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Abstract 

The tribological performance of biomaterials used for artificial joints is of much 

importance, and require low coefficients of friction, resistance to wear and the ability to 

withstand many millions of cycles under a multitude of loading regimes. Currently used 

material combinations include Ti6A14V, 316L stainless steel and Co-Cr-Mo articulating 

against UHMWPE. Although typical wear rates are low (60 mm3/106 cycles), the 

UHMWPE wear debris produced during articulation has been linked to osteolysis, 

leading to loosening of prostheses and necessitating revision surgery. This study aimed 

to characterise the surfaces and quantitatively assess the tribological performance of 

such biomaterials when surface modified by >T ion implantation. Beyond this, 

investigation of the physical effects of the N* ion implantations were carried out with a 

view to determination of an optimum ion implantation protocol. 

The tribological performance of the materials, were quantitatively assessed using 

multidirectional pin-on-plate wear testing. Surface characterisation of the materials, 

were studied using a combination of optical microscopy, AFM, non-contacting 

interferometry, SEM, and XPS. A significant increase in the surface microhardness of 

the modified materials was measured post ion implantation. This was attributed to the 

formation of ion implantation induced lattice disorder and hard phase nitride 

precipitates on the metallic surfaces, and cross-linking incorporating new formed 

chemical bonds on the polymeric surfaces, N4" ion implantation with 5 x 101 5 N4" 

ions/cm2 significantly enhanced the wear resistance of UHMWPE by « 55 % when 

articulated against 2 x 10 1 7 IST ions/cm2 implanted Ti6A14V; by « 48 % when 

articulated against 2 x 10 1 7 IvT ions/cm2 implanted stainless steel; and by « 48 % when 

articulated against 2 x 10 1 7 N4" ions/cm2 implanted Co-Cr-Mo. 

The technique of ion implantation offers potential as a modification method, to improve 

wear resistance of these biomaterials for articulating applications such as in total joint 

replacement. 
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CHAPTER ONE - INTRODUCTION 

2001-2010 has been designated the Bone and Joint Decade by the World Health 

Organisation (WHO) and the mission is to 'advance the understanding and treatment of 

musculoskeletal disorders through prevention, education and research' [1]. 

Natural synovial joints e.g., hip joints, are complex and delicate structures capable of 

functioning under critical conditions and are probably the most optimal tribosystems 

that exist [2, 3]. They are self-lubricating and the articulating surfaces are regenerative, 

ensuring that normally they function over long periods of time. The performance of 

natural synovial joints is due to the optimised combination of articular cartilage, a load 

bearing connective tissue covering the bones involved in the joint, and synovial fluid, 

which is a nutrient fluid secreted within the joint area. Figure 1.1 shows the structure of 

a typical natural synovial joint (adapted from [4]). 
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Figure 1.1. A simple natural synovial joint structure 

Unfortunately, natural synovial joints are susceptible to degenerative and inflammatory 

diseases that result in pain and joint stiffness, as a result of a breakdown in the joint 

structure. Apart from normal ageing or accidental damage of the articular cartilage, the 



most common degenerative processes affecting the joints are primary or secondary 

osteoarthritis (osteoarthrosis), and to a lesser extent rheumatoid arthritis (inflammation 

of the synovial membrane) and chondromalacia (softening of the cartilage) [2, 4]. In 

fact 90% of the population over the age of 40 suffers from some degree of degenerative 

joint disease. 

Degeneration of the weight bearing joints often requires surgery to relieve pain and 

increase mobility. Ultimately when the natural joint can no longer perform adequately, 

replacement of the diseased joint surfaces by metal, plastic or ceramic artificial 

materials is accomplished through arthroplastic ('plastic repair of a joint') surgery. Total 

joint replacement (TJR) arthroplasty is the surgical technique that replaces all 

articulating degenerated natural surfaces with artificial materials by creation of a new 

prosthetic joint, and is recognised as a major achievement in orthopaedic surgery [2]. 

During the past half-century the design and clinical use of a wide variety of joint 

prostheses has matured and developed into a stage where most of the articulating joints 

can now be replaced. Much of this progress is due to the development of new 

biomaterials that are very much better able to withstand the mechanical and biological 

demands. In recently used TJRs, components that are typically anchored to the bone 

using polymethylmethacrylate (PMMA) bone cement are known as cemented total 

joints. PMMA acts as a grouting agent by filling the gap between the implant and the 

bone, and interdigitates with the bone to provide an interference fit. When the 

components are coated with porous surfaces for ingrowth of living bone, the 

replacements are known as non-cemented TJRs [5, 6]. Prosthetic joint replacement has 

dramatically improved the lives of millions of people worldwide [7]. 

Since 1962, the most widely accepted implant configuration includes a metal 

component articulating against a polymeric component, which is mainly ultra high 

molecular weight polyethylene (UHMWPE). Although other bearing couples have been 

investigated such as metal-on-metal, ceramic-on-ceramic or metal-on-ceramic, today 

metal-on-UHMWPE TJR are an international standard of care for degenerative joint 

disorders [2, 5, 8-10], and is an effective and popular treatment modality providing 

immediate pain relief and remarkable restoration of mobility for patients with joint 

disorders. The success of the UHMWPE polymer as the bearing surface is attributed to 

its excellent wear and abrasion resistance compared with other polymers such as 

polytetrafluoroethylene (PTFE) [11]. Initially, PTFE was tried as the polymeric bearing 
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surface material for total hip replacement, but was unsuccessful due to excessive and 

unacceptable wear rates. The most commonly used metallic components in TJR today 

include Ti6A14V, 316L stainless steel and Co-Cr-Mo alloys [12], the structure, 

compositions and properties of which are discussed more in detail in chapter two. 

Producing the artificial joints is however, an extremely difficult and also a challenging 

biomedical and material science problem, since such devices must meet a number of 

diverse requirements, such as tissue compatibility to avoid adverse tissue reactions, 

mechanical strength, strong fixation, excellent corrosion and wear resistance, in order to 

function adequately during long-term use [2, 3, 5]. 

Despite major technical advances over the last several decades and significant material 

improvements, unresolved problems that can lead to failure of the prosthetic joint still 

remain. Some of the factors that may affect the long-term performance of total joint 

replacements includes [13-16]: 

1. Friction, which produces a shear force to the UHMWPE component and motion 

relative to the bone 

2. Wear of the UHMWPE surface and the production of wear debris, which can lead to 

adverse cell response and eventual loosening and revision of the implant 

3. Metal ion release into the body from metal bearing surfaces from the repeated 

removal and reformation of passive oxides, and 

4. Micro abrasion by third-body particulates such as bone cement debris, which can 

gradually increase the metal surface roughness and hence further increase the 

UHMWPE wear 

Aseptic loosening and osteolysis remain the biggest problem with the cemented total 

joints, whereas failure of porous-ingrowth implants to provide consistent pain relief and 

the potential toxic effects of metal ion leaching on living tissues are the unanswered 

problems with non-cemented TJRs [5, 17, 18]. Osteolysis has been reported in 

association with both stable and loose uncemented and cemented femoral components 

[19], indicating that the problem is broad in scope. It occurs when periprosthetic bone 

loss appears localised around the implant, and can be distinguished from bone loss that 

is more evenly distributed around the implant. The definitive measure of clinical aseptic 

failure of a joint arthroplasty is the progressive loss of prosthetic bone that can 

necessitate a re-operation [7]. 
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UHMWPE as an articulating surface has been the principal material of choice for TJR 

prostheses for many years, e.g., as acetabular cups and tibial components due to its 

favourable characteristics (section 2.4.1), and approximately one million components 

are implanted on a yearly basis. However, wear which is sometimes excessive due to 

articulation (especially in prostheses implanted into younger and more active patients) is 

a major obstacle limiting the longevity of implanted UHMWPE components, despite the 

recognised success and worldwide acceptance of TJR [8, 9, 11, 18-21]. The 

consequence of this wear can be mechanical failure as a result of the wear through of 

the UHMWPE acetabular component in total hip replacement (THR) or fracture of the 

tibial component in total knee replacement (TKR), or biological due to osteolytic 

reactions to particulate sub-micron UHMWPE wear debris in the bone tissue that 

surrounds the prostheses [11, 15, 22, 23]. Mechanical failure due to wear has been 

significantly reduced with modern surgical techniques and advanced designs, such that 

the biological failure due to wear debris has become increasingly important in 

determining the long-term survival of total joint prostheses. Although the bulk 

UHMWPE material can be well tolerated in vivo, the sub-micron wear particles can be 

detrimental, and the production and accumulation of wear debris is well known to be 

associated with adverse tissue response which can lead to loosening and eventual 

revision of the prosthetic joint [15, 22, 24, 25]. When the wear particles are present in 

sufficient numbers phagocytosis can result in the activation of macrophages and in the 

direct resorption of the bone by macrophages. Revell et al [21], proposed that the body 

may tolerate low debris levels if they are below some critical point, hence minimising 

the wear of UHMWPE (which is the main aim of this work) is essential for improving 

long-term performance of the implant. 

Rarely do a material's properties perfectly match every requirement in a given 

application and biomaterials are no exception. The majority of materials failures arise 

from deficiencies of the surface material in dealing with friction, wear, corrosion, 

fatigue etc. Even after thorough consideration of all options and selection of the best 

available material, surface properties often still limit performance and function [26, 27]. 

The surface material is the only part of any component that has to coexist with the 

external environment. It follows therefore that designers should choose bulk material 

from the standpoint of structural and economic criteria, and surface material to deal with 

the external conditions. Surface modification technology deals with the methods for 

achieving these desired surface requirements and their behaviour in service [28]. The 
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basic concept of surface modification is the use of treatment process such that, bulk 

material that possesses some combination of desirable properties such as low cost, high 

strength or good toughness, but is lacking in some specific surface property such as low 

friction, low wear, low corrosion or adhesion, is possible [29]. The process modifies 

surface properties while preserving bulk attributes of the material, and a wide variety of 

surface properties including tribological, mechanical, chemical and others that directly 

influence biocompatibility and functionality can be modified [26, 27, 29]. 

Ion-beam modification is a surface modification technology that is becoming popular 

for improving medical device function and biocompatibility, without the expense and 

time required to develop new materials. Processes such as ion implantation and ion-

beam assisted deposition have proven successful in this area because they can provide 

beneficial surface layers with desirable properties without detrimentally affecting the 

bulk properties. Ion implantation in particular has been successful in biomaterial 

modification such as in improving the wear resistance of artificial joint components, and 

improving wettability of biomedical polymers, without the application of hard coatings 

[26, 27, 30]. The process offers several unique advantages over other surface 

modification techniques such as surface coatings. It facilitates both chemical and 

structural modification of the near surface volume of a material without the creation of a 

defined interface between modified and unmodified volume. Modifications can be 

performed at low temperatures with no distortion or changes in surface finish of the 

material. In so doing a gradual transition in chemistry, structure and properties is 

produced avoiding the possibility of interfacial delamination [31]. 

The aims of this work were to characterise the surface and quantitatively assess the 

tribological performance of the commercially used biomaterials (Ti6A14V, stainless 

steel, Co-Cr-Mo, and UHMWPE) when surface modified by N + ion implantation, and to 

investigate and understand the chemical, structural, and topographic modifications 

induced by the modification, with a view to optimising the tribological performance of 

the biomaterials. 
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C H A P T E R TWO - BIOMATERIALS ( L I T E R A T U R E R E V I E W ) 

2.0 Introduction 

Many definitions have been proposed for the term "biomateriaF. It has been defined as 

a nonviable material used in a medical device, intended to interact with biological 

systems (Williams, 1987 from [32]), or as a synthetic material used to replace part of 

living system or to function in intimate contact with living tissues [28]. These materials 

are of great use in the treatment of disease or injury. Some of the uses of biomaterials 

are indicated in table 2.1 (adapted from reference [28]). Complex chemical functions 

such as those of the liver, and complex electrical or electrochemical functions such as 

those of the brain and sense organs cannot be carried out by biomaterials. The success 

of a biomaterial in the body depends on factors such as the material properties, design 

and biocompatibility of the material used, as well as other factors, including the 

surgeon's technique used, health and condition of the patient, and the activities of the 

patient. It is known that the activity level of the patient increases the rate of wear of 

joint components [14]. 

Table 2.1. Uses of Biomaterials 

Problem Area Examples 

Replacement of disease or damaged part 

Assist in healing 

Improved function 

Correct functional abnormality 

Correct cosmetic problem 

Aid to diagnosis 

Aid to treatment 

Regenerate tissue 

Artificial hip joint, kidney dialysis 

machine 

Sutures, bone plates and screws 

Cardiac pacemaker, contact lens 

Harrington spinal rod 

Augmentation mammoplasty, chin 

augmentation 

Probes and catheters 

Catheters, drains 

Tissue engineering, e.g., skin grafts 

Materials used as biomaterials in the body include metals, polymers, ceramics and 

composites, and only the metallic and polymeric biomaterials used in TJR applications 

are discussed here in detail. The success of a joint replacement lies with the orthopaedic 



surgeon, not only to perform the surgery, but also to select the replacement that is best 

suited for the patient. The selection process can be influenced by the age and weight, 

along with the activity level of the patient post surgery [28, 33]. It is therefore important 

to have a complete understanding of the joint replacement and the behaviour of 

materials utilised in total joint applications. Metallic joint replacement components 

share many common features including biocompatibility or low toxicity (i.e., the ability 

of a matrerial to perform with an appropriate host response in a specific application 

[Williams, 1987 from [32]]), high corrosion resistance in vivo, high static and fatigue 

strength, and mechanical shock resistance [34]. They can be forged and/or machined 

into complex shapes using standard manufacturing methods, and when polished, work 

very well as low-friction femoral components in both TKRs and THRs. The three most 

important group of alloys used for femoral components are titanium alloys, austenitic 

stainless steels, and cobalt chrome alloys. The compositions, microstructures and 

properties of each of the metallic biomaterial alloys are discussed separately in sections 

2.1, 2.2, and 2.3. The polymeric biomaterials, mainly UHMWPE and XLPE are also 

discussed in section 2.4. All these biomaterials were used during the experimental work. 

2.1 Titanium Alloys 

2.1.0 Introduction 

Attempts to use titanium for implant fabrication date back to the late 1930s when it was 

found that titanium was tolerated in cat femurs. Its low density (4.5 g/cm3) compared to 

316L stainless steel (7.9 g/cm3) and Co-Cr-Mo alloy (8.3 g/cm3), low modulus (110 

GPa) compared to 316L stainless steel (190 GPa) and Co-Cr-Mo (210 GPa), and good 

mechanical and chemical properties, are salient features for implant application [2, 28, 

32]. The Ti6A14V alloy is the most commonly used titanium-based biomaterial and is 

widely used to manufacture implants. 

As biomaterials Ti6A14V alloys are among the most biocompatible and gained 

increased usage in TJRs for many years. The favourable characteristics of the alloy 

include remarkable corrosion resistance under static conditions due to a protective oxide 

surface layer (TiCh), excellent fatigue strength in chlorine solutions, high tensile 

strength, excellent ductility, formability and machinability, low density, and low 

modulus of elasticity [18, 35, 36]. They have low rigidity (high compliance) compared 
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with the other metallic biomaterials used for TJRs and hence have the theoretical 

advantage of reducing the incidence of proximal bone resorption due to stress shielding. 

The reaction of tissue that is adjacent to Ti6A14V alloy implant has been reported to be 

extremely benign [37], and direct bone ingrowth or osseointegration with its implants 

does occur [18, 38]. The main disadvantages of the alloy as biomaterials include 

relatively poor surface wear resistance, notch sensitivity, potential toxicity of Al and V 

ions (produced during articulation), and more expensive and not as easy to polish 

(compared to stainless steel and cobalt chrome alloys) [18]. When subjected to wear, the 

passive oxide layer can be removed allowing active corrosion to occur while the alloy 

re-passivates [39]. Although they are still widely used as stem materials for modular 

THRs, Ti6A14V alloys are no longer recommended for use as bearing surfaces, due to a 

high incidence of aseptic loosening which has been associated with tissue blackening 

and metallosis [18, 37, 40], caused by the creation of the metallic particulate debris. The 

origin of the debris was linked with the formation of poorly adhering surface oxide 

layers, which periodically detached from the alloy's bearing surface due to articulation 

in the prosthetic joint. The incidence of such failures was higher than in joint 

replacement devices that used cobalt chrome or austenitic stainless steel alloys as the 

bearing surface. 

2.1.1 Composition, Microstructure and Properties 

The chemical composition specification for wrought Ti6A14V alloy set by the British 

(BS 7252: Part 3: 1990) and American (ASTM F136) standards are shown in table 2.2 

[28, 32, 34]. The main alloying elements are Al, 5.5-6.5 wt %, and V, 3.5-4.5 wt. %. 
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Table 2.2. Chemical Composition of Wrought Ti6AL4V Alloy 

Element Composition (wt. %) 

BS 7252: Part 3: 1990a ASTM F136b 

Nitrogen 0.05 max 0.05 max 

Carbon 0.08 max 0.08 max 

Hydrogen 0.015 max 0.0125 max 

Iron 0.30 max 0.25 max 

Oxygen 0.20 max 0.13 max 

Vanadium 3.5-4.5 3.5-4.5c 

Aluminium 5.5-6.75 5.5-6.5c 

Titanium Balance 88.3-90.8° 
aFrom [34], "from [28], and cfrom [32]. 

Titanium is a transition metal with an incomplete shell in its electronic structure, which 

enables it to form solid solutions with most substitutional elements. It is an allotropic 

material, exhibiting a hexagonal close-packed (hep) crystal structure (a-Ti) up to 882.5 

°C (the beta transus), transforming into a body centred cubic (bec) structure (p-Ti) 

above this temperature [2]. In its elemental form it has a high melting point of 1678 °C. 

The alloys of titanium may be classified as either alpha (a), near-a, a + P, meta-stable 

or stable beta (P), depending on their room temperature microstructure. The alloying 

elements fall into three categories [2]; a - stabilisers such as Al, O, N, and C; P -

stabilisers such as V, Mo, and, Nb; and neutral such as Zr. The addition of alloying 

elements to Ti enables it to have a wide range of properties. The a, and near-a titanium 

alloys have single-phase microstructures which promotes good weldability, and 

excellent corrosion resistance, but their use as biomedical materials are principally 

limited by their low ambient temperature strength due to the presence of only the a 

phase. However, the stabilising effect of Al results in excellent strength characteristics 

and oxidation resistance at high temperatures (300-600 °C). In contrast, a + P alloys 

exhibit higher strength due to the presence of both a and P phases, and their properties 

depend on composition, the relative proportions of the a / P phases, and the alloy's prior 

thermal treatment and thermo-mechanical processing conditions. P alloys, meta-stable 

or stable, have high strength, good formability, and high hardenability. 

9 



The Ti6A14V alloy used for implants is an a + P alloy and its microstructure depends 

on heat treating and mechanical working. Al tends to stabilise the a phase by increasing 

the transformation temperature from a to P phase, whereas V stabilises the p phase by 

lowering the transformation temperature from a to p [28, 32]. During heat treatments 

and mechanical working, three different microstructures of the alloy can be formed 

depending on the heat treatment conditions. If the alloy is heated into the P phase field 

(> 1000 °C) and then cooled slowly to room temperature, the a phase precipitates out as 

plates having a specific crystallographic orientation within grains of the P matrix. A 

two-phase structure known as the Widmanstatten structure is produced [32] (figure 2.1). 

If the cooling from the P phase field is very fast a "basketweave" microstructure will 

develop due to martensitic or bainitic (non-diffusional shear) solid-state 

transformations. Ti6A14V alloy used for implants are commonly heated and worked at 

temperatures near but not exceeding the P transus, and then annealed to give a micro-

structure of fine-grained a with P as isolated particles at grain boundaries [32] (mill 

annealed, figure 2.2). All of the three microstructures in Ti6A14V alloy lead to about the 

same yield and ultimate tensile strengths, but the mill-annealed condition is superior in 

high-cycle fatigue, which is a significant consideration. The Ti6A14V alloy used in this 

study had a microstructure of the mill-annealed type. 
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Figure 2.1, Widmanstatten structure in cast Ti6A14V (ASTM F136) [32] 
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Figure 2.2. Micro-structure of wrought and mill annealed Ti6A14V, showing small 

grains of a (light) and p (dark) [32] 

Table 2.3 lists some of the typical mechanical properties of wrought Ti6AL4V implant 

metal [2, 28, 32, 41]. The alloy has modulus that is roughly half those of 316L stainless 

steel (table 2.5) and Co-Cr-Mo (table 2.8), combined with relatively high strength and 
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low ductility. When compared by the specific strength (strength/density), Ti6A14V 

alloys excels over any other implant material [28]. 

Table 2.3. Typical Mechanical Properties of Wrought Ti6AL4V Alloy (ASTM F136) 

Property Value 

Young's modulus (GPa) 116 

Tensile strength (MPa) 965 

Yield strength (MPa) 896 

Minimum 0.2 % proof strength (MPa)a 780 

Fatigue endurance limit (at 107 cycles, R = -1) (MPa) 620 

Strain to failure (%) 10 

Reduction of area (%) 25 
aFrom BS 7252: Part 3: 199 [34]. 

Titanium is very reactive at high temperature and burns readily in the presence of 

oxygen. It therefore requires an inert atmosphere for high-temperature processing, and 

is normally processed by vacuum melting. Oxygen diffuses readily in the metal and the 

dissolved oxygen embrittles the material. As a result, hot working or forging operations 

are carried out below 925°C [28]. 

2.2 Stainless Steel Alloys 

2.2.0 Introduction 

The first stainless steel used for implant materials was the 18-8 (type 302), and then the 

18-8sMo with improved corrosion resistance in salt water was introduced and became 

known as type 316 [28]. The carbon content of the alloy was reduced from 0.08 wt. % 

to 0.03 wt. % max for better corrosion resistance in chloride solution, and became 

known as the type 316L in the 1950s, where L denotes the low carbon content. They are 

austenitic stainless steels (both the type 316 and 316L) and are most widely used for 

implants. Although there are several types of stainless steels available the most common 

in practice is the type 316L stainless steel, which is recommended by the American 

Society for Testing and Materials (ASTM) for implant fabrication [28]. 
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As biomaterials, 316L stainless steel has been applied for many years as permanent or 

temporary implants. The mechanical properties of stainless steel (table 2.5) are lower 

than those of Ti6AL4V alloy (table 2.3), but its friction and wear characteristics are far 

better. 316L stainless steel is cheap, easy to machine and to polish compared to 

Ti6A14V alloys. 316L stainless steel implants have acceptable friction and wear 

properties in joint implants, and most explanted hip prostheses do not show significant 

in vivo wear. However, in some cases, crevice corrosion, which is often associated with 

wear, has been observed [42, 43], and synergistic effects of fatigue in chlorine solutions 

can not be avoided at present. During long-term contact with body fluids and tissues, 

316L stainless steel implants have been reported [16, 43] to show metallic wear and 

corrosion. The in vitro immersion of stainless steel in physiological solutions has found 

toxic ions such as Cr, Ni, and Mo to be present both in solutions, and in the corrosion 

products [21, 44]. 

In the UK, stemmed austenitic stainless steel (or one piece femoral components) are 

probably the most popular found designs of THR, and the early Charnley THR (circa 

1965-70) used a stemmed femoral component based on 18-10 austenitic stainless steel 

(known at the time as EN58J) [34]. Thackrays (now DePuy Johnson & Johnson) of 

Leeds introduced 316LVM a double-vacuum remelted 18Cr-10Ni stainless steel with 

superior corrosion resistance compared to the EN58J, and subsequently introduced a 

new stainless steel alloy based on Rex 734 in 1980 which remains in use to the present 

day and is known as Ortron 90 [34]. It is a high nitrogen 21Cr-10Ni-2.5Mo austenitic 

stainless steel with superior fatigue strength, corrosion and corrosion fatigue resistance, 

than the types EN58J or 316LVM. 

2.2.1 Composition, Microstructure and Properties 

The chemical composition of 316L stainless steel (ASTM) [28, 32] and Ortron 90 (BS 

7252: Part 9: 1993) [34] are shown in the table 2.4. The alloy is predominantly iron (Fe) 

alloyed with major amounts of chromium (Cr), and nickel (Ni), and minor amounts of 

nitrogen (N), manganese (Mn), molybdenum (Mo) which enhances the alloy's 

resistance to pitting corrosion in salt water, phosphorous (P), silicon (Si), and sulphur 

(S). Both the Cr and Ni contents can influence the stability of the austenitic phase. 

Although Cr is a reactive element, it can be passivated with its alloys to give an 

excellent corrosion resistance. Its main function in stainless steel is to permit the 
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development of a corrosion resistant steel by forming a strongly adherent surface oxide 

layer, chromium oxide (Cr 2 0 3 ) . However, Cr tends to stabilise the ferritic body-centred 

cubic (bcc) phase, which is weak compared with the austenitic face-centred cubic (fee) 

phase. Mo and Si are also ferrite stabilisers. The Ni present in the stainless steel serves 

to stabilise the austenitic phase at room temperature to counter the tendency to form 

ferrite, and to enhance the corrosion resistance of the alloy. 

The most important reason for the low carbon content of the 316L stainless steel alloy 

relates to corrosion in that, i f the C content exceeds 0.03 wt. % there is the increased 

danger of formation of carbides such as chromium carbides (Cr23C6) [28, 32]. These 

carbides have the tendency to precipitate at grain boundaries. Such precipitation 

depletes the adjacent grain boundary regions of Cr and hence reduces the ability to form 

Cr2C>3. Stainless steels in which such carbides have formed are called 'sensitised and 

are prone to fail through corrosion-assisted fractures that originate at the weakened 

grain boundaries. Under the ASTM specifications, the desirable form of 316L stainless 

steel for implant fabrication is a single-phase austenite (fee) with no free ferritic (bcc) or 

carbide phases in the microstructure [32]. It should also be free from inclusions such as 

sulphide stringers, which can arise from unclean steel-making practices and predispose 

the steel to pitting-type corrosion at the metal-inclusion interfaces. 
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Table 2.4. Composition of 316L Stainless Steel and Wrought Ortron 90 

Element Composition (wt %) 

316L Stainless Steel" Ortron 90b 

Carbon 0.03 max 0.08 max 

Manganese 2.00 max 2.00-4.25 

Phosphorous 0.03 max 0.025 max 

Sulphur 0.03 max 0.01 max 

Silicon 0.75 max 0.75 max 

Nitrogen 0.1 max0 0.25-0.50 

Copper 0.50 maxc 0.25 max 

Chromium 17.00-20.00 19.5-22.0 

Nickel 12.00-14.00 9.0-11.0 

Molybdenum 2.00-4.00 2.0-3.0 

Iron 60-65c Balance 

"From Annual Book of ASTM Standards, Part 46, 1980, p 578 (from [28]), "from [34], 

and c from [32]. 

Table 2.5 lists the mechanical properties of 316L stainless steel [2, 28, 32, 41], and table 

2.6 lists the mechanical properties of the alloy's surgical implants under different 

conditions [28]. From table 2.6, a wide range of properties can be obtained depending 

on the heat treatment to obtain softer materials, or cold-working for greater strength and 

hardness. In comparison with Ti6A14V alloy (table 2.3) and Co-Cr-Mo alloy (table 2.8), 

316L stainless steel has moderate yield and ultimate strength combined with high 

ductility. 

Table 2.5. Typical Mechanical Properties of 316L Stainless Steel 

Property Value 

Young's modulus (GPa) 190 

Tensile strength (MPa) 586 

Yield strength (MPa) 3 31 

Fatigue endurance limit (at 107 cycles, R = -1) (MPa) 241 - 276 

Strain to failure (%) 40 
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Table 2.6. Mechanical Properties of 316L Stainless Steel Surgical Implants under 

Different Conditions 

Annealed Cold-finish Cold-worked 

Ultimate tensile strength, min (MPa) 505 605 860 

Yield strength (0.2% offset), min (MPa) 195 295 690 

Elongation (50.8 mm), min (MPa) 40 35 12 

316L stainless steel is known to work-harden very rapidly [28] and hence cannot be 

cold-worked without intermediate heat treatments. Heat treatments can however, cause 

the formation of chromium carbide (CrC-t) in the grain boundaries, and surface oxide 

scales. Care should therefore be taken during the heat treatments to prevent the 

formation of such carbides and oxide scales. Surface oxide scales can be removed either 

chemically with acid or mechanically by sandblasting when formed, before use. After 

the scales are removed the surface of the components are polished to a mirror finish, 

cleaned, degreased, and passivated in nitric acid [28]. The components are washed and 

cleaned again before packaging and sterilising. 

2.3 Cobalt-Chrome Alloys 

2.3.0 Introduction 

Cobalt-chrome alloys were first developed for dental prostheses and were easy to obtain 

in complex shapes using casting techniques. As biomaterials, the alloys based on the 

Co-Cr-Mo system have been widely used for many years as femoral components and 

other medical implants. Its orthopaedic prostheses are durable and wear resistant, 

however, the mating component of UHMWPE easily wears down over time owing to 

articulation against the hard Co-Cr-Mo alloy. The wear particles of the UHMWPE 

activate a biological response that leads to bone resorption [27], and ultimately to 

implant loosening and failure. Of the metal alloys currently used in total hip 

replacements, Co-Cr-Mo alloy is significantly more resistant to roughening processes 

[21]. 
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2.3.1 Composition, Microstrueture and properties 

Table 2.7 lists the chemical composition of Co-Cr-Mo alloy (ASTM F75) used for 

implant fabrication [32]. The two basic elements of the alloy are cobalt (Co), and 

chromium (Cr). Molybdenum (Mo) is added to produce finer grains, which results in 

higher strengths after casting. The main attribute of the alloy is that they have excellent 

corrosion resistance in chloride environments due to their bulk composition and the 

presence of the surface oxide layer chromium oxide (Cr2C«3). They have good abrasive 

wear properties, about 0.14 mm/year in joint simulation test [28] and good frictional 

properties with themselves or other materials. The constituent elements particularly Co 

are very expensive, hence Co-Cr-Mo alloys costs are significantly higher than for 

example 316L stainless steel. 

Table 2.7. Chemical Composition of Co-Co-Mo alloy (ASTM F75) 

Element Composition (wt. %) 

Cobalt 58.9-69.5 

Chromium 27.0-30.0 

Molybdenum 5.0-7.0 

Manganese 1.0 max 

Silicon 1.0 max 

Nickel 1.0 max 

Iron 0.75 max 

Carbon 0.35 max 

Nitrogen 0.25 max 

Table 2.8 lists the mechanical properties of Co-Cr-Mo alloy [2, 28, 32, 41]. Compared 

with Ti6AL4V alloy (table 2.2) and stainless steel alloy (table 2.4), Co-Cr-Mo alloy has 

slightly higher modulus and much higher strength, but lower ductility. As with the other 

alloys, the increased strength is accompanied by decreased ductility. Although these 

properties may be regulated to a great degree by heat treatment, Co-Cr-Mo is quite 

difficult to machine because of its high intrinsic hardness. The high modulus of 

elasticity does not change with the changes in ultimate tensile strength and this may 

have some implications of different load transfer modes to the bone, although it is not 

established clearly what the effect of the increased modulus is [28]. 
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Table 2.8. Typical Mechanical Properties of Co-Cr-Mo 

Property Value 

Young's modulus (Gpa) 210 

Yield strength (MPa) 448 - 517 

Tensile strength (MPa) 655 - 889 

Fatigue endurance limit (at 107 cycles, R = -1) (MPa) 207 - 310 

Strain to failure (%) 8 

Reduction of area (%) 8 

At least three methods of manufacture, investment (lost wax) casting, powder 

metallurgy processing, and hot forging can be used to make Co-Cr-Mo femoral heads. 

However, because the alloys are particularly susceptible to work-hardening, the normal 

fabrication process used for the other metals cannot be used. The alloy is cast by a lost 

wax or investment casting method [28]. 

2.4 Polyethylene 

2.4.0 Introduction 

Polyethylene is the largest tonnage plastic material and has the simplest basic structure 

of any polymer. As a simple semicrystalline thermoplastic polymer it can be processed 

to have a wide range of microstructures and material properties that are useful in 

numerous structural applications. Its attractive features include excellent chemical and 

corrosion resistance, excellent stiffness to weight ratio, good processability, toughness, 

flexibility, and cheapness. 

It is made from the monomer ('mer') unit ethylene (CH 2 = CH 2). These 'mer' units 

combine with one another to form chains through a primary covalent bond, where the 

carbon (C) atoms share electrons with two other hydrogen (H) and carbon atoms: 

- C H 2 - ( C H 2 - C H 2 ) „ - C H 2 -

Where, n indicates the number of repeating units [28]. There are three major classes of 

polyethylene commercially available. These are based on characteristics such as 
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molecular weight and density, dictated by chain length and structure, either linear or 

branched. These three major grades are known as low density, high density, and 

ultrahigh molecular weight polyethylene. Low density polyethylene (LDPE) is typically 

branched but can be linear, and is polymerised by reacting ethylene gas at high pressure 

(100-300 MPa) in the presence of a peroxide catalyst to initiate polymerisation. The 

high pressure polymerisation causes branching of the linear chains. High density 

polyethylene (HDPE) is linear and ultrahigh molecular weight polyethylene 

(UHMWPE) consists of long linear chains as well. To prevent any chain branching and 

to obtain a better packing of the chains to increase density and crystallinity, UHMWPE 

and some HDPE chains are polymerised using Ziegler-Natta catalyst (made of titanium 

chloride and organo-aluminum components such as triethylaluminum or 

diethylaluminum) at low pressure (10 MPa). Some properties of the above three classes 

of polyethylene are shown in table 2.9 [28, 32, 33]. 

After the fabrication of a polyethylene part its surface properties can be changed by 

cross-linking, especially where increased wear resistance is required as in TJRs. This 

can be done by exposing the polyethylene to ionising radiation in the presence of a 

cross-linking agent such as acetylene. The radiation disrupts covalent bonds and forms 

free radicals in the cross-linking agent, resulting in the production of an increased 

density of covalent intermolecular bonds in the polyethylene. The radiation acts 

throughout the body of the polyethylene part, whereas the cross-linking agent acts on its 

surface to produce significant cross-linking of the polyethylene. Other cross-linking 

processes include chemical cross-linking with silane or peroxide chemistry. 

Table 2.9. Properties of Polyethylene 

Property Low density High density UHMWPE 

Molecular weight (g/mol) a ' b 3 ~ 4 x 103 5 x 105 2 x 10 6 c 

Density (g/cm 3 ) a ' b 0.90 - 0.92 0.92 - 0.96 0.93-0.94 

Tensile strength (MPa) 3 , 1 5 7.6 23 -40 27 min 

Elongation ( % ) a , b 150 400 - 500 200 - 250 

Modulus of elasticity (MPa) 96-260 s - b 410- 1240 a , b 800- 1500d 

Crystallinity (%) d 4 0 - 5 0 60 -80 45 - 55e 

Microstructured Typically branched Spherulitic Lamellar 

"-"From [28, 32], cdata from ASTMF648 "from [33], and efrom [45]. 
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2.4.1 UHMWPE 

UHMWPE is defined by ASTM D 4020 as a linear polyethylene with a weight average 

molecular weight (Mw) of greater than 3.1 million g/mol (> 1 million g/mol defined by 

ISO 11542) [8]. It is the most widely used polymeric prosthetic material and has been 

used extensively for orthopaedic implant fabrications, especially in TJRs for nearly four 

decades. The mechanical and tribological properties of the material favour its use as a 

bearing material in many joint replacement devices such as tibial bearings in knee 

arthroplasties, acetabular bearings in hip arthroplasties, as buttons to resurface the 

patella in total knee arthroplasty, in sleeves to permit semi-constrained rotation in elbow 

and wrist arthroplasty designs, and in counterfaces inserted into the glenoid in shoulder 

arthroplasty. It is particularly stable for this purpose because of its durability, high 

melting point (> 127 °C), hardness and low density. Because of its high molecular 

weight, UHMWPE implants can be processed with ram extrusion, a process which is 

difficult to use with low molecular weight polymers [46]. 

As a biomaterial, UHMWPE is biocompatible and its unique structure gives it desirable 

properties such as the low coefficient of friction when sliding against a metallic surface, 

excellent wear resistance, abrasion resistance and toughness, compared with other 

polymers such as PTFE [33, 47], and has been used as the material of choice for the 

bearing surfaces in TJR for nearly four decades. Although most of its replacements have 

proved successful in the last two-and-a-half decades, occasional problems have arisen 

particularly in cases where the implantation was performed on heavier and/or younger 

and/or more active patients. The generation of UHMWPE wear debris is detrimental to 

tissue and has been linked to complications including tissue inflammation, bone loss 

(osteolysis), and implant loosening [17, 19, 23, 48], necessitating revision surgery. The 

sub-micron sized UHMWPE wear debris produced during articulation limits the life of 

its prosthetic components. At this size UHMWPE is no longer biocompatible and 

macrophages identify the debris as foreign bodies and attempt to consume them. 

However, the immune cells are not able to digest the particles and this triggers an 

immune response of swelling of the joint area, and leads to osteolysis and bone 

resorption. The loss of bone density leads to eventual loosening of the prostheses and 

ultimately failure of the joint replacement as the bone tissue can no longer support the 

replacement [33]. 
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Recent advances in improving the wear behaviour of UHMWPE polymer have focused 

around the creation of a highly cross-linked structure. It has been shown that cross-

linking of the molecular chains dramatically reduces the abrasive and adhesive wear of 

UHMWPE in several in vitro joint simulator studies [10, 33, 49], and improves the 

material's mechanical properties [50]. Materials that are stiffer with increased tensile 

strength, creep resistance, and decreased ductility are produced. The process has the 

additional advantage of permitting a lower molecular weight base material to be used, 

so that components can be injection-moulded rather than machined. The moulding 

offers the opportunity of mass-production of complex three-dimensional shapes. The 

speculation is that cross-linking of the polymer enhances the resistance to plastic flow 

and lamellae alignment at the articulating surface resulting in better resistance to wear. 

There are many variables that can affect the performance of UHMWPE including, resin 

type and processing conditions, post processing conditions such as cross-linking, 

sterilisation methods, and post-sterilisation aging prior to implantation, as well as design 

parameters such as conformity and thickness. 

2.4.1.1 Microstructure and Properties 

At the nanometer length scale UHMWPE has a semi-crystalline microstructure 

consisting of a crystalline phase embedded within an amorphous matrix. The crystalline 

phase consists of folded rows of carbon atoms packed into lamellae, typically 10-50 nm 

in thickness and on the order of 10-50 um in length, whereas the surrounding 

amouphous phase consists of randomly oriented and entangled polymer chains traversed 

by tie molecules which interconnect lamellae and provide resistance to mechanical 

deformation. At this scale the material is a complex composite material which can 

evolve over time in response to its mechanical, chemical, and thermal history [8]. The 

carbon positions on the chains in the crystalline region can be defined by an 

orthorhombic unit cell with dimensions of, a = 0.74 nm, b = 0.49 nm, and c = 0.25 nm 

[33]. 

The large number of tie molecules and long linear chains gives UHMWPE outstanding 

mechanical properties, some of which are shown in table 2.10 (adapted from [51]). Its 

mechanical properties are inextricably linked to its chemical structure, molecular 

weight, crystalline organisation, and thermal history, as with any polycrystalline 
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polymer. Al l of these factors affect the morphological, chemical, and mechanical 

processes, which may influence the wear and performance of the material across a wide 

range of characteristic dimensions, after implantation. 

Table 2.10. Mechanical Properties of UHMWPE (density 0.93 g/cm3) 

Property Value 

Compressive yield strength (MPa) 12.4 

Flexural strength (MPa) 14.5 

Ultimate tensile strength (MPa) 38 

Young modulus (MPa) 1037 

Fatigue endurance limit (10 7 cycles) (MPa) 15.6 

Coefficient of friction: serum lubricant (in vitro) 0.04-0.16 

Wear rate (1.6 u.m/year) 

2.4.2 X L P E 

The process of cross-linking of polyethylene has been known for decades to improve 

abrasion resistance of the polymer for industrial applications. The linking of linear 

polymer chains by covalent bonds produces a cross-link network between which the 

molecular segments remain flexible. Thus at the appropriate temperature, the polymer 

may be rubbery, rigid, or even crystallised i f the segments can pack together sufficiently 

closely. Segmental motion is progressively restricted as the degree of cross-linking 

increases. The process of cross-linking of polyethylene is typically accomplished by 

peroxide chemistry, ionising radiation, or silane chemistry, and the degree of the cross-

linking is affected by the amount of peroxide, level of ionising energy, and whether the 

polymer is re-melted or annealed to remove free radicals, and i f so, the environment in 

which it is performed. 

The use of peroxides has received the most attention in chemical cross-linking. 

Peroxides can be obtained in either a powder or liquid state and is usually mixed with 

the medical grade resin prior to processing. The elevated temperatures present during 

processing decompose the peroxide to create free radicals, which form cross-links with 

neighbouring chains. Typically a peroxide concentration of ranging from 0.1 to 0.2 % 

22 



by weight is necessary to produce a highly cross-linked polyethylene network structure 

[8]. 

Al l ionising radiation processes lead to the formation of free radicals in polymeric 

materials through homolytic chain cleavage. The effects of radiation cross-linking on 

the structure of the polymer can however, be detrimental or beneficial to wear behaviour 

depending on the processing environments and degree of cross-linking. Chain scission 

and free radical formation is caused by irradiation, and depending on the environment 

these free radicals react with each other to form cross-links. Gamma radiation in air and 

subsequent ageing is known to have detrimental impact on the structure and mechanical 

properties of polyethylene, whereas gamma radiation in an inert environment induces 

cross-linking and is beneficial to the wear behaviour [33]. 

The third type of cross-linking using silane chemistry has been used in acetabular liners 

[8]. This procedure of cross-linking was developed by Dow Corning Limited (Barry, 

Glamorgan), and modified under licence by the British Steel Corporation (BSC Tubes 

Division, Corby, Northamptonshire) [52]. A silane compound containing a vinyl group 

is grafted onto the polyethylene chain. Vinyl trimethoxysilane is usually used and the 

grafting is achieved with a peroxide such as dicumyl peroxide in an extruder at a 

temperature of about 220 °C. Antioxidants, stabilisers and colouring pigments are added 

before extrusion. The cross-linking stage involves steam autoclaving the product at 120 

°C for hours when the methoxy groups are hydrolysed to hydroxyl groups, and the 

hydroxyl groups on neighbouring chains condense together to form cross-links. 

Polyethylene cross-linked in this way has a less tightly bound network than that cross-

linked by a single covalent bond. Such cross-linked materials are expected to deform 

further, having similar wear resistance as that of non cross-linked polyethylenes, but 

should be superior with regard to cold flow (creep) an advantage for prosthetic 

applications. Atkinson et al showed that, silane cross-linked high density polyethylene 

are superior over UHMWPE (RCH 1000) with regard to creep resistance, and wear 

properties [52]. The material can be injection moulded prior to cross-linking, a 

considerable advantage from a manufacturing point of view. 
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CHAPTER T H R E E - T R I B O L O G Y AND SURFACE MODIFICATION 

( L I T E R A T U R E R E V I E W ) 

3.1 T R I B O L O G Y 

3.1.0 Introduction 

Tribology is defined as "the science and technology of interacting surfaces in relative 

motion", and embraces the study of friction, wear, and lubrication [2, 53, 54]. Friction, 

wear, and lubrication are all phenomena familiar from everyday experience, but wear is 

particularly well known because it leads to catastrophic failure and represents one of the 

most costly problems facing industry today [55]. In many kinds of mechanisms artificial 

or natural, the movement of one solid surface over another is of great importance. Low 

friction is desirable in many instances e.g., the operation of joints such as the human 

joints demands a low friction force, whereas in other instances high friction is desirable 

e.g., a vehicle tyre and the road surface. Damage to surfaces generally involving the loss 

of material (wear) will occur whenever surfaces move over each other and in most cases 

this is detrimental. For example, the loss by wear of relatively small amounts of 

material can be enough to cause complete failure of large and complex materials. High 

wear rates can be desirable sometimes as in the case of friction e.g., grinding and 

polishing. The reduction of friction and often wear can be achieved by the method of 

lubricating the surfaces in some way, hence the study of lubrication is very closely 

related to that of friction and wear. 

