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a Ph .D. thesis by 

Carlos Antonio Calcaneo Roldan 
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Abstract 

This thesis investigates the dynamical evolution of systems orb i t ing w i t h i n deeper 

potentials. In i t ia l ly we use a simple satellite-halo interaction to study the dynamical 

processes tha t act on orb i t ing systems and we compare these results to analytical theory. 

Deep images of the Centaurus cluster reveal a spectacular arc of diffuse light tha t stretches 

for over 100 kpc and yet is jus t a few kpc wide. We use numerical simulations to show 

that this feature can be produced by the t idal debris of a spiral galaxy tha t has been 

disrupted by the potential of one of the central cD galaxies of the cluster. 

The evolution of sub-halos is then studied in a cosmological context using high reso

lut ion N-body simulations of galactic mass halos that f o r m in a cold dark matter ( C D M ) 

simulation. C D M halos f o r m via a complex series of mergers, accretion events and violent 

relaxation. Halos are non-spherical, have steep singular density profiles and contain many 

thousands of surviving dark matter substructure clumps. This wi l l lead to several unique 

signatures for experiments tha t aim to detect dark mat ter either indirectly, through par

ticle annihilat ion, or directly in a laboratory. For the first t ime i t is possible to construct 

maps of the gamma-ray sky tha t result f r o m the annihilat ion of dark matter particles 

wi th in simulated dark matter halo distr ibutions. 
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Chapter 1 
Introduction 

There is overwhelming evidence that most of the mass in the Universe is made up of 

some fo rm of non-luminous "dark matter''' and tha t this material is not the usual baryonic 

matter of everyday life (protons, neutrons, electrons, etc.) but some particle wi th as yet 

unknown properties. Determining the nature of dark matter is one of the most impor tant 

unsolved problems in modern cosmology. 

Many scales have been probed for evidence in favour of dark matter: f r o m the cos-

mological or global scale of the Universe to the local scale of galaxies. U n t i l recently, the 

second of these methods was the most favoured because i t was relatively easy to extract 

in format ion f r o m the dynamics of nearby systems. Most recently, experiments on a cos-

mological scale (e.g. B O O M E R a n G [89], or The Supernova Cosmology Project [109]) 

are making possible detailed measurements of many cosmological parameters. In fact , i t 

is not uncommon to hear many enthusiastic cosmologists say tha t we are l iv ing in "The 

precision era of cosmology". 

By combining observations of astrophysical objects such as galaxies and clusters wi th 

assumptions for the dynamics of these objects i t is possible to construct theories that 

model their origin and evolution. Techniques have vastly improved over t ime; astronomers 

observe the Universe on many scales, f r o m local star clusters to distant galaxy clusters and 

beyond. To give an accurate explanation for these observations i t is impor tan t to make 

the most realistic models for the interactions tha t occur between astrophysical objects. 

The work presented in this thesis is relevant mostly to galactic and cluster scales; 

nevertheless, because all that we are about to discuss assumes the existence of dark 

matter , i t is impor tan t to have an understanding of why i t is reasonable to make this 

assumption. We shall begin by reviewing the most recent ma jo r observational results 

that are determining the fundamental parameters tha t define our Universe. 

1.1 Matter and energy in the Universe 

The quant i ty and composition of matter and energy in the Universe is of fundamental 

importance in cosmology. For simplicity, all forms of mat ter and energy may be wr i t ten 
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as a f rac t ion of the cri t ical energy density: 

fi0 = = Qrad + + 
Po 

where subscript 'o ' denotes the value at the present epoch, pQ = 3Hg/87rG « 1.88 h 2 g c m - 3 

2 7 8 h 2 M 0 k p c ~ 3 (in these expressions H Q = 1 0 0 h k m s _ 1 M p c _ 1 is the Hubble constant 

and h is a number in the range f rom 0.5 to 1 - w i t h h ~ 0.65 being the currently favoured 

value). In the present discussion we shall decompose the matter/energy density into 

three components: the f ract ion contributed by radiation (or relativistic species) firadi 

the matter component QM and a smooth contr ibut ion O A . (There is no a priori reason 

to consider only these components, this specific choice tries to reflect current measured 

values, only mat ter and radiation are self evident components.) 

One of the most well defined observations in cosmology ( w i t h a precision greater than 

0.05%) is tha t the cosmic microwave background radiates as a black body of temperature 

T 0 = 2.7277 K . This means tha t the contr ibut ion to the t o t a l energy density of the 

Universe f r o m photons may be calculated precisely to be J lyh 2 = 2.48 X 1 0 - 5 . I f neutrinos 

are either massless or very light then their energy density is also well known because i t is 

related to tha t of photons f 2 „ h 2 = 6 X | ( 4 / l l ) 4 / ' 3 f i 7 (considering tha t there are 6 neutrino 

species). Big-Bang nucleosynthesis ( B B N ) constrains the amount of addit ional relativistic 

species unless they were produced after the epoch of B B N [26]. 

Because the contr ibut ion of the radiation to the to ta l energy density in the Universe is 

so low, we shall continue this discussion taking into account only the other two components 

tha t we are considering, namely QM and Q^. 

The temperature of the Cosmic Microwave Background radiation ( C M B ) is almost 

isotropic throughout the sky. This is strong evidence tha t the Universe began in a state of 

inf ini te density. However, on the smallest scales probed the C M B presents a temperature 

anisotropy of A T / T ss 10~ 5 . These fluctuations may be used to determine the value of 

In the hot dense state of the early Universe all the particles were coupled. This includes 

photons and baryons (electrons and ions). As the Universe cools there comes a point when 

photons scatter f r o m the baryons. The C M B we observe is made up of photons which 

come to us f r o m the surface of this "last scattering". As the baryons accreted into the dark 

matter potential wells the pressure of photons acted as a restoring force, and this resulted 

in acoustic oscillations driven by gravity. These oscillations can be decomposed into their 

Fourier modes; the multipole amplitudes C / m of the C M B anisotropy are determined by 
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those modes wi th k ~ / H 0 / 2 . Last scattering occurs over a short period of t ime, this 

makes the C M B a snapshot of the Universe at the t ime of last scattering in which each 

mode is "seen" in a well defined phase of its oscillation. Modes caught at maximum 

compression or rarefaction lead to the largest temperature anisotropy, which results in a 

series of acoustic peaks. The position of the f i rs t peak depends on the value of Qa (in fact: 

/ ?s 2 0 0 / v ^ o ) [132]. Recent observations of the C M B [89] make i t possible to constrain 

the location of the f i rs t peak (/ = 200 ± 8 [71]) which in t u r n fixes the value of the to ta l 

matter/energy density of the Universe: QQ = 1 ± 0.1. 

The predicted primeval abundance of 4 H e (RJ 25%) was the f i rs t success of B B N . The 

consistency of the B B N predictions for the abundances of the light elements (D , 3 H e , 

4 H e , and 7 L i ) w i t h their inferred primeval abundances has been an impor tan t test of the 

Big-Bang model at early times. Of all the light elements, deuterium provides the best 

measure of the baryon density in the Universe. This is because the primeval abundance 

of deuterium is most sensitive to baryon density (oc l / p l ' J r y o n ) and its evolution since the 

Big-Bang is simple (stars only destroy i t ) . 

Local measurements, where about half the material has been through stars, do not 

reflect directly the pr imordia l abundances. Recently, deuter ium Lyman features in the 

absorption spectra of three high redshift (z> 2) quasars has allowed an accurate determi

nation of the primeval abundance of deuterium PD/PH — (3.0 ± 0 . 2 ) x 10~ 5 [27]. This , in 

t u rn leads to a value for the baryon density of the Universe of Qbaryonh2 = 0 . 0 2 ± 0 . 0 0 2 [27]. 

Current C M B measurements also provide a l im i t of fibaryonh2 > 0.019[71] which is con

sistent w i t h the previous result. 

A definite conclusion as to the value of Q0 is not far away, ul t imately the issue wi l l be 

settled by NASA' s M A P and ESA's Planck satellites (which are due to launch later this 

decade). They wil l be able to map the entire C M B sky w i t h unprecedented resolution 

( « 0.1°) . 

Another approach to measuring the to ta l mass/energy density is through the deceler

ation parameter, 

_ ( R / R ) 0 ^ 0 r i „ / -i 
1o = f ^ - = y l 1 + SPo/Po], 

which quantifies the present day slowing down of the expansion due to gravity. 

This method depends on an accurate knowledge of the luminosity distance (d^) for 

an object which, for low redshift z, is related to q0 via 

dLH0 = z + z 2 { l - q 0 ) / 2 + 0 ( z 3 ) (1.1) 
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thus, precision measurements of the f lux , J7, of objects w i t h known luminosity, L , can 

be used to determine q0. (The luminosity distance to an object can be inferred f r o m the 

inverse square law: = y/L/inJ7.) 

Recently, two groups (the Supernova Cosmology Project and the High-z Supernova 

Team) used accurate measurements of the flux f r o m objects of well defined luminosity 

(type la. supemovae — SNela) to conclude that the expansion of the Universe is accel

erating rather than decelerating; i.e. q0 < 0 [ 1 0 8 , 1 1 8 ] . This implies tha t much of the 

energy in the Universe is in an unknown component w i t h negative pressure. The most 

popular explanation for this new component is the existence of a cosmological constant, 

Q A 7^ 0. (Al though we are warned — see e.g. Ref. [ 1 3 3 ] — tha t Eq. ( 1 . 1 ) is not accurate 

enough at the redshifts of the SNela, both groups actually compute CLL as a funct ion of 

QM and Q\ therefore some modeling has been introduced.) 

Thus, by combining modern observations of the C M B [ 8 9 ] , w i t h recent observations 

of supernovae [ 1 0 9 ] , the currently favoured paradigm is a Universe in which the matter 

content corresponds to roughly one t h i r d of the to ta l density, i.e. QM m 0 .3 and there is 

an extra smooth component of dark energy tha t contributes Q\ ~ 0.6. The reality and 

physical nature of this component is currently being debated, but the constraint on the 

matter content is generally well accepted. 

I t is also clear tha t the small value for the baryon f ract ion in the Universe suggests 

tha t most of the matter ( ~ 9 0 % ) must actually be in the f o r m of some as yet unknown 

non-baryonic material (we shall see additional evidence for this in the next section). 

1.2 Astrophysical evidence for dark matter 

In 1 9 3 2 , Oor t analysed numbers and velocities of stars near the Sun and concluded tha t 

the amount of gravi ta t ing matter implied by these velocities was 3 0 % to 5 0 % higher than 

tha t which was due to the visible stars. Then, in 1 9 3 3 , Zwicky concluded tha t the velocity 

dispersions in rich clusters of galaxies required 1 0 to 1 0 0 times more mass to keep them 

bound than could be accounted for by the luminous galaxies themselves. 

I t is not s t ra ightforward to conclude f r o m these examples tha t this is evidence for 

some f o r m of exotic matter, but they do il lustrate how the dynamics of stars, galaxies 

and clusters can serve as a probe for the matter content of the Universe. 

Because they gather material f r o m such a large region of space, rich clusters pro

vide a fair sample of the matter in the Universe (clusters typical ly f o r m f r o m density 
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perturbations wi th a comoving size of around 10 M p c ) . The evidence for dark matter 

in clusters has t radi t ional ly been inferred f r o m the application of the v i r ia l theorem to 

galaxy motions wi th in the cluster. Because the v i r ia l theorem relates the to ta l kinetic 

( T ) and potential (U) energy for a bound object , i t is possible to extract a to ta l mass for 

clusters assuming tha t the system is in equi l ibr ium. 

There are several independent ways of "weighing" clusters. Maps of the X-ray bright

ness and temperature profiles are now good enough to allow estimates of the depth of the 

gravi ta t ional well confining the hot X-ray emi t t ing gas. Another method is based on the 

detection of large numbers of very fa int background galaxies whose shapes are distorted 

by the effects of light bending due to the clusters gravi ta t ional f ield. This technique has 

the advantage tha t i t offers very direct informat ion about the to ta l mass dis t r ibut ion , 

whatever its characteristics may be. 

Another way to estimate f rom clusters is based on an inventory of matter coupled 

w i t h B B N . Mos t of the baryons in clusters reside in the hot X-ray emi t t ing , intracluster 

gas and not in the galaxies themselves[150, 57]; the problem then reduces to determining 

the gas-to-total mass ratio, f g a s . Recent observations of clusters w i t h high X-ray lumi

nosity [ 4 8 ] * give a value of f g a s = (.059 t ^ h - 3 / 2 . I f clusters are a fa i r sample of the 

matter in the Universe then Qbaryon/^M = fgas, and the determination of Qbaryon f r o m 

B B N can be used to infer Q.M = 0 . 3 h - 1 / 2 . 

There is also circumstantial evidence at these scales (clusters and beyond) to believe 

that QM is significantly greater than Qbaryon- The quant i ty of structure observed in the 

present day Universe imposes strong constraints on the nature of the matter w i th in i t . 

There is no viable model for structure fo rmat ion wi thou t a significant nonbaryonic com

ponent for the matter . In a baryons-only Universe, density perturbations grow only f r o m 

the t ime of decoupling, at z~ 1000, un t i l the Universe becomes dominated by curvature, 

at z~ n;a

l ~ 20. The size of density perturbations inferred f r o m the C M B anisotropy 

would not have had enough t ime to grow and f o r m the non-linear structures seen today. 

W i t h nonbaryonic dark matter, perturbations begin to grow at mat te r / rad ia t ion equality 

and continue to grow unt i l the present epoch (or nearly so) leading to significantly more 

growth and making the observed large scale structure consistent w i t h the size of density 

perturbations inferred f r o m the C M B . 

Further evidence for the existence of dark matter is provided by the dynamics of galac-

*In fact, several recent analyses of large cluster samples have confirmed gas fractions in the region 

fgas w 15 — 20% (see e.g. Ref. [115] and references therein). 
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tic systems e.g. the rotation curves of spiral galaxies or the velocity dispersions of dwarf 

spheroidals. There is not enough luminous matter observed in galaxies to account for their 

observed kinematics, e.g. when the circular velocities of spiral galaxies are measured, i t 

is generally observed tha t as you measure the rotat ion velocity away f r o m the centre, i t 

increases unt i l i t reaches a constant value. This is in contrast to what is expected for 

a dis t r ibut ion of mat ter that corresponds to the luminous (stars + gas) matter in the 

galaxy. 

The smallest scale for which there is evidence of dark matter is tha t of the Local 

Group's dwarf spheroidals. Observations of the velocity dispersions in several of these 

systems [1] have supported for a long t ime tha t they are dark mat ter dominated, w i th 

mass to light ratios in the range of 10-100. 

1.3 Dark matter candidates 

Now tha t we have reviewed some of the arguments in favour of the existence of a non-

baryonic component to the to ta l matter in the Universe, we can t u r n our at tention to the 

specific nature of this material . 

There are many possible dark matter candidates. They range f r o m axions, w i th a mass 

m = 10~ 5 GeV 9 x 1 O _ 7 2 M 0 , to black holes of mass m = 1 O 4 M 0 . The basic property of 

being dark does not c lar i fy its nature. However, there are several categorization schemes 

which are helpful in organizing the candidates. 

We have already examined the f i rs t dist inct ion tha t can be made: Is i t baryonic 

or nonbaryonic? We have been examining evidence tha t most of the dark matter in 

the Universe is nonbaryonic. Further evidence against baryonic dark matter (at least 

to account for the dark matter in our own galaxy) has been provided by micro-lensing 

st udies towards the Large Magellanic Cloud ( L M C ) [83, 3]. 

As we have seen in previous sections, there are very compelling arguments in favour of 

an extra component of matter tha t is nonbaryonic. A m o n g the nonbaryonic candidates, 

an impor tan t categorization scheme is the "temperature" and interaction nature of the 

dark matter particles. Ho t dark matter ( H D M ) candidates are particles tha t were moving 

at relativistic speeds at the t ime tha t galaxies could jus t s tar t to f o r m . Cold dark matter 

( C D M ) candidates are particles tha t were moving non-relativistically at tha t t ime. Studies 

of galaxy format ion may provide clues as to whether the dark mat ter is hot or cold. Both 

H D M and C D M are "collisionless" particles that interact very weakly wi th themselves 
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and w i t h baryons. Another possibility is tha t of "collisional" dark matter in which the 

particles interact wi th themselves (but not w i t h the baryons) via the strong force. 

The prototype H D M candidate was a l ight neutrino. I f a l ight ( m „ £ lOOeV) Dirac 

neutrino exists, its cosmological density would be Q,uh.2 m „ / 9 3 e V [ 7 4 ] . N-body simula

tions of structure format ion in a Universe dominated by hot dark mat ter do not reproduce 

the observed structure[149] and thus i t has been ruled out . 

The leading C D M candidates are the axion and weakly- interact ing massive particles 

( W I M P s ) . Axions are spinless l ight bosons which appear in Q C D models. Laboratory 

searches, stellar cooling and the dynamics of supernova 1987A all constrain the axion to 

be very light (less than a few eV) [ i l l ] . The window where these particles are viable C D M 

candidates is get t ing smaller, but st i l l there is an acceptable range between around 10~ 5 

and 1 0 _ 2 e V where they pass all observational constraints (see e. g. Ref [14]). W I M P s are 

stable particles which arise in extensions of the standard model of electroweak interactions. 

Those discussed most of ten are heavy fourth-generat ion Dirac and Ma jo rana neutrinos 

and the neutralino and sneutrino in supersymmetric models. W I M P masses are typically 

in the range lOOGeV to a few eV, and they have interactions w i t h ordinary matter which 

are characteristic of the weak interaction. 

The most promising W I M P candidates arise w i t h i n the f ramework of the M i n i m a l 

Supersymmetric Standard Model (MSSM) . Al though these particles interact only weakly 

w i t h ordinary matter they do have a non-zero cross section for self-interaction and a 

weak-interaction coupling to ordinary matter . As we shall see in Chapter 4, this opens 

the possibility to experiments for the detection of dark mat ter . 

Indirect detection may be achieved by observing high energy photons (7-rays) which 

are produced when a W I M P particle and its antiparticle meet and annihilate. These 

7-rays may be produced wi th a continuous energy spectrum; when they are a product of 

the decay of the n° mesons produced in jets f r o m W I M P annihilations, or they may be 

monochromatic; when they arise as the result of two neutralinos direct ly annihilat ing into 

two photons or a photon and a boson. Monochromatic 7-rays would provide an excellent 

signature for dark matter i f they were to be observed at energies of the order of the 

W I M P mass. Al though the detailed fo rm of the encounter for annihilat ion is d i f f icul t to 

describe concisely, the physics of this interaction (i .e. its intrinsic scattering probabil i ty) 

is contained in a, the cross section for annihi lat ion. I f a is known for an interaction of 
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particles a w i t h particles b, then we may wr i te 

n

P = {nav)nbo 

where np is the number of particles produced by the interaction per unit t ime, na the 

number of "a" particles, rib the number of "b" particles and v is the relative velocity 

between them. I f we consider only annihilations between the same type of particle (na = 

lib = n) and, i f instead of measuring the number of interacting particles we only have an 

idea of their particle density h, then we may rewrite this expression as 

I f we fur ther consider the physical density of the annihi lat ing particles p, we arrive at 

an expression for the to ta l number of products produced after the annihilat ion of two 

supersymmetric particles: 

Here mx represents the mass of a supersymmetric particle. The particle characteristics 

relevant to annihilation are completely contained in the parameter K = ( u c r ) / m 2 . The 

interaction cross section and mass are calculated using techniques developed in Q C D for 

the interaction of baryonic matter in which Feynman diagrams are used to describe all 

of the possible processes that lead to a specific interaction (see e.g. [74] and references 

therein). In the particular case of the neutralino, the cross section for annihilation has 

now been calculate both for continuum as well as monochromatic 7-rays (see [13, 138, 12] 

and references therein). The range of possibilities for the parameter K is large ( f rom 

0.007 x 10 - 3 0 c m 3 s - 1 G e V - 2 to K < 150 x l O - ^ c m ^ G e V - 2 [12]) therefore, in the 

absence of fur ther constraints, we shall be using the median value for the velocity averaged 

cross section of < av > = 1 0 - 3 0 c m 3 s _ 1 . 

Direct detection of W I M P s would be the f inal t r i u m p h for dark mat ter theories. Cur

rent searches for dark matter rely on the fact tha t these particles interact through the 

weak force wi th ordinary matter. In many of these experiments, detection is achieved by 

measuring the slight increase in temperature that is caused w i t h i n a pure crystal when 

single W I M P s reach the nuclei of its atoms; the precise increase in temperature depends 

on the mass of the particle that impacts the nucleus and thus this detection scheme can be 

used to define precisely the nature of the impact ing material . To ensure tha t there is no 

spurious heating due the interactions of other particles (such as muons, which are ubiq-

hp = (va)n2. 

(va) n 
m 

(1.2) 
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uitous in particle detection experiments) the crystal is isolated in laboratories commonly 

located many miles under the earth (in unused mine sections). 

Despite these efforts at isolating a clear detection their is s t i l l the possibility tha t 

an increase in temperature of the crystal may be due to something other than W I M P 

impacts; any detection would then rely on our confidence in the estimates made for the 

background. How could we eliminate this confusion? Drukier , Frees and Spergel [43] have 

shown that , due to the Earth 's movement around the Sun (and the Sun's movement in 

the Galaxy) a signal produced by W I M P s would have an annual sinusoidal modulat ion 

which peaks in the spring. Thus, observing variations of the crystals temperature increase 

during the year could provide a clear signal for dark matter . 

