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Abstract 

This thesis is concerned with the synthesis and reactions of functionalised 3-

hydroxypyridines, in particular 2-aryl- and 2-heteroaryl-3-hydroxypyridines by non-

coupling methodology, from furan precursors. Chapter 1 reviews the synthesis and 

reactions of 3-hydroxypyridines. Chapter 2 describes the synthesis of 2-acylfurans 

via differing methods, which include acylation of the furan nucleus, Grignard 

reactions of furaldehydes and, most notably, reaction of lithiofurans with reagents 

containing a nitrile component. Chapter 3 concerns reaction of acylfurans with 

ammonia at high pressure and temperature to produce 3-hydroxypyridines. We have 

found that this ring expansion is able to withstand many differing substituents 

including bromine. Further development of the pyridine ring system involves reaction 

of the ring atoms or substituents, including protection of the hydroxy group. 

This ring expansion was used in the development of a novel azabenzotriazole starting 

from a simple furan compound, and this is reported in Chapter 4. 

The methodology described in this thesis is versatile and has allowed access to a 

range of novel pyridine derivatives in synthetically useful quantities which should be 

of interest in many areas of organic chemistry. 
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CHAPTER 1 

Introduction 



1.1 Introduction 

This project is concerned with the synthesis of novel highly functionalised pyridines 

from simple furan derivatives. Pyridines are key building blocks in the fine-chemical 

industry for pharmaceutical and agrochemical agents. There are many attractions in 

using the furan derivatives as starting materials; 

1. The rearrangement of 2-acylfurans and other derivatives into 3-

hydroxypyridines is known to proceed in high yield, while being both cheap 

and easy to perform on the bench, or in large scale reaction vessels; 

2. Highly functionalised furans can be easily synthesised or are commercially 

available; 

3. The rearrangement of furans to 3-hydroxypyridines is versatile in both the 

number and type of subsituents on the rings. 

1.2 Pyridines in Nature 

A number of pyridine compounds can be found in nature, principally among the 

alkaloids and the enzyme co-factors. Pyridine itself was first isolated in the pure state 

by Anderson1 from bone oil in 1849. The established molecular formula showed it to 

be a tertiary base capable of forming quaternary salts. 

1.2.1 Alkaloids 

Only a few alkaloids are derived from a monocyclic aromatic pyridine system, the 

most notable being the tobacco alkaloids which comprise a group of ten bases of 

known structure and their oxygenated derivatives. This family of compounds 

includes nicotine (1) and 2,3'-bipyridine (2) , both of which have been isolated from 

tobacco. 
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(1) (2) 

Nicotine (1) has been used as an anthelmintic, but it is more widely used as an 

agricultural insecticide, functioning as a contact poison when combined with oleic 

that nicotine patches and gum may be beneficial to sufferers of Parkinson's and 

Enzyme co-factors have been found in all animal and plant tissues so far examined 

and are derived from either nicotinic acid or Vitamin Bf,. Pyridine-3-carboxyamide 

(nicotinamide) occurs in the structure of the co-enzyme nicotinamide adenine 

dinucleotide (NAD + ) (3a) and the phosphate derivative (NADP +) (3b). These act as 

oxidising agents giving the reduced forms NADH (4a) and NADPH (4b) respectively, 

in enzymatic processes. 

acid or a stomach poison with bentonite.4 Interestingly, it has been recently reported 

Alzheimer's diseases, which are neurodegenerative in their effects.5 

1.2.2 Enzyme Co-factors 

Me Me 

O O N N O 0 O 
O / O / o 

O O 

H O O H O H H O O O 
o o 

0 H H O 

H O OR H O OR 

(3a) R = H 
(3b) R = P O ( O H ) 2 

(4a) R = H 
(4b) R = P O ( O H ) 2 

The B 6 vitamins comprise a group of three compounds (5a-c) all of which are 

converted to pyridoxol phosphate (6) in tissue. The pyridine ring plays an important 



role in metabolism in two ways. Firstly, as (6), in reactions of amino acids including 

racemisation, decarboxylation, transamination and elimination or replacement of 

substituents of the p or y carbon atoms.6 Secondly, as a co-enzyme, N A D + partakes in 

biological redox reactions. 

O 
O R 

0,1' O H O H 
O H O O 

Me N N Me 

(5a) Pyridoxol R = C H 2 O H (6) 
(5b) Pyridoxal R = C H O 
(5c) Pyridoxamine R = C H 2 N H 2 

Pyridoxol (5a) was first isolated from rice bran as the hydrochloride salt by several 

co-workers.8 , 9'1 0 Total synthesis by Harris and Fulkers" confirmed the assigned 

structure as that of a 2,4,5-trisubstituted-3-hydroxypyridine. 

1.2.3 3-Hydroxy pyridines 

In 1952, a massive fatal poisoning occurred in Poland from the mushroom 

Continarius Orellanus Fries.12 The toxic compound was identified as orellanine (7), 
13 

which decomposes on heating to the non-toxic orelline (8). Antkowiak and Gessner 

discovered that (7) is the TV-oxide of (8), which has a 3,3',4,4'-tetrahydroxy-2,2'-

bipyridyl structure. Tiecco et al. achieved the total synthesis of orellanine starting 

from 3-hydroxypyridine. 

O H O H 

1 O H A . O H 
0 

A . O H 

H O I H O 

O H O H 

(7) (8) 

The 3-hydroxypyridine ring system can be found in many alkaloids having biological 

activity of interest, for example the antibacterial agent pyridomycin (9). 1 4 
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2: OH 

O NH 
o 9 Me 

O O 
o 

^ .Me 
HO O 

OH 
Me 

1.3 Synthesis of 3-Hydroxypyridines 

1.3.1 Acyclic Precursors 

1.3.1.1 Nitrogen Containing Chains 

These involve a carbon-carbon bond formation as a necessity for the ring closure. 3-

Hydroxypyridine (11a) and its 5-methyl derivative ( l ib) were prepared by vapour 

phase treatment of dialkanolamines (10a, 10b), using a catalyst of copper, nickel and 

chromium in a hydrogen atmosphere at elevated temperatures (~350°C). 1 5 The yield 

for the reaction is low (-10%) when R=H, but i f R=Me the yield increases (42%). 

OH H OH i) R y y O H 

(10a) R=H (11a) R=H 
(10b)R=Me (11b)R=Me 

Scheme 1.1 Reagents and Conditions: i) Cu catalyst (containing Ni and Cr), 350°C, 

Several dihydropyridinols have also been prepared, via a method developed by 

Cohen,16 which requires heating a mixture of an a-aminoester (12a, 12b) and ethyl 

a-(hydroxymethylene)succinate (13). This leads to an ester (14), which cyclises in 

the presence of sodium, sodium ethoxide or sodamide (Dieckmann reaction) to give 
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the dihydropyridinol (15) or the lactam (16), depending on the alkyl group R1. 

Further reaction of (15) gives the 3-hydroxypyridine (17) in 15% overall yield. 

E t O X EtCC C O o E t 
C O o E t X V C O o E t 

N ^ Me 
N Me 1 R C O o E t H HO 

1 (14) (12a) R -Me 13 
1 (12b R ' = H 

» 
1 R ' = H R -Me 

EtOoC EtOoC 
o C O o E t 

XT 
H O C O o E t C O - , E t HO 

N 
E t 0 2 C — / 

Me N N Me 
Me 1 1 R R 

(17) (15) (16) 

Scheme 1.2 Reagents and Conditions: i) 90°C, lh; ii) Reflux with Na, NaOEt or 

NaNH2 in benzene 

1.3.2 Cyclic Precursors 

1.3.2.1 y-Pyrones 

Treatment of meconic acid (18) with concentrated ammonia17 or alkylamines 

(R=CH 3, C 2 H 5 , / . S 0 - C 3 H 7 ) 1 8 ' 1 9 gives ^-substituted comenamic acids (19), with one 

decarboxylation (15-40%). The yield can be increased by first decarboxylating, by 

heating in dilute hydrochloric acid, to give comenic acid (20), which can then be 
* 20 

reacted with the amines producing higher yields (60-70%). Complete 

decarboxylation to pyromeconic acid (21) and reaction with methyl- , ethyl-, propyl-, 

and /-propylamines19, as well as 2-aminomethyl acetal22, gives A^-substituted-3-

hydroxy-4-pyridones (22). 
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o o 
H O . 

H 0 2 C O C 0 2 H 

(18) 

Hi) 

(-2 C 0 2 ) 

H O 

O C 0 2 H 

N 
i 

R 

(19) 

C 0 2 H 

0 

HO 

0 

(21) 
H O 

(22) 

Scheme 1.3 Reagents and Conditions: i) RNH2, U0°C, 8-10h; ii) Dil. HO, 40-50°C, 

2h; Hi) Cone. HO, 80°C 

A unique reaction which does not require ammonia or amines to form the nitrogen 

ring is the nitrosation of pyromeconic acid (21).23 The intermediate rearranged during 

reduction with sulfur dioxide to give 1,2-dihydroxy-4-(7//)-pyridone (23). Further 

reduction of (23) with tin and hydrochloric acid gave 2,3,4-pyridintriol (24) in 23% 

yield. 

O 

HO 

0 

(21) 

O H 

HO 

HO N' 
H 

(24) 

0 

Hi) 

O 

O 

H O N T O 

H O 

H O N ' 
H 

(23) 

H) 
O 

O. 

H O N O H O H 

H , 0 

O 

( T N 

O H 

Scheme 1.4 Reagents and Conditions: i) N2O3; ii) SO2; Hi) Sn, HCl 
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1.3.2.2 Cycloaddition Reactions 

Certain oxazoles (25) react as 2-azadienes, giving adducts with dienophiles, which via 

various eliminations give pyridines.2 4'2 5 These reactions were investigated in the 

course of research directed towards pyridoxine. The nature of the leaving group 

depends on the substituents but most commonly it is ethanol, as 5-ethoxyoxazoles are 

activated towards addition. The general order for activation of oxazoles to 

substitution is alkoxy > alkyl > 4-phenyl > acetyl > ethoxycarbonyl » 2- or 5-phenyl. 

The cycloaddition is regioselective; reaction with acrylates or acrylonitriles leads to 

intermediate (26), which through elimination gives the 4-substituted pyridines (27) 

and (29) or the 4-hydropyridine (28). 

A 
R 1 R R 

o 
A 

>=< 
N 1 R R N R 

H H 
25 

H O XX 28) 
1 R R N 

XX XI 
HO R H-,0 

R 

1 1 N R R R R N 

TX HO 
29 26 27 

1 R N 

Scheme 1.5 Reagents and Conditions: A=Electron withdrawing group; i) 90°C 

Reaction of (25) with alkynes leads to an intermediate which readily loses the nitrile 

fragment in the elimination step to give a tetrasubstituted furan derivative (30). 

E 
O 1 R R R 

(25 O 
R C N 1 R N R 

(30) 

Scheme 1.6 Reagents and Conditions: E=C02Me; i) Toluene, 110°C 
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The trimethylsilyloxy substituent exemplifies a good leaving group: reaction of the 

oxazole (31) gives a high yield of the 3-hydroxypyridine (32),27 which can be easily 

converted into pyridoxin derivatives. 

E "^y1 Me3Si0AE —- V r 
R 

(31) (32) 

Scheme 1.7 Reagents and Conditions: i) Dimethyl maleate 

The thiazole (33) undergoes the analogous Diels-Alder reaction. The initial adduct is 

treated with dilute hydrochloric acid; loss of sulfur dioxide gives pyridoxine (34) and 
28 

loss of hydrogen sulfide gives the corresponding 3-ethoxypyridine (35), by analogy 

to the oxazole system. 

CH2OH C0 2 H 
H O . J ^ X H 2 O H (i) E t O ^ S s u (ii) E t O ^ A ^ / C 0 2 H 

Me' N 
-S0 2 / - N -H2S 

Me M e 

(34) (33) (35) 

Scheme 1.8 Reagents and Conditions: i) 2-Butyne-l,4-diol, PhN02, AICI3, J00°C, 

then HCl, H20; ii) Dimethyl maleate, 200°C, then HCl, H20 

1.3.2.3 7-Membered Rings 

1.3.2.3.1 Diazepines 

A novel scheme29 to 3-hydroxypyridines starts from the reaction of acid chloride (36) 

with diazomethane giving 3-diazoacetyl-3-methyl-4-phenylpyrazoline (37), which is 

rearranged in acetic acid, with loss of nitrogen, to 4-hydroxy-5-methyl-6-phenyl-

(7H)- 1,2-diazepine (38). In warm hydrochloric acid (38) rearranges to the pyridinium 
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salt, which is deaminated with nitrous acid to give the free base, 3-hydroxy-4-methyl-

5-phenylpyridine (39) in 42% overall yield. 

Me 

_i) V — f - c n r . H N o «) P h 

=0 

Ph Me 

.N 

CI 

(36) 

Me 

N 

(39) 

N 

(37) 

iv) 

P H 

(38) 

Scheme 1.9 Reagents and Conditions: i) CH2N2; ii) Acetic acid, 70°C; Hi) Warm HCl 

(20%), then 1 eq. NaOH; iv) HN02 

Diazepine-3-one derivative (40) undergoes rearrangment with carbocations to give the 

3-hydoxypyridinium derivative (41). However, with bases it gives a mixture of 

products (42a, 42b), arising from the ring closure of the intermediate diimine. The 
30 

mechanisms are discussed at length. 
Me Me Me Me O O i4 rr o Ph Ph O H Ph Ph 0 7 

N N ' N CN-N N 
N H H N H R CI R R 

C 
40 41 

Me Me Me O 

TX I T Ph O H Ph O H Ph 7 

N N H N H N H N 

(42a) (42b) 

Scheme 1.10 Reagents and Conditions: i) R+; ii) Base 
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The 1-methyldiazepine (43) is converted by photolysis into the same pyridine (42a) in 

43% yield as that obtained by treatment with base. The intermediate (44) has been 

postulated.31 

Me Me Me O 

I T OH Ph Ph O Ph 7 

N MeHN N N N N 
Me e Me 

(43) (44) (42a) 

Scheme 1.11 Reagents and Conditions: i) hv 

1.3.2.3.2 Oxazepines 

The 1,3-oxazepine (45) is thermally labile, 3-hydroxy-2-phenylpyridine (46) is the 

main product (23% yield); some N-formyl-2-phenylpyrrole (14%) is also obtained.32 

OH 
N 

N Ph O 
Ph 

45) (46 

Scheme 1.12 Reagents and Conditions: i) 450°C in benzene in a sealed tube 

The 3-hydroxypyridine (50) has also been synthesised from the 1,4-oxazepine (49). 

This 7-membered ring is made by irradiation of 2-azabicyclo[2.2.0]hex-5-ene (47), 

which is itself prepared from pyridine (by treatment with phenylmagnesium bromide 

in the presence of benzylchloroformate, followed by irradiation).34 

1 R 1 R 1 R R Ph O 2 HO R \ a 
i f R 

O 
N Is. 

N Ph N Ph N 
Ph 

(47) (48) (49) (50) 

Scheme 1.13 Reagents and Conditions: i) hv, CH3CN, 15 min; ii) Toluene, 110°C 
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I f R 2 is hydrogen then heating of (48) gives the 7-membered ring (49). Further 

heating gives the 3-hydroxypyridine (50). However, i f R 2 is a methyl group, the 

epoxide rearranges giving (51), on heating this gives the pyrrole (52). 

1 CHO R Me Me O N 0 Me Ph 1 (48 R O 
N 

Ph N 1 R 
Ph 

(51) (52) 

Scheme 1.14 Reagents and Conditions: i) Toluene, 100°C 

A similar reaction involves heating phenylcyclobutadione (53) with an enamine, 

giving the intermediate (54). Addition of base to (54) gives the 3-hydroxypyridin-2-

one (55).35 

O 

53 
Ph O Ph Ph \ 

XX HO COoEt COoEt 
HO 

Me O N Me N Me 
Me Me 

COoEt HN 
Me 

(55) 54 

Scheme 1.15 Reagents and Conditions: i) 40-50°C; ii) NaOH 

1.3.2.4 Furopyridines 

Nucleophilic substitution of 3-bromofuropyridines with copper cyanide in 

dimethylformamide gives the 3-cyano derivatives (56a-c). Alkaline hydrolysis36 of 

(56a) gives 2-cyanomethyl-3-hydroxypyridine (57), (56b) gives 4-cyanomethyl-3-

hydroxypyridine (58) and (56c) gives the 4-hydroxypyridine (59) in 66%, 68% and 

85% yields, respectively. 

12 



N 

(56a) 

CN 

OH 
(57) 

CN 

(56b) 

(58) 

(56c) 

OH CN 
OH 

(59) 

Scheme 1.16 Reagents and Conditions: i) KOH, aq. Ethanol, 60°C 

1.3.2.5 Synthesis From Pyridines 

This is the most versatile route for the synthesis of hydroxypyridines. However, the 

2- and 4-positions of pyridine are the most susceptible to nucleophilic attack: this 

conclusion can be reached by looking at the resonance structures of the intermediates. 

In the case of attack at the 2- and 4- positions the resulting negative charge can be 

delocalised onto the electronegative nitrogen, but attack at the 3-postion leads to this 

negative charge being distributed only on carbon. Thus displacements at the 3-

position are very much slower. 

Attack at the 
4- position 

Y Hal Y Hal Y Hal 

Attack at the 
3- position 

Y 
Hal 

Y 
Hal Hal 

~N 

Fig. 1.1 Nucleophilic substitution of pyridine 

1.3.2.5.1 Halo Compounds 

3-Hydroxypyridine can be made, in 20% yield, from the 3-bromo derivative by 

reaction with aqueous sodium hydroxide at 200°C with copper sulfate as a catalyst.37 
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The less severe conditions for the reaction compared to the Dow process, which 

makes phenol at 350°C, shows that the ring nitrogen does exert some activating 

influence on the 3-position, but much less than the 2- or 4- cases. 

3,5- or 2,6-Dihalopyridines undergo displacement to give monohaloethers and 

diethers. Weidel and Blau 3 9 obtained 3,5-dimethoxypyridine (40%) and 5-methoxy-

3-hydroxypyridine (10%) from the reaction of 3,5-dibromopyridine and sodium 

hydroxide in methanol. Subsequent repetition of the experiment led to isolation of 3-

bromo-5-methoxypyridine.40 When the reaction is performed in a sealed tube at 

110°C, a number of products can be isolated, among them 3-bromo-5-

hydroxypyridine (60) in 16% yield. 4 1 

OMe Br Br Br XX 
N N 

OH OMe OMe MeO OMe Br Br TT a XT 
N N N N 

(60) 

Scheme 1.17 Reagents and Conditions: i) CH^ONa, CH3OH, Cu, Reflux; ii) CH^ONa, 

CH3OH, Cu, 110°C 

1.3.2.5.2 Sulfonic Acids 

Alkali fusion of pyridinesulfonic acids is a useful synthesis of 3-hydroxypyridines; 

the weak base, sulfite ion, is easily displaced by the strong base, hydroxide ion. This 

is the conventional method for the synthesis of 3-hydroxypyridine4 2 , 4 3 and most 

applicable to the 3-isomer due to difficulties in making the 2- or 4- sulfonic acids. 

SO^Na OH a 
N N N 

Scheme 1.18 Reagents and Conditions: i) 100% H2S04, HgS04, 330°C; ii) NaOH 
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1.3.2.5.3 Amines 

3-Aminopyridine can be converted to the 3-hydroxy derivative by diazotisation and 

hydrolysis.44 The reaction probably involves displacement of the diazo group with 

water. Alternatively, the diazonium ion could lose nitrogen to give a carbocation 

which then can form the product by solvation. However, this leads to an intermediate 

with two positive charges in the ring, and without a group to stabilise them; making 

this mechanism highly unlikely. 

+ 
+ N 3 / 9 OH N OH OH 

N N 
H 

HoO N 

N 
i H 

Scheme 1.19 

1.3.2.5.4 W-Oxides 

The action of acetic anhydride on pyridine-1-oxide at 140-150°C leads predominately 

to 2-hydroxypyridine in high yield by way of the acetyl intermediate45 (Scheme 1.20). 

ii a i 
A 

OH N Me N N 
i O 

Scheme 1.20 Reagents and Conditions: i) Acetic anhydride, 140-150°C; ii) H2O 

Isomeric 3-hydroxypyridine is occasionally isolated in low yields from rearrangments, 

in addition to the main products 4 6 , 4 7 p-Toluenesulfonyl chloride and pyridine-1-oxide 

heated at 205°C 4 8 gives 3-hydroxypyridine as a major product; at lower temperatures 

only the 2-isomer is isolated.49 
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1.3.2.6 Furan Derivatives 

Many furans are ring opened under certain conditions to give unsaturated 1,4-

dicarbonyl compounds or their equivalent. Condensation with a nitrogen base 

intermolecularly can give rise to highly functionalised 3-hydroxypyridines. 

1.3.2.6.1 Furaldehydes 

As early as 1905, a furan aldehyde was converted into a 3-hydroxypyridine by Zink et 

a I?0 Heating of an alcoholic solution of aniline and furfural gave 3-hydroxy-l-

phenylpyridinium chloride (61). 

O O H N H a a o 
N 

CI 
Ph 

(61 

Scheme 1.21 Reagents and Conditions: i) HCl, heat 

In 1938, Aso 5 1 reported the isolation of 3-hydroxy-6-methylpyridine in a low yield 

from reaction of 5-methylfurfural and ammonium sulfate at high temperatures. 

However, the reaction of furfural and ammonia at 10°C for 4 days produces only 

furfurin (62) and hydrofuramide (63) , at higher temperatures furfural gave only tars 

and resins. 

O O 
N H N 

O O 5s 
N N 

O 

(62) (63) 
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5-Chloromethylfurfural reacted with aqueous ammonium chloride at 160°C to give 5-

hydroxy-2-pyridinemethanol (66) and 6-methyl-2,3-dihydroxypyridine (67).53 The 

chloromethyl group being hydrolysed to the 5-hydroxymethyl-3-hydroxypyridine. 

Compound (66) comes from the intermediate (64), but the diol (67) is formed by the 

elimination of water at the 6-hydroxymethyl group rather than the 2-carbon. 

o J7 64 (65) C HO OH HoC N N 
H 

OH OH CI 67 66) 
HO H->C OH N N 

Scheme 1.22 Reagents and Conditions: i) NH4Cl, H2O, J60°C 

The reaction of furfural or its 5-nitro or 5-chloro derivatives with aromatic amines and 

their hydrochloride salt yields a Stenhouse dye (68).54 Neutralisation of this salt with 

base produces a pyridine derivative (69). 

O 
O OH R 68 PhHN 

NPh.HCI 

R=H, CI, NO \ Hi) 

OH a (69) 70 
NHPh N N 

Ph Ph CI 

Scheme 1.23 Reagents and Conditions: i) PhNfy, PhNH^Cl'; ii) O f f ; Hi) Acetic 

acid, heat 
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The aminopyridine derivative (69) can also be made by reaction of furfural and the 

amine i f no acid or acid salt is present.55 Heating of (68) in alcohol or acetic acid 

produces 1-pheny 1-3-hydroxypyridinium chloride (70) in 37% yield. 5 6 

Aso 5 7 has shown that when furfural is treated with hydroxylamine hydrochloride or 

hydrazine sulfate at 155°C, 2,5-dihydroxypyridine (72) is obtained in low yield. He 

believed the aldoxime was converted to an amide (71), which was then hydrolysed 

and cyclised to give (72). This theory was supported by isolation of furoic acid from 

the reaction of furfural and the salt of hydroxyaminesulfonic acid, and conversion of 

furamide by acid at 160°C to (72) in low yield. 5 8 ' 5 9 

NOH O OH 
o o 

NH 
OH N 

(71) (72) 

Scheme 1.24 

1.3.2.6.2 Ring Expansion of 2-Acylfurans 

1.3.2.6.2.1 Mono Ketones 

The reaction is similar to that of furaldehydes, but gives a 2-alkyl-3-hydroxypyridine. 

The first such reaction was reported by Leditschke,61 in 1952, 2-phenylacylfuran (73) 

was reacted with ammonia to give 2-phenyl-3-hydroxypyridine (74) in 59% yield. 

Gruber60 extended this work to various groups R1 = alkyl or aryl, and also to other 

alkyl groups, R 2 on the ring. 

O OH -IV XX o R 1 R 
1 R R N 

(73) R1=Ph, R2=H (74) R1=Ph, R2=H 

Scheme 1.25 Reagents and Conditions: i) NH3 or NHj/Ethanol, NH4Cl 
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Many different alkyl groups have been used in the ring expansion. For example, 

simple alkyl or aryl groups by Gruber, who has examined alkyl chain substituents 

with a terminal carboxylic acid group, and found that the acid group in (75) withstood 

the reaction.62 Leditscke found that the dibenzofuran (76) was stable63, and Walter 

has incorporated the xanthene unit (77).64 

OH OH OH 

OH 
N N N 

O 

(75) (76) (77) 

Reaction of a pyridyl ketone leads to bipyridyl compounds, which are normally made 

by cross-coupling reactions.65 2,2' and 2,4'-Bipyridines have been synthesised via 

this route.66 The 2,2'-bipyridinol (79) was formed from the reaction of (78) with 

ammonia.67 

O OH OH OMe 
O 

N N 
N N 

N 
MeO HO 

78 80 79) 

Scheme 1.26 Reagents and Conditions: i) Ammonium acetate, 150 C, 2h 

The methoxy compound (80) was also reacted with dilute HCl to give the dihydroxy 

product (79), giving an overall yield for the reaction of 80%. 

1.3.2.6.2.2 2?«-Ketones 

The only reaction of a fo's-ketone is that described by Langhals.68 Furil (81) and 

ammonium chloride in methanol at 210°C, gave [2,2 ']bipyridinyl-3,3'diol (79) in 

32% yield. Traces of the pyrrole (82) and pyrazine (83) were also found in the 

reaction. 
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o HO 
81 

O 
O H HN N N O 

O N O 
O 

82) 83 

o Scheme 1.27 Reagents and Conditions: i) NH4CI, MeOH, 210"C 

The reaction of l,2-Z?/s-benzofuran-2-yl-ethane-l,3-dione (84) did not give the bis-

quinoline (85) but instead, the pyrazine (86) in 29% yield. 6 8 

OH 

85 N 
N 

HO O O 
O 

O 

O 
(84) N O 

86 
O N 

Scheme 1.28 Reagents and Conditions: i) NH4CI, MeOH, 210°C 



1.3.2.6.2.3 Synthetic Uses 

The reaction has also been widely used in the synthesis of natural products. 

Rapoport69 used 2-acylfuran to form (87) then the carboxylic acid (88), as a starting 

point in the synthesis of carpyrinic acid (89), which comes from methyl carpamate, 

the chief papaya alkaloid, through catalytic dehydrogenation. 

OH j } H ) ^ .OH ^ .OH 

~N Me N T Me MeOOC(CH2)7" N Me 
O 

(87) (88) (89) 

Scheme 1.29 Reagents and Conditions: i)KOH; ii) K2C03, C02, 250°C, 9h 

An antimalarial alkaloid (91) isolated from Hydrangea has been synthesised using this 

approach.70 The key intermediate 2-(P-hydroxypropyl)-3-methoxypyridine (90) was 

synthesised from 2-acetylfuran in three steps, and another subsequent seven steps 

gave the alkaloid. 

O OMe OH o a 
Me 

N N Me Me 

Hi 

NH . 2HC 
O HO OMe 7 steps 

N 
N 

O 
N 

Me HO 
(91) (90) 

Scheme 1.30 Reagents and Conditions: i) NH4OH, 150°C; ii) Me3PhNO, DMF; Hi) 

PhLi, Et20, Acetaldehyde 
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The intermediate of major importance in the synthesis of pyridoxol (5a) is 2-acetyl-

3,4-£/.s ,(acetoxymethyl)furan (92), which when reacted with ammonia should give 

acetoxymethyl groups on the pyridine ring at the 4- and 5- positions. This compound 

(93) could then easily be converted into pyridoxine. 

O CH 2OAc 
/ °VA A c O H 2 C ^ L / O H M Me

 ' XX 
AcOH 2C CH 2OAc N Me 

(92) (93) 
Scheme 1.31 

Furan derivative (92) was made from 3,4-dimethanolfuran by a Friedel-Crafts reaction 

using acetic anhydride and zinc chloride. 3,4-Dimethanolfuran was synthesised from 

3,4-dicarbethoxyfuran by reduction with lithium aluminium hydride. The diester was 

made using the Alder-Rickert 7 1 reaction, a procedure which was developed by 

reaction of furan and diethyl acetylenedicarboxylate, giving the adduct which was 
72 

hydrogenated to give the diester. However, Williams et al. did not report the 

reaction of the acylfuran with ammonia. 

fx ft — Â * 
EtOOC COOEt HOH2C CH2OH AcOH 2C CH 2OAc 

(92) 

Scheme 1.32 Reagents and Conditions: i) HAIH4, Et20, Reflux, Ih; ii) AC2O, NaOAc, 

reflux lh; Hi) ZnCfa, Ac?(J 
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1.3.2.6.3 Tetrahydrofurans 

Treatment of 2-carbomethoxy-2,5-dimethoxytetrahydrofuran (94) with methanolic 

ammonia (to make the amide); and then with hot, aqueous acid (which hydrolyses the 

acetal and cyclises the intermediate) produced a 94% yield of 2,3-

dihydroxypyridine.73 The tetrahydrofuran (94) can be made from 2-methylfuroate in 

62% yield. 

OMe OMe MeO MeO 0 O Hi i H) XX COoMe 
CONH COoMe 

94 
iv 

OH O fx N OH O NH O 

Scheme 1.33 Reagents and Conditions: i) Electrolytic methoxylation; ii) H2, Pd 

catalyst; Hi) NH3, Me OH, 25°C, 4 days; iv) H2S04, Reflux, 20 min 

1.3.2.6.4 Dihydrofurans 

1.3.2.6.4.1 Furylamines 

Under certain conditions the oxidation of furans can lead to an unsaturated 1,4-

dicarbonyl compound. Furylamine oxidised in this way would give a 

dicarbonylamine, and as the double bonds are moid, intramolecular condensation 

should proceed to give the 3-hydroxypyridine (Scheme 1.34). Direct oxidation of the 

furan ring to a dicarbonyl compound is difficult, but Clauson et al.74 achieved this by 

electrolytic methoxylation of the 2 and 5 positions of the ring giving a 2,5-

dimethoxy,2,5-dihydrofuran, subsequent hydrolysis gives the dicarbonyl compound in 

60-95% yield. 
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NH 
OH 0 

NH 0 O 
N 

Scheme 1.34 

Electrolytic methoxylation of the furylamine, however, gives a poor yield, probably 

due to interference of the amine in the reaction. However, 2-(acetamidomethyl)furan 

(95) gives an almost quantitative yield, 96%, at the methoxylation step. Alkaline 

hydrolysis of (96) to give 2,5-dimethoxy-2-(aminomethyl)-2,5-dihydrofuran (97), and 

boiling this product in hydrochloric acid gives 3-hydroxypyridine75 (Scheme 1.35). 

MeO OMe 
O ii) 

Ac Ac N N 
H H 

96 (95) 

Hi 
IV) 

NH 
MeO OMe OH 

Hi 
o o NH 

N 

(97) 

Scheme 1.35 Reagents and Conditions: i) NH3, AC2O; ii) Electrolysis in MeOH; Hi) 

HCl, H20; iv) NaOH, H20 

2,5-Dimethoxy-2-(acetamidomethyl)-2,5-dihydrofuran (96) boiled in hydrochloric 

acid gives a much lower yield of product (-50%), compared to 93% for the free amine 

(97) . 7 5 This may be due to the fact that in the condensation step the molecule must 

lose acetic acid. Consistent with this assumption is the hydrolysis of the carbamate 

(98) , which under the same conditions gives a higher yield of 3-hydroxypyridine, 

76% 7 4 (Scheme 1.36). 
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0 MeO OMe r f V 0 H 

^ / / ^ N ' C O O M e Y 7 ^ N - C O O M e ^ [I J 
H \=J J.) N 

(98) 

Scheme 1.36 Reagents and Conditions: i) Electrolysis in MeOH; ii) HCl, H2O 

The overall yield from furylamine to 3-hydroxypyridine can be improved still further 

by proceeding through the .yym-difurylurea (99)7 4 (made from the reaction of 

furylamine and urea at 200°C), and the corresponding dimethoxydihydrofuran, 

leading to an overall yield of 85%. 

OH OMe MeO a 
N 

O a o CO CO 
N N 
H H 

(99) 

Scheme 1.37 Reagents and Conditions: i) Electrolysis in MeOH; ii) HCl, H2O 

Clauson-Kaas adapted the reaction to the synthesis of pyridoxine, with an overall 

yield of 76%. He made 2-acetyl-3,4-6/s(acetoxymethyl)furan (92) using the same 

method as Williams 7 2 shown earlier (Scheme 1.36), but then reacted the acyl group 

with hydroxylamine hydrate to form an oxime (100). Reduction of the oxime with 

hydrogen using a Raney nickel catalyst, followed by acetylation gave 2-

(acetamidomethyl)3,4-6«(acetoxymethanol)furan (101) which, via a three step 

synthesis, where none of the intermediates were isolated, gave pyridoxine (Scheme 

1.38). 
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0 NOH NHAC ft o o o a 
Me Me Me 

AcOHoC CH2OAc AcOHoC CHoOAc A c O H 2 C C H 2 O A c AcO H 2 C C H 2 O A c AcOH 2 C C H 2 O A c 

(92) (100) (101) 100 

/ 
/ Hi 

CH2OH 

rx HOH 2 C OH 

Me N 

Scheme 1.38 Reagents and Conditions: i) NH2OH; ii) H2, Raney Ni, AC2O; Hi) 

Electrolysis in MeOH, then NaOH, H2Ot then HCl, H20 

1.3.2.6.4.2 Ketones 

Converting 2-acetylfuran to the 2-acetylfuran dimethyl ketal with methyl 

orthoformate in methanol, then electrolysis gives (102). Allowing (102) to stand with 

methanolic hydroxylamine hydrochloride produced the N-oxide (103) in 57% yield. 7 7 

O OH XX MeO OMe i a o o OMe Me HO N Me OMe 
Me O 

(102) (103) 

Scheme 1.39 Reagents and Conditions: i) MeOH, HC(OMe)3, reflux then electrolysis 

in MeOH; ii) NH2OH.HCl, MeOH 

1.3.2.6.4.3 Furaldehydes 

The methyl acetal of (104), when reacted with hydroxylamine hydrochloride gave 

only tars, but the free aldehyde gave (106). It is proposed that oxime intermediate 

(105), is formed first, before the dihydrofuran is hydrolysed to give (106).78 
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MeO OMe 
.0 

MeO O OMe 
NOH 

N 

OH 
(106) 

O' 
(104) (105) OH 

fx .0 
Tars 

HO' OH 

Scheme 1.40 Reagents and Conditions: i) NH2OH.HCI 

1.3.2.6.4.4 Furfuryl Alcohols 

Furfuryl alcohol is transformed by the action of methanolic hydrogen chloride into a 

mixture of distillable products consisting of 2-, 3- (or 4-), 5-

trimethoxytetrahydrosilvan, methyl levulinate, methyl levulinate dimethyl ketal and 2-

(or 3-) methoxylevulinaldehyde dimethyl acetal.79 It has been proved that this 

proceeds through c/s-3-acetylacrolein or its equivalent. 