The tribology of TJR is extremely complex. Unlike many tribological systems total joint 

articulation exhibits extremely low levels of wear and can function effectively for well 

over ten years. While healthy natural joints exhibit remarkable tribological 

characteristics due to the intrinsic properties of articular cartilage (high compliance) and 

synovial fluid, and subsequent optimised lubrication modes, TJRs based on current 

available materials experience mixed/boundary lubrication [2]. This lower lubrication 

performance is generally attributed to high rigidity (low compliance) of the artificial 

materials. As some surface contact takes place during articulation, the friction between 

artificial materials is much higher than in natural joints (u = 0.005 in natural joints, and 

0.02 in artificial joints) and non-recoverable wear of the artificial joint materials takes 

place [2]. 
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3.1.1 Wear 

Wear is defined as the progressive removal of material with the generation of wear 

particles, that occur as a result of relative motion between two opposing surfaces under 

load [7, 53, 56]. It is perhaps the most important yet least understood aspect of tribology 

and for this reason is attracting considerable attention at the present time. A common 

feature of the wear life of most engineering components is the relatively small 

percentage of the weight of the device that needs to be removed before correct 

functioning is impaired. However, it is not always disadvantageous and many processes 

such as metal cutting (e.g., polishing) rely on the phenomenon [54]. 

There are numerous mechanisms of wear [57, 58] including adhesion, abrasion, fatigue, 

corrosion, and erosion known as the five main types of wear, and delamination, 

penetration, pitting, fretting, and cavitation, which are descriptive of the appearance of 

the worn surfaces [53]. Adhesion involves the formation of surface bonds when surfaces 

are pressed together under load and sufficient relative motion pulls material away from 

one or more of the surfaces, usually from the weaker material surface. During abrasion, 

asperities or protuberances on the harder surface or as a separate component between 

the sliding surfaces cut and plow through the softer surface, resulting in removal of 

material from the softer surface. There are two types two-body and three-body abrasive 

wear. Two-body wear is caused by the hard protuberances on the harder surface, 

whereas in three-body wear the hard particles are free to roll and slide between the two 

contacting surfaces. When local stresses exceed the fatigue strength of a material it fails 

after a certain number of loading cycles, releasing material from the surface. Such a 

wear mechanism is known as fatigue wear. A wear process in which chemical or 

electrochemical reactions with the environment predominates e.g., oxidative wear is 

known as corrosive wear, and erosive wear is the loss of material from a solid surface 

due to a relative motion in contact with a fluid which contains solid particles. 

The various wear mechanisms are not mutually exclusive and in many situations two or 

more wear processes may take place simultaneously. Adhesive wear for instance might 

liberate wear particles which subsequently give rise to an abrasive action, and in the 

case of polymers, abrasion, adhesion and possibly fatigue might contribute to the 

overall wear process [53]. Abrasive wear can be controlled by making the harder 

surface in a hard-on-soft bearing combination very smooth and by effective sealing to 
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exclude abrasive particles. Fatigue wear can be controlled by awareness at the design 

stage of the material of the stress levels in local contacts and the frequency of stress 

reversals. Corrosive wear can be minimised by careful choice of the tribological 

materials or the environment to ensure that harmful chemical reactions do not take 

place. Adhesive wear is the most common and least preventable form of wear 

mechanism in joint tribology, since adhesion takes place so readily between interacting 

surfaces in relative motion [58]. It can often be controlled but rarely eliminated and 

most recorded studies of wear (in joint tribology) have been concerned with the 

adhesive wear mechanism. 

3.1.1.1. Wear in T J R 

Wear determines the useful life of artificial joints, and in TJRs wear of the joint surfaces 

is known to be one of the most common causes of failure and lack of durability of the 

prosthetic implants. Although the mechanical consequences of wear can limit the 

functional life of a joint replacement, the clinical problems from wear more frequently 

are due to the release of an excessive amount of wear particles into the biological 

environment, and when particles within a certain size-range are phagocytosed in 

sufficient amount, the macrophages enter into an activated state of metabolism, 

releasing substances that can result in periprosthetic bone resorption which leads to the 

eventual loosening of the implant [7]. 

3.1.1.1.1 Wear of Polymers in T J R 

Wear of polymeric components in TJRs is mainly brought about by the association of 

two mechanisms: creep (material flow or plastic deformation) due to loading, and mass 

reduction due to wear debris formation [7, 58, 59]. Creep contributes to the deformation 

of a polymer bearing but does not produce wear particles, and is known to be dominant 

initially perhaps for the first million loading cycles or so (in THR). Its rate decreases 

rapidly over time, becoming negligible by the first twelve to eighteen months after 

implantation. Wear continues insidiously and is generally the major factor determining 

the long-term penetration of the metallic femoral head into the polymer cup, and 

accounts for most of the change in the surface of the polymer bearing over the longer 

term. Most joint replacements have one primary polymeric bearing surface (acetabular 

cup or tibial tray) made of UHMWPE. There are many variables that affect the wear of 
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a UHMWPE bearing in vivo. The wear resistance of polyethylene is a function of the 

base resin, manufacturing, and the method of sterilisation of the component [60]. The 

clinical manifestations of UHMWPE wear in THRs include the removal of material, 

which results in progressive penetration of the femoral head into the polyethylene 

acetabular component and a reduction in the thickness of the polyethylene bearing. 

Although numerous mechanisms for the wear of UHMWPE have been suggested 

abrasive wear, adhesive wear, and fatigue wear have been identified as the basic wear 

mechanisms in TJRs [7, 57, 58, 61]. These wear mechanisms are associated with the 

scales of irregularities on the hard metallic counterfaces, the surface feature of the 

polymer, and the overall geometrical conformity of the mating components respectively. 

Abrasive wear as discussed earlier is caused by hard asperities on the counterface metal 

(two body wear) or hard particles (third bodies) between the articulating surfaces. These 

particles penetrate the softer polymer and remove material by a micro-cutting or 

shearing process. Multidirectional scratches are observed as the main features of 

abraded polymeric materials. This wear mechanism is normally associated with 

relatively rough counterfaces, hence the surface roughness of the counterface is the 

determining factor for the abrasive wear of a given polymer. It has been found that an 

important parameter governing abrasive wear of polymers is the work required to 

rupture material during sliding, being approximately equal to the product of the 

breaking strength and the elongation to break [57]. Therefore any measure enhancing 

the strength without appreciably diminishing the toughness would be expected to 

improve abrasive wear resistance of polymeric materials. 

Adhesive wear is associated with intermolecular forces mainly including attractive van 

der waals and repulsive electrostatic or double layer forces, which bond solids together. 

It is also highly dependent on the presence of intermediate material such as liquids. Dry 

clean solids readily adhere, but in liquids the long-range forces can be reduced by an 

order of magnitude or so [58]. When most polymers slide over clean hard smooth 

counterfaces, the interfacial shear strength of the adhesive junction is observed to be 

greater than that of the polymer [57] and the contact ruptures within the polymer as 

sliding continues, owing to its soft or low strength nature. The polymer is then 

transferred to the harder counterface and subsequently removed as wear debris. 

However, i f there is a layer of fluid present between the contacting surfaces, the 
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attractive forces are almost attenuated, adhesive junctions can hardly be formed and 

wear would be decreased significantly. Adhesive wear is therefore obviously likely to 

be significant during sliding of polymers against metals under unlubricated or starved 

lubrication conditions. It is generally thought that TJRs are wetted by the liquid present 

within the joint capsule, but the possibility of dry patches being encountered at some 

stage is constantly being raised and not yet answered satisfactorily [58]. Molecular 

topography has been noted to control the extent and form of the transferred layers. For 

example, smooth molecules such as those in high-density polyethylene will form very 

thin and highly oriented layers, thus giving rise to low adhesive wear rate [54], and 

highly cross-linked materials have also been found not to transfer polymer to the 

counterface [57]. Therefore cross-linked polymers possess high resistance to adhesive 

wear and hence any measure that can effectively reduce polymer transfer such as 

enhancing lubrication or cross-linking reaction, would be expected to improve the 

adhesive wear resistance of polymers. 

Fatigue wear is only observed after a substantial period of rubbing and hence may not 

be detected in short-term tests. Its rate is usually known to be lower than that of either 

adhesive or abrasive wear [58]. It probably results from the formation of cracks 

associated with elastic deformation over a number of contact cycles in the form of 

pitting, cracking, spalling and delamination. Particles of wear debris become removed 

by the growth and intersection of small cracks on the polymer surface whose orientation 

is roughly perpendicular to the direction of sliding. It occurs only when the counterface 

is smooth and adhesive action is almost eliminated, because on rough counterfaces 

abrasive and adhesive actions are so high. Typical surface features of micro-fatigue 

such as in UHMWPE acetabular cups (in THR) are regular and irregular arrays of 

surface ripples and bumps. Fatigue wear can also occur well below the surface (macro-

fatigue wear) in the form of delamination, in the case of high stress and lower 

conformity such as in knee joints (TKR) [57, 58]. 

In many prosthetic devices where polymeric materials slide on metals, abrasive wear 

may be encountered initially, but in due course a transfer film of polymer builds up on 

the metal counterface and adhesion between the bulk polymer and transfer film wil l 

occur [53]. Practical wear mechanisms frequently operate sequentially and although it is 

difficult to separate the individual contributions of the wear mechanisms quantitatively, 

it is clear that wear resistance of polymers would be significantly improved i f the 
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abrasion and adhesion actions could be reduced. This is largely because the rate of 

fatigue wear is very low. Ion beam modifications especially ion implantation may 

improve the tribological behaviour of polymers by shifting the dominant wear 

mechanism from abrasive or adhesive to fatigue wear. 

3.1.1.1.2 Metal Wear Processes in T J R 

The metal components in TJR are damaged by articulation (friction) even when rubbing 

against the soft polymeric materials. 316L stainless steel is less sensitive to wear 

damaging (but crevice corrosion may occur in some cases where groves or scratches are 

present), than Co-Cr-Mo (moderate), and Ti6A14V (severe) alloys [21]. 

Passive oxide-type films are present on implant metal surfaces that protect them from 

corrosion in vivo, however, minute concentrations of metal ions can be detected in the 

body fluids and organs whenever metallic implants are placed in the body [21]. Tissue 

culture studies have shown that cell replication is slowed in the presence of ions found 

in two commonly implanted alloys Co-Cr-Mo and Ti6A14V, while other studies 

demonstrate that bone and fibrous tissue wil l grow into intimate apposition with 

implants fabricated from these same materials [5]. For 316L stainless steel, the passive 

film is provided by the chromium contained in the metal. It produces a chromium oxide 

film (Cr20 3 ) by reacting with available oxygen in the air or with oxygen contained in 

the body environment. This passive film although very thin, about 2-5 nm thick, 

protects the underlying metal from further oxidation (corrosion). The chromium in Co-

Cr-Mo provides protection in a similar way to that of 316L stainless steel. In Ti6A14V 

alloys, it is the titanium that provides the protective passive film by forming titanium 

oxide (Ti0 2 ) [21]. 

Although passive surface films form extremely quickly (within nanoseconds), they can 

be damaged or sheared off from rubbing against another surface, exposing the metal 

temporarily to the environment. This exposure causes soluble metal ions to be released 

locally. I f the rubbing occurs continuously as with hip motion, the passive film is 

constantly damaged and reformed, creating a constant source of metal ions. I f these 

removed oxide films are hard (e.g., titanium oxide on Ti6AL4V alloy), they can act as 

three-body abrasives and metal wear as well as polymer wear can occur [21]. The 

presence of a third material between two rubbing materials is known as three-body wear 
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and this can accelerate the wear of the two initial surfaces i f the third material is harder. 

Metal burnishing or micro-scratching can occur in hip replacements with body particles 

such as bone chips, bone cement debris, and metal particles to accelerate the passive 

film damage and production of metal ions. Significant levels of the major components 

of metal prostheses have been measured near the implant in synovial fluids and soft 

tissues, as well as throughout the body in the blood, urine and other tissues [62]. Haynes 

et al [62] found that, Co-Cr and 316L stainless steel particles become less toxic but may 

induce more bone resorbing mediators as they age in vivo. The long-term effects of ion 

leaching in TJR remain a concern, and await further elucidation. It has been shown by 

analysing metal release rates from metal-polyethylene wear tests that Co-Cr-Mo is 

gradually removed at a rate of about 0.1 urn per year (106 cycles), 316L stainless steel is 

removed on the order of 0.2 \im per year, and Ti6A14V on the order of 1 (xm per year 

(surface removal from femoral heads) [21]. 

A new passive f i lm forms instantly from the reaction of the exposed metal surface with 

oxygen in the environment when damaged. Implant metal surfaces gradually give up 

metal from this oxidative wear process and this can lead to an increased surface 

roughness, which in turn can increase the mating polymer wear rate [16, 21]. In TJR the 

wear of the polymer is greatly influenced by the roughness of the metallic counterface. 

Laboratory studies using screening device wear testers have shown that the wear 

volume of UHMWPE is approximately proportional to the mean surface roughness of 

the counterface raised to a power greater than 1 [16, 21, 58, 63, 64]. Other authors have 

also found different relationships between the k« and R a , and the discrepancies in the 

results may be due to the different lubricants used and testing conditions [65]. 

The micro-topography of a surface determines its roughness and in TJR typical R a 

values are initially in the range of 0.02-0.05 um [21], and could increase with time due 

to surface abrasion particularly for Ti6A14V alloy, and thus increase the mating polymer 

wear. This implies that minimising the surface roughness of the metal would reduce the 

long-term wear of the mating UHMWPE component. 

3.1.1.2 Wear Testing and Measurements 

One of the greatest limitations in the life of engineering components in general and 

TJRs in particular is the rate of wear of the bearing materials, hence it is a matter of 
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some importance that an attempt should be made to predict the likely 'wear rate' of 

proposed designs of joint replacements and to strive to ensure that this wi l l be 

satisfactory [42, 53]. Another reason for carrying out wear tests is to study the basic 

mechanisms of wear under given conditions. The procedures which can be used in wear 

studies include monitoring the performance, wear rate and life of the complete machine 

assembly; testing components in bearing or joint simulators in the laboratory; and 

laboratory testing of specimens of materials under well controlled conditions. 

Direct measurements of wear of prostheses in vivo can be made clinically either by 

radiographic measurements, e.g., of the penetration of the femoral head (metallic 

component) into the acetabulum (polymeric component), or measurement of 

dimensional changes in explanted prostheses [58]. These measurements however, do 

not of course, differentiate between wear and deformation due to creep. 

A large number of joint simulators have been designed and become available worldwide 

in recent years to enable hip and knee joints to be evaluated prior to clinical trials. It is 

however far more difficult and expensive to design, build and operate a simulator than it 

is to produce a prosthesis. The value and great merit of using such simulators however, 

lies in the fact that they can give an improved understanding of the wear processes 

encountered in prostheses [58]. 

The possibility of utilising information obtained from simple laboratory equipment is 

the most attractive, since testing of bearing components in service is a long and 

sometimes disastrous procedure and the evaluation of TJRs in simulators are difficult 

and expensive [53]. The main purpose of laboratory wear testing equipment is to press 

together under a known load, specimens of materials which are sliding together at 

known speeds under controlled environments and to record the amount of material 

removed by wear. The laboratory equipment are known as screening devices, and a 

wide variety of screening test arrangements are used to examine the behaviour of 

materials for prostheses to develop an understanding of the nature of the wear processes 

as well as the levels of wear for the design of future prosthetic joint development. The 

most widely used screening devices include pin-on-ring, pin-on-disc, annulus-on-flat, 

and reciprocating pin-on-plate testing machines. Pin-on-disc is particularly useful in 

studying basic wear mechanisms because the operating conditions are steady and well 

controlled. However, due to the high speed and unidirectional motion employed, most 
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of the pin-on-disc machines fail to replicate the reciprocating motion that characterises 

joint motion (flexion-extension). The reciprocating pin-on-plate action more closely 

resembles the conditions encountered in the load bearing joints of the lower limb [50, 

58] and therefore, i f an attempt is to be made to produce realistic quantitative data to 

predict the tribological performance of total joints in vivo, the reciprocating pin-on-plate 

machine has many advantages. 

Wear pairs of implant materials or complete prostheses are usually recorded in the 

laboratory by measurement of weight loss, measurement of dimensional changes, 

examination of particles of wear, the collection of wear debris, and optical 

measurements of changes in surface features. In general, extensive experimental studies 

with such recording techniques have shown that wear increases as the normal load (P) 

increases, wear increases as the sliding distance (X) increases, and wear increases as the 

hardness (H) of the softer sliding component increases [53]. For practical purposes, 

wear of the much harder metallic materials are neglected and only the wear of the softer 

polymeric materials are measured. The wear of a polymer against a hard metallic 

counterface, i f the mean contact stresses are not so high, is given with fair accuracy by a 

relationship of the form [66, 67]: 

ko = V/PX equation 3 .1. 

Where, k 0 is the wear factor in (mm3/Nm), P is the applied load in (N), X is the total 

sliding distance in (meters, m), and V is the volume of material removed by wear or lost 

Where m is the mass and p the density of the polymer. The wear factor is a measure of 

the rate at which a given combination of materials wears in the environment of the test 

and is widely used for comparative purposes when the tribological performance of 

combinations of potential prosthetic materials are assessed [58]. 

in (mm ). 

V = m/p equation 3.2. 

Which implies: 

ko = m/pPX equation 3.3. 
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It is well known that simple wear machines have low-wear phenomenon and it has been 

proposed that conventional wear testers may be overly simplistic in terms of 

motion/loading configurations, and that low UHMWPE wear may be closely associated 

with the linear motion of the conventional wear testers [10, 11, 68], Wang et al [11] 

proposed that UHMWPE undergoes a molecular reorganisation process at the wear 

surface driven by plastic strain accumulation at the wear surface by repeated cyclic 

asperity contact during sliding. The molecules are stretched along the direction of 

sliding in a simple linear sliding contact, leading to a significant degree of strain 

hardening due to preferred orientation of the surface molecules. Linear motion wear 

testers not only underestimate wear factors by orders of magnitude compared with joint 

simulators and clinical results but also produce incorrect wear rate rankings for 

polymers. Bragdon et al [68] and Wang et al [11], have shown that higher clinical wear 

rates in UHMWPE components (acetabular cups) may be associated with the 

multidirectional motion of the human joint, and emphasised that in order to produce a 

wear rate that is comparable to average clinical wear rates with undamaged metallic 

counterface, the motion of the wear tester or joint simulator must be multi-dirctional. 

3.1.2 Friction 

Friction is a force that can be defined as the resistance to movement between two 

surfaces in contact [7]. Two classes of relative motion; sliding and rolling may be 

involved. Although there is a distinction between rolling and sliding friction, they are 

not mutually exclusive and even rolling nearly always involves some sliding. In both 

ideal rolling and sliding a tangential force (F) is needed to move the upper body over 

the stationary counterface, and the ratio between this force and the normal load (P) is 

known as the coefficient of friction (u.) [54]: 

u. = F/P equation 3 .4. 

The phenomenon of friction has been studied extensively since Leonardo da Vinci 

raised the importance of the subject, but the well known three laws of dry friction stated 

below are attributed to Amontons (1699) and Coulomb (1785) [53, 54]: 

1. The friction force is directly proportional to the applied normal load 

2. The friction force is independent of the apparent area of contact 
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3. The friction force is independent of the sliding velocity. 

The First Law amounts to the statement that [i is independent of the normal load, and is 

true for most metals and other materials under conditions of lubricated or unlubricated 

sliding. However, polymers often do not obey this law. The Second Law is well attested 

for most materials with the exception of polymers again, and the Third Law is less well 

founded. It is commonly observed that the factional force needed to initiate sliding is 

usually greater than that to maintain it, and hence the coefficient of static friction (|j.s) is 

greater than that of dynamic friction (uj). However, once sliding is established u<i is 

found for many systems to be nearly independent of sliding velocity over quite a wide 

range, although at very high speeds u<j falls with increasing velocity. In natural hip 

joints the coefficient of friction is typically 0.005 [69]. 

3.1.3 Lubrication 

For most practical uses lubricants are used to reduce the friction and wear between 

surfaces, and to provide components with smooth running conditions and adequate life 

[53, 54]. Lubrication is normally achieved by introducing a liquid, or gas, between the 

sliding surfaces, and they function by introducing between the surfaces a layer of 

material with lower shear strength than the surfaces themselves. In some systems the 

lubricant does not completely prevent asperity contact although it reduces it and may 

also reduce the strengths of the junctions formed. In other cases they completely 

separate the surfaces and no asperity junctions are formed at all. Hence to a greater or 

lesser extent, the use of a lubricant will always reduce the rate of sliding wear. There are 

three main lubrication regimes known as fluid-film, boundary lubrication, and an 

intermediate condition called mixed lubrication. Subcategories of fluid film lubrication 

such as hydrodynamic, elastohydrodynamic and squeeze-film lubrication also exist. 

The situation is described as 'fluid-film lubrication' i f the lubricant is thick enough to 

prevent the opposing solids from coming into direct contact. This condition provides 

low friction and a high resistance to wear, and is often referred to as the ideal form of 

lubrication. Coefficients of friction in the range 10"3 - 10'2 have been recorded in 

bearings [53]. The behaviour of the conjunction is governed by the physical properties 

of the bulk lubricant (such as viscosity), and frictional resistance arises purely from the 

shearing of the viscous fluid. 

34 



Elastohydrodynamic lubrication is a form of lubrication where elastic deformation of 

the bearing solids promotes the formation of adequate fluid films, whereas 

hydrodynamic lubrication is when substantial load-carrying pressures are generated by 

the motion of the bearing surfaces. Both types of lubrication are related to fluid-film 

lubrication. 

The condition is called 'boundary lubrication' i f the solid surfaces are not separated by 

the lubricant and contact takes place over an area comparable to that which develops in 

dry contact. The frictional characteristics are determined by the properties of the solids 

and the lubricant at their common interfaces. The contact characteristics in this case are 

governed by physical and chemical properties of thin surface films of molecular 

proportions. The coefficient of friction is essentially independent of viscosity. The 

surface action determining the behaviour of boundary lubricants can be described in 

order o f ' f i l m strength' in the following terms [53]: 

1. Physically adsorbed layers of gaseous, liquid, or solid lubricants; 

2. Chemically adsorbed layers; 

3. Films formed by chemical reaction. 

In the mixed lubrication regime the contact characteristics are determined by varying 

combination of fluid-film and boundary lubrication effects, and it is an important 

lubrication condition since many machine elements move intermittently and hence 

operate in the boundary, mixed and fluid-film regimes (e.g., synovial joints). 

The lubrication regime of natural synovial joints is not clear. Al l natural joints operate 

in a lubricant known as synovial fuid, which is an aqueous solution containing 

hyaluronic acid and protein. Hyaluronic acid molecules lead to non-newtonian 

behaviour of the fluid and greatly increases its viscosity, thus facilitating hydrodynamic 

lubrication. The protein content is thought to provide effective boundary lubrication 

when the hydrodynamic films become too thin, to prevent solid-solid contact. The 

relatively soft and porous cartilage which normally coats the bone surfaces in joints, 

enables an element of squeeze-film lubrication to be provided [70]. Natural joints are 

complex in their lubrication, thus elastohydrodynamic, boundary, and mixed lubrication 

all operate at different parts of the swing/stance phase, during a gait cycle. 
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3.2 SURFACE MODIFICATION 

3.2.0 Introduction 

Over the past decades surface engineering has been gaining momentum due to concerns 

over the environment, cost of manufacture, conservation of strategic materials, and bulk 

material performance [29]. The common objectives in the use of surface engineering for 

tribological applications are to increase the wear resistance of the surface material and 

to modify its frictional behaviour, both of which are achieved together in some cases 

[54]. Surface modification and surface coatings are the two main methods used in 

surface engineering. The surface modification process is generally considered when 

good is not good enough, devices can not function without it, and product 

differentiation is desired [27], and there are numerous applications for surface 

modification techniques to improve the long-term performance of materials. The 

microstructure of the surface material may be modified selectively without changing its 

composition as in transformation hardening or melting followed by rapid solidification. 

Alternatively, both composition and microstructure may be changed together, and this 

can often be achieved by thermally-enhanced diffusion of a different chemical species 

into the surface. The changes in composition and microstructure that can be brought 

about by these methods are however limited, and surface coatings of completely 

different materials can be applied for many purposes. 

The range of services currently offered by surface treatment industries is varied and 

continually expanding. Examples include surface modification approaches such as ion 

beam processing, diffusion (nitriding and carburising), laser and plasma processes, 

chemical plating and grafting or bonding, and conventional coating processes such as 

dipping and spraying, and vacuum deposition techniques such as sputtering. Of the 

available techniques, ion beam processing techniques have been particularly successful 

in biomaterial surface modification primarily because they combine versatility and low 

temperature processing with excellent process control, reliability, and reproducibility. 

There are several ion beam processing techniques used for surface modification of 

materials, each having their own relative advantages and disadvantages. The techniques 

include ion implantation, ion-beam-assisted deposition (IBAD), ion beam texurising 

(IBT), and ion beam polishing and sharpening technologies [26, 27], each of which will 

be discussed under the following sections (3.2.1 - 3.2.2). Ion implantation in particular 

36 



has proven successful in this area because it offers numerous beneficial surface property 

modifications without affecting the bulk properties of the materials. 

3.2.1 Ion Implantation 

Ion implantation is a simple technique for modifying the physical and or chemical 

properties of the near surface of a material significantly, when appropriate ions are 

embedded into the surface of the material from a beam of ionised particles [71, 72]. 

Unlike surface coatings, ion implantation uses a highly sophisticated process that 

actually penetrates surfaces, altering the composition to form a tougher barrier that 

resists wear, and it wil l not delaminate like conventional coatings. It can now be used 

for selectively improving the surface quality of engineering products and components 

by the controlled introduction of the 'foreign' atoms. The process upgrades the surface 

properties and improves the service life of the material, which may be crystalline, 

polycrystalline or amorphous and need not be homogeneous. By using high energy ions 

of the species to be introduced, ion implantation allows the controlled introduction of 

one or more species into the surface of the substrate and because the process is non-

equilibrium, solubility limits may be exceeded with or without subsequent precipitation. 

This makes it possible to incorporate any kind of ion without developing a set of 

diffusion conditions or considering the control of chemical constraints. Surfaces may be 

treated by the process and produce an effective alloyed surface layer where composition 

varies as a function of depth, and unique alloys not possible through normal alloying 

can be produced through this technique. Two or more metals completely insoluble in 

each other can be alloyed in this manner theoretically. 

Ion implantation can impact durability, wear resistance or surface hardness; improve 

resistance to rolling fatigue; reduce sliding friction; prevent adhesion; impart resistance 

to surface corrosion and chemical attack; and conserve valuable materials by keeping 

surface requirements separate from those of the bulk material. Table 3.1 shows a 

compilation of material properties influenced by ion implantation [73] (Dearnaley [74]). 

Nitrogen (N) has been the most investigated element in ion implantation studies due to 

its ability to harden steels and other engineering materials and the high ion current 

obtained with most commercially available ion sources [75]. This means ease of 

operation and economy of treatment. 
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Table 3.1. Material Properties Influenced by Ion Implantation 

Friction Corrosion resistance Bonding 

Wear Electrochemistry Lubrication 

Hardening Catalysis Adhesion 

Fatigue Decorative finish Reflectance 

3.2.1.1 Process Overview 

During the ion implantation process, ions are accelerated to a certain energy and 

directed towards the surface of the target material. The energy of the ions when they 

come into contact with the surface is typically between 20 and 200 keV, and these high 

energies cause the ions to penetrate the surface and so create significant changes. The 

ions typically penetrate the substrate of the material and lodge within its crystal 

structure, usually to a depth of several hundred nanometers in metals. The modifications 

created are therefore confined to the very near-surface region and only surface 

properties are affected. Physical dimensions and bulk properties of the treated material 

are left intact. Within a substrate of a material, the distribution of the implanted ions 

assumes a roughly Gaussian profile, with an average projected ion range. Figure 3.1 

shows the classical Gaussian curve of the distribution of implanted species with depth 

within a target material. Due to the low depth of penetration into the target material, 

conventional ion implantation is thus most suitable for tribological applications where 

the depth of penetration of wear is low [76]. 
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Figure 3.1. Distribution of ion implanted species with depth 

Up to date, ion implantation has been successfully applied to metal, ceramic and 

polymer biomaterials, and because these materials differ structurally, the effects of 

implantation are quite distinct for each class of material [26, 27, 74, 77, 78]. In metal 

and ceramic biomaterials, physical changes induced by the process are due to atomic 

and nuclear collisions, which often leads to the formation of highly disordered and 

sometimes amorphous structures in the near-surface region. Chemical changes arise 

from the formation of hard-phase precipitates as a result of the formation of chemical 

bonds between the substrate atoms and implanted active ion species, or surface alloys 

resulting from the introduction of alloying elements. These physical and chemical 

changes typically combine to create surfaces that are harder and more resistant to wear 

and chemical attack, without changing any of the material's bulk properties [26, 27]. 

Numerous effects including improvements to surface related properties such as 

hardness, wear and chemical resistance, are observed as a result of ion implantation in 

polymers [9, 57, 79-81]. Surface properties are known to be more effectively modified 

by the process for polymers than any other materials because of the low bond strength 

of the material compared with that of metals or ceramics, such that the energy 

transferred to electrons by incoming ions can stimulate chemical reactions. These 

modification methods are based on the bombardment of the polymer surfaces by ions 

with energies higher than the energy of their chemical bonding. Two major competing 
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mechanisms are realised in polymers via ion bombardment. An ion penetrating the 

polymer surface interacts with substrate atoms primarily through electronic (ionisation) 

and nuclear (recoil) interactions. Ionisation is however, the dominant phenomenon at 

the beginning of the ion range and causes excitation and ionisation of polymer units, 

which generally leads to cross-linking in the adjacent polymer chains. Recoil 

interactions generally lead to chain scission. Ion-substrate interactions are complex as 

equilibrium exists between the two major competing processes of chain scission and 

cross-linking [82]. 

Typically the energy associated with ionisation is much larger than the bond energies 

found in simple organic molecules, such as H-CH (4.3 eV) and H3C-CH3 (3.7 keV) 

Therefore the energy available largely exceeds the amount required to cleave any bond, 

however, all bonds are not irreversibly broken at random and experimental results have 

shown that selectivity rules apply which do not follow bond energy considerations [83], 

The cross-linking process creates a three-dimensionally cross-linked surface layer with 

much higher hardness and much improved wear resistance, while the scission process 

generally leads to the breaking of the long molecular chains, which can eventually result 

in polymer degradation. Ion implantation sometimes also results in selective 

enhancement or reduction of functional chemical groups, which can by modifying 

chemical interactions on the polymer surface, effect changes in surface wettability or 

critical surface tension [27]. In general the change in the properties brought about by ion 

implantation is due to the energy transfer from the penetrating ions to the polymer, 

resulting in excitations of electron and atomic energy levels, breakages of chemical 

bonds, formation of free radicals reactions, formation of cross-links, unsaturated 

structures, carbonisation structures etc., depending on the implantation parameters and 

conditions [84]. 

In many ways, the effects observed as a result of ion implantation in polymers, are 

similar to those produced by treatment with common ionising radiation [27], where 

some stability problems such as oxidation and degradation due to chain breakage and, 

perhaps, free radicals interactions with O have been reported to occur [45]. However, 

the larger ion size and much shallower depth of penetration during ion implantation 

result in significantly more pronounced effects confined to a very thin layer beneath the 

surface. Studies have shown that, it is necessary to perform a stabilisation treatment post 

irradiation, in order to enhance cross-linking and to reduce the possibility of polymer 

40 



degradation by oxidation and extraction of radicals [85-87]. Such a stabilisation 

treatment is also known to increase the likelihood of eliminating free radicals, thus 

preventing their reaction with diffused O during storage (in the absence of vacuum 

packaging) and improving cross-linking during in vivo service [88]. 

3.2.1.2 Advantages, Limitations and Features 

Ion implantation has numerous unique advantages over other surface engineering 

treatments such as surface coatings, for treating material surfaces. The process broadens 

the designers' choice of engineering materials by making surface quality less dependent 

on bulk properties. Some of the advantages and limitations of the technique are listed 

below ([73, 89, 90]). 

Advantages: 

1. Selective surface modification without detrimentally affecting bulk properties 

2. Low temperature process 

3. No significant dimensional changes 

4. No degradation of surface finish 

5. No adhesion problems since there is no sharp interface between the implanted 

surface layer and the bulk 

6. Clean vacuum process 

7. A variety of ion species can be implanted with the same basic apparatus, and almost 

all elements of the periodic table has been implanted 

8. Controllable depth concentrations 

9. Highly controllable and reproducible 

10. Solid solubility limit of implanted species can be exceeded 

11. A fine dispersion of precipitates can be created providing optimum wear behaviour 

12. Ion implantation creates no problems of disposal waste products 

Limitations: 

1. Line-of-sight or beam-line process 

2. Shallow penetration of ions (typically less than a micron) 

3. Relatively expensive equipment and processing costs 
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4. Vacuum compatibility 

5. Heat effects may be significant 

6. Study and development of ion sources needed to produce a high beam concentration 

that is relatively clean 

An intrinsic basic limitation is the technique being a line-of sight process, making it 

impossible to be applied to samples having complicated re-entrant surfaces. Therefore 

sophisticated tooling may be required to ensure uniform treatment of multiple parts with 

complicated geometries. Also the relatively shallow depth of treatment prohibits the 

process from being effective in minimising wear in certain wear modes such as abrasive 

wear. 

The entire process of ion implantation is conducted in a high vacuum environment and 

at room temperature. Being a vacuum clean technique eliminates the use of aggressive 

and dangerous chemicals for the pre-treatment. Ions are produced through a multi-step 

process where electrons are first stripped from atoms to form the ions, which are then 

extracted by attracting them to an oppositely charged region. The ions produced are 

accelerated by creating a graded potential difference in a tube. The accelerated ions then 

pass through a magnet, which selects only those ions of a desired species and charge 

state. A series of electrostatic and magnetic lens elements shapes the resulting ion beam 

and scans it over the target. Ion species, the ion beam energy, the dose (fiuence), and the 

beam current density (flux) are the four major ion implantation parameters, and by 

accommodation of these parameters several effects can be obtained on the substrate. 

3.2.1.3 Application to biomaterials 

Failures of orthopaedic biomaterials have such important repercussions that many 

studies [5, 7, 35, 91-93] have been conducted on retrieved implants to better understand 

the basic mechanisms which can lead to failure. Ion implantation has been used as a 

technique for improving the surface properties of orthopaedic materials without 

detriment to bulk properties to improve joint function and prostheses longevity [94]. 

The primary success of ion implantation has come in the surface modification of 

metallic orthopaedic prostheses [26, 27, 77, 95]. A primary limitation to the clinical use 

of these materials is their tendency to release metal ions by corrosion into the 
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surrounding tissue. The ions released are regarded as a likely source of long-term 

problems due to their known toxic effects on human cells [31]. Ion implantation has 

been successfully used on the metallic components of artificial joints to improve surface 

properties such as wear resistance, hardness, corrosion resistance and fatigue life time of 

the components [75], Some of these studies are discussed in sections 3.2.1.3.1 to 

3.2.1.3.3. 

Polymers have also gained extensive application in biomedical materials due to their 

conformity however, at present they have many deficiencies including low mechanical 

strength and poor wear resistance. Ion implantation may offer a solution to reduce these 

deficiencies. Implantation of polymers affects their mechanical, electrical and chemical 

properties, and has been shown that the structure of polymers is readily changed by ion-

induced dehydrogenation, oxidation, carbonisation, and other mechanisms connected to 

the creation of multiple carbon bonds [79]. Many studies have suggested that 

implantation can lead to improved hardness, wettability, anticuagulability, anticalcific 

behaviour (of polyurethanes in particular), and critical tension of silicon rubber in 

particular (which is thought to be a primary cause for biofouling) [27, 57, 81, 96]. Some 

of these studies are discussed in section 3.2.1.3.4. The major interest of the ion 

implantation treatment is that it is localised in a very thin layer of the material. 

3.2.1.3.1 Applications in Ti6A14V alloy 

Ti6A14V alloys are used for bone and joint replacements due to their superior 

biocompatibility and many favourable characteristics. Its high corrosion resistance is 

due to the formation of the protective oxide film TiC«2 of about 1-4 nm thick, however, 

body fluids contain chloride ions that can induce the breakdown of such passive films 

on prostheses. Despite the numerous advantages of Ti6A14V alloy as an implant 

biomaterial, the wear resistance of the alloy is relatively poor and has long been the 

concern among manufactures and surgeons who have observed a black sludge material 

in the vicinity of explanted artificial joints, and excessive wear of the mating UHMWPE 

[6, 35, 96-98]. Agins et al [37] have shown that Ti6A14V alloy can be particularly 

susceptible to wear, thus generating metallic wear debris that can lead to aseptic 

loosening of the implant in joint replacements, and a series of other clinical retrieval and 

experimental wear studies [18, 35, 37, 40] have shown that Ti6A14V alloy by itself 

without a surface treatment is not suitable for in vivo bearing applications due to the 
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poor surface wear characteristics. N 4 ' ion implantation in particular has proved to be a 

potential method for improving the wear, corrosion and fatigue properties of the metal. 

Surface hardness of the alloy is increased substantially by the IST ion modification, 

which in turn improves the resistance to wear. 

Ion implantation of titanium alloys can induce changes in the chemical structure of the 

surface by creating hard phase carbide, nitride, or oxide precipitates depending on the 

implanted species (carbon, nitrogen, or oxygen). The increased surface activity 

produces more adherent oxide layers and reduces the coefficient of friction, ultimately 

improving the wear resistance [99]. The hardening (a factor of 3 or more [27, 100]) is 

attributed to the formation of the hard-phases, whereas the low friction coefficient 

comes from the physical changes such as modifications in the crystalline lattice 

structure that occur in the near-surface region of the material. Numerous studies have 

evaluated the changes induced in titanium by >T ion implantation in particular and most 

have demonstrated order-of magnitude improvements in the wear resistance of the 

implanted alloy. 

Schmidt et al [89, 101] have shown using a pin-on-disc device that surface modification 

of titanium alloy by N4" ion implantation can improve the tribological behaviour of 

Ti6A14V/polymer sliding couples. They showed using a transmission electron 

microscopy (TEM) that implantation of nitrogen ions with doses above 2 x 10 1 7 N^ions 

cm"2 formed finely dispersed TiN precipitates in the near-surface region, hardening the 

metal and reducing the number of particles removed from it as a result of articulation. 

They observed an increase in microhardness with implantation dose due to compound 

formation (TiN), and found wear reduction in both the implanted Ti6A14V samples and 

mating unmodified UHMWPE attributed to an increase in microhardness and a decrease 

in oxide fi lm thickness on the Ti6A14V. 

Garcia et al [77] studied the effects induced by N4" ion implantation on titanium and 

observed improvements in the wear resistance and a decrease in the friction coefficient 

of the metal. N Is XPS spectra showed a binding energy (397.3 eV) corresponding to 

the nitride formation, which is thought as the main cause of the mechanical and 

tribological improvement. 
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Rieu et al [91, 99] performed friction measurements of UHMWPE versus untreated and 

ion implanted Ti6A14V alloy on a pin-on-disc and a cup-on-ball (TRIBOCUP) 

device, both in Ringer's solution. They observed abrasive wear to have occurred on the 

untreated titanium and the TsT ion implanted Ti6A14V to have demonstrated spectacular 

reduction of wear, in the pin-on-disc test. The improvement was constant for a wide 

range of implantation doses from 10 1 7 to 10 1 8 ions cm"2, temperature from room 

temperature to 300 °C, and partial oxygen content within the implanter corresponding to 
3 5 

a vacuum of 10° to 10'J Pa. In the cup-on-ball test they observed the untreated Ti6A14V 

ball to be covered with a black dull layer, black scales at the top of the polymer cup, and 

a decreased wear rate and no black layers with the implanted Ti6A14V alloy test. 

The structural modifications induced by lST ion implantation in Ti6A14V alloy have also 

been studied using GIXD by Rieu et al [102]. Measurement of the nitrogen 

concentration profile using GDS showed a classical Gaussian curve, which generally 

peaked near 200 nm after the implantation. They observed new phases containing 

oxygen and or carbon to a depth of 50 nm. For ion doses of about 1 x 101 7 ions/cm2, 

they detected the a titanium (a shift of the a titanium diffraction lines to lower 

diffraction angles, corresponding to an increase of interstitial nitrogen atoms in the 

titanium solid solution), and TiO x compounds were observed to be formed to a depth of 

20 nm. They concluded from their findings that, the modification of the diffraction peak 

amplitudes demonstrated the existence of residual compressive stresses in the implanted 

layer. When they increased the ion dose to 5 x 10 1 7 N 4 ions/cm2, new lines which 

corresponded to the formation of nitrides (TiN x) were observed and the oxides were 

observed to be progressively transformed into oxynitrides and a mixture of TiN-TiO. 

Nitrogen promotes a stabilisation hence the implanted layer was mostly transformed 

into a phase, with a progressive transition to the initial a-p structure underneath. 

Yoshinari et al [103, 104] evaluated the effect of surface modifications to titanium on 

antibacterial activity, and their findings indicated that N4" ion implantation is useful in 

providing antibacterial activity of oral bacterial to titanium implants exposed to the oral 

environment. They showed that titanium implants exposed to the oral cavity require N* 

ion implantation to inhibit the adherence of the oral bacteria, and that N4" ion 

implantation is useful in controlling the adhesion of oral bacteria as well as ensuring 

resistance against wear (dental implants). 
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3.2.1.3.2 Applications in stainless steel 

316L stainless steel has been utilised for many years for joint implants because of 

acceptable friction and wear characteristics, and most stainless steel explanted hip 

prostheses do not show significant in vivo wear. They have much better friction and 

wear characteristics compared to Ti6A14V implants. However, during long-term contact 

with body fluids and tissues, they have been reported to show metallic wear and 

corrosion [44, 62, 99, 102, 105, 106]. Among the most common metallic biomaterials, 

316L stainless steel has lowest corrosion resistance, and in vitro corrosion of the 

material in physiological solutions have shown that toxic ions such as Cr, Ni and Mo 

are present both in the solutions and in the corrosion products. Crevice corrosion, which 

is often associated with wear, and synergistic effects of fatigue in chlorine solutions 

have also been observed. Ion implantation has been shown to significantly improve the 

corrosion resistance and decrease the wear rate of the metal [43]. 

