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Abstract 
The theory describing the scaling properties of quantum field theory is in­

troduced. The symmetry principles behind scale and conformal transforma­

tions are reviewed together w i t h the renormalisation group. A method for 

improving perturbative calculations of physical quantities in the infra-red 

l i m i t is developed using general analyticity properties valid for all unitary 

quantum field theories. The infra-red l im i t of a physical quantity is shown to 

equal the l imi t ing value of the Borel transform in a complex scale parameter, 

where the order of the Borel transform is related to the domain of analyti­

city. I t is shown how this general result can be used to improve perturbative 

calculations in the infra-red l i m i t . First , the infra-red central charge of a 

perturbed conformal field theory is considered, and for the unitary minimal 

models perturbed by $ (1 ,3 ) the developed approximation is shown to be very 

close to the exact results by improving only a one loop perturbation. The 

other example is the infra-red l im i t of the critical exponents of cp 4 theory 

in three dimensions, where our approximation is w i t h i n the l imi ts of other 

approximations. The exact renormalisation group equation is studied for a 

theory w i t h exponential interactions and a background charge. I t is shown 

how to incorporate the background charge, and using the operator prod­

uct expansion together w i th the equivalence between the quantum group 

restricted sine-Gordon model and the unitary min imal models perturbed 

by $ ( 1 , 3 ) ) the equation obtained is argued to describe the flow between uni­

tary minimal models. Finally, a semi-classical approximation of the low 

energy l im i t of a bosonic membrane is studied where the action is taken to 

be the world-volume together w i t h an Einstein-Hilbert term. A solution 

to the linearized equations of motion is determined describing a membrane 

oscillating around a flat torus. 
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1 

Introduction 

Quantum field theory arose f r o m the efforts of uni fying quantum mechanics and spe­

cial relativity. In its present formulat ion i t is the most successful theory in physics 

describing phenomena f r o m sub-atomic to cosmological scales, and w i t h an agree­

ment between theory and experiment of up to 10~ 1 0 in quantum electrodynamics. 

I t provides the framework for the standard model of particle physics that describes 

the electro-magnetic, weak and strong nuclear interactions, and i t finds important 

applications in nuclear, atomic and condensed matter physics together w i t h cosmo­

logy. 

The formulat ion of the physical theories describing the fundamental interactions, 

at the currently accessible energy scale, shows the important role that symmetry 

principles play in nature. The standard model has a gauge symmetry w i t h gauge 

group U(l)®SU(2)®SU(3), and Einstein's classical field theory of gravity, general 

relativity, has four dimensional space-time diffeomorphisms as its gauge symmetry. 

Another important consequence of quantum field theory is that the dynamics 

are scale dependent, and this corresponds to what is observed in nature namely that 

phenomena observed at one scale are very different f r o m those observed at a much 

larger scale, i.e. they decouple. Local field theories have ultra-violet divergences 

which have to be renormalised by comparing the observables in a theory wi th mea­

sured quantities at a certain length scale. The theory w i l l then make unambiguous 
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1 Introduct ion 

predictions, but the couplings w i l l now depend on the scale, this scale dependence 

is described by the renormalisation group. 

A quantum field theory is specified by its coupling constants, and the renorma­

lisation group therefore describes a flow in the coupling space under scaling where 

the fixed points of the flow are scale invariant theories. The renormalisation group 

thereby specifies how different quantum field theories are organized by scale in the 

coupling, or theory, space. 

Despite the successes of quantum field theory the understanding of i t and the fun ­

damental laws of nature is s t i l l very l imited. I t has not been possible to incorporate 

gravity into a local quantum field theory, and the emergence of the renormalisation 

group has meant that quantum field theory is now viewed as an effective theory 

valid below some cut-off scale [5, 6, 7]. A quantum theory of gravity relevant at 

the Planck scale 1 0 - 3 3 c m (and perhaps even at lower scales) therefore has to be 

described by a more fundamental theory, and the only present candidate includes 

extended objects like strings and membranes. 

In contrast to the many different applications of quantum field theory the actual 

calculational methods are few, and the main one is perturbation theory around 

the gaussian fixed point describing the free theory. This means that for a general 

quantum field theory in the vast infini te dimensional theory space we have only got 

information about the neighborhood of a single point, the gaussian fixed point. 

To get a better understanding of quantum field theory i t is therefore important 

to develop new approximation methods that extend the region in parameter space 

where calculations can be performed. In this thesis, we have derived a method of 

improving perturbative calculations of infra-red quantities using general analyticity 

properties of correlation functions valid in any unitary quantum field theory. 

Another way of extending the knowledge about theory space, and the renor­

malisation group flows that determine its structure, is to study specific models in 

dimensions, or w i t h symmetries, that constrain the dynamics so non-perturbative 

results can be derived. 

Two dimensional theories are an important example, here the fixed points are two 
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1 Introduct ion 

dimensional conformal field theories w i th an infini te dimensional symmetry group, 

and perturbation theory can be defined around non-tr ivial fixed points. Also, in two 

dimensions the c-theorem states that the flows of unitary theories are irreversible 

and have an infra-red fixed point. The sub-space of renormalisable theories is larger 

in two than in higher dimensions, and a classification of all conformal field theories 

w i l l therefore also constrain the fixed point structure in higher dimensions. 

The more fundamental high energy theories may also prove helpful in getting 

a better understanding of the theory space of quantum field theory, even i f the 

physical reality of such theories remains unclear because of a lack of experimental 

evidence. For example, dualities in string theory have lead to conjectured dualities 

in supersymmetric quantum field theories by dimensional reduction, and a relation 

between the strong coupling l i m i t and supergravity; i t might be possible to find 

similar arguments related to more realistic field theories in four dimensions. 

1.1 Outline of the thesis 

In chapter two and three the theory describing the scaling of quantum field theories 

is briefly reviewed. I n chapter two Nother's theorem and the Ward identities are 

introduced, and scale and conformal transformations are defined together w i t h the 

energy-momentum tensor. In chapter three renormalisation is described and the 

Callan-Symanzik equation is derived. The operator product expansion and the 

linearization of the renormalisation group are also reviewed. 

I n chapter four a method that improves perturbative calculations of physical 

quantities in the infra-red l i m i t is developed. The method uses the analyticity of 

correlation functions in a scale parameter to express the infra-red physics as an 

integral in the ultra-violet region. This expression can be wri t ten as the Borel 

transform of a certain order, and the infra-red l i m i t is then given as the l imi t ing 

value of the Borel transform. First, the Kallen-Lehmann spectral representation is 

reviewed together w i t h the perturbative series, and then our method is derived. 

This method is applied to calculate the infra-red l i m i t of the central charge in 
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1 Introduct ion 

chapter five and the crit ical exponents of ipA theory in three dimensions in chapter 

six. In chapter five some of the important properties of a two dimensional conformal 

field theory are first introduced, and Zamolodchikov's c-theorem is then shown. 

Based on the results f rom chapter four an approximation method is developed for 

calculating the infra-red central charge of a perturbed conformal field theory. This 

is applied to the free bosonic and fermionic theories perturbed by a mass term, and 

the unitary minimal models perturbed by $ ( 1 , 3 ) . For the minimal models we obtain 

very good results by maximizing the domain of analyticity, w i t h approximation 

values remarkably close to the exact ones by improving only a one loop perturbative 

calculation. 

In chapter six the crit ical exponents of (p4 theory are first defined and then an 

approximation method for calculating v and 77 is developed based on the results in 

chapter four and a conformal mapping and Pade approximation. The results for 

v and r\ are w i th in the l imits of other results obtained w i t h different calculational 

methods. 

Chapter seven describes a new application of the exact renormalisation group 

equation to a theory w i t h a background charge. The motivation for considering 

this case is the equivalence between the perturbed unitary minimal models M m , 

studied in chapter five, and the quantum group restricted sine-Gordon model. First 

the Coulomb gas representation of minimal models is introduced together w i t h the 

quantum group restricted sine-Gordon model. Then i t is shown how the background 

charge can be incorporated into the exact renormalisation group equation, and using 

the operator product expansion this gives an equation describing the renormalisation 

group flow for all the perturbed unitary minimal models. The higher order terms in 

the coupling appear in this equation in the off-cri t ical structure constants, and in 

the perturbative l i m i t m —> 00, the well known perturbative renormalisation group 

equation is reproduced. 

I n the last chapter a semi-classical approximation of the bosonic membrane in 

eleven dimensions w i t h an Einstein-Hilbert term is considered. The action is then 

a sum of the membrane world-volume and an integral over the scalar curvature, 
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1 Introduct ion 

and can be viewed as an approximation of the low energy effective action for the 

membrane. The equations of motion are non-linear, but can be approximated by 

linearizing around a classical solution that is here taken to be a flat torus. A new 

solution of the linearized equations is obtained that describes a membrane oscillating 

around the flat torus. First the bosonic membrane is introduced and the solution is 

then presented. 
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2 

Symmetries and scaling 

Physics deals w i t h the understanding of the dynamics in the physical world, and is 

expressed in terms of physical laws. These can mathematically be expressed in many 

equivalent ways, and this invariance or symmetry in our description of the dynamics 

in nature has been one of the main guidelines when formulat ing new physical laws. 

I f a theory is described by an action principle, where the classical path is given 

by the stationary value of the action, then Nother's theorem states that for every 

continuous symmetry transformation of the action, there is a classically conserved 

current and the associated conserved charge is the generator of the transformation. 

The conserved quantities in a physical process thereby determine the symmetries 

of the interaction and these symmetries can then be used to build an action for the 

theory that describes its dynamical properties (for a quantum field theory i t is 

the par t i t ion funct ion which has this role, i.e. here the path integral measure also 

needs to be specified). One of the successes of physics has been the isolation and 

identification of conserved quantities, and their very existence shows the regularity 

and symmetry in nature that has allowed the formulat ion of the physical laws. 

First Nother's theorem and the Ward identities are shown, the energy-momentum 

tensor is then introduced and finally scale and conformal transformations are dis­

cussed. The section about scale transformations follows Callan, Coleman and Jackiw 

[8] and [9]. I n this chapter the Minkowski signature ( + , , —) is used. Gen-
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2 Symmetr ies and scaling 

eral discussions about symmetries in field theory can be found in [5, 10, 11, 12, 13] 

and for gauge theories in [14, 15]. 

2.1 Nother's theorem and Ward identities 

Nother's theorem [16] shows how the symmetries of the action correspond to con­

served quantities. I n a local field theory depending on the fields ipl the action 

functional can generally 1 be wri t ten as 

% ] = J ddx € ( ^ , 8 ^ ) (2.1) 

and we w i l l consider the effect of the infinitesimal transformation 

x'» = x

f i + Sx^ = x» + 5wa(x)X%(x), 
~i (2-2) 

y'\x') = <p*{x) + Sip {x) = ipl(x) + 6wa(x)&a{x), 

where 8wa(x) is infinitesimal and has compact support. A symmetry is defined as 

a transformation that leaves the action invariant. Any infinitesimal transformation 

w i l l by definit ion leave the action invariant at the classical path, for i t to be a 

symmetry transformation this invariance must be preserved also away f r o m the 

classical path, i.e. when the equations of motion are not satisfied. (2.2) is a rigid 

(or global) symmetry of the action when 5S = 0 for Swa constant, i.e. dll8wa{x) = 

0. Consider now a transformation where X£ and $ \ are the same as for a r igid 

symmetry but 5wa(x) is not constant. 8S can then be wri t ten as 

SS = - J dtxtfWdnSw'ix), (2.3) 

for some current j%(x), because then 5S = 0 for 5wa constant and 5S is the variation 

of a local quantity and is therefore local [5]. Taking the fields in 5S to satisfy the 
1 Classical equations of motion which are higher than second order differential equations often 

leads to non-causal effects, so the lagrangian is generally taken to contain at most two derivatives 

[10]. 
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2 Symmetr i e s and scaling 

equations of motion means that (2.3) vanishes for an arbitrary 5wa(x) and integra­

t ing by parts yields that the current j%(x) is conserved d^j^x) = 0. Assuming that 

the current vanishes at spatial inf in i ty the Nother charge 

Qa = J dd-'x j°a(x) (2.4) 

is then a constant of the motion d0Qa = 0, showing that a symmetry leads to a 

conserved quanti ty which is Nother's theorem. I f the lagrangian density is invariant 

under a r igid transformation (2.2) then the fo rm of the current follows by considering 

the variation of the action. To first order i n 5wa the variation in the field at fixed x 

becomes 

Stp^x) = i f f \ x ) - <p\x) = <p'l{x') - 8x^0^(x) - ^ ( x ) 

= 5wa(x)(¥a(x) - X ^ x ) d ^ { x ) ) = 6wa(x)Sa^(x), 

and the action changes as 

6S = S[tp'] - S[<p] = J d d x ' C ' ( x ' ) - J d d x C ( x ) 

= J s ( d d x ) c + J d*x + ^v + 

(2.5) 

I d d x d, (jCXZ(x)6wa(x) + ($» (x) - Xl{x)dv<j) 5wa(x) 

(2.6) 

I f now C'(x')ddx' — C(x)ddx = 0 under a r igid transformation (2.2) 2 where Swa is 

constant, then the term proportional to 8wa(x) in (2.6) vanishes, and i t follows f rom 
2 The boundary conditions of the integral are invariant under (2.2) as 5wa(x) has compact 

support. 

11 



2 Symmetr i e s and scaling 

(2.6) and (2.3) that j%(x) is given by the canonical Nother current 

In the hamiltonian picture where iXi{x) = d d ^ i ^ the Nother charge becomes 

Qa = j dd~lx (TT^CW - CXl - TT^) , (2.8) 

and the Poisson bracket 3 w i th tp% is 

{Qa, <p\x)}P = J ^ d - ^ ^ y ^ | y = X Z W d r f i x ) - *\(x) = -<W- (2-9) 

Qa is in this sense infinitesimal generator for the transformation (2.2). 

Not all conserved charges appear in this way f rom a continuous symmetry, the 

other example is topological charges that arise f rom non-tr ivial global boundary 

conditions of the fields. There is a conjectured duality, the Montonen-Olive duality 

[17], between a quantum theory having gauge particles w i th Nother (electric) charge 

and a theory wi th solitonic objects w i t h topological (magnetic) charge 4. 

3 The Poisson bracket is here defined as {F,G}P = J dfi^x ( j ^ y ^ J ~ 6$*))-
4 The motivation for this conjecture is the classical electromagnetic duality in Maxwell's equa­

tions (in the absence of sources) under B ->• E, E -> -B, or using differential forms F -> *F 

(** = - 1 ) . A more concrete motivation is the duality in the spectrum of SU(2) Yang-Mills-Higgs 

theory between the massive vector boson with mass m oc e and charge q oc e and the BPS monopole 

with m oc 1/e and charge q oc 1 /e (when dyons are considered the duality becomes a transforma­

tion of the charge lattice under SL(2, Z)) . The spectrum is therefore invariant under vector boson 

o soliton and e <-> 1/e exchange, and it is therefore a strong-weak coupling duality. This type 

of duality is important when trying to understand the non-perturbative strong coupling region of 

supersymmetric quantum field theory and for theories with extended objects. The strong-weak 

coupling duality was first seen in two dimensions between the massive Thirring model and the sine-

Gordon model [18]. There are a number of obstructions against a Montonen-Olive type of duality, 

the vector boson has spin one whereas the monopole seems to be a scalar and the electric charge 

runs, but the topological charge does not. Supersymmetry can potentially cure these as it relates 

particles with different spin and leads to non-renormalisation theorems, the only present candidate 

where Montonen-Olive duality seems to be exactly realized is for SU(2) N = 4 supersymmetric 

Yang-Mills-Higgs [19, 20, 21] 
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2 Symmetr i e s and scaling 

2.1.1 Ward Identities 

The conservation equation d^j^(x) = 0 was derived for the classical theory, requiring 

that the equations of motion were satisfied. The quantum mechanical consequences 

of a symmetry transformation are described by Ward identities that are relations 

among the correlation functions of the theory. Physical amplitudes are given in 

terms of the correlation functions that are formally defined by the path integral 

(<f>{xl)---<l>{xn)) = (Q\T{(t>(x1)---(l>(xn)}\0) = ^ J P0e l 5 M<Kzi ) (2.10) 

where Z = f V<f) etS^ is the par t i t ion funct ion. I f a transformation (2.2) is a 

symmetry of the action S[(f>'] = S[4>] and the path integral measure V(p' — T>4> the 

correlation funct ion (2.10) then transforms as 

( ^ ) - * « ) > = W ) - « > - (2-11) 

For translations <f)'(x + a) = <j>(x) this shows the translation invariance of the cor­

relators. The case T><f>' ^ T><f> is called an anomaly, here quantum corrections break 

the symmetry present at the classical level. The Ward identities follow f rom (2.10) 

and (2.3) when the path integral measure is invariant, to lowest order 

M s x ) . • = ! J P ^ W ^ ^ ^ W ^ - W ^ x O + ^ C a r O ) - • i<t>(xn)+6<j>(xn)) 

and this shows that 

d'xSw^x) — ^ ) ^ ) • ••<l>(xn)) = • ••5wa(xi)6a(f>(xi) • ••</>«)> 
i= l 

/

n 
ddx8wa(x)y^j5(x - Xi){(f>(xi) • ••5a(j){xi) • ••4>{xn)). 

i= i 

Again 8wa(x) is arbitrary so that 

d n 

— { t t i x ) ^ ) • ••(j){xn)) = i ^ 8 { x - Xi){<f>{x{) • --Satixi) • ••4>(xn)), (2.12) 

i= i 
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2 Symmetr i e s and scaling 

this is the Ward identi ty for the current j%{x). When integrated over space this 

leads for one field t o 5 [22] 

/ ^ V ^ F i f i M t W W ) = (0 |T{Q a <K*)} |0> - S(x° - 2/°)(O|[0(x),Q a]|O) 

= i6(x°-y°)(Q\6acf)(x)\0). 

(2.13) 

For x° ^ y° then (0 | [Q a , </>(x)]|0) = i{0\5a(j)(x)\0), and this argument generalizes to 

an arbitrary number of fields 4> [22] so that 

i[Qa,<l>{x)] = -5a<t>(x) (2.14) 

holds as an operator equation, i t is the quantum version of (2.9) and i t again shows 

that the charge generates the transformation. 

2.2 Scale and conformal transformations 

I n flat space-time a conformal transformation is defined as a coordinate transforma­

t ion that leaves the metric invariant up to a scale factor 6 . By definition, Poincare 

transformations leave the metric invariant and are therefore conformal, the others 

are dilatations and special conformal transformations [24]. The infinitesimal gene­

rators of the conformal group obey the Lie algebra so(2, d) in Minkowski space and 

s o ( l , d + 1) in Euclidean space [25]. 

2.2.1 The energy-momentum tensor 

In a Poincare invariant theory the energy-momentum tensor is defined as the con­

served current associated w i t h translations: x' = x + a, <f>'(x') = <f>(x). The canonical 

energy-momentum tensor (2.7) then becomes 

Tc^{x) = QQ^i^vVW ~ %uC(x), (2.15) 

5T{j0

a(y)<f>(x)}=j0

a(y)<P(x)+6(x°- y°)[<f>(x),j°a(y)]. 
6 For a diffeomorphism invariant quantum field theory on a curved space-time the transformation 

gij(x) —> Vt2{x)gij{x) of the metric is called a Weyl transformation, see e.g. [23] for a review. 

14 



2 Symmetr ie s and scaling 

and the conserved charges P M = f dd~*x T^°(x) are the energy and momentum 

Pfl = (P°,Pl). The energy-momentum tensor can be made symmetric (put in 

Belifante form) without changing P^ and its conservation by adding to T£u total 

divergences of antisymmetric tensors: dpB^, where B"^ = -B^pu = ~B^P [8]. 

We w i l l always assume a symmetric energy-momentum tensor. 

The presence of gravity breaks the global Poincare invariance. In a curved space-

time the energy-momentum tensor is defined as the source of gravity i.e. 7 

2_6S[<f>i,glu, 
-9 6gv(x) 

which is symmetric. The quantum version becomes 

7 „ M = - ^ ^ S 1 (2-16) 

where W is the generating functional for the connected correlators, Z = elW [26]. 

2.2.2 Scale transformations 

A scale transformation, or di latat ion, is defined as 

x' = sx 
(2.18) 

= S-A<t>(x) 

where A is the scaling dimension of <j){x). The scaling dimension is defined so that 

the classical action is scale invariant. From the kinetic term in the action i t follows 

that A = ^ for a scalar field and A = ^ for a Fermi field, and any mass term 

w i l l therefore break scale invariance. A mass sets a scale in the theory. The mass 

(or engineering) dimension of a physical quantity is wr i t t en as , i t determines the 

physical unit in which T is measured. I t is a fundamental principle that all physical 

quantities are homogeneous w i t h respect to the mass dimension 

T{tm) = t m F , (2.19) 

7 T h e components of the metric tensor satisfy that g(x) = (—l) d det <7M„(a;) < 0, Sg = 

- g g ^ W and Sg^ = -g^g^dg^. 
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2 Symmetr ie s and scaling 

which therefore defines a grading of all physical quantities [27]. 

I n a scale invariant quantum field theory i t follows f rom (2.11) and (2.18) that 

the correlators transform as 

(Msxi) • • • (f>n(sxn)) = s " A l • • • s " A » ( f a f a ) • • • <j>n(xn)) (2.20) 

under scaling. For the transformation (2.18) the canonical scaling current (2.7) 

becomes 

D? = x , r r + A 0 * ^ . (2.21) 

I n [8] i t was shown that this current can always (in d > 2) be wr i t t en as D^1 = 

xJT^ for an improved energy-momentum tensor by adding divergences of anti­

symmetric tensors. Then T£" and generate the same charges and d^T^ = 

d^T^ — 0. This shows that for a classically scale invariant theory, w i t h d^D11 = 0, 

the trace of the improved energy-momentum tensor vanishes T f f = 0. From (2.14) 

and (2.18) i t follows that the scaling charge D is given by 

i[D,<f>(x)] = -5<f>{x) = Sw(A + xlidll)<t>(x), s = 1 + 6w, \5w\ < 1. (2.22) 

Using that i[P», (j)(x)] = i t follows that i[D,Pf] = P" - rf*1 J dd~lxdvDv. 

For a scale invariant theory then P2' = e i a D p 2

e - i a D — e2aP2, and this again shows 

that masses must vanish m2 = 0 [25, 28]. 

2.2.3 Conformal transformations 

A conformal transformation x —>• x' changes the scale of the metric: g^(x) —> 

9'^(x') = 9Pk{x)§^§^ = l{x)gliv{x)t and hence leaves angles ^ invariant. For 

the infinitesimal transformation x"1 = x11 + e'i(x) the change in the metric is to first 

order 

2 
9'vV(x')=gtlv(x)-dllev-dvell='y(x)glu,(x) =>- dMe*> + = - dp€pgiu,(x), 

(2.23) 
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2 Symmetr i e s and scaling 

by taking the trace and using that d^,gpv(x) = 0 in flat space. Conformal invariance 

completely fixes the fo rm of the two and three point correlations functions in any 

number of dimensions [24]. For scalar fields that transform as 

<f>'(x') 
dx' 
dx 

-A/d 
4>(x), (2.24) 

where \ ^ \ is the Jacobian of the conformal transformation, rotation and translation 

invariance require that (fa{xi)4>2(x2)) = f{\xi — x2\), and invariance under scale 

transformations (2.20) shows that (4>i(xi)(f)2(x2)) = Cu/\xi — x 2 | A l + A 2 for some 

C12 € C. The Jacobian becomes | ^ - | 

transformations are given by 

x + bx2 

x x = 1 + 2b • x + b2x2' 

and i t then directly follows t ha t 8 

( x i ~ x2)2 — 

dx' 
dx 

'y(x) d / 2 . The special conformal 

1 
{l + 2b-x + b2x2)d' 

( x i - x2)2 

(1 + 2b • X l + b2x\){\ + 2b • x2 + b2x2)' ( 2 ' 2 5 ' ) 

Hence, together w i t h (2.24) invariance under special conformal transformations sets 

C12 = & # A i - A 2 , O > and the fields are normalized so that k = 1, i.e. 

<«fr i(*i)fcte)> = | / A l " A [ 2 ° A l - (2-26) \x\ — x2\ 

A similar expression is obtained for the three point funct ion. 

From (2.16) and (2.23) the variation of the action becomes 

&S = \ j ddx^T-g 8gT{x) T,u{x) = - \ j ddxsf^g T£(x) \ dpe?. (2.27) 

Classical scale invariance d^D11 

i1 0 therefore implies conformal invariance 

SS = 0 for the improved energy-momentum tensor 9. There are no general arguments 
8 T h i s is most easily seen writing (x[ — x'2)2 = x[2 + x'2

2 — 2x[ • x'2. 
9 T h i s argument does not show that T£ = 0 for a conformally invariant theory (as sometimes 

stated, dpep
 is not an arbitrary function), but it is shown in [29] that conformal invariance is 

equivalent to the existence of a traceless energy-momentum tensor and this is the one we will use 

when considering conformal field theories. In a curved space-time Weyl invariance does imply that 

T£ = 0. 
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2 Symmetr i e s and scaling 

saying that this also holds at the quantum level, but no counter examples exists for 

unitary theories in flat space (see [30] for a recent example in curved space), and i t 

is often stated that a vanishing beta function leads to conformal invariance [29, 27]. 