Elming 8 0 found that 2-(hydroxymethyl)-5-(aminomethyl)furan (107) forms 3-

hydroxy-6-methylpyridine upon reaction with hydrochloric acid. It seems reasonable 

to assume that the transformation also occurs through the 1,4-dicarbonyl compound. 

Scheme 1.41 Reagents and Conditions: i) HCl, H2O 

A plausible mechanism for the reaction involves protonation of the hydroxyl group of 

(107), then loss of water to give a carbocation, which through resonance can be 

stabilised by the positive charge moving onto the oxygen of the furan. Reattack by 

water leads to ring opening and the pyridine ring is produced through nitrogen lone 

) M e OH Me fx o o OH H t N 
Me N 

H 2N 

(107) (108) 
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pair attack at the resulting carbonyl centre. Loss of water and tautomerism of the 

ketone gives the 3-hydroxypyridine (108). 

o o o H2C + 
NH NH HO 

(107) 

O o o XX XX H,C 

J NH 
H2C OH NH NH Me O HoO 

O OH O XX XX XX HO Me N Me N N Me M 
(108) 

Scheme 1.42 

Barrett81 reported a simple procedure for converting 2-aminomethylfuran into the 

corresponding pyridine derivative by C-5 lithiation. The 2-aminomethylfuran was 

firstly treated with 1,2-Zra(chlorodimethylsilyl)ethane and triethylamine in anhydrous 

dichloromethane to give the protected amine (109). This group is stable to lithiation 

at the C-5 position with te/-/-butyllithium in tetrahydrofuran. Reaction of the lithio 

species with aryl aldehydes gave the alcohol (110). This was not isolated but reacted 

in situ with hydrochloric acid, which firstly removes the protecting group and then 

protonates the hydroxyl group and through the mechanism (Scheme 1.42) gives 6-

arylmethyl-3-hydroxypyridine (111) (Ar=Phenyl, 37% yield). 
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HO 
Me Me 0 0 O 

Si-Me Si-Me Ar NH N N 
Si . S i 

Me' i Me' i 
Me Me 

109 (110 

Ar NH OH 

o o Ar 
N 

(111) 

Scheme 1.43 Reagents and Conditions: i) 1,2-bis(chlorodimethylsilyl)ethane, DCM, 

NEt3, 0°C; ii) t-Butyllithium, THF, -78°C, thenArCHO, r.t; Hi) 1MHCI, reflux, 18h 

1.3.2.6.5 Furoic Acid Derivatives 

2-Amino-3-hydroxypyridine has been used in the synthesis of highly active 

insecticides of low mammalian toxicity. The usual procedure for preparing (112) is 

from furfural following the work by Clauson-Kaas.76 An alternative route82 involves 

the reaction of furoic acid derivatives with ammonia at high temperatures and 

pressures. Reaction of 2-furamide, which is an oxidation product of furfural already 

containing one nitrogen atom, with ammonia gave 2-amino-3-hydroxypyridine (112) 

in 55% yield. Other derivatives were reacted in the same way with the yield being 

highly dependent on the choice of solvent, catalyst and reaction time; the highest 

yields are obtained by using amidic or related solvents. The best solvent is 

hexamethylphosphoric triamide (HMPT) though formamide, dimethylformamide or 

acetonitrile give good yields. The catalytic activity decreases in the order: ammonium 

iodide > ammonium bromide > ammonium chloride > ammonium fluoride « 

diammonium hydrogen phosphate « ammonium sulfate » ammonium acetate. A 

temperature of 200-250°C was found to be optimal with the reaction time ranging 

from 0.5 to 15 h. 
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OH £1 0 ^5 o 1 R R 

1 N NH R 

(112) 

Scheme 1.44 Reagents and Conditions: i) HMPT, NH4OH, 200-250°C 

R R Temperature 

(°C) 

Time 

(h) 

Yield 

(%) 

H CONH2 240 5 55 

H COOC2H5 240 8 50 

H COOH 240 11 45 

H CONHCH 2C 6H 5 240 10 20 

H CN 220 5 35 

H C 2H 5OC=NH 2" c r 200 5 35 

H HC=NOH 220 10 1-5 

CH 3 COOCH3 240 10 30 

CH 3 CN 240 8 25 

Table l.Vz 

1.3.2.6.6 Carbohydrates 

Formation of 3-hydroxypyridines by action of ammonium salts on carbohydrates at 

160°C, does not proceed through a furan derivative. However, it is likely that the 

carbohydrate is converted to a common intermediate which gives either the furan or 

the pyridine. Thus, xylose (113) which has been converted to furfural in 89% yield, 8 3 

also gives 3-hydroxypyridine and 2,3-dihydroxypyridine. The suggested intermediate 

for the reaction is (114). 
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OH 
HO OH O [O O fx f t 2 H 2 0 C0 2 H O o HO HO HO 

114) 
113 NH / \ NH H 2 0 

2 H-,0 
1,5- cychsation 1,4- cychsation 

O OH OH 
^5 

si N OH N 

Scheme 1.45 Reagents and Conditions: i) (NH^jSO^ 155°C, 2h 

Similarly hexose (115)84, which gives 5-hydroxymethylfurfural, also gives three other 

pyidine derivatives through the intermediate (116). The isolation of (119) and (120) 

indicates that some of the hexose or (116) undergoes a Canmzzaro reaction to give 

the acid (117) or alcohol (118), before each cyclises to give (119) and (120), 

respectively. 

O 

HO 

OH 

o OH HO 

HO HO o 0 OH OH OH 

Sf (115 116 
HO 

N 

O 0 r r 
CC X T (118 117) HO C0 2 H HO 

OH OH OH 

OH OH JX 119 (120 
HO HO 

N N OH 

Scheme 1.46 Reagents and Conditions: i) (NH4)2S04, 155°C, 2h 
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1.4 Reactions of 3-Hydroxypyridines 

The phenolic structure for 3-hydroxypyridine was supported by Specker and 

Gawrosch who found that the UV spectra of 3-hydroxypyridine and its methyl ether 

were identical in neutral or acidic methanolic solution. 3-Hydroxypyridine does exist 

in equilibrium with a corresponding zwitterionic tautomer, the exact ratio depending 

on the solvent (Figure 1.2). 

X>H O 

Fig. 1.2 

1.4.1 Reduction 

O 

i 
H 

Catalytic reduction of 3-hydroxypyridine hydrochloride gives a mixture of 3-

hydroxypiperidine (121) and piperidine. Since (121) resists further reduction, the 

piperidine is accounted for by formation of an intermediate allylic alcohol which 
87 

undergoes hydrogenolysis. 

OH OH a + 
N N N 

H H H CI 
121) 

OH 

N 
i — H — i 

Scheme 1.47 Reagents and Conditions: i) PbC>2, EtOH, Hj (60 lb pressure) 
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1.4.2 Deoxygenation 

3-Hydroxypyridine undergoes replacement of the hydroxy group with hydrogen when 
on 

dry distilled with zinc dust in a hydrogen atmosphere, giving a poor yield. 

Replacement is usually achieved using a two step approach, via the hydroxy- and then 

the chloro- derivatives. 

1.4.3 Alkylation 

Most alkylations preferentially take place at the ring nitrogen to give jV-quarternary 

pyridinium compounds.89 However, the potassium salt of 3-hydroxypyridine with 

ethyl bromide gives 3-ethoxypyridine. The methyl ether has been reported90 by 

creating the sodium salt (made by dissolving the pyridine in a methanolic solution 

with an equimolar amount of sodium methoxide), then adding dimethylsulfoxide. 

Removal of the methanol by distillation, and addition of iodomethane gives the 

product. Meyer91 reported the reaction of diazomethane with 3-hydroxypyridine to 

give the methyl ether. 

1.4.4 O- And ,/V-Acylation or Aroylation 

92 
Reaction with acetic anhydride gives 3-acetoxypyridine in 95% yield. Acylation 

93 1 87 

also occurs with benzoyl chloride (81%) and diphenylacetyl chloride (96%). 2-

Iodo-3-hydroxypyridine is benzoylated by benzoyl chloride in benzene with 

triethylamine as the base.94 

Substituted carbamates and their vV-alkyl derivatives were found to inhibit 

cholinesterase and some derivatives are active against the influenza virus. 9 5 

Preparation is achieved by action of a carbamoyl chloride on 3-hydroxypyridines in 

the presence of triethylamine96 or pyridine.97 
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1.4.5 Electrophilic Substitution 

Electrophilic substitution of 3-hydroxypyridine, which occurs more readliy than with 

pyridine itself, occurs at the 2-position. Bromination is usually achieved either with 

an equimolar amount of bromine in pyridine9 8 or bromine in 60% sodium 

hydroxide." Iodine and sodium carbonate give the 2-iodo product (90%). The 2-

chloro derivative is made by reaction with a mixture of hydrochloric acid and 

hydrogen peroxide (51%). 1 0 0 

1.4.6 Base Catalysed Substitution 

Base converts 3-hydroxypyridine into the resonating anion, which has a partial 

negative charge distributed on the ring carbons ortho and para to the hydroxy group. 

These can form covalent bonds with electron deficient carbons. 3-Hydroxypyridine 

undergoes the Mannich reaction,101 by analogy with phenol,1 0 2 with an alkaline 
103 

aqueous solution of formaldehyde in 51% yield and the 2-hydroxymethyl-3-

hydroxypyridine hydrochloride is oxidised to the acid (122) in 58% yield using 

sodium permanganate . 1 0 4 

OH OH OH a oz a 
OH 

N N N COoH 

(122) 

0 

HCl 

Scheme 1.48 Reagents and Conditions: i) NaOH, 36% CH2O, reflux then HCl; ii) 

Na2C03, NaMn04 

1.4.7 TV-Oxides 

3-Hydroxypyridine, like other tertiary amines, is converted to the TV-oxide by reaction 

with percarboxylic acids or hydrogen peroxide.105 The TV-oxide is more susceptible to 

electrophilc nitration than the free amine. 
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1.4.8 Ring Opening 

There are few examples of ring opening of 3-hydroxypyridines, e.g. the reaction with 

cyanogen bromide and aniline, gives (123).106 

OH 

N C 8 H 5 < 1 2 3 > 

N' C 6 H 5 - N H 

Scheme 1.49 Reagents and Conditions: i) CNBr, 2 eq. PhNH.2 

1.4.9 3-Oxidopyridinium Betaines 

3-Hydroxypyridinium salts, mainly the //-methyl derivatives, are known for a large 

number of ring substituents. Many of these compounds have been made by 

nucleophilic displacement, heating the 3-hydroxypyridines and a suitable halogen 

compound.107 These salts can be easily converted to the 3-oxidopyridinium betaines 

with bases such as sodium hydroxide, triethylamine or by ion-exchange resins. In 

some cases, usually when the 7V-substituent is strongly electron withdrawing, the 
108 * * • 

betaine (124) tends to dimerise at ambient temperatures. However, the equilibrium 

between monomer and dimer (125) can be shifted to give considerable amounts of the 

monomer at higher temperatures. 

N Cl" 

(124) 

Scheme 1.50 Reagents and Conditions: i) Ion-exchange resin 
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3-Oxidopyridinium betaines undergo cycloaddition reactions. They can act as 4n 

electron 1,3-dipoles across the 2,6- termini, as 6TI electron 1,5-dipoles across the 2,4-

termini, or as 87t electron 1,7-dipoles across the O and C-2 or O and C-4 positions. 

4 
O O O a 

N N N 
R R R 

Scheme 1.51 

1.4.9.1 Addition Across the 2- and 6-Positions 

Katritzky first observed a 1,3 dipolar addition in 1970, 1 0 9 ' 1 1 0 , 1 1 1 by taking l-methyl-3-

oxidopyridinium betaine (126), obtained from the 3-hydroxy-l-methylpyridinium 

iodide and ion-exchange resin, and heating with the dienophiles acrylonitrile, N-

phenyl maleimide or methyl acrylate gave the adducts (127), (128) and (129a,b) 

respectively. Since this initial work a large variety of /^-substituted betaines have 

been reacted with dipolarophiles, giving the appropriate adducts. 

Me Me 
O O N N 

to o o 
N 

NC Me 
O 

128) (126) (127 

Hi 

Me Me 
N N 

o o 129b 129a) 
N MeOoC 

Me0 2 C 

Scheme 1.52 Reagents and Conditions: i) Acrylonitrile; ii) N-Phenylmaleimide; Hi) 

Methyl acrylate 
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These reactions can be rationalised by using FMO theory. According to these rules 

additions of an olefin is allowed across the 2- and 6- positions where the orbitals align 

correctly (Fig. 1.3). 

4 

HOMO LUMO 

LUMO G-# O-O HOMO 

Fig U 

One of the first applications was in the synthesis of tropanes and tropalones. ' 

Katritzky showed that Hoffmann degradation"4 of the quaternary salt of (127) led to 

formation of (dimethylamino)tropane (131) via the intermediate (130). Hydrolysis of 

(131) with sodium hydrogen carbonate gave the desired tropalone (132). 

Me Me Me I O 
N N + Me2N o o a 

N 
NC NC 

(130) 

NC 
(127) 

O Q 

(132) 

O 0 Me2N HO Hi 
(131) 

NC NC 

Scheme 1.53 Reagents and Conditions: i) Mel; ii) AgjO, H2O; Hi) NaHCOs 

The first published synthesis of a tropane alkaloid using this approach was by 

Koizumi in 1989.115 Reaction of 1-methylpyridinium betaine with a number of 

vinylsulfones gave the initial 6-substituted or 6,6-disubstituted adducts. Reduction of 

the ketone (133) and hydrogenation gave a compound (134), which readily loses the 

phenyl sulfone group to give the 2-tropanol (135). 
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H S0 2Ph Me Me 
>=< N N H H H At o a in 

OH O N Ph0 2S Ph0 2S 
H H 

N (134 (133) 
Me 

iv 

Me Me.+,Me I 
N N 

H H 
135 OH OAc 

H H 

Scheme 1.54 Reagents and Conditions: i) THF, 90°C; ii) NaBH4, EtOH, r.t; Hi) H2, 

Pd-C, MeOH, 3 atm; iv) Na, EtOH/THF, 0°C; v) Ac20, reflux; vi) Mel, CH3CN, 50-

70°C 

Fulvenes react readily with (124) where the betaine contains a strong electron-

withdrawing group on the nitrogen.1 1 6 Hence, 6,6-dimethylfulvene (136) reacted with 

(124) afforded (138), via isomerisation of the intermediate (137). 

Ar Ar 
N O Me Me Cr N 

6 
1 

o 
N 

Me Me Ar Me Me 

(124) (136) 137 138 

N 
Ar NO 

Scheme 1.55 Reagents and Conditions: i) E(20, 20°C, 2h 

This reaction is the addition of a 671 electron addend across the 2- and 6 - positions of 

the betaine, and represents another symmetry allowed cycloaddition. 
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1.4.9.2 Addition Across the 2-and 4-Positions 

This reaction can be considered either as a [47T+67T] or [4TC+27T] process in which the 

betaine provides six or two electrons respectively, and the reaction occurs across the 

2- and 4- positions of the betaine with a diene. 

HOMO 

LUMO 

LUMO 

HOMO 

Fig 1.4 

A mixture of products is obtained due to some reaction of the 2,6- positions with a 

double bond of the diene. The dimer (125) on heating dissociates to the monomer; 

heating of (124) with cyclopentadiene at 20°C leads to the formation of two distinct 

products."6 Reaction with one double bond gives (139) (45%) whereas reaction with 

the diene gives (140) (37%). 

0 2 N 
O 

6 a 
N N 

0 139 
N O 

OoN 
140) 

NO 

124 0 2 N 0 2 N 

6 6 
141 

N N 
o o 

Scheme 1.56 Reagents and Conditions: i) Cyclopentadiene, 20° C; ii) 

Cyclopentadiene, 100" C 
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Heating of the monomer and the diene at 100°C gave firstly the [47i+27i] adduct then 

further reaction of the diene in a Diels-Alder reaction gave the 2:1 adduct (141). 

1.4.9.3 Addition Across the O and C-2 or O and C-4 Positions 

These cycloadditions"7'"8 are the result of an interaction between the HOMO of the 

betaine and the LUMO of an a-haloketene. The large coefficient of the ketene, 

residing on the carbonyl carbon atom" 9, interacts with the large coefficient located on 

the betaine oxygen; 1 2 0 the other bond can then be formed between the 2- or 4-

positions depending on the substituents R and R . 

4 

HOMO 

1 R 
R 

LUMO 

Fig 1.5 

121 122 

Dichloroketene, generated in situ form dichloroacetyl chloride, or chloral, adds 

across the O and C-4 positions. The intermediate, which cannot be isolated due to its 

instability, loses hydrochloric acid to give (142), which is consistent with an [87t+27t] 
addition. 

O Br O C 
Br CI 

o 0 o H) 
O 

N N N N 
Br Br Ar Ar Ar Ar 

O O Br C 

8 o 0 o 144 143 142 O 
N N N 

Br Ar Ar Ar 

Scheme 1.57 Reagents and Conditions: i) Dichloroketene; ii) Dibromoketene 
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Dichloro, difluoro and a-chlorohaloketenes all add across the O and C-4 positions, 

however, dibromoketene gives a mixture of products due to some addition across the 

O and C-2 positions.123 The ratio of isomers depends on the bulkiness of the N-

substituent. The aroylvinyl substituent (Ar = />C1C6H4C0CH=CH) gives only the 

isomer arising from C-2 addition, in 61% yield, whereas phenyl (Ar = C 6 H 5 ) gives a 

1:1 mixture of products, (143) and (144) (Scheme 1.57). 
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CHAPTER 2 

2-Furyl ketones 



Chapter 1 has introduced the general chemistry of 3-hydroxypyridines and principally 

the various reactions of furan derivatives in generating this system. The project aimed 

to explore the reaction of 2-acylfurans with sources of ammonia following the 

precedents of Gruber60 and Leditscke61 (Scheme 2.1). This chapter looks into the 

various methodologies incorporated into the synthesis of 2-acylfurans. 

OH fx o R 1 R 1 R N R 

Scheme 2.1 Reagents and Conditions: i) NH3, 150°C, J Oh 

2.1 Furylalcohols 

All the simple carbinols are colourless liquids when pure. They change to a reddish 

brown on prolonged exposure to light or air, giving a viscous liquid which eventually 

solidifies on standing. They are slightly soluble in water, their density decreasing 

with increasing molecular weight. They exhibit typical behaviour of secondary 

alcohols, and can be converted into the normal functional derivatives. However, 

reactions carried out in acidic media are complicated by involvement of the reactive 

nucleus and this accounts for the widespread use of basic solvents (e.g. pyridine) in 

reactions which require acidic reagents or give acidic products. Also, the presence of 

water enhances the activity of the acid to promote resinification and this is made all 

the more difficult since the initial reaction leading to resin formation gives water as a 

by-product. The furylalcohols can easily be oxidised to the furylketones required for 

ring expansion using standard oxidising agents. 
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2.1.1 Grignard Reagents 

Pawlinoff and Wagner124 were the first to prepare a furyl alcohol by reaction of 

furfural with diethylzinc to give the ethylfuryl alcohol. Grignard1 2 5 in 1901 was the 

first to obtain a furyl alcohol, wo-amylfuryl alcohol, by the reaction of furfural and 

wo-amylmagnesium chloride (Scheme 2.2). 

O OH 
o o R R 

1 R 

Scheme 2.2 Reagents and Conditions: i) R1 MgX, Et20, 0°C 

The reaction of the Grignard reagent at 0°C leads to high yields of the product 

alcohols. The two enantiomers were not separated due to the need to oxidise the 

alcohol fuctionality in the next step of the sequence. The reaction of Grignard 

reagents with various aldehydes is shown in Table 2.1 below: 

Alcohols R ' / R z Yield (%) 

145 l 2 b R=/.yo-propyl, R Z=H 78 

146 1 2 7 R'^eobutyl , R Z=H 47 

147 1 2 6 R'=phenyl, R Z=H 94 

148 R'=p-tolyl, RZ=H 98 

14912* R'=«o-propyl, R2=Me 73 

150 R'=seobutyl, R z=Me 87 

151 1 2 9 R'=phenyl, R z=Me 97 

152" y R'=p-tolyl, R i = M e 85 

Table 2.1 
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The alcohols were purified by distillation at reduced temperatures using a Kugelrohr 

apparatus. However, the alcohols (148) and (152) decomposed during the distillation 

process and were, therefore, purified by column chromatography on silica. 

We chose to use the reaction of furfural and a Grignard reagent to synthesise the 

required alcohols, due to the difficulty involved in making 2-furylmagnesium halides. 

Ordinary or activated magnesium fails to give the Grignard reagent with 2-

bromofuran; indeed a highly activated magnesium-copper alloy must be employed to 

give the product.1 3 0 Difficulties in making the Grignard reagent must also lie in the 

synthesis of 2-bromofuran. Klopp and Wright 1 3 1 isolated small quantities of both 2-

bromofuran and 2-furonitrile by the action of cyanogen bromide on furan. As pointed 

out by these investigators, this suggests the formation of a 1,4-addition compound 

(153), which through an elimination step, loses either hydrogen cyanide or hydrogen 

bromide, giving the two products (154) and (155) (Scheme 2.3). However, i f the 

reaction is carried out in dioxane only the 2-bromofuran (155) is formed. No trace of 

the 2-furonitrile (154) could be detected. 

O NC 

HBr 
O O NC Br 

o Br HCN 153 
155) 

Scheme 2.3 Reagents and Conditions: i) CNBr 

2-Bromofuran can be synthesised from bromine and an ethereal solution of 2-

lithiofuran; however, the separation of the product from diethyl ether is time 

consuming. An improvement comprises performing the bromination in 

dimethylformamide'32 between 20 and 40°C, giving a 70% yield. Performing the 

reaction at 20-30°C gives 2-bromofuran, but heating to between 30-40°C gives 2,5-

dibromofuran (156), meaning the temperature of the reaction is highly important and 

difficult to control (Scheme 2.4). 
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The successful bromination of furan in dioxane at 0°C (-90% yield), has the major 

drawback of using vast quantities of dioxane. This is due to the bromine-dioxane 

complex having only a moderate solubility in the solvent. 

O 0 O 
\ h 

Br Br O. Br 

(155) (156) 

Scheme 2.4 Reagents and Conditions: i) Br2, dimethylformamide, 20-30°C; ii) Br2, 

dimethylformamide, 30-40°C 

Furan and its homologues do not react with sodium or potassium, although they do 

with a liquid sodium-potassium amalgam. Furan has been metallated with other 

compounds; indeed, Gilman and Breur 1 3 3 showed that reaction with dibenzylmercury 

gave a 58% yield of 2-furoic acid. Carboxylation of the products of furan, sodium 

sand and «-amylchloride gave 2-5-difuroic acid (7%) and furoic acid (27%), 

suggesting either some of the dianion is formed or a stepwise dilithiation. 

The use of lithio species has been well documented in the literature; for example, 

metallation of furan with phenyllithium gave 40% of 2-furoic acid after carboxylation, 

however, using methyllithium gave only an 8% yield of product. An interesting 

reaction involves the lithiation of 3-bromofuran with «BuLi in tetrahydrofuran. I f the 

reaction is carried out at -78°C the 3-lithio species is formed as expected, but at 

temperatures > -40°C the 3-lithio rearranges to the 2-lithio isomer (Scheme 2.5). 

The reaction of furan with «BuLi has been widely studied using different 

temperatures, solvents and equivalents of reactants. The first study was the reaction 

of furan and «BuLi at -78°C in diethyl ether, i.e. standard conditions for many 

lithiations. However, a test using the addition of phenaldehyde to lithiofuran gave 

none of the expected alcohol. Indeed we have found that while the literature holds 

many such reactions, we could consistently get only two procedures to work well. 

The first was the use of only 0.9 equivalents of «BuLi in diethyl ether at 0°C, the 

2.1.2 Lithiofuran Species 
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reaction then being heated at reflux for 3-4 h to form a yellow suspension which was 

then cooled to -78°C and the electrophile added.134 The second, which also gave a 

high yield with methylfuran, involved lithiation with rcBuLi in tetrahydrofuran at 0°C 

for 4 h, addition of the electrophile, then stirring at 0°C for another 3-4 h . 1 3 5 Both 

reactions gave similar yields, the second having advantages that it was performed at a 

more convenient temperature (0°C compared to -78°C) and used equimolar quantities 

of the starting materials. 

O O 
q q q 

L Br 

>-40"C 

O Li 
i r 

Scheme 2.5 Reagents and Conditions: i) nBuLi, THF, -78°C 

2.1.2.1 Pyridyl Alcohols 

Of special interest to us was the reaction of the 2-furyllithium species with pyridine 

aldehydes. The product alcohols would lead, on oxidation, to the ketone, which upon 

ring expansion, would give bipyridyl systems. The lithiation of furan and 2-

methylfuran was carried out using /?BuLi (1.1 equivalent) in tetrahydrofuran at 0°C. 

The alcohols (157-162) which were formed (Scheme 2.6) were found to be relatively 

unstable to heat. Indeed, first attempts to isolate the products via distillation at 

reduced pressure caused resinification of the product, leading to a low yield (<1%). 

Any source of acid caused the solution to darken, hence, column chromatography on 

silica or using dichloromethane as the eluent caused the product to degrade. The 

alcohols (157-162) were purified using an alumina column with a 1:1 mix of ethyl 

acetate and hexane as the eluent. Hitherto, only alcohols (158) and (159) were known 

compounds. Due to the instability of the compounds, which have a shelf-life of only 

ca 48h at 20°C before resinification occurs, (157-162) were used immediately in the 

next step. 
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OH 
o i a o R R 1 R 

Scheme 2.6 Reagents and Conditions: i) nBuLi, THF, 0°C; ii) R'CHO, 0°C 

Product R ' / R z Yield (%) 

157 R=2-pyridyl, R 2=H 45 

158 l j 0 R=3-pyridyl, RZ=H 60 

159 u' R'=4-pyridyl, R Z=H 56 

160 R'=2-pyridyl, R2=Me 47 

161 R'=3-pyridyl, R z=Me 48 

162 R=4-pyridyl, R z=Me 55 

Table 2.2 

Most of the alcohols were solids except (157), however, the melting points increased 

in the sequence 2-, 3-, 4-pyridyl. The 4-pyridyl compounds were also the most stable 

and easiest to isolate from the reaction. 

2.1.2.2 Other Aromatic Alcohols 

We also explored the synthesis of other aromatic furylalcohols, by reaction of the 

lithiofuran and an aldehyde. The results are shown in Table 2.3 

OH 
o i a R R 1 R 

Scheme 2.7 Reagents and Conditions: i) nBuLi, THF, 0°C; ii) R'CHO, 0°C 
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Compound R ' / R z Yield (%) 

163 1 3 8 R'=2-furyl, R Z=H 36 

164 R=2-furyl, R z=Me 18 

165 u y R'=2-thienyl, RZ=H 28 

166 R'=2-thienyl, Rz=Me 22 

167 R'=3-quinolyl, RZ=H 48 

168 R'=3-quinolyl, R z=Me 49 

169 R'=2-naphthyl, R Z=H 58 

170 R'=2-naphthyl, R z=Me 42 

171 R=ferrocenyl, R Z=H 48 

Table 2.3 

The lower molecular weight compounds (163-166) were isolated as yellow viscous 

oils, whereas the larger quinolyl, naphthyl and ferrocenyl alcohols (167-171) were 

solids. We also performed the comparable reaction by lithiation of 3-bromoquinoline 

and reaction with 2-furaldehyde giving (167). This method gave a slightly higher 

yield (58%) but this was not a vast improvement on the result (48%) in Table 2.3. 

An attempt was also undertaken to prepare the indole derivative (173). 5-

Bromoindole (172) when lithiated under normal lithiation procedures (e.g rcBuLi at -

78°C) does not give the 5-lithio species, but the AMifhio compound instead.140 

OH 
Br i),H 

O N N 
H H 

173 172 

Scheme 2.8 Reagents and Conditions: i) tert-BuLi, THF, KH; ii) 2-furaldehyde 
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However, we followed the work of Yang et al which involved the use of potassium 

hydride and tert-BuLi. The potassium hydride is used to give the potassium salt of 

the 5-bromoindole whereby the lithiating agent cannot remove the amino hydrogen 

but instead substitutes with the bromine to give the lithiated species. 2-Furaldehyde 

was then added to the reaction and after stirring for lOh, ammonium chloride solution 

was added and the reaction worked up as usual. The alcohol (173) was not isolated 

from the reaction. Indeed, it seems the formation of the 5-lithio species did not occur. 

Other methods of making the ketone (221) derivative via reaction of 5-cyanoindole 

will be discussed below. (Section 2.4.2) 

2.1.2.3 Reaction of Dialdehydes 

The reaction of terephthaldicarboxaldehyde with two equivalents of the lithiofuran 

species gave the expected diol product (175) in 62% yield (Scheme 2.9). 

Terephthaldicarboxaldehyde (174) was chosen to minimize the steric hindrance that 

would occur during the subsequent two steps, viz. the oxidation to the diketone and 

the ring expansion. The insolubility of (174) in diethyl ether meant that the reaction 

was carried out in tetrahydrofuran. 

O 
OH 

O O 

o 

o OH 

(174) (175) 

Scheme 2.9 Reagents and Conditions: i) nBuLi, THF, 0°C 

Significantly, diol (175) was purified by column chromatography on alumina using 

dichloromethane as the eluent, showing that in contrast to other furylalcohols the 

acidity of the dichloromethane does not cause the diol to resinify. Compound (175) 

was also stable in light and air without darkening, another characteristic which shows 

the increased stability of this diol. 
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After the success with terephthaldicarboxaldehyde (174) we turned our attention to 

the synthesis of the pyridine analogue (177). 2,5-Pyridindicarboxaldehyde (176) 

(prepared in 44% yield, from oxidation of 2,5-pyridinedimethanol with manganese 

dioxide 1 4 2) was added to a solution of lithiofuran in tetrahydrofuran. However, we 

found that the dialdehyde was insoluble in either tetrahydrofuran or diethyl ether. 

Thus the starting materials were recovered, and the reaction yielded none of the 

OH 
/) ii) O 

o 
N 

OH 
(177) 

desired product. 

Scheme 2.10 Reagents and Conditions: i) nBuLi, THF, 0°C; ii) 2,5-

pyridinedicarboxaldehyde (176), 0°C 

2.2 Oxidation of Furylalcohols 

Furylalcohols have been oxidised to the corresponding ketones using various 

methodologies, e.g. the use of pyridinium chlorochromate (PCC) on alumina 1 4 3 or 

molecular sieves,144 use of dimethyl sulfoxide,1 4 5 pyridinium dichromate (PDC) 1 4 6 

and manganese dioxide. 1 4 7 Our systems incorporate a secondary alcohol which on 

oxidation will give only a ketone. We found PCC and PDC to be too mild to oxidise 

the alcohol (145), indeed after a few days very little of the product had been formed. 

DMSO itself needs to be activated for the oxidation and this is usually done by the 

addition of a little acetic anhydride,148 although pyridinium-sulfur trioxide 1 4 9 and p-

toluenesulfonyl chloride 1 5 0 have also been used. This gives an acidic solution which 

may cause resinification of the furan; also, acetic anhydride has the abililty of reacting 

with the furan itself in a Friedel-Crafts acylation so these routes were not explored. 
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Mn 
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o o o Base H R H R R 1 R 1 1 R R 

Scheme 2.11 Reagents and Conditions: i) Mn(?2, DCM, 20°C 

We chose to adapt the work of Miyakoshi, 1 5 1 who used manganese dioxide in 

benzene, but we used dichloromethane as the solvent. This oxidation has several 

good advantages over other oxidation reagents. The separation of the product from 

the managense dioxide is easily accomplished by filtration through a Celite plug, the 

filtrate then only contains the starting alcohol (if present) and the ketone product. 

Also, although the solution is acidic, we have seen little or no resinification of the 

furans even after several days of stirring. However, a drawback to this route is the 

length of time the reaction takes to go to completion. 

2.2.1 Oxidation of Furlyalcohols (145-152) 

Table 2.4 shows the oxidation of alcohols (145-152), synthesised as shown in Table 

2.1. 

OH O 

178, R1=/-Pr, R2=H 182, R1=/-Pr, R2=Me 
179, R1=s-But, R2=H 183, R1=Ph, R2=Me 
180, R1=Ph, R2=H 184, R1=p-Tolyl, R2=Me 
181, R1=p-Tolyl, R2=H 

Scheme 2.12 Reagents and Conditions: i) MnC>2, DCM, 20°C 
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Table 2.4 clearly shows that the 5-methylfuran derivatives (149-152) take longer to 

oxidise than the 5-hydro derivatives (145-148). This is probably a steric factor due to 

the bulky size of the methyl group. The ketones, except (184), were purified by 

distillation at reduced pressure. Compound (184) did not distil due to its high boiling 

point, so was column chromatographed. The aromatic substituents (147), (148), (151) 

and (152) gave a higher yield of product than the aliphatic derivatives. 

Alcohol Ketone Yield (%) Reaction time 

(days) 

Purification method and 

properties 

145 178 l z 49 4 bp 40-42°C (0.2mmHg) 

146 179 l z 54 5 bp 125-126°C (0.3mmHg) 

147 180 1 5 2 77 4 bp 50-52°C (0.3mmHg) 

148 181 1 3 3 86 4 bp 122-123T (0.3mmHg) 

mp 30-32°C 

149 182 , 5 4 a 43 7 bp 80-82°C (0.3mmHg) 

151 183 58 10 bp 150-152°C (0.3mmHg) 

152 1 8 4 l 5 4 b 80 4 Column Si0 2/CH 2C1 2 

Table 2.4 

2.2.2 Oxidation of Pyridyl Alcohols 

O OH 
o R R 1 1 R R 

185, R1=2-Py, R2=H 188, R1=2-Py, R2=Me 
186, R1=3-Py, R2=H 189, R1=3-Py, R2=Me 
187, R1=4-Py, R2=H 190, R1=4-Py, R2=Me 

Scheme 2.13 Reagents and Conditions: i) Mn02, DCM 
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Alcohols (157-162) were all oxidised in good yields to give the corresponding ketones 

(185-190). The 2-pyridyl alcohols (157) and (160) are the least stable of the starting 

materials and this is shown in the lower yields compared to the 3- or 4-pyridyl 

compounds. 

Alcohol Ketone Yield (%) a Reaction time (days) 

157 185°' 74 3 

158 82 4 

159 1 8 7 i i i 77 3 

160 188 75 4 

161 189 79 4 

162 190 84 4 

'' after purification by an alumina column, eluent EtOAc/hexane (1:1 7V) 

Table 2.5 

2.2.3 Oxidation of Other Aromatic Alcohols 

Alcohols from Table 2.3 were oxidised using the same conditions of manganese 

dioxide in dichloromethane. The results of the oxidations are shown in Table 2.6 

below. 