Richter et al [107] showed that plasma immersion >T ion implantation successfully 

hardened austenitic stainless steels and improved the hardness and wear resistance of 

the material significantly, compared with the untreated materials. They performed 

corrosion tests and showed that, corrosion resistance of the modified material was also 

significantly improved. Leitao et al [44] also showed that ion implantation with 1 x 

10 1 6 N4" ions/cm2 slightly improved the corrosion resistance of 316L stainless steel due 

to the formation of more stable films, whereas fluences of less than 1 x 101 6 >T 

ions/cm2 showed no improvements. 

Rieu et al [91, 99, 102] observed in a pin-on-disc test, a very low wear on untreated 

316L stainless steel characterised by few scratches on the steel disc and a non-

measurable weight loss of the UHMWPE wear pins. However, in a ball-on-cup 

tribological test where mechanical and chemical conditions are much more severe than 

in the human body, they observed the 316L stainless steel ball to have become dark and 

the UHMWPE cup showing high wear with the production of chips of polyethylene. 

They observed a reduction in wear of the UHMWPE cup (reducing from 50-200 mg to 

less than 10 mg) when the 316L stainless steel ball was implanted with N4" ions. 

Ion implanted microstructures in 316L stainless steel are known to be complex due to 

the large number of nitrogen compounds that Fe, Cr and Ni can form. Rieu et al [102] 

46 



showed using GIXD that for low ion doses of about 1 x 10 1 7 N 4 ions/cm2, the 

diffraction lines corresponds to e martensite with preferential orientations or texture. 

When they increased the ion dose to 5 x 10 1 7 N4" ions/cm2, new lines which 

corresponded to the nitrides (Cr,Fe)2Ni. x , Cr 2N, Fe3N-Fe2N and a' martensite formed, 

and CrN was preferentially formed because of the high activity of N with Cr. They 

found that at a N4" ion dose of 2.5 x 10 1 7 N 4 ions/cm2, the spinel type compound Cr 2N-

Fe3C>4 appeared on the surface of the material and the e-a' martensite underneath was 

progressively replaced by iron and chromium nitrides. 

Besetti et al [31] evaluated the in vivo bone tissue response to ion implanted stainless 

steel implants inserted in the tibia diaphysis (cortical bone) and proximal tibia epiphysis 

(trabecular bone) of New Zealand White rabbits. They demonstrated that ion implanted 

SS had similar or slightly enhanced biological compatibility in contact with bone 

compared to untreated materials, and concluded that ion implanted 316L stainless steel 

may be a useful material in biomedical applications where reduced ion release or 

enhanced mechanical properties are required, such as in TJR. 

3.2.1.3.3 Applications in Co-Cr-Mo alloys 

Co-Cr-Mo alloys are easy to obtain in complex shapes using casting techniques. Their 

orthopaedic prostheses are durable and wear resistant however, the mating component 

of UHMWPE easily wears down over time owing to articulation against the hard alloy. 

Ion implantation modification of the mating Co-Cr-Mo bearing surface is a highly 

successful treatment solution to enhance the mechanical properties of the alloy and to 

the UHMWPE wear problem. Studies have shown that the process alters the dynamics 

of the fluid film lubrication in the metal/polymer couple and results in the decrease of 

the coefficient of friction, and in turn reduces the wear [27]. Implantation increases the 

surface energy and hardness of the alloy Co-Cr-Mo, and the increase in surface energy 

allows better retention of a lubricating fluid film, resulting in less wear on the 

UHMWPE component, because the articulating surfaces experience less direct contact. 

Physical changes induced in the alloy surface due to the ion bombardment causes the 

increase in surface energy. 

Sioshansi et al (1991) compared the wear of UHMWPE disc sliding against treated and 

untreated Co-Cr-Mo pins, with results obtained using UHMWPE disc sliding against 

47 



zirconia pins in pin-on-disc experiments. They found wear and friction of UHMWPE 

against the treated Co-Cr-Mo pins to be much lower than those of the untreated pins, 

and slightly lower than they were for zirconia pins due to the surface improvements 

caused by ion implantation. 

In joint simulator studies conducted to 2 x 106 cycles, ion implantation treated and 

untreated Co-Cr-Mo femur heads were tested against UHMWPE, and wear was 

evaluated through weight loss measurements by Taylor et al [98]. Results showed a 

25% reduction in wear against treated components in comparison to untreated 

components. The wear of the UHMWPE against the treated Co-Cr-Mo alloy was close 

to that against zirconia (which they tested for comparison). 

Onate et al [17] evaluated the wear performance of unmodified and N4" ion implanted 

Co-Cr-Mo/UHMWPE wear couples using a knee wear simulator with a combined 

rolling-sliding movement (corresponding to the most unfavourable situation in the 

knee), and found that the weight loss of UHMWPE (0.13 mg) tested against modified 

Co-Cr-Mo and modified UHMWPE (0.24 mg) tested against unmodified Co-Cr-Mo, 

was significantly lower than that of unmodified UHMWPE (0.69 mg) tested against 

unmodified Co-Cr-Mo. They concluded that lST ion implantation (on Co-Cr-Mo or 

UHMWPE) improve the wear behaviour of UHMWPE, by reducing the formation of 

polyethylene wear debris and lessening the occurrence of any micro-delamination (up to 

5 million wear cycles). 

In general IST ion implantation has shown several beneficial effects in metallic 

biomaterials. The accelerated ion induce structural modifications in a layer less than a 

micron in the surface by producing new supersaturated phases leading to compressive 

residual stresses, are generally favourable for friction and wear resistance. There is 

always a residual atmosphere in the implantation machine chamber and oxygen from 

this atmosphere can be implanted into the material by complex surface reactions, even i f 

the implanted ions in the accelerated beam is nitrogen or different. 

3.2.1.3.4 Applications in UHMWPE 

Generally the metallic component of a prosthesis bears and rubs against an UHMWPE 

part and surgeons have attributed the wear of the polymer part to two main mechanisms 
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[58]; abrasion (wear) with formation of debris, and creep with plastic flow. A surface 

treatment of the polymer can improve its abrasion resistance but not creep, which is a 

bulk property. Ion implantation was performed on UHMWPE and other polymers and 

surface properties such as wettability, wear resistance, hardness and chemical resistance 

were all significantly improved [79, 80, 84]. The optimal fluence used for polymers is 

lower than for metals because of the low hardness of the polymer compared with the 

metal. Ion implantation on UHMWPE has been actively investigated and preliminary 

studies have shown that N* ion implanted UHMWPE in particular exhibits a 

significantly reduced wear rate compared with the untreated material. However, the 

depth of implant is a limiting factor since wear on articulating surfaces is so great (> 1 

mm in 10 years) [27]. 

Rieu et al [99, 102] studied IST ion implanted UHMWPE cups when rubbing against 

untreated 316L SS balls and observed a markedly reduced weight loss to less than 5-10 

mg when the cup was implanted with 2 x 10 1 4 N 4 ions/cm2, compared to 50-200 mg 

when the cup was not implanted. They found wettability of the polymer to be increased 

with polar liquids such as water, synovial fluid or Ringer's solution. The contact angle 

of a flat surface with a drop of Ringer's solution decreased from 110° to 70° after their 

implantation. However, they observed that the polarisation of the surface was limited to 

the first atomic layers and the wettability increase disappeared after some cycles of 

friction due to the shallow depth of penetration of the N4" ions. 

Allen et al [96] showed that, when ion implanted UHMWPE (with an implantation 

dosage between 5 x 10 1 5 and 1.4 x 10 1 7 N 4 ions/cm2) was worn against an ion implanted 

titanium alloy under water lubrication, no mass loss was detected up to a sliding 

distance of 100 000 m on a pin-on-disc wear machine. They observed that water 

improved the wear resistance not only through the provision of boundary lubrication 

and low shear strength films, but also acted to maintain a lower temperature and higher 

mechanical properties of the UHMWPE. They concluded that the higher strength of the 

N 4 ion implanted UHMWPE, presence of water film and a smooth metallic counterface, 

were all contributory factors in lowering the wear rate. Under dry conditions they found 

that the N* ion implanted layers deteriorated quickly with consequential increases in 

wear. Liao et al showed hardness increase of up to 15 times and modulus of elasticity 

increase of seven times with much enhanced wear behaviour in UHMWPE against a 

similarly implanted Ti6AL4V alloy [96]. 
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Structural modifications induced by N4" ion implantation in UHMWPE are very hard to 

study in the thin layer of implantation (< 1 |wm) at the surface of the bulk high molecular 

weight polymer. Chen et al [108] investigated the structural and mechanical properties 

of N 4 ion implanted UHMWPE with fluences ranging from 1 x 10 1 4 to 5 x 101 5 N 4 

ions/cm2, using ERD, Raman spectroscopy and XPS. They showed by ERD that a 

hydrogen deficient surface layer was formed after ion implantation, and Raman 

spectroscopy observed damage to the chain structure of the polymer with the formation 

of a layer of hydrogenated amorphous carbon when the fluence exceeded 1 x 101 5 

ions/cm2. XPS showed that nitrogen atoms formed chemical bonds with the UHMWPE, 

and hardness increase of up to four times was measured in their study. 

3.2.2 Other Ion Beam Modification Processes 

Ion beam assisted deposition (IBAD) is a vacuum deposition process that combines 

physical vapour deposition (PVD) with ion beam bombardment. During the process a 

vapour of coating atoms are generated with an electron beam evaporator and deposited 

on a substrate. Ions, typically gaseous species, are simultaneously extracted from 

plasma and accelerated into a growing PVD coating at energies of several hundred to 

thousand electron Volts (eV). The key factor controlling the coating properties in the 

process is the ion bombardment and the major processing parameters are coating 

materials, evaporation rate, ion species, ion energy and ion beam current density. As in 

ion implantation (section 3.2.1) the ions impart substantial energy to the coating and 

coating/substrate interface to achieve the benefits of substrate heating (which generally 

provides a denser, more uniform film), without significantly heating the substrate 

material and degrading bulk properties [27]. In addition the ions interact with coating 

atoms driving them into the substrate and producing a graded material interface, which 

enhances adhesion. These factors combine to allow deposition of uniform adherent and 

low stress films of any coating material on most substrates including extremely adherent 

metal coatings on polymers. Other advantages of the technique include superior control 

over coating microstructure and chemical composition, and high reliability and 

reproducibility. The primary limitation to its use for commercial application at present 

is the cost involved. One important application in biomaterials is the deposition of 

infection-resistant coatings on catheters and other implantable medical devices. 
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Ion beam texturising (IBT) is based on sputtering, which is the process of removing 

atoms from a solid surface by ion bombardment at a certain energy. The process results 

from atomic collisions between incident high energy particles and substrate atoms. The 

ion dose is typically an order of magnitude higher than the dose used in ion implantation 

(section 3.2.1), and the ion energy used is about several hundreds to thousand eV so as 

to encourage removal of substrate atoms rather than to implant ions into the surface. 

The process has the ability to create desirable micro-features and macro-features on 

biomaterial surfaces to meet the requirements of biocompatibility in vivo [26]. Their 

applications are primarily in the treatment of surfaces for enhanced tissue in-growth, 

and electrical charge transfer. Pace maker electrode tips with IBT surface features are 

known to show an improved threshold for pulsing and better sensing capabilities, and 

these changes are reported to improve the battery life of pacemakers. 

Ion beam sharpening and polishing technologies are used for sharpening and polishing 

surgical instruments such as surgical blades, and also the process allows bevelled 

surfaces to be created on surgical tools. 

3.2.3 Ion Implantation Effects on Friction and Wear 

Under certain conditions ion implantation can exert a significant influence in the 

tribological response of a system depending on the type of wear and friction 

mechanisms present. Wear is a complex interplay between mechanical and chemical 

processes at solid interfaces involving adhesion, deformation and friction between the 

surfaces that results in the progressive removal of material [71]. Adhesion and friction 

are sensitive to surface composition and therefore ion implantation can be expected to 

have an influence on them. This is because ion implantation can significantly modify 

the composition of the near surface layer and thus reduce chemical affinity of surfaces 

in contact, change oxide growth rates and or strengthen the metal oxide interface. The 

deformation mode of wear can also be affected directly by ion implantation modifying 

the composition and microstructure of the near-surface layer. This can be achieved 

when the ion implantation increases the surface hardness of the material through 

mechanisms such as solid solution strengthening, and precipitate formation. 
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Large residual compressive stresses can be introduced into the surface of materials by 

ion implantation. This can protect against wear since the formation and propagation of 

micro-cracks and the subsequent formation of plate-like wear particles can be delayed 

by opposing these compressive stresses to sliding induced tensile stresses. Furthermore 

ion implantation can indirectly reduce the deformation type of wear by reducing the 

coefficient of friction between mating surfaces. Decreasing the coefficient friction 

reduces the intensity of stresses transmitted to the surface and relocates the maximum 

shear stress from the uppermost layer to a depth well below the surface. This is known 

to be achieved when the friction coefficient is reduced from more than 0.4 to less than 

0.2 [109]. 
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CHAPTER FOUR - E X P E R I M E N T A L METHODS 

4.0 Introduction 

The experimental methods and procedures used during the research work are described 

in detail, in this chapter. These include the pin-on-plate tribological wear test apparatus 

and test parameters, experimental materials, tribological wear test procedure, and 

material characterisation techniques used. 

The objectives of the study were mainly to: 

1. Surface modify the commercially used biomaterials Ti6A14V, Co-Cr-Mo, stainless 

steel (REX 734), and UHMWPE by N* ion implantation, and quantify the 

tribological performance of modified and unmodified biomaterial couples using a 

multidirectional pin-on-plate wear test apparatus 

2. Quantify the microstructural and chemical changes upon IST ion implantation and 

during tribological assessment using optical microscopy and XPS, and topographic 

and hardness changes using a combination of AFM, SEM, non-contacting 

interferometry and Knoop microhardness indentation 

3. Correlate the tribological performance of the N4" ion implanted biomaterials with the 

structural, chemical, topographic and hardness investigations and derive an optimum 

N* ion implantation surface modification protocol 

4.1 Pin-On-PIate Wear Test Apparatus 

Pin-on-plate wear tests were chosen rather than using pin-on-disc or any other screening 

device, or joint simulator apparatus, to simply compare the wear characteristics of the 

various biomaterial couples studied in this research work. They are widely used as 

screening devices in wear studies to screen different material combinations for use in 

artificial joints, due to their more realistic motion compared with in vivo conditions. The 

other screening devices (section 3.1.1.2), especially the pin-on-disc device is 

particularly useful in studying basic wear mechanisms, however, most fail to replicate 

the reciprocating motion that characterises joint motion. The reciprocating pin-on-plate 

action more closely resembles the conditions encountered in the load bearing joints of 

the lower limb. Unlike the joint simulator the machine does not attempt to recreate the 
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in vivo conditions but simply assesses the wear, which wil l occur when two materials 

come into contact under similar sliding speeds and stresses to those encountered in the 

body. However, reciprocating pin-on-plate machines have generally produced mean 

wear factors for UHMWPE articulating against metallic counterfaces of the order of 10" 
7 8 3 

or 10' mm /Nm [24, 110, 111], values that are one or two orders of magnitude less 

than those found in vivo, and therefore lead to the suggestion of the use of 

multidirectional motion machines. 

The Durham 4 station multidirectional pin-on-plate wear apparatus which employed 

both rotation and reciprocation motion was used in the experiments. A photo and 

schematic representation of the apparatus used are shown in figure 4.1 (a) and (b). The 

wear machine complied with the ASTM standards F 732-82 and F 732-00 [112, 113] 

however, it employed both rotation and reciprocation motion in order to address the in 

vivo kinematic situation more realistically (at least in the hip joint). The ASTM standard 

describes reciprocation only motion, and also changes to some parameter constraints set 

out in the standard were made, the details of which are listed in section 4.1.1. It has 

been shown that the addition of a rotational element to a relative motion between a pin 

and plate sample can produce in vitro results more in accordance with average clinical 

wear factors (in vivo) [10, 11, 49, 68, 114], and the UHMWPE wear particles generated 

known to be clinically relevant [115]. Work at Durham University on the wear of 

UHMWPE and XLPE has also indicated that the wear rig used in this study can produce 

realistic quantitative data to predict the tribological performance of total joints in vivo, 

more than the reciprocation alone geometry pin-on-plate wear rig can [50, 116-118]. 

The pin-on-plate wear test rig consisted of an aluminium sledge reciprocating along two 

fixed parallel bars. A heated bed and a stainless steel lubricant bath were positioned on 

top of the sledge. The bed was heated by electrical resistors positioned within, which 

subsequently heated the lubricant used in the lubricant bath. The electrical resistors 

together with a K-type thermocouple feedback system placed in the lubricant bath were 

connected to a controller which maintained the lubricant at a constant pre-set 

temperature of 37 ± 1 °C. The sledge together with the heated bed and stainless steel 

bath was driven by a crank alignment powered by a 125 W d.c. shunt motor. This 

produced the reciprocation motion between the plates and the stationary pins when 

positioned in their respective plate and pin holders. The motor speed was controlled 
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using a variable voltage supply and the required stroke length was achieved by adjusting 

the crank radius of the drive shaft. 

Four test plates were located in the stainless steel bath, by means of a plastic frame into 

which corresponding apertures had been milled. Four test pins were held within 

stainless steel pin holders, which were in turn fitted vertically in machined arms 

attached to the main rig. Each pin holder was attached to a motor that rotated the pins 

around their central vertical axis, and each pin was notched at its upper end to provide 

good location and hence prevent pin rotation within the holder. The pin holders were 

free to move vertically in the arms and this allowed them to move downwards when pin 

wear took place during a test. Cantilevered loading arms to which weights were added 

at positions along the arms to exert an applied force on the pins rested on top of each 

pin holder. A screw mechanism on the lever arms allowed their adjustment so that they 

were horizontal and the point of contact was in the centre of the pin holder all the time. 

An electronic lubricant level sensor made of three metal pins (one short and two of the 

same height) to sense the maximum and minimum levels of the lubricant in the bath was 

fitted to one side of the lubricant bath. This allowed distilled water to be fed into the 

bath from an elevated reservoir when required, to account for water evaporation from 

the lubricant bath. An electrical cut-out system which stopped the motors, turned off the 

heating bed, and prevented lubricant from being fed into the bath, was fitted on the rig 

to prevent the bath from running dry, and operated i f the distilled water in the reservoir 

dropped below a minimum level. 

A Hall effect probe attached to the reciprocating body and connected to an electronic 

counter was used to count the number of cycles covered during a tribological wear test, 

and the wear machine was covered with a perspex case cover to prevent contamination 

of the lubricant and specimens from the environment. 
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(a) Side View Photograph 

@ 

(b) Schematic Representation 

Figure 4.1. Reciprocation and Rotation Pin-On-Plate Wear Apparatus, (a) Side view 

photograph and (b) Schematic representation, where 1 is 125 V DC Shunt motor; 2 is 

Crank arm; 3 is Reciprocating sledge; 4 is Bath; 5 is Plate; 6 is Plate holder; 7 is Heated 

base; 8 is Pin; 9 is Belt; 10 is Motor; 11 are Cogs; 12 is Moment arm; 13 is Mass; 14 is 

Pin holder locator; and 15 is Pin holder. 
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4.1.1 Test Parameters 

The ASTM Standard Practice F 732-82 / F 732-00 is a standard laboratory test method 

(reciprocating pin-on-plate geometry only) for evaluating friction and wear properties of 

combinations of materials that are being considered for use as the bearing surfaces of 

total joint replacement prostheses [112, 113]. The standardised test parameters include 

lubricant, sliding speed, motion, load, geometry, frequency, contact area, counterface 

roughness, temperature, and contact stress. 

The recommended parameters set out in the standard were followed during the 

tribological wear tests with regard to the motion, lubricant, temperature, and cleaning 

protocol. Various other parameters within the test were modified and kept constant to 

produce the desired conditions for the experiment. Several investigators have also 

modified or adapted versions of the standard and used them to assess the wear 

resistance of bearing surfaces for orthopaedic applications. Some of the parameters are 

discussed in detail under the following sections (4.1.1.1-4.1.1.5) below, with the 

changes to some parameters also detailed. 

4.1.1.1 Lubricant 

The ASTM standard recommends the use of filter-sterilised bovine blood serum 

lubricant, with a mass fraction of 0.2-0.3 % sodium azide to minimise bacterial 

degradation. The serum must be kept frozen and stored at all times until needed for 

testing to retard bacterial degradation. During testing, the volume, concentration, and 

temperature of the lubricant should be maintained constant throughout the test by 

continuously replacing evaporated water with distilled water. Newborn calf serum 

supplied by Harlan Sera-Lab (batch number 8030901) was used as the lubricant during 

this study. The undiluted serum was diluted to 30 % concentration by volume with 

distilled water, and 0.2 % sodium azide was added as a preservative to reduce bacterial 

degradation. 

Human synovial fluid should be used as the lubricant during in vitro tests to simulate in 

vivo conditions, but this is not practical due to the difficulties in obtaining the fluid. As 

a result, the most common lubricants used in various wear tests include distilled water, 

saline solution, and bovine serum [4], and the wear mechanisms and wear rates have 

57 



been reported to vary during tests with different lubricants, significantly between 

distilled water or saline solution and bovine serum [119]. The criteria that a candidate 

lubricant should satisfy for the testing of polyethylene-on-metal or ceramic are that, 

there should be no polyethylene transfer film to the metal or ceramic counterface, the 

wear factor should be of the order of 1 x 10"6 mm3/Nm, most of the wear debris should 

consist of particles smaller than a micrometer, and the worn polyethylene surface should 

look polished [120]. Bovine serum contains physiological concentrations of proteins 

and is accepted to satisfy the above criteria. 

It has been reported that bovine serum as a lubricant in wear studies seems to reproduce 

the wear mechanisms found in the body more closely than non-biological lubricants 

such as distilled water and saline solution [119]. It has been found to produce wear 

phenomena qualitatively similar to that observed on ex-vivo prostheses probably via 

suppressing polyethylene transfer and associated damage to the counterfaces. Heavy 

transfer films of polyethylene have been reported on the surface of metallic counterfaces 

during tests in distilled water or saline solution, whereas no films have been obseerved 

when the tests were carried out in bovine serum [111, 119, 120]. It has been 

hypothesised that the proteins in serum may contribute to boundary lubrication of the 

bearing surfaces [121], changing the wear mechanisms involved and preventing 

adhesion of the polyethylene to the metallic counterface [119]. This is significant as the 

formation of transfer films is not typical of retrieved polyethylene components after 

extended use in vivo. 

A laboratory study has suggested that the wear rates of UHMWPE under serum 

lubrication tend to be more reproducible and less scattered than those under water 

lubrication [122], and was attributed to the formation of a boundary lubricant f i lm 

between the articulating surfaces which eliminated the formation of transfer films. 

Water and saline do not have satisfactory boundary lubrication properties. Low wear 

and friction properties have also been observed in tests with bovine serum when 

compared with water and saline solution lubricants. Despite the tribological advantages 

of bovine serum as a lubricant, its major disadvantage is the degradation of the long 

chain protein molecules under the mechanical action of the wear couple, ultimately 

reducing the practical 'life span' of the lubricant to only three or four days continuous 

use. 
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4.1.1.2 Motion and Speed 

To simulate in vivo conditions the ASTM standard recommends that the relative motion 

between the pin and plate be oscillatory and the samples be run through a 25 mm stroke 

length at a rate of 1 cycle/s, to produce an average sliding speed of 50 mm/s (0.05 m/s). 

However, this could not be complied with during the experimental work (because of the 

25 mm diameter rod form that the metallic biomaterials were manufactured to). The 

stroke length was reduced to reflect this. 

Plate specimens of 4 mm thickness and 25 mm diameter were cut from the bulk, and 

polished (as described under section 4.2.1). A stroke of 18 mm at a rate of 1 cycle/s 

producing an average sliding speed of 36 mm/s (0.036 m/s) was set and kept constant 

throughout the experiments to run the different material couple combinations. To 

simulate in vivo conditions (of a hip joint) it has been estimated that an average speed 

between 20 and 50 mm/s (0.02-0.05 m/s) should be used [4] and the speed used in this 

study was within the estimated average range. The diameters of surgically used femoral 

components ranges between 22-32 mm (or greater than 32 mm) depending on design, 

producing an articulating distance in the range 27-39 mm / walking cycle 

(flexion/extension of 70° swing at 1 Hz during walking, Appendix A2). 

4.1.1.3 Load 

The test load used during this study was 40 N to produce an average contact stress of « 

2.04 MPa, and was kept constant throughout the various tests (Appendix A l ) . This was 

mainly due to the size of the flat-ended polymer wear pins used. The pins were 

machined to sizes of 18 mm long and 5 mm in diameter to provide wear face cross-

sectional area of 19.6 mm2. This is a standard polymer wear specimen used in previous 

pin-on-plate studies under a load of 40N or less at Durham University [50, 116]. The 

load in a typical THR ranges from 0-4000 N (up to five times body weight at impact), to 

produce a contact stress in the range of 0 - 12.4 MPa [112]. 

The standard recommends a test load of 225 N constant to within ± 3 % to be applied 

along the longitudinal axis of the polymer wear pin for the duration of the test to give an 

average contact stress of 3.54 MPa. This recommendation has been calculated for a flat 
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ended 13 mm long and 9 mm in diameter standard polymer wear specimen, with a 

cross-sectional area of 63.6 mm2. 

4.1.1.4 Surface Roughness 

A surface roughness of 0.025-0.05 [im has been recommended by the ASTM standard 

for metallic counterfaces when articulating against polyethylene. Typical surface 

roughness values in previous wear tests were between 0.01-0.055 urn for metals, and 

between 0.15-1.5 um for UHMWPE and XLPE [4, 65]. The surface finish of the 

metallic counterfaces used in the study was between 0.005-0.01 um, better than that of 

the standard, and that of the polymeric wear pin surfaces was between 0.8-1.5 um, 

which lies within the standard recommendation. Ra values greater than the 

recommended values are known to cause excessive wear of the mating polymer (section 

3.1.1.1.2). 

4.1.1.5 Temperature 

The ASTM recommends the bulk temperature of the lubricant to be held at 37 ± 3 °C 

(F732-82) or 37 ± 1 °C (F732-00) body temperature, and this was followed for all 

tribological wear tests in this study. 

4.1.2 Pin-On-Plate Test Procedure 

The tribological wear test procedure described in detail below was employed for each 

individual test carried out in this study. Table 4.1 lists the biomaterial wear couple 

combinations tested during the study. In each test, the pin/plate combinations in the test 

stations were identical, and four sets of specimens for each material (both in the form of 

modified or unmodified) was used in the tests. Prior to the commencement of a test the 

polymer wear pins and metallic plates were carefully cleaned ultrasonically and dried 

with lint-free tissue to remove any contaminants from machining and microtoming, and 

grinding and polishing respectively. The pin and plate holders were carefully cleaned. 

After the cleaning procedures, each pin and plate was carefully weighed four times and 

recorded, and the mean initial weight for each material was calculated from the weight 

results. Weighing was done on a Mettler Toledo AE200 balance, sensitive to 2 ug. After 
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weighing the pins and plates were placed in their respective holders and positioned in 

the wear rig. Each pin position on a plate was determined by guide markings on their 

holders to ensure correct positioning every time. Weights were applied to the lever arms 

of the rig to apply a force of 40 N to the pins, providing a contact stress of 2.04 MPa. 

The lever arms were positioned so as to act through the centre of the pin holders and 

were horizontal. 

30 % bovine serum and 70 % distilled water to which was added 0.2 % sodium azide to 

retard bacterial growth, was used as the lubricant to cover the plates and left to 

equilibrate at 37 ± 1 °C before the test was started. In each test an unloaded soak control 

polymer pin was kept with its unnotched end in the same lubricant as the test pins. This 

enabled compensation for fluid absorbtion by the polymer wear pins due to their 

hydrophilic nature. A stroke length of 18 mm was set to enable the polymer wear pins to 

reciprocate and rotate within the diameter of the plates, to produce an average sliding 

distance of 36 mm per cycle. The reciprocation and rotation motion timed over various 

periods and the frequency was set at 1 Hz. The stroke length, and frequency of rotation 

and reciprocation gave a physiologically representative simulation of a replacement hip 

prosthesis during the walking cycle. 

Al l tribological tests were typically run for a duration of at least 5 million wear cycles. 

The tests parameters that were used for the experiments are summarised and shown in 

table 4.2. 
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Table 4.1. Biomaterial Wear Couple Combinations Tested 

Biomaterial Wear Couple Combination 

Unmodified UHMWPE/Unmodified Ti6A14V 

1 x 10" and 5 x 10" N 4 ions/cm2 implanted UHMWPE/Unmodified Ti6A14V 

5 x 10 1 5 IST ions/cm2 implanted UHMWPE/Unmodified Ti6A14V 

Unmodified UHMWPE/2 x 10 1 7 N* ions/cm'1 implanted Ti6A14V 

Unmodified UHMWPE/1 x 10 l l f N4" ions/cm2 and 1 x 102 1 N 4 ions/cm" 

implanted Ti6A14V 

5 x 10" ions/cm2 implanted UHMWPE/2 x 10 1 7 N* ions/cm2 implanted 

Ti6A14V 

Unmodified XLPE/Unmodified Ti6A14V ~ ~ 
T"F ~T T TH ~T T" 

5 x 10 TnT ions/cm implanted and unmodified XLPE/2 x 10 1ST ions/cm 

implanted Ti6A14V 

Unmodified UHMWPE/Unmodified Stainless Steel 

Unmodified UHMWPE/2 x 10 1 7 N4" ions/cm2 implanted Stainless Steel 

5 x 10° N 4 ions/cm2 implanted UHMWPE/2 x 10 1 7 N 4 ions/cm2 implanted 

Stainless Steel 

Unmodified UHMWPE/Unmodified Co-Cr-Mo 

Unmodified UHMWPE/2 x 10 1 7 N4" ions/cm2 implanted Co-Cr-Mo 

5 x 10" NT ions/cm2 implanted UHMWPE/2 x 10 1 7 N 4 ions/cm2 implanted Co-

Cr-Mo 

Table 4.2. Tribological Wear Test Parameters 

Wear pin diameter 5 mm 

Counterface plate diameter 25 mm 

Stroke length 18 mm 

Sliding distance 36 mm/cycle 

Motion Multidirectional 

Frequency of rotation and reciprocation 1 Hz 

Nominal load 40 N 

Contact stress 2.04 MPa 

Lubricant 30 % bovine serum in 70 % distilled 

water at 37 ± 1 °C 
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4.1.2.1 Experimental Measurements and Errors 

A gravimetric technique was used to measure the wear of the polymer wear pins. 

Preliminary pin-on-plate testing revealed no mass loss of the metallic plates respective 

to polymer pins, and the wear of the plates were neglected for the purpose of the 

experiments in line with previous pin-on-plate tests. The plates (both modified and 

unmodified forms) were weighed pre and post wear test to compare the weight loss 

under the different material combinations tested. The wear of the softer polymer was 

analysed in terms of the corresponding wear factors and wear mechanisms present. 

At regular intervals of about 300,000 wear cycles of test the pins and plates were 

removed from their respective holders. The pins and plates were cleaned following the 

ASTM cleaning protocol (Appendix A3) and dried in a fume cupboard. Each wear pin 

as well as the control pin was weighed four times on the balance to calculate the mean 

weight, visually inspected, and further investigations carried out using an optical 

microscope and AFM. The surfaces of the wear tracks on the plates were characterised 

with AFM and non-contacting interferometer. After cleaning, weighing, and 

characterisations, the apparatus was then reassembled and started. 

The wear of the polymeric test pins was defined as the weight loss with respect to the 

initial weight to which was subtracted any weight gain of the control pin, assuming 

weight gain of the control and test pins to be equal. The weight loss was converted into 

volume loss by dividing by the density of the polymer, and the corresponding polymer 

wear factors calculated using equation 3.3 (section 3.1.1.2). The densities (p) used to 

calculate the wear volumes were 0.927 g/cm3 for the UHMWPE (Appendix B4) and 

0.949 g/cm3 for the XLPE material. Graphs of polymer wear volume loss (mm 3) versus 

sliding distance (km) were plotted, and the wear factors calculated using the slopes 

(mm3/Nm) of the graphs divided by the constant 40 N nominal load. The slopes of the 

graphs were determined using linear regression by fitting trend lines on the wear curves, 

and the wear mechanism acting on the polymers were determined from surface analysis. 

Owing to the high sensitivity of the weighing balance used in the gravimetric 

determination of wear, the calculated errors in the volume loss measurement were 

minimised such that the error bars on the graphs fell within the data points. Descriptive 

statistics were used to calculate the mean polymer wear factors and standard deviation 

from the mean value (Appendix A5 - A7). 
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The wear factors reported were calculated taking into account only the reciprocating 

sliding distance and not the effects of rotational sliding distance on the UHMWPE pins, 

during the multidirectional wear tests. This is the simplified method of calculation 

recommended by the ASTM Standard Practice F 732-00. However, work at Durham 

University [118] using a developed computer programme has shown that rotation 

motion has an effect on the overall sliding distance of the UHMWPE pins, by increasing 

the average sliding distance by a factor of about 2.1 %. Therefore the sliding distance 

values used are slightly underestimated, and the wear factors reported without the 

consideration of the rotational effects during testing can be said to be slightly higher 

than the true wear factors and hence a worse case scenario, although a good 

approximation to the overall sliding distance. 

Where calculable, a measure of how widely values are dispersed from the mean values 

(standard deviation) were made (Appendix A4), and the results shown on the reported 

experimental measurements. 

4.2 Test Materials 

4.2.0 Introduction 

The commercially used biomaterials used during the research work are described under 

the following sections (4.2.1 and 4.2.2). The materials have been grouped into metallic 

and polymeric biomaterials, the former being Ti6A14V, stainless steel (Rex) and Co-Cr-

Mo alloys, and the latter UHMWPE and XLPE. Al l the materials were supplied by 

DePuy Johnson and Johnson, Leeds, UK, and are currently used in tribological 

applications. 

4.2.1 Metallic Materials 

The metallic materials used in this study were commercially used Ti6A14V alloy, 

stainless steel (Rex), and Co-Cr-Mo alloy supplied from Depuy Johnson & Johnson, 

Leeds, UK, in the form of rods or bar stocks of length 2600 mm and 25 mm diameter. 

These materials were prepared into plates and used as the counterface materials during 

the pin-on-plate tribological wear tests. 
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The Ti6A14V alloys displayed a 2-phase (duplex) a + (3 microstructure the 

microstructure and properties of which are described in section 2.1.1. The 

microstructures and properties of the stainless steel (Rex) and Co-Cr-Mo alloys are 

described in sections 2.2.1 and 2.3.1 respectively. Metallic biomaterial data as supplied 

from Depuy Johnson & Johnson are shown in Appendix B1-B3. 

Each alloy rod material was cut into several flat disc shapes of thickness 4 mm and 25 

mm diameter, using a Buehler Isomet 2000 Precision Saw Cutting Machine with 

Buehler Abrasive Cut-Off Wheel Blades. These flat discs were then metallographically 

polished and used as the counterface (plate) materials. 

The cut metallic plates from each alloy were each metallographically prepared by wet 

grinding with intermediate water washes on grades 220, 500, 800 and 1200 grit SiC 

paper using a Buehler Metaserv Rotary Grinder. Polishing on a Buehler Universal 

Polisher using 6 u,m and then 1 um diamond pastes followed the grinding stages. Water 

rinse followed each of the wet grinding stages, and water rinse followed by isopropanol 

rinse and ultrasonic bath cleaning followed each of the two polishing stages to obtain 

the final surface finish of the materials. 

Atomic force microscopy (AFM) and non-contacting optical microscopy (sections 4.3.2 

and 4.3.3 respectively) were used to characterise the surface topography and roughness 

of the plate surfaces, and to obtain initial arithmetic mean surface roughness values (Ra) 

prior to N4" ion implantation modifications and tribological wear tests. The initial mean 

Ra values for all materials were calculated from 10 measurements from 10 different 

areas on the surface. 

The Knoop microhardness of each metallic plate was measured 10 times and the mean 

values recorded, using a Mitutoyo MVK-H2 Microhardness device (section 4.3.4) prior 

to the materials being sent for >T ion implantation. Knoop indentations were made to 

obtain surface sensitive hardness measurements, in preference to Vickers indentations, 

which for the same load penetrate deeper into the sample. 
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4.2.2 Polymeric Materials 

The polymeric materials used were ultra high molecular weight polyethylene 

(ENDURON), and cross-linked polyethylene (for comparison) supplied from Depuy 

Johnson & Johnson, Leeds, UK. The UHMWPE were supplied in the form of ram 

extruded long bar stocks of diameter 40 mm. The XLPE materials were injection 

moulded prior to cross-linking (using silane method) to 118 °C for 120 hours, with a gel 

content of 78 %, and were supplied in the form of plates of sizes 80 mm x 80 mm with a 

50 mm x 8 mm pin attached to the centre of the plates. The structure and properties of 

polyethylene are described in section 2.4. UHMWPE data as supplied, are shown in 

(Appendix B4). 

All polymeric wear pins used were machined from their bulk materials into flat-ended 

circular cylindrical wear pins of sizes 5 mm diameter wear face and 18 mm long, to 

produce a wear face surface area of 19.63 mm 2. To prevent any directional effects all 

the wear pins were machined with the same orientation within the supplied stock. The 

machined wear pins were notched at their upper ends to allow adequate fixation within 

the wear rig pin holders and to ensure correct orientation when replacing them after 

cleaning and weighing procedures during a tribological test. 

Prior to surface characterisations, >T ion implantation modification, and tribological 

wear tests, the machined surfaces of the pins were microtomed to remove any 

machining marks and minimise any residual stresses introduced by machining. AFM 

and non-contacting optical interferometry were used to characterise the surface 

topography and roughness of the wear surfaces to obtain the mean R, values. Initial 

mean Ra values calculated from 10 measurements on each polymeric wear pin material 

were recorded to be between 0.8-1.4 [im, which were within the range recommended by 

the ASTM Standard Practice F 732-00. 

4.2.3 N + Ion Implantation 

Nitrogen ion implantation work was performed at Tech-Ni-Plant Ltd, Aston Science 

Park, Birmingham, UK, using the Zymet Z-100™ system. Some of the system 

specifications are shown in table 4.3. 
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The Zymet Z-100 is a 100 KeV, 10 mA ion implantation system. Based on ion 

implantation, the system utilises a vacuum process in which high velocity ions of a 

selected element are directed at a target material and come to rest in the near surface 

region of the material. Elemental materials existing either as a gas or vapour at 900 °C 

can be ionised and implanted into metals, ceramics, and polymers to change surface 

sensitive properties. N"1' ions were used to modify the biomaterials used in this study. 

The major components of the system include treatment chamber and work holder, beam 

generation and control system, vacuum system, and an electronic microprocessor 

control unit. 

The standard Z-100 chamber accommodates parts up to 30 cm in height with available 

options to treat larger objects. It has a unique handling system (cool-Grip fixture) that is 

specifically designed to hold and cool the product during treatment (Appendix D, fig. 

D1.4). During the treatment process the material is first embedded in a low melting 

point (145 ° C) metal contained in a 20 cm diameter product tray, which is then attached 

to a water cooled manipulator. The process chamber door is closed and an automatic 

vacuum pump down cycle is initiated. The holder is then positioned at a chosen implant 

angle with respect to the beam direction (Appendix D, fig. D1.5). The disc may be 

continuously rotated during the implantation (for treating cylindrical objects) or kept 

stationary (for flat objects). 

The beam generation system consists of the ion source, which is of the arc discharge 

type providing maximum beam currents greater than 10 mA, source power supplies, 

extraction electrode system, and the extraction power supply (Appendix D, fig. D1.2). 

The extraction electrode lens transports the beam from the ion source aperture, which is 

5 cm long, and causes it to diverge to become 20 cm long and 2 cm wide at the implant 

position which is 90 cm downstream. The ion beam curtain is then scanned from side to 

side by slowly oscillating the ion source and extraction electrode assembly (Appendix 

D, fig. D1.3). A standard mask projecting 250 cm2 is used for product implantation. 

During the implant, the swept ion beam is sampled in two collection cups at the centre 

of the oscillating beam scan (Appendix D, fig. D1.6). Beam current pulses are accrued 

in a current integrator until the desired dose has been reached, at which time an audible 

alarm sounds and the process automatically stops. During the implant, the estimated 
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time to completion is continuously displayed for the benefit of the operator. Before and 

after an implant the beam is directed off the product holder into additional beam 

collection cups situated to one side of the normal implant scan pattern. 

The vacuum system is pumped by two 15.2 cm oil diffusion pumps, backed by two 14.7 

cfm direct drive rotary mechanical pumps, one mounted on the beam-line chamber, the 

other on the process chamber. The microprocessor-controlled system is operated in the 

automatic mode normally and has protective circuits to prevent damage in the event of 

power failure, improper operation, or system malfunction. No liquid N is required to 

operate the system. The status of the machine both during set-up and operation is 

displayed on a 7.6 cm CRT screen. 

Table 4.3. Specifications of the Zymet Z-100 ion implantation system 

System Specifications 

Beam Energy: 50-100 keV 

Ion Species: (~ 40 %) + N 2

+ (~ 60 %) 

Ion Current (maximum): 5 raA (electrical), 7.5 mA (particle) 

Implantation Angle: variable between + 0 ° and - 135 ° 

The metallic plates Ti6A14V, stainless steel and Co-Cr-Mo alloys, were all N"1" ion 

implanted with ion doses of 2 x 10 1 7 ions/cm2 at an accelerating voltage of 90 keV, after 

the laboratory metallographic preparations described in section 4.2.1. Additional ion 

implantation to a dose of 1 x 10 1 8 and 1 x 102 1 ions/cm2 were performed on Ti6A14V 

samples, at the same accelerating voltage. 

The polymeric wear samples (UHMWPE and XLPE) were N* ion implanted with doses 

of 1 x 101 5 and 5 x 101 5 ions/cm2 at an accelerating voltage of 80 keV. 

During the implantations, target temperature were kept below 100 °C, and the residual 

gas pressures in the implantation chamber to below 2 x 10"5 Pa to minimise the 

inclusion of oxygen. Low ion doses and ion energies were selected for the polymer 

materials due to their lower densities and thermal stability compared with the metals. 

Operating at low temperatures further ensured that any thermal degradation of the near 

substrate was avoided. Ion implantation time for the polymeric samples was about 4 
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minutes, and 70 minutes for the metallic samples. The ion implantation conditions used 

for each biomaterial implanted are listed in table 4.4. 

Table 4.4. Biomaterial N 4 ion implantation conditions 

Material Ion dose Ion Energy Beam Current 

(ions/cm2) (keV) (uA) 

Ti6A14V 2 x 10 1 7 90 2.8 

2 x 10 1 8 90 2.8 

2 x 102 1 90 2.8 

Stainless steel (REX) 2 x 10 1 7 90 2.8 

Co-Cr-Mo 2 x 10 1 7 90 2.8 

UHMWPE l x l O 1 5 80 2.8 

5x 10 1 5 80 2.8 

XLPE 5x 1 0 n 80 2.8 

4.2.3.1 Implanted N + Ion Distribution 

The profile of the depth and distribution of N 4 ' ion implantation within the various 

materials at their respective ion doses and energies were calculated using the TRIM 

Monte Carlo simulation computer program (SRIM 2000), developed by James F. 

Ziegler and J.P. Biersack [123]. 
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4.3 Analytical Techniques 

4.3.0 Introduction 

The analytical techniques used to characterise the surfaces of the modified and 

unmodified materials during the experimental work are described briefly under the 

following sections (4.3.2 - 4.3.7). 

