with the 

coupling. Regardless of these, the most important aspect of this is the sign of the 

leading term. For QCD, we see that providing Nf < 16 the coupling will decrease 

with increasing energy. This is the much desired property of asymptotic freedom and 

turns out to be a feature of all non-Abelian gauge theories. Furthermore the first 

two coefficients of the /3-function given in Equation (1.40) are universal regardless of 

the choice of renormalisation scheme. In contrast all higher ^-function coefficients 

are scheme dependent and we note in passing that the next two have been calculated 

to the MS scheme (see Section 2.2.1). 

Since we will be dealing with the ^-function extensively, we shall use a definition 

of Stevenson [11] that simplifies the analysis. Noting that as always appears with a 

factor of 7r we define the couplant, a(/j) = as(/z)/7r with corresponding /3-function 

daf^/z) = _ 6 a 2 ( 1 + c a + C 2 a 2 + C 3 a 3 + ^ ( L 4 1 ) 

where now 

6 = 2TT/50 = S c = — . . . . . 
6 Po 

Truncating to one-loop order and integrating up we obtain, 

"Ql du r ( Q l ) da 

(1.42) 

CWl du f f l W l ) da 
- * / — = / ^ ( ! - 4 3 ) 

JQo V Ja(Qo) ° 

which can be separated as 

1 
f n . - M n Q 0 = - 7 7 T T - M n Q 1 = - & l n A , (1.44) 

a{Qo) a(Qi) 
to define a universal massive constant, A. It can be naively interpreted as the scale 

at which the renormalised coupling becomes infinite when extrapolated beyond its 

domain of applicability. We shall give a more sophisticated discussion of A in the 

next chapter. 
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1.4 Experimental Tests of QCD 

To ascertain whether QCD really does describe the strong interaction we must look 

to its theoretical predictions and attempt to test the extent to which it describes 

observed phenomena. Since we are not able to give an exact solution to QCD, 

we are forced into looking at the high energy regime where we have just seen the 

renormalised coupling constant decreases in magnitude and we are able to apply 

perturbation theory. At first sight we still encounter the problem of hadronisation 

affecting any result. We know empirically that the complete spectrum of observed 

hadrons are colour-singlet (colourless) combinations of quarks. The most simple 

solution to this is to calculate completely inclusive observables such as the total 

cross section for e+e~ —>• hadrons that proceeds through the basic mechanism of 

e+e~ —> J*,Z* —> qq with the final state quarks turning into hadrons with unit 

probability. Typically instead of the cross section, the Re+e- ratio is used where 

These fully inclusive variables are unaffected by hadronisation because the proba

bility of going from a partonic state to hadrons is unity. 

There are numerous other interactions one could study but probably the most 

clean is that of electron-positron annihilation. In this process the initial state is 

completely free of strong interactions and can be factorised out as in the R ratio. 

This leaves us free to treat the QCD corrections to the final state in isolation. As 

a result there have been a number of collider experiments taking advantage of this 

process (see Section 1.4.1). 

The next level of calculational sophistication requires a less inclusive quantity. 

We would like, for example, a measure of the angular distribution of the final state 

particles regardless of the actual hadronic state. Considering a perturbative expan

sion we see that to a leading approximation all events will be back-to-back from the 

emission of a quark-antiquark pair. This is verified by experiment. Furthermore, 

including the first QCD radiative correction we are able to emit a hard gluon which 

can take away a significant fraction of the momentum thus giving a well separated 

three parton event. There is of course no guarantee that the subsequent emission of 

^ W - ( Q ) 
cr(e+e —> hadrons) 
cr(e+e~ —> 

(1.45) 
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partons will not diffuse this effect during the process of hadronisation. Fortunately 

the hypothesis of local parton-hadron duality comes to the rescue (see for example 

[12]). This proposes that not only is hadronisation a local effect but furthermore the 

deviation of the momentum flow and quantum numbers is not significant enough 

to destroy the underlying characteristics of the hard partons. This is remarkably 

verified by experiment where exactly the jet structure predicted by perturbation 

theory is witnessed. How exactly to quantify a jet remains debatable provided its 

definition is infrared safe. We will explore the different jet definitions in Chapter 3. 

With a specific choice of jet definition it is then possible to calculate the n-jet 

fraction, 

where Rn begins of order cxn

s~2 (n > 2). Providing a jet algorithm that does not 

induce correlations between the hadronic jets4 is chosen, the n-jet rate can be cal

culated completely within the framework of perturbative QCD. 

There are two further classes of less inclusive quantities that are typically stud

ied. Firstly there are the event shapes that describe the hadronic structure of an 

event by defining measures to reflect certain qualities. Common examples of these 

describe the broadness and mass of the final state jets. Secondly there are the energy 

correlations between pairs of particles/jets. As with the jet rates, these observables 

must satisfy some important properties. Of primary importance is the requirement 

of infrared safety. Without this, its distribution would not be calculable in perturba

tion theory. Furthermore we would like to keep hadronisation effects to a minimum 

by not inducing spurious correlations. Ultimately it goes without saying that it 

must be experimentally determinable. Under these circumstances, these quantities 

too can be calculated within the context of perturbative QCD and have been used 

extensively in determination of the strong coupling constant. These quantities will 

be examined in greater detail in Chapter 3. 
4 B y hadronic jets we mean jets denned such that the hadronisation effects are localised within. 

Unfortunately without an exact treatment of hadronisation we can only attempt to minimise this 
empirically 

Rn — 
a(e+e —> n jets) 

(1.46) 
a(e+e~ -> hadrons) 
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1.4.1 e+e Annihilation Experiments 

Since the inception of QCD, there have been numerous experiments putting it to 

the test. Of these, e+e~colliders have proved popular, providing a clean environ

ment within which to extract the single free parameter of massless QCD. Starting 

from 1982, the PETRA e+e~collider at DESY was the first to measure the jet 

fractions with centre-of-mass energies ranging from y/s = 12 to 46.6 GeV, closely 

followed by the PEP collider (29 GeV) at SLAC and the TRISTAN collider at KEK 

(up to 70 GeV). It was not until the end of the decade that the two dominating 

e+e~accelerators of their generation came online. The LEP experiment at CERN 

(1989) and the SLC at SLAC (1991) began taking data at a centre-of-mass energy 

of 91 GeV equal to the mass of the ZQ boson. Together, they have provided a vast 

number of events orders of magnitude in excess of any other energy scale. This has 

provided the ideal test bed for precision measurements in QCD and has given rise 

to the popularity of quoting as(Mz) as the free parameter of the theory. The LEP 

experiment has since been superceded by LEPII that came online in 1995 operating 

at centre-of-mass energies from just above the Z° mass to 200 GeV. Unfortunately 

the event statistics are far less at these energies. 

1.5 Summary 

In this chapter we have introduced some of the key aspects behind perturbative 

QCD. After examining the Lagrangian and its subsequent Feynman rules, we broached 

the subject of renormalisation that underlies the theme of this thesis. The necessity 

to renormalise the QCD Lagrangian introduced the concept of an asymptotically 

free, running coupling "constant", as. This provided the ingredient so crucial to 

any theory attempting to describe the observed scaling behaviour in deeply inelastic 

electron-hadron scattering. We then considered some of the experimental measure

ments that could be used to test the theory. We shall return to these observables 

later in the thesis for a more detailed analysis, but for now we proceed with a 

discussion of the issues arising during renormalisation. 



Chapter 2 

Renormalisation Scheme 
Dependence 

2.1 Introduction 

We saw in the previous chapter the necessity to renormalise the fields and the param

eters of the Lagrangian in order to make physical sense of perturbative calculations. 

Even if we could solve QCD exactly, we would still need to perform this renormal

isation. I t was also stated that the process of renormalisation is not unique. In 

considering the Lagrangian, the process of renormalisation has the effect of separat

ing infinite 1 counterterms from the original bare ones but where exactly to draw the 

line remained undetermined. Expanding perturbatively this freedom manifests itself 

at every order of the coupling. In subtracting each UV divergence we are at lib

erty to choose the finite remainder, providing we remove the infinity in a consistent 

manner. 

It is obvious that any physically measurable quantity must be independent of 

how we perform the renormalisation and hence any dependence must cancel on 

including all orders of perturbation theory. We shall see however that termination 

of the series at any given order will result in a residual dependence being picked 

up. There will be a dependency on the renormalisation scale, / i , (i.e. the scale at 

which the theory is renormalised) in addition to the finite subtraction dependence 

Together these constitute what is known as a renormalisation scheme (RS). Clearly 

this problem will plague any perturbative calculation. The most common resolution 

of this is to choose a specific scheme that is convenient for the calculation and 
1 Infinite in magnitude not in number 

20 
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quote the answer in that scheme. For the majority of calculations this corresponds 

to the MS scheme (see Section 2.2.1). Ideally we would like to disentangle the 

universal scheme dependence from the process dependent contributions. Fortunately 

the independence of the observable on the renormalisation scheme constrains the 

subtraction parameters via the renormalisation group in the same manner as the 

scale. With a parameterisation of these, we are then able to show the explicit 

dependence on the RS arising order by order. 

In this chapter we shall address a variety of aspects relating to renormalisation 

schemes. We shall consider a description of the most common schemes (Section 

2.2), how to parameterise this dependence formally (Section 2.3) and details of 

various attempts made at resolving the inherent ambiguities (Section 2.4). We shall 

ultimately consider the importance of the asymptotic behaviour of observables to 

remedy the renormalisation scale ambiguity (Section 2.5) before summarising the 

chapter (Section 2.9). 

2.2 Renormalisation Schemes 

In QED the renormalisation scheme dependence problem is to a certain extent irrele

vant since the expansion parameter is small at accessible energies and the variation in 

the renormalisation scale negligible. In contrast, the relatively large QCD expansion 

parameter and the considerable effect of scale variation suggest careful treatment of 

the RS dependence is necessary. In limiting the analysis to physical observables in 

the massless quark approximation the renormalisation scheme enters purely through 

the renormalised coupling. The effects of renormalising the other Lagrangian pa

rameters and fields will cancel order by order in expressions for physical observables. 

A renormalisation scheme therefore constitutes a prescription for 

1. how much of the finite piece to subtract from the UV divergence order by 

order and 

2. a choice of renormalisation scale, / i . 

For the purposes of clarity we shall refer to these throughout as the subtraction 

parameters (SP) and the renormalisation scale, respectively. This is best illustrated 

with a practical example. Once again we return to the one-loop quark self-energy 
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part, £(p) . The aim of renormalisation was to make the 2-point quark Green's 

function finite. This was performed via the inclusion of the counterterm, Z 2 . We 

can see from Equation (1.22) that we must define Z 2 up to C(g 2) in order to subtract 

the divergent ^ pole. We consider two of the most common classes of schemes. 

2.2.1 The Class of Minimal Subtraction Schemes 

This class of schemes is intimately linked with the method of dimensional regularisa

tion. As we have seen, regularising the integrals in this way isolates the divergences 

in e poles. The minimal subtraction (MS) scheme simply removes this term [13]. 

A further variation is the hugely popular modified minimal subtraction (MS) [14] 

scheme where it is recognised that every j terms comes with a ln(47r) — 7# due to 

the purely mathematical procedure of regularising through variation of space-time 

dimension. Therefore the MS scheme subtracts off these additional constant pieces. 

We obtain 

Z M S = i + ^ C ^ + 0 (g 4 ) , (2.1) 

z m = ! + ( ^ C f Q _ 7 s + l n ( 4 7 r ) ^ + 0 ( g 4 ) . (2.2) 

Through the use of dimensional regularisation and subsequent minimal subtraction 

no physical meaning is attributed to the renormalisation scale, /i, leaving it an 

entirely free, although artificial, parameter. Its algebraic simplicity and ease of im

plementation have resulted in the widespread use of the MS renormalisation scheme 

in perturbative QCD calculations. 

2.2.2 The Class of Momentum Subtraction Schemes 

The class of momentum subtraction (MOM) schemes attempt to extend the ideas of 

QED techniques to QCD. The scheme focuses on a particular interaction vertex and 

includes all radiative corrections within its definition. Within the context of QED 

this has the benefit that an on mass shell definition can be given to the electron-

electron-photon vertex. The coupling constant can then be defined as the coupling 

strength between an electron and a zero energy photon and hence can be related to 

the classical measurement of low energy Compton scattering. Extending this to QCD 
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we immediately face the problem of taking the quark on mass shell 2 . A n extension 

to this is the off-shell momentum subtraction scheme where a characteristic scale is 

used in the definition[15, 16]. The aim here is to specify desirable properties for the 

renormalised Green's function and define the renormalisation constants such that 

these are realised. In the case of the quark self-energy part, we require the f u l l 

propagator to be of the form of the free massless propagator at a given off shell 

energy scale, — u2 < 0. This gives rise to the more complicated counterterm, 

ZMOM = 1 + | M O M c F ( I - ^ + hUTr + l - l n ^ +0(g4). (2.3) 
[Any \e f j / ) 

A further ambiguity lies in the choice of which vertex to take in the definition of 

the coupling (for example we could have taken the triple gluon vertex). Lastly 

we note that due to the structure of Zg in all M O M schemes, the /3-function is 

gauge dependent. As a result of these aspects, not least of which is the complexity 

of the counterterms, the M O M schemes are not commonly used in perturbative 

calculations. 

2.3 Parameterising the Dependence on the Renor
malisation Scheme 

Now that we have seen how the one loop subtraction of U V divergences gives rise to 

a scheme dependence we would like to parameterise this in a precise and consistent 

manner. 

For all further discussions we shall now consider a generic, dimensionless, QCD, 

single scale observable, denoted H{Q) w i th a perturbative expansion 

K(Q) = a + r i a

2 + r 2 a 3 + ... + rn a n + l + ... . (2.4) 

I t is always possible to obtain this fo rm f rom any such observable by means of 

algebraic manipulation (e.g. subtracting leading constants, dividing by tree level 

coefficients, etc.). The RG-improved couplant is defined by the /3-function of Equa

t ion (1.41). 

A priori we have two strong constraints that shall prove crucial in later analysis. 

Firs t ly we know that 1Z(Q) is a scheme independent quantity when defined to all 
2Note that we are still taking the massless approximation. 
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orders. Secondly we know that as i t can be related to the Green's functions of the 

theory, i t too w i l l also satisfy a renormalisation group equation. This reiterates the 

point that for dimensionless quantities, the energy dependence comes purely f rom 

the RGE and hence the running coupling. 

We therefore concentrate for the time being on the renormalisation scheme de

pendence of the coupling. Strictly the renormalised couplant is a function of both the 

renormalisation scale and the subtraction parameters and can always be related be

tween two different schemes via a finite renormalisation. The couplant renormalised 

in two different schemes, barred and unbarred, 

a = ZaaB, a = Z-aaB (2.5) 

w i l l obey 

a(\i) = za(fi) = a ( / i ) ( l + v\a(n) + v2a(iJ,)2 + . . . ) , (2.6) 

where z can be expanded in the renormalised couplant 3and hence the vn parameters 

each describe the finite subtractions at every order. We stress that even though the 

actual values of the renormalisation scales are the same, the meaning in each RS 

may be different. Even though these parameters have the correct degrees of freedom 

to label the scheme, we shall f ind i t advantageous to exchange them for a different 

set. Rewri t ing the relationship of Equation (2.6) equivalently using the /^-functions 

defined in each RS we get 

(3(a) = ^ ( f i ) . (2.7) 

Clearly the /3-function has a scheme dependent expansion but remarkably the first 

two coefficients are universal. The subsequent c n ^-funct ion coefficients can then 

each be exchanged for the corresponding vn to label the scheme. They have the 

property that they are all independent, have a unique correspondence to a particular 

scheme and hence can be used to define a basis for parameterisation of the scheme 

dependence (see Stevenson [11]). 

For a fixed order calculation of %(Q) up to order rnan+1, we are required to match 

the accuracy in the definition of the couplant by including terms up to and including 
3 while the Z[0,a] are separately divergent the ratio is finite in the e -> 0 limit 
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c „ a n + 2 , giving a = a(fx, 
c 2 ) c 3 i - - - icn)- Returning to our generic observable, self-

consistency requires the rn coefficients to be increasingly dependent on the scheme 

parameters, i.e. r i ( / i ) , r 2 ( / i , c 2 ) , r 3 ( / / , c 2, c 3 ) , . . . , r n ( / i , c 2 , . . . , c n ) . Finally we arrive 

at a complete parameterisation of the nth order truncated approximant, 
ft(n)(/j,c2,... ,cn) = a(n,c2,... ,cn) 

+ ri(/j)a(/z,C2, • • • , c n ) 2 

+ . . . 

+ r n ( / j , c 2 , . . . , d ) a(//, c 2 , . . . , c „ ) n + 1 . (2.8) 

The scheme dependence wi l l cancel completely on including all orders giving a for

mally RS-independent result. A n artifact of the consistency of perturbation theory, 

order by order, is the relation between two nih order approximants in different RS's, 

7 ^ , c 2 , . . . , c n ) - ^ ( / 2 , c 2 , . . . ,cn) = 0(an+2). (2.9) 

That is, i f we truncate a calculation at 0 ( a n + l ) , a change of scheme w i l l only affect 

terms of one order higher. 

2.3.1 Scheme Dependence at Next-to-Leading Order 

We now consider the case of a next-to-leading order (NLO) approximation since 

i t is the simplest case to exhibit RS dependence. Immediately we encounter one 

of the most important aspects featuring in all renormalised gauge theories, namely 

that of dimensional transmutation. We first saw this taci t ly when we integrated 

up the one-loop /3-function and a dimensionful scale, A entered to parameterise 

the missing boundary condition. We shall come back to this in greater detail in 

Section 2.5. For the time being we shall adopt a further notation of Stevenson to 

define, r = b ln(/x/A) where A is dependent on the chosen RS but is // independent. 

The t i lde over A is to distinguish i t f rom the tradit ional definition of Bur as et al. 

[14, 17] which is based on an expansion of a in inverse powers of l n ( / x 2 / A 2 ) . The 

two can be easily related via the exact relation 

A = ( j j 6 A. (2.10) 



Chapter 2. Renormalisation Scheme Dependence 26 

We can now trade all // dependence for r in the definition of the /3-function and 

7l(Q), to include this extra boundary information. A t N L O we have 

K(1)(r) = a ( T ) + R I ( T ) a ( T ) 2 , (2.11) 

where o ( r ) is defined by integrating up the N L O truncated /3-function, 

da , . 
— = -a2(l + ca). (2.12) 

Taking the boundary condition of o ( r = 0) = oo we obtain 

1 , / CCL(T) \ ^, , 
r = - r T + c ln ^ — = F ( o ) , (2.13) 

a ( r ) V i + c a ^ y v y v ; 

where we have specified the function F(x) for later convenience. This equation 

defines the coupling to next-to-leading order. I t is possible to invert this [18, 19] 

using the Lambert W funct ion [20] to obtain an expression for the coupling, 
a ( T ) = c(l + w\z(r))y * ( r ) ^ e x p ( - I - l ) . (2.14) 

The Lambert W funct ion is the inverse of the function w wew. As such i t 

has many branches, only two of which are real; W0(x) in the range < x < oo 

and W-i(x) in the range ^ < x < 0. The requirement that the coupling is real 

and positive in the perturbative domain is sufficient to determine the branch to be 

W-i(x) [18]. Subsequently, the use of this branch is impl ic i t and we shall drop the 

-1 notation. 

To determine the dependence of r i on r (i.e. the scheme dependence to N L O ) , 

we first relate two r\ values f rom different schemes via substitution of Equation (2.6) 

into Equation (2.11) and equating coefficients, to get 

+ (2.15) 

Similarly we can use Equation (2.6) to find the difference of two r 's in different 

schemes 

1 , / co \ 1 , / ca \ _ „. 
r - f = - + c ln + . . . c m + . . . , 2.16 

a \l + caj a \1 + ca) 

where the ellipses denotes terms that enter beyond N L O in the /3-function. Since 

this should hold for all values of // we can take the // —>• oo l i m i t , and uti l is ing 

asymptotic freedom (a(// = oo) = 0) we reach 
r - f = vx. (2.17) 
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El iminat ing vx between Equation (2.15) and Equation (2.17) gives 

r - r i ( r ) = f - f 1 ( f ) = p 0 , (2.18) 

where i t is clear that the combination on the LHS is independent of r and hence 

is a renormalisation scheme invariant, p0 [11]. Since H(Q) is a function of a single 

scale, Q, we can write this as 

Po(Q) =r - r ! ( r ) = b In (2.19) 
Aft 

where to maintain dimensionality we have defined an observable dependent but RS 

invariant quantity, A f t . Later we shall see the importance of this quantity in the 

asymptotic behaviour of the observable. Equation (2.19) specifies precisely how the 

NLO coefficient depends on the scale. We notice two important points. Firs t ly that 

at NLO we need n and ARS to specify the scheme and secondly rx can itself be 

traded for r to describe the renormalisation scale as a result of their combination 

being RS invariant. 

Reconsidering A f t , we note that i t is also possible to relate this observable depen

dent quantity w i t h the dimensional transmutation parameter A R S that is universal 

but RS dependent by rearranging Equation (2.19), 

A f t = A R S e x p ( r * S ( ^ = Q ) ^ . (2.20) 

I n fact uti l is ing the same formula we see that i t is possible to relate any two lambdas 

exactly via a one-loop calculation, otherwise known as the Celmaster-Gonsalves 

relation [15]. 