O OH 
0 o R R 1 1 R R 

191,R1=2-furyl, R2=H 192, R1=2-furyl, R2=Me 
193, R1=2-thienyl, R2=H 194, R1=2-thienyl, R2=Me 
195, R1=3-quinolyl, R2=H 196, R1=3-quinolyl, R2=Me 
197, R1=2-naphthyl, R2=H 198, R1=2-naphthyl, R2=Me 
199, R1=ferrocenyl, R2=H 

Scheme 2.14 Reagents and Conditions: i) MnOj, DCM, 20°C 

54 



Alcohol Ketone Yield (%) Reaction time (days) 

163 1 9 1 , i b 42 a 3 

164 192 36a 4 

165 193 0 4 

166 194 0 4 

167 195 87a 4 

168 196 77a 4 

169 197 77a 4 

170 198 89a 4 

171 94b 1 
J after purification by an alumina column, eluent EtOAc/hexane (1:1 7V); after purification 

by an alumina column; eluent EtOAc. 

Table 2.6 

Oxidation of the thienyl alcohols (165) and (166) afforded no isolable product, and 

the starting material could not be recovered. Due to the reactivity of the starting 

alcohols, which must be reacted within a day of their synthesis or the solution turns 

dark, we think that the acidic solution caused the furan ring to open. The oxidation of 

the other alcohols affords the ketones, with the yield from the furan alcohols (163) 

and (164) being low. This is probably due to the same ring opening that occurs in the 

thiophene case but shows the former to be less susceptible to acid. (191) and (192) 

proved to be dark yellow oils, whereas the naphthyl and quinolyl ketones were pale 

yellow solids. 

2.2.4 Oxidation of Diol, 175 

Similarly, diol (175) gave the ketone (200) in 76% yield showing it is stable to acid, 

with no need for purification by chromatography prior to recrystallisation from 

hexane. 
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(175) (200) 

Scheme 2.15 Reagents and Conditions: i) MnOj, DCM, 20°C 

2.3 Friedel-Crafts Acylation of Furan 

There are reports that furylketones can be obtained by Friedel-Crafts acylation of 

furan, with both acid anhydrides and acid chlorides being employed, although the 

former gives better results. It is beneficial to minimise the contact time of the furan 

and condensing agent, either by careful addition of the furan or use of an ample 

amount of solvent. Elevated temperatures are detrimental to the yield, thus 

condensation of furan and acetic anhydride with zinc chloride at 0-20°C gave a 66% 

yield of 2-furylmethyl ketone, whereas raising the temperature to 30-60°C gave only a 

40% yield. 1 5 8 The catalyst used for the reaction also leads to resinification of the 

furan, which depending on the reaction conditions may involve formation of a coating 

on the surface of the condensing agent or may prevent any products being isolated. 

According to Calloway 1 5 9 the efficiency of metal chloride catalysts decreases in the 

order: SnCl4, FeCl3, A1C13, TiCl 4 . 

B F 3 

(201) 

(RCO) 2 0 

(202) 

6 + R C O - O - C - O B F O 
i j 

R 

(203) 

(205) 

+ -
R C O - 0 - B F 3 

H 

(206) 

+ R O C O R 

.0 
O B F , 

(204) 

Scheme 2.16 
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A mention should be made of the work by Heid and Levine 1 6 0 on the effectiveness of 

catalytic amounts of boron trifluoride complexes in the acylation of furan and its 

derivatives with acid anhydrides. The etherate (201) reacts with the acid anhydride 

(202) to give the new complex (203), which then condenses with furan to give (204). 

Decomposition of (204) produces the ketone (205). It was also postulated that (206) 

being continuously recycled was the actual condensing agent, hence the catalytic 

nature of the reaction (Scheme 2.16). 

2.3.1 Acylation of Substituted Furans 

As an alternative route to 2-acylfurans we decided to follow the work by Hartough et 

a/.158 which involves the reaction of strong inorganic oxyacids, such as 

orthophosphoric acid and acid anhydrides, with no diketone being formed. A 

mechanism is shown in Scheme 2.17. 

OH O + Co o o R R R 1 OCOR 1 R R 
H 

Scheme 2.17 

We have shown that many different acid anhydrides can be used ranging from simple 

alkyl derivatives in high yields, to aromatic derivatives in low yields (Scheme 2.18). 

The furan ring itself can contain other substituents although, of course, the 2-position 

must be free. Results are given in Table 2.7 

Scheme 2.18: Reagents and Conditions: i) R'COOCOR', Phosphoric acid, 60°C 
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Ketone R1 / R z Yield (%) Distillation 

145 l 2 b R'=wo-Pr, R 2=H 90 bp 40-42°C (0.2 mmHg) 

149 l z & R=«o-Pr , R z=Me 78 bp 80-81°C (0.3 ramHg) 

207 R'=«o-Pr, R2=Et 41 bp 85-87°C (0.3 mmHg) 

147 l i b R'=Phenyl, R 2=H 10 None 

208 l 5 y R=Et, R Z=H 76 bp 95-100°C (0.3 mmHg) 

209 R=Et, R z=Me 47 bp 102-105°C (0.2 mmHg) 

210 l b 0 R=Me, Rz=Et 46 bp 120-122°C (0.3 mmHg) 

Table 2.7 

The reactions were carried out by warming a solution of the acid anhydride and the 

furan to 40°C. The heat was then removed, the inorganic acid added, and the solution 

heated at 60°C for 2 h. The furan ring is inherently unstable to acids and under these 

conditions some ring opening occurs. The yield decreases with increasing size of the 

alkyl group at the 5-position, as shown by the trend in compounds (145), (149) and 

(207). In the case of (208) there is no group on the ring so the acid anhydride can 

react at either a-position of furan to give the same product, but the reaction of 2-

methylfuran and propionic anhydride giving (209) must take place at the 5 position of 

the ring, the bulky methyl group may cause some steric hindrance. 

2.3.2 Synthesis of Trifluoromethylketones 

Compounds (211)161 and (212)1 6 2 were identified as potential precursors to novel 

trifiuoromethyl pyridinols. The attempted synthesis of (211) via the reaction of furan, 

trifluoroacetic anhydride and phosphoric acid appeared to give no reaction. However, 

(211) was synthesised by the reaction of trifluoroacetic anhydride and furan in 

pyridine at 10°C albeit in only 23% yield. The 5-methyl derivative of (212) was 

prepared similarly in 23% yield (Scheme 2.19). 
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R W \ 0 R V 0 ^ (211),R1=H 
\ J " \ _ f CF3 (212), R1=Me 

Scheme 2.19 Reagents and Conditions: i) trijluoroacetic anhydride, pyridine, 10°C 

2.3.3 Synthesis of Aromatic Ketones Using SnCLt 

While the use of acid anhydrides gives good yields for simple alkyl groups (Table 

2.7) only a low yield (10%) was obtained for R 1 =Phenyl. We chose to look into the 

synthesis of diheteroyl monoketones by the direct Friedel-Crafts acylation of furan. 

Reaction of furan, the appropriate acid chloride and tin chloride at 0°C in 

dichloromethane gave the corresponding ketones (180), (191), (193) and (197) 

(Scheme 2.20). The low yields arise due to the acidity of the reaction conditions, 

which causes the furan ring to open to give succinaldehyde. The reaction of furan 

with acid chlorides has been studied previously; however, the use of heteroyl acid 

chlorides has not been studied so comprehensively. Reaction of 2-methylfuran in 

these Friedel-Crafts reactions has only been shown to occur with 5-nitrothiazole-2-

carbonyl chloride1 6 3 or 2-methylbutyryl chloride1 6 4 with A I C I 3 as the catalyst and 1,2-

dichloroethane as the solvent, giving low yields. 

0 

1 R 

Scheme 2.20 Reagents and Conditions: i) R'COCl, SnCU, DCM, 20°C 
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Compound R Yield (%) 

180 b z Phenyl 37 

191 l i b 2-furyl 44 

1931 5' 2-thienyl 24 

197 3-naphthyl 21 

Table 2.8 

We have found that the similar reaction of 2-methylfuran with 2-furoylchloride or 2-

thienylchloride in dichloromethane with tin chloride at 0°C did not give the 

corresponding ketone. The reactions polymerise to a much greater extent than with 

furan and none of the desired product was isolated. 

2.3.3.1 Reaction of Bis-Acid Chlorides 

Due to the reaction proceeding with simple acid chlorides we examined the reaction 

of furan with a bis-acid chloride. Hence the reaction of terephthaloyl chloride (213) 

with furan should give the 6/s-ketone (200), which on reaction with ammonia could 

give the tricyclic system (214) (Scheme 2.21). 

CI O O (213) 
C 

OH O 
O 

N O N 

O HO (214) (200) 

Scheme 2.21 Reagents and Conditions: i) SnCl4, DCM, 20°C 
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We found that the insolubility of (213) in dichloromethane was a problem: all the 

other suitable solvents tried including, 1,2-dichloroethane and carbon disulfide failed 

to give sufficient solubility of the acid chloride. A different synthesis of (200) was 

achieved via reaction of lithiofuran with terephthalaldehyde, and oxidation of the 

product (175) to the ketone. 

The reaction of 2,5-pyridinedicarbonyl dichloride (215), synthesised from the reaction 

of the 2,5-pyridinedicarboxylic acid and thionyl chloride, gave the mono-ketone (216) 

in 27% yield (Scheme 2.22). The structure of (216) has been assigned by comparison 

of its 1 3C NMR spectrum with those of 2-, 3-, and 2,5-pyridinecarboxylic acids. 

O 
CI 

O OH CI N N 

O 
216 215 

Scheme 2.22 Reagents and Conditions: i) furan, SnCl^, DCM, 20 C 

The C-2 carbon of (216, 8 152) shows a similar chemical shift to the C-2 carbons of 

(217, 5 148) and (219, 5 151), whereas the C-5 of (216, 5 138) has shifted downfield 

compared to (218, 5 127) and (219, 5 129). Clearly this suggests that the acid 

chloride group at the 5-position of (215) is more reactive than the 2-position. Indeed, 

even increasing the molar ratio of furan and tin chloride to > 10 equivalents failed to 

get the acid chloride at C-2 to react. Product (216) was always the only isolated 

product. 

O O 
HO HO 

O OH N N N 

OH 0 

(217) (218) (219) 
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2.4 Reaction of Nitriles 

Nitriles share many similarities to the chemistry of carbonyl compounds, notably the 

presence of electrophilic carbon atoms. Thus nitriles are attacked by nucleophiles to 

yield sp2-hybridized intermediate imine anions in a reaction analogous to the 

formation of an sp3-hybridized intermediate by nucleophilic addition to a carbonyl 

group. 

The reaction of nitriles with lithio agents gives a ketimine intermediate, which can be 

hydrolysed to give the ketone (Scheme 2.23). Garcia et a/ 1 6 5 in their study of 2-

furyllithium thus synthesised 2-benzoylfuran using benzonitrile in 89% yield. 

H H HoO N NH H + 
"OH 

H 

NH NH O A. "OH NH Proton 
transfer 

(220) 

Scheme 2.23 

The imine is hydrolysed by a reversible, acid-catalysed process. The nitrogen is first 

protonated, then nucleophilic attack by water and loss of a proton gives the 

carbinolamine intermediate (220), a neutral amino alcohol. Proton transfer leads to a 

molecule which loses ammonia, a good leaving group, to give the ketone. 
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2.4.1 Cyanopyridines 

We chose to examine the synthesis of pyridine ketones (185-190) in one pot from 

cyanopyridines. Previously, these ketones have been made in modest overall yield by 

lithiation of the furan, reaction with a pyridine aldehyde and oxidation of the 

subsequent alcohol with manganese dioxide (Schemes 2.6 and 2.13). 

O R CHO 

R OH CN O R 
N 

O Route 2 Route 1 O R 
N 

Scheme 2.24 Reagents and Conditions: i) nBuLi, EtjO, reflux; ii) MnO?, DCM; Hi) 

nBuLi, Et20, reflux; then 1MHCI, 60°C, 2h 

The lithiation of the furans was accomplished, as previously, by reaction with «BuLi 

(1.1 equivalents) in diethyl ether at 0°C. The cyanopyridine was added at -78°C and 

after 1 h the solution, which turned a dark brown, was quenched with water. The 

imine, thus formed, was not isolated. Hydrolysis with 1M HC1 afforded the desired 

ketones (185-190) in good yields. 

Lipinski et al.66 quoted an 18 % yield for the synthesis of 4-pyridyl ketone (187) by 

the same reaction. However, although we followed their lithiation procedure, our 

subsequent procedure and yield of 69% is clearly a vast improvement over the 

literature method. The key difference is the pH of the solution during hydrolysis, ours 
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being a much lower pH, and our compound was not sublimed but column 

chromatographed instead. (185) has also been reported in the literature67 but the other 

analogues have not. 

O 
O O in R R 

N 

185, R=H, 2-pyridyl 188, R=Me, 2-pyridyl 
186, R=H, 3-pyridyl 189, R=Me, 3-pyridyl 
187, R=H, 4-pyridyl 190, R=Me, 4-pyridyl 

Scheme 2.25 Reagents and Conditions: i) nBuLi, EtjO, 0°C, then reflux 2h; ii) 

cyanopyridine, -78°C 

Table 2.9 below gives the yields for the synthesis of the six ketones from the reaction 

shown in Scheme 2.25 (Route 2) along with the overall yields obtained from the other 

route used previously (Route 1, Scheme 2.24). Clearly route 2 (a one-pot process) is 

more efficient. 

Ketone Route 1 

Yield (%) 

Route 2 

Yield (%) 

M. P. (°C) 

185° ; 33 65 Oil 

186 U o 49 68 62-64 

187°° 43 69 79-81 

188 31 65 64-66 

189 36 74 64-66 

190 42 76 79-80 

Table 2.9 
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Synthesis of (185) has also been achieved by the reaction of 2-furonitrile with the 

lithiated pyridine species (Scheme 2.26). However, this gives a much lower yield of 

the product, for example for the ketone (185) the yield is only 38%, compared to 

synthesis via reaction of 2-furyllithium and 2-cynaopyridine (65% yield). 

O O i a 

Br N N 
(185) 

Scheme 2.26 Reagents and Conditions: i) nBuLi, EtjO, 0°C, then reflux 3-4h; ii) 2-

furonitrile, -78°C 

2.4.2 Other Cyano Compounds 

We have further studied the reactions of lithiated furan with other cyano arenes. For 

example, (195) was synthesised via route 1 in a 43% overall yield. We have found 

that this new route gives a yield of 56%, a slight improvement. Compound (197) has 

been prepared in the same way in 62% yield in comparison with 52% via route 1, and 

direct acylation of furan with 2-naphthoyl chloride gave only a 21% yield. 

O O 
O O 

N 
(195) (197) 
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Route 2 has been applied to the formation of novel compounds (221, 62%), (222, 

48%), (223, 53%) and (224, 42% yield). 

O O O 

Q 
N H 

222) 221 

O O o o 
N N 

N N Me 

(223) (224) 

The pyrazine derivative (223) in particular would be difficult to make via other routes 

due to the instability of many pyrazine compounds. Metallations of pyrazine have not 

been widely reported because it readily undergoes nucleophilic addition. Pyrazine-2-

carboxaldehyde is very unstable and rapidly decomposes. 

2.4.3 Reaction of Dicyano Compounds 

While the reaction of cyano compounds with lithiated furans has been reported 

before, most notably by Siemanowski67 there has been no mention of the use of 

dicyano compounds in this reaction to give 6/s-furyl ketones. Initially we attempted 

to use the method of Siemanowski and Witzel 6 7 to react 1,4-dicyanobenzene with two 

equivalents of 2-furyllithium with the hope of obtaining the 6/s-ketone, (200). 

However, on addition of 1,4-dicyanobenzene the solution turned a dark purple colour 

and on work-up none of the ketone could be isolated (Scheme 2.27). 
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o 
o o i a 

X o 

(200) O 

Scheme 2.27 Reagents and Conditions: i) nBuLi, THF, 0°C; ii) 1,4-dicyanobenzene, 

0°C 

We considered that the presence of an electron-withdrawing group on the benzene 

ring may disfavour the reaction, and indeed we found that the similar reaction of 2-

bromo-4-cyanobenzene (225) with 2-furyllithium did not produce the desired ketone, 

(226) (Scheme 2.28). 

O 
O NC O XX N Br N Br 

(225) (226) 

Scheme 2.28 Reagents and Conditions: i) nBuLi, EtjO, 0°C 

2.4.3.1 Synthesis of 2,5-Dicyanopyridine 

We therefore turned to a similar reaction of a 2,5-disubstituted pyridine derivative, to 

see i f either (or both) of the groups would react with 2-furyllithium. 2,5-

Dicyanopyridine is not commercially available and was synthesised using Scheme 

2.29. Stirring pyridine-2,5-dicarboxylic acid (227) in ethanol with a few drops of 

concentrated sulphuric acid, gave the diethyl ester (228). This was then reacted with 

ammonia solution giving the diamide, (229), which in turn was dehydrated using 

phosphorus oxychloride to give (230). 
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H O O C ^ / ^ 

N COOH 

(227) 

(not formed) 

(231b) 

E,oocxx ii) H 2 N O C ^ 

N ' X O O E t k N ^ C O N H 2 

(228) 

(formed) 

N CN 

(231a) 

iv) 

(229) 

NC 

N CN 

(230) 

Scheme 2.29 Reagents and Conditions: i) EtOH, f f ; ii) NH4OH, reflux, Hi) POCl3> 

pyridine, iv) furan, nBuLi, EtjO 

Compound (230) was then reacted with two equivalents of 2-furyllithium. The *H 

NMR spectrum of the isolated product suggested that only one of the cyano groups 

had reacted, and a single isomer had been formed in 28% yield. A comparison of the 
l 3 C NMR spectra of 2,5-dicyanopyridine (C2 6 139, C5 8 116) with that of the 

product, showed that C2 (5 142) of the product still had a cyano group attached to it, 

whereas the resonance from C5 (8 131) had shifted in the spectrum due to substitution 

by the ketone group. Thus we established that the product is (231a) and not (231b). 

2.4.4 Reaction of Dilithio Species 

From work done earlier (Section 2.4.1) we have seen that the reaction can be inverted 

and a lithiated species reacted with 2-furonitrile to give a ketone, in a lower yield. 

Due to the failure of the reaction of dicyano compounds (Section 2.4.3) we sought to 

react a dilithio species with 2-furonitrile. 
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o 
Br i a) 

X 
o y. 

Br N Br N 

(232) (226) 

Scheme 2.30 Reagents and Conditions: i) nBuLi (1 eq), EtjO, 0°C; ii) 2-furonitrile 

Work by Bolm et al.I66a has shown that 2,5-dibromopyridine (232) can either be 

monolithiated with one equivalent of nBuLi or dilithiated with two equivalents. Bolm 

has shown that one equivalent of «BuLi removes the bromine at the C-5 position 

selectively. He also showed that a second equivalent of nBuLi in a stepwise process 

will remove the second bromine atom. Following this work, selective monolithiation 

of (232) and addition of 2-furonitrile, gives (226) in 30% yield, but further lithiation 

could not remove the second bromine atom (Scheme 2.30). 

O 

Br Br Br i ii ^5 
233 

O 
N N 

(234) 

Scheme 2.31 Reagents and Conditions: i) nBuLi (1 eq), Et^O, 0°C; ii) 2-furonitrile 

We were also able to react 3,5-dibromopyridine (233) with one equivalent of 2-

furyllithium to give (234) in 11% (Scheme 2.31). 
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2.5 Reaction of Esters 

Due to problems involved with the cyano reactions, we chose to examine the reaction 

of pyridylesters with 2-furyllithium. 

O O O 

a HO MeO 
O 

N Me N Me N Me 

(235) (236) (224) 

Scheme 2.32 Reagents and Conditions: i) methanol, ¥t, reflux, 16h; ii) nBuLi, furan 

(I eq), Et20, 0°C 

Ester (236), which was prepared heating to reflux 6-methylnicotinic acid (235) in 

methanol, with a few drops of sulphuric acid, was added to 2-lithiofuran and reacted 

in the usual way. The ketone (224) was isolated in 45% yield (Scheme 2.34). We 

found that two equivalents of the 2-furyllithium will react with the ester to give the 

novel alcohol (237) in 43% yield (Scheme 2.33). 

O 
HO 

MeO 
O 

Me N Me N 

(236) (237) 

Scheme 2.33 Reagents and Conditions: i) nBuLi (2 eq), furan (2 eq), EtjO, 0°C 

The success of reacting the esters with 2-furyllithium gave us hope for making the 

6/i-ketone (239), from diester (238), which was synthesised in 43% yield from 2,5-

pyridinedicarboxlyic acid. To a solution of 2-furyllithium in diethyl ether, 0.5 

equivalents of (238) were added (Scheme 2.34), but tic analysis of the reaction 

mixture showed that the esters had not reacted, and indeed only the starting ester was 

isolated. This contrasts with the observation that ester (236) had reacted to give the 

ketone (224), suggesting that having another ester group, at C-2, on the pyridine ring 

deactivates this ester to nucleophilic addition. 
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o o 
i O MeO X 

o OMe 
N N 

O O 
238) (239) 

o Scheme 2.34 Reagents and Conditions: i) nBuLi (2 eq), furan (2 eq), EtjO, 0 C 

2.6 Reaction of Furan Alcohol, 162 

As an aside we chose to look at the formation of the ester (241) from furan alcohol 

(162). Our first attempt at the synthesis involved reaction of (162) with phenyl 

propionic acid chloride (240) (made from phenyl propionic acid and thionyl chloride), 

but this gave no product. Using triethylamine as a base and addition also gave no 

reaction. The use of sodium hydride as a base gave (241) in 36% yield. 

Me 

Me OH O O o o o Me Me 

CI 
N N 

(162) (240) (241) 

Scheme 2.35 Reagents and Conditions: i) NaH, THF 

To show the reactivity of this alcohol the methyl ether (242) was formed by reaction 

with methyl iodide in tetrahydrofuran after the anion is formed by addition of sodium 

hydride. (242) was synthesised in 58% yield. 

OMe OH 
O O Me Me 

N N 

(162) 242 

Scheme 2.36 Reagents and Conditions: i) NaH, Mel THF 
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Chapter 3 

3-Hydroxypyridines 



The second chapter described the synthesis of 2-furyl ketones. This chapter concerns 

further reactions of these ketones with sources of ammonia to give substituted 3-

hydroxypyridines, exploring the effects of temperature, time of reaction and solvents 

on the yield of the reactions. Later in the chapter we wil l describe some reactions of 

the 3-hydroxypyridines, namely the synthesis of benzyl ethers. 

3.1 Formation of 3-Hydroxypyridines 

A general method for the preparation of 3-hydroxy-2-alkylpyridines is the Hoffmann 

degradation of 2-alkylnicotinic acids. I 6 6 b ' c The preparation of higher alkylated 3-

hydroxypyridines is harder due to difficulties in making the starting material and the 

side-chain. The first reported use of ammonia in the reaction of 2-furyl ketones to the 

3-hydroxy-2-arylpyridines was reported by Leditschke61 in 1952. He used either 

ammonium chloride and ammonia or ammonium acetate to facilitate the reaction. 

Gruber60 studied simple 2-alky 1-3 -hydroxypyridines and found that heating them with 

2-3 moles of ammonia in an alcoholic solution in a sealed tube at 170°C for 15 h 

(Scheme 3.1) gave the best results. The ammonia solution was prepared by saturating 

absolute ethanol at 0°C. The reaction mixture was worked up by evaporating the 

alcohol under reduced pressure, distilling the residue in vacuo, and extracting a 

solution of the distillate in 2M sodium hydroxide with chloroform to remove the 

neutral contaminants. The alkaline solution was then neutralised and the 

hydroxypyridine extracted with chloroform. 

Scheme 3.1 Reagents and Conditions: i) aq. NH3 or NHj/EtOH, NH4Cl at 170°C, 15h 

O OH 

XT 1 R N R 

R 
R 

0 
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Gruber found that the reaction of 2-acetylfuran gave 3-hydroxypyridine in only 4.6% 

yield, while the yield increased rapidly with increasing size of R1 and reached 74% 

for 3-hydroxy-2-propylpyridine. Equally satisfactory yields were obtained whether 

R1 was a branched or straight chain. However, the rearrangement of 2-

phenylfurylketone under the same conditions gave only a 5.4% yield of the pyridine 

product. The Leditschke method of heating the ketone in ammonium acetate, without 

the alcoholic solution, gives a much higher yield of 59% for the 2-phenylfuryI ketone 

(Scheme 3.2). 

O OH /) or II) O 

N 

Scheme 3.2 Reagents and Conditions: i) NHs/EtOH, 175°C, 24h; ii) NH4OAc, 

3.1.1 Rearrangement of Simple Alkyl and Aryl Ketones 

We chose to examine the reaction of the simple ketones (see Table 3.1), using both 

the Gruber method of an alcoholic solution (NH3/EtOH, NH4CI) and a variation of the 

Leditscke method (aq. NH3), using 0.880 ammonia solution instead of ammonium 

acetate. The reactions were all heated to a temperature of 150°C for 15 h in a sealed 

Carius tube. Work-up involved removal of all the solvent under reduced pressure and 

distillation using a Kugelrohr apparatus to give the 3-hydroxypyridine derivative. The 

yields are compared in Table 3.1. 3-Hydroxypyridines (243) and (247) come from 

reaction of the commercially available ketones. 
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Pyridine Ketone R ' / R 2 

aq. N H 3 

Yield 

(%) 

NH 3/EtOH 

Yield 

(%) 

Melting point 

(°C) 

243 , b y - R = M e , R Z = H 23 2 168-169 

244 6 0 145 R=/-Pr, R Z = H 78 23 193-195 

245° 1 147 R'=Ph, R 2 = H 21 9 202-204 

246° 1 148 R'=p-Tol, R Z = H 1 7 6 199-200 

2 4 ? I 6 8 - R'=Me, R z =Me 30 45 2 1 0 - 2 1 3 

248 149 R'=/'-Pr, R z =Me 46 47 190-192 

249 151 R'=Ph, R z =Me 20 22 230-232 

250 152 R'=p-Tol, R z =Me 1 6 1 4 241-243 

251 b U 208 R'=Et, R Z = H 18 23 135-137 

252 o u 209 R'=Et, R z =Me 2 4 53 171-173 

253 k l 9 210 R'=Me, R z=Et 16 48 176-178 

Table 3.1 

Table 3.1 shows that the use of a non-alcoholic solution gives a higher yield when 

R 2 = H , and R 1 is an alkyl or aryl group. The yield rises with increasing size of the 

alkyl chain, but decreases for aryl groups. Also, the size of R affects the yield 

significantly, the increase in yield from 2 % for (243) to 45 % for (247), occurs just 

with a change of hydrogen for a methyl group. Indeed, with an increase of the size of 

R 2 it is preferential to use an alcoholic solution, i.e. Gruber's method, of using and 

ethanolic ammonia solution. 

There is only a slight decrease in the yield by changing the aryl group from the phenyl 

(245), (249) to /?-tolyl (246), (250) but this is unlikely to be due to the increased steric 

hindrance of the />-tolyl group. The ketones leading to compounds (243) and (247) 

were bought commercially. The ammonia must first react with the ketone to form an 

imine, and the large methyl group may affect this initial step to a slight extent. 
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Al l the yields are low compared to many other reactions, with the highest yield being 

just 53%. However, these have not been optimised; all the reactions were performed 

at the same temperature of 150°C and carried out for 15 h. It has been shown that 

lowering the temperature of the reaction to around 100°C and decreasing the time may 

improve the yield. The poor yield can be attributed to the other products produced 

from the reaction. These reactions can give a variety of products but the major 

products are the 3-hydroxypyridine, 3-aminopyridine, and 2-acylpyrrole, along with 

unreacted starting material (Scheme 3.3). 

O H O NH OH N o 
1 R 1 R 1 1 N R N R 

Scheme 3.3 Reagents and Conditions: i) NHs, 150°C, 15h 

2-Acylpyrrole can be the major product according to Dunlop, 1 6 7 who found that the 

use of ethanol as the solvent gave the 3-hydroxypyridine as well as the 2-acylpyrrole. 

I f a mixed alcohol-water medium, or water alone was used the competing 

hydroxypyridine reaction may proceed to the exclusion of the formation of the 

pyrrole. He found that no added solvent gave the best yield of pyrrole. One mole of 

the 2-acylfuran reacts with one mole of the nitrogen base to form a ketimine or 

"Schiff s base," and with an additional mole of the nitrogen base to form the pyrrole, 

with loss of two moles of water. The ketimine group is then easily hydrolysed to give 

the 2-acylpyrrole. Thus, two moles of the nitrogen base are required, (Scheme 3.4). 

NR NR O R RNH RNH 
N O O 

1 1 1 R R R 

Scheme 3.4 
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3.1.2 Mechanism 

Aso's58 suggested mechanism for the reaction, where X=0 (Scheme 3.5) involves 

initial attack by the nitrogen lone pair at the 5-position of furan giving a furan enol, 

which then rearranges to ring open the furan. Reattack by the nitrogen at the carbonyl 

centre gives the six membered heterocycle: loss of water then gives the 3-

hydroxypyridine. 

O X 
X 

rJ R R 
+ R 

OH 
OH OH 

Or X 
XH 

N N H,N R R R H H 

\ H 2 X 

OH 

N R 

Scheme 3.5 

Leditscke61 suggested a slightly different mechanism, where X=NH. This firstly 

involves formation of a ketimine, by reaction of the starting ketone with ammonia, 

then attack of a second nitrogen source at the 5-position, as in Aso's mechanism. The 

aromatic system is produced by loss of ammonia in the final step. Both mechanisms 

are equally plausible with good leaving groups, viz. water and ammonia, in the final 

step. However, the ketimine would be less effective at stabilising the transition state 

than the carbonyl system. 
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OH O H COR 
.0 o N 

\ OH 
H 2 N R H 2 N 

H 

- H 2 0 

H 
N COR 

Scheme 3.6 

The reaction does give a mixture of products. The mechanism offers an alternative 

ring closure leading to 2-acylpyrrole (Scheme 3.6). It has been shown that an 

aqueous medium favours formation of the 3-hydroxypyridine whereas an alcoholic 

solvent167 favours the 2-acylpyrrole. Dunlop developed a reaction to form the 2-

acylpyrrole as the major product (38%) compared to 2-methyl-3-hydroxypyridine 

10%). 

NH H-,N H H 
N H 3N 

'J R R 
H - J N R 

NH a ^ 5 ; 

XH 
N R H 

NH 
NH (X N HoN R R H 

HoX 

NH a 
N R 

Scheme 3.7 
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The first indication of a 3-amino by-product was found from the reaction of l-(2-

furyl)-5-hexen-l-one (254) and ammonia, which gave three easily separable products 

by column chromatography, namely the pyrrole (255), 3-hydroxpyridine (256) and the 

3-aminopyridine (257). This presumably comes from the reaction of the 2-acylpyrrole 

with ammonia in much the same way as the 2-acylfuran (Scheme 3.5). 

OH NH O O H 
O N 

N N 

(254) 255) (256 257 

o Scheme 3.8 Reagents and Conditions: i) aq. NHs, J 65 C, 2Oh 

By using an aqueous or alcoholic solvent, or a mixture of the two, the amount of the 

pyrrole by-product can be drastically reduced from a maximum amount of -40% to 

almost nil. The 2-acylpyrrole is easily seen by thin layer chromatography as a dark 

red spot, and is a red oil. 

3.1.3 Rearrangement of Ketones 185-190. 

We have synthesised bipyridyl derivatives (258-263) from the corresponding pyridyl 

ketones (185-190). The reactions were carried out in an aqueous ammonia solution, 

and heating the sealed Carius tube to 150°C for 15 h. 

OH O 
O R 

1 R N N N 

Scheme 3.9 Reagents and Conditions: i) aq. NH3, 150°C, 15h 
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Ketone 3 -Hydroxy pyridine R' /Py Yields 

(%) 

M.P. 

(°C) 

185 258°' R = H , 2-Py 18 30-32 

186 259 R'=H, 3-Py 37 171-173 

187 260°° R'=H, 4-Py 35 234-236 

188 261 R'=Me, 2-Py 25 60-62 

189 262 R'=Me, 3-Py 27 195-196 

190 263 R'=Me, 4-Py 31 257-260 

Table 3.2 

Siemanowski reacted (185) with ammonium acetate at 150°C for 2 h and sublimed 

the resulting 3-hydroxypyridine (258) in 62% yield. Lipinsk 6 6 reacted the ketone 

(187) with ammonium hydroxide in methanol at 155°C for 3 h to give (260) in 32% 

yield. 

Derivatives of bipyridyls have been the subject of extensive studies due to their 

internal hydrogen bonding. The most important conclusions of several papers 1 7 1 , 1 7 2 

are that symmetric, planar molecules with two equivalent internal hydrogen bonds 

like (2,2'-bipyridyl)-2,3'-diol [BP(OH)2] (264) undergo an efficient excited state 

intramolecular double proton transfer accompanied by a strong Stokes shifted 

fluorescence. The absorption and fluorescence of (258) has been compared to (264), 

2-(2-hydroxyphenyl)-pyridin-3-ol (HPP) (265) and 2-(2-pyridyl)phenol (PP) (266). 

N N N N 
O O H H H H 

H H O O O N N 

264) 265 (266) 258) 

Scheme 3.10 
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3.1.4 Rearrangement of Other Ketones 

Table 3.3 lists the reaction of other ketones from chapter 2 with ammonia using the 

conditions in Scheme 3.11. One aim of the project was to look at which groups will 

withstand the reaction conditions and which ones will not. As seen in Table 3.3 the 

thiophene ketone (193) does not give the desired product; instead gives non-aromatic 

products which were not isolated. Also, the ferrocene ketone (199) does not react, 

giving the starting material and some pyrolysed products. 

OH O xz o R 
1 R 1 R N R 

Scheme 3.11 Reagents and Conditions: i) aq. NH3, 150°C, 5h 

Ketone Pyridine R7RZ Yield 

(%) 

M.P. 

(°C) 

191 267 R'=2-furyl, RZ=H 17 210-212 

193 - R l=2-thienyl,R i=H - -

195 268 R'=3-quinolyl, RZ=H 26 181-184 

196 269 R'=3-quinolyl, R2=Me 30 214-216 

197 270 R'=2-naphthyl, R Z=H 24 156-159 

198 271 R'=2-naphthyl, R z=Me 16 223-225 

199 272 R=ferrocenyl, R Z=H - -

221 273 R'=5-indole, R i = H 12 141-143 

222 274 R1 =3 -(N-pyrrolyl)phenylpheny 1, R 2=H 18 121-123 

223 275 R'=pyrazine, R 2=H 20 87-89 

224 276 R'=2-methylpyridyl, R 2=H 15 181-183 

226 277 R'=2-bromopyridyl, R 2=H 26 167-169 

Table 3.3 
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OH OH OH 

N 
N N N 

N N 
H 

(273) (274) (275 

OH OH 

276 277 N N 

Me N Br N 

276 showed a low yield (17%) for the ring expansion under the normal conditions of 

150°C for 5 h. However, as has been shown before the yield can be improved by a 

change in the temperature and length of the reaction. Therefore, (224) was heated 

with ammonia at 110°C for 12 h. This improved the yield to 27%. We also examined 

the other components of the reaction mixture and found 12% of the starting ketone 

(224) and 16% of the 2-acylpyrrole (278) (Scheme 3.12). We found none of the 3-

aminopyridine product suggested by Brombridge.1 7 0 

O O O H 
N 

N N N Me Me Me 
(224) (278 

NH OH 

N N 

N Me Me N 

276) 

Scheme 3.12 Reagents and Conditions: i) aq. NH3, HOC, 12h 
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3.1.4.1 Trifluoromethyl Ketones 211 and 212 

O OH XX ^5 O 1 
CF 1 R N CF 

Scheme 3.13 Reagents and Conditions: i) aq. NH3, J50°C, 12h 

The reaction of the trifluoromethyl ketones (211) and (212) with ammonia in the 

carius tube at 150°C for 12 h did not give the 3-hydroxypyridine. The reaction 

produced a black polymer which was not soluble in any solvent. 