4.3.1 Metallography 

Metallography was carried out to investigate the microstructures of the materials used in 

the study prior to any N* ion implantation modification and tribological wear tests, with 

the exception of Co-Cr-Mo alloys, UHMWPE and XLPE materials. Al l the 

metallographic samples were prepared by grinding and subsequent polishing on a 6 \xm 

and then 1 ]xm diamond cloth paste as described in detail in section 4.2.1. 

Metallographic Ti6A14V alloy samples were etched with 10 % HF (40 % aqueous 

solution), 30 % HNO3 and 60 % distilled H2O for 10 s, washed in a stream of distilled 

water and dried. 

Stainless steel metallographic samples were etched with 15 cm3 HNO3, 15 cm 3 HCL 

and 70 cm 3 distilled H2O for 10 s and washed in a stream of distilled water, followed by 

drying. 

Al l etched metallographic samples were examined using AFM, SEM, and optical 

microscopy, the techniques of which are described under sections 4.3.2, 4.3.6, and 4.3.7 

respectively. 

4.3.2 Atomic Force Microscopy 

Scanning Probe Microscopy (SPM) is a recent innovative technology that relies on a 

mechanical probe for the generation of magnified images. The instrument is operable in 

ambient air, liquid, or vacuum, and can resolve features in three dimensions down to 

sub-nanometre level, with no damage to the sample surface. 
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TopoMetrix TMX 1010 Explorer (Veeco Instruments, Cambridge) Atomic Force 

Microscopy (AFM) was used to characterise modified and unmodified material 

surfaces, to understand the topographical modification induced by N* ion implantation 

on the sub-micron scale, during the experimental work. In common with all SPMs, the 

AFM comprise of a force sensing probe, piezoelectric ceramics for positioning the 

probe, an electronic control unit, and a computer for controlling the scan parameters and 

generating and presenting images [124]. The force sensing system has a very high 

spatial resolution, on the sub-nanometre level. Unlike STM (conductive samples only), 

AFM allows scanning of both conductive and non-conductive samples. It can be divided 

into two primary scanning modes, contact mode (CM) and non-contact mode (NCM) 

atomic force microscopy, referring to whether or not the scanning probe actually comes 

into physical contact with the sample surface. 

A silicon nitride (SiaN4) pyramidal probe integrated onto the end of a cantilever with a 

weak spring constant (K) is generally used in the contact AFM. Most of the cantilevers 

used are typically 100 or 200 um long, with K of about 0.03-0.6 N/m. For the 

experimental work in this study, a cantilever of length 100 u,m with a force constant of 

0.21 N/m and a nominal resonance frequency of 66 kHz was used. During a scan, the 

cantilever is mounted onto the piezoelectric ceramic element, which is capable of 

producing x, y and z motions such that an area of surface could be scanned by the probe 

in the x and y directions whilst maintaining a constant height between sample and probe 

in the z direction. The probe tip mounted to the end of the cantilever (fig. 4.2) scans 

across the sample surface, coming into direct physical contact with the sample. The 

cantilever and probe exerts a positive loading force ranging from about 5-50 nN on the 

sample during a scan and places the probe tip in a constant state of repulsion with the 

sample. Varying topographic features cause deflections of the tip and cantilever as the 

probe tip scans. A light beam from a small laser is bounced off of the cantilever and 

reflected from a mirror on to a four-section photodetector. The amount of deflection of 

the cantilever or the force it applies to the sample is calculated from the difference in 

light intensity on the sectors of the photodetector, and the resulting change in detector 

current signal can be used in forming the AFM image. It is the simplest method 

involving the least instrument variables for gathering of topographic information even 

to the atomic level resolution. 
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There are several modes of contact scanning including topography, internal sensor, and 

fast track imaging, which can be acquired simultaneously. The most common and 

accurate method of producing a contact mode AFM image is to plot Z-piezo extension 

as the vertical scale. In this mode a feed back loop actively drives the Z-piezo scanner to 

minimise cantilever deflection. As the cantilever deflects during a scan, the change in 

sensor current immediately feeds back a correction voltage to the Z-piezo, restoring the 

cantilever to its original deflection (force), which can be adjusted using the set point 

current (fig. 4.3). 
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Figure 4.2. AFM imaging components (force sensor) 
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Figure 4.3. AFM Contact mode feedback loop 
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In non-contact mode AFM operation in common with CM, a silicon triangular 

pyramidal probe integrated onto the end of the cantilever is generally used. Unlike CM, 

the cantilever is oscillated at its resonant frequency above the sample. As the probe gets 

closer to the sample surface, the attractive force between the tip and the sample wil l 

change the oscillation amplitude and phase of the probe tip. Either change in phase or 

amplitude can be detected and used to control the tracking of the probe over the surface 

(feed back control loop) to obtain topographic data (figure 4.4). Amplitude detection is 

the non-contact method usually used for high-amplitude oscillation, whereas phase 

detection is usually used when the oscillation amplitude is relatively small. Non-contact 

scanning is sometimes preferable because as the cantilever moves across the sample 

surface in contact scanning, the lateral motion of the cantilever may cause damage to 

soft or fragile samples such as biological specimens or polymers. For this reason, NCM 

was mainly used on the polymeric samples investigated during the work. 
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Figure 4.4. AFM Non-contact feedback loop 

4.3.3 Non-contacting Interferometry 

An optical non-contacting interferometer (Zygo New View J 00, Zygo Corporation, 

USA) was used to investigate the surface topography and roughness parameters in 

particular, of the metallic and polymeric samples in both modified and unmodified 

forms, pre and post N " ion implantation and tribological wear tests. The non-contacting 

interferometer (NCI) analysis a surface area of 24488 mm2, and mean arithmetic mean 
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surface roughness (Ra) values of materials reported are an average of 10 measurements 

from different areas on the material surface. 

The NCI used is a general purpose imaging surface structure analyser that can provide 

imaged surface details of materials and accurate measurements to characterise them. It 

uses a scanning white light interferometry to image the microstructure and topography 

of surfaces in three dimensions without contacting the surface [125]. Light from the 

microscope divides into two, one portion reflecting from the test surface and the other 

from an internal high quality reference surface (fig. 4.5). Both portions are directed and 

recombined onto a solid-state camera where interference between the two light wave 

fronts shows as fringes. Measurements made on the fringes, is used to generate height 

information on the surface under examination. 

The system can image depths of up to 100 um with 0.1 nm z-resolution. 
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Figure 4.5. Schematic diagram of a non-contacting interferometer [54] 
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4.3.4 Microhardness Indentation 

Hardness of a material is it's resistance to localised plastic deformation [126, 127]. For 

the mechanics of material testing, hardness is the resistance to indentation [71], and for 

metals it is a measure of their resistance to plastic deformation. There are three types of 

hardness measurements known as indentation, dynamic and scratch, depending on the 

way in which the test is conducted. Indentation hardness measurements were chosen 

during the research work. There are several indentation hardness tests including Brinell 

(1900), Meyer, Vickers, Rockwell and Microhardness. 

Since the nitrogen ion implanted layers on the biomaterials used in this study were very 

thin, it was difficult to measure the hardness of the materials using high load 

indentation. Low load surface sensitive microhardness measurements were used to 

quantify N4" ion implantation induced surface hardening and hardness of the unmodified 

metallic and polymeric materials, using a Mitutoyo MVK-H2 Microhardness Testing 

Machine fitted with a Knoop diamond indenter. Knoop indenter was chosen rather than 

the Vickers pyramidal indenter, because the specific geometry of the Knoop indenter 

allows lower penetration depths than those obtained by the Vickers indenter with the 

same normal load [128], and thus provides a more surface specific measurement 

suitable for the thin surface layers produced during the work. The long and short 

diagonals of the Knoop pyramidal indenter have a 7:1 ratio, which produces 

indentations typically 15 % of the depth of an equivalent Vickers indent [129]. 

Microhardness testing was carried out normal to the surface of the material in all cases, 

at room temperature with loads ranging between 1 and 25 gf. For each test the small 

diamond indenter was forced into the surface of the material using the applied loads, 

and the resulting impression observed under a microscope and measured. The 

measurement is converted into a hardness number, which is designated by KHN on the 

machine. The Knoop microhardness values reported were an average of ten indentations 

on different areas on the surface of the materials, at the respective loads for a loading 

duration of 10 s (Appendix C2.1 - C2.3). The standard deviations from the mean 

hardness values were calculated at each indentation load during the measurements, and 

are shown on the reported values. Deviations from the mean values for all 

measurements were calculated to be less than 15 %. 
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4.3.5 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy was used to determine the surface chemical species 

and chemical environment of the metallic and polymeric biomaterials both in the form 

of N4" ion implanted and unimplanted samples, during the experimental work. It 

provides information of the surface composition and bonding states in thin layers near 

material surfaces. 

Monochromatic or unmonochromatic X-rays are often used to excite photoelectrons 

from within a target and the energy of which carries information of the binding energy 

from the source atom, and thus the nature of the atoms in the material. The 

characteristic kinetic energy of the photoelectron (£*) is given by the energy of the 

exciting X-ray photon (hv), which is totally absorbed in the process minus the 

characteristic binding energy (£#) of the electron, which is emitted from the material 

surface (equation 5.1). 

Ek = hv - EB - </> equation 5.1. 

Where </> is the work function or minimum threshold radiation energy whose value 

depends on the material being analysed. XPS is a surface sensitive technique, as 

although incident radiation may excite electrons deep in the material because of energy 

loses due to inelastic collisions within the target atoms, only the electrons arising from 

the top few atomic layers may escape the surface and contribute to the spectra. The 

photoelectrons are also sensitive to the state of bonding of the atom from which they 

come, manifested as an energy shift of one or two eV, so for instance metallic Ti can be 

distinguished from Ti in an oxide (i.e. Ti6A14V used in this study). Despite the 

advantages of XPS as a sensitive surface chemical analysis technique, it does not offer 

good spatial resolution because the exciting beam of X-rays covers a wide area and 

cannot be readily focused. 

The surface chemical analysis of the metallic and polymeric samples were undertaken 

on a VG Scientific ESCALAB 5 X-ray photoelectron spectrometer using 

unmonochromated Mg K a X-rays, operated at an anode potential of 10 kV and a 

filament emission current of 20 mA at the University of Nottingham. Mg source rather 

than an Al Ka radiation was used, in order to prevent K|3 satellite of the main oxygen 
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peak O Is (530 eV) interfering with the Ti 2p 3 / 2 peak (458.7 eV in T i0 2 , and 455.6 eV 

in Ti-N). Al Kp x-ray satellite occurs at 70 eV below the O Is peak (i.e. 460 eV), 

whereas the Mg KP x-ray satellite occurs at 48 eV below O Is (i.e. 482 eV) and 

therefore well away from the Ti 2p 3 / 2 peak. The use of the Mg anode also had the 

advantage of marginally better peak resolution with respect to the Al anode. 

The specimen take-off angle used was 90° and the area analysed was approximately 1 

cm . The electron spectrometer comprised of a hemispherical sector analyser and was 

operated in the constant energy mode at electron pass energies of 20 eV for the high-

resolution element peaks. The survey scan spectra for each sample was collected in the 

0-1100 eV binding energy range using a pass energy of 50 eV. Interpretation of the 

spectra, background removal, peak fitting, and peak area determination were performed 

using a VGX 9000 computer software package. The instrument was standardised 

against the C Is spectra peak at 285 eV to correct binding energy shifts due to charging. 

This correction was applied to all element peaks following background substraction or 

peak deconvolution to give 'true' binding energy values. Quantitative data (i.e., atomic 

% composition) were derived using elemental sensitivity factors (dividing peak areas by 

sensitivity factor for each element and normalising data to 100 % ) . 

4.3.6 Scanning Electron Microscopy 

A JEOL JSM-IC 848 SEM {JEOL Instruments, Japan) equipped with a PGT Avalon 

Energy Dispersive X-ray analyser (EDX) was used to examine and determine the 

surface composition of the metallic biomaterials, microstructures of chemically etched 

Ti6Al4V and stainless steel samples, and modified and unmodified polymeric and 

metallic surfaces pre and post wear tests, during the experimental work. The surfaces of 

the polymer wear pins were sputtered with a thin gold coating to prevent charging by 

rendering them electrically conducting prior to examination. The attached EDX was 

mainly used for analysing the composition of the metallic biomaterials prior to 

modification and tribological wear tests. 

The scanning electron microscope employs a beam of electrons directed at the surface 

of the test material, and is primarily used to study the surface or near surface structure 

of bulk materials [130]. Figure 4.6 shows the schematic representation of the main 

components and mode of operation of a simple SEM. Electrons are accelerated to an 
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energy usually between 1 and 30 keV from the electron source, usually of the tungsten 

filament thermionic emission type or field emission gun (a tungsten hairpin source used 

in this work). The beam of electrons are then demagnified by the condenser lenses 

before hitting the specimen surface, and then scanned across the specimen surface by 

the scan coils. A detector then counts the number of low energy secondary electrons or 

other radiation given off from each point on the surface, and at the same time, the spot 

of a cathode ray tube (CRT) is scanned across the screen. The brightness of the spot is 

modulated by amplified current from the detector. 
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Figure 4.6. Schematic diagram showing the main components of an SEM [130] 

4.3.7 Optical Microscopy 

Examination of metallographic samples for microstructural determination, as well as 

investigation of tribological wear features on worn sample surfaces were carried out 

using optical microscopy with both conventional and Nomarski contrast techniques with 

an Axiotech ReflectedLight Microscope (Zeiss Instruments Ltd) [131, 132]. 
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CHAPTER FIVE - RESULTS 

5.0 Introduction 

The results of the experimental procedures outlined in Chapter 4 (same for all the 

biomaterials used in the research work) are reported in this chapter under the sections 

5.1-5.3 respectively for Ti6A14V alloy and UHMWPE; Stainless steel and UHMWPE; 

and Co-Cr-Mo and UHMWPE. These include metallography, N* ion implantation, 

microhardness, tribological wear test, topography, and chemical composition results of 

the selected biomaterials. 

5.1 Ti6A14V alloy, UHMWPE and X L P E 

5.1.0 Introduction 

The metallographic results of the microstructure of the Ti6A14V alloy used in this 

study, N* ion implantation distribution in both Ti6A14V and UHMWPE substrates, 

microhardness of the materials in both modified and unmodified forms, tribological 

wear test results of UHMWPE (modified and unmodified) articulating against Ti6A14V, 

topography and standard roughness of the as polished and modified samples, and 

chemical composition of the modified and unmodified materials are all presented under 

the following sections (5.1.1 to 5.1.6). 

5.1.1 Metallography 

An optical photomicrograph, SEM micrograph, and AFM image of the etched 

metallographic Ti6A14V samples are shown in figures 5.1, 5.2 and 5.3 (a) respectively. 

The optical micrograph (fig. 5.1) resolved the classic two phase a and (3 microstructures 

of the alloy (section 2.1.1). The sample was then examined under the SEM where high 

magnification was obtained to resolve the microsructures clearly (fig. 5.2). 

In the top view 100 x 100 u.m AFM image (fig. 5.3 (a)), microstructure phases o f « 10 

|im diameter are visible on the etched sample surface, a being the bright and J3 dark 

areas. Bright areas represents high topography (hard spots) and dark areas imply low 

topography. Figure 5.3 (b) shows a top view 100 x 100 urn AFM image of the same 
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Ti6A14V material implanted with 2 x 10 1 7 N 4 ions/cm2 and then etched. As can be seen, 

the classic two phase microstructure was difficult to resolve, as a result of the surface 

modification. Optical and SEM photomicrographs of the modified sample equally 

showed poor resolution of the duplex microstructure. 

9 

Figure 5.1. Optical photomicrograph of HF etched Ti6A14V 

Figure 5.2. SEM micrograph of HF etched Ti6A14V 
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Figure 5.3. Top view AFM images of FIF etched (a) unmodified Ti6A14V and (b) 2 x 

10 1 7 TST ions/cm2 implanted Ti6A14V 

5.1.2 Projected N" Ion Distribution 

The results of the TRIM stopping range calculations for N4" ions into Ti6A14V and 

UHMWPE are shown in figures 5.4 to 5.11. The calculations were made using TST as the 

bombarding ions, with an accelerating energy of 90 and 80 keV respectively for the 

Ti6A14V and UHMWPE targets. Target densities of 4.4 g/cm3 and 0.93 g/cm3 were 

used respectively for Ti6A14V and UHMWPE. 

Simulation of the range of N 4 ions into Ti6A14V target is shown in figure 5.4. The 

estimated mean longitudinal range of >T ions in the target was calculated to be at a 

depth of 0.15 urn with straggling of 0.05 urn. The overall distribution of the ions 

assumed approximately a classical Gaussian profile, as shown on the figure. The 

maximum N 4 ion penetration depth was approximately 0.25 u,m into the Ti6A14V 

surface. Figure 5.5 shows the calculations of the vacancy distribution produced by both 

ions and target atom recoil collisions, where a total of 358 target vacancies were 

produced by each incoming fsT ion. 

Figure 5.6 shows the energy transmitted to the target atom recoils from the incoming N + 

ion, where the energy dissipation can clearly be seen to be maximum at the mean 
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projected ion range for the transferral to recoils. Figure 5.7 shows the TRIM 

simulation of the ionisation energy loss of both ions and target atoms. The ionisation 

energy loss was observed to be highest closest to the sample surface, ionisation being an 

electronic effect. 
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Figure 5.4. TRIM simulation of N 4 ion ranges in Ti6A14V 
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Figure 5.5. TRIM simulation of vacancy production within Ti6A14V target 
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Figure 5 .6. TRIM simulation of energy transferral to recoils for >T ion implantation into 

Ti6A14V 
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Figure 5.7. TRIM simulation of ionisation energy loss o f N + ions into Ti6A14V 

Figure 5.8 shows the calculation for the range of J"T ions into the UHMWPE target, 

where the mean longitudinal range of the ions was estimated at a depth of 0.26 um with 

straggling of 0.04 |j.m. The distribution of the ions was observed to assume an 
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approximately Gaussian profile, and a 0.35 um maximum depth of N 4 ions into 

UHMWPE surface was calculated. Calculation of the vacancy distribution produced by 

both N + ion collisions and UHMWPE atom recoil collisions are shown in figure 5.9, 

where a total of 368 target vacancies were produced by each incoming N + ion. 

The energy transmitted to the target atom recoils from the incoming N + ions was 

calculated and the results shown in figure 5.10. The energy dissipation was maximum at 

the mean projected N 4 ion range for the transferral to recoils. Figure 5.11 shows the 

simulation of the ionisation energy loss of both ions and target atoms, where the 

ionisation energy loss was observed to be highest closest to the sample surface, 

ionisation being an electronic effect. 
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Figure 5 .8. TRIM simulation of the range of N 4 ions in UHMWPE 
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Figure 5 .9. TRIM simulation of vacancy production within UHMWPE target upon fvT 

ion implantation 
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Figure 5.10. TRIM simulation of energy transferral to recoils for N"1" ion implantation 

into UHMWPE 

85 



IONIZATION 
g ^ I O N S 

H 
n a 

R E C O I L S 
24 

20 

16 

12 

Target Depth 1 urn 

Figure 5.11. TRIM simulation of ionisation energy loss of N 4 ions into UHMWPE 

5.1.3 Knoop Microhardness Determination 

The Knoop microhardness results of the unmodified and N4" ion implanted Ti6A14V 

samples are reproduced in figure 5.12. The microhardnesses of the modified samples 

were observed to increase with decreasing indentation load, and the highest values were 

measured at an indentation load of 1 gf. Hardness of the N4" ion implanted samples 

increased with increasing implantation dose, and the results indicated an increase in 

mean hardness from 347 ± 20 KHNigf for unmodified material, to 730 ± 32 KHNigf for 

material implanted with 2 x 10 1 7 IST ions/cm2, 1064 ± 119 KHNigf for material 

implanted with 1 x 101 8 N 4 ions/cm2, and 1413 ± 183 KHNigf for material implanted 

with 1 x 102 1 N4" ions/cm2 (Appendix C2). 
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Figure 5.12. Knoop microhardness of unmodified and N4" ion implanted Ti6A14V. 

Where sample 1 is unmodified Ti6A14V, sample 2 is 2 x 10 1 7 N4" ions/cm2 implanted 

Ti6AJ4V, sample 3 is 1 x 1018]Sr ions/cm2 implanted Ti6A14V, and sample 4 is 1 x 10 2 1 

N + ions/cm2 implanted Ti6A14V. 

Inspection of figures 5.13 to 5.15 demonstrates the surface dependence and depth 

graded property modification induced upon ion implantation respectively for samples 
17 18 2 1 4 " 2 

modified with 2 x 10 , 1 x 10 and 1 x 10 N ions/cm , where the mean hardness 

values at different loads have been plotted against the mean knoop indent penetration 

depth into the samples. The indentation depths were calculated from the indent width 

using the Knoop indenter geometry (Appendix CI) for loads of 1, 3, 5, 10 and 25 gf 

respectively. The reported values are an average of 10 measurements under each load. 
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Figure 5.14. Depth dependence of Knoop microhardness for 1 x 10 In ion/cm 

implanted Ti6A14V 
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Figure 5.15. Depth dependence of Knoop microhardness for 1 x 102 1 N* ion/cm2 

implanted Ti6A14V 

Because of the low yield strength of the UHMWPE and XLPE, Knoop indentations at 

loads higher than 1 gf were difficult to measure, producing excessive surface 

deformation of the material at the higher loads. Knoop microhardness were measured at 

a load of 1 gf and the results indicated an increase in mean hardness from 3.4 + 0.5 

KHNigf for unmodified UHMWPE, to 8.6 + 0.7 KHNigf for UHMWPE implanted with 

1 x 101 5 N+ ions/cm2, and 12.8 ± 1.6 H K N l g f f o r UHMWPE implanted with 5 x 101 5 N + 

ions/cm2. An increase in mean hardness from 6.1 ± 0.8 KHNigf for unmodified XLPE, 

to 14.5 ±1.1 KHNigf for XLPE implanted with 5 x 101 5 N+ ions/cm2 was also observed. 

5.1.4 Tribological Wear Test 

5.1.4.0 Introduction 

The tribological wear test results of UHMWPE and XLPE wear pins (both in modified 

and unmodified forms) articulating against Ti6A14V plates (modified and unmodified) 

are reported under the sections 5.1.4.1 to 5.1.4.6 (Appendix A6). 
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5.1.4.1 Unmodified UHMWPE against unmodified Ti6A14V 

Tribological wear test results of unmodified UHMWPE against unmodified Ti6A14V 

sliding couple, expressed in volume loss of the unmodified UHMWPE wear pins 

against sliding distance are shown in figure 5.16. There were no significant differences 

between the wear factors of the UHMWPE wear pins. The overall mean wear factor (ko) 

of unmodified UHMWPE rotating and sliding against unmodified Ti6A14V was 

calculated to be 2.77 ± 0.16 x 10"6 mm3/Nm over a sliding distance of 207 km (> 5.5 

million sliding wear cycles). An initial slightly higher mean ko of 3.04 ± 0.17 x 10"6 

mm 3/Nm was measured up to a sliding distance of 67 km, due to a wearing in type 

process. The steady-state mean wear factor of 2.41 ± 0.11 x 10"6 mm3/Nm was 

measured between 67-207 km sliding distance. Plate weight pre and post wear test 

(weight loss) are shown in table 5.1. 

Extensive damage was observed via AFM, NCI, and optical microscopy, in the wear 

tracks of the Ti6A14V counterface plates after only a few wear cycles and the damage 

was observed to increase with test duration. The bovine serum test lubricant discoloured 

to black with test duration and was found to contain dark particulate debris. Machining 

and microtoming marks on the surface of the UHMWPE wear pins wore away with test 

duration, and the surfaces became smooth, showing low Ra values (table 5.2) post wear. 

No polymer transfer films were seen on the surfaces of the unmodified Ti6A14V plates, 

and the wear curves for all UHMWPE wear pins were linear. 

AFM and NCI examinations of the unmodified Ti6A14V plates post wear test, revealed 

distinctive wear tracks, characterised by random deep scratches and grooves in the wear 

tracks of the plates, with high Ra values. AFM revealed the granular structure of the 

worn unmodified UHMWPE pin surfaces, a surface morphology that resembled those 

of ex-vivo unmodified UHMWPE components, indicative of similar wear mechanisms 

of unmodified UHMWPE in vitro and in vivo. 
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Figure 5.16. Wear of unmodified UHMWPE pins against unmodified Ti6A14V plates 

5.1.4.2 N' ion implanted UHMWPE against unmodified Ti6A14V 

A graph of 1 x 101 5 and 5 x 10 1 5 N 4 ion/cm2 implanted UHMWPE pin volume loss 

against sliding distance when tested against unmodified Ti6A14V is shown in figure 

5.17. Modified UHMWPE mean wear factors of 2.44 ± 0.02 and 2.55 ± 0 . 0 4 x 10'6 

mm3/Nm were calculated respectively for 5 x 101 5 and 1 x 10 1 5 N 4 ion/cm2 implanted 

UHMWPE samples over a sliding distance of 204 km (> 5.5 million sliding wear 

cycles). Initial mean wear factors of 2.56 ± 0.01 and 2.82 ± 0.05 x 10"6 mm3/Nm were 

calculated for 5 x 101 5 and 1 x 101 5 N 4 ion/cm2 implanted UHMWPE samples 

respectively up to a sliding distance of 95 km. 

During the wear test, the implanted layer on the polymer pin surface was observed to 

wear away after only a few sliding wear cycles (« 10 km of sliding). As a result, the 

wear rates of the pins would be expected to continue steadily at the same rate as those 

with no surface modification. This was seen when steady-state mean wear factors of 

2.26 ± 0.01 and 2.23 ± 0.03 x 10"6 mm3/Nm were calculated respectively for 5 x 10 1 5 

and 1 x 1015 N4" ion/cm2 implanted UHMWPE between a sliding distance of 95-204 km. 

These values correspond closely with the steady-state mean k 0 of unmodified 
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U H M W P E articulated against unmodified Ti6A14V (section 5.1.4.1), which provides an 

indication o f test repeatability and reproducibility. 

Figure 5.18 shows the results o f 5 x 10 1 5 ion/cm 2 implanted U H M W P E articulated 

against unmodified Ti6A14V. A mean k 0 o f 2.42 ± 0.07 x 10"6 mm 3 /Nm was calculated 

for the modified U H M W P E over a sliding distance o f 205 km (> 5.5 mil l ion wear 

cycles). 

Surface damage was observed in the wear tracks o f the unmodified Ti6A14V 

counterface plates after a low number o f wear cycles and increased with test duration. 

The damage was characterised by random deep scratches and grooves in the wear tracks 

o f the plates and high values, indicative o f abrasive wear. Machining and 

microtoming marks as well as brown colouration due to ]ST ion implantation on the 

surfaces o f the U H M W P E pins wore away, and the surfaces became smooth. The 

bovine serum lubricant discoloured to black with test duration and was found to contain 

dark particulate debris. The wear curves on the graph were linear, and no transfer f i lms 

were observed on the plates during and post wear test. 
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Figure 5.17. Wear o f 1 x 10 1 5 and 5 x 10 1 5 TST ion/cm 2 implanted U H M W P E pins 

against unmodified Ti6A14V plates. Where pins 1 and 2 are 5 x 10 1 5 ion/cm 2 

implanted U H M W P E samples, and pins 3 and 4 are 1 x 10 1 5 >T ion/cm 2 implanted 

U H M W P E samples. 
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15 Figure 5.18. Wear o f 5 x 10 >T ion/cm implanted U H M W P E pins against unmodified 

Ti6A14V plates 

5.1.4.3 Unmodified UHMWPE against N* ion implanted H6A14V 

The wear results o f unmodified U H M W P E against N + ion implanted Ti6A14V plates 

with 3 different implantation doses are reported in this section. Figures 5.19 and 5.20 

show the wear graphs o f unmodified U H M W P E pins sliding and rotating respectively 

against 2 x 10 1 7 N * ions/cm 2 implanted Ti6A14V; and 1 x 10 1 8 and 1 x 10 2 1 ions/cm 2 

implanted Ti6A14V plates. 

For unmodified U H M W P E against 2 x 10 1 7 N * ions/cm 2 implanted Ti6A14V (f ig. 19), 

an U H M W P E mean wear factor o f 1.65 ± 0.05 x 10"6 mm 3 /Nm was calculated over a 

test duration o f 197 km (> 5 mill ion sliding wear cycles). A n initial slightly higher mean 

ko o f 1.86 ± 0.08 x 10"6 mm 3 /Nm was measured up to a sliding distance o f 63 km, due 

to a wearing in type process, and a steady-state mean wear factor o f 1.50 ± 0.02 x 10"6 

mm 3 /Nm was measured between 63-197 km sliding distance. Compared with the 

unmodified Ti6A14V plates articulated against unmodified U H M W P E pins (section 

5.1.4.1), little damage was observed in the wear tracks o f the 2 x 10 1 7 N * ions/cm 2 

Ti6A14V plates during the test. Examinations o f the wear tracks under A F M and N C I 

post wear revealed less distinctive wear tracks on the plates, and measured R* values 
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(table 5.2) were about that o f the pre wear plates. No dark colourations and black 

particulate debris were observed in the bovine serum lubricant for the duration o f the 

test. The wear curves were linear and no transfer films were observed on the plates. As 

in the test with unmodified U H M W P E against unmodified Ti6A14V plates, the 

unmodified U H M W P E worn pin surface morphology in this test resembled those o f ex-

vivo components. 
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17 Figure 5.19. Wear o f unmodified U H M W P E pins against 2 x 10 INT ions/cm 

implanted Ti6A14V plates 

Figure 5 .20 shows the graph o f unmodified U H M W P E wear volume loss against sliding 

distance, articulated against N * ion implanted Ti6A14V plates implanted wi th two 

different implantation doses. Plates 1 and 2 were implanted with 1 x 10 2 1 >T ions/cm 2, 

and plates 3 and 4 wi th 1 x 10 1 8 >T ions/cm 2. Over the duration o f the test, up to a 

sliding distance o f 181 km (> 5 mil l ion sliding wear cycles), mean unmodified 

U H M W P E wear factors o f 1.79 ± 0.03 and 2.08 ± 0.05 x 10"6 mm 3 /Nm were calculated 

respectively when articulated against 1 x 10 1 8 and 1 x 10 2 1 N * ions/cm 2. The mean k 0 o f 

unmodified U H M W P E increased with N * ion implantation dose o f the counterface 

T i6Al4V plate, significantly so against 1 x 10 2 1 IST ions/cm 2 implanted Ti6A14V plates 

compared wi th unmodified U H M W P E against 2 x 10 1 7 >T ions/cm 2 and 1 x 10 1 8 N * 

ions/cm 2 implanted Ti6A14V plates. Two distinct wear phases could clearly be seen on 

the graph for the polymer pins (fig.5.20). During the initial wear phase up to a sliding 
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distance o f 58 km, similar mean U H M W P E wear factors o f 2.47 ± 0.04 and 2.46 ± 0.06 

x 10 mm / N m were calculated respectively against 1 x 1 0 and 1 x 1 0 W ions/cm , 

an indication o f similar polymer wear mechanisms occurring. These values were higher 

than the mean values calculated over the duration o f the test due to a wearing in type 

phenomenon. After this period, the polymer pin wear mechanisms changed to give the 

steady-state wear phases. Mean k<, o f 1.35 ± 0.01 and 1.90 ± 0.01 x 10"6 mm 3 /Nm were 

calculated respectively against the two different implantation doses for this wear phase 

(between 58-181 km sliding distance). 

A F M examination o f the worn samples revealed the wear tracks o f the modified plates 

post testing, and compared wi th the surfaces o f unmodified plates articulated against 

unmodified U H M W P E (section 5.1.4.1), the surface damage was minimal. However, 

the standard roughness values on the surface o f the modified materials post wear 

increased with increasing implantation dose. 
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Figure 5.20. Wear o f unmodified U H M W P E pins against 1 x 10 2 1 and 1 x 10 1 8 N 4" 
2 2 1 

ions/cm implanted Ti6A14V plates. Where pins 1 and 2 are articulated against 1 x 10 

ion/cm 2 implanted Ti6A14V plates, and pins 3 and 4 articulated against 1 x 10 1 8 r>T 

ion/cm 2 implanted Ti6A14V plates. 
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5.1.4.4 N + ion implanted UHMWPE against N + ion implanted Ti6A14V 

5 x 10 1 5 N* ions/cm2 implanted U H M W P E wear pins were tested against 2 x 10 1 7 TST" 

ions/cm2 implanted Ti6A14V plates, and the graph of the wear volume loss of the 

modified U H M W P E against sliding distance is shown in figure 5.21. 

A mean modified U H M W P E ko of 1.27 ± 0.05 x 10"6 mm 3/Nm was calculated over the 

whole duration of the test, up to 193 km (> 5 million sliding wear cycles). There was a 

significant reduction in the wear of the modified UHMWPE compared to that of the 

unmodified U H M W P E articulated against unmodified Ti6A14V (section 5.1.4.1). There 

was an initial mean k 0 of 1.46 ± 0.01 x 10'6 mm 3/Nm up to a sliding distance of 66 km, 

and a mean steady-state ko of 1.13 ± 0.09 x 10"6 mm3/Nm was calculated between 66-

193 km sliding distance. 

Compared with modified and unmodified Ti6A14V plates articulated against 

unmodified UHMWPE, few scratches were observed post wear on the 2 x 10 1 7 N+ 

ions/cm2 Ti6A14V plates (in the region of pin contact on the plate). Examination of the 

wear tracks under A F M and NCI revealed no distinctive wear tracks and the implanted 

U H M W P E worn pin surface morphology was observed again to resemble those of ex-

vivo components. Measured mean surface Ra values on the plates (table 5.2) post wear, 

were found to be about the same as those pre wear test, and no dark colourations and 

black debris were observed in the bovine serum test lubricant for the duration of the 

test. 
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Figure 5.21. Wear o f 5 x 10 1 5 N * ions/cm 2 implanted U H M W P E pins against 2 x 1 0 

N 1 " ions/cm 2 implanted Ti6A14V plates 

5.1.4.5 X L P E against T16A14V 

The wear o f XLPE wear pins against unmodified Ti6 A14 V plates was very high, and an 

initial mean ko o f 4.79 ± 0.01 x 10"6 mm 3 /Nm was calculated after only a sliding 

distance o f 58 km (1.6 mill ion sliding wear cycles). As a result o f the high initial wear 

rate o f the XLPE samples, the test was stopped. 

A wear test o f unmodified and 5 x 10 1 5 N 4 ions/cm 2 implanted XLPE (two wear pins o f 

each material) against 2 x 10 1 7 N 4 ions/cm 2 implanted Ti6A14V was performed, and the 

results o f the graph o f the wear volume loss against sliding distance is shown in figure 

5.22. The graph shows a difference in wear rates between the unmodified and modified 

XLPE wear pins. Mean k Q o f 1.05 ± 0.02 x 10"6 mm 3 /Nm was calculated for the 

implanted XLPE compared wi th 1.24 ± 0.02 x 10"6 mm 3 /Nm for the unmodified XLPE 

wear pins over the whole duration o f the test, up to 187 km (> 5 mill ion sliding wear 

cycles). No surface damages and polymer transfer fi lms were observed on the plates 

post wear by surface analysis and the bovine serum test lubricant showed no dark 

colouration with test duration. The mean wear factors calculated were o f similar 

magnitude to that calculated for modified U H M W P E against modified Ti6A14V. 
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Figure 5.22. Wear o f 5 x 10 1 5 >T ions/cm 2 implanted and unmodified XLPE pins 

against 2 x 10 1 7 >T ions/cm 2 implanted Ti6A14V plates. Where pins 1 and 2 are 5 x 10 1 5 

N + ions/cm 2 implanted XLPE samples, and pins 3 and 4 are unmodified XLPE samples 

5.1.4.7 Summary of Results 

The tribological wear test results, and the mean values o f all the materials tested pre 

and post wear are summarised and presented respectively in tables 5.1 and 5.2. Table 

5.3 summarises the measured changes in hardness for the Ti6A14V, U H M W P E and 

XLPE substrates. 

Figure 5.23 summarises the results o f the mean wear curves o f U H M W P E pins 

(modified and unmodified) articulated against Ti6A14V plates (modified and 

unmodified). 
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Table 5.1. Summary of in vitro tribological performance of unmodified and ion 

implantation modified polymer/Ti6A14V biomaterial wear couples after 5.5 million 

cycles wear testing 

Wear Couple* Mean Polymer Pin 

ko (x 10 - 6 mm 3/Nm) 

Mean Ti6A14V 

Plate Wt Loss (ug) b 

Unmodified UHMWPE/unmodified 

Ti6A14V 

2.77 ± 0 . 1 6 214 ± 0 . 0 8 

(a) 5 x 10 1 5 N 4 ions/cm2 implanted 

UHMWPE/Unmodified Ti6A14V 

(b) 1 x 10 1 5 N* ions/cm2 implanted 

UHMWPE/Unmodified Ti6A14V 

2.44 ± 0.02 

2.55 ± 0 . 0 4 

200 ± 0.06 

206 ± 0.04 

5 x 10 >T ions/cm implanted 

UHMWPE/Unmodified Ti6A14V 

2.42 ± 0.07 198 ± 0 . 0 8 

Unmodified UHMWPE/2 x 10 1 7 

ions/cm2 implanted Ti6A14V 

1.65 ± 0 . 0 5 81 ± 0 . 0 6 

(a) Unmodified UHMWPE/1 x 10 1 8 

ions cm" implanted Ti6A14V 

(b) Unmodified UHMWPE/1 x 10 2 1 

ions/cm2 implanted Ti6A14V 

1.79 ± 0 . 0 3 

2.08 ± 0 . 0 5 

99 ± 0.02 

126 ± 0 . 0 4 

5 x 10 >T ions/cm implanted 

UHMWPE/2 x 10 1 7 N* ions/cm2 

implanted Ti6A14V 

1.27 ± 0 . 0 5 79 ± 0.04 

Unmodified XLPE/unmodified 4.79 ± 0 . 0 1 210 ± 0 . 0 6 

(a) 5 x 10 1 5 N* ions/cm2 implanted 

X L P E / 2 x 10 1 7 N* ions/cm2 implanted 

Ti6A14V 

(b) Unmodified X L P E / 2 x 10 1 7 N + 

ions/cm2 implanted Ti6A14V 

1.05 ± 0 . 0 2 

1.24 ± 0 . 0 2 

104 ± 0 . 0 3 

128 ± 0 . 1 0 

"Samples implanted with >T ions at 90 keV (Ti6A14V), and 80 keV (polymer) 
6Plate measured before and at the end of test 
cTest stopped after 1.6 million cycles 
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Table 5.2. Mean arithmetic mean surface roughness (Ra) of Ti6A14V, U H M W P E and 

X L P E samples measured by non-contacting optical interferometry 

Sample Surface Mean Ra (u,m) Sample Surface 

Pre Wear Post Wear 

Unmodified Ti6A14V (articulated against 

modified and unmodified UHMWPE) 

0.011 ± 0 . 0 0 2 0.082 ± 0.006 

2 x 10 I V N+ ions/cm2 implanted Ti6A14V 

(articulated against modified and unmodified 

UHMWPE) 

0.012 + 0.002 0.016 + 0.006 

1 x lO'^TvT ions/cm2 implanted Ti6A14V 

(articulated against unmodified UHMWPE) 

0.032 ± 0.004 0.040 ± 0.002 

1 x 10 2 1 N+ ions/cm2 implanted Ti6A14V 

(articulated against unmodified U H M W P E ) 

0.049 ± 0.006 0.058 ± 0.004 

Unmodified U H M W P E (articulated against 

unmodified and modified Ti6A14V) 

1.2 + 0.12 0.05+0.02 

1 x 10" N4" ions/cm2 implanted U H M W P E 

(articulated against unmodified Ti6A14V) 

1.2 + 0.13 0.06 ± 0.02 

5 x 1 0 n ions/cm2 implanted U H M W P E 

(articulated against unmodified and modified 

Ti6A14V) 

1.3+0.15 0.05 ± 0.04 

X L P E (articulated against unmodified and 

modified Ti6A14V) 

1.4 + 0.14 0.06 ± 0.02 

5 x 1 0 n IST ions/cm2 implanted X L P E 

(articulated against modified Ti6A14V) 

1.4 + 0.12 0.07 ± 0.03 
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Table 5 .3. Summary of Knoop microhardness of unmodified and N + ion implantation 

modified Ti6A14V, UHMWPE and X L P E substrates 

Substrate" Knoop Microhardness 

( K H N i t f ) 

Unmodified Ti6A14V 347 ± 20 

2 x 10 1 V TsT ions/cm2 implanted Ti6A14V 730 ± 32 

1 x 10 1 8 N 4 ions/cm2 implanted Ti6A14V 1064 ± 1 1 9 

1 x 10211ST ions/cm2 implanted Ti6A14V 1413 ± 1 8 3 

Unmodified U H M W P E 3.4 + 0.5 

1 x 10 1 5 N 4 ions/cm2 implanted U H M W P E 8 . 6 ± 0 . 7 

5 x 1 0 n N* ions/cm2 implanted U H M W P E 12.8 + 1.6 

Unmodified X L P E 6.1+0.8 

5 x 1 0 n TST ions/cm2 implanted X L P E 14.5 + 1.1 

"Substrates implanted with ions at 90 keV (Ti6A14V), and 80 keV (polymer) 
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Figure 5.23. Mean wear behaviour o f U H M W P E pins (modified and unmodified) 

against Ti6A14V plates (modified and unmodified). Where couple 1 is unmodified 

UHMWPE/unmodified Ti6A14V; couple 2 is Unmodified UHMWPE/2 x 10 1 7 N * 

ions/cm 2 implanted Ti6A14V; couple 3 is Unmodified UHMWPE/1 x 10 2 1 ¥t ions/cm 2 

implanted Ti6A14V; couple 4 is Unmodified UHMWPE/1 x 10 1 8 N + ions/cm 2 implanted 

Ti6A14V; and couple 5 is 5 x 10 1 5 ions/cm 2 implanted UHMWPE/2 x 10 1 7 N 1" 

ions/cm 2 implanted Ti6A14V wear couple (table 5.1). 

5.1.5 Surface Topography 

A F M images o f non-implanted and N * ion implanted Ti6A14V and U H M W P E surfaces, 

pre and post wear test are shown in figures 5.24 to 5.38. 

A 100 x 100 | i m top view A F M image o f the surface topography, and surface analysis 

results o f a line profile across the sample surface showing typical standard surface 

roughness data and section profile o f the unmodified polished Ti6A14V is shown in 

figure 5.24. The roughness data was produced f rom a single A F M traverse across the 

sample surface, where is the roughness average, Rp is the maximum height o f the 

profile above the mean line, Rt is maximum peak to valley height, and Rp m and Rtm are 
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mean values representative o f the entire profile. The surfaces were characterised by 

scratch marks from polishing. 