Recently, Spergel and Steinhardt [124] have proposed the existence of dark matter 

particles w i t h strong self-interactions. A key feature of these particles ( i f they are to re

produce impor tant astrophysical features) is that their mean free path is in the range 

of l kpc - I M p c at the solar radius. This implies tha t the rat io of their scattering 

cross sections to their mass must lie in the same range as tha t for neutrons and pro

tons ( C 9 ( 1 0 _ 2 3 c m 2 G e V - 1 ) ) , imply ing that natural candidates of this type of dark matter 

are exotic hadrons — neutral , stable particles tha t interact through the strong force w i t h 

themselves but not w i t h ordinary matter . Another possibility is tha t there is a new type 

of gluon tha t arises in supergravity or superstring models. Because these particles have 

such a large cross section for self-interactions, they are more similar to a gas than to stan

dard cold dark matter (e.g. strong interactions now allow the defini t ion of a dark matter 

temperature) which allows i t to reproduce astrophysical properties (such as the number 

of sub-halos in clusters) more effectively tha t standard cold dark matter . 

Progress in fundamental physics may soon tell us whether exotic new particles actually 

exist, and what their masses and interaction cross-sections are. Calculating how many 

should survive f r o m the first millisecond and how much they contr ibute to the dark matter 

density would then be, in principle, as s t ra ightforward as calculating how much helium 

or deuterium survives f r o m the first few minutes. 

No matter what turns out to be the final solution to "the dark matter problem", 

i t is clear tha t understanding the dynamics of astrophysical systems is very impor tan t 

for a complete description of the Universe. For this reason, in this thesis we shall be 

concentrating on the dynamical interactions of dark mat ter dominated systems that we 

wi l l associate to galaxies and clusters. 
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1.4 Following the evolution of C D M structure 

One of the most intensively studied models for structure format ion is based on a Uni

verse dominated by C D M . In particular, a benchmark for comparison w i t h observations 

has been the so-called "standard C D M model" ( sCDM) which involves the fol lowing as

sumptions: the pr imordial fluctuations are Gaussian and have a power spectrum that is 

linear [135]: P(k) oc kn and n « 1, the Universe is dynamically dominated by C D M which 

interacts only gravi tat ional ly w i t h other matter , the rat io of t o t a l matter/energy density 

to the cri t ical density of the Universe is unity. 

The C D M model has been explored in great detail over the past 2 0 years through N -

body simulations and semi-analytic modelling. A n impor tan t property of the simulations 

is tha t subgalactic-mass halos are the first to collapse and separate out f r o m the expansion 

of the Universe. These halos then grow either gradually by accreting smaller clumps, or in 

big jumps by merging wi th other halos of comparable size. In other words, the format ion of 

s tructure is hierarchical: small objects f o r m first, larger objects f o r m later. The spectrum 

of the f luc tuat ion of cold dark matter thus specifies completely the evolution of the dark-

matter halos in which, eventually, galaxies wi l l f o r m . 

The outcome of these simulations is tested against the data in various ways, such as 

by comparing the relative amplitude of clustering on different scales w i t h what is actually 

observed. A n uncertainty in comparing such models w i t h the real Universe concerns 

the relation between the galaxies and the dark matter . This involves complicated gas 

dynamics, feedback f rom star fo rmat ion and other physical processes. 

S C D M has now been replaced by A C D M (in this model there is an explicit smooth 

component to the matter/energy density of the Universe O A ~ 0.6), but the j u r y is st i l l 

out on whether this wi l l be the model that prevails. Nevertheless, N-body simulations are 

currently the best tool to explore the nonlinear evolution and astrophysical properties of 

a Universe dominated by C D M . 

The f i rs t numerical studies of collisionless dark matter halo collapses were carried 

out by Peebles [107] and Whi t e [148]. Al though the final virialised structure had global 

mass and size comparable to observed structures, all traces of substructure had vanished. 

Named the "overmerging" problem, small dark matter structures were in i t ia l ly resolved 

in the simulations but disrupted as soon as they merged into a more massive structure. 

This turned out to be a resolution problem [99], and we can now resolve many thousands 

of dark matter substructure halos orb i t ing w i t h i n the virialised extent of cluster, galactic 
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and sub-galactic halos. 

Numerical simulations have now achieved sufficient resolution tha t allows us to quan

t i f y the global and internal structure of dark matter halos. From cluster to sub-halo mass 

scales. C D M halos are t r iaxia l structures w i th cuspy singular density profiles tha t are well 

f i t ted by a funct ion of the form T : 

_ Po o\ 
P ~ ( r / a ) T [ l + ( r / a ) " ] ( ^ ) / " ' 1 ' ' 

A very popular profile (and the one we shall be using most in this work) has (a,(3,j) = 

(1 ,3 ,1 ) [103]. 

One of the principle reasons for s tudying halo-halo interactions is tha t they may allow 

us to understand the evolution of galaxies w i t h i n clusters or satellites w i th in the M i l k y 

Way. Galaxies are observed in many different environments, either grouped together 

to f o r m clusters or weakly clustered in the f ie ld . A n impor t an t part of s tudying their 

evolution is to understand what are the principle t ransformations tha t they suffer as they 

orbi t wi th in these dense environments. 

Galaxies are thought to fo rm at the centre of dark mat ter halos and, i f the halo is 

large enough, i t should dominate the gravi ta t ional interaction between galaxies. Thus, by 

studying idealised halo-halo interactions we hope to understand impor tan t factors tha t 

influence the evolution of galaxies. 

We shall begin w i t h a review of the principle theoretical considerations relevant to N -

body interactions. Because i t is very d i f f icu l t to account for all of the dynamical processes 

which are taking place in a fu l l N-body simulation, we wi l l simulate a simple satellite-

halo interaction. Understanding this simulation w i l l help to analyse the more complex 

interactions tha t occur dur ing the hierarchical fo rmat ion of galactic mass or cluster mass 

C D M halos. 

We apply these simple t idal interaction models to explain the possible origin for a 

particular feature of the diffuse light in the Centaurus cluster. Again , using numerical 

simulations of the interaction between galactic halos w i t h i n a cluster. 

The most promising C D M particles interact only weakly w i t h ordinary matter. How

ever, they do have a small interaction cross-section for self-annihilation into high energy 

photons. I t is through this process tha t we hope to detect the presence of dark matter 

in the Galactic halo by observing a characteristic pat tern of gamma-rays across the sky. 

' A more complete discussion of the particular forms used in this work, and meanings of the constants 

in this formula can be found in the appendix 
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We shall use a high resolution simulation of the Local Group to make the first realistic 

maps of the gamma-rays resulting in the annihilation of dark matter w i t h i n the halo of 

the M i l k y Way. 

The ul t imate success of the cold dark matter model w i l l be the detection of dark matter 

particles in the laboratory. By s tudying the properties of the Local Group simulation and 

applying the theory of t ida l interactions i t w i l l be possible to extrapolate beyond the 

resolution l imits of the simulation and make predictions tha t are interesting for the direct 

detection of dark matter. 

The principle aim of this work is to study the dynamics of C D M halos wi th in halos. 

By doing this we wi l l be able to see how these interactions can contribute to the or i 

gin of observable properties (such as diffuse intracluster l ight) and how we can use the 

simulations to make predictions which are relevant to the detection of dark matter. 

This thesis is organized as follows: in Chapter 2 we present the main theory for the 

t idal interactions of halos wi th in halos; then, in Chapter 3, we use N-body simulations 

to explain the origin of diffuse l ight in clusters. Chapter 4 contains our detailed use of 

the simulations to address questions relevant to the detection of dark matter. A short 

summary of the main conclusions and the work s t i l l to be done can be found in Chapter 5. 



Chapter 2 
Tidal evolution of halos 

in halos 

One of the ul t imate aims of an N-body dark matter cosmological simulation is to allow 

us to make inferences over the bulk properties of galaxies in the Universe such as their 

positions, masses and sizes. In the hierarchical simulation tha t we shall be examining 

in chapter 4 many processes are tak ing place as i t evolves to f o r m the structures which 

we associate w i t h the Local Group. Some of these processes are t ru ly physical while 

others are due to the numerical l imitat ions inherent to any computat ional experiment. 

I t is impor tan t to distinguish between these two types of effect i f we are to interpret the 

simulations correctly and apply the results to real astrophysical structures. 

In this chapter we shall investigate the simplified dynamical interaction of one halo 

orb i t ing wi th in another. Fi rs t we review the theory of the ma jo r processes that occur in 

such interactions and then we present a high resolution simulation of the evolution of two 

halos w i t h a 10:1 mass rat io (in which the less massive one is placed on a nearly circular 

orb i t around the other) . The lessons learned in this simple satellite-halo interaction wi l l 

lead us to a better understanding of the more complicated interactions that take place 

dur ing the hierarchical format ion of a cluster, which is more d i f f icu l t to simulate and 

complicated to model in complete detail . 

2.1 The evolution of N-body systems 

There are many processes that occur during the interaction of N-body systems, some 

of these are ar t i f ic ia l ; introduced by the l imita t ions of a numerical calculation. Other 

processes are physical interactions tha t we should expect to observe in nature. I t is 

impor tan t to distinguish between these effects i f we are to understand the dynamical 

evolution of an N-body system. 

A m o n g the most impor tan t numerical effects are: particle evaporation due to two 

body relaxation, particle-halo heating and premature t idal disrupt ion due to poor force 

13 
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and mass resolution. Physical effects include: halo-halo collisions, dynamical f r i c t ion , 

t idal s t r ipping and merging. 

The particles that make up an N-body system are meant to represent a collisionless 

fluid (in the particular case of interest here, in which the real particle mass is of the order 

of the proton mass). T h a t is, each particle evolves in what is assumed to be a smooth 

background potential . For any real simulation this s i tuat ion is not exactly true since a 

typical object is made up of a collection of discrete particles. The potential on each particle 

is only approximately smooth ( i t is actually due to the presence of the other particles), 

and varies each t ime i t experiences a close encounter w i t h any other particle. Over a 

period of t ime, called the relaxation t ime, a particle loses all in format ion of its in i t ia l 

orbi t and, i f the encounters transfer enough energy to one of the particles, i t may become 

art i f icial ly unbound, changing the in i t ia l system we are a t tempt ing to simulate. Because 

this effect is slow in nature i t has been termed "particle evaporation" (See e.g. [21]). 

However i t has been shown [142, 99] tha t two body evaporation is impor tan t only for 

halos w i t h 30 particles and most modern simulations have much higher resolution than 

this; nevertheless, this effect could become impor tan t i f the system loses most of its mass 

due to other mechanisms such as t idal s t r ipping [78]. 

As a background particle passes through, or nearby, a halo i t distorts the system and 

increases its internal kinetic energy. Moore et al. (in Ref. [99]) conclude tha t cosmological 

simulations of individual halos have reached sufficient resolution to avoid this effect. 

Al though for the present, we are concentrating on the interaction of a single sub-halo 

wi th in a larger one, when there are many sub-halos an addit ional heating term arises 

due to the encounters between them. As in particle-halo heating, the sudden encounter 

between sub-halos transfers energy impulsively between them. Moore et al. [99] estimate 

that halo-halo heating is an order of magnitude more impor tan t than that f r o m heavy 

particle encounters. The importance of this process has not been investigated in recent 

high resolution cosmological simulations (we shall see tha t i t is not an impor tant effect). 

A pure dark matter N-body simulation at tempts to model a system of collisionless 

particles interacting gravitationally. This is done by replacing the point-like gravitat ional 

potential w i t h a softened potential in which each particle can be visualised not as an actual 

particle of dark matter but rather as a bundle of such particles w i t h softening radius rs. 

In practice, gravi tat ional softening can affect results on a scale of a few softening radii , 

so we must take this into account when analysing our results. 

We shall now tu rn our at tention to some of the physical processes tha t are present in 
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the satellite-halo interactions which we w i l l focus on in this thesis. 

2.2 Dynamical friction 

The term "dynamical f r i c t i on" was f i rs t introduced in 1943 by Chandrasekhar [31] in an 

a t tempt to explain the drag experienced by a massive object moving through a smooth 

background and to distinguish i t f rom the concept of viscosity which was more famil iar 

at that t ime. He was emphatic in point ing out tha t the physical ideas underlying each 

concept were quite different: while viscosity was a result of the shear force of an element 

of gas over another, dynamical f r i c t ion pertained to the deceleration that massive objects 

would suffer due to the t ra i l ing density wake of background particles. 

Following Binney and Tremaine [21] let us begin by w r i t i n g down the force a test 

particle of mass M would experience when moving at speed v at some radius r on a 

circular orb i t wi th in a halo made up of many particles of mass m 

F 
- 4 7 r l n A G 2 M 2 p ( r ) 

e r f ( X ) - 4=e -X (2.1) 

here vc is the speed of circular orbits in the halo, X = vc/(y/2a); w i th a the velocity 

dispersion of the halo, erf() is the error func t ion (see e.g. [21]), and In A is known as 

the Coulomb logari thm which is a measure of the max imum impact parameter b m a x that 

should be considered in encounters, A = g ^ f + ~ y - b m a x is roughly the distance at which 

the density of background particles is much smaller than in the vic in i ty of the perturber 

(and we w i l l take i t to be the radius of the halo formed by the background). For example, 

in the case of the interaction between a galactic sized halo and a satellite (which we wi l l 

be examining) In A w 2. 

We shall consider tha t the perturber moves w i t h i n a N F W [103] type halo which has 

a density profile of the fo rm p(r) = ( r / a ) ( i + r / a ) 2 • By M a k i n g the approximation that the 

halo has velocity dispersion a = v c / y / 2 we may wri te the force in Eq. (2:1) as 

Fr - In A G M r 

M a 2 e r / ( l ) - ^ e " 1 1 1 (2.2) 
( l + r / « ) 2 / W o ) 

where a is the scale radius and / ( # ) is a func t ion tha t results in integrating the N F W 

profile to obtain the mass*. The force in Eq. (2.2) is tangential to the movement and 

so affects the dynamics by lowering the angular momentum per unit mass, the rate at 

which this happens ( f rom the angular momentum at radius r on a given circular orbi t 

* f ( x ) = l n ( l + x) — Y ^ J , see the appendix. 
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wi th velocity v; L = rv) is: 

dL VC I Tpeak f ( r / a ) + 
(r/a)2 1 dr 

dt 2 Y r f ( r / a ) f { r p e a k / a ) .' (l + r / a ) 2 \ dt 

thus 

dL 
~dl 

Fr 

~M 
(2-3) 

is an equation for the radius of the per turbing particle w i t h respect to t ime. This equation 

may be solved for in i t ia l conditions r(t = 0) = r,-. We shall solve i t for the conditions of 

our simulated halo to follow and compare this analytical prediction w i t h measurements 

f r o m the simulat ion. 

In the simulations that follow, we wi l l not be evolving point particles w i t h i n a halo, 

instead we shall explore the interactions of extended halos o rb i t ing wi th in larger halos 

tha t have density profiles similar to those found in cosmological simulations. 

T ida l s t r ipping is one of the most impor tan t factors tha t contr ibute to the dynamical 

evolution of halos wi th in halos. A t a certain radius of any sub-halo the gravitat ional 

potential imposed by the parent becomes greater than the self gravi ta t ion of the halo. 

The sub-halo then loses particles which become bound to the deeper potential . As the 

sub-halo orbits the parent i t continually loses mass, and may eventually be completely 

disrupted depending on how deep its orbi t goes into the parent potential and on the 

number of particles we have to resolve its central core. 

Early work on t idal s t r ipping (see e.g. Richstone [113] or M e r r i t [90, 91, 92] and 

references therein) were based on calculations w i t h halos tha t were either isothermal 

spheres or had K i n g profiles. The density profiles of cold dark mat ter halos have now 

been studied by many authors including Navarro et al. [103, 104], in i t ia l ly for present 

day halos in a f l a t cosmology, and now extended to include the effects of cosmology and 

redshift [45]. These profiles have the f o r m : 

where p0 and a are the characteristic density and radius of the halo (more details of the 

" N F W profi le", can be found in the appendix). 

2.3 Tidal stripping 

PNFw(r) = -
Po (2.4) 

- ( 1 + ^ ) 2 

a v 1 a ) 
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We may directly integrate the density profile to obtain the to ta l mass contained wi th in 

radius r : 

M(r) = Mvir x . f N F f X ) . 

in this expression, 

x v 
/NFW{X) = l n ( l + a;) - — — and x = -

1 + x a 

and we have introduced the concentration parameter cj^pw = 

By defining the vi r ia l mass, M„ t> to be the mass of a sphere of over-density A : 

= y A p > 3

i r (2.5) 

the structure of the halo may be completely defined by specifying the concentration. 

In general A depends on the cosmology and may be approximated by (Eke et al. [46]) 

f ft0 3 0 , i f A = 0 ; 
A ( f i , A ) = 178^ 

[ ft0-45, i f n + A = I . 

Eke et al. [45] have performed a range of cold dark mat ter halo simulations and f ind 

a convenient relation between the concentration parameter and v i r ia l mass of a halo, 

namely: 

( M \ "0 0 7 

Thus, by specifying a cosmology and a halo mass we may completely define its properties. 

From these definitions i t is straight forward to wri te the peak circular velocity vpeak, 

orbi ta l frequency u and potential $ of an N F W halo as a func t ion of its radius: 

2 i \ _ GMvir fNFw{Xpeak) ( 0 _ s 

a XpeakJNFW(CNFW) 

,2 ( r \ _ GMvir fNFwjx) . 
^NFwin - n 3

 X - 3 7 7 - T> 
a X^JNFW(CNFW) 

GMvir f N F W ( x ) + x / ( l +x) 
<&NFw{r) = — x — / , • (2.9) 

a XJNFW\CNFW) 

Now consider a small halo of mass m and maximum circular velocity vs moving on a 

circular orb i t of radius R around a large halo of mass M and max imum circular velocity 

Vp. There w i l l be a radius f r o m the centre of the small halo at which its self gravi tat ion 

becomes weaker than the t idal force of the large halo, we call this the t idal radius rt. 



2. T i d a l evolut ion of halos in halos 18 

To compute i t , recall tha t the force per unit mass of a particle around the small halo at 

radius r is 

G'm(r) 
Fsmaii{r) — 

r2 

and tha t the t idal force imposed by the large halo is: 

F <P-,A fr>GM(R) G0M(R)\ 

(Note tha t both forces are calculated w i t h respect to the small halo centre). 

Equat ing these forces we f ind an expression for the t ida l radius: 

R \ z m ( r ) _ 2 _ R dM{R) 

r t ) M{R) M dR 

which (after subst i tut ing the explicit forms for the mass given in 2.7) gives a numerical 

equation for the t idal radius: 

f { x t ) ( xt Y (asVp" 

! { X R ) \ X R ) \aRv. 

3 / _ t / \ 2 r ~2 
XR 

(l + X R ) 2 f ( x R ) 
(2.10) 

(here xt = ^ & XR — — and as, CLR are the scale radii of the small and large halo, 

respectively). 

A t small orb i ta l radii , resonances between the small halo force and the t idal force 

imposed by the large halo become more impor tan t for s t r ipping particles out of the small 

halo (see e.g. . Weinberg [145, 146]). Following K l y p i n et al. [78] we assume that most of 

the s t r ipping occurs at pr imary resonance u(r) = u>(R). This leads to a second equation 

for the t ida l radius: 

f ( x t ) _ ( x t \ 3 f a s V P \ 2 

J{XR) \XRJ \ a R v S J 

Thus, for a particular case we shall take the smaller of the radii found using Eqs. (2.10 

& 2.11). We have verified the result of K l y p i n et al. [78] tha t for XR Z, 2, the equal force 

condition (2.10) is the most impor tant effect for removing particles. For radii deeper 

wi th in the potential of the large halo, i t is the resonance condit ion (2.11) tha t dominates. 

In a f u l l cosmological simulation, all of the physical and numerical effects just discussed 

combine to shape the structures which we associate w i t h astrophysical objects (clusters, 

groups, galaxies, dwarf galaxies,etc.). In these simulations i t is d i f f i cu l t to isolate effects 

such as s t r ipping, dynamical f r i c t ion and merging, yet i t is necessary to understand them 

if we are to build a good description of the real physical wor ld . 

Observations have reached an unprecedented quali ty; i t is now possible to measure 

different properties of astrophysical objects such as: the bound mass associated to cluster 
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galaxies (through weak gravi ta t ional lensing), the t idal radii of o rb i t ing galactic satellites 

(e.g. by observing t idal tails f r o m dwarf spheroidal galaxies) and central halo structure 

using high resolution rotat ion curves of spiral galaxies. Thus, i t becomes relevant to 

investigate how these properties (bound mass, t ida l radius, circular velocity) change w i t h 

t ime. When do halos completely disrupt through their interactions w i t h i n a parent halo? 

Understanding these processes is part icularly impor tan t for direct and indirect detection 

of cold dark mat ter which we shall explore in detail in the chapter 4. 

To answer these questions, and to avoid the complications imposed by a f u l l cosmo-

logical s imulat ion, we now perform a high resolution simulation of a single substructure 

halo orb i t ing w i t h i n a larger parent halo. 