2.4 Proposed Solutions to the Scheme Dependence 
Problem 

Due to the strong dependence of the QCD coupling on the renormalisation scheme, 

there have been a number of attempts made to resolve the ambiguities inherent 

in these perturbative calculations. To date, most state-of-the-art calculations are 

at NLO and as a result the scheme dependence problem is commonly viewed as 

an exercise in choosing the optimum scale for \i. In this section we shall review a 

number of these proposals. 
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2.4.1 The Physical Scale 

Nearly universally accepted as the de facto method at N L O , the physical scale 

attempts to minimise higher order contributions by choosing a value of /j, in the 

vicini ty of Q, the physical scale. The reasoning behind this is the recognition of 

terms in an nth order coefficient of the form 

Tn = Yl^nmib In £ , (2.21) 
m=0 V W 

purely due to one-loop running of the coupling. The Knm denote scheme-dependent 

coefficients. On the surface choosing // w Q would appear to reduce these contri

butions to higher order coefficients. Careful consideration demonstrates that this is 

not completely true and in fact we obtain 

rn = Y , ^ m (bln£ + r*s(n = Q)) , (2.22) 

m=0 V ^ / 
using renormalisation group arguments where the / C n m represent RS-invariant co

efficients. We shall demonstrate this explicitly in Section 2.5.4. In light of this, 

applying the motivation behind the physical scale would suggest using a value of 

H = exp(—rfs(|U = Q)/b) which we shall see coincides w i t h the method of Effective 

Charges. 

2.4.2 The Principle of Minimal Sensitivity (PMS) 

Proposed by Stevenson [11], the principle of minimal sensitivity (PMS) approach 

attempts to resolve the renormalisation scheme dependence problem by relying on 

the renormalisation group invariance of physical quantities. The idea is that since 

the exact all-orders result is independent of the RS parameters, one should choose 

the n^-order approximation to mimic this property and to be as insensitive as 

possible to chosen value of these unphysical parameters. That is, one arranges that 

dft< n> 
d(RS) 

Associating the ^-funct ion coefficients w i th the scheme parameters we can rewrite 

this as 

= 0. (2.23) 
RS= Optimal RS 

dr dco 
dftW 

dcn 

= 0. (2.24) 
C3=en 
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The PMS scheme is then specified by the parameters r , c 2 , . . . , c n . A t N L O this 

corresponds to minimising the r dependence. This gives 

dr 
- 2 d r i 

T — T 

- a ( l + co ) ( l + 2 f i a ) = 0, (2.25) 

where the barred quantities are evaluated wi th the PMS N L O scheme parameter, 
dri 
dr r = T. Self consistency enforces Equation (2.19) wi th ^p- = 1. This leaves 

r , ( f ) = -WT^Y (2'26) 

giving 

nW = a l ± ^ , (2.27) 
1 + ca 

for the N L O PMS expression for a N L O approximant. I t now remains to evaluate 

a — a ( f ) . Substituting Equation (2.26) into Equation (2.19) we are left w i t h 

2 + 3ca ( ca \ ( Q \ no^ 
— — + c ln = 6 In ) . 2.28) 
2(1 + ca)a \l + caj V A T C / 

Solving this transcendental equation gives the PMS coupling which can then be used 

w i t h Equation (2.27) to give the N L O estimate for V,. In favour of this methodology 

is the scheme invariance of the approximant. The only possible scheme dependence 

entering 1Z^(a) is through the couplant, and f rom Equation (2.28) we can see that 

the couplant is defined only through renormalisation scheme invariants. Furthermore 

i t optimises the combination of \x and ARS both of which are required at N L O . 

Against the method of PMS is the complex nature of the coupled equations 

needed to solve for the scheme parameters. I f %^n\a) and subsequent n derivatives 

of Equation (2.24) are monotonic then we are faced w i t h a diff icul ty in even defining 

the PMS scheme parameters. 

2.4.3 B L M Scale Setting 

Brodsky, Lepage and Mackenzie ( B L M ) proposed to resolve the renormalisation 

scale ambiguity by providing a prescription for process dependent scale fixing [21]. 

Strongly motivated by QED where the photon self-energy corrections are absorbed 

into the coupling constant by an appropriate choice of scale, B L M attempts to 

reproduce the key ideas wi th in the context of QCD. Its primary assumptions are 
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that there exists an opt imal scale for / i at every order and that there is such a thing 

as a good RS to work in . The need for a good RS is due to the lack of boundary 

condition value for as in contrast to the low energy value of « Q E D = 1/137.036 

I f there is no gluon-gluon interaction at this order, the optimal scale is obtained by 

the requirement that al l l ight quark vacuum polarisation corrections are absorbed 

wi th in i t . A t N L O this gives 

TZ = a(fjL) + naifx)2 ^ n = a(fi) + n a ( / / ) 2 , (2.29) 

where the barred quantities are fixed via B L M . We can separate out the Nj depen

dent part of ri and the first ^-funct ion coefficient, b, such that 

n =r°1+r{Nf, (2.30) 

b = b° + b1Nf, (2.31) 

we can fix perform the B L M scale setting by rescaling b such that the magnitudes 

of bl and r\ coincide and then completely subtracting i t f rom r\. Formally this 

amounts to expanding the one-loop running of the couplant and substituting i t into 

Equation (2.29) to obtain 

r\ + r\Nf = f j - (b° + blNf)\n^. (2.32) 
A* 

Equating Nf independent and dependent parts we obtain 

fi = / / e x p ( ^ ) = / j e x p ( - 3 r 1

1 ) , (2.33) 

33 
n = r ° - & ° l n j = r ? - y r 1

1 . (2.34) 

Throughout this procedure we have only specified the scale. The underlying scheme 

(i.e. subtraction parameters) have been impl ic i t ly assumed to be good. A major 

problem w i l l now arise when we change scheme to one w i t h different subtraction 

parameters and end up getting completely different results. This is precisely due 

to the fact that fi by itself does not specify the RS, one needs in addition a A R S 

parameter. Some effort to resolve this has been recently [22] by use of commensurate 

scale relations that give the relationship between two physical observables. By using 

these relationships, i t is proposed that all renormalisation scheme dependence is 

removed, giving a completely unambiguous prediction. I t requires that the running 

coupling effects can be cleanly separated f rom the conformal part of the perturbative 

expansion of a generic physical quantity. This is currently unproven. 
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2.4.4 Effective Charges (EC) 

In this section we shall consider the method of Effective Charges (EC's) first pro

posed by Grunberg [23, 24] as a way of resolving the renormalisation scheme ambi

guity. The motivation behind this method is the recognition that for a dimensionless 

observable the energy scale dependence arises purely f rom the renormalised coupling. 

Thus by specifying an observable of the form 71 in Equation (2.4) proportional to 

the coupling and defined to all orders, we obtain an effective charge and as such 

we can apply the same renormalisation group equation as satisfied by the coupling. 

Furthermore since 71 is a physical observable we can differentiate w i t h respect to the 

actual hard scale, Q to examine how i t scales. We can write this mathematically as 

^ B { K ) (2.35) 

where B(7Z) takes the role of the ^-funct ion. Crucially, the physical nature of these 

quantities means the EC /3-function is itself a physical observable given measure

ments of 71 at a variety of centre-of-mass energies. As such the function B(7Z) 

permits a non-perturbative definition and we shall see later how i t is possible to 

model such non-perturbative effects. 

Returning to our expansion of 71, we see that i t is possible to choose the scheme 

parameters such that all higher order coefficients are zero (r n = 0) giving an all 

orders exact coupling equal to the observable, 

71{Q) = a where n = 0 = r2 = ... = rn = ... . (2.36) 

We shall refer to this as the EC scheme. This w i l l have a value of r = p0 f r o m 

Equation (2.18) and scheme parameters obtained via Equation (2.7). A t N L O , the 

scheme dependence is equivalent to specifying a value for r. In the EC formalism 

this is simply 

f = po = 6 In ( Q ) (2.37) 

w i t h the coupling given by 

^ + c l n f - ^ - U M n f f ) (2.38) 
o ( r ) \ l + ca{r)J \ARJ 

We see that, as w i t h the PMS prescription, the EC gives an RS invariant approx-

imant, = a ( f ) . Once again this occurs at every order in perturbation theory. 
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Comparing wi th the PMS N L O result, we find that the EC result is very similar 

since f = p 0 for the EC and f ~ p0 + | w i th the PMS. Even at N N L O i t has been 

shown that they remain close to each other [25, 26]. Since the EC is equivalent 

to choosing the scale such that the higher order coefficients vanish, i t is sometimes 

referred to in the literature as the Fastest Apparent Convergence (FAC) scheme [11]. 

We maintain that the EC approach is fundamentally correct although, rather 

than claim i t provides a solution to the whole renormalisation scheme dependence 

ambiguity, we suggest that i t can only motivate the appropriate scale dependence. 

Beyond this, i t provides an RS-invariant formulation based on the assumption that 

higher order terms vanish. We discuss these issues in the next section. 

2.5 RS Invariant Formulations of 
Perturbation Theory 

We saw in the previous section a number of proposed solutions to the renormalisation 

scale/scheme dependence problem. We stressed that at N L O we must specify two 

parameters, and A R S , to obtain an unambiguous answer (c.f. B L M scale setting). 

Two proposals, namely the PMS and method of EC's, treated this correctly and in 

this section we shall reconsider that of the effective charges. We begin w i t h a closer 

look at how a dimensionful scale enters the theory via dimensional transmutation. 

2.5.1 Dimensional Transmutation 

This analysis owes much to the original discussion of Stevenson [27] on uti l ising 

dimensional arguments in RG analysis and closely follows that of [28, 29]. We 

start, once again w i t h a dimensionless generic QCD observable 7l(Q), dependent 

on a single dimensionful (energy) scale Q. Quark masses w i l l be taken to be zero 

throughout our discussion, the extension to the massive case has been considered in 

[30]. Since 7l(Q) is dimensionless, dimensional analysis clearly demands that 

where A is a dimensionful scale, which w i l l tu rn out to be related to the dimensional 

transmutation parameter. There is an extra t r iv ia l possibility that 1Z(Q) = C, 

where C is a dimensionless constant implying there is no energy dependence. This 

Q 
K(Q) = * 

A 
(2.39) 



Chapter 2. Renormalisation Scheme Dependence 33 

t r iv ia l Q-dependence would be the case i f the bare coupling of QCD was finite, since 

the Q C D Lagrangian (wi th massless quarks) contains no massive parameters. Of 

course, in fact, the bare coupling is infinite, and an infinite renormalisation must 

be performed, leading to a functional relation as given in Equation (2.39). The 

appearance of a dimensionful parameter such as A is due to the non-uniqueness of 

the theory. In QCD this is because the bare Lagrangian corresponds to an infini te 

set of theories, each w i t h a different A. Determination of the value of A, the one free 

parameter, can only be performed by experimental measurement. To fix the theory 

up to a one parameter degree of freedom we can specify that the derivative of 7l(Q) 

w i t h respect to Q is given. The free parameter is now contained in the boundary 

condition. Going back to our formula for 7Z(Q), an obvious proposal is to invert 

this to obtain 

Q- = ^-\n{Q)), (2.40) 

where <E»-1 is the inverse function. This is indeed the basic motivation for Grunberg's 

method of Effective Charges [24]. To obtain the form of $ _ 1 we apply the above 

reasoning of specifying the derivative of 7l(Q) which must clearly behave as 

dn(Q) = B(n(Q)) ^ ( 2 4 1 ) 

dQ Q 

where B(TZ(Q)) is a dimensionless function of 71 . This can be rearranged to obtain, 

^ = * < * ( « ) ) • (2.42) 

This is a separable first-order differential equation. In order to solve i t we w i l l need 

to impose the boundary condition, and know something of the behaviour of B(JZ). 

We shall assume that 71 has the prototypical perturbative expansion, 

71 = a 11 + ^ r „ a " j , (2.43) 
V n>0 ) 

as previously given in Equation (2.4) where a=as(iJ,)/n is the RG-improved cou

pling. The required boundary condition w i l l be given by asymptotic freedom, that 

is TZ(oo) — 0. Integrating Equation (2.42) one then obtains 

o r n { Q ) dx 

A f t Jo B\x) 
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The constant of integration has been split into l n A ^ + K, where is a finite 

dimensionful scale specific to the observable 72, and K is a universal infinite constant 

needed to implement 72.(oo) = 0. To determine K we need to know the behaviour of 

B(x) around x = 0. 

Returning to the perturbative series of Equation (2.43) we recall that the cou

plant a satisfies the ^-funct ion equation, 

da 
dlnfj, 

P(a) = -ba2 11 + ca + ^ c „ o n J , (2.45) 
V n>l J 

I f we set ji = Q in Equation (2.43), and differentiate w i t h respect to InQ term-by-

term using the (3-function equation of the couplant (Equation (2.45)), we can obtain 

B(11(a)) as a power series in a, 

r - w ^ d72 
= d l n Q 

M Q ) o , ^ d a ( Q ) , , ™ n - i d a ( Q ) , 

(2.46) 

Inverting the series 72(a) in Equation (2.43) to obtain a(lZ) as a power series in 72, 

we can obtain 5(72) as a power series in 72, 

d72 
d l n Q 

giving B(x) around x = 0, 

= - 6 7 2 2 ( 1 + c72 + p 272 2 + p 3 72 3 + . . . ) , (2.47) 

B(x) = -bx2 ( 1 + cx + ^2pnxn J . (2.48) 
V n>l J 

The first two coefficients b and c, are the universal /3-function coefficients. The higher 

terms p,, (i > 1) are renormalisation scheme (RS)-invariant, and Q-independent, 

combinations of the and Q . The first two are [11, 24, 28] 

p 2 = c 2 + r 2 - rxc - r\ 

p 3 = c 3 + 2 r 3 - 4 r ! f 2 - 2 n p 2 - r\c + 2r\ . (2.49) 

Knowledge of p n requires a complete N n L O perturbative calculation, that is a cal

culation of the r, for i = l , 2 , . . . , n and the Q for % = 2,3, . . . , n , in any given 

renormalisation scheme, for instance MS. The fact that Equation (2.48) has the 
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same form as the ^- funct ion equation given in Equation (2.45) follows f rom the fact 

that there exists an RS in which 71 = a, i.e. r , = 0, i > 0, and in this scheme the 

non-universal /3-function coefficients are Q = pi, i > 1. The existence of this Ef

fective Charge scheme [24] is underwritten by the algebraic steps above f rom which 

Equation (2.48) can be directly derived. Armed w i t h knowledge of the form of B(x) 

around x = 0 we see that the infinite constant of integration K w i l l be of the fo rm 

« = - / 777~7> (2-50) 
JO 

dx 

K&y 

where K(x) must be such that the singularity of 1/B(x) at x — 0 in Equation (2.44) 

is canceled. This implies f rom Equation (2.48) that 

K(x) = -bx2{\ + cx + A(x)), (2.51) 

where A(x) is only constrained by the requirement that A(x)/x2 is finite as x-^-0. 

Different choices of the upper l im i t of integration, C, and the function A(x), can be 

absorbed into the dimensionful constant A ^ . Convenient choices are C = oo and 

A(x) — 0. W i t h these choices Equation (2.44) can be re-written as, 

b l n o _ = r dx | f n Q )

d x 

AT? J n ( Q ) x 2 ( l + CX) J 0 

1 
+ l n Q ) x 2 { l + cx) J0 [B(x) x2(l + cx) 

The first integral on the r.h.s. of Equation (2.52) gives the now familiar 

(2.52) 

cR 
. ! + eft-

Denoting the second integral by G(7Z) we have 

(2.53) 

M n - ^ - = F(7l) + G(7Z) . (2.54) 
ATJ 

The desired inverse funct ion $ _ 1 of Equation (2.40) can then be obtained by expo

nentiating Equation (2.54), which gives 

?{K{Q))G{K{Q)) = ^ (2-55) 

where F is the universal funct ion 

^ ( f t ) = e - T O / » = e-^bn(l + l/cn)c/b , (2.56) 
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and 

g(n)=e-G^b = exp 
7o U(^) ^ 2 ( l + c x ) 7 

(2.57) 

I f only a N L O perturbative calculation has been completed then our state of knowl

edge of B(x) is B(x) = -bx2 (1 + cx) since the N N L O and higher RS invariants 

p 2 , P 3 > . . . of Equation (2.48) w i l l be unknown. From Equation (2.57) we then have 

G{n) = 1. 

2.5.2 Relating the Observable Dependent to 
the Universal A R S 

We finally need to relate the observable-dependent constant of integration Kn which 

arose on integrating Equation (2.42), to the universal dimensional transmutation 

constant which depends only on the subtraction procedure used to remove the u l 

traviolet divergences, AMS for instance. We have already encountered the celebrated 

Celmaster and Gonsalves relation [15] enabling the transition f rom one A parameter 

to another exactly via a one-loop (NLO) perturbative calculation of the observ

able (Equation (2.20)). We shall now demonstrate this relationship f rom a different 

perspective to clarify the connection between scheme independent but observable 

dependent A's and a universal but scheme dependent A R s -

To see this we begin by noting that on rearranging Equation (2.54) and taking 

the l im i t as Q—>-oo, we obtain an operational definition of A K . 

A ^ = l i m Qexp(-F{-R{Q))/b) . (2.58) 

This property was denoted "Asymptotic Scaling" by Maxwell [31]. We have used 

the fact that G(0) = 0 together w i th asymptotic freedom. I f we denote by a(Q) 

the MS coupling w i t h fj, = Q we see that i t w i l l satisfy the /^-function equation 

Equation (2.45), of the same form as Equation (2.42) for H, w i t h /%jg(a) replacing 

B(7l). This may be integrated following the same steps as above. The constant of 

integration A ^ w i l l be replaced by A ^ g , and the coefficients pi by the MS ^- func t ion 

coefficients c^ s . Again choosing C = oo and A ( x ) = 0, we arrive at 

A m = l i m Qexp(-F(a(Q))/b) . (2.59) 



Chapter 2. Renormalisation Scheme Dependence 37 

From the perturbative expansion of 71 in Equation (2.43) we w i l l have 

71{Q) = a(Q) + r(a(Q)f + ... , (2.60) 

where we have defined for convenience r=rj^s(/x = Q), as the notation suggests r is 

Q-independent. I t is then straightforward to show that as Q—too 

F(n)mF(a)-r + ... , (2.61) 

where the ellipsis denotes terms which vanish as Q—too. Inserting this result into 

Equation (2.58), and comparing wi th Equation (2.59), one finally finds (c.f. the 

Celmaster Gonsalves relation of Equation (2.20) 

** = er/b*m=(j) ' A B B , ( 2 - 6 2 ) 

for the promised exact relation between the observable-dependent and universal 

A's. The tilde over A is once again present to draw attention to the fact that the 

above choice of infinite integration constant K does not accord w i t h the standard 

choice [17]. This definition corresponds to translating K by the finite shift cln(6/2c). 

Finally assembling all this we arrive at the desired relation between the universal 

dimensional transmutation parameter AMS and the QCD observable 71, 

Am=QT(7l(Q))G(K(Q))e-r/b ( y ) ^ • (2-63) 

Notice that all dependence on the subtraction convention chosen to remove ultra

violet divergences reside in the single factor e~rlb, the remainder of the expression 

being independent of this choice. 

2.5.3 Practical Application 

As noted above, i f only a N L O calculation has been performed then the state of our 

knowledge of the function B{71) in (4) is B(7l) = -b7l2(l + cTl), and then f r o m 

Equation (2.57) Q(7Z) = 1. So at NLO the best we can do in extracting AM§ f r o m 

the data is 

A ^ = QHnQ)y~r'\^/bf (2.64) 
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I f two-loop (NNLO) and higher-order perturbative calculations are available then 

Q(7Z) w i l l differ f rom unity by calculable corrections. One can expand Q(7t) as a 

power series in 7Z, 

g(7l) = 1 - ^71 + 0(7l2) + ... , (2.65) 
o 

where p 2 is the N N L O RS-invariant defined in Equation (2.49). Alternatively G(7Z) 

can be expanded in the exponent as a power series in 71 by expanding the integrand 

in Equation (2.57), to give 

0(71) = e x p [ ( - p 2 f t + 0(7l2) + .. . (2.66) 

One could also evaluate the integral in Equation (2.57) numerically wi th B(x) t run

cated , so that at N N L O for instance B(x) = —bx2(l + cx 4- p 2 £ 2 ) . 

Focusing now on the N L O case where Q = 1 we note that Equation (2.64) can 

be inverted to give 

n { Q ) = ~c [ l + WM<?))]' 

where W is the -1 branch of the Lambert ^ - f u n c t i o n . Equation (2.67) is equivalent 

to the two-loop MS coupling w i t h scale p = e~r/bQ, and in this scheme r\ = 0. 