In two dimensions scale invariance can be proven to imply conformal invariance also 

at the quantum level, this is shown in chapter 5 using the spectral representation. 

Quantum corrections change the scaling of a theory. A local field theory has an 

infini te number of degrees of freedom that give rise to ultra-violet divergences which 

have to be renormalised, the scaling behaviour of renormalised quantum field theory 

is described by the renormalisation group. 
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3 

The renormalisation group and 

universality 

The renormalisation group describes the behaviour of a quantum field theory un­

der scaling. I t also describes scaling in statistical mechanics and i t provides an 

important l ink between relativistic quantum field theory, statistical mechanics and 

critical phenomena. The structure of the space of all quantum field theories is also 

determined by the renormalisation group. 

The relation between field theory and statistical mechanics has led to an un­

derstanding in statistical mechanics of critical phenomena and universality, and 

calculations of critical exponents using quantum field theory methods. On the other 

hand, the idea of effective field theories used in statistical mechanics is now also 

used for quantum field theory which is seen as an effective field theory only valid 

below some fundamental scale A 0 . 

The requirement of renormalisability was originally used as a selection criterion 

for physical theories, but an effective theory must include all terms obeying the 

symmetries of the theory, also the non-renormalisable terms. However, these terms 

are irrelevant in the renormalisation group sense and are therefore suppressed at 

energies A « A 0 . The perturbative calculations in the wilsonian effective theory are 

equivalent to normal perturbative calculations, where the running coupling constant 
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3 T h e renormal isat ion group and universal i ty 

can be seen as the effective coupling. Non-renormalisable interactions are allowed 

w i t h a very small coupling, and gravity has been speculated [6] to be one such 

example 1. 

A quantum field theory is determined by its symmetries and the coupling con­

stants of the interaction. The space of quantum field theories is therefore spanned 

by the infinite dimensional coupling constant space. The renormalisation group de­

scribes a one parameter flow under scaling in the coupling constant space, where 

fixed points correspond to scale invariant theories. The coupling constants describe 

the microscopic interactions, but different quantum field theories have the same long 

range physics i f they flow to the same fixed point under the renormalisation group. 

Quantum field theories can therefore be grouped into different equivalence class­

es according to which fixed point they flow to. The renormalisation group in this 

way determines the structure of the coupling constant space. To get a better under­

standing of the space of quantum field theories i t is therefore important to study the 

infra-red and ultra-violet l imits of quantum field theories and their renormalisation 

group flows. 

The analogy between statistical mechanics and quantum field theory, which is 

an exact equivalence when the continuum l im i t of the statistical mechanical system 

is considered, stems f rom the path integral formulat ion of the latter. Under a Wick 

rotation it = t E , (x,x)M = - ( x , x ) E and iS = -SE: Z[J] = J p ^ s + J ^ x J ^ M * ) _> 

f V(f)e~SE+-l' ddxJ(x)<t>(x) which is analogous to the par t i t ion funct ion of a statistical 

mechanical system in d space dimensions where SE is the classical hamiltonian. The 

n-point Green functions become euclidean Green functions, or Schwinger functions, 

that are equivalent to correlation functions in statistical mechanics, and this is the 

term we w i l l use throughout the thesis 2. 
1 To explain why gravity is irrelevant and the other interactions are relevant one needs a funda­

mental finite theory. 
2 The usual convention in physics is applied where euclidean signature means a riemannian 

manifold (M,gij) where gij has signature ( + , . . . , + ) and Minkowski signature means a pseudo-

riemannian manifold (M,i]ij) of signature (+ , — , . . . , —). 
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3.1 Renormalisation 

Loop diagrams in quantum field theory contain ultra-violet divergences (infra-red 

divergences are discussed in chapter 6). For example in euclidean ip4 theory the 

tadpole diagram 

for some ki,k2 6 R+ , and the diagram is therefore divergent for d ^ 2. A theory 

is renormalised by first regularizing i t 3 introducing a convergent expression for the 

loop integrals depending on some cut-off parameter e, so that the original expression 

is obtained in the l i m i t where the cut-off is removed e —)• 0. The divergences are 

then absorbed into bare couplings by redefinitions of the coupling constants of the 

theory so that the correlation functions, and thus physical quantities, are finite when 

e —> 0, but the bare couplings diverge. Here a wave funct ion renormalisation is used, 

(fo = Z ^ 2 ( f j , ) i f R , ( f l = Z2{lj){<p2)R, where <pR, (<-P2)R and A are the renormalised and 

</?o, </?o> are the bare quantities, 

A theory is called renormalisable i f i t is possible to absorb the infinities into a f ini te 

number of couplings at every order in the perturbation. Studying the loop diagrams 

the requirement of renormalisability of a scalar field interaction X(p(x)n becomes 

The interactions of the theory (like the self-interaction above) are incorporated into 

the renormalised couplings, and i t is these couplings that have to be compared w i t h 

measured quantities. The bare couplings are the ultra-violet approximation of the 
3 There is an operator formulation of perturbative quantum field theory where no regularization 

and renormalisation is performed. In the (Boguliubov-Shirkov-Epstein-Glaser) Causal approach 

(see e.g. [31]) ultra-violet divergences are removed by proper definitions of products of operator 

valued tempered distributions in position space. 

Q A i / ddq {q2 + m 2 ) " 1 > kx dr r ^ 2 ) " 1 

27T) 

£R{<PR, A) = £(<pR, A) + Cc.t.(vR, A) = £ 0(<A), A 0 ) . (3.1) 

[A] ^ 0. (3.2) 
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renormalised couplings in the sense that no interactions are here taken into account 4. 

The counter terms Cc t . are only specified up to finite terms in the l im i t e —> 0. 

This means that the theory does not have any predictive power unt i l the parameters 

of the lagrangian, i.e. the couplings and the constant in the kinetic term, have been 

fixed by comparing wi th experimental values measured at a certain length scale. 

Choosing a different renormalisation condition by fixing the parameters at a different 

scale then corresponds to a different finite renormalisation of the theory. 

The regularization introduces an additional mass parameter / j into the theo­

ry, e.g. the lattice spacing 1 / / / , or in Pauli-Villars: g 2 + m 2 —> 2 + m 2 — 2, and 

in dimensional regularization g = / i _ t A , where [g] = 0. Changing [i corresponds 

to a f ini te renormalisation and can be seen as choosing a different renormalisation 

condition. Physical quantities must be independent of the choice of renormalisa­

t ion condition and this invariance in the choice of ji leads to the Callan-Symanzik 

equation [32, 33] which shows how the system changes under scaling. Some ref­

erences on renormalisation in quantum field theory and some of its history are 

[22, 11, 5, 34, 35, 36, 37, 38, 39, 40, 41], in which more detailed references can be 

found. 

3.1.1 The Callan—Symanzik equation 

The simplest case w i t h one coupling is considered, the equation directly generalizes 

to more couplings. From the wave-function renormalisation the bare and renor­

malised correlation functions are related as 

Gn(p» g(fi), n) = ((PR(PI) • • • <PR(Pn)) = Zin/2(n)G0n{Pi, go, e), (3.3) 

4 The ultra-violet divergences of the bare couplings then indicate that the perturbative theory is 

only an effective theory valid below some fundamental cut-off Ao, and the renormalisation is then 

a way of expressing the effective physical degrees of freedom at a length scale much below Ao, this 

is exactly the philosophy in the wilsonian view of the renormalisation group. 
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where the overall momentum conservation has been extracted so that Gn(pi, g, LI) is 

defined for Y^i=iPi = 0 5 . I t then follows that 

0 = ^ G 0 n ( P l , g o , e ) = ( n ^ - ^ + ^ + ^ | ) Gn(Pl,g,»). (3.4) 

Gn{Pi,g,^) is homogeneous w i t h respect to the mass dimension 6 (2.19) 

Gn{tpugM = t ^ " ^ G n ( P l , g , f i ) , (3.5) 

so that 

Ocl + ^ ~ lG"(Pi)]J Gn{tpi,g,tj) = 0, (3.6) 

inserting into (3.4) leads to 

( - t j t +p(g)^- + n j + [Gn{Pi)}^j Gn(tPi,g,fi) = 0, (3.7) 

wi th 

/%) = , | U 7b) = 4f (3.8) 

(3 is the beta funct ion and 7 the anomalous field dimension. We call (3.7) the 

Callan-Symanzik equation and (3.8) the renormalisation group equation 7 . 

In the Callan-Symanzik equation the invariance of the physics (the S-matrix) 

in the choice of renormalisation condition is transformed into describing the scal­

ing behaviour of the correlation functions. The correlation functions change as 

(nj + [Gn(Pi)])Gn(tPi, g, fx) under a simultaneous change in t and g in (3.7) and this 

suggests that the solution has the fo rm Gn(tPi,g, p) = h{i)Gn(Pi, g(t, g), n) for some 

5 Using translation invariance we can then write the correlator as G„(pi,... , p n ) = 

fd*x1ei*^-i'«)fd*X2 • • • J d d x n e i ^ = 2 P ^ ) G n ( 0 , x 2 , . . . ,xn) = (27r) d<5(£r = 1 P<)G„(Pi) . 
6 F o r a scalar field [Gn(pi)] = n[tp(x)] - nd + d = d - § (d + 2). 
7 (3.7) is also called the renormalisation group equation, and sometimes the word C a l l a n -

Symanzik equation is reserved for the case with composite operator insertions, these are considered 

in chapter 6. 
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function h(t), where the running coupling constant g(t,g) satisfies that g(l,g) = g 

and i | | = /3(g) 8 . Inserting this into (3.7) then gives 

Gn(tPl,g,v) = t ^ ^ e n ^ l J S P l d t ' G n ( P l , g ( t , g ) , » ) . (3.9) 

This shows that the scaled correlators w i t h coupling g are the same up to a factor 

as the unsealed correlators w i t h the running coupling g(t, g) at the scale t. 

The renormalisation group in this way specifies a one parameter flow in the cou­

pling constant space that determines how the renormalised couplings must change, 

when the length scale changes, to leave the physics invariant. The cut-off e is kept 

fixed along the renormalisation group flow; an equivalent view of the renormalisation 

group is to keep the renormalised couplings fixed by comparing them to measured 

quantities at a certain scale, and then observe how the bare couplings must be varied 

in the l im i t when the cut-off vanishes so that the physical quantities stay unchanged. 

The renormalisation group shows how the effective microscopic dynamics, ex­

pressed in terms of g(t), depends on the length scale where the theory is probed. 

This dynamical scale dependence is one of the most important consequences of the 

renormalisation group because i t matches what we see i n nature, namely that the 

behaviour of physical systems depends on the scale where they are studied [36]. 

Physics on different length scales decouples, that is, the dynamics of a system and 

the relevant parameters needed for its description depend on the scale where i t is 

studied. The value of a physical charge for example depends on the length scale 

where i t is probed because of screening, and the parameters needed to describe a 

thermo-dynamical system differ f rom the ones needed to describe its microscopic 

nuclear properties. 

The /5-function can be calculated perturbatively and the correlators satisfying 

(3.7) are called renormalisation group improved, as (3.7) is an additional condition 

on the perturbative calculation. The renormalisation group equation shows that the 

8 Hence integrating this equation and differentiating with respect to g shows that = §( f ) > 

and it also follows that J* dt'^pl = js dg'$&. 
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t P ( g ) 

U V IR 

g 

t-> 0 

Figure 3.1: /3-function wi th an ultra-violet and an infra-red fixed point. 

scaling behaviour is completely determined by the /^-function; fixed points of the 

renormalisation group correspond to scale invariant theories because the effective 

couplings are the same at all length scales. 

We are interested in theories w i t h a /^-function w i t h an ultra-violet fixed point 

where the length scale vanishes, and an infra-red fixed point where the length scale 

diverges, see figure 3.1. The renormalisation group then flows f rom the ultra-violet 

to the infra-red fixed point in the coupling constant space. 

I f the coupling constant space, or theory space, has the coordinates gl then 

the renormalisation group flow is a one parameter transformation along the vector 

field P = Pl-^i- In [42, 43] the correlation functions in a theory were argued to 

be tensor fields in coupling constant space and the renormalisation group flow can 

then be wri t ten as the Lie derivative [44] w i t h respect to the vector field /3. I t then 

seems natural and important to t ry to further develop the geometrical understanding 

of the renormalisation group by introducing a metric, connection and curvature 

in theory space, also because geometrical principles have proved very important 
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when formulat ing general relativity and quantum gauge theories. In [45, 46, 43, 42] 

the geometrical properties of the renormalisation group have been studied, but no 

general conclusions have yet been reached about the geometry. The hope is that 

geometrical considerations w i l l lead to global non-perturbative constraints on the 

renormalisation group flow and the structure of theory space. This is the case in 

two dimensions for unitary theories where Zamolodchikov's c-theorem, which we 

w i l l prove in chapter 5, shows the irreversible nature of the renormalisation group 

flow. Another example where the renormalisation group flow has been studied non-

perturbatively is the Seiberg-Witten solution to N = 2 supersymmetric Yang-Mills, 

where the exact /3-function has been determined together w i t h a metric on coupling 

constant space [47, 48, 49]. 

3.1.2 Composite operators and the operator product 

expansion 

In a renormalisable theory correlation functions (0(x)4>(yi) • • • 4>(yn)) w i t h insertion-

s of local composite operators O(x) = d\ • • -di(f)(x)k w i l l have divergences. These 

correlators can be calculated by adding a term to the lagrangian C —> C + t(x)0(x) 

and then use the normal Feynman rules to evaluate Z ~ l

6 J ^ y 5J^y ^Z[J, t ] \ j = t = 0 . 

This corresponds to summing over the usual Feynman diagrams, but w i t h one addi­

tional vertex corresponding to 0(x), this vertex has no self-contractions [27]. Some 

of these diagrams w i l l be divergent and the composite operator is renormalised by 

adding counter terms t(x)0(x) —> t(x)(0(x) + Yli^oiOi). For the theory to be 

renormalisable the constraint (3.2) shows t h a t 9 [Zoi\ ^ 0 so that the operator O(x) 

only mixes under renormalisation w i t h operators of lower or equal mass dimension. 
9 T h i s argument is for an operator without any derivatives, a general argument is given in [22]; if 

G is a 1PI graph for a counter term ZaOi with Di derivatives then (3.2) implies that the degree of 

divergence of G: 6(G) = [G] — [couplings] ^ [G], and [G] = Di + [Zen]- For ZoiOi to be a counter 

term then 6(G) ^ £>,, and together with the above relation this again shows that [Zoi] ^ 0. 
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The renormalisable composite operator can then be wr i t ten as 

0 ( x ) R = J2Zo*Ol, [Oi]^[0]. (3.10) 
i 

The correlation functions (0\(X\)R • • • Oi(xi)ROj(xj)R • • • O n { x n ) R ) are not de­

fined on the diagonal Xi = xj. We w i l l be interested in the short distance ultra-violet 

l im i t where X j —> Xj, this situation is described by the operator product expansion 

(or short distance expansion). To s implify the notation we w i l l here write the renor­

malised composite operator as simply 0(x). 

The operator product expansion was first conjectured by Wilson in [50] (and 

independently by Kadanoff in statistical mechanics [51]), i t replaces a product of 

operators by a linear combination of local operators, i t has been proved to hold in 

perturbation theory (see e.g. [22, 52]) and also argued to be true non-perturbatively 

using the path integral [52]. I n the classical theory the product Oi(xi)Oj(xj) can be 

calculated for Xi —> Xj using the Taylor series Oi(xi)Oj(xj) = Oi(xj)Oj(xj) + (x^ — 

Xj)tJ-(d^Oi(xj))Oj(xj) + • • •. In quantum theory Oi(xj)Oj(xj) is singular, i t follows 

for example f rom (2.20) that ((/>(sx)<f)(0)) ~ s~ 2 A for s - » 0, and the Taylor series 

must be replaced by an asymptotic series for X{ —> xy. 

Oi{xi)Oj{xj) ~ ]T Cijk(xi - X j ) O k ( X j ) . (3.11) 
k 

From the scaling behaviour (2.20) i t follows that Cijk(s(xi — X j ) ) ~ s - A i ~ A j + A k f o r 

s —> 0, and since there is only a finite number of operators 1 0 Ok w i t h < A j + A j 

there w i l l only be a finite number of singular terms. The dominant contribution in 

(3.11) for therefore given by the operators w i t h lowest scale dimension. 

For scalar fields we w i l l write (3.11) as 

OiixJOjixj) ~ - Xjl-^-^+^CijkOkixj), (3.12) 
k 

where Cijk is the operator product expansion coefficients. 
1 0 T h i s is the case for all known theories and it can be taken as one of the denning properties of 

quantum field theory [53]. 
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3.2 Linearizing the renormalisation group and 

universality 

The structure of the coupling constant space is determined by the renormalisation 

group flow, the qualitative behaviour of which is given by the stability of the fixed 

points (in the absence of l im i t cycles and strange attractors). The stabili ty of a 

critical point, i.e. i f i t is attractive or repulsive, can be found by linearizing the 

renormalisation group near the fixed point. 

I t is useful to adopt the wilsonian viewpoint where the renormalisation group is 

implemented by integrating out the high energy degrees of freedom not relevant at 

lower energy scales. This procedure can also be used in statistical mechanics and the 

renormalisation group has made an important connection between relativistic quan­

t u m field theory and critical phenomena, which has led to a better understanding 

of divergences in quantum field theory and universality in crit ical phenomena. 

In statistical mechanics a renormalisation group transformation is given as a 

coarse graining of the system focusing on the long range effects that are the impor­

tant ones in crit ical phenomena. For a spin system on a (fixed) lattice of spacing a 

this can be done by Kadanoff blocking 1 1 . The blocking, or renormalisation trans­

formation, w i l l then generate new couplings between the blocked spins. This is 

similar to the renormalisation described by (3.8) where the cut-off is held fixed and 

the renormalisation group describes the dependence on the renormalisation scale. 

Equivalently, the lattice can be used as a regulator by adjusting the (bare) couplings 

so that physical quantities, e.g. the correlation length, are held fixed while the lattice 

spacing a goes to zero. This is again analogous to the quantum field theory case 

where e —> 0. The continuum theory defined in this l i m i t then gives a field theory 

w i t h a non-perturbative regulator, namely the lattice, and non-perturbative effects 

can in principle be studied in this way. 

A continuum formulation is also obtained w i t h a momentum space cut-off, either 
1 1 T h e lattice is divided into blocks of size sd and the spin field in the block is defined as the 

average value, length are given in terms of the lattice spacing so they must be rescaled x' = x/s. 
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.1 

Figure 3.2: A renormalisation group fixed point in coupling constant space wi th one 

relevant and two irrelevant operators. 

sharp or smooth. One prescription is to include only momentum modes (f>(k) w i t h 

\k\ < A in the effective part i t ion funct ion Z = f 2?0(A;)l|A;|<Ae _ s^. The equivalent 

of the blocking transformation in this formulat ion is to integrate out the momentum 

modes w i t h A / s < \k\ < A followed by a rescaling k' = sk, <t>'(k') = sA~d(f)(k) (which 

is the momentum space version of (2.18): (j>'(x/s) = sA(p(x)). This transformation 

again corresponds to a flow in the effective coupling constant space A —>• A'(s) and 

the /3-function is then defined as before /3(A) = s ^ . 

3.2.1 Linearizing the renormalisation group 

Assume that there is a fixed point of the renormalisation group, i.e. a scale invariant 

theory in the coupling space 5*[A*]. In the vicini ty of the fixed point the action can 

be wri t ten as 5[A(s)] = S* + AS[X(s)] where s is the scale parameter. Linearizing 
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the renormalisation group transformation around the fixed point gives 

s-^AS=LAS (3.13) 
as 

where L is a linear operator depending on S1* [38]. I f L has a discrete spectrum AS 

can be expanded in terms of the eigenoperators w i t h eigenvalue y f . AS = ^ Xi(s)Oi 

so that to lowest order 

s f s X i ( s ) = yMs), Ai(s) = sViXi(l). (3.14) 

yt is the renormalisation group eigenvalue for the operator Oi at the fixed point 5*. 

Oi is called relevant for Re(yj) > 0 where the coupling grows away f rom the fixed 

point, irrelevant when Re(yj) < 0 where the coupling vanishes along the renormali­

sation group flow, and marginal for yi = 0 where higher order corrections need to be 

calculated, see figure 3.2. The critical surface for a fixed point is defined as all points 

in the coupling constant space which flows to the fixed point under the renormali­

sation group flow, and is therefore locally spanned by the irrelevant operators. The 

co-dimension of the critical surface equals the number of relevant operators for the 

fixed point, and the corresponding couplings are the ones that need to be adjusted 

to reach the critical surface. 

The massless free theory is a fixed point of the renormalisation group, the gaus-

sian fixed point. This fixed point is very important because perturbative quantum 

field theory is defined as a perturbation around i t . The free theory is finite and 

can be calculated exactly. I t is a fixed point because the massless free action is 

scale invariant, and for a quadratic action there is no mixing of different momentum 

modes, so that the high momentum modes decouple without changing the quadratic 

coupling. For example, for a scalar field w i t h scaling dimension A = 

Z = / ^ ) l | „ < A e - U ^ * M r t ( - " = * l / j * ( 9 ) | M < ^ - » ' < & « * , « - ' > 

= * J / W ) l k | < A « - - ' - 4 - , * ^ ' ( ^ ( - " , 

for some ki,k2 £ R, and i t follows that the massless free action is invariant under 

a renormalisation group transformation. I n this gaussian case the change in the 
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couplings under the renormalisation group comes solely f r o m the rescaling of the 

action. For a non-quadratic interaction term X j ddxO{x) the momentum modes 

mix, and the couplings w i l l consequently change when integrating out the high 

momentum modes. This effect however must be of order 0 ( A ) as i t vanishes for the 

gaussian theory, so the lowest order change in A is again given by rescaling the action 

x -> x' = x/s, 0(x) -+ 0'(x'): \ f d d x O { x ) = \sd~A J ddx'0'(x'), where 0(x) 

has scaling dimension A . The renormalisation group eigenvalue for the gaussian 

fixed point is therefore y — d — A which is equal to [A]. The non-renormalisable 

interactions w i t h [A] < 0 are thus damped by on the renormalisation group flow. 

On scales A <C Ao the only non-zero parameters are therefore the f ini te number (in 

d > 2) of couplings in front of the renormalisable interactions, irrespective of the 

nature of the underlying fundamental theory at the scale A 0 , and the theory therefore 

has a renormalisable fo rm. A similar argument was given by Polchinski in [54] (see 

also [5]) directly using dimensional analysis and an effective lagrangian 1 2 1 3 . 

From the solution to the Callan-Symanzik equation (3.9) i t follows that the infra­

red l i m i t of a correlation funct ion is proportional to the same correlator evaluated at 

the infra-red fixed point. This shows that all theories flowing to the same infra-red 

renormalisation group fixed point have the same long distance behaviour irrespective 

of the microscopic dynamics, this is called universality. Fixed points are determined 

by the symmetries of the action and the space-time dimension and are characterized 

by quantities like the renormalisation group eigenvalues f r o m which such universal 

properties as the critical exponents, that are discussed in chapter 6, can be derived. 

Quantum field theories can then be grouped into different universality classes, w i th 
1 2 I n [55, 11] the renormalisation group is seen as an example of functional self-similarity, where a 

solution to a physical problem, imposed in terms of a differential equation, has the same functional 

form under a variation of the boundary conditions. If for example the transformation Rt : {x -> 

x' = x/t,g —> g' = g(t,g)} satisfy the group composition RtRf = Rtv then g(x, g) = g(x/t,g(t,g)), 

and this shows that x9s<^8^ = 0(g(x,g)) where (}(g{x,g)) = §-tg{t,g)\t=\, which are similar to the 

expressions above. 
1 3 A correspondence between Feynman diagrams, knots, Hopf algebras and non-commutative 

geometry has been discussed in [56, 57]. Thi s seems to be an important development which may 

lead to a more fundamental understanding of the perturbative series and the renormalisation group. 
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3 T h e renormalisat ion group a n d universal i ty 

the same critical properties, according to which fixed point they flow to under the 

renormalisation group, this has been verified experimentally for a number of different 

materials and fluids. I f all theories have an infra-red fixed point (as would be the 

case i f the renormalisation group flow could be shown to be a gradient flow wi th the 

interpretation as in the c-theorem) the space of quantum field theories would then 

be classified by determining all fixed points, i.e. all scale invariant theories. 
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4 

Calculating the infra-red l imi t 

using analyticity 

In this thesis we are interested in quantum field theories that have a /^-function as 

in figure 3.1 w i t h an ultra-violet and an infra-red fixed point of the renormalisation 

group. 