106 nm Standard Roughness 

Ra: 11.44 nm 
Rp: 24.99 nm 

5 3 
Rprn U.55 nm 

53.87 nm 
29.89 nr 

so 100 urn 

I O O I O T I 

50 um 

Opim 
0 jim 50 |im 100 pirn 

Figure 5.24. Top view A F M image and topographic data o f polished Ti6A14V 

Upon N + ion implantation, changes in the surface topography were observed with the 

A F M only under high magnification. Figure 5.25 shows a series o f 10 u,m2 top view 

A F M images o f (a) unmodified (b) 2 x 10 >T ions/cm (c) 1 x 10 >T ions/cm (d) 1 x 

10 2 1 N 4 ions/cm 2 implanted Ti6A14V samples. Line analysis o f the surfaces on these 

images, produced topographic data showing an increase in surface roughness wi th ion 

implantation dose (f ig . 5.26). Figure 5.27 to 5.29 shows higher magnification 3-D 

projection 2.2 u m 2 images o f the modified surfaces, suggesting some form o f surface 

degradation (sputtering and blister formation) on the surfaces, increasing wi th the 

implantation dose. 
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Figure 5.25. Top view A F M images o f unmodified and modified (a) unmodified, (b)2x 

10 1 7 N+ ions/cm 2 implanted, (c) 1 x 10 1 8 ions/cm 2 implanted, and (d) 1 x l O 2 1 N 4 

ions/cm 2 implanted Ti6A14V 
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(c) 1 x 10 1 8 N 4 ions/cm 2 implanted 
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Figure 5.26. A F M line analysis profiles and topographic data o f the 10 u,m top view 

A F M images o f unmodified and modified Ti6A14V 
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13.74 nm 
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2200 nm 

2200 nm 
1100 nm 
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17 Figure 5.27. High magnification 3-D A F M projection image o f 2 x 10 IsT ions/cm 

implanted Ti6A14V 

0 nm 
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2200 nm 
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18 Figure 5.28. High magnification 3-D A F M projection image o f 1 x 10 >T ions/cm 

implanted Ti6A14V 
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Figure 5.29. High magnification 3-D A F M projection image o f 1 x 10 2 1 N 4 ions/cm 2 

implanted Ti6A14V 

A F M examination o f the worn surface o f unmodified Ti6A14V plates post wear test 

against unmodified UHMWPE, revealed distinctive wear tracks characterised by severe 

scratches and higher standard roughness values. Figure 5.30 is typical o f the surface 

topography o f worn unmodified T i6Al4V post wear. In contrast, the topography o f the 

implanted plates showed less extensive damage in the region o f pin contact on the plates 

and lower standard roughness values post wear, compared wi th the unmodified plates 

(figures 5.31-5.33). Further, A F M surface analysis o f the worn modified plates showed 

that the standard roughness values o f the plates increased wi th implantation dose (f ig. 

5.34). 
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Figure 5.30. Unmodified Ti6A14V alloy topography post in vitro wear testing (AFM) 

showing extensive surface damage in the wear track zone 

98.89 nm 
0 nm 

100 urn 

100 urn 50 urn 

50 urn 

0 urn 0 \im 

17 Figure 5.31. 2 x 10 ions/cm implanted Ti6A14V topography (AFM) post in vitro 

wear testing (region of pin contact on plate) 

108 



125.09 nm 
0 nm 

100 urn 

100 urn 5G urn 

50 urn 

0 \i.m 0 urn 

Figure 5.32. 1 x 10 1 8 lST" ions/cm implanted Ti6A14V topography (AFM) post in vitro 

wear testing (region of pin contact on plate) 
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Figure 5.33. 1 x 10 2 1 TST ions/cm implanted Ti6A14V topography (AFM) post in vitro 

wear testing (region of pin contact on plate) 
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17 (a) 2 x 10 >T ions/cm implanted 
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Rtrn: 70.92 nm 

0 50 100 |jm 

(b) 1 x 10 1 8 >T ions/cm2 implanted 

169 nm Standard Roughness 

IP X 25.63 nm 
Rp 73.02 nm 84 5 Rprn 52.49 nm 
Rt: 112.7 nm 
Rtm 82.92 nm 

• 50 100 urn 

(c) 1 x l O 2 1 ions/cm2 implanted 

Figure 5.34. A F M line analysis profiles and topographic data taken from the A F M 

images (figs. 5.31 - 5.33) 

It was seen by visual observation that the surface colour following ion implantation of 

the U H M W P E wear pins had changed from white to dark brown. Low magnification 

A F M examination of both modified and unmodified U H M W P E surfaces showed 

similar topographic features, characterised by machining and microtoming marks. 

Figure 5.35 is typical, showing top view 100 (im2 A F M images of unmodified and 5 x 

10 1 5 N + ions/cm2 implanted U H M W P E pre wear test. However, high magnification 

A F M examination of the modified U H M W P E surface (fig. 5.36) showed topographic 

modification (some form of surface degradation). 
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The surface topography of all the U H M W P E worn pins (modified or unmodified) post 

wear test against Ti6A14V (modified or unmodified), showed similar surface 

morphology, which depended upon the surface area from which the analysis was carried 

out. A F M analysis from random surface areas on the worn U H M W P E surfaces revealed 

a distinctive surface morphology (fig. 5.37). The observed surface wear features post in 

vitro wear testing in this study (fig. 5.38 a) is typical of worn ex vivo U H M W P E 

components (fig. 5.38 b and c [133]). 

100 

50 um 

J urn II i n 

(a) unmodified (b) 5 x 10 1 5 ]ST ions/cm2 implanted 

Figure 5.35. Top view A F M images of (a) unmodified UHMWPE and (b) 5 x 10 1 5 >T 

ions/cm2 implanted U H M W P E 
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Figure 5.36. 3-D projection A F M image of 5 x 10 1 5 ions/cm2 implanted UHMWPE 
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Figure 5.37. Wear induced topographic morphology of U H M W P E (AFM) following 

articulation against Ti6A14V in vitro 
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Figure 5.38. Wear induced topographic morphologies of U H M W P E following 

articulation in vitro and in vivo: (a) A F M image of UHMWPE pin surface articulated 

against Ti6A14V plate in vitro (b) A F M image of retrieved U H M W P E acetabular cup 

surface articulated against metallic femoral component in vivo [133] (c) S E M image of 

retrieved U H M W P E acetabular cup surface articulated against metallic femoral 

component in vivo [133] 

113 



5.1.6 Chemical Composition 

5.1.6.0 Introduction 

The chemical composition of the unmodified and N* ion implanted Ti6A14V and 

UHMWPE materials pre and post ion implantation, and post wear testing were analysed 

using XPS, and the results are presented under the following sections (5.1.6.1-5.1.6.5). 

All XPS survey scan spectra were collected in the 0-1100 eV binding energy range 

using a pass energy of 50 eV. High resolution scans and areas of interest were made 

using 20 eV pass. Table 5.4 summarises the results of the quantification data (i.e., 

atomic % composition) of the species in the XPS spectra. 

5.1.6.1 Polished Ti6AI4V alloy 

Figure 5.39 shows the XPS survey spectrum of polished Ti6A14V between binding 

energies of 0 and 1100 eV. The binding energy positions of Ti 2p, C Is, O Is, Ti Auger, 

C Auger and O Auger were apparent with minor peaks attributable to Al 2p and Al 2s. 

High resolution XPS collections of the Ti 2p, O l s , and C Is binding energy regions 

were made and the results are shown in figures 5.40 to 5.42. 

The T i 2p envelope (fig 5.40) was observed to exhibit two peaks known as a doublet, 

identified as T i 4 + 2p 3/2 at 458.7 eV and T i 4 + 2p at 464.4 eV. This doublet was 

attributed entirely to Ti(>2. The O Is peak (fig. 5.41) showed O2", OH" and chemisorbed 

H2O peaks at 530.2, 531.6 and 533.03 eV respectively, with some of the O being 

present from C - 0 / C = 0 identified in the C Is higher resolution spectrum. C - C / C - H at 

285 eV, C - 0 at 286.3 eV and C = 0 at 288.8 eV were identified in the C Is envelope 

shown in figure 5.43. 
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Figure 5.39. XPS energy spectrum of polished Ti6A14V 
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Figure 5 .40. Ti 2p XPS energy spectrum of polished Ti6A14V 
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Figure 5.41. O Is XPS energy spectrum of polished Ti6A14V 
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Figure 5.42. C Is XPS energy spectrum of polished Ti6A14V 

5.1.6.2 2 x 101 7 N+ ions/cm2 implanted Ti6A!4V 

Figure 5.43 shows the XPS survey spectrum of 2 x 10 1 7 N1" ions/cm2 implanted 

Ti6A14V. The distinct binding energy position of N Is was clearly discernable in the 

survey spectrum, an indication of the presence of N on the surface, which was not 

present on the surface of the unmodified material. The Ti 2p peak was observed to be 

more intense relative to the O Is, when compared to that of the unmodified material 

(fig. 5.39). High resolution XPS collections of the Ti 2p and N Is were made, the results 

of which are shown respectively in figures 5.45 and 5.48 respectively. 

The Ti 2p peak was observed to exhibit a twin doublet comprising T i 4 + 2p 3/2 at 458.3 

eV and T i 4 + 2p V2 at 464.3 eV (attributable to T i 0 2 , dominant peak); and T i + 2p 3/2 at 

455.62 eV and T i + 2p V2 at 461.61 eV (attributable to TiN, lower energy), the positions 

of which are indicated on figure 5.45. The N Is region scan showed a triple peak 

structure (fig. 5.48), the main one being a good match for TiN at 396.2 eV, and two 

smaller unidentified peaks of the form T i N x O y at 398.5 and 401.3 eV respectively. The 

O Is sub-peaks were observed to be similar to those of the unmodified material (fig. 

5.41) but with more O2" relative to the O H / H 2 0 (table 5.4). 

XPS energy spectrum of the wear track region of 2 x 10 >T ions/cm implanted 

Ti6A14V post tribological wear test against 5 x 10 1 5 ions/cm2 implanted U H M W P E 

(fig. 5.44), was observed to have a similar spectra to that obtained from the pre wear test 
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2 x 10 1 7 N1" ions/cm2 implanted material (fig. 5.43). The N Is region scan showed a 

double peak structure (fig. 5.49), the main one being TiN at 396.3 eV, and an 

unidentified peak at 399.4 eV of the form TiN x O y . However, high resolution X P S 

analysis of the Ti 2p envelope (fig. 5.46) found the surface depleted in T + attributable to 

TiN relative to T i 4 + attributable to TiC>2, when compared to that of the pre worn material 

(table 4.4). The amount of N attributable to TiN within the N Is envelope was reduced 

when compared to the analysis from the pre-tested material (table 5.4). 

As with the worn 2 x 10 1 7 N* ions/cm2 implanted Ti6A14V plate tested against modified 

UHMWPE, analysis from the wear track region of 2 x 10 1 7 N* ions/cm2 implanted 

Ti6A14V tested against unmodified U H M W P E material was made, and was observed to 

have a similar spectra to that obtained from the 2 x 10 1 7 N* ions/cm2 implanted 

Ti6A14V plate tested against modified U H M W P E (fig. 5.44). High resolution XPS 

analysis of the Ti 2p and N Is envelopes are shown in figures 5.47 and 5.50 

respectively. The analysis of the Ti 2p spectrum found the surface depleted in T + 

attributable to TiN relative to T i 4 + attributable to TiC>2, and the depletion was more than 

that of the same material tested against modified UHMWPE and the pre wear tested 

material (table 5.4). 
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Figure 5.43. XPS energy spectrum of 2 x 10 1 7 IvT ions/cm2 implanted Ti6A14V plate 
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Figure 5.44. XPS energy spectrum of worn 2 x 10 1 7 N* ions/cm2 implanted Ti6A14V 

plate tested against 5 x 10 1 5 >T ions/cm2 implanted UHMWPE 
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Figure 5.46. Ti 2p XPS energy spectrum of the worn region of 2 x 10 1 7 ions/cm2 

implanted Ti6A14V tested against 5 x 10 1 5 N4" ions/cm2 implanted UHMWPE 
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Figure 5.47. Ti 2p XPS energy spectrum of the worn region of 2 x 10 1 7 ions/cm2 

implanted Ti6A14V tested against unmodified U H M W P E 
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Figure 5.49. N Is XPS energy spectrum of the worn region of 2 x 10 1 7 N^ ions/cm2 

Ti6A14V tested against 5 x 10 1 5 N+ ions/cm2 U H M W P E 
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Figure 5.50. N Is XPS energy spectrum of the worn region of 2 x 10 1 7 N*" ions/cm2 

Ti6A14V tested against unmodified U H M W P E 
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5.1.6.3 1 x 10 1 8 N4" ions/cm2 implanted T16A14V 

Figure 5.51 shows the XPS survey spectrum of 1 x 10 1 8 N4" ions/cm2 implanted 

Ti6A14V. The N Is peak was detected in the survey spectrum, an indication of the 

presence of N on the surface of the material. High resolution XPS collections of the Ti 

2p and N Is were made and the results are shown in figures 5.52 and 5.53 respectively. 

The Ti 2p twin doublet structure (fig. 5.52) showed a greater proportion of T i + 

(attributable to TiN) relative to T i 4 + (attributable to T i 0 2 ) , when compared to that of the 

2 x 10 1 7 N 4 ion/cm2 implanted material, although T i 0 2 was still the dominant peak 

(table 5.4). The twin doublet comprised T i 4 + and T i + attributable to T i 0 2 and minor TiN 

respectively, the positions of which are indicated on the figure. The N Is region scan 

(fig. 5.53) showed a double peak structure, the main one being attributed to TiN at 

396.7 eV and an unidentified peak of the form T i N x O y at 398.8 eV. A greater proportion 

of the N Is envelope was found to be due to TiN, when compared to the 2 x 10 1 7 N + 

ion/cm2 implanted material. 

The analysis showed a larger amount of oxygenated carbon species compared to that of 

the 2 x 10 1 7 N 4 ion/cm2 implanted material, and more O H / H 2 0 relative to the O 2" 

reflecting the increase in oxidised carbon species (table 5.4). 
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Figure 5.51. XPS energy spectrum of 1 x 10 1 8 N 4 ions/cm2 implanted Ti6A14V 
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Figure 5.52. Ti 2p XPS energy spectrum of l x 10 1 8 N + ions/cm2 implanted Ti6A14V 
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Figure 5.53. N Is XPS energy spectrum of 1 x 10 1 8 N + ions/cm2 implanted Ti6A14V 

5.1.6.4 1 x 1021 N 4 ions/cm2 implanted Ti6A14V 

Figure 5.54 shows the XPS survey spectrum of 1 x 10 1 ions/cm2 implanted 

Ti6A14V. The C Is and O Is peaks were observed to dominate the sample. On a high 

resolution XPS collection, C - 0 peak was dominant in the C Is spectrum reflecting the 

most intense O Is peak at 533.1 eV. Only minor Ti and N peaks were present, because 

of the C/O over layer (table 5.4). 

High resolution XPS collection of the Ti 2p and N Is were made and the results are 

shown in figures 5.55 and 5.56 respectively. The N Is peak (fig. 5.56) appeared to show 
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no TiN at all, with the two sub-peaks of the form T i N x O y (399.2 and 400.5 eV) at 

binding energies higher than that for TiN (397.3 eV [77]). 
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Figure 5.54. XPS energy spectrum of 1 x 10 2 1 N* ions/cm2 implanted Ti6A14V 
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Figure 5.55. Ti 2p XPS energy spectrum of 1 x 10 2 1 N4" ions/cm2 implanted Ti6A14V 
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21 Figure 5.56. N Is XPS energy spectrum of 1 x 10 >T ions/cm implanted Ti6A14V 

5.1.6.5 Unmodified and 5 x 10 1 S N* ions/cm2 implanted U H M W P E 

Figure 5.57 shows a typical spectrum for UHMWPE, with the main peak position of C 

Is at 285 eV. The small amount of O reflects the oxidised carbon species that was seen 

in the high resolution XPS collection of the C Is. Some OH-. C-C/C-H at 285 eV (main 

peak) and C-0 at 286.6 eV binding energy positions, were detected in the C Is 

spectrum. 

Upon N4" ion implantation, the samples showed a significant amount of O (fig. 5.58), 

which was reflected by the relatively large amount of oxidised carbon species observed 

in the C Is spectrum. C-C/C-H at 285 eV (main peak), C-0 at 286.8 eV, and C=C at 

289.2 eV binding energy positions were observed on the C Is spectrum of the implanted 

material. High resolution scans of the N Is peak from the implanted sample showed a 2 

sub-peak envelope with peaks at 398.4 and 400.1 eV respectively. Nearly 2 at % of N 

were found to be present in the implanted material (table 5.4). 
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Figure 5.57. XPS energy spectrum unmodified UHMWPE 
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Figure 5.58. XPS energy spectrum of 5 x 10 1 5 N+ ions/cm2 implanted UHMWPE 
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Figure 5.59. N Is XPS energy spectrum of 5 x 101 5 ions/cm2 implanted UHMWPE 
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Table 5.4. XPS surface composition of modified and unmodified Ti6A14V and 

UHMWPE 

Species Atomic % (± 5 %) Species 

A B C D E F G H 

Ccontam. 38 34 40 35 49 57.6 95 86.5 

o 2 - 25 18 20 26.3 9 1.4 0 0 
^OH-ZH 0 
U 2 28 17 20 26 16 38 5 11.8 

N" 0 14 10 4 12 1 0 1.7 

T i + 0 3 1 0.4 4 0.2 0 0 

T i 4 + 9 14 9 8.3 10 1.8 0 0 

Polyethylene contains C, hence no C contamination 

Where A is unmodified Ti6A14V; B is 2 x 10 1 7 N + ions/cm2 implanted Ti6A14V; C is 2 

x 10 1 7 ions/cm2 implanted Ti6A14V post wear (against modified UHMWPE); D is 2 

x 10 1 7 >T ions/cm2 implanted Ti6A14V post wear (against unmodified UHMWPE); E is 

1 x 10 1 8 N* ions/cm2 implanted Ti6A14V; F is 1 x 102 1 N* ions/cm2 implanted Ti6A14V; 

G is UHMWPE; and H is 5 x 101 5 N* ions/cm2 implanted UHMWPE. 
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5.2 Stainless Steel and U H M W P E 

5.2.0 Introduction 

The metallographic results of the microstructure of the stainless steel alloy used in this 

study, N"1" ion implantation distribution in stainless steel, microhardness of the samples 

in both modified and unmodified forms, tribological wear test results of UHMWPE 

(modified and unmodified) articulating against stainless steel, topography and standard 

roughness of the as polished and modified samples are all presented under the following 

sections (5.2.1 to 5.2.5). 

5.2.1 Metallography 

An optical photomicrograph, SEM micrograph, and AFM image of the etched 

metallographic stainless steel samples are shown in figures 5.60, 5.61 and 5.62 

respectively. As can be seen, the microstructures of the material have been clearly 

resolved. 

2 5 * 

20 Lira 

Figure 5.60. Optical photomicrograph of etched unmodified stainless steel 
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Figure 5 .61. SEM micrograph of etched unmodified stainless steel 
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Figure 5 .62. Top view AFM image of etched unmodified stainless steel 

5.2.2 Projected N + ion Distribution 

The results of the TRIM stopping range calculations for N 4 ions into stainless steel at an 

accelerating voltage of 90 keV are shown in figures 5.63 and 5.64. Target density of 7.8 

g/cm3 was used for the calculations. 
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Figure 5.63 shows the TRIM simulation of the range of ions into stainless steel 

target. Data from the results produced an estimated mean longitudinal range of >T ions 

at a depth of 0.1 u,m with straggling of 0.04 u.m as shown on the figure, and maximum 

estimated N4" ion implantation depth of 0.21 u.m within the sample surface was 

calculated. As shown on the figure, the overall distribution of the ions assumed 

approximately a Gaussian profile. 

Figure 5.64 shows the calculation of the vacancy distribution produced by both N4" ions 

and target atom recoil collisions. A total of 428 target vacancies produced by each 

incoming N 4 ion was calculated from the data. 
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Figure 5.63. TRIM simulation of range of N* ions in stainless steel 
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Figure 5.64. TRIM simulation of vacancy production within stainless steel target upon 

N"1" ion implantation 

5.2.3 Knoop Microhardness Determination 

The Knoop microhardness results of the unmodified and N4" ion implanted stainless steel 

alloys are reproduced in figs 5.65. The microhardnesses of the modified samples was 

observed to increase with decreasing indentation load, with the highest values measured 

at an indentation load of 1 gf. The results indicated an increase in Knoop microhardness 

from 462 ± 47 KHNigf for the unmodified material, to 969 ± 110 KHNigf for the 

material implanted with 2 x 10 1 7 N4" ions/cm2 (Appendix C2). 
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Figure 5.65. Knoop microhardness of unmodified and >T ions implanted stainless steel. 

Where sample 1 is unmodified stainless steel, and sample 2 is 2 x 10 1 7 >T ions/cm2 

implanted stainless steel. 

Inspection of figure 5.66 demonstrates the surface dependence and depth graded 

property modification induced upon ion implantation, where the mean hardness values 

at different loads have been plotted against the mean knoop indent penetration depth 

into the samples. The indentation depths were calculated from the indent width using 

the Knoop indenter geometry (Appendix CI) for loads of 1, 3, 5, 10 and 25 gf 

respectively. The reported values are an average of 10 measurements under each load 

(Appendix C I , table CI.4). 
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Figure 5.66. Depth dependence of Knoop microhardness for 2 x 10 1 7 INT ion/cm2 

implanted stainless steel 

5.2.4 Tribological Wear Test 

5.2.4.0 Introduction 

The tribological wear test results of UHMWPE (modified and unmodified) wear pins 

articulating against stainless steel plates (modified and unmodified) are reported under 

the following sections (5.2.4.1 to 5.2.4.3) (Appendix A6). 

5.2.4.1 Unmodified U H M W P E against unmodified Stainless Steel 

Tribological wear test results of unmodified UHMWPE against unmodified stainless 

steel sliding couple, expressed in volume loss (mm3) of the UHMWPE wear pins 

against the sliding distance (km) over the test duration are shown in figure 5.67. There 

were no significant differences between the wear factors ( k o ) of the polymer wear pins 

in the test, and a mean k 0 of 1.59 ± 0.15 x 10'6 mm 3/Nm over a sliding distance of 208 

km (> 5.5 million wear cycles) was calculated for the unmodified UHMWPE. An initial 

higher mean k 0 of 1.99 ± 0.17 x 10"6 mm3/Nm was calculated up to a sliding distance of 
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80 km, due to a wearing in type process. The steady-state mean wear factor of 1.02 ± 

0.13 x 10"6 mm3/Nm was calculated between 80-208 km sliding distance. Plate weight 

pre and post wear test (mean weight loss) are shown in table 5.5. 

Distinctive wear tracks characterised by scratch marks and grooves were observed on 

the stainless steel plates following testing. There was no discolouration of the bovine 

serum lubricant following testing. Topographic examinations of the pin and plate 

surfaces post wear, using AFM and NCI respectively revealed the surface damage 

observed on the plates and wear features on the pins, and high R, values on the plates 

and low Ra on the pins (table 5.6). Wear curves of the UHMWPE wear pins were linear, 

and no transfer films were observed on the stainless steel plates during and post wear. 

Machining and microtoming marks on the surface of the UHMWPE wear pins wore 

away with test duration, and the surfaces became smooth, showing low Ra (table 5.6) 

post wear. Topographic examinations of the pin surfaces showed similar morphology 

with those of ex vivo UHMWPE components, as was observed on the worn unmodified 

UHMWPE surfaces tested against titanium. 
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Figure 5 .67. Wear of unmodified UHMWPE pins against unmodified stainless steel 

plates 
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5.2.4.2 Unmodified U H M W P E against N + ion implanted stainless steel 

Wear results of unmodified UHMWPE wear pins sliding and rotating against 2 x 10 1 7 

N 4 ions/cm2 implanted stainless steel plates are shown in figure 5.68. Linear wear 

curves with no significant differences between the wear volumes of the pins were 

measured, and a mean k o of 0.98 ± 0.08 x 10"6 mm3/Nm was calculated for the 

UHMWPE over a test duration of 210 km (> 5.5 million wear cycles). An initial slightly 

higher mean kQ of 1.14 + 0.09 x 10"6 mm 3/Nm was measured up to a sliding distance of 

65 km, due to a wearing in type process, and a steady-state mean wear factor of 0.82 ± 

0.04 x 10"6 mm3/Nm was measured between 65-210 km sliding distance. There was a 

reduction in polymer wear volume loss compared to the same UHMWPE material 

tested against unmodified stainless steel. 

Compared with the unmodified UHMWPE against unmodified stainless steel test, less 

damage was observed in the wear tracks of the plates during and post wear test. 

Examination of the region of pin contact on the plates under AFM and NCI revealed no 

distinctive wear tracks and measured Ra values (table 5.6) were low. No transfer films 

were seen on the plates, and the wear curves wear linear. The UHMWPE worn surfaces 

showed similar surfaces morphology to those observed on the worn surfaces tested 

against unmodified stainless steel, and resembled ex vivo components. 
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17 Figure 5.68. Wear of unmodified UHMWPE pins against 2x10 N ion/cm implanted 

stainless steel plates 
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5.2.4.3 N* ion implanted U H M W P E against N + ion implanted stainless steel 

Figure 5.69 shows the graph of 5 x 101 5 >T ion/cm2 implanted UHMWPE wear pins 

volume loss against sliding distance, when tested against 2 x 10 1 7 N + ion/cm2 implanted 

stainless steel. Linear wear curves were observed and a mean k 0 of 0.82 ± 0.02 x 10"6 

mm 3/Nm was calculated over a test duration of 205 km (> 5.5 million wear cycles). An 

initial slightly higher mean k o of 0.98 ± 0.01 x 10"6 mm 3/Nm was measured up to a 

sliding distance of 74 km, due to a wearing in type process, and a steady-state mean 

wear factor of 0.59 ± 0.03 x 10"6 mm3/Nm was measured between 74-205 km sliding 

distance. 

AFM images and NCI analysis of the worn surfaces of the plates showed few scratches 

and measured low values (table 5.6), compared to the surfaces of the unmodified 

stainless steel plates articulated against unmodified UHMWPE. There was no 

colouration of the bovine serum lubricant, and no transfer films were observed on the 

surface of the modified stainless steel plates, following testing. 
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Figure 5.69. Wear of 5 x 10 1 5 N+ ion/cm2 implanted UHMWPE pins against 2 x 1017isr 
ion/cm implanted stainless steel plates 
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5.2.4.4 Summary of Results 

The tribological wear test results, and the mean R a values of all the materials tested pre 

and post wear are summarised and presented respectively in tables 5.5 and 5.6. Table 

5.7 summarises the measured changes in hardness for the stainless steel substrate. 

Figure 5.70 summarises the results of the mean wear curves of UHMWPE pins 

(modified and unmodified) articulated against stainless steel plates (modified and 

unmodified). 

Table 5.5. Summary of in vitro tribological performance of unmodified and IST ion 

implantation modified UHMWPE/stainless steel biomaterial couples after 5.5 million 

cycles of wear testing 

Wear Couple" Mean UHMWPE k o 

(x 10"6 mm3/Nm) 

Mean Stainless Steel 

Plate Wt Loss (ug) b 

Unmodified UHMWPE/unmodified 

stainless steel 

1.59 ± 0.17 106 ±0.19 

Unmodified UHMWPE/2 x 10 1 7 N+ 

ions cm"2 implanted stainless steel 

0.98 ±0.08 60 ± 0.06 

n — T T n . — . 

5x10 >T ions cm" implanted 

UHMWPE/2 x 10 1 7 N+ ions cm"2 

implanted stainless steel 

0.82 ±0.02 43 ± 0.06 

"Samples implanted with N* ions at 90 keV (stainless steel) and 80 keV (UHMWPE) 
6Plate measured before and at the end of test 
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Table 5.6. Mean arithmetic mean surface roughness (Ra) of stainless steel and 

UHMWPE samples 

Sample Surface Mean Ra (um) Sample Surface 

Pre wear Post wear 

Unmodified Stainless steel (articulated 

against unmodified UHMWPE) 

0.006 ± 0.003 0.012 ±0.002 

2 x 10 1 7 N 4 ions/cm2 implanted stainless 

steel (articulated against modified and 

unmodified UHMWPE) 

0.007 ± 0.002 0.009 ± 0.002 

Unmodified UHMWPE (articulated 

against unmodified and modified stainless 

steel) 

1.4 ± 0.13 0.05 ± 0.04 

5 x 10 1 5 N4" ions/cm2 implanted 

UHMWPE (articulated against 

unmodified and modified stainless steel) 

1.3+0.12 0.06 ± 0.02 

Table 5.7. Summary of Knoop microhardness of unmodified and N 4 ion implantation 

modified stainless steel and UHMWPE substrates 

Substrate" Knoop Microhardness 

(KHNigf) 

Unmodified stainless steel 462 ± 47 

2 x 10 1 7 N 4 ions/cm2 implanted stainless steel 969±110 

Unmodified UHMWPE 3.4 ±0.5 

5 x 1 0 n N 4 ions/cm2 implanted UHMWPE 12.8 ± 1.6 

"Substrates implanted with IST ions at 90 keV (Ti6A14V), and 80 keV (UHMWPE) 
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Figure 5.70. Mean wear behaviour of UHMWPE pins (modified and unmodified) 

against stainless steel plates (modified and unmodified). Where couple 1 is unmodified 

UHMWPE/unmodified stainless steel, couple 2 is Unmodified UHMWPE/2 x 10 1 7 N + 

ions/cm2 implanted stainless steel, and couple 3 is 5 x 101 5 N4" ions/cm2 implanted 

UHMWPE/2 x 10 1 7N 4" ions/cm2 implanted stainless steel (table 5.3). 

5.2.5 Surface Topography 

The surface topography of the modified and unmodified stainless steel plates pre and 

post wear test, and UHMWPE pin surfaces post wear were examined using AFM and 

NCI, and the results are shown in figures 5.71 to 5.75. 

Figure 5.71 shows a top view 100 urn2 AFM image of unmodified stainless steel, and 

surface analysis results of a line profile across the sample surface showing typical 

standard surface roughness data. The topography was typical of the surface achieved 

post polishing (characterised by scratch marks from polishing), and prior to surface 

modification and tribological testing. 

138 



70 nm dard Roughness 

r . 4.48 nrn 
1 3 33 nm 

35- Rpm 9.21 rim 
Rt 28.08 nm 
Rtrn 21.10 nrn 

50 100 urn 

100|im 

/ 50 urn 

L 0 Mm 
100 pm 0 [im 50 \im 

Figure 5.71. Top view AFM image and topographic data of unmodified stainless steel 

plate sample 

100 urn2 AFM image of 2 x 10 1 7 N4" ions/cm2 implanted stainless steel samples showed 

no changes in the surface topography, and typical roughness values remained the same 

as the unmodified samples. However, high magnification examinations of the surfaces 

revealed some surface degradation patterns on the surface, as a result of N* ion 

implantation. Figure 5 .72 shows a higher magnification AFM image of the unmodified 

and 2 x 10 1 7 N* ions/cm2 implanted stainless steel, illustrating the topographic 

modification post ion implantation. 
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Figure 5 .72. 3-D projection high magnification AFM image of (a) unmodified and (b) 2 

x 10 1 7 lST ions/cm2 implanted stainless steel 

Post wear testing, the surface topography of the unmodified stainless steel plates were 

characterised by random scratches and increased standard roughness values. In contrary, 

the topography of the ion implantation modified plates showed less post wear testing 
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damage and lower standard roughness values. Figures 5.73 and 5.74 shows 3-D 

projection 100 u,m AFM images and topographic data of the unmodified and 2 x 1 0 

IST ions/cm2 implanted stainless steel plates articulated against unmodified and 5 x 101 5 

N4" ions/cm2 implanted UHMWPE respectively (post wear testing to 5.5 million wear 

cycles). 
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Figure 5.73. 3-D AFM projection and topographic data of unmodified stainless steel 

plate post wear against unmodified UHMWPE pin (wear track region) 
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Figure 5.74. 3-D AFM projection and topographic data of 2 x 10 1 7 N4" ions/cm2 

implanted stainless steel plate post wear against modified UHMWPE pin 

The surface topography of all UHMWPE wear pins (modified or unmodified) post wear 

test against stainless steel (modified or unmodified) (fig. 5.75), showed distinct surface 

morphologies characterised by wear features that resembled those observed on the 

samples tested against Ti6A14V (modified and unmodified), and analysised ex vivo 

UHMWPE components (fig. 5.38 b). 
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Figure 5.75. Wear induced topographic morphology of UHMWPE (AFM) following 

articulation against stainless steel in vitro 

5.3 Co-Cr-Mo and UHMWPE 

5.3.0 Introduction 

The N4" ion implantation distribution in Co-Cr-Mo, microhardness results of the samples 

in both modified and unmodified forms, tribological wear test results of UHMWPE 

(modified and unmodified) articulating against Co-Cr-Mo, topography and standard 

roughness of the as polished and modified Co-Cr-Mo are all presented under the 

following sections (5.3.1 to 5.3.4). 

5.3.1 Projected N* Ion Distribution 

The results of the TRIM stopping range calculations for N + ion implantation into Co-Cr-

Mo target using density 8.4 g/cm2 with an accelerating energy of 90 keV are shown in 

figures 5.76 and 5.77. 

Simulation of the range of N + ions into Co-Cr-Mo target is shown in figure 5.76. The 

estimated mean longitudinal range of ^T1" ions in the target was calculated to be at a 
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depth of 0.1 (im with straggling of 0.04 um. The overall distribution of the ions 

assumed approximately a classical Gaussian profile, as with the other materials 

(Ti6A14V, stainless steel, and UHMWPE). The maximum N + ion penetration depth was 

approximately 0.2 ^m into the Co-Cr-Mo surface. 

Figure 5 .77 shows the calculation of the vacancy distribution produced by both N4" ion 

collisions and target atom recoil collisions, from which a total of 414 target vacancies 

per incoming N4" ion was calculated. 
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Figure 5 .76. TRIM simulation of range of N + ions into Co-Cr-Mo 
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Figure 5.77. TRIM simulation of vacancy production within Co-Cr-Mo target upon ion 

implantation 

5.3.2 Microhardness Determination 

The Knoop microhardness results of the unmodified and N + ion implanted Co-Cr-Mo 

samples were reproduced and the results are shown in figure 5.78. The microhardnesses 

of the modified samples were observed to increase with decreasing indentation load, 

and the highest values were measured at an indentation load of 1 gf. The results 

indicated an increase in mean hardness from 570 ± 61 K H N ) g f for the unmodified 

material, to 1175 ± 101 KHNigf for the 2 x 10 1 7 N4" ions/cm2 implanted material 

(Appendix C2). 
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Figure 5.78. Knoop microhardness of unmodified and N 4 ions implanted Co-Cr-Mo. 

Where sample 1 is unmodified Co-Cr-Mo; and sample 2 is 2 x 10 1 7 N + ions/cm2 

implanted Co-Cr-Mo. 

Inspection of figure 5.79 demonstrates the surface dependence and depth graded 

property modification induced upon ion implantation, where the mean hardness values 

at different loads have been plotted against the mean knoop indent penetration depth 

into the samples. The indentation depths were calculated from the indent width using 

the Knoop indenter geometry (Appendix CI) for loads of 1, 3, 5, 10 and 25 gf 

respectively, The reported values are an average of 10 measurements under each load 

(Appendix C I , table CI.5). 
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Figure 5.79. Depth dependence of Knoop microhardness for 2 x 10 1 7 N* ion/cm2 

implanted Co-Cr-Mo 

5.3.3 Tribological Wear Test 

5.3.3.0 Introduction 

The tribological wear test results of UHMWPE (modified and unmodified) wear pins 

against Ti6A14V plates (modified and unmodified) are reported under the following 

sections (5.3.3.1 to 5.3.3.3) (Appendix A6). 

5.3.3.1 Unmodified UHMWPE against unmodified Co-Cr-Mo 

Tribological wear test results of unmodified UHMWPE against unmodified Co-Cr-Mo 

sliding couple, expressed in volume loss (mm3) of the UHMWPE against sliding 

distance (km) are shown in figure 5.80. Two wear phases could clearly be distinguished 

on the wear curves. There were no significant differences between the wear factors of 

the UHMWPE wear pins, and a mean k 0 of 1.29 ± 0.05 x 10"6 mm3/Nm was calculated 

over a sliding distance of 206 km (> 5.5 million wear cycles). An initial mean ko of 1.75 

± 0.08 x 10"6 mm3/Nm was calculated up to a sliding distance of 54 km, and a steady-

147 



state mean ko of 0.96 ± 0.03 x 10"6 mm 3/Nm was calculated between 54 and 206 km 

sliding distance. The mean initial and final weight readings of the plates were recorded, 

and the mean weight loss results post wear reported in table 5.8. 

Topographic examinations of the plate surfaces post wear test, using AFM and NCI 

(table 5.9) revealed wear tracks characterised by some scratches. Wear curves were 

linear, and no transfer films were observed on the plates during and post wear. There 

was no discolouration of the bovine serum lubricant following wear testing. Machining 

and microtoming marks on the surface of the UHMWPE wear pins wore away with test 

duration, and the surfaces became smooth. Topographic examinations of the worn 

UHMWPE pins showed similar surface morphology observed on the UHMWPE pins 

tested against Ti6A14V and stainless steel, and resembled those of ex vivo UHMWPE 

components examined under AFM. 
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Figure 5 .80. Wear of unmodified UHMWPE pins against unmodified Co-Cr-Mo plates 

5.3.3.2 Unmodified UHMWPE against N + ion implanted Co-Cr-Mo 

Figure 5 .81 shows the wear volume loss against sliding distance graph of unmodified 

UHMWPE sliding and rotating against 2 x 10 1 7 >T ion/cm2 implanted Co-Cr-Mo. 

Linear wear curves with no significant differences between the wear volumes of the 
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pins were measured, and a mean k 0 of 0.75 ± 0.03 x 10"6 mm3/Nm was calculated over a 

sliding distance of 216 km (> 5.5 million wear cycles). An initial slightly higher mean 

ko of 0.95 ± 0.06 x 10"6 mm3/Nm was measured up to a sliding distance of 42 km, due to 

a wearing in type process, and a steady-state mean wear factor of 0.63 ± 0.005 x 10"6 

mm3/Nm was measured between 42-216 km sliding distance. There was a reduction in 

mean ko of the UHMWPE compared with samples tested against unmodified Co-Cr-

Mo. 

No surface damage was observed in the region of pin contact on the plate during and 

post testing. AFM images and NCI analysis (table 5.9) revealed the undamaged surface 

topography and low Ra values of the surface respectively. 
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17 Figure 5.81. Wear of unmodified UHMWPE pins against 2 x 10 >T ions/cm 

implanted Co-Cr-Mo plates 

5.3.3.3 N+ ion implanted UHMWPE against N* ion implanted Co-Cr-Mo 

Figure 5.82 shows the graph of 5 x 101 5 N4" ion/cm2 implanted UHMWPE wear volume 

loss against sliding distance, when tested against 2 x 10 1 7 N* ion/cm2 implanted Co-Cr-

Mo. Linear wear curves were observed and a mean ko of 0.67 ± 0.03 x 10"6 mm 3/Nm 

was calculated over the test duration of 204 km (> 5.5 million wear cycles). An initial 

slightly higher mean ko of 0.75 ± 0.05 x 10'6 mm3/Nm was measured up to a sliding 

distance of 64 km, due to a wearing in type process, and a steady-state mean wear factor 
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of 0.58 ± 0.02 x 10"6 mm3/Nm was measured between 64-204 km sliding distance. 

Compared with unmodified UHMWPE pins tested against unmodified Co-Cr-Mo 

plates, there was a reduction in the mean kQ of the modified UHMWPE pins. 

AFM images of the wear surfaces of the plates showed no damage in the the region of 

pin contact on the plate and low Ra values (table 5.9), compared with unmodified Co-

Cr-Mo plates tested against unmodified UHMWPE pins. AFM images of all the worn 

polymer surfaces showed similar wear features post wear, to those observed on 

UHMWPE samples articulated against Ti6A14V and stainless steel plates, and 

resembled those seen on ex vivo UHMWPE components. 
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17 15 Figure 5.82. Wear of 5 x 101 5 IsT ion/cm2 implanted UHMWPE pins against 2 x 101 7 N + 

ion/cm implanted Co-Cr-Mo plates 

5.3.3.4 Summary of Results 

The tribological wear test results, and the mean R a values of all the materials tested pre 

and post wear are summarised and presented respectively in tables 5.8 and 5.9. Table 

5.10 summarises the measured changes in hardness for the Co-Cr-Mo and UHMWPE 

substrates. 
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Figure 5.83 summarises the results of the mean wear curves of UHMWPE pins 

(modified and unmodified) articulated against Co-Cr-Mo plates (modified and 

unmodified). 

Table 5.8. Summary of in vitro tribological performance of unmodified and N 4 ion 

implantation modified UHMWPE/Co-Cr-Mo biomaterial couples after 5.5 million 

cycles of testing 

Wear Couple* Mean UHMPWE ko 

(x 10"6 mm3/Nm) 

Mean Co-Cr-Mo 

Wt Loss (ug)b 

Unmodified UHMWPE/unmodified 

Co-Cr-Mo 

1.39 ±0.05 45 ±0.05 

Unmodified UHMWPE / 2 x 10" N* 

ions cm"2 implanted Co-Cr-Mo 

0.75 + 0.03 27 ± 0.05 

5 x 1015 N 4 ions cm"2 implanted 

UHMWPE/2 x 1017 N* ions cm"2 

implanted Co-Cr-Mo 

0.67 ± 0.03 10 ±0.02 

"Samples implanted with ions at 90 keV (Co-Cr-Mo) and 80 keV (UHMWPE) 
6Plate measured before and at the end of test 
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Table 5.9. Mean arithmetic mean surface roughness (Ra) of Co-Cr-Mo and UHMWPE 

samples 

Material Surface Mean Ra (um) Material Surface 

Pre wear Post wear 

Unmodified Co-Cr-Mo (articulated against 

unmodified UHMWPE) 

0.005 ± 0.002 0.011 ±0.004 

2 x 101 7 ions/cm2 implanted Co-Cr-Mo 

(articulated against modified and 

unmodified UHMWPE) 

0.005 ± 0.002 0.008 ± 0.002 

Unmodified UHMWPE (articulated against 

unmodified and modified Co-Cr-Mo) 

1.3 ±0.14 0.06±0.05 

5 x 1015 N 4 ions/cm2 implanted UHMWPE 

(articulated against unmodified and 

modified Co-Cr-Mo) 

1.3 ±0.11 0.05 ±0.05 

Table 5.10. Summary of Knoop microhardness of unmodified and N + ion implantation 

modified Co-Cr-Mo and UHMWPE substrates 

Substrate" Knoop Microhardness 

(KHNigf) 

Unmodified Co-Cr-Mo 570 ±61 

2 x 1017 N* ions/cm2 implanted Co-Cr-Mo 1175 ± 101 

Unmodified UHMWPE 3.4 ±0.5 

5 x 10 n 1ST ions/cm2 implanted UHMWPE 12.8 ± 1.6 

"Substrates implanted with ions at 90 keV (Co-Cr-Mo), and 80 keV (UHMWPE) 
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Figure 5.83. Mean wear behaviour of UHMWPE pins (modified and unmodified) 

against Co-Cr-Mo plates (modified and unmodified). Where couple 1 is unmodified 

UHMWPE/unmodified Co-Cr-Mo; couple 2 is Unmodified UHMWPE/2 x 10 1 7 N 4 

ions/cm2 implanted Co-Cr-Mo; and couple 3 is 5 x 101 5 N + ions/cm2 implanted 

UHMWPE/2 x 10 1 7 ions/cm2 implanted Co-Cr-Mo (table 5.5). 