This scheme is sometimes referred to as the "Fastest Apparent Convergence" (FAC) 

scheme [11], and is equivalent to Grunberg's Effective Charge approach at N L O 

[23, 24]. Crucially, we have derived Equation (2.67) without having to argue for a 

specific choice of scale. Starting f rom the form of Q-dependence of 71 implied by 

dimensional analysis in Equation (2.41), we simply solved this differential equation 

applying asymptotic freedom as a boundary condition. To define the required infini te 

constant of integration we needed to know the series expansion of B(x) around x = 0, 

Equation (2.48), whose fo rm is completely scheme-independent, and we arrived at 

Equation (2.54). The constant of integration A-^ could then be exactly related to 

the universal dimensional transmutation parameter A^s associated w i t h use of MS 

subtraction to remove ultraviolet divergences, given a N L O calculation of r , as in 

Equation (2.62). In all of this the renormalised coupling a only ever appeared in 

intermediate steps, playing, as neatly expressed in [27], "the role of a conjuror's 
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handkerchief- now you see i t , now you don't !". This, of course, begs the question 

as to what is special about the Effective Charge (FAC) scheme, and why other 

choices of scale fi do not provide equally valid predictions for 7Z. The key is to 

identify the way in which the Q-dependence of 1Z(Q) arises. In the construction 

above, i t is bui l t automatically by integration of Equation (2.41), but how does i t 

arise f r o m the perturbation series in Equation (2.43) ? For this purpose i t w i l l be 

more i l luminat ing to consider an alternative formulation by Maxwell [32, 33] termed 

Complete Renormalisation Group Improvement (CORGI) . This procedure treats 

the renormalisation scale, \x completely independent of the energy scale Q. This 

different perspective turns out to be entirely equivalent to that detailed above. 

2.5.4 Complete Renormalisation Group Improvement 
(CORGI) 

We have now seen that the correct manner to deal w i th the unphysical / i dependence 

is to look to how the physical observable scales wi th energy. In this section we shall 

consider this f rom a different point of view proposed by Maxwell in [32, 33, 34]. 

I t demonstrates a variation on the effective charge methodology, namely that of 

complete renormalisation group improvement (CORGI) . The benefits are not least 

of which a greater transparency in analysing the issues of scheme dependence and the 

abil i ty to implement higher order corrections through simple algebraic manipulation 

wi thout sacrificing the paramount correct treatment of scale dependence. We start 

as always wi th an expansion for TZ as given in Equation (2.4). We have already seen 

that we may use (r , cn) as a complete parameterisation of the scheme. Furthermore 

we demonstrated that we are free to trade r for r i to describe the scale dependence. 

Using the self consistency of perturbation theory we know that an nih order 

approximant w i l l be unchanged by RS variation to one order higher i n the coupling, 

S r 0 ( a " + 2 ) - ( 2 - 6 8 ) 

This can be used to derive expressions for partial derivatives of the rn w i t h respect 
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to the scheme parameters. Applied at N N L O we find 

071^ da 9 n da dr2 •> „ da 
^ r — = ^ - + a2 + 2 r i a — + ^ a 3 + 3 r 2 a — + . . . , 2.69 

a r i or i or\ or\ drx 

dTl{2) da „ da dr2 3 „ da 
+ 2 r x a — + -^a6 + 3 r 2 a — + . . . , (2.70) 

(2.71) 

dc2 dc2 dc2 dc2 dc2 

dc3 

where the ellipses denotes terms that start at 0(a4). Enforcing self consistency 

requirements requires each lower order of the couplant to vanish independently. 

This leaves us w i t h 

5 r 2 o . dr2 dr2 

— = 2 f ! + c , — = - 1 , ^— = 0. (2.72) 
or i dc2 dc3 

Since the only scheme parameters that r2 w i l l depend on are r\ and c2 we can 

integrate Equations (2.72) to obtain the most general form. Applying this formalism 

to each order of perturbation theory we arrive at 

r2{ri,c2) = r\ + cr x + X2 - c 2, (2.73) 

r 3 ( r i , c 2 , c 3 ) = r 3 + | c r 2 + ( 3 X 2 - 2 c 2 ) r 1 + X 3 - | c 3 , (2.74) 

i = :. (2.75) 

The Xn are the constants of integration and are clearly unpredictable wi th in renor

malisation group arguments. As such they w i l l be RS-invariant and Q-independent 4. 

Comparing the Xn w i t h the pn of the EC formalism we find that they are closely 

related [32], 

X2 = p2, 

X, = ft/2, 

XA = p4/3 + c/9 3/6 + 2p 2 , 

: = ':. (2.76) 

A t N N L O in the MS scheme we can obtain X2 by setting n = Q, 

X2 = r f ^ = Q) - ( r f = Q))2 - c r f ( ^ = Q) + c f . (2.77) 
4 This is because any scheme or scale dependence will obey the R G E and hence contribute 

through the scheme parameters. 
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We stress that this is a RS invariant combination and would be the same regardless 

of the choice of scheme. 

Labelling the higher order coefficients in this way, the contributions f rom renor

malisation are apparent. Rewrit ing Equation (2.4) in light of this we obtain 

H{Q) = a + rxa2 + (r\ + crx + X2 - c 2 )a 3 

+ (r? + \cr\ + ( 3 X 2 - 2c2)rx + X 3 - | c 3 ) a 4 + . . . . (2.78) 

A t this stage the C O R G I proposal is to include all the renormalisation group 

predictable terms to all orders leaving only the purely unpredictable Xn that can 

only be obtained via explicit higher order calculations. We define the complete 

subset of RG-terms as 

a0 = a + rxa2 + (r\ + crl - c 2 )a 3 + ( r 3 + \cr\ - 2c2rx - f )a 4 + . . . . (2.79) 

A t N L O this w i l l be the entirety of known terms and can be evaluated by realising 

that a0 is a RS-invariant quantity. This can be understood by noting that the sum 

of Equation (2.78) is RS-invariant and that the elimination of the X„ terms cannot 

affect this. Now since the combination is completely invariant under a variation 

in scheme parameters, we are at l iberty to choose any suitable values as this w i l l 

be compensated in the sum total . Choosing r\ = 0, c 2 = 0 , . . . , cn = 0 , . . . we 

see that since beyond the first term, every coefficient is polynomial in the scheme 

parameters, we are left w i t h the task of evaluating the couplant in the scheme 

a = a(rx = 0, c 2 = 0, c 3 = 0 , . . . ) which corresponds to the so ca l led ' t Hooft scheme 

[13] w i th r\ = 0. Once again we stress that even though we are specifying a set 

of scheme parameters, the quantity a 0 is RS-invariant. To obtain the couplant we 

must solve the /3-function equation. In light of our definition of A ^ we may write 

this now as 

l+HT^)--iy{-W)+^^)- (2-80) 

where now B(x) = x2(l + cx + c 2 x 2 + . . . ) . To obtain a0 we may set the cn equal to 

zero giving, 
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This may now be extended beyond NLO by recognising that the combination of 

terms proportional to Xn are equivalent to resulting in 

H(Q) = a0 + X2al + X3a4

0 + . . . , (2.82) 

which is simply the perturbation series in the RS wi th r\ = c 2 = c 3 = . . . = cn = 

. . . = 0 as can be seen by setting all scheme parameters to zero in Equation (2.78). 

Concentrating on the N L O result we see that in evaluating ao, we are really re-

summing all the T\ dependence to all orders. This effectively resums all the In / / / A R S 

terms as has tradit ionally been advocated in renormalisation group improvement 

w i t h the additional InQ/A-n terms that necessarily appear as previously indicated. 

This is highlighted by rewrit ing Equation (2.19) as 

rM = blnJ^ - b\n-Q-, (2.83) 
ARS An 

where // is taken to be the scale defined in the renormalisation scheme "RS". The 

crucial observation is that r± is a difference of a scheme-dependent logarithm involv

ing fj, and a "physical" scheme-independent ultraviolet logarithm involving Q. For 

clarity we temporarily set c = 0 and at N L O can set c„ = 0. The couplant, a(/i) is 

then 

a(f*) = VA , (2-84) 
b In ,U/ARS 

w i t h the RG-improved expression for H(Q) at N L O given f rom Equation (2.78) by 

1l(Q) « a(/i) + n{n)a2(ji) + r?(/x)a 3(/i) + . . . . (2.85) 

Substituting Equation (2.83) for ri( /x) and summing the geometric series one obtains, 

1 
K(Q) = a(ti)/ b\n^- - ) o(/x) 

ARS A K 
(2.86) 

61n(Q/A w ) ' 

in which the unphysical /^-dependence has cancelled between a(fi) and the /x-dependent 

logarithms contained in r i ( / i ) . In the realistic case w i t h nonzero c and cn, the simple 

logari thm of Q/An is replaced by the expression involving the Lambert VK-function 

of Equation (2.67). The key point is that the all-orders CORGI improvement can be 

carried out w i t h any choice of /J, to yield a //-independent result. One has therefore 

directly traded unphysical /i-dependence for the physical Q-dependence. 
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In contrast standard N L O fixed-order perturbation theory is then manifestly 

inapplicable, since one has 

TCNLO = a{fj.) + (bin J - - bln^-) {a(tx)f . (2.87) 

W i t h \JL constant, asymptotic freedom only arises i f all the RG-predictable U V log

arithms are resummed to all-orders, 

2.5.5 Tainted Results from Using the "Physical" Scale 

To further emphasise the connection of the suggested direct extraction of A^g wi th 

the standard approach we can consider the following result for AM§ which 

we define to be the value of AMS obtained by fitting a N L O order perturbative 

calculation in a scheme corresponding to the NLO coefficient n , to the data 1Z . 

Notice that r i completely labels the scheme at NLO. We can directly convert rx into 

the MS scale // since f rom Equations (2.83) we have 

n = r + b\n£ . (2.88) 

I t is then straightforward to derive the result [28] 

A-Ms(ruTl) = g y i ) M 5 ' ^ ' 

where f(r\,H) is given by 

/ ( r , , R ) ^ ( R ) - F { - 1 + ^ ^ n ) + r , . (2.90) 

I n the CORGI approach r\ = 0 and we have f(0,TZ) — 0, so that the value of A ^ 

obtained is A M § / Q ( T Z ) , as expected comparing Equations (2.63) and (2.64). Thus to 

the extent that Q{TVj^\ we obtain the actual value of A^g. As we have argued that 

the estimate G(1Z)~1 is the best we can do given only a N L O calculation since we 

are in complete ignorance of the deviations of Q f rom unity, which w i l l depend on 

the N N L O RS-invariant p 2 of Equation (2.49). Another way of saying this is that at 

asymptotic values of Q, Equation (2.64) w i l l hold, and that the deviation of Q(Jl) 

f r o m uni ty provides an operational definition of how far f r o m asymptotia we are, 

at Q = Mz, say. The scatter of the A^s values for different observables obtained 

f rom Equation (2.64) thus provides unambiguous information about the size of sub-

asymptotic effects (uncalculated NNLO and higher perturbative corrections and 
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power corrections). Variation of the renormalisation scale taking ji = xQ w i th the 

"physical scale" x — 1 to give a central value, merely serves to confuse matters. 

For instance taking r = 10 and 71 = 0.05, values typical of jet observables at 

Q = Mz, we f ind exp[/(10,0.05)/6] = 2 .44 , and so using the "physical scale" the 

value of AMS extracted w i l l be 2.44AMs/(?(7?.). This w i l l accurately determine A ^ i f 

i t fortuitously happens that Q(TZ)^2A4 . We have, of course, no reason to suppose 

that Q differs f rom unity to such a drastic extent, or correspondingly that the effect 

of uncalculated N N L O and higher-order perturbative corrections, and possible power 

corrections should be so large. Varying the scale simply introduces an extra known 

factor into the determination of AMS, which, other things being equal, i.e. i f C?~l, 

w i l l give values very different f rom the true one. 

2.6 RS-Invariance Beyond NLO 

We have seen how the method of Effective Charges and Complete Renormalisation 

Group Improvement have provided a resolution to the renormalisation scale ambi

guity by appealing to the asymptotic behaviour of physical observables. Yet beyond 

N L O we are faced w i t h the additional scheme parameters entering and in these cases 

the EC and CORGI approaches differ. Both provide an RS-invariant treatment but 

are based on different assumptions. In this section we w i l l address the problems 

inherent in tackling the scheme dependence at higher orders. 

2.6.1 How Can Scheme Parameters be Scheme Invariants? 

We begin by tackling the seemingly paradoxical question "How can scheme pa

rameters be scheme invariants?" . W i t h i n the EC formalism the scheme param

eters cn become those of the EC, namely pn. We noted earlier that these pn were 

actually scheme invariant quantities. How can a parameter that defines a choice of 

scheme not depend on the choice of scheme? I f we consider the following argument 

we see that i f they exist, they must be scheme invariant. We begin by considering 

any two RS's and in general these w i l l result in different values of the rn coefficients. 

We can then insist on the coupling to be all orders exact, i.e. there is a choice of 

scheme whereby this is possible. Since the coupling is now all orders exact i t must 

be scheme invariant, after all i t has become a physical observable. I n making the 
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transition f rom any scheme to the unique one in which the coupling is the observ

able requires the cn subtraction parameters to be defined such that no matter what 

the scheme and hence rn coefficients, the cn must take this into account in order 

to cancel them. Hence even though they are scheme parameters themselves, they 

comprise of a scheme invariant combination. 

This is best illustrated by considering what happens explicitly to the scheme 

parameters in going to the EC scheme. We begin wi th a general (rA, c^) set of pa

rameters that define a particular scheme, A. We could likewise have renormalised in 

a completely different scheme, B w i t h parameters ( T b , c%). A t N L O we are required 

to f ix a value for r . As stressed earlier this means setting the two parameters, \i 

and ARS- Specifying the renormalisation scheme A (or B) fixes the value of ARS- I t 

then remains to fix r through fi5 via three possibilities 

1. Setting jj, = xQ where £ is a constant (Figure 2.1) 

2. Setting / i = xexp(—r x ( / i = Q)/b)Q where x is a constant (Figure 2.2) 

3. Setting \i to be any other function (Figure 2.3) 

The first possibility corresponds to the standard physical scale setting. I f fi = Q is 

chosen, two different schemes w i l l clearly give two different estimates. In the other 

two cases, we see that the only possibility to get a scheme invariant result is by 

choosing fi = a;exp(—ri(/i = Q)/b)Q. The reason for this is due to the additional 

factor of A R S . The e~r^b factor is then needed to cancel the scheme dependence 

appearing f rom ini t ia l ly working in a particular scheme and hence, choice of ARS. 

The x-factor is present to illustrate that there is an infinite set of RS-invariant 

possibilities. Crucially, w i t h the specific case of r we have the asymptotic nature of 

a physical observable at our disposal. This precisely defines a renormalisation scale 

of /i to be exp(—ri( / i = Q) /6)Q. Beyond NLO, we have no such aid and are required 

to make further assumptions to specify how to incorporate such contributions. Here 

lies the difference between the EC and CORGI approaches. 
5 We note that even if we resum all fi dependence such that its value is irrelevant, there will be 

a specific value of fi that reproduces this behaviour at NLO 
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Figure 2.1: Pictorial representation of the mapping of r , given in two different 
schemes A and B, to a particular value f by specification of [i. Choosing p = xQ 
gives a constant shift equivalent to selecting the physical scale. This clearly gives 
differing results between schemes 

© 
© B 

Figure 2.2: Fixing r by choosing p = x exp(—ri(yu. = Q)/b)Q gives the same result 
regardless of the in i t i a l renormalisation scheme. 

© 
© © B 

B 

Figure 2.3: Fixing r by choosing /J, = x<j)(Q) where <f)(Q) differs f rom e r^bQ gives 
differing results between schemes. 

2.6.2 Differences between RS-Invariant Formulations 
Beyond NLO 

We have just seen how formulating a RG-invariant approach to perturbation the

ory does not remove the scheme ambiguity. The renormalisation scale has special 
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significance and permits a unique specification. In contrast no plausible argument 

exists for dealing w i t h the subtraction parameters. Any method that proposes to 

resolve the scheme dependence must make a further assumption in how to deal w i t h 

the higher order contributions. For the EC formalism this corresponds to making 

an assumption that the optimal solution is the one in which all higher order cor

rections vanish. While seemingly innocuous this statement is not necessarily true. 

This is because given a N " N L O calculation, we know absolutely nothing about the 

magnitude of higher order terms. Arranging the perturbation series such that all 

lower order coefficients are zero w i l l not necessarily give an approximant closer to 

the all orders value. We could conversely have specified that we wish to include 

all renormalisation group predictable information akin to the C O R G I philosophy. 

Even this does not specify unique criteria beyond N L O [33]. I t suffices to say that 

the methods of Effective Charges and CORGI incorporate the correct Q dependence 

and beyond this we are required to make further assumptions upon the behaviour 

of QCD. 

2.7 Power Correction 

I n this section we consider how to include power corrections in the EC formalism. 

I t is widely accepted that physical observables in general w i l l be subject to "non-

perturbative" power-like corrections in the hard interaction scale, Q. That is to say, 

there w i l l be terms contributing to cross-sections that cannot be expanded out in 

the typical perturbative manner arising f rom expressions of the fo rm 

Perturbative techniques cannot describe these terms accurately but have made at

tempts at predicting the leading behaviour to the power corrections via renormalon-

inspired analysis [35, 36] and dispersive techniques [37]. Taking the generic fo rm of 

these power corrections, we can alter our perturbative expansion for a dimensionless 

observable Tt, 

where we have assumed a leading power correction w i t h exponent 1 (i.e. ^ ) . To 

include these term in the EC analysis, we must take the derivative w i t h respect to Q. 

( 
A k 

exp 
Q ba s 

(2.91) 

K = a + rxa2 + r2o? + . . . + -£(1 + Xxa + X2a2 + A 3 a 3 + . . . ) , (2.92) 
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We may then rewrite our expression for the EC /3-function equation incorporating 

this effect as 

dT .̂ 
= -bn2{i + c n + p2n2 + P 3 n 3 + ...) 

+ K 0 n - c / b e - 1 / b n ( i + K l n + . . . ) + . . . , (2.93) 

where the Kn can be related to the A n . For example, the leading power correction 

coefficient gives a — A 0 / Q contribution to the ^-funct ion. Using Equation (2.52) to 

get Q in the leading approximation of 1Z we f ind, 

Q w A n e 1 / b n ( c l l ) c / b . (2.94) 

Substituting this back in we obtain 

A = _ K o e n ( , = Q ) / 6 Q y / f c

A _ ( 2 9 5 ) 

where we have converted A# to A^g. Having made the connection between K 0 and Ao 

we may incorporate the power correction term into Equation (2.63) via the G(TZ(Q)) 

function given in Equation (2.57). Expanding out Q(1Z(Q)) to the accuracy of N N L O 

and leading power correction gives 

g(K(Q)) ~ 1 - ^ n + j - K z - K - ' / o . (2.96) 

Substituting this back into Equation (2.63) we finally obtain 

A ^ = QHnQ)) ( l - j K + j e ~ ^ K - ^ e^b (^yb
 . (2.97) 

Given a value for A^g we are now in a position to make a direct extraction of the 

leading power correction benefiting f rom the correct scale dependence of the EC 

formalism. 

2.8 Applying Renormalisation Group Improvement 
to Experimental Data 

In the preceding sections we have demonstrated how one can avoid the renormali

sation scale ambiguity. This requires at least a N L O calculation to incorporate the 

proper asymptotic scaling behaviour. There now exists a wide variety of e +e~ jet 
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observables at sufficient accuracy to warrant a detailed investigation. In applying 

the RG-improved treatment we would expect to remove the further confusion in 

duced by not summing all the \i logarithms as occurs w i th the plrysical scale. A t 

N L O we can test QCD by attempting to extract the single free parameter, namely 

AMS, using Equation (2.64) 6 . Deviations f rom a constant value between different 

observables can then safely be attr ibuted to higher orders and power corrections 

(to the extent that these hold true). Turning this statement on its head we can 

accept that there w i l l be a constant scale A of the theory and attempt to extract 

the magnitude of these higher orders contributions and power corrections. In the 

leading approximation these w i l l be parameterised by p2 and K0. Setting a value 

for A then permits an extraction of these two quantities. 

In the forthcoming section we shall apply this formalism to the large number of 

three and four-jet event shape variables measured at the LEP and SLC accelerators. 

Furthermore we concentrate on the thrust distr ibution for which experimental data 

exists at a wide range of centre-of-mass energies permit t ing the investigation of 

higher order contributions and power corrections. 

We note that in all this discussion we have considered strictly massless quarks. I n 

reality the dimensional transmutation parameter has a dependence on the number 

of active quark flavours, N f , so really we have A j ^ N f \ The NLO correction r and 

the universal /3-function coefficients b and c, in Equations (2.63) and (2.64) also 

depend on N f . Transformation between Ay[SN^ for different values of Nf can be 

effected using the standard apparatus of the decoupling theorem augmented w i t h 

a matching condition [38]. The matching condition has now been computed to the 

three-loop level [39]. For all of our analysis Nf = 5 w i l l be the active number of 

flavours, and we shall be extracting A M ^ 5 ) • 

2.9 Summary 

I n this chapter we investigated the ambiguities arising as a result of renormalising 

the parameters and fields of the Lagrangian. In particular we saw that for physi

cal observables, the renormalised coupling introduces an unphysical dependence on 

the renormalisation scheme when a perturbative calculation is truncated at a finite 
6 Of course we could have chosen any universal scheme dependent A 
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order. Af te r i l lustrat ing the common schemes, we demonstrated how to parame-

terise this dependence through the non-universal /3-function coefficients, c n . We 

then examined the various proposals for remedying this dependence indicating the 

negative aspects of applying the popular physical scale and the importance of spec

ifying two parameters (fi and A R s ) at N L O to give an unambiguous answer. The 

approaches of the PMS and EC illustrated this requirement and in particular that 

of the EC highlighted the benefits of concentrating on the energy dependence of 

physical observables. 