Perturbation theory is the main calculational tool in obtaining physical quantities 

f rom quantum field theory. Here the action is divided into a free gaussian part and an 

interaction, and using that the path integral is well defined for gaussian integration 

the f u l l interacting theory can then be wr i t t en as a formal power series in the coupling 

constants that define the interaction 1 . This power series in the couplings w i l l often 

at most be asymptotic, hence the finite number of terms obtained in a perturbative 

calculation only describe the exact physics correctly in a small region around the 

gaussian fixed point gl = 0, this is called the perturbative region. 

The abil i ty to calculate anything beyond this perturbative region is scarce and 

l imi ted, and i t is therefore important to develop new calculational tools that can 

reach beyond the perturbative region towards the infra-red. 

Conventionally the infra-red l im i t is studied by extrapolating perturbation theory 
1 A perturbative expansion around a non-gaussian fixed point is possible if the correlation func­

tions in the critical theory are known, we will see an example of this in chapter 5. 
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4 C a l c u l a t i n g the infra-red l imit using analyt ic i ty 

f rom the ultra-violet region using the renormalisation group. In this chapter we w i l l 

show how to improve this approach wi th information derived f rom the analyticity 

properties of the correlation functions in the theory. The analyticity follows f rom the 

Kallen-Lehmann spectral representation that is valid for al l quantum field theories. 

We are considering Lorentz invariant and unitary theories in an arbitrary number 

of dimensions. 

Using the analyticity in a complex scale parameter the infra-red l i m i t of the 

correlation functions is wr i t ten as an integral in the ultra-violet region. This integral 

over the complex scale parameter is shown to be the Borel transform of order k of 

the correlation funct ion, where the order is related to the analytical continuation 

chosen for the scale parameter. I n chapters 5 and 6 we w i l l use this method to derive 

the infra-red l im i t of different physical quantities in two and three dimensions. 

First the Kallen-Lehmann spectral representation is derived, and this is then 

used to determine the analytici ty domain of correlation functions. The perturbative 

expansion in the coupling is then discussed together w i t h asymptotic series and the 

Borel transformation, and we then show how to obtain the infra-red l i m i t as an 

integral in the ultra-violet region. 

4.1 Spectral representation of correlation 

functions 

The Kallen-Lehmann spectral representation [58, 59] states that the two point cor­

relation function in an interacting theory can be wr i t ten as a sum over intermediate 

free states of different mass. I t follows f rom general principles of quantum field theo­

ry and can be derived by inserting a resolution of the identi ty in terms of eigenstates 

of the momentum [60]. Let us show i t for for a scalar field fi(x), there is a similar 

representation for correlators of higher spin fields and we w i l l show i t for the spin 

two energy-momentum tensor in chapter 5. The unitary irreducible representations 

of the Poincare group are characterized by the invariants of the group (the Casimirs) 

which are the mass f j , and the spin s. We consider the s = 0 case and the identity 
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4 Ca lcu la t ing the infra-red l imit using analyt ic i ty 

can therefore be wri t ten as a sum over the different masses [60] 

poo poo p 

1= dn2 VP2=tl2 = dii2 ddp 6(p2 - fi2) 6{p°) V P » = r (4.1) 
Jo Jo J 

where V is a projection operator onto eigenstates of P2 and Inserting this into 

the two point function for a;0 < 0 gives, using Cauchy's theorem 2 

(0(x)0(O)) = < 0 | T { # r ) < K 0 ) } | 0 ) = <O|0(O)^(x)|O> = (O|0(O)e l P a ;0(O)|O) 

= J ^ d f i 2 J ddp 5(p2 - p2)9(p°)e^x ( O | 0 ( O ) 7 V = P ^ ( O ) | O ) 

Jo J ( 2 7 r ) P ~ A« + ^ ./o 
(4.2) 

Here d/xV(/x 2 ) = d/i 2 (27r) d - 1 (O|^(O)Pp, = p,0(O)|O)| p 2 = / J 2 is the spectral density at the 

scale and Go(x,p) is the free Feynman propagator which in momentum space is 

given by the distr ibution G0(p, p,) = p 2 _ ^ 2 + i £ (i-e. c —> 0+ is taken in integrals). For 

x° > 0 the same result is obtained, and the f u l l interacting propagator can be wri t ten 

as: G(x) = f0°° dp,2o(fj,2)Go(x, p), which is the Kallen-Lehmann spectral represen­

tat ion. I f the projection operator is wr i t ten Vp^=P" = \p, p)(fi,p\ i t follows that for a 

unitary theory the spectral density is non-negative cr(p?) = (27r)d~'1|(0|^>(0)|p, ji)\2 > 

0 3 . The calculation w i t h euclidean signature is equivalent and in momentum space 

2 Here Ep = a / I p I 2 + H2 so that p2 — fx2 — {p°f - E2. From the identity S ( f ( x ) - f(a)) = 

jpj^S(x - a) it follows that f ddpS(p2 - p,2)6(p°) — Jdd~1p-^-, which also shows that is 

the Lorentz invariant measure on the upper sheet p° > 0 of the hyperboloid p2 = f i 2 . 
3 T h e Kal len-Lehmann spectral representation is in [61, 5] derived by explicitly constructing the 

projection operators, and in [62] in terms of actiomatic field theory. 
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i t becomes 

poo -, 

(HPM0))E= ^ V ^ 2 ) ^ . (4.3) 
Jo VE^~ I1 

From now on we w i l l use eucliclean signature unless otherwise stated and write 

( m m h = (^(P)0(O)>, p\ = P2 and SE = S. 

4.1.1 Analyticity of correlations functions 

The spectral representation (4.3) shows that the correlation functions have an ana­

lyt ical continuation. Introducing the complex scale factor s £ C 

then shows that (<f>(sp)<j)(0)) is analytic in the positive half-plane Re(s) > 0. Of 

course, a different continuation can be chosen and generally physical quantities w i l l 

not be analytic in the positive half-plane, but in some sector S(a) of the complex 

plane defined as 

S ( a ) = {z = re* | 0 < r < oo, - f < 0 < f } , (4.4) 

see figure 4.1. Note that 0 ^ S(a). We w i l l consider functions which are bounded 

at the origin, i.e. 3C > 0 : l im 2 _> 0 \ f ( z ) \ < C for z £ S(a). 

I t is very diff icul t to go beyond the perturbative approximation. One way is 

to use the lattice as a non-perturbative regulator as discussed in chapter 3, and 

then do numerical calculations of the path integral e.g. using Monte Carlo methods. 

Another has been to study particular theories, or models, w i t h features that have 

allowed considerations beyond perturbation theory. Examples are theories w i t h 

large symmetries, like inf ini te dimensional affine Lie algebras and supersymmetry, 

that have non-perturbative consequences; or use duality transformations between 

specific theories, that maps one theory into another weakly coupled theory where 

perturbation theory is applicable. Non-perturbative results are also obtained by 

studying dominant contributions to path integrals in fo rm of instantons and solitons 

that are not given by free theories. 
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A 

a 

Figure 4.1: The sector S(a) in the complex plane. 

Here we w i l l use the analytical properties of the exact correlation functions that 

are generic for all quantum field theories, to improve the perturbative calculations 

of the infra-red l i m i t of correlators. 

4.2 The perturbative series 

The euclidean signature version of the correlators (2.10) can be wri t ten as 

and they can be evaluated by spl i t t ing the action into a quadratic free part and 

an interaction: S = S0 + g 0(4>). The free theory has a well defined path integral 

measure V<f>e~s° (the Wiener measure [63]) where correlation functions can be cal­

culated by gaussian integration. The f u l l interacting theory can then be calculated 

(<f>(xi) • ••(j){xn)) 
5 8 Z[J] 

• J=0, 
8J(wi) SJ(xn) Z[0] 
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by a formal power series expansion in the couplings. Wick's theorem 

• ••cj)(xn)) = e ^ ( x x ) • • • ^Xn)e-90(4>)+fd"xJ(x)4>(x) 
4>=o,j=o 

oo 

n 

leads to the perturbative expansion in terms of Feynman diagrams. Af te r renorma­

lisation each term in this series is f inite, but the series is not necessarily convergent. 

I t was first argued by Dyson in [64] that for QED this perturbative series can at 

most be asymptotic. I f the series is convergent then i t is analytic at g — 0 and w i l l 

therefore also converge for some negative coupling — g (g > 0), but then like charges 

w i l l attract and the vacuum w i l l disintegrate by spontaneous polarization. 

I t is important to understand how well the perturbative series represents the 

exact physics, and how much information can be extracted f rom i t , since a large 

part of actual calculations are done using perturbative techniques. 

In [65] by counting the number of different Feynman diagrams i t was conjectured 

that the perturbative coefficients grow like Hn ~ n\. This was confirmed for large 

n by Lipatov [66] using a steepest decent approximation of the functional integral 

w i t h non-trivial saddle points that have a finite euclidean action. For 0 4 theory 

these instanton approximations were calculated in [67] 4 , and the method has been 

generalized to theories w i t h fermions, QED and non-abelian gauge theories, see [70] 

for a review and references. 

Let H(g) = Hn9n be the perturbative series for a physical quantity H. I f 

H(g) = o(\g\) when \g\ —• oo and H(g*) = H(g)*, where g* is the complex conjugate, 

then the once subtracted dispersion relation becomes 

tour consisting of a large circle at inf in i ty together w i t h contours running just below 
4 An instanton is a solution to the classical euclidean equations of motion with finite euclidean 

action. See [68, 69] for an introduction to instantons and solitons. 

0 , ) (g) = H(0) W H dg 
g'(g'-g) oo 

(4.5) 

This follows f rom Cauchy's theorem by integrating 9H{g') over a connected con-27vig'(g'-g) 

38 
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and above the negative real axis f rom — oo to 0 and an infinitesimal circle around 0. 

Applying Cauchy's theorem again the coefficients w i t h n > 0 can be wri t ten as 

. = i r d s a ^ m . (4.o) 

For large n the integral is dominated by the small negative g values, and in this 

region instanton approximations of the functional integral show that [70] 

I m ( f f ( f f ) ) « + 1 , g<0, a>0. (4.7) 

As an example [38] consider the integral 1(g) = -j= f ^ d x e - ^ 2 * 9 * 4 / 2 ^ 2 . This can 

be continued to negative values of g i f the integration contour is rotated so that 

Re(gx4) stays positive leaving the integral f inite, i.e. Arg(x) = —Arg(p)/4. Hence, 

there are two contours C± where: Arg(x) = ± 7 r / 4 for g = — \g\ ± i0+ respectively. 

The imaginary part then becomes lm(I(g)) = (I(—\g\ + i0+) — 7(—\g\ — iQ+))/2i oc 

( f c — Jc_)dxe~<'x2+9x4^2^2. In a steepest decent approximation the contribution 

f rom the saddle point at x = 0 vanishes and the contours C± can be split into two 

contours going through the other saddle points: x = ±y/—l/g. For small positive 

couplings Re(I(g)) = 1(g) is therefore dominated by the saddle point x = 0 giving 

the perturbative expression Re(/ (#)) = 1 + 0(g), and for negative g the imaginary 

part is dominated by the non-trivial saddle points x = ±^J—l/g giving the non-

perturbative expression I m ( / ( ^ ) ) oc e 1 / 4 9 [38]. 

The large order behaviour then follows by inserting (4.7) into (4.6) using that 

S™dxx"-le-x = T(u) 

H n * I - J 9 g ^ ( - a g ) ^ * ( " a ) " r ( 1 + H + b)- ( 4 8 ) 

Stirling's formula [71] T(x) = V^KX e~xxx-^2(1+0(1/x)) shows that r(x+a)/T(x)~ 

xa for large x and the large order behaviour can therefore be wr i t ten as 

Hn « (-a)nn\nb(l + 0(l/n)), n - )• oo. (4.9) 

The factorial growth then shows that in these cases the perturbative series is indeed 

asymptotic. 
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4.3 Asymptotic series 

We shall need a general definition of asymptotic series. Following [72] a formal power 

series f ( z ) = Y^=ofnzn is asymptotic of (Gevrey) order k~l > 0 5 i f 3 C, K > 0: 

\ f n \ < CKnT{l +n/k), V n e N u { 0 } . (4.10) 

Let f ( z ) be analytic in the sector S(a). f ( z ) is the asymptotic expansion of f ( z ) of 

order k > 0 for z —> 0 i f the function 77(2, N) = z ~ N ( f ( z ) — J^n=o f n z T l ) is bounded 

at the origin. Tha t is, to every closed subset 5 ' C 5(a) there exists C, K > 0: 

N-l 

\ z \ - N \ f ( z ) - ^ T f n Z n \ < C K N r { l + N/k), V i V > 0 , V z e 5 ' , (4.11) 
71=0 

and this is wr i t t en as f ( z ) f ( z ) in 5(a) . I t follows that rf(z,N + 1) = 

z~x(rf(z, N) — f N ) is bounded at the origin so that f N = \imz^0 r f ( z , N) for 

z G 5(a) . The same argument directly shows that every f ( z ) analytic in 5(a) 

has a unique asymptotic expansion 6. 

The question is, i f a given asymptotic series / is the asymptotic expansion of only 

one analytic funct ion (if any), so that the perturbative series uniquely represents the 
— k 

exact physics. This is not generally the the function e c z w i t h c > 0 shows. 

Re(cz- f c ) > 0 in the sector S(ir/k) so that e~cz~k = o(zN) for all N > 0 and z -> 0 

f rom S(n/k), which means that e~cz * = f c 6. A n analytic funct ion f ( z ) =fc f ( z ) is 

therefore only defined modulo e~cz~k (which for small z is minute). 

For sectors w i t h larger opening a > n/k no such functions exists, and only one 

function analytic i n 5(a) satisfies f ( z ) =k f{z). In this case all of the exact physics 

is for small couplings contained in the perturbative series. The inject ivi ty of the 

asymptotic expansion for large openings was shown in [73] using an extension of 

the Phragmen-Lindelof theorem [71], i t can also be shown by explicit ly constructing 

f ( z ) f r om f ( z ) by the Borel transform [73, 74]. 
5 T h e n / e C [ [ z ] ] 1 / f c . C [ [ z ] ] 1 / f c is a differential algebra [72]. 
6 I f f ( z ) is single valued, bounded at the origin and a = 2TT then f ( z ) is analytic at z = 0, hence 

f ( z ) converges and equals the Taylor series at the origin. 
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A 

e 

Figure 4.2: The contour Ck where k > 0 and 6 — (e + 7r)/A;. e G (0,7r) is chosen so 

that Ck C 5(a) , i.e. e < ak — TX. The circle has the radius R. 

4.3.1 The Borel transform 

Let k > 0 and / ( z ) be analytic in S(a) where a > ir/k and f ( z ) is bounded at the 

origin. The Borel transform of f ( z ) order k is defined by [72] 

where the contour Ck is given in figure 4.2. I f u G S(e/k) then | A r g ( ( u / z ) f c ) | > TT/2 

when z is on the two rays in Ck- The integrand is therefore bounded on Ck and the 

integral is absolutely convergent and defines an analytic function. From Cauchy's 

theorem the integral is independent of the choice of radius R and e when e < ak — n, 

and Bkf(u) is therefore analytic in S(a — n/k). 

The Borel transform of a formal series f ( z ) = Yl™=o fnZn follows f rom Hankel's 

integral representation [71]: 

dz (u z) B (4.12) 

dw 

™ Ic, 
l/w z 

W r 1 + z) 2 T U w 
(4.13) 
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so that 

n=0 v ' ' 

The Borel transform of an asymptotic series of order k~l, i.e. < CKnT(l + n/k), 

then converges wi th in some positive convergence radius. The inverse of the Borel 

transform is given by the Laplace transform: Ckf{z) = k / 0°° d^uke~^ulz^k f{u). I f 

there exists an analytic funct ion such that f ( z ) =k f ( z ) , then f ( z ) is uniquely 

given by f ( z ) = £i-Bkf{z) in an appropriate sector and we say that f ( z ) is Borel 

summable [72]. To perform the integral in the Laplace transform Bkf(u) must be 

analytically continued to all of the positive real axis, this can be done e.g. by a 

conformal mapping which we w i l l use in chapter 6. 

However, this continuation is not always possible, i f e.g. Bkf(u) has a pole on 

the positive real axis, then the equation f ( z ) = CkBkf(z) is not satisfied by any 

f ( z ) . QCD is an example of a theory that has poles on the positive real axis known 

as renormalons, and i t is therefore not Borel summable in this sense (i t is possible 

to distort the contour avoiding the singularities, but this introduces ambiguities 

[75, 52]). I f a theory is not Borel summable in the coupling i t s t i l l might be Borel 

summable in the scale parameter s, but the asymptotic expansion in s then has 

to be obtained by non-perturbative means to describe the f u l l theory because the 

perturbative series in this case is incomplete. For the instanton approximations in 

(4.8) the singularity closest to the origin is at the negative axis g = —a < 0, and 

no such problems arise 7. The tp4 theory which is considered in chapter 6 has been 

proved rigorously to be Borel summable for d < 4 [77, 78, 79]. Our interest here is 

not the Borel transform in the coupling, but i n the scale parameter s. 
7 A formal way to see that instantons determine the singularities of the Borel transform (of order 

one) is to formally rewrite the partition function [76]. First rescale the fields so that the action is 

written as S[<j>]/g (with g > 0) and then: <</>) = Z ' 1 $ V<j>e-Sl94> = J™dtfV</>6(t - S)e-S^(p = 

J 0 ° ° d < B i ( i ) e _ t / s where the Borel transform is given by B\(t) = JV(p6(t - 5[̂ ])<^>. Now using the 

functional analogue of S ( f ( x ) - f(a)) = d(x - a)/\f'(a)\, shows that Bi(t) is singular when | | = 0, 

that is, for instantons [76]. 
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A 

C 

UV R 

Figure 4.3: Integration contour C in the cut complex plane. 

4.4 Relating the ultra-violet and infra-red limits 

using analyticity 

The perturbative calculation of the infra-red l im i t of physical quantities can be 

improved ut i l iz ing their analytical properties, not in the coupling as above, but in 

the scale parameter. The analytic behaviour in the scale parameter follows, as shown 

in section one, f rom the general characteristics of a quantum field theory and are 

valid for the exact correlators. 

We want to calculate the infra-red l i m i t FIR of a physical quantity f ( x ) , where 

F I R = limixi^oo f ( x ) , and we w i l l denote the ultra-violet l imi t F u v = l i m ^ i ^ o / ( ^ ) -

We are considering functions wi th well defined l imits in S(a), i.e. l i m ^ i ^ o o F ( s ) = 

FIR and l i m ^ o F(s) = Fuv f ° r s £ S(a). 

In the two examples we w i l l consider in chapter 5 and 6, the physical quantities 

f ( x ) are given as functionals of a two point correlator resulting in analytic functions 
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F(s). A large class of physical quantities w i l l in this way preserve the analytic 

structure of the correlation functions in the theory, which was described in section 

4.1.1. 

The dimensionless scale parameter s can, as mentioned, be introduced into the 

physical quanti ty in a number of ways. We w i l l define by F(s) the analytical con­

tinuation of f ( x ) where s is introduced as F(s) = f ( s x ) \ x = 1 so that F(s) has the 

expansion F(s) = ^ Fnsn around the origin, and F(s) is analytic in S(a). Choosing 

another positive power f ( s 1 x ) \ x = 1 , 7 > 0, gives the same ultra-violet and infra-red 

l imits , but different intermediate behaviour. Let us now introduce the scale para­

meter so that the opening of the analytic sector is 2(n—e') w i t h e' <C 1. F(s) = F(sa) 

is analytic i n S = S(2(TT — e')) provided that a = 2^a_^. We w i l l now express the 

infra-red l i m i t as an integral entirely in the ultra-violet region using analyticity. 

Using Cauchy's theorem the analytici ty of F(s) implies that the contour integral 

1 f ds—F(s)= 1 ( [ ds+ [ ds+ [ ds)—F(s)=0, 
2(TT - e)i Jc s 2(TT - e)i \ J C q J C l Jc2 J * 

(4.15) 

vanishes in the sector S, where p € K+ and the contour C is given in figure 4.3; 

e > e' so that C C S. The contribution f rom the contour C2 in (4.15), see figure 4.3, 

in the l i m i t where TJR —> 00 becomes 

l i m 1 / ^C'dee"E~"'^F(rIReie) = - l i m F(s) = - F I R . (4.16) 
r / R ^ o o 2 ( 7 T - e) J w _ t M-foo 

The angular integral and the l im i t r I R 00 can be interchanged as the integrand 

in (4.15) is bounded by a constant i n the l i m i t r I R —>• 00. We then get the integral 

representation of F I R 

1 / r e p / s f e p l s \ 
FIR = V ( rr / ds—F(s) + / ds—F(s) . (4.17) 

2(?r - e)i \Jc0 s Jc, s J 

Analogously by considering 

1 f ds—F(s)= 1 ( / ds+ [ ds+ [ ds] —F(s) = 0, 
2(TT - e)i Jc s 2(TT - e)^ \ J C o J C l JC2 J s 
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we get that 

Fuv = n (

 1

 v ( [ ds—F(s) + [ ds—F(s) ) . (4.18) 
2(TT - e)i \JC2 s Ci s 

cut(p) = 1 / ds—F(s). (4.19) 
2(TT - e)i J c s 

We denote the integral along the contour C\ (close to the cut) by 

oP/s 
ds-

'Ci 

The integrand in this integral is damped by the factor e~p^s\ and we will show 

that li1rip._4.0o cut(p) = 0 by showing that i t is bounded by a finite integral for all p 

allowing us to take the limit p -» oo in the integrand. We substitute s = re±l^~^ 

for points on C\ in the upper and lower half-plane, the integral becomes 

cut(p) = / dr F ( re i ( 7 r " f ) ) + / dr- — F( re" i ( 7 r - e ) ) 
2(TT - e)i y j r i R r J r u v r 

_ 1 rrm epcos(-n-t)lr 
= - / dr lm[eipaa^-^rF(re-i(-n-e))] 

(T - e) Jruv r 

_ 1 pfjji „pcos(7r-e)/r 
= _ / dr (cos(psin(7r - e ) / r ) I m [ F ( r e - l ( 7 r - e ) ) ] 

\K Jruv r 

+ R e f F ^ e " ^ - ^ ) ] sin(psin(7r - e)/r)) . 

We divide the r interval into ( r u v , 1) and ( l , r / f t ) and write cut(p) = cutuv + cutm-

The function F(s) is finite in 5 hence there exists a constant q > 0 so that in the 

limit ruv 0 

\cutuv\ < Q / • 0 for p —> oo. (4.20) 
./o r 

We know that F(s) FIR £ R for |s| ->• oo from 5, hence Im[F(re" '^ - e ) ) ] ->• 0 

for r —)- co. I f Im[F] falls off like r~s for some 6 > 0 then in the limit r I R -> oo, 

3 /ci, k2, h > 0: 

. , f°° (sin(k2/r) + V 5 ) 
\cutjR\ < ki dr- < oo for all p £ 

Ji r 

(4.21) 

For a general F{s) where the fall off might be slower we keep a finite r I R then |cu£/ft| 

is again finite for all p and a finite r I R introduces a O ( ^ ) term in (4.17) which is 
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4 Calculating the infra-red limit using analyticity 

negligible for r I R large. As e <C 1 we can replace 2{^-t)% with ^ given a term 0(e) 

on the right hand side in (4.17) which is again negligible for small e. We can then 

define 

I m ( p ) = l im ^~ [ ds—F(s) (4.22) 

so that FIR = l im^oo I I R ( P ) and we have succeeded in writing the infra-red limit 

as the limiting value of a contour integral in the ultra-violet region. 

We will now use Cauchy's theorem again to rewrite Im(p) and this will show 

that Im(p) is the Borel transform of F(s). Instead of integrating over C0 we will 

integrate over C given as the path from the origin along the ray Arg(s) = —IT 4- e 

and then anti-clockwise along \s\ = x > 0 until Arg(s) = TT — e and then back to the 

origin. I t follows that this contour integral is independent of the choice of x and e 

as long as e' < e < | . The upper limit ensures that the rays stay in the negative 

half-plane (where e p/ s is a damping factor), and the lower limit that F(s) is analytic 

on the contour. Using this contour the ultra-violet limit r u v —>• 0 can be taken 

explicitly by extending the rays to the origin. 

Using that F(s) = F(sa) for a = 2("-ti) t n e n amounts to 

'»•<» = h L die"'F{s)' h L t""^ = li L (4-23) 

where k = ^, p = pllk and C' is the contour where the rays satisfy |Arg(s)| = 

\(-K-e")/k\ for some e" e (e', f ) . We will write e" = {ir-i)/2 for some e G (0,7r-2e'), 

then |Arg(( | ) f c ) | > ir/2 and the integrand in (4.23) is again damped on the rays. 