3.2 Reaction of Other Systems 

A look at the mechanism (Scheme 3.5) of the reaction of the 2-acylfurans shows that 

the furan oxygen becomes the oxygen on the 3-hydroxypyridine. Thus the oxygen 

atom has no real influence on the reaction. We therefore, hoped that other five 

membered rings would give similar pyridines. 

3.2.1 2-Acylthiophene 

We saw an opportunity to react 2-acylthiophenes in the same way to give 3-

thiopyridines. A look through the literature turned up no mention of such a reaction. 

P , ^ S H 

\ r * *-

(279) (280) 

Scheme 3.14 Reagents and Conditions: i) NH^MeOH, NH4Cl, 150°C, 15h 

2-Acetylthiophene (279) was bought commercially and heated with ammonia in a 

sealed carius tube for 15 h at 150°C. From the reaction we could find no trace of the 
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3-thio derivative (280), the major products were dark tars and some 2-acetylthiophene 

was recovered. This may be due to the difficulty in ring opening the thiophene 

compared to furan, an essential requirement for the rearrangement to occur. Good 

evidence of this is the fact that thiophene is stable to all but very strong acids, whereas 

furan will ring open with concentrated sulphuric acid or Lewis acids such as 

aluminium chloride. 

3.2.2 Benzofuran 

The mechanism for rearrangement of 2-acylfurans (Scheme 3.5) first involves 

formation of a ketimine and then nucleophilic attack of the 5-position by the nitrogen 

base. 2-Acetylbenzofuran i f rearranged in a similar way would give 3-hydroxy-2-

methylquinoline. 

O 
i OH O 

Me 
N Me 

(281) (282) 

Scheme 3.15 Reagents and Conditions: i) NH^MeOH, NH4Cl, 150°C, 15h 

The benzofuran-2-yl methyl ketone (281) was heated at 150°C for 15 h with 

ammonia. None of the quinoline (282) could be isolated, the benzofuran was 

recovered in 15% yield. A look at the mechanism (Scheme 3.16) of such a reaction 

would suggest why the benzofuran does not give the quinoline. 

H-,N O NH NH 
O O NH 

Me Me 

Scheme 3.16 
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The ketone reacts with one mole of the ammonia to give the ketimine. However, the 

next step involves attack by another mole of ammonia at C-7a of imine. I f this 

addition occurs then the benzofuran must lose aromaticity, this is a strongly 

disfavoured mechanism and this may be why none of the quinoline is isolated. 

Indeed, the only similar reaction in the literature is that by Langhals68 who reacted 

l,2-/j/.v-benzofuran-2-yl-ethane-l,3-dione with ammonium chloride in methanol at 

200°C (Scheme 1.27). 

3.2.3 Oxazole 

Oxazole is similar to furan except for a nitrogen in the ring. We chose to look at the 

reaction of a 2-acyl oxazole with ammonia, to determine i f a product similar to 3-

hydroxypyrdine is formed. 

3.2.3.1 Preparation and Reaction of Phenyloxazole, 285 

The literature has many ways of directly acylating the oxazole ring (Scheme 3.17). 

Reaction occurs at the C-2 carbon atom. Lithiation of 5-phenyloxazole (283) with 
173 * 

nBuLi and addition of an acid chloride leads to a ring opened product (284); 

lithiation and addition of amide1 7 4 gives (285). Direct acylation can be achieved by 

reaction of the silane (286) with benzoyl chloride1 7 5 to give (285). 

Ph 

O 
Ph-^VSiMe3

 (286) vl . P h ^ / T ^ P h < 2 8 5> 

Scheme 3.17 Reagents and Conditions: i) nBuLi, ii) PhCOCl; Hi) nBuLi, iv) 

PhCONMe; v) PhCOCl 
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The disadvantage of these routes are the low yields. We followed the work by Harn 

et alm which involves the lithiation of 5-phenyloxazole (283) with nBuLi. Addition 

to the lithio species of zinc chloride and copper iodide gives the metal salt (287), 

which was reacted with benzoyl chloride to give the ketone (285) in 65% yield. 

Ph 

(283) 

O 
Ph- .0 

\ \ / / ^Cul(ZnCI) 
-N 

(287) 

O 
H) Ph- .0 

(285) 

Ph 

Scheme 3.18 Reagents and Conditions: i) nBuLi, ZnCh, Cul; ii) PhCOCl 

The ketone (285) was reacted with ammonia at 150°C for 15 h. The reaction showed 

a mixture of non-aromatic products by ! H NMR. We suggest that this is due to the 

oxazole ring system ring opening under the reaction conditions in a similar way to 

(284). 

3.3 Reaction of 3-Hydroxypyridines 

3.3.1 Reaction of 3-Hydroxy group 

The hydroxy group and ring nitrogen are both nucleophilic, however, due to the 

tautomerism of 3-hydroxypyridines the former group is more nucleophilic. Addition 

of methyl iodide to pyridine causes an immediate exothermic reaction and the N -

quartenary salt is formed. Methyl iodide or even methyl triflate do not react with 2-

methyl-3-hydroxypyridine to form this salt or the methyl ether. The hydroxy group 

can be selectively reacted using the method reported by Bristol. 1 7 7 The benzyl ether 

(288) was made by reaction of 2-methyl-3-hydroxypyridine (243) with benzyl 

bromide in a vigorously stirring solution of 40% sodium hydroxide and 

dichloromethane. A catalytic amount of the phase transfer catalyst (PTC), 

cetyltrimethylammonium chloride, is required. Table 3.4 shows the reaction of 

differing benzyl bromides with 2-methyl-3-hydroxypyridine. 
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R 
OH i a cx JO R 

Br Me N N Me 

( 2 4 3 > (288), R=H (291), R=4-Br 
(289) , R=4-CN (292), R=2-CI 
(290) , R=4-N02 

Scheme 3.19 Reagents and Conditions: i) 40% NaOH, DCM, PTC 

Compound Yield (%) M.P. (°C) 

2 8 8 m a 65 Oil 

289 53 102-104 

290 62 106-108 

291 43 58-60 

292 61 62-65 

Table 3.4 

We have shown the benzyl group to be a good protecting agent for these 3-

hydroxypyridines. Hydrogenation of (288) is achieved using 40 atm hydrogen over a 

Pd/C catalyst to give 2-methyl-3-hydroxypyridine (243) in 86% yield. 

The same procedure was used for the formation of the ethers (293, 28%), 1 7 8 b (294, 

21%) and (295, 33%). Synthesis of compound (295) was achieved by reaction of 

(243) with 2-bromomethylanthraquinone (synthesised179 by reaction of 2-

methylanthraquinone and NBS in C C I 4 in 42% yield). 

O a cx o N Me Me N N Me 

(293) (294) (295) 

Scheme 3.20 
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3.3.1.1 Reaction With 1,2-Dibromoethane 

It was envisaged that the use of a dibrominated alkane may couple two of the alcohols 

(243) together. We, therefore, chose to react 1,2-dibromoethane with (243); the 

product isolated after purification was the mono-substituted product (296, 21%). 

Me N X) OH cc Br 

N Me N Me N Me 

(243) (296) (297) 

Scheme 3.21 Reagents and Conditions: i) 40% NaOH, 1,2-dibromoethane, DCM, 

PTC 

3.3.1.2 Reaction With 2,5-Dibromomethylthiophene 

2,5-Dimethylthiophene (298) was brominated by reaction with NBS in CCU in 24% 

yield giving 2,5-dibromomethylthiophene180 (299) in 20% yield. (299) was then 

reacted with two equivalents of (300) giving (301) in 57% yield. 

Me Me 298 

M e - ^ Me 
OH xy O N 

Br Br 
Me N 

(299) (300) (301) 

Scheme 3.22 Reagents and Conditions: i) NBS, CCl4; ii) 40% NaOH, DCM, PTC 
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3.3.1.3 Reaction With p-Bromomethylxylene181 

p-Xy\ene was brominated by reaction with NBS in CC14 in 45% yield giving p-

bromomethylxylene181 (302). This was then reacted with two equivalents of (243) 

giving (303) in 51% yield. 

Me 

Me 

Me N X) 
o 

OH O 

X L or ^5 Br 
Br 

N Me N Me 

(302) (243) (303) 

Scheme 3.23 Reagents and Conditions: i) NBS, CCl4; ii) 40% NaOH, DCM, PTC 

3.3.1.4 Reaction of 2-Amino-3-hydroxy-6-methylpyridine, 305 

3-Hydroxy-6-methyl-2-nitropyridine (304) was hydrogented at 40atm in ethanol over 

Pd/C to give 2-amino-3-hydroxy-6-methylpyridine (305) in 94% yield. Reaction of 

(305) with one equivalent of benzyl bromide gave the product (306). Reaction had 

occurred at the hydroxy functionality instead of the amino group. 

OH OH O XX XX Me NO Me NH N Me N NH 

(304) (305) (306) 

Scheme 3.24 Reagents and Conditions: i) H2 (40 atm.), EtOH, Pd/C; ii) benzyl 

bromide, 40% NaOH, DCM, PTC 

89 



Reaction of (305) with a one equivalent of acetyl chloride gave the trisubstituted 

product (307) in 57% yield. The reaction of trifluoromethyl acetyl chloride under the 

same conditions did not give the corresponding fluorinated derivative. Indeed, 1 9F 

NMR showed no incorporation of fluorine. 

OH j } ^ X > C O C H 3 

Me" " N ^ N H 2 M e ^ N N(COCH 3 ) 2 

(305) (307) 

Scheme 3.25 Reagents and Conditions: i) acetyl chloride, DCM, 15h 

We turned to the more sterically demanding ferrocene acid chloride and reaction with 

(305) gave the product (308) in 51% yield (Scheme 3.26). Compared to the methyl 

group, ferrocene is too large to give the tri-substituted product. The fact that the ester 

(308) is made instead of the amide seems to suggest that the amino nitrogen may be 

slightly quaternised leaving the site less nucleophilic. 

Fe 

OH / O ^ 
O 

Me" "N NH 2 Me" "NT "NH 2 

(305) (308) 

Scheme 3.26 Reagents and Conditions: i) ferrocene acid chloride, DCM, pyridine, 

15h 
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Chapter 4 

Azabenzotriazoles 



4.1 Introduction 

Chapter 3 looked into the synthesis of 3-hydroxypyridines by reaction of 2-acylfurans 

with sources of ammonia. This chapter explores the synthesis of azabenzotriazoles 

from 3-hydroxypyridines. The most common peptide coupling agent is 1-
182 

hydroxybenzotriazole (309) (HOBt) which can be used either in combination with a 

carbodiimide or another coupling agent or is built into a stand alone reagent such as 1-

benzotriazolyloxytris(dimethylamino)-phosphonium hexafluorophosphate (310) 

(BOP) 1 8 3 or an analagous uronium salt such as 2-(lH-benzotriazol-l-yl)-l,l,3,3-
184 

tetramethyluronium hexafluorophophate (311) (HBTU). These addititives have 

been shown to inhibit side reactions and reduce racemization (Scheme 4.1). 

v \ + * ,NMe 2 
0 H 0 ~ p ( N M e 2 ) 3 p F e 

NMe2 

(309) (310) (311) 

Scheme 4.1 

Carpino was the first to show that the aza analogue of HOBt, l-hydroxy-7-

azabenzotriazole 312, is a more efficient additive which speeds up the coupling 

process, reduces the loss of chiral integrity and provides a visual indication (yellow to 

colourless) of the reaction endpoint. 

N N ex N N 
N N N N 
O OH H 
h o R 2 N 

R 

(312) (313) 

Scheme 4.2 

l-Hydroxy-7-azabenzotriazole (HOAt) (312) incorporates both of the key elements of 

the 1:1 mixture of HOBt and a tertiary amine which is of greater effect than HOBt in 
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couplings involving active esters. The increased efficiency of HOAt relative to 

HOBt is governed by the formation or reactivity of an active ester intermediate (313) 

(Scheme 4.2). It has been postulated that the neighbouring group effect depicted in 
187 

(313) is a major factor in this increased efficiency. 

4.2 Synthesis of 5-Methyl-fl,2,3]triazolo[4,5-A]pyridin-3-ol, 317 

Originally 1-hydroxy-7-azabenzotriazole (312) was synthesised by reaction of 3-
1 88 

fluoro-2-nitropyridine (314) with hydrazine. 

N 
> (312) 

N 
OH 

Scheme 4.3 Reagents and Conditions: i) hydrazine hydrate, water, 60°C, 10 h 

This synthesis was simplified by Yutilov 1 8 9 , who was able to mefhylate the hydroxy 

group of 3-hydroxy-2-nitropyridine with diazomethane in 80% yield. Then reaction 

of the methyl ether with hydrazine gave (312) in 65% yield. The mechanism of the 

final step is shown in Scheme 4.4. 

(X (314) 
,4 N NO N 

H 2 N-NH 2 

A s 5 u ° - HOMe r r V r - " 2 • Cr\M 

2 H shifts 

N H,0 
N • v " H J + N 

OH H 0 C 0 H 2 

Scheme 4.4 
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The first step in our synthesis (Scheme 4.5) was the reaction of 2-furaldehyde with 

ammonia in a sealed Carius tube at 110°C for 12 h. This gave 3-hydroxy-6-

methylpyridine (315) in 32% yield. This compound was nitrated using a mixture of 

cone. H N 0 3 and cone. H2SO4 to give the 2-nitro derivative (316) (35% yield). We 

have found that the hydroxy group of (316) can be deprotonated by stirring with 

potassium carbonate in dry acetone, giving a colour change from yellow to a bright 

orange. Methylation is achieved by refluxing this solution with an excess of methyl 

iodide for 24 h. The reaction is complete when the colour changes to a pale cream, 

giving (317) in 78% yield. 

O OH OH 

XT XT 0 Me 

N NO Me Me N 

(316 V 315 Hi 

OMe N XT XT (317) 318) 
N NO N Me N Me 
OH 

Scheme 4.5 Reagents and Conditions: i) aq. NH3, 110°C, 12h; ii) cone. HNO3, cone. 

H2SO4, 40°C; Hi) Mel, K2CO3, acetone, reflux 12h; iv) hydrazine hydrate, water, 

85°C 12h 

The original reaction of the methoxy ether (317) involves the use of 

dimethylformamide, water, hydrazine and heating to 60°C for a 5-6 h. However, we 

have found that the dimethylformamide is unnecessary for the reaction. (317) 

dissolves in water at over 80°C, and heating with hydrazine for 12 h, followed by 

cooling and acidification with cone. HC1 to pH ca. 2-3 gave 5-methyl-

[l,2,3]triazolo[4,5-6]pyridin-3-ol (318) in 67% yield. 

Originally, we planned to develop the 6-methyl group of (318) into a reactive species 

with the possibility of attaching the system to a solid support, thereby easing recovery 

of the azabenzotriazole. 
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We planned to form the N-oxide of (318), and reaction with acetic acid at 100°C 

could rearrange the system to give an aceytoxymethyl group (Scheme 4.6). The 

original patent for HOAt 1 9 0 suggests that the N-oxide is formed using standard 

peroxide conditions. However, with our system the ring nitrogen is not oxidised by 

the use of hydrogen peroxide or w-chloroperbenzoic acid. 

N XX N N A c 2 0 AcOH N N 
N N N N Me H 2 C N N Me 

0 X 6 OH OH OH O O O 

T Y OAc 
Me Me 

N 
I > 

N N 
OH AcO 

Scheme 4.6 

The second way of developing the 6-methyl group was via oxidation to the carboxylic 

acid group. Aromatic methyl groups can be oxidised in this way using potassium 

permanganate in alkaline conditions. (318) was taken up in water, and heated to 85°C 

with KMn04 for 8h. However, after workup none of the acid had been formed, 

indeed 'H NMR showed only starting material to be present. 

4.3 4-Bromo-6-methyl-[l,2,3]triazolo[4,5-c]pyridin-l-ol 

The 3-hydroxy can lead to (318) with the nitro group on C-2, but by blocking C-2 and 

introducing a nitro group into C-4 we envisaged the synthesis of the other isomeric 

form of this azabenzotriazole. We were able to take 3-hydroxy-6-methylpyridine 

(315), and brominate the C-2 position with bromine in 10% sodium hydroxide to give 

2-bromo-3-hydroxy-6-methylpyridine (319) (30% yield). Methylation of (319) was 

achieved using potassium carbonate, methyl iodide and acetone, giving 2-bromo-3-

methoxy-6-methylpyridine (320) (59%) yield). Attempts to nitrate (320) with cone. 

HNO3 and H2SO4, standard nitrating conditions, did not give (321) but starting 

material. The literature shows that the pyridine ring can be nitrated at C-4 by firstly 
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producing the N-oxide and secondly nitrating.1 9 1 Reaction of (320) with m-

chloroperbenzoic acid in chloroform gave 2-bromo-3-methoxy-6-methylpyridine-N-

oxide (322) (62% yield). This was then easily nitrated with cone. H N 0 3 and H2SO4 

to give 2-bromo-3-methoxy-6-methyl-4-nitropyridine N-oxide (323) (45% yield). 

OH OH OMe XXX XX ^5 a 0 
N Me Me N Br N Me Br 

319) (315 
X lii) 

NO NO 

XX OMe OMe OMe XX IV ^5 

Br Me N Me N Br Me N Br 

322) (321) 323 

HO, 
N-N NO 

N 

XXX xxx OMe 
(324 (325 

Me Br Br N Me N 

(320) 

i 0~ 

Scheme 4.7 Reagents and Conditions: 1) Br2, 10% NaOH, 24h; ii) Mel, K2C03, 

acetone, reflux 12h; Hi) m-chloroperbenzoic acid, CHCI3, rt 3h; iv) cone. HNO3, 

cone. H2SO4, 40°C; v) PPhy, vi) hydrazine hydrate, water, 85°C, 12h 

(323) was then subjected to the same conditions for formation of the azabenzotriazole, 

water, hydrazine, 85°C for 8 h. However, attempts to isolate the compound (325) 

from the water phase failed. (318) precipitates from solution at pH 2-3, but the 

azabenzotriazole (325) formed from (323) does not. We envisage that the N-oxide 

makes the compound too water soluble. Attempts to remove the N-oxide with 

triphenylphosphine192 and SOCl 2/NEt 3

1 9 3 to give (324) were unsuccessful, and this 

approach was not pursued further. 
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CHAPTER 5 

Experimental Section 



5.1 General Experimental Methods 

All reactions which required inert atmospheres were carried out under a 

blanket of argon which was dried by passing through a column of phosphorous 

pentoxide. Diethyl ether, toluene, and tetrahydrofuran were dried and distilled over 

sodium metal. Dichloromethane and acetone were dried and distilled over calcium 

hydride. Ethanol and methanol were dried and distilled over magnesium turnings. Al l 

other reagents were of commercial quality and used as supplied unless otherwise 

stated. Al l reactions were carried out at room temperature unless otherwise stated. 

'H and 1 3C NMR spectra were obtained on Oxford 200, Varian Unity 300 and 

Varian VXR 400 spectrometers; chemical shifts are quoted in ppm, relative to 

tetramethylsilane (TMS) as an internal reference (0 ppm). Mass spectra (EI) were 

recorded on a Micromass Autospec spectrometer operating at 70eV. Infra-red spectra 

were recorded using a Paragon 1000 FTIR spectrometer operated from a Grams 

Analyst 1600; samples were embedded in KBr discs unless otherwise stated. Melting 

points were recorded on a Phillip Harris melting point apparatus and are uncorrected. 

Elemental analyse were obtained on a Carlo-Erba Strumentazione instrument. 

Column chromatography was carried out using either Prolabo silica (70-230 

mesh) or Merck alumina (activity I to I I , 70-230 mesh); the latter was neutralised by 

pre-soaking in ethyl acetate for 24 h prior to use. Solvents were distilled prior to use 

for chromatography, with the exception of dichloromethane, and chloroform, which 

were used as supplied. 
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5.2 Experimental for Chapter 2 

General Procedures 

Procedure A: To a stirring solution of the aldehyde (18 mmol, 1 eq) in diethyl ether 

(80 ml) at 0°C was added the Grignard reagent (27 mmol, 1.5 eq) dropwise over 30 

min. The solution was then allowed to warm to 20°C and stirred for 15 h. 

Ammonium chloride solution (50 ml) was added and the solution stirred for 30 min. 

The ethereal layer was decanted and the aqueous layer extracted with diethyl ether 

(3x30 ml). The ethereal layers were combined, dried (MgSCM) and the solvent 

removed in vacuo. The compound was then purified either by distillation at reduced 

pressure using a Kugelror apparatus or by column chromatography. 

Procedure B. To «-butyllifhium (1.6M solution in hexanes, 1.1 eq) at 0°C was added 

the furan (1 eq) as a solution in dry diethyl ether (30 ml). The reaction was refluxed 

for 3 h to give a light yellow suspension, cooled to -78°C and the electrophile (1.1 eq) 

added as a solution in diethyl ether (30 ml). The solution was stirred for 1 h at -78°C 

before being allowed to warm to room temperature and quenched with water (20 ml). 

1M Hydrochloric acid (30 ml) was added and the aqueous layer separated, the ether 

layer was further washed with 1M hydrochloric acid (20 ml), the aqueous layers 

combined and allowed to stand for 1 h. The solution was then neutralised with 

sodium hydroxide and extracted with dichloromethane (3x30 ml). The combined 

organics were dried (MgSC>4), filtered and the solvent removed in vacuo. The 

compound was then purified by column chromatography. 

Procedure C: To a solution of the furan (1 eq) or 2-methylfuran (1 eq) in dry diethyl 

ether (40 ml) at -78°C was slowly added rc-butyllithium (1.6M solution in hexanes, 0.9 

eq). The reaction was stirred for 1 h, the nitrile (0.9 eq) was added as a solution in dry 

diethyl ether (30 ml), and the solution stirred for a further 2 h at -78°C. To this was 

added water (30 ml) and the solution was allowed to warm to room temperature. The 

reaction was acidified with cone. HC1 and the aqueous phase separated and heated to 

60°C for 2 h. The solution was then made basic with sodium hydroxide and extracted 

with diethyl ether (3x50 ml) and ethyl acetate (2x50 ml). The combined organic 
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layers were dried (MgSCM), filtered and the solvent removed in vacuo. The 

compound was then purified by column chromatography. 

Procedure D: To the alcohol (1 eq) in dry dichloromethane (50 ml) was added 

activated manganese dioxide (5 eq). The reaction was stirred at room temperature 

until complete (t.l.c. monitoring), then filtered through celite, washed through with 

dichloromethane (3x30 ml) and the solvent removed in vacuo. The compound was 

then further purified (as stated below). 

l-Furan-2-yI-2-methylpropan-l-ol, 145 

This was prepared by the general procedure A by the reaction of iso-

propylmagnesium chloride with furfural. The product was distilled (84-87°C at 0.1 

mmHg) giving a colourless oil in 78% yield. 

' H N M R (CDC13): 5 - 7.46 (dd, 1H, J - 1, 2 Hz, Furan-5H), 6.42 (dd, 1H, J = 1, 4 Hz. 

Furan-3H), 6.32 (dd. 1H, J = 2, 4 Hz, Furan-4H), 4.47 (d, 1H, J = 7 Hz, CHOU), 2.29 

(s, 1H. OH), 2.20 (septet, 1H, C//(Me) 2), 1.11 (d, 3H, J = 7 Hz, Me), 0.95 (d, 3H, J = 

7 Hz, Me). 

l-Furan-2-yl-2-methylbutan-l-ol, 1461 2 7 

This was prepared by the general procedure A by the reaction of sec-butylmagnesium 

chloride with furfural. The product was distilled (64-65°C at 0.3 mmHg) giving a 

colourless oil in 47% yield. 

'H NMR (CDCI3) : 5 - 7.39 (dd, 1H, J = 1, 2 Hz, Furan-5H), 6.37 (dd, 1H, J = 1, 4 Hz, 

Furan-3H), 6.25 (d, 1H, J = 2, 4 Hz, Furan-4H), 4.51 (m, 1H, C//OH), 2.98 (s, 1H, 

OH), 2.00-1.60 (m, 9H). 

Furan-2-yl-phenylmethanol, 147i26 

This was prepared by the general procedure A by the reaction of phenylmagnesium 

chloride with furfural. The product was distilled (130-132°C at 0.2 mmHg) giving a 

colourless oil in 94% yield. 
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'H NMR (CDC13): 6 = 7.60-7.30 (m, 6H, 5xPhenyl, Furan-5H), 6.30 (dd, 1H, J = 1, 4 

Hz, Furan-3H), 6.13 (dd, 1H, J = 2, 4 Hz, Furan-4H), 5.82 (s, 1H, CHOH), 2.56 (s, 

1H, OH). 

Furan-2-yl-/;-tolyImethanol, 148 

This was prepared by the general procedure A by the reaction of />tolylmagnesium 

chloride with furfural. The product was purified by column chromatography on silica 

(dichloromefhane), giving a yellow oil in 98% yield. 

'H NMR (CDC13): 8 = 7.30-7.00 (m, 5H, 4xTolyl, Furan-5H), 6.17 (dd, 1H, J = 1, 4 

Hz, Furan-3H), 5.98 (dd, 1H, J = 2, 4 Hz, Furan-4H), 5.60 (s, 1H, C//OH), 2.63 (s, 

IH , OH), 2.23 (s, 3H, Me); 1 3C NMR (CDCI3): 5 = 156.1, 142.3, 137.9, 129.0, 126.6, 

111.5, 110.1, 107.1,69.9, 21.1; v m a x (neat) 3386, 1514, 1011,909, 733; m/z 188 (M + ) ; 

Accurate mass: 188.0845, C i 2 H i 2 0 2 requires 188.0837. 

2-Methyl-l-(5-methyIfuran-2-yl)propan-l-ol, 149 1 2 8 

This was prepared by the general procedure A by the reaction of iso-

propylmagnesium chloride with 5-methylfurfural in 73% yield as a pale yellow oil. 

'H NMR (CDCb): 8 = 6.16 (d, 1H, J = 3 Hz, Furan-3H), 5.97 (d, 1H, J = 3 Hz, Furan-

4H), 4.35 (s, 1H, CHOH), 2.49 (s, 1H, OH), 2.35 (s, 3H, Furan-5Me), 2.18 (m, 1H, -

C//(Me) 2), 1.10 (d, 3H, J = 7 Hz, Me), 0.94 (d, 3H, J = 7 Hz, Me). 

2-Methyl-l-(5-methylfuran-2-yl)butan-l-ol, 150 

This was prepared by the general procedure A by the reaction of jec-butylmagnesium 

chloride with 5-methylfurfural in 87% yield as a colourless oil. 

'H NMR (CDCI3): 8 = 6.32 (d, 1H, J = 3 Hz, Furan-3H), 5.87 (d, 1H, J = 3 Hz, Furan-

4H), 4.32 (s, 1H, C7/OH), 3.45 (s, 1H, OH), 2.36 (s, 3H, Furan-5Me), 2.19-1.65 (m, 

9H); 1 3C NMR (CDC13): 8 = 154.4, 151.2, 107.3, 105.8, 72.1, 39.5, 25.7, 15.0, 13.5, 

I I . 5; v m a x (neat) 3405, 2962, 2923, 2876, 1565, 1019, 784cm'1; m/z 168 (M + ) ; 

Accurate mass: 168.2337, C|qH|60 2 requires 168.2328. 
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(5-Methylfuran-2-yl)phenylmethanol, 151 1 2 9 

This was prepared by the general procedure A by the reaction of phenylmagnesium 

chloride with 5-methylfurfural. The product was distilled (140-142°C at 0.3 mmHg) 

giving a yellow oil in 97% yield. 

'H NMR (CDC13): 8 = 7.50-7.30 (m, 5H, 5xPhenyl), 5.95 (d, 1H, J = 3 Hz, Furan-

3H), 5.90 (d, 1H, J = 3 Hz, Furan-4H), 5.77 (d, 1H, J = 4 Hz, CHOR), 2.45 (d, 1H, J = 

4 Hz, OH), 2.28 (s, 3H, Furan-5Me). 

(5-Methylfuran-2-yl)-p-tolylmethanol, 152 1 2 9 

This was prepared by the general procedure A by the reaction of /7-tolylmagnesium 

chloride with 5-methylfurfural. The product was purified by column chromatography 

on silica (dichloromethane), giving 152 as a yellow oil in 85% yield. 

'H NMR (CDCI3): 8 =7.50-7.20 (m, 4H, 4xTolyl), 6.02 (d, 1H, J = 3 Hz, Furan-3H), 

6.00 (d, 1H, J= 3 Hz, Furan-4H), 5.84 (s, 1H, CHOU), 3.32 (s, 1H, OH), 2.47 (s, 3H, 

Furan-5Me), 2.38 (s, 3H, Tolyl-Me). 

Furan-2-yl-pyridin-2-yImethanol, 157 

Prepared by the general procedure B by reaction using >?-butyllithium (9.2 ml, 15 

mmol), furan (1.0 g, 15 mmol) and 2-pyridinecarboxaldehyde (1.6 g, 15 mmol). 

Column chromatography on alumina (ethyl acetate:hexane 1:1 7V) afforded 157 as a 

yellow oil (1.16 g, 45% yield). 

'H NMR (CDCI3): 8 = 8.51 (m, 1H, Py-6H), 7.72 (m, 1H, Py-4H), 7.43 (m, 1H, 

Furan-5H), 7.26-7.15 (m, 2H, 2xPy-3,5H), 6.19 (m, 1H, Furan-3H), 5.96 (m, 1H, 

Furan-4H), 5.70 (s, 1H, CM)H), 5.16 (s, 1H, OH); l 3 C NMR (CDCI3): 8 = 156.4, 

153.9, 152.1, 146.9, 135.4, 122.7, 121.3, 108.3, 106.8, 71.3; v m a x (neat) 3410, 2960, 

2915, 2765, 1567, 1123, 834; m/z 175 (M + ) ; Accurate mass: 175.0644, C0H9NO2 

requires 175.0633. 
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Furan-2-yl-py ridin-3-yImethanol, 1581 

Prepared by the general procedure B by reaction using rc-butyllithium (9.2 ml, 15 

mmol), furan (1.0 g, 15 mmol) and 3-pyridinecarboxaldehyde (1.6 g, 15 mmol). 

Column chromatography on alumina (ethyl acetate :hexane 1:1 v / v ) afforded 158 as a 

yellow solid (1.54 g, 60% yield), mp 34-35°C. 

'H NMR (CDC13): 5 = 8.50 (m, 1H, Py-6H), 8.38 (m, 1H, Py-2H), 7.78 (m, 1H, Py-

4H), 7.40-7.30 (m, 2H, Furan-5H, Py-5H), 6.28 (m, 1H, Furan-3H), 6.10 (m, 1H, 

Furan-4H), 5.80 (s, 1H, C//OH), 5.18 (bs, 1H, OH); l 3 C NMR (CDCI3): 5 = 154.5, 

148.4, 148.3, 142.3, 138.1, 136.6, 124.2, 111.4, 104.5, 73.4; v m a x (KBr) 3387, 3012, 

2985, 1456, 1373, 870; m/z 175 (M + ) ; (Analysis found: C, 68.71, H, 5.32, N , 8.03%; 

C 1 0H 9NO2 requires C, 68.56, H, 5.18, N, 8.00%). 

Furan-2-yl-pyridin-4-ylmethanol, 1591 3 7 

Prepared by the general procedure B by reaction using n-butyllithium (9.2 ml, 15 

mmol), furan (1.0 g, 15 mmol) and 4-pyridinecarboxaldehyde (1.6 g, 15 mmol). 

Column chromatography on alumina (ethyl acetate:hexane 1:1 v / v ) afforded 159 as a 

yellow solid (1.44 g, 56% yield), mp 42-45°C. 

'H NMR (CDCI3): 5 = 8.54 (d, 2H, J = 6.3Hz, 2xPy-2,6H), 7.37 (d, 2H, J = 6.1Hz, 

2xPy-3,5H), 7.11 (m, 1H, Furan-5H), 5.87 (m, 1H, Furan-3H), 5.84 (m, 1H, Furan-

4H), 5.76 (s, 1H, C//OH), 4.41 (bs, 1H, OH); l 3 C NMR (CDC13): 8 = 154.3, 150.1, 

142.3, 142.2, 122.4, 111.4, 111.4, 73.4; v m a x (KBr) 3365, 2987, 2945, 1789, 1287, 

789; m/z 175 (M + ) ; (Analysis found: C, 68.57, H, 5.21, N , 8.11%; Ci 0 H 9 NO 2 requires 

C, 68.56, H, 5.18, N , 8.00%). 

5-Methylfuran-2-yl-pyridin-2-ylmethanol, 160 

Prepared by the general procedure B by reaction using «-butyllithium (6.9 ml, 11 

mmol), 2-methyIfuran (1.0 g, 10 mmol) and 2-pyridinecarboxaldehyde (1.2 g, 11 

mmol). Column chromatography on alumina (ethyl acetate:hexane 1:1 v / v ) afforded 

160 as a yellow solid (1.08 g, 47% yield), mp 84-86°C. 
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'H NMR (CDCh): 8 = 8.53 (m, 1H, Py-6H), 7.64 (m, 1H, Py-4H), 7.28-7.20 (m, 2H, 

2xPy-3,5H), 6.08 (d, 1H, J = 3 Hz, Furan-3H), 5.87 (d, 1H, J = 3 Hz, Furan-4H), 5.72 

(s, 1H, C//OH), 5.29 (bs, 1H, OH), 2.21 (s, 1H, Furan-5Me); 1 3C NMR (CDC13): 5 = 

158.4, 153.3, 152.5, 147.9, 136.8, 122.7, 121.3, 108.7, 106.1, 68.8, 13.5; v m a x (KBr) 

3412, 3123, 3011, 1675, 1480; m/z 189 (M + ) ; (Analysis found: C, 69.68, H, 5.99, N , 

7.46%; C, 1H11NO2 requires C, 69.83, H, 5.86, N, 7.40%). 

5-Methylfuran-2-yl-pyridin-3-ylmethanol, 161 

Prepared by the general procedure B by reaction using n-butyllithium (6.9 ml, 11 

mmol), 2-methylfuran (1.0 g, 10 mmol) and 3-pyridinecarboxaldehyde (1.2 g, 11 

mmol). Column chromatography on alumina (ethyl acetate:hexane 1:1 v / v ) afforded 

161 as a yellow solid (1.11 g, 48% yield), mp 92-94°C. 