Drawing upon the fact that all physical quantities gain their scale dependence 

purely through the renormalised coupling, we were able to demonstrate a procedure 

for treating the renormalisation scale dependence by requiring observables to have 

the correct asymptotic Q —¥ oo l imi t . This was then demonstrated to be entirely 

equivalent to complete resummation of the ultraviolet logarithms to all orders. Sub

sequently we highlighted the difficulties beyond N L O where the freedom to choose 

subtraction parameters is manifest. In this analysis we restrict ourselves to the more 

conservative claim of resolving the renormalisation scale ambiguity and providing a 

RS invariant prescription for beyond N L O corrections. 

Finally we explored the possibility of incorporating power-like corrections to the 

RG-improved formalism. We demonstrated how to include the leading term in a 

consistent manner w i t h the energy dependence, providing a means of investigating 

the magnitude of such contributions . 



Chapter 3 

Observables 

3.1 Introduction 

In Chapter 1 we saw how QCD perturbation theory was able to make definite pre

dictions about the final state of the process e+e~—> hadrons. Specifically we would 

expect to see the major i ty of events occurring as back-to-back jets w i t h the frac

t ion of well separated three-jet-like events suppressed by an order of as due to the 

emission of a hard gluon. In fact the observation of three-jet events by the TASSO 

collaboration at the P E T R A collider at DESY [40] is taken as experimental evidence 

for the very existence of gluons. Before any definite measurements can be made, i t 

is necessary to clarify what we mean by a jet . Qualitatively, a jet can be understood 

wi th reference to a hard parton emit t ing soft and collinear radiation and undergoing 

hadronisation. We would therefore like to impose a jet measure that respects these 

qualities by being infrared safe and relatively insensitive to the non-perturbative 

fragmentation of the partons. From a theoretical perspective, this corresponds to 

imposing an infrared cut-off in phase space, specifying the number of "hard" partons 

calculated in perturbation theory. Experimentally we can make contact w i t h this 

prediction by applying a jet-clustering algorithms that groups together f inal state 

hadrons into some semblance of the underlying hard partons. In order to implement 

these ideas, we require a precise definition of the resolution cut and a procedure for 

recombining the final state particles. We shall discuss the various possibilities in the 

next section. 

Complementary to the idea of jets are the event shape variables. These typ i fy 

the hadronic structure in much the same way as a jet clustering algorithm would, 

except rather than specify the number of jets according to a resolution parameter, 

51 
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they describe the physical characteristics of the final state hadrons. Nevertheless 

an event shape variable may sti l l be categorised as n-jet-like according to when 

its distr ibution becomes non-zero for n final state hard partons and above. In e + e" 

annihilation this corresponds to perturbative coefficients becoming non-zero at order 

an~2. 

In this chapter we shall explore the consequences of applying the RG-improved 

perturbation theory to these e+e~ jet observables. We have already seen that this 

requires at least a N L O calculation to treat the scale dependence correctly. This 

permits an analysis of the wide range of three and /owr-jet observables. The three-

jet variables have a long history wi th NLO coefficients first calculated in 1981 for 

the three-jet cross section [41] and extended to numerous event shape distributions 

by [42]. In contrast, the N L O coefficients for the four-jet observables have only 

recently become available via four separate general purpose Monte Carlo programs: 

MENLO PARC [43], DEBRECEN [44] and MERCUTIO [45] employing the one-loop helicity 

amplitudes for e+e~ —>• 4 partons [46, 47] and EERAD2 [48] based on the interference 

of the one-loop matr ix element wi th tree level [49, 50]. 

We shall commence by defining the set of jet variables (three and four-jet like) 

that we shall be considering in this analysis (Section 3.2) and how to extract a 

value for Aym across the kinematic range (Section 3.3). This w i l l be followed by an 

investigation of the three-jet like case wi th extraction of A^g at N L O (Section 3.4) 

and a discussion of the results (Section 3.5). We shall then repeat the procedure for 

four-jet like variables (Sections 3.6-3.7). 

Finally we shall consider the energy dependence of event shape distributions in 

the special case of 1-thrust, wi th the possibility of fitting a generic power correction 

(Section 3.8) before summarising the whole chapter (Section 3.9). 

3.2 Definitions of the Jet Observables 

We restrict ourselves throughout to infrared safe observables and make all definitions 

in the centre-of-mass frame, wi th all sums running over N final state particles. We 

begin w i t h the various jet definitions. 
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3.2.1 Jet Rates 

As mentioned earlier there are a number of different possibilities for clustering par

ticles to form jets. Given a particular jet measure, i/ij the following algorithm is 

common to al l , 

1. Define a resolution parameter, ycut. 

2. For every pair of hadrons, hi and hj, evaluate the jet measure, j / ^ . 

3. I f the smallest occurrence of this quantity is less than the resolution parameter 

(i.e. min(yij) < ycut) combine the corresponding hadron momenta, pi and pj 

into that of a pseudo-particle, Pij according to a recombination prescription. 

4. Repeat steps 2-4 unt i l all hadrons and pseudo-hadrons have jet measures 

greater than the resolution parameter. Wha t remains are then denoted jets. 

By introducing a jet resolution parameter, ycut, we have made our definition of 

a jet intrinsically infrared safe. Increasing its value permits a greater number of 

clusterings and thus few jet events are identified. Likewise, decreasing its value f i 

nally results in all f inal state hadrons being assigned to separate jets. W i t h i n the 

theoretical framework, such small values probe deeply into the infrared region and 

thus require a thorough treatment of hadronisation. Jet measures are typically nor

malised by the tota l visible energy of the hadronic event, EV-1S, to give a dimensionless 

quantity. 

For a description of the multi tude of different algorithms wi th their merits see 

[51]. For this analysis we shall restrict ourselves to the JADE, Durham and Geneva 

jet f inding measures applied by the various experimental collaborations. 

T h e J A D E A l g o r i t h m 

The first jet measure to be proposed was by the J A D E collaboration [52] and simply 

uses, 

where Et denotes the energy of a hadron, / in the centre-of-mass frame and 9im is the 

opening angle of the pair under consideration. In the massless l im i t this measure 

2EiEj{l-cos0ij) Mfj 
E 

VIS 

(3.1) 
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corresponds to their invariant mass, M ^ . Having defined the jet measure we are 

s t i l l at l iberty to define the procedure for recombining two hadrons into a pseudo-

hadron. There are four immediately obvious possibilities, denoted the E, EO, P 

and PO schemes. In all cases the subscript k denotes the pseudo-particle created by 

particles i and j. 

E scheme: 

In the E scheme, we combine two particles according to their four-momenta, 

Pk=Pi+Pj- (3-2) 

Energy and momentum are explicitly conserved in this scheme. 

EO scheme: 

In this scheme the three-momenta of the pseudo-particle is rescaled to give i t zero 

invariant mass, 

Ek = Ei + Ej, (3.3) 

Pfc = —r(P< + Pi)- ( 3 - 4 ) 
I Pi + Pjl 

As a result the tota l momentum sum of the event is not conserved. 

P scheme: 

Conversely we may conserve the total momentum of the event at the expense of the 

tota l energy conservation using 

Pk = Pi + P j , (3.5) 

Ek = |p k | . (3.6) 

PO scheme: 

Lastly we introduce a variation of the P scheme by altering the jet measure such 

that after recombination, the total visible energy is changed such that, 

Evis = Y,Ek- (3.7) 
fc 

Unfortunately the J A D E jet measure turns out to introduce spurious clusterings in 

certain circumstances whereby a resultant jet is formed in a direction lacking any 

approximately collinear in i t ia l hadrons. This translates into theoretical problems 
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when attempting to perform large infrared logarithm resummations where these 

correlations spoil the property of exponentiation in the two-jet limit [53] l. 

The Durham (or k ^ ) Algorithm 

A subsequent attempt to suppress artificial recombinations within the jet clustering 

and hence improve its theoretical properties was suggested by Dokshitzer et al. [54], 

termed the Durham or k^-algorithm. It uses the minimum relative transverse 

momenta of two hadrons in the small angle limit, 

This form of clustering reduces the number of spurious recombinations and permits 

a straightforward theoretical implementation (see Chapter 4). As such it has now 

become the standard algorithm in use. We use the E scheme recombination. 

The Geneva Algorithm 

Lastly we consider a variant termed the Geneva algorithm proposed by Bethke 

et al. [55] that also attempts to reduce the spurious mis-clusterings of the Jade 

algorithm using the measure, 

In contrast to the previous two proposals, the Geneva algorithm does not depend 

on the energy of the event, and has a preference to combine soft particles with hard 

ones. This in turn reduces the correlations between soft gluons when performing 

infrared logarithm resummations. We also use the E scheme for recombination. 

With the jet finding algorithms in place we may now determine the n-jet rates 

{RniVcut)) by the fraction of events with n resultant jets after clustering. We may 

then define the jet transition parameters, ynn+i that corresponds to the value of ycut 

where an event changes from n + 1-jet-like to n-jet-like. 

1 Infrared logarithm resummations and the property of exponentiation wil l be discussed in Chap
ter 4 

D y 
2 min (£? ,£? ) ( l - cos f l i j ) 

(3.8) 

y 
&EiEj(l - cosfly) 
9 (Ei + EjY 

(3.9) 
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3.2.2 Event Shape Variables 

Many of these variables are related and can be broadly categorised as follows. Note 

that they will in general contain both three and four-jet-like quantities. 

Thrust and Related Variables 

Thrust (T) is defined by maximising the net longitudinal momentum of final state 

particles along the direction of a thrust axis [56], 

T = m a x S f f ^ , (3.10) 

where p; denotes the final state particle momenta, and nj- denotes the unit vector in 

the direction of the thrust axis, to be determined by maximising the above quotient. 

Defining for convenience r = l — T , we find that r varies between zero, for two 

back-to-back final state partons, up to a maximum of r = \ for spherical (isotropic) 

events. For planar events with three final-state partons, one finds a maximum value 

of T — \ corresponding to a "Mercedes Benz" configuration. Two further variants, 

thrust-major ( T m a j ) and thrust-minor (Tm-m) can be defined. In T m a j the thrust 

axis iir is replaced in Equation (3.10) by n m a j , which maximises the sum of momenta 

transverse to the thrust axis. In T m i n it is replaced by an axis n m i n which is the vector 

cross product of n^ and n m a j . One can then define the oblateness O by [57] 

0 = T m a j - T m i n . (3.11) 

Invariant Mass Measures 

Events can also be divided into two hemispheres (H 0 ,H( ,) by a plane perpendicular 

to n^. We may then calculate the normalised invariant mass of each hemisphere 

(x = a,b) [58], 

Ml 1 
E2, El 

vis vis Pk 

(3.12) 

This permits the possibility of four obvious combinations giving rise to 

PT = Pa + Pb: (3-13) 

PD = \pa~Pb\, (3-14) 

pH = max(p a,pt), (3.15) 

pL = min(p a ,p 6 ) , (3.16) 
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which correspond to the sum of jet masses, the difference of jet masses, the 

heavy jet mass and the light jet mass respectively. To lowest order in perturba-

tive QCD, and assuming massless quarks, thrust and heavy jet mass are related by 

r = pH [42], 

Jet Broadening Measures 

Other variants on thrust and jet masses are the jet broadening measures proposed 

in [59]. In each of the above hemispheres a and b one forms a jet broadening, B, by 

summing over the particles in that hemisphere, 

B. = E ^ " - ' P l , X " T l • (3.17) 

Once again we may compose a range of variables by the combinations, 

BT = Ba + Bb, (3.18) 

BD = \Ba-Bb\, (3.19) 

Bw = max(Ba,Bb), (3.20) 

BN = mm(Ba,Bb), (3.21) 

to make the sum of hemisphere broadening, the difference of hemisphere 

broadenings, the wide hemisphere broadening and the narrow hemisphere 

broadening respectively. For two-parton final states BT = Bw = BD = 0, and to 

lowest order in perturbation theory BT = Bw = BD — \0 — ^ r m a x . 

The C and D Parameters 

We can also define the so-called C and D-parameters from the eigenvalues of the 

infra-red safe linear momentum tensor [60], 

Omn = E ^ f / ' P ? I , (3-22) 

where p™ is the m-th component of the three-momentum p,, with % summed over 

all final state particles. As defined the tensor has unit trace. The C-parameter is 

then defined in terms of the eigenvalues of the tensor 8^, X\, A 2, A 3 by, 

C = 3(A 1A 2 + A 2A 3 + A 3 A 1 ) . (3.23) 
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C = 0 for back-to-back two parton final states and C = 1 for spherical (isotropic) 

events. For planar three-parton final states 0 < C < | where one of the eigenvalues is 

zero. For values greater than | requires at least four final state particles. 

The .D-parameter is defined by the combination 

D = 27A 1A 2A 3, (3.24) 

and only becomes non-zero for non-planar events (i.e. four or greater final states 

particles). 

3.2.3 Particle Correlations 

Rather than describe an event by a single variable, we may consider inclusive two-

particle correlations. The energy-energy correlation (EEC) [61] is the nor

malised energy-weighted cross section defined in terms of the angle, Xiji between 

two particles i and j in an event, 

^c(x) - ^ e f + * £ § w " ( 3 - 2 5 ) 

events •* 2 i,j v l b 

where the argument, X i is the opening angle to be studied for the correlations. A x , 

is the angular bin width and N is the number of events. The angle x can be varied 

in the range 0° < x < 180° where the central region (x ~ 90°) is governed by hard 

gluon emission and the extremities (x ~ 0° and 180°), corresponding to collinear 

and back-to-back configurations, are expected to be sensitive to hadronisation. We 

may further define the asymmetric energy-energy correlation (AEEC) to be 

AEEC(x) = EEC(180° - X ) - EEC(x), (3.26) 

where now X

 I S within the range 0°-90°. 

3.2.4 Angular Energy Flow 

A recent addition to the set of e+e~ jet observables is the jet cone energy fraction 

(JCEF) [62]. Here the energy within a conical shell of opening angle X about the 

thrust axis is integrated, 

events * 2 t 



Chapter 3. Observables 59 

where 

Xi = arccos ( ^\ " T J (3.28) 

V I p I / 
is the opening angle between a particle, i, and the thrust axis vector, nT defined to 

point from the heavy jet mass hemisphere to the light jet mass hemisphere. The 

angle, Xi is within the range 0° < X < 180° and thus the hard gluon emissions will 

feature when X > 90°. 

3.2.5 Categorising the Observables 

Al l the observables previously defined are either three or four-jet like. Additionally, 

we shall also investigate the two-jet rate. In the subsequent analysis we utilise 

experimental data at the Z°-peak from the SLD [63], ALEPH [64], DELPHI [65, 66], 

L3 [67] and OPAL [68] collaborations. For convenience we summarise the variables, 

with the collaborations that published the relevant data, into two, three and four-jet 

like categories. 

• Two-Jet-Like Observables 

- The Two-Jet Rate, (R2): ALEPH, OPAL 

• Three-Jet-Like Observables 

- The Three-Jet Rate, (Ra): ALEPH, OPAL 

- 2 -»• 3 Jet Transition Variable (Jade- E scheme) (y^): ALEPH, DELPHI, 

L3, SLD 

- 2 -> 3 Jet Transition Variable (JADE- E0 scheme) ( j ^ 3 ) : SLD 

- 2 3 Jet Transition Variable (JADE- P scheme) (y^ 3): SLD 

- 2 -> 3 Jet Transition Variable (JADE- P0 scheme) (y^)\ SLD 

- 2 -> 3 Jet Transition Variable (Durham) (yg): ALEPH, DELPHI, L3, 

OPAL, SLD 

- 2 —> 3 Jet Transition Variable (Geneva) ( j / ^ ) : SLD 

- 1-Thrust (1 - T) : ALEPH, DELPHI, L3, OPAL, SLD 

- Thrust Major ( T m a x ) : DELPHI L3 
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- Oblateness (O): ALEPH, DELPHI, L3, OPAL, SLD 

- Sum of Hemisphere Masses (BT): DELPHI 

- Difference in Hemisphere Masses [PD)'- DELPHI, OPAL 

- Heavy Hemisphere Mass (pH): ALEPH, DELPHI, L3, OPAL, SLD 

- Total of Jet Broadening (BT): DELPHI, SLD 

- Difference in Jet Broadening (BD): DELPHI 

- Wide Jet Broadening (Bw): DELPHI, SLD 

- C-Parameter (C): ALEPH, DELPHI, L3, OPAL, SLD 

- Energy-Energy Correlation (EEC): DELPHI, SLD 

- Asymmetric-Energy-Energy Correlation (AEEC): DELPHI, SLD 

- Jet Cone Energy Fraction (JCEF): DELPHI, SLD 

• Four-Jet-Like Observables 

- 3 -> 4 Jet Transition Parameter (Durham) (y{&): DELPHI 

- Thrust Minor ( T m i n ) : DELPHI 

- Light Hemisphere Mass (pL): DELPHI 

- Narrow Jet Broadening [BN)\ DELPHI 

- D-Parameter (D): DELPHI 

3.3 Applying RG-Improved Perturbation Theory 
3.3.1 Issues at NLO 

In this section we address the task of how to apply the RG-improved perturbation 

theory at NLO. We have already seen in the previous chapter that we may attempt 

to extract a value for A^s at NLO, providing we believe that the centre-of-mass 

energy is sufficiently high to warrant an asymptotic approximation. In this case we 

obtain Equation (2.64) reproduced here for convenience, 

Am=Qf(K(Q))e-rfb(2c/b)c< (3.29) 
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We are faced with rewriting the jet observable cross-sections and distributions in 

the dimensionless form of Equation (2.4) 

U(Q) = a + rxa2 + r 2 a 3 + . . . + r n a" + 1 + . . . . (3.30) 

For the three-jet-like observables, 7£3, we will in general have a perturbative expan

sion at NLO of the form 2 

Correspondingly four-jet-like observables, TZ4 will have the expansion 

*.«> = * ( ^ ) ' + * M ( ^ ) ' . (3-32) 

where AN denotes the \x independent tree-level coefficient of an n-jet-like quantity 

and BN the NLO coefficient. We may then by simple algebraic manipulation rewrite 

these in terms of the required dimensionless quantity as 

and 

KiiQ) --

We are now in a position to calculate A ^ s from Equation (3.29) by substituting 

the experimental values of 1Z(Q) and the fundamental quantity, r\(bi = Q) which 

can be read off Equations (3.33) and (3.34). We may then apply this to every 

experimental bin, enabling a direct extraction of A ^ across the kinematic range 

of the variable. In all cases we use the Monte Carlo programs E E R A D [69] and 

E E R A D 2 [48] to calculate the fixed order coefficients for three and four jet quantities 

respectively. 

Before we attempt to extract a value for A M S there are a number of important 

issues worth considering. Firstly we must remember that even though we have 

defined a set of observables that attempt to reflect the underlying behaviour of 

the QCD partons, the effects of hadronisation will always be present. In some 
2 The two-jet case is equivalent to the three-jet case with the substitution 72.3 —> ( 1 — 7^2 )• 

2^3(Q) _ <*.(/*) B 3 ( / /) fas{p) 
7T 2Ao 7T 

(3.33) 

AA IX 4AA V 7T 
(3.34) 
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observables this will be more pronounced in certain regions of phase space resulting 

in the perturbative prediction failing to provide a reliable description. A number of 

Monte Carlo programs exist [70, 71] that attempt to model this behaviour and have 

proved very successful. In addition non-perturbative power corrections have been 

studied phenomenologically and have displayed very positive results too. 

Secondly, from a purely perturbative QCD perspective, semi-inclusive quantities 

suffer from large kinematic logarithms at the exclusive boundaries of phase space. 

This manifests itself in the rx parameter, growing in magnitude typically like — In 2 A 

for a variable A that goes to zero in the two-jet configuration. This drags the value 

for AMS to zero regardless of the true value. This indicates a breakdown in the NLO 

approximation since higher order terms will be enhanced by powers of logarithms 

requiring an all-orders resummation. This will be considered in the next chapter. 

Furthermore, at the opposite end of the kinematic range we typically encounter a 

similar problem due to an end point in phase space. These occur when a variable 

goes from being n-jet-like to (n+l)-jet-like. Examples of this are the 1-thrust at 

| and the C-parameter at | . Above these values, the three-jet configurations do 

not contribute, resulting in the tree level term vanishing. Clearly this now upsets 

our definition of r\ since it diverges in a direction governed by the relative sign 

difference between LO and NLO in this limit. These characteristics can be seen in 

Figure 3.1 for the 1-thrust variable and Figure 3.2 for the thrust minor variable. A 

more sophisticated way of handling the end point problem would be to define a new 

ri value according to the ratio of the order a3

s coefficient to order a2

s in the region 

corresponding to non-zero four-jet configuration contributions and then smoothly 

interpolate a value across the threshold. 

These two difficulties must be taken into consideration when attempting to ex

tract a value for A^g. For a number of the three-jet quantities, hadronisation cor

rected data is analysed [72], providing a means to reducing that uncertainty. In these 

cases the Jetset 7.4 hadronisation model was implemented (unless otherwise stated) 

using bin-by-bin correction factors with errors estimated via statistical uncertainty. 

These factors were calculated as specified in [63] and [66]. 