5.3.4 Surface Topography 

Topographic images of the modified and unmodified Co-Cr-Mo and UHMWPE 

surfaces pre and post wear test, are shown in figures 5.84 to 5.88. 

Figure 5.84 shows a 100 um 2 top view AFM image of unmodified Co-Cr-Mo and 

topographic data. The topography was typical of the surface achieved post polishing 

(characterised by scratch marks from polishing), and prior to surface modification and 

tribological testing. 
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Figure 5 .84. Top view AFM image and topographic data of unmodified Co-Cr-Mo 

100 um 2 AFM image of 2 x 10 1 7 ions/cm2 implanted Co-Cr-Mo samples showed no 

changes in the surface topography, and typical roughness values remained the same as 

the unmodified samples. However, high magnification examinations of the surfaces 

revealed some surface degradation patterns on the plates. Figure 5.85 shows a higher 
17 T-t- 9 

magnification image of the unmodified and 2 x 1 0 >T ions/cm implanted Co-Cr-Mo, 

illustrating the topographic modification post ion implantation. 
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Figure 5.85. High magnification 3-D projection AFM image of (a) unmodified and (b) 2 

x 10 1 7 N* ions/cm2 implanted Co-Cr-Mo 

The surface topography of the unmodified Co-Cr-Mo plates post wear test were 

characterised by random scratches and higher standard roughness values. In contrast, 

the ion implantation modified plates showed less surface damage in the region of pin 
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contact on the plate. Figures 5.87 and 5.88 respectively shows the 3-D projection 100 

um 2 A F M images and topographic data of unmodified and 2 x 10 1 7 N + ions/cm2 

implanted Co-Cr-Mo plates post wear. 
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Figure 5.86. 3-D A F M projection and topographic data of unmodified Co-Cr-Mo post 

wear 
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Figure 5.87. 3-D A F M projection and topographic data of 2 x 10 1 7 N4" ions/cm2 

implanted Co-Cr-Mo post wear 

The surface topography of all U H M W P E pin samples (fig. 5.88) both modified and 

unmodified, showed similar surface morphology features post wear against Co-Cr-Mo 

(modified and unmodified), as was observed on the UHMWPE samples tested against 

Ti6A14V and stainless steel. 
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Figure 5.88. Wear induced topographic morphology of U H M W P E (AFM) following 

articulation against Co-Cr-Mo in vitro 
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C H A P T E R SIX - DISCUSSION 

6.0 Introduction 

The following discussion wi l l review the results of N + ion implantation on the 

biomaterials, in terms of the topographic, microhardness, chemical, and tribological 

properties of the materials selected and investigated in this study. 

6.1 Effects Of N + Ion Implantation 

6.1.0 Introduction 

N + ion implantation into biomaterials is known to have numerous effects such as 

increase in hardness, wettability, wear and chemical resistance of the materials. The 

topographical, chemical, and microhardness effects of N + ion implantation are discussed 

under the following sections (6.2.1 to 6.2.3). 

TRIM calculations were used to provide a theoretical profile of the depth and 

distribution of the N + ions within the biomaterials investigated in this work. 

6.1.1 Effects of N + ion implantation on Ti6A14V 

6.1.1.0 Introduction 

TRIM calculations estimated the mean projected N + ion depth and total ion range within 

which the volume of surface at. % N was dispersed within the Ti6A14V material post N + 

ion implantation. From the calculations (section 5.1.2), a total of 358 target atom 

vacancies per incident N + ion were calculated. Such vacancies produced together with 

lattice defects as a result of the implantation process are known to lead to the tendency 

for swelling of the bombarded zone [74]. The maximum penetration depth of N + ion 

implantation into materials have been reported to vary between 0.1 to < 1 um depending 

on the implantation energy, and is known to be typically within 0.2-0.5 um in metals 

[26, 74, 134, 135]. A mean projected N + ion range of 0.15 um and a corresponding 

maximum ion penetration depth of 0.25 um into the target were calculated by TRIM 

simulations during the study. 
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The energy dissipation within the Ti6A14V reached a maximum at the mean projected 

ion depth (a nuclear stopping phenomenon), as a result of the target atom recoils (fig. 

5.6). It has been reported [74, 129] that, within such a mean depth, maximum 

concentrations of vacancies, dislocations and other lattice defects are found, producing a 

volume of severely disrupted lattice in the near-surface region. These observations 

were as a results of the physical changes induced by the ion implantation process due to 

atomic and nuclear collisions, and are known to increase the surface wear resistance 

(section 6.2.1.2) and chemical resistance of materials. Improvements in chemical 

resistance of the implanted Ti6A14V samples were observed during the study, when the 

materials (both modified and unmodified) were etched with HF /HNO3/H2O solution 

(section 4.3.1). The N + ion implanted Ti6A14V alloys showed high resistance to the 

chemical attack and the microstructures were barely resolved, compared to the non-

implanted material (figs. 5.3 (a) and (b)). This may be due to the N + ion implantation 

process stabilising a more chemical resistant structure on the surface of the alloy, such 

as a-titanium. Nitrogen is known to stabilise a-titanium (which has excellent corrosion 

resistance) on the surface of Ti6A14V, and hence minimises the effects of chemical 

attack on the material surface post N + ion implantation [102]. In addition, N + ion 

implantation can significantly modify the near surface composition and hence reduce 

the chemical affinity of the surfaces in contact, and strengthen the metal oxide interface. 

6.1.1.1 Topographical effects 

The impact of energetic ions on material surfaces during the process of ion implantation 

is known to cause sputtering and blistering on the material surfaces, and has been found 

that blistering dominates i f higher implantation doses (> 10 1 7 N + ions/cm2) and energies 

(> 10 keV) are injected into metals [97, 136-138]. N + ions can combine together to form 

N2 gas bubbles within the surfaces of the materials, during the process of N + ion 

implantation [97], so leading to the formation of the blisters. 

Considering the implantation conditions used during the study (section 4.2.3, table 4.5) 

sputtering and surface blister formation would be expected to be the main topographic 

changes on the material surfaces. Such blister formations, were observed on the 

implanted Ti6A14V surfaces under high magnification contact A F M imaging, compared 

with the unmodified material surfaces. As a result of the ion beam bombardment of the 

160 



energetic N + ions, surface blister formation as well as sputtering induced increased 

surface roughness of the Ti6A14V surfaces increased with increasing implantation dose 

(figs. 5.25-5.29). 

6.1.1.2 Chemical effects 

The chemical effects of N + ion implantation on Ti6A14V were investigated by XPS 

study in this work (section 5.1.6). XPS investigations confirmed the presence of N 

within all the implanted surfaces, by revealing the distinct N Is binding energy peak in 

the survey spectrum (figs. 5.43, 5.51 and 5.54), compared with the unmodified material 

surface (fig. 5.39). High resolution XPS scans of the Ti 2p binding energy positions on 

both ion implanted and unmodified Ti6A14V surfaces revealed twin Ti 2p XPS doublets 

(fig. 5.45) on the implanted surface, and a single Ti 2p XPS doublet (fig. 5.40) on the 

unimplanted sample. 

The presence of the N Is peak, and Ti 2p attributable to T i + 2p 3/2 species on the 

surface of the implanted samples indicated the presence of TiN (455.6 eV), the binding 

energy position of which agrees with the published data for TiN (455.7 eV) [139]. The 

formation of TiN crystallites on N + ion implanted Ti6A14V alloys has also been 

observed by several other workers [128, 129, 140-142]. Correspondingly identified 

were T i + 2p Vi species attributed to the formation of TiN. The Ti species on both 

modified and unmodified material attributable to T i 4 + 2p 3/2 were identified to be 

entirely due to the presence of TiC>2 oxide layer on the material surfaces, and their 

binding energies (458.3 and 458.7 eV respectively for species on modified and 

unmodified Ti6A14V) were in agreement with published data for pure TiC"2 [139]. 

Correspondingly, Ti species on both modified and unmodified material surface 

identified as T i 4 + 2p Vi were also attributed to the presence of Ti02. 

In addition, high resolution scan of the N Is peak showed a triple peak structure (fig. 

5.48) with a main peak at 396.2 eV, which corresponded to nitride formation and was in 

agreement with published work by Garcia et al [77]. The N Is peak positions were 

approximately the same for the different implantation doses investigated in this work, 

indicative of the same type of nitride formation in the implanted materials. The two 

smaller unidentified peaks at approximately 398 eV and 400 eV binding energies were 

probably of the form TiN x O y , and have been identified by some investigators as 
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oxinitrides and a mixture of TiN-TiO [102, 135]. These compounds are known to 

produce a variety of colours from bright gold to dark purple on Ti6A14V surfaces, 

which were observed on visual inspection during the study, when the implantation dose 
17 18 21 ~f~ 2 

increased from 2 x 1 0 to 1 x 10 and 1x10 N ions/cm respectively. 

The presence of the protective oxide surface layer (TiOa) is known to provide the 

Ti6A14V alloy with high corrosion resistance under static conditions [18, 21, 35, 143], 

as well as contribute to its favourable biocompatibility. However, these layers are easily 

removed during articulation with other materials in artificial joints, and leads to severe 

abrasive wear of both articulating surfaces. The identification of the TiN formation on 

the alloy upon N + ion implantation is significant, as TiN is known to stabilise the outer 

protective oxide layer [89, 134], and hence reduce the rate of removal and severe wear 

of the surfaces during articulation with other materials. 

6.1.1.3 Microhardness effects 

The microhardnesses of the ion implanted Ti6A14V samples were measured to be 

significantly higher than those of the unimplanted ones, and increased with increasing 

implantation dose (section 5.1.3, f ig. 5.12). Increasing hardness with increasing 

implantation dose and ion energy is known to occur and be more favourable for the 

formation of hard phase TiN precipitates [134, 143-145]. TiN was observed on all the 

implanted samples during the study with XPS (sections 5.1.6.2 to 5.1.6.4), indicating 

that the minimum implantation dose of 2 x 10 1 7 N + ions/cm2 used during the study, was 

more than the minimum dose required for the formation of the hard phase TiN. The 

formation of TiN leads to high hardness, and at a load of 1 gf, significant hardness 

increases of « 2.1, 3.1, and 4.1 times were calculated respectively for when the 
* * 17 18 2 1 " t " * 2 

materials were ion implanted with 2 x 10", 1 x 10 , and 1 x 10" N ions/cnT, 

compared with the unmodified material (table 5.3). 

The hardness increase upon N + ion implantation and with implantation dose in this 

study, have been similarly observed by several other workers [72, 100, 101, 140, 145-

148]. Oliver et al [72] performed microhardness tests on 3.5 x 10 1 7 N + ions/cm2 

implanted Ti6A14V samples (at an energy of 90 keV), and observed an increase in 

hardness of « 2 times at an indentation depth of 0.05 urn, compared to the unmodified 

material. Itoh et al [145] similarly observed an increase in Knoop hardness with 
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increasing implantation ion dose, and measured an increase in hardness of almost 1.6 

times for Ti6A14V samples implanted with a dose of 5 x 10 1 7 N + ions/cm2 compared to 

the unimplanted substrate (increasing from 347.5 KHN for unmodified to 556 KHN for 

modified material), using a Knoop microhardness tester. Using nano-indentation 

hardness technique, Williams et al [146] observed an increase in hardness of N + ion 

implanted Ti6A14V alloys with increasing implantation dose, and measured an increase 
17 2 

in hardness from 4 GPa for unmodified material to 12 GPa for 6 x 10 ions/cm 

implanted material. 

Using an ultra-microhardness tester, Berberich et al [140] measured an increase in 

Vickers hardness of about 40 % (under a load of 5 mN) on plasma immersion N + ion 

implanted Ti6A14V samples compared to the unmodified samples. Han et al [148] 

found that plasma source N + ion implanted Ti6A14V samples showed higher hardnesses 

compared to the unmodified samples, especially at low loads using a microhardness 

tester (under loads of 10, 25, 50, 100, and 200 gf). Alonzo et al [147] carried out micro-

indentation tests (with a load range of 0.4 - 10 mN) on N + ion implanted Ti6A14V 

samples and observed a significant change in surface hardness of the implanted samples 

compared with the unimplanted material. An increase in hardness of more than 100 % 

was measured at low applied loads corresponding to indentation depths of about 0.05 

um. 

The microhardness on all the implanted samples decreased towards that of the 

unmodified with increasing indentation load, an indication of ion implantation having a 

near surface hardening effect on the samples. Because the implantation layer is of the 

order of 0.15 |_im (section 5.1.2), high indentation loads would be expected to penetrate 

the implanted layer and reflect the hardness of the bulk material as the indentation depth 

becomes much deeper than the thickness of the modified layer. Clearly on figure 5.12, 

the microhardness of the implanted materials decreased with increasing indentation 

loads. The hardness depth profiles (figs. 5.13-5.15) described the typical near surface 

hardening effect of ion implantation, and the lack of discrete interface between modified 

and unmodified material. The increase in the near surface microhardness of the 

implanted Ti6A14V have been attributed to the combined action of the extreme hardness 

of TiN formed (2000 HV (Vickers Hardness) [149, 150]), dislocation rearrangement 

and associated reduction in dislocation mobility, as a result of N + ion implantation 

[151]. 
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The Knoop microindenter used during the experimental work was calculated, from the 

indent geometry, to penetrate the implanted samples to a depth of « 0.1, 0.2 and 0.3 um 

respectively at loads of 1, 3 and 5 gf. Clearly at a load of 1 and 3 gf, the penetration 

depth was of the order of both the mean projected N + ion range and maximum ion 

penetration depth calculated using TRIM (0.15/0.25 um). Therefore, the hardness 

occurring at a load of 1 and 3 gf are mainly influenced by the N + ion implanted region 

within the near-surface of the Ti6A14V, while the indenter penetrates this region at 

higher loads of 5, 10 and 25 gf (section 5.1.3). Deeper indents beyond the implantation 

zone on the implanted samples using loads of 5, 10 and 25 gf, also showed increase in 

hardness over that of the unimplanted material, though not significantly. The results are 

likely to be attributable to the diffusion of N + ion species beyond the implantation zone 

(although not proven in this study), as observed in stainless steel [30]. 

6.1.2 Effects of N + ion implantation on stainless steel and Co-Cr-Mo 

6.1.2.0 Introduction 

The microstructure (figs. 5.61-5.63) and main elemental composition (table 4.1) of the 

stainless steel, and the main elemental composition of the Co-Cr-Mo (table 4.1) used in 

this study were investigated with optical microscopy, AFM and SEM, and the results 

are shown in the respective figures and tables given. 

From TRIM calculations, a total of 428 (section 5.2.2), and 414 (section 5.3.1) target 

atom vacancies per incident N + ion were calculated respectively for the stainless steel 

and Co-Cr-Mo targets. The corresponding maximum ion penetration depth/mean 

projected N + ion range into the respective targets, were 0.21/0.10 um and 0.20/0.096 

um. These observations are in agreement with published ion penetration depth 

distributions in metals (0.2-0.5 um) [26, 135]. 

6.1.2.1 Topographical effects 

On visual and low magnification A F M inspection of the N + ion implanted stainless steel 

and Co-Cr-Mo sample surfaces, ion implantation was observed not to affect the surface 

morphology of the materials. Further microscopic inspection of the implanted surfaces 

indicated that their roughness was not altered by the ion implantation treatment. 
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However, some surface deformation and blister formation on the surfaces of the 

implanted samples were observed under high magnification contact A F M (figs. 5.72 

and 5.85 respectively). These observations were attributed to the formation of N2 gas 

bubbles and blisters on the material surfaces during the ion implantation process. 

High dose (> 10 1 7 ions/cm2) implantation of N + ions into austenitic stainless steels is 

known to cause gas bubble formation [71], and the process could have similarly 

occurred in the stainless steel and Co-Cr-Mo materials used in this study. 

6.1.2.2 Microhardness effects 

The microhardnesses of all the implanted stainless steel and Co-Cr-Mo samples were 

significantly higher than those of their respective unimplanted samples, and again the 

surface hardness decreased towards that of the unmodified with increasing indentation 

load as the indenter penetrated the bulk material (fig. 5.65 and 5.78 respectively). This 

near surface hardness effect of N + ion implantation on materials and lack of the discrete 

interface between modified and unmodified volume, were described by the stainless 

steel and Co-Cr-Mo hardness depth profiles (figs. 5.66 and 5.79 respectively). 

At an indentation load of 1 gf, a significant microhardness increase of « 2.1 times, was 

measured for both ion implanted stainless steel and cobalt chrome samples (compared 

to their respective unmodified samples). The measurements were calculated to be within 

a depth of 0.1 urn on both material surfaces using the Knoop indent geometry, and were 

in agreement with both the mean projected N + ion range and maximum depth calculated 

using TRIM (sections 5.2.2 and 5.3.1 respectively). The reported increase in hardness 

values are therefore as a result of the near surface N + ion implantation modification. 

Clearly the hardness occurring at a load of 1 gf is mainly influenced by the N + ion 

implanted region within the near-surface region of the stainless steel and Co-Cr-Mo 

samples, while the indenter penetrates this region at higher loads of 3, 5, 10 and 25 gf 

(sections 5.2.3 and 5.3.2). However, the deeper indents beyond the implantation zone on 

the implanted samples using loads of 3, 5, 10 and 25 gf, showed increase in hardnessess 

over that of the unmodified samples, though not significantly. The results are likely to 

be attributable to the diffusion of N + ion species beyond the implantation zone, as 

observed in stainless steels [30]. 
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Several other investigators have similarly observed significant increases in hardness of 

ion implanted stainless steel and Co-Cr-Mo samples [72, 152-154]. Studies [153, 154] 

have suggested that N hardens the surface layer of implanted stainless steels, by 

interstitial solid-solution effects or by the formation of nitride phases. Such hardening 

processes would be expected on the N + ion implanted stainless steel and Co-Cr-Mo 

samples used in this study. Oliver et al [72] performed microhardness tests on 3.5 x 10 1 7 

N + ions/cm2 implanted stainless steel and hard Cr plate samples (at an energy of 90 

keV), and observed an increase in hardness of « 1.3 times on both materials at an 

indentation depth of 0.05 um, compared to the respective unmodified materials. 

6.1.2.3 Chemical effects 

N + ion implanted microstructures in stainless steel and cobalt chrome alloys are known 

to be much more complex, because of the large number of N compounds that Fe, Cr and 

N i can form [102], and investigation and identification of these were not carried out in 

this work. Using high resolution TEM, Baron et al [155] observed the precipitation of 

CrN in both 304 and 316 stainless steels implanted with high dose N + ions (> 10 1 7 

ions/cm2). Considering the ion implantation conditions used in this study (section 4.2.3, 

table 4.5), such nitrides (CrN) would be expected to form on the surfaces of both the 

stainless steel and Co-Cr-Mo samples. 

Chemical effects of N + ion implantation such as nitride formation would result in 

surface hardening. The hardness increase observed in both implanted stainless steel and 

Co-Cr-Mo samples used in this study, are likely to be attributable to the formation of 

hard phase nitride precipitates (CrN), precipitation hardening and increased resistance to 

dislocation motion upon N + ion implantation. 

6.1.3 Effects of N + ion implantation on UHMWPE 

6.1.3.0 Introduction 

A total of 368 (section 5.1.2) target atom vacancies per incident N + ion were calculated 

for UHMWPE from TRIM calculations. The corresponding maximum ion penetration 

depth/mean projected N + ion ranges into the target was 0.35/0.26 um. Because of the 

lower density of the C based UHMWPE compared to the metallic biomaterials, the 
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penetration depth of the N + ions calculated was higher, despite using lower ion doses 

and energy. The energy dissipation within the polyethylene was observed to reach a 

maximum at the projected ion depth (fig. 5.10) as a result of the target atom recoils (a 

nuclear stopping effect), and the ionisation energy loss was observed to be highest 

closest to the sample surface (fig. 5.11), ionisation being an electronic effect. 

During ion implantation in polymers, the constituent atoms can be ionised (by electronic 

mechanisms) and / or displaced from their original sites (by nuclear mechanisms), 

depending on the local environment and energy densities (section 3.2.1.1). However, 

ionisation is known to dominate at high energy (> 10 keV) [9, 79, 81] to induce atomic 

and molecular ionisation phenomena, and hence the formation of excited states and 

radicals. These changes lead to cross-linking, and hence increase in molecular weight of 

the polymer. According to the implantation conditions used in this study (table 4.3), it is 

expected that the UHMWPE surface is modified dominantly through the formation of 

cross-linked molecular microstructure induced by electronic stopping primarily 

undertaken by the incident N + ions during the process. Hence weak secondary bonds 

between long molecular chains in the unmodified material are replaced by much 

stronger covalent bonds at the cross linked points. This effect significantly decreases the 

flexibility of the molecular chain due to the increased rigidity of the back-bone structure 

by anchoring molecular chains. This was strongly supported during the microhardness 

investigations, where the modified UHMWPE samples exhibited higher surface 

hardness (« 4 times higher) compared with the unmodified material (section 5.1.3). 

6.1.3.1 Topographic effects 

The surface colour of the N + ion implanted UHMWPE wear pins post implantation 

changed from white to dark brown, probably caused by processes involving thermal 

effects and dehydrogenation [9, 156]. During the process of the ion implantation, highly 

energetic N + ions pass through the UHMWPE surface, and some of their energy is 

dissipated onto the treated surface as heat. Chen et al [156] showed using elastic recoil 

detection (ERD) that a hydrogen deficient surface layer is formed after N + ion 

implantation into UHMWPE. The removal of H from the surfaces of UHMWPE is 

known to facilitate the formation of a series of conjugated double bonds, to which the 

surface colour is sensitive. 
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Following low magnification AFM inspection of the N ion implanted UHMWPE 

samples, the surfaces appeared to have a very similar appearance to the unmodified 

samples. However, some deformation on the surfaces of the implanted samples in the 

form of regular patterns (blistering), were observed under high magnification contact 

A F M (figs. 5.36). This was attributed to the ion beam bombardment of the energetic 

ions or so-called ion etching effects which has been observed by other workers [9, 78]. 

6.1.3.2 Chemical effects 

The XPS findings of the N + ion implanted and unmodified UHMWPE (section 5.1.6.5) 

were in agreement with published data [156]. Nearly 2 at. % of N (table 5.4) were found 

to be present on the implanted samples, with the N Is envelope showing a 2 sub-peak 

envelope at 398.4 and 400.1 eV (fig. 5.59). The N Is binding energy positions seen in 

this study, are consistent with the published data [156] for N - sp3 C (at 398.4 eV) and 

N - sp2 C (at 400.25 eV). Also, it was reported that [156], the N Is peaks position for -

C=N (nitrite) is at 399.4 eV, and that for -N=C (isonitrile) would be expected at a lower 

value. Hence the peaks at 398.4 and 400.1 eV observed in this study, may correspond to 

the -N=C (isonitrile) and -C=N (nitrile) respectively. 

XPS studies have shown that, when N + ions are implanted into polymers, the implanted 

N + ions form chemical bonds with the polymer chains instead of forming precipitates by 

self-clustering [156]. 

6.1.3.3 Microhardness effects 

N + ion implantation had a pronounced hardening effect on the UHMWPE samples (and 

the XLPE samples tested for comparison), with the degree of hardening observed to 

increase with increasing implantation ion dose in the UHMWPE material. At a load of 1 

gf, increases in hardness of « 2.5 and 3.8 times respectively were measured for 

UHMWPE implanted with doses of 1 x 10 1 5 and 5 x 10 1 5 N + ions/ cm 2 compared with 

the unmodified material (table 5.3), and complements hardness studies by other 

investigators [156]. Chen et al [156] measured an increase in hardness of « 4 times for 

modified UHMWPE compared with the unmodified material using a nanoindenter 

(increasing from 0.11 GPa for unmodified to 0.4 GPa for 5 x 10 1 5 N + ions/cm2 

implanted UHMWPE at 40 keV). The hardness increased with increased implantation 
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dose, and was probably due to the fact that the degree of cross-linking increased with 

increasing ion dose. An increase in hardness of « 2.4 times was also calculated for 

XLPE samples implanted with 5 x 10 1 5 N + ions/ cm 2, compared with the untreated 

material. The degree of cross-linking can therefore be increased probably up to the 

formation of a ful l three dimensionally networked cross-linked molecular chain 

structure. 

The improvement of surface hardness can be entirely attributed to the ionisation 

phenomena induced in the near surface region (leading to the formation of a three-

dimensional network linking the chains with strong covalent bonds). N + ions are known 

to have elevated ionisation power [81] and hence are more effective in causing 

ionisation during N + ion implantation. 

6.2. Tribological Wear Behaviour of N + ion Implanted Biomaterials 

6.2.0 Introduction 

Biomaterials used in the fabrication of implants for artificial joints are subjected to 

surface wear during articulation, and wear has been shown to be detrimental to their 

long-term success. Ultra high molecular weight polyethylene wear debris has been 

shown by several investigators to trigger an osteolytic reaction, which leads to the 

loosening of the implant (chapter one). N + ion implantation has been a most widely 

accepted surface treatment, and shows promise in improving the wear resistance of 

commercially used biomaterials in total joint replacements. 

The results of the tribological behaviour of the used biomaterials (in both modified and 

unmodified forms) evaluated on a multidirectional pin-on-plate wear apparatus during 

the study, are discussed under the following sections (6.2.1 to 6.2.4). Four sets of 

specimens for each material both in the form of modified or unmodified were used in 

the tests as an indication of the repeatability and reproducibility of the results, and no 

significant differences between the wear pins in the results of a particular test were 

measured. Due to the different operating conditions used by several other workers, such 

as force, lubrication, temperature, sliding distance and type of wear apparatus, and the 

presentation of wear results, difficulties arise in the comparison of tribological wear 

results. As a result of such difficulties, wear tests with different material couple 
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combinations (both in modified or unmodified forms) were performed in this study to 

directly compare the wear of unmodified biomaterial couples with those of modified 

biomaterial couple combinations, when tested under the same operating conditions and 

on the same wear apparatus. Comparisons with previous studies have been made where 

appropriate, subject to variations in the tribological conditions and operating apparatus 

used. 

Most previous tribological wear studies have used simple reciprocating motion pin-on-

plate machines, and distilled water or saline solution as the lubricant, which generally 

produce wear factors (for UHMWPE articulated against metallic counterfaces) one or 

two orders of magnitude less than those found using multidirectional motion pin-on-

plate machines, and in vivo (section 4.1). The reason for this discrepancy is that the 

UHMWPE turns to be strain hardened in the direction of the motion during 

reciprocating wear tests [157, 158], and hence becomes stronger in the sliding direction, 

leading to reduced wear. Also distilled water used as a lubricant in tribological studies 

has been shown to alter the tribological properties of the bearing system significantly 

[159], The use of distilled water lubrication during wear tests, has been reported to lead 

to the formation of heavy transfer films of polyethylene on the counterface metallic 

material (section 4.1.1.1), and no such films have been observed when the tests are 

carried out under bovine serum lubrication. 

6.2.1 Tribological wear behaviour of Ti6A14V7UHMWPE couples 

6.2.1.1 Unmodified Ti6A14V/UHMWPE sliding couples 

Tests with unmodified UHMWPE pins articulating against unmodified Ti6A14V plates 

(section 5.1.4.1) showed the most severe surface wear of the Ti6A14V plates and the 

highest wear factors (ko) of the UHMWPE pins, compared with other materials 

investigated in this work. 

A mean ko of 2.77 ± 0.16 x 10"6 mm 3/Nm and mean weight loss of 214 + 0.08 ug were 

calculated respectively for the UHMWPE pins and Ti6A14V plates, up to a sliding 

distance of 207 km (table 5.1). This high wear of the UHMWPE was attributable to the 

poor surface wear properties of the counterface Ti6A14V plates. Previous in vitro wear 

tests by several other investigators [42, 111] have similarly found high wear 
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factors/wear rates for unmodified UHMWPE articulating against unmodified Ti6A14V 

compared with UHMWPE articulating against other metallic counterfaces (such as 

stainless steel or Co-Cr-Mo), under different tribological conditions. 

Poor surface wear of unmodified Ti6A14V was seen on all the plates after the wear 

testing, and was observed on the AFM image of figure 5.30. The surfaces of the plates 

were observed (visually and microscopically) to be severely damaged, and characterised 

by numerous random scratches and grooves, due to the continuous rubbing action of the 

UHMWPE, and the surface observations were in reasonable agreement with those 

observed by various other workers in both in vitro and in vivo wear studies [13, 36, 37, 

111, 160, 161]. Due to such poor surface wear of unmodified Ti6A14V, continued 

articulation against the UHMWPE pins caused severe scratches on the metal surface. 

Two-body abrasive wear occurred resulting in a quick deterioration of both Ti6A14V 

and the UHMWPE surfaces. The machining and microtoming marks on the surface of 

the UHMWPE pins present prior to testing, wore o f f after the test, indicating the surface 

deterioration caused by abrasion. Mean UHMWPE pin volume loss of 21.6 mm 3 was 

measured when articulating against unmodified Ti6A14V, compared to 12.6 mm 3 when 

articulating against modified Ti6A14V plates. 

Dark colouration and debris seen in the bovine serum lubricant and on the surfaces of 

worn UHMWPE pins post testing, have also been observed by several other authors in 

both in vitro wear tests and in vivo [37, 48, 96, 111], and the debris have been identified 

as titanium oxide (Ti02) particles. These observations have been attributed to the easy 

removal of the relatively hard TiC>2 layer from the Ti6A14V surfaces during articulation 

against the UHMWPE. The hard debris then remain between the pin and plate and in 

the lubricant during testing, and promote a severe three-body abrasive wear process, 

resulting in further deterioration of both Ti6A14V and UHMWPE surfaces. The oxide 

layer re-forms readily after removal from the surface due to the high affinity for O of Ti 

and A l [96], and hence the abrasion wear mechanism is further accelerated [21, 147]. 

Further more, UHMWPE has a strong adhesion to the titanium oxide f i lm, and this 

further promotes the three-body abrasive wear mechanism [134, 145, 147]. This is an 

oxidative wear process (section 3.1.1.1.2), which gradually increases the Ti6A14V 

surface roughness with articulation and hence the associated UHMWPE wear. 
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Using a flat-on-flat wear apparatus and bovine calf serum lubrication, McKellop et al 

[111] found Ti6A14V samples to be susceptible to abrasive wear by particles of acrylic 

cement, compared to stainless steel and Co-Cr-Mo samples when articulating against 

UHMWPE. Clark et al [161] found on a pin-on-disc test that, the entrapment of acrylic 

cement particles between UHMWPE and Ti6A14V resulted in severe wear of the 

titanium alloy counterface, with the production of large amounts of black metallic wear 

debris. A similar form of wear was observed on seven revised titanium alloy total hip 

prostheses by Agins et al [37] in vivo, with a severe inflammatory response in the 

surrounding tissues due to large amounts of Ti6A14V and UHMWPE debris. 

6.2.1.2 Modified Ti6A14V/UHMWPE sliding couples 

In contrast to unmodified wear couples, N + ion implantation significantly improved the 

surface wear resistance of the Ti6A14V samples, and no dark colouration was observed 

in the bovine serum lubricant in any of the tests carried out (during articulation against 

modified or unmodified UHMWPE) in this study. The absence of darkening of the 

lubricant with test duration is an indication of the fact that N + ion implantation stabilised 

the surface oxide layer of the Ti6A14V during articulation with the UHMWPE, and 

hence reduced its removal to prevent severe abrasive wear. 

When Ti6A14V plates were implanted with 2 x 10 1 7 N + ions/cm2 (section 5.1.4.4), 

minor surface damage (mild wear effect) was observed by A F M on the plate surfaces 
1 5 + 2 

even after more than 5 million wear cycles against 5 x 10 N ions/cm implanted 

UHMWPE pins (fig. 5.31), and no appreciable colour change was observed in the 

bovine serum lubricant used. AFM further resolved the surface features of both 

modified and unmodified plates post wear, giving both height data and material 

information. As can be seen in figures 5.30 and 5.31 (section 5.1.5), there was a 

significant reduction in the surface topography depth of the region of pin contact on 

Ti6A14V plates, when the plates were implanted with 2 x 10 1 7 N + ions/cm2, reducing 

from « 436 nm (unmodified plate) to « 99 nm (modified plate), and hence a reduction in 

the mean surface roughness (table 5.2) compared with the unimplanted samples post 

wear. 

The distinctive wear tracks seen on the unmodified plates were clearly not visible on 

any of the implanted plates post wear (figs. 5.31-5.33). Further more, compared to the 
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results from the unmodified wear couples (section 5.1.4.1), significant reductions of w 

41 % and « 62 % respectively in the mean wear factors of the mating UHMWPE pins 

(from 2.77 x 10"6 ± 0.16 to 1.65 x 10"6 ± 0.05 mm 3 /Nm), and mean weight loss of the 

Ti6A14V plates (from 214 ± 0.08 to 81 ± 0.06 ug), were calculated after testing (table 
18 

5.1). The surfaces of the ion implanted Ti6A14V plates with higher ion doses ( 1 x 1 0 

and 1 x 10 2' N + ions/cm2 implanted plates) also showed significant improvement in 

surface wear resistance and reduction in the mean wear factors of the mating UHMWPE 

pins, compared with those of unmodified and modified UHMWPE pins articulating 

against unmodified Ti6A14V plates. 

The results add to existing tribological studies by several other authors using different 

tribological conditions [36, 101, 134, 142, 147, 150, 162-164] (section 3.2.1.3.1), who 

have similarly observed improvements in the wear resistance of ion implanted Ti6A14V 

when articulated against UHMWPE, compared with unmodified wear couples. 

Mckellop et al [36] found that N + ion implantation with 3 x 10 1 7 N + ions/cm2 implanted 

Ti6A14V samples (at an ion energy of 80 KeV and a temperature of 100 °C), resulted in 

good protection of the metal surface against third body wear by PMMA, when 

articulating against UHMWPE on a ten-station computer controlled joint simulator. 

Using bovine serum lubricated pin-on-disc wear tests, Alonzo et al [147] showed a 

marked decrease in wear of both Ti6A14V and UHMWPE samples when the alloy was 

implanted with 4 x 10 1 7 N + ions/cm2 at 180 keV (resulting in Ti6A14V wear tracks with 

roughness values less than 0.05 um R a), compared with the unimplanted sliding couples 

(Ti6A14V wear tracks showed deep grooves 50 um with traces of transferred 

UHMWPE material). Using a ball-on-disc wear testing device, Lifang et al [150] 

showed improved tribological properties of Ti6A14V samples plasma-based ion 

implanted with N + (then acetylene) compared with unmodified samples. 

The wear studies conducted on Ti6A14V samples with different ion implantation doses 

articulating against unmodified UHMWPE samples, showed that 2 x 10 1 7 N + ions/cm2 

implanted Ti6A14V plates exhibited the lowest surface wear, and when tested against 5 

x 10 1 5 N + ions/cm2 UHMWPE pins, a significant reduction in the mean wear factor of 

the modified UHMWPE from * 2.77 x 10"6 ± 0.16 mm 3/Nm (unmodified material) to « 

1.25 ± 0.05 x 10"6 mm 3/Nm (modified material) was calculated, representing an 

improvement in UHMWPE wear of « 55 %. An improvement in mean weight loss of 
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the modified Ti6A14V plate of « 63 % was also calculated (table 5.1). N ion 

implantation was found to improve the surface hardness of both Ti6A14V and 

UHMWPE articulating surfaces, and hence contributed to the reduced deterioration of 

the material surfaces. Increase in hardness would imply strengthening of the substrates 

and an improved wear resistance, as observed by other workers [147], Moreover, ion 

implantation can stabilise the Ti6A14V protective passive oxide layer (section 

3.1.1.1.2), avoiding the detachment of abrasive oxide particles and resulting in a very 

mild wear mechanism on both articulating surfaces. 

XPS energy spectrum (section 5.1.6.2) of the region of pin contact on the implanted 

Ti6A14V plates post wear against unmodified UHMWPE and implanted UHMWPE 

(fig. 5.44), were both observed to show the distinct binding energy peak due to the N Is, 

which was present on the pre wear tested material (fig. 5.43). This was an indication of 

the fact that N was still present on the surfaces of the implanted materials even after 

more than 5 million wear cycles. However, high resolution XPS analysis of the Ti 2p 

(figs. 5.46, and 5.47) envelopes of the regions were found to be clearly depleted in TiN 

relative to TiC>2. More depletion of the T i + species attributable to TiN was observed in 

the region of pin contact on the modified Ti6A14V plates following testing with 

unmodified UHMWPE pins than with modified UHMWPE pins (table 4.4), compared 

to that from the pre wear tested Ti6A14V plates. In addition, the amount of TiN within 

the N Is envelope was also reduced post wear, when compared to the analysis from the 

pre-tested modified Ti6A14V samples, and again more reduction in plates articulating 

against unmodified UHMWPE samples was observed than in plates articulating against 

modified UHMWPE samples (table 4.4). This is an indication of the reduction in the 

amount of N on the modified Ti6A14V surfaces due to articulation with the UHMWPE 

pins. The XPS results suggests that, N + ion implantation of Ti6A14V alloys creates TiN 

on the material surfaces, the hardness of which can enhance the surface wear resistance 

of the alloy by effectively protecting the articulating surfaces over 5 million wear cycles 

(in vitro), until the TiN is depleted and the protective passive oxide layer wears away. 

When the Ti6A14V surface is exposed, the unmodified Ti6A14V7UHMWPE sliding 

couple wears rapidly by a three-body abrasion mechanism [147] (section 6.2.1.1). 

The surface roughness of the modified Ti6A14V plates increased with the implantation 

dose (table 5.2), and this was observed to increase the mean wear factors of the mating 

unmodified UHMWPE pins, though not significantly, such that wear factors were still 
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lower than those found for the unmodified UHMWPE pins articulated against 

unmodified Ti6A14V plates. Increases in the UHMWPE mean wear factors of « 8 % 

and « 26 % respectively were calculated when the implantation dose increased from 2 x 

10 N ions/cm to 1 x 10 and 1 x 1 0 N ions/cm (compared with the mean wear 

factor against 2 x 10 1 7 N + ions/cm2 Ti6A14V). This was attributed to the increase in 

surface roughness caused by the increased implantation dose (table 5.2) as a result of 

physical and chemical changes induced by the implantation process. The surface 

topography of the 1 x 101 8 and 1 x 102 1 N + ions/cm2 implanted Ti6A14V surfaces post 

wear, are shown in figures 5.32 and 5.33 respectively, where the R a determined by AFM 
18 

(fig. 5.34) was found to be « 17.5 nm and « 25.6 nm respectively for 1 x 10 and 1 x 
21 4~ 2 17 4~ 2 

10 N ions/cm implanted plates, higher than that of the tested 2 x 1 0 N ions/cm 

implanted plate (« 10.7 nm). 

Despite the increase in hardness observed with the increase in implantation ion dose 

(section 5.1.3), the wear of the mating UHMWPE increased, though not significantly, 

with the increasing ion dose (section 5.1.4.3). These wear results show that a weak 

correlation exists between the hardness and wear behaviour of the ion implanted 

Ti6A14V surfaces when articulating against UHMWPE. However, a good correlation 

between hardness and wear would be expected to exist up to an optimum implantation 

ion dose on the Ti6A14V surface (2 x 10 1 7 N + ions/cm2 in this study). Beyond 2 x 10 1 7 

N + ions/cm2 implantation dose, the surface hardness of the Ti6A14V increases with 

dose, but the wear resistance of the alloy and the mating UHMWPE decreases following 

articulation compared to 2 x 10 1 7 N + ions/cm2 implanted Ti6A14V/unmodified 

UHMWPE wear couple. This may be due to the sputtering and blistering induced 

significant increase in mean arithmetic surface roughness observed on increasing the 
1 7 4 " 2 18 4* 2 

implantation dose from 2 x 10 N ions/cm (12 nm R a) to 1 x 10 N ions/cm (32 nm 

R a) and 1 x 102 1 N + ions/cm2 (49 nm R a). Alternatively, the increase in wear of the 

mating UHMWPE with increasing implantation dose on Ti6A14V could be attributed to 

the surface structure formed upon N + ion implantation with higher ion doses. Increasing 

the implantation dose could increase the size of the TiN precipitates formed (though this 

was not ascertained in this work), and this could have reduced the adherence of the 

surface oxide layer and hence promoted its removal during articulation. The removal of 

the large sized TiN precipitates and surface TiC>2 layer could act as three-body abrasive 

wear particles in the lubricant during articulation to promote wear of the softer 

UHMWPE. Also the surface chemistry of Ti6A14V is changed upon ion implantation as 
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a result of chemical reactions between the implanted species and the surface atoms, and 

this could be significant during articulation in bovine serum, which contains 

physiological concentrations of proteins. The proteins could have different interactions 

with the modified surfaces depending on the implantation dose, and hence influence the 

lubrication and wear of the articulating surfaces. The effect of protein interactions with 

N + ion implanted surfaces could be investigated further. 

6.2.1.3 Summary 

Due to their lower modulus, superior biocompatibility and excellent corrosion resistance 

when compared to stainless steels and cobalt chrome alloys, Ti6A14V alloys have been 

increasingly used as biomaterials. However, the poor shear strength of the TiC>2 surface 

layer and the wear resistance of the alloys are known to limit their biomedical use. 

The wear studies in this work have shown that the wear of unmodified 

Ti6A14V/UHMWPE sliding couples results from a two/three-body abrasion mechanism. 

As the UHMWPE rubs against the Ti6A14V, debris particles are formed and pulled out 

of the Ti6A14V surface. These hard particles then become abrasive particles between 

the pin and plate or embedded in the polymer, causing a severe abrasive wear. In 

artificial joints, such poor tribological properties of the unmodified Ti6A14V femoral 

components articulating against unmodified UHMWPE acetabular cups would be 

detrimental and are known to lead to failure of the joints [18, 37, 40]. The removed 

surface oxide layer during articulation not only promotes third-body abrasion, but also 

exposes the metal surface and hence can lead to soluble metal ions such as V (which has 

been reported to be toxic and show adverse tissue effects) to be released locally into the 

surrounding tissue. In fact, it has been well documented that Ti6A14V without a surface 

treatment is not recommended for in vivo bearing applications due to the poor surface 

wear resistance [13, 18]. 

N + ion implantation on Ti6A14V is known to be able to retard the start of severe 

abrasive wear on the alloys [72, 89, 134, 147], and hence reduce the friction and wear 

between the alloy and mating UHMWPE sliding couples. However the precise 

mechanism that delays the onset of the abrasive wear is not yet clear. During the wear 

studies undertaken in this work, N + ion implantation was seen to affect the wear of 

Ti6A14V/UHMWPE sliding couples significantly, due to modification induced changes 
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such as increase in microhardness of the Ti6A14V (section 3.1.1.3), strengthening the 

alloy samples and hence improving the wear of both Ti6A14V and UHMWPE during 

articulation. In addition, the harder and wear resistant TiN precipitate that forms below 

the protective oxide layer (section 5.1.1.2) stabilises the outer oxide layer as well as 

reduces its thickness, leading to reduction in abrasive oxide particles removed from the 

surface, and hence resulting in a very mild wear mechanism. 