'H NMR (CDCI3): 8 = 8.65 (m, 1H, Py-2H), 8.50 (m, 1H, Py-6H), 7.82 (m, 1H, Py-

4H), 7.35 (m, 1H, Py-5H), 6.04 (d, 1H, J = 3 Hz, Furan-3H), 5.94 (d, 1H, J = 3 Hz, 

Furan-4H), 5.81 (s, 1H, C//OH), 5.13 (bs, 1H, OH), 2.21 (s, 3H, Furan-5Me); l 3 C 

NMR (CDCI3): 8 = 156.0, 152.8, 149.7, 149.5, 139.1, 135.0, 124.2, 108.8, 107.2, 

68.4, 13.7; v m a x (KBr) 3378, 3067, 2987, 1652, 1456, 675; m/z 189 (M + ) ; (Analysis 

found: C, 69.72, H, 5.79, N, 7.21%; C H u W ^ requires C, 69.83, H, 5.86, N, 7.40%). 

5-Methylfuran-2-yI-pyridin-4-ylmethanoI, 162 

Prepared by the general procedure B by reaction using «-butyllithium (6.9 ml, 11 

mmol), 2-methylfuran (1.0 g, 10 mmol) and 4-pyridinecarboxaldehyde (1.3 g, 11 

mmol). Column chromatography on alumina (ethyl acetate:hexane 1:1 7V) afforded 

162 as a tan solid (1.27 g, 55% yield), mp 102-103°C. 

'H NMR (CDCI3): 8 = 8.47 (d, 2H, J = 6 Hz, 2xPy-2,6H), 7.37 (d, 2H, J = 6 Hz, 

2xPy-3,5H), 5.98 (d, 1H, J = 3 Hz, Furan-3H), 5.88 (d, 1H, J = 3 Hz, Furan-4H), 5.75 

(s, 1H, C//OH), 4.41 (bs, 1H, OH), 2.24 (s, 3H, Furan-5Me); l 3 C NMR (CDC13): 8 = 

152.9, 152.8, 150.5, 149.3, 121.5, 108.9, 106.2, 68.4, 13.5; v m a x (KBr) 3356, 2987, 

2875, 1567, 1432, 690; m/z 189 (M + ) ; (Analysis found: C, 69.94, H, 5.77, N , 7.31%; 

C | |H , iN0 2 requires C, 69.83, H, 5.86, N, 7.40%). 
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Bis(furan-2-yl)methanol, 1631 

Prepared by the general procedure B by reaction using «-butyllithium (9.2 ml, 15 

mmol), furan (1.0 g, 15 ml) and 2-furaldehyde (1.2 g, 15 mmol). Column 

chromatography on alumina (ethyl acetate.hexane 1:1 v / v ) afforded 163 as a red oil 

(087 g, 36% yield). 

'H NMR (CDCI3) : 8 = 7.40 (m, 2H, 2xFuran-5H), 6.34 (m, 2H, 2xFuran-3H), 6.29 

(m, 2H, 2xFuran-4H), 5.80 (s, 1H, C//OH), 3.18 (bs, 1H, OH); l 3 C NMR (CDC13): 5 

= 150.8, 142.8, 111.3, 102.3, 69.5; m/z 164 (M + ) . 

Furan-2-yl-(5-methylfuran-2-yl)methanol, 164 

Prepared by the general procedure B by reaction using «-butyllithium (8.4 ml, 13 

mmol), 2-methylfuran (1.0 g, 12 ml) and 2-furaldehyde (1.1 g, 13 mmol). Column 

chromatography on alumina (ethyl acetate:hexane 1:1 v / v ) afforded 164 as a dark red 

oil (0.39 g, 18% yield). 

'H NMR (CDCI3): 5 = 7.38 (m, 1H, Furan-5H), 6.35-6.24 (m, 2H, 2xFuran-3,4H), 

6.14 (d, 1H, J - 3 Hz, Furan-3H), 5.90 (d, 1H, J = 3 Hz, Furan-4H), 5.74 (s, 1H, 

C//OH), 1.72 (bs, 1H, OH), 1.16 (s, 3H, Furan-5Me); l 3 C NMR (CDC13): 5 = 153.4, 

152.5, 151.4, 142.5, 110.3, 108.7, 107.5, 106.3, 64.1, 13.5; v m a x (neat) 3348, 3120, 

1378, 1078, 820; m/z 178 (M + ) ; Accurate mass: 178.0638, C i 0 Hi 0 O 3 requires 

178.0630. 

Furan-2-yl-thiophen-2-yImethanoI, 165 1 3 9 

Prepared by the general procedure B by reaction using «-butyllithium (9.2 ml, 15 

mmol), furan (1.0 g, 15 ml) and 2-thiophenecarboxaldehyde (1.2 g, 15 mmol). 

Column chromatography on alumina (toluene:diethyl ether 4:1 7V) afforded 165 as a 

red oil (0.74 g, 28% yield). 

'H NMR (CDCI3): 5 = 7.42 (m, 1H, Furan-5H), 7.30 (m, 1H, Thio-5H), 7.05-6.95 (m, 

2H, 2xThio-3,4H), 6.35 (m, 1H, Furan-3H), 6.26 (m, 1H, Furan-4H), 6.06 (s, 1H, 

C//OH), 2.92 (bs, 1H, OH); 1 3C NMR (CDC13): 5 = 153.5, 145.7, 142.8, 128.9, 127.9, 

123.1, 111.4, 106.8, 71.8; m/z 180 (M + ) . 
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(5-Methylfuran-2-yl)-thiophen-2-ylmethanol, 166 

Prepared by the general procedure B by reaction using «-butyllithium (10 ml, 16 

mmol), 2-methylfuran (1.3 g, 16 mmol) and 2-thiophenecarboxaldehyde (1.8 g, 16 

mmol). Column chromatography on alumina (toluene:diethyl ether 4:1 v / v ) gave 166 

as a yellow oil (0.52 g, 22% yield). 

'H NMR (CDC13): 5 = 7.30 (m, 1H, Thio-5H), 7.03 (m, 1H, Thio-3H), 6.99 (m, 1H, 

Thio-4H), 6.15 (d, 1H, J = 3 Hz, Furan-3H), 6.02 (s, 1H, C//OH), 5.92 (d, 1H, J = 3 

Hz, Furan-4H), 2.79 (bs, 1H, OH), 1.27 (s, 3H, Furan-5Me); l 3 C NMR (CDC13): 5 = 

156.9, 152.7, 145.7, 128.8, 127.9, 122.7, 107.2, 106.1, 73.0, 14.0; v m a x (neat) 3354, 

3388, 2921, 1563, 1218, 1008; m/z 194 (M + ) ; Accurate mass: 194.0411, Ci 0H,o0 2S 

requires 194.0402. 

Furan-2-yl-quinolin-3-ylmethanol, 167 

Prepared by the general procedure B by the reaction using 77-butyllifhium (10.1 ml, 16 

mmol), furan (1.0 g, 15 mmol) and 3-quinaldehyde (2.54 g, 16 mmol). Column 

chromatography on alumina (ethyl acetate:hexane 1:1 v / v ) afforded 167 as a white 

solid (1.59 g, 48% yield), mp 100-102°C. 

'H NMR (CDCI3): 5 = 8.84 (m, 1H, Quin-2H), 8.24 (m, 1H, Quin-8H), 8.05-7.77 (m, 

2H, Quin-4,6H), 7.66 (m, 1H, Quin-5H), 7.51 (m, 1H, Quin-7H), 7.35 (m, 1H, Furan-

5H), 6.28 (m, 1H, Furan-3H), 6.14 (m, 1H, Furan-4H), 6.02 (s, 1H, C//OH), 3.75 (bs, 

1H, OH); l 3 C NMR (CDC13): 5 = 155.2, 149.5, 147.3, 142.8, 134.0, 133.6, 129.6, 

128.8, 128.0, 127.7, 126.9, 110.4, 107.9, 67.9; v m a x (KBr) 3420, 3056, 2967, 1621, 

1453, 765; m/z 225 (M + ) ; (Analysis found: C, 74.60, H, 4.73, N , 6.34%; C14H11NO2 

requires C, 74.65, H, 4.92, N, 6.22%). 

5-Methylfuran-2-yl-quinolin-3-ylmethanol, 168 

Prepared by the general procedure B by the reaction using /7-butyllithium (8.4 ml, 13 

mmol), 2-methylfuran (1.0 g, 12 mmol) and 3-quinaldehyde (2.1 g, 13 mmol). 

Column chromatography on alumina (ethyl acetate:hexane 1:1 7V) afforded 167 as a 

white solid (1.43 g, 49% yield), mp 113-114°C. 
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'H NMR (CDCI3): 5 = 8.60 (m, 1H, Quin-2H), 7.80 (m, 1H, Quin-8H), 7.68-7.63 (m, 

2H, Quin-4,6H), 7.57 (m, 1H, Quin-5H), 7.45 (m, 1H, Quin-7H), 6.80 (s, 1H, 

C//OH), 6.08 (d, 1H, J = Hz, Furan-3H), 5.97 (d, 1H, J = Hz, Furan-4H), 5.69 (s, 1H, 

OH), 2.18 (s, 3H, Furan-5Me), l 3 C NMR (CDCI3): 5 = 156.8, 153.7, 151.4, 146.4, 

135.9, 132.4, 131.2, 128.9, 128.4, 127.8, 126.7, 197.3, 104.5, 73.7, 14.6; v m a x (KBr) 

3412, 3010, 2867, 1546, 981; m/z 239 (M + ) ; (Analysis found: C, 75.36, H, 5.72, N, 

5.67%; C15H13NO2 requires C, 75.30, H, 5.48, N , 5.85%). 

Furan-2-yl-naphthalen-2-ylmethanoI, 169 

Prepared by the general procedure B by the reaction using w-butyllithium (10.1 ml, 16 

mmol), furan (1.0 g, 15 mmol) and 2-naphthaldehyde (2.5 g, 16 mmol). Column 

chromatography on alumina (ethyl acetate :hexane 1:1 v / v ) afforded 168 as a white 

solid (1.91 g, 58% yield), mp 80-82°C. 

'H NMR (CDCI3): 5 = 8.45 (m, 1H, Nap-4H), 8.10-7.85 (m, 4H, 4xNap-l,3,5,8H), 

7.65 (m, 1H, Furan-5H), 7.62-7.53 (m, 2H, 2xNap-6,7H), 6.60 (m, 1H, Furan-3H), 

6.23 (m, 1H, Furan-4H), 6.11 (s, 1H, C//OH), 2.31 (bs, 1H, OH); 1 3C NMR (CDC13): 

5 = 155.8, 142.3, 139.6, 136.1, 134.8, 128.2, 127.9, 127.4, 126.4, 126.1, 125.8, 125.6, 

112.3, 106.8, 73.1; v m a x (KBr) 3367, 3109, 2965, 1235, 1015, 784; m/z 224 (M + ) ; 

(Analysis found: C, 80.55, H, 5.48%; C15H12O2 requires C, 80.34, H, 5.39%). 

5-Methylfuran-2-yl-naphthalen-2-ylmethanol, 170 

Prepared by the general procedure B by the reaction using «-butyllithium (8.4 ml, 13 

mmol), 2-methylfuran (1.0 g, 12 mmol) and 2-naphthaldeyde (2.0 g, 13 mmol). 

Column chromatography on alumina (ethyl acetate:hexane 1:1 7V) afforded 169 as a 

white solid (1.22 g, 42% yield), mp 95-95°C. 

'H NMR (CDCI3) : 5 = 7.77 (m, 1H, Nap-4H), 7.66-7.63 (m, 2H, 2xNap-l,8H), 7.61 

(m, 1H, Nap-5H), 7.50 (m, 1H, Nap-3H), 7.35 (m, 1H, Nap-7H), 7.30-7.25 (m, 1H, 

Nap-6H), 6.17 (s, 1H, C7/OH), 6.01 (d, 1H, J = 3Hz, Furan-3H), 5.81 (d, 1H, J = 3Hz, 

Furan-4H), 5.66 (bs, 1H, OH), 2.18 (s, 3H, Furan-5Me); 1 3C NMR (CDC13): 5 = 

156.6, 153.9, 139.6, 136.1, 134.5, 128.2, 127.2, 126.9, 126.7, 126.1, 125.8, 125.7, 
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107.3, 106.8, 73.1, 15.1; v m a x (KBr) 3367, 2989, 1478, 1013, 843; m/z 238 (M + ) ; 

(Analysis found: C, 80.87, H, 6.10%; C 1 5 Hi20 2 requires C, 80.65, H, 5.92%). 

Furan-2-yl-ferrocenylmethanol, 171 

To a solution of rc-butyllithium (1.5M in hexane, 25.6 ml, 41 mmol) in diethyl ether 

(60 ml) at 0°C was added furan (2.8 g, 41 mmol). The solution was refluxed for 3 h, 

then cooled to -78°C and a solution of ferrocene carboxaldehyde (8.0 g, 37 mmol) in 

diethyl ether (40 ml) and tetrahydrofuran (40 ml) was added slowly over 30 min. The 

reaction was allowed to warm to room temperature overnight, then ammonium 

chloride solution (50 ml) added. The organic phase was extracted with diethyl ether 

(3x30 ml) and ethyl acetate (3x30 ml), dried (MgS04), filtered and the solvent 

removed in vacuo. Column chromatography on alumina (ethyl actetate:hexane 1:1 

7V) afforded 171 as red solid (4.8 g, 42% yield), mp °C 

'H NMR (CDC13): 5 = 7.43 (m, 1H, Furan-5H), 6.34 (m, 1H, Furan-3H), 6.23 (m, 1H, 

Furan-4H), 5.49 (s, 1H, C//OH), 4.87 (bs, 1H, CHO/f), 4.27 (m, 1H, Fc), 4.20 (m, 

1H, Fc), 4.11 (m, 2H, 2xFc), 4.03 (m, 5H, 5xFc); l 3 C NMR (CDCI3): 5 = ; v m a x (neat) 

3450-3350, 2922, 2853, 1460, 1376, 999; m/z 282; (Analysis found: C, H, %; 

Ci 5H, 4Fe02 requires C, 63.86, H, 5.00%). 

Furan-2-yl-[4-(furan-2-yl-hydroxymethyl)phenyl]methanol, 175 

To a solution of furan (2.0 g, 29 mmol) in tetrahydrofuan (60 ml) at 0°C was added n-

butyllithium (20.2 ml, 32 mmol), the solution was stirred for 4 h, then 

terephthaldicarboxaldehyde (2.17 g, 16 mmol) was added as a solution in 

tetrahydrofuran (40 ml). The reaction was kept at 0°C for another 3 h, before being 

allowed to warm to room temperature. Ammonium chloride solution (40 ml) was 

added, and the organics extracted with diethyl ether (3x40 ml). The combined 

organic solutions were dried (MgS04), filtered and the solvent removed in vacuo. 

Column chromatography on silica (dichloromethane) afforded 175 as a white solid 

(2.67 g, 62% yield), mp 95-97°C. 

'H NMR (CDCb): 5 = 7.40 (s, 4H, 4xPhenyl), 7.37 (m, 2H, 2xFuran-5H), 6.30 (m, 

2H, 2xFuran-3H), 6.11 (m, 2H, 2xFuran-4H), 5.80 (s, 2H, 2xCM)H), 2.61 (bs, 2H, 

2xCHO#); l 3 C NMR (CDC13): 8 = 157.8, 142.6, 140.6, 126.7, 110.2, 107.5, 69.9; 
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v m a x (KBr) 3376, 3010, 2854, 1389, 1119, 923, 621; m/z 270 (M + ) ; (Analysis found: 

C, 71.07, H, 5.16%; C i 6 H , 40 4 requires C, 71.10, H, 5.22%). 

1 -Furan-2-yl-2-methylpropan-l-one, 17812 

Prepared by the general procedure D using 145. The product was distilled (40-42°C 

at 0.2 mmHg) giving 178 as a colourless oil in 49% yield. 

'H NMR (CDC13): 5 = 7.64 (dd, 1H, J = 1, 2 Hz, Furan-5H), 7.24 (dd, 1H, J = 1, 4 Hz, 

Furan-3H), 6.59 (dd, 1H, J = 2, 4 Hz, Furan-4H), 3.39 (septet, 1H, C//(Me 2)), 1.26 (d, 

6H, J = 7 Hz, 2xMe). 

l-Furan-2-yl-2-methylbutan-l-one, 17912 

Prepared by the general procedure D using 146. The product was distilled (125-

126°C at 0.3 mmHg) giving 179 as a pale yellow oil in 54% yield. 

'H NMR (CDCI3) : 5 = 7.56 (m, 1H, Furan-5H), 7.10 (m, 1H, Furan-3H), 6.14 (m, 1H, 

Furan-4H), 3.27 (m, 1H), 2.34 (m, 3H), 1.80 (m, 6H). 

Furan-2-yl-phenylmethanone, 1801 5 2 

A stirring solution of furan (5.0 g, 80 mmol) and benzoic anhydride (36 g, 161 mmol), 

was warmed to 40°C. The heat was removed and phosphoric acid (1.65 g) added, the 

solution was then heated to 60°C for 2 hours. The solution was allowed to cool, water 

(100 ml) was added and stirred for 1 hour. Sodium bicarbonate was added to 

neutralise the reaction, the organic layer extracted with dichloromethane (3x30 ml), 

dried (MgSCv), filtered and the solvent removed in vacuo. Product was purified by 

distillation (50-52°C at 0.3 mmHg), giving 180 as a yellow oil (1.26 g, 10% yield). 

180 was also prepared in 77% yield by oxidation of 147 using the general procedure 

D. 

'H NMR (CDCI3) : 5 = 7.98 (m, 1H, Phenyl), 7.96 (m, 1H, Phenyl), 7.71 (dd, 1H, J = 

1, 2 Hz, Furan-5H), 7.60 (dd, 1H, J = 1, 3 Hz, Furan-3H), 7.50 (m, 2H, 2xPhenyl), 

7.24 (m, 1H, Phenyl), 6.60 (dd, 1H, J = 2, 3 Hz, Furan-4H). 
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Furan-2-yI-p-tolylmethanone, 1811 

This was prepared by oxidation of alcohol 148 using the general procedure D. 

Purified by column chromatography on silica (dichloromethane), giving a yellow 

solid in 86% yield, mp 30-32°C (Lit 41-42°C). 

'H NMR (CDC13): 5 = 7.92 (m, 1H, Tolyl), 7.88 (m, 1H, Tolyl), 7.70 (m, 1H, Furan-

5H), 7.32-7.29 (m, 2H., 2xTolyl), 7.28 (m, 1H, Furan-3H), 6.59 (m, 1H, Furan-4H), 

2.44 (s, 3H, Tolyl-Me); 1 3C NMR (CDC13): 5 = 182.0, 152.1, 146.7, 143.3, 134.5, 

129.4, 126.7, 120.0, 112.0, 21.6; v m a x (KBr) 1633, 1461, 1193, 1177, 1027, 790, 754, 

626; m/z 186 (M + ) ; (Analysis found: C, 77.12, H, 5.53%; C,2H,o02 requires C, 77.40, 

H, 5.41%). 

2-Methyl-l-(5-methylfuran-2-yl)propan-l-one, 182 I 5 4 a 

A solution of 2-methylfuran (13.5 g, 160 mmol) and /jo-butyric anhydride (52.2 g, 

330 mmol) was warmed to 40°C. The heat was removed, phosphoric acid (3.3 g) 

added and then heated at 60°C for 2 h. The solution was allowed to cool, water (100 

ml) added, and stirred for a further 1 h. The reaction was neutralised with sodium 

bicarbonate and stirred for 15 h. The organic layer was extracted with 

dichloromethane (3x30 ml), dried (MgSC^), filtered and the solvent removed in 

vacuo. Distillation (80-82°C at 0.3 mmHg) gave 182 as a yellow oil in (23.8 g, 78% 

yield). 

182 was also prepared in 43% yield by oxidation of 149 using the general procedure 

D. 

'H NMR (CDCI3) : 5 = 7.11 (d, 1H, J = 3 Hz, Furan-3H), 6.15 (d, 1H, J = 3 Hz, Furan-

4H), 3.27 (septet, 1H, C//(Me) 2), 2.41 (s, 3H, Furan-5Me)1.18 (d, 6H, J = 7 Hz, 

2xMe). 

(5-Methylfuran-2-yl)phenylmethanone, 183 

This was prepared by the general procedure D by oxidation of the alcohol 151. The 

product was distilled (150-152°C at 0.3 mmHg) to give 183 as a yellow oil in 58% 

yield. 
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'H NMR (CDCI3) : 5 = 7.87 (m, 2H, 2xPhenyl), 7.60-7.30 (m, 3H, 3xPhenyl), 7.04 (d, 

1H, J =3 Hz, Furan-3H), 6.14 (d, 1H, J = 3 Hz, Furan-4H), 2.37 (m, 3H, Furan-5Me); 
l 3 C NMR (CDCI3) : 5 = 183.8, 159.7, 148.1, 144.2, 132.1, 129.4, 128.3, 120.4, 103.7, 

13.6; v m a x (neat) 1654, 1432, 1123, 1067, 756; m/z 186 (M + ) , Accurate mass: 

186.0672, Ci 2 H,o0 2 requires 186.0681. 

(5-Methylfuran-2-yl)-p-tolylmethanone, 184 1 5 4 b 

This was prepared by the general procedure D by oxidation of the alcohol 152. The 

product was columned on silica (dichloromethane) to give 184 as a yellow solid in 

80% yield, mp 39-40°C (Lit 41-42°C). 

'H NMR (CDCI3) : 5 = 8.34 (d, 2H, J = 8Hz, 2xTolyl), 7.83 (d, 2H, J = 8 Hz, 2xTolyl), 

7.12 (d, 1H, J = 3 Hz, Furan-3H), 6.50 (d, 1H, J = 3 Hz, Furan-4H), 2.69 (s, 3H, 

Furan-5Me), 2.32 (s, 3H, Tolyl-Me); 1 3C NMR (CDCI3) : 8 = 183.1, 160.2, 148.7, 

144.0, 139.8, 129.3, 129.1, 120.7, 101.5, 21.6, 12.5; v m a x (neat) 1689. 1543, 1178, 

1123, 1034, 824, 721; m/z 200 (M + ) ; (Analysis found: C, 80.12, H, 6.08%; C,3H I 2 0 2 

requires C, 77.98, H, 6.04%). 

Furan-2-yI-pyridin-2-yImethanone, 18567 

Prepared by the general procedure B by using furan (1.0 g, 15 mmol), H-butyllithium 

(10.1 ml, 16 mmol) and 2-cyanopyridine (1.7 g, 16 mmol). Column chromatography 

on alumina (ethyl acetate:hexane 1:1 v / v ) afforded 185, recrystallisation (hexane) gave 

a yellow solid (1.65 g, 65% yield). 

185 was also prepared by the general procedure D by oxidation of the alcohol 157, in 

74% yield, mp 129-130°C (Lit 129°C). 

'H NMR (CDCI3) : 5 = 8.72 (m, 1H, Py-6H), 8.41-7.98 (m, 2H, 2xPy-3,4H), 7.43-6.95 

(m, 3H, Py-5H, 2xFuran-3,5H), 6.71-6.54 (dd, 1H, J = 2,4Hz, Furan-4H); l 3 C NMR 

(CDCI3) : 8 = 182.3, 151.2, 150.5, 149.6, 147.1, 138.7, 129.0, 125.4, 121.0, 111.7; m/z 

173 (M + ) ; (Analysis found: C, 69.42, H, 4.31, N, 8.16%; Ci 0 H 7 NO 2 requires C, 69.36, 

H, 4.07, N, 8.09%). 
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Furan-2-yI-pyridin-3-ylmethanone, 1861 

Prepared by the general procedure B by using furan (1.0 g, 15 mmol), H-butyllithium 

(10.1 ml, 16 mmol) and 3-cyanopyridine (1.7 g, 16 mmol). Column chromatography 

on alumina (ethyl acetate:hexane 1:1 7V) afforded 186, recrystallisation (hexane) gave 

as yellow solid (1.73 g, 68% yield). 

186 was also prepared by the general procedure D by oxidation of the alcohol 158, in 

82% yield, mp 62-64°C (Lit 62-63°C). 

' I I NMR (CDC13): 5 = 9.21 (m, 1H, Py-2H), 8.80 (m, 1H, Py-6H), 8.27 (m, 1H, Py-

4H), 7.74-7.44 (m, 2H, Py-5H, Furan-5H), 7.31 (dd, 1H, J = 1, 4 Hz, Furan-3H), 6.64 

(dd, 1H, J = 2, 4 Hz, Furan-4H); 1 3C NMR (CDC13): 5 = 184.0, 154.7, 151.3, 149.6, 

149.1, 139.9, 128.6, 123.3, 118.8, 109.2; m/z 173 (M + ) ; (Analysis found: C, 69.51, H, 

4.22, N , 7.98%; C 0 H 7 N O 2 requires C, 69.36, H, 4.07, N , 8.09%). 

Furan-2-yl-pyridin-4-ylmethanone, 1871 5 5 

Prepared by the general procedure B by using furan (1.0 g, 15 mmol), /7-butyllithium 

(10.1 ml, 16 mmol) and 3-cyanopyridine (1.7 g, 16 mmol). Column chromatography 

on alumina (ethyl acetate:hexane 1:1 7V) afforded 187, recrystallisation (hexane) gave 

a yellow solid (1.75 g, 69% yield), mp 79-80°C (Lit 79-81°C). 

187 was also prepared by the general procedure D by oxidation of the alcohol 159, in 

77% yield. 

'H NMR (CDCI3) : 5 = 8.81 (d, 2H, J = 6 Hz, 2xPy-2,6H), 7.77 (d, 2H, J= 6 Hz, 2xPy-

3,5H), 7.56 (m, 1H, Furan-5H), 7.31 (m, 1H, Furan-3H), 6.64 (m, 1H, Furan-4H); l 3 C 

NMR (CDCI3) : 5 = 183.4, 151.8, 149.6, 149.0, 139.8, 125.9, 124.9, 109.2; m/z 173 

(M + ) ; (Analysis found: C, 69.45, H, 4.15, N , 8.04%; C,oH 7N0 2 requires C, 69.36, H, 

4.07, N, 8.09%). 

5-Methylfuran-2-yl-pyridin-2-ylmethanone, 188 

Prepared by the general procedure C by using 2-methylfuran (1.0 g, 12 mmol), n-

butyllithium (6.9 ml, 11 mmol) and 2-cyanopyridine (1.2 g, 11 mmol). Column 
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chromatography on alumina (ethyl acetate :hexane 1:1 7V) afforded 188, 

recrystallisation (hexane) gave a yellow solid (1.48 g, 65% yield). 

188 was also prepared by the general procedure D by oxidation of the alcohol 160, 

75% yield, mp 64-66°C. 

'H NMR (CDC13): 5 = 8.70 (m, 1H, Py-6H), 8.14 (m, 1H, Py-4H), 7.95 (d, 1H, J = 3 

Hz, Furan-3H), 7.83 (1H, m, Py-3H), 7.51 (m, 1H, Py-5H), 6.24 (d, 1H, J = 3 Hz, 

Furan-4H), 2.41 (s, 3H, Furan-5Me); 1 3C NMR (CDC13): 5 = 178.5, 159.3, 154.3, 

150.1, 148.5, 136.9, 126.4, 126.3, 123.7, 109.5, 14.1; v m a x (KBr) 1656, 1223, 1189, 

986, 823, 612; m/z 187 (M + ) ; (Analysis found: C, 70.39, H, 4.78, N, 7.43%; 

C H 9 N O 2 requires C, 70.58, H, 4.85, N , 7.48%). 

5-Methylfuran-2-yl-pyridin-3-ylmethanone, 189 

Prepared by the general procedure C by using 2-methylfuran (1.0 g, 12 mmol), n-

butyllithium (6.9 ml, 11 mmol) and 3-cyanopyridine (1.2 g, 11 mmol). Column 

chromatography on alumina (ethyl acetate:hexane 1:1 7V) afforded 189, 

recrystallisation (hexane) gave a yellow solid (1.69 g, 74% yield). 

189 was also prepared by the general procedure D by oxidation of the alcohol 161, in 

79% yield, mp 64-66°C. 

'H NMR (CDCI3) : 6 = 9.13 (m, 1H, Py-2H), 8.76 (m, 1H, Py-6H), 8.19 (m, 1H, Py-

4H), 7.43 (m, 1H, Py-5H), 7.17 (d, 1H, J = 3 Hz, Furan-3H), 6.24 (d, 1H, J = 3 Hz, 

Furan-4H), 2.44 (s, 3H, Furan-5Me); l 3 C NMR (CDC13): 5 = 179.9, 159.4, 152.7, 

150.7, 150.0, 136.5, 133.2, 123.4, 123.2, 109.5, 14.2; v n i a x (KBr) 1623, 1457, 1389, 

1013, 783, 623; m/z 187 (M + ) ; (Analysis found: C, 70.51, H, 4.76, N, 7.13%; 

C11H9NO2 requires C, 70.58, H, 4.85, N , 7.48%). 

5-Methylfuran-2-yl-pyridin-4-ylmethanone, 190 

Prepared by the general procedure C by using 2-methylfuran (1.0 g, 12 mmol), n-

butyllithium (6.9 ml, 11 mmol) and 4-cyanopyridine (1.2 g, 11 mmol). Column 

chromatography on alumina (ethyl acetate .hexane 1:1 7V) afforded 190, 

recrystallisation (hexane) gave a yellow solid (1.73 g, 76% yield). 
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190 was also prepared by the general procedure D by oxidation of the alcohol 162, in 

84% yield, mp 79-80°C. 

'H NMR (CDC13): 5 = 8.77 (d, 2H, J = 6 Hz, 2xPy-2,6H), 7.70 (d, 2H, J = 6 Hz, 

2xPy-3,5H), 7.16 (1H, d, J= 4 Hz, Furan-3H), 6.25 (1H, d, J = 4 Hz, Furan-4H), 2.45 

(s, 3H. Furan-5Me); l 3 C NMR (CDC13): 5 = 180.5, 160.2, 150.6 (2H), 144.4, 124.2, 

122.6, 109.6; v m a x (KBr) 1678, 1278, 1209, 1034, 865, 745; m/z 187 (M + ) ; (Analysis 

found: C, 70.30, H, 4.96, N, 7.57%; C , iH 9 N0 2 requires C, 70.58, H, 4.85, N , 7.48%). 

Bis(furan-2-yl) methanone, 191 1 5 6 

To a solution of furan (0.5 g, 7 mmol) and 2-furoyl chloride (0.9 g, 7 mmol) in dry 

dichloromethane at 0°C was added SnCLj and the mixture was stirred for 1 h at room 

temperature. The reaction was then quenched with water and the organic layer was 

extracted with dichloromethane (3x30 ml). The combined organic layers were dried 

(MgSC^), filtered and the solvent removed in vacuo. Column chromatography on 

silica (dichloromethane) gave 191 as a yellow oil (0.52 g, 44% yield). 

191 was also prepared by the general procedure D by oxidation of alcohol 163. 

Column chromatography on silica (dichloromethane) gave 191 in 42% yield. 

'H NMR (CDCI3): 5 = 7.65 (dd, 2H, J = 1, 2 Hz, 2xFuran-5H), 6.97 (dd, 2H, J = 1, 3 

Hz, 2xFuran-3H), 6.55 (dd, 2H, J = 2, 3 Hz, 2xFuran-4H); l 3 C NMR (CDC13): 5 = 

180.2, 150.9, 144.5, 115.8, 110.8; m/z 162 (M + ) . 

Furan-2-yl-(5-methylfuran-2-yl)methanone, 192 

192 was prepared by the general procedure D by oxidation of 164. Column 

chromatography on silica (dichloromathane) gave 192 as a yellow oil in 36% yield. 

'H NMR (CDCI3): 5 = 7.49 (dd, 1H, J = 1, 2 Hz, Furan-5H), 7.08 (dd, 1H, J = 1, 4 Hz, 

Furan-3H), 6.68 (d, 1H, J = 3 Hz, Furan-3H), 6.46 (dd, 1H, J = 2, 4 Hz, Furan-4H), 

6.01 (d, 1H, J = 3 Hz, Furan-4H), 2.56 (s, 3H, Furan-5Me); 1 3C NMR (CDC13): 5 = 

175.7, 154.1, 151.0, 150.3, 143.6, 116.2, 115.2, 111.4, 104.7, 13.3; v n l a x (neat) 1645, 

1267, 1209, 1103, 956; m/z 176 (M + ) ; Accurate mass: 176.0481, C 1 0 H 8 O 3 requires 

176.0473. 
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Furan-2-yl-thiophen-2-y Imethanone, 193 1 5 7 a 

To a solution of furan (0.5 g, 7 mmol) and 2-thiophene carbonyl chloride (1.1 g, 7 

mmol) in dry dichloromethane at 0°C was added SnCl4 and the mixture was stirred for 

1 h at room temperature. The reaction was then quenched with water and the organic 

layer was extracted with dichloromethane (3x30 ml). The combined organic layers 

were dried (MgSC^), filtered and the solvent removed in vacuo. Column 

chromatography on silica (dichloromethane) gave 193 as a yellow oil (0.31 g, 24% 

yield). 

'H NMR (CDC13): 5 = 8.15 (m, 1H, Furan-5H), 7.70-7.60 (m, 2H, 2xThio-3,5H), 7.38 

(m, 1H, Thio-4H), 7.17 (m, 1H, Furan-3H), 6.57 (m, 1H, Furan-4H); m/z 178 (M + ) . 

Furan-2-yl-quinoIin-3-ylmethanone, 195 

Prepared by the general procedure D by oxidation of alcohol 167. Column 

chromatography on alumina (ethyl acetate:hexane 1:1 7V) gave 195 as white solid in 

87% yield, mp 113-114°C. 

Also prepared by the general procedure B using furan (1.0 g, 15 mmol), n-

butyllithium (10.1 ml, 16 mmol) and 3-cyanoquinoline (2.7 g, 16 mmol). Column 

chromatography on alumina (ethyl acetate:hexane 1:1 7V) gave 195 in 56% yield. 

'H NMR (CDCI3) : 5 = 9.11 (d, 1H, J = 2 Hz, Quin-2H), 8.61 (m, 1H, Quin-4H), 8.17 

(m, 1H, Quin-8H), 8.04-7.90 (m, 2H, Quin-5,6H), 7.60-7.50 (m, 2H, Quin-7H, Furan-

5H), 7.14 (m, 1H, Furan-3H), 6.52 (m, 1H, Furan-4H); l 3 C NMR (CDCI3) : 5 = 180.4, 

152.4, 149.8, 149.5, 147.4, 138.3, 131.9, 129.6, 129.5, 129.2, 127.5, 126.7, 120.7, 

112.6; v m a x (KBr) 1654, 1256, 1178, 1054, 976, 812; m/z 223 (M + ) ; (Analysis found: 

C, 75.45, H, 4.05, N , 6.26%; C 1 4 H 9 N 0 2 requires C, 75.33, H, 4.06, N , 6.27%). 

115 



(5-Methylfuran-2-yl)quinolin-3-ylmethanone, 196 

Prepared by the general procedure D by oxidation of alcohol 168. Column 

chromatography on alumina (ethyl acetate:hexane 1:1 7V) gave 196 as a pale yellow 

solid in 77% yield, mp 133-136°C. 