Finally i t should always be remembered that it is by no means certain that a 

centre-of-mass energy of Mz provides a reasonable approximation to asymptotia. 

I t may therefore prove important to include higher order corrections to enable a 
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Figure 3.1: The r i parameter as a function of 1-thrust. It is calculated according 
to the ALEPH experimental bin sizes with errors attributed to the Monte Carlo 
integration of the LO and NLO coefficients only. 

justifiable termination of the perturbation series. In the following section we consider 

the data analysis of the fitting procedure. 

3.3.2 Data Analysis 

Having identified the possible difficulties arising we must specify a set of criteria to 

perform a direct extraction of A^g. This should concentrate on a plateau region of 

AMS in the central region of the kinematic range of the variable. We have adopted 

the following procedure for specifying the fit range, 

1. Decrease the fit range from its maximum value such that all rx values lie within 

a variation of 20% from the flattest region. 

2. Decrease the range further (if necessary) to the region where hadronisation 

corrections are less than 40%. 
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Figure 3.2: The r\ parameter as a function of thrust minor. It is calculated accord
ing to the DELPHI experimental bin sizes with errors attributed to Monte Carlo 
integration of the LO and NLO coefficients only. 

3. I f more than three points are present, perform a single parameter x2 fit to a 

flat line to calculate a value for Am with error. 

4. Rescale the error according to \/x2/^df to obtain a AMS prediction for the 

given variable and collaboration. 

If at any stage there are fewer than four consecutive bins surviving, the jet 

variable is considered unsuitable for the analysis. There is, of course, no guarantee 

that a variable will have a flat plateau over which to perform the fi t . I t may be such 

that the kinematic boundary effects dominate over the complete range. In these 

cases we are forced to disregard the variable. 

We have chosen to use an r\ criterion to avoid the problem of large kinematic 

logarithms spoiling the fixed order perturbation theory. The parameter, r 1 ; clearly 

indicates the region where these logarithms are dominating the series and hence the 



Chapter 3. Observables 65 

breakdown of the NLO approximation. The value of r\ does not indicate where 

hadronisation effects may be considerable though. Therefore in order to give a 

proper treatment of the variables, we should use experimental data that has been 

corrected for hadronisation effects. We attempt to include a reasonably flat region 

across rx by allowing a 20% deviation from flatness (with errors taken into account). 

Since the ri parameter varies smoothly across the kinematic range, this criterion 

permits a good measure of flatness. The value of 20% is chosen to tolerate minor 

deviations in 7*1 in the vicinity of the end points and any statistical fluctuations 

from evaluation of the NLO coefficients which are typically small. The resulting fit 

range should be relatively insensitive to small variations in the permitted percentage 

deviation. 

If hadronisation corrected data is available, we have adopted the procedure pre

sented in a [63] for excluding any bins that suffer from greater than a 40% correction. 

Finally, we adopt a minimum x2 test for fitting a flat line to the data points. 

The initial error (induced by A^; 2 = 1 from minimum) associated with the fit is 

then scaled by y/x2/^df f ° r ^df degrees of freedom as promoted in the review of 

particle physics [6]. This provides a value of Am§ for each observable measured by 

each collaboration. We must then consider how to combine the values. 

3.3.3 Procedure for handling the errors 

In considering the forthcoming fits, we must be careful not to underestimate the 

errors. Dealing with different experiments' measurements of the same observable will 

obviously have strong correlations. Typically the greatest difference between data 

sets will be due to statistical errors especially in the cases without any hadronisation 

corrections being applied. A procedure has been put forward by Schmelling [73], 

termed the method of correlated averages, to combine correlated data when the 

exact correlation matrix is unknown. In this case, it is suggested that the degree 

of correlation is set by the x2/Ndj value of the data set. In this way we are able 

to combine any number of correlated data without an unnatural reduction in the 

error. Similarly when combining errors with a x2 l^df greater than one we adopt 

the standard technique of rescaling the error by \Jx2/Ndf to improve the error 

estimation according to the quality of the fit. 
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3.4 Results of Extracting A m s from 
Three-Jet Observables 

In this section we present the results of fitting a constant value of AM§ to the three-

jet observables' data sets. Al l observables are considered separately in turn. Since 

hadronisation corrections must be applied bin-by-bin, we may only consider a com

plete discussion of those variable for which such corrections are available. Therefore 

in the case where hadronisation corrected data is present, it is plotted together with 

the uncorrected data for that experimental collaboration in a separate figure. In 

this way, we may contrast between them to the see the effect on AMS. Al l remaining 

uncorrected data is then displayed in a single plot. 

The experimental data for the three-jet observables (uncorrected for hadronisa

tion effects) is taken from [63] for SLD data, [64] for ALEPH data, [65] for DELPHI 

data, [67] for L3 data and [68] for OPAL data. Additionally, hadronisation corrected 

data [72] is applied where available. 

The fi t ranges are marked as dashed vertical lines and the resultant fitted A ^ 

value is plotted as a dashed line in the colour of the data points of the collaboration. 
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Figure 3.3: The 2 Jet Rate using ALEPH data 

400 

300 

| 
JP 200 I f -

100 

0' 1 X 

The 2 Je t Rate 

i i i i i j— i — i— i i i i_ 
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 

X 

Opal 
. Aj|g=161.62-f- 4.24 

Opal (JETSET 7.4) 
Asg=120.84+-180.36 

0.16 0.18 0.2 

Figure 3.4: The 2 Jet Rate using OPAL data both hadronisation uncorrected and 
corrected 
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Figure 3.5: The 3 Jet Rate using ALEPH data 
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Figure 3.6: The 3 Jet Rate using OPAL data both hadronisation uncorrected and 
corrected 
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Figure 3.7: The 2 —> 3 Jet Transition Parameter using L3 data 
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Figure 3.8: The 2 — ¥ 3 Jet Transition Parameter using DELPHI data both hadroni-
sation uncorrected and corrected 
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Figure 3.9: The 2 —»• 3 Jet Transition Parameter using SLD data both hadronisation 
uncorrected and corrected 

y23 (Jade-P) + Sid 
Ajg=65.04+- 8.37 

X Sid (JETSET 7.3) 
Ajg=170.54+-16.68 

0.05 0.1 0.15 0.2 0.25 
^ ' — 

0.3 

Figure 3.10: The 2—^3 Jet Transition Parameter using SLD data both hadronisation 
uncorrected and corrected 
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Figure 3.11: The 2— 3̂ Jet Transition Parameter using SLD data both hadronisation 
uncorrected and corrected 
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Figure 3.12: The 2 —• 3 Jet Transition Parameter using ALEPH and L3 data 
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Figure 3.13: The 2 —>• 3 Jet Transition Parameter using DELPHI data both hadro-
nisation uncorrected and corrected 
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Figure 3.14: The 2 3 Jet Transition Parameter using SLD data both hadronisation 
uncorrected and corrected 



Chapter 3. Observables 73 

200 h— 

100h-

y23 (Geneva) 

0.05 0.1 0.15 

f 

I 
0.2 

+ Sid 
. . . . Ajg=33.52+- 4.83 

X Sid (JETSET 7.3) 
Aig=139.86+-10.46 

0.25 0.3 

Figure 3.15: The 2 —¥ 3 Jet Transition Parameter using SLD data both hadronisation 
uncorrected and corrected 
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Figure 3.16: The 1-Thrust Parameter using ALEPH and L3 data 
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Figure 3.17: The 1-Thrust Parameter using DELPHI data both hadronisation un
corrected and corrected 
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Figure 3.18: The 1-Thrust Parameter using OPAL data both hadronisation uncor
rected and corrected 
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Figure 3.19: The 1-Thrust Parameter using SLD data both hadronisation uncor
rected and corrected 
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Figure 3.21: The Oblateness using ALEPH and L3 data 
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Figure 3.22: The Oblateness using DELPHI data both hadronisation uncorrected 
and corrected 
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Figure 3.23: The Oblateness using OPAL data both hadronisation uncorrected and 
corrected 
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Figure 3.24: The Oblateness using SLD data both hadronisation uncorrected and 
corrected 
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Figure 3.25: The Sum of Hemisphere Masses using DELPHI data both hadronisation 
uncorrected and corrected 
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Figure 3.26: The Difference in Hemisphere Masses using DELPHI data both hadro
nisation uncorrected and corrected 
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Figure 3.27: The Difference in Hemisphere Masses using OPAL data both hadroni-
sation uncorrected and corrected 
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Figure 3.28: The Heavy Hemisphere Mass using ALEPH, L3 and OPAL data 
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Figure 3.29: The Heavy Hemisphere Mass using DELPHI data both hadronisation 
uncorrected and corrected 
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Figure 3.30: The Heavy Hemisphere Mass using SLD data both hadronisation un
corrected and corrected 
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Figure 3.31: The Total Jet Broadening using DELPHI both hadronisation uncor
rected and correctedboth hadronisation uncorrected and corrected 
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Figure 3.32: The Total Jet Broadening using SLD data both hadronisation uncor
rected and corrected 
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Figure 3.33: The Wide Jet Broadening using DELPHI data both hadronisation 
uncorrected and corrected 
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Figure 3.34: The Wide Jet Broadening using SLD data both hadronisation uncor
rected and corrected 
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Figure 3.35: The C Parameter using ALEPH and L3 data 
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Figure 3.36: The C Parameter using DELPHI data both hadronisation uncorrected 
and corrected 
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Figure 3.37: The C Parameter using OPAL data both hadronisation uncorrected 
and corrected 
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Figure 3.38: The C Parameter using SLD data both hadronisation uncorrected and 
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Figure 3.39: The Energy-Energy Correlation using DELPHI data both hadronisation 
uncorrected and corrected 
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Figure 3.40: The Energy-Energy Correlation using SLD data both hadronisation 
uncorrected and corrected 
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hadronisation uncorrected and corrected 
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Figure 3.42: The Asymmetric Energy-Energy Correlation using SLD data both 
hadronisation uncorrected and corrected 
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Figure 3.43: The Jet Cone Energy Fraction using DELPHI data both hadronisation 
uncorrected and corrected 
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Figure 3.44: The Jet Cone Energy Fraction using SLD data both hadronisation 
uncorrected and corrected 
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3.5 Discussion of the plots 

On examining the plots it quickly becomes apparent that there is a large variation 

in quality between variables. Some variables give very flat curves while others never 

reach even a moderate plateau. We see that many of the variables display the 

anticipated kinematic end points. As mentioned earlier there is no straightforward 

solution to this problem and is in fact related to the difficulties between reconciling 

renormalisation group improvement techniques with semi-inclusive observables. For 

the sake of simplicity we just consider fits away from these points. 

This tacitly assumes that the binning of the original experiment has a sufficiently 

large number of bins away from both the large log region and kinematic end point. 

This was confirmed by most variables reproducing consistent initial fit ranges except 

for three cases namely the SLD wide jet broadening, total jet broadening and heavy 

jet mass where there were too few bins. Therefore in these cases the corresponding 

DELPHI ranges were applied. 

We will examine each class of variable in turn and consider its quality and any 

apparent failings. 

The Two and Three-Jet Rates 

For the ALEPH data, the distribution here gives an extremely flat line across most 

of the range in ycut. At small ycut the distribution requires kinematic logarithm re-

summation. The OPAL data confirms these within the larger error bars. A problem 

arises after hadronisation corrections have been applied with the errors introduced 

completely swamping the determination of AM§. Smaller errors in the original OPAL 

data would presumably give a far more stable result. The hadronisation correction 

factors themselves are not large. The three-jet case repeats the features of the two-

jet case with the ALEPH data displaying an extremely good fit even with its absence 

of hadronisation corrections. 

The 2 —>> 3 Jet Transition Parameter 

On the whole, these quantities have very flat r\ values away from the y 23 -> 0 limit. 

Apparent fluctuations occur within the error bands and typically disappear for the 

data sets with reduced uncertainties (such as from DELPHI). Hadronisation has 
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the effect of raising the value of A^g in all cases. An example is for the Durham 

algorithm where it goes from about 115MeV to about 170MeV. 

The Thrust Related Variables 

The thrust and thrust major variables have distributions with a reasonable region of 

flatness in T\, permitting a well defined fit range. For thrust the effect of hadronisa-

tion is considerable. Even away from the infrared region, we see that on correcting 

for such effects, the value for A^g- becomes far more stable, enabling a better f i t . 

The actual value for AMS is only slightly decreased in these circumstances due to a 

better f i t . 

The distribution for oblateness on the other hand, fails the first fit range criterion 

and is excluded immediately. It is interesting to note that not only does it lack a 

sufficiently flat region in rx, but it is also the only three-jet like observable to have 

an overall sign difference between the NLO and LO coefficient across the complete 

range of oblateness (i.e. r i remains negative across the complete kinematic range). 

The resultant plots verify the poor quality of this variable for extracting a value of 

AMS-

The Jet Hemisphere Masses 

The hemisphere mass related variables display widely varying properties. The sum 

demonstrates the optimal fi t with r i values leveling off away from the two-jet region. 

There is also a strong presence of hadronisation effects that once incorporated, 

enable a large fit range.. In contrast, the r\ value of the distribution in "difference 

of hemisphere masses", behaves analogously to that of the thrust minor variable 

displayed in Figure 3.2. Therefore the fit range is severely limited. Within this 

range, the hadronisation effects can once more be seen to be crucial in generating a 

flat plateau for extraction of A^s. Lastly the heavy hemisphere mass displays much 

the same characteristics as the "difference" . Hadronisation effects are imperative 

for a reasonable fit. 
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The Jet Broadenings 

The total jet broadening has r\ values of the same form as that of thrust, the upper 

kinematic bound being ^ « 0.289 Unfortunately it seems, from the compara

tively low value of Ang , that the large infrared logarithm and kinematic end-point 

effects hinder an accurate measurement being made. It is also possible that large 

higher order corrections are required at this centre-of-mass energy. The difference 

in jet broadenings is missing as it suffers from the same problem as the oblateness. 

The wide jet broadening has many similarities with the heavy hemisphere mass, 

displaying all the same characteristics. 

The C-Parameter 

The C-parameter provides a very good fit away from the infrared region, with a large 

fit range extending nearly all the way to its extreme value of | . Hadronisation cor

rections decrease the extracted value of AMS to about lOOMeV from about 150MeV. 

The effect is most pronounced in moving towards the two-jet configuration. Here 

different collaborations seem to give varying results before corrections have been 

applied. This is most probably due to the large uncertainties of the older data sets 

(L3, OPAL and SLD). 

The Two-Particle Energy Correlations 

The correlations provide a completely different picture of events. They are built 

upon two-particle correlations in energy, and therefore each event can contribute to 

more than one bin. For the EEC, the extreme angular regions correspond to the two-

jet configuration and are thus sensitive to the same form of kinematic logarithms. 

Strikingly though, the plots of the DELPHI and SLD hadronisation corrected data 

differ significantly. This can only be attributed to the difference in hadronisation 

models, Jetset 7.4 for DELPHI and Jetset 7.3 for SLD. Regardless of this effect, 

we see that in both cases, the large infrared logarithms have a strong influence over 

much of the distribution. The AEEC distribution suffers from a number of problems. 

I t has very large hadronisation corrections. Additionally we find a minor deviation 

between the SLD and DELPHI results, although the hadronisation correction factors 

agree between both experiments with only very slight differences from 0°-15°. The 
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seemingly incompatible data is due to the large errors involved. The SLD data 

contains large uncertainties which are amplified through hadronisation corrections. 

The resulting values should therefore not be trusted and are therefore disregarded. 

The Jet Cone Energy Fraction 

Special consideration had to be taken with this variable since unlike most of the 

others, this one had minor fluctuations in the distribution in ri due to the Monte 

Carlo integration of the NLO and LO coefficients. To compensate for this effect, the 

tolerance in extracting the fi t range was increased to 25%. This increase was suffi

cient to hide the small perturbations from flatness in the distribution. Otherwise, 

we see that the hadronisation effects are small and a flat region is consistent within 

the errors. 

Summary of Three-Jet Observables 

Having obtained values for AMS with errors as indicated previously we combine 

them as specified in Section 3.3.3. Treating the hadronisation corrected quantities 

separately, we combine each data set for different collaborations to get a prediction 

for each observable. A summary of these values are in Figures 3.45 and 3.46. In 

the case of the hadronisation corrected data, we convert the value of AMS to ®s(Mz) 

via the ^-function equation as specified in Equation (2 .80) solved exactly at two-

loops. A summary of these values can be found in Figure 3.47. At this point, 

we have taken the information available from a next-to-leading order calculation 

to its limit. After hadronisation corrections have been applied, we should only be 

left with higher order contributions affecting the final result. Therefore, we may 

attribute the scatter in values of AM§ to these higher order terms. There is of course 

no assurance that higher order corrections will move all values closer together. We 

naively anticipate that the extreme values would move towards the more common 

ones. Without a guide to which variable will have small higher order corrections, we 

are left merely guessing to what these effects would be. Only an NNLO calculation 

can shed light on this matter. Strictly speaking, there is no preference for one value 

over another and hence no reasonable procedure for extracting an overall value for 

AMS (or equivalently as). 
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Summary of Measurements 
Uncorrected for Hadronisation Effects 
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Figure 3.45: Summary of AMS measurements uncorrected for hadronisation effects. 
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Summary of Measurements 
Corrected for Hadronisation Effects 
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Figure 3.46: Summary of AM§ measurements corrected for hadronisation effects. 
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Summary of a § Measurements 
Corrected for Hadronisation Effects 
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Figure 3.47: Summary of as measurements corrected for hadronisation effects. 
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3.6 Results of Extracting AMS from 
Four-Jet Observables 

In this section we present the results of fitting a constant value of A^g to the four-jet 

observables' data sets. In each case only data uncorrected for hadronisation effects 

is analysed. We use the DELPHI data of [66] in all cases. 
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Figure 3.48: The 3 —> 4 Jet Transition Parameter 
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3.7 Discussion of the plots 

As with their three-jet counterparts, the results vary considerably due to the nature 

of each individual four-jet observable. 

The 3 —y 4 Jet Transition Parameter 

The extraction of A ^ from the 3 —> 4 jet transition parameter distribution is ham

pered by large uncertainties. This can be traced back to the relatively large errors 

in the r\ parameter from the NLO coefficient. 

The Thrust Minor Variable 

The thrust minor variable suffers from a small fit range. As can be seen in Figure 3.2, 

the parameter r\ does not have an extended flat region due to the domination of 

the kinematic end points. We are then forced into the small region at the turn-over 

of the r\ distribution where it is momentarily horizontal. 

The Narrow Jet Broadening 

The narrow jet broadening seems to have a very stable and flat r\ ratio suggesting 

that a decent value of A^g- should be obtained. This however is clearly not the 

case on inspection of the plot (Figure 3.50). We can attribute this deviation from 

flatness to dominating hadronisation corrections. We shall see in the next chapter 

the importance of phenomenological power corrections to this distribution. 

The Light Hemisphere Mass 

The light hemisphere mass in many ways reflects the problems of the narrow jet 

broadening. In the small "light mass" limit, the T\ ratio goes to negative infinity 

and approaching the first kinematic end point, the ratio goes to positive infinity. 

Unfortunately within the intermediate range there is no definitive flat plateau in 

which to fit a stable value for AMS. 1° addition there are large hadronisation cor

rections analogous to those of the narrow jet broadening. Together these have the 

effect of raising the fitted value of AMS which is reflected in the large error band. 
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The D-Parameter 

The D-parameter provides a very good fit away from the large logarithm limit of 

D —> 0. We would therefore expect this variable to have relatively small hadronisa

tion corrections. 

Summary of Four-Jet Observables 

We summarise all extracted values of A^g from four-jet observables in Figure 3.53. 

Comparing these value with that of the three-jet variables, there is a seemingly large 

disparity. Closer inspection reveals that the "light hemisphere mass" and "narrow 

jet broadening" are both pulling the average value of A^g much higher than the 

remaining four-jet variables would otherwise suggest. This is an indication of why 

we should not trust an overall average too much. Hadronisation corrections have 

not been applied in this case and as we shall see in the next chapter, these effects 

with infrared logarithm resummations are needed to describe the data. 
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Summary of Measurements 
Uncorrected for Hadronisation Effects 
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Figure 3.53: Summary of Admeasurements uncorrected for hadronisation effects. 
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3.8 Energy Dependence of Observables 

In this section we will explore the scaling behaviour of physical observables. This 

provides a strong motivation in favour of the RG-improved formalism. I t was argued 

previously that i t is possible to test QCD by simply examining the running of an 

observable quantity with energy. Away from quark mass thresholds the RGE should 

completely dictate the energy dependence and it is this feature we hope to explore 

in this section with emphasis on the thrust distribution. 