Unfortunately, there is as yet no evidence that ion implantation changes the wear 

behaviour of Ti6AI4V alloys beyond the implantation zone (due to poor wear when the 

implanted layer is worn through), and that i f the implanted layer were to be completely 

worn away, the wear properties would revert to those of the unmodified alloy bearing 

against UHMWPE. AFM (figs. 5.34 a) measured the depths of the region of pin contact 

on the 2 x 10 1 7 N + ion/cm2 implanted Ti6A14V samples (< 0.1 um) to be within the 

mean ion implantation depth (0.15 um), and XPS analysis confirmed the presence of N 

on the surface after more than 5 million wear cycles against 5 x 10 1 5 N + ion/cm2 

implanted UHMWPE pins. The results suggest that, after 10 million wear cycles against 

implanted UHMWPE pins, the depth of the region of pin contact on the implanted 

Ti6A14V samples could be about < 0.2 um (still within the maximum ion penetration 

depth, 0.25 um), and hence the wear resistance of the alloy could still be enhanced until 

after this number of wear cycles. 

In addition, radiation-enhanced diffusion of ions in implanted materials is known to 

occur and has been observed in metals [165], although the phenomenon is said to be 

complex and not fully understood. Such radiation damage is expected to induce 

diffusion of the implanted species and result in a final profile that extends several 

factors deeper than that expected from a simple ion range calculation. The excess 

vacancies produced as a result of ion implantation (section 5.1.2) are also known to 

enhance the rate of diffusion at relatively low temperatures. The diffusion processes of 

N + ions beyond the implantation zone in stainless steels have been reported [30], and 

could have similarly have occurred in the implanted Ti6A14V samples used in this 

study. The observed increase in hardnesses of the implanted Ti6A14V samples beyond 

the implantation zone compared to that of the unimplanted samples at the same loads (5, 

10, and 25 gf) during the study (section 5.1.3, fig. 5.12) suggests that such diffusion 

process may have occurred. I f present, such diffusion processes could further enhance 

the wear resistance of the modified alloy over several millions of wear cycles (> 10 
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million) when articulating against modified UHMWPE (in vitro). However further 

diffusion of N + ions in Ti6A14V alloys beyond the implantation zone needs to be 

studied to verify the occurrence of such processes. 

About one million cycles in a wear apparatus corresponds to one year of active use of a 

hip joint prosthesis (a cycle on the pin-on-plate rig is obtained by two passes, whereas a 

complete walking cycle is represented by two steps), hence i f the modified Ti6A14V 

surface wear measured qualitatively (using AFM and XPS) and quantitatively in vitro, 

were applied to clinical use, the wear resistance of the modified alloy would be 

expected to probably last for more than 10 years of use, until the protective passive 

oxide layer wears away. 

6.2.2 Tribological wear behaviour of stainless steel/UHMWPE couples 

6.2.2.1 Unmodified stainless steel/UHMWPE sliding couples 

Compared with the surfaces of Ti6A14V plates, the tribological surface wear properties 

of the stainless steel used during this study were found to be better, and in turn, lower 

wear factors of the mating UHMWPE pins were recorded, even when the materials were 

unmodified. 

Unmodified UHMWPE mean ko of 1.59 ± 0.15 x 10"6 mm 3 /Nm was calculated after 

more than 5.5 million sliding wear cycles against unmodified stainless steel (section 

5.2.4.1). Via AFM, some scratches and grooves were observed on the stainless steel 

plates in the region of pin contact post wear (fig. 5.73), as a result of the articulating 

action of the mating UHMWPE pins. Studies on retrieved stainless steel femoral heads 

from THRs have indicated that the scratches formed on the heads are multidirectional 

[166, 167], reflecting the multidirectional motion found in vivo. The scratches observed 

on the test plates in this study were similar in appearance to the multidirectional 

scratches seen on the retrieved femoral heads, and scratches observed on test plates in 

previous in vitro studies [116]. The bovine serum lubricant showed no colour change 

and contained no dark particulate debris, suggesting the passive oxide layer (C^Ch) on 

the surface of the stainless steel plates to be more adherent than that of TiC>2 on 

Ti6A14V. The results suggest that, the main wear mechanism that occurred during 

testing was probably two-body rather than three-body abrasive wear, owing to the 
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adherence of the surface oxide layer. This abrasive wear mechanism was mild compared 

to the three-body mechanism found for Ti6A14V samples. 

The wear results in this study, support and add to existing tribological studies by other 

workers using different conditions [110, 111, 114, 116, 119, 168] and were similar to 

those found in clinical observations [169-171]. Kumar et al [110] calculated a mean kQ 

of 1.81 + 0.07 x 10~7 mm 3/Nm for UHMWPE articulating against stainless steel (under 

bovine serum lubrication in vitro), a value that is an order of magnitude lower than the 

mean calculated in this study. Using a twelve-station circularly translating pin-on-disc 

(CTPOD) device, Saikko et al [114] found mean ko of 0.8 x 10"6 mm 3/Nm for 

UHMWPE articulating against stainless steel plates. The mean ko was of the same order 

of magnitude to that reported in this study (though lower). Joyce et al [116], reported a 

mean koof U O x 10" 6 ±0.45 mm /Nm for UHMWPE articulating against stainless steel 

in bovine serum, on a multidirectional pin-on-plate machine. This value compares very 

well with the mean k 0 reported in the present study. Saikko et al [168] performed long-

term simulator tests of Charnley prostheses under water lubrication (unmodified 

UHMWPE/stainless steel wear couples), and calculated an UHMWPE mean ko of 1.46 

x 10"6 mm 3/Nm. The ko was similar to that recorded in the present study. The 

differences in the in vitro mean wear factors of UHMWPE in this study and that 

obtained by the other authors, may be due to the different tribological conditions used 

(section 6.2.0). 

The internal volume changes of 25 acetabular cups of UHMWPE/stainless steel 

Charnley prostheses removed after 2 to 16 years, were studied by Atkinson et al [169] 

who found the mean clinical ko to be 2.9 x 10"6 mm 3/Nm (ranging from 0.09 x 10"6 to 

7.2 x 10"6 mm 3/Nm) for the mating UHMWPE. Clearly, the mean k„ obtained in the 

present study falls within the range found in the clinical observations and was of the 

same order of magnitude as the mean value, though slightly lower. Hall et al [170] 

investigated 129 Charnley acetabular components acquired at the time of revision 

surgery, and calculated a mean clinical ko of 2.1 x 10"6 ± 0.2 mm 3/Nm for the mating 

UHMWPE, a value which was slightly higher but of the same order of magnitude as 

that recorded in this study. Wroblewski et al [171] calculated a mean clinical 

UHMWPE ko of 3.9 x 10"6 + 1.4 mm 3/Nm, which is considerably higher than that found 

in this study (though of the same order of magnitude). The high clinical mean wear 

factors compared to the mean ko calculated in this study, may be attributable to the 

179 



numerous scratches found on the femoral heads (caused by bone cement particles in 

vivo), or the dynamic loading undergone by the UHMWPE components in a normal 

gait. 

6.2.2.2 Modified stainless steel/UHMWPE sliding couples 

N + ion implantation was found to further improve the surface wear resistance of the 

stainless steel, when the materials were implanted with 2 x 10 1 7 N + ions/cm2 and tested 

against unmodified UHMWPE (section 5.2.4.2). 

The effect of wear on the implanted plate samples post wear was very mild (fig. 5.74), 

maintaining the low surface roughness of the samples pre wear. Roughness 

measurements showed deep scratches and hence higher roughness values on the 

unimplanted stainless steel plates post wear, compared with those on the implanted 

samples (table 5.5). Mean UHMWPE ko of 0.98 ± 0.08 x 10"6 mm 3/Nm was calculated 

after more than 5.5 million wear cycles against the modified stainless steel. Compared 

with the UHMWPE mean ko calculated when articulating against unmodified stainless 

steel, N + ion implantation on stainless steel improved the wear of the mating UHMWPE 

by « 38 %. 

Further improvement in the wear of the mating UHMWPE was observed when both 

stainless steel and UHMWPE articulating surfaces were N + ion implanted (section 

5.2.4.3). 5 x 10 1 5 N + ions/cm2 implanted UHMWPE mean ko of 0.82 ± 0.02 x 10"6 

mm 3/Nm was calculated following testing against the 2 x 10 1 7 N + ions/cm2 implanted 

stainless steel plates, an improvement in wear of the modified UHMWPE by « 48 % 

and 16 % respectively, compared with that of the unmodified UHMWPE articulated 

against unmodified stainless steel (section 5.2.4.1) and unmodified UHMWPE 

articulated against modified stainless steel (section 5.2.4.2). Goode et al [172] suggested 

that N stabilises the passive oxide layer on the surface of N + ion implanted pure iron and 

thus indirectly reduces the surface wear of the material during articulation. Such surface 

passive oxide layer stabilisation by N + ion implantation may have similarly have 

occurred on the implanted stainless steel plates, to enhance the surface wear resistance 

observed in this study. 
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The work extends upon results from previous tribological wear studies by several other 

workers, investigating the effect of N + ion implantation on the wear properties of 

stainless steel, using different conditions [91, 99, 102, 107, 153, 154] (section 3.2.1.3.2). 

6.2.2.3 Summary 

Stainless steel alloys have acceptable friction and wear properties in joint implants, and 

are well known to be less sensitive than titanium alloys to wear damaging, but crevice 

corrosion may occur in some cases during use as a biomaterial in TJR. N + ion 

implantation of stainless steel has been studied to further produce significant 

improvement in the wear resistance of the alloy used in this study, and in turn, 

significantly reduced the wear experienced by the mating UHMWPE. 

Worn tracks of the unimplanted stainless steel showed groves and scratches caused by 

two-body abrasion due to the rubbing action of the UHMWPE, whereas the effect of 

wear on the implanted samples was very mild. A F M (figs. 5.74) measured the depths of 

the region of pin contact on the 2 x 10 1 7 N + ion/cm2 implanted steel samples (< 0.09 

urn) to be within the mean ion implantation and maximum penetration depths (0.1 and 

0.21 jam respectively), after more than 5 million wear cycles against 5 x 10 1 5 N + ion/cm 2 

implanted UHMWPE pins, suggesting that, the wear resistance enhancement of the 

alloy by N + ion implantation could exist for several millions of wear cycles against 

modified UHMWPE in vitro (at least 10 million wear cycles until the maximum ion 

penetration depth is reached). 

In addition, it has also been demonstrated that the improvement in wear resistance 

achieved by N + ion implantation into several types of stainless steels persists to a depth 

of wear as much as 10 times the penetration depth of the N + ions, as a result of diffusion 

of the ions beyond the implantation dose [30, 106, 173-177]. Some studies [173, 175, 

176] indicated that the N migrates to such depths during the tribological wear tests. Hale 

et al [177] suggested that the implanted N initiates the formation of a wear resistant 

layer that was able to propagate at or ahead of the wear front. Such diffusion processes 

( i f present), and the fact that the N + ion implanted stainless steel surfaces were 

significantly less damaged post wear testing in the study, suggest that the improved 

hardening and surface wear properties by N + ion implantation would be expected to be 

beneficial in artificial joints. 
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6.2.3 Tribological behaviour of Co-Cr-Mo/UHMWPE couples 

6.2.3.1 Unmodified Co-Cr-Mo/UHMWPE sliding couples 

The tribological wear studies have shown that unmodified Co-Cr-Mo plates have 

excellent surface wear properties compared with unmodified stainless steel and 

Ti6A14V plates, when articulating against unmodified UHMWPE pins. The mean 

surface roughness of the plates pre and post wear of all the metallic materials can be 

seen in tables 5.2 (Ti6A14V, section 5.1.4.7), 5.6 (stainless steel, section 5.2.4.4) and 5.9 

(Co-Cr-Mo, section 5.3.3.4) for comparison. 

Co-Cr-Mo worn plates showed few scratches and grooves (fig. 5.86), even after more 

than 5.5 million cycles of wear against UHMWPE. The excellent surface wear of Co-

Cr-Mo was due to the high hardness of the material compared with that of the stainless 

steel and Ti6A14V samples, which in turn, improved the wear of the mating UHMWPE 

(by experiencing less severe wear conditions). Mean UHMWPE ko of 1.29 ± 0.05 x 10"6 

mm 3/Nm was calculated when articulating against the unmodified Co-Cr-Mo (section 

5.3.3.1). 

The lack of discolouration of the bovine serum test lubricant during and following wear 

testing suggested the oxide layer on the surface of the Co-Cr-Mo plates (Cr 203) to be 

more adherent than that of T i 0 2 on Ti6A14V. The results suggested that, the main wear 

mechanism that occurred during testing was probably mild two-body rather than the 

severe three-body abrasive wear, owing to the adherence of the surface oxide layer. 

The results add to existing tribological studies by several other workers using different 

conditions [24, 111, 178]. The differences in the mean wear factors of UHMWPE in this 

study and that obtained by other investigators may be due to the different tribological 

conditions used (section 6.2.0). Wright et al [178] tested Co-Cr-Mo pins against 

UHMWPE samples in a pin-on-disc machine (such that the UHMWPE samples were 

cyclically loaded and unloaded), and observed a mean ko of the order of 1.0 x 10"6 

mm 3/Nm for the mating UHMWPE. The results was similar to that recorded in this 

study. The mean ko obtained for UHMWPE (1.0 x 10"7 mm 3/Nm) articulated against 

Co-Cr-Mo on a three-station reciprocating pin-on-plate apparatus (distilled water 

lubrication) by Saikko et al [24], was an order of magnitude lower than that in the 
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present study. Mckellop et al [111] obtained mean ko of two orders of magnitude lower 

than that in this study for UHMWPE, using a twelve-station reciprocating motion pin-

on-plate apparatus (under serum lubrication). 

6.2.3.2 Modified Co-Cr-Mo/UHMWPE sliding couples 

N + ion implantation further improved the microhardness (section 6.1.2.2), and hence the 

surface wear resistance of the Co-Cr-Mo samples, and in turn, reduced the wear of the 

mating unmodified UHMWPE samples even further (section 5.3.3.2). 

The modified and worn plates showed few scratches and grooves, and these were most 

probably a consequence of polishing (fig. 5.87), and maintained the low roughness 

appearance of the plate prior to wear testing even after more than 5.5 million cycles of 

wear against the unmodified UHMWPE pins. A mean UHMWPE k c of 0.75 ± 0.03 x 

10"6 mm 3/Nm was calculated, an improvement in wear o f * 42 %, compared with that 

calculated for unmodified UHMWPE samples articulated against unmodified Co-Cr-Mo 

samples (section 5.3.3.1). 

Implantation of the mating UHMWPE pins articulating against modified Co-Cr-Mo 

plates (section 5.3.3.3), further improved the wear of the modified UHMWPE by « 48 

% and 11 % respectively, compared with that of the unmodified UHMWPE samples 

articulated against unmodified Co-Cr-Mo (section 5.3.3.1) and modified Co-Cr-Mo 

(section 5.3.3.2) samples. A mean modified UHMWPE k G of 0.67 ± 0.03 x 10"6 

mm 3/Nm was calculated following testing against modified Co-Cr-Mo samples. 

6.2.3.3 Summary 

Cobalt chrome alloys used as biomaterials, are known to be durable and have excellent 

wear resistance. This was observed in this study, where wear tests with Co-Cr-Mo 

plates produced the lowest surface damage of the plates and wear of the mating 

UHMWPE pins. However in TJR consisting of Co-Cr-Mo articulating against 

UHMWPE components, the UHMWPE wears down over time, and the wear particles 

activate a biological response that leads to bone resorption and to implant loosening and 

failure. 

183 



N + ion implantation of Co-Cr-Mo and UHMWPE articulating surfaces was found to 

further reduce the wear of the mating UHMWPE after more than 5 million wear cycles 

during the study, and would be beneficial in reducing the UHMWPE wear debris 

induced osteolysis in TJR, by reducing the wear debris generated. 

The tribological results of modified and unmodified Co-Cr-Mo/UHMWPE wear 

couples in this study complements previous studies by several other workers using 

different conditions [17, 24, 26, 27, 98] (section 3.2.1.3.3). 

6.2.4 Wear behaviour of UHMWPE 

6.2.4.1 Wear factors 

The mean wear factors of UHMWPE (both in modified or unmodified forms) in all the 

tests carried out in this study have been summarised in tables 5.1, 5.5 and 5.8. 

In all the wear tests carried out this study, 5 x 10 1 5 N + ions/cm2 implanted UHMWPE 

samples exhibited the lowest wear rates when articulated against 2 x 10 1 7 N + ions/cm2 

implanted metallic plates, followed by unmodified UHMWPE samples against modified 

2 x 10 1 7 N + ions/cm2 implanted metallic samples, compared with unmodified 

UHMWPE/metallic wear couples. N + ion implantation improves the properties of 

UHMWPE by cross-linking the linear structure of the material. Cross-linking 

strengthens UHMWPE and therefore the material can resist any wear processes, 

including molecular orientation during sliding (section 6.2.4.2). The observed 

significant improvements in wear resistance may be, in part, attributed to the ion 

implantation induced cross-linking, which in turn, increased hardness of the UHMWPE 

samples significantly (table 5.3). 

Even though the implanted layer on the UHMWPE wear pins wore o f f after a few 

number of wear cycles, the material still resisted the high wear rates exhibited by the 

unmodified UHMWPE samples articulated against unmodified metallic samples 

(Ti6A14V in particular). This was probably due to a diffusion process of the N + ions 

within the material, strengthening the UHMWPE beyond the implanted region. 

Modification of the counterface metallic plates further enhanced the surface hardnesses, 
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and deterioration of the modified UHMWPE samples were decreased as a result of 

experiencing less severe wear conditions. 

6.2.4.2 Wear mechanisms 

Adhesive, abrasive and fatigue wear have all been found in previous wear tests of 

UHMWPE against metallic biomaterials [24, 111, 119, 179-181], and in the wear of 

UHMWPE in total joint replacements (section 3.1.1.1.1). 

The UHMWPE wear faces became smooth and polished following articulation against 

the metallic counterfaces in vitro, as is the case with the worn region of retrieved 

UHMWPE acetabular cups [93, 182]. The main wear mechanism of UHMWPE found 

in this study was abrasive wear. This was indicated by wear features observed on worn 

UHMWPE surfaces (fig. 5.37), and random grooves and scratches in the direction of 

sliding on the metallic counterface surfaces, following wear testing. Abrasive wear is 

associated with the removal of material from the softer UHMWPE surface by a cutting 

or shearing action of asperities from the harder metallic counterface (asperity height of 

the order of 3 x R a) or by the presence of hard particles either between the articulating 

surfaces or embedded in one of them [183]. The cutting action of asperities from the 

harder counterface corresponds to two-body abrasion and was found in all the wear tests 

carried out, although was milder in tests with N + ion implanted material combinations. 

The cutting action by the presence of hard particles between the articulating surfaces 

were seen, only when unmodified and modified UHMWPE pins were articulated 

against unmodified Ti6A14V plates. This was attributed to TiC>2 particulate debris 

known to be introduced into the sliding system during articulation as the product of 

two-body abrasion wear from the unmodified Ti6A14V surfaces, which in turn 

increased the wear of the mating UHMWPE significantly. N + ion implantation of the 

Ti6A14V surface stabilised the Ti02, and hence reduced its removal from the surface 

and wear of the UHMWPE, reverting the wear mechanism back to the milder two-body 

abrasion. 

Adhesive wear is associated with intermolecular forces, and known to occur 

significantly when UHMWPE articulates against clean, hard and smooth metallic 

counterfaces under unlubricated, starved lubrication and non biological lubrication 

conditions. The interfacial shear strength of the adhesive junction has been observed to 
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be greater than that of the polymer during articulation, and the contact ruptures within 

the polymer as sliding continues, owing to low yield strength. The polymer is then 

transferred to the harder counterface and subsequently removed as wear debris. Due to 

the effects of the proteins in the bovine serum lubricant (section 4.1.1.1), no transfer 

films were observed on any of the counterface metallic plates in any of the tests carried 

out during the study. SEM investigations in particular of the metallic plates post wear, 

showed no charging (i.e., non-conducting) deposits to indicate polymer transfer onto the 

plates. Bovine serum used as a lubricant in wear studies is known to suppress 

polyethylene transfer. The absence of any transfer films was indicative of the absence 

of adhesive wear in this study and a consequence of the use o f bovine serum lubricant. 

Fatigue wear is known to be observed only after a substantial period of articulation, and 

hence may not be detected in short-term tests. Fatigue wear debris results from the 

formation of small cracks on the surfaces of the UHMWPE associated with elastic 

deformation over a number of contact cycles, and particles of wear debris become 

removed by the growth and intersection of the cracks. Upon visual and microscopic 

inspection of the worn UHMWPE pins from all the tests carried out during the study, no 

evidence of such cracks were seen on any of the pins, indicating the absence of fatigue 

wear. Also the linear wear curves of the UHMWPE pins obtained, further suggested that 

fatigue wear mechanisms were not present during the testing. 

N + ion implantation of the UHMWPE further strengthened the surfaces of the 

UHMWPE pins and hence discouraged the formation of transfer films on the 

counterface plates, and resisted crack formation during the wear testing. 

6.2.4.3 Surface morphology 

The worn surfaces of all the UHMWPE samples (modified or unmodified) tested in this 

study, had a very similar appearance. On visual inspection, the contact surfaces were 

smooth and glossy, and microscopic inspection revealed characteristic wear features in 

the form of surface ripples and fibre-like texture orientation on the worn surfaces. AFM 

of the worn UHMWPE surfaces (figs. 5.37, 5.75 and 5.88), revealed a characteristic 

appearance of the surface morphology, which were observed to resemble those of worn 

ex vivo polyethylene cups (fig 5.38 b and c) examined by Elfick et al [133] at Durham 

University. The surface morphology was mostly in the form of fibril formation 
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(fibrillation), which has been observed and described be several other investigators [6, 

11, 36, 49, 157], irrespective of the UHMWPE mating metallic counterface in vitro or 

in vivo. This characteristic surface wear feature has been attributed to crystalline 

anisotropy induced by molecular orientation of the UHMWPE at the sliding surface, 

during multidirectional articulation [11, 157]. 

The wear surface of UHMWPE is known to undergo a molecular reorganisation 

process, driven by plastic strain accumulation at the surface by repeated cyclic asperity 

contact, and leads to strain softening and weakening of the wear surface, during 

multidirectional sliding [11]. The direct evidence of this molecular orientation was 

identified by Wang et al [11], who revealed a preferential orientation of UHMWPE 

crystalline lamellae in the direction of the principal motion (i.e., the direction of 

flexion/extension) on worn UHMWPE surfaces (components tested on hip and knee 

simulators). Other investigators also observed the appearance of surface stretching in 

the form of fibril formation on worn UHMWPE components as forms of evidence of 

molecular orientation [49]. Such fibrillar appearance on the worn surfaces are known to 

reflect the occurrence of molecular orientation as a result of either adhesive, micro-

adhesive or abrasive wear [157], and were observed in this study. The oriented fibrillar 

structures can also be readily formed on UHMWPE surfaces by surface traction forces 

during sliding (even in the absence of three-body abrasion) [49, 157], and are stronger 

in the orientation direction but weaker in the transverse direction, which is 

perpendicular to the orientation direction. Wear particles are therefore produced when 

weak fibrillar features are separated from their neighbours by tearing rupture in the 

transverse direction, during multidirectional motion. 

N + ion implantation improved the wear resistance of the UHMWPE compared with the 

unmodified samples during the wear testing in this study, and the results could be 

attributed to the effects of cross-linking (which makes UHMWPE more isotropic). 

Cross-linking retards chain mobility and hence can directly reduce the degree of 

molecular orientation during sliding. In addition, the increased density of C-C chemical 

bonds between adjacent molecular chains by cross-linking, further makes it more 

difficult to split one molecule from another. Under the conditions of multidirectional 

motion, the orientation-softening phenomenon is known to be predominantly 

responsible for the detachment of fibrous wear debris from UHMWPE worn surfaces 

[157], and from AFM and SEM examination of the worn UHMWPE surfaces in this 
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study, the results would indicate that the orientation softening phenomenon was 

probably the main mechanism for the detachment of fibrous wear debris from the 

UHMWPE surfaces during testing. 

The resemblance of the worn UHMWPE surfaces in this study with those of ex vivo 

components is indicative of similar or near similar wear mechanisms occurring during 

the wear studies and in vivo, and provides confirmation that the multidirectional pin-on-

plate wear machine used in the study to be an appropriate experimental device for the 

assessment of in vitro wear performance. 

6.3 Summary of Discussion 

Summarised wear results of all the couple combinations tested in this study are 

presented in tables 5.1, 5.5, and 5.8, from which it can be seen that N + ion implantation 

of either polymer or metal substrate effected a reduction in the wear of the couple when 

compared to unmodified couple. Further, this improvement in the wear resistance was 

maintained over the duration of the test with no degradation observed over the period. 

The most significant reductions in wear volumes of the polymer were attained when 

both articulating components were ion implanted. Of particular significance is the 

tribological improvement observed for the surface modified Ti6A14V/UHMWPE wear 

couples, for which the application of N + ion implantation surface modification brought 

the polymeric wear factor down to levels approaching those of unmodified stainless 

steel and Co-Cr-Mo/UHMWPE wear couples. 

AFM examination of the topographic effects of both the ion implantation process and 

the tribological testing, provided validatory evidence for the appropriateness of the in 

vitro multidirectional pin-on-plate test rig used during this study. Similarities in post 

wear topographies, indicating common wear mechanisms, were revealed on the surfaces 

of the examined wear couples and those from ex vivo retrieved total joint hip prostheses, 

as illustrated in figure 5.38 (UHMWPE post wear). The topographical changes upon N + 

ion implantation were evident for all the biomaterial samples, being most marked for 

the lowest density Ti6A14V alloy, with increasing ion dose causing an increase in 

surface roughness due to raised sputter yield and subsurface N2 gas bubbles blister 

formation (figs. 5.26-5.29). Post wear testing, the ion implantation induced increased 

resistance to surface damage was apparent on all the alloy samples, but again was most 
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marked for Ti6A14V, which unmodified was characterised by extensive scratching (fig. 

5.30) whereas following ion implantation, wear induced damage was significantly 

reduced (fig. 5.31). This was quantified via surface roughness measurements, which 

indicated that unmodified Ti6A14V that was polished to a typical R a of 0.01 um prior to 

testing against unmodified UHMWPE suffered third body abrasive surface damage 

from the poorly adherent T1O2 oxide increasing the R a to 0.08 (am following 5 million 

cycles of multidirectional in vitro wear testing. This compares poorly with the post 

testing R a of 0.02 um exhibited by the same alloy implanted N + ions to a dose of 2 x 

101 7 at 90 keV. Similar improvements in surface roughness of N + ion implanted samples 

compared to unmodified samples post wear testing were observed for the stainless steel 

(table 5.6) and Co-Cr-Mo (table 5.9) samples. 

Surface sensitive Knoop microhardness measurements used to quantify N + ion 

implantation induced surface hardening on the selected biomaterials in this study, 

correlated well with the computer-based TRIM Monte Carlo predictions for the sub-

micron mean N + ion depth travelled within the substrates. Figures 5.9, 5.10, 5.11 

illustrates the depth dependence for Ti6A14V substrates implanted with 2 x 101 7 N + 

2 1 8 + 2 2 1 + 2 

ions/cm , 1 x 1 0 N ions/cm , and 1x10 N ions/cm respectively, and figures 5.57 

and 5.69 illustrates that for stainless steel and Co-Cr-Mo substrates respectively. For all 

the substrates, significant increases in surface hardness were recorded (tables 5.3, 5.7. 

5.10), which were consistent with the observed improvement in multidirectional in vitro 

wear resistance. 

Despite the fact that surface modification by N + ion implantation is confined to a very 

thin layer beneath the surface, significantly improved surface properties such as surface 

hardness and wear, have been well identified in this study, and were attributed to the 

change in structure conferred by N + ion implantation induced interaction between the 

energetic N + ions and the biomaterial surfaces. Such near surface improvements in the 

properties of biomaterials would be beneficial in total joint replacement applications. 

During the process of N + ion implantation in metallic biomaterials, atomic and nuclear 

collisions lead to the formation of highly disordered and amorphous structures in the 

near-surface region, and the formation of new chemical bonds between substrate atoms 

and the implanted ions lead to the formation of hard-phase nitride precipitates (high 

dose implantation, > 101 7 N + ions/cm2). These changes typically combine to create 

surfaces that are harder and more resistant to wear and chemical attack (section 3.2.1). 
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In polymeric biomaterials, ionisation interactions of implantation ions with substrate 

atoms (dominant at the high energies), lead to cross-linking in adjacent polymer chains, 

creating a three-dimensionally cross-linked surface layer with much higher hardness and 

much improved wear resistance (section 3.2.1.1). The ion implantation conditions used 

in this study (section 4.2.3, table 4.3), promoted ionisation (high ion energy > 10 keV), 

and reduced oxidation effects (carried out in a high vacuum environment). 
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CHAPTER SEVEN - CONCLUSIONS 

This study has investigated the effects of >T ion implantation of metallic and 

UHMWPE biomaterials, and has added to the understanding of the tribological 

behaviour of N* ion implanted biomaterial sliding combinations. In particular the effects 

of N* ion implantation on the tribological performance of Ti6A14V/UHMWPE sliding 

couples are noteworthy. The following conclusions can be drawn from the review of the 

results: 

1 Reciprocation and rotation pin-on-plate machine 

1.1 The multidirectional motion pin-on-plate machine used in this study produced 

results similar to clinical wear factors, and the wear features observed on the 

UHMWPE samples following articulation against metallic counterfaces during 

the study, were similar to those observed on ex vivo UHMWPE acetabular cup 

components. The tribological results suggest that the machine is a useful device 

for evaluating bearing materials for use in TJRs. The reciprocation and rotation 

pin-on-plate machine is considered to be a cheap, simple, and more accurate 

method (than the simple reciprocation pin-on-plate or the pin-on-disc machine) 

of comparing the wear of different biomaterial combinations prior to simulator 

testing and clinical trials. 

1.2 N"̂  ion implantation significantly increased the surface wear resistance of the 

investigated biomaterials (Ti6A14V, stainless steel, Co-Cr-Mo and UHMWPE) 

in in vitro testing using multidirectional pin-on-plate testing. 

2 Modified and unmodified Ti6A14V/UHMWPE wear couple 

2.1 Severe three body abrasive wear mechanism was found to dominate unmodified 

Ti6A14V/UHMWPE wear couples under multidirectional motion and bovine 

serum lubrication, leading to extensive surface damage of the alloy and severe 

wear of the mating UHMWPE. No adhesive or fatigue wear mechanisms were 

found. 
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2.2 IST ion implantation at 90 keV with 2 x 1017 ions/cm2 improved the surface 

hardness of Ti6A14V by a factor of 2.1, and enhanced chemical resistance and 

surface wear resistance of the alloy. The mating UHMWPE in turn, experienced 

less severe wear conditions, and the wear resistance was improved by « 41 %, 

compared to the wear of untreated UHMWPE against unmodified Ti6A14V. 

2.3 >T ion implantation at 90 keV with 1 x 1018 ions/cm2 improved the surface 

hardness of Ti6A14V by a factor of 3.1, and enhanced the chemical resistance 

and surface wear resistance of the alloy. The mating UHMWPE in turn, 

experienced less severe wear conditions, and the wear resistance was improved 

by » 35 %, compared to the wear of untreated UHMWPE against unmodified 

Ti6A14V. 

2.4 N* ion implantation at 90 keV with 1 x 1021 ions/cm2 improved the surface 

hardness of Ti6A14V by a factor of 4.1, and enhanced the chemical resistance 

and surface wear resistance of the alloy. The mating UHMWPE in turn, 

experienced less severe wear conditions, and the wear resistance was improved 

by « 25 %, compared to the wear of untreated UHMWPE against unmodified 

Ti6A14V. 

2.5 N4" ion implantation increased the surface roughness of Ti6A14V when the 

implantation ion dose increased from 2x10 to 1x10 and 1 x 10 ions/cm 

respectively. The respective increase in surface roughness on the alloy surfaces, 

in turn, reduced the percentage improvement in the wear resistance of the mating 

UHMWPE though not significantly (« 5 % and 15 % respectively), compared to 

the wear improvement of unmodified UHMWPE against 2 x 1017 ions/cm2 

implanted Ti6A14V. 

2.6 XPS analysis indicated the presence of T i + and N" species attributable to TiN on 

the surfaces of the ion implanted Ti6A14V, which was predominantly 

responsible for the hardening effect of the implanted surface. 

2.7 N4" ion implantation at 80 keV with 1 x 1015 and 5 x 1015 ions/cm2 increased the 

surface hardness of UHMWPE by a factor of 2.5 and 3.8 respectively. An 

increase in hardness of XLPE material by a factor of 2.4 was calculated. 
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2.8 ion implantation at 90 keV with 2 x 1017 ions/cm2 on Ti6A14V, and 80 KeV 
15 2 

with 5 x 10 ions/cm on UHMWPE wear couples, improved the surface 

hardness and wear of the articulating surfaces significantly. A significant 

improvement in the wear factor of the modified UHMWPE of « 55 % was 

calculated following in vitro wear testing, compared to the unmodified 

UHMWPE articulated against unmodified Ti6A14V. 

2.9 ion implantation enhanced the tribological performance of the 

Ti6A14V/UHMWPE sliding couple by impeding third body formation through 

stabilisation of the weak surface oxide layer on the Ti6A14V counterface, and 

hence reduced the effects of severe three-body abrasive wear of the articulating 

surfaces. 

2.10 XPS studies confirmed that surface species present on Ti6A14V upon ion 

implantation were retained following in vitro multidirectional wear testing, 

indicating that the surface integrity of the ion implantation treatment was 

retained for the test duration. This was confirmatory to the wear test data that 

demonstrated no diminution in the favourable wear resistance for the ion 

implanted surfaces over the duration of the testing. XPS analysis made on ion 

implanted Ti6A14V substrates post wear testing indicated the presence of TiN 

within the surface of the wear couple contact zone. 

3 Modified and unmodified stainless steel/UHMWPE wear couple 

3.1 Two body abrasive wear mechanism was found to dominate unmodified 

stainless steel/UHMWPE wear couples under multidirectional motion and 

bovine serum lubrication, leading to mild surface damage of the alloy and wear 

of the mating UHMWPE (compared to the unmodified Ti6A14V/UHMWPE 

wear couples). No adhesive or fatigue wear mechanisms were found. 

3.2 N"1' ion implantation at 90 keV with 2 x 1017 ions/cm2 improved the surface 

hardness of stainless steel by a factor of 2.1 and enhanced the surface wear 

resistance of the alloy. The mating UHMWPE in turn, experienced less severe 

wear conditions, and the wear resistance was improved by « 38 %, compared to 

the wear of untreated UHMWPE against unmodified stainless steel. 
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3.3 N* ion implantation at 90 keV with 2 x 1017 ions/cm2 on stainless steel, and 80 

KeV with 5 x 1015 ions/cm2 on UHMWPE wear couples, improved the surface 

hardness and wear of both articulating surfaces significantly. A significant 

improvement in the wear resistance of the modified UHMWPE of « 48 % was 

calculated following in vitro wear testing, compared to the unmodified 

UHMWPE articulated against unmodified stainless steel. 

4.0 Modified and unmodified Co-Cr-Mo/UHMWPE wear couple 

4.1 Two body abrasive wear was found to dominate unmodified Co-Cr-

Mo/UHMWPE wear couples under multidirectional motion and bovine serum 

lubrication, leading to mild surface damage of the alloy and wear of the mating 

UHMWPE (compared to the unmodified Ti6A14V/UHMWPE wear couples). No 

adhesive or fatigue wear mechanisms were found. 

4.2 N* ion implantation at 90 keV with 2 x 1017 ions/cm2 increased the surface 

hardness of Co-Cr-Mo by a factor of 2.1 and enhanced the surface wear 

resistance of the alloy. The mating UHMWPE in turn, experienced less severe 

wear conditions, and the wear resistance was improved by « 42 %, compared to 

the wear of untreated UHMWPE against unmodified Co-Cr-Mo. 

4.3 IST ion implantation at 90 keV with 2 x 1017 ions/cm2 on Co-Cr-Mo, and 80 KeV 

with 5 x 1015 ions/cm2 on UHMWPE wear couples, improved the surface 

hardness and wear of both articulating surfaces. A significant improvement in 

the wear resistance of the modified UHMWPE of » 48 % was calculated 

following in vitro wear testing, compared to that of the unmodified UHMWPE 

articulated against unmodified Co-Cr-Mo. 

In summary, it can be concluded from the results of the research project that >T ion 

implantation of the selected biomaterials offers significant potential for improvement in 

tribological performance under in vitro conditions, and likely improvements under in 

vivo conditions. The modified surfaces investigated showed significant improvements in 

wear volumes generated over the duration of 5 million wear cycles of testing when 

compared to unmodified surfaces, and for Ti6A14V articulating against UHMWPE, 

wear volumes of modified surfaces were reduced to levels associated with the clinically 
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used, but high elastic modulus alloys (316L stainless steel and Co-Cr-Mo). The 

improvements in wear resistance can be attributed to increase in surface hardness and 

changes in surface chemistry induced by N4" ion implantation, and these beneficial 

effects were retained for the duration of the investigated tribological evaluations. No 

evidence of wear induced penetration through the ion implanted surface modified zone 

to the unmodified bulk substrate was observed following detailed topographic 

examinations and chemical analysis via XPS. 

The tribological assessment of the modified biomaterials showed that, 2 x 1017 >T 

ions/cm2 implanted metallic samples at 90 keV and 5 x 1015 lsT ions/cm2 implanted 

UHMWPE samples at 80 keV wear couples, produced the optimum tribological 

performance of the investigated biomaterial couple combinations in vitro. 

This study contributes to understanding of the in vitro tribological performance of the 

selected N 4 ion implanted biomaterials. It extends upon and differs from previous work 

because of the combination of experimental and analytical methodologies adopted to 

investigate the effects of N* ion implantation upon the selected biomaterials. 

Specifically, extensive multidirectional in vitro wear testing to over 5.5 million wear 

cycles was performed on the selected modified and unmodified biomaterial wear 

couples. This work is novel because it incorporated an in vitro methodology that utilised 

a bovine serum lubricated multidirectional wear path with load, frequency of cycle, and 

stoke length modelled on the human walking gait cycle. It is the appropriateness of the 

in vitro methodology and the duration of the testing that underpin this work and set it 

apart from other published work (typically run to 1-3 million wear cycles). 

In addition to the evaluation of the wear behaviour of the modified and unmodified 

materials, N* ion implantation was performed on samples of the selected biomaterials 

and study of the induced surface hardening was investigated to provide complementary 

evidence in order to understand the effect of the surface modification on the tribological 

performance of these biomaterials. Similarly, chemical changes and topographical 

changes upon N* ion implantation of the selected biomaterials were investigated in 

order to provide complementary evidence to explain the effects on tribological 

performance of the surface modification treatment. Further, topographical analysis of 

the modified and unmodified substrates as tribological testing progressed was also 

carried out which together provide a comprehensive study of the tribological 
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performance of the materials over the duration of the in vitro testing. It is this 

combination of experimental and analytical approaches that sets this work apart from 

previous, often piecemeal and short-duration studies of the wear of ion implanted 

biomaterials. 
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CHAPTER EIGHT - FUTURE WORK 

Further long term joint simulator wear studies of all the selected unmodified and N4" ion 

implantation modified metallic/polymer biomaterial wear couples would provide 

additional information as to the durability of such a narrow surface modified layer. 

Chemical analysis of saved bovine serum lubricant from N 4 ion implantation modified 

Ti6A14V/UHMWPE wear couples to confirm the absence of Ti02 particles following in 

vitro wear testing. 

Further microscopic investigations of the UHMWPE and metallic samples should be 

performed following in vitro wear testing, to detect the presence of crack formation on 

the UHMWPE samples (fatigue wear) or the presence of transfer films on the metallic 

samples (adhesive wear). 

Ion beam milling or depth profile XPS analysis through the surface of the of the ion 

implanted samples would provide confirmatory or additional information to support the 

observed hardness increase in the 1 x 1021 N 4 ions/cm2 samples. 

Cross-sectional TEM investigations of the nano-structural effects of N 4 ion implantation 

on the selected biomaterials would provide additional information as to the physical 

effects of ion implantation on microstructure. 

DSC and Raman Spectroscopy characterisation of N 4 ion implanted and unmodified 

UHMWPE would offer improved understanding of the microstructural and chemical 

changes upon ion implantation. 

Given the similar nature of energetic ion species of ion implantation to irradiation 

methods of sterilisation, long term stability in particular, and mechanical properties 

should be investigated. 
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APPENDICES 

APPENDIX A 

Calibration of the Pin-On-Plate Wear Apparatus, Articulation Distance 

Calculation (in THR), Polymer Pin and Metallic Plate Cleaning and Weighing 

Protocols, Experimental Errors, and Pin-On-Plate Wear and Standard Deviation 

Measurements 

A l : Calibration of the Pin-On-Plate Wear Apparatus (Pin Force) 

The components used to apply the required force of 40N on the pins during the pin-on-

plate testing include the aluminium lever arm (159 g), a screw and nut (9 g) to adjust the 

lever arm, a peg (14 g) to locate the additional weights on the lever arm, pin holder (74 

g), and additional weights (?). The additional weights required to exert a force of 40 N 

on the pins was calculated by taking moments about the pivot of the lever arm. 

Locating pin and additional weights Screw 

Lever arm 

Pivot 

Pin holder 

Pin force 

Figure A l . 1. Force diagram of the lever arm 

To calculate the weight (Fl) applied to the lever arm at a distance (dl) from the pivot to 

exert a force of 40 N on the pins, the following equation can be used: 

(Fl x d l ) + (F2 x d2) + (F3 x d3) = F x d3 equation A l l . 

Where F l is the additional weights and d l (138 mm) is the distance between the pivot 

point and the locating pin point; F2 is the lever arm weight (including the screw and nut 
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to adjust the lever arm, and the peg to locate the additional weights on the lever arm), 

and d2 (91 mm) is the distance between the pivot point and the centre of gravity of the 

lever arm; F3 is the pin holder force and d3 (30 mm) is the distance between the holder 

and the pivot; F is the pin force and d3 (30 mm) is the distance between the pin and the 

pivot point. An additional weight o f « 733 g was calculated and used. 

A2. Calculation of Articulation Distance in THR Joints 

The diameter of surgically used femoral head components in THR with metal-

polyethylene pairings can range between 22-32 mm (or > 32 mm) depending on the 

design. The Charnley hip endoprosthesis design has a femoral head diameter of 22 mm, 

whereas the Muller design has a head diameter of 32 mm. During a walking cycle, the 

hip joint has an angle o f « 70° swing (flexion/extension) at 1 Hz. 

S = r6 equation A2.1. 

Where S is the sliding distance, r is the radius of joint, and 0 is the angle of swing in 

radians. 

2 7i radians = 360° equation A2.2. 

7C radians = 180° equation A2.3. 

From equation A2.3, 

70° = 1.22 rads equation A2.3. 

For a Charnley hip endoprosthesis of head diameter 22 mm, r is 11 mm, which implies: 

S= 11 x 1.22= 13.44 mm 

A complete walking cycle is represented by 2 steps, therefore, for a walking cycle the 

sliding distance is » 27 mm. 
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For a Muller hip endoprosthesis of head diameter 32 mm, r is 16 mm, which implies: 

S = 16 x 1.22= 19.52 mm 

A complete walking cycle is represented by 2 steps, therefore, for a walking cycle the 

sliding distance is « 39 mm. 

For such designs, an articulating distance in the range 27-39 mm / walking cycle would 

be expected. Therefore, to simulate in vivo conditions of a hip joint replacement of such 

designs, an in vitro sliding distance in the range 27-39 mm/cycle is required. 