2.4 A simple satellite-halo interaction 

We start by constructing two model dark matter halos which we shall refer to as parent and 

satellite. The parent halo has the fol lowing characteristics: mass M M r = 1 X l O 1 2 h _ 1 M 0 , 

vi r ia l radius R V ! > = 2 2 0 h - 1 k p c and peak circular velocity Vpeak = 200 k m s - 1 . The 

satellite was bui l t to be ten times less massive and its parameters are r U I y = 1 0 0 h _ 1 k p c 

and Mpeak — 95 k m s - 1 . Bo th models have a radial density that follows the N F W profile 

w i th concentrations c p a r e n t = 11.5 and csatemte — 13.5; consistent w i t h those expected in 

a A C D M cosmology for halos of this mass. The rota t ion and density curves are plotted 

in Fig . 2 .1 . 
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Figure 2 .1 : The rotat ion curves: V c = y ' G M / r ( left panels) and density profiles (right 

panels) for the two halo models discussed in the text . Solid lines correspond to the parent 

halo; dashed ones to the satellite. 
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To build the halos we use the code MakediskGal (Springel, V . private communication) 

which sets up a collection of particles in equil ibrium tha t fol low the N F W profile (this is 

done by solving the Jeans equation for p(r) = p(r)NFW and assuming isotropic orbi ts) . 

The models are evolved using the parallel treecode " P K D G R A V " (Stadel et ai, in 

preparation). I t has an open ended variable t ime step cri ter ia based upon the local 

acceleration [110] and uses a spline force softening tha t is completely Newtonian at twice 

the softening lengths which, in this case are r s = 5kpc for the parent halo and rs = 3kpc 

for the satellite. 

The satellite is set in i t ia l ly on a circular orb i t around the parent at 400kpc. The 

parent halo particle rn<iss is £3 1.0 x 1O 7 M0 and for the satellite i t is « 2.5 x 1O 5 M0. 

Figure 2.2: A snapshot of the simulation at 20 Gyr as the satellite halo is about to enter 

the region where i t becomes completely disrupted. The image represents the density 

contrast of the particles f r o m the satellite. For clarity, particles f r o m the larger halo are 

not plot ted. 
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Figure 2.2 shows a snapshot of the simulation at 20 Gyr . The grey scale represents 

the local density of particles and for clarity, only the particles in the satellite are plot ted. 

The satellite sinks into the central regions of the parent halo due to dynamical f r i c t ion . 

In F ig . 2.3 we plot the separation between the centres of the parent and satellite halos 

as a funct ion of t ime. The points are directly measured f r o m the s imulat ion, both lines 

are numerical solutions to Eq. 2.3. The dashed line was calculated accounting only for 

dynamical f r ic t ion while the solid line also incorporates an estimate of the mass loss due 

to t idal interactions (as measured f r o m the s imulat ion) . Note the presence of "wiggles" 

in the measure data; they arise because the orb i t of the satellite is not exactly circular. 

The actual t ime taken for the satellite to sink is almost twice as long as the theoretical 

estimate wi thou t accounting for the mass loss due to t idal s t r ipping. When we account 

for this mass loss we get a better agreement for the radius of the satellite halos. Thus the 

Chandrasekhar formalism for dynamical f r i c t ion is very useful as a f i rs t approximation 

for the amount the satellite halo would sink into the parent (the abrupt deviation beyond 

20Gyr could be improved w i t h a more precise model for the s t r ipping) . 

As the satellite halo orbits the parent, i t continually loses mass to the larger halo due 

to t idal s t r ipping. In F ig . 2.4 we plot the evolution of the to ta l bound mass mtota[, the 

peak circular velocity Upeafc> 

the radial velocity dispersion aid a n d the maximum radius 

rt of the bound particles in the small halo. 

From Fig . 2.4 we clearly see that the peak circular velocity vpeak of a sub-halo is a 

fa i r ly stable quanti ty, thus i t can be regarded as a label tha t identifies and characterises 

the halo for many Gyr (over 20 Gyrs vpeak changes by only ~ 20% compared to a mass loss 

of 75%). Also, Vpeak is the quant i ty tha t can be compared most easily w i th observations 

(although inferr ing vpeak f r o m the rotat ion curve or velocity dispersion of the luminous 

component of a galaxy is not straight fo rward ; e.g. , Ref. [103]). Thus, i t is of great 

interest to study the behaviour of this quant i ty for cosmological simulations (we wi l l do 

this in chapter 4) . 

We find that the t idal radius decreases linearly w i t h t ime and we see an almost per

fectly linear mass loss as the satellite gets stripped by the potential of the parent galaxy. 

We were able to resolve the satellite up to « 26Gyr at which t ime i t completely disrupts 

because we run out of particles to resolve the core. Thus, even at the high resolution used 

here, we are unable to resolve a massive satellite o rb i t ing w i t h i n 50 kpc of a galactic mass 

halo. In the l imi t of infini te resolution, i t should always be possible to resolve a bound 

core since the density profile is singular. 
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Figure 2.3: This figure shows the orbi ta l decay of the satellite. The dot ted points are 

measured directly f r o m the orb i t while the lines are the analytical prediction for the 

separation; w i t h (dashed line) and wi thou t (solid line) accounting for the t idal s tr iping. 

The presence of the wiggles in the measured decay indicates tha t the orbi t is not exactly 

circular. 

This mass loss and sudden disruption can be understood i f we examine the evolution 

in t ime of the potential structure of the satellite halo which is plotted in F ig . 2.5. Each 

curve corresponds to a different t ime during the s imulat ion, s tar t ing w i t h the lower most 

curve at t = 0 and increasing wi th t ime, sampling every 2 G y r in the direction of the 

arrow, unt i l the end of the simulation (at 26 G y r ) . We can see direct ly how the potential is 

evolving: in i t ia l ly there is a large potential difference between particles deep in the centre 

of the satellite w i th respect to those at its edge, i.e. the particles in the core are t ight ly 

bound. By the end of the simulation (uppermost curve), the potential at the centre of the 
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Figure 2.4: The evolution of the satellites bound mass (left panel), peak circular velocity 

(middle panel, solid curve), radial velocity dispersion (middle panel, dot ted curve) and 

t idal radius (right panel) as discussed in the text . 

satellite is almost the same as tha t at its edge, which means tha t particles in the satellite 

need very l i t t l e energy to escape into the surrounding halo. 

Finally, in Fig . 2.6 we plot the difference in potential f r o m the central regions of the 

satellite halo to tha t at its edge (measured at the in i t ia l v i r ia l radius of the halo to be 

<3>0 « - 4 . 6 X 1 0 1 3 M 0 k m 2 s ~ 2 ) . The difference $bind = \ ® { r ) ~ $o | c a n D e viewed as 

the energy necessary to remove central particles f r o m the halo, i.e. a "binding energy". 

Clearly, as the satellite moves deeper into the potential of the parent halo, less energy 

is needed to unbind particles f r o m the satellite. In fact, by the f inal t ime, the binding 

energy for the satellite is more than an order of magnitude less than at the start of the 

simulat ion. Thus at late times i t takes very l i t t l e energy to completely disrupt a poorly 

resolved cuspy satellite halo. 

For each value of the binding energy we may ident i fy an escape velocity v e s c a p e . This 

is defined by assuming the to ta l kinetic energy equivalent to i t : $bind = vlScapemvir/2-

Figure 2.6 also shows (on the r ight vertical axis) the escape velocity for the satellite halo. 

By comparing wi th Fig . 2.4 we can see tha t , by the end of the s imulat ion, the random 

velocity of the particles in the satellite is sufficient to unbind them. 
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Figure 2.5: The evolution of potential for the satellite halo discussed in the text . The 

arrow indicates the direction of increasing t ime 
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Figure 2.6: The evolution in t ime of the binding potential $bind a s defined in the text . 

2.5 Summary 

By studying a simple interaction of a satellite halo w i t h i n a parent halo we have been 

able to learn about the evolution of the main physical characteristics of orb i t ing N-body 

halos. 

Numerical simulations have reached a level of accuracy such tha t particle evaporation 

and particle-halo heating do not play an impor tan t role in halo-halo interactions. We were 

able to resolve an N F W type halo for many orbi ts dur ing its evolution wi th in another 

halo of the same type. Dynamical f r i c t ion and t ida l s t r ipping play an impor tan t part in 

the evolution of the sub-halo. As the satellite halo evolves on its o rb i t dynamical f r ic t ion 

causes i t to sink towards the centre of the parent, mass loss due to t ida l s t r ipping increases 
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the t ime i t takes to reach the center (compared to how long i t would take i f the satellite 

remained in tac t ) . 

Because their density profiles are singular i t should be possible to fol low sub-halos for 

many orbi ta l times, as long as they are bui l t w i t h a sufficient amount of particles. A closer 

look at F ig . 2.4 reveals that there is a dramatic difference between mass loss and circular 

velocity evolution for sub-halos. Whi le both the mass and the maximum radius of our 

satellite halo have an almost linear decline w i t h t ime we can see tha t , even after 20 Gyr 

the peak circular velocity of the satellite has decreased by only « 25%. In our simulation, 

after 26 Gyr , the random velocities of the satellite halo particles were sufficient to break i t 

up. This is a consequence of not having enough particles to resolve the central part of the 

satellite, more particles would model its potential for a longer t ime. We also learned that 

pure dark matter satellites in current cosmological simulations may not survive wi th in 

the central 20% of the parent halo. 

If , as i t is hoped, the evolution of halos wi th in halos is a good model for the behaviour 

of galaxies in clusters, then we have a clear indication tha t by moni tor ing or vpeak for 

these galaxies we are observing a stable characteristic property of that system. We wi l l 

study the behaviour of vpeak for cosmological simulations in chapter 4 to see i f we may 

strengthen these arguments. 



Chapter 3 
Galaxy destruction and 

diffuse light in clusters 

The most massive virialised dark matter halos are those tha t surround galaxy clusters. 

These regions of space are so large that they may even be considered as a fair sample of 

the matter content of the Universe. W i t h such a dominant dark matter component, i t is 

clear tha t the dynamics and bulk properties of galaxies w i t h i n clusters is dominated by 

the interaction of their dark matter halos. 

Now tha t we have examined the principle processes tha t occur in a halo-halo encounter 

we shall t u rn our at tention to a possible observational consequence of an interaction of 

this type, namely the origin of the intracluster l ight . By s tudying the behaviour of a rapid 

encounter of two halos we shall be able to explain the origin of an astrophysical object 

tha t has been a mystery since its discovery more than two decades ago. 

3.1 Diffuse light in clusters 

Detecting diffuse light in clusters has an enigmatic history spanning several decades [39, 

56, 129, 140, 143, 19, 136]. Using either CCDs or photographic imaging, these observa

tions have been plagued by background subtraction, stray l ight w i t h i n the telescope and 

optics, and atmospheric scattering. This has made a quant i ta t ive analysis d i f f icu l t : the 

to ta l amount of diffuse l ight , its colour, or its radial d is t r ibut ion have not yet been accu

rately measured. These techniques have lead to claims tha t as much as 70% of the light 

attached to galaxies may lie in a diffuse component. More recently, individual planetary 

nebulae have been detected, inbetween cluster galaxies and w i t h redshifts and velocities 

tha t place them inside the cluster potential [4, 128, 50]. Deep HST images of the Virgo 

cluster have also revealed a large population of freely orb i t ing , red-giant stars [51]. 

Mergers and slow t idal interactions between galaxies are a well studied phenomenon 

that can produce dramatic t ida l tails of stellar debris (c./. Toomre [130], Barnes & 

Hernquist [9] and references w i t h i n ) . Analysis of dark mat ter halos w i t h i n a galaxy 

27 
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cluster tha t formed hierarchically has demonstrated tha t mergers are very rare wi th in 

rich virialised environments [61]. However, the impulsive and resonant t idal shocks f r o m 

rapid fly-by encounters between galaxies can also create t ida l debris. The cumulative 

effect of these encounters can cause a dramatic morphological t ransi t ion between Sc-Sd 

spirals to dwarf ellipticals/spheroidals [100, 112], whereas low surface brightness galaxies, 

wi th lower central densities, can be completely disrupted leading to a possible origin of 

the diffuse intra-cluster light [98]. This process has been named "galaxy harassment", 

and extends previous work on slow interactions between galaxies into the impulsive t idal 

processes that operate in galaxy clusters [92, 141, 69, 101, 44]. 

In the absence of fur ther perturbations, stars tha t are t ida l ly removed f r o m galaxies 

wi l l o rb i t in narrow streams tha t trace the orb i ta l path of the galaxy. In a cluster, the 

star streams wi l l be subsequently heated and mixed on a time-scale of a few crossing 

times, i.e. several bil l ion years. We might therefore expect to f i nd prominent features in 

the intra-cluster l ight component f rom recently disrupted galaxies tha t have accreted into 

clusters a few bill ion years ago. However, w i th only a couple of documented examples, 

why are prominent features as bright as these so rare? 

The properties of the diffuse l ight , including its quanti ty, radial d is t r ibut ion , d u m p i 

ness and colour, are of great interest for many reasons. As well as constraining the 

importance of gravi ta t ional interactions as a mechanism for morphological transforma

t ion, we have the possibility of using thousands of freely o rb i t ing stars for studying the 

cluster potential . Understanding the orbi ta l biases of stripped stars and their subsequent 

evolution wi th in a clumpy potential , wi l l be v i ta l in the interpreta t ion of these velocity 

data. 

Recently, Trentham & Mobasher [131] detected a low surface brightness feature ~ 80 

kpc long wi th in the Coma cluster, tha t may be the result of a high speed encounter be

tween two galaxies. Conselice & Gallagher [33] also f i nd a wealth of fine scale substructure 

and faint t idal features in a survey of several nearby clusters. Here we "re-discover" a 

much more spectacular arc of diffuse l ight that stretches for over 100 kpc near NGC4709 

wi th in the Centaurus cluster. The stacked sequence of photographic images by David 

Mal in were f i rs t reported very briefly in the Anglo-Austra l ian newsletter by John Lucey 

over 20 years ago; no fur ther at tention has since been given to these data. Using the 

same techniques Mal in has also discovered a second feature tha t lies near the centre of 

the Coma cluster that is morphologically similar to the Centaurus arc. 
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3.2 The images 

The Centaurus arc was originally discovered by applying a photographic amplif icat ion 

technique [86] to three plates taken in 1974 by Malco lm Smi th at the f /2 .66 prime fo

cus of the 4m telescope of the Cerro Tololo Inter-American observatory ( C T I O ) . The 

photographic emulsion was Eastman Kodak type I l l a J , hyper-sensitized by baking in 

nitrogen before use. Photographically amplified positive derivatives f r o m these plates 

were combined into one image [87] to improve the image qual i ty and minimise processing 

non-uniformities. The arc was clearly visible on each of the three copies, and its reality 

was latter confirmed by photographic amplif icat ion of I l l a J plates taken w i t h the 3.9 m 

Anglo-Austral ian Telescope and the 1.2 m U K Schmidt telescope. 

More recent C C D observations reveal tha t i f this structure lies in the cluster, i t is 

~ 1 2 0 h _ 1 k p c ( ~ 12arcmin) long and only l - 2 h _ 1 k p c ( ~ 1 0 - 1 5 arcsec) wide ( throughout 

this chapter HQ — 1 0 0 h k m s _ 1 M p c _ 1 , h = 1). The arc has very low surface brightness 

{HB~ 27.8 mag a rc sec - 2 ) , is red in colour and points towards the active elliptical galaxy 

NGC4696. The arc's colour strongly suggests tha t i t is made of stars, so its narrowness is 

remarkable. The arc is not perfectly straight and has a small curvature along its length. 

The top half of F ig . 3.1 shows a negative pr int of part of the photographically amplified, 

combined images of the C T I O plates. The arc is the linear feature tha t extends f r o m the 

lower left corner (south east) towards the nucleus of NGC4696. The lower image shows 

the same part of the sky on a single unamplified plate. 

The photographs (and C C D frames) show the arc to be diffuse and seemingly devoid of 

fine structure at the arcsec level. Whi le there are many fa in t stars and galaxies in the field, 

there is no apparent enhancement of point-like or diffuse objects along its length. (The 

point-like source near the centre of the arc is a s tar) . The arc f i rs t becomes visible near a 

small, edge-on SO galaxy, ESO 322-G102, at a projected distance of about 8 0 h _ 1 k p c f r o m 

NCG 4696; the t runcat ion of the arc at this point may be a line-of-sight coincidence, since 

there is no evidence of any interaction between the arc and ESO 322-G102. Subtraction 

of the extended light profile of N G C 4696 may reveal the arc on the opposite side of the 

SO galaxy. 

Spectroscopy of the arc would be extremely d i f f icu l t in view of its very low surface 

brightness, however, broadband C C D images of the brightest regions were obtained mak

ing i t possible to compare the colours of the arc w i t h aged stellar populations. C C D 

pictures were taken in B , R and I bands wi th an R C A 350x512 chip at the f /3 .3 prime 
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Figure 3.1: A normal contrast image of the core of the Centaurus galaxy cluster w i th 

N G C 4696, the brightest galaxy in the cluster, at the upper r ight (lower panel) and 

a high-contrast version, w i t h the extremely fa in t jet- l ike feature extending towards the 

lower left corner (upper panel). One arcmin at the distance of Centaurus is approximately 

LOh-ikpc, 
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Surface brightness (mag arcsec 5 ) Colour (mag) 

Arc 

pB = 27.81 ± 0 . 0 8 B - R = +1.72 ± 0.13 

PR = 26.09 ± 0 . 0 5 R - I = +0.35 ± 0 . 2 2 

pi = 25.74 ± 0 . 1 7 

Sky ( I f rame in twi l igh t ) 

pB = 22.52 

pR = 20.76 

pi = 18.78 

Table 3.1: Surface brightness and colours of the arc and sky. 

focus of the A A T under photometric conditions on the night of 21/22 June 1990. The 

C C D scale was 0.49 arcsec/pixel, and the seeing 2 — 3 arcsec. T w o sets of overlapping 

exposures were taken, w i t h to ta l exposure times of 90 minutes in B , 40 minutes in R and 

20 minutes in I . F la t fields and bias frames were taken on the same night. 

Table 3.1 lists the surface brightness and colours of the arc as measured f r o m the 

overlap region of the C C D frames. In each case, the mean surface brightness in three 

regions along the arc was measured, each roughly 5 x 5 arcsec2 and free of obvious fore

ground stars, and six 'sky' regions of similar area straddling the arc and jus t outside i t . 

The errors quoted in Table 3.1 are la errors on the mean of the three sky-subtracted arc 

measurements in each f i l te r . 

The C C D measurements confi rm that the arc is extremely diffuse and very fa in t , 

reaching no more than 0.7% of the brightness of the night sky. Further out , the arc 

is even fainter and we estimate tha t the faintest parts of the structure revealed by the 

photographic plates are only 0 . 1 % of the night sky brightness. 

The same techniques have also been applied to photographic images of the central 

regions of the Coma cluster (Abell 1656). These have revealed a feature in the diffuse 

light, close to N G C 4874, tha t stretches East-West for at least 5 arcmin, ~ 1 5 0 h _ 1 k p c 

(Fig. 3.2). I t is curved slightly concave to N G C 4874 in a manner very similar to the 

curve in the Centaurus cluster feature where i t appears closest to N G C 4709. The image 

was made by combining photographically amplified derivatives f r o m three U K Schmidt 

plates. T w o of the plates (J9946 and J10027) were deep I l l a - J (395-550nm) exposures 

while one was plate OR9945 covering the range 590-700nm. The linear feature is visible 
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individual ly on all of the plates, but is much less obvious on the red-light plate. Given the 

large airmass through which the exposures were necessarily made and the smaller number 

of plates, this suggests tha t the surface brightness of the Coma arc is higher than that 

in the Centaurus cluster. The large airmass has also contributed to the relatively poor 

seeing in these plates, which is probably why we are unable to conf i rm the Trentham & 

Mobasher [131] feature. 

The Coma arc is neither as narrow nor as well defined as tha t in the Centaurus cluster 

and two resolved galaxies appear to be embedded in the brightest part of i t . Given the 

large number of galaxies in the field, this could be a line-of-sight coincidence, or one of 

these could be the remnant nucleus of a disrupted galaxy. We note tha t this feature 

in Coma was reported independently by Gregg & West [64]. In the absence of C C D 

photometry of the Coma arc, and its poorer resolution due to its distance, we shall focus 

our attention on the origin of the Centaurus arc. 

3.2 .1 P o s s i b l e o r i g i n s 

The Centaurus arc is unlikely to be foreground reflection nebulosity in our own Galaxy. 

Mal in has used his photographic amplifications technique on many fields containing Galac

tic nebulosity, and notes that the Centaurus feature (at Galactic lat i tude 22°) is morpho

logically quite different. In particular, i t lacks the high-frequency ' c rumpl ing ' characteris

tic of Galactic cirrus and reflection nebulosity. Also, the arc is almost straight ( i t deviates 

f r o m a straight line by at most 3 — 4 arcsec in the 100 arcsec length covered by the C C D 

frames) and points at the nucleus of N G C 4696, the brightest galaxy in the Centaurus 

cluster. 