3.8.1 The Thrust Distribution 

We are fortunate enough to have experimental measurements of the thrust dis

tribution at a wide variety of energy scales from PETRA to LEP2. We shall be 

considering the following data 

• PETRA (Detector- Tasso, Facility-DESY) [74] 

- Centre of Mass Energies - 14, 22, 35 GeV 

• PEP (Detector- Mark-II, Facility-SLAC) [75] 

- Centre of Mass Energy - 29GeV 

• TRISTAN (Detector- Amy, Facility-KEK) [76] 

- Centre of Mass Energy - 52GeV 

• SLC (Detector- SLD, Facility-SLAC) 

- Centre of Mass Energy - 9lGeV 

9 LEP (Detectors- Aleph, Delphi, L3, Opal, Facility-CERN) 

- Centre of Mass Energy - 91 GeV 

Unfortunately as the LEP2 data suffers from large errors due to poor statistics, 

we are forced to exclude it from the analysis. Considering the energy dependence 

dictated by the RGE, we would expect to see that at higher energies, we are closer 

to asymptotia and hence our terminated series should give a more reliable estimate 

of Am. This is clearly apparent in Figures 3.54 and 3.55 (where we have removed 
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Figure 3.54: The Energy Dependence of Measurements from the Thrust Distri
bution 

the error bars for clarity). In the limit 1 — T —> | we are faced once again with the 

problem of the kinematic end point dragging the value to zero. In the 1 — T —> 0 

limit, large kinematic logarithms dominate from the emission of soft and collinear 

gluons. Clearly in between we see a "flattening" of the A^g value with 1 — T. This 

can be interpreted as higher order and power-like corrections having less influence, 

and hence the NLO approximation is more reliable. 

3.8.2 Investigating Higher Order Effects and Power Correc
tion 

As suggested in Section 2.7, i t is possible to consider the formalism from a different 

perspective whereby we accept that AM§ is a constant and that any deviations from 

its true value are due to higher order effects and power corrections. In this case we 

may then try to approximate these contributions by the leading terms as given by 

Equation (2 .97) . In this section we highlight a simple mechanism for investigating 
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Figure 3.55: The Energy Dependence of A ^ g Measurements f rom the Thrust Dis t r i 
bution 

these effects. We stress that this by no means provides a highly accurate estimate 

of these terms, but merely an indication of how important they are. We begin by 

rewrit ing Equation (2.97) as 

/c0 = M(n, r)p2 + C(TZ, r), (3.35) 

where M(R.,r) and C(7?., r ) are known terms at N L O , having specified a value for 

AMS- This is simply the equation of a straight line in ( K 0 ) P2) space. Since these two 

quantities are Q-independent (see Section 2.7), we may plot the lines corresponding 

to different centre-of-mass energies and expect them to cross over at the solution. 

This is illustrated in Figure 3.56 where we have taken a value of AMS = 200MeV. 

We have made no attempt to incorporate the errors, which for the L E P - I I data w i l l 

be considerable. In all cases, the central value is taken. This naive procedure does 

give a promising result, though. There appears to be two predominant localised 

cross-over regions where the lines appear to converge. 
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Figure 3.56: F i t t i ng for the leading power correction (KQ) and N N L O (p2) using the 
thrust distr ibution at different energies. We use a value of A^g- = 200MeV 

3.9 Summary 

In this chapter we saw the results of directly extracting A ^ s f rom three and four-jet 

rates, event shape variable distributions and energy-weighted cross sections. On 

the whole this gave very reasonable results. We saw the necessity to account for 

hadronisation effects in order to connect perturbation theory w i t h experiment. This 

reduces the scatter in the extracted values that would arise f rom non-perturbative 

power corrections. Furthermore, the formalism provides a clear indication for the 

regions where infrared logarithms become important . I n these regions we have been 

forced to l imi t our f i t range so as to avoid their undesirable effect upon AMS, extracted 

at N L O . 

Otherwise, the RG-improved perturbation theory has demonstrated a consistent 

measurement of AM§ w i t h the scatter in Figure 3.46 due to the relative size of 

unaccounted higher order corrections. In a sense these values are the final result of 

this analysis. Combining them requires making unfounded assumptions upon how 

they are all related, whether correlated or otherwise. Only an N N L O perturbative 
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calculation can t ru ly be seen to provide a means of extracting a less scattered result. 

The summary values indicate a value of A ^ g in the region of 130 MeV that 

corresponds to as(Mz) ~ 0.11. Care should be taken in comparing these values 

w i t h that of the "world average" quoted as as{Mz) = 0.1184 ± 0.0031 by Bethke 

[77]. The world average is composed using the physical scale method wi th theoretical 

errors given by varying the value for / i . This w i l l clearly give a different resultant 

value of as. 

We have seen in Chapter 2, that by demanding a complete renormalisation group 

improvement of Q C D perturbation theory, we build the correct Q-dependence of a 

perturbative approximant. This was remarkably verified in Figures 3.54 and 3.55 

where the property of asymptotic scaling is witnessed. This provides strong confir

mation that the energy dependence is being treated in a correct manner. By plo t t ing 

the value of A ^ g in this way we may clearly see how close the centre-of-mass energy 

is to approximating an asymptotic l imi t . 

Lastly, we considered a simple investigation into the effects of uncalculated terms. 

Clearly there is no substitute for proceeding w i t h the explicit calculation, but by 

parameterising the deviation f rom an asymptotic l imi t we are able to motivate a 

quality assessment of the NLO approximation. This would be equivalent to the 

"theoretical error" of physical scale analyses. By variation of the unphysical scale 

H, higher order terms are supposedly probed. We have seen that this is clearly not 

the case and a better estimate of the higher order terms can be made by considering 

measurements of AMS at a variety of energy scales. Interestingly, i f an N N L O calcu

lation has been performed for a single distribution, this too may be used to estimate 

the size of N N L O corrections to other distributions. In the absence of any such 

calculations, there is no way of specifying which extracted value of A ^ g is closest to 

the true value. 



Chapter 4 

Infrared Logarithm Resummations 

4.1 Introduction 

In Chapter 1 we encountered infrared (IR) divergences that arise as a result of the 

emission of soft and/or collinear massless partons. For fu l ly inclusive observables, 

these divergences cancel exactly, but for more exclusive variables, logarithmic diver

gences occur order by order as we move towards the exclusive boundary of phase 

space. The problems this causes in fixed order perturbation theory became apparent 

when we attempted to fit a value for A^g for distributions of event shape variables, 

requiring the need to impose an artificial cut in the fit range. In this chapter we 

shall consider the infrared kinematic logarithms that are at the root of this, and 

demonstrate the procedure for remedying the situation by resumming the dominant 

terms to all orders. The machinery to do this is already well established for three-jet 

event shape variables such as thrust, wide jet broadening, heavy hemisphere mass, 

C parameter etc., by means of the coherent branching formalism [54, 59, 78, 79, 80]. 

Furthermore, significant power suppressed effects are present and have been phe-

nomenologically studied [81]. To accurately describe the data all the ingredients of 

fixed order, infrared resummation and power correction are found to be necessary. 

Four-jet event shape observables also contain useful information about QCD. 

They are more sensitive to the triple gluon vertex and therefore the true gauge 

structure of QCD [82], and also to the presence of other light coloured particles 

such as the gluino [83] that can be pair produced by gluon spli t t ing. However, these 

variables have received much less attention partly because they are suppressed by 

an additional power of as, requiring a second gluon to be radiated, but also because 

the theoretical description is much less developed. For most four-jet event shape 

106 
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9 9 

Figure 4.1: Real gluon emission contribu
tions to LO thrust distr ibution 

Figure 4.2: V i r tua l 
gluon contribution to 
LO thrust distr ibution 

variables, the situation is the same as for the three-jet event shape variables; the 

NLO corrections are very large and, taking a naive choice of renormalisation scale 

of the order of the centre-of-mass energy Q, s t i l l undershoot the data significantly 

[48]. This suggests the presence of large infrared effects as well as significant power 

corrections. In this chapter we w i l l address the issue of resumming infrared loga

ri thms for the four-jet rate in the Durham scheme and for specific four-jet event 

shape variable distributions, namely the light hemisphere mass, pL, and narrow je t 

broadening, B^. 

We begin by taking a detailed look at how the infrared logarithms arise and as 

always we take the massless approximation. When considering semi-inclusive jet 

obserables such as the differential cross-sections of e+e~ event shape variables, we 

are required to restrict the available phase space according to its definition. In doing 

so we avoid the I R divergence but are left w i t h large logarithms of the variable as 

an artifact. Consider the simple case of the 1-Thrust parameter. A t LO, (0(as)), 

we w i l l have terms contributing to the total cross section due to the emission of a 

single gluon. This can occur either through real emission (Figure 4.1) or f rom the 

interference of a v i r tua l gluon contribution (Figure 4.2) w i th the tree level. Defining 

the parton energy fractions 

x . = f (4.1) 

for each parton i(i = q, q, g) w i t h energy Ei (and 4-momentum produced at a 

hard scale Q and normalised such that xq + Xq + xg = 2, we can write the qqg mat r ix 

element as 
1 doqqg = CF 

Us + X\ 

2TT (1 - XQ)(l - Xg) 
(4.2) 
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Figure 4.3: Phase space for leading order contribution to thrust distr ibution 

where we have integrated out the angular dependence and eliminated xg (see for 

example [4]). For the fu l ly inclusive total cross section we would need to supplement 

this contribution w i t h that f rom daqq/a0 for cancellation of the I R singularity. To 

obtain the leading as contribution to the thrust distribution, we must integrate the 

qqg matr ix element over the appropriate three parton phase space by imposing the 

constraint S(T — m a x s ^ i

p " ^ ) . W i t h three final state partons the thrust variable is 

equal to the energy fraction of the most energetic parton and the axis, I I T is aligned 

along its direction. Performing the integration over regions ®, @ and ® in Figure 

4.3 wi th (xq > Xq,xg), (Xq > xq,xg) and (xg > xq,xq) respectively we find 

I d a „ a„ f j 3 T z - 3T + 2) , {2T - l \ 3(3T - 2)(2 - T)' a . / ( 3 7 « - 3 r + 2) 
(4.3) 

l - T J l - T 

The troublesome large kinematic logarithm is now apparent when we take the l i m i t 

T —> 1, 

J _ d a 
o"o d T T - » I 

at* Op — 
4 

ln 
1 

(4.4) 

The first term arises when the gluon becomes both soft and collinear whereas the 

second term only collinear. Away f rom this l im i t the distr ibution is finite, reflecting 

the phase space cut imposed by the delta function. The infrared safety of the thrust 

variable effectively excludes the soft and collinear configurations. A t this order, the 

v i r tua l contribution occurs at T = 1 and hence proportional to 8(T — 1). When 

integrating over the complete region of thrust to obtain the total cross section this 

term exactly cancels the T —> 1 divergence as we would expect. Returning to 

the thrust distr ibution we find that at each order there w i l l be terms of the form 

(i , r T ^. Therefore as T —» 1, as is no longer a good expansion parameter ~ ai l ( l - T ) 
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due to the enhancement f rom the logarithms at each order. I n order to obtain 

meaningful results we must resum these terms to all orders. 

4.2 The Formalism 

To resum the leading powers of I R logarithm to all orders in the coupling requires 

knowledge of three essential details 

• a description of parton spli t t ing probabilities 

• a description of dynamic constraints 

• a description of phase space constraints 

and we shall consider each one in turn . 

4.2.1 Parton Splitting Probabilities 

A description of the parton spl i t t ing probabilities is well established and has appli

cations in many processes as a result of to its universality. The procedure to extract 

these terms relies on the factorisation of a single spli t t ing, f rom an ( n + 1 ) mat r ix 

element { j £ n + i ) in the small angle l imi t , 

\ ^ n + 1 \ 2 = &(t,z)\^n\2 (4.5) 

We consider a parton a, spli t t ing into partons b and c as in Figure 4.4. I n the small 

angle, 8, approximation we may write 

t = 2EbEc{\ - cos 6) = z(l - z)E\e'2 (4.6) 

where 8 = 6b + 6c and can be decomposed using transverse momentum conservation, 

d=k\Jw^) = Th = T ( 4 7 ) 

Applying the Feynman rules to the spli t t ing, we can separate the contributions 

f rom the in i t ia l parton's propagator together w i t h the a —>• b,c vertex into the 

funct ion <^(t, z). The in i t ia l partons' propagator w i l l always give rise to a ^ factor 1 

Strictly speaking the propagator contributes a \ but this will always get multiplied by a y/i 
factor 
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Z ~ Ea ~ L Ea 

Figure 4.4: Branching of a parton a —> be. The arrows denote the flow of momentum. 

regardless of the specific spli t t ing. We must then take each vertex case in tu rn (e.g. 

q —> gq, etc.) and consider the small angle l imi t . A decomposition can be performed 

by taking into consideration that the gluon wi l l be nearly on mass shell and hence 

can be treated as purely transversely polarised. Additionally, the quark masses can 

be neglected enabling exact helicity conservation. Uti l is ing these properties w i t h 

Equations (4.6) and (4.7), we can evaluate the specific case of a quark emit t ing a 

gluon (parton c) at small angle. In this case we w i l l get a colour factor of Cp f r om 

tracing the T A matrices and obtain [4] 

71+1| •-n I i (4.8) 

for the spin averaged matr ix element squared. The first z dependent term corre

sponds to the gluon w i t h polarisation in the plane of branching. I t becomes singular 

as z —> 1 corresponding to the soft gluon l i m i t . The subsequent term linear in z is 

f r o m a gluon polarisation transverse to the plane of branching. 

This w i l l occur at every q —> qg spl i t t ing and gives rise to the so-called unregu-

larised Altarelli-Parisi splitting function, 

'1 + z2' a. 
Pqq[<*8,z] = C f ^ 1 - Z 

(4.9) 

This can be repeated for all other spl i t t ing probabilities and are listed in Appendix 

A. Finally, i f the phase space factorises in this l im i t , we obtain the probabil i ty 

associated w i t h a parton, a, spli t t ing into partons b and c of 

dVab = ^-dzPba(z), (4.10) 

for each branching. By applying these probabilities iteratively i t is possible to bui ld 

up a picture of parton evolution. We f ind that parton probability distributions are 

quite naturally expressed in terms of the Sudakov form factor, 

- ? 0 
A a ( M o ) = exp (4.11) 
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We can then write the energy fraction, x, distr ibution of parton a at a hard inter

action scale t, as <j)(x,t) in terms of a preceding distribution, (f>(x,t0), 

M x , t ) = A a ( t ^ M x , t 0 ) + ^ f ^ ^ ^ 2 J ^Pba{z)Ml,t>). (4.12) 

I t is clear f r o m this equation that the Sudakov form factor, A 0 ( t , i 0 ) represents the 

probabili ty of evolving a parton, a at a scale £ 0 to scale t. The Sudakov factor also 

includes v i r tua l contributions through the constraint of uni tar i ty and is required to 

generate the first term on the r.h.s. of Equation (4.12) correctly. The l imi ts of the 

z integration have been left undefined as these w i l l be enforced next through the 

dynamic constraints. 

4.2.2 Dynamic Constraints within the Matrix Elements 

The parton spl i t t ing formulae given in section 4.2.1 are not complete as the z i n 

tegration needs to be regulated to avoid the z —I 0 soft singularity In fact the 

formulae given are only true for collinear enhancements. In this section we shall 

consider the dynamics wi th in the matr ix elements that are due to soft gluon emis

sion and give rise to the remarkable property of angular ordering. In QED, i t is 

possible to factorise soft photons completely f rom wi th in the matr ix elements by 

considering their independent emission. Providing the phase space constraints do 

not spoil this, i t is possible to perform a resummation of infra-red logarithms to 

all orders. I n QCD, we encounter the diff iculty that the gauge bosons carry colour 

charge and thus may self-interact. The factorisation of soft photons hinges upon un

corrected emission which is clearly untrue for QCD gluons. I t has been shown [84] 

that nevertheless there is a colour coherence phenomenon whereby the amplitude 

for parton emission outside a cone of specific opening angle vanishes in the region 

of phase space close to the exclusive boundary. The effect is such that subsequent 

parton branchings have decreasing opening angle resulting in the powerful property 

of angular ordering. This can be enforced in the branching formalism by changing 

variables f rom [4] 
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The angular ordering constraint requires 6b < 6a for subsequent branchings. This 

becomes 

tb < z2i, ic < (1 - z f t . 

giving z integration l imits of 

The factor of 4 in the lower l im i t of the t' integration is merely due to a change in 

definit ion of the infrared cut off, t0, and the argument of as is given by z2(l — z)2t' 

which is equal to the transverse momentum squared of the branching, . I t has been 

demonstrated that the transverse momentum should be used [85] as i t generates the 

correct next-to-leading behaviour of the spl i t t ing functions when expanded. 

The modified Sudakov factor is the foundation of the coherent branching formal

ism when applied to parton distributions. This enables an efficient resummation of 

logarithms to a next-to-leading approximation, providing the phase space constraints 

do not induce correlations between final state partons and spoil the factorisation. 

4.2.3 Phase Space Constraints 

The phase space constraints depend on the particular choice of variable to be cal

culated. There w i l l always be a conservation of momentum imposed w i t h typically 

a further constraint reflecting the nature of an event shape variable or number of 

final state jets. To perform a resummation to all orders, i t is imperative that the 

phase space displays a similar factorisation to the matr ix elements up to the required 

logarithmic approximation [78]. This is never guaranteed and has to be investigated 

variable by variable. Providing the phase space factorises, i t should then be possible 

to resum all leading logarithms (LL) and next-to-leading logarithms (NLL) to all 

orders. 

< z < 1 

Imposing these constraints we get a modified Sudakov factor 

t 

t' [ 
dzPba{as(z2(l-z)2t'),z] A a ( M o ) = exp 

to t' 4tn 
(4.13) 
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4.3 Exponentiation 

For a given event shape variable, A, that goes to zero when approaching the exclusive 

phase space boundary, there w i l l in general be large logarithms, L = l o g ( l / A ) . 

The algorithm defined above for resumming these I R logarithms can, in certain 

circumstances, provide a resummation of all logarithms of the form a " L m where n— 

1 < m < 2n—1 in the perturbative expansion of an event shape variable distr ibution. 

This requires the special property of exponentiation. This is most clearly expressed 

when considering event fractions or rates. That is to say that the fraction of events 

where the observable A has a value less than A, 

R(X,as(Q)) = T - ^ d A . (4.14) 
Jo o'dA 

Now there w i l l be two logarithms for every order of a s , giving a leading logarithm 

contribution of 0(a^L2n) and next-to-leading of 0(a1^L2n~1) in the perturbative ex

pansion. The property of exponentiation permits the event fraction to be factorised 

as 

C(as(Q))E(X, as(Q)) + D{\, as(Q)), (4.15) 

oo 

i + ^ o : , (4.16) 
71=1 

oo n + l 

ra=l m = l 

Lgx{asL) + g2(asL) + asg3(asL) + ... , (4.17) 
oo 

E ^ c C (4-18) 
n=0 

Here Cn and G n m are constants and the perturbatively calculable coefficients Dn —>• 0 

as A —> 0. Knowledge of g2 (or equivalently all Gnn) allows resummation of terms 

down to 0(a^Ln). I t has been demonstrated that a number of e +e~ event shape 

variables exponentiate in the two-jet l imi t [59, 78, 79, 80] although this is not always 

the case as we shall see in the next section. 

R(X,a8(Q)) 

where 

C(as(Q)) 

lnfs(A,a a (Q)) 
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4.4 The Four Jet Rate 
4.4.1 Introduction 

Mul t i - j e t rates 2 enable us to examine the perturbative nature of QCD w i t h long 

distance effects kept comparatively small. Jet rates can satisfy the criterion for 

infrared safety, provided care is taken in the choice of the jet clustering algorithm. 

I n this section we calculate the leading and next-to-leading logarithmic contribution 

to the four-jet rate for e + e~annihilat ion using the Durham algorithm. (For an 

explanation of various algorithms and the reasoning behind choosing the Durham 

one see refs. [51, 53, 54]). We then obtain an expression for the jet rate in terms of 

a dimensionless jet resolution parameter, ycuU which can be considered as a measure 

of how well we are able to resolve two approximately collinear partons. According 

to the Durham algorithm, we define ycut = Ql/Q2, where Q ~ i/s is the scale of the 

jet-production process and hence the cut-off energy scale Q0 can be considered to 

be the energy threshold below which the process starts to become non-perturbative. 

In the region of small ycut{^- 1) the emitted gluons are predominantly soft and 

collinear resulting in the logarithmic enhancement of higher orders [54, 86]. I t is 

therefore necessary to resum them to all orders in as to obtain a reliable prediction 

for the four-jet rate. 

4.4.2 Leading Logarithms and Exponentiation 

First i t is important to stress what we are actually calculating in the resumma-

t ion procedure. Using the coherent branching formalism [4, 78, 87, 88], we are able 

to resum exactly all contributions to the shape variable at leading logarithms, L L 

(a™L2n) and next-to-leading logarithms, N L L ( a ^ L 2 " - 1 ) in the perturbative expan

sion where L = — ln(ycut). This means that all terms sub-leading are not completely 

reproduced and therefore they are dropped in our calculation. 

The idea behind exponentiation is to increase the domain of applicability of the 

shape variable such that i t extends into the region of asL < 1. The result of this 

procedure is to obtain a closed function of the form T {Lg\[asV) + g<i{asV)), where 

gi(asL) resums all leading-logarithmic contributions and g2(asL) resums the next-

to-leading ones such that when expanded the whole perturbation series is reproduced 
2The n-jet rate is defined as Rn(Q) = an-jet/<7hadrons 
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down to terms of the form a™Lm, where n < m < 2n. For the jet fractions being 

studied, a simple exponentiation does not arise. I t therefore only makes sense to 

calculate the L L and N L L contributions of the perturbative series. 