Also, on the rays |Arg(s)| = (IT +1)/2k = \ < a/2 so that F(s) is analytic on 

the contour, C' C S(a), and the contour integral is therefore well defined. 

The contour integral in (4.23) is independent of the contour C\ i.e. in the choice 

of e for e G (0,7r - 2e') where C" C 5(a). (4.23) then shows that Im(p) is the Borel 

transform of F(s) of order k. Equation (4.23) holds for all k with F(s) = ^(s1^) 

and a > ir/k, because in this case we can always find an e < ak — IT, S O the contour 

integral is well defined. 
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4 Calculating the infra-red limit using analyticity 

We have then shown the general result: 

The infra-red limit of a physical quantity, Fm = \\m\s\-+QO F(s), is the limiting value 

of the Borel transform of F(s) in the scale parameter s, and changing the way in 

which the scale parameter is introduced amounts to changing the order of the Borel 

transform. The order k has to satisfy the bound a > n/k where a determines the 

analytic sector of the physical quantity F(s). 

One way of calculating the contour integral in (4.23) is to insert a series expansion 

of F(s) around the origin, but because F(s) is only analytic in a sector this series 

can only be an asymptotic expansion of F(s). For a > n/k the asymptotic series 

will , as explained above, contain all information about the exact function around 

the origin. 

An asymptotic series of F(s) in the scale parameter can be obtained doing the 

perturbative expansion in the coupling and then inserting the running coupling 

constant. Assume that F is given as a formal perturbative series, which we write 

as F(s,g) = Yln^n(s)gn- The Callan-Symanzik equation (3.7) states that a theory 

is invariant, i.e. the correlators are invariant, under a scale transformation if the 

couplings change according to the renormalisation group. A scaled quantum field 

theory can therefore equivalently be described by a theory on the same scale, but 

with couplings changed according to the renormalisation group. In this way scale 

dependence of a theory can be moved into the running coupling g(s). Moving all 

scale dependence into the running coupling we get an asymptotic series in the scale 

F(s = l,g(s)) = J2Fnsn . I f F(s) is asymptotic of order k'~l (F(s) e C[[s]]i / f c i) we 

will choose k = k', and then the Borel transform of F has a non-zero convergence 

radius and the analytically continued value at infinity uniquely determines FIR. 

The examples we consider below have a = n — e', where e ' < l , hence from the 

constraint « > | : A; = l + 5for some 5 > 0. We will generally try to minimize the 

order k (k —> 1), thus maximizing the analytic sector and the convergence of the 

Borel transform. 
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5 

Scaling in two dimensions 

The method developed in chapter 4 is independent of the choice of dimension as it 

is based on analytical properties present in any dimension. In this chapter we will 

use this method to calculate the infra-red central charge in two dimensions. 

There are many reasons for studying two dimensional theories. Important ex­

amples include the two dimensional spin systems in statistical mechanics, the Ising 

model being one of them, these models describe phenomena in condensed matter 

physics. Even simple models can capture some of the long range effects in real 

systems because of universality which, as described in chapter 3, states that the 

infra-red behaviour only depends on the nature of the fixed point and not the mi­

croscopic dynamics. It is often also easier to implement new ideas in a low number 

of dimensions, and two dimensional theories have therefore served as an important 

testing ground for new theories with behaviour thought to be generic in higher di­

mensions1. Two dimensions have also received a lot of attention due to the efforts 

to understand the superstring. 

In two dimensions conformal invariance follows from scale invariance and the 

renormalisation group fixed points are thus conformal field theories. A classification 

of all conformal field theories would therefore determine all possible fixed points, 
1 However, the dynamics of physical theories often have a strong dependency on the space-time 

dimension thereby limiting this kind of approach. 

48 



5 Scaling in two dimensions 

and is therefore important in the search for a ful l understanding of the space of two 

dimensional field theories. A two dimensional conformal field theory is characterized 

by its field content, the operator product expansion coefficients and the Virasoro 

central charge. For unitary theories, the renormalisation group flow is constrained by 

Zamolodchikov's c-theorem which says that it is an irreversible flow, and it therefore 

rules out the existence of limit cycles and strange attractors in the coupling constant 

space. It also states that the infra-red central charge is never larger than the ultra­

violet central charge, and i t shows that the renormalisation group has an infra-red 

fixed point. 

First the notation used for a conformal field theory is defined, then Zamolod­

chikov's c-theorem is discussed and F(s) from chapter 4 is determined so that FIR 

equals the infra-red central charge CJR. Using the method in chapter 4, CJR is then 

calculated for the free boson and fermion and the unitary minimal models perturbed 

by $(i,3)-

5.1 Conforrnal field theory 

To define the notation we will use for a two dimensional conformal field theory [80] 

let us describe a few of its fundamental characteristics. There are many good reviews 

on this subject, see [24, 81, 82, 83, 84, 85, 86]. 

As stated in chapter 2 is the rigid (or global) euclidean conformal group given by 

50(3,1) ( « SX(2, C ) / Z 2 ) . In Cartesian coordinates where — 5^ an infinitesimal 

conformal transformation (2.23) satisfies for d = 2 

diitu + = ^udpep =>• d0ei = -dxe0, doe0 =• dxeu (5.1) 

which are the Cauchy-Riemann differential equations. The local conformal algebra is 

therefore infinite dimensional as any holomorphic function defines a transformation. 

I t is then natural to introduce complex coordinates (z, z) = (x° + ix1, x° — ix1) and 
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5 Scaling in two dimensions 

in these coordinates the components of the metric become 

(5.2) 

and we will write the measure as d2x = dx° A dxl = \dz A dz = d2z. I t is useful 

to treat z, z as independent variables and then the Cauchy-Riemann differential 

equations become: d z f ( z , z ) = 0. The physical variables ( x 0 , ^ 1 ) G E 2 are recovered 

by the condition z = z*. Primary fields are defined to transform similarly as (2.24) 

under the local conformal transformation z —> w(z), z —» w(z): 

r\ \ — h / r\ — \ — h 
aw \ I aw 

{ ^ ) [ j z ) # ( * . * ) (5.3) 

where (h, h) are the conformal scaling dimensions. The infinitesimal version is 

w(z) = z + e(z), w(z) = z + i(z): 

5t>E<f> = (f>'(z, z) - <f>(z, z) = <f>'(w, w) - edz(j) - edg<f) - (j) 
(5.4) 

= —(hdze + hd2e + edz + tdz)(j). 

Under an infinitesimal scaling z —>• (1 + a)z, z —¥ (1 4- a)z: 5a(f> = —a(h + h + 

x^dfj)(f) and it follows from (2.22) that the scaling dimension is given by A = h + h. 

Analogously for a rotation (Lorentz transformation in Minkowski space): z —> (1 + 

ia)z, z —> (1 — ia)z, the spin becomes s = h — h. The energy-momentum tensor is 

defined as in (2.16) 

h A x ) ~ J g j x j t g ^ ( 5 - 5 ) 

with a different normalization making expressions simpler in two dimensions. In 

complex coordinates: T z z = T = \(T00 - 2iT01 - T n ) , T s s = f = | ( T 0 1 + 2iTw - T n ) 

and T z z = \T£ = \Q. The conservation law d^T^ = 0 together with conformal 

invariance G = 0 shows that 

dzTzz + dzTzz = 0 d-2T(z, z) = 0. (5.6) 
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5 Scaling in two dimensions 

The Ward identity (2.12) for translation invariance becomes in complex coordinates 

c ^ T O ^ O n ) • • • <f>{xn)) + ^dz{Q(z)<t>{xx) • • • 4>{xn)) = 

n 

i=l 

At the fixed point 0 = 0, so this equation shows that away from the diagonal 

d2T = 0 in all correlators in the quantum theory, hence T(z) is holomorphic. In 

chapter 2 i t was shown that the currents for Lorentz transformations and scaling 

can be written in terms of 7),„, in the coordinates (z, z) the corresponding Ward 

identities can together be written as [84]2 

S^iz^Zi) • • - (j){zn,zn)) = 2 ~ l ^ d z e(^)(T(2)0(2 1 ,2 1 )---0(z n ,2 n )) , (5.8) 

where C includes all (zi,Z{). Using (5.4) the conformal Ward identity becomes 

< T ( z M * : ) • • • J>(zn)) = £ ( ( J ^ + {z~h-)^z~) W Z l ) " " " ^ n ) ) - ( 5 ' 9 ) 

T(z) is a density, and because the theory is conformal z is the only dimensionful 

parameter in the theory, this means that the two point function can be written as 

(T(z)T(O)) = ceR. (5.10) 

Here c is characteristic for the particular theory and is called the Virasoro cen­

tral charge. T(z) is analytic hence it can be written as a Laurent series: T(z) = 

^2nei z~n~2Ln, and the modes Ln can be shown to satisfy the Virasoro algebra 

[Lm, Ln] = (m - n)Lm+n + j^mi™2 ~ l)<Wn,o. (5-11) 

explaining the name for c. (5.11) follows by considering successive conformal trans­

formations, and it implies that if c < 0 then 

(h\LnL..n\h) = (2nh + ±cn(n2 - l))(h\h) < 0 (5.12) 

for sufficiently large n > 0, where LQ\h) = h\h), L\ — L_„ and Ln\h) = 0. This 

shows that c ^ 0 for unitary theories. 
2 T a k i n g e ^ 0 there is an analogous term with T. Useful identities for manipulating these 

expressions are: TTS2(X) = dz\, and the residue for an nth order pole (/ iqjn is: ^ n " l j j ^ • 
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5 Scaling in two dimensions 

5.2 Zamolodchikov's c-theorem 

Zamolodchikov's c-theorem states that for a unitary and renormalisable quantum 

field theory in two dimensions there exists a function which is monotonically de­

creasing along the renormalisation group flow, and which is stationary only for con-

formally invariant theories where i t takes the value of the Virasoro central charge. 

The c-theorem implies that the infra-red limit, where the scale goes to infinity is a 

fixed point of the renormalisation group. 

The central charge is a measure for the number of massless degrees of freedom in 

the theory. The theorem thus shows the loss of massless degrees of freedom under 

the renormalisation group flow. At the fixed point there is scale invariance and 

all degrees of freedom are massless, by following the renormalisation group some 

of these degrees of freedom become massive with a mass m. These decouple at 

the length scale R >• ^ , and at the infra-red fixed point all remaining degrees of 

freedom will again be massless. The c-theorem then shows the irreversible nature 

of the coarse graining that takes place under the renormalisation group. 

The c-theorem describes the local flow of the renormalisation group, but i t also 

says something about the global topological properties of the space of two dimen­

sional quantum field theories. In [87, 88] the c-function was argued to be a Morse 

function and the Euler and Betti number of the coupling constant space were cal­

culated. 

There have been proposals for c-theorems in higher dimensions3, in theories 

with supersymmetry and in connection with the AdS/CFT correspondence and the 

holographic renormalisation group4. 

The proof of the c-theorem [93, 94, 81] follows from Lorentz invariance and 

unitarity of the quantum field theory away form the fixed point, in euclidean space 
3 See [89, 90] for a recent discussion and references. T h e most promising candidate for a c-

function in higher dimensions is the coefficient o in front of the Euler density in the trace anomaly 

(first suggested by Cardy) [90]. 
4 See e.g. [91, 92]. In [92] a c-theorem is proved for o = c in the A d S / C F T context using the 

Einstein equations and the weak energy condition. 
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5 Scaling in two dimensions 

this becomes rotation and translation invariance and reflection positivity. We saw 

above that T(z) has spin 2 and 0 = T£ is a scalar so it has spin 0. The general 

form of the two point functions then becomes 

(T(z, z)T(0,0)) = (T(z, z)0(O,0)) = ^ g ^ , 

<e(M)e(o,o)> = * ^ 

for some functions F, G, H and A is a mass scale of the theory. From the conservation 

equation (5.6) it follows that 

({dsT(z, z) + \dtQ{z, z))T{0,0)> = 0 F + \{G - 3G) = 0, 
4 4 i (5-13) 

{(d-zT{z, z) + -dzS(z, «))©(0,0)) = 0 =>G-G + -{H-2H) = 0, 

where F = zz^§^-. Defining C = 2(F - \G - ^H), and substituting into (5.13) 

gives 

C = -~H^0. (5.14) 

The inequality follows from reflection positivity 5 and because 0 is a scalar which 

means that H ^ 0. This shows that C(zz) is a monotonic function only stationary 

when H = 0, here 0 = 0 and the theory has conformal symmetry with C = 2F = c 

using (5.10). The Callan-Symanzik equation (3.7) can be used to move the scaling 

dependence into the running coupling constant. By explicitly writing the dependence 

of the couplings C(R,gl), with R2 = zz, and using that C(R,gl) is dimensionless 

and finite, it becomes 

C(R,gl(t))\R=i therefore describes a flow in the coupling constant space with the 

properties in the theorem. 
5 ( A { X , T ) A { X , - T ) ) ^ 0, see [63]. 
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5 Scaling in two dimensions 

It follows from the above proof that we can obtain an expression for the total 

change in the central charge when going from short to large distances, as shown by 

Cardy in [81] 

Ac = c(oo) - c(0) = J™ d^C(R) = ~ \ f ~ R2(e(R)G(0))d(R2). (5.16) 

One can thereby calculate Ac knowing the correlator (0(i?)0(O)) in the entire s-

caling region, but (0(i?)0(O)) is normally only known perturbatively and therefore 

only at scales where the coupling is small. 

5.3 Defining F(s) for the central charge 

We will now define a function F(s) as in chapter 4, which has the infra-red central 

charge CJR as its infra-red limit. 

It follows from (5.10) that the the correlator (Tzz(z)Tzz(0)) gives the ultra-violet 

and infra-red central charges in the limits z —> 0 and z —>• oo respectively. Using the 

Kallen-Lehmann spectral representation (4.3) (TM i /(x)T p ( T(0)) was in [60] written as 

d 2 P eipx {9ixvV2 ~ PnPi){9paP2 - PpPa) 

)2 p2 + fl2 

(5.17) 

in cartesian coordinates. This is the most general form with the correct mass di­

mension that respects: = Tvll and d^T^ = 0. Writing this in the complex 

coordinates (z, z) using (5.2) 

7r r°° r fPr> p f (p f +p z ) 

(Tzz(z,z)Tzz(0,0)) = — / d^c(^) / ^-2——yP4, 
3 • 16 J0 J (2?r)2 pp + n2 

where c{ii2)dji2 is the spectral density which represents the density in degrees of 

freedom of the quantum field theory at the mass //. I f we scale z, z by a positive 

real dimensionless parameter s (s > 0) we get 

< r „ ( s . , s M o ) > = — / tfzrtf^—^l;. (5,8) 
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5 Scaling in two dimensions 

In the ultra-violet limit where s —> 0 then _ , ? , 2 —> ̂  and using that the Fourier 

transform of /2A)pA /pp is l / z 4 , then (5.18) becomes 

{Tzz(sz, sz)Tzz(0, 0)) -> ^ - L j j H dfi2
 ~C(LI2) = ^ for s 0. (5.19) 

The ultra-violet central charge is therefore cuv = /0°° dfi2 c{jj?) [60]. To calculate 

the infra-red limit we first note that 

/ d 2 g e±(qz+qz) / Q 4 
<r = 2*[ — \ GQ{z,z,sfi), (5.20) 

(2ir)2 qq + s2fi2 \dz 

where GQ(Z, Z, /J) is equal to the free Feynman propagator at mass / i . Go(z, z, /i) can 

be written in terms of a modified Bessel function [84] 

Performing the differentiation, using the identities K'n = —\{Kn-i+Kn+\), K2{x) = 

Ko(x) + ^.Ki(x) and K_i(x) = K\(x), we can then write (5.18) as 

1 r°° 
(Tzz(sz,sz)Tzz(0,0)) = 2 . 4 8 s 4 z i Jo dii2 ~c{S)»s\z\ ((^s3\z\3 

+24fis\z\)K0(fis\z\) + (8fj,2s2\z\2 + 48)# 1(/is|z|)) . (5.22) 

In the infra-red limit where s —>• oo, K0(fj,\z\s) and Ki(fi\z\s) have the asymptotic 

behaviour [95] e~^z\ and the only contribution to (5.22) comes from the massless 

limit where fx —> 0, hence 

( T z , ( S z , ^ ) T , 2 ( 0 , 0 ) ) -+ lim — ^ f d t f c t f ) = ^ for s -+ oo, (5.23) 

so that cjR = lim e_>0 f$ dii2
 C{LI2). This shows that cuv ^ cm as the spectral density 

is positive for a unitary theory, and this is another way of showing the c-theorem 

[60]. This representation of the central charge using the spectral representation also 

shows that the central charge is a measure for the number of (massless) degrees of 

freedom of the conformal field theory. I f the theory is scale invariant dimensional 

arguments say that the spectral density must be proportional to a delta function as 
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5 Scaling in two dimensions 

there is no mass in the theory. The representation (5.17) for the trace becomes in 

this case 

(e(x)6(0)> = ! j H dp2 c ( M

2 ) I ^ E * « JP21^ « d2

x62(x), (5.24) 

which vanishes for |x | ^ 0 so that 0 = 0, and this shows that scale invariance does 

imply conformal invariance at the quantum level in two dimensions [60]. 

We define the function 

F(s) = 2zis4(Tzz(sz,sz)Tzz(0,0)) (5.25) 
z = z = l 

here s and F(s) are dimensionless and s G R+. When we set \z\ = 1 then \L 

becomes dimensionless in (5.22), we also denote this dimensionless quantity by / i . 

This function then satisfies 

~ . . f c u v for s -> 0+, , 
F(s)^l + (5.26) 

[ CIR for s —>• oo. 

5.3.1 Analyticity of F(s) 

We will show that F(s) is an analytic continuation of F(x), x G K+, for s G S = 

5(TT - e') (with e' < 1); to show this write F(s) = f™dp?f(s,ii2). For F to be 

holomorphic in S then /(s,/x 2 ) must be holomorphic in S for all ^x2 G [0, oo), and 

both / and ^ must be integrable over the set [0, oo). Using (5.22) above we can 

write F(s) as 

1 f°° 
F{s) = — / dp2c(n2)ps ((p3s3 + 24ps)K0{ps) + (8fj2s2+4S)K1(ns)) . (5.27) 

4o JQ 

Ku(z) is holomorphic in S so f(s,ii2) is clearly holomorphic in 5. The modified 

Bessel functions also satisfy that 1^(^)1 is bounded for \z\ > e for any e G R+ and 

|Arg(z)| < | , which is the case for z = \is when s G 5. For large values of \s\ 

integrability is ensured by J 0 0 dp2 C ( / J 2 ) = cVv < oo and the asymptotic behaviour 
K A Z ) = V ^ 6 ' ^ 1 + Oi*'1))- Around the origin K0(z)z -> 0 for z -)• 0 and 

/Ti(2:)z —>• 1 for z —>• 0, hence F(s) is integrable. is shown to be integrable in 

a similar way and the analyticity is shown. 
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5 Scaling in two dimensions 

The form of F(s) in (5.27) shows that F(s) has a limit value F(s) —)• ki for s —> 0 

with s G S, from (5.26) it follows that kx = c u v , and we define F(0) = c u v . I t 

also follows from (5.27) that F(s) has a limit value for \s\ —> oo from S: F(s) —> k2 

and (5.26) again sets k2 = CJR. The analytic opening is therefore a — IT — e' where 

e' < 1. 

5.3.2 The approximation for cm 

We have the following representation of cjR and c u v 

cm = — / cte F(s) + / rfs F(s) = IIR(p) + cut(p) (5.28) 

cuv = — / ds—F{s) + / ds—F(s) = / ^ ( p ) + cut(p), (5.29) 

where in both cases the contribution from the cut is rapidly decreasing in p. Note 

that in these relations the integral is performed in the opposite scaling limit of the 

quantity we calculate. We will here concentrate on (5.28) as perturbation theory 

can be applied to F(s) when s G C 0 , we will call IIR(P) = I(p). 

We can choose coordinates in the coupling constant space so that the ultra-violet 

fixed point corresponds to g(s) = 0. In the ultra-violet limit where s —> 0 we may 

describe F(s) by perturbation theory as g(s) —>• 0. The nth order perturbative 

approximation of F(s) is denoted by Fn(s) and the corresponding integral by In(p). 

In the limit of large p the contribution from the cut vanishes and we get 

where the last equality follows setting s' = s/p in (5.28) and then taking the limit 

p —> oo in the integrand valid for all r u v > 0. Moving all scale dependence into 

the running coupling constant g(s), as in the proof of the c-theorem, we can write 

Fn(s) = $n(g(s)). Let g*IR denote the first non-trivial zero of the perturbative /3-

function, i.e. g(s) —> g*IR for s —>• oo (and * is not complex conjugation). Then 

equation (5.30) becomes 

p s p s 
F(s) + / ds F(s) ds 

2?rz Co c. 
ps f 
- m + / 
s Jr 

ps 
ds—F{s) 

s ds 
2-KI Co c. 

CIR « lim In(p) = lim Fn(s) (5.30) 

lim Fn(s) = l im $„(p(s)) = $n{g*IR) = cj IR (5.31) 
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5 Scaling in two dimensions 

which is the perturbative estimate of cIR we want to improve. 

Fn(s) is the ultra-violet perturbative approximation to F(s) and the integra­

tion range in I(p) is compact so l i m ^ o I n ( p ) = l im,,-^-f (p) = Cuv- In(p) therefore 

provides a good approximation to I(p), for small enough p, since the power series 

expansion of I(p) is controlled by the small s expansion of F(s) for which perturba­

tion theory applies. This is illustrated in (5.71) below for the minimal models. For 

larger values of p higher order terms in the expansion of In(p) become important 

and the coefficients of the expansion of In(p) and Fn(p) part company. I f c I R < c*m 

and if the region where In(p) is a good approximation to I(p) is large enough, then 

In(p) will have a minimum before approaching its limiting value of c*IR. Since this 

minimum occurs at the largest value of p for which In(p) is a reasonable approxi­

mation to I(p) and the true value of c I R is given by /(oo), it is this minimum of 

In(p) that we will use to provide a better estimate of c\R. The approximation then 

becomes 

cm = In(pm) (5.32) 

where pm is the value where In(p) attains its minimum. Below we consider the 

quantity Acexact = c u v — ciR and denote the approximation to it Acapprox = cuv — 

In(pm), w e c a i l the perturbative value A c p e r i = cuv~liirip-Kx, I n ( p ) = Cuv — c*IR. This 

approximation rests upon the assumption that the exact function is monotonically 

decreasing from c u v to cIR, or at least that its minimum value is close to cIR. 

Below we will show that this is indeed the case for k = 4, at least to a very good 

approximation. 

5.3.3 Exact bound on Ac 

As discussed above can the exact value I(p) possibly be smaller than the asymptotic 

value cIR. We will denote by p'm the value where I(p) attains its minimum and 

Acest = cuv — ^(p'm)) then Acexact — Acest ^ 0 measures the undershoot of the exact 

function I(p) compared with its asymptotic value cm, see figure 5.1. 

From the spectral representation of F(s) in (5.27) we can obtain a rigorous lower 
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Ac est 
Ac exact 

Ac approx 

ert 

Figure 5.1: The expected behaviour of cuv — In(p) and cuv — I{p)-

bound on this exact undershoot. As noted above can the spectral density be written 

as c ( f j , 2 ) = &i<5(yu2) for a scale invariant theory, in a general theory an additional term 

is needed [60]: c(p?) = ki6(fj,2) + c(p?), where c { j i 2 ) is supported away from ii2 = 0 

and (5.23) then sets k\ = CIR. We showed in (5.19) that dp?c(/j,2) = c u v hence 

§o° dn2c(ix2) = Acexact. Using this in (5.27) we get 

Acest = c u v - I(p'J = C u v - — —ep'^sF(s) 
^% Jc s 

POO 

= A c e x a c t - / dp2 c ( / i 2 ) T ( ^ 2 , p ' m ) 
Jo 

where 

+2^slli)KQ{Lisl'A) + (8(/ /s 1 / 4 ) 2 + 4S)K1(^4)) 

(5.33) 

and F(s) = F(s 1 / / f c ) with k = 4. Rescaling s allows us to move all \x dependence into 

p ' m ( p ) = p'mP4, so that we can write T ( ^ 2 , p ' m ) = T (p ' m ( / j ) ) . Unitarity ensures 
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bound 

5000 20000 

Figure 5.2: Numerical integration of T(p) given in (5.33). 

that c(p2) ^ 0 hence 

nOO 

Acexact - Acest ^ m i n T ( p ' m ( / i ) ) / dp2c(p2), (5.34) 
" Jo 

Acest > 0 and we are considering the case where Acexact ^ 0 so that 

Acexaci Acest 
0 > ^ minT(p). 

p>0 
(5.35) 

AceXact 

The lower bound in the relative undershoot of I(p'm) therefore equals min p T(p). In 

figure 5.2 we plot T(p) for k = 4. With this value we get that min p T(p) = —0.0232 

so the relative overshoot in A c e s i compared with Acexact is maximally 2.3%. It 

follows from (5.34) that the bound in (5.35) is only saturated for free theories (where 

c(p2) oc 5((i2 — m2)), for general interacting theories the relative overshoot will be 

smaller than |m in p T(p) | . We show in figure 5.1 the type of behaviour that we 

expect and which is confirmed for the minimal models below. 