The region of the arc observed w i t h the C C D has colours consistent w i t h those of K 0 

stars in the (B-R) , (R-I) two-colour diagram (Fig . 3.3, f r o m Cousins [35] ) . I f the arc 

were dominated by optical synchrotron radiation i t would be bluer than this, w i th B-R 

around 0.7-1.2 as typically seen in B L Lac objects [93] and the M87 je t [127] Whi ls t the 

arc might be composed of ionized gas, w i t h most of its l ight coming f r o m 0 + + and H + 

ions, very unusual line ratios would be needed to produce the observed colours and i t 

would be d i f f icu l t to account for the I-band emission. Furthermore, i t is hard to imagine 

a long-lived ionizing source which could operate over such a large distance. I f l ight f r o m 

the arc originated f r o m emission lines, we would also need to account for the collimation 

of the ionized gas, or the ionizing beam, or both . We therefore conclude tha t the arc is 

probably composed of stars w i t h a mean spectral class of around K 0 . 
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Figure 3.2: A high-contrast image of the core of the Coma galaxy cluster w i t h N G C 4874 

at the upper r ight . One arcmin at the distance of Coma is approximately 3 0 h _ 1 k p c . 
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Figure 3.3: The colours of the Centaurus arc compared with those of late-type giant stars. 

The solid circle is the reddening corrected value, the open circle is the value without this 

correction. 
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Could the feature be a gravitational arc from a background galaxy that has been 

lensed by the combined potential of NGC4696 and NGC4709? In order to produce a 

gravitationally lensed image this straight, the potential has to be complex, such as would 

occur in between the combined potential of the two central cDs. Furthermore, a lensed 

image this close to the massive potential of NGC4709, would produce a much shorter 

image. Thus, if the mass distribution traces the light distribution to a reasonable extent, 

then its position and morphology rule out gravitational lensing. 

The dimensions of the object rule out a diffuse galaxy that happens to lie along the 

line of sight - the axial ratios are about sixty to one. If the Centaurus arc is stellar and lies 

in the cluster, then either the stars formed in situ, or they have been removed from one 

of the cluster galaxies; since no mechanism is known for the former, we shall concentrate 

on the latter. In either case, the key challenge for any successful model for its origin is to 

reproduce both the length and narrowness of the feature. 

We can estimate the mass of the stars in the arc from its integrated luminosity. 

Combining measurements of its area and mean surface brightness gives an estimated total 

B magnitude of 18.4±0.5 for the integrated light. At the distance of the Centaurus cluster 

(taken here as 26.8h _ 1 Mpc), this is roughly 4h~2 X 1O 7 L 0 , corresponding to 8h~2 x 1 O T M 0 

if we assume a mass-to-light ratio of M/Lg = 2. 

The remainder of this chapter will be devoted to investigating the possibility that 

the Centaurus arc consists of stars that have been tidally stripped from a cluster galaxy. 

Since the total stellar mass of the arc is just a few percent of the stellar mass of an L* 

galaxy we have two possibilities for the progenitor galaxy. It may have originated from 

a single dwarf galaxy that has been completely disrupted and all the original stars form 

the 100 kpc streak of light. Alternatively, the observed feature may represent part of the 

tidal debris that has been torn from a more luminous galaxy. In the latter case, the bulk 

of the tidal debris may extend beyond the current image and may be detectable at lower 

surface brightness levels. 

3.3 Tides and tails; numerical simulations 

3.3.1 Galaxy models 

We shall use numerical simulations to investigate the possibility that the Centaurus arc is 

tidal debris from a gravitational interaction between a galaxy and one of the cD galaxies 

NGC 4696 or NGC 4709. Given the wide parameter space to explore in both galaxy 
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morphologies and orbital properties, we shall limit our choice of models to three; dwarf 

spheroidals, high surface brightness spirals and low surface brightness spirals. Elliptical 

galaxies are simply too centrally concentrated to lose a great deal of stellar mass. Even if a 

particularly strong tidal shock unbound some stars, it is unlikely that they would occupy 

a. narrow region of phase space required to produce a feature <, 2 kpc across (for which 

we would have to rely on the ability of the cluster potential to constrain the stripped 

materials' orbit). 

If the Centaurus arc is tidal debris, then its position next to the cluster centre suggests 

that the potential of one of the massive central cD galaxies was responsible for the dis

ruption. However, we can't rule out the possibility that the encounter took place further 

from the cluster centre and we are just observing the debris passing pericentre. Rather 

than treat the full cluster potential and its substructure, we shall model the cD galaxy 

as a single truncated isothermal dark matter halo with a moderate core radius of 50 kpc 

(see Fig. 3.4(a)). The dark matter particles that represent the cluster potential have a 

mass ~ 1O 1 OM0 and softening of 20 kpc. We discuss the effects of a clumpy potential in 

Section 3.5. 

The model galaxies are constructed using the techniques developed by Hernquist[70]. 

The spheroidal galaxy is constructed as a single stellar system, with a mass distribution 

shown in Fig. 3.4(b). This is a truncated isothermal distribution of stars with a core 

radius of 2 kpc, and total mass within 20 kpc of 1.73 X 1O U M0. This system would have 

a luminosity ~ 2%L*, therefore we must disrupt the entire galaxy in order to explain the 

arc. Dwarf spheroidals most probably result from harassed Sc-Sd galaxies, however, they 

are also the most common type of galaxy in clusters so it is possible that some of these 

systems are completely disrupted by subsequent strong tidal encounters. 

The low surface brightness (LSB) galaxy is modelled on a scaled version of UGC 

128 [37], using an exponential stellar disk with scale length rj, = 10 kpc and a dark halo 

with core radius set equal to the disk scale length. Within 3 disk scale lengths, the ratio 

of dark matter to stars is ~ 4.6. 

A characteristic of LSB galaxies is that they have slowly rising rotation curves, indicat

ing that the central regions have almost uniform density. Therefore the central dynamical 

time-scales remain constant throughout the inner disk and an encounter that is impulsive 

at the core radius will be impulsive throughout the disk. For this reason, our pre-suspicion 

was that the LSB galaxy would be the most likely candidate for producing tidal debris 

most similar to the Centaurus arc. 
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Figure 3.4: The rotation curves a y/M/r of (a) the cluster, (b) the spheroidal galaxy, (c) 

the HSB galaxy and (d) the LSB galaxy. The contribution to the rotation curve from the 

different components of the spiral galaxies are indicated. Note that the HSB and LSB 

models are constructed to represent observed galactic systems - both have the same peak 

rotational velocity and lie on the same part of the Tully-Fisher relation, yet have different 

central mass distributions. 
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The high surface brightness (HSB) galaxy is similar to the LSB galaxy, except that 

the disk and halo scale lengths are reduced by a factor of two and we include a bulge with 

mass 0.25Mdisk such that the rotation curve is flat over the central region (Fig. 3.4(c)). 

Within 3 disk scale lengths the ratio of dark matter to stars is ~ 1.09. 

Both the LSB and HSB disks have scale height rz = O.lr^ and are stable with a 

Toomre parameter Q = 1.5. The galaxies have modified isothermal dark matter halos 

with core radii set equal to rj. Although both these galaxies have different internal mass 

distributions, they both have the same total luminosity and their rotation curves both 

peak at 200kms - 1 , therefore they both lie at the same point on the Tully-Fisher relation. 

We use 20,000 star particles in the disk and dark matter halo of the HSB galaxy and 

twice as many within the LSB galaxy. The softening lengths for these galaxies are set 

equal to Q.lbr^ for the star particles and 0.7r^ for the halo particles. When we simulate 

the galaxies in isolation they are stable and remain in equilibrium. To evolve the model 

galaxies in orbit through the cluster potential we use the parallel treecode "PKDGRAV" 

(Stadel et al. , in preparation). 

3.3.2 Orbits 

Fixing the orbit in the x-y plane we explore a range of orbital eccentricities, from com

pletely radial to apo:peri=2:l. The more radial the orbit, the stronger the tidal shock 

and more material will be stripped. However, if the orbit is too radial, the stream may 

fan out as seen in the simulations of Weil et al. [144] and will not produce a long thin tail 

of stars. 

We set the starting position at 1000 kpc for every run and vary the components of 

velocity using combinations of the following values: 

vx = 0,100,200,300,400,500 

vy = 0,100,200,300,400,500 

thus we explore a total of 25 orbits and choose the orbit that produced the longest and 

thinest tidal debris. We evolve all the runs for 5 Gyr, about two orbital times for this 

configuration. From these trial runs we found that this was an orbit with vx = 400kms _ 1 

vy = 300kms _ 1 , which leads to an 8 : 1 orbit, i.e.: apocentric and pericentric distances 

of 1000 kpc and 120 kpc respectively. The velocity at pericentre is ~ 3000kms _ 1. Note 

that the impact parameter past the centre of the potential and the velocity at pericentre 
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determine the strength of the impulsive shock. The starting position and initial velocity 

could be varied to give a similar impact geometry. 

Halos within clusters that form in a hierarchical Universe have a wide range of tra

jectories; circular orbits are rare and radial orbits are common. Ghigna et al. [61] find 

that 20% of all orbits have apo:peri ratios of at least 10 : 1, therefore the orbit that we 

have selected as optimum for producing narrow streams of tidal debris, is in fact a typical 

orbit for a cluster galaxy. 

Note that the galaxies are constructed such that their halos extend well beyond the 

tidal radius, rt, that would be imposed by the cluster potential at 120 kpc. Using the 

relation for isothermal spheres rt ~ rperi * vc(galaxy)/vc(cluster), the tidal radii of our 

models on a circular orbit at 120 kpc would be 8 kpc for the spheroidal and 13 kpc for 

the spirals. However, the bulk of the stars orbit within these radii, therefore we rely on 

the impulsive shock as the galaxies move rapidly past pericentre to strip the stars from 

the central regions. 

In Fig. 3.5 we plot snapshots of the spheroidal system at four different epochs. As 

the galaxy moves in its orbit, many of the halo particles get stripped away, as is apparent 

from the left hand plots, but upon close examination of the central region we see that 

most of the material is still bound. After ~ 2.5 Gyr, the stripped stars form long arc like 

features, but these are not as thin or as bright as that observed within Centaurus. 

The orbits of the spiral galaxies have an extra degree of freedom, namely the orienta

tion of the disk as the galaxy moves past pericentre. We shall consider the extreme cases 

of a disk that is either counter-rotating or co-rotating such that the disk lies in the orbital 

plane. Figure 3.6 shows the evolution of the HSB galaxy counter-rotating with respect 

to the orbital direction past pericentre. The first tidal shock occurs after a Gyr, yet even 

after 1.5 Gyr the disk does not appear to be highly perturbed. After 2.75 Gyrs most of 

the stars are still orbiting within a thick disk, yet no spiral features remain. At this time 

the galaxy resembles an SO! 

Continued heating of the galaxy after a total of 4 passages past pericentre has not 

removed a great deal of stars from the galaxy, yet a flattened stellar configuration is 

only just apparent at late times. By the final time 30% of the stars have been unbound 

from the disk, however, the stripped stars orbit close to the galaxy and throughout the 

simulation we never observe long, thin tidal features. 

The LSB galaxy on an identical orbit as the HSB galaxy is show in Fig. 3.7. The 

evolution proceeds in a similar fashion, yet the inner disk is clearly more perturbed and 
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Figure 3.5: The evolution of the spheroidal galaxy on an orbit with apo:peri= 8 : 1. The 

left hand panels show an area of 30002 kpc centred on the cluster potential, while the 

right hand side is a close-up view (100 kpc on each side) of the centre of the orbiting 

galaxy. Note that for clarity we plot just l / 5 t h of the star particles, projected onto the 

orbital plane and the cluster particles are not plotted to avoid confusion. 
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Figure 3.6: The evolution of the HSB galaxy in a counter-rotating orbit. Right panels 

correspond to a face on and edge on view of the galaxy within a box of 100 kpc on each 

side, the left panel is the full view of the orbit in a box of 30002 kpc centred on the cluster. 

Cluster particles are not shown. 
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Figure 3.7: The evolution of the LSB galaxy on a counter-rotating orbit. The left panels 

show the entire orbit centred on the cluster potential in a 30002 kpc box. The two right 

hand panels measure 100 kpc on the side and correspond to a close up view of the galaxy: 

face on, centre panel and edge on in the right panel. 
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by the final time, no trace of the original disk structure is apparent. This time, after 2.7 

Gyrs 52% of the stars are unbound, yet again we do not find any features that resemble 

the Centaurus arc, either in dimension or surface brightness. 

We now change the direction of the orbit through the cluster potential such that the 

disk is co-rotating with the galaxy's direction past pericentre. After just 1.5 Gyrs, the 

morphology of the HSB galaxy shown in Fig. 3.8 has been dramatically altered. Already, 

most of the disk structure has been destroyed, and the stellar distribution has been 

significantly heated. However, the most significant change occurs in the morphology of 

the tidal debris. After 2.75 Gyrs, we start to observe long thin tidal tails of stars that 

have been symmetrically torn from the disk. Continued heating of the galaxy removes 

more material from the disk and the tidal tails stretch out further along the orbital path 

of the galaxy. 

The LSB galaxy on a co-rotating orbit, shown in Fig. 3.9, is almost completely de

stroyed by the tidal forces. After 2.75 Gyrs more than 57% of the disk has been removed 

and forms long thin tidal tails that stretch for several hundred kpc on either side of the 

galaxy. By the end of the simulation, just a few percent of the stars remain bound in a 

configuration that resembles a dwarf spheroidal, with an exponential surface brightness 

distribution. 

The full view of the LSB and HSB co-rotating orbits look very similar; both produce 

long thin tidal tails. Upon close inspection i t is evident that there are particular instances 

where long "arc like" features are more apparent. The best of these typically occur ~ 2.7 

Gyrs after the galaxy enters the cluster, a time when the debris stripped at first passage 

past pericentre is orbiting past the cluster centre the second time. It is also apparent 

from Figs. 3.8 and 3.9, that the debris has the narrowest dimension and would be most 

luminous as it is passing pericentre. At this point, the orbits of the stars bunch up because 

they are in the deepest part of the potential. I t is this section of the tidal debris that we 

associate with the Centaurus arc that also lies close to the centre of the cluster potential. 

We illustrate this in Fig. 3.10. 

Can we distinguish between these two possibilities? At time t = 2.75 Gyrs we extract a 

300 kpc length of the stellar debris that is just approaching pericentre. We then project the 

data and create smoothed density surface density plots and overlay contours of constant 

surface density. 

These density maps are plotted in Fig. 3.11 and demonstrate that debris from both 

HSB and LSB galaxies can create long (>, 200 kpc) and thin 8 kpc) diffuse arc-like 
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Figure 3.8: As Fig. 3.6, except the HSB galaxy has been placed on a co-rotating orbit. 
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Figure 3.9 As Fig. 3.7, except the LSB galaxy has been placed on a co-rotating orbit. 
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Figure 3.10: An illustration of the part of the tidal debris from the LSB disk galaxy that 

we associate with the observed arc of light in the Centaurus cluster. The star particles 

from the LSB galaxy are plotted 2.75 Gyrs after the galaxy enters the cluster, roughly 1.5 

Gyrs after the first pericentric passage. These data have been inclined at 30° to the line 

of sight. At this time, the stellar remnant is approaching pericentre for the second time. 

The small box centred on the tidal debris shows the part of the stream that we may be 

observing in the deep image of the Centaurus cluster shown above the tidal debris. The 

cross in the small box shows the centre of the cluster potential. 
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: 

Figure 3.11: Projected density maps of a region 300 kpc by 200 kpc around the thin 

arc-like structures formed by the LSB and HSB models. The top panel corresponds to 

the LSB feature viewed at an angle of 15° from edge on and the middle panel is an edge 

on view of the same. The bottom panel is an edge on view of the HSB debris. The 

contours are curves of constant surface brightness in the range 27 — 31 for the LSB model 

and 28 — 31 for the HSB (in blue magnitudes per arcsec2). 
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features. These have similar morphological appearance to the Centaurus arc yet differ in 

their overall surface brightness. The central surface brightness of the inner contour of the 

LSB galaxy is / ig — 27.85 arcsec - 2, while for the HSB it is fig = 28.33 arcsec~2. For this 

conversion we have assumed a mass to light ratio of M/LB = 2. 

3.4 The origin of the Centaurus arc 

We now have the necessary results to refine the possible galaxy type and orbital geometry 

that could have produced the Centaurus arc. Each model was able to produce long arc-like 

features, but in every case major differences distinguish them. 

For the spheroidal model, long streams of debris are obtained, but they are over 3 

magnitudes too faint to explain the Centaurus arc. Even after several passages past 

pericentre, most of the material remains bound to the galaxy. We would require the 

entire spheroidal to be disrupted into a single smooth stream of length ~ 100 kpc in order 

to explain this feature. We were unable to achieve this. 

Spiral galaxies can have luminosities much larger than the fainter spheroidal systems, 

therefore a smaller fraction of their stars can be stripped to form observable debris. We 

find a strong dependence upon the amount of material stripped and its subsequent orbital 

path through the cluster, with the relative motion of the disk stars as the system moves 

past pericentre. A larger fraction of stars were stripped from disks that are co-rotating 

with their orbit, and the stripped stars formed long narrow streams that resembled the 

Centaurus arc. 

We can understand why this happens by considering the relevant dynamical time-

scales. The impulsive shock occurs on a time-scale t0 = 2r p/u,- Gyrs, where the impact 

velocity of the galaxy is u,- = 3000kms _ 1 as i t moves past pericentre rp = 120 kpc. We can 

compare this time-scale with the time it takes for the disk stars to make half a revolution 

within the core radius of the galaxy, r c o r e , t{ = nrcore/vc, where vc = 200kms- 1. For the 

particular galaxy and orbit simulated here, i ; ~ t0 = 0.1 Gyrs. I f the disk is co-rotating, 

then the encounter occurs at a resonance, whereas a counter-rotating orbit gives time for 

the central disk stars to respond adiabatically to the encounter. 

The LSB is particularly affected by the resonance since the dynamical time within 

the core radius is constant (due to the constant density of the mass distribution within 

a disk scale length). Therefore the entire disk is affected by the tidal shock. The HSB 

galaxy also has a resonance, but only at a single annuli in the disk since the dynamical 
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time increases linearly with radius. This explains why both the disk galaxies produced 

long thin tails of debris, but those from the LSB galaxy are much brighter since it lost a 

great deal more mass with only 17% remaining bound. 

Our simulations showed that the orbits of the stripped stars move closer together as 

they move through pericentre. This creates the appearance of a "standing wave" near the 

cluster centre, where the surface brightness of the debris is significantly enhanced. 

We can understand why the orbits bunch together near pericentre and make a rough 

quantitative estimate of the enhancement in surface brightness as follows: Consider two 

stars in circular orbits near the cluster centre at distances r 0 i and r a 2 , separated by a 

small radial distance A r a . What happens to the separation of the particles as we move 

the orbits further out into the cluster, but preserve the small energy difference between 

the two particles? Now the particles orbit at distances r p i and r p 2 , this time separated 

by A r p . 

The total energy of each orbit (E{) is conserved and equal to E{ = K{ + <J>i Where Ki 

is the kinetic energy term for each orbit and = 2a2ln^* its corresponding potential 

energy. Because we are dealing with an isothermal potential, all circular orbits have the 

same kinetic energy, therefore the difference in total energy for each pair of orbits is given 

by: 

|A£U| = \$A\ = | 2 a 2 / n ( r a 2 / r a l ) | 

\AEP\ = | $ P | = \2a2ln(rp2/rpl)\ 

If the energy difference of both orbits is the same then 

\AEA\ = \AEP\ 

ln{ra2/ral) = ln(rp2/rpl) 

which leads to 

A r a = ( r a l / r p l ) A r p . 

Thus for a given energy difference; orbits tend to get closer together as they move towards 

the central regions of the potential. For an orbit with apo:peri of 10:1, the enhancement 

of the surface brightness the tidal stream will be roughly a factor of 10 at pericentre. 

'Note that we have use a truncated isothermal spherical potential where a is the constant velocity 

dispersion and R is the truncation radius. 
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Figure 3.12: Colour fading as a function of time for B-R and R-I colour differences. 
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Ellipticals Sab's Scd's LSB 

B-R 1.48 1.04 0.86 0.78 

R-I 0.57 0.57 0.43 0.49 

Table 3.2: Typical colour differences for different galaxy morphologies. 

Further support for stellar debris of a galactic origin can be found by considering 

the colours of the Centaurus arc. In Table 3.2 we give typical colour differences for 

galaxies of different morphologies across the Hubble diagram [56, 38]. Once the stars are 

removed from the galaxy, star formation will be abruptly halted and the stars will fade 

in a predictable manner. Figure 3.12 shows how the colour indices fade with time for a 

given stellar population with known metallicity and IMF [24]. 

The tidal tails match the appearance of the Centaurus arc ~ lGyr after being stripped 

from the model galaxies, i.e. the time since the first passage past pericentre. After a 

Gyr, the amount of fading will be 0.77 and 0.17 for B-R and R-I, respectively. We now 

reconsider the observed values for the arc (see Table 3.1). We add a further correction for 

galactic dust reddening using the data of Burstein & Heiles [28] and Schlegel et al. [116]; 

this brings the values of the colours to: 

B - R= 1.52 ± 0.14 

R- I = 0.27 ± 0 . 2 3 

If we take into account the amount of fading over one Gyr, then the initial stellar colours of 

the stars in the arc would have been B-R = 0.75 and R-I = 0.10. These colours, within 

the uncertainties, are consistent with late type spirals and LSB disk galaxies, providing 

further support for our model. 