4.4.3 Calculation 

To f ind an analytic expression for the four-jet rate, R^Pcnt), the most simple method 

is to work in terms of a generating function defined by 

oo 

<t?{Q,Qo;u) = Y,unK(Q,Qo), (4.19) 
71=0 

where R^(Q,Qo) is the probability of f inding n-partons of a particular type in the 

f inal state of a process, p, and u is a jet label to distinguish each of the probabilities. 

In this case we are dealing wi th e+e~—^hadrons, therefore < / / e + e ) = [<t>q]2, where 4>q 

is the generating function for a single quark to branch. This can be obtained using 

the coherent branching formalism of Section 4.2 [4, 54]. By changing variables f r o m 

i —> q = Vt, we arrive at the generating function for a parton a branching to b and 

c 

<t>a{Q,Qo\u) = (t>a(Qo,Qo]u) 

+ Y , I ^ I A a K ( * ( l - z)q), z) 0(min(*, 1 - z)q - Q0) 
b Jo Q Jo 

x [<t>b{zq, QQ] it) (j)c((l - z)q),Qo; u) - <f>a{q, Qo\u)\, (4.20) 

where we have used the fact that after branching, cpa -> 4>b 4>c- The theta funct ion 

represents the infrared cut-off which for the Durham jet clustering algorithm trans

lates to a requirement that the transverse momentum z2q2 and (1 - z)2q2 of two 

final state jets be larger than the resolution cut, 

m i n ( * V , (1 - z)2q2) > Q2 = Q2ycut. (4.21) 

Furthermore w i t h this cut, the generating function at Qo corresponds to resolving 

precisely one jet . Therefore squaring this w i l l describe the l imi t ing case of resolving 

two jets only, 

4>2

q(Qo, <9o; y) = u2R2{Q0, Q 0 ) = u2 (4.22) 
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providing the boundary condition 

<f>q,g(Qa, Qo; u) = u. (4.23) 

Applying this to the quark generating function, averaging over slowly varying z 

dependence and approximating z —> 1 in the arguments (except for the singular ^ 

term) we obtain [54] 

Q _ i 
4>q{Q, Q0\u) = u + J j j dz as{zq) ^0-0 [<j>g(zq, QQ] u) - 1 ] . (4.24) 

Qo <3o/« 

To obtain the n-jet rate, Rn, is simply a matter of differentiating the generating 

funct ion n times at u = 0. The n-jet rate is then 

1 ( d \ n 

(4.25) 
u=0 

We f ind f rom the application of the coherent branching formalism, the generating 

function obeys the following implici t coupled equations [54]: 

<t>q{Q,Qo,u) = uexp dqrq(Q,q){4>g(q,Q0;u) - 1 ] ) (4.26) 

and 

xll+u 

(l>g{Q,Qo;u) = u exp( [ dq{Tg{Q,q)[<j>g{q,Q0;u) - 1] - Tf(q)} 

\JQo 

[ dqTf(q)exp( f dq'{[2Tq(q,q') - Tg{q,q')){^ ,QQ;u) - 1] + rf(q')} 

(4.27) 
Where the emission probabilities are defined as 

2CFa,(q) ( Q 3 \ 
Fq(Q,q) = — — ^ - - - j , (4.28) 

T S ( Q , ? ) = _ _ ^ l n - - - j , (4.29) 

r , f e ) = (4-30) 

The two-jet l im i t is important as the jet rate becomes semi-inclusive and expo

nentiation holds exactly. This gives 

(CFaL Q CFa2L'\ 
RiiVcut) = exp I —j-(3 - L) - 7 T / 3 0 — - — J , (4.31) 
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where L = l n ( l / y c u t ) , a = as(Q)/ir and we have used = (UCA - 2Nf)/12ir. The 

three-jet case was evaluated in [89] and we proceed in a similar way. 

Firs t ly we find Equation (4.25) gives, in the n=4 case [54], 

RAiVcut) = 2 R 2 ( y c u t ) ( [ Q dqTq(Q,q)Ag(q) f dq'Tg(q,q')Ag{q') 
\jQo JQO 

+2Ri(ycut) ( [ dqFq(Q,q)Ag(q) f dq'Ff(q')Af(q') 
\JQO JQo 

+R3(ycut)(f dqFq(Q,q)Ag(q)y (4.32) 

where we have introduced the Sudakov form factors 

Aq(Q) = exp(-j\qFq(Q,q)y (4.33) 

Ag(Q) = exp(-J%q[Fg(Q,q) + Ff(q)}y (4.34) 

Af(Q) = exp(-j\q[2Fq(Q,q)-Fg(Q,q)-Ff(q)}y (4.35) 

Equation (4.32) has a simple probabilistic interpretation illustrated in Figure 4.5. 

The first term on the r.h.s. corresponds to an in i t ia l two-jet configuration w i t h a 

subsequent gluon emission which itself splits into two further gluons and ul t imately 

all four partons showering soft and/or collinear gluons (see Figure 4.5(a) and Fig

ure 4.5(b)). The second term corresponds to an in i t ia l two-jet configuration w i t h a 

subsequent gluon emission which then splits into a quark-antiquark pair w i t h further 

soft and/or collinear gluon showering (see Figure 4.5(c) and Figure 4.5(d)). The last 

term corresponds to a three-jet configuration w i t h a further gluon emission and then 

soft and/or collinear gluon showering. 

In the N L L approximation we need only work w i t h the one-loop definit ion of the 

strong coupling constant, 

<>s(Q) = , ( Q y (4-36) l + 2p0as(n) l n ( ^ ) 
as higher order corrections w i l l be sub-leading. Even at this order we are s t i l l faced 

w i t h an extremely complicated set of nested integrals. Therefore, as in [89] we 

proceed by expressing Ri{yCut) as 

dRA 

Riivcut) — RA (4.37) 
00=0 
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(5 59 \0 <3 \2> 

(a (b) (c 

s s <3 si? 

(d) (e) 

Figure 4.5: Four-parton configurations contributing to the resummed four jet rate 
at N L L . (a) and (b) through a two-jet configuration w i t h g —» gg emission, (c) and 
(d) through a two-jet configuration wi th g —» qq emission and (e) through a three-jet 
configuration w i t h an independent gluon emission. The cones represent subsequent 
coherent soft and collinear gluon emission. 

This is permissable for any jet mul t ipl ic i ty evaluated at next-to-leading logarithmic 

order because in general we w i l l have 

Rn = tfl2aL2 + tfnaL + • • • 

+tf2ia2L4 + %,a2L3 + ••• 

+^n2nanL2n + <tfn2n_lanL2n-1 + --- (4.38) 

where the coefficients c € v q are either /?o independent & p i p ) or contain a single (3o 

0̂ P2p-i)- A l l other /30 dependence is contained in the strong coupling constant. We 

note that 

d[as(Q)]r 

d/30 00=0 

= -2m[as(Q)]m+1 ln ( ^ ) ~ am+1L. (4.39) 

I t is now apparent that beyond the first derivative there w i l l only be terms of the 

fo rm anL2n~2 which in the N L L approximation can be dropped. The assumption of 

Equation (4.37) is then valid. In fact this expansion greatly simplifies the calculation 

by enabling us to work wi th terms evaluated wi th /30 equal to zero. In doing so the 
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coupling as can really be treated as a constant and hence no longer depends on the 

integration variable. Proceeding in this way, we then calculate the four jet rate to 

be [90] 

R4 = ^ ( e - ^ A + F \ ( e A - l f ( 2 + 3CFaL) 

-^/C^aeA(eA - l ) ( - 3 + 12F + 2 L ) v ^ e r f ( \ / I ) ) ) 

+ § f ( ^ e - 2 F ( - 2 4 e - 2 / V - 1)(2 + 3aCFL) 

-4^Q^e~A(2 + 3eA{-3 + 12F + 2L)) A e r f ( ^ I ) 

- (12 + aL{\\CA - 6 C F ( - 9 + 12F + 2 L ) ) ) 7 r e r f ( ^ 4 ) 2 

+ 2 v / C W - 7 + 72F + 1 2 L ) v ^ e r f ( v ^ I ) ) ) - ^ ip 

+ {^T2 ( e - 2 { A + F ) ( - 2y/C^eA(3 + 2A(-3 + 4 F ) ) ^ e r f ( v 7 ^ ) ) 

(1 + eA( - 1 + vC4N/5i :erf(v /I)))) 

+ § f i ( e " 2 ( / 1 + F ) 2 C F a L ( l + 2eA + 4(eA - 1)F) 

(1 + eA( - 1 + VA^evf(VA)))} 

+ V / t S ( \ ^ e - 2 ^ (2^(5 + ê 1 

+ 4 ( - 4 - 2eA{3 - 8 F ) ) ) 0 F e r f ( \ / I ) 

- e 2 A ( 9 - 44(3 - 8F))V27erf ( \ /2A))) 

+ ±CFaLe-2(A+F\l - eA(l - 3eA) - 8F(1 - eA) 

+2Fe 2 A 7rerf 2 (\/A) ) + <pj, (4.40) 

where 

(f = ^ | V / C W e - 2 F ( v ^ e r f ( \ / 2 F ) - 2 ^ / e ' A y / ^ e v f i ( V A - 2 F ) ) ) 

erf(x) is the error function defined to be ^= f* e~y2dy and erfi(:r) = evi(ix)/i. We 

have also defined A = CAaL2/4, F = CFaL2/4 and Q(x,z) = a; JQ

Z e i y 2erf(y)dy. 

Attempts were made to solve Q exactly, but no closed form was found. I t appears 

that the integral is just a generalisation of the error function and hence cannot be 

solved, except in certain cases. A reference containing various properties of this 

function is given [91]. 
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4.4.4 Properties of the Four-Jet Rate 

With the complete result calculated we are able to reproduce the exact LL and NLL 

coefficients of as at any order. The first three orders in as/7r are given. 

i.e. Ri(ycut) = a 2 ( B 4 ^ 4 + B3L3 + 0{L2)) + a 3 ( C 6 L 6 + C 5 L 5 + C(L 4 ) ) 

+ a 4 ( D 8 L 8 + D 7 L 7 + 0 ( L 6 ) ) + --- . 

n — - 1 n 3 1 n in 7 n n2 

C 5 = JQCF

3 + Y~CF

2CA + ^QCFCA - Y ^ C F

2 N F - ^ C A C F N F . 

As = ^ C F 4 + ^CF

3CA + ^CF

2CA + ~CFCA. 
n _ - 3 / - i 4 1 7 3 / - i 1439 r< ? n 2 2371 /~< ^ 3 , 323 ^ 3 i \ r , 31 r< 2 n AT U1 ~ T6 UF ~~ 6 4 U ^ ^ - l 7 2 8 0 ° F Li4 ~ 241920 C ^ L 4 + 10080^F + 3024^F t>Al\f 

This is in agreement with [54] which gives the coefficients. The C6,5 coefficients 

were in addition calculated by expanding out the integral equation (10) as a function 

of as. Another test was to calculate i? 4 in the large Nc limit (Nc is the number of 

colours) to the order of leading logarithms. This greatly simplifies the equations as 

CA ->• Nc, CF -> Nc/2 and Nf can be disregarded. Equation (4.26) now collapses 

down to 

<t>(Q,Qo;u) = uexp ( f dqTq(Q,q) -<f>(q,Qo]u)-
\JQo l u 

(4.41) 

Also noting that at leading logarithmic order R4 will be independent of /?o, we can 

safely set it to zero. We then get 

DJV, 
« 4 4 

= \e~3A (6 - 8eA + 4 ^ 6 ^ ( 1 - 2eA)^eds/A - (1 - 2A) e2A erf 2 V I 

+2e2A(l + 2VI V ^ e r f ^ 2 A ) j ( 4 . 4 2 ) 

This is in agreement with the ful l NLL result in the appropriate limit. 

We also note that in the psuedo-abelian limit of simply CA and Nf going to 

zero, exact exponentiation holds. We also find that this gives a reasonably good 

approximation to the ful l non-abelian case within about 15-20%. 
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4.5 Four Jet Event Shape Variables 

4.5.1 Introduction 

In this section we extend the analysis of resumming large infrared logarithms to the 

cases of four-jet event shape variable distributions. I t is clear from the fixed order 

analysis that these contributions are of paramount importance to the narrow jet 

broadening and light hemisphere mass. We shall also explore the need for power 

correction and apply the most na'ive model to see the effect. For clarity we repeat 

the definition of these variables here. We first separate the event at centre-of-

mass energy Q = y/s into two hemispheres Hi, H2 divided by the plane normal 

to the thrust axis n-j-. Particles that satisfy Pi-nr > 0 are assigned to hemisphere 

Hi, while all other particles are in H2. "Jet broadening" measures the summed 

scalar momentum transverse to the thrust axis in one of the hemispheres while the 

hemisphere mass is the invariant mass of the hemisphere, 

BN = mm — ' . — j (4.43) 
2 5J* Pfc 

' \PkeHi / 

These four-jet event shape variables are intimately connected to their three-jet event 

shape counterparts, the wide jet broadening and heavy hemisphere mass, 

y~L <=w IPfc x n r l 
BW = max ̂ ^'7 r ' (4.45) 

pH = - • max f V Pk ) (4.46) 

that have the property of exponentiation (see Section 4.3 and References [59, 79]). 

4.5.2 Coherent Branching 

The coherent branching formalism allows the resummation of soft and collinear 

logarithms due to the emission of gluons from a hard parton. As a specific example, 

let us consider the jet mass distribution Ja(Q,k2) as the probability of producing 

a final state jet with invariant mass k2 from a parent parton a produced in a hard 

file:///PkeHi
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process at the scale Q2. For an initial quark this is [92] 

Q2 ^ i 

J"(Q2,k2)=5(k2) + / ^ - / d z e(z2(l-z)2q2-Q2)P^[as(z(l-z))Q2)^} (4.47) 
0 0 

oo oo 

J dq2 J dk,2S (k2 - z{\ - z)q2 - *j - J"(z2q2, k,2)J9((l - z)2q2, q2) 
L 0 0 

-Jq(q2,k2) 

normalised such that 

f 
Jo 

dk2Ja(Q2,k2) = 1 (4.48) 

and where the next-to-leading order q —> qg splitting kernel in the MS scheme with 

Nf flavours is 

1 + z2 

where 

p - | « » ! i ^ C ( 1 + ^ ) + -

A 1 18 6 / 9 f 

(4.49) 

(4.50) 

Eq. (4.47) has a simple physical interpretation. The first term is the possibility that 

the originating parton does not emit any radiation. The transverse momentum of 

the parton is therefore unchanged. Alternatively, the quark may branch into a quark 

and a gluon subject to the phase space constraints of two body decay and which 

subsequently undergo further emissions. This is described by the term proportional 

to Jq J9. The last term is due to virtual corrections and ensures that soft and 

collinear singularities are regularised. A similar equation holds for J9 and involves 

the g —» gg and g -» qq splitting kernels. Solving the integral equation for Ja is 

equivalent to resumming the infrared logarithms. In particular, the probability that 

an isolated parton a forms a jet with mass less than pQ2 is given by 

£ a ( p , a s ( Q ) ) /' dk2Ja{Q2,k2). (4.51) 

In Ref. [92], ln(E^) is solved to next-to-leading logarithmic accuracy and is 

therefore known to 0(a™Ln). 
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(a) (b) 

^iRflJm><f-fr--> KB-

Figure 4.6: Event pictures of (a) two-jet configurations from quark-antiquark final 
states and (b) three-jet configurations originating from qqg events where the gluon is 
the hardest parton. The cones represent coherent soft and collinear gluon emission. 
The thrust axis is denoted by a dashed line. 

Similarly we can define the function Ta(Q,kt;pt) [59] which describes the dis

tribution of the summed scalar transverse momentum pt in a jet of parton type a 

produced with vector transverse momentum k j , at scale Q. The structure is identical 

to Equation (4.47). 

4.5.3 The Probabilistic Interpretation 

We can apply the coherent branching formalism to event shapes in the following 

schematic way illustrated in Figure 4.6. The underlying configuration in e+e~ an

nihilation is the production of a quark-antiquark pair aligned with the thrust axis 

(Figure 4.6(a)). A fraction r 2 of the events have this structure where 

Each parton then undergoes soft and collinear gluon emission (denoted by the open 

cone at the head of the parton). This contribution describes small angle and soft 

emission accurately in two-jet-like events when Bw and pH are small and gives rise 

to the exponentiated first term in Equation (4.15). However, it does not describe 

the possibility of wide angle gluon emission shown in Figure 4.6(b) where the gluon 

is the hardest parton. This correspond to region ® of Figure 4.3. This three-jet-like 

matrix element correction is not logarithmically enhanced at 0{as) and produces a 

correction given by 

r2 = H % ) . (4.52) 

Rf = CF% J dxg 

4 - 4xg + 4x2

g 

In 
1 ~Xg 

6xg + A y(xgQ) + 0(a2

s). 

(4.53) 
Xg 
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The function y(xgQ) represents the subsequent showering of the hard gluon. This 

will have a non-trivial dependence on the energy fraction xg, setting the initial scale 

for the branching. In this configuration the gluon energy fraction will be in the 

region | < xg < 1. Taking the approximation xg = 1 enables the factorisation of 

the fraction of events, r 3 , 

R f ] = r3y(Q) + 0(a2), (4 .54) 

where at 0(as) 

r , = | C F( 2 1 n ( 2 ) 2_5 l n ( 3 ) + 4 L i 2(4) + ^ _ I ) 

~ ^ - C F ( 0 . 9 1 7 ) . (4 .55) 

The thrust axis is now aligned with the gluon and the values of Bw and pn are 

determined by the energies and angular separation of the quark and antiquark. In 

general Bw and pu will not be small and in fact, the phase space for small Bw 

and pH configurations is vanishingly small. Therefore, for these observables we 

can associate the three-jet-like contribution with D(X,as(Q)) in Equation (4 .15) . 

Only the two-jet configuration is logarithmically enhanced and as discussed earlier, 

the coherent branching algorithm has been used to resum logarithmic terms in the 

perturbative expansion down to C?(o;"Z/n)3. 

On the other hand, the three jet-like configuration is not suppressed for small val

ues of the four-jet variables BN and pi which are generated by subsequent branching 

of the gluon. This type of branching engenders leading perturbative contributions of 

G(CFC^-1a"L2N_2) which can be resummed. Unfortunately in approximating the 

hard scale at the initiation of the gluon shower, we have spoiled the next-to-leading 

logarithm terms. This effect will introduce an uncertainty in the fourth tower of 

logarithms. 

Let us first focus on the hemisphere masses. The fraction of events with heavy 

hemisphere mass less than pH i.e. k\ < puQ2 and k\ < PHQ2 is given entirely by 
3 We note that in solving the integral equations for the jet functions, certain approximations 

may need to be made that may limit the number of logarithmic terms that are actually resummed. 
For example, if the coefficient G22 is not determined accurately, then terms of 0 ( a " L 2 n ~ 2 ) are 
not exactly resummed. Dokshitzer et al [93] have recently re-studied the wide jet broadening and 
found that in order to obtain G22 correctly requires a careful treatment of quark recoil. 
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the two jet contribution (with r 2 = 1 + 0(as)) 

RH{PH,<XS{Q)) = 
PH<1 

( OO oo 

J d k 2 J d k 2 j*(Q2,k2) ji(Q2,k2) e(PHQ2 - k\) e(k2 - k2

2) 

0 0 
oo oo . 

+ f t e l j d ^ 2 J"(Q2, k\) Jq(Q2, k2) Q(pHQ2 - k2) S(k2

2 -k2)Y (4.56) 

o o / 

and where the constraint that pH <C 1 has suppressed the three and more jet con

tributions. Following the steps of Ref. [59], we can rewrite this formula using the 

phase space restrictions as 

RH(PH,*,(Q)) = r2 [ ^ f f ( p H , a S ( Q ) ) } 2 , (4.57) 
PH<1 

where 
PHQ2 

Zq

H(pH,as(Q))= J dk2 Ji(Q2,k2). (4.58) 
o 

The 0(as) contribution to r2 is fixed by requiring that when pu reaches its maximum 

value of 1/3 for three parton configurations, RH = 1 + 0(a2). 

On the other hand, the fraction of events with light hemisphere mass less than 

pL receives contributions from both two and three-jet configurations. For the two 

jet case, k\ < PLQ2 and k\ > k\ and vice versa, while the three-jet contribution 

arises when k2 < PLQ2. In the small pi limit, what happens in the quark-antiquark 

hemisphere is irrelevant and k\ and k\ are unbounded. Altogether we have, 

RL(PL,<X,(Q)) = 

oo oo 

r 2 f j dk\ j dk2

2 J"(Q 2, k\) J0(Q2, k2) G(pLQ2 - fc2) S(k2 - k\) 
^0 0 

oo oo 

+ f ^ l j J"(Q2,k2) Jq(Q2,k2) 0(pLQ2 - k2) Q(k\ - k2) 
o o ' 

nOO POO POO 

r 3 / dk2

gJ°(Q2,k2

g)e(pLQ2-k2

g) dk2Ji(Q2,k2

x) dk2J«(Q2MW) 
Jo Jo Jo + 
Jo 

where to 0(a2) the two jet fraction r2 is given by, 

r2 = l - r 3 + 0(a2

s). (4.60) 
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Simplifying the phase space constraints and utilising the normalisation condition 

(4.51), we find 

RL(PL,<*s(Q)) = r2 ( 2 ^ H ( p L , a S ( Q ) ) -[^H(pL,aS(Q))}2 

+ r3E9

H(pL,aa(Q)), (4.61) 

where E9

H is defined as an integral over the gluon jet mass distribution J9 in a 

similar way to Equation (4.58). The functions that resum the logarithms for the 

light hemisphere mass are the same as those that resum the logarithms for the heavy 

hemisphere mass. Now however, exponentiation in its purest form is spoiled because 

the final result is a sum of terms. 