The actual choice of k = 4 then is a compromise between maximizing the range 

of analyticity (small k) and minimizing the bound of the undershoot in I(p'm) (large 

*). 
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5 Scal ing in two dimensions 

5.4 Application to different two dimensional 

models 

I n this section we calculate the central charge for the free bosonic and fermionic 

theory perturbed by a mass term. These theories are gaussian and we can calculate 

F(s) exactly, the central charge can then be wri t ten as l i m ^ o o I(p) as the contri­

bution f r o m the cut then vanishes. The infra-red l im i t of these theories is t r iv ia l 

( c / h = 0) as all the degrees of freedom are massive, and therefore decouple when 

approaching the infra-red fixed point where the scale goes to infini ty. The free theo­

ries are none the less important to consider as we can here obtain the exact funct ion 

HP)-

In 5.4.3 we consider the unitary minimal models perturbed by the relevant op­

erator $ ( 1 , 3 ) , this theory has a non-tr ivial infra-red fixed point. We obtain the 

renormalisation group improved perturbative calculation of CJR and compare w i t h 

the approximation (5.32). 

5.4.1 The free boson 

We take the action for the free bosonic theory in two dimensions w i t h a mass m to 

be 

S = Jd2x (±dMx)d»<p{x) + ^ m V 2 ( x ) j , (5.36) 

where the perturbation away f rom the conformal field theory is given by the mass 

term \m2ip2. The theory is s t i l l a free theory off cri t ical i ty and the correlator (TT) 

can be calculated exactly in the whole scaling region f rom the ultra-violet to the 

infra-red. W i t h this normalization the energy-momentum tensor becomes 

T(z, z) = T z z ( z , z) = -2ix : dip(z, z)d<p(z, z) : (5.37) 

wi th the correlator 

(T(z,z)T(w,w)) = (27r) 2(: dip(z, z)dip(z, z) :: d(p(w, w)d<p(w, w) :) 

= 2{2n)2(dip(z,z)d<p{w,w))2, (5.38) 
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'UV-boson' 
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Figure 5.3: Numerical integration of Iuv(p) given by (5.40) compared w i t h the exact 

value cuv = 1-

as only the double contractions survive. Using the form (5.21) of the free propagator 

then (5.38) is 2(dzdzK0(m\z\))2 where we have set w — 0 using translation invariance. 

(5.38) then becomes 

21 12 Tfl \Z\ 

(T(z,z)T(0,0)) = - ^ ( 4 ^ ( m | z | ) + m 2 | z | 2 X 2 ( m | z | ) + 4 m | ^ | K i ( m | 2 | ) X o ( m | z | ^ } 

hence F(s) w i t h k = 4 is 
F(s) = ( ^ ) 2 ( ^ ( m s ' / V ^ H 1 ' 4 ) + ^ K o i r n s ^ K ^ m s ^ . 

(5.39) 

Knowing F(s) exactly the central charges follow f rom (5.26) directly, but let us use 

the relations (5.29), (5.28) in the l im i t of large p where the cut vanishes. For c u v 

we substitute s' = m s 1 / 4 , p' — ^ in the contour C2. From (5.29) we then get that 

(for r I R = £r) 

I u v { p ) = i . [ 2 d9eme^2W Ue-™K\(eld) + K2

0(e*e) + Ae^eKQ{ei6)K^e)) . 
47T / Jr ' 

2 
(5.40) 
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5 Scal ing in two dimensions 

IR-boson 

Figure 5.4: Numerical integration of Im{p). 

This is not expressible in terms of elementary functions, but i t can be calculated 

using the analytical properties of the Bessel functions. The integration contour 

can be collapsed into a contour running along the imaginary axis together w i t h an 

infinitesimal semi-circle around the origin. For p —>• oo only the contribution f r o m 

the infinitesimal semi-circle C e survives and here we can insert the asymptotic fo rm 

of the modified Bessel functions: K0(z) ~ — logz and Kv{z) ~ \Y{v)(\z)~u for 

\z\ <C 1. In this l im i t only the first term w i t h K\ then contributes, and taking into 

account that we only integrate over half a circle we then get the well known result 

c u v = 1, which is an exact result as the contribution f rom the cut vanishes in this 

l i m i t . This also directly follows f r o m (5.26) and (5.39) using the asymptotic fo rm 

for KQ and K\ for small s. 

To calculate the infra-red central charge we use (5.30): c I R — l i m ^ o o Im(p) = 

l i m ^ o o F(s). From the asymptotic fo rm of the modified Bessel functions for large 

\z\: Kn(z) ~ \/%e~z, together w i t h (5.39), i t follows that c I R = 0. Figure 5.3 shows 

the exact function Iuv(p) computed by a numerical integration of (5.40) using a NAG 

Fortran Library integration routine. The figure shows how the contribution f rom 

the cut vanishes in the l im i t of large p. 
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U v - f e r m i o n 

Figure 5.5: Numerical integration of Iuv(p') using (5.42) compared wi th the exact 

value cuv = \-

The exact infra-red function Im{p) is plotted in figure 5.4, i t is important to 

note that the minimum value of Im(p) is very small, namely —0.019. 

5.4.2 The free fermion 

The free massive Majorana fermion w i t h the component fields \& = (ip, tp) has the 

action 

S = j d2x (ipdip + ipd-tp + irmpip) . (5.41) 

Where the Dirac algebra { ^ ^ Y } = 2<5'"/ in two euclidean dimensions is represented 

b y 7 0 = ( 1 J ) , 7 1 = (?o 1 ) -
A calculation analogous to the Bose case gives, for k = 4, that 

= ( l + J ^ ) ~ KHms^)) . (5.42) 

Taking the l im i t s —> 0 and again using K\(x) —»• 1/x for x —>• 0 yields that c u v = |, 

and the infra-red contribution C I R = l i m , , - ^ F(s ) = 0, using that Kn(x) ~ e~x for 

x —>• 0 0 . We have calculated the exact funct ion I(p) by a numerical computation. 
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Figure 5.6: Numerical integration of Im{p) and the exact value CJR = 0. 

In figure 5.5 Iuv{p) is plotted, and in figure 5.6 Im{p)- We get the same behaviour 

of IIR(P) as in the bosonic case, but w i t h the min imum value —0.0048, so this exact 

funct ion does again not differ much f rom the infra-red central charge at its minimum 

value. 

5.4.3 The unitary minimal models 

The off crit ical quantum field theory picks out a specific renormalisation group flow 

f rom the ultra-violet to the infra-red conformal field theory. I f the quantum field 

theory is in the neighborhood of one of the renormalisation group fixed points A* in 

coupling constant space, we may choose the coordinates so A* = 0 corresponds to 

the ultra-violet conformal field theory, the action can formally be wr i t t en as [96] 

Here the $,(a;)'s are scaling fields w i t h scaling dimension A j , the coupling constants 

A1 then have mass dimension [X1] = 2 — A j = yi. I t was shown in chapter 3 that y 2 

is the renormalisation group eigenvalue of the scaling fields $ j . For renormalisable 

quantum field theories we need yi ^ 0 and the scaling operators therefore have to be 

N 

I > 7 d x $i(x) S — ScFT + 
i=l 

(5.43) 
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5 Scal ing in two dimensions 

relevant (y > 0) or marginal (y = 0). For relevant operators we w i l l move away f rom 

the fixed point when the scale increases and SOFT thus corresponds to an ultra-violet 

critical point. 

We consider quantum field theories that have the unitary minimal models as their 

scaling l imits . The minimal models are conformal field theories wi th central charge 

c < 1 and a finite number of primary fields. Descendant fields are fields formed by 

acting w i t h the modes L _ n of T(z) on a primary field and an arbitrary field is a 

linear combination of primary and descendant fields. The correlation functions of 

descendant fields can be obtained f rom correlation functions of primary fields acting 

w i t h differential operators. The two and three point functions are, as shown in chap­

ter 2 for the two point funct ion, fixed by conformal symmetry. Hence, i f the central 

charge, the operator product expansion coefficients, the finite number of primary 

fields and their conformal dimensions are known then al l correlation functions can 

be calculated in the theory. The minimal models are reducible representations of 

the Virasoro algebra. 

We denote by M.M the unitary minimal model that has the spin zero primary 

fields 

$(p,?)' l ^ p < m - l , l ^ q ^ m , (5.44) 

and a central charge 

c = l -. m ^ 3 . (5.45) 

m(m + l ) v ' 

The minimal models represent the critical points of well known statistical models, 

e.g. A^3 describes the fixed point of the Ising model w i t h c = | , MA is the t r i -

critical Ising model w i t h c == ^ and M.*, is the 3-state Potts model w i t h c = |. 

The unitary minimal models M M have the same (m — 1) cri t ical behaviour as a 

Landau-Ginzburg theory w i t h a bosonic field and even polynomial interactions up 

to the power 2(m - 1) [97, 98]. 

Q(p,q) has the conformal scaling dimension 
h h ((m + l)p - mq)2 - 1 
K«) = hP.) = 4 m ( m + 1 ) > (5-46) 
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5 Scal ing in two dimensions 

which shows that $(p,9) = $ ( m _ P j m +i_ 9 ) leaving only m ( ^ - i ) different primary field-

s. The unitary minimal model M.m perturbed by the relevant operator $ (1 ,3 ) can 

formally be wri t ten as 

S = M m - A 0 J d2z $ ( 1 > 3 ) (z, z), A 0 < 0, (5.47) 

and the theory is defined by the correlators 

where (• • - )Mm

 1 S t n e correlator in the minimal model M.m and Oi{x) are the local 

scaling fields in the theory. The renormalisation group eigenvalue for $ (1 ,3 ) is then: 

y = 2 — A = ^ j - j - where A = 2/ i ( 1 ) 3 ) . $ (1 ,3 ) is therefore a relevant operator (y > 0), 

and f rom the fo rm of / i ( p , 9 ) i n (5.46) i t directly follows that the other relevant primary 

fields are 

$(p,p+a), - l ^ s ^ 2 , l ^ p + s ^ m , (5.49) 

There are therefore 2m — 3 different relevant primary fields including $ (1 ,1 ) = 1. 

These are the only relevant scalar fields as all the spin zero descendants w i l l have 

scaling dimension 2/i( P i 9 ) - I - 2n w i t h n G N. 

The reasons for using the operator $ (1 ,3 ) as a perturbation are that: 6 

i) $ (1 ,3 ) is a relevant field, fy1)3) = 1 — < 1, which exists in all M m . 

ii) $( m ,n) forms an algebra under the operator product expansion. From the fusion 

rules of minimal models [83] i t follows that $ ( i , r ) $ ( i ) S ) = C£,$( i , p ) where p e 

{\r — s\ + 1, \r — s\ + 3 , . . . , r + s — 1} in steps of two. This shows that $ ( i , n ) 

constitutes a sub-algebra in which only $ ( 1 , 1 ) , $ (1 ,2 ) and $ (1 ,3 ) are relevant as seen 

f rom (5.46). $ (1 ,3 ) is normalized so that the structure constant C^ 1 '^^ 3 ) = 1 where 

1 = $ (1 ,1 ) = $ ( m - i , m ) is the identity, and i t has the self coupling C(i 3 ) ^ 3 ) = b(m) > 
6 The model (5.47) is integrable and was first studied by Zamolodchikov in [96]. The only 

other integrable perturbations of the unitary minimal models are with $ ( 1 , 2 ) and $ ( 2 , 1 ) - These 

three models correspond respectively to the Korteweg-de Vries, Gibbon-Samede-Kotera and Ku-

persmidth equations [99]. 
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5 Scal ing in two dimensions 

0. I t does not couple to $ (1 ,2 ) so i t has no coupling to other relevant operators 

in the sub-algebra $ ( i , n ) [94, 98, 83]. This means that there is perturbatively a 

renormalisation group flow connecting the ultra-violet and infra-red fixed points 

along the direction of $ (1 ,3 ) so i t is consistent to include only the one relevant field 

$ ( l i 3 ) . This can be seen perturbatively by wr i t ing the Zamolodchikov metric [93] in 

normal coordinates around the ultra-violet fixed po in t 7 5 = 0, Gij = 5^ + 0(g2), the 

beta-functions become in these coordinates P*(g) — —yig1 — ^Y^jk^lk^^ + ^(#3) 

(see below). I f g{ = 0 for i ^ (1,3) and C3

{i m 3 ) = 0 for j ^ (1,3) then /3j{g) = 0 

for j / (1,3) and there is no flow transverse to the $ (1 ,3 ) direction [98, 100]. I t is 

therefore perturbatively a geodesic renormalisation group trajectory [42]. 

Hi) $ ( i , 3 ) is the least relevant field, and the perturbation in (5.47) becomes marginal 

in the l i m i t of m —> 0 0 where y = ^ - j - —> 0. I n this l im i t the fixed points are 

arbi t rar i ly close in coupling constant space, and perturbation theory is viable in the 

whole region f rom the ultra-violet to the infra-red. 

We want to calculate the difference between the ultra-violet and the infra-red 

central charge A c = Cuv — cm- I t has been argued that the infra-red conformal 

field theory of (5.47) is given by the unitary minimal model M . m - \ t as A c in the 

perturbative l imi t y —> 0 is given by A c = ~y3 + 0(y4) [94, 98], and f rom (5.45) we 

get that 

C < m > " C<™ " !> = ^ T T ) = 2 ( 2 - ^ 4 - , ) - I S + <5-5") 

A general argument for all m has been given by a thermodynamic Bethe ansatz 

method in [101] 8. We now describe how A c is calculated using our approximation 

method, and we w i l l compare this w i t h the exact result Acexact = c(m) — c(m — 1). 

To construct the term {T(z, z)T(0,0)) we use the Ward identity (5.7) 

dz(T(z, z)$i(xi) • ••$n(xn)) + ^ z ( 9 ( 2 , z ) $ 1 ( x 1 ) • ••$n(xn)) 

n 

= Tr^2(5(z-xl)dXj+5(z-xi)hidXi)($1(x1)---$n(xn)), (5.51) 
2=1 

7Gi3 = (^(1)^(0)) . 
8 I n [102, 103] the first fixed points M m , m = 3 , 4 , 1 2 were found numerically using the exact 

renormalisation group. 
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5 Scal ing in two dimensions 

here $ j are primary fields wi th conformal dimension ht. For the correlator we are 

interested in contact terms vanish and we get 

d 2 l d Z 2 ( T ( z u z1)T{z2, z2)) = ^dZldZ2{@(zl,zl)Q{z2,z2)). (5.52) 

For the perturbed theory scale invariance is broken d^D^ = 0 ^ 0 and in a renorma-

lisable field theory 9 must belong to the space spanned by the relevant and marginal 

fields defining the perturbation away f rom cri t ical i ty in (5.43) 

N 

Q(x) = 2 ^ p i ( g ) ^ i ( ^ (5-53) 
t=i 

where (3l(g) is the beta-function given in terms of the renormalised coupling con­

stants g [94]. (5.52) can thus be wr i t ten 

dlldS2{T{zuzl)T{z2,z2)) = ^ - ^ { g ) ^ { g ) d Z l d Z 2 ^ l { z u z ^ J { z 2 , z 2 ) ) . (5.54) 

The correlator can be calculated in perturbative conformal field theory using 

the operator product expansion in the ultra-violet conformal field theory. Let us 

write $( 1 3 ) (o ; ) = 4>{x). The bare correlator is in the lowest order in A 0 given by 

( 4 > ( x ) m ^ o I d 2 x ' H x , ) ) M m 

(4>(x)<K0)) = 

(4>{x)m)Mm + A01 d ' x ' ^ m H ^ M m + oixi). 

(4>(x)4>(0))Mm w a s derived in (2.26), and 

f(1.3) 

Using the formulas in [104, 105], (5.55) can then be wr i t ten as 

W * M 0 ) > = ( i + ^ b { y )

y

A { v ) \ x \ y + O(Ag)) , (5.57) 

where A(y) = r ^ I ^ j ^ i + y ) = l + ^ ( ^ 3 ) - The operator product expansion coefficient 

b(y) can be calculated f r o m a Coulomb gas representation of the minimal models 
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W*.»)*«>.«)> = r d k = ? u " " ' " " ( H ' - D 4 0 t f ) 

again using the formulas in [104, 105] 

^(i ,3)( i ,3) i 3 ( 1 - ^ / 2 ) 2 ( 1 - 3 ^ / 4 ) 2 ^ ( 1 - ^ / 2 ) ; V r ( l + y / 4 ) ; 

/ r ( l - y ) \ 2 / r ( l + 3 y / 4 ) \ 16 
xUaT^)) lf(r^74)J = y + 0 ^ 

(5.58) 

and we use the standard branch b(y) > 0. Choosing the renormalisation conditions 

((f>(x, g)(f>(0, g))\\x\=li-i = / / 4 , the renormalised correlator and the /3-function becomes 

[100] 

]* / 4*A(y)b{y)9l 

\^x\2(2-y) y 

P(9) = -yg-7:b(y)g2A(y) + 0(g:i), (5.59) 

where (j)(x, g) is the renormalised field and g is the renormalised coupling. The zeros 

of the P—function, the renormalisation group fixed points, are thus guv = 0, g*IR = 

TtA(y)b{y) a n < ^ therefore g £ („A{y)b(y)1 Q) ^ t n e theory (5.43) lies between the two 

scaling l imits. Correlators are renormalisation group improved by demanding that 

they satisfy the Callan-Symanzik equation (3.7). The running coupling constant 

becomes [100] 

= ~P(9) => 9(t) = , (5.60) 
dt i *My)Ky)9 (j.y ^ v 1 

interpolating between g u v for t —> 0 and g*IR for t —> oo and satisfying g(l) = 

g. Euclidean invariance allows us to write the correlator of the energy-momentum 

tensor as (T(z, z)T(0, 0)) = in terms of the dimensionless quantity R — fx2zz. 

The differential equation (5.54) then becomes 

fl2 _ _ 2o2 _ X2 

dR2 2^ dR2 

=-F(R) = - J ^ t f (4>(R)m). (5.61) 

A solution to this equation is given by 

F(R) = ^ f R2 ( # ) - 4R j dR! {(f)(1)) + 6 J dR' J dR" (H) J + <*i + a2R, 
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where a\,a2 G K. These equations directly generalize to the case wi th more coup­

lings. The differential equation (5.61) is a boundary value problem as F(R) is known 

in the scaling l imits 

~ , ~, I cnv for R —> 0, j 
F(R) ^ < . (5.62) 

[ c*IR for R —> oo. 

In the l im i t where R —> 0 the correlator ((fxj>) scales as in M m i-e. (00) ~ hence 

R2{H) ~ Ry 0, R JRdR'(#> - £ y -> 0, and finally fRdR'fR'dR"(<j)(f>) ~ 

i ? y —> 0 for i? —> 0. This sets the boundary value a i = c^y- As F(R) attains a 

finite value for R —> oo then all linear terms in F(R) must cancel and we set a2 = 0. 

Integrating (5.59) and inserting the boundary conditions gives 

n2g2Ry (y(2 - y)(Z - y) n , , , , , , f (2 - y)(3 - y) 
F(R)=cuv + ^ — - [ ^ ^ ^ + 2irA(y)b(y)g M U A y> 

+ ^ f ( 3 ! / - 4 ) ( 3 y - 6 ) - ( 5 - 6 3 ) 

3( |y - 1 ) 

As in the proof of the c-theorem we can use the Callan-Symanzik equation to move 

all scale dependence into the running coupling constant, defining F(s) as F(s) = 

F(R)\R=l 9 = g ( s ) . W i t h t —> sllAy the running coupling constant becomes 

m = x «Mvy*v)9{5\ YY ( 5 ' 6 4 ) 

y \ I 

and scale-transformations move around in the coupling constant space. The 1 loop 

renormalisation group improved approximation to F(s) then becomes 

P M R MTT2

 2 f y ( 2 - y ) ( 3 - y ) 
Fi(s) = c u v + -TTQ (S) 

2 v
 ' V y 

+2TvA(y)b(y)g(s) ± ^ + 
( 2 - y ) ( 3 - y ) , (3y - 4)(3y - 6) 

(5.65) 

1 - y 3 ( | y - l ) 

Thus A; = 4 as F\(s) — F ^ s 1 / 4 ) . To obtain the approximation for c/# we then have 

to calculate the contour integral 

h{p) = ^~ [ ds^-F^s). (5.66) 
Z7tl Jc0 S 
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I n the l im i t m —> oo the ultra-violet and infra-red fixed points are perturbatively 

close in coupling constant space as noted above, hence j F \ ( s ) correctly describes F(s) 

in this l im i t and we should take p —>• co in (5.28) thus eliminating the contribution 

f rom the cut. The approximation then becomes l i m ^ ^ h(p) — l i m ^ o o F\{s) = c*IR 

using (5.31), and the approximation in this l i m i t thus equals the renormalisation 

group improved perturbative result which is 

A C p e r £ - C U V - C I R - - — { g I R ) 
2 ™ ' v y - i 

+ ™ m v ) t i . ( < ^ ^ + % * % 6 ) ) ) (5.67) 

this is equal to the asymptotic fo rm of the exact value c(m) — c(m — 1) in (5.50). We 

wish to improve this result using the approximation (5.32). We rewrite the running 

coupling constant 

9(s) = A l w V = ?IR^~?!u, 9=—9—T~ e ( - o o , 0 ) . (5.68) 

A l l dependence of the renormalised coupling g is now moved into the parameter p 

setting s' = s\g\4 and p' = p\g\4 

h M = h l d s v F ' ( s » = h I , tfT«M = / l W ( 5- 6 9 ) 

and then g(s') = 9 j f s , 1 / 4 . This contour integral can be evaluated for example doing a 

numerical integration or a series expansion in Fi(s'), we have done both. A numerical 

integration of (5.69) w i t h m = 14 using the NAG Fortran Library is shown in figure 

5.7. In figure 5.7 the dashed line indicates the expected behaviour of the exact 

function 7(0) — I(p') which is taken analogous to the curves of the free theories in 

figure 5.3 and 5.4. Wr i t i ng Fi(s') as a power series 

oo 

Fl(s') = <S>Ms')) = Y , h « ( s T / * (5-70) 
71=0 
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Figure 5.7: The numerical-result c u v — h(p') against logp' for m = 14. Also plotted 

is the exact and perturbative values Acexact and Acpert. The dashed line is the 

expected behaviour of 1(0) — I(p'). 

and substituting this into (5.69), we then obtain using the integral representation 

which is recognized as the Borel transform of order A; = 4. This expression can 

be computed numerically (using e.g. Maple) by truncating to a finite n, and the 

minimal value can be found. In figure 5.8 c u v — h(p') is plotted for m = 14 w i t h 

50 terms. The horizontal lines are the exact value and the renormalisation group 

improved perturbative calculation. The punctured line is the value of the numerical 

integration which is seen to match the value of the truncated series. 

In table 5.1 the obtained values of the numerical integration denoted A c a p p r o x 

are listed together w i t h the exact results Acexact and the renormalisation group 

improved perturbative values Acpert. For m < 11 the perturbative result w i l l break 

(4.13) 

oo U P T / 4 

r ( l + n /4) 
71=0 

(5.71) 

73 



5 Scal ing in two dimensions 

0.0044 

0.0042 -

0.004 -

0.0038 

0.0036 

0.0034 

0.0032 

0.003 -

0.0028 

0.0026 

• r 

A c „ 

0.0002 0.0004 0.0006 0.0008 0.001 0.0012 

Figure 5.8: A numerical summation of c u v — h(p') for m = 14 wi th 50 terms. 

The upper line is the exact value and the lower line is the improved perturbative 

calculation. The punctured line is the value of the numerical integration. 

down as A c p e r t becomes negative and thereby violates unitari ty. In [1] we used k = 

2/y = (m + l ) / 2 , but here (and in [2]) we have chosen k = 4 as we then get a stricter 

bound on the exact funct ion as explained in section 5.3.3. The results for k = 2/y 

and k = 4 are similar for all m calculated, except m = 11,12 where they differ 

slightly. The improvement of the approximation (5.32) over the renormalisation 

group improved perturbative result is seen to be significant. In figure 5.9 we plot 

Acexact — A c a p p r o x and A.cexact — Acpert scaled w i t h m(m2 — 1) so that all the points 

can be distinguished. The horizontal axis is then the exact value. The figure shows 

that the approximation improves the perturbative results w i th more than a factor 

two. 