3.5 Conclusions 

Deep photographic and CCD observations of the Centaurus cluster revealed a spectacular 

arc of diffuse light. This feature is remarkable given its length and narrowness, ~ 12 

arcmin = 120 / i - 1 kpc long and ~ 10 arcsec = 2h~1 kpc wide. The arc is diffuse with no 

apparent structure and its colours indicate that it is made of stars. The estimated total 

mass from its integrated luminosity is ~ 8h~2 X 1O7M0 and its surface brightness (in mag 

arcsec - 2) is = 27.8; /J,R = 26.1; in the R band and pbj = 25.7, in the I band. Several 

possible scenarios for its origin, including foreground reflection nebulae , gravitational 
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lensing or a radio jet, are rejected in favor of a gravitational tidal interaction that created 

an arc of stellar debris. A second feature with similar morphology is also revealed within 

the central region of the Coma cluster. 

We used numerical simulations to investigate the response of galaxies of different 

morphologies to tidal shocks as they pass pericentre in a cluster potential. Spheroidal, 

HSB and LSB galaxy models were evolved on orbits through a smooth cluster potential. 

From many different trial orbits, a galaxy moving through the cluster within apocen-

tre:pericentre of 8:1 produced the narrowest, longest and brightest tidal tails. This orbit 

is typical for galaxies orbiting in clusters that form within hierarchical clustering models 

[61]. 

Even though the parameter space is large, we can effectively eliminate spheroidal or 

high surface brightness spiral galaxies from the possible list of harassed galaxies. The 

spheroidal galaxy loses only about 15% of its central mass to the cluster and the features 

formed are wide and extremely diffuse and would not be observable. In the case of the 

HSB model, only about 30% of its stellar mass is lost during the simulation, and although 

long thin arc like debris are produced they are also fainter than the Centaurus arc. 

The only models that can produce tidal features this long and thin are disk galaxies. 

Moreover, in order to reproduce the surface brightness of the Centaurus feature, the 

galaxy must be a massive LSB galaxy with a luminosity close to L*. In addition to the 

well defined morphology, we are also forced to use orbits that place the disk in the global 

orbital plane and the disk must be rotating in a prograde sense, co-rotating with the 

orbital path past pericentre. This encounter geometry produces the maximum resonant 

stripping of disk material - almost ninety percent of the disk is removed yet just a few 

percent constitutes the luminous part of the debris that we associate with the Centaurus 

arc. Although the tidal debris from a single galaxy can span the entire cluster, as the 

stars move past pericentre, their orbits move closer together and the streams would appear 

brighter. 

We note that there is a way to confirm the galactic origin of the Centaurus arc. 

By taking images along its length using different filters, (e.g. O I I I or Ha) as discussed 

in Feldmeier et al. [50], one would expect to find an over abundance of planetary 

nebulae at similar redshifts to NGC4709; thus confirming the stellar nature and formation 

mechanism. 

The tidal tails of stellar debris follow the progenitor galaxies orbit through the cluster 

and stretch for several Mpc. The coherent length of structure in the diffuse light will 
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be much shorter than this since the real cluster potential is far from smooth. The other 

cluster galaxies will disrupt the tidal tails, "chopping" them into pieces. On average, each 

galaxy in a cluster experiences a close encounter with one of its massive cluster companions 

at a rate of one per Gyr, thus short sections of narrow features may survive for a crossing 

time. However, even deeper images of the feature may reveal the arc extending further 

from the cluster centre. Somewhere along the tidal tails lies the remnant spheroidal 

galaxy surrounded by a cloud of diffuse light that closely resembles the feature reported 

by Trentham & Mobasher [131]. 

The success of this model at reproducing a particular feature in the diffuse light within 

Centaurus has motivated us to continue to explore "galaxy harassment" as a mechanism 

for the origin of the intracluster light in general. We are currently in the process of devising 

a method for simulating the interaction of many halos within a cluster. One possibility is 

to repeat the simulations we have described in this chapter. This time, instead of evolving 

a single halo within the cluster, we would set of many models of compound galaxies to try 

and simulate the more complex interactions that galaxies undergo within their lifetime. 

This would allow us to better quantify the fate of the luminous matter that is stripped 

within a cluster. 



Chapter 4 
Dark matter detection 

The cold dark matter (CDM) theory has proved remarkably successful at predicting 

and explaining many well known observational results. At the moment the hierarchical 

CDM model is the most popular theory for explaining the formation of structure in 

the Universe. Nonetheless, the ultimate validation of C D M will be its detection, either 

directly in a laboratory, or indirectly through particle annihilation in the galactic halo. 

At the moment many experiments are taking place (or being constructed) that explore 

the possibility of CDM detection. We now turn our attention to this exciting subject. 

We shall use a high resolution cosmological simulation of galactic mass halos that 

form in a Universe dominated by CDM. This is the first time that simulations of this 

kind are used to make predictions relevant to both of the detection scenarios. The results 

of chapter 2 are particularly important since we will be extrapolating the cosmological 

simulations to much smaller scales. 

4.1 A cosmological simulation of the Local Group 

One of the key aims of a cosmological simulation is to interpret and predict the dynamical 

properties of astrophysical objects such as clusters, groups and galaxies. Here we shall 

use one such simulation in which a pair of dark matter halos with similar dynamical 

properties to the Local Group, are followed throughout their evolution from a redshift 

of z > 100 to the present epoch (and beyond). The particle mass in the high resolution 

regions is 1 0 6 M Q and softening radius is set to 0.5 kpc. A thorough discussion and details 

of this simulation are presented in Ref. [96]. 

In Fig. 4.1* we can see different snapshots of the simulation. The grey scale shows the 

local density of dark matter at the indicated redshifts. At a redshift of z=0 we are able 

to identify two dark matter halos separated by 1 Mpc infalling at 100 k m s - 1 with peak 

circular velocities w 200 k m s - 1 ; this structure is what we identify as the "Local Group". 

Now that we have a better understanding of the dynamical effects that act on ha-

"This figure kindly provided by Dr. B. Moore 

54 
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z=50 z=20 

Figure 4.1: The hierarchical formation of a Local Group within a Universe dominated by 

CDM. The grey scale shows the local density of dark matter at the indicated redshifts. 

The upper six panels show a comoving volume of length 4 Mpc whilst the lower panel is 

the "future" halo resulting from a merger between the two halos surrounding M31 and 

the Galaxy. 
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los within halos we shall analyse substructure halos within the Local Group simulation 

investigating the evolution of their key properties. 

The smallest scale on which there is evidence for dark matter is within dwarf spheroidal 

galaxies that orbit within the halo of the Milky Way. The Local Group simulation contains 

over 2000 of these systems with peak circular velocities, vpeak > 10 k m s - 1 . Most of these 

sub-halos orbit within the virial radius of the two large halos. Their internal structure 

is smooth because the resolution of this simulation does not allow us to resolve any 

substructure within them. A further high resolution re-simulation of one of these sub-

halos was performed by Moore et al. [96], which revealed that substructure continues to 

form on even smaller scales giving rise to "halos within halos within halos" (because it 

resembles one of the dwarf spheroidal halos in our own Milky Way, with aid ~ 8kms _ 1 , 

we shall call this sub-halo simulation "Draco"). 

4.1.1 The distribution of circular velocities in the Local Group 

The first step in analysing the circular velocities of sub-halos is identifying each halo in 

the high density regions where they cluster. This is easy to do visually: the bound cores of 

the halos are evident when we look at density snapshots along its evolution (as can be seen 

in Fig. 4.1), but to characterise a sub-halo correctly we must only select the particles that 

are bound to it and screen out all background particles that may be streaming through. 

We shall use a group finding algorithm that uses local density maxima to find the halo 

centres and then iteratively checks for self-boundedness to define halo membership. The 

algorithm is named SKID and is fully described by Stadel et al. at the University Of 

Washington N-Body Shop*. 

The simulation outputs are a collection of particle masses, positions, velocities, poten

tials and smoothed density at discrete moments during its evolution at different redshifts, 

z. For the Local Group simulation the outputs range from z=50 to z=-0.3 (originally the 

simulation was run up to "the present day": z=0, but then i t was allowed to evolve until 

the two biggest halos of the group coalesce into one single "super halo"). At each output 

we run the algorithm to find all of the bound halos and sub-halos and we use these to 

explore elements of the past, present and future of the Local Group. 

For our implementation of SKID we explored different values of three parameters that 

control its behaviour: the linking length £; which is the radius over which a particle and its 

nearest neighbour are associated, the minimum number of member particles n T O ! 7 l in the 

'see http://www-hpcc.astro.washington.edu/tools/tools.html 

http://www-hpcc.astro.washington.edu/tools/tools.html
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Figure 4.2: The differentia] velocity distribution functions for dark matter sub-halos 

within a CDM cluster (solid line), galaxy (dashed line) and mini-halo (dotted line). Each 

halo has been simulated with •> 10 6 particles and using softening lengths <, 0.0027?^. 

The peak velocities of the sub-halos are normalised by the circular velocity at the virial 

radius of their parent halos. 
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group and the minimum over-density for dark matter particles which are considered for 

grouping den ? n u i ; although these parameters are not completely independent (i.e. fixing 

a minimum number of members automatically fixes the minimum mass of groups found, 

this in turn fixes the minimum density). We searched through many values for these 

parameters until we found a set after which further refinements did not modify the number 

and location of groups found: £ = 5kpc, i\min — 16 and den™^ = 100 (this sets the lower 

mass limit for which we can resolve halos above a mass of 1.6 X 1O 7M0). 
We define the velocity distribution function (VDF) as the number of halos per unit 

peak circular velocity interval (recall that vpeak = M A X [ ^ G M / r ] ) . The VDF of sub-

halos within dwarf spheroidal, galactic and cluster mass C D M halos are compared in 

Fig. 4.2 (Here the "cluster" data is taken from Ghigna et al. [62] for a halo of mass 

5 x 1O 1 4M0). The masses of these objects vary by 7 orders of magnitude yet they all 

contain similar amounts of dark matter substructure. The slope of the circular velocity 

function within the draco, galaxy and and cluster halos are n(v) oc v~a with a = 3.0, 3.7 

and 3.9 respectively. The slope of the VDF is shallower for the mini-halo than galactic or 

cluster halos which may reflect the fact that the simulations are approaching the "n=-3" 

part of the power spectrum, i. e. all halos are collapsing at the same time which may 

lead to a higher rate of merging. 

4.1.2 Tracing the substructure of the Local Group 

An interesting question that arises when dealing with the substructure of a simulation is: 

How do the halos evolve once they enter the virial radius of the parent cluster? 

The first step in tracing the substructure of a simulation is identifying halos at each 

output of the simulation, after this, we need a rule for following a particular substructure 

clump as it evolves. Apart from outputting which of the particles belong in each group, 

SKID also calculates many physical quantities for each group such as the peak velocity of 

the halo, its total bound mass, the coordinates of its centre of mass, and the maximum 

radius. 

Using the parameters discussed above for SKID we find that the earliest time in which 

we can find structure in the simulation is at the z=20 output. At this time Ri 40 virialised 

halos are evident above the smooth background of particles. These halos are well defined 

and have peak velocities that mostly lie in the range 20kms _ 1 < vveak < 30kms _ 1 (We 

show a histogram of their velocities in Fig. 4.3. The fact that few halos are found for 

vPeak < 25kms - 1 is only a resolution effect, since with higher mass resolution we would 
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Figure 4.3: The peak circular velocities of halos found at z=20. 

find many more halos of lower mass). 

We can now trace these halos forward in time to see where they will end up by the 

end of the simulation. At each output available (z = 20.0, 15.0, 10.0, 7.0, 5.0, 3.0, 2.0, 

1.5, 1.0, 0.75, 0.5, 0.3, 0.2, 0.0, 0.05, 0.02, -0.1, -0.2, -0.3) we run SKID again to identify 

the halos. The particles in each of the initial groups are tagged with a number. For 

each individual group we then search through the groups at the next redshift (in this 

case z=15) and look for the groups were the particles end up. We identify the halo that 

contains the majority of precursor particles and tag this group as the evolved version of 

the original at z=20. We do this for all halos at all redshifts until we end up with a list 

for each halo of the groups it has belonged to throughout the simulation. This allows us 

to construct a merger tree and to follow the changes in the peak circular velocity for each 

of the original halos at z=20. 

The plot in Fig. 4.4 shows the evolution of the peak circular velocity vpeak for each of 

the "original" halos. We can see that all these halos end up within the large "super-halo" 



4. Dark matter detection 60 

by the end of the simulation. The merger history for all the groups can be seen in this 

plot; as the halos evolve, most begin to merge at z=10, some survive for a very long time, 

falling within the super-halo only at the very end of the simulation. This clearly illustrates 

that substructure is present in the simulation for a large percentage of its lifetime. 

300 

200 

100 

Figure 4.4: The evolution of vpeak for halos found at z=20. Each curve represents a 

different halo. 

There is a problem in continuing to trace the halos in this fashion. After a halo falls 

into a bigger one we are left without any information as to its specific nature: Is it now a 

sub-halp, orbiting intact within the virial radius of the parent or has it completely merged 

with the parent? The answer to this question is not simple. For these few halos we could 

trace the structure individually and examine what their ultimate fate is. This procedure 
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would be difficult to manage for the whole of the simulation due to the great number of 

halos present. 

An easier approach is to use the same software and identify all halos within the virial 

radius of the super-halo at the final redshift and trace these backwards. This will allow 

us to follow all of the substructure which is present at the end and to study the evolution 

of their properties. 

We proceed in a similar way as before, but now we set an initial list of halos to those 

found at the end of the simulation. Again we follow the particles for each halo, taking 

each time as its "progenitor" that halo which contains the most particles of its "sibling". 

This allows us to trace the evolution of vveak as a function of redshift for each sub-halo. 

In Fig. 4.5 we attempt to plot this function for all of the halos that are within the virial 

radius of the "super-halo" at z=-0.3. Because there are thousands of halos this makes the 

plot look very crowded, particularly at low redshift. 

Comparing Fig. 4.4 with Fig. 4.5 we can see that the new procedure clearly traces some 

of the structures back to the very beginning of the simulation. Other halos disappear from 

the merger tree because we reach the redshift at which they form. Thus we are seeing 

direct evidence that most of the substructure halos present at z=-0.3 have been orbiting 

within our simulated cluster from beyond a redshift of z=7.0. Substructure halos survive 

for long times within their parent halos. 

It is apparent from the plots in Fig. 4.5 that most of the substructure halos with 

Vpeak < 40kms - 1 present little or no evolution of their peak velocity. To quantify the 

amount of evolution in this quantity we calculate the time that corresponds to each 

redshift by integrating the relation between cosmic time and redshift. This gives for a 

standard CDM Universe: 

^ 3 ^ X ( 1 + 2 ) " 3 / 2 ( 4 - 1 } 

(here HQ is the present day Hubble parameter and is taken to be lOOh k m s - 1 M p c - 1 * ) . 

We then f i t each vveaj. vs time curve to a straight line. The slope of these fits gives us 

the rate of change in peak velocity as the halos evolve within the simulation. Next, to 

quantify the evolution we bin the data and draw a histogram of the number of halos per 

interval of velocity change. 

From Fig. 4.6 we can clearly see that almost 75% of the halos change their peak 

'Here h is taken to have the same value as was used for the simulations h fa 0.5 
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Figure 4.5: The evolution of vpeak for halos found at z=-0.3. Each curve represents a 

different halo. We plot all halos from z=-0.3 to z=20.0. 

velocities by less than 0.5h _ 1 kms _ L Gyr"" 1 . Even though they spend more than 5Gyr 

orbiting within a more massive virialised system. This adds further strenght for our use 

of vpeak as a label to characterise substructure halos. 

4.2 Indirect detection 

Both theory and observational data currently favour a Universe with a matter density that 

is dominated by non-baryonic particles. Many candidates have been proposed: some are 

known to exist, others are more speculative {e.g. , Ellis [47] and references therein). Struc

ture formation in a Universe dominated by cold dark matter (CDM) has been extensively 

tested against observations and the model has proven highly successful at reproducing 

the large scale properties and distributions of galaxies [36, 10]. On the non-linear scales 
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Figure 4.6: A histogram of the change in vpeak as a function of time. 

of galactic halos it remains to be confirmed whether or not the model can successfully 

reproduce the observational data [94, 52, 25, 97, 79, 120] 

Direct detection in the laboratory is the ultimate technique for verifying the existence 

of dark matter particles (see Collar [32]). However, even the most popular candidate for 

dark matter, the neutralino, has across section that spans many orders of magnitude and 

the current laboratory searches are only just becoming sensitive to the cosmologically in

teresting parameter range. Presently, astronomical observations provide the best insights 

into the nature of the dark matter; furthermore direct detection relies on the existence of 

a smooth component of dark matter. 

Within the next few years indirect detection of neutralinos will provide interesting 

constraints on their possible cross-section and masses. Neutralino-neutralino annihilation 

produces observable photons (as well as a host of other particles) that may be observed as 

a diffuse gamma-ray background from the halo surrounding the Milky Way as discussed 

in Refs. [66, 126, 123, 134, 122, 22, 82], and more recently, in Refs. [15, 17, 6, 63, 5]. 

High energy 7-ray experiments can be broadly classified into two groups: satellite 

born spark chamber detectors, such as the Energetic Gamma-Ray Experiment Telescope 

(EGRET) [76] or the Gamma-Ray Large Area Space Telescope (GLAST) [58] and at

mospheric Cherenkov telescopes (ACTs) such as the Very Energetic Radiation Imaging 
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EGRET GLAST VERITAS 

Effective Area (cm 2) 1500 8000 7 X 10 s 

Energy Resolution 10%-15% 10% 15% 

Angular Resolution 5.8° (at lOOMeV) 3.0° (at lOOMeV) 1.0° 

Energy Range 20MeV- 30GeV 20MeV- 300GeV 50GeV-50TeV 

Field of View (sr) 0.5 > 2 0.004 

Table 4.1: Approximate characteristics of 7-ray detection instruments. 

Telescope Array System (VERITAS) [85]. Ground based and satellite experiments offer 

two complementary ways of detecting gamma rays. While satellite experiments offer a 

lower energy threshold, superior energy resolution, and the possibility of relatively long 

exposure times, their relatively small effective area (approximately 1 m 2 ) limits their 

sensitivity at high energies. On the other hand ACTs offer the potential for very large 

effective areas (approximately 0.3 km 2 ) , but a higher energy threshold ( E 7 < 250GeV). 

The primary process for detection in satellite experiments is the conversion of 7-ray 

photons into electron-positron pairs. The radiation of interest is first separated from 

other forms of cosmic radiation and then the pair creation process takes place within 

a spark chamber. The tracks of the pair particles are then followed electronically and 

used to determine the direction of incidence of the primary high-energy photon. ACTs 

employ large (approximately 10 m) optical reflectors to image flashes of Cherenkov light 

from electromagnetic showers formed as high-energy 7-rays interact with the earths atmo

sphere. By making use of the distinctive differences in shower images, 7-ray signals may 

be distinguished from hadronic showers which form an important part of the radiation 

detected in these instruments. We present the approximate characteristics for the three 

experiments mentiones above in Table 4.1. 

Renewed interest in these predictions has recently arisen because of an unexplained 

component of diffuse high energy photons in the EGRET data (e.g. [42]), and also the 

possibility of an excess from the center of the Galaxy itself [88], unexpected clumpy 

emission and the unresolved "discrete sources" [67]. Progress in this area will result 

from several new and sensitive gamma-ray surveys such as GLAST and VERITAS. The 

sensitivity and resolution range of these new instruments will be important factors in 

distinguishing gamma ray signals coming from particle annihilation from those that arise 

due to other high energy astrophysical phenomena (such as 7-ray pulsars, active galactic 
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nuclei, 7-ray bursts and the diffuse emission that comes from the Milky Way). 

The efficiency of the annihilation process is strongly dependent on the local density and 

the cross-section of the neutralino. Many authors have calculated the expected flux from 

the Galactic halo using simple models for the expected mass distribution of neutralinos 

within the Galaxy (see, e.g. , Refs. [17, 63]) or from its satellites [82, 5]. 

Advances in computational Cosmology have lead to several recent breakthroughs that 

have direct, relevance to the detection of dark matter. In particular, the numerical reso- , 

lution that can be achieved using parallel computational techniques is now sufficient to 

study the internal structure of dark matter halos that form within a cosmological context. 

The results of these simulations have important implications for indirect (and direct) de

tection of dark matter candidates. Most significantly for particle-particle annihilation, 

we are now confident that the central density profile of C D M halos follows a singular 

power law down to small scales [30, 103, 98, 61]. Thus we may expect a point like source 

of mono-chromatic gamma-rays emanating from the center of the Milky Way, where the 

annihilation rate will be very high. 

A second fundamental prediction of the CDM model is that previous generations 

of the merging hierarchy survive within halos [61]. We have demonstrated that halos 

which accrete into larger systems may be tidally stripped of most of their mass, however 

their dense central cores survive and continue to orbit within the parent halos. This may 

present some problems for the CDM model since the predicted number of satellites within 

the Milky Way's halo is 50-100 times as many as observed [97]. If the CDM model is 

correct, then only a fraction of these satellites must have formed stars and most of the 

substructure remains as dark objects within the Galactic halo. 