'H NMR (CDC13): 5 = 9.09 (d, 1H, J = 2 Hz, Quin-2H), 8.55 (m, 1H, Quin-4H), 8.17 

(m, 1H, Quin-8H), 8.04-7.90 (m, 2H, Quin-5,6H), 7.53 (m, 1H, Quin-7H), 6.69 (d, 

1H, J = 3Hz, Furan-3H), 6.11 (d, 1H, J = 3Hz, Furan-4H), 2.31 (s, 3H, Furan-5Me); 
l 3 C NMR (CDCI3) : 5 = 183.8, 162.2, 160.1, 149.5, 148.1, 133.8, 133.2, 132.3, 130.0, 

127.9, 126.9, 126.8, 118.8, 103.7, 14.0; v m a x (KBr) 1689 1234, 1210, 1068, 1011, 892, 

765; m/z 237 (M + ) ; (Analysis found: C, 76.24, H, 4.76, N , 5.64%; C i 5 H , | N 0 2 

requires C, 75.94, H, 4.67, N , 5.90%). 

Furan-2-yl-naphthalen-2-ylmethanone, 197 

To a solution of furan (1.0 g, 15 mmol) and 2-naphthoyl chloride (2.66 g, 14 mmol) in 

dry dichloromethane at 0°C was added SnCU and the mixture was stirred for 1 h at 

room temperature. The reaction was then quenched with water and the organic layer 

was extracted with dichloromethane (3x30 ml). The combined organic layers were 

dried (MgSCu), filtered and the solvent removed in vacuo. Column chromatography 

on alumina (ethyl acetate:hexane 1:1 7V) gave 197 as a white solid (0.69 g, 21% 

yield). mp96-98°C. 

197 was also prepared by the general procedure D by oxidation of alcohol 169. 

Column chromatography on alumina (ethyl acetate:hexane 1:1 v / v ) gave 195 as white 

solid in 77% yield. 

Also prepared by the general procedure B using furan (1.0 g, 15 mmol), n-

butyllithium (10.1 ml, 16 mmol) and 2-cyanonaphthalene (0.7 g, 16 mmol). Column 

chromatography on alumina (ethyl acetate:hexane 1:1 7V) gave 197 (2.02 g, 62% 

yield). 

'H NMR (CDCI3) : 5 = 8.54 (m, 1H, Nap-IH), 8.10-7.82 (m, 4H, 4xNap-3,4,5,8H), 

7.74 (m, 1H, Furan-5H), 7.62-7.30 (m, 2H, 2xNap-6,7H), 7.30 (m, 1H, Furan-3H), 

6.62 (m, 1H, Furan-4H); 1 3C NMR (CDC13): 5 = 182.5, 152.5, 147.1, 135.3, 134.5, 

132.4, 130.8, 129.4, 128.3, 128.3, 127.8, 126.8, 125.2, 120.6, 112.3; v m a x (KBr) 1636, 
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1458, 1391, 1310, 1018; m/z 222 (M + ) ; (Analysis found: C, 79.97, H, 4.60%; 

C 1 5 H 1 0 O2 requires C, 81.07, H, 4.54%). 

5-MethyIfuran-2-yI-naphthalen-2-yImethanone, 198 

Prepared by the general procedure D by oxidation of alcohol 170. Column 

chromatography on alumina (ethyl acetate:hexane 1:1 7V) gave 198 as an off-white 

solid in 89% yield, mp 125-127°C. 

'H NMR (CDCl 3): 5 = 8.52 (m, 1H, Nap-IH), 8.15 (m, 1H, Nap-4H), 8.08-7.90 (m, 

3H, 3xNap-3,5,8H), 7.70 (m, 1H, Nap-7H), 7.35 (m, 1H, Nap-6H), 6.51 (d, 1H, J = 

3Hz, Furan-3H), 6.02 (d, 1H, J = 3Hz, Furan-4H), 2.48 (s, 3H, Furan-5Me); l 3 C NMR 

(CDCI3) : 5 = 183.1, 159.7, 148.6, 147.1, 133.1, 131.9, 131.8, 131.6, 128.8, 128.3, 

128.0, 127.8, 127.6, 121.1, 103.7, 13.6; v m a x (KBr) 1623, 1435, 1387, 1301, 1016, 

896, 675; m/z 236 (M + ) ; (Analysis found: C, 81.07, H, 5.23%; C i 6 H i 2 0 2 requires C, 

81.34, H, 5.12%). 

Furan-2-yl-ferrocenylmethanone, 199 1 5 7 b 

Prepared by the general procedure D by oxidation of 171. Column chromatography 

on alumina (ethyl acetate) gave 199 in 96% yield as a red solid, mp °C. 

'H NMR (CDCI3) : 5 = 7.62 (m, 1H, Furan-5H), 7.32 (m, 1H, Furan-3H), 6.56 (m, 1H, 

Furan-4H), 5.16 (m, 2H, 2xFc), 4.58 (m, 2H, 2xFc), 4.17 (s, 5H, 5xFc); l 3 C NMR 

(CDCI3) : 5 = 184.7, 153.7, 145.2, 116.6, 112.0, 77.76, 72.45, 70.78, 70.12. 

[4-Furan-2-carbonyl)phenyl]furan-2-yIrnethanone, 200 

Prepared by the general procedure D by the oxidation of furan-2-yl-benzene-l,4-

ylmethanol 175. There was no need to further purify the product, giving 200 as a 

white solid in 76% yield, mp 162-163°C. 

'H NMR (CDCI3) : 5 = 8.10 (s, 4H, 4xPhenyl), 7.76 (dd, 2H, J = 1, 2 Hz, 2xFuran-

5H), 7.31 (dd, 2H, J = 1, 3 Hz, 2xFuran-3H), 6.65 (dd, 2H, J = 2, 3 Hz, 2xFuran-4H); 
l 3 C NMR (CDCI3) : 5 = 181.7, 152.0, 147.5, 140.3, 129.2, 121.1, 112.5; v m a x (KBr) 
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2836, 1656, 1334, 1278, 1103, 895; m/z 266 (M + ) ; (Analysis found: C, 71.99, H, 

3.77%; C, 6Hio0 4 requires C, 72.18, H, 3.79%). 

Furan-2-ylpropan-l-one, 208 1 5 9 

A stirring solution of furan (8.0 g, 120 mmol) with propionic anhydride (30.6 g, 240 

mmol) was heated at 40°C. The heat was removed, phosphoric acid (2.5 g) added and 

the solution heated to 60°C for 2 h. The reaction was allowed to cool to 25°C, water 

(100 ml) added and stirred for a further 1 h. The solution was neutralised with 

NaHCC»3 and the organic layer extracted with dichloromethane (3x30 ml), dried 

(MgSCU), filtered and the solvent removed in vacuo. Distillation (95-100°C at 0.3 

mmHg) afforded 208 (11.10 g, 76% yield). 

'H NMR (CDC13): 5 = 7.48 (dd, 1H, J = 1, 2 Hz, Furan-5H), 7.07 (dd, 1H, J = 1, 3 Hz, 

Furan-3H), 6.42 (dd, 1H, J = 2, 3 Hz, Furan-4H), 2.73 (q, 2H, J = 15 Hz, CH 2), 1.07 

(t, 3H, J = 7 Hz, CH 3). 

l-(5-Methylfuran-2-yl)propan-l-one, 209 

A solution of 2-methylfuran (13.5 g, 160 mmol) and propionic anhydride (41.6 g, 320 

mmol) was heated to 40°C. The heat was removed, phosphoric acid (3.3 g) added and 

the solution heated to 60°C for 2 h. The reaction was allowed to cool to 25°C, water 

(100 ml) added and stirred for a further 1 h. The solution was neutralised with 

NaHC03 and the organic layer extracted with dichloromethane (3x30 ml), dried 

(MgSC^), filtered and the solvent removed in vacuo. Distillation (102-105°C at 0.2 

mmHg) gave 209 as a pale yellow oil (10.7 g, 47% yield). 

'H NMR (CDCI3): 5 = 7.01 (d, 1H, J = 3 Hz, Furan-3H), 6.07 (d, 1H, J = 3 Hz, Furan-

4H), 2.71 (q, 2H, J = 15 Hz, C// 2CH 3), 2.30 (s, 3H, Furan-5Me), 1.11 (t, 3H, J = 7 Hz, 

CH2C//3); 1 3C NMR (CDCI3): 8 =187.8, 156.0, 149.8, 117.2, 107.2, 29.8, 12.5, 6.9; 

v m a x (KBr) 1669, 1513, 1206, 1015, 903, 790; m/z 138 (M + ) ; Accurate mass: 

138.0685, C 8 Hi 0 O 2 requires 138.0681. 
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1 -(5-Ethylfuran-2-yl)methanone, 210' 

A solution of 2-ethylfuran (2.0 g, 21 mmol) and acetic anhydride (2.4 g, 40 mmol) 

was heated to 40°C. The heat was removed, phosphoric acid (1.1 g) added and the 

solution heated to 60°C for 2 h. The reaction was allowed to cool to 25°C, water (100 

ml) added and stirred for a further 1 h. The solution was neutralised with NaHCC^ 

and the organic layer extracted with dichloromethane (3x30 ml), dried (MgS04), 

filtered and the solvent removed in vacuo. Distillation (120-122°C at 0.3 ramHg) 

gave 210 as a colourless oil (1.21 g, 46% yield). 

'H NMR (CDC13): 8 = 7.09 (d, 1H, J = 3 Hz, Furan-3H), 6.13 (d, 1H, J = 3 Hz, Furan-

4H), 2,68 (q, 2H, J = 8 Hz, C// 2CH 3), 2.38 (s, 3H, COC//3), 1.23 (t, 3H, J = 8 Hz, 

CH 2C// 3). 

2,2,2-Trifluoro-l-furan-2-ylethanone, 2111 6 1 

To a stirring solution of furan (10.0 g, 147 mmol) and pyridine (12.5 ml, 150 mmol) 

under argon at 10°C was added trifluoroacetic anhydride (16.9 ml, 120 mmol) over 1 

h, the solution was the stirred for 16 h. Dichloromethane (60 ml) and 10% 

hydrochloric acid (60 ml) were added, the organic layer separated, washed 

sequentially with water (60 ml) and 10% sodium hydroxide (60 ml). The organic 

layer was dried (MgSC^), filtered and the solvent removed in vacuo. Distillation (70-

72°C at 0.2 mmHg) gave 211 as a colourless oil in (5.55 g, 23% yield). 

'H NMR (CDCI3): 5 = 7.85 (dd, 1H, J = 1, 2 Hz, Furan-5H), 7.52 (dd, 1H, J = 1, 4 Hz, 

Furan-3H), 6.70 (dd, 1H, J = 2, 4 Hz, Furan-4H); l 3 C NMR (CDCI3): 5 = 168.6, 

150.5, 147.0, 124.5, 116.4 (q, J = 230 Hz), 113.4; l 9 F NMR (CDC13): 5 = 74.1; v m a x 

(neat) 1696, 1459, 1142, 966, 761, 733; m/z 164 (M + ) . 

2,2,2-Trifluoro-l-(5-methylfuran-2-yl)ethanone, 212 1 6 2 

To a stirring solution of 2-methylfuran (5.0 g, 60 mmol) and pyridine (6.1 ml, 75 

mmol) under argon at 10°C was added trifluoroacetic anhydride (8.5 ml, 60 mmol) 

over 1 h, the solution was the stirred for 16 h. Dichloromethane (60 ml) and 10% 

hydrochloric acid (60 ml) were added, the organic layer separated, washed 
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sequentially with water (60 ml) and 10% sodium hydroxide (60 ml). The organic 

layer was dried (MgS04), filtered and the solvent removed in vacuo. Distillation (80-

82°C at 0.08 mmHg) gave 212 as a colourless oil (2.50 g, 23% yield). 

'H NMR (CDC13): 5 = 7.36 (d, 1H, J = 3 Hz, Furan-3H), 6.26 (d, 1H, J = 3 Hz, Furan-

4H), 2.37 (s, 3H, Furan-5Me); 1 3C NMR (CDC13): 5 = 168.4, 162.9, 145.8, 126.6, 

116.6 (q, J = 242 Hz), 110.6, 14.0; 1 9F NMR (CDCI3) : 5 = 74.2; v m a x (neat) 1697, 

1509, 1245, 1209, 1195, 1041, 736; m/z 178 (M + ) . 

5-(Furan-2-carbonyl)pyridine-2-carboxylic acid, 216 

To a stirring solution of furan (0.15 g, 2.2 mmol) in dry dichloromethane (30 ml) was 

added 2,5-bis-pyridoyl chloride (0.22 g, 1.1 mmol) (prepared by refluxing 2,5-

pyridoic acid with thionyl chloride). The solution was cooled to 0°C, SnCL; (0.6 g, 

0.3 ml) added and stirred for 1 h. The reaction was quenched with water (50 ml) and 

the organic layer extracted with dichloromethane (3x40 ml). The combined organic 

layers were dried (MgS04), filtered and the solvent removed in vacuo. Column 

chromatography on silica (ethyl acetateimethanol 1:1 7V) afforded a yellow solid 

(0.13 g, 27% yield), mp 71-73°C. 

'H NMR (CDCI3): 5 = 9.92 (dd, 1H, J = 1, 2 Hz, Py-6H), 8.5 (dd, 1H, J = 2, 8 Hz, Py-

4H), 8.48 (dd, 1H, J = 1, 8 Hz, Py-3H), 7.56 (dd, 1H, J = 1, 2 Hz, Furan-5H), 7.16 

(dd, 1H, J = 1, 3 Hz, Furan-3H), 6.98 (bs, 1H, C02H), 6.52 (dd, 1H, J = 2, 3 Hz, 

Furan-4H); l 3 C NMR (CDCI3): 5 = 183.3, 165.5, 155.3, 152.3, 149.6, 148.9, 137.7, 

130.0, 125.9, 118.9, 109.1; v m a x (KBr) 1678, 1456, 1234, 1210. 1078, 942; m/z 217 

(M + ) ; (Analysis found: C, 60.64, H, 3.12, N , 6.31%; C n H 7 N04 requires C, 60.83, H, 

3.25, N , 6.45%). 

Furan-2-yl-(iH-indol-5-yl)methanone, 221 

Prepared by the general procedure C by using «-butyllithium (8.3 ml, 13 mmol), furan 

(1.0 g, 15 mmol) and 5-cyanoindole (1.9 g, 13 mmol). Column chromatography on 

alumina (ethyl acetate:hexane 1:1 7V) gave 221 as a white solid (1.92 g, 62% yield), 

mp 109-111°C. 
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'H NMR (CDCI3): 6 = 8.81 (bs, 1H, NH), 8.17 (m, 1H, Ind-4H), 7.87 (m, 1H, Ind-

6H), 7.70-7.60 (m, 1H, Ind-7H), 7.47 (dd, 1H, J = 1,2 Hz, Furan-5H), 7.10-6.90 (m, 

2H, Ind-2H, Furan-3H), 6.45 (dd, 1H, J = 2, 4 Hz, Furan-4H), 5.34 (m, 1H, Ind-3H); 
1 3C NMR (CDCI3): 5 = 180.7, 149.6, 149.1, 141.3, 134.1, 126.3, 125.4, 124.9, 123.8, 

119.9, 113.4, 111.1, 109.6; v m a x (KBr) 1665, 1435, 1289, 1164, 1102, 978, 764; m/z 

211 (M + ) ; (Analysis found: C, 74.05, H, 4.56, N , 6.89%; C | 3 H 9 N 0 2 requires C, 73.92, 

H, 4.29, N, 6.63%). 

Furan-2-yl-(3-pyrrol-l-yl-phenyl)methanone, 222 

Prepared by general procedure C by reaction using «-butyllithium (13 mmol), furan 

(1.0 g, 15 mmol) and 7V-(3-cyanophenyl)pyrrole (2.12 g, 13 mmol). Column 

chromatography on alumina (ethyl acetate:hexane 1:1 v / v ) afforded 222 as a white 

solid (1.67 g, 48% yield), mp 56-59°C 

'H NMR (CDCI3): 5 = 7.88 (m, 1H, Phenyl-2H), 7.73 (m, 1H, Phenyl-4H), 7.16 (m, 

1H, Phenyl-5H), 7.51-7.40 (m, 2H, Furan-5H, Phenyl-6H), 7.18 (m, 1H, Furan-3H), 

7.05 (m, 2H, 2xPyrrole-2,5H), 6.50 (m, 1H, Furan-4H), 6.27 (m, 2H, 2xPyrrole-

3,4H); 1 3C NMR (CDC13): 6 = 181.4, 151.9, 147.3, 140.7, 138.4, 129.6, 126.2, 124.0, 

120.8, 120.7, 119.1, 112.3, 110.9; v m a x (KBr) 1635, 1278, 1176, 1013, 875; m/z 237 

(M + ) ; (Analysis found: C, 75.68, H, 4.61, N , 5.88%; C i 5 H n N 0 2 requires C, 75.94, H, 

4.67, N , 5.90%). 

Furan-2-yl-pyrazin-2-ylmethanone, 223 

Prepared by the general procedure C by using furan (1.0 g, 15 mmol), n-butyllithium 

(8.3 ml, 13 mmol) and 2-cyanopyrazine (1.4 g, 13 mmol). Column chromatography 

on alumina (ethyl actetate:hexane 1:1 7V) afforded 223, recrystallisation (hexane) 

gave yellow needles (1.36 g, 53% yield), mp 87-89°C. 

' H N M R (CDCI3): 5 = 9.36 (m, 1H, Pyraz-3H), 8.77 (m, 1H, Pyraz-6H), 8.68 (m, 1H, 

Pyraz-5H), 8.02 (m, 1H, Furan-5H), 7.78 (m, 1H, Furan-3H), 6.65 (m, 1H, Furan-4H); 
l 3 C NMR (CDCI3): 8 = 177.5, 150.4, 148.3, 148.2, 147.2, 145.3, 142.9, 124.4, 112.5; 

v m a x (KBr) 1659, 1510, 1209, 1105, 1067, 921, 834, 657; m/z 174 (M + ) ; (Analysis 

121 



found: C, 61.97, H, 3.50, N , 15.97%; C9H6N2O2 requires C, 62.07, H, 3.47, N , 

16.09%). 

Furan-2-yl-(6-methylpyridin-3-yl)methanone, 224 

Prepared by the general procedure C using furan (1.2 g, 18 mmol), n-butyllithium 

(10.1 ml, 16 mmol) and 6-methylnicotinonitrile (1.3 g, 10.8 mmol). Purification by 

column chromatography on alumina (ethyl acetate) and recrystallisation 

(heaxane:ethanol 1:1 7V) to give 224 as a tan solid in 42% yield. 

Prepared by the general procedure B using furan (1.0 g, 15 mmol), n-butyllithium 

(10.1 ml, 16 mmol) and methyl 6-methylnicotinoate (2.2 g, 16 mmol) to give 224 

(1.49 g, 45% yield), mp 75-78°C. 

'H NMR (CDCI3): 5 = 9.11 (dd, 1H, J = 1, 2 Hz, Py-2), 8.24 (dd, 1H, J = 2, 8 Hz, Py-

4H), 7.69 (m, 1H, Furan-5H), 7.21 (m, 2H, Py-5H, Furan-3H), 6.62 (m, 1H, Furan-

4H), 2.68 (s, 3H, Py-6Me); 1 3C NMR (CDC13): 5 = 206.3, 162.3, 152.0, 149.7, 147.6, 

137.7, 123.0, 112.1,30.8,24.7; v m a x (KBr) 1632, 1436, 1410, 1289, 1106, 1045, 1002, 

956, 781; m/z 187 (M + ) ; (Analysis found: C, 70.65, H, 4.79, N , 7.49%; CnH 9 N0 2 

requires C, 70.58, H, 4.85, N , 7.48%). 

(6-Bromopyridin-3-yl)furan-2-ylmethanone, 226 

To a solution of 2,5-dibromopyridine (1.5 g, 6.4 mmol) in dry diethyl ether (40 ml) at 

-78°C was added 1.6 M rc-butyl lithium (3.9 ml, 6.4 mmol). After stirring for 1 h, 2-

furonitrile (0.83 ml, 9.5 mmol) and the reaction stirred for 2 h. To this was added 

water (30 ml) and the solution allowed to warm to room temperature. The reaction 

was acidified with cone. HC1 and the aqueous phase separated and heated to 60°C for 

2 h. The solution was then made basic with sodium hydroxide and extracted with 

diethyl ether (3x50 ml) and ethyl acetate (2x50 ml). The combined organic layers 

were dried (MgS0 4), filtered and the solvent removed in vacuo. The crude product 

was purified by column chromatography on alumina (ethyl acetate:hexane 1:1 7V) to 

give a yellow solid. This was recrystallised (hexane) to give pale yellow needles 

(0.48 g, 30% yield), mp 45-48°C. 
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'H NMR (CDCh): 5 = 8.93 (dd, 1H, J = 1, 2 Hz, Py-2H), 8.14 (dd, 1H, J = 2, 8 Hz, 

Py-4H), 7.77 (dd, 1H, J = 1, 8 Hz, Py-5H), 7.12 (dd, 1H, J = 1, 2 Hz, Furan-5H), 6.81 

(dd, 1H, J = 1, 3 Hz, Furan-3H), 6.53 (dd, 1H, J = 2, 3 Hz, Furan-4H); 1 3C NMR 

(CDCI3): 5 = 184.6, 149.8, 149.5, 149.0, 148.8, 138.1, 130.5, 128.7, 119.9, 105.3; 

v m a x (KBr) 1657, 1390, 1271, 1134, 1003, 834; m/z 251 (M + ) ; (Analysis found: C, 

47.60, H, 2.58, N , 5.87%; Ci 0 H 6 BrNO 2 requires C, 47.65, H, 2.40, N , 5.56%). 

Pyridine-2,5-dicarboxlic acid diethyl ester, 228 1 9 4 

A solution of 2,5-pyridine carboxylic acid (20.3 g, 121.2mml), dry ethanol (100 ml) 

and cone. H2SO4 (95%, 5 ml) was refluxed for 24 h. The solution was allowed to cool 

and the solvent removed in vacuo. The residue was taken up in water (30 ml), 

neutralised (K2CO3), and the organic phase extracted with diethyl ether (3x30 ml). 

The organic layers were dried (MgS0 4), filtered, and the solvent removed in vacuo 

giving 228 as a yellow solid (18.1 g, 67% yield). This was used without further 

purification. 

'H NMR (CDCI3): 5 = 9.31 (m, 1H, Py-6H), 8.46 (m, 1H, Py-4H), 8.17 (m, 1H, Py-

3H), 4.39 (q, 4H, J = 6Hz, 2xCH2CH2), 1.25 (t, 6H, J = 6Hz, 2xCH 2C// 3). 

Pyridine-2,5-dicarboxylic acid diamide, 229 1 9 5 

Pyridine-2,5-dicarboxlic acid diethyl ester, 228 (18.1 g, 81.1 mmol) was suspended in 

ammonia solution (.880, 200 ml) and water (100 ml) and refluxed for 15 h. The 

mixture was filtered to give 229 as a pale cream powder (6.69 g, 50% yield). 

'H NMR (DMSO-56): 8 = 9.03 (m, 1H, Py-6H), 8.37 (m, 1H, Py-4H), 8.25 (bs, 2H, 

NH 2 ) , 8.19 (m, 1H, Py-3H), 7.74 (bs, 2H, NH 2 ) . 

2,5-Dicyanopyridine, 230 1 9 6 

Phosphorous oxychloride (7.94 ml, 85.2 mmol) was added to a solution of pyridine-

2,5-dicarboxylic acid diamide, 229, (6.7 g, 40.6 mmol) in dry pyridine (40 ml). The 

solution was refluxed for 3 h and then poured onto ice. The organic phase was 

extracted with dichloromethane (3x30 ml), dried (MgS04), filtered and the solvent 
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removed in vacuo. The crude product was recrystallised (isopropyl alcohol) to give 

230 as an orange solid (4.83 g, 44% yield). 

'H NMR (CDC13): 6 = 8.99 (m, 1H, Py-6H), 8.16 (m, 1H, Py-4H), 7.86 (m, 1H, py-

3H). 

5-(Furan-2-carbonyI)pyridin-2-carbonitrile, 231a 

Prepared by the general procedure B with furan (1.0 g, 15 mmol), n-butyllithium 

(10.1 ml, 15 mmol) and 2,5-dicyanopyridine 230 (1.37 g, 8.8 mmol). The product 

was purified by column chromatography on silica (ethyl acetate) to give 231a as a tan 

solid (0.82 g, 28% yield), mp 71-73°C. 

'H NMR (CDCI3): 8 = 9.14 (dd, 1H, J = 1, 2 Hz, Py-6H), 8.3 (dd, 1H, J = 2, 8 Hz, Py-

4H), 8.07 (dd, 1H, J = 1, 8 Hz, Py-3H), 7.77 (m, 1H, Furan-5H), 6.64 (m, 1H, Furan-

3H), 6.36 (m, 1H, Furan-4H); l 3 C NMR (CDCb): 5 = 181.6, 151.8, 149.5, 149.3, 

142.5, 139.3, 131.2, 129.3, 117.7, 116.4, 105.7; v m a x (KBr); m/z 198 (M + ) ; (Analysis 

found: C, 66.56, H, 2.88, N, 14.32%; CnH 6N 202 requires C, 66.67, H, 3.05, N , 

14.14%). 

(5-Bromopyridin-3-yI)furan-2-ylmethanone, 234 

To a solution of 3,5-dibromopyridine (2.8 g, 12.0 mmol) in diethyl ether (40 ml) at 

-78°C was added 1.6 M tt-butyllithium (7.5 ml, 12.0 mmol). After stirring for 1 h, 2-

furonitrile (1.57 ml, 18.0 mmol) and the reaction stirred for 2 h. To this was added 

water (30 ml) and the solution allowed to warm to room temperature. The reaction 

was acidified with cone, hydrochloric acid and the aqueous phase separated and 

heated to 60°C for 2 h. The solution was then made basic with sodium hydroxide and 

extracted with diethyl ether (3x50 ml) and ethyl acetate (2x50 ml). The combined 

organic layers were dried (MgS0 4), filtered and the solvent removed in vacuo. The 

crude product was purified by column chromatography on alumina (ethyl 

acetate:hexane 1:1 v / v ) to give a pale brown solid. This was recrystallised (hexane) to 

give 234 as a yellow solid (0.33 g, 11% yield), mp 50-53°C. 

'H NMR (CDCI3): 5 = 9.13 (t, 1H, J = 2 Hz, Py-2H), 8.86 (t, 1H, J = 2 Hz, Py-6H), 

8.41 (t, 1H, J = 2 Hz, Py-4H), 7.74 (m, 1H, Furan-5H), 7.36 (m, 1H, Furan-3H), 6.65 
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(m, 1H, Furan-4H); 1 3C NMR (CDC13): 5 = 183.7, 152.3, 149.6, 149.0, 148.6, 142.8, 

129.4 125.4, 117.1, 109.2; v m a x (KBr); m/z 251 (M + ) ; (Analysis found: C, 47.86, H, 

2.45, N , 5.61%; C, 0 H 6 BrNO 2 requires C, 47.65, H, 2.40, N , 5.56%). 

Di-furan-2-yl-(6-methylpyridin-3-yl)methanol, 237 

To a solution of furan (2.0 g, 29 mmol) in dry tetrahydrofuran (50 ml) at 0°C was 

added ^-butyllithium (20.3 ml of 1.6M solution in hexanes, 32 mmol). After 4 h 

methyl 6-methylnicotinate (2.44g, 16 mmol ) as a solution in tetrahydrofuran (30 ml) 

was added and the stirring continued for 3 h, before addition of saturated ammonium 

chloride solution (30 ml). The mixture was extracted with diethyl ether (3x30 ml), the 

combined organic layers were dried (MgS04), filtered and the solvent removed in 

vacuo. Column chromatography on alumina (ethyl acetate:hexane 1:1 v / v ) gave 237 

as a white solid (3.26 g, 43% yield), mp 125-126°C. 

'H NMR (CDCI3): 5 = 8.42 (dd, 1H, J = 1, 2 Hz, Py-2H), 7.66 (dd, 1H, J = 2, 8 Hz, 

Py-4H), 7.39 (m, 2H, Furan-5H), 7.12 (dd, 1H, J = 1, 8 Hz, Py-5H), 6.32 (m, 2H, 

Furan-3H), 6.08 (m, 2H, Furan-4H), 4.50 (bs, 1H, OH), 2.53 (s, 3H, Py-6Me); l 3 C 

NMR (CDCI3): 5 = 157.7, 155.3, 147.5, 142.8, 134.8, 122.5, 111.9, 110.2, 108.9, 

72.5, 23.8; v m a x (KBr) 3419, 3110, 1523, 1325, 1289, 1103, 1078, 1041, 974, 623; 

m/z 255 (M + ) ; (Analysis found: C, 70.23, H, 5.29, N, 5.45%; C15H13NO3 requires C, 

70.48, H, 5.13, N , 5.49%). 

2-Phenylpropionic acid-(5-methylfuran2-yl)pyridin-4-ylmethyl ester, 241 

A solution of 2-phenylpropionic acid (0.6 g, 3.9 mmol) and thionyl chloride (15 ml) 

was refluxed for 2 h. The excess thionyl chloride was removed in vacuo. The 

resulting acid chloride was taken up in diethyl ether (40 ml). Then to a solution of 5-

methylfuran-2-yl-pyridin-4-yl-methanol (162) (1.0 g, 5.2 mmol) in tetrahydrofuran 

(50 ml) at 0°C was slowly added dry sodium hydride (0.14 g, 5.9 mmol). The 

solution was stirred for 1 h before addition of 2-phenylpropionoyl chloride solution. 

The reaction was stirred for 2 h before addition of water (30 ml). The organic phase 

was extracted with diethyl ether (3x30 ml), dried over (MgS0 4), filtered and the 
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solvent removed in vacuo. Column chromatography on alumina (dichloromethane) 

afforded 241 as a yellow solid (0.60 g, 36% yield), mp 78-80°C. 

'H NMR (CDC13): 5 = 8.39 (m, 2H, 2xPy-2,6H), 7.25-7.10 (m, 5H, 2xPy-3,5H, 

3xPhenyl), 6.95 (m, 2H, 2xPhenyl), 6.64 (m, 1H, C/TOH), 6.20 (m, 1H, Furan-3H), 

6.03 (m, 1H, Furan-4H), 3.68 (m, 1H, CtfMe), 2.18 (s, 3H, Furan-5Me), 1.45 (d, 3H, 

J = 7.0Hz, CHMO; l 3 C NMR (CDC13): 8 = 172.5, 150.2, 150.1, 141.3, 140.7, 138.0, 

130.5, 130.1, 129.0, 121.4, 113.3, 108.8, 77.5, 45.4, 18.7, 13.8; v m a x (neat); m/z 321 

(M + ) ; (Analysis found: C, 74.79, H, 6.12, N 4.23%; C 2 oH 1 9 N0 3 requires C, 74.75, H, 

5.96, N, 4.36%). 

4-[Methoxy-(5-methylfuran-2-yl)methyl]pyridine, 242 

To a solution of 5-methylfuran-2-yl-pyridin-4-ylmethanol (162) (0.5 g, 2.6 mmol) in 

tetrahydrofuran (40 ml) at 0°C was added slowly dry sodium hydride (0.07 g, 2.9 

mmol). The solution was stirred for 1 h before addition of methyl iodide (0.9 ml, 3.1 

mmol). Stirring was continued for 2 h before addition of water (30 ml). The organic 

phase was extracted with diethyl ether (3x30 ml), then dried (MgSC^), filtered and the 

solvent removed in vacuo. Column chromatography on alumina (dichloromethane) 

afforded 242 as a yellow solid (0.31 g, 58% yield). 

'H NMR (CDCI3): 5 = 8.54 (d, 2H, J = 5 Hz, 2xPy-2,6H), 7.26 (d, 2H, J = 5 Hz, 

2xPy-3,5H), 6.02 (d, 1H, J = 3 Hz, Furan-4H), 5.84 (d, 1H, J = 3 Hz, Furan-3H), 5.13 

(s, 1H, OH), 3.33 (s, 3H, OMe), 2.18 (s, 3H, Furan-5Me); 1 3C NMR (CDC13): 5 =; 

v m a x (neat); m/z 203 (M + ) ; Accurate mass: 203.0939, C12H13NO2 requires 203.0946. 

5.3 Experimental for Chapter 3 

Procedure E : To a solution of 40% sodium hydroxide (30 ml) and dichloromethane 

(30 ml) was added cetyltrimethylammonium bromide (0.1 eq), the alcohol (1 eq) and 

the bromomethyl compound (1.1 eq), the reaction stirred vigorously for 16 h. The 

dichloromethane layer was separated, the aqueous phase diluted with water (150 ml) 

and the extracted with dichloromethane (3x30 ml). The combined organic phases 
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were dried (MgS0 4), filtered and the solvent removed in vacuo. The compound was 

purified by column chromatography. 

2-Methylpyridin-3-oI, 243 1 6 7 

2-Acetylfuran (0.5 g, 4.5 mmol) was reacted with ammonia solution (.880, 2 ml) in a 

sealed vessel at 150°C for 15 h. The solvent was removed and distillation (123°C at 

0.3 mmHg) gave 243 as a white solid (0.11 g, 23% yield), mp 168-169°C (Lit 170-

171°C). Heating with sat. ammonia in ethanol (2 ml) and ammonium chloride (0.05 

g) gave a 2% yield. 

'H NMR (DMSO-d6): 5 = 9.33 (bs, 1H, OH), 8.38 (t, 1H, J = 3 Hz, Py-6H), 7.55 (dd, 

1H, J = 3, 8 Hz, Py-5H), 7.03 (dd, 1H, J = 3, 8 Hz, Py-4H), 2.35 (s, 3H, Py-2Me), 1 3C 

NMR (DMSO-de): 8 = 161.6 (C), 148.7 (C), 132.0 (CH), 127.1 (CH), 124.5 (CH), 

18.9(CH 3);m/z 109 (M + ) . 

2-/st>-Propylpyridin-3-ol, 2446 0 

1- Furan-2-yl-2-methylpropan-l-one, 178 (0.4 g, 2.9 mmol) was heated in a sealed 

vessel with ammonia solution (.880, 2 ml) at 150°C for 15 h. The solvent was 

removed and distillation (158-161°C at 0.3 mmHg) gave 244 as a yellow solid (0.11 

g, 28% yield), mp 193-195°C (Lit 191-193°C). Heating with sat. ammonia in ethanol 

(2 ml) and ammonium chloride (0.05 g) gave a 23% yield. 

'H NMR (DMSO-d6): 5 = 10.12 (bs, 1H, OH), 8.24 (t, 1H, J = 3Hz, Py-6H), 7.05 (dd, 

1H, J = 3,8Hz, Py-5H), 6.94 (dd, 1H, J = 3,8Hz, Py-4H), 3.30 (septet, 1H, C//(Me2), 

1.00 (d, 6H, J = 8.2Hz, 2xMe); l 3 C NMR (DMSO-d6): 8 = 154.8 (C), 130.9 (C), 125.0 

(CH), 116.2 (CH), 110.4 (CH), 36.6 (CH), 19.6 (2xCH3); m/z 137 (M + ) . 

2- Phcnylpyridin-3-ol, 24561 

Furan-2-yl-phenylmethanone, 180 (0.5 g, 2.9 mmol) was heated in a sealed vessel 

with ammonia solution (.880, 2 ml) at 150°C for 15 h. The solvent was removed and 

distillation (176-179°C at 0.3 mmHg) gave 245 as a white solid (0.10 g, 21% yield). 
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mp 202-204°C (Lit 206-207°C). Heating with sat. ammonia in ethanol (2 ml) and 

ammonium chloride (0.05 g) gave a 9% yield. 