We saw above that the analytical opening a = ir — e', e ' < C l . k > ir/a so the 

best approximation is expected to be in the l i m i t k —» 1. For k = 1 we get results 
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5 Scal ing in two dimensions 

m Z \ Cperi Ac 
t—^^approx 

Ac a pp r o x 2 

11 0.00909 0 0.00642 0.00970 

12 0.00699 0.00180 0.00533 0.00721 

13 0.00549 0.00248 0.00437 0.00556 

14 0.00440 0.00253 0.00368 0.00440 

15 0.00357 0.00237 0.00310 0.00357 

16 0.00294 0.00215 0.00262 0.00293 

17 0.00245 0.00191 0.00222 0.00244 

18 0.00206 0.00169 0.00190 0.00205 

19 0.00175 0.00149 0.00163 0.00175 

20 0.00150 0.00131 0.00140 0.00150 

21 0.00130 0.00116 0.00122 0.00130 

22 0.00113 0.00103 0.00109 0.00113 

23 0.000988 0.000911 0.000956 0.000989 

24 0.000870 0.000811 0.000846 0.000871 

25 0.000769 0.000725 0.000752 0.000771 

26 0.000684 0.000650 0.000671 0.000686 

27 0.000611 0.000583 0.000601 0.000613 

Table 5.1: The exact, perturbative and approximate values for Ac. A c a p p r o x is w i t h 

k = 4 and A c a p p r o x 2 is w i th k = 1, which is the minimal value of k allowed by the 

bound k > ir/a. 
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Figure 5.9: (Acexact - Acapprox)m(m2 - 1) and (Acexact - Acpert)m(m2 - 1) against 

m. 

which are almost identical to the exact values, we denote these by AcapproX2, and 

plot in figure 5.10 Acexact and AcapproX2 against m, the numbers are also listed in 

table 5.1. I n this case though we do not have a strict bound on the exact funct ion 

I(p) as for the case wi th k = 4 described in section 5.3.3. The exact funct ion might 

s t i l l have a very small undershoot i f for example the smallest non-zero mass of a one 

particle state is small compared w i t h p'm, i.e. Acest ~ Acexact. Figure 5.10 shows the 

very good correspondence between Acexact and Acappr0X2, this is remarkable because 

the approximation is based on only a one loop calculation. 

5.5 Conclusions 

We have in this chapter, using the method derived in chapter 4 and the exact bound 

obtained in section 5.5.3, attained an approximation method for calculating the 
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Figure 5.10: Acexact and A c a p p r o x 2 against m. 

infra-red central charge of a two dimensional theory. This method is applied to the 

free bosonic and fermionic theory, and although these theories have a t r iv ia l infra­

red l i m i t they are important as the functions used in the approximation F(s) and 

I(p) can be calculated exactly. The infra-red central charge for the minimal models 

perturbed by $ (1 ,3 ) is calculated using the approximation method on a renorma-

lisation group improved one loop perturbative result, where the Callan-Symanzik 

equation is used to move the scale dependence into the running coupling constant. 

Optimizing the order of the Borel transform a remarkably good approximation for 

the infra-red central charge is obtained already at the one loop perturbative level. 
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6 

Scaling in three dimensions: cp 

theory 

The other example where we w i l l use the method developed in chapter 4 is the 

calculation of the critical exponents of <^4 theory in three dimensions w i t h O(N) 

symmetry. This model is one of the most studied models in crit ical phenomena and 

i t is important because i t shares its infra-red fixed point w i t h a number of physical 

models, such as: polymers (N = 0), the Ising model (N = 1), super-fluid Bose-liquid 

(N = 2) and the Heisenberg ferro-magnet (N = 3) [106]. We w i l l study the Ising 

N = 1 case in detail here, but the method applies for a general N. 

Quantum field theories in dimensions less than four have generic infra-red d i ­

vergences. For (p4 theory this can be seen by studying the 1PI four point funct ion. 

Diagrams w i t h n 'bubbles' are divergent when (4 — d)n ^ d1. A way of regulating 

these infra-red divergences is to either do an e expansion in e = 4 — d, or work 

w i t h a massive theory. We wi l l here do the latter, and work in d = 3 following 

Parisi [106]. We introduce the renormalised field, mass and coupling as in chapter 3: 

(f = (Zi)l^2ipn, ip2 = ^2(</?2)i? a n d mtg denote the renormalised mass and coupling, 

and Z\,Z2 are the renormalisation constants. The infra-red divergences are now 
1 T h i s follows as the diagram generally behaves as p ( d ~ 4 ) " in external momentum, which has a 

Fourier transform proportional to ^{\{d — n(d — 4))) divergent for n(4 — d) ^ d [76, 106]. 
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6 Scaling in three dimensions: cp4 theory 

removed and only show up in the bare correlators as non-analytic dependence in the 

bare coupling [106]. We w i l l calculate two of the infra-red crit ical exponents v and 

77, all other exponents follow f rom scaling relations. 

The calculation of the critical exponents in (p4 theory are among the most precise 

calculations in quantum field theory, and they have been calculated using both the 

e expansion, exact renormalisation group arguments, perturbative quantum field 

theory, high temperature expansions, strong coupling expansions and Monte Carlo 

simulations [107]. These exponents describe the scaling behaviour of the theory in 

the scaling region and are universal, as described in chapter 3, they are uniquely 

determined by the infra-red fixed point and are therefore identical for all quantum 

field theories flowing to this point under the renormalisation group, irrespective of 

the underlying microscopic dynamics. 

6.1 Critical exponents for ipA theory 

We are considering a theory w i t h O ( l ) symmetry, i.e. the Z 2 symmetry ip —> — ip, in 

three dimensions w i t h the lagrangian 2 

I n Landau theory the free energy T ( f rom which all thermodynamic quantities can 

be derived) is wr i t t en as an expansion in some order parameter [108]. For the 

Ising model w i t h Z 2 symmetry: T = F0 + a2M2 + a4M4 + 0 ( M 6 ) where M is the 

magnetization. For a 2 < 0 there is a spontaneous symmetry breaking where T — TQ 

has minima wi th non-zero magnetization M 0 = (for a 4 > 0) see figure 6.1 

(b). The system is said to be i n a ferro-magnetic ordered phase. For a 2 > 0 the 

min imum is at M 0 = 0 and the system is in a high temperature symmetric (para­

magnetic) phase, figure 6.1 (a). I t easily follows that diverges when a 2 —> 0_ so 

the phase transition is second order w i t h power law behaviour and critical exponents. 
2<p(x)6 is marginal so the critical properties are dominated by the ip4 term, higher orders with 

<p2n are irrelevant as [gn] = 3 — n. 

C = ±P<p(x)dMx) + \rn2Mx)2 + ^<p(x)\ A 0 > 0. (6.1) 

A2 
2dd 
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6 Scaling in three dimensions: ip theory 

2 a mS > 0 (b) nV < 0 

M 

M 

Figure 6.1: (a) The high temperature symmetric phase w i t h ml > 0. (b) When 

ml < 0 the system is in a different phase w i t h a spontaneous magnetization. 

We can then wri te a2 = a2 (T — Tc) for some a2 > 0 so the phase transition occurs 

at the crit ical temperature Tc [108]. Comparing wi th (6.1) i t follows that the bare 

mass squared is proportional to the reduced temperature m§ oc 9 = 2^2k. We are 

considering the high temperature symmetric phase w i t h ml > 0. For the free theory 

w i t h A 0 = 0 the two point correlator, or propagator, is given as 

G2(p,m) = / ddx e*»x(ip(xM0)) = - j - J — j , (6.2) 

hence the free propagator can be wr i t ten as [106] 

G2(p1O)=0-ih(£) (6.3) 

where h is regular at the origin and 7 = 1 and v = | . This scaling behaviour is 

assumed to hold also for the interacting theory, where Ao > 0, w i t h cri t ical exponents 

v and 7 , and one of the main problems in critical phenomena is to determine these 

exponents. From the scaling relations described below all critical exponents can be 
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6 Scaling in three dimensions: </?4 theory 

obtained f rom the propagator. In real space the free propagator becomes [60, 11] 

G2(x,m)= [ 0 = ^ - ( T ^ - T ) 2 Kd-*{m\x\). (6.4) 

The asymptotic form of the modified Bessel funct ion (see section 5.4.1) then shows 

that away f rom the fixed point where ^ <C |x| the propagator is exponentially 

damped, and close to the fixed point where |x | <C ^ i t has a power law behaviour: 

G2{t\x\,m) ~ i2~d. For the interacting theory this is generalized to G2(t\x\,m) ~ 

p-d-v £ o r ^ n e c r i t i c a l exponent rj, in momentum space i t becomes 

G ^ P ) ~ ^ ( 6 - 5 ) 

and the gaussian fixed point therefore has r\ = 0 , 7 = 1 and v = \. 

6.2 F(s) for 7] and v 

We w i l l now define the functions F(s) f r om chapter four for respectively v and rj, and 

show that they are analytic in some sector w i t h the correct scaling l imits . We denote 

the infra-red fixed point coupling gc so that fi(gc) = 0, where g is the dimensionless 

renormalised coupling g = / ( A 0 / m ) = ^ + 0 ( ( ^ ) 2 ) . I n the infra-red l im i t t —> 0 

the Callan-Symanzik equation (3.7) becomes 

^ + 7 i ( ^ ) - 2 ^ G 2

H ( ^ ) = 0 , (6.6) 

where 7 l = so that for small t: G^itp) ~ ,2-^^^ a n d this shows that 

77 = 7 i (<7c) (see e.g. [106, 109, 110] for further details). Hence defining 

F r , ( t ) = t ^ ^ - / G ^ t p ) + 2, t G R , , (6.7) 

would satisfy the infra-red behaviour l i m ^ o F^t) = 77. The ultra-violet l i m i t follows 

f rom the spectral representation 

F'M = " 2
 r d , 2 W m + 2 ^ ° »» t - oo. (6.8) 

3 Note that 7 from chapter three is 7 = 71 /2 . 
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6 Scaling in three dimensions: (p4 theory 

or simply using that (p) —> 2_jlm2 i n the ultra-violet (the spectral density w i l l 

only contribute wi th <5(/i2 — m2)) also showing that l im^oo Fn(t) — 0. From this 

spectral decomposition i t also directly follows that Fv{s) — F ^ ( t s ) | i = 1 is analytic for 

s e S(n - e') for e' <C 1 4 , and that 

- , s I 77 for s —)• 0 + , 
Fn(s) -+ I ' (6.9) 

^ 0 for s —> oo. 

Equation (3.6) states that 

~m 2 ^ } = t ; - [G2]G?{tp, m) = [ t - + 2 J G«(tp, m ) , 

hence i t follows that 

F,(t) = - m d G ^ m ) /G«(tp,m) = Z r ' m ^ , (6.10) 

also showing that the ultra-violet value is zero as the gaussian theory is ultra-violet 

finite. We also want to compute u, but let us first comment on the scaling relations. 

The scaling hypothesis states that the singular power law behaviour near a second 

order phase transition stems f rom the divergence of one quantity at the critical 

point, namely the correlation length f = m"1 ~ 9~v. From the definition of 7x 

i t follows that for small m [76]: Zx ~ kxm<^{\ + o ( l ) ) for some k\ £ R, and 

G2(p) = ZiG§(p) = Z i / ( p 2 + m 2 + 0 ( p 4 ) ) , hence together w i t h (6.3) this shows that 

G 2 (0) ~ 0 " 7 ~ 0-" ( 2 -* r t ^ 7 = ^ ( 2 - 7 7 ) , (6.11) 

which is Fisher's scaling relation, clearly satisfied by the free theory 5 . 

Similar to ^ we define [109] 72 = § ^ . In [106] i t was shown that Z2 oc 

which means that Z2 ~ ~ 62u~l and f rom the definit ion of 72 i t follows that 

4 Actually it will be analytic in S ( t t ) but to get the Borel transform -F„(s) needs to be bounded 

at the origin so that F^(s) has to be bounded for all closed subsets of S which would not be the 

case with S(n). 
5 T h e others: a = 2 - v d , (3 = v(d - 2 + r?)/2, 8 = (d + 2 - r j ) / (d - 2 + 77) are shown in [109] 

using the e expansion. 
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6 Scaling in three dimensions: cp4 theory 

Z2 ~ 9^(90) m t i i e infra-red l imi t , hence 72(̂ 0) — 2 — v 1 . The Callan-Symanzik 

equation for correlators G^t{p) w i th I insertions of \<p>2 reads [109] 

+ / % ) ^ + [GW(p)l + 2 ^ 7 i + h2J G^(tp, tq) = 0 (6.12) 

where [Gn>i{p, q)} = [Gn(p)]-2l = d-n(d + 2)/2-2l. Hence for t - » 0 at the critical 

point is [109] 

1 
G«(tp,tq,m)~td-2n(d+2-^-, (6.13) 

and in the l im i t t —> 0 w i l l 

dG^fatq,™,) R 1 
' !—^ /G%1(tp,tq,m) = -2 + r i - - , (6.14) 

so we define 

5G?i ( ip, — t o , o = 0, m) D 

F„( i ) = - F „ ( t ) + 4 + t a ' l V " £ H — / G & C t p , -<P,9 = 0 ,m) . (6.15) 

Again using the homogeneity of G2,\ we see that Fv(t) can be rewritten as 

" w {G%1(tp,-tp,q = 0,m)/G§(tp,m)) 2 dm' K ' 

which shows that limt_,.oo -^M^) = 0, again because Z2 is a constant in this l i m i t . The 

equation (6.15) shows that Fv(s) = F„(ts)\t=i is analytic in S(ir—e') for all e' G ( 0 , 7 r ) . 

This follows f rom wr i t ing G 2 l = G2,iZ{1 Z2

X and using that G2ti(p, —p,q = 0) = 

— Q^2G2(p) [109] and then rewrit ing in terms of renormalised quantities and doing 

the spectral representation. Fu(s) then satisfies 

. 2 - 1 for s -> 0+, 
F„(s ) - + { + ' (6.17) 

0 for s —>• 00. 

6.3 The infra-red limit 

The functions Fv(g) and F„(g) have been calculated up to an amazing 7 loops in 

the coupling constant g. We w i l l follow the convention of [111] where g = j^g and 
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6 Scaling in three dimensions: y?4 theory 
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Figure 6.2: The first 6 orders of the perturbative /3-function, the plot shows the 

dependence of the crit ical coupling on the order of perturbation theory. 

(3(g) = jj^:/?(<?) giving ± 1 as the first two coefficients in the /3 function; we w i l l use 

f3,g to denote f3,g below to simplify the notation. The results are that [111] 

F^(g) = 0.0109739369/ + 0.0009142223/ + 0.0017962229/ 

- 0.0006536980/ + 0.0013878101/ - 0.001697694/, 

Fv(g) = \ g - 0.0631001372c/2 + 0.0452244754/ - 0.0377233459/ 

+ 0.0437466494/ - 0.0589756313/ + 0.09155179/, 

P(g) = - g + / - 0.4224965707/ + 0.3510695978/ 

- 0.3765268283/ + 0.49554751/ - 0.74968893/, 

where the beta-function has been calculated up to 6-loops [111, 112]. I n figure 

6.2 we plot the nth order perturbative /3-function for n = 1 , . . . ,6 : /3n(g) = 

The perturbative series for < / theory was in [77, 78, 79] rigorously shown to be 

Borel summable in the coupling of order k = 1, so we set F(s) = ^(s1). As discussed 
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6 Scaling in three dimensions: ip4 theory 

in chapter 4 (see (4.9)), the high order coefficients of the perturbative correlation 
functions f ( g ) = J2n f ° r i a r g e n a r e given as 

f n = c ( -b ) n r ( l + bl + n)(l + 0 ( l / n ) ) (6.19) 

where b,bi,c were calculated in [67, 113]. b = 0.14777422 and i t follows that the con­

vergence radius of the Borel transform of f ( g ) is given by bs = 1/b w i t h a singularity 

at —1/b. The crit ical exponents can now be obtained by first Borel transforming 

the series (6.18) and then analytically continuing them to R+ by either a conformal 

mapping or a Pade approximation. The Laplace transform can then be performed, 

e.g. numerically, and resummed series are thereby obtained. The first non-tr ivial 

zero of the resummed /3-function on the real axis determines the critical coupling 

gc, which substituted into the resummed F^g), Fv(g) gives an approximation for rj 

and 2 — 1/v. This procedure has some deficiencies, i t is very sensitive to variations 

of gc and the continuation w i t h Pade approximation might introduce new poles at 

or near the real axis that w i l l lead to art if icial ly large contributions in the Laplace 

integral. Continuation w i t h a conformal mapping might also lead to poles close to 

the positive real axis i f there are sub-leading instanton contributions giving poles 

away f rom the negative real axis. 

Here we w i l l use the approximation developed in chapter 4 and move the scale 

dependence in F^s), F„ ( s ) into the running coupling constant and then get the 

infra-red l im i t as the l imi t ing value of the Borel transform. A n analytical contin­

uation s t i l l has to be performed and we w i l l use a conformal mapping that maps 

s —»• 00 to s —> 1. A final approximation is then to do a Pade approximation at 

s = 1. The advantage of this approach is that gc does not have to be estimated and 

the Laplace integral is not calculated. 

When bi > 0 we want to perform a Borel-Leroy transform of order k, which 

replaces a formal series / = J 2 n f n z n W l t r i Y^n(fn/^(^ + h + n/k)zn. Instead of 

(4.23) we then define 

^ - W H " ^ * ™ ( 6 - 2 0 ) 
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6 Scaling in three dimensions: ipA theory 

this funct ion w i l l then have the l imits l i m ^ o o I(p) = F I R and l i m ^ o I(P) = Fuv as 

before. 

We introduce the scale parameter s via the exact running coupling g(s) (s —> 0 

in the ultra-violet) then we know that Fr,(g(s)) and Fl/(g(s)) are asymptotic series 

in g(s). We now approximate the exact running coupling g(s) w i t h the solution to 

S ^ j r = ~ M n ) ( 6 - 2 1 ) 

wi th the boundary condition g'n(0) = 1, where /3n(g) is the perturbative (5 funct ion 

to the nth order. Fv(gn(s)), Fv(gn(s)) are then asymptotic series in s, which we w i l l 

write as F(s) = ^2mFmsm. The Borel-Leroy transform given by (6.20) becomes 

= r ( l + T [ 1 + l P

+ m / k ) = E W™. (6.22) 
m=l v ' ' m=l 

As we are only working w i t h a truncated series we w i l l set k = 1 (only infinitesimally 

different f rom k = 1 + 5, ( 5 < 1 ) , note we are summing up to n + 1 as the n th order 

j3 function has n+1 terms, and F(s) are known to the (n + l ) t h order. 

6.4 Confermal mapping and Fade approximation 

Let us describe how we do the analytical continuation of the Borel transform to get 

its infra-red l imi t . 

The Borel transform is analytic in a sector S(e") where e" <C 1. The series given 

by (6.22) w i l l have a pole at the negative real axis for some value p = —rc ( r c > 0) 

determining its convergence radius. 

6.4.1 Conformal mapping 

We w i l l now analytically continue I(p) given by (6.22) doing the conformal trans­

formation (as in [76]) 

t = p i ( - o o , - r c ] , (p = - ^ - ) , (6.23) 
TC~T p i t 
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6 Scaling in three dimensions: ip4 theory 

so that I(t, k) — I(jfrt,bi), and the l i m i t p —> oo is replaced by t —> 1. Then I(t) — 

I & ) = ZZ\lmtm. Using that (1 - y)-k = ( Z ~ = 0 y m ) k = E L o f S l I ^ * 

follows that I m = Y ^ i i r ^ I j ^ M p i ) ' h e n c e 

n+l m , 1 v 

m=l j = l ^ ^ 

I f all poles of I(p) lies in (—oo, — rc] then I(t) given by this series is convergent for 

t 6 [0,1). I n [114] i t was argued that this is indeed the case for the </?4 theory since 

all known instanton contributions have negative action leading to a Borel transform 

analytic in a cut plane w i t h the singularity closest to the origin being given by the 

large order estimates. We want to evaluate this expression at the convergence radius 

t = 1 (where I(t) is regular), to do this we w i l l use Pade approximants [115, 116]. 

6.4.2 Pade approximation 

In Pade approximation a funct ion f ( z ) = ^ c n z n is approximated by a rational 

fraction, called the Pade approximant [L/M], w i t h polynomials of degree L and M 

in the numerator and denominator, and the constant 1 in the denominator 

[L/M)(z) = ,a°taiZ + "'TzL

M. (6.25) 
1 ' J W l + blZ + --- + b M z M K ' 

I f the n f irst terms in a power series expansion of the funct ion are known then these 

coefficients are matched w i t h the coefficients of the polynomials where 0 < L + N < 

n, so tha t 6 

f ( z ) = [L/M]{z) + 0 ( z L + M + 1 ) . (6.26) 

Because of the polynomial in the denominator [L/M] can describe functions w i t h 

poles, and i t can therefore serve as an approximation of the analytical continuation 

of / = YlcnzTl outside of the convergence radius. A n illustrative example [117] is 

the function 

m = = 1 + \z-l*+0<<z^ (6-27) 
6 See [115] for a discussion about uniqueness of Pade approximants and their convergence. 
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6 Scaling in three dimensions: </?4 theory 

where we are interested in the value l i m ^ o o f ( x ) , x G R. The Taylor series diverges 

for \z\ > | (as / ' ( —1/2) diverges) and one way to get the l imi t ing value x —> oo f rom 

the series data is to do an analytical continuation by performing a Taylor expansion 

around XQ close to | and so on, but i t w i l l take a long t ime to reach infini ty. A 

more feasible way is to make the conformal mapping: z = jr^i w = sending 

z —> oo into w —> \. The Taylor expansion of f(z(w)) becomes f(w) = (1 — u > ) - 1 / 2 = 

l + \w + §u>2 + 0(w3), which is convergent at w = | and the first truncations gives: 

1, 1.25, 1.34375. For the Pade approximation the first approximant easily follows 

f rom (6.27) 

[1/1] = (6-28) 
i -t- 4 z 

giving l i m ^ o o l l / l ] ^ ) = 7/5 = 1.4. This is less than 2% off the exact value at 

inf in i ty \ i m x ^ 0 O f ( x ) = y/2 = 1.4142356237 (the next two diagonal approximants 

give 1.414201183 and 1.414213198). 

The Pade table is a matr ix w i t h entries [L/M]. The Pade approximation is based 

on the conjecture that there is a subsequence of diagonal Pade approximants [L/L] 

which converge uniformly to the function, and this conjecture [118] has shown to 

hold in practice. The diagonal Pade approximants are conformally invariant and 

are therefore independent of rc above. Generally we should use Pade approximants 

close to the diagonal. Note that according to the Pade conjecture one should s t i l l 

expect convergence of the Pade approximants even i f there are a finite number of 

poles w i th in \t\ < 1, which is the case i f not all poles of I(p) are in (—oo, — r c ] . 

We also have to determine the values of r c and 6/. Let us first note that f rom 

the boundary condition g'n(0) = 1 we have that gn(s) = s + 0(s2) and in F(s) = 

Ylm FmSm we thus have that Fm = Fm + • • • where Fm is the m t h coefficient of g 

in F(g), this means that the convergence radius of the transformed series cannot 

be larger than the convergence radius of the series in the coupling g, i.e. 0 < rc < 

bs = 1/b. Also we would suspect that bi ~ b\, where b[ is the Leroy parameter 

of the series in g. I f bi is chosen too large we w i l l divide by more than the actual 

asymptotic increase in (6.24) and the approximation value w i l l be too small, i f bi is 
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6 Scaling in three dimensions: ip4 theory 

chosen too small we expect to get a poor convergence in the Pade table. In the same 

way we expect the approximate value to be too small i f rc is chosen smaller than 

the actual convergence radius because the values we are calculating are increasing 

f rom zero. This is the behaviour we see in the tables and we estimate rc and 6; to be 

respectively the largest and smallest value so that there is convergence in the Pade 

table. 

From the asymptotic form of the ^- funct ion (6.19) i t follows that i t is alternating, 

and an approximation to a truncated alternating asymptotic series Y^=i fi * s to use 

the series YM=I ft where // = / ; for I < n and f n — f n / 2 [119]. We have also obtained 

the approximation where the perturbative /3-function to the nth order (for n = 5 

and n = 6) is approximated in this way. 