The analysis for the narrow jet broadening proceeds in the same way. We find 

that RN, the probability of finding an event with a narrow jet broadening less than 

BN, is given by [94], 

RN(BN,aS{Q)) = r2 (2 EQ

W(BN, as(Q)) - [EQ

W(BN, as(Q))]2 

+ r3Z9

W(BN,aS(Q)), (4.62) 

where the probability of obtaining a jet with summed scalar transverse momentum 

pt with respect to the jet axis less than 2BQ starting from a parton of type a, E^., 

is given by, 

P2BQ 

ZA

W(B,aS(Q))= / Ta(Q,0,pt)dpt. (4.63) 
J o 

4.5.4 All-Orders Resummation of Large Logarithms 

In this section we discuss the all-orders resummation of leading logarithms 0(a™L2n) 

as well as sub-leading logarithms down to 0(ct™L2n~3). As discussed in the previous 

section, a resummation of this order is achieved by considering both two-jet and 

three-jet configurations. From Equations. (4.61) and (4.62), we see that to determine 

RL and R^ requires knowledge of E^ and E^/ respectively. Both of these functions 

have the exponentiated form (4.15) and the exponents have been solved to single 

logarithmic accuracy. E^ is therefore known to 0 (a"L" ) . 

Explicit expressions for E# valid to this order are given in [92] and, introducing 

the renormalisation scale dependence in the standard manner and dropping the 
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parton index, we reproduce them here for illustrative purposes, 

exp^Q^Gu),!,)] 
F[l-S(aM,L)] 
explLfyjx) + f2(x) + x2f[(x) \n(»2/Q2)} 

F[l - fox) - xf{(x)] 

where 

L = ln ( l /p ) , x =/30as(fi)L. 

+ 0{an

sLn~') 

(4.64) 

(4.65) 

The functions fi, f2 and / { are 

AM 

f 2 ( z ) 
AW 

2ix^2 

(1 - 2x) l n ( l - 2x) - 2(1 - x) ln ( l - x) 

21n(l - x ) - ln ( l - 2x) 

(4.66) 

£ ( 1 ) 

2npo 7T/?0 

m = 
AW 

2 t t /3 0 x 2 

ln ( l - x) - ln ( l - 2x) 

1 
ln ( l - 2x) - 2 ln ( l - x) + ^ l n 2 ( l - 2x) - l n 2 ( l - x) 

l n ( l - 2x) - 21n(l - x) 

(4.67) 

(4.68) 

with 

. llCA-2Nf a 17CA

2-bCANf-3CFNf 

Po = 77; > Pi — ~~ 
1 2 7 T 24?r2 

For quarks, 

AW = C F , A ^ = 1 - C F K , B ^ = -3-CF, 

while for gluons, 

A™ = CA, A™ = I c ^ , = -27TA, 

(4.69) 

(4.70) 

(4.71) 

with K given by Equation (4.50). 

Altogether Equations (4.64) to (4.71) are sufficient to determine T,q

H and T,9

H to 

0(a"Ln). However, this does not determine RN of Equation (4.62) to the same 
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order due to the approximations made in categorising two and three-jet configura

tions before showering. In separating these events, we have introduced an error in 

the resummation of the showering off the hard gluon at next-to-leading logarithm 

level. The expression for RN therefore correctly sums to all orders in the strong 

coupling, a s , only the leading three towers of large logarithms from 0{an

sL2n) down 

to 0{an

sL2n~2). 

Because knowledge of E# is currently limited to 0(a"Ln), we can only correctly 

resum logarithms down to 2n - 2 > n or equivalently n > 2. The resummed 

formula (4.61) does not include the 0(a2L) term (just as the analogous formulae 

for resumming three jet variables do not include the Q(a2L) term) present in the 

lowest order perturbative coefficient. Similarly, it does not produce the 0(a3

sLs) to 

0(a3

sL) terms that occur in the next-to-leading order perturbative coefficient. The 

perturbative calculation provides the a2 and az

s contributions exactly and therefore 

the most significant omitted term is 0 ( a 4 L 5 ) . 

Precisely the same discussion applies to the narrow jet broadening. Using the 

coherent branching formalism, Y>w has been determined to 0(a"Ln) accuracy and 

Catani et al (CTW) have provided analogous expressions for T,w that are given in 

[59]. However, in doing so certain simplifying approximations concerning the recoil 

transverse momentum have been made. As a consequence, the terms of 0(a"Ln) are 

incomplete. Dokshitzer and collaborators [93] have found that treating the quark 

recoil more carefully causes the CTW result for T,w to be adjusted by a multiplicative 

factor. This generates the correct a^Ln terms. The final form for Eiy is given in 

Appendix B. Inserting the recoil-corrected form for in the resummed expression 

for RN (4.62) again allows resummation of the first three towers of logarithms, i.e. 

down to 0(an

sL2n-2) [94](see Figure 4.7). 

4.5.5 Numerical Results 

As usual, the resummed result contains part of the fixed order perturbative contri

bution and the overlap must be removed by matching. This is done by expanding 

the resummed result as a series in the strong coupling constant and explicitly remov

ing the terms corresponding to the fixed order calculations. This can be achieved 

in several ways, of which R matching and \n{R) matching are the most common. 

In the R matching scheme, the coefficients of each of the unsummed logarithms 
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Figure 4.7: The towers of infrared logarithms appearing in the four-jet event shape 
rates. The resummation includes all terms down to 0(a"L2n~2) (three towers) 
denoted by filled squares and complete 0(a2,al) contributions from fixed order 
denoted by the empty squares. A l l other terms are incomplete and denoted by 
empty circles. The black filled squares denote terms generated purely in the two-jet 
limit. The grey filled squares denote contibutions from soft gluons showering off a 
hard gluon. 
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present in the fixed order perturbative coefficients must be numerically extracted. 

For the four-jet event shape observables discussed here, this corresponds to deter

mining the coefficient of a2L from the lowest order perturbative contribution and 

the coefficients of a^L3 to a3

sL from the next-to-leading order contribution. This 

is impractical. However, in the more commonly used ln(i?) matching scheme, it is 

assumed that the fixed order result exponentiates and therefore it is not necessary to 

make this extraction because any logarithmic terms remaining after subtracting the 

overlap from the fixed order contribution are exponentially suppressed. We therefore 

employ the \n(R) matching procedure. 

We expect that at large values of the observable A, the resummed result is dom

inated by the fixed order calculation. However, the resummed expressions (4.61) 

and (4.62) valid in the small pi and limits do not contain information about 

the kinematic endpoints of the distributions. To ensure that the resummed result 

vanishes at the endpoint we make the substitution 

T -» \ ~ + 1, (4-72) A A A m a x 

where A m a x corresponds to the endpoint of the distribution at the accuracy of the 

fixed order calculation. We use p ^ = 0.167 and B%&x = 0.204. 

Numerical results for the light hemisphere mass and for the narrow jet broadening 

are shown in figures 4.8 and 4.9 respectively. Throughout we set p = Q = Mz and 

use as(Mz) = 0.118 corresponding to the current world average. The next-to-

leading order result which diverges at small values of the event shapes is taken from 

[48]. Although formally the three-jet like contribution is needed to resum terms of 

0(a™C'FC^1 L2n~2), we find that it is numerically insignificant, mainly due to the 

smallness of r 3 . 

Figures 4.8 and 4.9 show that the resummations are extremely important for 

Pi < 0.01 and B^ < 0.02. Rather than the divergent fixed order prediction, we 

have the more physical resummed result that the probability of finding events with 

no radiation (very small values of pi and BN) is vanishingly small. For pi, the peak 

position occurs at pL = 0.01 with a height of 0.34, while for BN the peak occurs 

at BN = 0.02 with a value of 0.42. At larger values, the resummation changes the 

NLO prediction by a more moderate amount indicating that uncalculated higher 

order corrections are under control. At very large values of A, the resummed and 
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Figure 4.8: The resummed (solid) and fixed order NLO (dashed) predictions for the 
light hemisphere mass distribution ^ j ^ - at \i = Q = Mz. 

NLO predictions coincide because of the modification (4.72). 

The infrared resummation significantly improves the perturbative prediction for 

the event shape observable. However, when comparing with experimental data 

we should be aware that important non-perturbative hadronisation corrections are 

present. The effect of hadronisation on the distribution is to shift the value of the 

observable away from the two-jet region, 

where the non-perturbative correction depends on the typical hadron scale 0(1 GeV) 

and is suppressed by a power of Q. In principle these power corrections can be 

estimated using the dispersive approach of Ref. [37, 95], where a non-perturbative 

parameter pi is introduced to describe the running of a8 in the infrared region. 

For the associated three jet variables, the non-perturbative corrections are typically 

estimated to be G{1 GeV/Q) for pH [37, 95] and 0(0.3 G e V l n ( l / 5 w ) / Q ) for Bw 

[96] and arise through the hadronisation of one of the two jets in the event. Because 

the four-jet event shapes are largely related to what happens in the second jet, 

we might expect that the hadronisation corrections are similar. To illustrate the 

potential effects of hadronisation in the four-jet event shapes, we just transfer these 

A —> A + ANP, (4.73) 
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Figure 4.9: The resummed (solid) and fixed order NLO (dashed) predictions for the 
narrow jet broadening distribution ^--^j at p = Q = Mz. 

corrections directly so that, 

1 G e V 

PL -»• PL + —Q—, (4 .74) 

B n _ B „ + 0 . 3 G e V l n ( l / S „ ) ^ 

Q 

The simplified hadronisation correction applied to the distributions for the light 

hemisphere mass and narrow jet broadening is shown in figures 4 . 1 0 and 4 . 1 1 re

spectively. There are two effects. First the distribution is shifted to the right by an 

amount ANP and second, the distribution is rescaled by a factor (A + ANP)/A. In the 

region of the turnover where A is of the same order as ANP there is an enhancement 

of almost 100%. We see that the peak position of the pi distribution now occurs at 

Pi ~ 0.022 with a height of 0.8, while the peak of the BN distribution has a height 

of 0.8. The hadronisation correction is smaller at larger values of A. 

For comparison, we also show the charged hadron data collected by the DELPHI 

Collaboration [66] at the Z resonance. We see remarkable agreement (strikingly so in 

view of the simplified hadronisation correction applied here). The only discrepancy 

is at very small values of A < ANP where individual hadrons in the light/narrow 

hemisphere will significantly affect the value of A. We do not expect to successfully 

describe such events. 
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Figure 4.10: The resummed prediction for the light hemisphere mass distribution 
^"d^l a t <2 = Mz modified by a non-perturbative power correction pL -> pL + 
1 GeV/Q. For comparison, we also show the charged hadron data collected at the 
Z resonance by the DELPHI collaboration [66]. 
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Figure 4.11: The resummed prediction for the narrow jet broadening distribu
tion ^-j§^ at Q = Mz modified by a non-perturbative power correction BN —> 
Bx +0.3 GeVln(l/BN)/Q. For comparison, we also show the charged hadron data 
collected at the Z resonance by the DELPHI collaboration [66]. 
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4.6 Renormalisation Group Improvement of Next-
To-Leading Logarithm Resummations 

In this section we address the problem of applying the renormalisation group im

proved perturbation theory to the infrared logarithm resummation. We have already 

witnessed the difficulties in extending the NLO analysis of Chapter 3, towards the 

exclusive phase space boundary where the infrared logarithms grow large. An ini

tial attempt was made to incorporate the infrared logarithm resummation into the 

CORGI approach. The RG-improved perturbation theory of CORGI permits higher 

order terms to be incorporated via a straightforward algebraic manipulation. In con

trast, the EC formalism requires the resummed formula to be inverted in order to 

obtain the EC scheme invariants (p n) and then numerically integrated to generate 

the higher order contributions. Unfortunately when reformulated as a CORGI per

turbation series, the final result is no longer trustworthy, displaying even erratic 

behaviour. This can attributed to the parameter r\ which plays such a critical role 

in RG-improved perturbation theory. The first step is always to rewrite the series in 

the form of a dimensionless quantity, requiring r i to become a ratio of terms. While 

it is true that the tree-level coefficient will not be renormalisation scale dependent, 

i t will in general have a dependence on the infrared parameter of the semi-inclusive 

quantity. This is effectively an additional scale corresponding to Q 0 = \f[yCut)Q for 

jet rates, Mx = \f(px)Q for jet masses, etc. When the behaviour of the fixed order 

coefficients is weakly dependent on the variation of the infrared cut, we may safely 

approximate it as a constant. This was performed in the analysis of Chapter 3 by 

imposing the flatness criterion upon r i . In infrared logarithm resummations, the 

behaviour of the coefficients upon the cut is crucial in order to ensure the so-called 

"turn-over" of perturbation theory in the large logarithm limit. Meanwhile RG-

improvement attempts to include the predictable contributions of r\ appearing in 

all higher order coefficients. In resumming the r\ terms we must ensure that we do 

not resultantly impact upon the infrared logarithm resummation. An alternative 

to the CORGI formalism, is to resum all the logarithms inside the Q function of 

Equations (2.65) and (2.66). This was performed for the simple case of the two-jet 

rate in [28]. 



Chapter 4. Infrared Logarithm Resummations 135 

4.7 Summary 

We began this chapter by illustrating the source of the large infrared logarithms, 

anticipated earlier, through the simple example of the 1-thrust distribution. We 

demonstrated how it is possible to calculate the dominating terms as we approach 

the exclusive boundary, then providing the phase space factorises in the appropriate 

manner, perform an all-orders resummation. This was practically applied to the 

four-jet rate where all logarithms to a next-to-leading approximation were calcu

lated and an analytic expression given. We then considered the case of two four-jet 

event shape variable distributions, the "light hemisphere mass" and the "narrow jet 

broadening". In these cases we detailed the procedure to resum the first three towers 

of logarithms and matched these results via a "In-R matching prescription" to the 

fixed order NLO calculation. We then applied a very simplistic model for power 

corrections to the event shape variables and for illustration compared with the LEP 

data of the DELPHI collaboration. A remarkably good agreement was found. 

We anticipate that this improved theoretical description of the four-jet event 

shape distributions can be combined with a more sophisticated hadronisation cor

rection based on the dispersive approach of References [37, 95]. This will yield a 

theoretical description of the pL and BN distributions that is on a similar footing 

with the well studied three-jet event shape variables, I — T, pH, Bw etc. The data 

from LEP can then be used to further test the structure of QCD. 



Chapter 5 

Conclusions 

In this thesis we have focused on a number of aspects of Quantum Chromodynamics. 

Renormalisation scale and scheme dependence, large kinematic logarithms and to 

a lesser extent non-perturbative power corrections, have all been considered. Un

derpinning this study has been the attempt to provide a better understanding of 

QCD through a measurement of the single fundamental parameter, A^g or as(Mz). 

A non-perturbative description of QCD is currently beyond our grasp, forcing us to 

resort to perturbative techniques and attempts at modeling non-perturbative effects. 

In doing so, we encounter numerous complexities, not least of which is the difficulty 

in calculating terms beyond the first few orders of perturbation theory. In most 

cases a NLO approximation is the extent of our current knowledge. Termination 

of the perturbation series brings its own problems in the guise of a renormalisation 

scale and scheme dependence. We saw that in order to correctly treat the energy 

dependence of observables, we must resum the yu. logarithms to all orders in the cou

pling. Analysing the Q-dependence we see that it is even possible to eliminate the 

unphysical coupling parameter altogether linking the fundamental scale, A directly 

with experimentally measured quantities through a perturbative calculation. 

We have demonstrated a procedure for resumming the unphysical renormalisa

tion scale dependence to all-orders enabling the extraction of A^g from jet rates, 

event shape variable distributions and energy-weighted cross sections when consid

ered away from the kinematic extremes. The influence of hadronisation was seen to 

be significant and the modeling of its effects reduced the scatter of extracted A^s 

values appreciably. We found values that ranged from ~ 50MeV to ~ 200MeV. The 

scatter in these values should then be attributed to the uncalculated higher order 
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corrections. 

With the availability of experimental data at different centre-of-mass energies we 

may then test the "RG-Improved Perturbation Theory". We would expect to see a 

convergence of the A^g values as we approach asymptotic energy limits. The distri

bution of 1-thrust was investigated and reflects this behaviour as expected. We also 

provided a framework for incorporating higher order contributions (N n NLO) and 

power corrections in a renormalisation scheme invariant manner. This permitted an 

investigation of the NNLO and leading power correction terms to the 1-thrust dis

tribution. Before any reliable quantitative conclusions may be drawn, it is necessary 

to obtain accurate data samples at a wide range of energies. This mechanism can 

be used for estimating the importance of higher order corrections, taking the place 

of varying the unphysical renormalisation scale [i by an arbitrary amount. 

I t is possible to extend the ideology of complete renormalisation group improve

ment to other areas of perturbative QCD where an unphysical scale enters. An 

example already realised is in the arbitrary factorisation scale dependence of mo

ments of structure functions in deep inelastic leptoproduction [34]. Here an analo

gous situation takes place where in addition to the \x and c„ renormalisation scheme 

parameters there will be a set of factorisation scheme parameters, M and dn. Once 

again, a resummation of the ultraviolet logarithms results in the dependence on the 

unphysical scales disappearing. 

Throughout this thesis we have taken the massless approximation for light quarks 

and made use of the decoupling theorem to analyse the intermediate energy region, 

in particular at a centre of mass energy of Mz- A natural extension to this work 

is to consider the effect of non-zero quark masses. In this case, there will still be a 

fundamental quantity, A^g of the theory, defined in the usual manner by integrating 

the ^-function, but this will now have an additional dependence on the quark masses. 

Furthermore, in considering higher order corrections to semi-inclusive quantities, 

we have seen how the coupling is enhanced by large infrared logarithms in the prox

imity of the exclusive boundary in phase space. A fixed order approximant is then no 

longer reliable and a resummation of the dominant logarithms must be performed 

to all orders. New results were obtained in this thesis of an analytic expression 

for the four-jet rate calculated to next-to-leading logarithm level in the perturba

tive expansion. We also presented a resummed calculation of the distribution of 
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the four-jet observables "light hemisphere mass" and "narrow jet broadening". Fi

nally, we considered the prospects for combining the infrared resummations with 

the RG-improvement. 



Appendix A 

Splitting Functions 

Altarelli-Parisi Splitting Kernels 

We quote the Altarelli-Parisi Splitting Kernels at NLO. 

Unregularised 

Pgq[as(k),z] = CF 

2TT 

1 + (1 - zf 
+ 

CFK (as{k) 
TV 

(A. l ) 

P9^= PQ9[as(k),z}= T R N f ^ [z* + (1 - z)*] (A.2) 

Pq^gg= Pqg[as(k),z]= CF 

as(k) 
2TT 

1 + ^ 2 1 CFK fas{k) 
1 - Z + 2 I 7T 1 - £ 

(A.3) 

2TT 
+ + z(l - z) 

1 — z z 
(A.4) 

CAK (as{k) 
7T z ( l - z)_ 

where the coefficient, K is dependent on the renormalisation sheme and in the MS 

scheme is given by 

Note that the factor of Nj is included in Pqg since a sum is always taken over parton 

splittings. 
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Regularised 

where 

Pq->gq — Pgqas(k),Z — Cp 
1 + (1 - Z) 21 

= Pgg[as(k), 

*W = Pq9[as(k),z} = TR[z2 + (l-z)2} 

Pq->qg = Pqq [as(k),z] = CF 

1 + z 2 3

 S„ 
+ - 6 ( l - z ) 

Pg^99 ~ Pgg[as(k), z] — 2Q 

(1 - z)+ 2 

z 1 - z ' 

+ g ( H C , 4 - 4 n / T R ) i ( l - 2 ) 

' d x / w - / ( D 
'o (1 - z)+ Jo 1 - a; 

for a sufficiently smooth function, / ( x ) . 

(A.5) 

(A.6) 

(A.7) 

(A.8) 



Appendix B 

Xjy: The Resummed Expression 
for the Wide Jet Broadening 

The final form for T,w is given by [93] 

2ff' exp(^(a 8 (^ 2 ) ,L) ) 
( r f l - 5 ( a . ( / i 2 ) , L ) ] ) s 

where L = \n(Bw), 

A 

-I 2 

(B. l) 

(B.2) 

j r ( a s ( ^ 2 ) , L ) 

+ 
1 

ln ( l + L)) 

l n ( l + OJ) 
1+U) 

+ 

CO 

I l - 2 

2 ^ o 3 

+ C « + 1 L m ) , 

l n 2 ( l + w ) + 
l n ( H - w ) CO 

1+00 1+CO 

(B.3) 

with 

R' 

S(as,L) 

2CpasL 1 
7r l + 2p0asL 

AW 

1 + UJ 

(B.4) 

(B.5) 
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and 

to 

A ( D 

2/30 asL 

CF, A& = 

UCA - 2Nf 

CFK(RS) 
2 

BW = 

153 - 197V/ 
24^2 ' 

3CF 

2 

(B.6) 

(B.7) 

(? - F ~ l N f ) (B-8) 
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