'H NMR (DMSO-d6): 5 = 9.67 (bs, 1H, OH), 8.29 (m, 1H, Py-6H), 7.91 (m, 2H, 

2xPhenyl), 7.60-7.45 (m, 3H, 3xPhenyl), 7.16 (m, 1M, Py-5H), 6.89 (m, 1H, Py-4H), 
l 3 C NMR (DMSO-d6): 5 = 162.6 (C), 156.1 (C), 149.8 (CH), 134.5 (C), 141.1 

(2xCH), 130.0 (2xCH), 129.1 (CH), 125.5 (CH), 128.4 (CH); m/z 171 (M + ) . 

2-/>-Tolylpyridin-3-ol, 24661 

Furan-2-yl-p-tolylmethanone, 181 (0.8 g, 4.3 mmol) was heated in a sealed vessel 

with ammonia solution (.880, 2 ml) at 150°C for 15 h. The solvent was removed and 

column chromatography on alumina (ethyl acetate) gave 246 as a white solid (0.14 g, 

17% yield), mp 198-199°C (Lit 199-200°C). Heating with sat. ammonia in ethanol (2 

ml) and ammonium chloride (0.05 g) gave a 6% yield. 

'H NMR (DMSO-de): 5 = 9.56 (bs, 1H, OH), 8.28 (m, 1H, Py-6H), 7.51 (m, 2H, 

2xTolyl), 7.20 (m, 3H, 2xTolyl, Py-5H), 7.00 (m, 1H, Py-4H), 2.39 (s, 3H, Tolyl-

Me); l 3 C NMR (DMSO-d6): 8 = 163.2 (C), 148.9 (C), 142.7 (CH), 136.9 (C), 130.2 

(C), 128.6 (2xCH), 127.2 (2xCH), 125.2 (CH), 123.6 (CH), 20.9 (CH 3); m/z 185 

(M + ) . 

2,6-Dimethylpyridin-3-ol, 247 1 6 8 

2-Acetyl-5-methylfuran (0.5 g, 4.0 mmol) was reacted with ammonia solution (.880, 2 

ml) in a sealed vessel at 150°C for 15 h. The solvent was removed and distillation 

(110-115°C at 0.3 mmHg) gave 247 as a yellow solid (0.15 g, 30% yield), mp 210-

213°C (Lit 211-212°C). Heating with sat. ammonia in ethanol (2 ml) and ammonium 

chloride (0.05 g) gave a 45% yield. 

'H NMR (DMSO-d6): 8 = 10.57 (bs, 1H, OH), 6.82 (d, 1H, J = 8Hz, Py-5H), 5.95 (d, 

1H, J = 8Hz, Py-4H), 2.38 (s, 3H, Py-2Me), 2.31 (s, 3H, Py-6Me); l 3 C NMR (DMSO-

d 6): 8 = 187.1 (C), 122.5 (C), 121.4 (C), 118.6 (CH), 109.2 (CH), 24.9 (CH 3), 23.6 

(CH 3);m/z 123 (M + ) . 

128 



6-Methyl-2-wo-propylpyridin-3-oI, 248 

2-Methyl-l-(5-methylfuran-2-yl)propan-l-one, 182 (0.5 g, 3.3 mmol) was heated in a 

sealed vessel with ammonia solution (.880, 2 ml) at 150°C for 15 h. The solvent was 

removed and distillation (173-176°C at 0.3 ramHg) gave 248 as a white solid (0.23 g, 

46% yield), mp 190-192°C. Heating with sat. ammonia in ethanol (2 ml) and 

ammonium chloride (0.05 g) gave a 47% yield. 

'H NMR (DMSO-d6): 5 = 10.15 (bs, 1H, OH), 6.85 (d, 1H, J = 8Hz, Py-5H), 6.41 (d, 

1H, J = 8Hz, Py-4H), 3.32 (1H, septet, CH(Me)2), 2.43 (s, 3H, Py-6Me), 1.12 (d, 6H, 

J = 7Hz, C//(Me) 2); 1 3C NMR (DMSO-d6): 8 = 195.4 (C), 130.9 (C), 125.0 (C), 116.2 

(CH), 110.4 (CH), 35.6 (CH), 19.6 (CH 3), 19.5 (2xCH3); v m a x (KBr) 2900-2500, 

1609, 1567, 1423, 1410, 1290, 905, 855; m/z 151 (M + ) ; (Analysis found: C, 71.67, H, 

8.89, N , 9.03%; C 9 H l 3 NO requires C, 71.49, H, 8.67, N , 9.26%). 

6-Methyl-2-phenylpyridin-3-ol, 249 

(5-Methylfuran-2-yl)phenylmethanone, 183 (0.5 g, 2.7 mmol) was heated in a sealed 

vessel with ammonia solution (.880, 2 ml) at 150°C for 15 h. The solvent was 

removed and distillation (184-186°C at 0.3 mmHg) gave 249 as a tan solid (0.10 g, 

20% yield), mp 230-232°C. Heating with sat. ammonia in ethanol (2 ml) and 

ammonium chloride (0.05 g) gave a 22% yield. 

'H NMR (DMSO-d6): 5 = 9.81 (bs, 1H, OH), 7.68 (m, 2H, 2xPhenyl), 7.50-7.40 (m, 

3H, 3xPhenyl), 6.78 (d, 1H, J = 7Hz, Py-5H), 6.39 (d, 1H, J = 7Hz, Py-4H), 2.39 (s, 

3H, Py-6Me); l 3 C NMR (DMSO-d6): 8 = 161.7 (C), 155.3 (C), 149.1 (C), 135.8 

(2xCH), 129.3 (C), 128.9 (2xCH), 125.3 (CH), 123.6 (CH), 123.1 (CH), 24.1 (CH 3); 

v m a x (KBr) 2850-2600, 1489, 1435, 1267, 1209, 1034, 965, 858; m/z 185 (M + ) ; 

(Analysis found: C, 77.95, H, 6.12, N, 7.59%; Ci 2 HnNO requires C, 77.81, H, 5.99, 

N, 7.56). 
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6-Methyl-2-/Molylpyridin-3-ol, 250 

(5-Methylfuran-2-yl)-/?-tolylmethanone, 184 (0.5 g, 2.5 mmol) was heated in a sealed 

vessel with ammonia solution (.880, 2 ml) at 150°C for 15 h. The solvent was 

removed and column chromatography on alumina (ethyl acetate) gave 250 as a tan 

solid (0.08 g, 16% yield), mp 241-243°C. Heating with sat. ammonia in ethanol (2 

ml) and ammonium chloride (0.05 g) gave a 14% yield. 

'H NMR (DMSO-d6): S = 9.18 (bs, 1H, OH), 7.63 (m, 2H, 2xTolyl), 7.20 (m, 2H, 

2xTolyl), 6.95 (d, 1H, J = 7Hz, Py-5H), 6.45 (d, 1H, J = 7Hz, Py-4H), 2.56 (s, 3H, 

Tolyl-Me), 2.34 (s, 3H, Py-6Me); l 3 C NMR (DMSO-d6): 5 = 162.7 (C), 155.3 (C), 

149.9 (C), 136.9 (C), 129.1 (C), 128.9 (2xCH), 127.6 (2xCH), 125.4 (CH), 123.1 

(CH), 24.7 (CH 3), 20.1 (CH 3); v m a x (KBr) 2950-2600, 1503, 1439, 1410, 1399, 1234, 

1178, 1055, 834; m/z 199 (M + ) ; (Analysis found: C, 78.50, H, 6.66, N, 6.96%; 

C 1 3 H, 3 NO requires C, 78.36, H, 6.58, N , 7.03). 

6-Ethylpyridin-3-oI, 2516 0 

Furan-2-ylpropan-l-one, 208 (1.0 g, 8.0 mmol) was heated in a sealed vessel with 

ammonia solution (.880, 2 ml) at 150°C for 15 h. The solvent was removed and 

distillation (135-136°C at 0.3 mmHg) gave 251 as a white solid (0.18 g, 18% yield), 

mp 133-136°C (Lit 134-135°C). Heating with sat. ammonia in ethanol (2 ml) and 

ammonium chloride (0.05 g) gave a 23% yield. 

'H NMR (DMSO-d6): 8 = 9.65 (bs, 1H, OH), 8.10 (m, 1H, Py-6H), 7.01 (m, 1H, Py-

5H), 6.80 (m, 1H, Py-4H), 2.90 (q, 2H, J = 8Hz, C// 2CH 3), 1.29 (t, 3H, J = 8Hz, 

CH 2 C// 3 ); l 3 C NMR (DMSO-d6): 8 = 161.0 (C), 148.2 (C), 141.1 (CH), 123.6 (CH), 

123.2 (CH), 25.3 (CH 2), 14.4 (CH 3); m/z 123 (M + ) . 

2-Ethyl-6-methylpyridin-3-ol, 2526 0 

l-(5-Methylfuran-2-yl)propan-l-one, 209 (0.5 g, 3.6 mmol) was heated in a sealed 

vessel with ammonia solution (.880, 2 ml) at 150°C for 15 h. The solvent was 

removed and distillation (143-146°C at 0.3 mmHg) gave 249 as a tan solid (0.12 g, 
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24% yield), mp 171-173°C (Lit 171-172°C). Heating with sat. ammonia in ethanol (2 

ml) and ammonium chloride (0.05 g) gave a 53% yield. 

'H NMR (DMSO-de): 5 = 9.46 (bs, 1H, OH), 6.84 (d, 1H, J = 7hz, Py-5H), 6.23 (d, 

1H, J = 7Hz, Py-4H), 2.64 (q, 2H, J = 15Hz, Ctf 2 CH 3 ) , 2.25 (s, 3H, Py-6Me), 1.04 (t, 

3H, J = 7Hz, CH2C//3); l 3 C NMR (DMSO-d6): 5 = 160.4 (C), 146.8 (C), 142.5 (C), 

127.9 (CH), 124.4 (CH), 29.8 (CH 2), 12.5 (CH 3), 6.9 (CH 3); m/z 137 (M + ) . 

6-Ethyl-2-methylpyridin-3-ol, 253 1 6 9 

1-(5-Ethylfuran-2-yl)methanone, 210 (0.5 g, 3.6 mmol) was heated in a sealed vessel 

with ammonia solution (.880, 2 ml) at 150°C for 15 h. The solvent was removed and 

distillation (146-148°C at 0.3 mmHg) gave 253 as a white solid (0.08 g, 16% yield), 

mp 176-178°C. Heating with sat. ammonia in ethanol (2 ml) and ammonium chloride 

(0.05 g) gave a 48% yield. 

'H NMR (DMSO-d6): 8 = 9.87 (bs, 1H, OH), 6.76 (d, 1H, J = 7Hz, Py-5H), 6.29 (d, 

1H, J = 7Hz, Py-4H), 2.62 (q, 2H, J = 14Hz, C// 2CH 3), 2.18 (s, 3H, Py-2Me), 0.98 (t, 

3H, J = 7Hz, CH 2 C// 3 ); 1 3C NMR (DMSO-d6): 8 = 159.9 (C), 146.6 (C), 141.9 (C), 

127.8 (CH), 124.5 (CH), 28.1 (CH 2), 12.4 (CH 3), 6.6 (CH 3); m/z 137 (M + ) . 

[2,2']Bipyridin-3-ol, 25867 

Furan-2-yl-pyridin-2-ylmethanone 185 (1.0 g, 5.7 mmol) and ammonia solution (.880, 

2 ml) was heated in a sealed vessel at 150°C for 15 h. The vessel was washed out 

with water and methanol, and solvent removed in vacuo. Trituration with acetone 

gave a brown solid which was recrystallised (ethanol) to give 258 (0.18 g, 1.0 mmol) 

as a tan solid (0.18 g, 18% yield), nip 91-93°C (Lit. 91-92°C). 

'H NMR (DMSO-d6): 8 = 9.89 (bs, 1H, OH), 8.67 (m, 1H, Py-6'H), 8.33 (t, 1H, J = 

3Hz, Py-6H), 8.29 (m, 1H, Py-3'H), 7.69 (m, 1H, Py-4H), 7.20-7.10 (m, 2H, Py-

5,5'H), 7.01 (dd, 1H, J = 3,8Hz, Py-4H); 1 3C NMR (DMSO-d6): 8 = 163.2 (C), 155.0 

(C), 150.9 (C), 150.6 (CH), 143.2 (CH), 138.2 (CH), 125.2 (CH), 123.6 (CH), 121.6 

(CH), 118.1 (CH); v m a x (KBr) 2900-2500, 1612, 1587, 1423, 1401, 1265, 943, 675; 

m/z 172 (M + ) ; (Analysis found: C, 69.85, H, 4.81, N , 16.06%; C, 0 H g N 2 O requires C, 

69.76, H,4.68,N, 16.27). 
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[2,3'lBipyridin-3-ol, 259 

Furan-2-yl-pyridin-3-ylmethanone 186 (0.25 g, 1.5 mmol) and ammonia solution 

(.880, 2 ml) was heated in a sealed vessel at 150°C for 15 h. The vessel was washed 

out with water and methanol, and then all solvents removed to dryness. Trituration 

with acetone gave a dark brown solid, which was purified by recystallistion (ethanol) 

to give 259 as a yellow solid (0.09 g, 37% yield), mp 171-173°C. 

'H NMR (DMSO-d6): 5 = 9.14 (bs, 1H, OH), 8.52 (m, 1H, Py-2'H), 8.32 (m, 1H, Py-

6'H), 8.17 (m, 1H, Py-6H), 7.50-7.20 (m, 3H, 3xPy-4',5',5H), 6.98 (m, 1H, Py-4H); 
l 3 C NMR (DMSO-d6): 5 = 152.9 (C), 150.4 (C), 149.4 (CH), 148.1 (CH), 141.5 (CH), 

136.8 (CH), 134.4 (CH), 125.0 (CH), 124.6 (CH), 124.0 (C); v m a x (KBr) 2800-2550, 

1578, 1472, 1413, 1298, 1210, 845 ; m/z 172 (M + ) ; (Analysis found: C, 69.58, H, 

4.39, N , 16.30%; C,oH 8N 20 requires C, 69.76, H, 4.68, N , 16.27%). 

[2,4']Bipyridin-3-ol, 2606 6 

Furan-2-yl-pyridin-4-ylmethanone 187 (0.40 g, 2.3 mmol) and ammonia solution 

(.880, 2 ml) was heated in a sealed vessel at 150°C for 15 h. The vessel was washed 

out with water and methanol, and solvent removed in vacuo. Trituration with acetone 

gave a brown solid which was recrystallised (ethanol) to give 260 as a tan solid (0.13 

g, 35% yield), mp 234-236°C (Lit 233-235°C). 

'H NMR (DMSO-dfi): 5 = 10.17 (bs, 1H, OH), 8.70 (d, 2H, J = 5Hz, 2xPy-2'6'H), 

8.35 (t, 1H, J = 3Hz, Py-6H), 7.98 (d, 2H, J = 5Hz, Py-3',5'H), 7.20 (dd, 1H, J = 

3,8Hz, Py-5H), 7.05 (dd, 1H, J = 3,8Hz, Py-4H); l 3 C NMR (DMSO-d6): 8 = 164.2 

(C), 151.8 (2xCH), 149.5 (C), 143.4 (CH), 134.5 (C), 125.2 (CH), 124.3 (CH), 117.4 

(2xCH); v m a x (KBr) 2750-2400, 1540, 1459, 1432, 1256, 1202; 902, 834 m/z 172 

(M + ) ; (Analysis found: C, 69.71, H, 4.58, N, 16.33%; C 1 0H 8N2O requires C, 69.76, H, 

4.68, N , 16.27%). 

6-Methyl-[2,2']bipyridin-3-ol, 261 

5-Methylfuran-2-yl-pyridin-2-ylmethanone 188 (0.30 g, 1.6 mmol) and ammonia 

solution (.880, 2 ml) was heated in a sealed vessel at 150°C for 10 h. The vessel was 
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washed out with water and methanol, and solvent removed in vacuo. Column 

chromatography on alumina (ethyl acetate then methanol) gave 261 as a yellow solid 

(0.07 g, 25% yield), mp 100-112°C. 
l H NMR (DMSO-d6): 5 = 8.98 (bs, 1H, OH), 8.55 (m, I I I , Py-6'H), 8.39 (m, 1H, Py-

3'H), 7.79 (m, 1H, Py-4'H), 7.19 (m, 1H, Py-5'H), 7.16 (d, 1H, J = 8Hz, Py-4H), 6.99 

(d, 1H, J = 8Hz, Py-5H), 2.45 (s, 3H, Py-6Me); 1 3C NMR (DMSO-d6): 5 = 162.7 (C), 

155.1 (C), 154.8 (C), 154.2 (C), 150.8 (CH), 138.5 (CH), 125.8 (CH), 123.5 (CH), 

121.5 (CH), 118.4 (CH), 24.3 (CH 3); v m a x (KBr); 2919, 1597, 1561, 1478, 1278, 

1235, 746; m/z 186 (M + ) ; (Analysis found: C, 80.12, H, 5.38, N , 15.23%; Ci iH 1 0 N 2 O 

requires C, 70.95, H, 5.41, N , 15.04%). 

6-Methyl-[2,3']bipyridin-3-ol, 262 

5- Methylfuran-2-yl-pyridin-2-ylmethanone 189 (0.26 g, 1.4 mmol) and ammonia 

solution (.880, 2 ml) was heated in a sealed vessel at 150°C for 10 h. The vessel was 

washed out with water and methanol, and solvent removed in vacuo. Column 

chromatography on alumina (ethyl acetate then methanol) gave 262 (0.07 g, 0.3 

mmol) as a yellow solid (0.07 g, 27% yield), mp 195-196°C. 

'H NMR (DMSO-d6): 5 = 9.67 (bs, 1H, OH), 9.15 (m, 1H, Py-2'H), 8.51 (m, 1H, Py-

6'H), 8.33 (m, 1H, Py-5'H), 7.45 (m, 1H, Py-4'H), 7.25 (d, 1H, J = 8Hz, Py-4H), 7.10 

(d, 1H, J = 8Hz, Py-5H), 2.45 (s, 3H, Py-6Me); l 3 C NMR (DMSO-d6): 6 = 163.1 (C), 

155.7 (C), 149.3 (CH), 148.7 (C), 147.0 (CH), 136.2 (CH), 136.0 (CH), 127.1 (CH), 

124.1 (CH), 121.4 (C), 24.1 (CH 3); v m a x (KBr) 2950-2500, 1534, 1378, 1289, 1267, 

1210, 1167, 1054, 867; m/z 186 (M + ) ; (Analysis found: C, 70.87, H, 5.56, N, 15.06%; 

C||H,oN 20 requires C, 70.95, H, 5.41, N , 15.04%). 

6- Methyl-[2,4']bipyridin-3-ol, 263 

5-Methylfuran-2-yl-pyridin-4-ylmethanone 190 (0.3 g, 1.6 mmol) and ammonia 

solution (.880, 2 ml) was heated in a sealed vessel at 150°C for 10 h. The vessel was 

washed out with water and methanol, and solvent removed in vacuo. Trituration with 

diethyl ether gave a brown solid which was filtered off. Recyrstallisation from 

(ethanol) gave 263 (0.09 g, 31% yield), mp 257-260°C. 
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'H NMR (DMSO-d6): 5 = 10.26 (bs, 1H, OH), 8.61 (d, 2H, J = 6Hz, 2xPy-2',6'H), 

8.00 (d, 2H, J - 6Hz, 2xPy-3',5'H), 7.26 (d, 1H, J = 8Hz, Py-4H), 7.14 (d, 1H, J = 

8Hz, Py-5H), 2.41 (s, 3H, OH), 2.36 (s, 3H, Py-6Me); 1 3C NMR (DMSO-d6): 5 = 

151.5 (C), 150.3 (C), 149.2 (2xCH), 145.9 (C), 140.4 (C), 125.9 (CH), 125.3 (CH), 

123.8 (2xCH), 24.1 (CH 3); v m a x (KBr) 3000-2600, 1520, 1396, 1278, 1267, 1206, 

1034, 784, 689; m/z 186 (M + ) ; (Analysis found: C, 70.91, H, 5.58, N , 14.97%; 

C,,H,oN 20 requires C, 70.95, H,5.41, N, 15.04%). 

2- Furan-2-ylpyridin-3-ol, 267 

Di-furan-2-ylmethanone 191 (0.40 g, 2.5 mmol) and ammonia solution (.880, 2 ml) 

was heated in a sealed vessel at 150°C for 5 h. The vessel was washed out with water 

and methanol, and solvent removed in vacuo. Trituration with diethyl ether gave a 

brown solid which was recrystallised (ethanol) to afford 267 as a tan solid (0.07 g, 

17% yield). mp210-212°C. 

'H NMR (DMSO-d6): 5 = 9.32 (bs, 1H, OH), 8.32 (m, 1H, Py-6H), 7.39 (m, 1H, 

Furan-5H), 7.35 (m, 2H, 2xPy-4,5H), 7.07 (m, 1H, Furan-3H), 6.43 (m, 1H, Furan-

4H); l 3 C NMR (DMSO-d6): 6 = 156.2 (C), 149.7 (C), 148.8 (CH), 147.7 (CH), 141.9 

(C), 126.9 (CH), 125.2 (CH), 120.0 (CH), 107.1 (CH); v m a x (KBr) 2900-2600, 1556, 

1410, 1337, 1005, 973, 879; m/z 161 (M + ) ; (Analysis found: C, 59.89, H, 4.52, N, 

8.83%; C9H7NO2 requires C, 67.07, H, 4.38, N , 8.69%). 

3- Quinolin-3-ylpyridin-3-oI, 268 

Furan-2-yl-quinolin-3-ylmethanone 195 (0.31 g, 1.4 mmol) and ammonia solution 

(0.88, 2 ml) was heated in a sealed vessel at 150°C for 5 h. The vessel was washed 

with water and methanol and evaporated to dryness. Column chromatography on 

alumina (methanol) gave 268 as a white solid (0.08 g, 26% yield), mp 181-184°C. 

'H NMR (DMSO-d6): 5 = 10.50 (bs, 1H, OH), 9.50 (m, 1H, Quin-2H), 8.92 (m, 1H, 

Py-6H), 8.23 (m, 1H, Quin-4H), 8.04 (m, 2H, 2xQuin-6,8H), 7.77 (m, 1H, Quin-5H), 

7.61 (m, 1H, Quin-7H), 7.39 (m, 1H, Py-5H), 7.27 (m, 1H, Py-4H); 1 3C NMR 

(DMSO-d6): 5 = 161.9 (C), 150.8 (C), 147.6 (C), 145.0 (CH), 144.3 (CH), 129.9 

(CH), 128.8 (CH), 128.3 (CH), 127.7 (CH), 127.2 (C), 126.5 (CH), 126.0 (CH), 125.2 
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(CH), 120.9 (C); v m a x (KBr) 2900-2500, 1578, 1510, 1268, 1231, 1185, 1073, 1018, 

832, 754; m/z 222 (M + ) ; (Analysis found: C, 75.70, H, 4.53, N , 12.34%; C M H ) 0 N 2 O 

requires C, 75.66, H, 4.54, N , 12.60%). 

6-Methyl-2-quinolin-3-ylpyridin-3-ol, 269 

(5-Methylfuran-2-yl)quinolin-3-ylmethanone 196 (0.40 g, 1.7 mmol) and ammonia 

solution (0.88, 2 ml) was heated in a sealed vessel at 150°C for 5 h. The vessel was 

washed with water and methanol and evaporated to dryness. Column chromatography 

on alumina (methanol) gave 269 as a tan solid (0.12 g, 30% yield), mp 214-216°C. 

'H NMR (DMSO-d6): 5 = 10.12 (bs, 1H, OH), 9.18 (m, 1H, Quin-2H), 7.96 (m, 1H, 

Quin-4H), 7.90 (m, 1H, Quin-8H), 7.77 (m, 1H, Quin-6H), 7.60-7.40 (m, 2H, 2xQuin-

5,7H), 7.06 (d, 1H, J = 8Hz, Py-4H), 6.98 (d, 1H, J = 8Hz, Py-5H), 2.39 (s, 3H, Py-

6Me); l 3 C NMR (DMSO-d6): 5 = 161.6 (C), 155.2(C), 149.5(C), 148.9(C), 145.3 

(CH), 130.2 (CH), 128.8 (CH), 128.3 (CH), 127.7 (CH), 127.5 (C), 126.5 (CH), 126.4 

(CH), 124.8 (CH), 119.6 (C), 24.4 (CH 3); v m a x (KBr) 2950-2500, 1535, 1509, 1299, 

1254, 1034, 985, 852, 634; m/z 236 (M + ) ; Analysis found: C, 76.45, H, 5.23, N , 

11.99%; C i 5 H 1 2 N 2 0 requires C, 76.25, H, 5.12, N, 11.86%). 

2-Naphthalen-2-ylpyridin-3-ol, 270 

Furan-2-yl-naphthalen-2-ylmethanone 197 (0.50 g, 2.2 mmol) and ammonia solution 

(0.88, 2 ml) was heated in a sealed vessel at 150°C for 5 h. The vessel was washed 

with water and methanol and evaporated to dryness. Column chromatography on 

alumina (ethyl acetate then methanol) gave 270 as a white solid (0.12 g, 24% yield), 

mp 156-159°C. 

'H NMR (DMSO-d6): 5 = 9.13 (bs, 1H, OH), 8.40-8.20 (m, 2H, Py-6H, Nap-IH), 

8.05 (m, 1H, Nap-4H), 7.78 (m, 1H, Nap-8H), 7.73-7.65 (m, 2H, Nap-3,5H), 7.44 (m, 

1H, Nap-7H), 7.26 (m, 1H, Nap-6H), 7.18 (m, 1H, Py-4H), 6.98 (m, 1H, Py-5H); l 3 C 

NMR (DMSO-d6): 5 = 163.8 (C), 149.2 (C), 142.9 (CH), 135.3 (C), 133.5 (C), 132.6 

(C), 128.5 (CH), 128.1 (CH), 126.7 (CH), 126.2 (CH), 125.9 (CH), 125.4 (CH), 125.3 

(CH), 125.1 (CH), 123.8 (CH); v m a x (KBr) 3000-2700, 1546, 1502, 1286, 1231, 1177, 
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1091, 856; m/z 221 (M + ) ; Analysis found: C, 81.15, H, 4.87, N, 6.40%; C i 5 H n N O 

requires C, 81.43, H, 5.01, N , 6.33%). 

6-Methyl-2-naphthalen-2-ylpyridin-3-ol, 271 

5-Methylfuran-2-yl-quinolin-2-ylmethanone 198 (0.40 g, 1.7 mmol) and ammonia 

solution (0.88, 2 ml) was heated in a sealed vessel at 150°C for 5 h. The vessel was 

washed with water and methanol and evaporated to dryness. Column chromatography 

on alumina (methanol) gave 271 as a yellow solid (0.06 g, 16% yield), mp 223-

225°C. 

'H NMR (DMSO-d6): 8 = 9.54 (bs, 1H, OH), 8.24 (m, 1H, Nap-IH), 7.98 (m, 1H, 

Nap-4H), 7.80-7.60 (m, 3H, Nap-3,5,8H), 7.43 (m, 1H, Nap-7H), 7.25 (m, 1H, Nap-

6H), 6.95 (d, 1H, J = 8Hz, Py-4H), 6.91 (d, 1H, J = 8Hz, Py-5H), 2.20 (s, 3H, Py-

6Me); 1 3C NMR (DMSO-d6): 8 = 163.3 (C), 154.3 (C), 150.1 (C), 135.3 (C), 132.6 

(C), 132.4 (C), 128.9 (CH), 128.1 (CH), 126.7 (CH), 126.3 (CH), 126.1 (CH), 125.9 

(CH), 125.6 (CH), 125.1 (CH), 123.5 (CH), 24.3 (CH 3); v m a x (KBr) 2900-2650, 1588, 

1547, 1348, 1299, 1249, 1172, 1097, 821; m/z 235 (M + ) ; (Analysis found: C, 81.56, 

H, 5.65, N, 5.90%; C| 6 H 1 3 NO requires C, 81.68, H, 5.57, N , 5.95%). 

2-(l//-Indol-5-yl)pyridin-3-ol, 273 

Furan-2-yl-(lH-indol-5-yl)methanone 221 (0.50 g, 2.4 mmol) and ammonia solution 

(0.88, 2 ml) was heated in a sealed vessel at 150°C for 5 h. The vessel was washed 

with water and methanol and evaporated to dryness. Column chromatography on 

alumina (ethyl acetate then methanol) gave 273 as a white solid (0.06 g, 12% yield), 

mp 141-143°C. 

'H NMR (DMSO-d6): 8 = 9.23 (bs, 1H, OH), 8.43 (bs, 1H, NH), 8.28 (m, 1H, Py-

6H), 7.86 (m, 1H, Ind-7H), 7.62 (m, 1H, Ind-4H), 7.40-7.20 (m, 3H, 2xInd-2,6H, Py-

5H), 6.99 (m, 1H, Py-4H), 6.45 (m, 1H, Ind-3H); , 3 C NMR (DMSO-d6): 8 = 164.5 

(C), 149.6 (C), 142.4 (CH), 133.7 (C), 133.1 (C), 128.2 (C), 125.8 (CH), 125.4 (CH), 

125.2 (CH), 123.3 (CH), 120.7 (CH), 118.8 (CH), 111.1 (CH); v m a x (KBr) 2900-2700, 

1478, 1323, 1306, 1266, 1034, 891; m/z 210 (M + ) ; (Analysis found: C, 74.51, H, 4.69, 

N, 13.39%; C i 3 H 1 0 N 2 O requires C, 74.27, H, 4.79, N, 13.33%). 
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2-(2-PyrroI-l-yI-phenyl)pyridin-3-ol, 274 

Furan-2-yl-(3-pyrrol-l-yl-phenyl)methanone, 222 (0.51 g, 2.2 nimol) and ammonia 

solution (0.88, 2 ml) was heated in a sealed vessel at 150°C for 5 h. The vessel was 

washed with water and methanol and evaporated to dryness. Column chromatography 

on alumina (ethyl acetate then methanol) gave 274 as a tan solid (0.09 g, 18% yield), 

mp 121-123°C. 

'H NMR (DMSO-d6): 5 = 9.67 (bs, 1H, OH), 8.27 (t, 1H, J = 3Hz, Py-6H), 7.70-7.50 

(m, 3H, 3xPhenyl), 7.20-7.10 (m, 2H, Phenyl, Py-5H), 7.03 (t, 2H, J = 2Hz, 

2xPyrrole-2,5H), 6.99 (dd, 1H, J = 3,8Hz, Py-4H), 5.90 (m, 2H, 2xPyrrole-3,4H); 1 3C 

NMR (DMSO-d6): 5 = 163.1 (C), 152.3 (C), 150.9 (CH), 148.8 (C), 143.8 (C), 136.3 

(CH), 132.7 (CH), 127.0 (CH), 125.3 (CH), 120.1 (2xCH), 119.4 (CH), 117.3 

(2xCH), 112.1 (CH); v m a x (KBr) 2950-2600, 1478, 1452, 1408, 1221, 1189, 1023, 

783, 631; m/z 236 (M + ) ; (Analysis found: C, 76.21, H, 4.97, N, 11.78%; C, 5 H I 2 N20 

requires C, 76.25, H, 5.12, N, 11.86%). 

2-Pyrazin-2-ylpyridin-3-ol, 275 

Furan-2-yl-pyrazin-2-ylmethanone 223 (0.50 g, 2.8 mmol) and ammonia solution 

(0.88, 2 ml) was heated at 150°C for 5 h. The vessel was washed with water and 

methanol and evaporated to dryness. Column chromatography on alumina (methanol) 

gave 275 as a yellow solid (0.10 g, 20% yield), mp 87-89°C. 

'H NMR (DMSO-d6) S = 12.70 (bs, 1H, OH), 9.88 (m, 1H, Pyraz-3H), 8.67 (m, 1H, 

Pyraz-6H), 8.46 (m, 1H, Pyraz-5H), 8.27 (m, 1H, Py-6H), 7.41-7.28 (m, 2H, 2xPy-

4,5H); 1 3C NMR (DMSO-d6): 5 = 156.7 (C), 152.6 (C), 144.1 (C), 143.5 (CH), 140.7 

(CH), 139.3 (CH), 135.2 (CH), 126.5 (CH), 125.8 (CH); v n ] i l x (KBr) 2900-2600, 1503, 

1477, 1469, 1434, 1209, 967, 642; m/z 173 (M + ) ; (Analysis found: C, 62.54, H, 4.13, 

N , 24.39%; C9H7N3O requires C, 62.42, H, 4.07, N , 24.27%). 

6'-Methyl-[2,3']bipyridin-3-ol,276 

Furan-2-yl-(6-methylpyridin-3-yl)methanone 224 (0.31 g, 1.7 mmol) and ammonia 

solution (.880, 2 ml) was heated in sealed vessel for 12 h at 110°C. The vessel was 
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washed out with water and methanol and evaporated to dryness. Column 

chromatography on alumina (methanol) gave in order of elution 224 (0.04g, 12%), 

pyrrol-2-yl-(6-methylpyridin-3-yl)methanone 278 (0.05 g, 16%) as a red oil and 276 

as a tan solid (0.08 g, 27% yield), mp 181-183°C. 

Data for 276: 'H NMR (DMSO-d6): 8 = 10.40 (bs, 1H, OH), 9.05 (m, 1H, Py-2'H), 

8.25 (m, 1H, Py-6H), 8.15 (m, 1H, Py-4'H), 7.40-7.18 (m, 3H, 3xPy-4,5,5'H), 2.49 (s, 

3H, Py-6'Me); l 3 C NMR (DMSO-d6): 5 = 157.8 (C), 152.7 (C), 149.8 (C), 142.4 

(CH), 141.4 (CH), 137.0 (CH), 131.7 (CH), 124.7 (CH), 124.5 (CH), 123.2 (C), 24.7 

(CH 3); v m a x (KBr) 2850-2600, 1567, 1523, 1434, 1410, 1378, 1205, 832 m/z 186 

(M + ) ; (Analysis found: C, 70.87, H, 5.53, N , 14.89%; C,iHi 0 N 2 O requires C, 70.95, 

H, 5.41, N , 15.04%). 

Data for (6-Methyl-pyridin-3-yl)-(l//-pyrrol-2-yl)methanone, 278: 

'H NMR (DMSO): 5 = 10.02 (bs, 1H, NH), 8.97 (m, 1H, Py-2H), 8.16 (m, 1H, Py-

4H), 7.33 (m, 2H, Pyrrole-3H, Py-5H), 6.77 (dd, 1H, J = 2,3Hz, Pyrrole-5H), 5.89 

(dd, 1H, J = 3,4Hz, Pyrrole-4H), 2.56 (s, 3H, Py-6Me); l 3 C NMR (DMSO): 8 = 188.8 

(C=0), 163.3 (C), 150.2 (CH), 140.5 (CH), 127.0 (C), 126.9 (C), 126.8 (CH), 126.6 

(CH), 119.0 (CH), 108.9 (CH), 24.1 (CH 3); v m a x (KBr) 1654, 1521, 1447, 1439, 1356, 

1258, 945, 731; m/z 186 (M + ) ; Accurate mass: 186.0803, C,,HioN 20 requires 

186.0793. 