The possibility of an enhanced gamma-ray background from dark matter substructure 

was explored by Bergstrom et al. [16], who made simple assumptions as to the mean 

density and abundance of such clumps. We can now use the high resolution N-body 

simulations to directly measure these quantities. The simulations also allow us to study 

the influence of the halo shapes on the diffuse gamma-ray background and the intensity 

of the central halo emission that arises from the singular dark matter density profiles. 

4.2.1 The sky distribution of the gamma-ray background 

In what follows we will consider a flux of photons (or other particles) that are a by

product of the annihilation of dark matter particles within the smooth component of 

dark matter that surrounds the Galaxy. It is not our intention to discuss the details 
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of neutralino interactions, a complete overview on these processes (and super-symmetric 

matter in general) can be found in Refs. [74, 14] 

4.2.1.1 M o d e l neutra l ino halos 

We calculate the gamma-ray flux along a given line of sight through a spherically sym

metric galactic halo using: 

m = %-f p2{i)dm (4.2) 

J Line of sight 

where ip is the angle between the direction of galactic center and observation; p, the density 

of dark matter at distance / f r o m the observer. We have summed up the dependence of the 

flux on neutralino mass and interaction cross section in the constant K. This is enough 

scope for the present discussion - i t is s t ra ightforward to take our results and input a 

neutralino cross-section, < av > , and mass, Mx to determine the absolute gamma-ray 

flux (where K is defined to be < av > / M 2 ) . Our results can also be used to infer the 

sky dis t r ibut ion of other products of the annihilat ion, such as neutrinos or positrons. 

The line of sight distance, /, is related to the radial distance f r o m the halo center, r , 

via 

r2 = I2 + R2

0-2lR0cos{ij) 

where R0 is our galacto-centric distance, taken here to have the I A U standard value of 

R0 = 8.5kpc [77], and V is related to galactic coordinates (£, b) through 

cos(^) = cos(£) cos(6). 

For the halo density profile, p{r), we take the latest results f r o m the highest resolution 

numerical simulations of galactic halos carried out to-date [97] These authors simulated 6 

different galactic mass halos w i th force resolution of 0.5 kpc and mass resolution of 1 O 6 M 0 . 

(Throughout the chapter we wi l l use the Hubble constant value of H0 = 1 0 0 h k m s - 1 M p c - 1 

and h = 0.5; as was done for the simulations.) The best f i t t i n g density profile to these 

data is (subscript moore): 

n ( r \ — Pmoore IA o \ 
( r / a ) 1 - b ( l + ( r / a ) 1 - 5 ) 

Where r is the distance f r o m the halo center, a = r2oojcmoore the scale radius for halos 

of mass K 1 x 1 O 1 2 M 0 . The vi r ia l radius of our f iducial Galactic halo, r2oo ~ 300 kpc, 

is defined as the radius of a sphere at which the mean over-density is 200 times the 
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Figure 4.7: The circular velocity curves vc(r) = ^GM(r) jr (a) and density profiles (b) 

are plotted as a func t ion of the radius for each of the halo models considered in the text . 

cosmological mean density. (A central density profile of slope -1.5 on galactic scales was 

also found by Jing & Suto [73] and confirmed as an asymptotic slope by Ghigna et al. [62].) 

We also compare this profile w i th tha t determined by Navarro et al. [103] using a 

sequence of lower resolution studies (subscript nfw) (the main difference being tha t the 

central dark matter density profile has a slope o f - 1 ) : 

(r/aj{T+ r/ay PnMr) = , _ , ^ 7 m / . 2 (4-4) 

and the modified isothermal profile w i th a constant density core (subscript is): 

« - w = { 1 + ( 4 ' 5 ) 

The scale radius, a, is determined directly f r o m the numerical simulations, except for 

the modified isothermal model which we normalise to match the observational rotat ion 

curve data (as in Ref. [80]); a i s = 24.3 kpc, anjw = 27.7 kpc and amoore = 33.2 kpc (this 

radius is direct ly related to the concentration parameter, c = r2oo/ a ) - We normalise each 

density profile such that the peak circular velocity, vpeak = 200 k m / s (the maximum of 

the vc - y/GM/r curve), which gives: p'is = 4.96 X 1 O 6 M 0 k p c - 3 , p'nfw = 5.11 X 10 6 M® 

k p c - 3 and p'moore = 1.64 x 1 O 6 M 0 k p c - 3 . We plot the effective circular velocity profiles 

and density profiles of these model halos in F ig . 4.7(a) and F ig . 4.7(b) respectively. 

In Fig . 4.8 we plot the flux, <f>, along the line of sight through a spherical M i l k y Way 

halo using the above density profiles as the observer looks towards the Galactic center at 
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Figure 4.8: The gamma ray f lux f r o m neutralino annihi lat ion, (^(tp), plotted as a funct ion 

of the angular distance f r o m the galactic center ip. The curves show the results using the 

three different density profiles plotted in F ig . 4.7 The f lux at a given position is averaged 

over 47r steradians. 
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•0 = 0° , to the Galactic anti-centre at tp = 180°. As expected, the central annihilation 

f lux depends strongly on the fo rm of the inner density profile. A t an angle of five degrees 

f r o m the Galactic center, the rat io of fluxes f r o m the three different profiles, moore:nfw:is 

are 1000:100:1. 

The peak central value depends upon the distance f r o m the Galactic center that we 

are wi l l ing to consider integrat ing f r o m - the f lux slowly diverges for the density profile 

in Eq. (4.3). However, w i th in a given radius, most of the neutralinos would have self 

annihilated leaving a t iny constant density core. We can estimate the size of this core 

using (nav)'1 = th, where ~ 10 Gyrs is the Hubble t ime. Taking a typical cross 

section, av = 1 0 ~ 3 0 c m 3 s - 1 , and adopting the Moore et al. density profile we f ind 

that the annihilation radius wi th in the M i l k y Way is approximately 4 x 1 0 - 7 parsecs 

The to ta l flux that arises w i t h i n 5 degrees of the Galactic center using the Moore et 

al. density profile is a factor of 10 larger than tha t found using the N F W profile (both 

integrated down to the annihilat ion radius calculated above). 

4.2.1.2 C o m p a r i s o n w i t h high resolut ion C D M s imulat ions 

We can use the numerical simulations to compare directly w i t h the above predictions tha t 

were obtained assuming spherical symmetry. (For details of the numerical simulations see 

Moore et al. [97]). To construct the expected gamma-ray sky maps we choose a simulated 

dark mat ter halo at a redshift z=0 that has a peak circular velocity of ~ 2 0 0 k m s _ 1 and 

a to ta l mass, w i th in the vi r ia l radius, r2oo = 300kpc, of 1 x 1 0 1 2 M Q . This simulated halo 

is f r o m the "Local Group" simulation discussed earlier and is close to our fiducial M i l k y 

Way cold dark matter halo tha t we adopted in the previous section. 

N-body simulations a t tempt to simulate a collisionless f l u id of dark matter using 

discrete massive particles. We calculate the local density at the position of each particle 

by averaging over its nearest 64 neighbours. The observer is placed 8.5 kpc f r o m the halo 

center (defined using the most bound particle in the simulation) and we sum up the f lux 

of annihilation products along each line of sight using the discrete equivalent to Eq. (4.2): 

where £, b are galactic longitude and lat i tude respectively. The f l u x is binned in angular 

windows of size Q = 1° x 1° and in the radial direction in fixed increments A r ; = l k p c . 

1 0 - 1 2 r 2 0 o -

K 
V / > 2 ( ^ , 6 ) A n ( A 6 ) 

$2 
(4.6) 

LOS 
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(b) 

Figure 4.9: Al l -sky maps of the gamma ray background constructed using a single high-

resolution N-body simulation of a cold dark mat ter halo. The observer has been placed 

in the short (a) and long (b) axis of the simulated halo. 
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Figure 4.10: The lef t panel shows a unit oblate ellipsoid and the r ight hand panel shows 

a unit prolate ellipsoid. The axis ratios for both are 2 :1 . 

The simulated dark matter halos are typically flattened oblate or prolate systems [7] 

We do not know a-priori in which axis the stellar disk would be located, therefore we show 

two all-sky maps using the same dark matter halo but viewed using two different locations 

for the "observer": Figure 4.9(a) and Fig . 4.9(b) has the observer located on the short 

and long axes respectively. Both of these plots show the enhanced brightening towards 

the halo center, as well as some clumpy substructure in the halo itself. Note that both the 

central halo and the centers of the substructure halos are ar t i f ic ia l ly "dimmed" in these 

plots due to the numerical resolution ~ 0.5 kpc, which sets a max imum density tha t can 

be resolved. The non-spherical shape of the halo is also clearly evident by inspecting the 

plots w i t h different observer positions. 

Recent estimates for the shape of the M i l k y Way's halo (see, e.g. , Ref. [106] and 

references therein), suggest tha t i t may be flattened w i t h a shor t / long axis rat io of 0.5. 

A n independent constraint f r o m the orb i t of the Sagittarius debris stars yields a nearly 

spherical dark mat ter halo [72]. The simulated halo tha t we have chosen to analyse repre

sents a typical prolate C D M halo wi th a short to long axis rat io of 0.4, and intermediate 

to long axis ratio of 0.5. 

I t is s t ra ight forward to estimate the effects of flattened dark mat ter halos by modi fy ing 

Eq. (4.2) to accommodate t r iaxia l shaped bodies. The simplest way to achieve this is to 

change f r o m spherical coordinate r to 

where b > c for the oblate case, and b < c for prolate and we leave z as the axis of 

symmetry. A 2d visualization of these 3d shapes is i l lustrated in F ig . 4.10. 

In F i g . 4.11 we plot spherical, oblate (2:1) and prolate (2:1) versions of the integral 
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Figure 4.11: The gamma ray f lux , 4>, plotted as a func t ion of angle i/>, for smooth halos 

of the same to ta l mass using the density profile given in Eq. (4.3) for spherical, oblate 

and prolate halo geometries. The points are values of the f l u x measured directly f r o m the 

N-body halo used in Fig . 4.9. 
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in Eq. (4.2) using the Moore et al. density profile. The observer is located on a plane 

parallel to the axis of symmetry, again at a distance R0 = 8.5kpc f r o m the center of the 

halo. The halo shape leads to l i t t l e difference towards the Galactic center, but at the 

anti-center prolate halos can be 100 times brighter than oblate halos. 

We can also compare the predicted angular f lux w i t h tha t measured directly f r o m the 

N-body simulation. The annihilation f lux is averaged in ten degree bins f r o m the simulated 

dark matter halo, along a great circle f r o m the galactic center to its anti-center. This 

direct measurement of the flux is also plotted (as points) in F i g . 4 .11. These data are 

part icularly noisy due to the large numbers of substructure clumps in the simulation -

the spike at ip = 125° is due to a massive dark clump tha t happens to lie exactly along 

this chosen line of sight. 

4.2 .2 S u b s t r u c t u r e 

4.2.2.1 E n h a n c e m e n t of global flux due to s u b s t r u c t u r e 

Cold dark matter substructure clumps have singular density profiles tha t wi l l be a sig

nificant source of annihilation products. The velocities and spatial d is t r ibut ion of dark 

matter substructure is unbiased w i t h respect to the smooth dark mat ter background [62]. 

Therefore, to f i rs t order, i t increases the global sky brightness in any given direction. 

However, the details depend on how much substructure survives wi th in the solar radius 

and also on how far down the mass funct ion substructure halos f o r m and survive. 

Fi rs t we w i l l estimate the annihilation f l u x f r o m clumps of dark mat ter tha t are known 

to exist in the Galactic halo i.e. the dark matter halos tha t surround the Magellanic 

Clouds and dwarf spheroidal galaxies. In fact , high-Energy gamma-ray emission f r o m the 

Large Magellanic Cloud ( L M C ) was detected wi th E G R E T by Sreekumar et al. [125] in 

1992 (although the origin of this emission was reported to be the interaction of cosmic 

rays wi th interstellar ma t te r ) . 

We estimate the average flux, $AV> f r o m the dark mat ter halos tha t surround some 

of the principal structures in the Local Group: The "Andromeda Galaxy"; M 3 1 [vpeak = 

200kms~ 1 at a distance of 700 kpc) , The Large and Small Magellanic Clouds (vpeak = 

7 0 k m s _ 1 and vveak = 4 0 k m s _ 1 , respectively; both at a distance of 50 kpc) , Draco (vpeak — 

l O k m s - 1 at a distance of 50 kpc) and a small dark matter c lump {vpeak = 2 k m s _ 1 at a 

distance of 10 kpc) . A sketch of the geometry is given in F ig . 4.12. 
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Figure 4.12: A sketch showing the geometry of an observer in the galaxy viewing sub

structure in the galactic halo. 
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The to ta l f lux f r o m a substructure halo at distance RC f r o m the observer is 

$TOT(RC) = P2(r)r2dr. (4.7) 

by considering the central A Q = 1° x 1° patch over each clump, we define the maximum 

integration l im i t in 4.7 above and the average flux is then 

**v = (4.8, 

(we set AQ in steradians, so we may compare directly w i t h the smooth flux of Sec

t ion 4.2.1). 

For the dark matter dis t r ibut ion wi th in the substructure clumps we use the Moore 

et al. profile, which provides a good f i t to the smallest, well-resolved substructure halos. 

The concentration of all dark matter halos is, in general, a func t ion of mass [78]. For the 

C D M model and this profile: 

This defines the scale radius of each substructure clump: ciM3i = 33.3kpc, ( I L M C = 

6.7kpc, asMC = 3.1kpc, a D r a co = 0.5kpc, a T i n y = 0.05kpc. 

The integral in Eq. (4.7) diverges as r —> 0 for the density profile that we are using, 

however, even the smallest substructure halos wi l l have a max imum density set by the 

radius w i t h i n which most of the neutralinos would have self annihilated. We therefore 

present results for the average f lux f r o m these clumps as a func t ion of the min imum 

integrat ion radius R m i n / a in F ig . 4.13, where a is the scale radius as defined above. 

For comparison, we plot the range of background emission at the Galactic anti-center 

as the shaded line in F ig . 4.13. The T i n y clump is only marginally visible above the 

background flux (depending on whether or not the Galactic halo is prolate or oblate) 

whereas the rest of the substructure is easily visible. Also for comparison, we have plotted 

the f lux f r o m the inner region of the galaxy which is clearly the brightest of the these 

sources. 

Al though the Galactic halo is expected to contain only about a dozen clumps more 

massive tha t the Magellanic Clouds, there are many thousands of smaller mass objects. 

The mass funct ion of substructure is a power law close to dn(m)/dm oc m - 1 9 or in 

terms of circular velocity dn(vc)/dvc oc u ~ 3 8 [62]. Above a circular velocity vpeak = 10 

km s _ 1 and 1 km s _ 1 we expect the galactic halo to host roughly 1000 and 5 X 10 5 

substructure halos respectively. Future simulations should be able to measure how far 
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Figure 4.13: The gamma ray f lux , $AV, plot ted as a func t ion of min imum integration 

radius R m i n for halo substructure of different circular velocities and distances as detailed 

in the text . The shaded region shows the range of background values at the Galactic 

anti-center tha t can be expected depending on the halo shape. The point is the average 

f lux due to all clumps w i t h vpeak > 1 k m s - 1 . 
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down the mass funct ion substructure halos can survive as well as to determine their 

central density profiles. (We note tha t the highest resolution simulation to date resolved 

the substructure wi th in the "Draco" dark matter mini-halo of mass 1O 7 M0 discussed 

in section 4 .1 . The force resolution was 10 parsecs and the mass resolution was 1 O M 0 

allowing substructure w i t h peak circular velocities as low as a few hundred meters per 

second to be resolved. The survival of substructure continues even down to this scale, 

where the slope of the power spectrum is close to -3.) 

We calculate the to ta l f lux f r o m substructure using Monte-Carlo techniques. Firs t 

we generate a list of peak circular velocities and positions of 5 X 10 5 substructure halos 

in the range of l - 7 0 k m s _ 1 . (Distances are randomly selected using the Moore et al. 

density profile and peak circular velocities are randomly assigned f r o m a power law dis

t r i bu t ion scaling as u - 3 , 8 ) . For each lump, we estimate its t o t a l flux as in the previous 

cases, integrat ing Eq. (4.7) w i th a density profile scaled according to Eq. (4.9) for the 

concentration. 

In the absence of fu r the r constraints on the possible value for R m i n , we use the same 

cri teria as before and choose i t to be a fixed fract ion of the v i r ia l radius, R m i n ~ 1 0 _ 1 2 r 2 o 0 . 

This corresponds to a mean density of m 1 O 2 2 M 0 k p c - 3 for the galactic halo. The effects 

of altering the min imum integration radius is apparent f r o m inspection of Fig . 4.13. The 

to ta l f lux is then averaged over the entire sky and we repeat this process in order to 

estimate the variance. The cumulative dis t r ibut ion of flux above a given substructure 

peak circular velocity ( £ $ X O T ) is plotted for ten of these random halo realisations in 

F ig . 4.14. 

I t is evident f r o m this plot tha t the effects of including the entire mass spectrum of 

substructure is quite dramatic and boosts the expected flux f r o m the smooth halo by 

several orders of magnitude. 

To quant i fy the brightening of the background due to substructure, we have calculated 

the average f lux due to all clumps wi th vpeak > 1 k m s _ 1 . The point plotted in F ig . 4.13 

represents this contr ibut ion to the flux, where the error-bar is the la variation among the 

different Monte-Carlo models. From this plot we see tha t the flux due to substructure 

can be as much as 4 magnitudes brighter than the background. We note tha t one needs 

to observe several square degrees on the sky to ensure a significant number of clumps lie 

in the field of view. (Also note tha t the variance at high peak circular velocities is due to 

the proximi ty of the largest few dark matter substructures, however, the mean to ta l flux 

converges to similar values for each Monte-Carlo model.) 
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Figure 4.14: The cumulative gamma-ray f lux f r o m halo substructures, T,4>TOT{V > vpeak), 

above a given substructure circular velocity vpeak- The ten different curves correspond 

to different Monte-Carlo realizations of a Galactic halo of substructure halos. The f lux 

is averaged over 47r steradian and can be compared w i t h the flux f r o m the smooth halo 

f rom F ig . 4.8 and F ig . 4.11. 
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4.2.2.2 T h e flux due to s u b s t r u c t u r e in prolate a n d oblate halos 

Not only is the mean flux at a given position on the sky dominated by substructure halos, 

the spatial d is t r ibut ion of flux across the sky wi l l be determined by the substructure. 

The convergence study by Ghigna et al. [62] shows that substructure halos trace the 

global mass dis t r ibut ion of the halo. Therefore, we can use the N-body simulations to 

generate Monte-Carlo distr ibutions of substructure halos and construct all-sky maps of 

the expected gamma-ray f lux. We take a random particle f r o m the simulation and assign 

a circular velocity f r o m a dis t r ibut ion dn(vc)/dvc oc v~3-8. For each sub-halo we calculate 

its to ta l annihilat ion flux and then repeat the process unt i l we have 500,000 halos above 

a circular velocity of l k m s - 1 . 

Figure 4.15(a) and Fig . 4.15(b) show the resulting sky d is t r ibu t ion of flux f r o m sub-

halos binned in one degree bins where the observer has been placed in the short and 

long axis of the simulation respectively. Large substructure halos, such as the Magellanic 

Clouds in our own halo, w i l l contain its own gravi tat ional ly bound sub-halos which leads 

to clustering of gamma-ray emission in the all sky maps. 

Future observations are likely to construct deep str ip maps therefore in F ig . 4.16 we 

have binned the f lux along lines of constant galactic / and b w i t h the observer placed in 

the short and long axis of the global density d is t r ibut ion . From these plots we can see 

that the emission f r o m substructure peaks at the galactic center, as one would expect, 

this effect is not tha t different for spherical halos than for prolate or oblate halos. 

Figure 4.17 and F ig . 4.18 show Monte-Carlo simulations of halos of substructure that 

are spherical, prolate and oblate flattened 2:1 and 3:1. In each case, the spherically 

averaged density profile is taken f r o m Eq. (4.3) and again the observer is placed in either 

the short or long axis of symmetry. Note tha t in this case, the positions of the substructure 

on the sky are completely random and we have averaged over 100 realisations to reduce 

the noise. 

These simulations show that the dis t r ibut ion of f lux on the sky can vary significantly 

depending on the shape of the density dis t r ibut ion and on where the observer is situated 

wi th in the halo. We can immediately see tha t the N-body halo is closest to the prolate 

2:1 model. 
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fa) 

(b) 

Figure 4.15: Al l -sky map of the gamma ray background tha t arises solely f r o m dark 

matter substructures. The positions and circular velocities of sub-halos above a circular 

velocity of l k m s - 1 are drawn f r o m the N-body simulations but the flux f r o m each halo 

is calculated analytically. The observer is located on the short (a) and long (b) axis of 

symmetry. The grey scale corresponds to the log of the flux of annihilat ion products. 
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Figure 4.16: The average gamma-ray flux per square degree f r o m dark matter substructure 

as measured along a great circle of constant galactic lat i tude (a) and longitude (b) . The 

average has been taken over a s t r ip of wid th 44 degrees and in in both cases the left hand 

plot represents the view along the short axis while the right hand side is the view along 

the long axis. 
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Figure 4.17: The effect of halo shape on the average gamma-ray f l u x f r o m sub-halos. 