A3: Pin and Plate Cleaning and Weighing Protocol 

The cleaning protocols for both pin and plate are detailed below, with that of the pins 

closely following the ASTM standard F732-00 (part 6) recommendations. 

1. Turn off motor(s) to stop motion 

2. Turn off the controller 

3. Remove loads from cantilever loading arms 

4. Unscrew and remove pin arms from main rig and remove pins from holders 

5. Unscrew and remove the electronic lubricant level and temperature sensors 

6. Unscrew and remove plastic frame plate holder from lubricant bath 

7. Remove plates from plastic frame holder 

8. Rinse plates with tap water to remove contaminants 

9. Clean plates with a solution of detergent and then acetone 

10. Dry plates with lint-free tissue and air-dry in a dust-free environment 

11. Remove control and test pins from holders 

12. Rinse pins with tap water to remove contaminants 

13. Wash pins in an ultrasonic cleaner in a solution of 1 % detergent for 15 min 

14. Rinse pins in a stream of distilled water 

15. Rinse pins in an ultrasonic bath cleaner in distilled water for 5 min 

16. Rinse pins in a stream of distilled water 

17. Dry pins with lint free tissue 

18. Immerse pins in acetone for 3 min 

19. Dry pins with lint free tissue 
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20. Air-dry pin(s) in a dust-free environment at room temperature for 30 min 

21. Weigh pins four times and take an average 

22. Clean lubricant bath, pin and plate holders and the wear machine 

23. Reassemble wear machine and add new lubricant 

24. Turn the controller on 

25. Turn motor(s) on to start motion, once the lubricant temperature equilibrates at 37 ± 

1 °C 

A4: Experimental Errors 

Even i f we have a highly controlled test procedure and a most precise measuring 

apparatus, there will always be some scatter in the collected data from test samples of 

the same material, and therefore appropriate measures are necessary to minimise the 

possibility of measurement error. The factors that lead to uncertainty in measured data 

include the test method, variation in sample fabrication procedure, operator basis, 

inhomogeneity in the same material, and apparatus calibration. 

Despite the variation that may exist in the experimental measurements during this work, 

typical values were reported by taking an average of all the data measured. The average 

x of some parameter x is given by: 

n _ I*. 
x = — — Equation A4.1. 

n 

Where n is the number of measurements and x, is the value of discrete measurement. 

The degree of scatter of the measured data was also quantified using standard deviation 

where applicable, during the experimental measurements. Standard deviation s is 

determined using the following expression: 
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s= 
n-\ 

Where x,, x , and n are defined above. A high value of the standard deviation 

corresponds to a high degree of scatter or variability in the data collected from samples 

of the same material. 

A5: Pin-on-plate wear volume loss measurement values for UHMWPE/Ti6A14V 

couples 

The tabulated pin wear volumes were calculated using an average of 4 weight loss 

measurements and the deviations from the mean of the weight loss measurements were 

less than 10 % in all cases. 

Table A5.1. Unmodified UHMWPE pin wear volume (mm3) measurements (articulated 

against unmodified Ti6A14V, fig. 5.16) 

Sliding distance (km) Pin 1 Pin 2 Pin 3 Pin 4 

0 0 0 0 0 

12.59 1.65 1.61 1.35 1.65 

22.36 2.95 2.67 2.74 2.72 

35.15 4.69 3.89 4.33 4.03 

44.67 5.84 4.78 5.59 5.03 

57.61 7.42 6.62 7.22 6.92 

67.04 8.56 7.75 8.40 8.07 

79.46 9.87 8.93 9.69 9.25 

88.92 11.05 10.19 10.89 10.54 

101.34 12.69 11.63 12.43 12.01 

110.72 13.68 12.45 13.44 12.94 

123.13 14.86 13.58 14.43 14.04 

132.54 15.76 14.51 15.49 15.04 

145.01 17.02 15.51 16.83 16.09 

154.37 17.89 16.21 17.74 16.85 

166.84 19.34 17.42 19.02 18.08 

176.17 20.12 18.18 19.68 18.82 

188.55 21.41 19.37 20.86 20.02 

197.80 21.95 19.94 21.44 20.65 

2 

Equation A4.2. 
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207.16 22.54 20.50 21.98 21.25 

TableA5.2. Modified UHMWPE pin wear volume (mm 3) measurements (articulated 

against unmodified Ti6A14V, fig. 5.17) 

Sliding distance 
(km) 

5x10" l \ f /cm' 
implanted pin 1 

5xio"ryr /cm z 

implanted pin 2 
1 x 10"N'/cm' 
implanted pin 3 

1 x10"N'/cm' 
implanted pin 4 

0 0 0 0 0 

9.59 1.00 1.13 1.38 1.36 

22.30 2.09 2.18 2.67 2.56 

31.65 3.07 3.18 3.85 3.67 

44.46 4.33 4.39 5.07 5.02 

53.35 5.43 5.50 6.34 6.17 

64.69 6.53 6.66 7.29 7.09 

73.50 7.54 7.65 8.40 8.20 

85.67 8.69 8.76 9.69 9.49 

94.61 9.69 9.83 10.55 10.30 

106.14 10.58 10.70 11.42 11.20 

117.81 11.53 11.66 12.40 12.12 

126.90 12.47 12.62 13.34 13.02 

139.55 13.37 13.55 14.24 13.93 

148.44 14.27 14.41 15.12 14.82 

161.08 15.39 15.49 16.19 15.90 

170.26 16.40 16.57 17.24 16.92 

182.61 17.46 17.60 18.25 17.88 

191.81 18.40 18.63 19.27 18.86 

203.84 19.30 19.50 20.23 19.79 

Table A5.3. 5 x 10 1 5 NVcm 2 implanted UHMWPE pin wear volume (mm3) 

measurements (articulated against unmodified Ti6A14V, fig. 5.18) 

Sliding distance (km) Pin 1 Pin 2 Pin 3 Pin 4 

0 0 0 0 0 

9.52 1.15 1.24 1.27 1.25 

21.97 2.30 2.51 2.57 2.46 

31.47 3.39 3.57 3.65 3.51 

44.46 4.44 4.72 4.80 4.61 

53.35 5.43 5.77 5.93 5.64 

65.73 6.68 7.00 7.22 6.80 
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74.94 7.65 8.00 8.29 7.70 

87.47 8.67 9.18 9.42 8.87 

96.77 9.56 10.09 10.35 9.74 

109.09 10.47 11.02 11.29 10.66 

121.41 11.44 11.92 12.19 11.62 

130.77 12.31 12.87 13.05 12.48 

143.15 13.31 14.04 14.09 13.48 

152.51 14.29 15.03 15.20 14.47 

164.89 15.41 16.15 16.36 15.56 

174.24 16.40 17.19 17.35 16.58 

186.58 17.39 18.20 18.43 17.56 

196.15 18.07 18.90 19.20 18.21 

205.28 18.72 19.54 19.85 18.85 

Table A5.4. Unmodified UHMWPE pin wear volume (mm3) measurements (articulated 

against 2 x 10 1 7 NVcm 2 implanted Ti6A14V, fig. 5.19) 

Sliding distance (km) Pin 1 Pin 2 Pin 3 Pin 4 

0 0 0 0 0 

2.19 0.30 0.30 0.26 0.27 

14.04 1.33 1.38 1.30 1.32 

22.99 1.98 2.03 1.90 1.88 

32.16 2.51 2.72 2.38 2.70 

42.41 3.31 3.37 3.13 3.26 

58.33 4.07 4.20 3.86 4.11 

63.14 4.63 4.87 4.35 4.75 

79.66 5.32 5.62 5.01 5.52 

86.32 5.88 6.22 5.49 6.11 

95.91 6.47 6.87 6.09 6.78 

105.38 7.18 7.59 6.83 7.39 

115.53 7.76 8.11 7.40 7.98 

125.34 8.35 8.68 7.96 8.53 

135.83 8.91 9.25 8.68 9.10 

146.43 9.46 9.92 9.37 9.67 

160.93 10.29 10.72 10.22 10.47 

171.76 11.06 11.45 10.92 11.17 

186.22 11.82 12.20 11.62 11.98 

197.17 12.48 12.95 12.29 12.72 
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Table A5.5. Unmodified UHMWPE pin wear volume (mm 3) measurements (articulated 

against 1 x 102 1 N~7cm2 (pins 1 and 2) and 1 x 101 8 INT/cm2 (pins 3 and 4) implanted 

Ti6A14V, fig. 5.20) 

Sliding distance (km) Pin 1 Pin 2 Pin 3 Pin 4 

0 0 0 0 0 

9.92 0.97 1.07 1.00 1.08 

19.80 2.10 2.18 2.12 2.22 

30.58 3.19 3.33 3.21 3.40 

37.33 3.80 3.95 3.82 4.03 

47.09 4.52 4.67 4.54 4.81 

57.55 5.28 5.39 5.34 5.20 

67.26 5.90 6.05 5.98 5.73 

75.73 6.47 6.61 6.33 6.12 

85.50 7.22 7.39 6.87 6.68 

94.79 7.97 8.12 7.40 7.22 

103.99 8.72 8.92 8.03 7.85 

114.28 9.55 9.75 8.65 8.47 

123.74 10.32 10.54 9.18 9.03 

134.32 11.09 11.29 9.65 9.47 

143.98 11.84 12.04 10.20 9.96 

153.42 12.50 12.68 10.70 10.43 

162.78 13.15 13.35 11.15 10.87 

172.09 13.80 13.99 11.60 11.32 

181.45 14.44 14.57 12.01 11.69 

Table A5.6. 5 x 10 1 5 K7cm 2 implanted UHMWPE pin wear volume (mm3) 

measurements (articulated against 2 x 10 1 7 N7cm 2 implanted Ti6A14V, fig. 5.21) 

Sliding distance (km) Pin1 Pin 2 Pin 3 Pin 4 

0 0 0 0 0 

9.21 0.56 0.64 0.62 0.53 

18.54 1.21 1.29 1.27 1.15 

27.39 1.81 1.84 1.82 1.70 

37.37 2.37 2.36 2.33 2.32 

47.00 2.73 2.72 2.74 2.75 

56.24 3.27 3.22 3.25 3.21 

65.74 3.72 3.66 3.68 3.69 

74.03 4.15 4.07 4.06 4.12 

86.85 4.80 4.57 4.62 4.76 
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96.53 5.18 4.94 5.00 5.12 

106.82 5.74 5.36 5.44 5.62 

119.75 6.33 5.96 6.01 6.21 

128.87 6.79 6.32 6.43 6.64 

138.57 7.38 6.76 6.97 7.23 

147.83 7.84 7.16 7.37 7.63 

157.66 8.18 7.47 7.68 7.94 

170.70 8.91 8.02 8.40 8.67 

180.43 9.39 8.34 8.85 9.14 

193.03 9.87 8.73 9.24 9.58 

Table A5.7. Unmodified XLPE pin wear volume (mm3) measurements (articulated 

against unmodified Ti6A14V) 

Sliding distance (km) Pin1 Pin 2 Pin 3 Pin 4 

0 0 0 0 0 

12.81 1.99 2.47 2.21 1.60 

22.40 3.77 4.68 4.21 3.61 

35.01 6.39 7.47 6.81 6.28 

44.52 8.54 9.65 8.96 8.30 

57.61 10.45 11.53 10.85 10.21 

Table A5.8. 5 x 10 1 5 NVcm 2 implanted XLPE (pin 1 and 2) and unmodified (pins 3 and 

4) wear volume (mm 3) measurements (articulated against 2 x 10 1 7 H7cm 2 implanted 

Ti6A14V, fig. 5.22) 

Sliding distance (km) Modified pin 1 Modified pin 2 Pin 3 Pin 4 

0 0 0 0 0 

10.72 0.53 0.52 0.65 0.65 

20.80 1.01 0.98 1.29 1.28 

31.14 1.50 1.46 1.85 1.88 

40.80 1.90 1.81 2.41 2.40 

50.86 2.47 2.30 3.03 3.08 

59.70 2.95 2.73 3.57 3.59 

69.56 3.40 3.17 4.08 4.03 

79.19 3.90 3.69 4.68 4.63 

88.41 4.28 4.13 5.23 5.13 

98.16 4.73 4.58 5.72 5.60 

107.90 5.08 4.96 6.09 5.98 
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118.22 5.39 5.32 6.43 6.32 

128.29 5.67 5.59 6.74 6.59 

138.15 5.94 5.82 7.03 6.86 

147.92 6.18 6.09 7.31 7.14 

157.68 6.45 6.31 7.48 7.30 

167.53 6.69 6.53 7.74 7.55 

177.32 6.89 6.74 7.95 7.73 

187.04 7.08 6.93 8.16 7.95 

Table A5.9. Table of values for mean UHMWPE volume loss graph (fig. 5.23) 

Sliding distance (km) Couple 1 Couple 2 Couple 3 Couple 4 Couple 5 

0 0 0 0 0 0.0 

10.00 1.57 0.28 1.02 1.04 0.59 

20.00 2.77 1.33 2.14 2.17 1.23 

30.00 4.23 1.94 3.26 3.30 1.79 

40.00 5.31 2.58 3.87 3.93 2.35 

50.00 7.05 3.27 4.60 4.68 2.74 

60.00 8.20 4.06 5.34 5.27 3.24 

70.00 9.44 4.65 5.98 5.86 3.69 

80.00 10.67 5.37 6.54 6.23 4.10 

90.00 12.19 5.93 7.30 6.77 4.69 

100.00 13.13 6.55 8.04 7.31 5.06 

110.00 14.23 7.25 8.82 7.94 5.54 

120.00 15.20 7.81 9.65 8.56 6.13 

130.00 16.36 8.38 10.43 9.10 6.55 

140.00 17.17 8.98 11.19 9.56 7.08 

150.00 18.46 9.60 11.94 10.08 7.50 

160.00 19.20 10.43 12.59 10.57 7.82 

170.00 20.41 11.15 13.25 11.01 8.50 

180.00 21.00 11.91 13.90 11.46 8.93 

190.00 21.57 12.61 14.50 11.85 9.36 
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Table A5.10. Standard deviations of the mean UHMWPE volume loss values in table 

A5.9 (fig. 5.23) 

Couple 1 (±) Couple 2 (±) Couple 3 (±) Couple 4 (±) Couple 5 (±) 

0 0 0 0 0 

0.14 0.02 0.07 0.06 0.05 

0.13 0.04 0.05 0.07 0.06 

0.35 0.07 0.10 0.14 0.06 

0.49 0.16 0.11 0.15 0.02 

0.35 0.10 0.10 0.19 0.01 

0.36 0.14 0.08 0.09 0.03 

0.43 0.22 0.11 0.17 0.02 

0.38 0.27 0.10 0.15 0.04 

0.47 0.32 0.12 0.14 0.11 

0.54 0.35 0.11 0.13 0.11 

0.54 0.32 0.14 0.13 0.17 

0.55 0.31 0.14 0.13 0.17 

0.70 0.31 0.15 0.11 0.21 

0.79 0.25 0.14 0.13 0.28 

0.88 0.24 0.14 0.17 0.30 

0.87 0.22 0.12 0.18 0.31 

0.90 0.23 0.14 0.20 0.39 

0.88 0.24 0.14 0.20 0.45 

0.89 0.29 0.09 0.23 0.49 
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Table A5.11. Mean bedding in and steady state wear factors of UHMWPE/Ti6A14V 
wear couples 
Wear test Mean bedding in k 0 Sliding Mean steady state Sliding 

(x 10"6 mm3/Nm) distance (km) k 0 (x 10"6 mm3/Nm) distance (km) 

Test 1 3.04 ±0.17 0-67 2.41 ±0.11 67-207 

Test 2 (a) 2.56 ±0.01 0-95 2.26 ±0.01 95-204 

Test 2 (b) 2.82 ± 0.05 0-95 2.23 ± 0.03 95-204 

Test 3 1.86 ±0.08 0-63 1.50 ±0.02 63-197 

Test 4 (a) 2.47 ± 0.04 0-58 1.35 ±0.01 58-181 

Test 4 (b) 2.46 ± 0.06 0-58 1.90 ±0.01 58-181 

Test 5 1.46 ±0.01 0-66 1.13 ±0.09 66-193 

Where Test 1 is Unmodified UHMWPE/unmodified Ti6A14V; Test 2 (a) is 5 x 10 1 5 N* 

ions/cm2 implanted UHMWPE/Unmodified Ti6A14V; Test 2 (b) is 1 x 101 5 ions/cm2 

implanted UHMWPE/Unmodified Ti6A14V; Test 3 is Unmodified UHMWPE/2 x 10 1 7 

ions/cm2 implanted Ti6A14V; Test 4 (a) is Unmodified UHMWPE/1 x 10 1 8 IsT ions cm"2 

implanted Ti6Al4V; Test 4 (b) is Unmodified UHMWPE/1 x 102 1 N* ions/cm2 

implanted Ti6A14V; Test 5 is 5 x 101 5 N* ions/cm2 implanted UHMWPE/2 x 10 1 7 TsT 

ions/cm2 implanted Ti6A14V wear couples. 
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A6: Pin-on-plate wear volume loss measurement values for UHMWPE/stainless 

steel couples 

Table A6.1 .Unmodified UHMWPE pin wear volume (mm3) measurements (articulated 

against unmodified stainless steel, fig. 5.67) 

Sliding distance (km) Pin1 Pin 2 Pin 3 Pin 4 

0 0 0 0 0 

9.43 0.81 0.59 0.74 0.67 

18.80 1.42 1.07 1.29 1.16 

28.13 2.49 2.01 2.29 2.11 

37.47 3.30 2.74 3.06 2.87 

46.80 4.34 3.49 3.94 3.67 

59.04 5.32 4.31 4.87 4.55 

71.28 6.09 4.98 5.60 5.25 

80.64 7.13 5.96 6.62 6.27 

90.00 7.63 6.40 7.11 6.72 

99.37 8.07 6.77 7.55 7.12 

111.78 8.93 7.25 8.34 7.62 

121.14 9.62 7.73 8.99 8.06 

133.41 10.04 8.08 9.34 8.40 

142.74 10.48 8.50 9.72 8.85 

155.16 10.95 8.88 10.03 9.17 

164.49 11.40 9.29 10.35 9.62 

176.90 11.88 9.69 10.71 9.97 

186.23 12.37 10.05 11.19 10.38 

198.61 12.87 10.40 11.61 10.76 

207.97 13.34 10.74 12.05 11.16 

Table A6.2. Unmodified UHMWPE pin wear volume (mm3) measurements (articulated 

against 2 x 10 1 7 NVcm 2 implanted stainless steel, fig.5.68) 

Sliding distance (km) Pin 1 Pin 2 Pin 3 Pin 4 

0 0 0 0 0 

12.39 0.65 0.61 0.71 0.61 

21.65 1.10 1.01 1.16 1.02 

34.04 1.62 1.44 1.76 1.50 

43.33 2.06 1.83 2.22 1.91 

55.72 2.52 2.28 2.69 2.38 

65.05 3.01 2.62 3.22 2.79 

232 



77.44 3.55 3.02 3.79 3.32 

86.70 3.93 3.33 4.22 3.68 

99.02 4.37 3.75 4.74 4.13 

108.24 4.80 4.11 5.18 4.54 

120.62 5.15 4.43 5.59 4.89 

129.88 5.41 4.70 5.95 5.17 

142.30 5.77 5.11 6.28 5.61 

151.57 6.10 5.39 6.52 5.94 

163.98 6.44 5.70 6.87 6.24 

173.27 6.82 6.04 7.23 6.63 

182.56 7.13 6.34 7.57 6.93 

191.88 7.40 6.56 7.81 7.19 

201.17 7.61 6.77 8.03 7.40 

210.48 7.86 7.00 8.26 7.65 

Table A6.3. 5 x 101 5 N7cm 2 implanted UHMWPE pin wear volume (mm3) 

measurements (articulated against 2 x 10 1 7 N~7cm2 implanted stainless steel, fig. 5.69) 

Sliding distance (km) Pin 1 Pin 2 Pin 3 Pin 4 

0 0 0 0 0 

9.30 0.30 0.28 0.33 0.26 

21.57 0.75 0.74 0.74 0.67 

30.89 1.12 1.17 1.18 1.11 

43.31 1.65 1.65 1.68 1.64 

52.66 2.09 2.12 2.10 2.11 

64.89 2.50 2.56 2.60 2.58 

74.19 2.87 2.96 2.99 3.00 

86.65 3.18 3.27 3.30 3.33 

95.99 3.49 3.59 3.64 3.68 

108.39 3.77 3.86 3.92 3.97 

117.74 4.06 4.18 4.24 4.26 

130.20 4.38 4.51 4.56 4.59 

139.56 4.66 4.78 4.88 4.93 

148.98 4.89 5.03 5.19 5.26 

158.40 5.09 5.19 5.36 5.47 

167.76 5.23 5.35 5.51 5.63 

177.12 5.38 5.51 5.65 5.76 

186.55 5.49 5.67 5.82 5.87 

196.29 5.61 5.79 5.98 6.01 
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205.31 5.76 5.92 6.10 6.14 

Table A6.4. Table of values for mean UHMWPE volume loss graphs (figure 5.70) 

Sliding distance (km) Couple 1 Couple 2 Couple 3 

0.00 0 0 0 

10.00 0.70 0.64 0.29 

20.00 1.24 1.07 0.73 

30.00 2.22 1.58 1.14 

40.00 2.99 2.00 1.66 

50.00 3.86 2.47 2.11 

60.00 4.76 2.91 2.56 

70.00 5.48 3.42 2.96 

80.00 6.49 3.79 3.27 

90.00 6.97 4.25 3.60 

100.00 7.38 4.66 3.88 

110.00 8.03 5.01 4.19 

120.00 8.60 5.31 4.51 

130.00 8.96 5.69 4.81 

140.00 9.39 5.99 5.09 

150.00 9.76 6.31 5.28 

160.00 10.17 6.68 5.43 

170.00 10.56 6.99 5.58 

180.00 11.00 7.24 5.71 

190.00 11.41 7.45 5.85 

200.00 11.82 7.69 5.98 

Table A6.5. Standard deviations of the mean UHMWPE volume loss values in table 

A6.4 (fig. 5.70) 

Couple 1 (±) Couple 2 (±) Couple 3 (±) 

0 0 0 

0.09 0.05 0.03 

0.15 0.07 0.04 

0.21 0.14 0.03 

0.24 0.17 0.02 

0.37 0.18 0.01 

0.44 0.26 0.04 

0.48 0.33 0.06 
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0.50 0.38 0.07 

0.53 0.42 0.08 

0.56 0.45 0.09 

0.75 0.49 0.09 

0.86 0.52 0.09 

0.89 0.48 0.12 

0.89 0.47 0.16 

0.93 0.49 0.17 

0.93 0.49 0.18 

0.98 0.51 0.17 

1.03 0.52 0.17 

1.10 0.52 0.19 

1.15 0.53 0.18 

Table A6.6. Mean bedding in and steady state wear factors for UHMWPE/stainless steel 
wear couples 
Wear test Mean bedding in k 0 

(x 10~6 mm3/Nm) 

Sliding 

distance (km) 

Mean steady state 

ko (x 10"6 mm3/Nm) 

Sliding 

distance (km) 

Test 1 1.9910.17 0-80 1.02 ±0.13 80-208 

Test 2 1.14 ±0.09 0-65 0.82 ±0.04 65-210 

Test 3 0.98 ±0.01 0-74 0.59 ±0.03 74-205 

Where Test 1 is Unmodified UHMWPE/unmodified stainless steel; Test 2 is 

Unmodified UHMWPE/2 x 10 1 7 ions/cm2 implanted stainless steel; and Test 3 is 5 x 

101 5 ions/cm2 implanted UHMWPE/2 x 10 1 7 ions/cm2 implanted stainless steel wear 

couples. 
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A7: Pin-on-plate wear volume loss measurement values for UHMWPE/Co-Cr-Mo 

couples 

Table A7.1. Unmodified UHMWPE pin wear volume (mm3) measurements (articulated 

against unmodified Co-Cr-Mo, fig. 5.80) 

Sliding distance (km) Pin1 Pin 2 Pin 3 Pin 4 

0 0 0 0 0 

11.48 0.69 0.69 0.71 0.71 
20.76 1.37 1.30 1.45 1.42 
30.13 1.99 1.91 2.12 2.07 
36.32 2.59 2.47 2.78 2.70 
45.64 3.23 3.08 3.42 3.32 
54.93 3.81 3.59 4.00 3.86 
67.34 4.35 4.12 4.57 4.40 
79.96 4.85 4.58 5.11 4.96 
88.61 5.28 5.02 5.52 5.38 
97.92 5.73 5.48 6.00 5.83 
110.36 6.11 5.90 6.45 6.28 
119.19 6.53 6.29 6.88 6.70 
131.62 7.01 6.75 7.42 7.22 
140.93 7.44 7.15 7.87 7.67 
153.35 7.79 7.54 8.22 8.05 
162.65 8.17 7.87 8.61 8.38 
175.07 8.49 8.19 8.94 8.69 
184.38 8.85 8.51 9.26 9.05 
196.81 9.20 8.90 9.63 9.41 
206.13 9.65 9.25 10.01 9.83 

Table A7.2. Unmodified UHMWPE pin wear volume (mm3) measurements (articulated 

against 2 x 10 1 7 lsT/cm2 implanted Co-Cr-Mo, fig. 5.81) 

Sliding distance (km) Pin 1 Pin 2 Pin 3 Pin 4 
0 0 0 0 0 

11.38 0.43 0.50 0.46 0.43 
20.69 0.74 0.87 0.81 0.77 
33.12 1.14 1.33 1.27 1.19 
42.43 1.49 1.75 1.64 1.56 
54.86 1.85 2.14 2.03 1.90 
64.18 2.11 2.47 2.34 2.22 
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76.58 2.50 2.94 2.77 2.64 
85.90 2.62 3.13 2.99 2.82 
98.33 2.92 3.46 3.30 3.09 
107.62 3.20 3.73 3.57 3.36 
120.04 3.47 3.99 3.83 3.59 
129.37 3.78 4.22 4.03 3.90 
141.80 4.11 4.55 4.35 4.24 
151.10 4.36 4.80 4.62 4.50 
163.53 4.75 5.18 4.99 4.87 
172.83 4.93 5.38 5.18 5.05 
185.26 5.15 5.60 5.42 5.26 
194.57 5.36 5.80 5.61 5.44 
207.00 5.57 5.99 5.82 5.67 
216.23 5.83 6.24 6.04 5.92 

Table A7.3. 5 x 10 1 5 lSTVcm2 implanted UHMWPE pin wear volume (mm 3) 

measurements (articulated against 2 x 10 1 7 NVcm 2 implanted Co-Cr-Mo, fig. 5.82) 

Sliding distance (km) Pin 1 Pin 2 Pin 3 Pin 4 

0 0 0 0 0 
12.01 0.25 0.34 0.29 0.28 
21.31 0.60 0.69 0.64 0.63 
33.74 0.87 1.01 0.95 0.94 
42.58 1.16 1.38 1.29 1.26 
55.02 1.51 1.77 1.68 1.64 
63.84 1.83 2.13 2.02 1.97 
76.30 2.12 2.43 2.33 2.26 
85.63 2.37 2.70 2.59 2.51 
98.02 2.72 3.07 2.93 2.87 
107.33 2.94 3.28 3.14 3.08 
119.78 3.17 3.50 3.36 3.29 
129.07 3.38 3.70 3.57 3.49 
138.42 3.58 3.91 3.79 3.70 
147.86 3.77 4.14 3.96 3.85 
157.21 3.99 4.37 4.17 4.05 
166.52 4.21 4.60 4.40 4.28 
175.85 4.45 4.85 4.63 4.51 
185.14 4.67 5.06 4.83 4.71 
194.49 4.89 5.28 5.05 4.95 
203.80 5.11 5.54 5.25 5.17 
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Table A7.4. Table of values for mean UHMWPE volume loss graph (fig. 5.83) 

Sliding distance (km) Couple 1 Couple 2 Couple 3 

0.00 0.00 0.00 0.00 
10.00 0.70 0.46 0.29 
20.00 1.38 0.80 0.64 
30.00 2.02 1.23 0.94 
40.00 2.63 1.61 1.27 
50.00 3.26 1.98 1.65 
60.00 3.81 2.29 1.99 
70.00 4.36 2.71 2.29 
80.00 4.87 2.89 2.54 
90.00 5.30 3.19 2.90 
100.00 5.76 3.47 3.11 
110.00 6.19 3.72 3.33 
120.00 6.60 3.98 3.54 
130.00 7.10 4.31 3.75 
140.00 7.53 4.57 3.93 
150.00 7.90 4.95 4.15 
160.00 8.26 5.13 4.37 
170.00 8.58 5.36 4.61 
180.00 8.92 5.55 4.82 
190.00 9.28 5.76 5.04 
200.00 9.69 6.01 5.27 

Table A7.5. Standard deviations of the mean UHMWPE volume loss values in table 

A7.4 (fig. 5.83) 

Couple 1 (±) Couple 2 (±) Couple 3 (±) 

0.00 0.00 0.00 
0.01 0.03 0.04 
0.07 0.06 0.04 
0.09 0.09 0.06 
0.13 0.11 0.09 
0.15 0.13 0.11 
0.17 0.16 0.12 
0.18 0.19 0.13 
0.22 0.22 0.14 
0.21 0.23 0.15 
0.22 0.23 0.14 
0.24 0.23 0.14 
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0.25 0.19 0.14 
0.29 0.19 0.14 
0.31 0.19 0.16 
0.30 0.18 0.17 
0.31 0.19 0.17 
0.32 0.19 0.18 
0.32 0.19 0.18 
0.31 0.18 0.17 
0.33 0.17 0.19 

Table A6.6. Mean bedding in and steady state wear factors for UHMWPE/Co-Cr-Mo 
wear couples 
Wear test Mean bedding in k 0 

(x 10"6 mm3/Nm) 

Sliding 

distance (km) 

Mean steady state 

ko (x 10"6 mm3/Nm) 

Sliding 

distance (km) 

Test 1 1.75 ±0.08 0-54 0.96 ± 0.03 54-206 

Test 2 0.95 ±0.06 0-42 0.63 ±0.005 42-216 

Test 3 0.75 ±0.05 0-64 0.58 ± 0.02 64-204 

Where Test 1 is Unmodified UHMWPE/unmodified Co-Cr-Mo; Test 2 is Unmodified 

UHMWPE/2 x 10 1 7 ions/cm2 implanted Co-Cr-Mo; and Test 3 is 5 x 10 1 5 ions/cm2 

implanted UHMWPE/2 x 10 1 7 ions/cm2 implanted Co-Cr-Mo wear couples. 
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APPENDIX B 

Material Data of the Selected Biomaterials Used in this Study 

B l : Material data for Ti6AI4V 

Table B l . l . Ti6A14V data as supplied (Mill Annealed) 

Material Designation (classification) Ti6A14V (alpha/beta) 

ASTM Standard ASTM F 1472 

ISO Standard ISO 5832-3 

Density (g/cm3) 4.4 

Modulus of Elasticity (GPa) 114 

Ultimate Tensile Strength (MPa) 860 

Yield Tensile Strength (MPa) 790 

Compressive Yield Strength (MPa) 860 

Fatigue Strength (MPa) 300 

Elongation to break (%) 15 

Shear Modulus (GPa) 44 

Shear Strength (MPa) 550 

B2: Material data for Austenitic Stainless Steel (Rex 734/ORTRON 90) 

Table B2.1. Rex 734 (ORTRON 90) data as supplied (Cold Worked) 

Material Designation Fe-21 Cr-10Ni-3. 5Mn-2.5Mo 

ASTM Standard ASTM F 1586 

ISO Standard ISO 5832-9 

Density (g/cm3) 7.9 

Modulus of Elasticity (GPa) 193 

Tensile Strength (MPa, min) 740 

0.2 % Proof Stress (MPa, min) 430 

Elongation to break (%, min) 35 
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133: Material data for Co-Cr-Mo 

Table B3.3. Co-Cr-Mo data as supplied (Wrought Alloy) 

Material Designation Co-28Cr-6Mo 

ASTM Standard ASTMF 1537 

ISO Standard ISO 5832-12 

Density (g/cm3) 8.3 

Modulus of Elasticity (GPa) 210 

Ultimate Tensile Strength (MPa) 1035 

Yield Tensile Strength, 0.2 % Offset (MPa) 585 

Elongation to break (%) 25 

Reduction of Area (%) 23 

B4: Material data for UHMWPE 

Table B4.1. UHMWPE data as supplied (Ram Extruded) 

Weight Average Molecular Weight (g/mol)a 3.1 x 106 

Density (kg/m3) 927 

Yield Strength (MPa, min) 21 

Tensile strength (MPa, min) 37 

Elongation (%, min) 300 

Tensile Modulus (MPa) 689- 1033 

Crystallinity (%) 50 

Melting Temperature, T m (° C) 126 

Glass Transition Temperature, T g (° C) b -120 

Data from [8]; "data from [184]. 
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APPENDIX C 

Hardness Determination Measurements 

C I : Determination of the Knoop Indent Penetration Depth 

To evaluate the effects of N* ion implantation on microhardness, the Knoop indenter 

penetration depth into the modified samples were investigated. The Knoop diamond 

indenter penetration depth into the selected modified metallic biomaterials in this study, 

were calculated using the small indenter pyramidal geometry. The side and top view 

shape of the indentation are shown figure C I . 1. 

Figure C I . 1. Shape of Knoop Indentation (side and top view respectively) 

The angle of the diamond pyramid indenter (0) is 172° indicated on figure C I . 1.2 (a). 

From this angle the penetration depth of the indent (d) can be calculated using the 

indent geometry. Half the angle of the indenter (a) is 86° (fig. CI.2 (b)). During 

indentation measurements, the width of the indentation (/) is measured and the value (in 

l^m) shown on the microhardness tester. From this value, half the width size (1/2) can be 

calculated. The penetration depth (d) was calculated using trigonometry. From figure 

CI.2 (a): 

tan a = (1/2) I d equation C1.1. 

Which implies: 

d = (1/2) I tan a equation C1.2. 

r t b P H K = 14.2P//2 

6/t = 4.00 
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0 

a) 

1/2 

a 

b) 

Figure CI.2 ((a) and (b)). Geometry of Knoop Indentation. Where 0 is the angle of the 

indenter, a is half the angle, / is the indent width, 1/2 is half the indent width, and d is 

the indentation depth. 

The calculated, d values on all the modified metallic samples tested are shown in tables 

C 1.1 -CI.5 respectively for 2 x 10 1 7 lST ions/cm2 implanted Ti6A14V, 1 x 10 1 8 N + 

ions/cm2 implanted Ti6A14V, 1 x 102 1 N4" ions/cm2 implanted Ti6A14V, 2 x 10 1 7 N 4 

ions/cm2 implanted stainless steel, and 2 x 10 1 7 ions/cm2 Co-Cr-Mo. 

Table C l . l . Knoop indent penetration depth measurement values for 2 x 10 1 7 N 4 

ions/cm2 implanted Ti6Al4V (fig. 5.13) 

Load (gf) 
Mean hardness 

(KHN) 

Mean indention width 

(m) 

Mean indentation depth 

1 730 4.25 0.15 ±0.007 

3 646 8.06 0.28 ± 0.008 

5 543 11.05 0.39 ±0.010 

10 428 17.78 0.62 ± 0.021 

25 340 32.38 1.13 ± 0.015 
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Table CI.2. Knoop indent penetration depth measurement values for 1 x 101 8 N* 

ions/cm2 implanted Ti6A14V (fig. 5.14) 

Load (gf) 

Mean hardness 
(KHN) 

Mean indention width 

(nm) 
Mean indentation depth 

1 1064 3.72 0.13 ±0.009 

3 841 7.04 0.25 ± 0.006 

5 633 10.77 0.38 ±0.011 

10 483 17.52 0.61 ±0.016 

25 396 30.19 1.06 ± 0.028 

Table CI.3. Knoop indent penetration depth measurement values for 1 x 102 1 N* 

ions/cm2 implanted Ti6A14V (fig. 5.15) 

Load (gf) 
Mean hardness 

(KHN) 

Mean indention width 

(nm) 
Mean indentation depth 

(urn) 

1 1413 3.14 0.11 ±0.007 

3 1034 6.61 0.23 ±0.012 

5 791 9.54 0.33 ± 0.006 

10 535 16.04 0.56 ± 0.020 

25 430 28.55 1.00 ± 0.042 

Table CI.4. Knoop indent penetration depth measurement values for 2 x 10 1 7 N* 

ions/cm2 implanted stainless steel (fig. 5.66) 

Load (gf) 
Mean hardness 

(KHN) 

Mean indention width 

(urn) 
Mean indentation depth 

(\im) 

1 1003 3.90 0.14 ±0.009 

3 816 7.38 0.26 ±0.010 

5 701 10.51 0.37 ±0.012 

10 505 17.15 0.60 ±0.010 

25 343 31.16 1.09 ± 0.022 
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Table CI.5. Knoop indent penetration depth measurement values for 2 x 10 1 7 N* 

ions/cm2 implanted Co-Cr-Mo (figure 5.80) 

Load (gf) 

Mean hardness 

(KHN) 

Mean indention width 

(urn) 
Mean indentation depth 

(urn) 

1 1175 3.47 0.12 ±0.006 

3 884 6.92 0.24 ± 0.003 

5 719 10.09 0.35 ±0.017 

10 628 14.91 0.52 ± 0.009 

25 581 25.85 0.90 ±0.015 

C2: Hardness Measurement Tables 

C2.1. Hardness values for modified and unmodified Ti6A14V (fig. 5.12) 

Table C2.1.1. Microhardness measurements of unmodified Ti6 A14V 

Load (gf) 1 3 5 10 25 

343 327 353 301 308 
359 337 294 296 304 
338 345 301 293 305 
300 327 326 306 301 

Hardness (KHN) 354 312 338 324 315 
339 341 322 304 307 
348 348 350 302 300 

366 371 327 313 286 
350 322 322 326 299 
375 320 317 306 302 

Mean hardness (KHN) 347 335 325 307 302 

Standard deviation (±) 20 17 19 11 8 
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Table C2.1.2. Microhardness measurements of 2 x 10 1 7 N* ions/cm2.implanted Ti6A14V 

Load (gf) 1 3 5 10 25 

Hardness (KHN) 

715 622 505 373 347 

Hardness (KHN) 

697 625 579 421 328 

Hardness (KHN) 

717 680 512 445 343 

Hardness (KHN) 
719 619 586 421 346 

Hardness (KHN) 721 647 597 409 341 Hardness (KHN) 

800 655 575 440 327 
721 662 529 465 345 
769 667 529 433 353 
736 663 507 409 347 
703 618 511 461 322 

Mean hardness (KHN) 730 646 543 428 340 

Standard deviation (±) 32 23 37 27 10 

Table C2.1.3. Microhardness measurements of 1 x 101 8 N* ions/cm2.implanted Ti6A14V 

Load (gf) 1 3 5 10 25 

1063 854 646 493 433 
1222 823 705 482 410 
1040 927 576 488 409 
1277 958 597 461 394 

Hardness (KHN) 1141 838 645 436 389 
966 876 632 524 373 
1027 800 579 501 380 
979 827 642 444 362 
887 755 737 494 401 
1043 749 567 502 408 

Mean hardness (KHN) 1064 841 633 483 396 

Standard deviation (±) 119 67 56 27 21 
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Table C2.1.4.Microhardness measurements of 1 x 102 1 N"1" ions/cm2.implanted Ti6A14V 

Load (gf) 1 3 5 10 25 

1226 828 914 501 463 
1257 1122 822 562 412 
1561 1042 756 536 371 
1358 1001 753 573 478 

Hardness (KHN) 1209 1028 923 552 473 
1517 1122 730 612 397 
1670 1057 647 468 390 
1411 1040 824 565 452 
1677 987 742 512 454 
1243 1113 800 473 412 

Mean hardness (KHN) 1413 1034 791 535 430 

Standard deviation (±) 183 87 84 46 38 

C2.2: Hardness values for modified and unmodified stainless steel (fig. 5.65) 

Table C2.2.1. Microhardness measurements of unmodified stainless steel 

Load (gf) 1 3 5 10 25 

544 429 488 356 446 
406 443 467 423 441 
401 502 416 501 404 
448 449 400 467 399 

Hardness (KHN) 467 424 439 388 415 

439 440 423 380 436 

426 504 397 359 457 
469 481 366 430 409 
506 412 403 422 411 
510 423 468 390 388 

Mean hardness (KHN) 462 451 426 412 415 

Standard deviation (±) 47 33 38 47 22 
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Table C2.2.2. Microhardness measurements of 2 x 10 1 7 N4" ions/cm2.implanted stainless 

steel 

Load (gf) 1 3 S 10 25 

1068 870 624 513 406 
966 751 704 537 440 
1061 1084 638 536 429 
800 773 667 463 516 

Hardness (HKN) 841 726 716 526 492 
1019 753 750 455 516 
831 881 690 483 426 
956 740 594 512 413 
1102 804 523 426 487 
1041 765 523 510 499 

Mean hardness (HKN) 969 815 643 496 462 

Standard deviation (±) 109 108 78 38 44 

C2.3: Hardness values for modified and unmodified Co-Cr-Mo 

Table C2.3.1. Microhardness measurements unmodified Co-Cr-Mo 

Load (gf) 1 3 5 10 25 

468 576 525 561 542 
602 639 604 522 502 
586 596 530 566 501 
522 501 532 525 499 

Hardness (HKN) 687 559,6 556 527 496 
580 556 523 481 519 
570 559 524 545 581 
599 486 599 464 491 
588 532 448 523 519 
503 588 533 579 501 

Mean hardness (HKN) 570 559 537 529 513 

Standard deviation (±) 61 48 44 36 29 
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Table C2.3.2. Microhardness measurements of 2 x 10 1 7 ions/cm2.implanted Co-Cr-

Mo 

Load (gf) 1 3 5 10 25 

1078 993 759 537 594 
1117 759 599 673 632 
1057 1054 718 681 562 
1373 824 686 672 585 

Hardness (KHN) 1183 908 755 583 541 
1248 930 795 685 572 
1129 944 752 638 565 
1272 738 702 591 602 
1088 805 647 630 532 
1200 887 779 592 625 

Mean hardness (KHN) 1175 884 719 628 581 

Standard deviation (±) 101 102 62 51 33 
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APPENDIX D 

Ion Implantation System Diagrams 

D l : Ion implantation system diagrams 

The model Z-100 zymeting™ system consists of the following six subsystems: beam 

generation, beam control, product handling, dose monitoring, vacuum system, and 

control system, which have been described in detail under section 4.2.3. Figure D l . l 

shows the block diagram of the system, and the ion source system, scanning system, 

product handling, beamline and process chamber diagram, and the dose monitoring 

system are respectively shown in figures D l .2 - D l .6. 

BEAM 
GENERATION 

BEAM 
CONTROL 

VACUUM 
SYSTEM 

DOSE 
MONITORS 

PRODUCT 
HANDLING 

VACUUM 
SYSTEM 

I 
I 

CONTROL 
ELECTRONICS 

Figure D l . l . System Block Diagram 
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Figure D1.2. Ion Source System 

Mechanical Rotation 
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/ / ; Ion A/ 7, I Source / Adjustable 
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Figure D1.3. Z-100 Scanning System 
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Figure D l .4. Product Handling, using low melting point metal 
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Figure D1.5. Beamline and Process Chamber Diagram 
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Figure D1.6. Dose Monitoring System 
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