Using the (3 funct ion w i t h 1/2 times the last coefficient, and the choice of coef­

ficients rc, bi mentioned above, i.e. rc = bs and bi = 2.4, we get the Pade table (the 

best convergence is w i t h the 5th order expression) 7 

V 

0.407663 0.405138 0.404239 \ 

0.362383* 0.405248 0.403736 

0.395111 0.404338 

0.400335 

J 

(6.29) 

for the funct ion F „ ( s ) . Only numbers in the table for which there is convergence 

should be sampled [118], hence discarding 0.395111 gives F„jR = 0.404 ± 0.004, 

where the error is the inter-tabular error for the points chosen (which is here larger 

than the Baker-Hunter error [118, 120]). W i t h the usual /^-function we get, w i t h the 
7 T h e numbers marked with a * has a pole close to or in the interval (0,1) and are therefore 

discarded. 
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6 Scaling in three dimensions: </?4 theory 

(6.30) 

same values for rc and 6; 

/ • • 0.407663 0.405138 0.386709 0.396082 \ 

0.362383* 0.405248 0.408042 0.392824 

0.414164 0.395111 0.392686 0.395422 

0.377688 0.392075 0.394118 

0.4843* 0.403122 

\0.406194 

for the funct ion F„(s) leading to FVJR = 0.402 ± 0.008. Averaging over these two 

we get for the crit ical exponent u = 0.626 ± 0.003. A t this value of bi and rc 

we have the best convergence in the Pade table, a more conservative estimate of 

FV,IR is obtained by varying r c and bs in a region around these values and then 

calculate the corresponding Pade tables and sample the highest and lowest values 

for which there is some convergence in the Pade table. From this variation we f ind 

that F u j R = 0.40 ± 0.01 leading to 

/ 

v = 0.625 ± 0.004. (6.31) 

Such a variation also has to be performed when expanding in the coupling as the 

asymptotic behaviour might not have been reached for the low number of terms 

available. In [121, 122] i t was argued that the results obtained using Borel-Leroy 

transforms were very stable under variation of bi and bs in a wide range around the 

exact asymptotic values, and we see the same stabili ty here. 

For the other exponent r\ we get approximately the same Pade tables using either 

the ^-funct ion given in (6.18) or w i t h a half times the last term, the convergent Pade 

table becomes 

/ . . . . . \ 
0.0291884 0.0321865 0.0326601 

0.0271003 0.0489937* 0.0327393 

0.0323937 0.0310551 0.031359 

0.0321239 0.0312882 

\0.0312289 / 

(6.32) 
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6 Scaling in three dimensions: p4 theory 

and we obtain the critical exponent 77 = 0.0319 ± 0.0010, where rc = bs and bi = 1.8. 

Again varying around these values gives the estimate 

77 = 0.0315 ± 0.0020. (6.33) 

These numbers should be compared wi th u = 0.6304 ± 0.0013 [107], u = 0.6300 ± 

0.0015 [114], v = 0.6290 ± 0.0025 (e expansion [107]), v = 0.6289 ± 0.0008 (Monte 

Carlo) and for the other exponent 77 = 0.0355 ± 0.0025 [107], 7? = 0.032 ± 0.003 

[114], 77 = 0.0360 ± 0.0050 (e expansion [107]), 77 = 0.0374 ± 0.0014 (Monte Carlo), 

77 = 0.0347 ± 0.001 (strong coupling [123]), most of these numbers are taken f r o m 

[107]. 

The error i n v for our result is seen to be larger than the one in 77 i n contrast 

to the errors f rom other methods. The reason for this is that we have chosen a 

conservative estimate where we have averaged over the results w i t h two different 

/3-functions (using its alternating behaviour). The two ^-functions differ only in the 

7th order term, and here the Fv term is about a factor 100 smaller than the Fv 

term resulting in less sensitivity to this averaging. The errors obtained could most 

likely be lowered e.g. using one of the techniques f r o m [114] or as in [116] using the 

information about the pole at rc to obtain an extra order in the Pade table. 

6.5 Conclusions 

In this chapter the approximation method developed in chapter 4 has been used to­

gether w i t h a conformal mapping and a Pade approximation to calculate the crit ical 

exponents of <p4 theory in three dimensions. Our estimates of the crit ical expo­

nents are wi th in the errors of other, more elaborate approximations. In the usual 

evaluation one determines the value of the critical coupling gc and then evaluates 

the resummed series at this point. The values then become very dependent on the 

estimate of gc. One advantage of our method is that we do not have to estimate 

gc, likewise we do not have to perform the Laplace integral, but instead the c r i t i ­

cal point is reached taking the l im i t of the Borel transform. The disadvantage of 

91 



6 Scaling in three dimensions: y?4 theory 

the method is that we do not have specific knowledge of the quantities rc, 6; gov­

erning the asymptotic behaviour for the transformed series in the scale parameter. 

In the usual case of the perturbative expansion in the coupling these parameters 

are obtained f r o m estimates of the higher order behaviour of perturbation theory. 

However, our results showed stability in a variation of these parameters around the 

values f rom high order estimates. 
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7 

The exact renormalisation group 
with exponential interaction 

In this chapter the exact renormalisation group equation is used to study the renor­

malisation group flow of a two dimensional theory. 

The exact renormalisation group equation is a functional differential equation 

which gives a non-perturbative description of how the wilsonian effective action 

must vary when the cut-off changes so that the physics is invariant. I t is derived 

by integrating out the ultra-violet degrees of freedom in the partition function. The 

equation is not solvable and has to be approximated. 

We will do this by including in the wilsonian effective action only relevant opera­

tors together with a background charge at infinity. The motivation for studying this 

interaction is the renormalisation group flow between the unitary minimal models 

Aim perturbed by $(1,3) that we considered in chapter 5. Using the equivalence be­

tween the perturbed minimal models and the quantum group restricted sine-Gordon 

model, we will argue that this interaction describes the renormalisation group flow 

of the perturbed unitary minimal models. 

The exact renormalisation group allows for a study of the renormalisation group 

flow of the perturbed model M.m for all m, and not only in the limit m —> 0 0 

where the ultra-violet and infra-red fixed points approach each other in the coupling 
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7 The exact renormalisation group with exponential interaction 

constant space as seen in chapter 5. 

In the next section the Coulomb gas representation of the perturbed minimal 

models is described together with its realization as a quantum group restricted sine-

Gordon model. Then the exact renormalisation group equation is introduced, and 

it is approximated by only allowing relevant operators in the effective action, which 

for the minimal models are given by exponential operators. The wilsonian effective 

potential does not contain any field derivatives so the approximation is similar to 

the local potential approximation. The non-linear term in the exact renormalisation 

group equation is approximated using the operator product expansion. 

For the perturbed minimal models a renormalisation group equation is obtained 

where all higher order terms in the coupling are contained in the off-critical structure 

constant for the operator product expansion. This renormalisation group equation 

is valid for all m > 3, and in the perturbative limit m —> oo we show that it is equal 

to the perturbative renormalisation group equation. 

7.1 Coulomb gas representation and quantum 
group restriction 

We use the same notation as in chapter 5 for the minimal model Aim and its 

primary fields. Recall from chapter 5 that the perturbed minimal model formally 

can be written as 

S = M m + X / dlZ $,lj3)(z,Z), (7.1) 

with the correlators 

( O l ( l l ) - O n W ) 
( Q 1 ( x l ) - - - O n ( x n ) e - x I d 2 ^ ) M m (7.2) 

and $(1,3) has the renormalisation group eigenvalue y = 2 — A 4 
m+1 " 
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7 The exact renormalisation group with exponential interaction 

7.1.1 The Coulomb gas representation 

In the Coulomb gas [104, 105, 83] (or Feigin-Fuchs, Dotsenko-Fateev) representation 

the minimal model A4m is realized as a lagrangian free field theory with a background 

charge — 2a^ at infinity where a0 > 0. The action can then be written as1 

S = j ^ f d2x^/gjx){g^{x)dtl(j>{x)du4>{x) + 2^f2ia04>{x)R(x)) (7.3) 

on the Riemann sphere C U {oo}, which is the one point compactification of the 

complex plane with genus zero, R{x) is the scalar curvature. The primary fields 

are given by the vertex operators Va(x) = e 1 ^^*)_ With a background charge the 

action is complex, but for specific choices of parameters in the theory a0 and a, 

the theory becomes unitary and can be identified with the unitary minimal models 

Mm-

The presence of a background charge changes the energy-momentum tensor from 

the free value (5.37) where T = — \d(j)d(j). The new energy-momentum tensor di­

rectly follows from the definition (2.16) in chapter 2 and the usual formulas for 

the variation of the determinant of the metric Sg and the scalar curvature SR. In 

complex coordinates the background charge adds a term iy/2a0d2(j) [83], hence the 

energy-momentum tensor undergoes the transformation 

T= -\d<f>d(j) ^>T = ~d(j)d<l> + iV2a0d2(j). (7.4) 

The corresponding change in the central charge from the free value c = 1 then 

follows from its definition (5.10) using that —2aldwdz(dz(j)(z)dw(j)(w)) = — 2{z-wY: 

c = 1 - 24ajj. (7.5) 

To match the value (5.45) for the minimal model then a0 = l / y / 4 m ( m + 1) (for 

«o > 0). The background charge changes the energy-momentum tensor and hence 

also the scaling behaviour of the theory. The conformal dimension of the vertex 

operator Va becomes h — a2 — 2aa0, which follows from the operator product 
1We are here using the standard normalization used in the Coulomb gas representation which 

differs from the one in chapter 5 for the free boson. 
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expansion of TVa. The background charge therefore breaks the symmetry between 

the operators Va and VL Q , and instead the operators VQ and V2 Q o _ a now have the 

same conformal dimension. 

The Ward identity associated with the transformation 0 —> <fr + a, a £ l (which 

is not a symmetry for ao ^ 0) implies that the overall charge of a non-vanishing 

correlation function (Vai(xi) • • • Van(xn)) must satisfy that [84]2 

n 
^ a j = 2o;0, (7.6) 

so the overall charge vanishes. To get a consistent theory screening charges must be 

inserted into correlators so that this condition holds, but these charges must have 

a vanishing conformal dimension so the conformal properties of the correlators are 

left unchanged. Non-local screening charges3 can be constructed as Q± = J d2zVa± 

which is conformally invariant i f ha± = 1, so that a_ai + = —1 and a_ + a + = 

2a0. We choose a_ < 0, hence from the constraint on tt0 above it follows that 
a - = — V'm+I" ^ o r e c l u a t i o n (7-6) to be satisfied for the four point function 

C ^ Q V ^ Q O - Q V ^ V Q ) i t must be replaced with (Q™Q™ VaV2ao-aVaVa), for appropriate 

m, n 6 N so that 2a + ma+ + net- = 0. This shows that 2a has to be an integer 

combination of a+ and we will write it as artS = ^-a+ + ^ o : _ . To correspond 

with the unitary minimal models it turns out 4 that l ^ r < m , 1 ^ s < m + 1. 

I t then follows that the vertex operator Var3(x) = e

l^ar,s<t>{x) k a s t n e C O nformal 

dimension 

, 7 / r, \ 1/ \2 2 ( r (m + 1 ) - sm) 2 - 1 
K,s = K,s = «r,s «r, s - 2tt 0) = T ( ^ Q ; + + sa.) - a0 = —-—— , 

4 4m(m + 1) 
(7.7) 

2 This can also be shown using that the correlators are independent of the large scale cut-off 

[83]. 
3 The Coulomb gas representation can be given a B R S T formulation [124], where the B R S T 

charge is given in terms of the screening operators Q±. 
4 This follows from the values of the operator product coefficients of the minimal models because 

the three point function of vertex operators vanishes when the corresponding operator product 

coefficient vanishes. 
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7 The exact renormalisation group with exponential interaction 

which is recognized as the conformal dimension (5.46) of the primary field $( r, s)-

Hence, the primary fields $( r , s) are represented by the vertex operators Va (x) = 

V( r iS) = ^^r,s<t>{x)^ a n c j m particular is $ ( 1 , 3 ) represented by = e - % ^ a - < t > m 

7.1.2 The quantum group restricted sine-Gordon model 

In [125, 126, 127, 128, 129, 130] it was observed that the perturbed unitary minimal 

model (7.1) is equivalent to a quantum group restriction of the sine-Gordon theory. 

The sine-Gordon theory5 is given by the euclidean action6 

SsG = ~ j d2x ( ^ d ^ d ^ i x ) - 47rAcos(/3<Ka;)/v /4^ • (7.8) 

In two dimensions all polynomial interactions are super-renormalisable and the de­

gree of divergence for a graph G becomes 5(G) = 2 — 2V where V is the number 

of vertices. The tadpole diagrams with only one vertex and k external legs and / 

loops for k, I G N are then divergent as 5(G) = 0. The theory is renormalised by 

adding counterterms and summing over all tadpoles, and this directly leads, as first 

shown by Coleman [18]7, to a multiplicative renormalisation of A, where A —> 0 in 

the ultra-violet limit that therefore corresponds to a free theory with c= I. ft and 

(j) are not renormalised. 

The sine-Gordon model has the infinite dimensional quantum group symmetry 
5 The sine-Gordon theory has been used to model phenomena in condensed matter physics, e.g. 

crystal dislocations, magnetic flux in Josephson lines and magnetic crystals [69]. 
6Note that /? is here a parameter and not a beta function. 
7 I n [18] it was shown that the energy is unbounded from below for 02 > 8n, and for /32 < 8n, 

which is the case we are considering, the theory is equivalent to the massive Thirring model which 

is a fermionic theory. The case of 02 > 8TY is treated in [131, 132], here (3 is also renormalised 

and this is used to establish a flow between infra-red and ultra-violet theories, but in this case no 

identification of the Hilbert space of states exists between the restricted sine-Gordon model and 

the perturbed unitary minimal models. The sine-Gordon model is an integrable system, that has 

a spectrum consisting of solitons and anti-solitons, with topological charge ± n , n e N , and their 

bound states breathers (or kinks), the number of boundstates is [ T T / X ] — [j|J] ~ 1 where \ = 8n-02 

[68, 127]. 
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7 The exact renormalisation group with exponential interaction 

Uq{sl2) [129, 126] where q is a root of unity 8 q = e "^ 2 ^ 2 . In [129, 126] this was 

shown creating four non-local charges Q±,Q± that together with the topological 

charge T generate the quantum group Uq{sl2), which has two Uq(sl2) sub-algebras 

generated by {Q+,Q_,T} and {Q-,Q+,T}. 

In [126, 130] the quantum group restriction of the sine-Gordon model is per­

formed by adding a background charge — 2a0 at infinity. The background charge 

will again change the energy-momentum tensor as in (7.4) and the two vertex opera­

tors in the potential will now scale differently 9. Two different couplings are needed, 

we will write this as 

A cos(P<j>/V^) ^ K - m i ^ + L i W / ^ , (7.9) 

Analogous to the Coulomb gas representation for the minimal models the back­

ground charge a§ is determined from the central charge c = 1 — 24cto = 1 —

 m(m+i) • 

(3 is chosen from the requirement that e ^ ^ ^ becomes marginal (i.e. h = 1) so that 

i t survives in the ultra-violet limit. /3 = V /8_7ra_ = —\f&n^Jm/(m + 1). The con-

formal dimension of e ' 1 ^ ^ is then h = \-r = : n ~ = hn 31 and e-tf*/V5F 
m+1 m+1 m+1 \Li°) 

represents the perturbing operator $(1,3) 1 0 • Only relevant operators are included 

in the effective action, as explained below, so the marginal screening term e 1 ^ 1 ^ 

(which is needed when considering correlators) is excluded. 

In [126, 129, 130] i t was argued that the perturbed unitary minimal model (7.1) 

is a quantum group restriction of the sine-Gordon theory, i.e. a massive theory, with 

the coupling taken as A = —A in (7.8). Here we are only interested in the massless 
sUq(sl<2) has special representations when q is a root of unity [130]. A quantum group is a Hopf 

algebra with a non-trivial co-multiplication, see [129] for a definition and a review of Uq{sl2)-
9 The quantum group restriction can be described in terms of cohomology in analogy with the 

B R S T description of minimal models [126]. When the background charge is added the quantum 

group symmetry is reduced by breaking the tf> —t —<f> symmetry in the potential. Choosing the back­

ground charge so that Q+ becomes a marginal screening operator the quantum group restriction 

is then defined by gauging away the Uq{sl2) sub-algebra containing Q+. 
1 0 T h e ultra-violet limit of the restricted sine-Gordon model is a Liouville theory which is equiva­

lent to the unitary minimal models M m , the perturbed minimal models can therefore also be seen 

as a perturbed Liouville theory [133]. 
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flow to M.m-\ (A > 0 in [94]) where the limit m —> oo is given by perturbation 

theory. We will therefore take the opposite sign, A = A;A for some k G K+, and in 

the exact renormalisation group equation we consider the action 

S = j ^ J ( f x i / g j x j ( ^ d ^ d ^ i x ) - 4^e-*Mx)/^ + ^2ia^{x)R{x) 

(7.10) 

as a model for the perturbed unitary minimal model (7.1). The operator $(1,3) in 

(7.1) is normalized as in [134] so that the ultra-violet limit of correlators in the 

perturbed theory (7.2) equals the corresponding correlators in M.m where we take 

($(i > 3)( l)$(i ! 3)(0)) A ^ m = 1. The scaling dimensions of V( i i 3 ) and $ ( 1 ) 3 ) are equal 

so the normalization constant iV(i i 3) relating them is therefore independent of A. 

V(i,3) = A^(i,3)$(i,3) and we therefore take A = iV( 1 ) 3 ) - 1 A. The normalization constant 

is given by the formulas in [135, 104, 105] 

, 7 ( 1 - « 2 ) 3

7 ( 3 a 2 - 1) , . 
2 _ o „ 2 

where 7(0:) = T(x)/Y(l — x) and we use the normal convention that iV( 1 ) 3) > 0. 

In [136] the exact relation between the sine-Gordon coupling A (i.e. in the theory 

(7.8) without a background charge where the scaling dimensions of cos(/3</>/\/47r) 

and $ ( 1 , 3 ) differ) and A was established A = V " X 2 % ^ ^ ^ using the 

Coulomb gas representation of minimal models [83]. We do not use this represen­

tation here because we want the ultra-violet limit to be M.m, and not as in the 

sine-Gordon model where it is the free theory with c = 1, also we want a linear 

relation between A and A. 

For a non-zero background charge the scaling of the theory is not determined by 

the usual beta function related to the ultra-violet divergences, but by a generalized 

beta function as discussed in [131]. (We denote the beta function (3 to avoid confu­

sion with the parameter (3 in (7.8)). The generalized /3-function takes into account 

the change in the energy-momentum tensor when the background charge is added. 
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To lowest order the background charge adds a term [131] 

/3(A) = A — ->• 0(A) = /3(A) - 2 • 2a{lt3)a0~\ (7.12) 

to the normal perturbative /3-function for the interaction term Ae 1 ^ 0 ^ 1 - 3 )*^ in the 

action. This follows from the definition of the renormalisation group eigenvalue 

(3.14) 1 1 which says that f3 = —yX + 0 ( A 2 ) , and when the background charge is 

added y —> y + 2 • 2a(i ) 3)0;o because of the change in the scaling dimension of $ ( 1 , 3 ) 

given by (7.7): A —> A — 2 • 2a(ii3)Q;o- We discuss below how this term appears in 

the exact renormalisation group. 

7.2 The exact renormalisation group equation 
The wilsonian effective action at the scale A is obtained by 'integrating out' momen­

tum modes between A and A 0 ) where A 0 is the fundamental wilsonian cut-off. The 

exact renormalisation group equation 1 2 then describes how the effective action must 

change so as to describe the same physics when A changes. Following Polchinski 

[54], the partition function is written as 

Z(A) = jv<f> e - ™ = jvt e ^ ^ W ^ - ' W K W ) ( ? 1 3 ) 

in a continuum formulation with the cut-off propagator K ^ p

p ( A \ K(p2/A2) is con­

stant for small s = p2/A2 and vanishes faster than any power for large s. The 

physics must be independent of the choice of effective scale A so that A^-Z(A) = 0, 

and performing the differentiation in (7.13) i t follows that 

(7.14) 

1 1 With a sign change as we are here considering changes in the momentum space. 
1 2 O r the Wilson-Polchinski renormalisation group equation [137, 54, 41]. 

100 



7 The exact renormalisation group with exponential interaction 

When the wilsonian effective potential obeys the operator equation 

A-^-VU A) = i / ddxddy fA ew5fififJ! 8V_JV_\ 

(7.15) 

where K'(k2/A2) = l s = f c 2 / A 2 ; the partition function then changes as a total 

derivative up to a field independent term [54], and equation (7.14) is satisfied 

; ± Z = = 0, 

(7.15) is the exact renormalisation group equation 1 3. I t is a non-linear functional 

equation in V((f), A) which is not directly solvable and approximations must be made, 

either by truncating the operator space or by performing a derivative expansion [139]. 

7.2.1 Truncating the operator space 

We will make a truncation in the operator space. Firstly, we will only consider the 

relevant operators, this approximation becomes exact in the infra-red (A <C A 0 ) 

where the effective theory is determined by the relevant (and marginal) couplings. 

Secondly, we saw in chapter 5 that the primary fields {$( i , 2 P +i )} with 0 ^ p ^ 

[^^-i] form a sub-algebra in j V f m , and there is therefore a renormalisation group 

flow from the minimal model M.m spanned by these operators. When considering 

perturbations with operators in a sub-algebra, all divergences that arise away from 

the fixed point will be contained in this sub-algebra, and this shows that there is 

a renormalisation group flow in the sub-space of the corresponding couplings. The 

operator structure at the non-trivial ultra-violet fixed point thereby determines the 

renormalisation group flow. 
1 3See [138] for a recent review of the exact renormalisation group equation. A constructive proof 

was given by Zinn-Justin in [38] by explicitly integrating out the high momentum modes in the 

partition function and observing how the potential then changes under an infinitesimal change in 

the cut-off. 
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In the sub-algebra {$ ( i , 2 P +i )} only = 1 and $ ( 1 , 3 ) are relevant fields14. 

The exact renormalisation group is only determined up to a field independent term, 

so we will only consider perturbations with respect to $ ( 1 , 3 ) . None of the relevan-

t operators V(i> n) contain any derivatives in 0, so the situation is similar to the 

local potential approximation of the exact renormalisation group equation. The 

local potential approximation is the lowest order term in a derivative expansion 

of V = V(A, </>, d(j),...) [140, 141]. The second order term containing derivatives 

f(A)(d(f))2 leads to a renormalisation of 4> and an anomalous dimension 77 > 0. In 

our approximation there are no derivatives in <fi because we only keep relevant op­

erators, and (j) is not renormalised in the sine-Gordon model. In this approximation 

the first term in (7.15) can be rewritten [140, 141] as 

h I W f K ' { e / A 2 ) I * * m ( x ) = -*1 / ' ' m ™ ( 7 - 1 7 ) 

where V(x) is the potential density V = / d2xV(x), and k\ = — f K'(k2) > 0 

as K(k2) is decreasing. In the local potential approximation [142, 140, 141, 143] the 

second non-local term in (7.15) 

~ [ d2x [ d2y [ j £ * K ' ( k 2 / A 2 y k ^ d V d V

 ( } 

A2 J J y J K 1 1 dcf>(x) d<f>{y) y ' 

is approximated by k-i J d2x(g^x^)2 where k2 £ R+ depends on the cut-off function 

K(s). This is a good approximation in the ultra-violet limit A —>• 0 0 [143] where 

/ 0^K'{k2/A2)eik^^ -»• K'{0) f ( 0 e t t ( x - ^ = K'(0)52(x - y). We consider the 

operator version of (7.15) and a different approximation therefore has to be used for 

the term (7.18) otherwise divergences will appear in the operator product gdv ; 

whereas (7.15) is finite for A < 0 0 . The correct form of the approximation in the 

operator case is obtained from the operator product expansion, which for spin zero 

operators is (3.12) 

O l ( x ) 0 , ( y ) ^ ^ | a ; | A ' = - A " - ^ C ' J . ( A , A ) O f c ( y ) , (7.19) 

1 4 The operator $ ( 1 , 3 ) does not mix with other relevant operators off criticality [94, 81]. 
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where Ok(y) is a complete set of local scaling fields. The non-local term (7.18) then 

takes the form 

J d2xO(x) J d2y J ^ k ^ K ' ( k 2 / A 2 ) h ( \ x - y\2) (7.20) 

for some h(\x—y\2) and operator 0(x). 5d(x) is the Fourier transformation of 1 which 

shows that 52(x) = ^S(\x\2), and we use this identity to write the ultra-violet limit 

A —>• oo of the k integral as - / -0^eik^~y) K'{k2 / A2) ->• k2S(\x - y\2) where again 

k<i G K+ depends on the choice of K(s). For finite A this expression is approximately 

k25(\x — y\2 — a /A 2 ) where a G R+ depends on K(s). The cut-off dependence in a 

is removed by redefining A 2 —• aA 2, and the approximation becomes 

- / -^2elk{x-y)K'{k2/K2) = k2 5(\x - y\2 - A'2) (7.21) 

in (7.18) 1 5. I f the effective potential is written as V = \ l f cPxO^x), where [A1] = 

yl > 0, then (7.15) becomes using (7.17) and the operator product expansion 

- y d 2 , A - V ( ^ A ) = - - y ^ ^ A _ i 

+ | ^ / d2xY^XVAA'i+A,i-A'kC*(\A)0'k(x). 