Substructure halos are randomly drawn f r o m an oblate d is t r ibut ion w i t h the indicated 

axis ratios. The left panels have the observer placed in the long axis whilst the right 

panels have the observer in the short axis. 
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Figure 4.18: As in Figure 4.17 but for a prolate d is t r ibut ion of substructure halos. 
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4.2.2.3 T h e d i s tr ibut ion of point sources 

Individual substructures may be observed and quantified i f the resolution of the telescope 

is sufficient. However, all of the past and present observations would only detect substruc

ture as unresolved point sources. The dis t r ibut ion of their fluxes (and spatial d is t r ibut ion 

on the sky) may be used to rule out alternative origins, such as extra-galactic sources. In 

F ig . 4.19 we plot the cumulative dis t r ibut ion of point sources above a given f lux wi th in 

one degree square bins. The two curves consider substructure w i t h peak circular velocities 

larger than 10 km s _ 1 and 1 km s _ 1 . 

Higher resolution simulations are v i ta l to quant i fy how much substructure survives 

wi th in the galactic halo, how i t is spatially distr ibuted and to quan t i fy the internal struc

ture of surviving substructure. However, F ig . 4.19 gives an idea of what to expect i f an 

all sky survey is carried out tha t is capable of detecting the brightest substructure halos. 

4.2.3 Conclusions for indirect detection 

Numerical simulations tha t follow the growth of structure w i t h i n a Universe dominated by 

neutralinos (cold dark matter) have achieved a resolution tha t allows their global structure 

and internal structure to be quantif ied. The density profiles, shapes of dark matter halos, 

abundance and properties of dark matter substructure, all play an impor tan t role in 

determining the absolute surface brightness of observable products f r o m dark matter 

annihi lat ion. 

We have used the results f r o m the highest resolution simulations ever performed of 

C D M halos to examine the expected all-sky dis t r ibut ion of gamma-rays f r o m neutralino 

annihi lat ion. Substructure can boost the expected flux by a factor larger than 10 3 over 

tha t or iginat ing f r o m a smooth dark matter halo at the Galactic anti-centre. Thus, 

gamma-ray observations, such as E G R E T data, should already have the potential of 

constraining a large part of the parameter range of the neutralino cross-sections ( T . W i b i g 

& A . Wolfendale in preparation). The distinguishing shapes of C D M halos and the unique 

spatial and flux dis t r ibut ion of point sources f r o m substructure w i t h i n the Galactic halo 

should allow a unique identification of observational data w i t h dark matter . 

A n in i t ia l comparison of our results, F ig . 4.16, w i t h the in i t i a l observations of E G R E T 

has already been made ( F I G . 3 of Ref. [12]). In this comparison, the angular dis t r ibut ion 

of the diffuse 7 - r a y flux (extrapolated f r o m the E G R E T observations) is consistent to 

that of our simulated galaxy. However, the continuous flux predicted by our clumpy halo 
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Figure 4.19: The cumulative number of gamma-ray sources above a given flux wi th in a 

window AQ = 1° x 1°. The two curves are for substructure halos w i t h circular velocities 

larger than l O k m s - 1 (dashed line) and l k m s - 1 (solid l ine). 

model, at galactic latitudes —60 < b < 60, is more than an order of magnitude too bright 

to be consistent w i t h the observation. The monochromatic line, on the other hand, does 

lie close that predicted by our model at these latitudes (except for values close to the 

central part of the galaxy in which the observations are more uncertain). Before making 

any definit ive conclusions we must recall tha t the background flux between 30GeVand 

300GeV, which is precisely the interesting region for supersymmetric matter , has not yet 

been directly measured, and the values quoted are only extrapolations of the E G R E T 

data [12]. A more significant comparison wi l l only be possible once the this energy range 

has been measure w i t h precision (by upcoming gamma radiation detectors). 
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4.3 Direct Detection 

A n alternative and perhaps more convincing method for conf i rming the existence and 

nature of dark matter is by direct detection. The two prime candidate particles require 

different detection techniques. Neutralinos are the lightest super-symmetric particles, o th

erwise known as W I M P S (weakly interacting massive particles). These can be identified 

in a laboratory by looking for phonons or a temperature increase f r o m elastic scattering 

and nuclei recoil in various materials. Axions are another type of hypothetical par t i 

cle tha t have the addit ional motivat ion of ensuring tha t the strong interaction conserves 

charge-parity; these can be identified by s t imulat ing their conversion to photons wi th in a 

magnetic cavity (c.f., Ref. [65]). 

Many laboratory and some space based experiments uti l is ing these detection methods 

are in progress and after a great deal of technological development they are beginning 

to probe the parameter space allowed by cosmological and particle physics constraints 

(e.g. Refs. [84, 2, 18, 11]). These experiments are all highly sensitive to the local density 

of particles and their velocity d is t r ibut ion [34, 139, 151]. As we have seen earlier in this 

chapter, the f lux of gamma-rays on Ear th f r o m neutralino annihilations in the galactic 

halo is also ver j ' sensitive to any substructure in the dark matter [29]. I t is therefore 

crucial to understand the phase space structure of galactic halos in the hierarchical C D M 

model in order tha t experiments can be fine tuned to search for the appropriate signals 

and tha t potential signals can be interpreted. 

Many of the ongoing direct detection experiments adopt the principle that C D M par

ticles passing near Ear th have a smooth continuous density d is t r ibut ion w i t h an isotropic 

Maxwell ian velocity dis t r ibut ion w i t h 3-d dispersion ~ 270 km s _ 1 . Recent theoretical 

work has examined the possibility of velocity anisotropies resulting f r o m halo rota t ion [23] 

or t r iax ia l i ty [75, 49]. Other halo models have also been studied e.g. , Sikivie [121], who 

assumes axially symmetric and cold collapse of mat ter to infer the presence of caustic 

rings in the solar neighbourhood. However, two decades of cosmological simulations of 

the C D M model has clearly demonstrated tha t dark matter halos f o r m via a series of 

mergers and accretions of dark matter clumps along highly filamentary mass dis tr ibu

tions. Assuming symmetry and locally cold flows is an incorrect over-simplification of the 

true hierarchical growth [95]. 

A t a given point in a C D M halo, the "smooth" dark mat ter background arises f r o m 

material tha t has been t idal ly stripped f r o m less massive halos (e.g. , Ref. [61]). The 
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velocity d is t r ibut ion of particles reflects the mass d is t r ibut ion of progenitor halos tha t 

have merged and accreted into the f inal system. The power spectrum of fluctuations in 

the C D M model allows small dense dark matter halos to collapse at very early epochs. 

The cutoff scale f r o m the free streaming of neutralinos is approximately 1 O - 1 2 M 0 [119], 

although i t is possible that the Q C D transi t ion may introduce features in the power 

spectrum tha t allow clumping of C D M on even smaller scales [117]. 

A f t e r several decades of code development, matched w i t h increased hardware perfor

mance, numerical simulations have f inal ly achieved a resolution of sub-kpc scales w i t h i n 

a cosmological context. Recent high resolution numerical simulations can follow the evo

lut ion and survival of dark matter substructure halos (sub-halos) as they orb i t w i th in 

dense environments [78, 61 , 98]. However, numerical simulations are s t i l l a long way 

f r o m having a resolution scale comparable to tha t required for direct detection. In the 

last part of this chapter we explore the phase space d is t r ibut ion of C D M wi th in galactic 

and sub-galactic halos addressing questions of direct relevance to the direct detection of 

dark matter. Given our l imited resolution compared to laboratory scales, we discuss the 

extrapolation of our results to Ear th mass and solar system scales. 

4.3.1 T h e m e a n d e n s i t y o f d a r k m a t t e r a t R0 

The flux of particles through a detector depends on the local density of dark matter and 

the velocity d is t r ibut ion of particles relative to the Earth 's mot ion through the galaxy [55]. 

Here we combine several observational constraints on the baryonic dis t r ibut ion w i t h i n the 

M i l k y Way wi th our numerical simulations of halo s t ructure to determine the possible 

range of C D M halos tha t may surround the Galaxy. 

The density profile of C D M halos w i t h i n a specific cosmology follow a single parameter 

family uniquely determined by their mass. The cosmological scatter of halo concentrations 

is about 30% for virialised halos not undergoing current mergers [103, 45]. This scatter 

is largely due to variations in the vi r ia l radius at a fixed circular velocity and is sensitive 

to the presence of large substructure halos. I f we consider jus t the structure internal 

to Vpeak then deviations f r o m our density profile are only of the order 10% (c.f. Figure 

1 of Ref. [102]). The scatter in central density profiles is small because this region is 

completely relaxed and rarely contains substructure halos. 
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4.3.1.1 U p p e r l imit 

A single observed value of the circular velocity is insufficient to constrain the properties of 

the Galactic C D M halo, although the most impor tan t quant i ty to measure is the circular 

velocity at the Sun's position. Unfortunately, the s t ructura l properties of the Galaxy 

are not well known, e.g. the solar position 7 < i ? 0 / k p c < 8.5, the disk scale length 

2 < r v / k p c < 4, the local circular velocity 190 < t ^ / k m s - 1 < 230 [114]. The maximum 

density of C D M at R0 can be determined by calculating the min imum contr ibut ion to u 0 

f r o m the combined baryonic components. 

The mass of an exponential disk is = 2irrjTl(R0)eR°^rd where S ( i ? 0 ) is the vertical 

column density of baryons at the solar position RD. Direct observations of the local stellar 

and gaseous distr ibutions or dynamical estimates of the gravi ta t ing mass in the disk yield 

values of S ( i ? 0 ) lie in the range 4 O - 9 O M 0 / p c 2 [81, 53, 4 1 , 54]. Thus the baryonic disk 

mass lies in the range 4 - 8 X 1 O 1 O M 0 , of which 67% lies w i t h i n R0. The Galactic bulge 

contributes a fur ther mass of 1 - 2 x 1 O 1 O M 0 [60]. 

How does this compare to independent measurements? In order to explain the micro-

lensing optical depth of K-giant stars towards the Galactic bulge, the stellar mass wi th in 

R0 must be > 7.6 X 1 O 1 O M 0 [20]. This is close to the mass of stars tha t a maximum 

disk allows and may be evidence tha t the M i l k y Way is a barred galaxy [59]. A fur ther 

constraint on the central dark matter density can be derived using the kinematics of 

barred galaxies. The existence of rapidly ro ta t ing bars and the strength and position 

of shocks in their gas flows, both indicate low central dark mat ter densities [40, 147]. 

The analyses of these authors constrain the rat io (vdisk/vhato)2 > 2 measured at 2r^ at 

the 2a level. Apply ing these constraints to the M i l k y Way w i t h v@ = 220 k m s - 1 and 

Vbulge{Ro) = 70 k m s _ 1 , implies circular velocities at Ir^ of Vhalo < 120 k m s - 1 and 

v<lisk > 170 km s _ 1 . These parameters for the disk lie in the range discussed above and 

are i l lustrated in F ig . 4.20 as our f iducial Galactic model. 

Summarising these constraints allows us to estimate the maximum mass of dark matter 

w i th in R0, given tha t we do not want to overestimate the contr ibut ion to the observed 

circular velocity. This gives M C D M ^ 3 x 1 O 1 O M 0 for % = 220 km s _ 1 . Adopt ing the 

currently favoured A C D M model w i t h fiA = 0-7, QcDM = 0.3, a8 = 0.9, h — 0.65 

constrains the structure of the maximum C D M halo to be; c m o o r e = 6 [ c n j w = 9), 

Vpeak = 153 km s _ 1 , Rvir = 250 kpc, v v i r = 124 km s _ 1 , M v i r = 9 x l O u M 0 , R(vpeak) = 52 

kpc. Using the halo density profile defined in Chapter 2 we f ind a mean density of dark 
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matter p C D M ( R 0 ) <, 0.23 (GeV cm 3 ) (adopting an N F W profile w i t h inner cusp of -1 

would lower this value by about 15%). For vq = 230 km s _ 1 this density could rise by 

30% to p C D M ( R 0 ) = 0.3 (GeV c m " 3 ) . 

4.3.1.2 L o w e r l imit 

A lower l imi t to the mass of the Galactic halo can be found assuming tha t i t must be 

massive enough to "cool" the observed quant i ty of baryons to f o r m the visible galaxy 

[150, 105]. This assumes that those baryons in i t ia l ly outside r m r have not had t ime to 

cool and reach the central disk. This is probably an underestimate of the halo mass since 

a large f rac t ion of the baryons may be external to the disk in a warm component - perhaps 

ejected via supernovae feedback which is an essential ingredient to galaxy format ion in 

the C D M model. 

To estimate a lower l im i t to the halo mass we take a baryon f rac t ion given by the upper 

l imi t f r o m nucleosynthesis, f2(, = 0.019/i~ 2 [137] and a low Hubble constant h = 0.6. For 

a to ta l baryonic mass of 8 X 1 O 1 O M 0 , the halo mass must be M„,y > (^i0/^b)^baryon > 

4.6 x 1 O U M 0 in order to cool the observed amount of baryons (this calculation l imits 

the to ta l amount of ejected baryons to be less than the mass tha t currently resides in 

the Galaxy) . W i t h i n our adopted A C D M model this min imum C D M halo would have 

a density profile w i th parameters; c m o o r e — 6, Rv{r = 200 kpc, t>„,> = 100 k m s _ 1 , 

Vpeak = 125 km s - 1 , R(vpeak) = 40 kpc and M„,y = 4.6 X 1 O U M 0 . This leads to a lower 

l im i t of pCDM{R0) £ 0.18 (GeV c m " 3 ) . 

Al though the Galactic C D M halo is t igh t ly constrained we f ind tha t a A C D M halo 

is compatible w i t h the observational constraints. Our f iducial Galactic model is also 

consistent w i th the to ta l mass inferred f r o m the orbi ts of its satellites [152] and the value 

of the circular velocity u c (50kpc) « 200 km s _ 1 found f r o m modelling the Sagittarius t idal 

stream [72]. 

Detailed modelling of the thickness of the Galactic gas disk provides another constraint 

on the local dark matter density [106]. Finally, we note tha t i t remains to be resolved 

whether or not the adiabatic contraction f r o m the cooling baryons would increase the 

central C D M density beyond that allowed by the observations [8]. 

4.3.2 Structure in density space 

The previous calculation of the dark mat ter density assumes tha t the particles are smoothly 

dis t r ibuted. I f the dark matter is physically clustered on small scales then this estimate 
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Figure 4.20: The dashed and dotted curves show the m i n i m u m contr ibut ion to the 

Galactic circular velocity curve f r o m bulge and disk components respectively. The solid 

curves show the min imum and maximum allowed C D M halos w i t h central density cusp 

p(r) oc r - 1 , 5 . The upper thick solid curve is the to ta l circular velocity profile of the Galaxy 

for the case in which the C D M halo is the maximum allowed by observational constraints. 

The min imum C D M halo is the least massive halo tha t can cool the observed mass of 

baryons wi th in a Hubble t ime. The dot-dashed curve is a min imum " N F W " halo wi th 

central cusp p(r) oc r _ 1 . 
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• 

Figure 4.21: The evolution of a dark matter sub-halo orb i t ing on a circular polar orb i t 

w i t h i n a Galactic potential at 20 kpc. The snapshot is after 3 Gyrs, about 5 orbits. The 

t idal streams of dark matter lead and t ra i l the surviving dark mat ter c lump of which just 

0.3 percent of the in i t ia l mass remains bound. 

could radically change. For example, i f the f i rs t objects tha t collapse in the C D M hier

archy are small and dense enough, they w i l l survive the Galaxy's t ida l field and remain 

bound. The chances of the Ear th moving through one of these clumps may be so small 

tha t direct detection would not succeed. Here we discuss the t idal ly l imi ted structure of 

C D M halos w i t h i n halos. 

Even our highest resolution simulations show l i t t l e substructure w i t h i n about 10% 

of the v i r ia l radius. This is pr imar i ly a resolution effect since we do not have enough 

particles to resolve the cores of t ida l ly stripped halos. C D M halos have singular cuspy 

profiles on all mass scales simulated to-date f r o m 1 0 6 M © to 1 O 1 5 M 0 , therefore a central 
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core w i l l always survive but would require extremely high mass resolution to resolve i t . 

I f the number density of sub-halos continues as a power law to very small masses, 

would we expect a smooth component of mat ter at the solar radius? This question is 

quite subtle since the surviving f ract ion of halos at a given radius depends also on how 

the parent halo is assembled, i.e. is the fo rmat ion dominated by ma jo r (similar mass) 

mergers or by accretion driven growth? In the former case halos w i l l always be smooth 

since the halo centers coalesce to fo rm a single system. In the lat ter case, halo cores 

always survive but may not have much mass attached to them. Further simulations and 

analytic modeling are required to fu l ly address this question, here we make an estimate 

of the radius at which accreted sub-halos can retain most of their mass intact f r o m the 

Galactic t ida l f ie ld . 

Al though i t is physically impossible to completely disrupt a C D M sub-halo, once the 

t idal radius, rt, imposed by the Galaxy approaches the radius at which the density profile 

becomes shallower than -2, the sub-halo loses mass rapidly. I f rt > rpeak then the halo 

wi l l be stable and lose very l i t t le mass. This behaviour can be understood in terms of 

the energy dis t r ibut ion of particles compared w i t h the escape velocity at different radii 

as discussed in Chapter 2. This process is i l lustrated in F ig . 4.21 in which we examine 

t idal mass loss for the extreme case. We construct an equi l ibr ium dark matter halo w i t h 

a peak circular velocity of 10 km s _ 1 using 10 7 particles, force softening of 10 parsecs 

and isotropic particle orbits. The model is an equi l ibr ium Hernquist profile tha t has an 

inner density profile p(r) oc r~l and is essentially a equi l ibr ium replica of the Draco halo 

simulated earlier. 

Figure 4.21 shows the evolution of this model placed on a circular orbi t w i th in a 

Galactic potential for three billion years. The model has been constructed such tha t the 

t idal radius imposed by the M i l k y Way is equal to the radius at which the satellite's 

circular velocity peaks (this is the position at which the density profile becomes shallower 

than p(r) oc r~2). Most of the mass has been stripped away by t idal forces and now lies 

in two symmetric t ida l tails of material tha t completely wrap around the entire orb i t . In 

Fig . 4.22 we plot the evolution of the circular velocity curve and density profile of this 

satellite. 

The mass loss is continuous as particles on radial orbits escape, which in tu rn decreases 

the t ida l radius allowing more particles to escape. F ig 4.23 shows the same satellite 

o rb i t ing at 40 kpc wi th in the same potential . In this case the t idal radius imposed by the 

Galaxy is twice as large and lies beyond the inner core causing the satellite to lose mass 
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Figure 4.22: The evolution of the circular velocity and density profiles of the satellite 

shown in Fig . 4 .21. The curves show the in i t ia l configurat ion and subsequent times of 1, 

2 and 3 Gyrs. The satellite is on a circular o rb i t at 20 kpc f r o m the center of a Galactic 

potential and the theoretical t ida l radius (R<) for this orb i t is indicated. 
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Figure 4.23: The evolution of the circular velocity and density profiles of the satellite 

moving on a circular orb i t at 40 kpc f r o m the center of a Galactic potent ial . The curves 

show the in i t i a l configuration and subsequent times of 1, 2 and 3 Gyrs . 
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Figure 4.24: The upper panel shows the rat io of t ida l radius to v i r i a l radius for C D M 

sub-halos of a given peak circular velocity orbi t ing at a distance of R0 = 8 kpc f r o m the 

center of a 1 O 1 2 M 0 C D M halo. We consider satellites w i t h concentrations scaling f r o m 

the fiducial A C D M model w i t h s t ructural parameters defined at three different redshifts. 

We plot results down to halos w i t h characteristic velocity of 1 cm s _ 1 which is roughly the 

free streaming l im i t for neutralinos. The lower panel shows the rat io of remaining bound 

mass to the in i t ia l v i r ia l masses of the sub-halos. I f sub-halos enter Galactic progenitor 

halos at z=10 then more than 90% of their mass remains bound. 
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less rapidly. Whereas previously we found that after 3 Gyrs only 0.3% of the in i t i a l mass 

remains bound, in this case 40% remains bound at the f ina l t ime. 

App ly ing these results to sub-halos orb i t ing wi th in the M i l k y Way allows us to estimate 

a radius at which a halo of a given concentration w i l l lose most of its mass to the smooth 

background, i.e. the radius at which the Galactic t idal field truncates the satellite at 

r{vPeak)- The ratio of r p e a k / r m r decreases wi th halo mass (halo concentration increases for 

small masses) therefore smaller mass halos can survive intact deeper w i t h i n the Galactic 

potential . A t the location of the Ear th wi th in the Galactic halo we estimate tha t halos 

w i t h circular velocities larger than 1 km s _ 1 accreting today w i l l lose more than 95% 

of their mass. F ig . 4.24 shows the t ida l radii and masses of C D M sub-halos orbi t ing 

on circular orbits at R0 w i t h a C D M parent halo of mass 1O 1 2 M0. To calculate t idal 

radii we use the orbi ta l resonance theory derived by Weinberg (1998) which is slightly 

more stringent than the standard technique of using equipotential surfaces. To make this 

calculation we have assumed tha t the concentration c = r O T r / 2 r p e a f c scales w i t h mass as 

predicted by N F W . F ig . 4.24 shows tha t the amount of t ida l ly stripped mass depends 

sensitively on the redshift tha t sub-halos accrete into the M i l k y Way. I t is possible that 

the Galactic halo contains a significant f rac t ion of t iny halos which would decrease the 

dark matter density in the smooth component. 