6'-Bromo-[2,3']bipyridin-3-oI, 277 

(6-Bromopyridin-3-yl)-furan-2-ylmethanone 226 (0.45 g, 1.8 mmol) and ammonia 

solution (.880, 2 ml) was heated in a sealed vessel for 5 h at 150°C. The vessel was 

washed out with water and methanol and the solvents removed. Trituration with 

diethyl ether gave a tan solid. Recrystallisation (ethyl acetate/ethanol) gave 277 as a 

tan solid (0.12 g, 26% yield), mp 167-169°C. 

'H NMR (DMSO-d6): 8 = 9.78 (bs, 1H, OH), 8.85 (dd, 1H, J = 1,2Hz, Py-2'H), 8.40 

(t, 1H, J = 3Hz, Py-6H), 8.00 (dd, 1H, J = 1,8Hz, Py-5'H), 7.51 (dd, 1H, J = 2,8Hz, 

Py-4'H), 7.27 (dd, 1H, J = 3,8Hz, Py-5H), 7.10 (dd, 1H, J = 3,8Hz, Py-4H); l 3 C NMR 

(DMSO-d6): 8 = 162.8 (C), 153.4 (C), 147.3 (CH), 144.0 (CH), 141.4 (C), 136.5 (CH), 

128.1 (CH), 126.0 (CH), 124.9 (CH), 118.9 (C); v m a x (KBr) 3000-2600, 1589, 1534, 
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1491, 1467, 1223, 845; m/z 251 (M + ) ; (Analysis found: C, 47.90, H, 2.93, N , 11.34%; 

CioH7N2OBr requires C, 47.84, H, 2.81, N, 11.16%). 

3-Benzyloxy-2-methylpyridine, 288 1 7 8 a 

Prepared by General Procedure E by the reaction of 2-methyl-pyridin-3-ol 243 (0.11 

g, 1.0 mmol) and benzyl bromide (0.2 g, 1.1 mmol). Column chromatography on 

silica (dichloromethane) afforded 288 as a white solid (0.13 g, 65% yield). 

'H NMR (CDC13): 5 = 8.12 (t, 1H, J = 3Hz, Py-6H), 7.20-7.05 (m, 6H, 5xPhenyl, Py-

5H), 6.85 (dd, 1H, 3,8Hz, Py-4H), 4.89 (s, 2H, OCH2), 2.37 (s, 3H, Py-2Me); m/z 199 

( V f ) . 

3-(4-Cyanobenzyloxy)-2-methylpyridine, 289 

Prepared by General Procedure E by the reaction of 2-methyl-pyridin-3-ol 243 (0.11 

g, 1.0 mmol) and 4-cyanobenzyl bromide (0.21 g, 1.1 mmol). Column 

chromatography on silica (dichloromethane) afforded 289 as a white solid (0.12 g, 

53% yield), mp 102-104°C. 

'H NMR (CDCb): 5 = 7.59 (d, 2H, J = 8Hz, 2xPhenyl), 7.13 (d, 2H, J = 8Hz, 

2xPhenyl), 7.04 (m, 1H, Py-6H), 6.95 (m, 1H, Py-5H), 6.26 (m, 1H, Py-4H), 5.58 (s, 

2H, OC// 2),2.41 (s, 3H, Py-2Me); l 3 C NMR (CDCI3): 5 = 188.4 (C), 143.8(C), 132.4 

(C), 130.6 (CH), 121.3 (2xCH), 127.2 (2xCH), 120.7 (CH), 118.7 (CH), 111.2 (CN), 

109.1 (C), 52.4 (CH 2), 27.2 (CH 3); v m a x (KBr) 1720, 1557, 1384, 1101, 1023, 1007; 

m/z 224 (M + ) ; (Analysis found: C, 74.75, H, 5.17, N, 12.32%; C i 4 H i 2 N 2 0 requires: C, 

74.98, H, 5.39, N , 12.49%). 

3-(4-Nitrobenzyloxy)-2-methylpyridine, 290 

Prepared by General procedure E by the reaction of 2-methyl-pyridin-3-ol 243 (0.11 

g, 1.0 mmol) and 4-nitrobenzylbromide (0.24 g, 1.1 mmol). Column chromatography 

on silica (dichloromethane) afforded 290 (0.15 g) as a white solid in 62% yield, mp 

106-108°C 
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'H NMR (CDCI3): 5 = 8.09 (d, 2H, J = 8Hz, 2xPhenyl), 7.13 (d, 2H, J = 8Hz, 

2xPhenyl), 6.98 (m, 1H, Py-6H), 6.89 (m, 1H, Py-5H), 6.65 (m, 1H, Py-4H), 5.58 (s, 

2H, OCH2), 2.33 (s, 3H, Py-2Me); 1 3 H NMR (CDC13): 8 = 188.4 (C), 145.8 (C), 133.7 

(C), 130.6 (CH), 129.1 (2xCH), 127.2 (2xCH), 123.8 (CH), 118.7 (CH), 109.1 (C), 

52.2 (CH 2), 27.1 (CH 3); v m a x (KBr) 1634, 1509, 1399, 1340, 731; m/z 244 (M + ) ; 

(Analysis found: C, 63.67, H, 4.91, N , 11.24%; C l 3 H i 2 N 2 0 3 requires C, 63.93, H, 

4.95, N , 11.47%) 

3-(4-Bromobenzyloxy)-2-methylpyridine, 291 

Prepared by General procedure E by reaction of 2-methyl-pyridin-3-ol 243 (0.11 g, 

1.0 mmol) and 4-bromobenzylbromide (0.28 g, 1.1 mmol). Column chromatography 

on silica (dichloromethane) afforded 291 as a yellow solid (0.12 g, 43% yield), mp 

58-60°C. 

'H NMR (CDCb): § = 7.50 (d, 2H, J = 8Hz, 2xPhenyl), 7.27 (d, 2H, J = 8Hz, 

2xPhenyl), 7.04-7.00 (m, 2H, Py-5,6H), 6.56 (m, 1H, Py-4H), 4.99(s, 2H, OCH2), 

2.50 (s, 3H, Py-2Me); 1 3C NMR (CDCI3): 5 = 152.8 (C), 149.3 (C), 141.0 (C), 135.7 

(CH), 131.9 (2xCH), 129.0 (2xCH), 122.1 (CH), 121.8 (CH), 117.9 (C), 69.2 (CH 2), 

19.8 (CH 3); v n m (KBr) 1655, 1406, 1326, 733; m/z 278 (M + ) ; (Analysis found: C, 

56.25, H, 4.44, N, 4.89%; C, 3Hi 2BrNO requires C, 56.14, H, 4.35, N, 5.04%). 

3-(2-Chlorobenzyloxy)-2-methylpyridine, 292 

Prepared by General procedure E by reaction of 2-methyl-pyridin-3-ol 243 (0.11 g, 

1.0 mmol) and 2-chlorobenzylchloride (0.18 g, 1.1 mmol). Column chromatography 

on silica (dichloromethane) afforded 292 as a white solid (0.14 g, 61% yield), mp 62-

65°C. 

'H NMR (CDCI3): 5 = 7.40-7.35 (m, 1H, Phenyl), 7.22-7.15 (m, 2H, 2xPhenyl), 7.05 

(m, 1H, Py-6H), 6.90 (m, 1H, Phenyl), 6.64-6.58 (m, 1H, Py-5H), 6.22 (m, 1H, Py-

4H), 5.68 (s, 2H, OCH2), 2.43 (s, 3H, Py-2Me); 1 3 H NMR (CDC13): 5 = 188.6 (C), 

136.5 (C), 132.8 (CH), 130.8 (C), 129.6 (C), 128.8 (CH), 128.0 (CH), 127.4 (CH), 

121.7 (CH), 120.3 (CH), 109.0 (CH), 50.6 (CH 2), 27.5 (CH 3); v n i a x (KBr) 1645, 1396, 
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1330, 1086, 1038, 743; m/z 234 (M + ) ; (Analysis found: C, 66.78, H, 5.34, N, 5.87%; 

C 1 3 H, 2 ClNO requires C, 66.81, H, 5.18, N, 5.99%). 

3-Ethoxy-2-methylpyridine, 293 1 7 8 b 

Prepared by General procedure E by reaction of 2-methyl-pyridin-3-ol 243 (0.11 g, 

1.0 mmol) and bromoethane (0.11 g, 1.1 mmol). Column chromatography on silica 

(dichloromethane) afforded 293 as a yellow oil (0.4 g, 28% yield). 

'H NMR (CDC13): 8 = 8.20 (t, 1H, J = 3Hz, Py-6H), 7.11 (dd, 1H, J = 3,8Hz, Py-5H), 

6.89 (dd, 1H, J = 3,8Hz, Py-4H), 3.87 (q, 2H, J = 7Hz, C// 2CH 3), 2.38 (s, 3H, Py-

2Me), 1.40 (t, 3H, J = 7Hz, CH 2C// 3); v m a x (KBr) 1647, 1378, 1330, 1109, 1056, 987, 

659; m/z 137 (M + ) . 

3-Butoxy-2-methylpyridine, 294 

Prepared with General procedure E by reaction of 2-methyl-pyridin-3-ol 243 (0.11 g, 

1.0 mmol) and 1-bromobutane (0.15 g, 1.1 mmol). Column chromatography on silica 

(dichloromethane) afforded 294 as a brown oil (0.04 g, 21% yield). 

'H NMR (CDCI3): 8 = 6.95, (m, 1H, Py-6H), 6.80 (m, 1H, Py-5H), 6.12 (m, 1H, Py-

4H), 5.40 (m, 2H, OCH2), 4.31 (t, 2H, J = 7.2Hz, OCH 2C// 2), 2.43 (s, 3H, Py-2Me), 

1.70 (tt, 2H, C// 2CH 3), 1.16 (3H, CH 2 C# 3 ); , 3 C NMR (CDC13): 8 = 154.3 (C), 146.7 

(C), 128.7 (CH), 118.8 (CH), 106.4 (CH), 48.2 (CH 2), 32.1 (CH 2), 26.0 (CH 2), 18.4 

(CH 3), 12.4 (CH 3); v m a x (KBr) 1648, 1399, 1329, 738; m/z 165 (M + ) ; Accurate mass: 

165.1148, CioH,5NO requires 165.1154. 

3-Anthraquinone-2-methylpyridine, 295 

Prepared by General procedure E by reaction of 2-methyl-pyridin-3-ol 243 (0.11 g, 

1.0 mmol) and 2-bromomethylanthraquinone (0.33 g, 1.1 mmol). Column 

chromatography on silica (dichloromethane). Recrystallisation (ethanol) afforded 295 

as a white solid (0.11 g, 33% yield), mp 150-151°C. 

'H NMR (CDC13): 8 = 8.30-8.20 (m, 3H, 3xAnthraq), 7.96 (m, 1H, Anthraq), 7.79 (m, 

2H, 2xAnthraq), 7.45 (m, 1H, Anthraq), 7.08 (m, 1H, Py-6H), 7.00 (m, 1H, Py-5H), 
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6.29 (m, 1H, Py-4H), 5.36 (s, 2H, OCH2), 2.41 (s, 3H, Py-2Me); 1 3C NMR (CDCI 3): 5 

= 188.4 (C=0), 183.0 (C=0), 182.7 (C), 145.3 (C), 134.1 (C), 134.0 (CH), 133.7 

(CH), 133.5 (CH), 132.5 (C), 132.2 (CH), 128.6 (C), 128.2 (C), 127.8 (C), 127.2 

(CH), 126.8 (CH), 126.5 (CH), 125.0 (CH), 123.7 (CH), 120.8 (CH), 52.5 (CH 2), 17.4 

(CH 3); v m a x (KBr) 1634, 1402, 1367, 1354, 1067, 893; m/z 329 (M + ) ; (Analysis 

found: C, 76.67, H, 4.58, N , 4.19%; C 2 iH 1 5 N03 requires C, 76.58, H, 4.59, N , 4.25%). 

3-Bromoethoxy-2-methylpyridine, 296 

Prepared by General procedure E by reaction of 2-methyl-pyridin-3-ol 243 (0.11 g, 

1.0 mmol) and 1,2-dibromoethane (0.11 g, 0.6 mmol). Column chromatography on 

silica (dichloromethane) afforded 296 as a brown oil (0.05 g, 21% yield). 

'H NMR (CDC13): 5 = 7.01 (m, 1H, Py-6H), 6.94 (m, 1H, Py-5H), 6.16 (m, 1H, Py-

4H), 4.65 (m, 2H, OCH2), 3.67 (m, 2H, Ctf 2 Br), 2.44 (s, 3H, Py-2Me); l 3 C NMR 

(CDC13): 8 = 188.7 (C), 131.7 (C), 130.0 (CH), 121.3 (CH), 108.4 (CH), 51.6 (CH 2), 

32.5 (CH 2), 27.4 (CH 3); v m a x (KBr) 1675, 1389, 1345, 1208, 1044, 895, 721; m/z 216 

(M + ) ; Accurate mass: 215.0149, C 8H 1 0BrNO requires 215.0146. 

2,5-Aw-Bromomethylthiophene, 299 1 8 0 

This was prepared following the literature route using 2,5-dimethylthiophene (0.79 

g, 7 mmol), N-bromosuccinimide (2.76 g, 15 mmol), AIBN (0.05 g) and CCU (100 

ml) in 20% yield. 

'H NMR (CDCI3): 8 = 6.98 (s, 2H, 2xThio), 4.56 (s, 4H, 2xC// 2Br). 

Bis-thiophene-pyridine, 301 

Prepared by General procedure E by reaction of 6-methyl-pyridin-3-ol (0.15 g, 13 

mmol) and 2,5-6zs-bromomethylthiophene 299 (0.18 g, 6.7 mmol). Column 

chromatography on silica (petroleum ether: ethyl acetate 1:1 7V) afforded 301 as a 

yellow solid (0.11 g, 57% yield), mp 96-98°C. 

'H NMR (CDCI3): 8 = 8.25 (m, 2H, 2xPy-6H), 7.26 (m, 2H, 2xPy-5H), 7.16 (s, 2H, 

2xThio), 7.00 (m, 2H, 2xPy-4H), 5.20 (s, 4H, 2xOC// 2), 2.49 (s, 6H, 2xPy-6Me); 1 3C 
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NMR (CDCh): 5 = 152.5 (2xC), 151.3 (2xC), 140.0 (2xC), 137.2 (2xCH), 127.0 

(2xCH), 124.0 (2xCH), 123.0 (2xCH), 65.8 (2xCH2), 23.6 (2xCH3); v m a x (KBr) 1669, 

1388, 1362, 1209, 1022, 938, 871; m/z 326 (M + ) ; (Analysis found: C, 65.97, H, 5.55, 

N, 8.38%; C| gH| 8N 202S requires C, 66.23, H, 5.56, N, 8.58%). 

1,4-Ziw-Bromomethylbenzene, 302 1 8 1 

To a solution of p-xyhm (5.0 g, 47 mmol) in dry carbon tetrachloride (60 ml) was 

added N-bromosuccinimide (16.7g, 94 mmol) and benzoyl peroxide (3.4 g, 14 mmol), 

the solution was refluxed for 2 h, allowed to cool to room temperature and filtered 

through celite. The solution was allowed to stand overnight to evaporate, then filtered 

and washed with hexane to give 302 as a white solid (5.54 g, 45% yield), mp 144-

145°C (Lit. 143-144°C). 

'H NMR (CDCI3): 8 = 6.53 (s, 4H, 4xPhenyl), 4.43 (s, 4H, 2xC// 2Br). 

Benzyloxy-di-2-methylpyridine, 303 

Prepared by General procedure E by reaction of 2-methyl-pyridin-3-ol (0.30 g, 28 

mmol) and 1,4-bis-bromomethylbenzene 302 (0.74 g, 29 mmol). Column 

chromatography on silica (ethyl acetate) afforded 303 as a white solid (0.21 g, 51% 

yield), mp 124-125°C. 

'H NMR (CDCI3): 5 = 8.26 (m, 2H, 2xPy-6H), 7.44 (s, 4H, 4xPhenyl), 7.15-7.00 (m, 

4H, 2xPy-4,5H), 5.01 (s, 4H, 2xOC// 2), 2.49 (s, 6H, 2xPy-2Me); 1 3C NMR (CDCI3): 

5 = 152.7 (2xC), 150.7 (2xC), 137.0 (2xCH), 136.4 (2xC), 127.7 (4xCH), 123.4 

(2xCH), 122.5 (2xCH), 70.1 (2xCH2), 23.4 (2xCH3); v m a x (KBr) 1638, 1415, 1378, 

1331, 1107, 989, 921, 634; m/z 320 (M + ) ; (Analysis found: C, 74.91, H, 6.34, N , 

8.83%; C2oH2oN202 requires C, 74.98, H, 6.29, N, 8.74%). 

2-Amino-3-benzyloxy-6-methylpyridine, 306 

Prepared by General procedure E by reaction of 2-Amino-6-methylpyridin-3-ol (0.50 

g, 4.0 mmol) and benzyl bromide (0.87 g, 5 mmol). Column chromatography on 

silica (ethyl acetate) afforded 306 as a yellow solid (0.37 g, 43% yield), mp 95-96°C 
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'H NMR (CDCI3): 5 = 7.35-7.10 (m, 5H, 5xPhenyl), 7.12 (d, 1H, J = 8Hz, Py-5H), 

6.84 (d, 1H, J = 8Hz, Py-4H), 5.34 (s, 2H, OCH2), 4.13 (bs, 2H, N/ / 2 ) , 1.56 (s, 3H, 

Py-6Me); 1 3C NMR (CDC13): 5 = 186.5 (C), 133.2 (C), 131.5 (C), 127.4 (C), 123.6 

(CH), 120.9 (2xCH), 118.5 (2xCH), 111.2 (CH), 110.7(CH), 70.1 (CH2),21.4 (CH 3); 

m/z 214 (M + ) ; (Analysis found: C, 72.94, H, 6.65, N , 12.99%; C i 3 H i 4 N 2 0 requires C, 

72.87, H, 6.59, N, 13.07%). 

2- (Diacetylamino)-3-pyridinol acetate, 307 

To a solution of dry dichloromethane (40 ml) and acetyl chloride [prepared in situ 

from acetic acid (0.12 g, 2 mmol) and oxalyl chloride (0.25 g, 2 mmol)] was added 

pyridine (1 ml) and 2-amino-6-methyl-3-hydroxypyridine 305 (0.1 g, 0.4 mmol). The 

resulting solution was stirred for 15 h. The solvent was removed in vacuo and column 

chromatography on silica (ethyl acetate) afforded 307 as a yellow solid (0.08 g, 57% 

yield), mp 139-141°C. 

'H NMR (CDCI3): 5 = 7.51 (d, 1H, J = 8Hz, Py-4H), 7.15 (d, 1H, J = 8Hz, Py-5H), 

2.55 (s, 3H, OCOC//3), 2.27 (s, 6H, N(COC//3)2), 2.24 (s, 3H, Py-6Me); 1 3C NMR 

(CDCI3): 5 = 172.4 (2xC=0), 168.5 (C=0), 156.4 (C), 144.1 (C), 141.6 (C), 132.8 

(CH), 125.2 (CH), 26.5 (2xCH3), 23.9 (CH 3), 20.9 (CH 3); v m a x (KBr) 1716, 1630, 

1481, 1276, 1170, 1113; m/z 336 (M + ) ; (Analysis found: C, 57.59, H, 5.71, N, 

10.99%; C , 2 H i 4 N 2 0 4 requires C, 57.59, H, 5.64, N , 11.19%). 

3- (Oxycarbinol-ferrocenyl)-2-amino-6-methylpyridine, 308 

To a solution of dry dichloromethane (40 ml) and ferrocene acid chloride [prepared in 

situ from ferrocene carboxylic acid (0.46 g, 20 mmol) and oxalyl chloride (0.25 g, 20 

mmol)] was added dry pyridine (1 ml) and 2-amino-6-methyl-3-hydroxypyridine 

(0.25 g, 18 mmol). The resulting solution was stirred for 15 h. The solvent was 

removed in vacuo and column chromatography on silica (ethyl acetate) afforded 308 

as a yellow solid (0.31 g, 51% yield), mp 139-141°C. 

'H NMR (CDCI3): 5 = 7.20 (d, 1H, J = 7Hz, Py-4H), 6.51 (d, 1H, J=7Hz, Py-5H), 

4.89 (bs, 2H, NH 2 ) , 4.46 (m, 4H, 4xFc), 4.23 (s, 5H, 5xFc), 2.34 (s, 3H, Py-6Me); l 3 C 

NMR (CDCI3): 8 = 169.9 (C=0), 153.9 (C), 150.7 (C), 131.3 (C), 130.3 (CH), 113.8 
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(CH), 72.4 (5xCH), 70.8 (C), 70.3 (2xCH), 69.6 (2xCH), 24.0 (CH 3); v m a x (KBr) 

1716, 1630, 1481, 1276, 1170, 1113; m/z 336 (M + ) ; (Analysis found: C, 60.82, H, 

4.79, N, 8.11%; C 1 7H 1 6FeN 202 requires C, 60.74, H, 4.80, N, 8.33%). 

5.4 Experimental for Chapter 4 

6-Methyl-2-nitropyridin-3-ol, 316 1 9 7 

To 6-methylpyridin-3-ol 315 (1.0 g, 9 mmol) in an ice-bath was added cone. H2SO4 (8 

ml). Then slowly over 20 min a solution of cone. H2SO4 (5 ml) and cone. HNO3 (5 

ml). The solution was stirred for 5 h, before neutralisation with NaOH. Extraction 

with dichloromethane (3x40 ml), dried (MgSCM), filtered and solvent removed in 

vacuo gave 316 as a yellow solid (0.5 g, 35% yield), mp 175-178°C (Lit 176°C). 

'H NMR (DMSO-86): 5 = 8.45 (bs, 1H, OH), 7.18 (d, 1H, J = 8Hz, Py-5H), 6.89 (d, 

1H, J = 8Hz, Py-4H), 2.20 (s, 3H, Py-6Me). 

3-Methoxy-6-methyl-2-nitropyridine, 317 

6-Methyl-2-nitropyridin-3-ol 316 (0.4 g, 2.5 mmol) was taken up in dry acetone (60 

ml) and potassium carbonate (0.42 g, 3 mmol) added. After 1 h a red solution is 

formed and to this was added methyl iodide (2.13 g, 15 mmol) and refluxed for 15 h 

or until the solution turns yellow. The acetone was removed in vacuo and water (40 

ml) added. The organic phase was extracted with dichloromethane (3x40 ml), dried 

(MgSC^t), filtered and the solvent removed in vacuo to give 317 as a white solid (0.34 

g, 78% yield), mp 213-214°C (Lit 212°C). 

'H NMR (CDCI3): 5 = 7.34 (d, 1H, J = 8Hz, Py-5H), 6.99 (d, 1H, J = 8Hz, Py-4H), 

3.41 (s, 3H, OMe), 2.11 (s, 3H, Py-6Me). 

5-Methyl-[l,2,3]triazolo[4,5-6]pyridin-3-ol, 318 

To distilled water (50 ml) was added 317 (0.3 g, 1.8 mmol) and hydrazine hydrate 

(0.12 g, 3.6 mmol), this was heated to 85°C, so that all the solid dissolved, and stirred 
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for 12 hr. The solution was allowed to cool, and placed in an ice-bath. Cone. HC1 

was then added slowly, being careful not to warm the solution above 30°C, 

precipitating 318 as a white solid around pH 3. The product was purified by 

recrystallisation (water) to give 318 (0.18 g, 67% yield), mp 227°C dec. 

'H NMR (DMSO): 5 = 7.67 (d, 1H, J = 8Hz, Py-5H), 7.32 (d, 1H, J = 8Hz, Py-4H), 

2.00 (s, 3H, Py-6Me); l 3 C NMR (DMSO): 5 = 160.8, 139.3, 133.3, 128.6, 121.3,24.5; 

v m a x (KBr) 1587, 1439, 1369, 1226, 1110, 836, 793, 769; m/z (Ammonia CI) 151 

(57%, M + + l ) , 168 (18.4%, M + +NH 4

+ ) ; (Analysis found: C, 47.79, H, 4.00, N , 

37.50%; C 6 H 6 N 4 0 requires C, 48.00, H, 4.03, N , 37.31%). 

2-Bromo-6-methylpyridin-3-ol, 319 1 9 9 

A solution of bromine (1 ml) in 10% sodium hydroxide (50 ml) was slowly added 

over 1 h to a stirred solution of 6-methylpyridin-3-ol 315 (1.0 g, 9 mmol) in 10% 

sodium hydroxide (30 ml). Stirring was continued for a further 15 h. The solution 

was neutralised with cone. HC1 and the solid formed filtered off. Column 

chromatography on silica (chloroform:methanol, 95:5 v / v ) gave 319 as a white solid 

(0.52 g, 30% yield), mp 175°C (Lit. 174-176°C). 

'H NMR (DMSO-56): § = 8.67 (bs, 1H, OH), 6.99 (d, 1H, J = 8Hz, Py-5H), 6.79 (d, 

1H, J = 8Hz, Py-4H), 2.43 (s, 3H, Py-6Me). 

2-Bromo-3-methoxy-6-methylpyridine, 320 1 9 9 

2-Bromo-6-methylpyridin-3-ol 319 (0.5 g, 2 mmol) was taken up in dry acetone (60 

ml) and potassium carbonate (0.5 g, 4 mmol) added. After 1 hr to the red solution 

was added methyl iodide (2.4 g, 17 mmol) and refluxed for 15 hr or until yellow. The 

acetone was removed in vacuo and water (40 ml) added. The organic phase was 

extracted with dichloromethane (3x40 ml), dried (MgS04), filtered and the solvent 

removed in vacuo to give 320 as a white solid (0.32 g, 59% yield), mp 54°C (Lit. 52-

54°C) 

'H NMR (CDC13): 6 = 7.05 (d, 1H, J = 9Hz, Py-5H), 6.95 (d, 1H, J = 9Hz, Py-4H), 

3.98 (s, 3H, OMe), 2.48 (s, 3H, Py-6Me). 
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Purified 3-chloroperoxybenzoic acid (mCPBA) 

Phospate buffer was prepared by dissolving potassium dihydrogen phosphate (1.0 g, 8 

mmol) and sodium hydrogen phosphate (4.3 g, 30 mmol) in distilled water (1000 ml). 

Commercial 3-chloroperoxybenzoic acid (25 g) was washed with the phosphate buffer 

(500 ml), the mixture filtered and the process repeated. The washed 3-

chloroperoxybenzoic acid was dissolved in dichloromethane (200 ml), the residual 

phosphate buffer separated and the organic layer dried (MgSC>4). The solvent was 

removed in vacuo to give white solid which was dried under vacuum for 24 h to yield 

essentially pure (-90%) 3-chloroperoxybenzoic acid (15 g). 

2-Bromo-3-methoxy-6-methylpyridine-l-oxide, 321 

A solution of 2-bromo-3-methoxy-6-methylpyridine 320 (0.3 g, 1.5 mmol) and m-

chloroperbenzoic acid (0.5 g) in chloroform (30 ml) was stirred at room temperature 

for 3 h. The solvent was evaporated at room temperature under vacuum and the 

residue chromatographed on alumina (chloroform) to give 2-bromo-3-methoxy-6-

methylpyridine-1-oxide, 321 (0.20 g, 62% yield), mp 198-200°C. 

'H NMR (CDC13): 5 = 7.13 (d, 1H, J = 8Hz, Py-5H), 6.71 (d, 1H, J = 8Hz, Py-4H), 

4.10 (s, 3H, OMe), 2.35 (s, 3H, Py-6Me); 1 3C NMR (CDC13): 5 = 156.2, 130.2, 126.4, 

125.4, 120.1, 58.1, 19.1; v m a x (KBr); m/z 218; (Analysis found: C, 38.64, H, 3.89, N , 

6.23%; C 7 H 8 BrN0 2 requires C 38.56, H, 3.70, 6.42%). 

2-Bromo-3-methoxy-6-methyl-4-nitropyridine-l-oxide, 322 

To 2-bromo-3-methoxy-6-methylpyridine-l-oxide, 321 (0.2 g, 0.9 mmol) in an ice-

bath was added cone. H2SO4 (8 ml). Then slowly over 20 min a solution of cone. 

H2SO4 (5 ml) and cone. HNO3 (5 ml). The solution was stirred for 5 h, before 

neutralisation with NaOH. Extraction with dichloromethane (3x40 ml), dried 

(MgSC>4), filtered and solvent removed in vacuo gave 322 as a yellow solid (0.11 g, 

45% yield), mp 236-238°C. 

'H NMR (CDCI3): 5 = 8.51 (s, 1H, Py-5H), 3.96 (s, 3H, OMe), 2.55 (s, 3H, Py-6Me); 
1 3C NMR (CDCI3): 5 = 145.0, 139.0, 131.7, 120.4, 118.9, 58.3, 20.1; v m a x (KBr); m/z 
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263 (M+); (Analysis found: C, 32.12, H, 2.87, N , 10.61%; C 7 H 7 B r N 2 0 4 requires C, 

31.96, H,2.68,N, 10.65%). 
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A straightforward and versatile synthesis of 2-heteroaryl-
3-hydroxypyridine derivatives is described by the one-step 
reaction of 2-acylfurans with ammonia at ISO °C. 

Heteroaryl-substituted pyridine derivatives, including bipyr-
idyls, are a very important family of compounds in diverse 
areas of chemistry such as metal-coordination complexes,' 
supramolecular assemblies,3 pharmaceutical agents,3 natural 
products4 and molecular electronic device materials.5 The vast 
majority of syntheses of heteroaryl- (or aryl-) substituted pyr­
idines involve metal-catalysed cross-coupling reactions of the 
Stilk or Suzuki type.6 A few non-coupling procedures have been 
developed, but they are generally applicable only to a limited 
range of ring systems and substituents Examples are: (i) cyclis-
ation of a substituent which is attached to the pyridine ring 
(eg thioamide -> thiazole);1" (ii) reaction of a lithioheterocycle 
with a pyridinium cation;7 (iii) oxidation of a 2-heteroaryl-5-
(phenylseleno)-3,4,5,6-tetrahydropyridine derivative* 

In the context of non-coupling routes to biaryls we were 
attracted to the work of Leditschke who reported in 1952 that 
2-benzoylfuran (1, Het = Ph; R = H) reacted with ammonia to 
give 2-phenyl-3-hydroxypyridine. The proposed mechanism 
involves initial attack of ammonia at C-5 of the furan, leading 
to a ring opening-ring closure sequence, and the furan oxygen 
becomes the hydroxy group in the product.' Gruber extended 
this route to substituted phenyl substituents10 However, this 
reaction is essentially unexplored as a route to bi(heteroaryI) 
systems, although it has been established that the reaction will 
proceed with Het = dibenzofuran11 and 2- and 4-pyridyl sub­
stituents.12 We now report that this methodology is considerably 
more versatile than has been realised hitherto, and it provides a 
general route to a range of 2-heteroaryl-3-hydroxypyridine 
derivatives 2a-l (Scheme 1 and Table 1). 

Table 1 Compounds 2a I obtained by the route shown in Scheme 1 

Het R Yield (%)" Mp/°C 

a 2-Pyridyl H 18 30-32 
b 2-Pyridyl Me 25 60-62 
c 3-Pyridyl H 37 171-173 
d 3-Pyridyl Me 27 195-1% 
e 4-Pyridyl H 35 234-236 
f 4-Pyridyl Me 31 257-260 
g 2-Me-5^pyridyl H 15(27)* 181-183 
h 2-Br-5-pyridyl H 26 167-169 
j 2-Furyl H 17 210-212 
i 3-QuinolyI H 26 181-184 
k 5-Indoiyl H 12 141-143 
1 Pyraan-2-yl H 20 87-89 

'Yields refer to analytically pure product fully characlerised by 
spectroscopic data after recryslallisalion or column chromatography. 
'Yield obtained from reaction at 110 t for 12 h. 

i . n-BuLi, EtjO. 0°C, 
then 2 h reflux 
ii, HetCN, -78 °C—20 °C. HCI 

3 R = H or Me 
Scheme 2 

Br 
n-BuLi (1 equiv.) Et20,0 °C. 
then 2-cyanofuran, -78 °C—20 °C, HCI 

In 

Het 

aq. NHj, 150°C 
sealed vessel 

Scheme 1 

XT 

The precursor acylfuran derivatives la 1 were readily 
obtained as shown in Schemes 2-4. Lithiation of furan or 2-
methylfuran 3, followed by reaction with the appropriate 
cyano-substituted heterocycle, afforded compounds la-g,j-i in 
42-76% yields (Scheme 2). Compound lh was obtained (30% 
yield) by selective lithiation of 2,5-dibromopyridine 4 at C-5 " 
and reaction with 2-cyanofuran (Scheme 3) and compound 
l i was prepared (42% yield) by the literature route from di-2-
furyhnethanol 5 (Scheme 4). M 

Reaction of la 1 with aqueous ammonia at 150 °C in a sealed 
tube afforded products 2a I in the yields shown after purific-

DOI: 10.1039/bl05228b 

Scheme 3 

Wn02, CHjCfe, 20 °C 

Scheme 4 

ation in Table 1. Although these yields are only low or moder­
ate, the reaction has many attractive and viable features from 
a synthetic viewpoint: (i) the starting furan derivatives la 1 are 
readily accessible from commercial reagents; (ii) it is usually 
straightforward to obtain analytically pure products 2 by a 
single recrystallisation of the crude product mixture (see Experi­
mental below); (iii) the reaction proceeds with both electron-
deficient (eg pyridyl, quinolyl, pyrazinyl) and electron-rich 
(eg furyl, indolyl) Het substituents; (iv) the products 2 carry 
a 3-hydroxy substituent which would not be tolerated by 
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standard metal-catalysed cross-coupling routes, or other non-
coupling routes without use of a protecting group. 

We have found that the most widely applicable reaction con­
ditions are 150 °C for 5 h. Although the yield of the pyridine 
products 2 can be raised by using a lower reaction temperature, 
this benefit is offset by the formation of more by-products 
which complicated the work-up procedure. For example, a 
detailed study of the conditions for lg established that reaction 
at 110 °C for 12 h gave 2g in 27% yield along with the pyrrolyl 
pyridyl ketone derivative 6 (16% yield) which were separated 
chromatographically. 

M e 

N 
H 

6 

It is also significant that the presence of the 5-methyl sub-
stituent R in lb, d and f does not hinder the ring-expansion 
reaction. This augers well for the use of more highly function-
alised furans as precursors to new 3-hydroxypyridine deriv­
atives u with otherwise inaccessible substitution patterns 

Experimental 
A mixture of compound 1 (2.S mmol) and aqueous ammonia 
solution (0.880,2 cm1) was heated in a sealed thick-walled glass 
Can us tube at 150 °C for 5 h. The tube was cooled, water and 
methanol were added and the crude product mixture was 
evaporated in vacuo to yield a brown gum. Trituration with 
acetone or ether gave a brown solid which was recrystallised to 
afford product 2, or chromatographed on an alumina column 
with ethyl acetate as eluent. Spectroscopic and analytical data 
are entirely consistent with their structures. 
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