(7.22) 

Here V and <j> have been rescaled: V —> | ^ V , (/> —> y/k[(j) and A' ; and C'£ are the 

scaling dimension and structure constant for the field O'i = I f Oi is a vertex 

operator then A ' = A, oc Cg. and O'i oc 0{. I t follows from (7.22) that the 

implicit dependence in the choice of cut-off function K{s) contained in k\ and k2 

drops out [140, 141]. The renormalisation group equation is usually written in terms 

of dimensionless couplings gl = A~Vi\l so that V = glA2 J cfxOi where [Oi] = 0. 
1 5Adding a function f(\x - y\2,1/A2) satisfying / -> 0 for A -»• oo corresponds to a higher order 

derivative expansion in <f> [143] and it is therefore neglected in the approximation considered here 

where there are no derivatives in <j>. 

103 



7 The exact renormalisation group with exponential interaction 

(7 .22) then becomes 

A 2 J d 2 x k d ^ - O l = - 2A 2 1 d2x~glOl - A 2 J d2xg 
r (7-23) 

+ 7rA2J d2xJ2rgJc*6>k. 
i,j,k 

For the perturbed minimal models we will use the action (7 .10) , and for the moment 

neglect the curvature term. (7 .23) then becomes 

J #xe-mU* ( A | | + 2 ^ ( A ) + 5 ( A ) ( ^ ) 2 + ^ C | , ( 5 ( A ) , A ) ( ^ ) 2 ) = 0 , 

up to field independent and irrelevant terms. Introducing the dimensionless variable 
Ao 
A t = In ^ (and x = Ax) the renormalisation group equation for g can then be written 

as 

dJ^='g = W) - - *^g{t)2cUW),t). (7 .24) 

Adding the additional term (7 .12) from the background charge 2 • 2a^j3)aog(t) = 

£i9(t) gives 

4 777 ~ ~ 777 

lit I J . fit [ -L i / t» | J . 

(7 .25) 

The contribution from the background charge to the scaling behaviour can be in­

corporated directly into the exact renormalisation group equation if the curvature 

term in (7 .10) is taken into account. 

7.2.2 Incorporating the background charge 

The action (7 .10) is defined on the Riemann sphere CU{oo} where all the curvature 

is situated at infinity so that the topological invariant J d2x^g(x)R{x) = 8ir is sat­

isfied. The Riemann surface O j { o o } cannot be covered by a single coordinate chart, 

one chart is needed for the flat space and another in the neighborhood of infinity. We 

take polar coordinates in flat space x = (r sin 6, r cos 8) and define the contribution 
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7 The exact renormalisation group with exponential interaction 

from infinity as in [144] by a limit value. We consider the theory on a disk T with 

radius r —> oo so that all curvature is at the boundary OF. From the Gauss-Bonnet 

theorem lim^oo f d r d6 rR(r) = 8ir so that R(r) — 4 on dT. We define as in [144] 

the contribution from infinity to be (f)^ = l i m , . . ^ ^ J d r dl (f) — lim^oo ^ f 9 r d9 <f> 

and similarly for the vertex operators. The effect of the background term is seen by 

evaluating the exact renormalisation group equation at infinity where the curvature 

is non-vanishing. Hence we replace J d2x in (7.23) by limr_>oo ^ f Q r d6. Only the 

term f̂ f̂  in the exact renormalisation group equation (7.15) will give an addition­

al term proportional to e ~ x ^ l ^ when the background charge is added. This term 

becomes 

l i m ^ [ d6 [d2y5(\x - y\2 - A - 2 ) 2 2 ( ^ ) 2 (

o

Z ) 2 Q ° a ( 1 - 3 ) r i r : ( r ) e ^ " ( 1 . 3 ) ^ ) g ( t ) 
r->oo 27T JQY J O7 1" 

= ̂ ^}™LrJ £ / ^ < m 2 - A-v^<»>«-'> 
f HO 

« 22a0a{h3)~g(t) l im / _ c ^ < i . . ) « * > = 22aoa{h3)g(t)V{h3)(oc). 
r->°° Jar Z n 

The second to last equation holds in the limit r —>• 0 0 where r ^> A - 1 . When 

the coefficient of e ' ^ ^ from this term is added to (7.24) then (7.25) is again 

obtained, but it now holds to all orders in the coupling g. 

This shows how the change in scaling behaviour due to the background charge 

is seen in the exact renormalisation group equation when i t is evaluated at a point 

with non-zero curvature. Equation (7.25) is then valid to all orders in perturbation 

theory for the chosen truncation of the operator space. Hence, in 

~g(t) = y~g(t) - 7 r (7f*(^) , ^ ( t ) 2 ^ (7.26) 

higher order terms appear via the off-critical structure constant C^(g(t),t). The 

structure constant C^(g(t),t) is regular in the coupling g [145, 146, 147]. The 

wilsonian effective action (7.10) is for zero coupling equal to the Coulomb gas repre­

sentation (7.3) of the minimal model M.m. The structure constant therefore has the 

following expansion C^(g(t),t) = + 0(g(t)), where is the structure con­

stant for the vertex operators in the minimal model A4m. ( 1 ) ^ 1 , 3 ) ( 0 ) = 
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7 The exact renormalisation group with exponential interaction 

1 + C'f$V( l i3)(0) H and the structure constant for $ ( 1 , 3 ) is thus C | $ = N^^C^ 

[135, 104], which is given in (5.58). C^(g(t), t) can in principle be calculated in con-

formal perturbation theory [147, 145, 146] for strictly relevant perturbations (y > 0), 

and for small t it is given by [147] 

CUg) = C* # - git y , 'd 2 ^(T / ( 1 ,3)(oo)y ( 1 ,3)(^)V( 1 ) 3)(l)V( l l 3)(0)) A , m + 0 ( f ) . (7.27) 

The four-point function is the first non-trivial correlator and it can be evaluated 

by pairing the fields and inserting the short distance expansion. There is then a 

crossing symmetry and this leads to the bootstrap equation for the structure con­

stants which expresses the associativity of the operator algebra. In the Coulomb 

gas representation monodromy invariance of physical correlators is used to get the 

form of the four-point function which is written in terms of structure constants and 

conformal blocks. Unfortunately no closed form has been found for the conformal 

blocks with two screening charges ((V(i j 3) V( 1 ) 3) V(1 > 3) V( l j 3 )) requires the screening Q2__ 

for the overall charge to be 2a 0)- When only one screening Q_ is needed a closed 

expression of the conformal blocks can be found in terms of hyper-geometric func­

tions using Euler's integral representation [84]. In the marginal case y = 0 the 

four-point function can be written in a closed form as the conformal blocks become 

meromorphic functions of z [42], but conformal perturbation theory is only defined 

for strictly relevant perturbations with y > 0. 

I t follows from (7.26) by inserting C^(g(t),t) = C$$ + 0(g(t)) that the infra-red 

fixed point coupling vanishes in the limit m —>• 0 0 , and this limit can therefore be 

compared with the perturbative renormalisation group equation. For large m (7.26) 

becomes g = yg — nC$$g2 + 0(g3) where g = N^^g, and this has the infra-red 

fixed point gJR = as obtained in [94, 98], and chapter five. 

7.3 Conclusions 

We studied in this chapter the exact renormalisation group equation for a two di­

mensional quantum field theory. I t was approximated by only including relevant 
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7 The exact renormalisation group with exponential interaction 

operators of exponential form together with a background charge at infinity in the 

wilsonian effective action. The effective action does not contain any derivatives 

in the field and the approximation is therefore similar to the local potential ap­

proximation. The non-linear term in the exact renormalisation group equation is 

approximated by the operator product expansion. We showed that the effect of 

the background charge can be incorporated into the exact renormalisation group 

equation by evaluating i t at a point of non-zero curvature. 

Using the equivalence between the unitary minimal models perturbed by $ ( 1 , 3 ) 

and the quantum group restricted sine-Gordon model, the obtained renormalisation 

group equation was argued to describe the renormalisation group flow for the per­

turbed unitary minimal models from M.m to Aim-\. The resulting renormalisation 

group equation is valid to all orders in the coupling for our truncation of the op­

erator space, and for all m > 3. The higher order terms in the coupling appear in 

the off-critical structure constant. In the limit of large m, where the ultra-violet 

and infra-red fixed points approach each other, the renormalisation group equation 

agrees with the well known perturbative result. 

107 



8 

The self-gravitating bosonic 
membrane 

In this chapter we will consider the field theory of an extended object, namely the 

bosonic membrane with an Einstein-Hilbert term. 

Extended objects play a role in different areas of physics e.g. condensed matter 

physics and hydro-dynamics (see e.g. [148]), and have also showed to be important 

in the theories describing the fundamental interactions. The only present candidate 

for quantum gravity includes extended objects like strings and membranes1. The 

membrane was first described by Dirac in [149] where a spherical charged membrane 

was used as a model for the electron. In [150, 151, 152] the supermembrane in 11 

dimensions was described and in [153] i t was shown that the I IA superstring can be 

obtained from i t by a dimensional reduction [154]. In [155] the supermembrane was 

shown to be a solution of the field equations of 11 dimensional supergravity2. 
1 The efforts to unify general relativity and the three interactions in the standard model in a local 

quantum field theory have failed for different reasons. The main one being the non-renormalisability 

of the Einstein-Hilbert term which shows that such a local theory can only be an effective one that 

has to be replaced by a more fundamental theory at high energies, such as in the early universe 

and for black holes where quantum gravity is relevant. Another problem is the understanding of 

quantum field theory when the space-time background is dynamical. 
2 For these reasons it is believed to play an important role in .M-theory [156]. .M-theory is 

a conjectured theory in 11 dimensions that has the five 10 dimensional superstring theories as 
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8 The self-gravitating bosonic membrane 

In this chapter we will consider a membrane with its dynamics determined by a 

minimization of the world-volume together with the world-volume scalar curvature. 

The action can then be written as a sum over the world-volume Dirac-Nambu-Goto 

action and an Einstein-Hilbert term: S = vol + J R. In chapter three we saw that 

all terms respecting the symmetries of a theory should be included in the action. 

The motivation for studying the model given by S is that the Einstein-Hilbert term 

is the simplest world-volume diffeomorphism invariant and target-space Poincare 

invariant term that can be added to the Dirac-Nambu-Goto action, and S can 

therefore be seen as an approximation to the low energy effective action for the 

bosonic membrane. 

The solution of a semi-classical approximation of the model is determined, where 

the field equations are linearized around a toroidal background. We follow the paper 

[159] closely, there a semi-classical quantisation around this background is described 

for the supermembrane. 

8.1 The bosonic membrane 

The Dirac-Nambu-Goto [149, 160, 161] action for a p dimensional extended object 

is given by its p + 1 dimensional world-volume 

S = T p + 1 j d?+1£y/- d e t ( 7 7 ^ ^ ( 0 ^ ( 0 ) (8-1) 

where i = 1 , . . . , p + l are the world-volume coordinates and n = 1 , . . . , d 

describe the embedding of the p dimensional object into d dimensional Minkowski 

space-time (target space) with the metric T^„. T p + I is the p brane tension. In 

this chapter we will take rj^ = (—, + , . . . , +) which is the standard convention in 

theories with extended objects. The equations of motion that are derived from (8.1) 

different limits and 11 dimensional supergravity as its low energy limit. The supermembrane is 

non-renormalisable, but can be regularized by rewriting it as the large N limit of SU (N) Yang-Mills 

theory, and this is one way of getting the matrix-model proposal for ./Vf-theory [156, 154, 157, 158]. 
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8 The self-gravitating bosonic membrane 

can equivalently be obtained from the action 3 [162, 163, 164, 165] 

S = T p + 1 J y/=j ^diX^djX"^ + (8.2) 

where gij(£) is an auxiliary variable. (8.2) is invariant under Poincare transfor­

mations of X^ and diffeomorphisms in £ l , and for the string p = 1 there is also 

invariance under the Weyl transformations ^ —> fi(£)2<7y. We are here considering 

the membrane, i.e. p = 2, in 11 dimensions and the equations of motion become 

^ = o => ( ^ g ^ x ^ x ^ - g^dkX^diX"^) = \v=ggij, (8-3) 

thus taking the trace gives g^diX^djX^rj^ = 3 and g^ is therefore the induced 

metric on the membrane ^ = diXlxdjXvr]lll,. (2.16) then shows that in this case 

the energy-momentum tensor vanishes = 0. The other field equations are 

S S = 0 ^ d i ( ^ g g t J d j X » V l i U ) = 0. (8.4) 
5X* 

We will use the light-cone-Hoppe gauge as in [159] and i t is useful to write the metric 

in the ADM (Arnowitt-Deser-Misner [166, 167]) decomposition: 

/ - A T 2 + labN°N» N«7ab\ 
gij = , a = 1,2. (8.5) 

V N a

l a b 7 a 6 J 

£ l = (r, a, p) and = gab is the metric on the membrane, i.e. on the surface 

determined by X^(r, a, p) for fixed r. N and Na are the shift and the lapse functions 

that determine the foliation of the membrane world-volume into constant r surfaces, 

7 q 676C = <5" a n d = N y / j . (8.2) can then be written as 

S = T 3 J d3£ | - i / 9 a I ^ I ^ V + N~2(X - NadaXf + 0 . (8.6) 

This action is independent in the choice of world-volume foliation hence the number 

of dynamical degrees of freedom become 11 — 3 = 8. The light cone coordinates are 
3 Which is often called the Polyakov action. 
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8 The self-gravitating bosonic membrane 

X± = j^(X° ± X w ) so that X2 = X»X^ = -X+X- - X~X+ + X 7 X J , summing 

over 1 = 3,... ,9, and the light-cone-Hoppe gauge is 

X + = p + r , g0a = 0, gm = - 7 . (8.7) 

The last condition holds for all r as the equation of motion for X+ in this gauge 

shows that dr{^)1^2 = 0. g0a = X^daX^ = 0 then fixes X" in terms of X1 

d a X - = ^ ( d a X ^ X 1 . (8.8) 

One gauge degree of freedom is left unfixed until after the field equations are line­

arized as in [159]. 

8.2 The self-gravitating bosonic membrane 

Let us now consider the action 

S = T3 J d ^ ^ g ( - ^ " d i X ^ X ^ + ± + GRj, G e i , (8.9) 

where R is the scalar curvature on the membrane world-volume, i t contains deriva­

tives in jab which is therefore now a dynamical field. The number of degrees of 

freedom becomes 11 — 3 + 3 = 11, and viewing (8.9) as 2 + 1 dimensional gravity 

with 11 minimally coupled scalar fields this counting simply becomes 0 + 11 4 . Due 

to the non-linearity of (8.9) we wil l make a semi-classical approximation of the field 

equations where they are linearized around a classical solution that is taken to be a 

flat torus following [159]. Taking space-time to be S 1 x S 1 x 1R9 a classical solution 
4 Pure 2 + 1 dimensional gravity is specified by the three components of the spatial metric 

7Q6 together with its embedding given by the three components of the exterior curvature Kab, in 

addition there are three constraints from diffeomorphism invariance and three initial constraints for 

the Einstein equations [44]. There are thus no local degrees of freedom, and pure 2 + 1 dimensional 

gravity can be seen as a topological field theory [168, 169]. 
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8 The self-gravitating bosonic membrane 

is obtained by wrapping the membrane around Sl x S1 with a flat metric 

Xl

cl = hR, a, X2

cl = l2R2 p, X^O, 1 = 3,..., 9, 

o\ f - k 2 o 
9d = 

V 
o 
o 

k\ 0 

0 k2 

k0, h,k2 G 
(8.10) 

2/ 

a, p G [0,27r] and R\,R2 are the radii of the torus and l\,l2 £ 1> are the winding 

numbers. (8.10) is clearly a solution to di^—gg^djX^) = 0 and the Einstein 

equations that become Tij — 0 (because the curvature vanishes), where 

Tn = T 3 ( diX^djX^ - 9 i j [ - g ^ X ^ X ^ (8.11) 

{9ci)ij is therefore the induced metric and (8.10) together with the gauge condi­

tion (8.7) shows that k\ = l\R\, k2 = l2R2 and k0 = kik2, (8.8) sets X" = 

i^{hRil2R2)2T. The perturbation around the classical solution is written as 

Xi = Xi

cl + Zi, i = l , . . . ,9, 

9ij = 0 (hR,)2 

y 0 0 

0 \ 

0 
t Too 

+ 
. 0 0 \ / -

0 7n 7i2 = 

V 0 712 722 / \ 

7 0 0 \ 

7n 7i2 

712 722/ 

where 7 = 711722 — 7i2- X1 and are then inserted into the field equation-

s keeping terms up to 0((Z1)2, (7a&)2, Zi;yab). (8.8) no longer holds and we set 

X~ = X~t = 2^+(hRihR2)2T which is always a solution because of g0a = 0 and 

,9oo = — 7- The solution to the field equations that we consider below requires that 

(hRi)2 = (Z2-R2)2 = 1 so that Rx = j - ^ , R2 = ^ and we set l i i? i = / 2^2 = 1 from 

now on. 

8.2.1 Solution to the semi-classical approximation 

Using that \f—g = 7 = 1 + 7n + 722 and 

7 ab 1 - 7n -7 i2 

-712 I - 7 2 2 , 
(8.12) 
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8 The self-gravitating bosonic membrane 

the field equations for X M become 

Z1 = (d2

a + d2

p)ZI, 1 = 3,... ,9, 

Zx = {d2

a + d2

p)Zl+ ^ 7 2 2 - ^ 7 1 2 , 

Z2 = (d2

a + d2

p)Z2 + 9,711 - d a j 1 2 . 

The field equations for jat, are the Einstein equations 

= 2GTzEab = Tab. 

(8.13) 

2GT3 yRab — -QabR 

Y\j is already first order in % b , hence to first order Rab = dcYc

ah — dbYc

ac and 

(8.14) 

R = gVRij = 7n + 7 2 2 - (dl + <9p

2)(7n + 7 2 2 ) - #722 - # 7 n + 2dadpy12. (8.15) 

The components of the Einstein tensor are 

{ E n \ ( dl -d2 + d2 o\ 

and 

E22 

\EUJ 

E02 
\E00J 

dl -d2 +d2

a 0 

\-dpda -dpda d 2 j 

( 

-dTdp 

-dTda dTdp \ 

0 dTda 

/ 7 l l\ 
722 

\ 7 l 2 / 

^7n^ 

722 

(8.16) 

(8.17) 

V -d2 -d2

a 2dpda) 

The (0,1) and (0,2) components of the Einstein equations (8.14) then become 

Zl = G(dp

;y12- d a j 2 2 ) , 

Z2 = G(d^12-dp^yn). 
(8.18) 

Hence, Zl = G(dpji2 — Qalri) + hl(p,o) for some function h1 and we can use the 

remaining gauge freedom to set hl(p, a) = 0 [159]. The field equations are symmetric 

under p -H- a, l\R\ /2-R2, Zl ++ Z2 and we demand the solution to have the same 

symmetry so that 

^ = 0 ( ^ 7 1 2 - ^ 7 2 2 ) , 

Z 2 = G ( c \ 7 i 2 - d P 7 i i ) -
(8.19) 
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8 The self-gravitating bosonic membrane 

Substituting (8.19) into (8.13) for G + 0: 

1 
Z\ 

(8.20) 
Zl = {dl + d l ) Z ' - ^ Z \ 

z2 = (d2

a + d2

p)z2-±z2, 

and the field equations for Z1, Z2 and Z1 decouple5. The (0, 0) component of (8.14) 

is seen to be automatically satisfied using (8.19), and the (1,1), (2,2) and (1,2) 

components give 

^fab = (dl + d2

p)%b-^ab, a,be {1,2} (8.21) 

again using (8.19). The dynamical equations therefore all decouple and have the 

same form. The diagonal Einstein equations require that (liRi)2 = (I2R2)2 = 1 to 

get the oscillatory behaviour in (8.21) otherwise a constant term is added. From 

the periodicity in a and p the solutions are given by a Fourier expansion and using 

that Zl and %(, are real they become 

Z i = ^ ^ ^ ( ( ^ J V ^ H ^ / - 1 ^ j = 1,2, 
(8.22) 

7a6 = £ C < ( W ^ M ( ^ t c ^ " T
 + ^ - m , - n C " * U m n T ) . ^ { 1 , 2 } , 

m,n£Z 

where uimn — ^/m2 + n2 + 1/G, and 

Z' = 4 + A + E e l { m ( T + n p ) {«n)]^'mnT + «-m,-»c_ iw ,m"T) ' / = 3 , . . . . 9, 
m 2 + n 2 # 

(8.23) 

with UJ' = \ / m 2 + n2. The solution to the semi-classical approximation is therefore 

a sum of oscillating toroidal membranes with a metric that oscillates around the 

flat metric. Taking the two constraints (8.19) into account the number of degrees of 

freedom becomes 9 + 3 — 2 + 1 = 11 as X~ is not constrained. 
5 Note that taking the limit G —> 0 does not lead to the equations for the bosonic sector of the 

supermembrane. For the membrane the equations G = 0 => TV,- = 0 are solved exactly before 

linearizing taking gij to be the induced metric. 
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8.3 Discussion and conclusions 

In [159] a semi-classical quantisation of the supermembrane is performed by a Dirac 

quantisation where a} and a are interpreted as creation and annihilation operators, 

where states are created acting with a) on a vacuum that is annihilated by a. 

Supersymmetry seems to be essential for a consistent quantisation of the membrane, 

the vacuum-energy contributions for example cancel out between the bosonic and 

fermionic sectors [159]. I t would be interesting to try and extend the above semi-

classical solution to include either space-time or world-volume supersymmetry, and 

if the analogy with the supermembrane carries through the solutions of the linearized 

fermionic equations will be similar to (8.22) and (8.23). I t would also be interesting 

to consider a generalization with a cosmological constant in (8.9) thus linearizing 

around de Sitter or anti de Sitter space. 

To conclude, in this chapter we have determined a solution to the dynamical 

equations of a membrane action with an Einstein-Hilbert term linearized around 

a flat torus. The solution is an oscillation around the toroidal membrane with the 

metric oscillating around the flat metric. 
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9 

Conclusions 

In this thesis we have studied the scaling behaviour of different quantum field the­

ories given by the renormalisation group. 

We have shown how perturbative calculations of the infra-red limit can be im­

proved using general analyticity properties valid for all unitary quantum field theo­

ries. I t was also shown how the exact renormalisation group equation together with 

the operator product expansion can be used to get equations describing the scaling 

of theories with a background charge. Finally, it was shown how new solutions to 

a semi-classical approximation of the bosonic membrane can be found studying the 

low energy effective action. 

In chapter four the infra-red limit of a physical quantity is shown to equal the lim­

iting value of the Borel transform in the scale parameter, where the order of the Borel 

transform is related to the analyticity domain of the physical quantity in a complex 

scale parameter. In chapter five this was used to develop an approximation method 

for the infra-red central charge of a perturbed conformal field theory. Improving 

a one loop perturbative calculation, for the unitary minimal models perturbed by 

$ ( 1 3 ) , the approximation is very close to the exact results when maximizing the 

domain of analyticity. 

In chapter six the critical exponents of </?4 theory in three dimensions are ap­

proximated using the method from chapter four together with a conformal mapping 
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and a Pade approximation. The results are within the limits of other calculations. 

It would be interesting to use the result in chapter four to calculate the infra-red 

limit of other physical quantities in theories with a flow between an ultra-violet and 

an infra-red fixed point. Examples could be the theories discussed in [170] where 

there is a renormalisation group flow between two different WZW models in two 

dimensions, or the theory in [171] where there is a flow between different three di­

mensional conformal field theories constructed so that the ultra-violet and infra-red 

fixed points are S-dual. 

In chapter seven using the equivalence between the quantum group restricted 

sine-Gordon model and the perturbed unitary minimal models together with the 

exact renormalisation group equation and the operator product expansion, an equa­

tion is obtained describing the flow between unitary minimal models, also when they 

are not infinitesimally close in coupling space. By combining the operator product 

expansion and the exact renormalisation group equation higher order corrections in 

the coupling are moved into the off-critical structure constants (operator product 

expansion coefficients). This seems to be a useful way of studying the renormali­

sation group in theories where higher order corrections for the structure constants 

can be calculated, e.g. using the methods developed in [147, 146, 145] or solving to 

lowest order the renormalisation group equations for the structure constants. 

As already mentioned at the end of chapter eight, i t would also be interesting 

to try to extend the solutions of the linearized equations of motion for the bosonic 

membrane to a theory with space-time supersymmetry. I f a solution can be found 

the spectrum from a semi-classical quantisation can then be compared with the 

spectrum for the supermembrane in [159], and it can be checked if such a self-

gravitating supermembrane is still a solution to 11 dimensional supergravity. Finally, 

additional terms can be considered in the lagrangian like a cosmological term and 

the equation of motions can be linearized around different backgrounds. 

Quantum field theories are organized according to their scaling behaviour, and 

the study of scaling is therefore essential when trying to understand the structure 

of quantum field theory. 
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