Addi t iona l variations to the smooth component may come f r o m the existence of dark 

matter streams which are the remanents of t ida l interactions between halos (such as the 

ones which we explored in Chapter 3) . Overlapping streams could enhance the density of 

dark matter at R 0 , increasing the possibility of a signal detection. However, i f the streams 

are isolated, they would contribute to modulations in the detected signal tha t could make 

i t more d i f f icu l t to separate f r o m the background. Further analytic and numerical work is 

needed to investigate the numbers of streams tha t are flowing through the solar system; 

current simulations {e.g. . the one discussed at the beginning of this Chapter) are not 

able to resolve the small scale structure of the Galactic halo at the Solar radius [96]. 

4.3.3 Conclusions for direct detection 

We may draw two main conclusions f r o m this work: 

• We combined our halo density profiles w i t h observational constraints on the bary-

onic content of the Galaxy to infer the local density of dark matter . Observations favour 

a dominant baryonic component w i th in RQ = 8 kpc which leaves a C D M halo that con

tr ibutes <, 3 X 1O 1 O M0 w i th in the same radius. This constrains the local dark matter 
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density to be p(R0)< 0.23 G e V / c m 3 for a Galaxy w i t h v@ — 220 km s _ 1 . 

• We show tha t halos w i t h circular velocities <, 1 k m s _ 1 can survive orb i t ing at the 

solar position w i t h i n the Galactic potential . Since the central Galactic halo is in place by 

z=10, nearly all of the accreted halos wi l l remain intact and retain most of their mass. 

The presence of a smooth component of dark matter at R0 depends on the detailed merger 

history of the Galaxy and on the internal structure of the first C D M halos to collapse 

wi th characteristic velocities of 1 m s _ 1 - 1 km s _ 1 . 



Chapter 5 
What we have learned 

and what remains to be 

done 

We have investigated the interactions tha t occur when halos orb i t w i t h i n other halos. 

By applying well established theory and making detailed numerical simulations i t is pos

sible to explain the behaviour of t ida l ly l imi ted N-body systems and to make interesting 

predictions tha t are relevant to the properties of astrophysical objects. 

A simple satellite-halo interaction allowed us to understand the t ida l evolution of halos 

wi th in halos. A n impor tan t result was tha t sub-halos suffer nearly linear mass loss while 

their circular velocity varies by at most 20% as i t orbits w i t h i n a parent halo. We can also 

ident i fy the reason for this mass loss: the potential of the sub-halo is continually changing. 

T ida l s t r ipping removes particles f r o m its edge modi fy ing the sub-halos' structure; after 

many orbi ts the potential difference between the core and the edge of the sub-halo is low 

enough tha t the random velocity of the particles wi th in i t is sufficient to tear i t apart . 

Al though the simple satellite-halo simulation has already helped us to better under

stand the t ida l interactions between halos, much of the parameter space for such en

counters is yet to be explored. We are very interested in extending this work to study 

the effects of satellite orb i t , and satell i te/parent mass ratios. Which would allow us to 

quant i fy the effects of changing these parameters on mass loss. 

Varying the satellite mass (wi th f ixed parent mass) w i l l allow us to characterize the 

effects of dynamical f r ic t ion for N F W type systems. The factor of 2 difference in the 

abundance of sub-halos between A C D M and s C D M halos may be due to due to dynamical 

effects which we wi l l also explore. 

We are currently setting up the in i t i a l conditions for many of these simulations and 

others are under way, we expect to have some results in the near fu tu re . 

By performing detailed numerical simulations of the interaction of galactic halos wi th in 

clusters (using a combination of equil ibr ium models for compound galactic halos) we were 

97 
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able to find a possible origin for a particular feature of diffuse light in the Centaurus 

Cluster. 

We investigated the response of galaxies of different morphologies to tidal shocks as 

they pass pericentre in a cluster potential. The only scenario that gave rise to tidal debris 

with the same characteristics of the Centaurus arc was a luminous spiral galaxy with a 

disk co-rotating with its passage past pericentre. This encounter geometry imparts the 

maximum energy to the disk stars allowing them to stream away and form long thin tidal 

tails of stellar debris that trace the orbital path of the galaxy. Only a small fraction 

of the tidal debris constitutes the Centaurus feature, which is prominent at its current 

pericentric position where the orbits move closer together. 

One could potentially confirm the galactic origin of the Centaurus arc, by finding an 

over abundance of planetary nebulae along its length and at redshifts close to that of 

NGC4709. Somewhere along the tidal tails lies the remnant spheroidal galaxy. 

To explain the origin of the Centaurus arc we have made extensive use of the concept 

of "Galaxy Harassment", this is a natural continuation of the broader questions of the 

dynamical interaction of galactic halos. We will now go on to perform a large number 

of numerical simulations which will allow us to explore the large parameter space of 

interactions between disk+halo models orbiting within deeper potentials. 

The ultimate aim is to continue this line of investigations leading to construct a 

complete simulation of more realistic multicomponent galactic halos (i.e. with discs of 

stars and bulges) and to further our understanding of the response of disks to tidal shocks. 

We have already attempted one such simulation in which we used equilibrium models 

of disk galaxies to replace all of the halos above a certain mass threshold within a cluster 

that forms hierarchically in a C D M model. This time, at each redshift we would look 

for galactic size halos and replace them with suitable models that contained disks and 

(in some cases) bulges. Unfortunately, even after the first of these replacements the 

simulation required much more computing time that was available at hand and thus we 

have suspended the project for the moment. We hope that i t will soon be possible to 

continue this line of investigation which will be the first attempt at modeling the detailed 

small scale structure of a cluster of galaxies and to study the properties and abundance 

of diffuse intracluster light. 

To expand our understanding of the evolution of halos within halos, we took a full 

cosmological simulation and studied the evolution of the properties of sub-halos; paying 

particular attention to their peak circular velocities. We were able to construct a merger 
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tree for the sub-halos: tracing individual structures to the beginning of the simulation. 

This allowed us to conclude that once a halo falls into another virialised object its peak 

circular velocity is almost constant; almost 75% of sub-halos vary their peak circular 

velocity by less than 0 .5kms _ 1 Gyr - 1 . The results from these merger trees varied according 

to whether we traced the structures forward or backwards in time. When tracing halos 

from high redshift to the present day it was not possible to recover all of the halos found 

at the initial redshift. What happens to these halos? There are three possible scenarios 

that may answer this question. The first is that sub-halos merge at early redshifts, via 

dynamical friction, and only the most massive of these is followed when tracing backwards. 

Another possibility is that one sub-halo enters another that is more massive but continues 

to orbit almost intact within this halo, again our method will only be able to trace the 

more massive one. Finally, upon entering its parent halo, sub-halos may completely 

disrupt to form tidal streams. The study of Ghigna et al. [62] suggest that the third of 

these possibilities is already ruled out, but further work is needed to confirm this. 

We have been able to use our results to make interesting predictions relevant to the 

detection of dark matter. For the first time, high resolution simulations have been used 

to map the quantity and distribution of gamma-rays from the annihilation of dark matter 

particles. The density profiles and shapes of dark matter halos, as well as the properties 

of their substructure all play an important role in determining the total surface brightness 

of this radiation. Oblate and prolate halos are easily distinguishable by their gamma-ray 

signals and deep observations along galactic latitude and longitude could be used to define 

the shape of the Milky Way's halo. Substructure can boost the overall flux of gamma-rays 

by a factor larger than 10 3 from that of a smooth halo at the galactic anticentre. 

The neutralino is one of the most favoured candidates to make up the C D M component 

in galaxies. Observations at these energies (such as the EGRET data) should already have 

the potential to constrain a large amount of the parameter range of masses and cross-

sections for this particle. Further work is still needed to make these constraints. 

Making a detailed analytical model of the tidal interactions of halos within halos 

allowed us to extrapolate the simulations down to very small scales. This was particularly 

relevant to direct detection experiments. 

We were able to constrain the local density of dark matter to be PCDM(R®) ~ 0-23 

G e V c m - 3 for a local halo velocity of v& = 220kms - 1 . The smallest halos resolved in 

the simulations have circular velocities of l k m s - 1 , cuspy singular density profiles and 

concentration parameters that scale according with mass. For smaller halos, with peak 
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velocities of 1 c m s - 1 , we used analytical models of their tidal interactions to investigate 

their survival within virialised systems. The central galactic halo is in place by z=10 so 

nearly all of the accreted halos will remain intact and retain most of their mass. The 

presence of a smooth component of dark matter at the solar radius depends on the details 

of the merger history for the Milky Way and on the structure of the first CDM halos that 

collapse. 

A halo that accretes a smaller mass satellite will tidally disrupt it into tidal tails 

that slowly wrap in phase space (c.f., Ref. [68]). The symmetric tidal tails in Fig. 4.21 

illustrated this process for a single high resolution satellite. The presence of dark matter 

streams may be inferred using directional dark matter detectors such as DRIFT [84], 

or by finding a highly peaked signal resulting from particles entering the detector with 

similar energies. 

In our simulation the phase space distribution is smooth at RQ. However we can only 

resolve subhalos as small as 1O8M0 which have internal velocity dispersions of order 10 

km s _ 1 and can phase wrap several times around the Galaxy in a Hubble time. Therefore 

in a small patch of phase space we find multiple streams from the same tidally disrupted 

halos. I f we had infinite resolution and examined a volume that was one parsec on a side 

we would then be sensitive to the substructure within our poorly resolved 1 O 8 M 0 halos. 

Future analytic work is therefore clearly necessary to resolve these issues. However, 

it is possible that the density of dark matter in the solar system is zero, or that the solar 

system may be moving through a single stream of C D M particles that has bulk motion 

of w 200 km s _ 1 , with a velocity distribution of only a few m s _ 1 . 



Appendix A 
Cuspy halo profiles 

In chapters 2 and 4 we have made extensive use of the NFW and Moore et al. density 

profiles for cold dark matter (CDM) halos. We use this section of the thesis to present 

some general results for both. 

These profiles are particular cases of the general family: 

Here, po is a characteristic density that can be determined for each halo and a is a 

characteristic radius that is determined through the concentration, c = rvir/a, which in 

turn is determined by cosmology and the halo mass. I t turns out that simulated halos 

are well fitted by this type of profile for a full range of masses that span from clusters of 

galaxies to dwarfs. Navarro et al. [103] were the first to point out that these profiles were 

universal and develop a systematic way of determining the parameters po, a, c (The full 

procedure is explained in Refs. [103, 104]). 

This way of writing the profile allows us to find its asymptotic behaviour easily: 

and a defines the sharpness of the change from one slope to the other while a determines 

its location in r. 

Originally, simulated dark matter halos were thought to follow a modified isothermal 

distribution, (a,f3,y) = (2,2,0) which was used extensively in the analysis of observed 

circular rotation curves. Recent high resolution N-body simulations lead to different 

values for (ct,/?,7). 

p(r) = 
( r / o ) T [ l + (r /a )«] (0 -T) / ' a 

v —>• oo p(r) —> (r /a) ^ 

r -> 0 p(r) ( r / a ) - 7 

A . l The N F W profile 

For this profile we have that (Q,/3,7) = (1,3,1) and we may write 

P n } w { f ) = 
PO-nfw (A . l ) 

(r/a)(l + r / a y 
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Once we have the density distribution many physical quantities are easy to find: 

• The total mass within radius r. 

Considering spherical halos, the mass enclosed within a radius is found by integrating 

the density 

M ( r ) = 4TT f p(r')r,2dr' 
Jo 

so, for this particular profile 

f r r'2 dr' 
MnJw(r) = 4nP0„nfw ^ ( P / / A ) ( 1 + R , / F L ) 2 (A.2) 

Integrals of the type in equation A.2 will appear many times when working with these 

profiles so it is convenient to define its functional form. First we make the change of 

variable x = r/a; thus, dx = dr/a and 

o 5 / x dx 

= n 3 ( r ^ + 1" (1+I'») 
= a 3 ( l n ( l + z ) - X 

1 + x . 

Which gives an expression for the mass as a function of radius: 

Mnjw{r) = 4 T r p 0 - n j w a 3 f n f w ( x ) 

It is convenient to define a characteristic mass and radius for these halos. Typically the 

virial radius, i?„,y is used for this purpose. For a standard C D M universe (i.e. one in which 

Q — Qmatter — 1) i t is defined as the radius that encloses a region for which the mean 

density of a halo is 200 times that of the background*. This also defines a characteristic 

mass for the halo; the virial mass M v t > which, for spherical halos, is related to the virial 

radius by: 

8007T 3 
Mvir = —g—PoK-vir 

Using this definition we write the mass within radius r as: 

M n J w ( r ) = Mmr

 f n f f x )
 (A.3) 

Jnfw(Cnfw) 

'This density contrast is a function of cosmology; for an Q = 1; Qmatter = .3, A = .7 universe instead 

of 200 it is « 340 
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Where we must recall that x = r/a and c n j w = Rvir/a is the concentration (the concentra

tion parameter is also defined by the virial mass of the halo as discussed in Refs. [104, 45] 

so it turns out that C D M halos are completely defined by only one parameter). 

• The potential at r. 

The Newtonian potential (per unit mass) of a spherically symmetric density distribu

tion is 

$ ( r ) = -47rG - p{r')r'2 dr1 + f°° p(r')r' dr' 
r Jo Jr 

(A.4) 

We have already solved the first of these integrals (it is simply M(x)), the remaining 

integral we solve by making the same variable change as before 

/

C O 

Pnfw{r')r' dr' 

2 f°° d x ' 
- P o - n f w a Jx Y+x1 

P0-nfwa 

l + x' 

1 + X 

and so, the potential for the nfw profile (written in terms of the virial mass and concen

tration) is: 

®nfw{r) 
GMV 

" / n f w i^nJw) 

f n j w ( x ) + i + x (A.5) 

• The orbital frequency of circular orbits. 

The equation of motion of a point particle at distance r from the center of potential 

of an NFW density distribution may be written as: 

d2r d§ „ 
d * = F { r ) e r = -dr-€r 

if we now consider only the radial part of this expression and circular orbits of radius r 

r Q 2 = d$ = GM(r) 
dr r 2 

Here we have defined the orbital frequency, fi. We write i t in terms of the same parameters 

as before 

2 G M n f w { r ) GMvir fnfm(x) 
nfw (A.6) 
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• Circular and escape velocity. 

Once you have the potential it is easy to evaluate the circular velocity 

2 d$ G M ( r ) 
1/ = r — = — 

dr r 

or equivalently 

2 GMvir fnfw{x) , . _x 
VnSu, = X f , (c f ) ( A - 7 ) 

The escape velocity can be found by asking what amount of kinetic energy is needed 

to overcome the potential: 

1 
2*4c = Mr) 

thus 

2GM„ 
^esc—n fw 

f n f w { x ) + [ i 1+x (A.8) 
x f n fw ( C n / t i i ) 

As we have seen in chapter 2 a robust quantity that can serve to define a halo is 

the peak circular velocity, vpeak- This quantity is also important because it is more easily 

observed than the virial mass or concentration. If the maximum of circular velocity occurs 

at some radius xpeak = rpeak/a then 

2 GMvjr fnfw{xpeak) , . 
vpeak — ~ i i \ l A - y j ^ xpeakjnfw\^nfw) 

To find Vpeak explicitly we must maximise the circular rotation curve of equation A.7. 

The implicit first and second derivatives of the velocity are: 

^ d v n f w _ GMvir f l d f n j w ( x ) fnjwjx) \ (A 10) 

d v n f w \ 2 d 2 v n J w _ GMvi,. ( 1 d 2 f n j w ( x ) 1 d f n j w ( x ) fnfw(x) 
7 " " ^ dx 2 afnfw(Cnfw) \ 2 x d x 2 x 2 dx X3 

( A . l l ) 

so will need the following derivatives: 

d>fn j w ( ) 

da: (1 + z ) 2 

d 2 f n f w ( x ) _ 1 - X 

dx2 ~ (1 + a;)3 

The velocity has its critical points at d v ^ w = 0. From equation A. 10 we see that this 

condition is met when 

1 d f n f w ( x ) f n f w ( x ) 
x dx x 2 0 
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which is equivalent to 

2x2 + x - (1 + z ) 2 l n ( l + x) = 0 (A.12) 

equation A.12 has two non negative solutions (one of which we obtain numerically), 

namely x = 0 and x m 2.1625816. Further substitution of these values into A.11 proves 

that the circular velocity has a maximum at 

Xpeak — 2.16 

which implies that 

rpeak = 2.16a (A.13) 

With the peak circular velocity now explicitly defined, we may write all of the interesting 

physical quantities in terms of this parameter: 

2 CtMvir fnfui{%peak) 
upeak 

M n f w ( r ) = 

$ n f w ( r ) = 

; fnfw{Xpeak) ~ 0.4675860 

^peak ^ Xpeakfnjw{%) 

G fnfw{%peak) 

2 Xpeak 
'vpeak X 

fnJw {%peak) 

^peak •Epeak fnfw{%) 

fnfw{x) + 1 + x 

cfi X ^ f n f w { X p e a f c ) 

2x peak fn fw ( -E) ~t~ i +x ^esc—nfw ('*) ^peak ^ c t \ 
Jnfw\Xpeak) |_ 

A.2 The Moore et al. profile 

Recent very high resolution simulations lead to a profile with (a,(3,j) = (1.5,3,1.5), thus: 

PO—moore (A.14) 
(r/a)^[l + { r / a y - 5 ] 

We proceed exactly the same as before to obtain the physical quantities of interest. The 

different form of the profile leads to the following integrals: 

3 , 3 9 *'2dx' 
a fmooreix) - a 2 ^ (J + ^ 3 ) 

= a 3 § l n ( l + * ' 3 ) | f 

a 3 | l n ( l + X 2 ) 
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Pmoore{r')r' dr' 

= Po-

= Po-

2 f°° d x ' PQ-moorea 2 

(1 + a-')2 

I n „/2 X'+ 1 
2 / 2 a r ' - l \ l 

H — arctan •=— > 

7T 1 , (x + 2jx~+\\ 2 (2y/x-V 
- In = = arctan v/3 3 \ * - \ /« + 1 / v/3 

With these results we are now able to recover the physical parameters (to begin with, 

we will write them in terms of the virial mass and concentration, as before). 

• The total mass within radius r. 

Mmoore(r) = Mmr f™™W (A.15) 
Jmoor e\Cmoore ) 

• The potential at r. 

GMyir 
moore {^moore) 

' 7T 1 f X + 2y/x + l \ 2 ( 1 y / x - \ 
—= - - In = t= arctan •=— 

V 3 3 \ x - y / x + \ ) ^3 V y / l 

fmoore(x) ^ 

(A.16) 

The orbital frequency of circular orbits. 

2 , x GMmoore{r) GMvir f m 

core \-L I i A , n \ 
*lmoore(r) - ~5 — " 3 ~3~f T \ ( A - l < ) 

1 u x Jrnoorey^moore/ 

• Circular and escape velocity. 

" L o r e M = ° M

n

V \ f

f m 0 ° Z i X ) , (A.18) 
x Jmooreyt-moore) 

V 
2 
esc—moore (r) = 2\<f>moore{x)\ (A.19) 

We can see from A.18 that the maximum of circular velocity (at xpeak = rpeak/a) is 

again of the form: 

2 GMvir 

fmoore{xpeak) / » n r \ \ 
"peak - — ~ ^ T — 7 J- ) ( A - Z { ) ) 

The first and second derivatives of the circular velocity are the same as before, but now 

we have: 

dfmoore{x) x ^ 

dx 1 + X 3 / 2 

d fmoore{%) 1 2z I 

dx"1 2 z 1 / 2 ( l + x3/2)2 
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The condition for critical points ( ( t o t ^° C T r e = 0) now leads to the following equation 

3 a ; 3 / 2 _ 2 ( 1 + a . 3 / 2 ) l n ( 1 + 2 . 3 / 2 ) = 0 ( A 2 1 ) 

The two non-negative solutions to this are x = 0 and x « 1.2496758 (again, the nontrivial 

solution was obtained numerically). Thus, the circular velocity for the Moore et al. profile 

has a maximum at 

Xpeak — 1-25 

which implies that 

''peak = l-25a (A.22) 

Al l of the physical quantities may now be written in terms this velocity: 

Vpeak = X } / y fmoore{Xpeak) « 0.4675860 (A.23) 
^ XpeakJmoore(Cmoore) 

M m o o r e { r ) = ^ x * ; e a f c / 7 o r e ( x ) (A.24) 
^ JmooreyXpeak) 

ft ( r \ _ _ „ 2 XPeak 
^mooreV ) — vpeak A r i \ 

Jmoore (Speak) 

fmooreix) , [ " 1 (X + 2y/x + \ \ 2 ( 2 y / x - \ \ 
h —= In -= 7= arctan = — 

- L \ / 3 3 V a ; - v / ^ + 1 y \/3 V y/S J 
(A.25) 

0 2 I ,,\ _ Vpeak xpeakfmoore j x ) , . 0 R v 
" m o o r e C J - — 2 ~ X " X T 77 "T l A . / O j 

^ J moor ey^ peak J 

Vic-moored) = ^moore{x)\ (A.27) 
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